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PREFACE

This first book of a two-volume series on numerical fluid

dynamics is concerned with finite difference methods for initial

boundary-value problems. The intention is to make the field of

numerical fluid dynamics accessible by emphasizing concepts along with

the underlying theory rather than presenting a collection of recipes

and by building on the classical methods to develop the numerical

methods on the leading edge of research.

This book, which is essentially self-contained, is intended to

be a text directed at first-year graduate students in engineering and

the physical sciences and as a reference to practitioners in the

field. It assumes a basic knowledge of partial differential equations.

The proofs of some of the classical theorems requiring a greater

knowledge of analysis are presented in appendices. This first volume

is designed for a course in numerical methods for initial boundary-

value problems. The numerical methods and techniques for their

analysis contained in Volume I provide the foundation for Volume II,

which deals exclusively with the equations governing fluid motion.

I am indebted to many friends and colleagues for their support

and cooperation. The formost of these, taught me numerical analysis,

was my advisor, and is my friend, Alexandre Chorin. This book is in

no small way a reflection of his influence on my way of viewing

numerical fluid dynamics. I would also like to express my appreciation

to Philip Colella, F. Alberto Grunbaum, Ole Hald, Amiram Harten,

J. Mac Hyman, Robert Miller, Joseph Oliger, and Olof Widlund who have

read drafts of the book and made useful suggestions.

I wish to thank Meredith Mickel and P.Q. Lam who typed and

retyped the manuscript. I wish to thank David Tranah and the staff of

the Cambridge University Press for their patience and assistance in

the preparation of the book.

Finally, I wish to express my appreciation to my wife, Jo, for

her patience, understanding, and her never-ending support, without

which this book would not have been completed.

January, 1985 Gary A. Sod





I. INTRODUCTION

1.1. Introductory Example.

Consider the one-dimensional heat (diffusion) equation on t > 0

(1.1.1a) 3tv = a
23xv, -co < x < +«, t > 0

with initial condition

(1.1.1b) V(X,O) = f(x), -» < X < +00,

where f(x) is uniformly bounded by some constant M, that is,

|f(x) | < M for all x.

The derivatives shall be approximated by finite differences.

Let k, called the time step, and h called the grid spacing, be small

positive numbers. Using the definition of the derivative,

3 v = lim v(«+h,t) - v(x,t) m l i m v(x,t) - v(x-h,t) #
x h+0 h h+0 h

This leads to two approximations to 3xv,

* „ v(x+h,t) - v(x,t) v(x,t) - v(x-h,t)
3x v ~ h or h

Similarly, for 3tv,

* „ v(x,t+h) - v(x,t)
at v ~ k

o
Also, for 3xv, using the approximation above for 3xv,

*2 v(x+h,t) - v(x,t) v(x,t) - v(x-h,t)
3x v ~ h " h

h

= v(x+h,t) - 2v(x,t) + v(x-htt)

h2

Let un = u(ih,nk), where i is an integer and n is a non-

negative integer, denote a grid function which approximates the exact

solution of v(x,t) at the point (ih,nk). u. is determined by replac-

ing the initial-value problem (1.1.1) by the finite difference equation

( 1 . 1 .

with

(1 .1 .

2a)

the

2b)

uf1 - u

discrete in i t ia l

n ir?+

condition

u? = f(ih)

n- u.

h 2

, n

+ »?-!

= 0.

, n > 0



With the finite difference equation (1.1.2), the continuous

problem defined for t > 0 and -» < x < » has been transformed into a

discrete problem, defined at discrete points in time t = nk, and in

space x = ih. This finite difference equation can be explicitly

solved for u

(1.1.3)

n+1
i

in terms of u. and un

n+1
u. Xun

+1 (1-2x)un + Xu^_1

where X = a k/h . The solution is advanced in time from time t = nk

to time t = (n+1)k using (1.1.3). To start set n = 0, which cor-

responds to the initial data u9 = f(ih). The solution at time (n+1)k

is an average of the solution at three points at the preceeding time

level nk.

n+1

Figure 1.1

One difficulty in dealing with a pure initial value problem is

that the discrete form of the real line, that is x = ih, i = 0,±1,

±2,..., is infinite. This countably infinite set must be reduced to a

finite set which effectively adds boundaries that physically are not

present. This does not present a problem in this case as a necessary

condition for the solution to (1.1.1) to exist is that v(x,t) + 0 as

x -• ±oo. At the artificial boundaries impose the condition that un = 0.

For the solution to (1.1.1) to exist, we must have v(x,t) -• 0

as x -• ±<». Thus we can impose conditions at the artificial boundaries

that un = 0.

As a numerical example, consider an initial condition given by a

smooth function f(x) having support on an interval, centered at a

grid point, with length 2h. One such function f(x) is depicted in

Figure 1.2.

-h

Figure 1.2.



The discrete initial conditions become

0 e > 0f 1 - i'
ui =

0 , i * i1 .

Replace the real line with the interval [-1,1] and impose boundary

conditions v(±1,t) = 0. Figure 1.3a depicts the exact solution

(represented by a solid line) and the approximate solution (repre-

sented by a dashed line) with h = 0.1 and \ = 0.25 at times t = 0.02,

0.04, and 0.06. The general structure of the solution is represented

by the approximate solution. Figure 1.3b depicts the results with

X = 2. In this case the approximate solution oscillates with the

amplitude of the oscillation growing with the number of time steps.

The partial differential equation has been approximated in the

sense that v(x,t) almost satisfies (1.1.2); but, however, does the

solution of (1.1.2) approximate the solution of (1.1.1)? This example

demonstrates that answer depends on X.

Figure 1.3a.

Comparison of Exact Solution (solid line) with
Approximate Solution (dashed line) for X = 0.25.

8. -36. 78. -99. 78. -36. 8
(.1421) (.1742) (.1969) (.2051) (.1969) (.1742) (.1421)

I
4. -12. 17. -12. 4.

(.1961) (.2352) (.2499) (.2352) (.1961)

I
2. -3. 2.

(.3093) (.3478) (.3093)

Figure 1.3b.

Comparison of (Exact Solution) with Approximate
Solution for X = 2.

For X > 1/2, (1-2X) < 0
n

and so

uV is zero or alternates in sign with

values for n

using (1 .1 .3)

1 and 2

(1-2x)e < 0 while Xe > 0. Thus

i for fixed n (typical

are depicted in Figure 1.4.). From which,



2 x 2 e + ( 1 - 2 x ) 2 e > 0

Xe>0 2x (1 -2x )e<0 2 x ( 1 - 2 x ) e < 0 Xe>0

H — I 1 1 H n = 2

0 Xe > 0 ( 1 - 2 x ) e < 0 Xe > 0 0

H 1 1 1 h- n = 1

1 1 1 H-x n = 0
0 e 0 0 x

Figure 1.4

+ , + (1 -2x)u° + X u ^ l

+ 1 | + <2x-1 ) |u£ | + A l u ^ l ,

where the last equality follows from the alternating sign property of

un. Sum over all values of i and define Sn = I|un|

| u ^ + 1 | + ( 2 x - 1 ) ? | u n | + X j l u ^ l

Sn+1 = XSn + (2x-1)Sn + XSn = (4x-1)Sn

= (4x-1)2Sn"1

= (4x-i)n+1S°
- (4x-1)n+1s .

Thus for fixed X and fixed time t as h + 0 , k + 0 and n + +«,

so that (4x-1)n+^e grows without bound. At time steps corresponding

to n = 1 there are 3 nonzero terms and n = 2 there are 5 nonzero

terms (see Figure 1.4). For a general n, there are 2n+1 nonzero

terms. Hence, at step n+1, S is the sum of the absolute value

of 2n+3 terms for which there must be some value of i such that

, n+1, (4x-1)n+1e

which grows without bound as h -• 0. This leads to disaster.

If f(x) is uniformly bounded, and X < 1/2, then u? is

uniformly bounded. To see this, define En = max|un|. Using (1.1.3),



| u n + 1 | = | X u n
+ 1 + ( 1 - 2 x ) u n + X u ^ l

< X | u n
+ 1 | + ( 1 - 2 x ) | u n | + X | u n ^ | ,

since, if X < 1/2, then 1 - 2x > 0. But then

max|un+1| < X max|un
+1| + (1-2x)|u

n| + X maxlu?^!

or

En+1 < XEn + (1-2x)En + XEn - En.

Thus En+1 < En < E11"1 < . . . < E° = max | f ( ih ) | < M, which means

max|un+1 | < M or |u n + 1 | < M. i

This shows tha t i f X < 1/2 the approximate solut ion i s

uniformly bounded; but , however, does the solut ion u. converge to

the exact so lu t ion v ( i h , t ) for some fixed time? To answer t h i s make

use of the Taylor formula with remainder. Expand v (x , t ) in a Taylor

s e r i e s in time about the point ( ih,nk) and evaluate i t a t t = (n+1)k

n+1 n n \c% 2
v. = v(ih,(n+1)k) = v. + k(3^v). + 5^3~v(ih,t*),

L 1 t 1 Z t
where nk < t* < (n+1)k. Solving for (3fcv)

n

(1.1.5) 3tv = — — ^ - -jk3^v(ih,t*).

Similarly, expand v(x,t) in a Taylor series in space about the point

(ih,nk) and evaluate at x = (i-1)h and x = (i+1)h

vn .. = v((i-1)h,nk) - vn - h(3vv)
n + S~(3^v)n

J.""! L X 1 Z X 1

= vn + h(3xv)
n + ̂ O x v ) n + r-Oxv)i,

+ tt 3x v ( x2' n k )

where (i-1)h < x* < ih and ih < x* < (i+1)h, respectively. Adding

these two series and solving for (3^v).

(1.1.6) â v = -i±3 ji ill - ̂ (a^vCx^.nk) + 3%(x*,nk)).
h

Combining (1.1.5) and (1.1.6)

a { ^, ) x.

or upon using (1.1.1a)



where x? = ̂ k82v(ih,t*) - -^a2 (h2 (9^v(x*,nk) + 8^v(x*,nk)) is called

the local truncation error at (ih,nk). This suggests the following

definition of consistency: A finite difference method is called

consistent with a differential equation if the solution of the dif-

ferential equation fails to satisfy the finite difference method by an

arbitrarily small amount. This is not a precise definition because it

does not tell what this small amount depends on. It will be made

precise below.

Equation (1.1.7) may be written in a form that is more compati-

ble with the finite difference method (1.1.3).

(1.1.8) vn+1 = xvn+1 + (1-2x)v + xvj.1 + kx*.

Define the error to be e? = vn - u*, then by subtracting

(1.1.3) from (1.1.8)

^"^ ̂  — \ ^ 4 - ^ 1 9 ^ * ^ - 1 - 1 * * -4- Ir **
G* —~ A 6 • I 4 • vl "" ̂- A / 6 • •" A c « i • iCT*

i i+i i l-i i

which implies

<1-2x)e? +

(1-2 )|e?|

n|since X < 1/2. Let eU = max |e n | , the maximum error a t time nk,

and xn = max|T^|, the maximum local truncation error at time nk, then

max|e n + 1 | < X max|e?+ 1 | + (1-2x)max|en | + X max|en J
i 1 i x ] i 1 i 1 " 1

i
k max|T^|

n+1 , n . / 1 < - , , \ n . , n l 1 n n . ,
e < Xe + (1-2x)e + Xe + kx = e + kx

Applying this inequality repeatedly gives

, £ n - 2 + k T n - 2 + ^ n - 1 + k T n < # # # < e + k ? T j .
j -0

Thus

(1 .1 .9) £n+1 < e° + kx
n

where x = Z xJ is the sum of the maximum local truncation errors at
j-0

times jk, j = 0,1,...,n. Ignoring the effects of round-off,

e = max|v9 - uQ| = 0, as this is just the initial data. With this

(1.1.10) e
n + 1 < kx.

For fixed x < 1/2, as h -• 0, k + 0 and so by the definition of x",

xn, and x each approaches 0 as h -• 0 and k -• 0. Convergence



is achieved since by (1.1.10) e
n+1 -• 0 as h • 0.

Introduce the "big oh" notation. a is of order &, denoted by

a = 0(8), if there is a positive number K such that |a| < K|e|.

The local truncation error x? and x in (1.1.10) is 0(k) + 0(h2).

One thing must now be mentioned that will be given greater attention

later. If the truncation error x? is written as

x1? - 0(k) + 0(h2)

this can be very misleading because hidden in the 0(k) term is

3^v(ih,t*) and in the 0(h2) term is 8^v(x*,nk) + aS^x^nk). In

general, it is not known how large these derivatives are. So even if

k and h are small so that 0(k) + 0(h2) would seem small, one or

both of the derivatives may be very large resulting in a much larger

truncation error.

1.2. Basic Difference Operators

Consider a function defined on a discrete set of points x = ih,

f̂  = f(ih). Such a function is called a grid function. Assume that

f. = 0 for |i| > I, where I is some large natural number. Let f

denote

f = (....f^.f^.f^f^,...) = {f.}.

Consider two grid functions f = {f.} and g = {g.}. Define the

discrete inner product of f and g, (f,g) by

(1.2.1) (f,g) = I figih

where h is a scaling factor. The Euclidean or j^-norm is defined to be

(1.2.2) ifi2 = (? f?h)
1 / 2 = /TfTfT .

This scaling factor h is important. For without it, as the grid is

refined (that is, as h is reduced), the sum over i will involve a

greater number of terms and the ju-norm of f would grow without bound.

Define operators acting on the grid function f = {f.} as

follows:

the forward shift operator S+

(1.2.3) (s+f>i " f
i+i >

f0 fi f2 f3

f 1 1 1 1
f1 f2 f3 f4

s+f 1 1 1 1
Figure 1.7



the backward shift operator S_

(1.2.4) (S.f)i = f!.lf

the identity operator I

(1.2.5) (If)! = fi,

the forward difference operator D+

(1.2.6) (D+f). = -iiljj

the backward difference operator D_

fi " fii i(1.2.7) (D_f). = L
 h

 L

and the centered difference operator DQ

i+1 i(1.2.8) (Dof)i = zh '

Observe that

D+ = (S+ - I)/h ,

D. = (I - S_)/h ,

and

1 1
Dry = TyT (S , - S ) = o" (D, + D ) .

u zh + - z +

Often for the sake of convenience (D+f)i is written as D+f and so
on. Some further properties of these operators are listed here:

(1.2.9) S+S. - S.S+ - I ,

which implies that S_ - (S+)"1,

(1 .2.10) S_D+ = D. ,

and similarly

(1.2.11) S+D. = D+ .

Property (1.2.10) follows from

S_D+f - S_(D+f) = S_(
 I+1

h -) = l+1
h =-i- = ——h

 1"1 = D_f.

Certain analogues of properties of functions defined on the real
line shall be derived.
1) Suppose F(x) and G(x) are differentiable,

-T! (F(X)G(X)) = F(x) -£ G(x) + G(x) -4 F(x),



which is the product rule.

To obtain the discrete analogue of the product rule, let f

and g = {gi} and define fg

,n - . fi+l(D+fg). =
" figi fi+1gi+1 " figi+1 + figi+l " figi=

" f i gigi
_ _ + ^

- gi+1(D+f). + f1(D+g)1

- ( S ^ . C D ^ ) . + ^(D+g).

= S+(gD_f). + fi(D+g)i ,

hence,

(1.2.12) D+fg = S+(gD_f) + fD+g .

2) Suppose F(x) and G(x) are differentiable. The discrete ana-

logue of integration by parts

F(x) ̂ | G(x)dx = F(x)G(x) F(x)dx
a

shall be derived. To this end, consider the sum

f2g2 - f,g.N-1 f,g1 -
^ (D+fg).h =

 n
h
 h + h

, fNgN " fN-1gN-1 ,
h

fNgN " f0g0

due to cancellation in pairs. However, since D+fg = S+(gD_f) + fD+g,

by summing

f N % " f0g0 - .=
Z
0
 S+<gD-f>ih +

 1fQ (fD+8>i
h

N N-1
= I (gDf) h + Z (fD.g).h .

i=1 " L i=0 + L

Assume that f̂  (and/or g^) = 0 for i < 0 and i > N,

then

0 = i (gD.f)ih + z (fD+g)ih

or by the definition of the discrete inner product,

0 = (g.D.f) + (f,D+g)
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or

(1.2.13) (g.D.f) - -(D+g,f) .

3) Suppose F(x) is continuously differentiable on the open interval

(0,1) and F(0) = 0, then Sobolev1s inequality is

lF(x) F(x)

1 9 1/2
where iG(x) i2 = (fQ G (x)dx) ' in this case. To derive the

discrete analogue of the Sobolev inequality, assume that fg - 0 and

i < N where N is a positive integer with Nh = 1. Write f^ in

the form (due to cancellation by pairs and fg = 0)

(D.f).h

and, hence,

lfil
i-1 , i-1 N-1
Z (D.f).h < Z | (D.f). | h < Z | (D.f),

j-0 J > j-0 J j-0 + -

Applying Schwartz's inequality, |(x,y)| < ixi2iyi2f with x = |D+f|

and y = 1 ,

lfil

N-1
Since Z h - Nh = 1 ,

j-0

N-1 1/2 N-1

j-0

N-1

j = 0

I 1 h
j-0

1/2

1/2

Squaring both sides, multiplying by h (= 1/N), and summing from 0

to N - 1,

N-1

i=0
i

N-1 N-1
h z ( i

i=0 j=0

N-1
hN( E (D.f

9

D.f)\

h)

So if fi = 0 for i < 0 and i < N,

1 f? h < Z (D.f)? h
. 1 . + i



This

(1 .2

a n d

(1.2

gives

.14)

similarly

.15)

<ff*h>
1/2

H f H 2

Hf H2

J ( ? ( D

< HD+

< HD_

+ f)

f l 2

f l 2

2 h )

11

1/2

Using the triangle inequality

lS+f + If1 1 1
H D, f H 0 = I r Jo = trlS.f + Ifl 0 < rr(HS,fHo + H f H 0 ) .

+ Z H h l l Z h + z h + Z z

S i n c e BS+fH2 = ( ? ( S + f ) 2 h ) 1 / 2 = ( ? f 2
+ 1 h ) 1 / 2 = ( ? f 2 h ) 1 / 2 = | f i 2 ,

( 1 . 2 . 1 6 ) HD+fH2 < ^ « f H 2
and similarly,

Observe that

"D+f«2 < K"f"2 •

f. . - f. D f . - D f
(D.D+f) - DJ-ii!^ L) = 1 + \ =-!•

fi+1 "
 fi fi " fi-1 f

= h h = 'i+1 " i ' 1-1
h " h 2

and similarly

fi+1 - 2f. + f._,
(D+D_f). = ^ ± ^ _i LJ. .

Return now to the heat equation considered in Section 1.1 with

boundary conditions

2 2
5t v = a 5x v t > ° ' 0 < x < 1

v(x,0) = f(x)

v(0,t) = 0 and v(1,t) = 0.

Divide the unit interval into N points with h = ̂-. Let uV denote

the approximate solution as described in the first section. Consider

the method (1.1.2)

(1.2.17) u n + 1 = u1? + a 2 k D + D % i

with UQ = 0 and u N = 0 (the boundary conditions). The question of

stability arose in the first section, and it was seen that the method

was stable, (that is, in an intuitive sense the solution is bounded)
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for X = a2k/h2 < 1/2. How was this condition arrived at? The inequali-

ties derived in this section will be used to answer the question: Is

«unll2 bounded and, if so, for what values of k and h? The method

used is called the energy method which will be discussed in detail in

later chapters. Take the discrete inner product of (1.2.17), with

itself

(un+1,un+1) = (un + a2kD+D_u
n, un + a2kD+D_u

n)

- (un,un) + (un,a2kD+D_u
n) + (a2kD+D_u

n,un)

= (un,un) + 2a2k(un,D+D_u
n) + a4k (D+D_u

n,D+D_u
n)

or

• un+1l* = l u
ni* + 2a

2k(un
(D+D.u

n) + a4k2|D+D.u
n.2 .

Applying discrete integration by parts (1.2.13) where g = D_un and

f - un,

nun+1ll2 - »unil2 - 2a2k(D_un,D__un) + a4k2«D+D_u
ni\

= »un»2 - 2a2k«D_unii2 + a4k2iD+D_u
nii2 .

Using inequality (1.2.16) with f = D_un,

«D+D_u
nn2 < |«D_u

nil2

and by applying inequality (1.2.16) again, we have

(1.2.18) BD+D_u
n»2 < "4"ull«2 •

h
Using iD.D un«? < -4|D uni|2 ,

+ - I hZ - i
n+1 2 n 2 o 2 1 T . n 2 ^ 4a4k2

 n n 2lu l0 < lu L - 2a k|D u |O + — s — n D u I*I I I hl - Z

4 2 2
so that, if ^ ^ - 2k < 0 or -^-j < j , then the solution of

(1.2.17) is bounded, that is, iun+1«2 < lun«2.

1.3. Lax's Theorem

We are now in a position to make precise the idea of stability.

Consider an initial value problem

(1.3.1) 3tv = P(3x)v , t > 0.

and

(1.3.2) v(x,0) = f(x) ,
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where P(3X) is a polynomial in 3X. For example, if P(z) = z2 +

5z + 1 , then P(3X) = 3X
2 + 5 3X + 1 and (1.3.1) becomes 3tv = 3x

2v +

5 3xv + v.

Definition. The initial value problem (1.3.1)-(1.3.2) is said to be

well-posed in a norm I-I if a solution exists, is unique, and depends

continuously on the initial data, that is, there exist constants C

and a such that

iv(x,t)i < Ce«t|f(t)i.

Let un - {un> denote the grid function at time t = nh. Let
0

uY - f(ih) denote the discrete initial conditions. The initial value

problem (1.3.1)-(1.3.2) shall be approximated by a finite difference

method of the form

(1.3.3) un+1 - Qu11 , n > 0

where Q is a polynomial in the forward and backward shift operators

S+ and S-, that is,

Q = Q(S+,S_).

This is the form of a typical finite difference method. For example,

the finite difference method (1.1.3) is

= XS+u" + (1 - 2x)u
n + XS_un

- (xS+ + (1 - 2x)I + XSju
1? .

Let Q(x,y) - xx + Xy + (1 - 2x) then Q(S+,S_) - XS+ + XS_ +

(1 - 2 )I and (1.1.3) becomes

un+1 -Qu11

where

Q(S+,S_) = XS+ + (1 - 2x)I + XS_.

Definition. The finite difference method (1.3.3) is called stable if

there exist constants K and & and some norm I-I such that,

luni < Keniu°l - Ke6tlu°l

where t = nk, and K and 6 are independent of h and k.

Observe that the definition of stability is similar to the

definition of well-posedness for the continuous case. This definition

of stability allows growth with time but xw growth with the number of

time steps.

Definition. A finite difference method is called unconditionally

stable if it is stable for any time step k and grid spacing h.

The definition of consistency given in Section 1.1 will now be

made precise.
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Definition. A finite difference method (1.3.3) is consistent up to

time T in a norm n-n with equation (1.3.1) if the actual solution

v to the initial value problem (1.3.1)-(1.3.2) "almost" satisfies the

finite difference method (1.3.3), that is,

(1.3.5) vn+1 = Qvn + kT
n,

where flTnn < i(h) , nk < T and x(h) -• 0 as k -• 0. Here it is

assumed that h is defined in terms of k and goes to 0 with k.

vn, denotes v(ih,nk), the exact solution evaluated at the grid

point (ih,nk). xn is the local truncation error at time nk.

Definition. The finite difference method (1.3.3) is accurate of order

(p,q) if

(1.3.6) Bvn+1 - Qvnn = k(O(hp) + 0(kq)).

In this case O(hP) + 0(kcl) is called the local truncation error.

The truncation error associated with the finite difference

method

un+1 = un + a2kD+D_u
n

is Tn = 0(h2) + 0(k) (see Section 1.1), so the method is accurate of

order (2.1).

Definition. The finite difference method (1.3.3) is convergent in

a norm I-n, if

Bv(x,t) - UB" -• 0 as h,k -• 0

It is convergent of order (p,q) in a norm I-I, if

nv(x,t) - u?» = 0(hp) + 0(kq).

All of these ideas are connected together in the following

theorem due to Lax (sometimes called the Lax equivalence theorem).

Theorem 1.3 (Lax). If a finite difference method is linear, stable,

and accurate of order (p,q), then it is convergent of order (p,q).

Before proving this theorem, there are a few comments that

should be made.

Convergent of order (p,q) gives the rate of convergence as h

and k -»• 0. So, by Lax's theorem, the more accurate the method the

faster the rate of convergence.

It is very important that the finite difference method be

linear. This corresponds to a linear partial differential equation

(1.3.1). For nonlinear equations, things become much more complicated

as we shall see in later chapters.

Proof. Using the finite differences method (1.3.3)

un . Qun-1 = Q(Qun-2) E Q V 2 = Q2(Qun-3) , Q3un"3

= ... = Q n-V = Q ^ Q u 0 ) , Qnu° ,
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where by QJ means the finite difference operator Q applied

j-times. Using this result (un = Qnu°) and the definition of

stability

•un» = »Qnu°» < Ke6t|u°i

Y
IU I

Furthermore, by definition of «Qnl,

lQnl = max 'Q""0" < Ke B t .

lu°i#0 I u '
Let v(x,t) denote the solution of the initial-value problem (1.3.1)-

(1.3.2); then by the definition of accuracy of order (p,q),

vn = Qv
n"1 + k(O(hP) + O(kcl)). Define the error at the n-th time step

by wn = un - vn, where w° = u° - v^ = 0, ignoring the effects of

round-off error. Then by repeated application of (1.3.3) and the

definition of accuracy of order (p,q),

w
n = Qw11"1 + k(0(hp) + 0(kq))

= Q2wn"2 + Q(k(O(hp) + 0(kq))) + k(O(hp) + 0(kq))

= Qnw° + k I QJ(O(hp) + 0(kq))
j=0

n-1
= k E QJ(O(hp) + 0(kq)).

j=0
This gives

HwnB < k l nQjii(O(hp) + 0(kq))
j = 0

< nkKeBt(0(hp) + 0(kq))

= tKeBt(0(hp) + 0(kq))

< Ke( 3 + 1 ) t(0(hp) + 0(kq))

= 0(hp) + 0(kq) .

Thus, the method is convergent of order (p,q).

1.4. The Fourier Method

We shall begin with a brief review of some basic facts about

Fourier series and the complex Fourier series. Consider real-valued,

integrable functions f(x) that are 2ir-periodic, that is, f(x + 2ir) =

f(x) for every x.

Define

aK = "I !0* f(x) cos ?x dx' a0 = 17 /(J* f(x) dx

and
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b = 1 /Q f(x) sin ex dx.

If s
n(

x) denotes the partial sum

n
S (x) = an + I (ar cos £x + b_ sin £x)0

 ?=1 5 5

the Fourier series of f(x) is defined by

00

lim S (x) = aQ + i (a cos (£x) + b sin ( E X ) ) .

The complex form is much more convenient for our purposes, so consider
i Exthe expansion of f(x) in terms of a complex function e !j , where

i = iM" and % is any integer. The set of functions {/f~ e 1 ^ : £

is an integer} is orthonormal on [0,2ir), that is

TJ— /Q* e e dx = -K— /Q* e dx

o , s, * s2

where the complex conjugate of e 1 ^ , denoted by eL^x, is e~L^x.

The complex Fourier series for f(x) is defined to be

(1.4.1) f(x) = -4= * f(C) e i C X

/2TT CeZ

where Z denotes the set of all integers. The coefficient f(O is

obtained by multiplying both sides of (1.4.1) by e*-€x and integrat-

ing with respect to x between 0 and 2ir. Since these exponential

functions are orthonormal

(1.4.2) f(x) = -J- ft* f(x) e i 5 x dx

f(£) is called the Fourier transform of f(x).

Some properties are:

1) If f e CP+1 (that is, f has p+1 continuous derivatives),

then by applying integration by parts to (1.4.2)

f(€) - 0( 1
n+i) ,

that is, the smoothness of f causes f(O to die out quickly

for large |5|.

2) By orthonormality, we have Parseval1s relation

/2"|f(x)|2 dx = 1 |f(C)|2 •
Z
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The reason for the interest in these periodic exponential

functions e~i£x, where % is an integer, is that they will be seen

to be "eigenfunctions", for the forward shift operator S+ and,

therefore, of all finite difference operators made up of linear

combinations of powers of S+.

The discrete Fourier transform will be used. In this approach

the roles of f and f, and [0,2*) and Z in (1.4.1) and (1.4.2)

are interchanged. Consider the grid function u = {u-j}, define the

discrete Fourier transform of u,

(1.4.4) = E u. e
j J

0 < g < 2n

U.'S.Thus, u is the function whose Fourier coefficients are the

If the forward shift operator S+ is applied to u, the grid

function S+u = {uj + -| } is obtained. Taking the discrete Fourier

transform of S+u yields

J
E u.e

= E u.e
j J

E u.e

e"^^ is called the symbol of S+. Thus the operation of S+ in the

discrete Fourier transform spaces corresponds to multiplying by the

function e"1?. This leads to the heuristic diagram depicted in

(Figure 1.8).

Fourier
Transform

Similarly,

Figure 1.8

so e1^ is the symbol of S . From this it follows that if

u*+1 = Q(S+,S_)un> then
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(1.4.5) un+1

that is, applying the finite difference operator Q(S+,S_) to un and

taking the discrete Fourier transform is the same as multiplying the

discrete Fourier transform un by Q(e"i5,ei5). The symbol* of the

finite difference method (1.3.3) is p(O = Q(e"U,eU).

As an example, consider the finite difference method (1.1.3)

n + 1 , n i /i i. \ x\ , . Tiui = i+1 (1-2x)u^ + Xui-1

= (XS+ + (1 -2x)I + XSju
1?

= Q(S+,S_)u? .

The symbol p(O is obtained by taking the discrete Fourier transform

of both sides

u n + 1 U ) = p(5)un(O
where

p(c) = Q(e >e ) = Xe + (1-2x) + Xe

= 1-2x + 2x(- ^ )

= 1-2x(1 - cos £),

for 0 < K < 2TT.

The symbol p(c) is said to satisfy the von Neumann condition

if there exists a constant C > 0 (independent of k, h, n, and 5)

such that

(1.4.6) |p(O| < 1 + Ck

for 0 < 5 < 2ir and where k denotes the time step.

The importance of the von Neumann condition can be seen from the

following theorem.

Theorem 1.4. A finite difference method is stable in the fc2-norm if

and only if the von Neumann condition is satisfied.

Proof. Suppose the von Neumann condition is satisfied. Let

u = Qu11, (where , Q = Q(S+,S_). By Parseval's relation

j J "

and upon multiplying by h

.un+1,2 . ? ( u ^ A - ^ / g ' |u
n+1(5)|

2

h ,1

p(S) is also called the amplification factor.
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Since the von Neumann condition (|p(c)| < 1 + Ck for some C > 0)

is satisfied

n+1 2u i2
,2 ,2T

(1 + Ck)2 h l (un)2 .

By Parseval's relation again,

»un+1I2 < (1 +
j
CO' h = (1 + Ck)2nun«2

l un+1 12 < (1 + Ck) minii2. S ince 1 + Ck < ec k ,

n+1
l u 12 '

Ck
<, e

< e

n
l u

(e C

<

"2
k | u n - 1 B 2

eC(n+1)k
) = eC2k

0 _ eCt.u°

where t = (n + 1)k. So by the definition of stability with K = 1

and 3 = C in (1.3.4), the finite difference method is stable.

Conversely, we shall show that if the von Neumann condition is

not satisfied, then the finite difference method is not stable. To

this end, suppose for each C > 0 there exists a number £c »

0 < £c < 2ir, such that |p(5c)l > 1 + ck- T h e symbol p($) is a

continuous function of £ so there exists an interval IQ containing

£C such that |p(C)| > 1 + Ck for every value of % in that

interval (see Figure 1.9).

IPCOI

l+Ck "•

2TT

Figure 1.9

Consider the initial data

u? , u°U)
0 < c < 2

of

<

that

-;
so that the discrete Fourier transform

is 0 outside the interval Ic. Thus, for all

°u° c.
with u°(£) * 0, |p(O| > 1 + Ck. From this, it follows

un(c) p2(c)un"2(O

Ck)nu°(O
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Since | P U ) | > 1 + Ck

nunn2 > (1 + Ck)
nnu0|i2,

where as in the first part of the theorem Perseval's relation has been

used twice, u = Q u so that the inequality may be written as

»Qnu°i2 > (1 + Ck)
n.u°l2

Using the definition of the matrix norm

nQnun9 iQnu°i9
BQ no = max - > *—-, so that IQ l0 > (1 + Ck) . Thus

2 B U B 2 ^ 0 " u n2 nu°n2
 2

BQnll2 is unbounded for all constants C > 0, which implies the finite

difference method is unstable.

To see how the von Neumann condition can be used to analyze the

stability of a finite difference method, consider (1.1.3) and its

symbol

p(£) = 1 - 2x(1 - cos c), 0 < K < 2TT.

For 0 < 5 < 2ir, 0 < 1 - cos £ < 2, so that

-2 < -(1 - cos £) < 0 ,

1 - 4x < 1 - 2x (1 - cos O < 1 ,

or

1 - 4x < p(c) < 1 .

In practice, the inequality (1.4.6) in the von Neumann condition

will be replaced by the stronger condition

(1.4.7) |p(5)| < 1.

One side of the inequality (1.4.7) in the example is satisfied,

p(£) < 1. Restrictions on X must be found so that -1 < p(5). To

this end, require

-1 < 1 - 4X < P U )

so that the von Neumann condition is satisfied if X < 1/2.
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2. Richtmyer, R. D. and K. W. Morton, Difference Methods for Initial-

Value Problems, 2nd Ed., J. Wiley (Interscience), New York (1967).



II. PARABOLIC EQUATIONS

I1.1. Introduction.

The problem of the fl w of heat along a rod whose temperature

depends only on the x-coordmate and time t leads to the parabolic

partial differential equation

cp3 v = 3 (k3 v) + <j>..(x,t) .

In this equation, v(x,t) denotes the temperature, k denotes the

thermal conductivity of the rod, p denotes the density, and c

denotes the specific heat. The function <̂ -(x,t) is a source term,

that is, it is the strength of heat sources located in the rod. In

general, the coefficients p , c , and k depend on x and t.

Furthermore, k and c may depend on the temperature v which makes

the equation nonlinear.

Consider the case where p , c , and k are constant. This

leads to the prototype equation

(2.1.1) 3tv = a
232 v + <j>(x,t)

where

2 k 1
a = — and 4>(x<|>t) = — <j>.,(x,t) .c p c p i

If there are no sources of heat, then <j>(x,t) = 0 and equation

(2.1.1) reduces to the homogeneous equation

(2.1.2) 3tv = a
23x v .

Suppose we consider a thin rod, whose lateral surface is not

insulated. In this case, the heat loss through the surface is

proportional to the difference in temperature between the rod and the

ambient temperature, (which, without a loss of generality, we shall

take to be 0.) This gives rise to the following parabolic partial

differential equation

where h is the coefficient of external thermal conductivity, p is

the perimeter of a cross section of the rod normal to the x-axis, and

a is the area of such a cross section.

Thus in the case where p , c , and k are constants and there

are no heat sources, that is, <j>.|(x,t) = 0 , the equation takes the

21
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form

(2.1.3) 3tv = a
2 ^ v - bv ,

2
where a is as before and

b .

Cpcr

Introduction of the change of variable
v' = e"btv

into equation (2.1.3) yields equation (2.1.2) in v1. In this case
2

v1 is the concentration and a is the coefficient of diffusion.

Parabolic partial differential equations also arise in other

branches of physics and engineering such as, the diffusion of smoke

through the air, the diffusion of neutrons in a nuclear reactor, the

fluid flow through a porous media, and boundary layer flow over a flat

plate.

Suppose a viscous fluid moves in the y-direction over a flat

plate placed along the y-axis. If the x-axis is taken to be normal to

the y-axis, the velocity v will vary with x as a result of the

viscosity of the fluid and the presence of a boundary (flat plate).

If we assume that the velocity v depends on x and t only and

neglecting the presure gradients, we obtain the equation

»tv = va^v

where v is the coefficient of kinematic viscosity.

Consider the pure initial-value problem, that is, the case where

the rod is infinitely thin and infinitely long. This gives rise to

the equation (2.1.2)

3tv = a 3
2 v , - o o < x < + » , t > 0

with initial condition (initial temperature distribution)

v(x,0) = f(x) , -« < x < +co .

2 2The fundamental kernal for the operator 9 - a 3 is

K ( X f t ) - _ L _ e-x
2/4a2t , - < x < +. , t > 0 .

2a/wt

If the initial condition f(x) is continuous and bounded for

-« < x < +« , then a unique solution to the initial-value problem is

given by



23

+ 00

v(x,t) = / f(y)K(x-y,t)dy

(2.1.4) = ! / f(y)e VA yj ' " u dy
2a/7t -oo

We shall now formulate the statement of the initial boundary

value problem for equation (2.1.1), for the case of heat flow. Other

physical problems giving rise to an equation of the form of (2.1.1)

generally lead to the same boundary conditions.

Consider equation (2.1.1)

3 v = a 3xv + <j>(x, t) ,

with the initial temperature distribution

v(x,0) = f(x) ,

and with the boundary conditions of the following types:

Case a) At the end of the rod, the temperatures are specified as

functions of time t , that is,

v(0,t) = «o(t) at x = 0

vU,t) - 8Q(t) at x = i .

Case b) The flow of heat through the ends of the rod is specified as

functions of time t. Since the flow of heat at each end is

proportional to 3 v

3x v = a1 ̂  at x = °
3xv = $1 (t) at x = i .

Case c) There is an exchange of heat with the medium, surrounding the

rod, through the ends of the rod, that is,

3xv = h(v - a3t)) at x = 0

3xv = -h(v) - 63(t)) at x - I ,

where cu(t) and 33(t) are the temperatures of the surrounding

medium at x = 0 and x = i , respectively, as functions of time.

Mixtures of these types of boundary conditions also arise. The

boundary conditions are said to be homogeneous if ctQ , a.. , o« , JQ ,

Bi , and 63 are zero.

If the initial condition f(x) is continuous on the closed

interval 0 < x < i and the source term <|>(x,t) is continuous on

0 < x < t and t > 0 and bounded, then a unique solution exists to

the initial boundary value problem (2.1.1) with homogeneous boundary

conditions.
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Inhomogeneous boundary conditions can be reduced to homogeneous

boundary conditions by the substitution

v'(x,t) = v(x,t) + z(x,t) ,

where z is an arbitrary twice differentiable function which

satisfies the inhomogeneous boundary condition and v is the solution

of the initial-boundary value problem with homogeneous boundary

conditions.

For example, let v denote the solution of

atv = a
28^v , 0 < x < £ , t > 0

v(x,0) = f(x) , 0 < x < i ,

v(0,t) = v(a,t) = 0 , t > 0 .

Suppose the inhomogeneous boundary conditions given in Case a)

v(0,t) = aQ(t) and v(fc,t) - 6Q(t). Define z(x,t) by

z(x,t) = aQ(t) +j (B0(t) - aQ(t)) .

Then v'(x,t) = v(x,t) + z(x,t) satisfies

3tv' = a23xv' , 0 < x < A , t > 0

v'(x,0) = f(x) + z(x,0) , 0 < x < I ,

v ' (0 , t ) = aQ(t) , t > 0 .

v1 U , t ) - 6Q(t) , t > 0 .

A property of parabolic equations which is used to prove

uniqueness is the maximum principle.

Maximum Principle. Let v(x,t) be continuous in the closed rectangle

a < x < b , T ^ < t < T 2 and satisfy

atv - a
2a*v

throughout the interior of the rectangle a < x < b , T ^ < t < T 2 «

Then the maximum of v(x,t) is assumed at least at one point on the

vertical sides (x - a or x = b) or on the bottom (t = T^) of the

rectangle.

II.2. Finite Difference Methods for a Single Parabolic Equation

in One Space Dimension.

Finite difference methods can be divided into two classes. One

class is explicit methods, one which involves only one grid point at

the advanced time level (n + 1)k. The other class is implicit

method, one which involves more than one grid point at the advanced

time level (n + 1)k.
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The finite difference method (1.1.3) given in Chapter I is an

example of an explicit finite difference method

since the only grid point at the advanced time level (n + 1)k is

x - ih.

The method has advantages in that it is easy to program and the

number of operations (multiplications) per grid point is low.

However, there are also disadvantages which, for many problems,
2 2 1outweigh the advantages, the stability requirement that X = a k/h < -̂

places restrictions on the time step. Also the method is of
2

relatively lower order accuracy, that is, 0(k) + 0(h ).

This can be improved. Suppose instead of considering (1.1.3),

we consider

(2.2.1)

This may rewritten in the form

(2.2.2)

or by expanding I - kD D out

(2.2.2') -Xu*+] + (1 + 2x)un+1 - Xun+] = un

where X - a2k/h2.

Since there are three grid points (i - 1)h , ih , and (i + 1)h

involved at the advanced time step (n + 1)k , (as seen in (2.2.21)),

this method is an implicit method.

To determine the accuracy of the method (2.2.2) expand v(x,t)

in a Taylor series in time about the point (ih,(n+1)k) , evaluate it
vn+1
'i

k

form

(I -

k

kD+D_

• " D+

- D + D

)uf1

A+

- u

0(k) .

Similarly, expand v(x,t) in a Taylor series in space about the point

(ih,(n+1)k), evaluating it at the two values x = (i - 1)h and

x * (i + 1)h , adding these two series, and solving for (9
X
V)^

n+1 2 n+1 . n+1
vi+1 " 2vi + vi-1

(3xv)i + 0 ( h
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2 2Combining and using the Equation (1.1.1), 3tv = a 5xv gives

vn+ 1 - vn
 9 vntj - 2vn+1 + vn+]1 L - a2 (-i±J J 1^1) = Q(k) + Q(hZ)

Thus the method is accurate of 0(k) + 0(h ) , which is the same

as for the explicit method (1.1.3).

Consider the initial-boundary value problem

2.2(2.2.3a)

(2.2.3b)

(2.2.3c)

(2.2.3d)

dt v = a" 0 < x < 1 , t > 0

v(x,0) = f(x) , 0 < x < 1

v(0,t) = gQ(t) , t > 0

v(1 ,t) = g1 (t) , t > 0 ,

where the compatibility condition between the initial condition and

the boundary condition gives rise to

f(0) = v(0,0) = gQ(0) ,

f(1) = v(1 ,0) = g1(0) .

Let h = 1/N denote the grid spacing. The initial condition

becomes

u? = f(ih)

and the boundary conditions become

u n = gQ(nk) and uJJ = gi (nk) ,

where Nh = 1.

Writing out (2.2.21) for i = 1 to N - 1 gives rise to a

system of N - 1 equations in N + 1 unknowns

j = i

j = 2

j = i

j = N-l

<\ • «'*w»r' - <\

u
N-l
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In implicit methods some form of boundary conditions are needed to

close the system of equations. In this system for j = 1 ,

- Xu? is known and for j = N - 1 , "^uS is known so these terms

are brought over to the other side of the equal sign. This results

in a system of N - 1 equations in N - 1 unkonwns, which may be

written in matrix form

(2.2.4) A un+1 = b n

where A is an (N - 1) x (N - 1) tridiagonal matrix

and un+1 , bn are (N - 1) x 1 vectors

n+1

n+1

n+1

n+1

n+1

and

+ X
n+1

u0

"2-2

«S-1

In order to solve equation (2.2.4), Gaussian elimination is

used. Consider the general tridiagonal system

cN-2
dN-1

U1

U2

"N-2 bN-2

bN-1
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A tridiagonal matrix is diagonally dominant if, for each i ,

1 < i < n-1

> J + la.^l ,

that is, the sum of the absolute value of the elements of the i-th

row, excluding the diagonal element, is less than the absolute value

of the diagonal element for each row.

Diagonal dominance is sufficient for using Gaussian elimination

without pivoting. In system (2.2.4) ai = -X , di = 1 + 2A , and

ci = -X for 1 < i < N-1 , so that |c.J + | ai_1 | = |-*x| + |-x| = 2x

for X > 0. Since

| 2X

the tridiagonal matrix A in (2.2.4) is diagonally dominant.

The forward elimination step consists of removing the

subdiagonal, that is, the elements a.. The algorithm for this step

is given by

d i '

di -

i = 1

, 2 < i < N-1

bi •

bi -

i = 1

, 2 < i < N-1 ,

the elements c. are unchanged. This gives

N-2

U1 '

"N-2

«N-1

b1 '

bN-2

bN-1

The back substitution step consists of solving for

i - N-1, N-2 1. The algorithm for this step is

for
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u. - j V l ^ i , l-H-2. .... 1.
i d.

How much work is involved in solving (2.2.3) for u n + ? The

number of multiplications (and additions) involved in the forward

elimination is 4(N - 2) (and 2(N -2)) , where the number of unknowns

is N - 1. The number of multiplication (and additions) involved in

the back substitution is 2(N - 2) + 1 (and N - 2). The construction

of b involves 2 (and 2) multiplications (and additions), one for

each of the boundary conditions (if nonzero). Thus the total number

of operations, multiplications (and additions) required to solve

(2.2.2) is 6(N - 2) + 3 (and 3(N - 2) + 2) , or approximately

6N (and 3N) per time step.

How much work is involved in solving (1.1.3) for u ? For

efficiency, (1.1.3) may be written in the form

u f 1 = X(u?+, + «?.,) + (1 - 2x)ul? .

So we see there are 2 multiplications (and additions) for each grid

point i = 1, ..., N-1. This gives a total number of 2(N - 1) (and

2(N - 1)) multiplications (and additions) or approximately 2N (and

2N) per time step. Thus the implicit method (2.2.2) requires

approximately 3 times as many operations as the explicit method

(1.1.3).

It is seen that there is more work involved in programming the

method and the number of operations is increased. So a natural

question arises. Does one gain anything by using this method? To

answer this question, consider the stability of the method, using the

Fourier method. Taking the discrete Fourier transform of (2.2.2) (or

(2.2.2' )),

- kD+D_)u
n+1U)

we have

(-\e"U + (1 + 2\) -

or

(1 + 2\(1 - cos

This may be written in the form

u ( g ) - 1 + 2x0 - cos

where the symbol p(£) of (2.2.2) is
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p ^ = 1 + 2x(1 - cos 5) *

Since 0 < 1 - cos £ < 2 and X > 0 ,

1 < 1 + 2x(1 - cos £) < 1 + 4x .

By taking the reciprocal

rr~4x < pU) < 1 •
Hence, |p(?)| < 1 and the von Neumann condition is satisfied for all

X > 0. Thus the method is unconditionally stable. Thus no

restriction is placed on the time step k due to stability

requirements. That is not to say that k can be chosen arbitrarily
2

large. For the order of the method is 0(k) + 0(h ) will impose an
upper bound on the time step k. Typically, k is chosen so that

k = O(h ). If k is chosen larger than this, the term 0(k) will

dominate the error. On the other hand, if k is chosen smaller

than this, extra work will be required (more time steps) to reach a

given time without any gain in accuracy since, in this case, the term
2 2

O(h ) will dominate the error. Thus k = 0(h ) is a reasonable
2

choice, for example, k = ch where c is some constant.
Compare this with the explicit finite difference method (1.1.3).

We see that for x < j , if we choose x = j , we obtain k = h /2a .

Thus the implicit method (2.2.2) allows a larger time step. If one

chooses a time step for the implicit method 3 (or more) times that of

the explicit method k = h2/2a2 , that is, kim l l c l t = 3h
2/2a2 , then

the accuracy is about the same and the number of operations required

by each method to reach a fixed time, that is, an integer multiple of

implicit is a b o u t t h e s a m e'

Can one achieve a higher degree of accuracy? Consider, more

generally, the finite difference method

un+1 _ u
(2.2.5) - ^ i- = a2D+D_((1 - a)un + aun+1 )^ i a 2DD((1 a)un + aun+1

with 0 < a < 1. For a = 0 , the method is explicit and reduces to

(1.1.3). For 0 < a < 1 the method is implicit. For a - 1 , the

method reduces to (2.2.2).

The finite difference method (2.2.6) can be written in the form

(2.2.6) (I - a2kaD+D_)u
n+1 = (I + a2k(1 - a)D+D_)u

n .

The Fourier method will be used to analyze the stability of the

method. First, note that



(2 .2 .7) - K (S - 21 + S

K (2 cos c - 2)uU)
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A 0 P
Thus the symbol of D.D is - -TT sin (#•).

+ " hZ Z

Take the discrete Fourier transform of (2.2.6),

(I - a2k<xD+D_)un+1 (I + a2k(1 - a)D+D_)un(O

which gives, by using the symbol of D D ,

4a\ s i n 2 ( | - ) )u n + 1 U) - 4(1 - a ) \ s i n 2 ( | ) )un

2 2where X = a k/h . This may be wri t ten as

A n + 1

u CO

- 4(1 - a)X s i n 2 ( | )

1 + 4aX sin (J)

We see that the symbol of (2.2.6) is

1 - 4(1 - a)X sin2(|)

1 + 4aX sin2(|)

2 2 ?
Since X > 0 , w = 4a X sin (j) > 0. By substitution

(*\ = 1 - d - a)w
p u ; 1 + aw

In order to satisfy the von Neumann condition, require that

|pU)| < 1 or -1 < P U ) < 1. This gives

2 + 2 a w > w > 0 .

By the definition of w , w > 0 is automatically satisfied. Next

consider

2 + 2 aw > w

or

(1 - 2a)w < 2 .

This last inequality is satisfied independent of X provided that
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1 - 2 a < 0 or a > 1 / 2 . However, 0 < a < 1 , so the method ( 2 . 2 . 6 )
i s uncondi t iona l ly s t a b l e for 1/2 < a < 1.

For 0 < a < ^ , 1 - 2a > 0. If

( 2 . 2 . 8 ) (1 - 2 a ) 4 \ < 2

then

(1 - 2a)w = (1 - 2o)4x s i n 2 ( | ) < (1 - 2a )4 \ < 2 ,

2 £s i n c e s i n ( j ) < 1.

Solv ing the i n e q u a l i t y ( 2 . 2 . 8 ) , we obtain the condi t ion

For a = 0 , X < j which is the stability condition for (1.1.3). As

a + y , 2 - 4a -• 0 and -s r— "* +0D so , as a +• -x , the method has

an increasingly weaker stability condition.

For 0 < a < 1 , the solution of (2.2.6) involves solving a

system of equations. Why consider this method? The answer lies in

the truncation error of the method. Expanding v(x,t) in a Taylor

series in both time and space about the point (ih, (n + 2")k) , we

obtain the following approximations

(n

nk

and

ih

Figure 2.1

2vf1 + v£] 2
 n 4 k 2 n 4 4 2

= ( 3 x v ) i + 7 ( 8 x 8 t v ) i + 0 ( k ) + 0 ( h > •

? n"4 k 2 n"4 4 2
( d x v ) i " l ( 5 x d t v ) i + °<k > + 0 ( h > •

n 4 k2 o n+i ^ A

t v ; . + f5(&tV ) i + 0 ( k } + 0 ( h } *

h2

h2

vf1 - v1?

Combining these three results
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vf 1 - vn 2 v" - 2vn + vn 1 vn+j - 2vf1

2 1

- a2{(1 - a)(-^ i izl) + a(_

- (3tv).
 Z + f^O^v). l + 0(kJ)

9
- a2(1 - .

n +9" W 9 n+9" A. 9
). Z + f(9x8tv:>i } + 0(k } + 0(h }

1

+ a2(1 - 2a)|023tv)"
 2 + 0(k3) + 0(h2) .

2 2Using the differential equation 3 v = a 3xv evaluated at

v f 1 - vn , v" , - 2vn + vn . v£j - 2vf1 + v f ]
k - a 2 { (1 -

the location trucation error at (ih,(n+2")k) , where

2 + 0(k3) + 0(h2) .(2 .2 .

Thus

9)
n+

Ti = a2

n + -
T i 2

(1 -

f
•

0(k) + 0(h2) , a * \

0(k2) + 0(h2) , a = \

This special case when a = T which is accurate of order (2,2), that
o o

is, 0(k ) + 0(h ) is called the Crank-Nicolson method

/o o 1 n\ n+1 n . k ^ ^ / n . n+1 N
(2.2.10) u^ = ui 2" D+D-^ui ui ^ "

It remains to describe how the method (2.2.6) is implemented.

Consider the initial-boundary value problem (2.2.3). This gives rise

to the system of N - 1 equations in N - 1 unknowns u. ,

1 < i < N-1 , written in matrix form



. n+1 ,nA u = b

where A is an (N - 1) x (N - 1) tridiagonal matrix

34

-aX 1+2aX -aX

-aX 1+2aX

and un+1 , bn are (N - 1) x 1 vectors

n+1

n+1 1

and

(I + a2k(1-a)D+D_)u
n

(I + a2k(1-a)D+D_)u
n

(I + a2k(1-a)D+DJuJJ_2

(I + a2k(1-a)D+D_)uJJ_1

- 2(1-a)X)u -a)\u!jj

Xû 1 + (1 - 2(1-a)X)un + (1 -a)Xun

- 2(1-a)X)uJJ_2
n+1
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II.3. Finite Difference Methods for a Single Parabolic Equation

in Two-Space Dimensions.

Consider the prototype of this two-dimensional parabolic

equation

(2.3.1) 3.V = 32V + 32V , -oo < X < +oo, -co < y < +oo, t > 0

t x y

with the initial condition

(2.3.2) v(x,y,0) = f(x,y), -» < x < +», -<*> < y < +»o

In order to use the notation of Section 1.3, we need to modify

the shift operator notation to take the different space-directions

into account.

Divide the x-axis into discrete points x^ = ihx, where hx is

the mesh spacing in the x-direction. Similarly, divide the y-axis

into discrete points yj = jhy, where hy is the mesh spacing in the

y-direction. Let UJ^J = u(ihx,jhy,nk) approximate the exact

solution v at the point (jhx,jhy,nk).

Denote the forward and backward shift operators in the

x-direction by

s-iui(J
 =ui-i,j •

Similarly, denote the forward and backward shift operators in the

y-direction by

S+2ui(j "
 ui>j+1 >

S-2ui(j
 = ui,j-1 •

From this the obvious extensions of Do, D+, and D_ to multiple

space dimensions are

D u 1+1-i i-i D u i.i+1 i-i
D+1Ui,J \ • D+2ui,j " hy

D u "Li -"i-i.i D u "Li " "1.1-1
D-1ui,J hx ' D-2ui,j hy

D u l+1.1 l-1.1 D u i.H-1
D01ui,j ^TT ' D02ui,j 2h

x y
which gives rise to

D+D-1Ui,J

and
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D+D-2ui,j - JT (ui,j+1 " 2ui,j + ui,j-1}'
y

The two-dimensional discrete Fourier transform is defined by

u(5i .Co) " I ix, . e e

0 < c1 < 2TT, 0 < C2 < 2TT.

Thus u is the function whose Fourier coefficients are the u. .. As

in one-dimension, Parseval's relation is

The Jt2~norin i n two-space dimensions must be modified to reflect

the grid spacing in the x and y-directions, so for u = {UJ^J}

|U|2 " .z/ijVV
1 » J

Let un = {un .} denote the grid function at time nk. Let
0 'J

u^ . = f(ihx,jh ) denote the discrete initial conditions. Approximate

the initial-value problems (2.3.1)-(2.3.2) by a finite difference

method of the form
(2.3.3) C^u11*1 = Q2u

n , n > 0

where Q̂  and (̂  are polynomials in the forward and backward shift

operators S+^,S_^,S+2»
 an(* S-2'

Q* = Qt(S
+1'

S-1'S
+2'

S-2>

for i = 1,2. Since S_ = S~ (by 1.2.9), we may write Q1 and Q2

r, s

Q2 =Q2(S+1,S+2) = r g r s ^ j

where the ar s and br s are constants. Observe that if Q-| = 1

(or a constant), then (2.3.3) represents an explicit method, otherwise

(2.3.3) represents an implicit method.

By inverting Q-| , (2.3.3) may be written in the form

i n

( 2 .

and

( 2 .

the form

3,

3,

,4a)

,4b)

un+1 = Qun , n > 0

where Q
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1As in Section 1.4, the symbol of S+^ and S+2 is e and

his follows from taking th

transform of S+^u and

-i£«
e , respectively. This follows from taking the discrete Fourier

(S+2u)(e1,£2)
 = e U(^1>S2)

Taking the discrete Fourier transform of (2.3.3) with (2.3.4),

gives rise to

or by solving for

^ 2 r > g r s ^ 2

- Q(e" ei,e"U2)Un(^,e2),

where p(^1,^2) - Q(e
 1 1,e"L 2) is called the symbol of the finite

difference method (2.3.3).

The definitions of stability, consistency, and accuracy are

identical to those in Chapter I, except for the corresponding changes

for two-dimensions.

The symbol p(Ci»S2) i s said to satisfy the von Neumann

condition if there exists a constant C > 0 (independent of

k,hx,hy,n,£i, and £2) such that

|p(?1,*2>l < 1 + Ck

for 0 < £1 < 2n, 0 < £2 < 2it, and k denotes the timestep.

Lax's theorem (Theorem 1.3) in Section 1.3 and the Theorem 1.4

in Section 1.4 remain valid in two-dimensions.

Consider the explicit finite difference method analogous to

(1.1.3)

(2.3.5) un+1 = un + kD+D_iU
n + kD+D_2u

n,

where D D - and D D « approximates d2 and d2, respectively in

(2.3.1).

This may be written in the form
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n+1 r k , o c >. , k , c j . c \ J. /1 ^k 2k N T l n
u = ITT (S+1 + S - 1 } + 72 (S+2 + S - 2 } + (1 " 72 " T ^ 1 ! 1 1

hx hy hx hy

(2 .3 .6)

= [ 4 (s+1 + s;]> + - | (s+2 + s;\) + a - rl - f|)i]un

hx hy hx hy

1 1 r

In this case (2.3.4) becomes Qi = 1 and Qo = Z Z a^ ST*
r=_i s=_i

 r » s "l"1where r I s I

a-1,0 " k/hx a0,0 - 1 " 2k/hx " 2k/hy a1,0 - k/hy
a - u - ° ao,i - k/tV a M = ° '

The symbol of ( 2 . 3 . 5 ) (or ( 2 . 3 . 6 ) ) i s

P ( C 1 . 5 2
) = ["T (e L 1 + eL 1 ) + - | (e L 2 + e 1 2 ) + (1 - . % - % ) ]

= ^ . (cos ^ - D + % (cos 52 - 1) + 1.

As in t h e one -d imens iona l case ( S e c t i o n I I . 1 ) , fo r 0 < £.j , ^ ^ 2ir

and

so that

"•% < % (cos 5- - 1) < 0
hx hx

-Air 9V

2£ < ̂ f (cos 5,-1) < 0 ,
hy hy

(2.3.7) 1 - 4k(~- + -^) < p(c1 ,52) < 1 •

In order to satisfy the von Neumann condition, we require

|P(51»C2)I < 1» F r o m (2.3.7) p(5i,52) < 1- I n or^er to satisfy

-1 < P(51» 52)» require

-1 < 1 - 4k (-4 + -4)
hx hy

(2.3.8) k + k < 1
hx hy

If we consider the special case where the grid spacing in the x and

y directions is the same, that is, hx = hy = h, then the stability
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condition (2.3.8) reduces to

where X = k/h2. This places a stronger restriction on the time step k

than in the one-dimensional case of the explicit method. This will be

a major disadvantage of the method.

The accuracy of the method may be determined directly. From the

one-dimensional case, we obtain for multiple space-dimensions

and

D
+
D-1v?,j

D+D.2v

= 8tv + 0(k) ,

2 9

Thus combining these results and using the equation (2.3.3)

(2.3.9) Vi'J ~—U- - D+D_lV
n .. - D+D_2v

n
 j = 0<h£) + O(h^) .

And, in the special case where h x = hy = h, the local truncation error

of this explicit method is

0(k) + 0(h2),

as in the one-dimensional case.

In order to evaluate u. . in (2.3.5), sweeps are made in one

space direction. For example, if one sweeps in the x-direction, j

is fixed at 1 for the first sweep. Then (2.3.5) is solved for u? .
1»J

for i = 1,...,N-1. After this has been completed, j is increased
to 2 and (2.3.5) is solved for u n +! for i = 1,*..,N-1 again.

This is continued until the last sweep has been completed correspond-

ing to j = M-1. This is represented by Figure 2.2.
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(M-l)st sweep

(M-2)nd sweep

third sweep

second sweep

first sweep

c

j = M (boundary)

j = M-l

j - M-2 •

j » 3

j - 2

j - 1

j = 0 (boundary)

Figure 2.2

As in the case of one space dimension, consider an implicit

method in an attempt to improve the stability condition. Consider the

implicit method analogous to (2.2.1)

u

uf j - ui j + kM-i"

This may be w r i t t e n in the form

( 2 . 3 . 1 0 ) (I - kD+D-1 - kD+D_

or by expanding I - kD+D_^ - kD+D«

( 2 . 3 . 1 0 ' )

n+1
"Vi.J
where

n+1

+ k D
+
D - 2 u i ! j -

i-1,j + (1+2xx + 2 V U i , J "
2 2

n+1 , n+1
* xyu i . j+1,j

2 2
Xx - ^/^x

 an(^ x = ^/^ • fiy expanding v in a Taylor series
about the point (ih ,jh ,(n+1)k), we see that this method isx y
accurate 0(k) + 0(hx) + 0(h

2).

To simplify the stability analysis, use (2.2.10) to write

(D+D j

and
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j
h
y

-4 2 ̂ 1Thus the symbol D+D .. is —s- sin (j—) and, similarly, the symbol

5 x

D+D 2 is -J
hy

Taking the discrete Fourier transform in (2.3.10),

- kD+D_1

gives rise to

4k

hy

^ ( S p S j ) = p(51,52)u
n(«1,C2)

where

hx 2 hy

Since the denominator is always < 1 , we see that |P(£I >5o^l < ^

independent of X or X . This the method is unconditionally stable,
x y

Consider the initial-boundary value problem

(2.3.11a) a. v = 82v + 32v , 0 < x < 1 , 1 < y < 1 , t > 0 ,
t x y

(2.3.11b) v(x,y,0) = f(x,y) , 0 < x < 1 , 0 < y < 1 ,

(2.3.11c) v(0,y,t) = g^y.t) , 0 < y < 1 , t > 0 ,

(2.3.1 1d) v(1,y,t) = g2(y,t) , 0 < y < 1 , t > 0 ,

(2.3.11e) v(x,0,t) = g3(x,t) , 0 < x < 1 , t > 0 ,

(2.3.1 If) v(x,1,t) = g4(x,t) , 0 < x < 1 , t > 0 .

Let h = 1/N and h = 1/M denote the grid spacing in the s-

direction and y-direction, respectively. The initial condition becomes

f(ihx,jhy)

and the boundary conditions become

u
u0,j = g^Jhy.nk) , uj}(j = g2(jhy,nk)

<,0 ' g 3
( l hx' n k ) • ui,M
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where Mh
y

Nh
x

1. We need to solve a set of equations for the

unknowns un . in terms of un . for 1 < i < N-1 and i < j < M-1.

In order to solve (2.3.10), sweep in the one space direction.

For example, sweep in the x-direction by fixing j as described for

the explicit method. The grid points are ordered in the way in which

the sweeps were performed for the explicit method.

Let

"l.M-1

,nfl
"N-l.M-1

n + 1Let b£x ' denote the vector that contains the boundary values

at x = 0 and x = 1 , and be11 denote the vector that contains

the boundary values at y = 0 and y = 1 at time (n + 1)k. These

vectors are given by

n n + 1

xN.M-1
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This gives rise to a system of (N - 1) (M - 1) equations in

(N - 1)(M - 1) unknowns

A u
n+1 un + bcn+1 + bcn+1

where A is the block tridiagonal matrix

| < _ N.2 -H>|

X
\ o

x.

V O
o \c

ad a O

where -X 1 2xx -X Each block has•x ' d 1 + 2xx + 2Xy , and . ,.y.

dimension (N - 1) x (N - 1). There are M - 1 blocks in each row or

column of the block tridiagonal matrix.

This block tridiagonal matrix is much more complicated to solve

than the simple tridiagonal matrix. As in the case of the simple

tridiagonal matrix, the block tridiagonal matrix is diagonally

dominant, so pivoting is not required.

As an illustration example of the set-up of the system, consider

the case where N

= k/h2 ,

M 4. The system becomes, where X

1+4X

-X

-X

-X

1+4X

-X

-X

-X

1+4X

-X

-X

1+4X

-X

-X

-X

-X

1+4X

-X

-X

-X

-X

1+4X

-X

-X

1+4X

-X

.-X

-X

1+4X

-X

-X

-X

1+4X

n
U12
n

U22

-4

+ Xu

+ Xu

n+1
02

n+1
42
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II.4. Fractional Step Methods.

In this section a compromise between the explicit and implicit

finite difference methods considered in Section II.3 is introduced.

Consider the initial value problem (2.3.1)-(2.3.2),

(2.4.1) 3.v = 32v + 32v

c x y

with initial condition

(2.4.2) v(x,y,0) = f(x,y) .

Equation (2.4.1) can be written as the sum of two one-dimensional

equations

(2.4.3) \ 3tv = 3x v

or

(2.4.3') 3tv = 23x v ,

and

(2.4.4) \ 3tv = 3
2 v

or

(2.4.4') 3tv = 23
2 v .

In order to advance the solution from nk to (n + 1)k , it is assumed

that equation (2.4.3) holds from nk to (n + ̂ -)k and that equation

(2.4.4) holds from (n + ̂ )k to (n + 1)k. This gives rise to

replacing (2.4.1)-(2.4.2) by two initial-value problems, each one

dimensional

3.v' = 2 32 v1 , nk < t < (n + i)k
(2.4.5) t x i

v'(x,y,nk) = vM(x,y,nk) (= f(x,y) if n = 0) ,

atv" = 2 3
2 v" , (n + j)k < t < (n

v"(x,y,(n +^)k) = v'(x,y,(n ^

and

(2.4.6)

Consider first an explicit method (of the form of (1.1.3)) for

the solutions of (2.4.5) and (2.4.6). Approximate (2.4.5) by

2 D D un
zu+u-iuij
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4
(2.4.7) ut^ - (I +

Approximate (2.4.6) by

k/2

(2.4.8) un+1 = (I + kD+D_2)u^
2 .

Such a method is called a franctional step method (see Yaneuko [22]).

How is the stability of this method analyzed? First consider the

stability of each of the fractional steps (2.4.7) and (2.4.8). Taking

the discrete Fourier transform of (2.4.7).

where

As seen in Section 1.4 I P ^ C ^ I < 1 provided Xx < j. This is just

the one dimensional explicit finite difference method (1.1.3).

Similarly, taking the discrete Fourier transform of (2.4.8),

n+i n+4

where

• 1 - 4x sin

Again, |p2(c2)| < 1 provided x < j.

The combination of (2.4.7) and (2.4.8), results in a method that

advances the solution from nk to (n + 1)k

(2.4.9) un^1 - (I + kD+D_2)(I + kD+D_1)u^j .

The stability of this combined method must be considered. Take the

discrete Fourier transform of (2.4.9).

lIij1(51'52) = (I + k D+ D- 2
) ( I + kD+D_1)u

n(cl,C2)

where
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and

| P 2 < 5 2 ) |

provided X < ̂  and X < -j- Thus by considering the two-dimensional

initial-value problem as two one-dimensional initial-value problems, an

improved stability condition has been achieved. Assume h = h so
1 x y

that X = X = X , and X < •*• for the fractional step method whilex y i
X < ^ for the two-dimensional explicit method (2.3.5).

In general if two symbols pj(gi,£2) and P2(£.|,52) satisfy the

von Neumann condition, that is,

then the symbdl p(?1,C2) - P-, (̂  , S2) P2(C1 , S2) satisfies the von

Neumann condition, for

l
< (1 +

- 1 + Ck .

I + C2k)

C2)k + 0(k
2)

For fractional step methods, the question of stability reduces to the

question of stability of the two one-dimensional methods. This is

generally much easier to analyze. What about the accuracy of the

method? Consider the combined method (2.4.9) expanded out

u^ 1 = (I + kD+D_1 + kD+D_2 + k ^ D ^ D ^ u ^ j

)u
i . j #

The term kD+D-2D+D_^u^. is an extra term introduced by using the two

fractional steps. Expanding v(x,y,t) in a Taylor series about the

point (ihx,jh ,nk) , gives rise to

- 3tv + 0(k)

and

D
+

D-1v i j " fr + °<hx>

D
+

D - 2 v i j " 3yV
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What does the extra term kD+D_2D+D_.jU
1?. approximate? Again, by

expanding v in a Taylor series in space about the point

(ihx,jhx,nk),

D+D-2D+D-1v?j = 9232V + 0 (h x ) + 0(h2) .

Thus the local truncation error becomes

v n + 1 - v n

^ 4 t A

= a v + 0(k) - a2v + 0(h2) - a2v + o(h2)
L A A y y
- k(aVv) + o(h2) + o(h2))

y x x y
= o(k) + o(h2) + o(h2) + kaVv

x y y x

= 0(k) + 0(h2) + O(h^) .
2 2

Thus the term kD.D OD,D -.u. . adds k3 3 v to the truncation error
which is harmless since it is absorbed in the 0(k) term. It can be

seen from the local truncation error that the fractional step method

also solves the equation
atv = axv + ajv + ka^ axv

with accuracy 0(k2) + 0(h2) + 0(h2).
x y

To implement the method, first solve (2.4.7) to obtain u^. .

For a fixed j , (2.4.7) represents a purely one-dimensional explicit

method in the x-direction,

u i ? " V»i+i,j + (1 " 2xx>u?j + V?-i,j •
This is called an x-sweep. Thus for each value of j , (2.4.7) is

n4
solved for u^ . .

Next, solve (2.4.8) for u"+!. For a fixed i , (2.4.8)

represents a purely one-dimensional explicit method in the y-direction,

• 1 n+i n+4 n+1
uij = Xyui,j+1 + (1 * 2xy)ui,j + Xyui,j-1 '

This is called a y-sweep. Thus for each value of i , (2.4.8) is

solved for u?+!.

If one considers an initial-boundary value problem (2.4.3),

intermediate boundary conditions at x = 0 and x = 1 will be needed

in (2.4.7). Since (n + -^k actually represents a real time
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the intermediate boundary conditions are

U = 8 ( i h ( n +

and

A natural question arises. Can the stability constraint on X

be improved greatly without increasing the amount of computational

labor? Suppose equations (2.4.6) and (2.4.7) are approximated by an

implicit finite difference method (of the form of 2.2.1)). Approximate

(2.4.6) by

n+o" 1

u. \ - un n+1
\/2

(2.4.10) (I -

Approximate (2.4.7) by

i i..1 = 9D D un+1

k/2 ZD+D-2ui,j

n+1
 n 4(2.4.11) (I - kD+D_2)u£\j = u.J .

The stability is analyzed in the same way as for the explicit

fractional step method. First, consider the stability of each of the

fractional steps (2.4.10) and (2.4.11). Take the discrete Fourier

transform of (2.4.10).

u (5-|,52)
 = P-|(^)u (5i »52) »

where

/ x 1

1 + 4XX Sln
2
(ll)

Since 1 + 4Xx s i n
2 ^ ) > 1 , for every Xx > 0 , |p.j(5.|)| < 1 for

every Xx. Thus (2.4.10) is unconditionally stable. Observe that this

is just the one-domensional implicit method (2.2.1).

Similarly, take the discrete Fourier transform of (2.4.11),
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n+2"
u (

where

As above, | p 2 U 2 ) | < 1 f o r every A > 0. Thus (2.4.11) is

unconditionally stable.

Combining (2.4.10) and (2.4.11) results in a method that advances

the solution from nk to (n + 1)k. Rewriting (2.4.10) and (2.4.11),

n +

u.j = (I -

and

Combining these two expressions gives

u
n+1 = (i _ kD+D_2)'

1(I -

[(I - kD+D_1)(I - kD+D_2)]"
1

or

(2.4.12) (I - kD+D_1)(I - kD+D-2)u
n|j = u n ^ .

The combined method (2.4.12) is the equation that is to be solved.

Take the discrete Fourier transform of (2.4.12),

where p^(K^) and p2(^2) are defined above. Thus

un+1(51,52) " P1(51,C2)u
Il(51,52) .

where p(?1,52) = P 1(5 1)P 2(C 2) and

| p ( ^ , 5 2 ) | < I P-, C^T > I | P 2 ( 5 2 ) | < 1

for every X and X . Thus the fractional step method (2.4.10)

(2.4.11) or (2.4.12) is conditionally stable.

Write (2.4.12) out
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(I - kD+D.1 - kD+D_2 + k
2D+D_2D+D_1)u

n|j = u^j .

As in the case of the explicit fractional step method, by expanding

v(x,y,t) in a Taylor series about the point

(ih ,jh ,(n+1)k) , this implicit method is accurate

0(k) + 0(hx) + 0(h
2). The term kD+D_2D+D_., adds k3y3xv to the

local truncation error which is absorbed in the 0(k) term.

To discuss the implementation of the implicit fractional step

method (2.4.10)-(2.4.12), consider the initial-boundary value problem

(2.3.13). The first fractional step (2.4.10) represents an

approximation to the one-dimensional parabolic equation in the x-

direction. Thus, we sweep in the x-direction by fixing j. This will

be illustrated for the special case where N = M = 4 and X = Xx = Xyl
where following system of equations is obtained.

1+2A -A

-X 1+2X -X

-A 1+2A

0

0

0

1+2X -X

-X 1+2X -X

-X 1 + 2 A

0

0

0

1+2X -X

-X 1+2A -X

-X 1+2X

i
1 - "2,1

0

0

0

A n 1 * 1

Xu3,4

The second vector on the right-hand side represents the boundary

conditions.

The matrices are block diagonal matrices. Thus each of the

individual blocks can be solved separately, where each block is

tridiagonal.
To implement the general method, first solve (2.4.10) to obtain

u. . for each value of

1 < j < M-1

j. This is called the x-sweep. For each j

solve the tridiagonal system of equations of order N-1.
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(2.4.13)

U2,j

4
"N-2.J

l

4
U1.J + XxU0,j

"N-2j

The x-sweep consists of solving M - 1 systems of equations.

The second step consists of solving (2.4.11) to obtain u? . for

each value of i. This is called the y-sweep. For each i ,

1 < i < N-1 , solve the tridiagonal system of equations of order

N - 1.

(2.4.14)

un+1

un+1ui,2

n+1
ui,M-2

un+1



52

ui,2

i,M-2

The y-sweep consists of solving N - 1 system of equations.

The primary advantage of this form of the implementation is that

it requires far less storage than using the block diagonal matrix. The

implicit fractional step method reduces the problem of solving one

large (N - 1) - (M - 1) block tridiagonal system of equations to

solving a large number, (N - 1) + (M - 1) , of small ((N - 1) or

(M - 1)) tridiagonal system of equations.

Consider the three-dimensional parabolic equation

(2.4.15) 9
9 z V -co <

-00 <

< +«» — < y
t > 0

< +00

with the initial conditions

(2.4.16) v(x,y,z,O) = f(x,y,z) , -oo < x < +00

-oo < Z < +00

-oo < y < +«

Use notation analogous to that in Section II.3. Let

u(ih ,ih ,£h ,nk) approximate the exact solutionx y z v at the

point (ih ,jh ,ih ,nk). The notation for the shift and differencex y z
operators will be suitable adapted. A subscript 3 in a shift or

difference operators will indicate application of that operator in the

z-direction. For example, S+«u. . = u. . +- .

The definitions of stability, consistency, and accuracy are

identical to those in Chapter I except for the corresponding changes

for three-dimensions. The three-dimensional discrete Fourier transform

and the von Neumann conditions undergo the appropriate changes to

three-dimensions as in the two-dimensional case in Section II.3.

Equation (2.4.1) can be written as the sum of three one-

dimensional equations

(2.4.17) 3tv
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(2.4.18)

and

(2.4.19)

3tv

atv

In order to advance the solution from time nk to (n + 1)k , it is

assumed that equation (2.4.17) holds from nk to (n + ~-)k , that
1 ?

equation (2.4.18) holds from (n + -j)k to (n + -|)k , and that

equation (2.4.19) holds from (n + |-)k to (n + 1)k. This gives rise

to replacing (2.4.15)-(2.4.16) with three initial-value problems, each
one-dimensional

(2.4.20)

(2.4.21)

and

(2.4.22)

atv' 3 3^

v'(x,y,z,nk)

3tv" = 38 V

nk < t < (n + l)k

1(x,y,z,nk) (= f(x,y,z) if n = 0) ,

(n + < (n + |)k

v"(x,y,z,(n + l)k) = v1(x,y,z,(n + l)

atv-

v"1(x,y,z,(n

(n + p k < t < (n + 1)k

vn(x,y,z,(n |

First consider an explicit method for the solution of (2.4.20)-

(2.4.22) similar to (2.4.7)-(2.4.8). Approximate (2.4.20)-(2.4.21) by

(2.4.23) u..

(2.4.24)

and

u. .] = (I +

n+1
u . j £ = (I +(2.4.25)

respectively. The combined method is

(2.4.26) u™+\ - (I + kD+D_3)(I + kD +D_ 2) (I + kD +D_ 1)u
n
j j l .

Take the discrete Fourier transform of (2.4.26) to obtain
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k D + D - 3 ) ( I

where p(£-|,52,S3) = P3 (C3) P2(C2) P-j (C-j ) , P^S-j) , P 2^ 2) » and

P 3U 3) are the symbols of the fractional steps (2.4.23)-(2.4.25),

respectively. As in the two-dimensional case

P2(C2) = 1 - 4xy sin (j-) ,

and

P1(C3) = 1 - 4xz sin (̂ -) ,

so that |p.j(s.|)| < 1 , |p2(E2)| < 1 , and IP 3(^ 3)I
 < ̂  an<^ hence

I p(C-| , C2, ?3) I < 1 provided that x
x
 < "2 ' X < 1 * anc* Xt < ~2* Thus

the von Neumann condition is satisfied for X < T> , X < o" » and

Expanding

k

(2.4.

[D4

+

26)

• D - 1

D+D

out

+ D
+
D-2

-3D+
D-1 +

+ D+D.3 +

D+D.3D+D

k(

-2>

The last two terms on the right hand side are introduced by using the

three fractional steps. Expanding v(x,y,z,t) in a Taylor series

about the point (ih ,ih ,ih ,nk). The local truncation error becomesx y z

vn+1

D
+
D-2 + D+

D-3 + k<D+D-2D
+
D-1

D+D-3D+D-2> + k 2 D +
D-3

= a tv + 0(k) - 8xv + 0(hx) - 8^v + O(h^) - ^ v + O(h^)

- k t 3 y 4 v + 0 ( h x ) + 0 ( h y ) + 3z3xv + 0 ( h x ) + 0 ( h z }

+ 3^9^v + O(h^) + 0(h^)] + k2[3^9^9^v + O(h^) + O(h^) + 0(h^)]z y y z z y x x y c

= 0(k) + O(h^) + O(h^) + O(h^) .
x y z

Thus the additional terms introduced by the fractional step method are

absorbed in the 0(k) term in the local fruncation error.
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To implement the method, first solve (2.4.23) to obtain

4
ui1i# F o r a f*xec* J anc* * (2.4.23) represents a purely one-
dimensional explicit method in the x-direction

This is called an x-sweep, as in the two-dimensional case.

Next solve (2.4.24) for u^. . For a fixed i and I ,

(2.4.24) represents a purely one-dimensional explicit method in the

y-direction,
9 1 1 1

n+4 n-hr n-hc n+4-
tti.j.»" Vi.j+i.t+ (1 - 2Vtti.3.»+ Vi.j-i.t •

This is called a y-sweep, as in the two-dimensional case.

Finally, solve (2.4.25) for un+1 £. For a fixed i and j ,

(2.4.25) represents a purely one-dimensional explicit method in the

z-direction,

4 4
This is called a z-sweep.

As in the case of two dimensions the stability constraints on

Ĵ  , X̂  , and Xz can be improved by considering an implicit

franctional step method for the solution of (2.4.20)-(2.4.22).

Approximate (2.4.20)-(2.4.22) by

n4
(2.4.27) (I - k D + D ^ u ^ = un

j £ ,

(2.4.28) (I - kD+D_2)ui.': = u^": ,

and

n+2

(2.4.29) (I - kD+D-3)u
n^ = u ^ ,

respectively. The combined method is

(2.4.30) (I - kD+D_.,)(I - kD+D_2)(I - kD+D_3)u"j
1
£ - u

n. .

Take the discrete Fourier transform of (2.4.30).

1 1 # 1 v ̂ n+1( . ^n( v
P-j
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u n + 1

where p.. (£.. ) , p«(S2) , and P 3(? 3)
 a r e t n e symbols of the

fractional steps (2.4.27)-(2.4.29). As in the two-dimensional case we

see that

/ x 1
o

sin (

P2U2)

and

P3(S3)

0
sin (

o
1 + 4x sin (

so that | P1 (£-,)! < 1 , |p2(e2)| < 1 , and | P 3 U 3 ) | < 1 and hence

I p(51 , C2, 53) I < I P-j (5-j ) I I P 2 U 2 ) | | P 3(C 3) I < 1 for any Xx > 0 ,

X > 0 , X > 0. Thus, the von Neumann condition is satisfied for any

X > 0 , X > 0 , X > 0 and the implicit fractional step method

(2.4.27)-(2.4.29) is unconditionally stable.

As in the case of the two-dimensional implicit fractional step

method, expand v(x,y,z,t) in a Taylor series about the point

(ih ,jh , Jih ,(n+1)k) to obtain the local truncation error which isx y z

0(k) + 0(h2) + 0(h2) + 0(h2).

To discuss the implementation of the implicit fractional step

method (2.4.27)-(2.4.29), consider the initial-boundary value problem

(2.4.31a) 9tv = 3
2v + 82v + 92v , 0 < x < 1 , 0 < y < 1 ,

0 < z < 1 , t > 0 ,

(2 .4 .31b) v ( x , y , z , 0 ) - f ( x , y , t ) , 0 < x < 1 , 0 < y < 1 , 0 < z < 1 ,

(2 .4 .31c ) v ( 0 , y , z , t ) = g . , ( y , z , t ) , 0 < y < 1 , 0 < z < 1 , t > 0 ,

(2 .4 .31d) v ( 1 , y , z , t ) = g 2 ( y , z , t ) , 0 < y < 1 , 0 < z < 1 , t > 0 ,

(2 .4 .31e ) v ( x , 0 , z , t ) = g 3 ( x , z , t ) , 0 < x < 1 , 0 < z < 1 , t > 0 ,

(2 .4 .31 f ) v ( x , 1 , z , t ) = g 4 ( x , z , t ) , 0 < x < 1 , 0 < z < 1 , t > 0 ,

(2 .4 .31g) v ( x , y , 0 , t ) = g 5 ( x , y , t ) , 0 < x < 1 , 0 < y < 1 , t > 0 ,

(2 .4 .31h) v ( x , y , 1 , t ) = g 6 ( x , y , t ) , 0 < x < 1 , 0 < y < 1 , t > 0 .

Let h = 1/N , h = 1/M , and h = 1/R , where N , M , and Rx y z
a r e p o s i t i v e i n t e g e r s . To implement the i m p l i c i t f r a c t i o n a l s t e p
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"4
method (2.4.27)-(2.4.29), first solve (2.4.27) to obtain u £. £ for

each value of j and *. This is called the x-sweep. For each j ,

1 < j < M-1 , and each I , 1 < I < R-1 , solve the tridiagonal system

of equations of order N - 1

-4

(2.4.32)

"Xx 1+2X -X

1+2X

"N-2.J.*

-4

n+1

where uQ J (jhy, £h
z,

J y
The x-sweep consists of solving

equations.

and

(M - 1)

JJ^ £ = g2(jhy> £hz , (n+i)k) .
(R - 1) systems of

n+
The second step consists of solving (2.4.28) to obtain u^ .

for each i and i. This is called the y-sweep. For each i ,

1 < i < N-1 , and each i , 1 < I < R-1 , we solve the tridiagonal

system of equations of order M - 1
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(2.4.33)

y y

-V

n+f
U

ui,2,n

n+f
u

Ui,M-1,£

n+i n+|u + V
-4U

n+i
ul,M-2,*

n+i
ui,M-1,t

n+|

n+| 2 n +l 2

where u ^ ^ £ - g3(ihx, £hz, (n+|)k) and ^ ^ ^ - g4(ihx,£hz, (n+|)k).

The y-sweep consists of solving (N - 1) x (R - 1) systems of

equations.

The third step consists of solving (2.4.29) to obtain un+. £

for each i and j. This is called the z-sweep. For each i ,

1 < i < N-1 , and each j , 1 < j < M-1 , we solve the tridiagonal

system of equation of order R - 1

(2.4.34)

1 + 2 x
n+1

n+1
ui,j,R-2

n+1
ui,J,R-1
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ui,J,R-2

where u n ^ Q = g5(ihx, jhy, (n+1 )k) and u ? " ^ R = g6 (ihx, jhy, (n+1 )k) .

The z-sweep consists of solving (N - 1) x (M - 1) systems of

equations.

II.5. Alternating Direction Implicit (A.D.I.) Methods.

Consider the two-dimensional Crank-Nicolson method

I D+
D
+
D-1 I D+

D-2>uiJ I V - 1 + 1 D+
D-2>ui,j

2 2 2
which is accurate of 0(k ) + 0(h ) + 0(h ). This method involves

x y

solving a block tridiagonal system of equations, as does the implicit

method discussed in Section II.3. Can the idea of fractional steps be

applied to the Crank-Nicolson method preserving the improved accurary?

The fractional step version of Crank-Nicolson, first proposed by

Douglas and Rachford [9], takes the form

and

By the same arguement used in Section II.4, it can be seen that this

method is unconditionally stable.

Solve the first fractional step for "4
u^ .

to obtain

Combining this with the second fractional step
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(2.5.1) (I - | VL2
)ui!j

= (I + | D+D_2)(I - | D+D_1)"
1(I + | D+D_1)u

n
J .

If the computational domain is a reactangle with its sides parallel to

the coordinate axes, then the finite difference operators D
+
D_-j an<*

D+D_2 commute, that is, D+D_.jD+D_2= D+D_2D+D_1 . Thus, under these

conditions, (2.5.1) may be written in the form

\r \r Xr r»4-1

(I + f D+D_, - f D+D.2 + £ - D+D_ iD+D.2)u° (]

= (I + | D+D_, + | D+D_2 + \- D+D^D+D.^u^j .

As in the other fractional step methods discussed, the term

k k 2 2
£ D+D_.|D+D_2 adds ^ 3 3̂ v to the local trucation error. However,
the other terms in this finite difference method form the two-

2 2dimensional Crank-Nicolson method, which is accurate to O(k ) + O(h )
2 k 2 2

2 k 2 2
h ) Since the term f 33 v

)2 k 2 2
+ 0(hT). Since the term f 3 3 v is 0(k) it is no longer harmless.

y f y x 2 2
The method becomes accurate to 0(k) + 0(h ) + 0(h ). Thus there is no

x y

benefit to be gained from using this method.

Can one remove the restriction of first order accuracy in time,

that is, 0(k)? Yes, by carefully allowing for the neglected terms in

each step.

Rather than considering two one-dimensional equations (2.4.3) and

(2.4.4), we consider the original equation (2.4.1) and solve by a mean

of a two-step method which is a refinement of a fractional step method,

called an alternating direction implicit method.

An alternating direction method due to Peaceman-Richford [19] and

Douglas [4] is a two-step method, which involves an intermediate valuen'2fu^ .. The Peaceman-Rachford-Douglas method is

.^u";! - (I + \ D+D_2)u?(j(2 .5

and

(2 .5

.2)

.3)

(I

(I

k

k
" 2 _ 2

) uiJ - (I + \ D+D_1)ui^|

To analyze the stability of this method, take the discrete
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n2(J-)

Fourier transform of (2.5.2) obtaining

1

This gives rise to

u (c1 , S2) - P(51 ,52)u (

where the symbol of (2.5.2) is

1 - 2xv sin^(y^)

(2.5.4) P^(K}.K2)
 Z f — •

1 + 2xx sin
2(^-)

Clearly, P1(?1,C2) < 1 , since 1 - 2x sin (̂=-) < 1 and

2 h 2 h 1
1 < 1 + 2xx sin \Y~) < 1 + 2xx or (1 + 2x sin (j1)) < 1. In order

that -1 < pl(c1,C2) , consider the worst possible case in (2.5.4)

which is when the numerator in (2.5.4) is the largest (£2 = ir) and the

denominator in (2.5.4) the smallest (̂  = 0 ) . This gives

-1 < 1 - 2xy

or

V <i •

This stability requirement is due to the y D+D_9 t e r m i n (2.5.2).

Since the right-hand side of (2.5.2) involves an explicit finite
2

difference method to represent the 3 term, it should not be

surprising that there is a restriction on X . For the one-dimensional

explicit finite difference method (in y), X < •%. However, ^
k 2 1

multiplies D+D_2 , not k , so that (j) /h < j or X < 1.

Similarly, by taking the discrete Fourier transform of (2.5.3),

n -

which gives rise to

u n + 1 u 1 > 5 2 ) - -^
where the symbol of (2.5.3) is
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1 - 2xx
(2.5.5)

1 + 2xy

|,S2)| < 1 provided that Xx < 1. This is due to the j D
+
D_-|

term in the right-hand side of (2.5.3).

However, if the two steps (2.5.2) and (2.5.3) are combined,

Thus the symbol p(£-|,S2) of the combined method is

\ * 2. 1 1

- 2 x s i n 2/^2 N - 2xx sin

+ 2xx

- 2xx

2xy

- 2xy

2x x 2x y

By regrouping, each quotient is a function of only one argument, the

first is a function of ^ and the second a function of £2. Set

a = 2xx sin (̂ -4 , so that the first quotient becomes (1 - a)/(1 + a)

which, for every a , satisfies

1 - a
1 + a < 1 .

Thus

1 - 2xx

1 + 2xv

for every xx and, similarly,

- 2x

< 1

1 + 2xy

< 1

for every X . Then
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for all X and X and the combined method is unconditionally

stable.

If one chooses X > 1 , then the first step (2.5.2) may

n'3f n
become unstable and Bu l̂  may become large compared to iiu J2 anci

Bu11 iu • However, this is corrected when the second step (2.5.3) is

applied.

Write (2.5.2) and (2.5.3) in the form

(2.5.

and

(2.5.

.6)

.7)

Adding (2.

(2.5..8)

un+1

5.6) and

un+1

-

k

-

k

(2.

n

5.

n

1

7)

By subtracting (2.5.7) from (2.5.6)

and solving for u i . ,

1 9 n+1 n

(2.5.9) U;;j - 1 < ] + u?ij> - £ D + D . 2 ( ^ _ ^
By substitution of (2.5.9) into (2.5.8) yields

n+1 n n . n+1
u. . - u. . u. . + u. .

(2.5.10) 1>J k
 L^1 = (D+D_1 + D+D_2)(

 1'.1 2
 X»J

k2 u f ! " ui i
1 l

k 2

The left-hand side and the first term on the right-hand side represent

the two dimensional Crank-Nicolson method which is accurate to

0(k2) + 0(h2) + 0(h2). The extra term is approximately
9 x y

k 2 2 2
7— 3 3 3 v = 0(k ). Thus the extra term is harmless as it is absorbed

y 2

in the 0(k ) term from the Crank-Nicolson method. Observe that the

extra term is only harmless as long as the solution v(x,y,t) is

sufficiently smooth.

The Peaceman-Rachford-Douglas method i s implemented in the same
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way as the implicit fractional step method (2.4.7)-(2.4.8). Each step

(2.5.2) and (2.5.3) involves the solution of a tridiagonal system.

To consider the initial-boundary value problem (2.3.13) boundary
1

n,y
conditions for the intermediate value u^ . are required. In the

original formulation by Peaceman and Rachford, the boundary condition

used for the fractional step method was used, for example, at x = 0

uo,j

. . does not represent the

approximate solution at time (n + T)^» This boundary condition

approximation is not 0(k ) and, thus, the method (2.5.2) and (2.5.3)

is not 0(k2) + 0(h2) + 0(h2).x y
How can this be corrected? The following procedure is due to

]_

Mitchell and Fairweather [18]. The representation of u/? in (2.5.9)

can be rewritten as

n -
(2.5.9') u^? = -j (I + j D+D_2)u

n . + j (I - | D+D_2)u
n+! .

Also, (2.5.10) may be written in the form

(2.5.1 01) (I - | D+D_.,)(I - | D +D_ 2)u^

= (I +|D +D. l ) (I +^D+D_2)u?fJ ,

2 2 2
which is accurate to 0(k ) + 0(hx) + 0(h ). This was obtained by

substituting (2.5.9) (or (2.5.91)) in (2.5.2).

Consider (2.5.2) at i = 1 , which yields

X n - n - X n 1
" IT uo!j + (1 + Xx)u1,'j " IT U2,'j = ( I + I D + D -2 ) u i \ j

or
1 X n 1 1

(2.5.11) (1 + Xx)U l 'J - ^ u2 'J = (I + | D+D_2)u
n j + Y" UQ'J .

S u b s t i t u t i n g ( 2 . 5 . 9 ' ) i n t o ( 2 . 5 . 1 1 )

+ 7 M-2)u2,j + \ (I " \ D+D-2)u$!j]

+ \
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By adding - ̂  [̂  (I + | D+D_2)u
n j + ̂  (I - | D+D_2)u

n4\! ] to both

sides

k 1 k n 1 k n+1
( I - -FT D . D 1 ) [•?>• ( I + 7f D . D n ) u < . •+• 77 ( I - "77 D . D o ) u i . I

z T - 1 z Z T - Z I , J Z Z T - Z I , J

(I + k D D ) u n + X [u11'? 1 (I + k D D ) u n

(2.5.12) (I - | D+D_.,)(I - \ D+

= (I + \ D^^CI + \

In order to maintain the accuracy of (2.5.101) at i = 1 , (2.5.12)

must reduce to (2.5.10'), that is, the second term on the right-hand

side of (2.5.12) must vanish. This gives the boundary condition for

the intermediate value at i • 0 (or x = 0)

1_

(2.5.13) uo|j = \ (I + \ D+D_2)gi(jhy,nk)

+ \ (I + \ D+D.2
)g1(-jhy'(n+1)k) *

Similarly, at i = N - 1 , the equation

(I - I D + D ^ X I -$D+D_2)u£]tj

- (I ̂ M . ^ 1 +lD+
D-2)uS-1,j

+ T- I«N!? - \ ^ + \ D
+

D-2>uS,j - 1 <! " 7 D+D-2><]] •

which gives rise to the boundary condition for the intermediate value

at i = N (or x = 1)

(2.5.14) X j " 7 <X + 7 D+D.2
)S2(Jhy'nk)

+ 7 <x " 7 D+D_2)g2(jhy,(n+1)k) .

Observe that if the boundary conditions are time-independent, then

(2.5.12) and (2.5.13) reduce to

n
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and

The Peaceman-Rachford-Douglas method does not directly extend to

three dimensions. However, Douglas [8] and Brian [1] independently

developed a three-dimensional ADI method which reduces to the Peaceman-

Rachford-Douglas method in two-dimensions and the Crank-Nicolson method

in one dimension. This method is a three-step method, which in

advancing the solution from time nk to (n + 1)k involves two

intermediate values u ^ and u^. £.

The Douglas-Brian method is

(2.3.15) U D
+
D-1

(2.5.16)

and

(2.5.17)
u n + 1

U n n
^. £)

This may be written in a more practical form

(2.5.18) (I - (I + + 2 D +D_ 2 + 2

(2.5

and

(2.5

.19)

.20)

, , k

n k
(I - yj

D +D_ 2

. 3)u^; - u y j - | D+D_3 u j £ .

Equation (2.5.18) is obtained by regrouping equation (2.5.15).

Equation (2.5.19) is obtained by subtracting (2.5.15) from (2.5.16) and

regrouping. Finally, equation (2.5.20) is obtained by subtracting

(2.5.16) from (2.5.17).

The combined method becomes
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( 2 . 5 . 2 1 ) (I - j D+D_1)(I - | D+D_2)(I - | D+D_,

= [ ( I + | D+D-1 + D+D_2 + D+D_3)

k2

+ T~ ( D D - D D o + D D ^ D D o + D I4 + -1 + -2. + - l + - j +

Take the d i s c r e t e Fourier transform of ( 2 . 5 . 2 1 ) .

where

1 - x1 - x2 - x3 + x1x2

X2)(1

- x1 - x2 - x3 + x1x2 + x1x3 + x2x3 + x1x2x3

X1

H

x3 = 1 \

sin2

2

sin2

and

Since X-|,X2,X3 > 0 for Xx, Xy, Xz > 0 , | p(£i , 52» £3) I <
 1 a n d hence

the von Neumann condition is satisfied. This shows that the Douglas-

Brian method is unconditionally stable.

It can be shown that this method is 0(k2) + 0(h2) + 0(h2)

2 X 7

+ O(hp.
As with the Peaceman-Rachford-Douglas method, u. .", and u. .

n + ^
 1J * J-J *

are only intermediate values used to obtained u.. . These values do
1 2

not represent approximate solutions at times (n + ̂ -)k and (n + •3)k

as'with fractional step methods. Boundary condition must be provided

for these intermediate values.

Consider the initial-boundary value problem (2.4.30). From

(2.5.18), intermediate boundary conditions for u.. are needed at

n,-x- n,-j

x = 0 and x = 1 , that is, values for UQ . and U M • » »

respectively. Similarly, from (2.5.19), intermediate boundary
n.|

conditions are needed for u.. at y = 0 and y = 1, that is,
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2 2
n'3* n'"3values for u. Q and u. M , respectively. By preserving the

second order accuracy in time and space, following the procedure of

Mitchell and Fairweather for the Peaceman-Rachford-Douglas method, the

following intermediate boundary conditions are; at i = 0 (or x = 0)

(2.5.22) U Q ^ £ = gi(jhy,£hz,nk) + (I + £ D+D_2) (I - \ D+D_3)

(gl(jhy,ihz,(n+1)k) - gi(jhy,Ahz,nk)) ,

at i = N (or x = 1)

1

(2.5.23) ^ ] t l - 62«
hy*h

Z'
nk) + (I + 7 D+D-2) (I " I D+D-3>

(g2(jhy,*hz,(n+1)k) - g2(jhy,£hz,nk)) ,

at j = 0 (or y = 0)

-•I
(2.5.24) ui,o,£ = g3(ihx,thz,nk) + (I - | D+D_3)

(g3(ihx,*hz,(n+1)k) - g3(ihy,£hz,nk)) ,

and at j = M (or y = 1)

n
( 2 . 5 . 2 5 ) u l ] n f i - « 4 < i V ' J l h z 'n k ) + ( I " 7 + - 3

(g4(ihy,*hz,(n+1)k) - g4(ihy,£hz,nk)) .

The implementation of this method is similar to the Peaceman-

Rachford-Douglas method and will not be further explained here.

II.6. Effect of Lower Order Terms.

In this section, we demonstrate by an example of how stability

is affected by lower order terms.

Consider an equation of the form

(2.6.1) 3tv = aaxv + b3xv + cv ,

where a , b , and c are constants with a > 0.

In considering the earlier prototype equation

2 2
D D was used to approximate 9 to 0(h ). This will be used to

2 x

approximate 3x in (2.6.1). What should be used to approximate 3xv

We could use the analogous approximation to 9 v , that is, D+.

However,
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D+Vi = ax v + 0 ( h ) *

o
This error will dominate the error 0(h ) from D+D_ reducing the

overall accuracy to 0(h). So consider a second order approximation

to 3xv.

Expanding v(x,t) in a Taylor series in space about the point

(ih,nk) in x , gives rise to

Combining these terms, an explicit finite difference method that

approximates equation (2.6.1) is

(2.6.2) un+1 = un + akD+D_u
n + bkDQu

n + ckun .

o
This method is accurate to 0(k) + 0(h ) , where the undifferentiated

term cku? does not introduce a truncation error since it is not

being approximated.

To anaylyze the stability of (2.6.2), take the discrete Fourier

transform yielding

(2.6.3) un+1(c)

p(5)Sn(C).
Since

(2.6.4) DQu ^ - u

1 "• i E i & *
2h

= ("̂  sin O u ( O ,

the symbol of DQ is —r- sin 5. Substituting this and the symbol of

D+D_ (given in (2.2.12)) into (2.6.3), the symbol p(£) is given by

P U ) = 1 + ck - 4X asin2(|-) - ibxhsin £ .

Where h = /k/X ,

= (1 + ck - 4xasin2(|))2 + (bxhsin?)2

= (1 + ck - 4xasin2(|-))2 + ( b ^ Xsin^)2 ,

= (1 - 8xasin2(|) + (1 6x2a2sin4(|))

+ k(2c + b2xsin2c - 8xacsin2 (|-)) + k2c2
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Let f-(5) - 1 - 8\asin2(|-) + 1 6x2a2sin4(f) , f9(g) = 2c + b
2Xsin2£

- 8Xacsin (j) , and f 3 ( O
 = c » then by substitution

| P ( O | = (fjU) + kf2(5) + k
2 f 3 ( O )

1 / 2 •

Require 1^(5)1 < 1 , |f2(O| <
 M
2 »

 a n d l f3^)| < M3 , so that

|p(O| < 0 + M2k + M 3 k
2 ) 1 / 2 = 1 + 0(k)* •

Thus if |f.j(£)| < 1 and f2(O
 a n d ^3^) a r e bounded, the von

Neuman condition is satisfied and the explicit finite difference method

(2.6.2) is stable. Since X is fixed, the condition that f2(O
 an^

fo(£) are bounded is satisfied if the constants a , b , and c are

bounded. Since f-(s) > 0 , it remains to determine under what

conditions f^(C) < 1 , or

(1 - 4xasin2(|))2 < 1 , 0 < 5 < 2*

or

2j > Xsin2(|) > 0 .

The worst case occurs when 5 = TT , so that sin (j) = 1 and

(2.6.5.) x < "k *

Thus the finite difference method (2.6.2) is stable if (2.6.5) is
2

satisfied. This says that the higher derivative 3 v governs the

stability.

An implicit finite difference method that approximate equation

(2.6.1) based on the explicit method (2.6.2) is

/o n n\ n+1 n . , «. «. n+1 . , ,«. n+1 , , n+1(2.6.6) ui = ui kaD+D_u^ + kbDgU^ + kcui

o
This method is also accurate 0(k) + 0(h ). It will be shown that this

implicit method is unconditionally stable, using the energy method.

Take the discrete inner product of (2.6.6) with u11

(U
n+1,un+1) - (un+1,un) + (un+\kaD+D_u

n+1)

+ (un+1,kbDou
n+1) + (un+\kcun+1)

1 /2* Using Taylor series for (1 + z) about the point z = 0

(1 + z ) 1 / 2 = 1 + 1/2z + 0(z2) .

Let z = M2k + M3k . Upon substitution

(1 + M9k + M~k
2) = 1 + M9k + M~k

2 + 0(k2) = 1 + 0(k) .
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n+1 2 / n+1 nN . , , n+1 ~ ~ n+1 Nllu ll2 = (u ,u ) + ka(u ,D+D_u )

, 1 U / n+1 ~ n+1 x , . n+1 2
+ kb(u »Dou ) + kciiu ll 2 .

Applying the d i s c r e t e i n t e g r a t i o n by p a r t s (1 .2 .13) to the second

term on the r i g h t - h a n d s i d e

, n+1 _ _ n+1 N , _ n+1 _ n+1 N _ n+1 2
(u ,D+D_u ) = -(D u ,D_u ) = - llD_u II2 ,

and upon s u b s t i t u t i o n

n+1 2 , n+1 nN , ^ n+1
llu ll2 = (u ,u ) - kailD_u ll

+ kb(u »DQU ) + kcilu II2 ,

o r

.un + 1 if + ka»D.un+1 if = (un+1 ,un) + kb(un+1 ,Doun+1)

+ k c i « n + 1 l f .

Using the triangle inequality and the Schwarz inequality

(2.6.7) l u n + \ 2 + kalD_un+1|2

< »un+1l2imn,2 + kb|(U
n + 1 ,Doun + 1) | + kc,un + 1

(2

< lu n + 1 l 2 l u n i 2 + kb»U
n +1l2lD0un+1 .2 + kc»un+1.2 .

The goal is to remove the kaiiD^u11 «2 term from the left-hand

side of (2.6.7). To this end using the inequality

| A B |

with A - * Jjg «u n + 1 | l 2 and B =

( 2 . 6 . 8 ) kbnun+1 n2 «Do
uTl+1 "2 <

Since DQ = j (D+ + D_) ,

I.Doun + 1»2 - »1 <D+ + D j u n + 1 l 2 < \ ( « D + u n + 1 « 2 + I.D_un+1 | l2)

- flD_un+1»2 (o r HD+un + 1«2) ,

by s u b s t i t u t i o n i n t o ( 2 . 6 . 8 ) ,

k b l u n + 1 l 2 , D 0 u n + 1 l 2 < | ^ - l u ^ l f + k a » D . u n + 1 . 2 ,

and by s u b s t i t u t i o n i n t o ( 2 . 6 . 7 ) ,
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.un+1 ,2 + ka,D.un+1 y\ < ,un+1 ,2 ,u
n«2 + ||^ ,u

n+1 ,£

After cancellation and regrouping

d - (4aC4a-
 b2)k «un+1 i2 < .u

n,2

lun+1 I, < 5 , u
ni, - (1 + 0(k)) lunl,*

Thus the method (2.6.6) is unconditionally stable.

It should be mentioned that even though the constant b does not

play a role in the stability of the explicit and implicit methods, it

can have a dramatic effect on the solution. Suppose that |b| >> a

and c * 0. In this case b3 v is the dominant term in equation
n+1

(2.6.1). Consider the approximate solution of x • ih , ui * s i n c e

D0ui "" UK ^ui+1 " ul-1^ ' t^iat *s» D0ui depends o n t n e values of u

at the two adjacent points and does not depend on u. , the value of

u. from the approximations to the spatial derivatives, will have

little effect in determining un . This can result in the values of

u at a given time oscillating about the exact solution.

To see this, consider equation (2.6.1) with a , b positive and

c = 0. Approximate (2.6.1) by the explicit finite difference method

(2.6.2). Suppose the initial condition is given by

0, i # j

i - j '

where e is some positive number and jh is some point on the grid.

Consider the first time level corresponding to n - 1. By substitution

of the initial condition into (2.6.2), we obtain at i - j - 1 , j ,

and j + 1

1 _ , , bhv

u! - (1 + ck - 2ax)e ,

* Using Taylor series for (1 - z)~ about the point z
(1 . z ) - 1 = 1 + z + 0(z

2) .
2

Let z = ( ac, )k , then upon substitution
2

1 , + (4ac + b )k + 0 ( k 2 } _ 1 +
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u-j + -| = (a - — )Xe .

The exact solution is > 0 for all time. The stability condition

(2.6.5) X < Yg guarantees that u! > 0. However, if

a - ^TT < 0

bh .
-j > a ,

then u-+i < 0 and u. > 0. This is the beginning of the oscillation.

We see that if the grid spacing is chosen so that h < 2a/b , then
u# + i would be positive. This would be a very expensive solution to

the problem of oscillations.

This type of oscillation, as well as other remedies, will be

discussed in Chapter III.

II.7. Systems of Equations.

Consider the system of differential equations

(2.7.1) vt = PO x)v , t > 0

where v denotes a vector with p-components of the form (v.,,v9,...,

v ) and P is a polynomial in 3x whose coefficients are matrices,

that is,

P(z) = Z B. zJ

j«0 J

or upon replacing z with 3

I j
x j-0 ~ j x

where the IS. !s are matrices of order p x p.

For example, let I = 2 (the highest derivative is second order)

and p = 3 (the number of equations) with I5Q = 15.. = C) ( 3 x 3

matrices with all elements 0) and

1 0 0

0 1 0

0 0 1

Then P(z)

z2

o •
0

z 2

and POX) = 1 2 3x =

3x

0

0

0

3 x

0

0

0

3
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with v

atv2

9tv3

or

2

2
x .

V
V2
V3

2 i
V i
2

3xv2
,2
3xv3.

Suppose = 2 and p = 2 with

0 , h-[* °) , and B2 - (J ]) .

Then P(z) = B2z + B1z

P(3x) =

z2 z2 2z 0 z2+2z z2

Equation (2.7.1) becomes

c

with v = (v« ,v«) or

B,

2
3xv1

and

23xvi

Consider the initial-value problem given by equation (2.7.1)

with the initial condition

(2.7.2) v(x,0) = f(x) = '•••"rp (x))1 -co < x < =a .

Let u = (û  ,...,u ) , where each component u. is a grid

0function. Let u^ = .f(ih) denote the discrete initial conditions.

Approximate the initial-value problem (2.7.1)-(2.7.2) by a finite

difference method of the form

(2.7.3)

or

(2.7.3')

where Q.

n+1 u > 0

un+1

and

2" ' = V £ 2 ^
 s 2 H » n > °

are p x p matrices of the form

(2.7.4a)
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and

TS\n

(2.7.4b) 3 2 = E £2. s{ ,

with the ^.'s and ^.'s p x p constant matrices. As in the

scalar case (where p = 1), if Q* - ĉI where a is a constant # 0 ,

then (2.7.3) is an explicit method, otherwise, it is an implicit

method.

As in the scalar case, define the discrete Fourier transform

of a grid function u as

(2.7.5) u(O = l u.eij5

j J

U1
= E . e .
j ;

Since Parseval's relation holds for each component equation in (2.7.5),

2 _ 1 , 2 7 T , 2
* ui j 2* Q

 uil 5 K l p '

nH" - 7~r / ( l l u j 2 ) d 5 £ ^ b y d e f i n i t i o n o f nun^)

P i 2TT 2 p 2

= E («— / | u J d c ) = E (E ( u . ) . )

P o o
= E ( E ( u . ) z ) = E n u . n z ,

where n-» denotes the vector norm, that is,

,v, - (v? + ... + v J )
1 ' 2 .

Again, as in Chapter I, we obtain

and

since this holds for each component of u. Thus by applying the

discrete Fourier transform to (2.7.3), using (2.7.4),

Z a e" 1^ un+1(5) = E 2 2 1 e
l j 5 un(c)

j—n>3 J j=-m1
 iJ
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(2.7.5)

-1 m«

As in the scalar case, define the symbol or amplification matrix of

the finite difference method (2.7.3)

(2.7.6) G(O =

-1 m«

a p x p matrix. Thus by substitution of (2.7.6) into (2.7.5)

*n+1 o / N*n

and by repeated application of (2.7.6) and (2.7.5),

where u is the discrete initial condition. This leads to the

following theorem.

Theorem 2.1. A necessary and sufficient condition for stability in the

L-norm is that there exist constants K and a independent of h

and k such that

BGnU)ll < Keat .

The proof is analogous to that of Chapter I and will be omitted.

The definitions of accuracy, consistency, and convergence are as

defined in Chapter I.

Definition. The finite difference method (2.7.3) is said to satisfy

the von Neumann condition if there exists a constant C independent of

h , k , n , and £ such that

cr(G(O) < 1 + Ck

where k denotes the time step and a(G(O) denotes the spectral

radius* of the amplification matrix (2.7.6).

This leads to the following theorem.

Theorem 2.2. The von Neumann condition is necessary for stability in

the J&2 norm.

The proof is identical to the corresponding theorem in Chapter I

using the fact that

The spectral radius of a p x p matrix G(O , cr(G(5)) , is

max |Xj.(O| ,
1 i

where X^(c) , i = 1,...,p are the eigenvalues of G
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However, the von Neumann condition is not sufficient for stability as

it is in the scalar case. The cause of the difficulty is that G(£)

is a matrix. For, in the scalar case, |pn(s)| = |p(C)|n and, in the

vector case, nGn(£)ii < flG(s)nn. The inequality is in the wrong

direction to show that the von Neumann condition is sufficient for

stability.

Proposition. A sufficient condition for stability is that

«G(£)n < 1 + Ck

where C is a constant independent of

the time step.

Using the inequality

and , and k is

e C n k Ct< (1 + Ck) < e = e~

Hence, by Theorem 2.1, stability follows.

The following counter example due to Kreiss demonstrates that the

von Neumann condition is not sufficient for stability in the vector

case. Consider the differential equation

3 v = 0

where v approximated by

h2D+D. u51

This is consistent with the differential equation. The term h D+D_U2*

is small. Applying the discrete Fourier transform to the difference

method, we obtain

un+1(O-G(Oun(O

where

1 ti D+D_

0 1

1 -4s in

0 1

The eigenvalues of G(O are both 1 , thus o(G_(t)) = 1 so the von

Neumann condition is satisfied. However,

Gn(O
1 -4sin2(|-)

0 1

1 -4ns in2(|)

0 1
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which is not uniformly bounded, that is, grows with the number of time

step. Hence, the finite difference method is unstable.

It turns out that just a little extra is needed in addition to

the von Neumann condition for stability. There are many theorems which

give sufficient conditions for stability, such as the Kreiss matrix

theorem (see Appendix A). However, many of these results are difficult

to use in practice. The following theorem gives practical conditions,

which are sufficient for stability.

Theorem 2.3. Consider the finite difference method (2.7.3) whose

amplification matrix G(O satisfies the von Neumann condition. Then

any one of the following conditions is sufficient for stability:

i) G(O (or ^1 a n d £2 i n (2«7*3)) i s symmetric,

ii) G(O (or (̂  and £ 2
 i n (2.7.3)) is similar* to a symmetric

matrix, that is S(O = S( s)G (OS."1 (O , where S(O is

symmetric and lS.(Ol < Ĉ  and |S~ (c)n < ̂ 2 *

iii) G(O G*(O < _I , where G*(O is the complex conjugate of

iv) all elements of (5(0 are bounded and all but one of the eigen-

values of G(O lie in a circle inside the unit circle, that is,

all but one eigenvalue X. are such that |x.| < r < 1 (where

r is the radius of the circle inside the unit circle).

Proof. i) Since G(O is symmetric, there exists a matrix U(s)

such that

6(0 = U(OD(OU T(O ,

where

D(0 = diag(x1(O,...,Xp(O)

with A-j , ... , X the eigenvalues of G(0 and U(s)UT(O = X (the

identity matrix). For any vector x ,

l£(Oxi2 - xV(0G(c)x

= xT(U(OD(OUT(O)TU(OD(OUT(Ox

= xTu(OD(OuT(OH(OD(OuT(Ox

= xTU(c)D2(OUT(C)x

- (uT(Ox)Vu)(uT<ox)

Twhere ^ = U (Ox. This gives, where v_

* A matrix A is similar to a matrix IJ

nonsingular matrix Ŝ  such that I* = £ A S~ ' . The matrix Ŝ  A S"' is
a similarity transformation of A.

if
-1

.....3

there

The

' / •

exists

matrix

a

S A S"1
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9 P 9 9
iG(Oxr - i xt yi

o P 9
< a ( G ( c ) ) Z Z y ;

£=1 %

a(G(O)2(uT(e)x)T(uT(e)x)

a(GU))2nx»2

By the von Neumann condition,

Ck)2nxii2

C k ) '

Since this inequality holds for any vector x ,

lG(5)xi
nG(e)n = max — — — < 1 + Ck ,

lxi*0 "-"

from which we conclude, using Theorem 2.2 that the finite difference

method is stable.

An alternate way to show this result is to use the fact that if

G(O is symmetric, then a(G(O) - lG(c)i. So if the von Neumann

condition is satisfied,

lG(c)i = o(G(c)) < 1 + Ck

from which we conclude, using the proposition in this section, that the

finite difference method is stable.

Observe, that if Q is symmetric, then G(s) is symmetric.

Thus, if £ is symmetric, then the finite difference method is stable.

ii) Suppose G(£) is similar to &(s) , where £[(£) is

symmetric. Then

This

from

leads

which

to

GnU)

HGn(O» <

<

=

= S

; is

c!

ci

r1(?)»«f(5

C 2 »G(Olin

C2((G(O))
n
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since G(£) is symmetric, cr(G(£)) = nG(s)ll. Furthermore, since G(O

is similar to

which gives, using the von Neumann condition,

C1C2(a(G(O))
n

Ck) n

C 1C 2e
C t

We conclude, from Theorem 2.1, that the finite difference method is

stable.

iii) Let x be any vector, since G(s)G*(O < _I , we have

n G U ) x n 2 = x G(c)G*(c)x* < x x* = nxn 2

This gives nG(£)xn < nxn or

lG(Oxi
1

I xi

Since this inequality holds for every vector x , we have

llG(s)ll = max — — < 1 .
HxH*O '

Thus, by Theorem 2.2 the finite difference method is stable.

The proof of part iv) is given in Appendix A.

It should be commented that the von Neumann condition controls

the size of the largest eigenvalue of C?(s) . However, part iv) of the

theorem states how large the remaining eigenvalues may be to ensure

stability.

We end this section with a perturbation theorem due to Strang.

Theorem 2.4. Consider the stable finite difference method

(2.7.7) un+1 = ^ u n

and a bounded matrix 15 , then the operator Q + k^ is stable.

Proof. The main difficulty in the proof of this theorem is that the

matrices £ a n d H. do n o t necessarily commute, that is, g B ^ B £.

Let C.j and C2 be bounds as above, such that n£nii < Ĉ  and

IB I < C2. Using the binomial theorem

f k B Q ... Q

(£ + kIS) = (J + n terms of the form k Q B Q

etc.

terms with 2B's and n - 2 Q's + ... + kn.Bn.
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If an expression contains one 13 , it divides the Q's into, at most,

two groups. And in general, if an expression contains m B's , that

is, (2 2 .•• 2 1 S ••• H ••• I2)» they divide the 2's int0» at

most (m + 1) groups. This gives rise to

i2 2 " « 2 1 2---I 2«-«I 2 ) " < n2«—QJ •£• H2---21 •••»1| ™2«
m+1 m

< C C

by regrouping the terms on the right. Hence,

11(2 + kB)nn < ll2n + k (n terms with 1 B and

+ k2((^) terms with 2 B's and

n - 1 2?s)
n - 2 2's) +

m/iiv ̂ ,m+1 _m ,

. . . I I

(1 + ^

C1C9nk
e '

C-Cot

and, by Theorem 2.1, the operator £ + kIS is stable. This theorem

states that a stable finite difference method remains stable after a

small perturbation. In particular, a stable finite difference method

remains stable after the addition of bounded undifferentiated terms.

II.8. Weak Stability.

In Section II.7 an example was given showing that the von Neumann

condition was not sufficient for stability. How bad are such examples?

A typical matrix which violates the von Neumann condition is

(2.8.1)

llG n can grow very rapidly and errors can grow quite dramatically.

While the matrix

(2.8.2)
1 1

0 1

satisfies the von Neumann condition. However nG II is not uniformly

bounded so that a scheme whose amplification matrix is given by G is

not stable. The propagation of errors is not really too bad. There is

a qualitative difference between the two cases (2.8.1) and (2.8.2).

This idea leads to a new type of stability called weak stability.

Definition. A finite difference method (2.7.3) is called weakly stable

if

C(t)h"(P"1)
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l£ni < C(t)h"(p"1)

where p is the order of £. (If k » 0(h) then h may be replaced

by k.)

The matrix given by (2.8.2) will satisfy this definition of weak

stability while the matrix given by (2.8.1) will not.

This leads to the following theorem which is a direct consequence

of the definition of weak stability.

Theorem 2.5. A necessary and sufficient condition for weak stability

is

(2.8.3) BGnn < C(t)h"p

for fixed p.

Theorem 2.6. Consider the finite difference method (2.7.3) which is

weakly stable and accurate of order of q > p (where p is from

definition of weakly stable) and such that the solution v(x,t) of the

partial differential equation is smooth enough, then the finite

difference method is convergent of order q - p.

Proof. Using the definition of accurate of order q

vn~1 + kQ(hq) .

Define w11 = un - vn , then

wn~1 + kO(hq)
2 w11"2 + kg(O(hq)) + kO(hq)

= ml kQ.j(O(hq)) .

Thus, by using the definition of weak stability,

nwnn = i " kgj(O(hq))ii

j-1
n .

< l knSJH(O(hq))
j-1

< i kC(t)h"pO(hq)
j-1

< nkC(t)h~pO(hq)

or

nwnn < ef(t)O(hq-P) .

If q - p > 0 then BW11 i •• 0 as h + 0.

We now come to the central theorem of this section which is due
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to Kreiss [1 6].

Theorem 2.7. Consider the finite difference method (2.7.3), where the

amplication matrix G(s) given by (2.7.6) is uniformly bounded. The

von Neumann condition is sufficient for weak stability.

Proof. There exists a unitary matrix1" U(s) such that U(s)G U)U*U)

is an upper triangular matrix. This may be written in the form

D(O + S(

where I)(£) is a diagonal matrix and S/s) is an upper triangular

matrix with zeros along the main diagonal. It follows that S.(£) is

nilpotent of order p (where p is the order of Q in (2.7.3) and

in (2.7.6), that is, S^ 1 * 0 and IS* = 0 for i > p. Write

Since U(?) is unitary «U(£)|| = «U*(^)|| = 1 , from which it follows

that

lGn(Ol - n

= l(D(O

Using t h e b inomia l theorem t o expand (D(s) + £

lGn(Ol < " ?
j=0 J "

However, S. = £ for j > P so that

(2.8.4) »GnU)n < P z n

J-0 J

Since G(^) is uniformly bounded, S/s) is uniformly bounded with

bounded M and iS^s)"-3 < MJ. The elements of D(s) are the eigen-

values of G(c) which by the von Neumann condition IID(S)II < 1 + ck ,

where c is a constant independent of k , h , £ , and n. Thus
n~j < d + ck)11"^ < e c n k - ect. By substitution into (2.8.4)

- c(t)

t A matrix A is unitary if A A* - A*A = I , where A* denotes the
adjoint of A. The adjoint of A

transpose of A , that is, A* =

adjoint of"" A. The adjoint of"" A =~(a"..)— is the complex conjugate



84

= k-(p-1)c(t) ,

where n = t/k and C(t) = tp"1C(t). If k = 0(h) then nGn(s)n

satisfies (2.8.3) from which weak stability follows.

Under the above hypothesis the von Neumann condition is also

necessary for weak stability (see Kreiss [15]).

The Strang perturbation theorem (Theorem 2.4) states that a

stable finite difference method remains stable after a bounded

perturbation. This result does not hold for weak stability, that is,

weak stability is not invariant under bounded perturbation. To see

this, we consider a counter example due to Kreiss.

Consider the differential equation

at- = ° '
with v = (v-,v«) , approximated by

un+1 = (I + k2S D+)u
n ,

where S. = Q Q . The amplification matrix is

0 0

Hence a(G(£)) = 1 so that the von Neumann condition is satisfied and

by Theorem 2.7 the finite difference method is weakly stable.

Now consider the same finite difference method with a

perturbation

un+1 = (I + k2S 0+)u
n

In this case

k 0

and cr(G(£)) = 1 + 0(/k) so that the von Neumann condition is violated

and hence the method is not weakly stable. To see this more directly

observe that

lGn(c)l < d + c(/k)n < e n / E = e^1

which grows exponentially with n.

We must look at each weakly stable finite difference method on an

individual basis.

II.9. Multilevel Methods.

A multilevel method is a finite difference method that involves

more than two time levels, that is, the advancement of the solution to



85

time (n + 1)k depends on more than one previous time level. Multi-

level methods are typically used to improve accuracy or stability.

An explicit finite difference method introduced by Richardson

[20] to solve the prototype equation

at v = 3x v

is

(2.9.1)
u?+1 - »r 1

n+1
v i

D+

-

D_

n-1
V .

k

*?• (9

(3

I* ? H
1

' i +

I- 0(h

0(k

2 )

2>

Expanding v(x,t) in a Taylor series about the point (ih,nk)

and

Substitution into (2.9.1) gives the local truncation error

n+1 n-1

^ ^ D+D_vi -• <9
t
v)i " (3xv)i + 0 ( k 2 ) + 0 ( h 2 ) = 0 ( k 2 ) + 0 ( h 2 )

2 2
Thus Richardson's method is accurate to 0(k ) + 0(h ). How does one

analyze the stability of Richardson's method? In order to use the

Fourier transform approach, two time levels are needed in order to

define the symbol. Richardson's method involves three time levels

(n + 1)k , nk , and (n - 1)k. The symbol of this method cannot be

defined in the usual manner.

Write this as a system of two equations. Define

u? = (ui*i»u2i)T- Richardson's method (2.9.1) can then be written in

the form

(2.9.2 a) u"t1 = 2kD+D_un
1 + u ^

(2.9.2b) u£1 = u^ .

The actual solution is given by the first component of u? , namely,

un^. The second component given in (2.9.2b) is an intermediate result

so that the method can be written in the form u = Q u11 , involving

only two time levels.

By (2.9.2b), u ^ = un71 , upon substitution into (2.9.2a),

(2.9.1) is recovered in the form

System (2.9.2a)-(2.9.2b) can be written as a system of the form
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(2.9.3) n+1

1 0

Take the discrete Fourier transform of (2.9.3),

where

6(5)
-8X sin2(|) 1

1 OJ

which has eigenvalues

y± = -4X sin
2(|) ± (1 + 16X2 sin4(|))1/2 , j = 1,2 .

One eigenvalue

y_ = -4x sin2(|) - (T + 16X2 sin4(|))1/2

is < -1 for any X , since y is in the form -a - /1 + a < -1

where a = 4x sin (y) • Thus Richardson's method is unconditionally

unstable. This is an example demonstrating the need for stability

analysis.

Writing (2.9.1) out,

(2.9.4) 2xu n-1
+1

Dufort and Frankel [11] suggested replacing the u. term in (2.9.4)

with an average over the two adjacent time levels, T( U« + ui )•

This

o r

(2.9

gives

.5)

n"1

n+1 2x - 2x n-1

To analyze the stability of the Dufort-Frankel method (2.9.5),

write as a system analogous to Richardson's method,

un+1u 2 i

which may be written in the form

(2.9.6) n+1

- 2x
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Take t h e d i s c r e t e F o u r i e r t r ans fo rm of ( 2 . 9 . 6 ) ,

u n + 1 U ) = G(5) u n

where

6 ( 5 ) =

4x
1 + 2x

1

1 - 2x

which has eigenvalues

2x cos 5 ± /1 - 4x s in
y± 1 + 2x

2 2If 1 - 4 x s i n £ < 0 , then y+ are complex and

2x cos 5 . Ax sin 5 - 1
1 + 2x " 1 + 2x

so that

"±i
2x -
2x < 1

2 2 2 2
for any X. If 1 - 4x sin 5 > 0 , then 1 - 4x sin 5 < 1 and

y±
2xlcos - 4x2 sin2g 2xlcos 5| ±

<2x

for any X. Also for y_ ,

2x cos 5 - 1cos 5 -
1 + 2x

2x

2x cos 5 x
1 + 2x <

2x

o r | u__ | < 1 , for any X. Thus the von Neumann condition is satisfied

and by Theorem 2.3(iv) in Section II.7, we see that the Dufort-Frankel

method is unconditionally stable.

Two things remain to be determined: the accuracy of the method

and whether the method is consistant.

Expand v(x,t) in a Taylor series about the (ih,nk) and

substituting into (2.9.5) to obtain

/i . 2kN - ft <*?+, • <- - (1 -

k(3tv)tv)

T7 (9xv)i

2 2
Otv)i " F" (3xv)i

(3tv)i



The leading term in the local truncation error is

(2.9.7) T l ^ 2 n h i 4 n

By the definition of consistency, T must approach 0 as h,k -»- 0.

From (2.9.7), we see that the Dufort-Frankel method is consistent only

if the ratio £• -• 0 as k,h -• 0.n
k k

If X = ̂ y is constant, then £ = Xh which approaches 0 as

h > 0. Suppose ^ = c , a constant then by (2.9.7),

(2.9.8) x + 2c23^v

as h,k + 0. Thus the Dufort-Frankel method is not consistent with the

equation

V °° 3xv

if j- = constant. However, we see from (2.9.8) that the Dufort-Frankel

method is consistent with the equation

9 t + c 2 a t v • 4 v •
if £ = constant.

The Dufort-Frankel method is explicit and unconditionally stable.

However, it requires a time level of values u. , in addition to the

initial data u.. Thus some other method must be used to generate u.

at the time k.

One disadvantage of multilevel methods is that it can be rather

messy to change the time step within the course of a calculation. This

is of particular importance for equations with variable coefficients or

nonlinear equations. This will be discussed in Section 11.10 and

11.11. In single level methods, one just changes the time step and

proceeds with the calculation. This is not the case with multilevel

methods. Suppose just before beginning the computation of u. , the

time step is to be changed. One will have to go back and recompute u.

based on the new time step using a single level method with u. as

the initial data or by some form of interpolation. Then one can

proceed to compute un using the Dufort-Frankel method.

11.10. Boundary Conditions Involving Derivatives.

In considering the stability of a finite difference method using

the discrete Fourier transform, it was assumed that the problem was

defined on -» < x < +« t that is, it was a pure initial-value problem.

When boundary conditions are introduced, the Fourier method is no

longer valid.
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Dirichlet Boundary conditions. The initial boundary value problem in

Section II.2 (where the solution is prescribed at the boundaries)

v(0,t) - gQ(t)

presents no problem to stability. This will be discussed in detail in

Chapter V.

Consider the initial-boundary value problem

9t v = 3xv ' 0 < x < 1 , t > 0

v(x,0) = f(x) , 0 < x < 1 ,

with Neumann boundary conditions, that is, derivative boundary

conditions

3xv(0,t) = gQ(t) , t > 0

3xv(1 ,t) = g1 (t) , t > 0 .

In solving the initial-boundary value problem using a finite difference

method, the derivative boundary condition must be approximated. With

this, two things must be taken into consideration when selecting an

approximation to the boundary conditions. First, the approximation

used when combined with the finite difference method must be result in

a stable method. Second, the approximation of the derivative boundary

condition should be as accurate as the finite difference. Suppose the

boundary condition approximation is of a lower order of accuracy.

The solution from the boundary condition approximation will propagate

into the interior. This will lower the order of accuracy of the finite

difference method to that of the boundary condition approximation.

To demonstrate how stability in the presence of boundaries is

analyzed, we shall use the Crank-Nicolson method (2.2.15) which is
2 2accurate to 0(k ) + 0(h ). Consider the initial-Neumann boundary

value problem just described. The approximation to 8 v in the
2boundary condition should be accurate to 0(h ). To this end, use the

finite difference operator DQ , so the Neumann boundary conditions

become

(2.10.1) DQu£ - gQ(nk)

and

(2.10.2) DQu£ = gi(nk) .

By writing out (2.10.1) and (2.10.2),

D0u0 = 2E = 80(
nk) '
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which involves a "false" point corresponding to i = -1 , that is,

which lies outside of the domain, and

which involves a "false" point corresponding to i = N + 1 , that is,

u which lies outside the domain.

In the case of Dirichlet boundary conditions, the solution at the

boundaries x = 0 (i = 0) un+1 and x = 1 (i = N) uj}+1 is given by

the boundary conditions gQ((n + 1)k) and g^((n + 1)k) ,

respectively. Thus the finite difference method is solved at the

interior grid points, that is, un , ..., uJJ__̂  . In the case of

Neumann boundary conditions, the solution at the boundaries UQ and

ujj must also be obtained. Thus the finite difference method is

solved at the points u n , u n uJJ . , uJJ . In this case, the
approximation to the Neumann boundary condition is used to close the

system of equations.

How are the "false" grid points eliminated? Consider the boundary

at x = 0. Solve the boundary condition (2.10.1) for un^ , yielding

(2.10.3) u?}1 = un+1 - 2hgQ((n + 1)k) ,

and similarly

(2.10.4) u ^ = un - 2hgQ(nk) .

Writing out the Crank-Nicolson method (2.2.15) for i = 0 ,

(2.10.5) - £unt1 + d + X)un+1 - i u f 1

S u b s t i t u t i o n of ( 2 . 1 0 . 3 ) and ( 2 . 1 0 . 4 ) i n t o ( 2 . 1 0 . 5 ) , g i v e s

X n+1- 2" u1 XhgQ((n + 1)k) + (1 + X)uQ

u n + XhgQ(nk) + (1 - X)u^ + j u n

o r by r e g r o u p i n g ,

( 2 . 1 0 . 6 ) (1 + X)un + 1 - Xun+1

X)un + Xun - Xh(gQ((n + 1)k) + g Q (nk ) )

Similarly, by solving the boundary condition (2.10.2) at x = 1 ,

"N+1 a n d UN
method for i = N

y

for uJJ+i an<* UN+1 anc* ^ substitution into the Crank-Nicolson
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(2.10.7) X n + 1 j , - . .v n + 1
Z IN- I IN

Xh(gi((n gi(nk))

un = (U uJJ)TDefine u" = (ujf,U!,\ . . . ,uJJ) , using (2.10.6) and (2.10.7) the
following system is obtained

(2.10.8) A un+1 = B un + be ,

where A and B̂  are tridiagonal matrices of order (N + 1) x (N + 1)

1 + X -X

-X 1 + X

1 - X

1 - X

and

be

-Xh(gQ((n gQ(nk))

Xh(gl((n gl(nk))

The vector b£ contains the boundary conditions at i = 0 and i = N.

Observe that A and 13 are not symmetric. This is due to the

approximation of the derivative boundary condition.

Write

A = 1 " \ a n d

where _I denotes the identity matrix and

tridagonal matrix given by

is a non symmetric
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Write (2.10.8) in the form

(2.10.9) un+1 = A~1B un + A"1 be .

To analyze the (2.10.12) consider

un+1 = A"1B un .

Take the discrete Fourier transform,

un+1U) = G(Oun(O ,

where the amplication matrix G(s) = A* B. Introduce a matrix

order (N + 1) x (N + 1) given by

of

S = \

then ST = diag(—,1 , . . . ,1 ,—) . Define C[ by the similarity
ft ft

transformation

^ is S3mimetric. Thus ^ is similar to a symmetric matrix. Define

the matrix A~ IJ by the similarity transformation

A"1B

a -
3"1(I - \

Ŝ  Ŝ  (1̂  + -Tj Q)S.

1S."1 ( I +T fi)S.
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- (I -yS) " V + yS) •

Since § and 1̂  are symmetric, (I_ - j (J)~ and (I_ + -̂ §) are

symmetric and, hence, A~ B is symmetric. Thus A." B (and hence

G(£)) is similar to a symmetric matrix.

We must verify the von Neumann condition, that is, a(Q(%)) =

a(A~ B) < 1 + 0(k). To this end, consider the eigenvalues of A~ B̂  ,

devoted by p., j = 0,1,...,N , where

1 +
(2.10.10) 0 " 2 ej

and e. are the eigenvalues of (£. The requirement that |y.| < 1 is

equivalent to the requirement that e. < 0. This can be verified

directly. To determine e. , consider the equation

detCQ, - el) = 0 ,

Expanding in minors by the elements of the first and last rows this

determinant may be written as

((e + 2) 2 - 4) det el.)

where Q 1 is the symmetric tridiagonal matrix of order

(N - 1) x (N - 1) obtained by removing the first row and column and

the last row and column of Q , that is,

Q1

For a tridiagonal matrix of order M x M of the form

d c

d c

"a d c

a d

where a , d , and c are real with ac > 0 ; the eigenvalues are

given by

Pj = d + 2 /all cos (MJ* p , j = 1,...,M .

In the case considered here, d = -2 and a = c = 1 , so for
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j = 1,...,N-1

(2.10.11) e. - -2 + 2 cos (̂ ) - -4 cos2 (̂~) .

o
Solving (e +' 2) - 4 = 0 gives e = 0 or -4 , which can be combined

with (2.10.10) to yield the complete set of eigenvalues of Q

2 i ire. = -4 cos (̂j|)

for j = 0,1,...,N , where eQ = -4 and eN = 0. Clearly e. < 0.

Hence, the Crank-Nicolson method with the boundary approximations

(2.10.1) and (2.10.2) is unconditionally stable Theorem 2.3.ii).

|y.| < 1 for j - 0,1,...,N-1 and y. = 1 (corresponding to

11.11. Parabolic Equations with Variable Coefficients.

Consider the partial differential equation of the form

(2.11.1) 3tv = a(x,t)3
2v + b(x,t)3xv + c(x,t)v , -« < x < +« ,

0 < t < T ,

with initial condition

(2.11.2) v(x,0) = f(x) , -co < x < +- .

Suppose this is approximated by the explicit finite difference method

u n + 1 = l (d. (x,t)S;j.)un , n > 0 .

How does one discuss stability? The symbol p(x,t,£) can be defined

by

p(x,t,£) = l d.(x,t)e"1J^ .
j J

It is not true in general, however, that

un+1 = p(x,t(5)u
n

because in using the discrete Fourier transform technique developed in

Chapter I, the following fact was used

aS+u = ae"
1?u

which depends on a being a constant or a function of t only. For

if a is a function of t alone
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j" 1 } C

= z a(t)u.eij V U = a(t)e~U E u.eij = a(t)e"iCu .
j J j J

In the case where a depends on x , however, this does not extend

over.
An obvious approach is to consider the frozen coefficient case in

which one picks a value x and considers the difference method

un+1 = Au11

where A = I d.(x,t)S^. is a constant coefficient (in space) difference

operator. For this problem (which is different from the original

problem), perform a Fourier analysis and consider the question of

stability using the techniques developed in Chapters I and II. There

is, in general, no relationship between the frxozen coefficient problem

and the original one. To see this, consider the following example due

to Kreiss and Richtmyer

3 v = i 3 (sin x 8 v)
2

= i sin x 3x v + i cos x 3x v .

The frozen coefficient case at x = 0 gives the equation

3tv = i 3x v .

This is not a well-posed problem. However, the original problem is

well-posed. The source of the difficulty is that for an ill-posed

problem, one cannot construct a stable difference method. This is due

to the fact that stability is the discrete analogue of well-posedness

for the continuous case.

John [15] considered the pure initial-value problem (2.11.1)-

(2.11.2) approximated by

(2.11.3) uV ' = I ((d.)V Si)un , n > 0 ,

) n

where (d.)1? = d . (ih,nk) .

As a first step, we shall determine the restrictions on (d.)n

in order that the finite difference method (2.11.3) is consistent with

the equation (2.11.1). Expanding v?+. = v((i + j)h,nk) in a Taylor

series in space about the point (ih,nk)

vi+j = vi + j h a x v + 1 ^ h ) 2 a x v + °<h3) >

2
where the derivatives 3xv and 3xv are evaluated at (ih,nk) , for

j = -m- , . . . jiiu. Substituting into the right-hand side of the



96

difference method (2.11.3)

2
(2.11.4) _l (dj)^ s{ vn

d.)" (v + jha v + \ (jh)2 32v + O(h3))J L x Z x

- ^ Z (dj)^ v + h ^ z J(dj)i 3xv

m2
1 9 9 T» 9 ^

+ T hZ z j (d.)? 3 v + O(hJ) .
Z j—m1

 J x x

Expand vn in a Taylor series in time about (ih,nk) ,

vf 1 - v? + k3tv + 0(k
2) ,

which, by substitution of equation (2.11.3), gives

(2.11.5) vn+1 - vn + kcnvn + kbn3xv + ka
n32v + 0(k2) ,

where a? = a(ih,nk) , etc. By equation (2.11.5), we see that (2.11.4)

and (2.11.5) are equal,

(2.11.6) vn+1 - Z (d.)? SJ. vn = (1 + kc?)vn + kbn3 v + kan32v -
l . j i T i Li ix ix

Z ( d . ) n v + h z j ( d . ) ? 3 v + i h 2 z j 2 ( d . ) 1 ? 3 2 v
. j i j j i x i . j i x

+ 0(k2) + 0(h3)

[1 + kcn - E (d^^lv + [kbn - h Z

+ [kan - i h2 z j 2 ( d . ) n ] 3 2 v + 0(k2) + 0(h3) .

i I . j i x

By consistency (as defined in Chapter II)

vf 1 - ? (d.)
nvn

i + o
k

as h -• 0. By dividing (2.11.6) by k , this results three conditions

for consistency, as h + 0
[1 + kcn - I (d.)n] • 0
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m2
(2.11.7) i ( Z (d.)n - 1)

[kbi? - h z j(dj)
I
i;]

or

(2.11.8) £ z j(d.)? + t

and

[kan - i h2z
1 l j

2 m2
(2.11.9) 1 ^- _z J2(dj)" • an .

Assume that a(x,t) > a^ > 0 , then by (2.11.9), there is a positive

constant X such that

h 1
IT +1

2 2
as h -»• 0. Thus X = k/h or k is a function of h , k = Xh .

Expand the coefficients (d-pi i n powers of h ,

(2.11.10) (dj)n = (d°)n + h(d])n + \ h2(d2(h))n ,

where we assume that (d?)£ , ^0\ * a n d (d?(n))i a r e uniformly
bounded for -» < ih < +« and 0 < nk < T and

(d2(h))n + (d2(0))n as h + 0 .

As h -• 0 , write (2.11.7) in the form

Z (d.)? -• 1 + kcn = 1 + xh2c?
j

By substitution of (2.11.10),

I [(d^)n + h(d])n + \ h2(d2(0))n] • 1 + Xh2cn

or

l (d°)n + h z (d])n + \ h2 z (d2(0))n - 1 + xh2cn .

Equating coefficients of like powers of h
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m2 m2
(2.11.11) I (d°)n + 1 , z (d1.)n + 0 , and

I (df(O))1? • 2xc? , as h • 0 .

As h •• 0 , write (2.11.8) in the form

which by substitution of (2.11.10)

r j[(dj)" + h(d])n + \ h2(d2(0))n] - Xhbn

or

E j(d°)n + h E j(d1.)n + i h2 E j(d2(0))n] = Xhbn .j J i j j i 2 j j i i

Equating l i k e powers of h for h and h

( 2 . 1 1 . 1 2 ) E j ( d ^ ) n + 0 and z j ( d ! ) £ > Xbn .

F i n a l l y , as h •• 0 wr i t e ( 2 . 1 1 . 9 ) in the form

E j 2 ( d j ) ^ • 2xan ,

and by s u b s t i t u t i o n of ( 2 . 1 1 . 1 0 ) ,

2 j [ ( d ? ) n + h ( d . ) n + i h ( d ? ( 0 ) ) ] -• 2xan

j J L J 1 Z J i

o r

E J 2 ( d ? ) ^ + h E j 2 ( d 1 ) n + i h 2 E j 2 ( d 2 ( 0 ) ) n • 2 x a n .

Equating the coefficients of the h term,

(2.11.13) i j2(d?)^ > 2xan .
j—»! J L L

Thus the consistency requirement given by (2.11.7)-(2.11.9) can be

written as six component relations given by (2.11.11)-(2.11.13).

John [15] proved the following stability theorem.

Theorem 2.8. The finite difference method (2.11.3) is stable under the

following conditions:
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i) (d.)1? has the form (2.11.10),

ii) (d;)n > d > 0 for some constant d , j = -m̂  n^ ,

iii) (db n and (d?)n are uniformly bounded, and

m2 m2

iv) I (d°)n - 1 and i (d!)n + 0 as h - 0 .

Proof. Since (d.)? can be written in the form (2.11.10) and by iii)

(d.)n and (d.)n are uniformly bounded, for h sufficiently small

h(dj)n + 1 h 2(d 2) n > -d .

So that by (ii)

(d.)n = (d°)n + h(d])n + 1 h 2(d]) n > d - d = 0

or (d..)n > 0

for sufficiently small h. This gives

m« m« m2

z i(d.)ni = i (d ) n = z [(d<hn + h (db n + i h2(d2(h))n]
J—»! J ' J - m ! J " J—m1

 J 1 J L 2 J 1

m2
= 1 + i h2 I (d?(0)) n < 1 + h2D

^ j—m1
 J L

m2

for sufficiently small h , where D = l.u.b. i E (d?(0))n which

exists by (iii). This gives, by (2.11.3),

«unB2 < (1 + Dh
2) «un'1 i2

< (1 + Dh2)2rnn"2l2

< . . . < (1 + Dh2)n«u°i2

for h sufficiently small. Thus, by the definition of stability, the

finite difference method (2.11.3) is stable.

A finite difference method (2.11.3) is said to be of positive

type if (d. )^ > 0 for h sufficiently small, for j - -m^,...,!^

John's theorem states that finite difference methods of positive type

are stable.

As an example, suppose equation (2.11.3) is approximated by
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(2.11.14) u?+1 = un + ka?D+D_u? + kb
nD+u

n + kcnu" , u

= X a ^ ^ + (1 + 2xan - Xhbn + Xh2cn)un

+ (Xan + Xhbn)un
+1

1
= E (d.)n Si un

j — 1 J

where

and

- 2xan - Xhbn + Xh2cn

(d.)n = Xan + Xhbn

To determine whether this finite difference method is stable, the

(d.| )^ are in the form of (2.11.10). For example,

(d Q)
n = (1 - 2xan) + h(-xb") + \ h2(2xcn)

(d°)n + h(d 1) n + - h 2(d 2) n

Thus condition i) is satisfied. If the functions a(x,t) , b(x,t) ,

and c(x,t) are uniformly bounded, then condition iii) is satisfied.

Since ( d ^ ) n = Xan , (d°)n = 1 - 2xa? , and (d°)n = Xa" ,

I (d°)n = xan + 1 - 2xan + xan = 1 .

Also, ( d ^ ) " = 0 , (dj)n = -Xbn , and (d] ) n = Xbn so that

I (d!)? - 0 - Xbn + Xbn = 0 .
j — 1 J 1 L L

Hence condition (iv) is satisfied. Assume that a(x,t) > a* > 0 so

(d_.). and (d-). > a^ > 0. Furthermore, (dn)^ = 1 - 2xan and if

X < X* < 2"̂ — » then (d^)1} > d > 0 and condition (ii) is satisfied.

So the explicit method (2.11.14) is of positive type and stable

provided that a(x,t) , b(x,t) , and c(x,t) are bounded,

a(x,t) > a > 0 and

(2.11.15)
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In practice one usually uses a slightly weaker form of (2.11.15)

X

In order to determine the accuracy of the method, expand the solution

in a Taylor series about the point (ih,nk). The coefficients a(x,t),

b(x,t) , c(x,t) in the finite difference method (2.11.14) are

evaluated at (ih,nk) so their Taylor series are just an , bn , and

c? respectively. Upon substitution into (2.11.14)

n+1

= O tv)£ - an(32v)^ - bn(9xv)n - cV? + 0(k) + 0(h2) + 0(h)

= 0(k) + 0(h) ,

where equation (2.11.1) has been used to obtain

Otv)*? - a i ^ x
v ^ i " b i ^ x v ^ i " c i v i = ° *

So the truncation error T = 0(k) + 0(h). This also shows that

(2.11.14) is consistent. However, consistency may be determined by

(2.11.7)-(2.11.9) directly

£ . Z (dj}i = £ (Xai + 1 " 2Xai " Xhbi + Xh2°i + Xai + X h b i }

- 1 + X — cn = 1 + cn

Hence, condition (2.11.9) is satisfied

1
£ 2 j(d.)n = £ (-1 . xan + 0 . (1 - 2xan - xhbn + xh2cn)k j = -1 J L k 1 i l l

+ 1 • (Xa? + Xhb1?))

_ , h , n _ ,n
" x F" bi " bi '

and condition (2.11.8) is satisfied

1 h2 1 9 r, 1 h2 9 r, 9
r f - I j (d.). = T r— [(-1) (Xa.)+ 0 • (1 - 2xan - Xhbn + Xh cn)
2 k j==-1 j i 2 k i ii i

+ (D2(xan + xhbn)]

= IT- (2xai + X h b i } = ai + I bi

•»• a" as h -• 0. Hence, condition (2.11.9) is satisfied.

Let
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(2.11.16) u° = f(ih) -co < ih < +- .

Suppose that v is the solution to the pure initial-value problem

(2.11.1)-(2.11.2) where v has two continuous derivatives in x and

one continuous derivative in t. Furthermore, suppose u. is the

solution to (2.11.3) and satisfies the initial condition (2.11.16).

Under these conditions, John proved that if the finite difference

method (2.11.3) is consistent and stable, then it is covergent; that

is, then u" converges uniformly to v as h -»• 0.

In Forsythe and Wasow [14] this theorem is extended to the

initial-boundary value problem (2.11.1)-(2.11.2), along with the

boundary conditions

v(0,t) = gQ(t) , 0 < t < T

and

v(1,t) = g1(t) , 0 < t < T ,

where gQ and g- are bounded.

It must be pointed out that a finite difference method (2.11.3)

does not have to be of positive type to be stable. There are explicit

methods that are stable and not of positive type. However, they will

not be discussed here.

As in the case of the parabolic equation with constant

coefficients, explicit finite difference methods have restrictions of

small X which leads to taking a very large number of time steps to

complete the solution of the problem. Again, we shall see that

implicit methods will alleviate this difficulty.

Douglas [6] considered a special case of (2.11.1)

(2.11.17) r(x,t)3tv= 3x(p(x,t) 3xv) - q(x,t)v ,

0 < x < 1 , 0 < t < T ,

where p(x,t) and r(x,t) are positive functions, with initial

condition

(2.11.18) v(x,0) = f(x) , 0 < x < 1

and boundary conditions

(2.11.19) v(0,t) = gQ(t) , 0 < t < T ,

and

(2.11.20) v(1,t) = g1 (t) , 0 < t < T .

Define

(2.11.21) w(x,t) = p(x,t) 3xv ,

then (2.11.17) can be rewritten as



(2.

and

( 2 .

1 1

11

.23)

.24)

v n + 1 -
l

k

n+1
v 1 -

v?
1

n+1
v ..
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(2.11.22) r(x,t)3tv = 3xw - q(x,t)v .

Expand v(x,t) in a Taylor series about the point (ih,(n+1)k)

0(k)

= Oxv)i
+1 + 0(h2) .

Observe that (2.11.24) is a centered difference. Use (2.11.23) and

(2.11.24) to approximate 3 and 3 in (2.11.22), respectively,

n+1 n+1
un+1 un

 w.+1 "
 w. 1

(2.11.25) rn+1 (-̂ -̂  ^) = ^ ?- - qn+1 un+1 ,

where rn+1 = r(ih,(n+1)k) and qn+1 = q(ih, (n+1 )k).

Rewrite (2.11.21) as

Integrating over the interval [(i-1)h,ih]

ih ih
/ (3xv)dx = v^ - v\_.j= / (̂ ) dx .

Approximate the integral on the right-hand side by the midpoint rule,

w -

v. - V i - 1 = p — - h + 0(h2)

or upon solving for w .,

V • — V . n

(2.11.26) w 1 = P 1 (— ^-) + 0(h2) .
i-j i-j h

Similarly,

(2.11.27) w 1 = P 1 (-^ -) + 0(h2) .
i+j i+^ h

Substituting the approximations (2.11.26) and (2.11.27) to w ^ and

w 1 into (2.11.25) 7
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n+1 _ n+1 n+1 _ n+1
pn+1 ,ui+1 ui v pn+1 ,ui Ui-K

,4 U. ~ U.

(2.11.28) r n + 1 ( — -)

n+1 n r._J v Ii > z, 1

= D_(Pn+] D+uf
1) - qf1un+1 .

Since (2.11.26) and (2.11.27) are accurate to order 0(h2) , this
2

fully implicit method is accurate to order 0(k) + 0(h ). This can
also be directly verified.

Douglas [6] analyzed the stability of the implicit method

(2.11.28) by considering the eigenvalues of the difference operator

The details of this argument are rather long and will be omitted. The

results only will be summarized here. Make the following assumptions

on the coefficients p , q , and r and the time step k ; there

exists constants p* , r* , r* , and q* such that

(2.11.29a) p(x,t) > p* > 0 ,

(2.11.29b) r* > r(x,t) > r* > 0 ,

(2.11.29c) |q(x,t)| < q* < +- ,

(2.11.29d) |i . q* > o .

Douglas [6] prove the following theorem.

Theorem 2.9. If the relations (2.11.29) are satisfied, then the

implicit finite difference method (2.11.28) is stable.

Observe that there is a restriction on the time step k by

(2.11.29d). However, this is dependent only upon the coefficients of

(2.11.17) and not the finite difference method. Furthermore, there is

no relationship between k and h , so the method is unconditionally

stable.

If the coefficients p , q , and r are twice boundedly

differentiable on the 0 < x < 1 , 0 < t < T and 3xv and 3tv are

bounded in this same region, then u? converges to v in the j

It remains to describe how the method is implemented. Write

(2.11.28) in the form

(2.11.30) rn+1uf1 - kD_(pn+j D+uf
1) + kqn+1uf1 = rn+1un .

For i = 1,...,N-1 , we have for x - k/h2
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(2.11.31) "Xp
n+1 n+1

u
n+1 , f n+1 , n+1

ri X(p 1 p 1
, . n+1 N n+1

k qi )ui

At i = 1 , impose the boundary condition (2.11.17) at i = 0 given

by UQ + 1 = gQ((n

(2.11.32) x(Pf
1
 + Pr

1)
7 1

i , n+1 / /
I + XPl gQ((n

kqf 1

Similarly at i = N - 1 , impose the boundary condition (2.11.20) at

i = N given by uj}+1 - gi((n + 1)k) ,

/o 11 o o \(2.11.33) -xp
N-S

/̂ nx(p
N-?

N-

Combining (2.11.31)-(2.11.33), this may be written as a tridiagonal

system of equations of the form

, n+1 , n+1where u = (u1 ,

A u n + 1 = u n + be

n+1NT ~n 1 n r
n + 1

u
n N

u1
 r

N-1
uN-1 }

be = (Xp^+1 go((n + 1)k) , 0,..., 0, xp
n+] gi((n + 1)k))

T ., and A is

2 N"I
an (N - 1) x (N - 1) tridiagonal matrix of the form

aN-2 dN-2 cM-2

aN-1 UN-1

The elements of A are given by

, n+1 , , , n+1 ^ n+1 . n+1 i = 1, ... ,N-1

-Xpn+1 2,...,N-1 ,
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and

ci = "XPn+1 ' i = 1»---»N-2 •

As in the case of constant coefficients, the accuracy of this

implicit method can be improved by using the Crank-Nicolson method.
2

One way to obtain 0(k ) accuracy (in time) is to approximate 9 by

a finite difference operator over two-time levels. For example, in

Richardson's method, 3 was approximated by

However, this method has been shown to be unconditionally unstable. In

this case, the finite difference operator was centered about the point
o

(ih,nk) , resulting in the cancellation of the 0(k ) in the Taylor

v"+1 and v?"1.
2This idea can still be used to gain 0(k ) accuracy. Consider a

finite difference operator centered about the point (ih, (n+O

Expand vn and vn in a Taylor series about this point. Due to

the cancellation of the 0(k ) terms,

^ 2
Otv).

 l + o(k2)

This is the basis of the Crank-Nicolson method. Furthermore, by

averaging D+D_u^ and D+D_u
n , an 0(h ) approximation is obtained

to 3 without requiring the evaluation of u at the point
1

(ih, (n-bj-)k) • For by expanding in a Taylor series about this point

Douglas [6] applied this approach to the initial-boundary value problem

(2.11.17)-(2.11.20). The coefficients r(x,t) ,p(x,t) and q(x,t)

are evaluated at the point (ih, (n+^-)k). With this in mind, (2.11.28)

is rewritten in the spirit of the Crank-Nicolson method

(2.11.34)

n+i

Expanding the exact solution v(x,t) and the coefficients in a

Taylor series about the point (ih, (n+
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(2.11.35) (p \ ( 1+1
 h

 1 ) - q \
i+ i

1 n+i 9 n+i - n+i n+i , n+i n+i
T Pi ( 9 x v ) i + l<9xP>i 2< V > i + ! (9xP>i ( V / ) i

+ j p O 3 v ) ^ + 0 ( k 2 ) + 0 ( h 2 )

and

J n+1 n+1 A n+1 n+1+- v. +1 - v. n+y v. - v. 1
1+1 L f i H l

o + 1

(2.11.36) (p \ ( 1+1 h
 L ) - q

i+ i

1 n+i 2 n+i 1 n+i n+i , n+i n+1
- 7 Pi ( 9 x v ) i + I(9xP>i < V > i " !(9xP>i ^t 9 x v ) i

" F 1 (9t9xv)i ^ + 0 ( k 2 ) + 0 ( h 2 ) '

Combining (2.11.35) and (2.11.36)

n 4 vn+1 + vn n4 o n4 n+i n+i
(2.11.37) D_(p \ D+(~^-2 -)) -Pi O ^ i + (9^)^^ Oxv).

 Z

i 4T
0(h2) + 0(k2)

Also,

x i iv _ 2

2 ' i

so upon substitution in (2.11.34)

n+i n+i n+i 9 n+i n+i n+i n+i n+i
= r. 2 O t V ) i - P l

 2 O 2 v) . - Oxp). 2(3xv). + q. v.

+ 0(h2) + 0(k2)

= 0(k2) + 0(h2) ,

using equation (2.11.17). Thus the method is 0(k2) + 0(h2) and is

consistent.

Douglas [6] proved the following theorem.

Theorem 2.10. If the relations (2.11.29) are satisfied, then the

Crank-Nicolson type method (2.11.34) is unconditionally stable.

If the cofficients p , q , and r are twice boundedly
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differentiable on 0 < x < 1 , 0 < t < T and a£ and 3jl are

bounded in this same region, then u£ converges to v in the £ 2 " n o r m *

Notice that the Crank-Nicolson method requires one extra derivative in

time than the fully implicit method for convergence.

We shall now describe the implementation. Write equation

(2.11.34) as

- r f * «? • | D. (p^ D+u»> - | q^ u? .

For i = 1,...,N-1 where x = k/h^ this may be expanded out as

(2.,,.37, - ^ P ; 1 u - + ( r ^ + ^ j + ^ + 1 q ; V 1

i-2 i+2 i-2

X n 4 n+1
' 2 P , J Ui+1

i + 2

, n+i „ n+i , n+i n+i , n+i . n+4
" J P. 1 u?-1 + <ri - T<P.J + P. 1> + 7 ii 2)«? + 7 P.J U?+1i-j i+j i-2 i+j

At i = 1 , impose the boundary condition (2.11.12) at i = 0 given

un+1 = go((n+1)k) and un = gQ(nk). Thus, at i = 1 , (2.11.37)

reduces to

(2.11.38) (r"^ + ̂ (pf1 + p ^ ) + | q^)un+1 - | p^ 1 uf1

7 1 7

n+«- n-hr n-hr , n+«- n-Hr
r I(P + P3 > + f 1̂ K + 7 p3 U2

1 1

4
Pi (go<

nk) + go((
n+1)k>)

1
Similarly, at i = N - 1 , impose the boundary condition (2.11.20) at

i = N given by u^+1 = g] ((n + 1

i = N - 1 , (2.11.37) reduces to

i = N given by u^+1 = g] ((n + 1)k) and uJJ = g1 (nk) . Thus, at
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(2.11.39) + 7 «IN-S

x n+Y n n+j x n+-£ n+-̂  k n+^ n

N 3
N—7

N—7

-1
N-A

nk) + 8l((n+1)k))

Combining (2.11.37)-(2.11.39), this may be written as a tridiagonal

system of equations of this form

A n+1 ~n , ,A u = u + be

where un+1 (u
n+1

..., 0, y p ? (g, (nk) + g-((n+1)k)))T , u11 contains the right-hand
z «i i i i ~~

side of (2.11.37)-(2.11.39) excluding the boundary condition terms at

i - 1 and i = N - 1. A is an (N - 1) x (N - 1) tridiagonal matrix

of the form

aN-2 dN-2 cN-2

aN-1 dN-1

where the elements are given by

+

d. = r.
n+i n+i

1-i i+i

x 7 2,...,N-1 ,

and

ct = - f P f . i - 2 N-2 .
i"
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11-12. An Example of a Nonlinear Parabolic Equation.

Consider a prototype equation known as Burger's equation

( 2 . 1 2 . 1 ) 3 t v = v 3 ^ v + v 3 x v , 0 < x < 1 < , 0 < t < T ,

where v denotes a positive constant with initial condition

v(x,0) = f(x) , 0 < x < 1 .

and boundary conditions

v(0,t) = v(1 ,t) = 0 , 0 < t < T .

Approximate Burger's equation (2.12.1) by the implicit finite

difference method

(2.12.2)

with initial condition

uj = f(ih) 0 < i < N

and boundary conditions

u n = uJJ = 0 , 0 < nk < T .

The notion of stability for the linear case has not been extended

to the nonlinear case and the standard convergence proofs do not hold.

Consistency shall be shown in the usual manner. It will be shown

that the solution un exists for 0 < nk < T that nu11 - vnn -• 0 as

h + 0 , that is, convergence.

We shall begin by considering four basic results.

Lemma 1 . nun < — nutn0 •max / E 2

Let ltunmov = max I u. I = |u,| , thenmax . l i

2 ^ 2
nun 2 + nviu

Lemma 2. |(u,v)| < nun2nvii2 < —j '

The Schwarz inequality gives |(u,v)| < nun2«vn2. The inequality

follows from the fact that

where a = n u. n ̂  and b
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Lemma 3. Consider three grid functions u , v , and w. Let

vw = {v.w.} then

2 ̂  2
BUB2 + HWB2

|(u,vw)| < «vlmax(lu«2.wl2) < lvimax 2

By definition, (u,vw) = I u.(v.w.)h. This gives rise to

|(u,vw)| < E|u.v.w.|h = s|u.Bv.flw.|h

< max |v.| E |u.||w.|h
i L i L L

Using H|U|B2 = U \ui\
2h}^2 = {E u 2h} 1 / 2 = BUH2 and the Schwarz

inequality

|(u,vw)| < BvBmav(|u|,|w|)

The results follow by using Lemma 2

|u,vw| < Bv»max(
2 2

«2 + Rv̂  n 2

Lemma 4 .

Observe that DQ = j(V+ + D_) , thus

We shall first show that (2.12.2) is consistent. By expanding

the exact solution v(x,t) in a Taylor series about the point

(ih,(n+1)k) and substitution into the finite difference method

(2.12.2)

v"+1 - *? „ .

- O t v ) f 1 + 0(k) - v(3xv)n+1 + 0(h2) - (vn+1 - kO tv)n+1 + 0(k2))

• (Oxv)i+1 + o(h2))

= O tv)f1 - vO2v)f1 - vf1(axv)n+1 + o(k) + o(h2) ,
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which using Burger's equation (2.12.1) evaluated at (ih,(n+1)k) gives

vn+1 - vn

(2.12.3) L
 k - - vD+D_v^

+1 - vnDQv^
+1 = 0(k) + 0(h2) .

Thus the method is consistent and accurate of 0(k) + 0(h2).

The energy method will be used to show that the solution u11

exists for 0 < nk < T. Take inner product of (2.12.2) with u

(un+1,un+1) = (un+1,un) + kv(un+l,D+D_u
n+1) + k(un+1,unDQu

n) .

By discrete integration by parts

(un+1,D+D.u
n+1) - -(D.un+1,D.un+1) = - ,D.un+1l2 ,

which gives by substitution

• un+1 ,2 + kv.D.un+1,| = (un+1 ,un) + k(un+1,unDou
n+1)

< | ( u n + 1
) U

n ) | + k | ( u n + 1 , u n D o u n + l ) l

< i « n + 1 i 2 i u n i 2 + k | (u n + 1
> U

n D o u n + 1 ) l •

Applying Lemmas 3 and 4 to the second term on the r ight

iun+1 |2 + kviD un+1 ,2 < m
n + 1 , , l u

n » , + k.u11. »un+1 I , iDnun+1 I ,L L II max 2 0 L

a 2 + b 2

Using the inequality |ab| < 2 > written in the form

|ab| = |(/2^)(-L.)| < va
2 + ̂- ,

w h e r e a = nD_un+ n2 and b = BU11 n m a x «u n + n2

, u n + 1 l\ + k v . D . u n + 1 |2 < , u n + 1 , 2 l u n » 2 + k v , D . u n + 1 , 2

. k l u 'max n+1 2
+ IT* »u »2

o r

knu n n 2

,+ * "maxN „ n+1 2 n+1 n
(1 _ ) | u , 2 < | u J 2 , U , 2 #

This finally gives

(2.12.4) (1 - k' U
4'

m a x) « n + 1 2 n(1 - 4 ) « u « < , u » 2 .

which gives rise to the following lemma.



113

knuV .-
Lemma 5. If 4 V ^ 1 ' t h e n exists.

kiuV
Using (2.12.4), if 4 v

m a x < 1 , then nunn2 = 0 implies

that llun+1 II2 = 0. So that the null space of the finite difference

operator is the zero vector only and by the Fredholm alternative (see

Epstein [12]), there exists a unique solution u

Observe that the restriction on the timestep k (and hence on
2

the mesh spacing h where we assume that k = 0(h ) , the optimal
2

choice based on the accuracy of (2.12.2) 0(k) + 0(h )) becomes severe
as v becomes smaller.

We shall now prove a sort of stability condition. If the

solution does not grow, then the error does not grow. This is

summarized in the following lemma which gives a bound on growth.
2

Lemma 6. If lu11! < K for some constant K and ^ — < 1 , then

lien+1ii2 < (1 + C,k) ne
nn2 + kO(h

2) ,

where e = v - un and C- is a constant depending on v and K

only.

Assume that v has one bounded derivative with respect to x

and

M = max | 3 v| .
0<x<1 x

0<t<T

By the mean value theorem, for some ^ with (i-1)h < S^ < (i+1)h

vi+1 " vi-1 = 3xv(q,(n+1)k)((i+1)h - (i-1)h)

3xvU.,(n+1)h)2h

which gives rise to

so that

D0 vi + 1

(2.12.5) llDovn+1 "max = m a xl D
o
vi + 1| = max|3xv(et,(n+1)k)| < M .

Subtracting (2.12.2) from (2.12.3)

e
n + 1 = e11 + kvD+D_e

n+1 + kvnDov
n+1 - kunDQu

n+1 + kO(h2)

= en + kvD+D_e
n+1 + kvnDQv

n+1 - kunDQu
n+1

+ kvnDov
n+1 - kunDQu

n+1 + kO(h2)



114

(2.12.6) en+1 = en + kvD+D^e11*1 + kenDQv
n+1 + kunDQe

n+1 + kO(h2) .

Taking the inner product of (2.12.6) with en+ ,

(en+1,en+l) = (en+1,en) + kv(e"
+1 ,D+D.e

n+1 )

+ k(en+1,enDov
n+1) + k(en+1,unDoe

n+1) + kO(h2) .

Proceed as in the first part. Using discrete integration by parts

»en+1 ,| + kvlD.en+1 ,| - (en+1 .e11) + k(en+1 ,enDov
n+1 >

+ k(en+1,unDoe
n+1) + kO(h2)

< »en+1»2.e
n»2 + k|(e

n + 1,e nD ov
n + 1)|

k|(en+1,unD0e
n+1)| + kO(h2) .

Applying Lemma 3 to the second and third terms on the right

|(en+1,e*D0(v
n+l)| < «Vn+l''max»en+1»2 ''^2

< M«en+1n2 «enn2 ,

by (2.12.5) , and

Kie n + 1 l 2 iD0en+1«2

K,e n + 1 , 2 .D.en + 1«2

by Lemma 4. This gives by substitution

i e n + 1 i | k n + 1 2 *"

+ kMlen+1!2 «eni2 + kKlen + 1l2 lD,en + 1«2 + kO(h2)

Again, using the inequality |ab| <

and

I e n + 1
l 2 , e n , 2 + KM. en+1 , 2 ,e

n»2 + ^ ! B e
n + 1»2 + k 0 ( h

2 )

Mk)»enn2 + kO(h2)

This may be written as
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n e n + 1 n2 < 5 T> (1 + Mk) ne n i i 9 + k O ( h 2 )

| ^ k + 0(h2))*(1 + Mk) ienn2 + kO(h2)

C1k)Benii2 + kO(h2)

where C1 - ? - + M.1 4v
The final stage is to prove convergence. Let

V - max |v|
0<x<1
0<t<T

and kQ be defined by

kn(2V)2

Thus kg is the upper bound on the timestep, that is, 0 < k <

Define

TQ(k) = k max{n : »u
nimax < 2V} , 0 < k < kQ ,

that is, the time interval over which the estimate holds. For

0 < nk < TQ(k) ,

4v

and the condition of Lemma 5 is satisfied. Hence, un exists for

0 < nk < TQ(k).

At time t = 0 , n = 0 and u° = v° (so that e = 0). Thus
lu "max = lv "max < V ^ 2 V an(^ t*ie nyP o t n e s i s °f Lemma 5 is satisfied.

Hence u exists, and we can at least start. For nk < Tg(k) , u11

is uniquely defined and by Lemma 6

Keni2 < (1 + Clk)ie
n"1i2 + C2kh

2 ,

for some constant C2« Let C = max(Cj ,C2) , then

ieni2 < (1 + Ck)ie
n"1 i2 + Ckh

2 .

This is obtained by expanding j-^ in a Taylor series about z - 0

retaining only two terms

0(z2) ,

and setting z
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Applying this estimate repeatedly

Ben«2 < (1 + Ck)[(1 + Ck) le
11"1 + Ckh2

= (1 + Ck)2«en"2 i2 + (1 + (1 + Ck))Ckh2

. < (1 + Ck)nie°ii2 + (1 + (1 + Ck) + . . . + (1 + Ck)n"1)Ckh2

= ( " I 1 (1 +Ck)n -1 )Ckh2 < eCnkh2 - eCth2

j-o

or by Lemma 1 of this section,

eCnkh3/2

= o(h')

O(h3/2) .

Thus we have convergence in both the £2~ n o r m anc* the maximum norm for

nk < TQ(k) , provided that ^ ^and are bounded. Since

'"""max" ""'.a, <

Bunn < IV11! + eCnkh3/2 < V + eCnkh3/2 < 2V

for h sufficiently small. From this it follows that for T- where

e° T i h 3' 2 = V ,

TQ(k) > T.. Clearly, by taking h sufficiently small, T. can be

chosen as large as we like. Thus for h sufficiently small, T- > T ,

where T is defined by (2.12.1) and un is defined on the entire

interval 0 < t < T with estimates

and

0(h2)

°<h3'2) •

11.13. Nonlinear Parabolic Equations.

Consider the quasi-linear* parabolic equation

r(x,t,w)3tw= 9x(p(x,t)p1(w)3xw) - q(x,t,w)

A quasi-linear equation is an equation whose coefficients depend on
x , t , and the solution but not on any derivative of the solution.
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w
Introducing the change of variable v = / p^(z)dz , this equation

reduces to

(2.13.1) r(x,t,v)8tv= 9x(p(x,t)8xv) - q(x,t,v) .

Consider this equation on 0 < x < 1 , 0 < t < T along with the

initial condition

(2.13.2) v(x,0) = f(x) , 0 < x < 1 ,

and the boundary conditions

(2.13.3) v(0,t) = gQ(t) , 0 < t < T ,

and

(2.13.4) v(1,t) = gl(t) , 0 < t < T .

As in the case of variable coefficients (Section 11.11) consider

n+1 n

(2.13.5a) rf 1' p( U l
 k"

 Ui) = D.Cp1*] D+uf
1 ) - qf 1' n ,

i+2

where

and

qn+1'n = q(ih,(n+1)h,un)

The initial condition becomes

(2.13.5b) uj = f(ih) , 0 < ih < 1

and the boundary conditions become

(2.13.5c) UQ = go(nk) , 0 < nk < T ,

and

(2.1 3.5d) uf} = gi(nk) , 0 < nk < T .

Expanding v(x,t) in a Taylor series about the point (ih,(n+1)k)

D_(pn+] D+vf
1) = Ox(p3xv))f

1 +0(h2) ,

r(ih,(n+1)k,v^) = r(ih,(n+1)k,vn+1) - (v^+1 - v^) -|̂  ,

where - | | = -|^(ih, (n+1 )h,v*) with v1? < v* < v^+1 . By substitution of

vn+1 . v n = _k ( 3 t V )n+1 + 0 ( k 2 } $
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vn+1) (k(9v)n+1r(ih,(n+1)k,vn) - r(ih,(n+1)k,vn+1) - (k(9tv)
n+

Similarly,

q(ih,(n+1)k,vn) = q(ih,(n+1)k,vntl) - (k(atv)
n+

where -|* = |^(ih,(n+1)k,v**) with vn < v** < vn+1

Combining these four terms

vn+1 - v11

(2.13.6) rCih.Cn+nk.vjM-i-^ h - D_(pn+j D+v
n+1 ) + q(ih, (n+1)k,vn)

n + 1 ) - (k(3tv)
n+1 + 0(k2))|^)(Otv)

n+1 +0(k2))

- (k(3tv)
n+1 + 0(k2))§)

= r(ih,(n+1)k,vn+1)(3tv)
n+1 - (3x(p3xv))i

+1 + q(ih,(n+1)k,vn+1

+ 0(k) + 0(h2) .

However, by Equation (2.13.1), evaluated at the point (ih,(n+1)k),

n+1 n

r(ih,(n+1)k,vn)(Vi k
 V i ) - D_(pn+] D+v

n+1) + q(ih, (n+1 )k,vn)

= 0(k) + 0(h2) .

Thus, the method (2.13.5) is consistent and accurate of 0(k) + 0(h2).

Douglas [6] proved the following convergence theorem.

Theorem ,2.11. Suppose that p has three bounded derivatives with

respect to x and that q and r have a bounded derivative with

respect to v. Further, suppose that v has four bounded derivatives

with respect to x and two bounded derivatives with respect to t.

Then the solution un of (2.13.5) converges in the j^-norm to the

solution of (2.13.1)-(2.13.4).

Observe that the requirements for the boundedness of the various

derivatives of p , q , r and the solution v are due to the

truncation errors of the Taylor series.

It remains to describe how the method is implemented. Since the

coefficients r and q are evaluated at u. (the previous time

level), the resulting algebraic equations at each timestep are linear.

Write (2.13.5a) in the form (similar to (2.11.30))

(2.13.7) rn+1>nun+1 - fcMp1*] D+u
n+1) = rf1 'nun - kqf1 >n .
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For 1, ...,N-1 , and X = k/h2

(2.13.8)
n+1 , n+1,n , ,f n-1v.r. T x \p *

n+1p

n+1,n n n+1 ,n

n+1 , n+1 n+1u i - Xp l u i + 1

. ui " kcL

At i = 1 impose the boundary condition (2.13.3) at i = 0 given by

(2.13.5c). Thus, at i - 1 , (2.13.8) reduces to

( 2 . 1 3 . 9 ) n+1,n , , / n+1r £ ' + X(p1

1

n+1p 3

1

n+1u n- Xp3
n+1 n+1

n+1 ,n n , n+1 , n , n+1 , , , - x , \
r 1 ' u 1 - kq 1 ' + Xp1 • g Q ( ( n + 1 ) k ) .

Similarly, at i = N - 1 , impose the boundary condition (2.13.4) at

i = N given by (2.13.5d). Thus, at i = N - 1 , (2.13.8) reduces to

(2.13.10) -xp
n+1

N-#

/ n+1,n . %/(rN_^ + X(pn+1

N-1
n+1 ,

N-i
n+1

Combining (2.13.8)-(2.13.10), this may be written as a tridiagonal

system of equations of the form

Au
n+1

where u
n+1 (u

n+1
1 (rn+1,n n n+1 ,n

£]' n) T
J., - kq£]'n) Pf

1 L1 U1 " k q1

be = (Xpl1
l"'go((n+1)k),O,...,

0, Xp""r1'g1 ((n+1)k))
x , and A is an (N - 1) x (N - 1) tridiagonal

matrix of the form

N-2 dN-2 cN-2

aN-1 dN-1

The elements of A are given by

n+1 ,n n+1
p. 1
*-7

n+1 N i = 1 N-1
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and

As in the case of constant and variable coefficients, the

accuracy of the implicit method (2.13.5a) can be improved by using a

Crank-Nicolson-type method. The Crank-Nicolson method, as described in

Section II.2, consists of evaluating the coefficients at the points

(ih,(n+1/2)k) and averaging the values of v at nk and (n+1)k in

the evaluation of v and its derivatives. This gives rise to

n+1 n 4 uf1 - un n4 un+1 + un n4,n4
(2.13.11) r. z z (-̂ -̂  L) - D_(p f M - ^ - 2 -)> " q±

i+j-
where

and

- n-
r(ih,(n + ~)k,u.

n+i,n+i . n+i
q z z = q(ih,(n + ̂ )k,Ui

 Z) .

However, in order to avoid evaluating u. , expand r and q in

a Taylor series about the point (ih, (n+̂ -)k ,v^ ). In the case of r ,

r(ih,(n+i)k,v) = r(ih,(n + l)k,Vi
 2) + j ^ (v - v. 2)

Ir ar 1 "4
where -|̂  = -|̂  (ih, (n + ̂ )kfw*)t v^ < v* < v. Evaluating this Taylor

series at v = v? and v = vn , respectively,

r(ih,(n+^)k>v
n+1) = r(ih,(n + ̂ )k»vi ^) + <vi+1 - vi 2) -f^-

1 n +i
where -~- = -|̂  (ih, (n + l)k,v*), with v. 2 < v* < vn+1 , and

oV dV Z 1 1

n +l n+l 2
r(ih,(n+l)k,vn) = r(ih,(n + l)k,v. 2) - (v. 2 - vn) |^- ,

17 2
 9r 1 n n"4

where ||- = || (ih,(n + -j)k,v**), with vn < v** < v£
 z.
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Averaging these two results

(2.13.12) lr(ih,(n+l)k,v?+1) + r(ih,(n+^)k,v")

= r ( i h , ( n + l ) k , v 2 ) + ( v f 1 - 2 v 2 + v1?) f f"+2 f 1 2v"+2 + v1?) ff

where |^ = -|| (ih, (n + j)h,v***) with v1? < v*** < v*?+1 .

Expanding v. and v. in a Taylor series about the point

+

which, by substitution in (2.13.12), gives

(2.13.13) j(r(ih,(n+^)k,v?+1) + r(ih,(n+^)k,vn)

1 n+2" k2 2 n+"2
= r(ih, (n+2")k,vi ) + (g— (%tv)^ +

1 n+i 2

-. Z) + 0(kZ) .

Similarly, we have for q

(2.13.14) l

v
n + 2 } + (k?. o 2

v )
n + 2 + 0(k3)) la

i 8 t i 3v

v . l) + 0 ( k 2 ) .

Use t h e s e a v e r a g e s ( 2 . 1 3 . 1 3 ) and ( 2 . 1 3 . 1 4 ) i n ( 2 . 1 3 . 1 1 ) t o o b t a i n

1 n+«-,n+1 n + ^ , n u1? - u .
(2.13.15) i(r. l + r , l ) ( - ^ - ^ 4

i u?+1 + u1? n+i,n+1 n+i,n
+ q

 7 )

From (2.13.7)

n 4 vi+1 + v? n 4 2 2
(2.13.16) D_(p \ D+(-^-2 ^)) = (3X(P3XV))1 + 0(kZ) + 0(h2)

i+2

Combining (2.13.13)-(2.13.16) along with
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n+1 , n ,1
v

O tv) i

gives

n+1 n
1 1 n+1 1 v- " v-
^•(r(ih,(n+^)k,vn ') + r(ih,

n+1 vn^1 + vn

- D_ (p ^ D + ( — 2 '̂  + Y^^itl» ̂ n"h2'^»vi ^ + ci(i-n> (n"h2>)^»v^))

v£
 z) + 0(kZ)) . ((vt)i + 0(kz)) - ^9

x(P
8
x
v))i

0(k2) + 0(h2) + q(ih,(n+j)k,v1
 7 ) + 0(k2)

vi ^ vt^i " ^ x ^ p 3 x ^ i + ciCih^C114^)1^^! )

+ 0(k2) + 0(h2) .

However, by Equation (2.13.1) evaluated at the point (ih, (n^

n 4 : v
n+1 + v1?

- D_(p \ V+i-^—z -)
i+7

= O(k2) + O(h2) .

2 2
Thus, the method (2.13.15) is consistent and accurate of 0(k ) + 0(h ).

Douglas [6] proved the following convergence theorem.

Theorem 2.12. Suppose that p has three bounded derivatives with

respect to x and that q and r have a bounded derivative with

respect to v. Further, suppose that v has four bounded derivatives

with respect to x and t. Assume that k/h = constant. Then the

solution of (2.13.17) converges in the j^-norm to the solution of

(2.13.1)-(2.13.4).

Observe that in order to have convergence, a restriction on k

and h must be imposed

k/h - constant .

This was not true for the Crank-Nicolson method for constant and

variable coefficients.

Also, we see that the resulting set of Equation (2.13.15) is non-

linear and must be

and suppose the iterate

written in the form

that the resulting set of Equation (2.13.15) is no

solved by an iterative process. Let un ' = u?

erate un ' is known, then (2.13.15) may be
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( 2 . 1 3 . 1 7 )

,1 n+1,m n
n+"2,n u. ' - u.

, 1 n+1 , m , n
y u. + u.

. 1

where n+1,m-1

and

This results in a set of linear equations since the coefficients

are evaluated at the previous iterate

continued until

q

u ' " The iteration is

max
i

n+1,m n+1,m-1
ui " ui

n+1,m-1

for some tolerance e. This method of iteration is known as functional

When theiteration (or the method of successive approximations)

u 'sequence of iterates {u. } converges, convergence is linear, that

n + 1is u n + 1 ' m - u n + 1 = 0(u n + 1' m- 1 - v n + 1) as m + -. It is a difficult

task to prove convergence of an iteration method (see Lees [17]). For

i = 1 N-1 with X = k/h2

(2.13.18)

7 n 7

n
J P.

1
«?.,

n+-7y,n+1 ,m-1

, n+"?sr n+^7 , n+TT
( + )^+ ^ n

i"7 i"I i"I

At i = 1 impose the boundary condition (2.13.3) at

(2.13.5c). Thus at i = 1 , (2.13.18) reduces to

i = 0 given by
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n+1 n + 1 ffl 1 n+1 n + l n + i
(2.13.19) ( l ( r . 7 ^ ' " + r" * ' ) + £<Pl

 2 + P3
 2 ) ) u n + 1 ' m

7 7

,1 , 1 ,1

3

7

(••«• n + ^ * n+"R" i n+^jn+i ,m~1 n+-«-,n
Z + P3

 Z ) )u n + f p3
 Zun ^ ' -

,1

7 PV 2 (go((n+1)k) + go(nk))

7
Similarly, at i = N - 1 , impose the boundary condition (2.13.4) at

i = N given by (2.13.5d). Thus at i = N - 1 , (2.13.18) reduces to

n+1 n+- n+1 m-1 n+- n

(2.13.20) - ̂  p
n | uJJ^'m + 4(rN_?'n ^ + r N - T n )

n+- n+- n+-

7 N-| "N-j N~1 7 N-| N"2

, n+«-,n+1 ,m~1 n+«r,n n+-̂ -
- f ( q N f + qN ( ) + 7 P f ( g l ( ( n + 1 ) k ) = g l ( n k ) ) .

Combining (2.13.18)-(2.13.20) , t h i s may be wri t ten as a
t r id iagonal system of equations of the form

Am-1un + 1 'm = un ' r a - 1 + be

w h e r e u n + 1 »m = ( u n + 1 ' m , . . . f u £ ] ' m ) T ,

b e = ( | p " 7 ( g Q ( n k ) + g o ( ( n + 1 ) k ) ) , O , . . . , O , ^ p n ^ ( g l ( n k ) + g] ( ( n + 1 ) k ) ) ) T ,

7 N-2"

and un'm"1 contains the right-hand side of (2.13.18)-(2.13.20)

excluding the boundary condition terms at i = 1 and i = N - 1. Am~

is an (N - 1) x (N - 1) tridiagonal matrix of the form
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N-2 dN-2 cN-2

where the elements are given by

,1 ,1 i J

aN-1 aN-1

n+7
2 j") , i = 1,...,N-1

x »4, i = 2,...,N-1 , and

c i = " I p 1 ' i = 1 » . . . . N - 2 .

The nonlinear equation (2.13.15) results from replacing

n+i n+in+i n+in+ n+
and in (2.13.1 1) with + ri ^ ) and

-K-,n+̂ - n+y,n
+ q£ ) , respectively, using (2.13.13) and (2.13.14).

Suppose, instead, u. is approximated using u.. To this end,

expand v(x,t) in a Taylor series about the point (ih,nk) and

evaluate at the point (ih, (n+O

T = v + I(

By substitution of the equation (2.13.1) written in the form

8v = l [8tv = r(xlt,v)
evaluated at (ih,nk) gives

- q(x,t,v)]

(2.13.21) VjL
2r(ih,nk,vp

)? " q(ih,nk,vn)] + 0(k2)

2r(ih,nk,vp
— [D (pn TD.V^1) - q(ih,nk,vn)] + 0(k2) + O(kh2).n) " i+£ L L
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This gives rise to the two-step method obtained by combining (2.13.11)

and (2.13.21). The evaluation of p at (n + ̂ )k in (2.13.21) was

used by Douglas [6] to simplify the convergence proof. Nothing is lost

in practice by using this value.

Define

(2.13.22) u™ - u£ + — • £ — [D_(pn \ D+u£) - q
1?'11] .

n+i
This is the first step which is an approximation to v, accurate to

1 1

2 2 n+i
0(k ) + O(kh ). The second step consists of replacing u^ in
(2.13.11) with u? , that is,

ut?+1 - u? n 4 u?+ 1 + u?
(2.13.23) r £ ' n ( - ^ - ^ -) = D_(p \ D+C"1—2 k » " q?> n »
where

and

Rewrite (2.13.21) in the form

(2.13.24) v1? + ^ — [D (pn f D.v") - q(ih,nk,v?)]
1 2r(ihnkv^) " i+\ + 1 i

n+y 9 ?
= vt

 z + 0(kz) + OQi ) .

1 n+JExpanding r in a Taylor series about the point (ih, (n+̂ -)k ,v. )

r(ih,(n+^)kfv) = r(ih,(n+^)k,v^
 7 ) + (v - v" 7)|f ,

where |^ = -^(ih, (n+^)k,v*) with vt ^ < v* < v. Replacing v with

the left-hand side of (2.13.24)
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(2.13.25) r(ih,(n+l)k,vn + k [D (p
n 2 n} _ q ( i h > n k n}

1 L 2r(ih,nk,vn) " i+\ + 1 x

1 n+«- n-hr ? 9 n+y —
^ . z) + (v. z + 0(kz) + 0(hz) - v. z ) | ^

= r(ih, (n+^)k,vi
 2) + 0(k2) + 0(h2).

A similar result is obtained for q ,

(2.13.26) q(ih,(n+y)k,vn + k [D (p
n 2 m

z L 2r(ih,nk,vn) ' i+1 + L 1

^ v t
 7 ) + 0(k2) + 0(h2).

Combining (2.13.15) and (2.13.16) with (2.13.25) and (2.13.26) and

substituting into (2.13.11), we obtain

(2.13.27) r(ih,(n+i)k,vn + ^ — [D (p" J D,vn) - q(ih,nk,vn)])
1 1 2r(ih,nk,vn) " i+\ + x 1

vf1 - vn n ^ vf1
 + v

n

— [D (pn 2 D,vn) - q(ih,nk,vn)
n) " 14^ + 1 11 2r(ih,nk,vn) ^

,v" ?) + 0(k2) + 0(h2)) (Otv)"
 7 + 0(k2))

) ̂  + °(k2> "
0(k2) + 0(h2)

n+1 n+i n+i ! n+i
v )(9-v) Z (8(P3v)) q(ih(n-^)kvt

 z)

+ 0(k2) + 0(h2).

However, by Equation (2.13.1) evaluated at the point (ih, (n+̂ -)k) , we

see that (2.13.27) is 0(k2) + 0(h2). Thus, the method (2.13.22)-

(2.13.23) is consistent and accurate to 0(k ) + 0(h ).
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Let

and

Define

p* = max p(ih,nk)
i

r* - min r(ih,nk,vn)

where each of the barred derivatives is evaluated at some point in the

intervals (i-1)k,(i+1)k) , (nk,(n+1)k). Douglas [6] proved the

following convergence theorem.

Theorem 2.13. Suppose that p has three bounded derivatives with

respect to x and that q and r have a bounded derivative with

respect to v. Further, suppose that v has four bounded derivatives

with respect to x and t. Assume that k/h = constant. Then the

solution of (2.13.24)-(2.13.25) and (2.1 3. 5b)-(2 .1 3. 5d) converges in

the j^-norm to the solution of (2.13.1)-(2.13.4) provided one of the

three conditions is satisfied:

1) if a. defined by (2.13.28) is > 0 and a* = max a. then

(2.13.29) <
2) if a. defined by (2.13.28) is < 0 and a* = max (-a.) , then

1 P* i L

l ) 1 7 2(2.13.30) <

3) if the sign of a^ is indeterminate, then both (2.13.29) and

(2.13.30) hold.

Observe by conditions (2.13.29) and (2.13.30) that this modified

Crank-Nicolson type method does not converge for any size k/h.

To implement this, write out (2.13.23) for i = 1,...,N-1 with

X = k/h2

(2.13.31) - i p f u"+ + (r?'n + k p 2 + p 2))u"+1 x - 2 --n+1

2* ~7 ~7

J J J , 1

At i = 1 impose the boundary condition (2.13.3) at i = 0

given by (2.13.5c). Thus at i = 1 , (2.13.31) reduces to
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+(2.13.32) (rn'n n+1u2

n+r n + i

j p" 2 (go(nk) + gQ((n+1)k))
7

Similarly, at i = N - 1 impose the boundary condition (2.13.4) at

i = N given by (2.13.5d). Thus, at i = N - 1, (2.13.31) reduces to

(2.13.33) £ "+2 £ j ^ £ [ "+2 £j
N-S N - 2 N ~2

N~5
^Si

n ^

+- n+1
3 + P11 2 )

"2 N"2

i , n

Combining (2.13.31)-(2.13.33) , th i s may be wri t ten as a
t r id iagonal system of equations of the form

(2.13.34)

where

Aun+1 = u n + be

(u»+1 ) T . u"

- k q n ' n ) T , i = 1 N-1 ,

+ 1

'J

,1
n+2

u ?

n + i
be = (^ p- 2 (g Q (nk) •

2 «-j " "
and A is an (N - 1) x (N - 1) tridiagonal matrix of the form

aN-2 dN-2 cN-2

aN-1 dN-1

where the elements a re given by
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and
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x n
IP. T 2.....N-1

To advance the solution from time nk to time (n + 1)k , first

evaluate (2.13.22) so that r£'n and qn'n can be evalueted. The

second step consists of solving the tridiagonal system (2.13.34).

A major disadvange of the modified Crank-Nicolson method

(2.13.22)-(2.13.23) is that the restriction on the timestep given by

(2.13.29) or (2.13.30) requires knowing a bound on the derivatives

"5^ » "Ĵ  » a n d J£' This maY not be possible in practice. In this

situation, this method should be used with caution.

11.14. Irregular Boundaries

A boundary of a two or three dimensional region that does not lie

on a rectangular grid is said to be irregular (as depicted in Figure

2.3). Near these boundaries divided differences used to approximate

derivatives must be modified.

Figure 2.3. Irregular Boundary
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Consider a typical point A with coordinates

curved boundary, as depicted in Figure 2.3.

boundary

Figure 2.4

Expand v(x,y,t) in a Taylor series in space about the point ^x\*y^

v(x,y,t) 3yvA(y-

where vA = v(xA,yA,t). Evaluating the Taylor series at the point B

with coordinate (xB»Yg) anc* t n e boundary point 2 yields

(2.14.1)

and

(2.14.2)

where v.

VB - VA " VxvA

axhxaxvA

2, 2
axhx .2

denotes the value of v at the boundary point 2.

In order to construct an approximation to 3 accurate to
r\ X

0(hx) , more than two points are required because the points B and

2 are not the same distance from the point A and hence the °(n
x)

terms do not cancel. Combining (2.14.1) and (2.14.2), in the

x-direction

(2.14.3)

(2.14.4)

Similarly, in the y-direction

1
3yvA - (

y y

1-a

a,, V
where v1 denotes v evaluated at the boundary point 1.

2 2We also obtain the approximations to a and 3x y



132

(2.14.5)

and

(2.14.6)

0 ( h x >

rrrV

There is an order of magnitude loss of accuracy due to the lack

of symmetry of the three grid points used.

Another approach in the treatment of an irregular boundary is to

imbed the region contained by it in a grid which is the union of

rectangles, as depicted in Figure 2.5. Values will be found for the

"false" grid points which lie outside the computational domain.

[

J

1
J

—"
j

Figure 2.5. Irregular Boundary Imbedded in Rectangular Grid

If Figure 2.5 represents a neighborhood of a portion of this

irregular boundary, then by linear interpolation

Figure 2.6

Suppose that the boundary conditions are Dirichlet type, so that v

is specified on the boundary and v^ is known, then we may solve

for the false point D which lies outside the domain
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(2.14.7) 1 - a °<hx> •

Similarly, for the false point G which lies outside the domain,

vo -
(2.14.8)

(2.14.9)

and

Using quadratic interpolation, for the basic points D and G

o 2 a..

(1-ax)(2-ax)
 V2 - 5 - v R + 0(h

2)-a D x

2a

respectively.

We now consider the case where the boundary conditions are of

Neumann type so that the normal derivative of v , 8 v , is specified

on the boundary. Approximate the boundary r by a piecewise linear

curve IV , as depicted in Figure 2.7.

boundary r

•normal vector

Figure 2.7. Irregular Boundary and Neumann Boundary Conditions

Let 9 denote the angle between the positive x-axis and the outward

pointing normal vector at the point S on iv . Approximate the

normal derivative at S , 8nvg , by the divided difference along the

normal segment DM

(2.14.11)
m + 0(v '
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where |DB| = hx sec . Again, this is not °(n
x) since the points

M and D are not symmetric about the point S. Since 9n
vg i s

specified, we may solve for vD , the value of v at the false point

(2.14.12) vD = vM + |DB|3nvs + 0(hx) .

The value of v at the point M is obtained by linear interpolation

along the segment AB* ,

_.|AM|vA + |MB|vB
V

where |AM| = hxtan e and |MB| = h - hxtan e. Substitution into

(2.14.12) gives

|AM|v + |MB|v _
vD = V » + jDB|8nvs + 0(hx) .

For other methods of treating irregular boundaries, see Forsythe

and Wasow [14].

11.15. Numerical Examples.

Here we present the results from four test problems.

First consider the one-dimensional diffusion equation with

constant coefficients

3tv - 3xv , 0 < x < 1 , t > 0 ,

with initial condition

v(x,0) = sindrx) , 0 < x < 1

and with boundary condition

v(0,t) = v(1 ,t) = 0 , t > 0 .

The exact solution is

2.
v(x,t) = e"* c sin(ux) .

The grid spacing is taken to be h = 0.1. Figure 2.8 depicts the

results for time T = 0.1 where the approximate solutions are

represented by dashed lines and the exact solutions are represented by

solid lines. In Table 2.1 the numerical methods, values of X , and

the corresponding ju-errors are presented.

For the Dufort-Frankel method (2.9.8)(see Figure 2.8d). The

first time level of values needed to start the method was computed from

the exact solution. In this way the error is the error of the Duford-

Frankel method alone; and not a combination of the start up error and

error from the method.
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Figure Method X neii9

2.8a

2.8b

2.8c

2.8d

2.8e

Explicit (1.1.3)

Implicit (2.2.1)

Crank-Nicolson
(2.2.10)

Dufort-Frankel
(2.9.5)

Crank-Nicolson
(2.10.7)

0.5

1.0

1.0

1.0

1.0

0.4358 x

0.1437 x

0.1933 x

0.2303 x

0.3368 x

io-2

10-1

10"2

10-1

io-2

Table 2.1. Numerical Methods and £2-Errors for One-
Dimensional Diffusion Equation with Constant Coefficients.

The Crank-Nicolson method (2.10.7) involves derivative boundary

conditions. The exact solution with Dirichet boundary conditions is

used to generate Neumann boundary conditions. This gives rise to the

initial-boundary-value problem

2
at v = 3 x v ' 0 < x < 1 , t > v

with initial condition

v(x,0) = sin(TTx) , 0 < x < 1

and Neumann boundary conditions

2.
9xv(0,t) = Tre"*

 c , t > 0

and
2.

3xv(1,t) = -tre"*
 C , t > 0 .

The exact solution is

2.
v(x,t) = e"* c sin(irx) .

The approximate solution at the boundary x = 0 is -0.00659.

This negative value, even though small and within the accuracy

(0(k) + 0(h )) of the method, is the result of the approximation of

the derivative in the boundary condition.

As the second test problem, consider the two-dimensional

diffusion equation with constant coefficients

2 2
3+.V = 8 v + 3 v , 0 < x, y < 1 , t > 0t x y

with initial condition

v(x,y,0) = sin(Trx)sin(iry) , 0 < x, y < 1 .
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9.S

0.0

Figure 2.8. Numerical Solution at Time T = 0.1 for
a) Explicit Method (1.1.3); b) Implicit Method (2.2.1);
c) Crank-Nicolson Method (2.2.10); d) Dufort-Frankel
method (2.9.5), and e) Crank-Nicolson Method (2.10.7).
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a n d w i t h b o u n d a r y c o n d i t i o n s

v ( 0 , y , t ) = v ( 1 , y , t ) = 0 , 0 < y < 1 , t > 0

v ( x , 0 , t ) = v ( x , 1 , t ) = 0 , 0 < x < 1 , t > 0 .

T h e e x a c t s o l u t i o n i s

9 21-
v(x,y,t) = e"zir csin(Trx)sin(7ry) .

The grid spacing is taken to be h = h = h =0.1. In Table 2.2
x y

the numerical methods, values of X , and the corresonding 2

are presented. Table 3.3 depicts the numerical results for time

T = 1.

Method X

0.25

0 .50

1.0

1.0

It e n 2

0 .2278 x

0.2361 x

0 .7780 x

0 .1023 x

10"2

10"2

10"2

10"2

Explicit (2.3.5)

Explicit Fractional Step
(2.4.7)-(2.4.8)

Implicit Fractional Step
(2.4.10)-(2.4.11)

Peaceman-Rachford-Douglas
(2.5.2)-(2.5.3)

Table 2.2. Numerical Methods and fc2~Errors f°r Two-
Dimensional Diffusion Equation with Constant Coefficients.

In the third test problem, consider the one-dimensional diffusion
equation with variable coefficients

8fcv = 3 (x9 v) - 4v , 1 < x < 2 , t > 0

with initial conditions

v(x,0) - j" - ^ , 1 < x < 2 ,

and boundary conditions

v(1 ,t) = 0 , t > 0

and

v(2,t) = e~4t , t > 0 .

The exact solution is

-4tln

In order to apply the explicit method (2.11.14) the equation
must be rewritten as



.1
,2
.3
.4
.5
.6
.7
.8
;9

,1
0.128-1
0.244-1
0.336-1
0.395-1
0.415-1
0.395-1
0.336-1
0.244-1
0.128-1

0.244-1
0.464-1
0.639-1
0.751-1
0.790-1
0.751-1
0.639-1
0.464-1
0.244-1

0.336
0.639
0.879
0.103
0.109
0.103
0.879
0.639
0.336

-01
-01
-01

-01
-01
-01

0.395- 1
0.751-1
0.103
0.122
0.128
0.122
0.103
0.751-1
0.395-1

0.415-1
0.790-1
0.109
0.128
0.134
0.128
0.109
0.790-1
0.415-1

0.395-1
0.751-1
0.103
0.122
0.128
0.122
0.103
0.751-1

.0.395-1

0
0
0
0
0

336-1
639-1
879-1
103
109

0.103
0.879-1
0
0

639-1
336-1

0.244-
0.464-
0.639-
0.751-
0.790-
0.751-
0.639-
0.464-
0.244-

l 0.128-1
0.244-1

L 0.336-1
0.395-1
0.415-1
0.395-1
0.336-1
0.244-1

L 0.128-1

138

b) .1 .2 .3 .4 .5 .6 .7
0.128-1
0.244-1
0.336-1
0.395-1
0.415-1
0.395-1
0.336-1
0.244-0
0.128-1

0.244-
0.464-
0.639-
0.751-
0.790-
0.751-
0.639-1
0.464-1
0.244-1

0.336-1 0.395-1
0.639-1 0.7S1-1
0.879-1 0.103
0.103
0.109
0.103
0.879-1 0.103
0.639-1 0.751-1
0.336-1

0.415-1
0.790-1
0.109
0.128
0.134
0.128
0.109
0.790-1

0.395-1 0.415-1

0.122
0.128
0.122

0.395-1
0.751-1
0.103
0.122
0.128
0.122
0.103
0.751-1
0.395-1

0.639-1
0.879-1
0.103
0.109
0.103
0.879-1
0.639-1
0.336-1

0.464-
0.639-
0.751-
0.790-
0.751-
0.639-
0.464-
0.244-

0.244-1
0.336-1
0.395-1
0.415-1
0.395-1
0.336-1
0.244-1
0.128-1

c)
.2
.3
.4
.5
.6
.7
.8
.9

. !

0.281-1
0.386-1
0.454-1
0.477-1
0.454-1
0.386-1
0.281-1
0.148-1

.2

0.534-1
0.735-1
0.864-1
0.908-1
0.864-1
0.735-1
0.534-1
0.281-1

.3

0.735-1
0.101
0.119
0.125
0.119
0.101
0.735-1
0.386-1

.4

0.864-1
0.119
0.140
0.147
0.140
0.119
0.864-1
0.454-1

.5

0.908-1
0.125
0.147
0.154
0.147
0.125
0.908-1
0.477-1

.6
0.454-1
0.864-1
0.119
0.140
0.147
0.140
0.119
0.864-1
0.454-1

.7
0.386-1
0.735-1
0.101
0.119
0.12S
0.119
0.101
0.735-1
0.386-1

.8
0.281-
0.534-
0.735-
0.864-
0.908-
0.864-
0.735-
0.534-
0.281-

t 0
L 0

.9
.148-1
.281-1

L 0.386-1
0
0
0
0
0
0

.454-1

.477-1

.454-1

.386-1

.281-1

.148-1

d) N
.1
.2
.3
.4
.5
.6
.7
.8
.9

.1
0.133-1
0.252-1
0.347-1
0.408-1
0.429-1
0.408-1
0.347-1
0.252-1
0.133-1

.2
0.232-
0.480-
0.661-
0.777-
0.816-
0.777-
0.661-

•3
0.347-1
0.661-1

I 0.909-1
I 0.107

0.112
I 0.107
L 0.909-1

0.480-1 0.661-1
0.252- L 0.347-1

•4
0.408-1
0.777-1
0.107
0.126
0.132
0.126
0.107
0.777-1
0.408-1

.5
0.429-1
0.816-1
0.112
0.132
0.139
0.132
0.112
0.816-1
0.429-1

0
0
0
0
0
0
0
0
0

.6
.405-1
.777-1
.107
.126
.132
.126
.107
.777-1
.408-1

•7
0.347-1
0.661-1
0.909-1
0.107
0.112
0.107
0.909-1
0.661-1
0.347-1

•8
0.252-
0.480-
0.661-
0.777-
0.816-
0.777-

L 0
I 0
L 0
L 0
L 0
L 0

0.661-1 0
0.480-1 0
0.2S2-1 0

•9

.133-1

.252-1

.347-1

.408-1

.429-1

.408-1

.347-1

.252-1

.133-1

Exact Solution

,1
.2
.3
.4
.5
.6
.7
.8
.9

.1

0.133-
0.252-
0.347-
0.408-
0.429-
0.408-
0.347-
0.252-
0.133-

.2

L 0.252-
L 0.480-
L 0.661-
L 0.777-
L 0.816-
L 0.777-
L 0.661-
L 0.480-

0.252-

.3
L 0.347-1
L 0.661-1
L 0.909-1
L 0.107
L 0.112
L 0.107
I 0.909-1

0.661-1
L 0.347-1

.4
0.408-1
0.777-1
0.107
0.126
0.132
0.126
0.107
0.777-1
0.408-1

0
0
0
0
0
0

.5
.429-1
.816-1
.112
.132
.139
.132

0.112
0
0

.816-1

.429-1

.6
0.408-1
0.777-1
0.107
0.126
0.132
0.126
0.107
0.777-1
0.408-1

.7
0.347-1
0.661-1
0.909-1
0.107
0.112
0.107
0.909-1
0.661-1
0.347-1

.8
0.252-
0.480-
0.661-
0.777-
0.816-
0.777-
0.661-
0.480-
0.252-

.9
L 0.133-1

0.252-1
0.347-

L 0.408-
0.429-

L 0.408-
t 0.347-
l 0.252-
l 0.133-

Table 2.3. Comparison of Results at Time t = 1 for
a) Explicit Method (2.3.5), b) Explicit Fractional Step
Method (2.4.7)-(2.4.8), c) Implicit Fractional Step Method
(2.4.10)-(2.4.11), and d) Peaceman-Rachford-Douglas Method
(2.5.2)-(2.5.3).
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o
3 v = x3 v + 3 v - 4v , 1 < x < 2 , t > 0 .

In this case a(x,t) = x , b(x,t) = 0 , c(x,t) - -4 , and

max |a(x,t)| = 2 .
0<t<T
1<x<2

The stability requirement is X < -r.

For the implicit and Crank-Nicolson methods, (2.11.28) and

(2.11.34), respectively, P(x,t) = x , r(x,t) - 1 , and q(x,t) = 4.

Conditions (2.11.29a-c) and satisfied with p* = 1 , r* = r* = 1 , and

q* = 4. The time-step requirement (2.1 1.29d) becomes r- - 4 > 0 or
1

k < ̂ . The grid spacing is taken to be h = 0.1. In Table 2.4 the

numerical methods, values of X , and the corresponding ^-errors are

presented for time T = 0.25.

Method X R en o

Explicit

Implicit

(2,

(2 ,

,1 1.

.11.

Crank-Nicolson

14)

28)

(2.11 .34)

0.

1 .

1 .

2

0

0

0.

0.

0.

1028 x

9717 x

2584 x

10"2

10-3

10-4

Table 2.4. Numerical Methods and fc2~Errors f ° r One-
Dimensional Diffusion Equation with Variable Coefficients.

In the final test problem, consider the one-dimensional, quasi-

linear diffusion equation

3tv = 3^v + (1 + v
2)(1 - v) , 0 < x < 1 , 0 < t < T

with initial condition

v(x,0) = f(x) - tan(x) , 0 < x < 1 ,

and boundary conditions

v(0,t) = tan(t) , 0 < t < T

and

v(1,t ) - tan(1 + t) , 0 < t < T .

The exact solution i s

v(x , t ) - f(x + t) « tan(x + t) .

This solution represents a traveling wave solution that becomes

singular as x + t •• v/2.

This equation is of the form of (2.13.1) where r(x,t,v) - 1 ,

p(x,t) = I , and q(x,t,v) = -(1 + v )(1 - 2v). The grid spacing is

taken to be h = 0.1. In Table 2.5 the numerical methods, values of

X , and the corresponding j^-errors are presented for times
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t = 0.1,0.2,0.3,0,4, and 0.5.

Method X

Implicit (2.13.5) 1.0

Herative Crank-
Nicolson (2.13.17)

1.0

Modified Crank-Nicolson 1.0
(2.13.24)-(2.13.25)

lei.

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6857 x

0.1361 x

0.2762 x

0.7097 x

0.3426

0.2295 x

0.5035 x

0.1172 x

0.3567 x

0.2064

0.2292 x

0.5030 x

0.1172 x

0.3566 x

0.2065

10

10

10

10

10

10

10

10

10

10

10

10

-2

-1

-2

-2

-1

-1

-2

-2

-1

-1

Table 2.5. Numerical Methods and ju-Errors for
One-Dimensional Quasi-Linear Diffusion Equation

In the implementation of the modified Crank-Nicolson method

(2.13.24)-(2.13.25) bounds are required on 3vq , 3vr , and 3tv (see

(2.13.28)). In this example, T = 0.5 and v(x,t) < tan(1.5) = 14.1.

The term ai in (2.13.28) reduces to ai = -3vq , since 9vr - 0 ,

where 3 q = 6v - 2 v + 2 . For v > 0 , a. < 0 and a* = max(-a.)

= 1166.9. The bound (2.13.29) becomes k/h < 0.02.

For 0 < x < 1 , as t -• 0.5 , x + t +• 1.5. The derivatives of

the solution v(x,t) will be very large near the singularity, which

results on a large truncation error. For fixed x , as t grows the

truncation error is expected to grow. This can be observed in Table

2.5. Figure 2.9 depicts the results of the implicit method (2.13.5)

for T = 0.5 where the approximate solutions are represented by dashed

lines and the exact solutions are represented by solid lines.

A disadvantage of this modified Crank-Nicolson method (2.13.24)-

(2.13.25) is that the bound on k/h requires knowing bounds on 3vq ,

3 r , and 3t
v#
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0.0 0.2 0.4 0.8

Figure 2.9. Numerical Solution at Time T = 0.5 for
the Implicit Method (2.13.5).

4.

5.
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III. HYPERBOLIC EQUATIONS

III.1. Introduction

The most common hyperbolic equation is the one-dimensional wave

equation

(3.1.1) 32v = c232v, -co < x < +«, t > 0,

where c is a constant. By introducing a change of variables

£ = x + ct

n = x - ct,

and using the chain rule

and

32v = c2(32v - 232 v + 32v).

For c * 0, equation (3.1.1) reduces to

32 v = 0,

which has a general solution of the form

v(x,t) = F(O + G(n),
(3.1.2)

F(x + ct) + G(x - ct) ,

where F and G are twice differentiable functions.

The change of variable % = x + ct is a translation of the

coordinate system to the left by an amount ct. This translation is

proportional to t so that a point £ = constant moves to the left

with speed c.

The portion of the situation given by

v(x,t) = F(x + ct)

represents a wave moving to the left with velocity -c,

143
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x x+c

Figure 3.1. Wave Propagating to the Left.

This wave retains its original shape. Similarly, the portion of the

solution given by

v(x,t) = G(x - ct)

represents a wave moving to the right with velocity ct, retaining

its original shape as depicted in Figure 3.2. Thus the

t-0

Figure 3.2. Wave Propagating to the Right.

general solution (3.1.2) represents the sum of two waves, one moving

to the left and one moving to the right. Furthermore, since the two

waves move in opposite directions, the wave will not retain its

original shape.

Consider the initial -value problem given by equation (3.1.1)

with initial conditions

(3.1.3)

and

(3.1.4)

V(X,O) = f(x) , -oo

+oo.9tv(x,0) = g(x), -oo <

In order to obtain a general solution, substitute the initial con-

dition (3.1.3) into the general form of the solution (3.1.2)

(3.1.5) F(x) + G(x) = f(x).

Differentiating (3.1.2) with respect to t and substituting the

initial condition (3.1.4),
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cF'(x) - cG1(x) = g(x),

and differentiating (3.1.5) with respect to x and multiplying by c

cF1(x) + cG1(x) = cf1(x).

Adding these two expressions gives

2cF'(x) = cf'(x) + g(x).

F(£) is obtained by integrating this relation over the interval [0,5],

(3.1.6) F(c) - j(f(C) - f(0)) + F(0) + ̂  /§g(s)ds.

G(n) is obtained by substituting (3.1.6) into (3.1.5),

(3.1.7) G(n) - 1 f(n) + j f(0) - f(0) - ̂  !Q g(s)ds.

Combining (3.1.6) and (3.1.7) in solution (3.1.2)

v(x,t) = ̂ (f(5) + f(n)) + ̂  /^g(s)ds,

which by substitution of the change of variable gives D'Alembert's

solution at a point (xQ,to)

(3.1.8) f(x0 " c t 0 ) }I(f(x0 + C

1 xn+ctn

TE /x-ct
ZC XQ Ct Q

From this solution (3.1.8), we see that the solution at a point

(xQ,to) depends on the initial conditions on the segment of the

initial line (x-axis) bounded by the lines x - ct = XQ - cto and

x + ct = XQ + cto, that is, the interval [XQ - ctQ, XQ + ctQ] as

depicted in Figure 3.3

x-ct=xo-cto

x0"ct0

(x0,t0)

x+ct=xo+cto

Vct0

Figure 3.3. Domain of Dependence of (xQ,to).

This interval is called the domain of dependence of the point (xQ,to)«

So the solution at a point (xQ,to) depends on x such that
x0 - ctQ < x < XQ + cto means that a perturbation of the initial
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conditions is propagated at a speed no greater than c.

From the solution (3.1.8), we see that the solution v(xQ,tQ) is

altered only if f is perturbed at XQ ± ct. However, v(xQ,to) is

altered if the initial condition on 3tv, g is perturbed anywhere in

the interval XQ - cto < x < XQ + cto- This means that a perturbation

in the velocity is propagated at all speeds up to c.

The lines x - ct = constant and x + ct = constant are called

characteristics.

Equation (3.1.1) can be written as a system of first-order equa-

tions. Let vi = 3xv and V2 = 3tv» then equation (3.1.1) can be

written in the form

(3.1.9) 9tv = A3xV ,

where v = (v., ,v 2)
T and A = (£ Jp. The initial conditions (3.1.3)

and (3.1.4) can then be written in the form

(3.1.10) v(x,0) = f(x), — < x < +«,

where .f = (f ,g) T.

Consider a general first-order system of equations of the form

(3.1.11) 3tv = A8xV + B , -oa < x < +«, t > 0

where v (v-j , ... ,v p)
T and A and 15 are matrices of order pxp whose

elements may depend on x and t. The initial conditions are given by

(3.1.12) v(x,0) = f(x), -co < x < +«.

Definition. The first order system (3.1.11) is said to be hyperbolic

if there exists a constant K and a nonsingular matrix T with

max(|T||, IT"1 |) < K,

such that

T-1A T = D

where D is diagonal, _D = diag(y| , ... , yp) where yj are real for

j = 1 p. Thus A has real eigenvalues.

It is easy to solve a first-order hyperbolic initial-value

problem (3.1 .1 1 )-(3.1 .1 2) if A is independent of x and t and

15 = 0. Equation (3.1.11) can then be written as

9tY. = A^xX

= T D T"1 3xV

or

(3.1.13) T"1 3tv = D T"1 3xV.

Since A does not depend on x or t, T and, hence T~ , does not

depend on x or t so T~ 3tv - &t(T~ v) and T"1 3xv = 3X(T" v).

Define w = T~1v, then by substitution into (3.1.13),
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(3.1 .14) 3tw = D3xw,

where _D is a diagonal matrix whose diagonal elements are the real

eigenvalues of A. The system (3.1.14) represents p uncoupled

first-order equations of the form

(3.1.15) 9tWj = yj3xWj ,

where yj is an eigenvalue of A, for j = 1,...,p. The initial

condition associated with (3.1.14), by the definition of w = T"1v, is

(3.1.16) w(x,0) = |(x)

where f(x) = T^f^x). Thus (3.1.15)-(3.1.16) reduces to a single

(prototype) equation of the form

(3.1.17) 3tv = c3xv, -oo < x < +«, t > 0

with initial condition

(3.1.18) v(x,0) = f(x), -co < x < +~.

This initial-value problem has solution

(3.1.19) v(x,t) = f(x + ct) , -co < x < +co, t > 0.

As in the case of the wave equation, the solution represents a wave

moving to the left with velocity -c. The wave retains its original

shape. The solution at a point (xo.to) depends on the initial

condition evaluated at the point XQ + ctg.

(xn,tn)

Figure 3.4

In this case, the domain of dependence of the point (xQ,tQ) is the

single point (XQ + cto,o) o n t n e initial line (see Figure 3.4).

The line x + ct - constant is called the characteristic of the

equation (3.1.19). The solution is constant along these character-

istics. To see this, consider a characteristic line x + ct = K,

where K is a constant. Write this equation in parametric form
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t m " t + c
X = S,

then, by the chain rule

, v _ , v . dt dx
s t ds x ds

= - ̂  3tv + 9xv = 0.

This shows that the derivative of v along the characteristic is 0

and, hence, v is a constant.

Definition. The domain of dependence of a point (xg,to) is the set

of points (x,0) which influences the solution at (xQ,to)«

A property of hyperbolic equations is that the domain of dependence is

finite for finite time.

The j-th component of (3.1.16) is

(3.1.20) w.(x,0) = f.(x) =£?f(x),

Twhere e^. = (0 , . .. ,0 ,1 , 0 , . .. ,0) , that is, a vector with zeros in all

elements, except in the j-th element, which is 1. The solution to the

j-th component of (3.1.15) and (3.1.20) is

Wj(x,t) = f j(x + yjt)

for j = 1, . ..,p, or

w(x,t) = (fj(x + yjt)).

By using the definition of w, v = ]T w, the solution of (3.1.9)-

(3.1.10), where A is independent of x and t and ,B = 0, is

(3.1.21) V(x,t) = T(fj(x + yjt))

where F. (x + y.t) = ̂ (T~1f(x + y,t)).

Considering the j-th component of the solution at the point

(xQ,to), we see that the domain of dependence is the point XQ + yjto

on the initial line. The multiplication of the vector (£.(x + y.t))

by the matrix T recouples the solutions of the individual components.

Thus the domain of dependence of the system at the point (xQ,tQ) is

the set of points (XQ + yjto,O), j = 1,...,p. The lines, x + yjt =

constant, gives rise to p families of characteristics, one for each

value of j = 1,...,p.

Returning to the example of the wave equation (3.1.9)-(3.1.10),

define T by

1 -1
T =

1 1
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then

r-1 =
1/2 1/2

-1/2 1/2

This gives

c 0
D = r 1 A T =

0 -c

Thus A has eigenvalues ±c. Defining w = Z"W,

1/2 1 /2H V 1

-1/2 I/2I v2

v2)

1/2(v2 -

The initial condition f = T"1f becomes

(x,0) 1/2 1/2

•1/2 1/2

1/2(f+g)

1/2(g-f)

This gives for y-| = c and |j2
 = "c

wi(x,t)

w2(x,t)

(f(x + ct) + g(x + ct))

(g(x - ct) - f(x - ct))

V2

Finally, v is obtained by multiplying w by T on the left,

1 -1 Hwi(x,t)

1 1 j|w2(x,t)

1/2(f(x+ct) + f(x-ct)) + 1/2(g(x+ct) - g(x-ct))

1/2(f(x+ct) - f(x-ct)) + 1/2(g(x+ct) + g(x-ct))

The relation between this and the solution given by D'Alembert's solu-

tion (3.1.8) can be seen by observing that v-| = 9̂ v and v2 = 3xv.

By differentiating (3.1.8) with respect to t, we obtain the first

component in (3.1.20), v-| .

Consider the first order hyperbolic system

3tv = A 3x v ,

where A = (a^j) and i t is assumed that |3x
aijI < m- With the inner

product

+ » p
(v,w) = / (I vj(x,t)wj(x,t))dx,
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define the energy E(t) of v(x,t) to be

E(t) = (v,v).

By differentiating with respect to t,

•£ E(t) = 3t(v,v)

= (3tv,v) + (v,

= (v,(A3xV - 3xA v)) .

Since 3xA v = A3xV + (3xA)v,

^| E(t) = (v,(3xA)v)

< (v,mv)

= m(v,v)

= mE(t).

Define the function G(t) = E(t)e"mt, which by differentiating

^ G ( t ) = (^ E(t))e"mt: - mE(t)e"mt

= e"mt(dt E(t) " m E ( t )> < °«

Thus G(t) is a decreasing function of t and G(t) < G(0) which

implies that

E(t)e-mt < E(0)
or

E(t) < E(0)emt.

This is the basic energy equality for linear hyperbolic equations.

In the case of constant coefficients, m = 0 so we have

E(t) = E(0) and the energy is conserved.
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III.2. The Courant-Friedrichs-Lewy Condition

The intuitive idea behind the Courant-Friedrichs-Lewy (CFL)

condition is that the solution of the finite difference equation

should not be independent of any of the data which determines the

solution of the partial differential equation, unless it can be shown

that the data omitted has a negligible effect.

Definition. The numerical domain of dependence of a finite difference

method at a point (ih,nk) on the grid is the set of points (jh,O) on

the initial line which influences the solution at the point (ih,nk).

Suppose the domain of dependence at the point (ih,nk) of the

finite difference method D^ does not contain the domain of

dependence at the point (ih,nk) of the partial differential equation

D. Let D-| denote the set of points in D not contained in D^.

Suppose somewhere in D-j the initial data is perturbed. The solution

of the finite difference equation at the point (ih,nk) will not be

affected by this perturbation of the initial data. Thus, it will be

impossible for the solution un of the finite difference method to

converge to the solution of the partial differential equation with the

perturbed initial data as h,k -• 0.

Definition. A finite difference method is said to satisfy the Courant-

Friedrichs-Lewy (CFL) condition if the domain of dependence of the

solution of the finite difference equation includes the domain of

dependence of the solution of the partial differential equation at all

points (ih,nk). The CFL condition is necessary for stability. This

follows from the above argument.

Typically, a finite difference method that satisfies the CFL

condition will have a numerical domain of dependence that contains

points not contained in the domain of dependence of the partial

differential equation. (This will be exemplified below.) These

additional points in the numerical domain of dependence result in

additional initial data determining the solution of the finite

difference equation. This gives rise to an error. However, the

contribution of this additional data tends to 0 as h,k •• 0.

Consider the prototype hyperbolic equation

(3.2.1) 3tv - c3xv , -oo < x < +«, t > 0

where c is a constant, with initial condition

(3.2.2) v(x,0) = f(x), -« < x < +».

Approximate the prototype equation (3.2.1) by a finite difference

method of the form
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un+1 _ °2
Ui

where A and A are not equal to zero,-m- m« n

The solution at the point (ih,(n+1)k) depends on the solution

at m-| + m2 + 1 points at the previous time level, ((i-m-| )h,nk) , . .. ,

((i+m2)h,nk). The numerical domain of dependence of the point

(ih,(n+1)k) is bounded by the two lines with slopes -k/m2h and

k/m-|h as depicted in the Figure 3.5

Figure 3.5. Numerical Domain of Dependence

These slopes are negative and positive, respectively. The equations

of these lines through the point (ih,(n+1)k) are given by

and

L1 : t <n+1>k " ^

: t - (n+1)k = ̂ -£ (x - ih)

These equations intersect the initial line (t = 0) at the points

((i+m2(n+1) )h,0) and ((i-m-| (n+1) )h,0) , respectively. Thus, the

numerical domain of dependence of the point (ih,(n+1)k) consists of

the (m-| + m2)(n+1) + 1 points in the interval [ (i-m-| (n+1) )h,

The characteristics of the prototype equation (3.2.1) have the

form

x + ct = K

where K is a constant. This represents a family of lines with slope

-1/c. The domain dependence of the prototype equation (3.2.1) at the

point (ih,(n+1)k) is the point (ih+c(n+1)k,0) on the initial line
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There are two cases to consider corresponding to the sign of c. If

c > 0, then (3.2.4) is satisfied if the slope of line L-| is greater

than or equal to the slope of the characteristic, that is,

-k 1
^ h > c

This condition may be written as

If c < 0, then (3.2.4) is satisfied if the slope of line L2 is

less than or equal to the slope of the characteristic, that is,

m^h < " c = T^T "

This condition may be rewritten as

| c| k/h < m-| .

The CFL condition for a finite difference method of the form (3.2.3)

approximating the equation (3.2.1) may be summarized as

(3.2.5a) c £ < m2 if c > 0,

(3.5.5b) -c £ < m1 if c < 0.

Suppose we approximate the prototype equation (3.2.1) by

n+1 n

which may be written in the form of (3.2.3)

/o o c \ n+1

(3.2.6) u.
n

= ui
= d

= (1

+ kcD

-Xc)un

-Xc)u"

+ n
ui
+

+

XCU

XcS

n
i+1
n

+ui

where X = k/h. In this case m-| = 0 and m2 = 1 • Suppose that c

is positive. Then by (3.2.5a), the CFL condition becomes

cx < 1.

The solution at the point (ih,(n+1)k) depends on two points at

the previous time level (ih,nk) and ((i+1)h,nk), which depend on

three points on the next previous time level (ih,(n-1)k),
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((i+1)h,(n-1)k), and ((l+2)h,(n-1)k), and so on until the initial

line (t = 0) is reached where the solution depends on n+2 points

(ih,0),((i+1)h,0),...,((i+n+1)h,0). The numerical domain of

dependence of the point (ih,(n+1)k) consists of the n+2 points in

the interval [ih,(i+n+1)h] as depicted in Figure 3.6

t

nk

(n-l)k

(n-2)k

(n-3)k

2k

k

nk

/

\

( i h

\

\

»

\

\

slope - k/h

Figure 3.6

The numerical domain of dependence of the point (ih,(n+1)k) is marked

by "x".

To consider the stability of method (3.2.6) take the discrete

Fourier transform,

U n + 1 ( 5 ) :

p(C) =1 - cx + cxe

where the symbol

For cx < 1,

| p ( O I < M - c x | + | c x e " 1 5 |

= 1 - cx + c x | e " i C |

= 1.

Thus, for cx < 1, the von Neumann condition is satisfied and the
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finite difference method (3.2.6) is stable.

To determine the accuracy of the method, expand v in a Taylor

series about the point (ih,nk). Assume that v is twice continuously

differentiable so that by equation (3.2.1),

and

vf 1 - v? _ ^ o n 2
^ 0? + o(kz),

D+Vi = (8xv)i + I(8xv)i + 0 ( h 2 )-

And by using the prototype equation (3.2.1),

(3.2.7) V"+1
k-

 V" . C D + Vn .

Thus the finite difference method (3.2.6) is consistent and accurate

of 0(k) + 0(h).

From (3.2.7) we see that the finite difference method (3.2.6) is

also consistent with the equation

(3.2.8) atv = c3xv + (̂ 2 " "^2~~^
9xv

and

n+1 n
V i

 k
 V l - cD+v

n = 0(k2) + 0(h2).

Thus the finite difference method (3.2.6) approximates equation

(3.2.8) to 0(k2) + 0(h2). Equation (3.2.8) resembles a diffusion

equation.

Since the finite difference method (3.2.6) approximates equation

(3.2.8), the solution to (3.2.6) must contain some diffusion. However,

this method is used to solve the advection equation (3.2.1). Thus the

diffusion introduced is a result of the finite difference method and

is "numerically" introduced. This diffusion is called numerical

diffusj/oil and the term ch/2 -c2k/2 is called the coefficient of

numerical diffusion.

Next, consider the case in which the coefficient c is negative.

Then by (3.26b), the CFL condition becomes

-ck/h < m-| = 0
or

X < 0,

which is an impossible condition. Thus, the CFL condition cannot be

satisfied by the finite difference method (3.2.6) with c < 0 and, as

a result, the method is unstable for c < 0. The domain of dependence

of the prototype equation (3.2.1) of the point (ih,(n+1)k) with c < 0
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is the point ((ih + c(n+1)k),0). This point lies to the left of

point (ih,0) since c < 0 and hence, cannot lie in the numerical

domain of dependence of (3.2.6) [ih,(i+n+1)h] for any positive

choice of k and h. This is depicted in Figure 3.7

slope - -

domain of dependence
of (3.2.1) with c<0

Ok

numerical domain of
dependence

Figure 3.7. Numerical Domain Dependence of unn+1 un + kcD,un
u+u..

A remedy would be to consider a finite difference method whose

numerical domain of dependence of (ih,(n+1)k) lies to the left of

the point (ih,0). For example, consider the finite difference method

(3.2.9)

which may be written in the form

un+1 - un + kcD_un

= (1 + Xc)un -

= (1 + Xc)un -

This is in the form of (3.2.3) with

the CFL condition becomes
m-j 1 and

(3.2.10) -ex < 1.

0. With c < 0,

The solution at the point (ih,(n+1)k) depends on two points at the

previous time level ((i-1)h,nk) and (ih,nk). This dependence may

be carried to the initial line where we see that the numerical solu-

tion at (ih,(n+1)k) depends on the n+2 points ((i-(n+1))h,0),



157

( (i-n)h,O),...,(ih,O) . Thus the umerical domain of dependence of the

finite difference method (3.2.9) at (ih,(n+1)k) consists of the n+2

points in the interval [(i-(n+1))h,ih]. If the CFL condition (3.2.10)

is satisfied, then the domain of dependence of the equation (3.2.1)

((ih + c(n+1)k,0) lies in the numerical domain of dependence. For

with c < 0,

ih + c(n+1)k < ih,

and since, by (3.2.10), ck > -h,

(i - (n+1))h < ih + c(n+1)k < ih.

To consider the stability of the method (3.2.9) take the discrete

Fourier transform,

where

For

the

-cx

symbol

< 1 , 0 < 1

un+1

P(O

+ CX < 1 ,

I P C O I <

=

_

(c) -

= 1 +

and

M +

1 +

1 +

p(C)un(O

cx - cxe1

CX| + |-c

cx - c x l e 1

CX - CX =

X€

1.

Thus, for -cX < 1, the von Neumann condition is satisfied and the

finite difference method (3.2.9) is stable.

The accuracy of the method is determined as in the case of

method (3.2.6),

(3.2.11)
vn+1

Thus, the finite difference method (3.2.9) is consistent and accurate

of 0(k) + 0(h). Again, as in the other method, from (3.2.11), the

finite difference method (3.2.9) is also consistent with the

diffusion type equation

(3.2.12) 8t

and

vn+1 - vn

J_v" = 0(k2) + 0(h2).

If c > 0, then by (3.2.5a) the CFL condition becomes

ck/h < m2 = 0.

This gives rise to the impossible condition X < 0. So the CFL con-

dition cannot be satisfied by the finite difference method (3.2.11)



158

with c > 0 as a result, the method is unstable for c > 0. The

domain of dependence of the prototype equation (3.2.1) of the point

(ih,(n+1)k) with c > 0 is the point ((ih + c(n+1)k),0). The point

lies to the right of the point (ih,0) since c > 0 and, hence,

cannot be contained in the numerical domain of dependence of (3.2.11)

[(i-(n+1))h,ih] for any positive choice of k and h. This is

depicted in the Figure 3.8.

\

A
/

\
N \ s

— —

numerical domain
of dependence

Ok

domain of dependence
of (3.2.1) with c>0

Figure 3.8. Numerical Domain Dependence of
n+1 kCD+u

n.

In summary, if c > 0, then method (3.2.6) is stable for

cx < 1 and if c < 0, then method (3.2.11) is stable for -ex < 1.

The two methods discussed in this section are first order accu-

rate in space. In an attempt to improve the accuracy in space,

consider a centered difference approximation to the term 9xv. It was

shown in Section II.6 that

v ? - <v>? + °<h2>-
This gives rise to the finite difference method

or

(3.2.13)
n+1

This finite difference method is consistent with (3.2.1) and accurate

of 0(h) + 0(h2).
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We may rewrite (3.2.13) in the form of (3.2.3)

(3.2.14) un+1 - -cxS~1u£ + un + cxS+u?

where m-| = m2 = 1. If c > 0 by (3.2.5a) the CFL condition becomes

cx < 1

and if c < 0 by (3.2.5b) the CFL condition becomes

-ex < 1.

For arbitrary c # 0, the CFL condition is

1

To analyze the stability of the finite difference method (3.2.13) take

the discrete Fourier transform

un+1(c) = p(C)un(O

where the symbol

p(S) = -cXe*-? + 1 + c e"1*

= 1 - iexsin 5.

This gives rise to

I P U ) | 2 = P(O"P(!7 - 1 + c2X2sin2£ > 1

for any x not equal to zero. Thus the von Neumann condition is not

satisfied and the finite difference method (3.2.13) is unstable for

any choice of X.

This method shows that the CFL condition is not sufficient for

stability. For this finite difference method satisfies the CFL

condition provided that X < 1/|c|. However, the method is

unconditionally stable.

In order to understand why the method is unstable, consider the

individual components. The time derivative depends on the two points

(ih,(n+1)k) and (ih,nk) while the spatial derivative depends on

the two points ((i-1)h,nk) and ((i+1)h,nk). The value of the time

derivative at (ih,(n+1)k) using the prototype equation (3.2.1) with

the space derivative approximated by DQ is

and the value of the time derivative at ((i+2)h,nk) is

These two are coupled by the point u n
+ 1. Similarly, the value of the
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time at (i-1)h,nk) is

i - ui-2

and the value of the time derivative at ((i+1)h,nk) is

These two are coupled by the point un. However, those two groups are

uncoupled. Thus, the advection occurs independently on two separate

grids whose union gives the entire grid, one corresponding to grid

points ih where i is even, and the other corresponding to grid

points ih where i is odd. As seen in Figure 3.9, the advection

on the mesh marked "x" occurs independently of the advection on the

mesh marked by "o"

nk

(i-2)h (i-1)h ih (i+1)h (i+2)h (i+3)h

Figure 3.9

A remedy, suggested by Lax [21], is to replace the un term

approximation to 3t in (3.2.13) by an average ^(u^-i + ui_-|)*

gives

in

(3.2.15) n+1 1 / n . n \ • i ^ nu. = 7(u i + 1 + u.^) + kcDQu. .

Since m-| m2 = 1 , the CFL condition remains the same

|c|x < 1.

This method may be written in the form

so by taking the discrete Fourier transform

un+1 (O

where
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= cos 5 - icXsin 5.

This gives rise to

| P U ) | 2 = P ( O " P T I 7 = cos2? + C2x2sin2c

= 1 - (1 - C2x2)sin2(£).

For | c | X < 1, 0 < 1-c2X2 < 1 and, hence, |pU)| 2 < 1.

Thus, for |c|x < 1, the von Neumann condition is satisfied and the

method (3.2.15), known as the Lax-Friedrichs method, is stable.

We must determine the accuracy of the Lax-Friedrichs method.

Expand v in a Taylor series about the point (ih,nk). The average

is a second order accurate approximation to v?, that is,

I(vi+1 + vi-l} = vi + 72(3xv)i + 0 ( h 4 )-

However,

n+1 J/ n . n ' N «

(3.2.16)
 Vl " 2 7 + 1 ̂  - (3tv)

n
 + |(9

2v)» - ̂ O 2 v ) ^ + 0(h
4/k)

= O t v ) " + 0(k) + 0(h).

The division by k in the dividend difference is responsible for the
o

reduction from 0(h ) to 0(h). By substituting into (3.2.15),

0(k) + 0(h)

Thus, the Lax-Friedrichs method is consistent with the prototype

equation (3.2.1) and accurate of 0(k) + 0(h).

How does the inclusion of the average term stabilize the method

(3.2.13)? Observe that the Lax-Friedrichs method (3.2.15) may be

written in the form

(3.2.17)

By retaining the 82v term in (3.2.16),
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2

- O t v ) ^ - cOxv)i " 2fc
(3xv)l + 0(k) + 0(h2)'

Thus, the Lax-Friedrichs method (3.2.15) or (3.2.17) is also con-

sistent with the diffusion type equation

3t v
tl

+ 2k

and is accurate to 0(k) + 0(h2).

Thus the Lax-Friedrichs method as represented by (3.2.17)

involves advection and diffusion. Consider the time derivative at the

point (ih,(n+1)k). The diffusion term ^" D+D.ui couples the two

uncoupled grids because it contains the term un.

III.3. Algebraic Characterization of Accuracy

Consider the prototype equation (3.2.1)

3tv = c3xv, -• < x < +«, t > 0

approximated by the finite difference method (3.2.3).

where Aj are constants. Recall that by taking the discrete Fourier

transform of (3.2.3),

un+1(c) = pU)un(O

where the symbol p(O is given by

(3.3.1) p(C) = I A.e"ij5.
J

The following theorem was proved by Lax [22] .

Theorem 3.1. Consider the advection equation (3.2.1) approximated by

a finite difference method of the form of (3.2.3). Suppose the finite

difference method is accurate of order (P1,P2) anc^ k * 0(h) » then

(3.3.2) p(5) - e'
k a ? / h + O(|c|P+1)
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where p = min(p.j ,P2> .

Proof: By the definition of accurate of order (Pi,p?)»

m2
vn+1 = i A.vn

+1 + k(O(k
 1) + 0(h 2 ) ) .

Since k = 0(h) and p = min(p-|,P2)» we have

m2

v"+1 = I A.v" . + kO(kP).1 J--*, J 1+1

By expanding each term in (3.3.3) in a Taylor series in space about

th point (ih,nk), we obtain

v f 1 - vn + k3tv^ +...+ ^ 3™vn +...+ O(kP+1).

Using the equation (3.2.1), provided v is sufficiently smooth,

3™v = cm3™v. Substituting into the Taylor series for v? ,

(3.3.4) vf 1 = v!? + kc xv? +. ..+ - ^ f
m itf *. ..+ O(kP+1 ).

Similarly,

(3.3.5) vn
+j = v

1? + jh3xv^ + ̂ -2 a*v» +... .

By substituting (3.3.5) into (3.3.3),

A

while, interchanging the summation,

(3.6) vj+1 - I (^
1 4=0 j=-m1

By equating the coefficients of 3^vi i n t n e r i 8 n t hand side of

(3.3.6) with those of the Taylor series for vn+1 given by (3.3.4),

we obtain for i = 0

I A. = 1
= -m1

 J

and for i = 1 , ... ,p
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£ n 2

xvi = (.f_m
 AjTT 'Vi •

Hence, for 0 < £ < p, by multiplying through by

mo

j = -tn1
 J

(3.3.7) -^ (^^•) j t = Z

Expanding ez in a Taylor series about z = 0 and evaluating at

z = -ik^c/h,

e-ik?c/h = P 1 ( z i M C ) ^ + 0 ( ( - % P + 1 ) .

Since k = 0(h) and thus, k/h - 0(1),

(3.3.8) ? -1

Similarly, by evaluating the Taylor series for ez at z =-ij£,

(3.3.9) Z -I (-ijO£ = e" i j C + 0 U p + 1 ) .

However, summing (3.3.7) for i = 0 p

£=0 U ll £=0 j = -

m2 p
Z A. Z

j^-m- J £=0

But then, by substituting (3.3.9) in the right-hand side,

PZ 4 (^L)1 = Z2 ACe-1^ +0(cP+1))
£=0

= p(5) - O ( C P + 1 ) .

By replacing the left-hand side with (3.3.8), the result (3.3.2),

e-ik£c/h =
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is obtained.

What is the significance of this result? If a finite difference

method is stable, then the von Neumann condition is satisfied and

|p(£)| < 1« In this case, considering the symbol p(O a complex

function p(?) lies inside the unit circle in the complex plane as

depicted in Figure 3.10.

Figure 3.10

Stability indicates how close the entire curve given by p(£) is to

the unit circle. This is a global property. Using (3.3.2), we can

determine how close the curve given by p(O is to the unit circle in

the vicinity of £ = 0, the tangent point (1,0). This is a local

property. The more accurate the finite difference method, the smaller

| c|P+^ becomes for £ near 0 and, hence, the closer the curve

given by p(c) is to the unit circle.

As an example, consider the prototype equation with c = 1 ,

(3.3.10) 9tv = 8xv.

Suppose this equation is approximated by

u n + 1 = uj + kD+u!? .

It was shown in Section III.2 that this method was stable for

X = k/h < 1 and the symbol p(|) is given by

p(O - 1 - X + Xe-U.

This represents a circle with radius X and center 1-X. This is

depicted in Figure 3.11.
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Figure 3.11

Suppose that equation (3.3.10) is approximated by

n+1 kD_un

It was shown in Section III.2 that this method is unconditionally

unstable for c > 0. The symbol p(£) of this method is

p(O = 1 + X - XeU.

This also represents a circle of radius X. In this case, however,

the center of the circle is 1 + x so that the entire circle lies

outside the unit circle as depicted in Figure 3.12,

Figure 3.12

The unconditionally unstable approximation to (3.3.10) given by

(3.3.11)

has symbol

un+1 = un

= 1 - ixsin £•

This represents a vertical line segment as depicted in Figure 3.13.
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Figure 3.13

In many cases, it may be possible to modify an unstable finite

difference method so that it becomes stable. For an unstable finite

difference method, the symbol p(O lies outside the unit circle for

some 0 < £ < 2*. If the CFL condition is satisfied by the finite

difference method, then terms of OChQ) where q is sufficiently

large may be added so that the symbol of the m&dXfied finite

difference method decreases for large values of £ is an attempt to

stablizize the method.

For example, any term which contains terms of the form D+D_,

(D+D_)2,... can be used to decrease the symbol p(s) for large

values of £.

An example of a modified method which is stable is the Lax-

Friedrichs method (3.2.21). The finite difference method (3.3.11) is

unconditionally stable, however, it satisfies the CFL condition

provided that X < 1. In the Lax-Friedrichs method, the term —D+D un

was added to the unstable finite difference method (3.3.11) to obtain

n+1 kDQu un

Qu

This method is stable for X < 1. The symbol is given by

= cos % - ix sin

The term j D+D_u? results in replacing the 1 in the symbol (3.3.11)

with cos £. The graph of the symbol is an ellipse contained in the

unit circle with major axis of length 2 and minor axis of length 2x as

depicted in Figure 3.14.
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P(C)

Figure 3.14

III.4. Finite Difference Methods with Positive Coefficients

Consider the differential equation

3 t v = 3 x v - « > < x < + o o , t > 0

with initial condition

V(X,O) = f(x), -co < X < +«,

where f is twice differentiable. Let

grid depicted in Figure 3.15.

t < 1 , and consider the

\

v(x,O) = f(x) 1

Figure 3.15

Let N be chosen such that h = 1/N. Then for a given value of t,

k = t/N.

Consider the finite difference method

(3.4.1) uf1 D+u» .
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It has been shown in Section III.2 that this method satisfies the CFL

condition and is stable for k/h < 1.

Expanding the exact solution v(x,t) in a Taylor series with

remainder about the point (ih,nk),

(3.4.2) - D+v
n = a£v(ih,t*) - j 3xv(x*,nk))

where ih < x* < (i+1)h and nk < t* < (n+1)k. Since f is twice
2 2differentiable, 3 v and 8 v exist and the Taylor series with

remainder exists. Let M be chosen so that If"(x)I < M, then
2 2

I 3«_v| , I 3 v| < M. This follows since the exact solution v(x,t)
2 2= f(x + t), so that 3 v = 3xv = f"(x + t). The truncation error T

is given by

(3.4.3)

from which an upper bound on T is

\ 3x\ 3xv(x*,nk))

Since k/h = t < 1,

(3.4.4) |T| < hM.

The finite difference method (3.4.1) is stable in the maximum norm (it

has been shown to be stable in the £2~ n o r m v^-a t n e v o n Neumann

condition). By (3.4.1),

iuf1i < <i -fri»»i •&«;+,i .

since T- = t < 1 , andn

|u^+1|

This is true for any i, so

Define the error en by e^ = u^ - vP where v1? = v(ih,nk). By sub-

tracting (3.4.2) from (3.4.1),

kN n , k n
i h ei4- K)e.

where T is given by (3.4.3).
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Again, since k/h = t < 1,

|e"+1| < d - £)|e!

<<1 -K>' e nW +

using inequality (3.4.4). This gives

. . n-1,

,1 + k|t|

en'max + k h M'

khM

+ 2khM

. .< lieOllmax + (n+1)khM

(n+1)khM = thM < hM,

since t < 1. Therefore «en+1 Umax • 0 a s h • 0. This shows con-

vergence in the maximum norm. Look at the solution of the finite

difference method (3.4.1) at time nk'. For t = k/h,

u n = (l_t)un-1 + t un-1

)un;2 + t2un;2

j=0 J L

that is, u n is a polynomial of degree n in t with the coef-

ficients depending on u9 = f(ih). We denote the polynomial, called

the Bernstein polynomial (see Strang [43]), by Bnf(t). B n is a

linear operator that acts on the initial condition f. Since Bnf(t)

= un and the exact solution is v(x,t) = f(x+t), if |f"| < M, then

by (3.4.5),

(3.4.6) |Bnf - f| < hM.

This is an approximation theorem.
Some properties of the polynomial Bnf(t) are:

1) Bn is linear.

2) Bn preserves inequalities, that is, if f < g, then Bnf < Bng.

where a is a constant function.

then |Bnf - f| < 2/N.

Property 1 follows from the finite difference method (3.4*1)

being linear. Since k/h = t < 1, the finite difference method

(3.4.1) has positive coefficients. Thus, if f > 0, then Bnf > 0,

which proves Property 2. By consistency, the sum of the coefficients

3)
4)
5)

Bna
Bnt
If

= a,
= t.
f(t) =
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of the finite difference method is 1. For the method (3.4.1),

(1 - j|) + ̂  = 1. Thus (1 - 7-)c + 7- c = c from which Property 3

follows. Property 4 follows from the finite difference method (3.4.1)

being first order accurate; it is exact for polynomials of degree 1

or less. If f(t) = t 2, then f"(t) = 2 and hence, M = max|f"(t) = 2.

Substitution into (3.4.6) with h = 1/N gives Property 5.

Suppose that f(t) is merely continuous on [0,1], then since

[0,1] is compact, f is uniformly continuous and uniformly bounded

on [0,1] with bound M. Thus |f(t)| < M for every t - [0,1].

The definition of uniform continuity states that for any e > 0, there

exists a 6 > 0 (independent of e) such that if |t - tQ| < 6, then
|t-t Q|

2

|f(t) - f(t Q)| < e. Suppose |t - t Q| > 5, then ^— > 1. This
6

gives the following bound

|f(t) - f(t O)| < |f(t) + |f(t O)| < 2M

< 2M(t - t O)
2/« 2.

Combining this with the bound for 11 - to | < 6,

2M(t-t n)
2

|f(t) - f(t Q)| < z + Y^- ,
<5

which may be written in the form

2M(t-t n)
2 2M(t-t n)

2

(3.4.7) -e T^- < f(t) - f(t Q) < z + -j-^-.

Since Bn preserves inequalities (Property 2), applying Bn to

(3.4.7)

(3.4.8) - e - - ^ B n ( t - t 0 ) 2 < Bnf(t) - f(tQ) < z + ^ | Bn(t-tQ)2

6 6

where, by Property 3, Bnf(tQ) = f(t()). By expanding (t-tQ)2 out,

treating tQ as a constant, using Properties 1), 3), and 4),

2M ^2 2M 2 2-,
JL n 0 J2. n 0 0

[(B nt
2 - t 2) + (t-t 0)

2],

which by Property 5) ,
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2 ^ u t*. 4. \2 < 2 ^ 2 4- 2^fi- •- N 2

-T Bn(t - tQ) < -T • N + -TCt " tO) *
0 0 0

By substitution into (3.4.8),

|Bnf(t) - f(tQ)| < e + -^ + ̂ |(t - t Q )
2 ,

and letting t -• tQ,

|Bnf(t) - f(t)| < z

Thus, as N becomes sufficiently large, |Bnf(t) - f(t)| becomes

arbitrarily small, which is the Weierstrass approximation theorem.

We have, in fact, proved that the solution of the finite

difference equation converges to the solution of the partial differen-

tial equation whenever the initial condition is merely continuous.

This is a very important result.

Suppose the finite difference method, which is second order

accurate, could be constructed with positive coefficients (that is,

0(h2)), then the corresponding Bn would satisfy the additional

property Bnt
2 = t2. Inequality (3.4.8) would then become

-e - ̂ j|(t - t Q )
2 < Bnf(t) - f(tQ) < e + 2(t - t Q )

2

6 6

|Bnf(t) - f(tQ)| < e + ̂ (t - t Q )
2 ,

6

and letting t •• tQ,

|Bnf(t) - f(t)| < e,

for arbitrary e. Hence, Bnf(t) = f(t). These results are

summarized in the following theorem.

Theorem 3.2. If a finite difference method (for linear equations)

has positive coefficients, then it has either first-order accuracy

or infinite order accuracy.

As an example of such a method, consider the finite difference

method

u f 1 = u!? + kcD+u.

and the Lax-Friedrichs method

1,

If ĉj- = 1 , the upper limit on the CFL condition, then both methods

reduce to
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This method has infinite order accuracy since it follows the charac-

teristic x + ct = constant from the initial line. The numerical

domain of dependence of the point (ih,(n+1)k) in this case is the

single point ((i+n+1)h,0). The domain of dependence of the prototype

equation (3.2.1) of the point (ih,(n+1)k) is the single point

(ih + c(n+1)k,0). For ĉ - = 1 or ck = h, these points are the same

and the numerical domain of dependence is identical to the domain of

dependence of the prototype equation.

This theorem will turn out to have an important consequence. In

the case of more than one equation, the accuracy is, in fact, at most

one, except in extraordinary cases.

III.5. The Lax-Wendroff Method

Consider a finite difference method that approximates the proto-

type equation (3.2.1)

3tv = c8xv

with the following properties

1) u n depends on u?_ 1, u
n, and u?+^ and

2) the accuracy of the finite difference method is 0(k2) + 0(h 2).

In this case the finite difference method is essentially*

uniquely determined and is called the Lax-Wendroff method (see Lax-

Wendroff [25]). To see this write out the finite difference method so

that Property 1) is satisfied. The method takes the form

(3.5.1) u«+1 = I A^u1?

" A-iui-i + V ? + Vi+i-

Upon substitution of the exact solution v(x,t) into (3.2.1),

(3.5.2) v^+1 - A . 1 v ^ 1 - AQv!? - A i V
n
+ 1 = k(O(k2) + 0(h2))

which satisfies Property 2. Expanding the exact solution v in a

Taylor series about the point (ih,nk) and substituting into (3.5.2),

We use "essentially", for no finite difference method is uniquely
determined, because a higher order term could be added and still
satisfy Properties 1 and 2. For example, consider

un+1 = \ A.s{un + 0(h6)

that is, add on an 0(h6) term and obtain another finite difference
method which is still consistent.
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(vn + k(3 tv)J + | 2 Oj:v) n + 0(k3)) - A^CvJ - h(axv)J + 72O^v)n

+ 0(h3)) - AQvn - A^v" + h(3xv)J •+ 72Oxv)? + 0(h3))

- k(O(k2) + 0(h 2)),

which is equivalent to

(1 - (A^ + AQ + A1))v^ + (k(3tv)
n - (A1 - A_.,)h(axv)2) + df (3

2v)n

- (A_1 +
 Ai)| 2Ox v )i } " k(°<k2) + °(h2)> " MO(k2) + 0(h2)).

2 2 2
Using the prototype equation (3.2.1), 3tv = c 9xv which gives by

substitution

(1 - (A_1 + AQ + A1))vJ + (kc - (A1 - A ^ W O ^ j J

(AM1+ A ^ ^ O ^ V ) ? + k(o(k2) + o(h2)) = k(o(k2) + o(h2)).

In order to satisfy Property 2, the first three terms must be zero

which gives rise to 3 equations for the coefficients A_1 , A Q , A-| ,

A.-| + A Q + A1 - 1 ,

A-j - A_-| = cX ,

A_1 + Ai = c 2X 2 ,

where X = k/h. This yields A - 1 = ^(c
2X 2 + ex), A Q - 1 - c

2x 2, and

A1 = ^-(c2x2 - ex). Substitution into (3.5.1)

n+1 A 2 2 1 N n , ,- 2 2. n
u i = (-̂c X - 2-cx)ui_1 + (1 - e x )ui

which may be rewritten in the form

u
n + 1 _ u

n

(3.5.3) - i - ^ ^ = cD Qu
n

or

2 2
n+1 n k c n n k c

To analyze the stability of the Lax-Wendroff method (3.5.3) take

the discrete Fourier transform

un+1(O = n
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where the symbol

= 1 + c X (cos t - 1) - icX sin £,

so that

I p ( e ) | 2 = p d O p T l T = (1 + c 2 x 2 ( c o s I - 1 ) ) 2 + c 2 x 2 s i n 2 £

= 1 + c ^ X ^ c o s I - 1 ) 2 + 2 c 2 X 2 c o s I - c 2 X 2 + c 2 X 2 ( s i n 2 t - 1)

= 1 + c H V c o s I - T ) 2 + c 2 X 2 ( c o s I - 1 ) 2

= 1 - c 2 X 2 ( 1 - c 2 X 2 ) ( c o s I - 1 ) 2

- c 2 X 2 )

By (3.5.1) mi = m2 = 1 in (3.2.3), so that by (3.2.5a) and (3.2.5b),

the CFL condition is

|c|x < 1.

Hence if |c|\ < 1, we have |p(£)|2 < 1 and the von Neumann

condition is satisfied. Thus the Lax-Wendroff method is stable if

|c|x < 1.

This method is similar to the Lax-Friedrichs method in that the

unstable method

un+1 = un + kcDQu
n

was made stable by adding a term of the form D+D_u^. The only dif-

ference is the coefficient of this term. The coefficient used in the

Lax-Wendroff method was chosen so that the method is second order

accurate.

Observe that the Lax-Wendroff method is also consistent with the

diffusion type equation

kr 2 ?

The symbol may be written in the form

1 - c2\2 + C2 X2 c o s j? . i c X sin j? .

The term c2\2 COs £ - icX sin I represents an ellipse with center at

the origin in the complex plane. The graph of p(£) represents an

ellipse whose center is translated by 1 - c2x2 as seen in Figure 3.16.
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Figure 3.16

Observe that the Lax-Wendroff method reduces to a method with

positive coefficients (3.4.9)

where c\ = 1. It was seen in the previous section that this method

has infinite order accuracy.

III.6. Dispersion and Dissipation

A partial differential equation couples points in space and

time. The linear properties of a partial differential equation may be

described by the action of a wave in space and time. Consider the

effect of the partial differential equation on a single wave in space

and time called a Fourier mode

p is the wave number which

2u/A. In general, u>

(3.6.1) v(x,t) = ve1'

where w is the frequency of the wave,

is related to the wave length A by . p = 2-rc/A. In general, u> is a

function of p. Upon substitution of this Fourier mode into the

partial differential equation, we obtain an equation which gives w(p)

called the dispersion relation. The frequency w(p) may be real or

imaginary. If a) is real, then oscillations or wave phenomena are

being described by the partial differential equation. If to is

imaginary, then the Fourier mode grows or decays depending on the sign

Of 0).
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Consider the diffusion equation

(3.6.2) 3tv = a3^v .

By substitution of (3.6.1) into the diffusion equation (3.6.2),

which gives rise to the dispersion relation iu = -a&2, or

(3.6.3) a) = iB2 .

Since w is imaginary, the Fourier mode decays with time, for by

substitution of (3.6.3) into (3.6.1), we obtain the Fourier mode for

the diffusion equation (3.6.2)

v(x,t) = V

The term e~a& t produces decay with time.

Now, consider the advection equation given by the prototype

equation (3.2.1)

9tv = c9xv .

By substitution of (3.6.3) into the advection equation (3.2.1),

ia,vei(ut+6k) = iceve1(o)t+6t),

which gives rise to the dispersion relation

(3.6.4) a) = c$.

Upon substitution of (3.6.4) into (3.6.1), we obtain the Fourier mode

for the advection equation

v(x,t) = ve i 6 ( x + c t )

We see from this that each Fourier mode is propagated with unit ampli-

tude (to real) at a constant speed c independent of the wave number 0

and, hence, independent of the frequency.

We would like to investigate the corresponding properties of the

finite difference methods. We are particularly concerned with the

time scales (frequencies) of the problem and their dependence on the

wave number (or wave length).

Diffusion or dissipation is where the different Fourier modes

decay with time. Dispersion is where Fourier modes of differing wave

lengths (or wave numbers) propagate at different speeds.

The von Neumann condition gives vital information concerning the

stability of a finite difference method, but it gives no information

about the more detailed properties of a finite difference method such

as the properties of dissipation and dispersion.

Consider a Fourier mode associated with a finite difference

method of the form
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(3.6.5) un = ̂ ei(

where (x,t) = (ih,nk). Upon substitution of this Fourier mode

(3.6.5) into the finite difference method, we obtain the discrete

frequency w as a function of g and h and k, so that

a) = u>(B,h,k). This is called the discrete dispersion relation. Using

(3.6.5), we obtain

/o c £\ n+1 iBwk n

(3.6.6) u. = e p u. ,

and

(3.6.7) uj±1 = e
± i sV? .

There is a connection between £ used in the symbol of a finite

difference method and the wave number B. By comparing (3.6.7) with

the symbol of S+ and S_, £ = -Bh. Thus for a finite difference

method of the form

(3.6.8) un+1 = Qu?

where Q is a polynomial in S+ and S_, using (3.6.5)-(3.6.7) ,

gives rise to the discrete dispersion relation e*-&wk = p(-$h).

We shall now make precise the idea of a finite difference method

being dissipative and dispersive. Suppose the finite difference

method (3.6.8) approximates the prototype equation (3.2.1) to order q.

Furthermore, suppose that the finite difference method (3.6.8)

approximates

to order q+2. If q+1 is odd (even), then a is the coefficient of

numerical dispersion (dissipation) and b is the coefficient of

numerical dissipation (dispersion). Thus even-order terms in the

remainder of the truncation error produce dissipation (or diffusion)

and the odd-order terms in the remainder of the truncation error

produce dispersion.

Definition. A finite difference method (3.6.8) is called dissipative

if for all £, |p(£)| < 1 and |p(O| < 1 for some £, where p(O

is the symbol of Q.

Definition. A finite difference method (3.6.8) is called dissipative

of order 2s where s is a positive integer if there exists a

constant 6 > 0 (independent of h, k, and £) such that

(3.6.9) |p(O| < 1 - «|5|2s

for 0 < % < ir. This restriction on £ will turn out to be crucial.

Using inequality (3.6.9), we see that solutions of dissipative

finite difference methods decay with the number of time steps. Due to
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the term U| 2 s = |-Bh|2s in (3.6.9), the decay of high frequency

modes (corresponding to large values of 5 = -8h) is much greater

than the decay of low frequency modes (corresponding to small values

of O-

Definition. A finite difference method is said to be dispersive if u

depends on 8, that is, o> is a function of g.

Consider the finite difference method

(3.6.10) un+1 = un + ckD+u
n = (1 - Xc)un + cXu"

where X = k/h. This method is stable for cX < 1. From Section III.2,

the symbol is

p(S) = 1 - cX + cXe-i-5

= 1 - cx(1 - cos 5) - icx sin 5,

and

| P U ) | 2 = (1 - cx(1 - cos s))2 + c2x2 sin2 5

= 1 + 2c2x2(1 - cos 5) - 2cx(1 - cos e)

= 1 - 2cx(1 - cx)(1 - cos c)

- 1 - 4cx(1 - ex) sin2(c/2).

Therefore,

(3.6.11) |p(5)| = [1 - 4cx(1 - ex) sin2(jr/2)]1/2.

If cX < 1, then |p(O| decrease monotonically from |p(£)| = 1 at

5 = 0 to |p(?)| = [1 - 4cX(1 - cx)]1/2 at e = IT. For small values

of 5, we replace sin by the first term in the Taylor series about

5 = 0 , that is, sin z = z + 0(z2). This gives sin2(£/2) = 52/4 +

0(5'*). Upon substitution into (3.6.11), for small values of 5,

r2 1/2 9 1/2
(3.6.11) |p(5)| - [1 - 4cx(1 - cx)|-] = [1 - cx(1 - ]

By expanding /1-z in a Taylor series about z = 0,

/T^z" =1 - jz + 0(z2) .

Setting z = cx(1 - cx)52,

(3.6.12) |p(O| = 1 ^ 2

Thus the order of dissipation cannot be of order less than 2.
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By choosing 6 > jC\O - cx), inequality (3.6.9) is satisfied. So we

see that the method is dissipative of order 2.

Upon substitution of (3.6.5) into (3.6.10), using (3.6.6) and

(3.6.7),

n - (1 - cx)un + cxeiph un .

Dividing through by (3.6.5), we obtain the dispersion relation for

(3.6.10)

(3.6.13) eia)k = (1 - cx) + cxei3h = p(-fjh)

= 1 + cx(cos 8h - 1) + icx sin(eh)

= 1 - 2cx sin2(^-8h) + icX sin(gh).

Writing w as a complex number of the form u> = a + ib,

eiBuk = eig(a+ib)k = e-b3k eia&k.

Substituting into (3.6.13),

(3.6.14) e"
b e k e i a B k = 1 - 2cX sin 2^ ph) + icx sin(eh)

The real part e~b&k has already been examined using the definition

of dissipation. The real part of u>, a, is of interest as it

determines how dispersive a finite difference method is. This may be

determined using the relation

- Im(p(-Bn) )
- Re( p(_ph))

Using (3.6.14) ,

cx sin(gh)
(3.6.16) tan(agk)

1 - 2cX

Considering (3.6.16) first, a depends on $ so the method is

dispersive. For 3h near IT (high frequency terms) , tan(agk) is

near 0 so that a is near 0. So the high frequency waves are

nearly stationary. Consider now small values of gh (low frequency

modes). We shall make use of the following Taylor series expansions

about the point z = 0

sin z = z - |(z3) + 0(z5)

and

= 1 + z + 0(z2),

tan"1(z) = z - j z3 + 0(z5).
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With this we obtain cX sin(Bh) = cx(gh - ̂ -(gh)3), 2cX sin2(^gh) =

2cx(̂ -gh - l(^6h)3)2 = 2cx(^6h)2 + 0((gh)4). By substitution into

(3.6.15), using the Taylor series for y^ ,

tan(agk) = 3 ^ 2

= cxgh(1 + l(Bh)2(cX - \))

aek = tan"1 (cX0h(1 + ̂ -(Bh)2(cX - \) )).

Using the Taylor series for tan-!(z),

= cX0h(1 + l(3h)
2(cx - ̂  - |c2x2))

= cX8h(1 + 3-(Bh)2(1 - cx)(cx -

(3.6.17) a = c(1 + j(3h)2(1 - cx)(cx -

For j < ex < 1, (1 - cx)(cx - j) > 0, so that by (3.6.17), a > c.

This means for low frequency Fourier modes (small values of fl) with

j < cX < 1, the numerical solution leads to the exact solution, that

the wave is shifted ahead of the true wave. This is called a phase

error. For 0 < ex < i , (1 -ex) (cX-i) < 0, so that by (3.6.17) a < c.

This means for low frequency Fourier modes with 0 < cX < TJ- , the

numerical solution lags behind the exact solution, that is, the wave

is shifted behind the true wave. This also is a phase error. Observe

that for c\ = j or cX = 1, the second term on the right-hand side

of (3.6.17) is 0 so that a = c and the numerical solution is said

to be in phase with the exact solution.

Consider the Lax-Friedrichs method

The symbol given in Section III.2 is

p(£) = cos £ - icx sin % ,

and

|p(S)|2 = cos2 % + c2x2sin2 z

= 1 - (1 - c2x2)sin2 5 .

Therefore,

(3.6.18) |p(O| = [1 - d - c2x2)sin2£]1/2.

If | c | X < 1, then |P(£)| decreases monotonically from | P ( O | =1

at £ = 0 to |p(O| = [1 - (1 - c2x2)]!/2 at £ = TT/2 and
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increasing monotonically to |p(O| =1 at £ = ir. For small values

of % replace sin 5 by the first term in the Taylor series about

5 - 0,

_____ 9 9 9

Using the Taylor series for /1-z, with z - (1 - c A )£ ,

(3.6.19) |p(c)| = 1 - ̂ (1 - c2x2)£2.

Thus the order of dissipation cannot be of order less than 2. By

choosing 6 > ̂ (1 - c 2X 2), inequality (3.6.8) is satisfied. So the

Lax-Friedrichs method is dissipative of order 2.

Using the general form of the discrete dispersion relation, we

obtain for the Lax-Friedrichs method
= p(-0h)

= cos(Bh) + icx sin(gh).

Writing to as a complex number of the form w = a + ib, we obtain
using (3.6.12)

(3.6.20) tan(aek) = ^ ^ ^ = ex tan(ph).

By using a Taylor series about z = 0,

tan z = z + -jz + 0(z )

with z = 6h,

tan(agk) - cX6h(1 +

tan"1(cx$h(1

cxeh(1 + ̂ ($h)2(1 - c2x2))

(3.6.21) a = c(1 + ̂ (Bh)2(1 - c2x2)).

For cX < 1, by (3.6.21), a > c. This means that for low frequency

Fourier modes (small values of 6), the numerical solution leads the

exact solution.

As a final example, consider the Lax-Wendroff method (3.5.3)

The symbol p(£) given in Section III.5 is

1 - 2c2X2 sin2(|-) - icx sin £,
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and

9 9 9 9 r l / 2

(3.6.22) |p(c)| = [1 - 4c X
Z(1 - c xZ)sin (|) ]

If cX < 1, then |p(S)| decreases monotonically from |p(£)| - 1 at

C = 0 to |p(c)| = [1 - 4c2x2(i _ c2X2)]i/2 a t c = TT. For small

values of £, where |P(S)| is largest, replace sin z with the
4 E £ 4

first term of the Taylor series about z = 0, so that sin (j) = (j) .

Substitution into (3.6.22) gives

Using the Taylor series for /T^z", with z = ̂ c2X2 (1 -c2X2)£4,

(3.6.23) |P(c)| = 1 = lc
2x2(1-c2x2)c4

Thus the order of dissipation cannot be of order less than 4. By
1 2 2 2 2

choosing 6 > g-c X (1 -c X ), inequality (3.6.8) is satisfied. So

the Lax-Wendroff method is dissipative of order 4.

Using the general form of the discrete dispersion relation, we

obtain for the Lax-Wendroff method

= 1 - 2c2X2 sin2ojr eh) + icx sin(eh).

Writing w as a complex number of the form w = a + ib, using
(3.6.12)

(3.6.24) tan(ask) ^ 1
1 - 2c X sin (j $h)

Using the Taylor series for sin z, we obtain cX sin(gh)

cXBh(1 - ^-(eh)2) and 2c2X2sin2 ^ 2 2 4 ^ ^

2cX(Jr8h)2. By substitution into (3.6.24) using (3.6.15) with

z = 2c2X2sin (̂ -Bh) = 2c2X2(^eh)2,

tan(aBk) = cXBh(1 - ^(Bh)2)(1 - jc2\2(Bh)2)

= cXBh(1 - -^(Bh)2(1 - 3c2X2)) ,

aBk = tan"1(cXBh(1 - ^(Bh)2(1 - 3c2X2)))

cXBhd - ^-(Bh)2(1 - 3c2X2)) -

cXBh(1 - |(Bh)2(1 - c 2x 2 ) )
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For cx < 1, by (3.6.25), a < c. This means that for low

frequency (small values of B) Fourier modes, the numerical solution

lags the exact solution.

III.7. Implicit Methods

In Section III.2, the prototype equation (3.2.1)

9tv = c3xv

was approximated by

un+1 .
 ui + °™A • if c > 0 ,

1 un + ckD__un , if c < 0 ,

which is stable for |c| X < 1 where X = k/h. It was seen that

u i + 1 = ui + ckD-ui

is unconditionally unstable for c < 0 because the numerical domain of

dependence does not contain the domain of dependence of the prototype

equation. Similarly, the finite difference method

u?+1 = un + ckD un

l l +i

is unconditionally unstable for c > 0 for the same reasons.

Consider now the implicit finite difference method approximating

the prototype equation with c > 0

(3.7.1) un+1 - un + ckD+u
n+1.

This may be written in the form

(3.7.2) (I - ckD+)u"
+1 = un

or by expanding out I - ckD+

(3.7.21 ) (1 + cx)u? - cxu£j = ul? .

Expand the exact solution v(x,t) in a Taylor series about the point
2 2 2

(ih,(n+1)k). Assuming that v is twice differentiable, 8tv = c 9xv,

and

n + 1 v

* - cD+vf

+ 0(k2) + 0(h2) .

(3.7.3) * k * - cD+vf
1
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From (3.7.3), we see that the finite difference method (3.7.1) is con-

sistent and accurate of 0(k) + 0(h). Furthermore, (3.7.3) shows that

the finite difference method is consistent with the diffusion-type

equation

(3.7.4) atv = C9xv + (rj£- + ^j)^

accurate to 0(k2) + 0(h2). From Section III.6, this method is dissi-

pative with coefficient of numerical dissipation (or diffusion) given

by

c2k , ch
"T~ + "2 •

To analyze the stability of the finite difference method (3.7.21),

take the discrete Fourier transform,

(1 + cx - cXe" U)u n + 1(O = u n(O
or

un+1U) = P(Ou
n(O,

where the symbol p(c)

1 1

i + cx - cxe"15 1 + 2cX sin2(4) - icx sin

But then

I p(O| - P(O"P1T7 - 2 I 1 5-3 5- < 1
[1 + 2cx sin (f)]Z + cZX sin £

for any X > 0. Thus the method is unconditionally stable.

From the discussion of implicit methods in Chapter II, the solu-

tion at a point (ih,(n+1)k) depends on all points at the previous

time level. Thus the solution at a point (ih,(n+1)k) depends on the

entire initial line so the numerical domain of dependence at a point

(ih,(n+1)k) consists of the entire initial line so it contains the

domain of dependence of the prototype equation. Hence the CFL

condition is satisfied for ever X > 0.

There is the typical restriction on the time step k due to

accuracy considerations. Since the method (3.7.1) is accurate to

0(k) + 0(h), the optimal choice of k is 0(h). However, there is

one other consideration. The coefficient of numerical dissipation

(3.7.5) grows with the square of k. The larger the coefficient of

numerical dissipation, the greater the smearing of the wave.

The coefficient of numerical dissipation for the explicit method

(3.2.6) corresponding to (3.7.1) is
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ch

which, due to the negative sign, produces a smaller coefficient for

cX < 1 than for the implicit method. Another reason for the stability

requirement of ex < 1 on the explicit method (3.2.6) is that if

cX > 1, then the coefficient of numerical dissipation is negative.

The resulting diffusion type equation is not well-posed and so a stable

finite difference method is impossible.

Similarly, if c < 0 in the prototype equation (3.2.1), the

implicit finite difference method

(3.7.5) n+1 ckDun+1

is unconditionally stable and is accurate of 0(k) + 0(h).

To solve the implicit method (3.7.1), observe that in (3.7.2')

the left-hand side involves only un and u1?*] , not un*] . This

gives rise to a bidiagonal set of equations. Assume that the real line

-» < x < +oo is truncated to [a,b] . Let h = (b - a)/N denote the

grid spacing. In order to close the system of equations, a boundary

condition is required at x = b only. Observe that from the form of

(3.7.21) that a boundary condition is not required at x = a. This

agrees with the prototype equation, for a boundary condition may not be

imposed at x = a. Assume that at x = b, the boundary condition is

v(b,t) = 0. This is approximated by u^ = 0.

This leaves a system of equations written in matrix form

A un+i = un

where u11 = (u",^1, ... ,uf}_1 ) and A

matrix which is upper triangular

is an (N-1) x (N-1) bidiagonal

A =

1+cx -ex

1+cx -ex

1+CX

0

-ex

-+cx

Since A is upper triangular, the forward elimination part of Gaussian

elimination is not needed. Only the back substitution part is required.
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The finite difference method

n+1 n . , _. n
u. = u. + ckDou.

was shown (in Section III.2) to satisfy the CFL condition provided that

|c| X < 1. However, the method is unconditionally unstable.

Consider the implicit finite difference method based on this

unstable method

(3.7.6) un+1 = u£ + ckDQuf
1 .

This may be written in the form

(3.7.7) (I - ckDQ)u
n+1 = un .

or by expanding out I - ckDg,

(3.7.71) ££ u£] + uf1 - ££ u£] = u? .

By expanding the exact solution v(x,t) in a Taylor series in space

about the point (ih,(n+1)k),

- h(,xv)f
1

and

Observe that by cancellation of pairs of even order derivatives of v,

that is, all terms of the form (9
x
Pv)i+ cancel. Thus DQ

vi+ does

not introduce any diffusion. Furthermore,

v"

Substituting into (3.7.6),

(3.7.8) vi + 1
k- -I . c V n + 1 . (3tV)n+1 . c{i^n* _ A(32v)n+1

+ 0(k2) + 0(h2),

where we assume that v is twice differentiable. The finite difference

method (3.7.6) is consistent and accurate of 0(k) + 0(h2). Further-

more, (3.7.8) shows that the finite difference method is consistent

with the diffusion-type equation

v •c v + ^ 9v
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accurate to 0(k2) + 0(h2). This method is dissipative due only to the

approximation of the time derivative with coefficient of numerical

dissipation (of diffusion) given by

To analyze the stability of the finite difference method (3.7.7') take

the discrete Fourier transform,

(1 + icx sin Oun+1(O = un(O

u n + 1( 5) •

where the symbol

1
1 + icx sin

which yields

P(OP(O
1 + c X sin %

for every X > 0. Thus the method is unconditionally stable.

Again the solution at a point (ih,(n+1)k) depends on the

solution at every point at the previous time level. Thus the implicit

method does not suffer from the "coupling" problems of the explicit

version as discussed in Section III.2.

It should, as with the previous implicit method, be noted that

the coefficient of numerical dissipation (3.7.9) is proportional to the

time step. Thus the larger the time step, the more diffusion that is

introduced. However, the amount introduced by the implicit method

(3.7.6) is much less than in the implicit method (3.7.1).

The solution of (3.7.7) involves the inversion of a tridiagonal

matrix. Thus we need to close the system (3.7.7'). In order to do

this, we need to impose two boundary conditions. Truncate the real

line to the closed interval [a,b]. Since DQU. depends on u.+-i

and u. .j , a boundary condition on the left is necessary to close the

system at the left also, unlike the previous implicit method (3.7.1).

However, if c > 0, then the characteristics, x + ct = constant, are

lines with negative slope, so a boundary condition cannot be imposed at

x = a. The solution at the point (a,t) is obtained by following the

characteristic back to the initial line, so v(a,t) = f(a + ct).

However, a boundary condition can be imposed at x = b.
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- boundary
condition
allowed

x=b

Figure 3.17 c > 0

Similarly, if c < 0, then the characteristics, x + ct = constants,

are lines with positive slope, so a boundary condition cannot be

imposed at x = b. The solution at the point (b,t) is obtained by

following the characteristic back to the initial line, so v(b,t) =

f(b + ct). However, a boundary condition can be imposed at x = a.

This poses a tremendous problem because the method calls for a boundary

condition at both points x = a and x = b. The discussion of the

treatment of boundary conditions is deferred until Chapter V.

boundary
condition-
allowed

x=b

Figure 3.18 c < 0
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We shall assume that the interval [a,b] is chosen large enough

with the initial condition zero everywhere except in a small subinter-

val of [a,b], so that the solution for 0 < t < T is zero at both

boundaries. This avoids the boundary conditions. Let the mesh spacing

be given by h = (b - a)/N.

The system (3.7.7) can be written in the form

A u^+1 = un,

where un (un,...,u^_1)
T and A is an (N-1) x (N-1) tridiagonal

matrix of the form

A =

We see that the tridiagonal matrix is diagonally dominant if

£X

III.8. Systems of Hyperbolic Equations in One Space Dimension

Consider the first order system of equations of the form

(3.8.1) 3tv = A3xv + B v , -» < x < +« , t > 0

where v = (v-| , ... ,v p)
T and A , _B are p x p matrices with constant

coefficients. The initial conditions are given by

(3.8.2) v(x,0) = f(x) , -co < x < +- .

Assume that (3.8.1) is hyperbolic as defined in Section III.1.

Using the notation of Section II.7, consider the approximation of

equation (3.8.1) of the form

mo

(3.8.3) n+1 I A. sj u n + B u n , n > 0

where Aj are p x p matrices that depend on h and k only. By

the Strang perturbation theorem, if the matrix IS in (3.8.3) (which
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n
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is the same as in equation (3.8.1)) is bounded, then the question of

stability reduces to the stability of (3.8.3) without the terra Bu? .

Thus we shall consider the first-order system

(3.8.1 ' ) 3tv = A9xV , -co < x < +» , t > 0

approximated by the finite difference method

(3.8.31)

The concept of stability as well as sufficient conditions for

stability have already been developed in Section 11.7. These results

will be used to show that various methods developed for the scalar

equation (3.2.1) in Sections III.2 and III.6 can be extended to first-

order hyperbolic systems of the form (3.8.1').

We first need to extend the Courant-Friedrichs-Lewy (CFL) to the

case of a hyperbolic system. Let p., j = 1,..,p denote the eigen-

values of A in (3.8.1') ordered as

(3.8.4) m < y2 < ••• < vm < ° < Vm+1 < • • • < Vp

There are p-families of characteristics of (3.8.1') given by

x + yjt = constant,

which represent lines in the (x,t)-plane with slope —1/pj• (Refer to

Section III,1.)

The definition of numerical domain of dependence for the finite

difference method (3.8.31) remains unchanged. The numerical domain of

dependence of (3.8.3') of the point (ih,(n+1)k) is bounded by two

lines with slopes -k/m2h and k/m-jh. The numerical domain of

dependence of the point (ih,(n+1)k) is the set of (m-| + m2)(n+1) + 1

points in the interval

[(i - mi(n+1))h,(i + m2(n+1))h].

The domain of dependence of the equation (3.8.1') of the point

(ih,(n+1)k) consists of p distinct points corresponding to the

points of intersection of the p-characteristics through the point

(ih,(n+1)k) with the initial line, that is,

(ih + yj(n+1)k,0), j = 1,...,p.

The CFL condition requires that

(3.8.5) (ih + yj(n+1)k) - [ (i - mi(n+1))h, (i + m 2(n+1)h],

for j = 1 p.
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(ih+Pp(n+1)k,0)

Figure 3.19

From (3.8.4),

< . . . < - — < 0 < - — < ... < -

The slopes - »•••, - — , corresponding to positive eigenvalues
Vm+1 p̂

p » , , p g p g
Vm+1 p̂

of A, are less than or equal to the slope -k/m2h, then condition

(3.8.5) is satisfied for j - m+1,...,p, that is,

^ > j = m + 1 p

Similarly, the slopes - —7,...,- — , corresponding to negative
V j Pm

eigenvalues of A, are greater than or equal to the slope k/m^h, then

condition (3.8.5) is satisfied for j = 1,...,m, that is

\ < - — , j = 1 m.

The conditions may be combined to give the CFL condition for a finite

difference method (3.8.3') approximating equation (3.8.1')

(3.8.6a) h < m1

(3.8.6b) yj h < m2 m+1,...,p.

Consider the Lax-Friedrichs method (3.2.19) (or (3.2.21)) applied

to the system (3.8.1'),
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O.8.7)

where A_1 = 1(I_ - XA), AQ = 0, and A^ = -̂ (1 + XA). In (3.8.7)

m-| = m£ = 1 so that the CFL condition (3.8.6a) and (3.8.6b) may be

combined to yield for the Lax-Friedrichs method

| yj| X < 1 for j = 1 p.

In fact, for any finite difference method (3.8.3') where m-| = m2 = 1 ,

that u? depends on three points Uj|_i » H^* an(* —i+1 » ttie C F L

condition (3.8.6a) and (3.8.6b) reduces to

(3.8.8) |uj|x < 1. j - 1,...,P,

max |yi|X < 1.
or

To analyze the stability of the Lax-Friedrichs method (3.8.7) take the

discrete Fourier transform,

un+1(O = G(c)un(O,

where G(£) is the amplification matrix of order p x p (see Section

II.7) given by

= _I cos 5 - iAx sin 5.

First, suppose that A is symmetric in which case there exists an

orthonormal matrix T such that 1T1 < K, for some constant K, and

A - T D TT ,

where D is a diagonal matrix whose elements are the eigenvalues of A,

that is, I) - diag(pi , ... ,y p). Using the fact that T TT = I_, since T

is an orthonormal, the amplification matrix may be written in the form

I cos C - IT D TT X sin £

T TT cos £ - iT D TT X sin £

= T(I cos 5 - iDx sin

= T DGU)Z
T ,

where DQ(^) is the diagonal matrix

I_ cos % - iDx sin 5
or

D GU) = diag(cos 5 - iyjX sin c).

Since A is symmetric, the amplification matrix G(s) is

symmetric and the eigenvalues of G(s) are the elements of D
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Using part i) of Theorem 2.3, it is sufficient to show that

o(G(z)) = CTCPGCS)) satisfies the von Neumann condition. This reduces

the problem of stability to the scalar case.

It suffices to show that

| cos % - iyjX sin s| < 1 .

This has been considered in Section III.2 for the Lax-Friedrichs

method, where yj is replaced with c. Using this result,

(3.8.9) |cos 5 - iy.x sin £|
2 = 1 - (1 - y2x2)sin2 £ < 1

provided |yj|x < 1, for j = 1,... ,p. Thus the CFL condition is

sufficient for stability of the Lax-Friedrichs method.

Now consider a general A, not necessarily symmetric. Since

A is not symmetric, G(£) is not symmetric and a different approach

must be used. Since (3.8.1') is hyperbolic, there exists a nonsingular

matrix T such that max( nT| , IIT"1!) < K for some constant K and

A = T D T-l ,

where D is a real diagonal matrix. Rewrite G(O in the form

G(c) - T(I cos £ - 1DX sin g)T"l

= T DGU)T-l

where ^G(^) ^S t n e diagonal matrix defined above.

Suppose CT(I)G(O) < 1 + Ck where C is some constant satisfying

the restrictions of the von Neumann condition, then

= I T j ^ 1

Since D G ( O is symmetric, in fact, diagonal CJ(DG(5)) = • ̂G(C)« so

that

< K2 a(D GU))
n

< K2(1 + Ck)n

Thus by Theorem 2.1, the finite difference method is stable. It

remains to show that a(Dc(c)) < 1 + Ck. Using (3.8.9)

a(DcU)) = max |cos £ - iy-jX sin %\ < 1
1<j<p J

provided |P-|X < 1 for j = 1,...,p or max |y.|x < 1. So, again,

the CFL condition is sufficient for stability of the Lax-Friedrichs



195

method. By expanding v in a Taylor series about the point (ih,(nk))

in the same manner as Section III.2, we see that the Lax-Friedrichs

method (3.8.7) is accurate of 0(k) + 0(h).

Next consider the Lax-Wendroff method (3.5.3) applied to system

(3.8.1'),

(3.8.10) u n + 1 = u? + kADQu
n + ̂  A2D+D_u

n .

This may be written in the form

un+1 = 1 A. sj un

j = -1~J

where A-1 = ̂ (A2X2 + Ax), AQ = I - A
2X 2, and A^ = ̂ (A2X2 - Ax),

since m-| = m2 = 1 , the CFL condition is (3.8.8), that is,

max | y-i | X < 1 .
1<j<p

To analyze the stability of the Lax-Wendroff method (3.8.10) take the

discrete Fourier transform,

where G(?) is the amplification matrix of order p x p given by

G(O = I + ̂ XACe"1* - e1*) + J^Ce"1* - 2 + e1^)

= I - 2x2A2 sin2(|) - iAx sin 5.

As with the Lax-Friedrichs method for the general case in which A is

not necessarily symmetric,

G(O = T((1 - 2x2y? sin {§))! - i(UjX sin O D l "
1

2 2 2 F
where VQ(O = diag(1 - 2x y sin (J) - iy.X sin £). It suffices to

show that CT(DG(S)) < 1, or

2 2
- 2x y? sin(|) - iy.X sin c| < 1

for j = 1,...,p. This has been considered in Section III.5 for the

Lax-Wendroff method, when yj is replaced with C. Using this result,

2. 2. , 2. / E\ . . 1 < 1 2. 2. * + 2.( 3 . 8 . 1 1 ) |1 - 2x2y? s i n ( | ) - i y j x s i n g| = 1 - 4y2X2(1 - y 2 x 2 ) s i n 4 ( | )

< 1

provided that ly-lx < 1 for j = 1,...,p. Thus if max |yi|x < 1,
J 1<i<p J

<*(DG(5)) < 1« S O , again, the CFL condition is sufficient for the

stability of the Lax-Wendroff method.
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By expanding y in a Taylor series about the point (ih,nk) in

the same manner as Section III.5, we see that the Lax-Wendroff method

is accurate of 0(k2) + 0(h2).

We may extend the idea of dissipation for the matrix case.

Definiition. A finite difference method (3.8.3*) is dissipative of

order 2s, where s is a positive integer, if there exists a constant

6 > 0 (independent of h, k, and s) such that

with |^| < TT, where Aj(£) are the eigenvalues of the amplification

matrix G(O of (3.8.31).

It was seen that the j-th eigenvalue of G(£) for the Lax-

Friedrichs and Lax-Wendroff methods was identical to the symbol of the

same methods for the scalar case where c was replaced by y j . Thus

from the discussion in Section III.6, the Lax-Friedrichs method (3.8.7)

is dissipative of order 2 and the Lax-Wendroff method (3.8.10) is

dissipative of order 4.

The importance of the idea of dissipation can be seen from the

following theorem due to Kreiss [19] and simplified by Parlett [29].

Theorem 3.3. Suppose the finite difference method (3.8.3') is accurate

of order 2s-1 or 2s-2 and dissipative of order 2s, then the

method is stable.

This theorem applies to both the Lax-Friedrichs method, since it

is accurate to order 2s-1 and dissipative of order 2s where s = 1

and the Lax-Wendroff method, since it is accurate to order 2s-2 and

dissipative of order 2s where s = 2.

We close this section with a theorem due to Lax [22] which is an

extension of Theorem 3.1 in Section III.3.

Theorem 3.4. Consider the hyperbolic system of equations (3.8.1)

approximated by a finite difference method of the form (3.8.3).

Suppose the finite difference method is accurate of order (p̂  ,^2^ anc*

k = 0(h), then

where p

III.9. Systems of Hyperbolic Equations in Several Space

Dimensions

Consider the hyperbolic equation

(3.9.1) 9t
v = a 8x v + b3yv, -« < x,y < +«, t > 0,

and the initial condition

(3.9.2) v(x,y,0) = f(x,y), — < x,y < +-

As in the case of one-space dimension, the exact solution is given by
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(3.9.3) v(x,y,t) = f(x+at, y+bt).

And the domain of dependence of the point (x,yft) for equation

(3.9.1) is the single point in the (x,y)-plane (x+at, y+bt). The CFL

condition requires that the numerical domain of dependence of the point

(x,y,t) = (ihx,jhy,(n+1)k) for a finite difference method that

approximates (3.9.1)-(3.9.2) must include this point. For a finite

difference method of the form

m2

(3.9.4) u*+1 = l (AjS^ +BjsJ2)u
n
j,

where A_mi , B_m^ , A^t and Bm2 are not equal to zero, the CFL

condition becomes

(3.9.5a) f^ < m2 if a > °»

(3.9.5b) " ^ < m^ if a < 0,

(3.9.5c) YT < m2 if b > °»

(3.9.5d) ~jp < î  if b < 0.

If m-j and m2 are each 0 or 1 , then these conditions reduce to

, and Jb]k < , f or

(3.9.6) k <

If hx = hy = h, this condition becomes

( 3 9 7 ) k <

Approximate equation (3.9.1) by the two-dimensional Lax-

Friedrichs method (see (3.2.19)) which is obtained from the unstable

method (see (3.2.17))

n+1 n

by replacing the u?. term in the approximation to a. with the
L J 1 Jc

average over the four neighboring points 2r(u.+.. . + u. « . +

(3.9.8) uf 1 = {(u?+1J + uj.1fj + u^. + 1

To analyze the stability of this method, take the discrete Fourier

transform (of (3.9.8),

where, for X = k/h and X = k/h ,x x y y

2) = "2COS £1 + -2cos £2 - iaxxsin %\ - ibXysin
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where, for X = k/nx and

- iax sin £1 - ibx sin
x i y

and

4 C O S K*\ + l c o s n ?1 + bxysin

X2 + b2x2))

- (axxsin ^1 - bXysin?1 - cos £

Observe that the last two terms are always negative so that

The von Neumann condition is satisfied if .^•b^>>0. or

(3.9.9) k <

In the case that hx = hv

(3.9.10) k <

+ v

The stability condition (3.9.10) is more restrictive than the CFL

condition (3.9.7) or the one-dimensional stability condition given in

Section III.2. For this reason we turn to other approaches for

solving problems in several space dimensions.

As in Section II.4 equation (3.9.1) can be written as the sum of

two one-dimensional equations

(3.9.11) 3tv = 23xv

and

(3.9.12) 3tv = 2 3yv

In order to advance the solution from time nk to (n+1)k, it is

assumed that equation (3.9.11) holds from nk to (n+^Ok and that

equation (3.9.12) holds from (n+̂ -)k to (n+1)k. This gives rise to

replacing (3.9.1)-(3.9.2) by two initial-value problems, each one-

dimensional

(3.9.13)

and

(3.9.14)

Let

v1 = 2 3xv' nk < t <

v'(x,y,nk) = v"(x,y,nk)(= f(x,y) if n 0)

3tv" = 23yv" (n

(3.9.15)
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approximate (3.9.5) and

(3.9.16) u ^ 1 = u ^ 1 / 2
 + k D 2 u ^ 1 / 2

approximate (3.9.14), where D-| and D2 are some finite difference

operators in x and y, respectively. This two-step method is

called a fractional-step method (see Yanenko [48]).

Suppose we use, for example, the Lax-Wendroff method. In this

case,

and

and (3.9.15)-(3.9.16) are each second order accurate in space. Then

consider

un+1 = (I+kD2)(I+kD1)u
n
j

(3.9.17)

= (I+k(D1+D2)+k
2DlD2)u

n
j .

This method is still second order accurate in space. Assume that v

is twice differentiable so that 32v = 3 v +23 3 v + 3 v, and by
c x y x y

expanding the solution v in Taylor series in time about the point

(ihx,jhy,nk),

(3.9.18) vn+1 = v£j + fcOxv+ayv)£j + ̂
3
x
v + 2 8

y
a x v + a y v ) i j + 0 ( k 3 )-

Considering the method (3.9.17), the operator DQ^ in D1 approximates

the 3 v term in (3.9.18) to second order in space, the operator D,D 1
X iy T" — I

in D̂  approximates the 3xv term in (3.9.18) to second order in

space. Similarly, D Q 2 and D+D_2 in D̂  approximate the

respective terms 3 v and 3 v in (3.9.18) to second order in space.

Finally,

I<D01D+D-2 + D02D
+
D-1>

and by expanding v in a Taylor series in space about the point

(ihx,jhy,nk),

D01D02vij " <vxy>ij
 + 0<hx> + °<hy> •

The operator D1D2 approximates the vxy term in (3.9.18) to second

order in space. Hence, the product method (3.9.19) is second order in

space.
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A more direct way to verify that (3.9.17) is second order

accurate in space is to use Theorem 3.1 in Section III.3. If (3.9.15)

is O(h^), then e"iXxCi - Pi<*i> + °<5?) and if (3.9.16) is

O(hy), then

where Xx = k/
n
x> X = k/h , and p̂  (C-j) denote the symbol of

and p2(£2) denotes the symbol of I+kD2. If the combined method

(3.9.17) is second order accurate in space, then

-ix_*i-ix e2 o

where P(51» €2) denotes the symbol of the combined method (3.9.17)

and _| - (C1,52)« However, P(C1»52) = P1(C1)P2(52> a n d

P1(C1)P2(52)

O(52))

Thus the fractional step method (3.9.15) and (3.9.16) is second order

accurate in space.

Now consider the first order system in two space dimensions

(3.9.19) 9tv - A9xv + B9yv, -oo < x,y < +«», t > 0,

where v = (v-| , ... ,vp) and A, B are p x p matrices with constant

coefficient. The initial conditions are given by

(3.9.20) v(x,y,0) = j?(x, y) , — < xy < +• .

As in the scalar case, replace (3.9.19) and (3.9.20) with two initial-

value problems, each one dimensional

3 v = ZA3 v" nic < t; < {nJ

(3.9.21)
v'(x,y,nk) = v"(x,y,nk)(= ^(x,y) if n * 0) ,

and

3tv" = 2B9 v" (n+^)k < t < ~(n+1)k

(3.9.22)

vu(x,y,(n4^.)k) - v'(x,y,(n+j)k)

Approximate (3.9.21) by

and approximate (3.9.22) by



201

(3.9.24) - i j 1 = (- + kBD2)u
n+1/2 .

Let G-|(5i) and £2(^2) denote the amplification matrices of (3.9.23),

and (3.9.24), respectively. Furthermore, suppose that (3.9.23) is

accurate of 0(hq) and (3.9.24) is accurate of 0(hq), then by thex y
Theorem 3.4,

e"
lXx-51 G , , + 0(p^

+1)
-~1 1 1

and

e ^Gr\(^r\)"t"O(5/j ) ,
^Z Z Z

where Xx = k/hx and Xy = k/hy. For the combined method

(3.9.25) un+1 = (I + kBD2)U + kAD1 )u
n ,

-iX Bc 2-iX Ac,
y 2 X 1 = G ( c l f C 2 )
X B c 2 i X Ac

e y 2 X 1 = G ( c l f C 2 )

where G(£i,£2) denotes the amplification matrix of the combined

method (3.9.25) and £ = (C1»C2)- ^ t n e matrices A and B commute,

that is, A B = B A, then

-iX Bc2-iX AC! -iX B? 2 -iX A?1

e y = e y e ,
so that

= G2(C2)G1(C1)

= G(C1,C2) + O(nin
q+1)

from which we see that the same order of accuracy in space

(0(hq+1) + 0(hq+1)) is achieved,x y
Now consider the case where the matrices A and 15 do not

commute, then

-iX Bc2-iX A^ -iXvBc2 -iX-_Ac1

e " x * e y e .
-iXvBC2-iX ACi

Expanding e y in a Taylor ser ies ,

-iX Bc2-iX Ac.,
(3.9.26) e y z x ' = I - iXxA^ - iXyBs2

- x V ^ - x V ^ - XxXyC1C2(A B + B A) + O(B^B3),

-iX A^ -iX Bc2

and expanding e and e 3 in Taylor ser ies ,

-iX A^i 9 9? ^
(3.9.27) e x ] = I - iXxA^ - x V ^ + O(cf)

and
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-IX B£o 9 9 9 ^
e y z = I - iXyB£2 - X

ZBze2
 + O(52)

Comparing (3.9.26) with (3.9.27) and (3.9.28),

-iX B£2-iX A ^ -i^vBC2 -
ix

x£Si
e y 2 x 1 = e y 2 e x l

= (G2(c2) + O ( ^
+ 1

= G(c1,c2) + 0(ici
2) ,

which shows that the combined method (3.9.2 5) is only first order

accurate in space independent of the orders of accuracy of the

separate steps (3.9.23) and (3.9.24).

By carefully allowing for the neglected terms in each step we

can regain the lost accuracies. Comparing the Taylor series (3.9.26)

(3.9.28),

-iX B£2-iX A5i i -iX Ac, -iX Be, -iX B?2 -ix A£,
e y- Z x- 1 = ^ ( e x- ie y- Z + e y- Z& x- 1 ̂

This result suggests a way of obtaining second order accuracy in space

if q > 2. By symmetrically averaging the two combined methods

unj1 = U + kBD2)(i + kAD^uJj
and

we obtain a combined method

(3.9.29) un|1 = •j[(I.+kBD2)a+kAD1) + U+kAD1 ) (I_+kBD2) ]u
n.

which is second order accurate in space.

Another way of preserving second order accuracy in space is to
-i(X /2)A?1 -i(x /2)B?2

observe that by expanding e and e y in a Taylor

series

-i(Xx/2)A?1 -i(X /2)B52 -KX /2)Bc2-i(x /2)A51
e e y e y e

2 + 0 ( ^

A5l - ̂  A2^2 + 0(5?) ]

^ C ! " iXyB,2 - X
2A2C2 - X2B2

+ ) 3
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Hence

-iX B59-iX Ac, -i(Xv/2)Ac1 -i(x /2)B59 -i(x/2)Bl- -i(Xv/2)A?1
e y = e e e y e

This result shows that second order accuracy in space can be preserved

by advancing a solution from nk to (n+1)k in four quarter steps

(k/4). The first quarter step (in time) in the x-direction (due to

the e"1^^' — *l term) followed by two successive quarter steps in

the y-direction (due to the two e~L^xy'2>lLZ2 terms) which is

followed by the final quarter step in the x-direction (due to the

e-i(Xx/2)A£i t e r m ) # Th i s gi v e s r i s e to the combined method

Hij1 " (1 + I^D^U + | B D 2 ) U | l ^

However,

e-i(Xy/2)BC2e-i(Xy/2)Bs2 .

so that

This gives rise to the combined method involving two quarter steps and

one half step to advance the solution from time nk to (n+1)k

(3.9.30) unt1 | ^ n

or in terms of the three fractional steps

(3.9.31a) I ^ J j

(3.9.31b) un1"3M - (I + kBD2)u
nt1M

and
(3.9.31c) u ^ 1 = (I

Consider the first order system in three space dimensions

(3.9.32) 3tv = A3xv + B9yv + £3zv, -« < x,y,z < +«, t > 0,

where v = (v*| , • • • ,Vp) and A,^, and £ are p x p matrices with

constant coefficients. The initial conditions are given by

(3.9.33) v(x,y,z,0) = ̂ (x,y,z), -» < x,y,z < +« .

Equation (3.9.32) can be written as the sum of three one-dimensional

equations

(3.9.34) 3tv = 3A3xV ,

(3.9.35) 3tv - 3B3yv ,
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(3.9.36) 3C3zv

In order to advance the solution from time nk to (n+1)k, it is

assumed that equation (3.9.34) holds from time nk to (n+^-)k, that

equation (3.9.35) holds from time (n+j)k to (n+-|)k, and that equa-

tion (3.9.36) holds from time (n+j)k to (n+1)k. This gives

rise to replacing (3.9.32)-(3.9.33) with three initial value problems,

each one-dimensional

3tv' = hr1 nk < t < (n-ĥ )k

v'(x,y,t,nk) = v1" (x, y, z ,nk) (=^(x,y,z) if n

3tv" = 3 3 v" (n-hj)k < t < (n+^)k

v"(x,y,z,(n+i)k) - v'(x,y,z,(n+i)k),

0) ,

3.v"' = 3C
9

v1" (x,y,z,(n+|)k) = vM(

(3.9.37)

(3.9.38)

and

(3.9.39)

Let

(3.9.40)

(3.9.41)

and

(3.9.42)

approximate (3.9.37)-(3.9.39), respectively, where D-| , D2, and D3

are finite difference operators in x, y, and z, respectively. The

combined method is

(3.9.43)

u n + 2 / 3un

I_+kAD1)u.^. .

then
If any two of the three matrices A, B, or £ do not commute,

as in the case of two space dimensions, and

2

+ 0(fl I B
2),

where G(£-|,£2»£3) = 9.3^ ̂ 3)5.2 ( ?2)£i ( C1) is the amplification matrix

of the combined method (3.9.43), G-|(£i), G 2 U 2 ) , £3(53) are the

amplification matrices of the fractional steps (3.9.40)-(3.9.42),

respectively, and j, = (S1>S2>€3)« Thus the combined method (3.9.43)

is first order accurate in space even though the fractional steps are

each accurate of order of their respective space variables.



205

Again by carefully allowing for the neglected terms in each step

we can regain the lost accuracy. By expanding e'1 z—^3~ l X v— *"L~X x— l,
,-l(Xx/2)A5lt e-i(Xy/2)B52> an(J e-i(Xz/2)C53 i n T a y l o r s e r i e s a n d

comparing terms, we see (as in the case of two space dimensions) that

j y z x i
= e

 x ' a y

- i ( X z / 2 ) C £ 3 - i ( x / 2 ) B C 2 - i ( :
e e ^ e

However,

so that

-i(Xx/2)A?1 -i 2 z 3 2 x 1

= e e y e e y e

+ 0(1^13).

This gives rise to the combined method involving four steps of length

k/6 (in time) and one step of length k/3 (in time)

ui j \ " d+l^Pi > (1+|^D2) (I+k£D3) (1+7BD2) (i+|AD1 )u
nj £

or, in terms of the five fractional steps

(3.9.44a) un^/6 - (I + 7^)11^ ,

(3.9.44b) un!j['3 = (I

(3.9.44c)

(3.9.44d)

and

(3.9.44e)

which is second order in space profided that q < 2.

For further discussion, see Strang [44-46]. This accuracy

analysis carries over to hyperbolic systems with variable coefficients

and nonlinear hyperbolic systems. A major problem with fractional

step methods arises from boundary conditions. This will be treated

in Chapter V.
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III.10. Multilevel Methods

In Section III it was shown that the forward method (3.2.6) and

the Lax-Friedrichs method (3.2.21) are dissipative of order 2 and the

Lax-Wendroff method (3.5.3) is dissipative of order 4. However, the

coefficient of numerical dissipation for all of these methods depends

on k and/or h. So the amount of dissipation can only be controlled

by changing h and, hence, k. This is not a practical method for

controlling the amount of dissipation present. It would be more

practical and convenient to have a finite difference method that is

not dissipative and then to add a dissipation term that does not

depend on k or h. In this manner the amount of dissipation can be

controlled independent of the mesh spacing or the time step.

Consider the following multilevel method known as the leap-frog

method

(3.10.1)
2k

which approximates the prototype equation 3̂ v = c9xv. This method

which is centered both in space and time depends on two time levels of

initial conditions.

Expand the exact solution v(x,t) in a Taylor series in space

about the point (ih,nk). This gives

,.r)i + 0 ( h 5 )'

and

(3.10.2) DQv
n = (3xv)

n + ^ - O x v )
n + 0(h4) .

Observe that the even order derivatives, that is, derivatives of v

of the form 9
x
P v cancel in pairs in (3.10.2). Thus D Q V ^ d o e s n o t

introduce any diffusion. Similarly,

vf 1 - v?-1 n k2 3 n— m—~— = (9̂ v)V + f-iZlv) . + O(k^) ,
ZK L L 0 u 1

where as in (3.10.2) the even order derivatives of v of the form

3t v cancel in pairs. Thus (v. - v." )/2k does not introduce any

diffusion. Combining these two results

v ? + 1 - vi~1 n n 2 2
-i Z F ^ CDQV1? = (3tv)° - c(}xv)J + O(k^) + O(h^)

Thus the leap-frog method (3.10.1) is consistent and accurate of

0(k2) + 0(h2).

By using the prototype equation (3.2.1), we obtain 3^ = cq
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provided that v is sufficiently differentiable. Substitution into

(3.1.13) yields

c(*xv)i

3 2

So, as in the case of (3.10.2), by cancellation in pairs of the even
vn+i . vn+i

order derivatives, — f̂c L — does not introduce any diffusion.

This shows that the leap-frog method is not dissipative.

To analyze the stability of the method (3.10.1), we introduce

an auxiliary vector
un+1

un+1 =
un

With this, the leap-frog method may be written in the form

un+1 = 2kcDQu
n + un"1

V
which may be written using the auxiliary vector

(3.10.3) n+1 2ckDr

By taking the discrete Fourier transform of (3.10.3), we obtain

un+1(c) - G(e)u(O

(3.10.4)

where the amplification matrix G(j;) is given by

f-i2cx sin £ 1

1 0

where the symbol DQ is -i2 sin £/h and X = k/h. The eigenvalues

of the amplification matrix (3.10.4), denoted by e+, are

(3.10.5) e ± U )

For |c| X < 1, e+ and

(3.10.6)

-icx sin £ ±/ 1 - c X sin £.

e. are distinct. Furthermore,

i « ± i 2 = 1 •

Thus both of the eigenvalues lie on the unit circle in the complex

plane for | 51 < IT. Furthermore, from the definition of dissipation,

it follows (3.10.6) that the leap-frog method is not dissipative. The

von Neumann condition is satisfied since cr(G(£)) = 1, which is a

necessary condition for stability.

In order to prove the stability of the leap-frog method, we

shall make use of a version of the Lax-Milgram lemma (see Lax and

Milgram [24]).

Lemma (Lax-Milgram). Consider a finite difference method

un+1 - 7 A SJ u
n

un 7 A. un

,
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Suppose there exists a functional S(u) and positive constants m

and M such that

(3.10.7) m«u« < S(u) < Miui ,

for some norm I I, that is, S(u) is a quasi-norm. If

(3.10.8) S(un) < (1 + ck)S(un-i),

where c is a constant independent of h, k, and n, then the

finite difference method is stable.

Proof. Using inequality (3.10.8) repeatedly,

S(un) < (1 + ck)S(un-l)

< (1 + ck)2s(un"2)

= ect S(u0) .

Using the right half of the inequality (3.10.7),

S(un) < ect Mnu°ii.

Furthermore, using the left half of inequality (3.10.7) combined with

the above result

mnunn < S(un)

,un £ ect,u°.
Therefore, the finite difference method is stable.

The energy method shall be used to show that the leap-frog

method is stable. From the discrete integration by parts (1.2.13), we

D+ + D_) and for two grid functions fobtain for DQ = -̂

g - (gi>

(3.10.9) <g,D0f) - -(DOg,f) •

A bound on IIDQH is needed. Using the definition of norm of an

operator,

and

k«D
0

n/2h
max f

Therefore,

(3.10.10) kflDon < X .

Write the leap-frog method (3.10.1) in the form

un+i . un-i = 2kcD0u
n
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Taking the discrete inner product with u n + 1 + u11"1,

.un+1 ,| - ,un"1 ,§ = (un+1 + u
n"1 , 2ckD0u

n)

= 2kc(un+1 + un"1, DQu
n)

- 2kc[(un+1, Dou
n) + (un-\ Dou

n)]

2kc[(un+1, DQu
n) - (un, Dou

n~1

using (3.10.9). Adding nun«2 to both sides we obtain after

regrouping terms,

(3.10.11) iun+1i* + lu11!* - 2kc(un+1 ,DQu
n)

- 2kc(un,D0u
n"1).

Define the functional S(un+1) by

S (u
n + 1) = .un+1i| + »u n^ . 2kc(un+1,D0u

n),

then

( 3 . 1 0 . 1 2 ) S(u n ) = iunii2 + Hun"1 ll| - 2kc(u I 1 ,D0un"1)

and ( 3 . 1 0 . 1 1 ) may be w r i t t e n in the form

(3.10.13) S(un+1) = S(un)

Applying Lemma 3 in Section 11.11 to the inner product in (3.10.12)

and using the bound on RDQ H (3.10.10),

S(un) < «uni^ + inn'\l + 2k|c|iD0i( ^—2 h

- Ou ni^ + Bun-1 «|) (1 + k|c|iDoi)

< (1 + |c|x)(«unii^ + lu11"1^) .

Similarly,

S(un) > tunil + iun-\\ - 2k|c||(un,Dou
n-1)|

n 2 , n-1 2
« 9 r» 1 9 IU l 9 + IU l 9

> »unii2 + lu 1 1" 1^ - 2k|c|iD0i( —j -)

- k|c|

Combining these two inequalities

(3.10.14) (1-|c|x)(iun^+iun"1|^) < S(un)
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Let the norm of the auxiliary vector un be defined by »un« =

lu11!^ + lu11"1 \\ , then S(un) satisfies the inequality (3.10.7) of

the Lax-Milgram lemma with m » 1 - |c|x and M = 1 + |c|x. In order

that m > 0, |c| X < 1. Combining this with (3.10.13), we conclude by

the Lax-Milgram lemma that the leap-frog method is stable for |c| < 1.

Observe the strict inequality. The CFL condition is |c|x < 1. A

natural question arises. Is the leap-frog method stable for |c|x = 1?

Suppose |c| X = 1. The amplification matrix (3.10.4) becomes

2i

1

where £

where T

and

-TT/2. G(£) may be written in the (Jordan canonical) form

G(c) = T V T-l,

0 1

1 -i
and V

T Vn T-l
i

1

1

0
•n 1

0

- n i

1

0 1

1 -1

1 -l

in
n+1 -ni

-ni 1-n

So Gn(g) cannot be bounded independent of the number of timesteps n.

Hence, the leap-frog method is not stable for |c|x = 1.

To determine the phase error, substitute (3.6.5) into the leap-

frog method (3.10.1) to obtain the dispersion relation

Multiplying by

which has roots

(3.10.15) e

e i 8 M k - i i 6 w k = i2cx sin(6h) .

^ gives a quadratic equation in

i26<ok sin(gh)ei8a>k . , _

± / 1 - c
2X2sin2(6h)

where e+ are the eigenvalues of the amplification matrix of the

leap-frog method.

Writing w as a complex number of the form u = a + ib,

ei8«k = e-b3keiagk #

Substituting into (3.10.15),
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e-b$keia$k = i c X s i n ( g h ) ± ^ . c
2X2sin2(eh)

As observed earlier, e ~
b & k = 1 so that b = 0, and the method is

not dissipative. Consider the eigenvalue e+ ,

t a n ( a B k )

- c2X2sin2(Bh)

For high frequency modes where 0h is near -n, tan(a$k) is near 0

so that a is near 0. Thus the high frequency waves are nearly

stationary. Consider now small values of 0h (low frequency modes).

We shall make use of the Taylor series for sin z given by (3.6.14)

in Section III.6 and the Taylor series expansion about z = 0 of

(3.10.16) 1 =1 - j z + 0(z2) .

With this we obtain ex sin(eh) = cx$h(1 - ^(&h)2), c2x2sin2(0h)

= c2X2(Bh)2 and 1/7i - c2x2sin2(0h) = 1 - \ c2x2(gh)2. This gives

by substitution

tan(aeh) = cX6h(1 - ̂ (&h)2)(1 - \ c2x2(ph)2)

cXBh(1 - ̂ (1 + 3c2x2)(Bh)2)

or, using (3.6.16),

aeh = tan"1 (cXBh(1 - ̂ (1 + 3c2X2 (|3h) 2) ) ) .

= cX0h[1 - ̂ (1 + 3c2X2)(Bh)2)] - -j(cXBh).

= cx$h[1 - ̂ (1 + 5c2X2)(fJh)2)]

or

(3.10.17) a - c[1 - ̂ (1 + 5c2X2)(Bh)2]

From (3.10.17), a < c, which means that for low frequency Fourier

modes, the numerical solution lags the exact solution. Similar results

are obtained with the eigenvalues e_ in (3.10.15).

In the implementation of the leap-frog method (3.10.1), two time

levels of initial conditions are needed. This also means that two

time levels of the solution must be stored, which doubles the storage

requirement for the method.

Furthermore, as with the method (3.2.17) in Section III.2, the

leap-frog method has the "checker board" type problem. Alternate

points are connected by the finite difference operator Do and, as

such, two independent solutions can evolve, one on the even points and

one on the odd points.
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To damp these high frequency modes, a small diffusion term may

be added. This will also serve to couple the odd and even grid points

which will represent the formation of two independent solutions.

Observe that by expanding the exact solution v(x,t) in a

Taylor series in space about the point (ih,(n-1)k),

n-1

(3.10.18) (D+Dj
2vn~1

n-1 / n-1
vi+2 * Avi+1

r n-1 / n-1
6vi " 4vi-1 vi-2

Consider the following dissipative leap-frog method using (3.10.18)

(3.10.19) n+1 n-1 ,2 n-1

which may be written in the form

n+1 n-1

(3.10.20)
Zk

From (3.10.18) we see that the second term on the right in (3.10.20)
A

is an approximation to 3xv , in fact, it is an approximation to

f^x v )i" 1 # Assume that k = 0(h) , then f ^ O ^ i " 1 =°( h 3)- Thusthe dissipative leap-frog method remains accurate of 0(k2) + 0(h2).

It is assumed that a is a positive constant used to govern the

amount of dissipation introduced. The limitations on a will be

determined by the stability condition on (3.10.18).

Using the same auxiliary vector un, the dissipative leap-frog

method (3.10.18) may be written in the form

n+1
2ckD0

1

1 -
h«+ 21

To analyze the stability of the dissipative leap-frog method (3.10.19)

take the discrete Fourier transform,

G"+1(C) = G(5)u
n(5),

where the amplification matrix G(?) is given by

4,-i2cx sin

0

^ sin (

1 - e sin

0

and the symbol of (D+D_) , pj- sin (j), is obtained by squaring the

symbol of D+D_« The eigenvalues of the amplification matrix are

(3.10.21) e+(5) = i2cx sin 5 ± J 1 - c
2x2sin2£ - (

For c2x2 < 1 - a, the square root term is real,

sin4(|)
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2(3.10.22) U ± U ) | 2 = 1 - a sin4(|) < 1,

and so the von Neumann condition is satisfied. Write (3.10.22) as

|e±(Ol - J 1 " o sin
4(f) .

If a < 1, then |e+(£)| decreases monotonically from |C+(C)|
 = 1

at 5 = 0 to |C+(C)| = /I - e at 5 = IT. For small values of £,

replace sin z by the first term in the Taylor series about z = 0,

so that sin (|-) = -ĵr . Upon substitution into |£±(€)|» we obtain

for small values of £,

i

Thus, the order of dissipation cannot be of order less than 4. By

choosing 6 < JJ , the inequality in the definition of dissipation is

satisfied. Hence the dissipative leap-frog method is dissipative of

order 4.

It remains to show that the method is stable. Again we shall

use the energy method. Write the dissipative leap-frog method

(3.10.19) in the form

DQu
n2ckDQu
n - o

Taking the discrete inner product with un+^ + un~1 ,

lun+1|| - .u11-1^ = (un+1+un-1,2ckD0u
n) + (un+1+un-1

= 2ck[(un+1
(Dou

n) + (un-1,Dou
n)]

Using the discrete integration by parts (1.2.13) twice, for two grid

functions f = {fi> and g = {gi>,

(3.10.23) (g,D+,D_f) = (D+D.g,f).

Using (3.10.23) along with (3.10.9),

(3.10.24) nun+1ll2 - »un"1H2 = 2ck[(un+1,D0u
n) - (un,DQu

n"1)]

- ^[(D+D,u
n+1,D+D_u

n-1) + ID+Dji11-1!*]

< 2ck[(un+1,DQu
n) - (un,Dou

n-1)]

+ ̂ | (D+D.u
n+1 .D+D.u"-1 ) I -f^iD^u11-1 l\
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Using Lemma 2 in Sec t ion 11 .11 ,

| (D + D_u n + 1 ,D + D_u n " 1 ) | < 1(ID+D_un + In^ + «D + D_u n " 1 l \ ) ,

so that

• u n + 1 . 2 - , u n - 1 , 2 < 2 c k [ ( u n + 1 , D 0 u n ) - ( u n , D o u n - 1 ) ]

f|\ .D+D.un+1 ,2
2
 + .D^.u"-1

2ck[(un+1,Dou
n) - (un,Dou

n-1)]

Adding "u11!^ - j% |D+D_u
ni2 t o b o t h sides» a f t e r regrouping,

lun+1|f + »un|2 - 2ck(un+1 ,DQu
n) - ̂ [«D +D_u

n + 1«2 + iD^u11!^]

(3.10.25)

< m n«| + lu11"1^ - 2ck(un,Dou
n-1) - ̂ [«D+D.u

ni|2 + iD^u11-1!^] .

Define the functional S(un), where un is the auxiliary vector, by

(3.10.26) S(un) = lu11!^ + "u11"1^ " 2ck(un,D()u
n"1 )

By substitution into (3.10.25),

S(un+1) < S(un),

so that the inequality (3.10.8) of the Lax-Milgram lemma is satisfied.

Using inequality (1.2.18),

i2 ^ 16. n.2

and

ID , L u «« s —7~iiu n «

which g i v e s

( 3 . 1 0 . 2 7 ) $ \ l D + D _ u n l ! + |D+D_un-1«2) < f ( « u n « 2 + I U 1 1 " 1 ! ^ .

Using Lemma 3 in Sec t ion 11.11 and ( 3 . 1 0 . 1 0 )

( 3 . 1 0 . 2 8 ) 2 | c | k | ( u n , D o u n - 1 ) | < 2| c | k i D Q 4 ( »un«^ + l u ^ 1 ! ^ )

< |c|x(liun«^ + iun"1i|).

Combining (3.10.27) and (3.10.28) in the definition of S(un)
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S(un ) < (1 + | c | x + f ) (Bun«2 + Ru11"1^) .

S i m i l a r l y ,

S(u n ) > (1 - | c | x - f ) ( » u n | | 2 + nix11-1 H | )

so that by combining

(1 - | c | A - f ) ( l u n i ^ + lu n ~ 1 | | 2 )

< S(un) < (1 + | c | x + f ) ( l lu n » 2 + I U 1 1 " 1 ^ ) .

With m = 1 - |d X - j and M = 1 + |c| X + j in (3.10.7) of the Lax-

Milgram lemma, we conclude that the dissipative leap-frog method is

stable provided m > 0 and M > 0. M is always strictly positive.

However, m > 0 if |c|x < 1 - ̂ . Thus the dissipative leap-frog

method is stable provided that

|c|x < 1 - f .

Since the dissipation term (D+D_) u?" depends on five points u^~2»

u?" , u?~.| , and u "+2» it: i n t r o d u c e s a complication at the boundary.

For suppose the left boundary corresponds to i = 0, with this five-

point dissipation term, the solution u§ will depend on UQ" and

the solution un will depend on u°J . Something special will have

to be done near the boundaries. This will be discussed in a later

section.

It should be mentioned that the sign of the dissipation term is

negative. This does not result in an ill-posed problem provided that

the advection process is the dominant process. If the sign were

positive, the method would be unstable, for the eigenvalues of the

resulting amplification matrix would be

e+(£) = i2xc sin £ ±Ji - c
2x2 sin2£ + a sin2(|)

where

|5±(C)|
2 = 1 + a sin4(|) > 1.

From this we see that the von Neumann condition would be violated.

There is another way of introducing dissipation into the leap-

frog method (3.10.1). There is a connection between the Lax-Wendroff

method and the leap-frog method. To see this, introduce half points

((i + ̂ -)h,(n + j)k) on the grid as depicted in Figure 3.20,
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-nk

(i-l)h ih

Figure 3.20

The Lax-Wendroff method can be written in a two-step form:

(3.10.30a) un+? - icu" + un) + i (u" - un)

(3.10.30b) n+1 n+i
« ?)

By substitution of (3.10.30a) into (3.10.30b), one can readily verify

that this is the Lax-Wendroff method. The first half-step (3.10.30a)

has an average term 2"(u"+i + u")» which introduces dissipation. The

second half-step is a leap-frog step using the three time levels

(n+1)k, (n+j)k, and nk in place of (n+1)h, nk, and (n-1)k. The

second half-step (3.10.30b) involves centered differences in time and

space about the point (ih, (n+-^)k). This step is not dissipative.

The two methods can also be combined in the form of an m-step

Lax-Wendroff method in which there are (m-1) leap-frog steps of the

form (3.10.1) followed by one dissipative Lax-Wendroff half-step

(3.10.30a). The second half-step (3.10.30b) is used to return to the

original form of the leap-frog method. In this way, the Lax-Wendroff

half-step is used when the solution needs smoothing.
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III.11. Hyperbolic Equations with Variable Coefficients

Consider the first order system of hyperbolic equations

(3.11.1) 3tv = A(x)8xV + B(x)v , -«o < x < +oo , t > 0

where v = (v-j , ... ,Vp)^ and A(x) , B̂ (x) are p x p matrices whose

elements are functions of x.

Definition. The first order system (3.11.1) is said to be hyperbolic

if there exists a constant K and a nonsingular matrix T(x) with

max(«T(x)i,|T"l(x)i) < K ,

independent of x such that

T-l(x)A(x)T(x) = D(x)

where D(x) is diagonal, D(x) = diag(y-) (x) , ... , up(x) ) and Pj(x)

are real for every value of x. The characteristics are no longer

straight lines, but the solutions of ordinary differential equations

dx , v

dt = * j ( x ) '

for j = 1 p.

One nice result can be obtained; the initial value problem given

by equation (3.11.1), along with the initial condition

v(x,0) = j:(x) , -oo < x < +oo

is well-posed if and only if all the initial-value problems with

frozen coefficients

3tv = A(x) 3xv + B(x)v

for all fixed x, -• < x < +», are well-posed. This gives some

hope for obtaining stability conditions for hyperbolic equations.

Approximate equation (3.11.1) by

un+1 = ^ I (Aj(x)sJ)u
11 + B(x)un .

By the Strang perturbation theorem (Theorem 2.4), the undifferentiated

term B(x)v can be eliminated from (3.11.1) and the corresponding

term from the finite difference method. Thus we shall consider the

first order system of the form

(3.11.2) aj-v - A(x) 3xV , -« < x < +«o , t > 0

approximated by

m2
(3.11.3) un+1 - z (A. (x)S:hun, n > 0 ,

j = -mi ~J
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where Aj(x) are p x p matrices whose elements are functions of

x, h, and k. The CFL condition for the finite difference method

(3.11.3) is a direct extension of that for the constant coefficient

case (compare with (3.8.6) in Section III.8). Let the eigenvalues

P1(x),...,yp(x) of A(x) in (3.11.2) be ordered so that

U1 (x) < y2(x) < ••• < Um(x) < ° < Um+1(x) < ••• < Vp(x) .

The CFL condition for a finite difference method (3.11.2) approxi-

mating equation (3.11.2) is for every x

(3.11.4a) -^j(x)E < m1 ' j = 1>"-> m

(3.11.4b) ^ < X > E < m2 > J = m + 1 P*

The amplification matrix (or symbol) G(x,£) of (3.11.3) can be

defined by

m2
(3.11.5) G(x,O = E A.(x)e"ljC

As discussed in Section 11.10, it is not true, in general, that

un+1(£) = G(x.Oun(C)

However, stability results do exist. As a first step in developing

conditions for stability, we present a theorem due to Friedrichs (see

also Widlund [47]).

Theorem 3.5 (Friedrichs). Consider a finite difference method in the

form of (3.11.3). Suppose that the matrices Aj(x) are hermitian and

positive definite independent of k. Furthermore, assume that the

matrices Aj(x) are Lipschitz continuous in x, that is, there

exists a constant K independent of x such that for j = -m-| 1112

lAj(x) - AJ(XQ)I < K|x - XQ|.

Such a finite difference method is stable. Before this theorem is

proved, a few remarks are in order.

It is possible to construct such finite difference methods as

described in the theorem. Consider the scalar prototype equation

3tv = c3xv where c is a positive constant approximated by

un+1 - un + kcD+u^

/1 kN n . k n= (1 - cK)u. + cE un+1 .

If the CFL condition is satisfied, c£ < 1, then 1 - c^ and c^

are hermitian and positive definite. It should also be noted that all

of these finite difference methods will always be first-order

accurate. Why?



219

The shortest wavelength (highest frequency) that can be resolved

on a grid of spacing h is 2h. For the most part, we are interested

in the low frequency (long wavelength) terms, so the lack of resolu-

tion of the high frequency terms is not too important. In the case of

variable coefficient (or nonlinear) equations, the different Fourier

modes will interact in such a way that energy is transferred from the

low frequency to the high frequency terms. To reduce the amount of

interaction, a smoothness condition will need to be imposed on the

coefficients Aj(x), such as, requiring the Aj(x)'s to be Lipschitz

continuous in x.

In a turbulent flow, for example, turbulent energy cascades from

large eddies to small eddies. This energy at the small eddies is

dissipated into internal energy through friction. If a finite

difference method is non-dissipative or does not have sufficient

dissipation (coefficient of dissipation term too small), energy which

has transferred from the longer wavelengths to the short wavelengths

will accumulate at the wavelengths of order 2h. This accumulated

energy is transferred back to the longer wavelengths. This result in

introducing an error in the Fourier modes of greatest interest. In

fact, this solution can grow without bound.

For a finite difference method of the form (3.11.3) that

satisfies the conditions of the Friedrichs theorem, nG(x,£)n < 1,

where G(x,5) denotes the amplification matrix.

Let a^ denote the complex number e""iJ5 so that |aj| = 1 and

let w-| , W2 be two vectors. Consider the inner product

m « vein

|(w,, I a.A.(x)w2)| = | l (w1,a.A.(x)w2)|
j = -m1

 J J j = -mi
 J J

m2

- I._S a.(w1(A.(x)w2)|

= I |(2l,Aj(x)w2)| .

Since the coefficient matrices Aj(x) are hermitian and positive

definite, by the Schwartz inequality,

I (w A fvW ^ I c —(w A C Y W "> + i(w A CvW ">
I \w_-j >£2;-i \ A/jj^p / I 9 ̂ _ 1 '—-I ^ '_-1 ' / ̂ _ 9 ' — T >• ' _ O /

and by substitution into the above inequality
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m 0 iii0 iu0

1 1
| (w« , E a .A. ( x ) w 9 ) | < yj I (w-^A. (x)w«) + 7 E ( w 9 , A . ( x ) w 9 )

m2 m2
= i E <w« ,A. (x)w1) + i ( w 9 , E A. (x )w 9 ) .

2 j = - m 1 - 1 " J - 1 l ~l j = -m1-J ~ 2

m2
However, by consistency E Aj (x) = _I (see Section III.3) so that

j = m1

(3.11.6)
2

| (w1 , # E ajAj(x)w2)| <^IW 1II + \lw.2l

m2
S e t t i n g w-| = E e~ iJ?Aj(x)w2 and s u b s t i t u t i n g in to the l e f t -hand

j = -m1
s i d e of ( 3 . 1 1 . 4 ) ,

2 1 2 ^ 1 2 2
l 2 i < l w i + « w »

By definition of w-| , w-| = G(x,?)w2, so that

«G(x, C)w2ll2 < iw2l2
or

lG(xfc)w2i2

^ ^ 1

Since this is true for any vector W2,

lG(x,c)w2i2

lG(xf5)l = max — — < 1

Consider the discrete inner-product of the finite difference

method (3.11.3) with un+1

|(un+1,un+1)| = I E2 (A.(x)SJu
n,un+1)| •

j = -m1
 J

Again using the assumption that the coefficient matrices Aj(x) are

hermitian and positive definite using the Schwartz inequality,

|(Aj(x)sJu
n
(u

n+1)| < ̂ (sJun,Aj(x)sJu
n) +|(un+1,Aj(x)!i

n+1) .

Substituting into the preceeding inequality,

m9 m9

(3.11.5) «un+1.2 < 1 r (SJU ,A,(x)sJu
n) + i t (un+1,A.(x)un+1).

- 2 2 j = -m, H J +~ 2 j=-m, " "J -
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There is a difficulty in bounding (S;j.un,A. (x)s|un) because the

Aj(x)'s are functions of x. If the Aj's were independent of x,

then by discrete integration by parts,

sV\A.S;!un) = (un,Sj A. $Un)
T— J *P — •» —J T

so that

J (SJ un,A, sJ un) = Z A,IU
n|2

m + " "J + - j-m^J - 2

However, by discrete integration by parts

(H»( s^ A.(x))S^su

- (un,(sJ k.(x))un) .

Since the Aj(x)'s are Lipschitz continuous in x,

S^AjCx) s Aj(x - jh) = Aj(x) + 0(h)

and hence

Summing over j,

m2

(un,O(h)un)

(un,A. (x)un) +

2 2
(3.11.7) I (un,(Sj A.(x))un) = E (un,A.(x)un) +O(h)Runii^

j—m1 - " J j = -mi ""J - l

2
(un, E A.(x)un)

= (1+ 0(h))iun»2

m2
because of the consistency conditidn, m z A. (x) = I_.

Similarly, J-~m1

I2 (un+1,A.(x)un+1) - ,«n+1,2 7 A.(x) - ,
J—n, J j—m, J
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By substitution into the inequality (3.11.7)

, u n + 1 , 2 < } ( 1 + 0 ( h ) ) , u n , 2 ^ n + 1 2

from which stability follows, provided that k = 0(h).

We extend the idea of dissipation to the case of a finite

difference method with variable coefficients.

Definition. A finite difference method (3.11.3) is dissipative of

order 2s, where s is a positive integer, if there is a constant

6 > 0 so that

for each x and all £ with |$| < ir, where the yj(x,O are the

eigenvalues of the amplification matrix G(x,5) associated with

(3.11.3).

The importance of the idea of dissipation can be seen from the

variable coefficient version of the main stability theorem in Section

III.8, again due to Kreiss [19]. A proof of this theorem is given in

Appendix B.

Theorem 3.6 (Kreiss). Suppose that the hyperbolic system (3.11.2) is

approximated by the finite difference method (3.11.3), each having

hermitian coefficient matrices that are Lipschitz continuous and

uniformly bounded. If the finite difference method is accurate of

order 2s-1 and dissipative of order 2s, then the method is stable.

It has yet to be shown that, in general, the condition of

accuracy to order 2s-1 can be overcome, as in the case of constant

coefficients. Parlett [29], however, has proved under slightly

stronger conditions a theorem that will now be given. This theorem

treats the special case in which the hyperbolic system (3.11.2) is

regular hyperbolic, that is, the matrix A(x) has distinct

eigenvalues.

Theorem 3.7. Suppose that the regular hyperbolic system (3.11.2) is

approximated by the finite difference method (3.11.3), each having

hermitian coefficient matrices that are Lipschitz continuous and

uniformly bounded. If the finite difference method (3.11.3) is

accurate to order 2s-2 and dissipative to order 2s, then the

method is stable.

Theorems 3.6 and 3.7 remain valid for systems of hyperbolic

equations with variable coefficients in several space dimensions (see

Appendix B).

Kreiss's theorem, as well as the theorem due to Parlett,

requires a great deal of information about the structure of the finite

difference method. The main theorem of this section, the Lax-
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Nirenberg theorem, requires little information about the structure of

the finite difference method.

As an introduction to the Lax-Nirenberg theorem, a weaker

theorem, due to Lax [22], for a single scalar equation shall be

presented. Proofs of both theorems are given in Appendix C. Consider

the hyperbolic equation (3.11.2) where p = 1, which may be written

in the form

(3.11.8) 3tv = a(x)axv

approximated by
m2

(3.11.9) un+1 = _E aj(x)S;ju
n .

Let the symbol of the difference operator (3.11.8) be given by

mo2
a.
J

Theorem 3.8 (Lax). The finite difference method (3.11.9) which

approximates the scalar hyperbolic equation (3.11.8) is stable

provided the symbol p(x,5) given by (3.11.10) is Lipschitz continuous

in x and

(i) |p(xfc)| < 1 if Z * 0,

(ii) p(x,£) = 1 - Q(x)£2P + O(S2P+1), where £ is near 0 and

Q(x) > 0 for every x.

Observe by consistency (see Section III.3),

m2

p(x,0) = r a,(x) - 1 .
J—, J

Since |p(x,O| < 1 for £ # 0, condition (i) implies that there is

some dissipation. Condition (ii) indicates how much dissipation is

present in the finite difference method (3.11.8).

We now state the main result, the Lax-Nirenberg theorem [26].

Theorem 3.9 (Lax-Nirenberg). Consider the hyperbolic system (3.11.2)

approximated by the finite difference method (3.11.3). Suppose that

the coefficient matrices Aj(x) are real and symmetric, independent

of t, and have bounded second derivatives. If the amplification

matrix G(x,5) of the finite difference operator (3.11.3) satisfies

lG(x,c)i < 1

for every x and £, then the finite difference method (3.11.3) for

real vector grid functions un is stable.

In the Lax-Nirenberg theorem, the coefficient matrices Aj(x)

are symmetric, so that the amplification matrix G(x,£) associated

with the finite difference method (3.11.3) is symmetric. As a result,

the matrix norm of G(x,5) can be readily evaluated,
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|G(x,Ol = o(G(x,z)) .

The Lax-Nirenberg theorem requires less information about the

structure of the finite difference method than Kreiss's theorem.

However, the Lax-Nirenberg theorem requires a stronger smoothness

condition to be satisfied by the coefficient matrices. The coef-

ficient matrices are required to have bounded second derivatives.

Kreiss's theorem requires that the coefficient matrices be Lipschitz

continuous. This condition is satisfied if the coefficient matrices

have bounded first derivatives.

The Lax-Nirenberg theorem remains valid for systems of hyper-

bolic equations with variable coefficients in several space variables

(see Appendix C).

Consider the Lax-Friedrichs method (3.8.7) (or (3.2.19)) applied

to the system (3.11.2) with variable coefficients

un+1 = i(un +11^)(3.11.11)

I A.

where A_^x) - ̂ U - XA(x)), AQ(x) = 0, and A., (x) = ̂ U + XA(x)).

In (3.11.11), mi = m2 = 1 so that the CFL condition (3.11.4a) and

(3.11.4b) may be combined to yield

|yj(x)|x < 1 for j = 1 p

In fact, for any finite difference method (3.11.3) where m-| = m2 = 1 ,

that is, un depends on u? « , un and u"+i , the CFL condition

(3.11.4a) and (3.11.4b) reduces to (3.11.12), which may be rewritten

max |yi(x)|X < 1
1 <j <p
x

If A(x) in (3.11.2) is Lipschitz continuous in x, then by

the definition of the three coefficient matrices, the Aj(x) ,

j = -1,0,1 in (3.11.11) are Lipschitz continuous in x. The Taylor

series expansion, as described in Section III.2, can be used for the

variable coefficient case where c is replaced with A(ih), the

Taylor series expansion of A(x) about the point ih evaluated at

ih. With this the variable coefficient Lax-Friedrichs method (3.11.11)

is accurate to 0(k) + 0(h).

The amplification matrix G(x,£) associated with (3.11.11) is

G(x,c) = I A.(x)e~ijS
j = -1 J

= ^ cos £ - iA(x)x sin £ .
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Following the same procedure of Section III.§, where A(x) is

hermitian, the eigenvalues of G(x,£) are ej(x,O» j = 1,...,p

given by

€j(x,^) = cos £ - iyj(x)x sin £

and following the same procedure of Section III.6, we may write for

small £

j 7 j

Thus, the Lax-Friedrichs method is dissipative of order 2. As such,

by Kreiss1 theorem, the Lax-Friedrichs method (3.11.11) is stable.

Next consider the Lax-Wendroff method (3.8.10) (or (3.5.3))

applied to the system (3.11.2) with variable coefficients. An

alternate, yet equivalent, way to derive the Lax-Wendroff method is to

consider the Taylor series expansion in time of v(x,t) about the

point (ih,nk),

vn+1 = v(ih,(n+1)k) = vn + k(3_v)n + £-(32v)n + 0(k3).
—1 — —1 t— L Z t— L

Using equation (3.11.2), 3tv = A(x)3xv and

*t2 = 3t(A(x)3xv) = A(x)3x(3tv) = A(x) 3x(A(x) 3xv).

Substituting into the Taylor series

(3.11.14) vn+1 = vn + kA(ih)(3xv)
n + ̂ A(ih)(3x(A(x)3xv))

n + 0(k3).

Approximate the two space derivatives in (3.11.14) by second order

differences (see Section II.11)

and
D+(A. i D.vn) = (3x(A(x)3xv))

n + 0(h2),

where A 1 = A(i-^-)h). Substituting into (3.11.14) gives the Lax-

Wendroff method

(3.11.15) un+1 = un + ^ D Q U ^ + ^AiD+(A> 1 D_u
n) ,

which is accurate of 0(k2) + 0(h2). This may be written in the form

•j

where A_.j(x) = 2-A(x)A(x - 7) - ̂ A(x) , AQ(x) = 1 - |—A(x) (A(x + 7) +

A(x - j)), and A1 (x) = -|^A(x)A(x + 7) + ^A(x) . Since m1 = m2 - 1 ,
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the CFL condition is given by (3.11.12).

If A(x) in (3.11.2) is Lipschitz continuous in x and

uniformly bounded, then A(x)A(x ± j) is Lipschitz continuous in x

and uniformly bounded, and hence the three coefficient matrices A.(x),

j = -1,0,1 are Lipschitz continuous in x and uniformly bounded.

To complete the stability analysis, the terms A(x ± -^ must be

replaced. Expanding A(x) in a Taylor series about the point x

A(x ± f) = A(x) ± jk' {

x+ < x + ^

(3.11.15),

where x < x+ < x + ̂  and x - j < x" < x. Substituting into

(3.11.16) u?+1 - [u? + ̂ D Q U " + 3rA?D+D_u
n]

The first term in the bracket on the right hand side of (3.11.16) may

be written in the form

(3.11.17) u?+1 = 1 £.(ih)siu?,

where &_.,(x) = ̂ A 2(x) - ^A(x) , &Q(x) = 1 - X
2A2(x), and K} (x) =

|^A2(x) + ^A(x). The amplification matrix associated with (3.11.17)

is (cf. Section III.8)

G(x,£) = I - 2x2A2(x)sin (|-) - iA(x) X sin(c)

If A(x) is hermitian, then the coefficient matrices A.(x)

are hermitian, and hence G(x,5) is hermitian. Following the same

procedure of Section III.8, the eigenvalues of G(x,£), ej(x,5),

j = 1,...,p are

ej(x,£) = 1 - 2x
2y2(x)sin2(|) - iyj(x)x sin 5 •

Again, following the same procedure of Section III.6, for small 5

I £j (x, c) I = 1 - •§• y?(x)X2(1 - y2(x)x2)£4 .

Thus, the finite difference method is dissipative of order 4. As such

Parlett's theorem applies, provided that A(x) has distinct eigen-

values, and the method (3.11.17) is stable.

If A(x) does not have distinct eigenvalues but is real and

symmetric with bounded second derivatives, the Lax-Nirenberg theorem

may be used. Since G(x,5) is symmetric

j(x,5)| < 1
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provided that the CFL condition is satisfied. Hence, the finite

difference method (3.11.17) is stable.

The second term in brackets on the right hand side of (3.11.16)

may be written in the form kB, where

- un) + |A.A'(x")(un - u ^ ) ,

which is uniformly bounded. By the Strang perturbation theorem

(Theorem 2.4) the Lax-Wendroff method (3.11.15), written as,

un+1 = E A.(ih)s|un + kB

is stable.

Consider the scalar hyperbolic equation

(3.11.18) 3tv = a(x)axv .

A method, due to Courant, Isaacson, and Rees [8] (see also Lelevier

[27], called the upwind difference method, will be described. In

Section III.2, it was shown that

n+1 n _,_ . ^ nu. = u. + kcD+u. .

approximates the scalar equation with constant coefficients

(3.11.19) 9tv = C3xv

where c is a positive constant. This method is stable provided the

CFL condition is satisfied, ex < 1.

Also, the finite difference method

uf 1 = u? + kcD.u?
approximates (3.11.19) where c is a negative constant. This method

is stable provided the CFL condition is satisfied, -ex < 1.

These two methods can be combined in the case of the variable

coefficient equation (3.11.18) to yield

ka(ih)D+u? , if a(ih) > 0 ,

ka(ih)D_un , if a(ih) < 0 .

Since each method is accurate to 0(k) + 0(h), the combined method is

accurate to 0(k) + 0(h). The symbol of the upwind difference method,

using the symbols of the two individual methods in Section III.2, is

1 - 2a(x)x sin2(|) - ia(x)x sin £ , a(x) > 0

1 + 2a(x)x sin2(|) - ia(x)x sin £ , a(x) < 0

or

p(x,£) = 1 - 2|a(x)|x sin (f) - i|a(x)|x sin z .

Following the procedure of Section III.6, for |s| < ir,

|P(X,£)| - 1 - 4|a(x)|x(1 - |a(x)|x)sin2(|-)

(3.11.20) un+1 = un +
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and for small £,

|p(x,C)| = 1 " 7|a(x)|x(1

Thus the upwind method is dissipative of order 2. As such, by

Kreiss's theorem, the upwind difference method (3.11.20) is stable.

We close this section with the most general version of the

theorem of Lax [5]. This is an extension of Theorem 3.1 in Section

III.3 and Theorem 3.4 in Section III.9.

Theorem 3.10. Consider the hyperbolic system of equations (3.11.2)

approximated by a finite difference method of the form (3.11.1).

Suppose the finite difference method is accurate of order (p- ,Po) anc*

k = 0(h). Then

where p =

III.12. Random Choice Method

The random choice method (RCM) was introduced by Glimm [12] for

the construction of solutions of systems of nonlinear hyperbolic con-

servation laws (see Chapter IV). This construction was the basis for

the existence theorem in the large, with restrictions on the type of

systems allowed and on the size and variation of the initial data. The

random choice method was developed for hydrodynamics by Chorin [2-3]

and further developed by Albright et al [1], Colella [4-5], Concus et

al [6], Glaz and Liu [11-12], Glimm et al [13-17] and Sod [31-42].

Our discussion of the random choice method requires a few basic

ideas from probability theory. The set of all possible outcomes of an

experiment is called a sample space. A random variable is a mapping

from a sample space to the real numbers. As an example, consider the

tossing of a coin. The sample space consists of two elements, the two

outcomes of the experiment, heads and tails. One random variable

assigns the outcome "heads" the number one and the outcome "tails" the

number zero. If f(x) is a function and £ is a random variable,

then f(5) is a random variable. If £« and 5^ a r e t w o random

variables, then 5i+52 *s a ran(^om variable.

Let x denote an element of the range of £, that is, x is

one of the values that % assumes. All points in the sample space in

which 5 assumes the value x forms the event that £ = x with its

probability denoted by P{£ = x}. For all x in the range, the

function

(3.12.1) f(x) = P U = x}

is called the probability distribution function (of the random

variable £).
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Let £.. and ^ denote two random variables defined on the

same sample space. Let x and y denote elements in the ranges of

C-j and ?2» respectively. All points in the sample space in which

Ci assumes the value x and ^ assumes the value y forms the

event that ^ = x and ^ ~ Y with probability P{^-| = x, ^ = y) •

For all x in the range of ^ and y in the range of s^* t h e

function

h(x,y) = P(c1 = x, c2 = y>

is called the joint probability distribution function (of the random

variables £« and £o)* ^ e t f(x) anc* 8(y) denote the probability

distribution functions of %^ and %^, respectively. If for all x

in the range of £« and for all y in the range of ŝ * Mx,y) =

f(x)g(y), then the random variables £.. and £o a r e called

independent. This is saying that two random variables £.. and z^

are independent if the outcome of the experiment that determines £<

has no effect on the experiment that determines ^» a n d vice versa.

Consider a random variable £ with probability distribution

function f(x)• If the range of £ is a countable set {x.}, the

mean or expected value of 5, denoted by E[g], is

(3.12.2) EU] = E X j f ( X j ) .

More generally,

(3.12.3) EU] = !+e° x f(x)dx.

If Si and $2 a r e t w o random variables, then EU-j+^l = E[C-j] +

E t ^ L which can be seen directly from the definition of expected

value and the linearity of the integral. If, in addition, £.. and

52 are independent random variables, then E[ ̂  ̂  ̂ 2 3 = EE^-| 1EE^2-''

The second moment of a random variable £ is E[£2] which for a

countable range is

and more generally,

xjf(Xj)

x2f(x)dx.

The deviation of a random variable from its mean, 5 - E[£], is a

random variable. The second moment of % - E[£] is the variance of

C, denoted by Var(s),

(3.12.4) Var(c) = E[(* 2

If %* and £2 a r e independent random variables, then Var(^- + ^«)

= Var( 5-) + VarU^)* Since the mean of a set of nonnegative numbers

is always nonnegative, the variance is positive. With this define the
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standard deviation of a random variable £ as

(3.12.5) a<5) - (Var(O) 1 / 2

For further details see Feller [9-10].

Two versions of the random choice method will be presented, the

first version is a two-step method using a staggard grid and the

second version is a two-step method using a single grid. Consider the

prototype equation (3.2.1)

-co < X < +00, t > 0(3.2.

with

1)

initial

atv

condition

=

(3

C3

.2

xV

.2)

(3.2.2) v(x,O) = f(x), -« < x < +00.

For the two step version of the random choice method, let u.

"4
and u 1 denote approximations to v(ih,nk) and v((i-hy)h, (n+-y)k) ,

14
respectively. Rather than considering discrete points in space,

assume that the solution is constant on intervals of length h, that

"4
is, piecewise constant. The goal is to find the solution u ^ given
n n n+1 n+"2 n +?

u i and ui+.j ; and to find the solution u^ given u ^ and u ^ .
To find the solution u 1t consider equation (3.2.1) along

14

with the piecewise constant initial condition

(3.12.6) v(x,nk) = un, (i - ̂ )h < x < (i + ̂ )h.

Such a problem is called a Riemann problem. On the interval

ih < x < (i+i)h (3.12.6) represents a step function (a discontinuity
• c n n vif \it ± ^ i + 1 ) . n , ,. 1 Mu. , x < (l + -j)h

v(x,nk) n 1

u. , « ,x > (i + -s-)h.

The value u n is called the left state and the right value u?+.j is

the right state of the Riemann problem. This discontinuity, considered

as a wave, is propagated with speed C. If the CFL condition

|c|k/h < 1

is satisfied, the discontinuity will not propagate beyond the interval

[ih,(i+1)h], for each integer i. The basis of the random choice

method is that it is easier to solve a sequence of Riemann problems

(3.2.1) and (3.12.7) on the interval [ih,(i+1)h] for each i than it

is to solve (3.2.1) with the more general initial data (Cauchy data).

If the CFL condition is satisfied, the waves (discontinuities)

generated by the individual Riemann problems, one for each i, will

not interact. Hence, the solution can be combined by superposition
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into a single exact solution ve(x,t) for nk < t < (n + i)k (see

Figure 3.21).

H I / I hr~" (n+l)k

nk

(i-l)h ih

Figure 3.21. Sequence of Riemann Problems for Two-Step
Version of Random Choice Method

Let £ denote a uniformly distributed random variable in the interval
1 1

(- y, •%), that is, 5n has probability density function which takes

the value 1 in (- j, j) and 0 elsewhere. Define

"4 e
u \ = ve((i + -̂  + £ )h, k/2)

(see Figure 3.22).

ih

Figure 3.22. Sampling Procedure for Two-Step Version
of Random Choice Method

Similarly, to find the solution u?+ , consider equation

(3.2.1) along with the piecewise constant initial condition

n+1

v(x,(n + i)k) = u 7 , ih < x < (i+1)h.

14
If the CFL condition (3.12.8) is satisfied, the waves (discontinu-

ities) generated by the individual Riemann problems, one for each i,

will not interact. Hence, the solution can be combined by super-

position into a single exact solution ve(x,t) for (n-ĥ Ok: < t <

(n+1)k. Let £ 1 denote a uniformly distributed random variable in

the interval (- -̂, -j-). Define

n+1 e V

U? = Ve((i + E Oh, 4).
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The grid at the end of one half step is offset by h/2. However,

at the end of the next half step, the grid will be offset by h/2 in

the other direction bringing it back in line with the original grid.

In summary, at each time step the solution is approximated by a

piecewise constant function. The solution is then advanced in time

exactly (the solution to the Riemann problem) and the new values are

sampled. The method depends on being able to solve the Riemann

problem exactly (or at least very accurately) and inexpensively. This

will be discussed further in this section and in Chapter IV.

The random choice method is unconditionally stable. However,

the Courant-Friedrichs-Lewy condition must be satisfied. If it is not

satisfied, the waves from the Riemann problems will propagate beyond

the sampling interval (- j, -j), and result in incorrect sampling

probabilities. This results in changing the Riemann problem being

solved.

Consider the Riemann problem (3.2.1) and (3.12.6) on the

interval [ih,(i+1)h]. The solution v(x,t) is constant along the

characteristics

x + ct = const.

By following the characteristic passing through the point

((i + j + £n)h, (n + •j)k) to the point of intersection with the line

t = nk, denoted by x,nk), we obtain

x - f* + (i + 1 + 5n)h.

If the point (x,nk) lies to the left of the point ((i+^-)h,nk) , that

- 1 n +7
is, x < (i+y), then u 7 = u?, and if the point (x,nk) lies to

z i+i
1 1

the right of the point ((i+£)h,nk), that is, x > (i+^)h then
n+i n

u 1 = U44.1* These results may be summarized as

n+i un g h < -ck/2
(3.12.10) u 7 = i n

Consider the equation (3.2.1) with initial condition (3.2.2)

given by a single step function

0, x < 0
(3.12.11) f(x) =

1, x > 0,
the solution is

0, x < -ct
v(x,t) = f(x+ct) =

1, x > -ct.

In solving this initial-value problem, which happens to be a Riemann

problem, using the random choice method there are only three possible
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combinations of values of the left and right states. First, both un

and u"+.| are 0 and rather than a step function, the initial condi-

tion is a single constant state with value 0. In this case, the

n4
sampled value for u ., can only be 0. Second, both u. and u.+.

are 1 and rather than a step function the initial condition is a

single constant state with value 1. In this case, the sampled value

for u .j can only be 1. Finally, u^ = 0 and un
+^ = 1 which is

a discontinuity. If the sampled value satisfies £nh < -ck/2, then

u ^ = 0. In this case, the initial discontinuity (3.12.11) move a

distance of h/2 to the right. If the sampled value satisfies

£nh > -ck/2, then u ^ = 1. In this case, the initial discontinuity

(3.12.11) moves a distance of h/2 to the left. Thus the discon-

tinuity remains perfectly sharp. The random choice method has no

numerical diffusion. The position of the discontinuity obtained by

the random choice method fluctuates about the true position of the

discontinuity (see Figure 3.23).

discontinuity
position x=ct
with c=l

Discontinuity Position

Figure 3.23. Discontinuity Position with
c > 0 for Random Choice Method

It should be noted that some randomness (or some means of choos-

ing an equipartition of the interval (- " O ) ) needed. Suppose

4
the more natural choice of obtaining u 1 is made, that is, the

14
s o l u t i o n t o t h e R i e m a n n p r o b l e m i s s a m p l e d a t t h e m i d p o i n t o f t h e

i n t e r v a l £ n = 0 a n d

un+f = ve((i +i)h, h.
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If the initial-value problem (3.2.1) and (3.12.11) is considered with

c < 0, then the value (i + i)h will always be to the left of the

"4 ndiscontinuity and u 7 = uY. The initial discontinuity (3.12.11) willi4
move to the right with speed h/k independent of the true speed c.

A natural question arises: How much randomness is needed?

The choice of the sequence of random variables £n determines

the behavior of the solution. Consider the Riemann problem (3.2.1)

and (3.12.6) on the interval [ih,(i+1)h]. Suppose e is close to
1 n
- T then the value of the left state u. will propagate to the right

h 1
a distance of TT. If £ is chosen close to -*t then the value of

n h

the right state u^+^ will propagate to the left a distance of -j.

Suppose a new random variable is chosen for each i (in space) and n

(in time), there is a finite probability that a given state will pro-

pagate in both directions and create a spurious constant state. To

this end only one random variable is chosen per time step (hence the

subscript n in £ ). This sequence can be approximated by means of

a pseudorandom number generator (see Hammersley and Handscomb [18]).

An improvement introduced by Chorin [3] is a method by which

the sequence of random variables 5 reaches an equidistribution over
1 1

(- y, -j) at a faster rate. This method, known as stratified random
sampling, is a particular type of random sampling. The method combines

a sequence of random variables £ equidistributed over (- •*•, -*) and

a sequence of pseudorandom integers kn«

Given two mutually prime integers m^,m2 with m^ < n^, con-

sider the sequence of integers
(3.12.12) kn+1 = (my + kn)(mod m2)

when kg is specified such that kg < n^. This will produce a series

of pseudorandom integers ranging from 0 to n^. For example, if

kg = 2, m^ = 7, m^ = 11, then the first eleven integers in the

sequence k., i - 1,2,...,11 are 9,5,1,8,4,0,7,3,10,6,2.
1 1The interval (- -j, -^) is divided into m^ subintervals. The

stratified sampling technique picks one random variable from each sub-

interval once for every nu random variable. This is done as follows.

Let S1 denote a sequence of random variables equidistributed overn 1 1the interval (- ^, -^), then consider the stratified sequence

k + Cl + 7 1
(3.12.13) * n ~ m ' ?'

A recent result of Liu [28] has shown that it is not necessary

to use random numbers, all that is required is that the sequence

approach equidistribution. The first nonrandom sampling technique

known as the Richtmeyer-Ostrowski sequence was considered in Lax [23].
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One nonrandom type sampling technique has been studied by

Colella [45]. This quasirandom sampling known as van der Corput

sampling. Consider the binary representation of the integer n,

m \r

(3.12.14) n = I ik2
K,

where L = 0,1. Then the van der Corput sequence is given by

(3.12.15) £n = z ik2"
(k+1) ,

where the values of m and L for k = 0,...,m is determined by

the binary representation of n.

For two-dimensional problems two independent sequences are used.

To this end the van der Corput sampling must be modified. Let k-, k2

be two positive, mutually prime integers with k̂  > ̂ 2* Consider the

base k- expansion of n

(3.12.15) n = ? i£k*

where i = 0,1,...,k- - 1. Define the (k-,k«) van der Corput

sequence £n by

(3.12.16) £n = | q̂ 1

where q^ = k2i (mod k.| ). The binary van der Corput sampling dis-

cussed above is a special case when k̂  = 2 and k2 = 1.

Partition the interval (- j, j) into km+1 subintervals

qj - [jk"m"1,(j + 1)k^m"1] for j -0,1 k^1. The (k1 ,k2) van

der Corput sequence {£n | n = 0,1,...,k
m } is such that for every

sub interval g., there is one and only one element n for which

An interesting phenomenon occurs as a result of the random

choice method being a two-step method and the sampling in the interval

(- TJ, •*) • It is possible for a stationary discontinuity (or a solid

boundary) to move at the end of a full time step. For example,

consider the equation 3tv = 0 with discontinuous initial data. The

solution consists of the discontinuous initial data for all time.

However, should the random variable forthe first half step be chosen

in the interval (- 77,0) and, again, for the second half step in the
1

interval (- j,0), the discontinuity (and solution) will be translated

over by one grid point.

Consider the Riemann problem given by (3.2.1) and (3.12.6) on

the interval [ih,(i+1)h]. The solution is constant along the charac-

teristic x + ct = const. The initial discontinuity propagates along
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the characteristic passing through the point ((i+^)h,nk). Choose a

uniformly distributed random variable £n in the interval (- •£» "j)*

Define the point Q - ((i + i + % )h,(n+1)k). If the point Q lies to
z n ..

n+i
the left of the characteristic, then u 7 - u\\ and if the point Q

2" n
lies to the right of the characteristic, then u 1 - ui+ 1. Let Pi

and P1+1 denote the points (ih,(n+1)k) and ((i+1)h,(n+1)k),

respectively. The characteristic intersects the line t = (n+1)k at

P ! = ((i+i)h = ck/2,(n+1)k). The point Q lies to the left of the

characteristic with probability (h-ck)/2h (the length of the segment

FTP 1 normalized by the length of the interval h, that is,1 *4
PTF -/h) and Q lies to the right of the characteristic with proba-1 *4
bility (h+ck)/2h (the length of'the segment P ^ . M normalized by

the length of the interval h, that is, P ^Fi+1/h) (see Figure

3.24).

ih

Figure 3.24

It follows that un - v(ih,n,nk), where n = n(t) is a random

variable that depends on t alone. After 2n half-steps the dis-

placement of the initial value at a point x is x + n,

2n
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where n. are independent, identically distributed random variables

with probability distribution

r>, h, h+ckP{n = -j) = -TS-

h. h-ck

and

The expected value, second moment, and variance of r\. are

(
, ,h-ck wh x ck

and

h,.2
)

Fr 2, Fr ,2E[ T^ J - E[ n^ J = ck 2
)

From which,

2n
E[n] = l E[n, ]

J-1 J
-ct

Var[n]

If the ratio h/k is held constant, then Var[n] + 0 as h •»• 0 for

fixed t. Thus the computed solution converges to the exact solution

as h tends to zero.

The second version of the random choice method (see Colella [5])

is a two-step method using a single grid. To find u^ given u^^ ,

u^, and u^+i consider the sequence of Riemann problems given by

equation (3.2.1) along with the piecewise constant initial condition

(3.12.6). The solution u n + is based on the solution of two

Riemann problems with initial conditions

(3.12.17)

and

(3.12.18)

vi_(x,nk)

vi+(x,nk)

, X >

I x <

,, x >
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The CFL condition becomes

(3.12.19)

where the factor of 1/2 comes from replacing k with k/2 in

(3.12.18). If the CFL condition is satisfied the discontinuities

(waves) in each of the intervals [ih,(i+1)h] will remain in their

respective intervals and hence, the solution can be combined by super-

position into a single exact solution

Let 5,

ve(x,t) for nk e t e (n+1)k.

n denote an equidistributed random variable in the

interval (~T» "j)• Sample the Riemann problems associated with

(3.12.17) and (3.12.18),

(3.12.20)

and

(3.12.21)

i-̂

u ^ = ve((i-4+Cn)h,k/2).

The second, step of the random choice method is

,1

(3.12.22)

(see Figure 3.25).

n+1

11 2 , u > 0,

i-1 n

4
u f , £ < 0

(i-l)h (i-%)h ih

nk

Figure 3.25. Sampling Procedure for Random Choice
Method on a Single Grid

Both versions of the random choice method can be extended to the case

of a scalar hyperbolic equation with variable coefficients. The ran-

dom choice method described above for the constant coefficient case

remains unchanged for the variable coefficient. The only difference is

in the solution of the Riemann problem. The basic random choice method
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assumes the solution to the Riemann problems is available.

What remains there to be described is the solution to the

Riemann problem. To this end, consider the equation

atv = a(x)3xv

along with the piecewise constant initial condition (3.12.6) on the

interval [ih,(i+1)h]. The solution v(x,t) is constant along the

characteristics defined by

|f = -a(x)

- t = const.

Suppose the integral in (3.12.23') can be explicitly evaluated

A « • /.fir.
where A(x) is invertible. In this case the characteristic curves

are

(3.12.24) A(x) - t = const.

Follow the characteristic passing through the sampled point

++S^h, (n+1)k) to the point of intersection with the line t = nk,

( 3 .

or

( 3 .

12

12

. 2 3 )

. 2 3 ' )

denoted by (x,nk). Using (3.12.24),

(3.12.25) x = A"1(A((i+l+Cn)h) - k) .

If the point (x,nk) lies to the left of the point ((i+^-)h,nk), that

is, x < (i+j)h, then u \ - un. Similarly, if the point (x,nk)

lies to the right of the point ((i+^-)h,nk), that is, x > (i+^Oh,

An+^
then u « = u,,< .

In the event that A(x) is (3.12.24) is not invertible, a non-

linear equation in x is obtained

(3.12.26) A(x) - A((i4+Sn)h) + k = 0,

which can be solved by standard techniques, such as Newton's method.

Finally, suppose that the indefinite integral in (3.12.23') can-

not be explicitly evaluated. In this case the characteristic curve

through the sampled point can be replaced by the tangent line to the

characteristic at the sampled point. From (3.12.23) the slope of the

tangent line is —T—r- and the equation of the tangent line is
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where a. (5 ) = a( (i-Hj+5n)h). Let (x,nk) denote the point of inter-

section of the tangent line with the line t - nk, then

(3.12.27) x = (i+S+Sn)*1 - a i ^ n
) k

(see Figure 3.26). This reduces the equation (locally) to the

constant

ih

Figure 3.26.

coefficient case, where c In this case

(3.12.28) u «

14
Both versions of the random choice method extend directly to

hyperbolic systems with constant or variable coefficients. Again, the

solution of the Riemann problem for the system of equations is assumed

to be available.
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III.13. Asymptotic Error Expansions

Suppose a hyperbolic partial differential equation is approxi-

mated by a finite difference method that is accurate of

0(kq1) + 0(hq2). Let k = 0(h) then the finite difference method is

accurate of OCh^) where q - min(q-|,q2). Suppose that the error can

be written in the asymptotic form

T - i tvV(x,t) ,
j-q

where the vJ(x,t) are smooth functions which depend on the exact

solution v(x,t) but are independent of h and vq(x,t) is not

identically zero,

written in the form

identically zero. In this case the approximate solution un may be

(3.13.1) u? - vn + z h-V(ih,nk) .
1 1 j-q

Consider the prototype equation (3.2.1)

(3.2.1) 3tv = c3xv, -« < x < +oo f t > 0

where, without loss of generality, we assume that c > 0, along with

the initial condition

(3.2.2) v(x,0) = f(x), -oo < x < +00 .

Approximate this equation by

(3.13.2) un+1 - u n + ckD+u
n ,

which was shown in Section III.2 to be first order accurate. Thus

q - 1 in (3.13.1) and un, given by (3.13.2) may be written as

u n = vn + z hV(ih,nk)

= vn + h(v 1) n + z hV(ih,nk)
1 l j-2

= v^ + h(v1)" + 0(h2) .

How is this function vx(x,t) defined? Formally expanding v + hv1

in a Taylor series about the point (ih,nk) gives

(v + hv 1) n + 1 = (vn + kO^v)? + ^-(3 2v) n + 0(k3))

and

1)? + 0(k3))

(v + hv 1) n
+ l = (vn + h(3xv)^ + ^ - O x v ) " + 0(h

3))

+ h((v1)n + h(3 tv
1) n + ^ O x v

1 ) ^ + 0(h3)) .
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Substitution of these Taylor series expansions in the finite

difference method (3.13.2)

(v + hv 1) n + 1 - (v + hv 1) n
 1

^ ^ ( 1)"1
- cD+(v + hv

1)"

Otv -

+ 0(k2) + O(kh) + 0(h2) .

2 2 2If v is twice continuously differentiable, 3tv = c 3xv, and using

(3.2.1)

(v + hv1)n + 1 - (v + hv1)1?
(3.13.3) i-^ ^ - cD+(v + h V l )

n

= ( c |k _ | h ) ( a 2 v ) n + ( h 3 c V1 _ Ch3xv1)i + 0(h2) ,

where k = 0(h). In order to obtain accuracy of 0(h 2 ) , the sum of

the two terms on the right-hand side must vanish. This gives an

equation for v1

(3.13.4) 3tv
1 - C3xv

1 + -j(c-c2x)32v

I,
where x = ̂  . The initial condition for this equation is obtained

from the initial condition (3.2.2) of v and u

u° = f(x) - v(x,0) + hvi(x,0) = f(x) = hvi(x,0) .

This gives rise to the initial condition

(3.13.5) vi(x,0) = 0 .

The initial-value problem (3.13.4)-(3.13.5) has a unique solution.
This verifies the existence of such an asymptotic expansion provided

o
the exact solution v is sufficiently smooth, for 3 v is needed to

1
determine v in (3.12.4).

With v being the solution of the initial-value problem

(3.13.4)-(3.13.5), we see the aid of (3.13.2) and (3.13.3) that

(u-v-hv1)^1 - (u-v-hv1)n
 1

^ ( 1 ) n1
- cD+(u-v-hv

1)n

= 0(k2) + 0(h2) .

One application of this technique is Richardson's extrapolation.

Write (3.13.1) in the form

(3.13.6) vn = un + l tvV(ih,nk) .
1 L J-q

Suppose the approximate solution is completed for two different values

of h, that is, on two grids with spacing h and rh where r * 0,1.
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Then (3.13.6) may be written as

(3.13.7) v = uh + I hjvj(x,t)
j-q

and

v = u r h + i (rh)jvj(x,t) ,
j=q

where U*1 and ur^ denote the approximate solutions on the grids

with spacings h and rh, respectively. Multiplying (3.13.7) by

(rh)q and (3.13.8) by hq, subtracting and solving for v yields

_q..h . rh

rq - 1 j-q+1 rq - 1

r ~ r hV(x,t)

+ o ( h ) .
rq . 1

Thus Richardson's extrapolation allows us to combine two approximate

solutions that are accurate of O(hq) to obtain an approximate

solution that is accurate of O(hq+^). However, without a careful

examination of the error term in (3.13.9), we cannot say that (3.13.9)

is more accurate than either (3.13.7) or (3.13.8). If v is

sufficiently smooth, then (3.13.9) is more accurate for h suf-

ficiently small. This new approximate solution given by (3.13*9) is

defined on the coarser of the two grids only.

One feature of Richardson1s extrapolation is that higher order

approximations are obtainable without explicitly finding v1•

This process can be repeated successively to cancel higher and

higher order terms in the truncation error, provided the solution v

is sufficiently smooth. Each application of Richardson's extrapola-

tion calls for an approximate solution of an ever finer grid. This

can become expensive, particularly for problems in two- and three-

space dimensions.

Another application of asymptotic error expansions that does not

require recomputing the solution on a finer grid is the method known

as a deferred correction.

In general, vJ(x,t) in (3.13.1) is not known since it is the

solution of an equation similar to the one that we are trying to

solve. We can, however, find an approximate solution to the equation

that determines vJ.

For example, consider the equation (3.13.4) for v1. This

equation can be approximated by employing the same finite difference

method (with suitable changes) used to solve the original equation

(u 1) n + 1 = (u 1) n + ckD+(u
1)V + |(c - c2x)D+D_u

n .

Then by using (u 1) n in place of v1 in (3.13.1),
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u* + h(u1)" = vn + 0(h2) ,

where k = 0(h).

A natural question arises. Do we really gain anything from

using higher order finite difference methods? This question will be

considered in the next section.

III.14. How Accurate Should a Finite Difference Method Be?

Using the techniques developed in Section III.12, we can

construct high order accurate finite difference methods, provided the

exact solution is smooth enough. Those methods may be either dissi-

pative or nondissipative.

For example, consider the leap-frog method

(3.10.1) Ul 2k"1 - ° V ?

which is accurate of 0(k2) + 0(h2). It was shown that

or

(3 v)? - Dnv
n - z-(3 v ) n

X I U 1 O X I

Let Do(h) denote the dependence of DQ on h, then with a grid

spacing of ah, where a is a position integer,

DQ(ah)v" = (
9
x
v>i + ( a ^ 2 ( 3 x v )

n + (*2o"(axv)l + 0 ( h 6 )

In particular, for a = 2 and 3, we have

and

O x v )
n = DQ(2h)v

n - |h2(3^v)n - ̂ O ^ v ) " + 0(h6)

O x v )
n = DQ(3h)v

n - |h2(3^v)n + T|^h
4(9^v)n + 0(h6) .

Applying Richardson's extrapolation to the two second order

accurate approximations to 9X, Do(h) and Do(2h),

(3.14.1) (vx)
n = ̂ (4DQ(h) - DQ(2h))v

n + 0(h4) ,

which results in a fourth order accurate approximation to 8X.

Replacing the Dg(h) term in the leap-frog method with

i(4DQ(h) - DQ(2h)),

uf1 - u?-1
(3.14.2) L

 2k
 1 §(4DQ(h) - DQ(2h))u

n ,
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which is accurate of 0(k2) + OCh1*).

Applying Richardson's extrapolation to the three second order

accurate approximations to 3X, DgCh), Do(2h), and Do(3h), we have

(3.14.3) (3xv)^ = y^(15D0(h) - 6DQ(2h) + D0(3h))v
n + 0(h6),

which results in a sixth order accurate approximation to 3X.

Replacing the Do(ho) term in the leap-frog method with

^ ( I S D Q O I ) - 6DQ(2h) + DQ(3h)),

f T c
(3.14.4) 1

 2 k
 1 y^OSDQCh) - 6DQ(2h) + DQ(3h))u

n,

which is accurate of 0(k2) + 0(h6).

This approach can be generalized. Applying Richardson's extra-

polation to the m second order accurate approximations to 3X,

D0(h), D0(2h),...,D0(mh) gives

(3.14.5) (3xv)
n - D[2m](h)vn + 0(h2m),

where

D (h) j ^ (nri-j ) ! (m-j ) I D 0 ( j h ) '

Observe that for m = 1,2, and 3 (3.14.6) reduces to the second,

fourth, and sixth order accurate approximations to 3X just described.

Replacing Do(h) in the leap-frog method (3.10.1) with

Dt2m](h) gives

Un+1 un-1

(3.14.7) i
 lk

 1 = cD[2m](h)un ,

which is accurate of 0(k2) + 0(h2m).

It can be seen by the same technique used for the original leap-

frog method that the fourth-order multilevel method (3.14.2), the

sixth-order multilevel method (3.14.4), and the 2m-th-order multilevel

method (3.14.7) are stable for x ~ £ < 1.

A question arises--how far should we go in increasing the order

of accuracy of a finite difference method or in refining the grid?

Consider the prototype equation (3.2.1.)

3t v " c 3x v , -« < x < +« , t > 0

along with the initial condition

v(x,0) = eMx, -co < X < +• ,

which has the exact solution

(3.14.8) v(x,t) = ei6(x + ct) .

This initial-value problem can be treated as an ordinary differential

equation by discretizing in space only.
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Approximate the space derivative 3xv by DgCh), which is

accurate of 0(h2), giving the ordinary differential equation

(3.14.9) atu = cD0(h)u .

Consider the ordinary differential equation (3.13.9) along with the

initial condition

(3.14.10) u(x,0) - e^x .

The solution to the ordinary differential equation has the form

u(x,

Differentiating with respect

3tu(x

and substituting with DQ,

DQ(h)u =

_

t) =

to

,t) =

u(x,

u(t,

i3(x+c2(B)t)
e •

t,

• iBc2(6)u(x,t)

(eiph - e~iph)
2h

N2 sin(ph)
x) L • ' .

Combining these two results equation (3.14.9),

ii$c2(B)u(x,t) = cu(x,t)
or
(3.14.11) c2(B) =

This i s consistent for C2(B) •• c as h •»• 0. For h > 0, since
|sin(eh)/Bh| < 1, |c2(B)| < c. This produces dispersion. Define the
phase error, e2(3) to be

( 3 . 1 4 . 1 2 ) e 2 ( 3 ) = Bt(c - c 2 ( e ) ) .

Observe that e2(8) is an increasing function of time.

Expanding sin(gh) in a Taylor series about zero,

2

(3.14.13) c2(B) = c(1 - ifi^i- + 0((gh)
4)) .

Thus

(3.14.14) c - c2(6) = O($
2h2) .

Using (3.14.12) along with (3.14.13),

0(h2) .

Suppose we must include all frequencies < BQ» an<* we want to

integrate (3.14.9) up to time T keeping the phase error e2(B) less

than some tolerance e. We must determine how many points are needed

for the computation. Let N2 = 2ir/0h denote the number of grid

points per wave length for the second order accurate leap-frog method

(3.10.1). Write time T as —JE. , where p denotes the number of
p C

periods to be computed.
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Since e2(3) is an increasing function of time, the requirement

that e2(B) < e is satisfied if 0T(c - C2(B)) = e. However,

8T(c - c2(3)) = 2TTP(1 -
 s l n (

g ^ )

= 2*p(1 -

Using the first two terms of the Taylor series for e2(e) in

(3.14.13),replacing eh with 1/N2,

6T(c - c?(0)) « -£5. (2ir)
3 .

1

Thus for a given value of the largest allowable phase error e,

(3.14.15) N2 - 2

Suppose the space derivative in the prototype equation (3.2.1) is

approximated by j(4DQ(h) - DQ(2h)), which is accurate of 0(h ),

giving the ordinary differential equation

(3.14.16) atu - §(4DQ(h) - DQ(2h))u .

Consider the ordinary differential equation (3.14.16), along with the

initial condition (3.14.10). The exact solution has the form

iB(x+C4(0)t)
u(x,t) = e

where following the same procedure as with C2($),

(3.14.17) c4(f!) = c ( ^

This is consistent for C4(g) + c as h •• 0. For h -• 0, as in the

case of C2(B), |C4(B)| < C SO there is dispersion. The phase error

64(3) is defined to be

(3.14.18) e4(6) = Bt(c - c4(p)) ,

which is an increasing function of t.

Again, expanding sin(3h) and sin(2&h) in a Taylor series

about zero,

(3.14.19) c4(B) - c(1 - -^(Bh)
4 + O((8h)6))

Thus

c - c4(8) - 0 ( $ V )

and

e4(e) - 0(h4) .

Requiring 64(3) to be < e gives $T(c - 04(0)) = e. However,
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8T(c - c (e)) = p 1

8 sin(|i) - sin(^)

where N^ = -^ . Using the first two terms of the Taylor series for

"4

of

in (3.14.19), replacing gh with I/N4,

8T(c - c (8))

Thus for a given value of the largest allowable phase error e,

(3.14.20)

Suppose now the space derivative in the prototype equation

(3.2.1) is approximated by y^(15D0(h) - 6DQ(2h) + DQ(3h)), which is

accurate of 0(h6), giving the ordinary differential equation

(3.14.21 9tu = y^dSDQCh) - 6DQ(2h) + DQ(3h))u .

Consider the ordinary differential equation (3.14.21) along with the

initial condition (3.13.10). The exact solution has the form

u(x,t) - e

where C£(B) is given by

P /ft\ _ r/45 sin(gh) - 9 sin(2gh) + sin(3gh).
C 6 U ; " cC 30$h } *

This is consistent for C6(g) •»• c as h + 0. For h -• 0, |cg(e)| < c,

so there is dispersion. The phase error eg(8) is defined to be

(3.14.22) e6(B) - Bt(c - c6(B))f

which is an increasing function of t.

Expanding sin(gh), sin(2gh), and sin(3gh) in a Taylor series

about zero,

(3.14.23) c6(b) = c(1 - yz^bh)
6 + O((bh)8)).

Thus

c - c6(6) = O(66h6)

and e6(e) = 0(h6) .

Requiring eg(B) to be < e gives 8T(c - cg(8)) = e. However,

45 sin(|i) - 9 sin(^L) + sin(^)

8T(c - c6(8)) = 2wp(1 ^ ^ ^ ^-)

where N6 = "in" * U s i n8 t n e first two terms of the Taylor series for
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ce(B) in (3.14.23), replacing h with 1/Ne,

(2TT)7PeT(c - c6(e))b 140N"
o

Thus for a given value of the largest allowable phase error e,

(3.14.24) N6 .

Finally, the space derivative in the prototype equation (3.2.1)

is approximated by D^m](h), which is accurate of 0(h^m)> giving

the ordinary differential equation

(3.14.25) atu = cD[
2ml(h)u .

Consider the ordinary differential equation (3.14.25) along with the

initial condition (3.14.10). As in the three other cases, the

solution of the ordinary differential equation has the form

ie(x+c2m(0)t)
(3.14.26) u(x,t) = e

where C2m(3) will be determined below.

Kreiss and Oliger [20] introduced the formal expansion of 8X in

terms of the difference operators D+D_,

(3.14.27) 9x = DQ(h) E (-1)ja2j(h
2D+Dj

j.

Observe that

h2D+D.e
i6x = ( e 1 ^ - 2 + e"

i6n)eiPx

= -4 sin2(^)ei6x

Applying (3.14.27) to the initial condition (3.14.10), using the

result just obtained as well as the previous results of this section,

sin(eh) ; (_1}j (.4)J8ln2j(lh)

(3.14.28) gh = sin($h) z a9. 2 2 j s i n 2 j ( ^ y ) .
j=0 2 j l

Since sin(eh) = 2sin(-^)cos(-^) and cos"1 (-̂ ) = (1 - sin2(-^) ) " 1 / 2 ,

by substitution into (3.14.28)

(3.14.29) 4(1 - s i n 2 ( % ) - 1 / 2 = sin(^) \ a9.2
2^ sin2^ (^) .

z z z ̂ = 0 zj z

Introduce the change of variable T = sin(-̂ y) or -^ = arc sin x and

observe that
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sin x)2 = arc sin T.(1 - T 2 )' 1 / 2 = -^(1 - sin (^.))"^2.

Substituting into (3.14.29),

i -4(arc sin x) = x I ot9.2
2jx2j ,

z d T j=o ZJ

which, upon integration term-by-term, gives

o °° o
(arc sin x)Z - I ao.

Z
9..9 x

j-0 Zj Zj Z

9
92j

Thus the coefficients a2j of the formal expansion (3.14.27) are

obtained from the Taylor series for (arc sin x) 2 .

The usefulness of this expansion can be seen from the observa-

tion that

(3.14.30) D[2m](h) = DQ(h) Z (-1)
ja2j(h

2D+Dj
j .

Substituting (3.14.26) into the ordinary differential equation

(3.14.25), where Dt2m](h) is given by (3.14.30),

This is consistent for C2m(6) * c as h -• 0. Define the phase error

e2m(3) to be

e2m(p) = $t(c - c2m(g)) .

Multiplying (3.14.28) by c and dividing by eh gives

j=m

so

(3 .

that

,14.31 e

Requiring that

(3.,14.32)

2in(p0 = get

e2m(B) < e

s i n ( ^

gives

j=m

j =m

2 2 j s i n 2 j ( ^
N2m

e ,

where N2m = |g .
We would like to observe the behavior of N2m as m becomes

large. It was shown by Kreiss and Oliger [20] that



251

(3.14.33) lim
j=m

)
2m

By raising (2.14.32) to the 1/m power,

lim(2*p)1 / m

or by using (3.14.33) ,

lim

N2

2m

+ 2. This means that there mustThus as m •• * --£— + £ or
N2m 2

be at least 2 points per wavelength.

Comparing the fourth order method (3.14.16) with the second

order method (3.14.9), it is seen that the amount of computational

labor involved in the fourth order method is about two times that of

the second order method. Similarly, comparing the sixth order method

(3.14.21) with the second order method (3.14.9), it is seen that the

amount of computational labor involved in the sixth order method is

about three times that of the second order method. And, in general,

comparing the 2m-th order method (3.14.25) with the second order

method (3.14.9), it is seen that the amount of computational labor

involved in the 2m-th order method is about m times that of the

second order method.

In Table 3.1 the approximate number of points required for the

second order, fourth order, and sixth order methods is given for

maximum errors of e = 0.1 and e = 0.01.

e

N2

N4

N6

0.1

20p1/2

7p1/4

5p1/6

0.01

64p1/2

13p1'4

Sp1'6

Table 3.1

From the results in the table, the fourth and sixth order methods

require substantially fewer points for a given error e than the

second order method. For large times T (or large values of p),

the higher order methods are superior because of the P ' ̂ . It is

also observed that the sixth order method is superior to the fourth

order method for small errors e.
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III.15. Numerical Examples

Here we present results from two test problems. First, consider

a hyperbolic equation with constant coefficients

8t v = c 3x v -00 < x < +«, t > 0

with initial condition

1 , 0.05 < x < 0.15,
v(x,0) = f(x) =

0, otherwise .

The exact solution is

v(x,t) = f(x +ct).

Choose the constant c to be -1. To avoid dealing with boundary

conditions restrict t to 0 < t < 0.75 and x to -1 < x < 2. The

grid spacing is taken to be h = 0.01. Figures 3.27-3.34 depict

results for 50, 100, and 150 time steps for |c|]| = 0.5 where the

approximate solutions are represented by dashed lines and the exact

solutions are represented by solid lines.

In Table 3.2 the numerical methods and the corresponding coef-

ficients of numerical diffusion are presented.

Figures 3.27 and 3.28 depict the results of the (1,1) explicit

method (3.2.10) and the Lax-Friedrichs method. The large amount of

dissipation in both methods is apparent by the smearing of the waves.

It is also apparent that the smearing increases with time. The phase

errors of both methods appears very small.

Figure Method Diffusion Term Coefficient

3.27 (1,1) explicit - ( ^ - + £^)92v .25 x 10"2

(3.2.10) z z x
3.28 Lax-Friedrichs Jc£ 32v .10 x 10~3

(3.2.15) Z k x

3.29 Lax-Wendroff - ^ 82v .25 x 10~2

(3.5.3) l x

3.30 (1,1) implicit (^ - -^)32v .75 x 10~2

(3.7.5) z z x
3.31 (1,2) implicit ^ 82v .25 x 10~2

(3.7.6) l x

3.32 leap frog
(3.10.1)

3.33 dissipative 5fe£ 8^v .25 x 10"7

(3.10.19) J Z k x where a=.4
3.34 random choice method

(3.12.22)

Table 3.2. Methods and Numerical Diffusion Coefficients
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The oscillatory type behavior of the results obtained by the Lax-

Friedrichs method is due to the DQ operator and decomposing the wave

into two waves of differing phases. The average term used to produce

the Lax-Friedrichs method from the unstable centered method (3.2.13)

does not completely cure this problem.

Figure 3.29 depicts the results of the Lax-Wendroff method. The

large wave number modes are not damped by the small numerical dissipa-

tion and as a result a trail of oscillations is left behind the wave.

Figures 3.30 and 3.31 depict the results from the (1,1) and

(1.2) implicit methods, respectively. The (1,1) implicit method

has three times the numerical damping of the (1,2) implicit method.

This is obvious upon comparison of the two sets of results. The large

wave number modes are not completely damped as there is a small trail

of oscillations behind the wave at time step n = 50.

Figures 3.32 and 3.33 depict the results fro the leap frog and

the dissipative leap frog methods, respectively. The second level of

initial conditions u^ was obtained by using the exact solution. In

this way the errors in the results represent the errors in the leap

frog methods and not a combination of the errors in the leap from

methods and the errors in the method used to obtain the solution at

the first time level. The leap frog method has no numerical dissipa-

tion to damp the high frequency Fourier modes that are poorly

represented by a finite difference method. The introduction of the

high order dissipation term damps much of the high frequency Fourier

modes. The results, in this case, are very similar to those of the

Lax-Wendroff method.

Figure 3.34 depicts the results of the random choice method.

The structure of the wave is perfect. However, at n = 50 and 150,

the wave lags the true wave and at n = 100 the wave leads the true

wave. This is not a phase error in the sense of Section III.6, but,

rather a fluctuation due to the randomness. In the mean the wave

speed is correct
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e.s

b)

9.8

C)

Figure 3.27. (1,1) Explicit Method (3.2.10) for |c|£ = 0.5 at time

steps a) n = 50, b) n = 100, and c) n = 150.
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a)

b)

c)

Figure 3.28. Lax-Friedrichs Method (3.2.15) for |c|£ = 0.5 at time

steps a) n - 50, b) n - 100, and c) n - 150.
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a)

b)

e.e 9.S

c)

Figure 3.29. Lax-Wendroff Method (3.5.3) for |c|£ = 0.5 at time

steps a) n - 50, b) n « 100, and c) n = 150.
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a)

b)

e.s e.8

c) i.tS

Figure 3.30. (1,1) Implicit Method (3.7.5) for |c|£ = 0.5 at time

steps a) n = 50, b) n = 100, and c) n = 150.
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a)

o.ee
0.8 e.4 e.6 e.t

b)

e.e 0.2

C)

Figure 3.31. (1,2) Implicit Method (3.7.6) for |c|£ = 0.5 at time

steps a) n - 50, b) n = 100, and c) n = 150.
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a)

b)

o.o

c)

0.0 0.2

Figure 3.32. Leap Frog Method (3.10.14) for |c|£ = 0.5 at time

steps a) n = 50, b) n = 100, and c) n = 150.
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a)

b) 2 . 0 -

1 .5 -

1 . 0 -

0 . 5 -

e 0 0.8

-r ' *

1

r, J
\y

Ai
K

1
0.6 e.8 t.

c)

9.2

Figure 3.33. Dissipative Leap Frog Method (3.7.19) for |c|^* 0.5

at time steps a) n = 50, b) n = 100, and c) n = 150.
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0.2 0.6 9.8

b)

c)

e.o 0.8

Figure 3.34. Random Choice Method for |c|^ = 0.5 at time steps

a) n - 50, b) n = 100, and c) n = 150.
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The second test problem consists of a hyperbolic equation with

variable coefficients

3fcV = ~£ X3xV, - » < X < +00 , t > 0

with initial condition

1, 1.0 < x < 1.2,
v(x,0) = f(x) =

0, otherwise .

The characteristics are given by

dx = l x
dt 4

or

xe~ = const.

Thus, the exact solution is

v(x,t) = f(xe"t/4).

To avoid dealing with boundary conditions, restrict t to 0 < t < 2

and x to 0 < x < 4. The grid spacing is taken to be h = 0.01.

Figures 3.35-3.38 depict results for time steps n = 200 and 400
x k k

with max I-XITT ~ h = ^«5, where the approximate solutions are

represented by dashed lines and the exact solutions are represented by

solid lines.

Figures 3.35 and 3.36 depict the results of the Lax-Friedrichs

method (3.11.11) and the Lax-Wendroff method (3.11.14). The structure

of the numerical solutions is similar to the corresponding solutions

obtained for the constant coefficient case.

Figure 3.37 depicts the results of the upwind difference method

(3.11.18). In this case a(x) = -^x < 0 on [0,4] so that the

upwind difference method reduces to the (1,1) explicit method (3.2.10)

with the constant c replaced with a(x). As in Figure 3.27, the

wave is smeared due to the large amount of dissipation.

Figure 3.38 depicts the results of the random choice method. In

this case, using (3.12.25

x = (i4+Sn)he~
k/4.

Again, the structure of the wave is perfect. The position of the wave

is not, however, exact due to the randomness.

An additional test was made of the random choice method. The

characteristic curve was replaced by its tangent line through the

sampling point, as outlined in Section III.12. The results were

identical to those in Figure 3.38.

Using these two tests as a basis, it would appear that the

random choice method is superior to the finite difference methods. An

advantage of the random choice method is that in solving the Riemann
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problem, information about the wave is used that is not used by the

finite difference methods. Finite difference methods are constructed

by approximating derivativea and by trying to take combinations of

differences to cancel leading terms in the truncation error. This is

done formally, often without regard to the physical meaning of the

equation being approximated.

A problem associated with the random choice method that will be

made clear in Chapter IV is that the basis of the method is the

Riemann problem. The method assumes an exact (or at least a very

accurate) solution to the Riemann problem. This may not always be

available.

1.85

b)

Figure 3.35. Variable Coefficient Lax-Friedrichs Method (3.11.11) for

max|a(x)|r- = 0.5 at time steps a) n = 200 and

b) n = 400.
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a)

b)

1.0 1.4 1.6 1.8

Figure 3.36. Variable Coefficient Lax-Wendroff Method (3.11.14) for

max|a(x)|^ - 0.5 at time steps a) n = 200 and

b) n - 400.

1.25

1.0 3.0

b)

1.0 8.0

Figure 3.37. Upwind Difference Method (3.11.18) for max|a(x)|£ = 0.5

at time steps a) n = 100 and b) n = 400.



265

b)

Figure 3.38. Variable Coefficient Random Choice Method

max|a(x)|j^ =0.5 at time steps a) n - 100 and

b) n - 400.
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IV. HYPERBOLIC CONSERVATION LAWS

IV. 1. Introduction to Hyperbolic Conservation Laws

Consider the nonlinear equation written in the form

(4.1.1) 3tv + 3xF(v) = 0 .

Such a differential equation is said to be in conservation form. A

differential equation that can be written in conservation form is a

conservation law.

For example, consider the inviscid Burgers' equation

3tv + v3xv = 0 .

If the solution v is smooth, this equation may be written in
1 2conservation form (4.1.1) where F(v) « j v , that is,

(4.1.2) 3tv + 3 x 4 v
2) = 0 .

A conservation law states that the time rate of change of the

total amount of a substance contained in some region, for example the

closed interval [a,b], is equal to the inward flux of that substance

across the boundaries of that region. Suppose v(x,t) denotes the

density of the substance at the point (x,t). Then the total amount of

the substance in [a,b] is given by the integral

b
/ v(x,t)dx .

Let the flux be denoted by F(v), then the flux across the boundaries

of [a,b] i

in the form

of [a,b] is -F(v(x,t))|a . Thus the conservation law may be written

^ / v(x,t)dx =

or by interchanging the integration and differential signs

b .
3tv(x,t)dx

Observe that F(v(x,t))|£ - /a 3xF(v)dx so that the integral form of

the conservation law becomes

b
(4.1.3) / (3.v + 3F(v))dx - 0 .

a C x

At every point where all partial derivatives of v and F(v) exist,

269
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we obtain the differential form of the conservation law (4.1.1).

Carrying out the differentiation with respect to x in (4.1.1)

yields the quasilinear equation

(4.1.4) 3tv + a(v)3xv - 0

where a(v) = 3F/3v. Equation (4.1.4) is genuinely nonlinear provided

that a is a non-constant function of v, that is, 3a/3v * 0.

The characteristic (or characteristic curve) is given by the

equation

(4.1.5) dx
dt a(v)

The left-hand side of (4.1.4) can be viewed as the derivative of v

in the characteristic direction. So that v is constant along the

characteristic. Since v is constant along the characteristic, it

follows that a(v) is constant along the characteristic. Thus, by

(4.1.5), the characteristics are straight lines. However, the slope

depends on the solution v and, therefore, may intersect.

Consider equation (4.1.1) (or (4.1.3)) along with the initial

condition

(4.1.6) v(x,0) = f(x)

Let x-| and X2 be two points on the initial line. The slopes of the

characteristics at these points are a-| = a(v(x-|,0)) and

a2 = a(v(x2,0)). If the two characteristics with slopes ai and a2

intersect at some point (x,t), then the solution v at this point

(x,t) must be equal to both v(x-| ,0) and v(x2,0) (see Figure 4.1).

(x,t)

xl X2

Figure 4.1

Something has gone awry; the solution becomes multi-valued at the point

(x,t). This means the differential form of the conservation law

(4.1.1) ceases to be valid. Physical (experimental) experience dis-

closes that a discontinuous solution appears beyond this point (x,t)

in time. To understand the discontinuous solution, we return to the
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integral form of the conservation law (4.1.3).

Define the operator _v = (9t»3x) anc^ t n e vector w v = (v,F(v)).

Then equation (4.1.1) may be written in the form

V̂  • w v = 0 .

Let <J>(x,t) be a smooth scalar function that vanishes for |x| suf-

ficiently large, then <|>V/wv = 0 and by integrating over -» < x < +»

and t > 0,

Using the divergence theorem,

(4.1.7) -w.vdxdt <t»(x,0)f(x)dx = 0

If w v is smooth,the steps can be reversed. Equation (4.1.7) is

called the weak form of the conservation law. Any function w v that

satisfies equation (4.1.7) for every smooth function <J> that vanishes

for |x| sufficiently large is called a weak solution of the

conservation law. If w v is smooth, then it is called a strong

solution of the conservation law.

It is important to note that equation (4.1.7) remains valid even

if w v is not smooth because w v can still be integrated.

Consider the weak solution w v of (4.1.7), which is discontinu-

ous along some line L whose equation is x = i|>(t) in the (x,t)-plane

(see Figure 4.2).

Figure 4.2

The region D in the upper half plane is cut into two regions D. and

DR by the line L. Since w v is a weak solution of (4.1.7),
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(4.1.8) //D(V<|>).wvdx dt = //D (V(j>).wv dx dt + //D (V.4)).wvdx dt = 0.
»* ~L ~R

<|> can be any smooth function, so let <|> be a smooth function that

vanishes on all of the boundaries of D, and D^ except for the line

L. By applying the divergence theorem to the first integral on the

right hand side of (4.1.8)

J7D (V*).wvdx dt = J/D V.(<f>wv)dx dt - //D <|>(v.wv)dx dt
~L ~L ~L

= JL <t>wv-nds - / / D d,(v.wv)dx dt,
L ~L

where n is a unit normal vector to L with orientation as depicted

in Figure 4.2. w is smooth in D,, so V/w = 0 and

//D *(l-wv)dx dt = 0 .

Therefore,

(4.1.9) //D (V(|,).wv dx dt = JL <j,wv. n ds .
~li L

Similarly, by applying the divergence theorem to the second integral

on the right hand side of (4.1.8)

(4.1.10) //D (V40.wv dx dt = -fL <>wv . n ds ,
/vR R

where the negative sign in (4.1.10) is a result of the orientation of

the unit normal n (see Figure 4.2). By substitution of (4.1.8) and

(4.1.10) in (4.1.7), we obtain the condition across the discontinuity

along L,

JL *HV • n ds - /L <̂ wv . n ds = 0 .
L R

Since this is true for any smooth function <)>,

(4.1.11) (wl - w |R) . n = 0
Li

across L. Here wv|, denotes wv in the region DT and Wvl^
— | Li ~~ ~i_i ~~" j K

denotes wv in the region DR. Let [ ] denote the jump in the quan-

tity in the brackets across the surface of the discontinuity, for

example,
[f(v)] = f(vL) - f(vR) .

With this, (4.1.11) becomes

(4.1.12) [wv.n] = 0 ,

called the Rankine-Hugoniot (R-H) condition for the jump condition.

Let S denote the speed of propagation of the discontinuity, then

S = di|>/dt. From the equation of the curve L, x - i|>(t) = 0, we see

that the normal vector ri has components
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n - ( - § * , 1) « (-s,1) .

But then, the R-H condition (4.1.12) becomes

(4.1.13a) S[v] « [f(v)]

across the discontinuity. This may be expanded to yield across the

discontinuity,

(4.1.13b) S(vR - VL) = F(vR) - F(VL) ,

where VL and VR are the states on the left and right of the

discontinuity (see Figure 4.3).

Figure 4.3. Profile of v at a given time.

From (4.1.13b),

(4.1 .14)
F(vR) - F(vL)

The class of weak solutions of weak form of the conservation law

(4.1.6) is too large in the sense that there is no uniqueness in

general. To see this, consider the stationary Burgers1 equation

8x(v
2) - 0

which, in the class of smooth solutions, has only one v = constant.

However, the class of weak solutions gives rise to v2 = c > 0 from

which v(x) = { ^ °p
<<X

x
<<P2p' v(x+2p) = v(x), and p is a positive

constant, as depicted in Figure 4.4.
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-2p p :
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Figure 4.4.

3p

I

4p
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An additional principle is needed for determining a physically relevant

solution. There is a variety of conditions for this purpose. In a

classic paper, Oleinick [47] gave the following characterization of an

admissible weak solution (or discontinuity) given by two states VL and

VR, along with the speed of propagation of the discontinuity S

(4.1.14). For every v between VL and VR, the entropy condition

F(v) - F(vD)
(4.1.15)

F(v) - F(vT)

must be satisfied. Weak solutions satisfying the entropy condition

(4.1.15) are uniquely determined by the initial data.

A discontinuity is called a shock if the inequality signs in

(4.1.15) are strict inequalities for all v between VL and VR. A

discontinuity is called a contact discontinuity if equality in (4.1.15)

holds identically.

In the case of a contact discontinuity, (4.1.15) yields for v

between VL and VR,

F(v) = S(v - VL) + F(vR),

which is linear. Thus the conservation law (4.1.1) is linear in the

range of v between VL and VR.

By the definition of a(v),

(4.1 .16a)

and

(4.1.16b) *< V - If

lim

lim

F(v) - F(vL)

F(v) - F(vR)

Thus, by the entropy condition (4.1.15),

S > a



275

Consider the conservation law (4.1.1) with initial conditions

given by the step function

x < 0 ,
(4.1.17) v(x,0) = f(x)

VR x > 0

Such a problem is called a Riemann problem. A property of the

solution to a Riemann problem is that it is self-similar, that is,

v(x,t) = h(x/t) ,

where h is a piecewise continuous function of one variable.

Another property of the solution of a Riemann problem is an

additivity property. Let vm denote the function v(s,t£). Then the

function vi(x,t),

v(x,t) , x/t < £

vm(x,t) , x/t > £

is the solution of the Riemann problem given by the conservation law

(4.1.1), along with the initial condition

, x < 0

, x > 0 .

vi(x,t) =

v-|(x,0) =

The function V2(x,t),

v2(x,t)
vm(x,t) , x/t < %

v(x,t) , x/t > 5

is the solution of the Riemann problem given by the conservation law

(4.1.1), along with the initial condition

, x < 0
V2(x,0)

vL x > 0

Thus the two solutions v| and v2 combine to form the solution v

of the original Riemann problem (see Figure 4.5).

Let S be given by (4.1.14). The solution v has the form of a

wave (shock wave) propagation with speed S, that is,

, x/t < S ,
(4.1.18) v(x,t) = f(x-St)

vR , x/t > S ,

are two states that violate the entropy

(see Figure 4.6).

Suppose now VL and

condition (4.1.15), that is,

a(vL) < a(vR) .

Clearly, (4.1.18) is a weak solution that violates the entropy

condition (4.1.15).
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v1(x,t)

Figure 4.5.

Additivity Property of a Riemann Problem

characteristics-

sl°Pe ITS"

shock-^
slope g-

characteristics-
sl°pe i<kj

Figure 4.6. Shock Wave



In this case, the solution is an expansion or rarefaction wave,

solution has the general form

x/t
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The

(4.1.19) v(x,t) = w(x/t) = ,

vR , x/t > a(vR)

where h is a function such that a(h(z)) = z.

vL a(vL)

h(x/t) , a(vL) < x/t < a(vR)

If a is an increasing

function of v (da/dv > 0) for every v between v

the solution (4.1.19) is continuous for all time

The portion of the profile for a(vT) < x/t

the fan (see Figure 4.7).

fan

t > 0.

and then

characteristics

sl°Pe ^T^T

characteristics

Figure 4.7. Rarefaction Wave

As an example of the solution of a Riemann problem, consider

Burgers' equation (4.1.2) with initial condition (4.1.17). In this

case F(v) = ̂ v2 and a(v) = v. For a(vL) > a(vR), that is

the wave is a shock with speed

F(vL)-F(vR) vL+vR

V L >

Substitution of S in (4.1.18) gives the solution for a shock wave.

Suppose a(v,) < a(vD), that is, v, < vD. In this case the
Li K Li K

solution is a rarefaction wave with solution (4.1.19). It remains to

determine the function h(x-). Let P = (x,t) denote a point in the
fan, that is, v, < x/t < vp. Equate the slope of the characteristic
dx
-rr = a(v) = v to the line segment between P and the origin. This

1 1 t
gives a;K = ̂  = ̂  or v = x/t. The solution (4.1.19) becomes

v(x,t)

x/t

x/t,

x/tVR ' A / u ' VR *

Another approach used to determine a physically relevant solution

is the viscosity principle. In this approach, those solutions which
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which are given by

(4.1.20) v(x,t) = lim vv(x,t) ,
v+0
v>0

where vv(x,t) satisfies the parabolic equation

(4.1.21) 3tvv + 3xF(vv) - v3x(0(vv)9xvv) ,

where e(w) > 0, are admissible.

By the maximum principle (see Section II.1), this solution

vv(x,t) is unique. The solution vv(x,t) of (4.1.21) exists for all

time t > 0. Furthermore, vv converges to the limit v as v •»• 0.

Keyfitz [3 5] has shown that the discontinuities of v given by

(4.1.20) satisfy the entropy condition (4.1.16). This verifies that

the viscosity principle selects physically relevant solutions.

The following theorem shows that every shock is the limit of the

solution vv to (4.1.21).

Theorem 4.1 . Let v^ and vR denote two states and S the speed

of propagation of the discontinuity given by (4.1.14). Suppose that

the function v(x,t) given by (4.1.18) is a shock, that is, in

(4.1.15) the strict inequality holds for all v between v, and vR.

Then the solution (4.1.18) is a limit of solutions v of (4.1.21).

The solution to the viscous equation (4.1.21) with initial

condition (4.1.17) is given by

vv(x,t)v(x,t) w ( ) .

where w(z) satisfies the ordinary differential equation

(4.1.22) -S9zw + 3zF(w) = 3z(B(w)3zw)

This solution represents a traveling wave, called a shock profile.

Oleinik [47] has shown that every weak solution whose discontinuities

are shocks is the limit of viscous solutions v of (4.1.21). The

viscous solutions v^ are continuous. The effect of the viscosity is

to smear (or diffuse) the continuity.

Let g(v) denote the flux function in a coordinate system moving

with the shock,

(4.1.23) g(v) - f(v) = Sv.

The Rankine-Hugoniot condition (4.1.13) becomes

g(vL) - g(vR) = C,

where C is a constant. Thus g(v) is continuous across the shock. In

terms of g(v) the entropy condition (4.1.15) may be written in the form

> o > *(v)-c

for v, < v < vR. The strict inequality follows as the discontinuity

is a shock.
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Substituting g into (4.1.22),

3zg(w) - az(8(w)8zw)

or

(4.1.25) g(w) - C = 3(w)3zw.

Since g(w) - C * 0, (4.1.25) may be solved for z as a function of w,

where vT < wo,w < vD. Let W(v ,v.) denote the length of the
Li U K — T

y-interval in which v (x,t) = w(^) assumes values between v_ and v+,
where vT < v ,v, < vD. Let w(̂ =-) - v and w(^±-) = v. then

L -'+ R v - v +

(4.1.26) W(v_,v+) = y+-y_ = v/^
+
 g^ffic dw.

Thus the width of the transition region across the shock is 0(v).

Now consider a system of conservation laws

(4.1.27) 3tv + 3xF(v) = 0,

where v = (v-|,...,Vp)T and F is a vector-valued function of v. Let

A(v) denote the Jacobian of F(v), that is,

3F
A(v) = ^ = (a..(v))

where aij = 3Fj/3vi. The system (4.1.20) is hyperbolic if A(v) has

real and distinct eigenvalues y-j (v), y2^v)» • • • >Pp(v) f°r a ^ values

of v. Thus hyperbolicity not only depends on the equation but on the

solution.

Without loss of generality, assume that the eigenvalues vj(v)

are arranged in increasing order. Let JTJ (V) denote the right eigen-

vector of A(v) corresponding to yj(v), that is,

A(v)r_j(v) = yj(v)r_j(v).

As in the scalar case, in order that equation (4.1.27) be genuinely

nonlinear, such eigenvalue yj(v) must be a nonconstant function of v,

that is, .Vvvj^) * 0, where J7V = (3V , ..., 3V ). Furthermore, it is

required that 7vpj(v) not be orthogonal to £j(v). Thus equation

(4.1.20) is genuinely nonlinear if for 1 < j < p and all v

(4.1.28) rj(v) • Vvyj(v) * 0.

In this case, in order to solve the initial-value problem consisting of

equation (4.1.20) along with the initial condition

v(x,0) = f(x)

for all time, we must admit weak solutions. Let $(x,t) be a smooth
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scalar function that vanishes for |x| sufficiently large, v(x,t) is

a weak solution if it satisfies

U + " ( 3 j v + 3 d,F(v))dx dt - /+°°<|>(x,0)f (x)dx = 0.
(J -00 I- X -00

This is equivalent to requiring that for all rectangles [a,b] x [t-,ty]

equation obtained by integrating (4.1.17) over the rectangle holds

(4.1.29) / ^ 2 (atv + 9xF(v))dt dx

= / v(x,t9)dx - / v(x,t1)dx + /^2F(v(b,t))dt - /^2F(v(a, t) )dt = 0.
a~ z a~ ' ti ti~

For a piecewise smooth weak solution, each of the p conservation laws

must satisfy the Rankine-Hugoniot condition,

(4.1.30) S[Vj] = [Fj] , j = 1 p,

across each discontinuity where S denotes the speed of propagation of

the discontinuity.

As in the case of a scalar conservation law, a weak solution is

not uniquely determined by the initial condition. For a scalar

conservation law, the entropy condition (4.1.16) states that the

characteristics on either side of the discontinuity given by x = i|>(t)

intersects the discontinuity. The discontinuity is a shock if in

(4.1.16) we have strict inequality,

a(vLU(t),t)) > S(t) > a(vR(*(t),t)) .

For systems of conservation laws (4.1.27), there are p families

of characteristics given by the solution of the ordinary differential

equation

Let VL and VR denote the states to the left and right, respectively, of

a discontinuity given by x = ij>(t). Lax [39] proposed the following

shock condition. For each j, 1 < j < p, we require that

(4.1.31a) PjCvLUCO.t)) > S(t) > yj(yRU(t),t))

and

(4.1.31b) yj-1 (vLU(t),t)) < S(t) < pj+1(vR(*(t),t)) .

Inequalities (4.1.31a) and (4.1.31b) may be combined to obtain

u-| (vL) < u2(-lP < ••• < Pj_i (vL) < S(t) < y . (vL)

and

Pj(vR) < S(t) < Pj + 1(vR) < Pj+2(vR) < ... < yp(vR) ,
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using the fact that the eigenvalues are arranged in increasing order.

The number of characteristics drawn in the positive t direction with

respect to the state VL that remain to the left of the discontinuity

is j-1. Similarly, the number of characteristics drawn in the

positive t direction with respect to the state VR that remain to

the right of the discontinuity is p-j. Thus the total number of

characteristics that do not intersect the discontinuity is p-1 . See

Figure 4.8, where the numbers refer to the different families of

characteristics.

The number j is called the index of the shock. Furthermore, a

discontinuity that satisfies both conditions (4.1.30) and (4.1.31) is

called a j-shock.

Consider the case where the j-th family of characteristics are

linearly degenerate, that is, for all solutions v

(4.1.32)

Figure 4.8. j-Shock

(4.1.32) results in the existence of a traveling wave solution, that

is, a solution of the form

v(x,t) = w(x-ct) = w(t) .

By substitution into the conservation law (4.1.27),

-cw'(z) + A(w)w'(z) = 0 .

Thus w'(z) = Krj(w(z)), where K is a constant, and c = yj(w(z)).

From this, using (4.1.32)

a t - v > • w'(z)
= KVvy. • r.

= 0 .

This gives the condition that c is a constant and a traveling wave

solution exists.
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Suppose a function Rj(v) sa t i s f i e s

rj(v) • lvRj(v) = 0

for all v. The function Rj(v) is called a j-Riemann invariant.

Thus if the j-th family of characteristics is linearly degenerate, by

(4.1.32), the eigenvalue yj(v) is a j-Riemann invariant.

A theorem due to Lax will now be stated. This will be very use-

ful in a later chapter.

Theorem 4.2. Consider a discontinuity separated by two states V L and

V R with the same j-Riemann invariant, then the Rankine-Hugoniot

conditions (4.1.30) are satisfied with

S = VJ(VL) - VJ(VR) •

Such a discontinuity is called a contact discontinuity.

As in the scalar case weak solutions of (4.1.27) are not uniquely

determined by the initial condition. To determine a physically relevant

solution the viscosity principle is used again. Those solutions given

by

(4.1.33) v(x,t) = lira v (x,t),
~" v+0 ~""v

v>0

boundedly and a.e., where v (x,t) satisfies the parabolic equation

(4.1.34) 8tv + 9xF(vv) = v3 x(B(v v)3 xv v),

B(vv) > 0, are admissible.

Definition. An entropy function U(v) is a scalar function defined by
the two conditions

o
1) U is a convex function of v, that is, 3 U > 0
and ~~

2) U satisfies the equation

(4.1.35) av U av^ = F E '

where F- is some function called the entropy flux.
c "—'

Consider hyperbolic systems of conservation laws (4.1.27) that

have an entropy function. Multiplying (4.1.27) by 3 U and using

(4.1.35), a weak solution of (4.1.27) satisfies ~

ato + axFE = 0.

Lax [40] showed that if v(x,t) is given by (4.1.33) then, in the

weak sense, v(x,t) satisfies

(4.1.36a) 3tU(v) + 3xFE(v) < 0.

This is equivalent to requiring that for all rectangles [a,b] x [t^,t«]

the inequality obtained by integrating (4.1.36b) over the rectangle

holds
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(4.1.36b) JaU(v(x,t2))dx - /aU(v(x,t ))dx + /^
2FE(v(b,t))dt

" /£2FE(v)a,t))dt < 0.

If the weak solution y(x,t) is piecewise smooth with discontinuity,

then across the discontinuity

FE(vR) - FE(vL) < S[U(vR) - U(vL)],

where S is the speed of the discontinuity and yL and vR are states

on either side of the discontinuity. Conditions (4.1.36) are called

entropy conditions.

How do we construct an entropy function U(v) and the cor-

responding entropy flux? Equation (4.1.35) represents a system of p

equations. If p < 2, then there are many possible solutions. For

example, in the scalar case (p = 1), equation (4.1.35) may be written

as

3vU(v)

or

U(v) =
a(v

where a(v) = 8 F, the Jacobian of F(v). F (v) can be chosen so

that U(v) is convex, one possibility is Fe(v) = 2va(v) so that

U(v) = v2.

For p > 2, the existence of an entropy function becomes a

special property of the conservation law (4.1.27). Suppose (4.1.27)

can be written as a symmetric hyperbolic system, that is,

£3tw + S3xw = 0,

where P is a symmetric, positive definite matrix and S is a sym-

metric matrix. This can be accomplished by replacing y with a new

dependent variable w, y = y(w). Substitution in (4.1.27 gives a new

equation

V ^ t w + 3/9xw - 0.

This system is symmetric hyperbolic if 3wy is symmetric and positive

definite and 3 F is symmetric. If r(w7 is a smooth function of w,
2 —then 3wr is a symmetric matrix. Thus if 3 ^ and 3̂ F are symmetric,

then there exist functions r(w) and s(w) such that

and

T
v • ̂  -

T

r •



284

The final condition, that 3 v is positive definite, is equivalent to

the function r(w) being convex.

The following theorem due to Godunov (see Harten and Lax [31])

shows how to construct an entropy function and entropy flux if the

system of conservation laws can be written as a symmetric hyperbolic

system.

Theorem 4.3. Suppose that the hyperbolic system of conservation laws

(4.1.27) can be written as a symmetric hyperbolic system by introducing

a new dependent variable w. Suppose r(w) and s(w) are

functions such that r(w) is convex and

Ty - r
and

T

v = i •
then (4.1.27) has an entropy function U(v) and entropy flux Fe(v)
defined by

and

U(v) = vTw - r(w)

Fe(v) = F
Tw - s(w)

IV.2. Conservative Finite-Difference Methods

In this section we begin the discussion of the numerical solution

of the system of hyperbolic conservation laws (4.1.1)

A finite difference approximation of this system of conservation laws

must be consistent. A weak solution of this system of conservation

laws satisfies the weak (or integral) form of the conservation law. It

seems natural to expect the approximate solution to satisfy the dis-

crete analogue. This concept was introduced by Lax and Wendroff [ ].

Consider the finite difference method

(4.2.1) H"?
+ 1 = Qu1? ,

where Q is some finite difference operator, not necessarily linear.

The finite difference operator Q has the divergence property if the

solutions un+1 and u? of (4.2.1) satisfy

I2 I2

I un+1h -
1

2

I unh) = -(F(un ) - F(un,)),
i=I1 ~ 2 ~ 1

for any integers I2 > Ii • Compare this with (4.1.2), where the first

and second sums on the left hand side of (4.2.2) approximate
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XI XI
/ 2 v(x, (n+1)k)dx and / 2v(x,nk)dx,
XT T

respectively, and the divided difference on the left hand side of

(4.2.2) aproximates

XI
3. J 2 v(x,t)dx .

h
As an example, consider the scalar conservation law

9tv + 3x(a(x)v) = 0 ,

where a(x) < 0. In this case F(v) = a(x)v. Approximate this

conservation law by the finite difference method

uf 1 = u? - kD+(a.u?)

where a^ = a(ih). Multiply both sides by h and summing over i,

11 < i < 12,

1( / un+1h - / unh) = - i 2 D+a.u
nh - -/ (a i + 1u^ ra.u

n) .
L-I1 1-I1 1-I1 1-I1

All but two terms in the sum of the right hand side cancel in pairs

resulting in -(aT u
n - aT u? ), which corresponds to the right hand

X 2 12 *•} *1
side of (4.2.2). Thus, the finite difference operator Q =1 + kD+a

has the divergence property.

Consider a point x and let u? = u(x+ih,nk). A finite

difference method is said to be in conservation form if it can be

written in the form

u(x, (n+1)k) - u(x,nk) G(x +fe) - G(x - fe
(4.2.3) E

 2 — *- ,

where G(x + \) = G(un
q+1,u^q+2,...,u£) and G(x - \) =

G(un ,un +1 ,...,u
n_ 1), that is, G is a vector-valued function of 2q

arguments called a numerical flux. Furthermore, in order that (4.2.3)

be consistent with (4.1.21), the numerical flux must be consistent with

the physical flux in the sense that G(v,...,v) = F(v).

From these two definitions, it is clear that a finite difference

method that is in conservation form also satisfies the divergence

property.
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We now present the main theorem of this section due to Lax and

Wendroff [42] that shows why it is essential that a finite difference

approximation to a conservation law be in conservation form.

Theorem 4.4. Suppose that the solution u(x,nk) of a finite

difference method in conservation form converges boundedly almost

everywhere to some function v(x,t) as h and k approach zero.

Then v(x,t) is a weak solution of (4.1.21).

Proof: Multiply (4.2.3) by a smooth scalar function <f>(x,t) that

vanishes for |x| sufficiently large. Integrate over x and sum over

all values of t that are integer multiples of k

+oo u(x,(n+1)k)-u(x,nk)
(4.2.4) z / •(x,nk)( r- )dxk

n -»

+ « G(x + h - G(x - h
+ z J <j,(x,nk)(= ^ r- Mdxk = 0.

n -oo K

By summation by parts

+oo u(x, (n+1)k)-u(x,nk)
Z / <fr(x,nk)( £ )dxk
n -oo

= - f 4>(x,0)u(x,0)dx " I T (^ X > n ^"^ X > <n~1 >k>)u(x,nk)dxk
00 - 0 0

By introducing a change of variable

Z / ^ «|>(x,nk)G(x ± ̂ )dxk = Z / ^ <KX + £,nk)G(x)dxk,
n -oo n -oo

where G(x) = G(un ... .u^ ,un,... .u") and the values un , ... .u^ ,

u- ,...,u are the values of u at the 2q points symmetrically

distributed about the point (x,nk). Substitution of these two results

in (4.2.4) yields

j j" (t(x,nk)-4>(x,(n-1)k)^(x>nk)dxk

n -oo

+oo <j,(x+t,nk)- (x-fe,nk)
+ Z / ( ^ ^ ^ )G(x)dxk

n -oo

+ 00

+ / «|>(x,0)u(x,0)dx = 0 .
— 00

If u(x,nk) tends boundedly almost everywhere to a function v(x,t),

then so do un , •.. .u^ ,u",... .u11 and G(x) tends to G(v,...,v),

which by consistency equals F(v)^ Thus as h,k •»• 0 in (4.2.5), the
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00 +00

first term tends to / / 9t<|>(x, t) v(x, t)dxdt and the second term
oo+oo 0 -oo

tends to / / 3x<f>(x, t)F(v)dxdt, from which we obtain the desired
0 - o o

limit

00 +00 +00

/ / (3t*v + 8x*F(v))dxdt + / <|>(x, 0) v(x, 0)dx = 0 ,
0 -oo

that is, v(x,t) is a weak solution of (4.1.21).

We need to extend the Courant-Friedrich-Lewy condition to the

case of a system of hyperbolic conservation laws (4.1.21). Let ACv)

denote the Jacobian of £(v), that is

A(v) - • ? = - (ai.(v)) ,

where a^j = 9Fj/3vi. Since the system is hyperbolic, A(v) has real

and distinct eigenvalues vi(v),y2(v),...,yp(v) for all values of v.

As in the linear case, the eigenvalues of A(v) represent signal

speeds. The CFL condition again states that a necessary condition for

convergence of a finite difference method is that the numerical signal

speed must be at least as fast as the maximum signal speed. The

maximum signal speed is given by

max |yj(v)|.
1 < j <p

v

Consider a finite difference method in conservation form

u1?(4.2.6) u^+1 = Qu1? = u1? - x(G 1 - G 1 ),

where X = k/h, G J = G(u^_q+1,u^_q+2,...,u
n
+q), G } =

1+2 i-j

G(u?_ jU1?̂  +^ u}+ _ ^ ) , and q is an integer > 1. In general, Q

is a nonlinear finite difference operator.

The numerical domain of dependence of the point (ih,(n+1)k) is

the set of 2q(n+1)+1 points on the x-axis in the interval

[(i-q(n+1))h,(i+q(n+1))h]. Thus the numerical signal speed is qh/k and

the CFL condition becomes

max |y.(v)| fl£
1<j<p J

v

(4.2.7) k < max I^Cv)!

v
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As with parabolic equations, the notion of stability for the

linear case has not been extended to the nonlinear case. Von Neumann,

however, observed that when instabilities develop in a finite

difference method, they appear as oscillations of short wave-length and

of initially small amplitude superimposed on a smooth solution. The

first variation of this nonlinear finite difference operator Q, which

is a linear finite difference operator with variable coefficients, can

often be used to determine the conditions on X to which these

instabilities will develop. It is further observed that, since these

instabilities first appear in a small neighborhood, if the coefficients

of the first variation of Q are sufficiently smooth in this neighbor-

hood, then the variable coefficients can be replaced with their values

at some point in the neighborhood, resulting in a reduction to constant

coefficient linear finite difference operator. This is called a local

linearization of Q and allows the use of the discrete Fourier trans-

form and the von Neumann condition.

To develop this idea we present a theorem due to Strang [72].

Consider the system of hyperbolic conservation laws (4.1.21) with

smooth solutions, which allows this system to be written as a quasi-

linear system

(4.2.8) 9tv + A(v)9xV = 0,

where A(v) is the Jacobian of F(v) which, in general, is a

nonlinear function of v. Approximate this system (4.1.21) by the

finite difference method

(4.2.9) un+1(x) = Hun(x) = H(un(x-qh) un(x+qh)),

where H(un(x-qh),...,un(x+qh)) = un(x) - x(G(x+h/2) -G(x-h/2)). The

function H is a nonlinear function of 2q+1 arguments and H is a

nonlinear finite difference operator acting on un(x).

Comparing this with (4.2.3), we see that consistency requires

that for any smooth function w(x,t)

H(wn(x) wn(x)) = wn(x) + k8xF(w
n(x)) + 0(k) ,

or by using (4.2.8)

(4.2.10) H(wn(x),...,wn(x)) = wn(x)+kA(wn(x))9xWn(x) + 0(k) ,

where wn(x) = w(x,nk).

The first variation of the nonlinear finite difference operator

H in (4.2.9) is a linear finite difference operator with variable

coefficients M, defined by

q
(4.2.11) Mun(x) = i Ci(un(x))un(x+jh)

j—q

= ( E C.(un(x))sJ)un(x),
j—q
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where £j(un(x)) denotes the Jacobian of H(un(x-qh) un(x+qh))

with respect to the j-th argument un(x+jh) evaluated with each

argument equal to un(x).

Since M is a linear finite difference operator with variable

coefficients, we can consider its stability. In the following theorem

due to Strang [72], the stability of the first variation of H is used

to prove convergence of the finite difference method (4.2.9), provided

that the solution is sufficiently smooth.

Theorem 4.5. Suppose that the finite difference method (4.2.9) is

consistent and accurate 0(kn) (where k = 0(h)). If the first

variation of the finite difference operator H is stable in the i^~

norm, and if the solution v(x,t), the Jacobian A(v), and the

function H in (4.2.9) are sufficiently smooth, then the approximate

solution un converges to v(ih,nk) as k •»- 0, that is un = v(ih,nk) +

0(kr).

Consider the Lax-Friedrichs method applied to the system of

hyperbolic conservation laws (4.1.1)

where \ = k/h and F" E F ( U " ) . With q = 1 in (4.2.6) define

(4.2.13a) G ^ , G(u?.«;+1) - -^(u^, - u
n) + 1(F^+1 + F̂ )

and

(4.2.13b) G 1 = G(u
n ^uj) = -Mul - u" }) + y(F

n + F̂  1)
i"7

The Lax-Friedrichs method (4.2.12) can be written in conservation form

(4.2.6) with this choice of G. The form of G a function of two

variables is

(4.2.14) G(a,b) = - ̂ y(a-b) ^

so that G(v,v) = F(v) and, hence, the Lax-Friedrichs method is

consistent. H in (4.2.9) is given by

(4.2.15) H(un ^ u ^ ) = un - X(G 1 - G ^
i+7 i-j

The form of H as a function of three variables is

(4.2.16) S(afb,c) = ̂ (c + a) - y(F(c) - F(a)).
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Consider the first variation of h and the linear finite

difference operator M (4.2.11),

( 4 . 2 . 1 7 ) Mun(x) = (.Z C . ( u n ( x ) ) S ^ ) u n ( x ) ,

where

C_-|(w) = 3aH(w,w,w) = (-̂  + j 3aZ)(w) = \ + 2"A(w),

Cn(w) = 9vH(w,w,w) = 0,
—U l>— — — —

Ci(w) = 3 H(w,w,w) = ( i - T 3oF)(w) = i - 4A(W),
— | _ ,f~~~ ~~ ~~ "~: ^ ^ ^T~ ~~ ~~

and A(w) denote the Jacobian of Y_ evaluated at w. Setting

w = un(x) and substituting into (4.2.1.7),

un+1(x) = [(1 + |A(un(x)))S'| + (1 - |-A(un(x)))S+]u
n(x)

= l(un(x+h) + un(x-h)) - ^A(un(x))(un(x+h)-un(x-h)).

With x = ih this reduces to

(4.2.18) u?+1 = ̂ -(u^+1 +Hi_-|) " jA(u
n(ih)) (u"+1 - Hi_-|)»

which is the Lax-Friedrichs method for hyperbolic systems with variable

coefficients (3.11.11). Assuming that A(un(x)) is sufficiently smooth,

by Kreiss1 theorem (Theorem 3.6), (4.2.18) is stable provided that the

CFL condition (4.2.7) is satisfied. This completes the linearized

stability analysis.

An alternate, yet equivalent, way to derive the Lax-Wendroff

method is to consider the Taylor series expansion in €erms of v(x,t)

about the (ih,nk),

(4.2.19) vn+1 = v(ih,(n+1)k) = v" + k(3tv)
n + j? (i2?)™ + 0(k^)«

Using the conservation law (4.1.1),

and

(A2(V)3 V),
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where A(v) is the Jacobian of F(v). Substituting into the Taylor

series

(4.2.20) vn+1 = vn - kA(vn)(3xv)
n + |2[9x(A

2(v)3xv)]
n + 0(k3)

Approximate the two space derivatives in (4.2.20) by second order dif-

ference (see Section III.11)

V £ - Oxy)n + o(h2)
and

(4.2.21) D+(A2
 1 D vn) = [9 x (A 2 (v)8 x v)] n + 0(h 2 ) ,

where A2 - A2(vn -) = A 2 ( — — ~ i + 1 ) + 0(h2). Substituting into
~~. i —~ • i ~~ z

(4.2.20) gives the Lax-Wendroff method

(4.2.22) u f 1 = un - kA.Dou!? + | ' D + ( A
2 ^ un) ,

2 9 H? + u" T
where At = A(u") and A 1 = A (——^ ), which is accurate of

0(k2) + 0(h2).

Clearly this finite difference method is not in conservation

form. It can be written in the form

n+1 TT n TT/ n n n Nu. = Hu. = H(u._1,u.,ui+1),

where

H(afb,c) = b - |A(b)(c-a) + £ 2 ( A 2 ^

Consider the first variation of H and the linear finite difference

operator M (4.2.11)

(4.2.23) Mun(x) = (.l_1Cj(u
n(x))sJ)un(x)

where

CQ(W) = 8^(57,^,^) = 1 - X2A2(w),
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Setting w = un(x) and substituting into (4.2.20),

un+1(x) = [(^A(un(x)) + |2A2(un(x)))s;1 + (1-X2A2(un(x)))I

+ (-|A(un(x)) + |2A2(un(x)))S+]u
n(x)

= un(x) + |A(un(x))Dou
n(x) + |-2A2(un(x))D+D_u

n(x).

This is the linear finite difference method with variable coefficients

(3.11.17). If A(un(x)) is hermitian, Lipschitz continuous, and

uniformly bounded, then the linearized finite difference method

(4.2.23) is stable, provided the CFL condition (4.2.7) is satisfied.

It should be mentioned that there is another choice for the form

of A2
 1 in (4.2.22). We could also take

^4

since

A(vn)
A ! = A(vn ^ 1

Ignoring the fact that this finite difference method is not in

conservation form, a disadvantage of the method is the expense of

evaluating the Jacobian of IT, A(v). The former version of A 1 in

(4.2.22) requires that A be evaluated at values u? while the later

version of A < in (4.2.22) requires that A be evaluated at values

u? and 2"(li" + 2^+1) • T n e later form of A ^ reduces the number of

evaluations of A by half, yet the method is still inefficient.
o

Replace 3tv with ~3 X
F a n d 3t

v is replaced with 3x(A(v)3xF)

in the Taylor series (4.2.19),

(4.2.24) vn+1 = vn - k(3xF)!? + |'[ 3x(A3xF) ]
n + 0(k3).

Approximate the two space derivatives in (4.2.24) by the second order

differences

and

D.Zi) = [3x(A3xF)]
n + 0(h2),
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where A 1 = A(v
n .J) = A(-^(v

n + vn_.,)) + 0(h2). Substituting into

(4.2.24) gives the Lax-Wendroff method in conservation form

uf1 -«? -kD^ + fVA.^-I?).

which is accurate of 0(k2) + 0(h2). In this case the function G in

(4.2.6) is defined by

G = F
n + AA (F

n _ F
n ) #

This version of the Lax-Wendroff method is still inefficient because it

requires the evaluation of A(v) once for each grid point. Can the

Lax-Wendroff method be constructed so that it does not require the

evaluation of A(v)?

A modification due to Richtmyer [52] was to consider the two-step

method, called the two-step Lax-Wendroff method,

n+T 1

(4.2.26a) u \ = ̂ (un
+1 + un) - £(Fn

+1 - F
n)

n+± n+l
un+1 = un - x(Fn 2 FR 2 ) ,

(4.2.26b) ~L ~L ~i+^- - ~i-~

n+~ +1
where F 1 = F(u ^ ) . This method is in conservation form. The first

step (4.2.26a) computes intermediate values at the midpoint of the grid

points; this being accurate of 0(k) + 0(h). The second step (4.2.26b)

corrects these values and realigns the grid; this being accurate of

0(k2) + 0(h2).

In the constant coefficient case, F(v) = A v, where A is a

constant matrix, the two-step Lax-Wendroff method reduces to the one-

step Lax-Wendroff method (3.8.10) for systems of hyperbolic equations

with constant coefficients.

The stability of the two-step Lax-Wendroff method is analyzed by

the local linearization of (4.2.26). This is achieved by expanding

F(v) in a Taylor series in v about the point vQ, retaining only

the first two terms,

F(v) =* F(vn) + A(vn) (v-vn) + ••• •

Differentiating with respect to x,

(4.2.27) 9xF(v) = A(vQ)3xv.
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Substitution of (4.2.27) in (4.2.26) results in the linear two-step

method with constant coefficients which reduces to the one-step Lax-

Wendroff method (3.8.10), which is stable provided the CFL condition is

satisfied. The stability analysis where there is the further reduction

from variable to constant coefficients is called local linearization.

As seen in the linear case (in Table 3.2), the Lax-Wendroff

method has a small amount of numerical dissipation. This lack of

numerical dissipation is responsible for the poor representation of

shock waves. From the views of Fourier analysis, a steep gradient in

the solution, such as a shock is built of high frequency (short wave

length) components. Dissipation terms damp the high frequency terms

mpre strongly than the low frequency (long wave length) terms. This

results in smoothing (or smearing) shocks and contacts. High frequency

components move more slowly than the low frequency waves. Thus if

there is a small amount of numerical dissipation these high frequency

components will lag the low frequency components. This is represented

by oscillations trailing the shock wave. These oscillations will often

remain in the region behind the shock and eventually merge with the

large scale structure.

To explain the oscillations in the Lax-Wendroff method, consider

the system of hyperbolic equations with constant coefficients

(4.2.28) a. v - A3 v = 0.
u—~ ~~ x~—

The Lax-Wendroff method (3.8.10) is consistent with (4.2.28) to

0(k2) + 0(h2). £(v) can be constructed so that the Lax-Wendroff

method is consistent with the equation

(4.2.29) atv - A9xv = Q(v)

to 0(k3) + 0(h3). Expanding the terms in the Lax-Wendroff method

(3.8.10) in a Taylor series about the point (ih,nk), as in Section
3 3III.5, retaining terms up to 3 v and 3 v,

(4.2.30) ± 2 2 2 ^

which represents a dispersion term because of the odd derivative. This

has components traveling at different speeds resulting in oscillations

Q.(v) given by (4.2.30) is the first term in the truncation error of

the Lax-Wendroff method.

The Lax-Wendroff method has natural dissipation, as it is

dissipative of order 4 (see Section III.6). To find this natural

dissipation, construct Q'(v) so that the Lax-Wendroff method is

consistent with the equation

(4.2.31) atv - A3xv - Q(v) + fl'(v)
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to OCk1*) + OCh1*), where £(v) is given by (4.2.30). Expanding the

terms in the Lax-Wendroff method in a Taylor series about the point

(ih.nk), as in Section III.5, retaining terms up to a£v and a^v,

(4.2.32) 2'(v) - - lA2k(h2- Ak2)^v

which is a dissipative term because of the even derivative.

Von Neumann and Richtmyer [80] developed an artificial viscosity

term which was introduced in the Lagrangian form of the equations of

gas dynamics (see Chapter III, Volume II). The goal of the artificial

viscosity was to reduce the oscillations while allowing the shock

transition to occupy only a few grid points and having negligible

effect in smooth regions. All other forms of artificial viscosity are

variations of the one introduced by von Neumann and Richtmyer. The one

presented here due to Lax and Wendroff [42] is no exception.

The artificial viscosity should not resemble a realistic

viscosity because it will dampen frequencies that one wants to see. It

should only damp the high frequency terms. The resulting finite

difference method should also be in conservation form.

Suppose £ is a positive vector-valued function of 2q arguments

such that fi(v,v, ...,v) - 0. Define £(x+£) = £(un
q+1 ,u

n
q+2 , ... ,uj|)

and £(x-!^) = 2(u_ ,u_ +1 , .. . ,u
11_1 ). If a term of the form

is added to a finite difference method in conservation form, then the

resulting method is in conservation form. To see this, suppose the

original finite difference method is in the form (4.2.3), then the

modified method is

u(x,(n+1)k) - u(x,nk) G(x+£) - G(x-|)

where Gtx+y) = G(un
 +-,u

n
 +2»**«»H

n )• Define a new vector-valued

function G1 of 2q arguments, where

G'(x ± j) = G(x ± £) + 2<x i j).

The consistency requirement on G1 is satisfied since, G'(v,...,v)

G(v,...,v) + ̂ (v v) = F(v) + 0 = F(v). The finite difference

method (4.2.31) may then be written in the conservation form
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u(x,(n+1)k) - u(x,nk) G1 - G1(x-

We shall consider the function Q of two arguments (q=1) so

that fi((i+|)h) and s i n c e
+1 ^)h) - 2<2i?-i »ui

2(v,v) = 0, 2(u?,un
+1)

 w i l 1 b e close to 0 when un and un
+1 are

close. Under these conditions, where there are no osciallations Q

will be negligible.

In the paper by Lax and Wendroff [42] the function Q was

constructed so that the artificial viscosity term (4.2.33) with q - 1

can be written in the form

(4.2.35)

where

i

-2.

+

a n d 1 5

Cu?^ -a?)

1 ̂ -i 1 »-i^

that are 0 when un

In this case

u + 1 - u^ and un -u - H?_-|

a r e m a t r i c e s

respectively.

and

For the case where (4.1.1) is a scalar conservation law, Lax and

Wendroff choose

(4.2.36) f|a(un+1) - a(u£) |

where a(v) = 3vF and e = 0(1).

Adding the artificial viscosity term (4.2.35)-(4.2.36) to the

Lax-Wendroff method (4.2.22),

(4.2.37) un+1 = un - ka.Dou
n + | 2D +(a

2 ̂  uj) + j^+iQ } D u
n),

i7 i7

where = a(u^) and a u" + u£_-|))- T o analyze the

stability of this method, consider the local linearization of (4.2.37)

where a(v) is replaced with a typical value aQ, that is, the value

of a(v) at some point, and Q 1 in (4.2.36) is replaced with a

14
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typical difference in a(v), denoted by QQ. The resulting linearized

finite difference method is

= u - kaQDou + ( ^
+1

(4.2.38) un+1 = un - kaQDou
n

Taking the discrete Fourier transform of (4.2.38), the symbol

p(C) = 1 + (aQX + xQ0)(cos e-1) + iaQX sin £

is obtained so that

| P U ) | 2 = 1 - 4[QQX-((a
2X2 + Q QX)

2 - a2x2)sin2 |]sin2 § .

2 2
If aQX + QQX < 1 and the CFL condition |aQ|x < 1 is satisfied,

then QQX-((a
2X2 + Q QX)

2 - a2x2) > 0 and |p(O|2 < 1. This verifies

the stability of linearized finite difference method (4.2.38) by the

von Neumann condition. Let a = max|a(v)| and V = variation of a(v)

then Q~ < 4 V, If a(v) does not change sign, then V < a and

QQ < -̂ |. If

(4.2.39) ct2X2 + fax < 1

then

HQX 2 + QQX < 1.

Inequality (4.2.39) may be rewritten as

< 0 + ( ^ V
/ 2 . « < K

4 4

This is a stronger condition than the CFL condition.

We now return to the case of a system of conservation laws and

the artificial viscosity term (4.2.35). The form of Q 1 (4.2.36) in
i±j

the scalar case will be used to construct the matrices Q - in

(4.2.35). Let y1? . and yn+^ . denote the j-th eigenvalues of

A(un) and A(un+.. ) , respectively, for j = 1,...,p. The matrix

Q ^ u ^ u " ) in (4.2.35) is defined by having eigenvalues
i + ^ -• " 1 + 1

~~ir\ ^*+i • ~ w* -l» where e. = 0(1), 1 < j < p. The eigenvalues of

2. i ̂lin i »H^) a r e similarly defined. This does not uniqely determine

the matrices 2 i • I n L a x an<^ Wendroff [42] the matrices £ 1 were
i±^- i±^

required to commute with A. Thus the matrices Q - are functions of

A. The matrix Q - may be written as a polynomial of degree p-1 in A,

14
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where the coefficients g., 0 < j < p-1 are determined by prescribed

eigenvalues of Q 1.

Specific examples of the construction of 0 ., will be given in
i±\

Chapter III, Volume II.

IV.3. Monotone Difference Methods

In Theorem 4.4 it is shown that if the solution of a finite dif-

ference method in conservation form converges boundedly almost every-

where to a function as h and k approach zero, then the limit is a

weak solution. However, this theorem does not indicate whether this

limit satisfies the entropy condition (4,1.5). In order to insure that

the entropy condition is satisfied, the finite difference method will

have to meet an additional requirement. To this end, we introduce the

notion of a monotone finite difference approximation to a scalar

conservation law (4.1.1) (see Jennings [33]).

Definition. A finite difference method of the form

(4.3.1) un+1 = Qun = H(un ,un +1>...,u?+ ),

is monotone if H is a monotone increasing function of each of its

2q+1 arguments, that is,

(4.3.2) H. = - ~ — > 0 for -q < j < q .

If the function H in (4.3.1) satisfies the consistency condition

H(v,v,...,v) = F(v)

and can be written in the form

(4.3.3) H(un ,...,un, ) = un - x(G(un +1,u? +o»"**'
u"+ ̂

„/ n n n v N
- G("i-q.«i-q+1

 ui+q-1>>>

then the finite difference method (4.3.1) is in conservation form.

In Harten, Hyman, and Lax [30], the main theorem of this section

is proved.

Theorem 4.6. Let (4.3.1) and (4.3.3) be a monotone finite difference

method in conservation form. If the solution of this finite difference

method un converges boundedly almost everywhere to some function

v(x,t) as k and h approach zero with X = k/h fixed, then v(x,t)

is a weak solution and the entropy condition (4.1.15) is satisfied at

all discontinuities of v.
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Writing out the truncation error for the monotone finite dif-

ference method (4.3.1)

(4.3.4) ,L(vf1 - H(V?_q,v;_q+1 v«+q)) = »tv + 3xF(v)

= -k3x(8(v,X)3xv) + 0(k
2),

where

(4.3.5) 6(v,x) = TV? E J 2 M V > " T*2(v)
lX j—q J

and H. denotes the partial derivative of H with respect to the

(p+j-1)-th argument (cf. (4.3.2)).

As an example, consider the Lax-Friedrichs method (4.2.12).

Define H by

(4.3.6) H(uJ.1(uJ,u;+1) = ̂ (un
+1 +u

n_.,) - (Fn
+1 - F

n^ )

Differentiating H with respect to its 3 arguments

- ~ — (v,v,v) = \ + £a(v) > 0,

——(v,v,v) = 0,

^ j — (v,v,v) = i - ̂ a(v) > 0,
nu

provided the CFL condition is satisfied. Thus the Lax-Friedrichs

method is monotone. By substituting these derivatives of H in

(4*3.5), we obtain the 3(v,X) for the Lax-Friedrichs method

B(v,X) = l(i2 - a
2(v)),

which is non-negative provided the CFL condition is satisfied.

Theorem 4.7. A monotone finite difference method in conservation form

is first order accurate.

Proof: By direct calculation we obtain the identities

q
I H. (v,v v) = 1

j—q J

and
q
I jH.(v,v,...,v) = -Xa(v).

j=-q J

Since the finite difference is monotone, H. > 0, /HT is real for

-q < j < q« Using the Schwartz inequality and the two identities

(4.3.7) X2a2(v) = (EjH.) = (ij/HT /H7)
j J j J J
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H..
j J

Substituting this inequality in (4.3.5) gives B(v,x) > 0. The only

way in which 3(v, X) = 0 is for (4.3.7) to be an equality which is

possible if and only if H. (v, ...,v) = 0 for all j, -q < j < q,

except one. This case gives rise to a finite difference operator that

is a translation, which is a trivial case. If $(v,x) i 0, then by

(4.3.4), the monotone finite difference method is first order accurate.

Finite difference methods, particularly those with accuracy

greater than one, may produce oscillations when applied across a

discontinuity. These oscillations can not only be responsible for the

poor representation of the discontinuity but can also induce nonlinear

instabilities (instabilities not predicted by the linearized stability

analysis) and may result in convergence to a weak solution that does

not satisfy the entropy condition. (An example of the later effect of

oscillations will be given below.) From this we conclude that it is

desirable to try to construct nonoscillatory methods, that is, finite

difference methods that do not produce oscillations when applied across

a discontinuity. It is for this reason that we are interested in mono-

tone finite difference methods.

Definition. A finite difference operator Q is monotonicity preserving

if for any monotone grid function u, w = Qu is also monotone.

Theorem 4.8. A monotone finite difference method (4.3.1) is

monotonicity preserving.

Proof. Let u denote any monotone grid function and define

Using the mean value theorem, there exists a number 0 < a < 1 such

that

wi+r Wi = H(ui-q+1 'Ui-q+2 ' U >

q

ji H

Since H. > 0 for -q < j < q, by the definition of monotone, if u

is a monotone increasing (decreasing) grid function of i, u^+^ -

u. > 0 (< 0) then w.+.. - w. > 0 (< 0) . Thus w is a monotone grid

function of the same kind as u. This theorem shows that monotone

finite difference methods are nonoscillatory methods.
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Gudonov [24] showed that in the linear constant coefficient case

monotonicity is equivalent to monotonicity preserving. However, in the

nonlinear case, the converse of Theorem 4.8 is not true. The set of

all monotone preserving finite difference methods is larger than the

set of all monotone finite difference methods. It was shown above that

a monotone finite difference method is first order accurate. However,

it is possible to construct monotonicity preserving finite difference

methods that are second order accurate (see van Leer [75]). This will

be demonstrated later in this section.

The notion of a monotone finite difference method can be extended

to the vector case. Inequality (4.3.2) is taken to mean all eigen-

values of the matrix H. are nonnegative for every j, -q < j < q.

However, the notion of monotonicity preserving does not extend to the

vector case.

In Harten [27] a necessary condition for a finite difference

method to be monotonicity preserving is established. In inequality

(4.3.8) set u._q = u._q+1 = ... = u.+j = uL and u.+j+1 = u. + j + 2 =

f h
q q j

ui+q+i
 = UR» f o r e a c h j, -q < j < q then

From this we obtain the set of necessary conditions

(4.3.9) Hj(uL u^u^u^),^ uR) > 0

for all -q < j < q and 0 < a < 1.

In Harten, Hyman, and Lax [30] an example is given of a nonmono-

tone finite difference method (the Lax-Wendroff method (4.2.25)) whose

solution converges to a weak solution that does not satisfy the entropy

condition. Consider the scalar hyperbolic conservation law (4.1.1)

where F(v) is given by

F(v) = v - 3/Iv2(v-1)
2

and initial condition

1, x < 0.5
v(x,0) - f(x) =

0, x > 0.5.

The function

v(x,t) = f(x-t)

solves the initial-value problem and satisfies the RH-condition

(4.1.13a) and the entropy condition. Therefore, v(x,t) is the unique

solution.

Approximate this initial-value problem by the Lax-Wendroff method

(4.2.25) which is in conservation form. Since the Lax-Wendroff method

is second order accurate it is not monotone. At the beginning of each

time step a new time step is chosen according to max|a(u.)|x = 0.9.
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In Figure 4.9a-c the numerical solution (represented by a solid line)

and the exact solution (represented by a dashed line) are depicted at

time steps n = 5,15, and 150, respectively.

The numerical results indicated that the approximate solution

converges as n -• « to

u(x,t)

UL
UO
U1
UR

= 1
- 1.
= -0

- o,

41 ,
.17

x < 0.5 - 3.3t,

0.5 - 3.3t < x < 0.5

0.5 < x < 0.5 + 2.2t,

0.5 + 2.2t < x.

The approximate solution has one. The R-H condition (4.1.13a) is

satisfied at the three discontinuities of u(x,t) (within the accuracy

of the method). Thus, by Theorem 4.3, u(x,t) is a weak solution of

the initial value problem. Also the entropy condition is satisfied at

the discontinuities between u^ and UQ and between u^ and uR.

However, it is not satisfied at the third discontinuity between UQ and

The nonmonotonicity of the Lax-Wendroff method (4.2.25) is

responsible for the development of the beginning of the oscillations

represented by the overshoot forming the discontinuity between u, and

u0
in Figure 4.9a and by the undershoot forming the discontinuity
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t-15k

T

t-150k

Figure 4.9. Example of Non-Monotone Lax Wendroff Method in
Conservation Form (4.2.25) Whose Solution Converges to a
Weak Solution that Biolates the Entropy Condition at Time
Steps a) n = 5, b) n = 15, and c) n = 150. (Courtesy of
A. Harten, J. M. Hyman, and P. D. Lax.)
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between u^ and u R in Figure 4.9b. However, the flux function F(v)

is not concave or convex so that a(v) = 8F/9v satisfies a(un) <

a(u,) and a(u1) > a(uR). This results in the backward propagating

discontinuity between u, and UQ and the forward propagating discon-

tinuity between u^ and uR.

In the remainder of this section we shall present some monotone

and monotonicity preserving finite difference methods. As an intro-

ductory example, consider the scalar hyperbolic equation with variable

coefficients (3.11.19)

3 v + a(x)3 v = 0

approximated by the upwind difference method (3.11.20)

(xi)(u
n - u n ^

i f a<xi>

if a(x.)

If a(x) is of one sign, then the upwind method is monotone. Suppose

a(x) < 0, then

u n + 1u n + 1 = H(un_1,u
n,un

+1) - xa(x.)u
+1

that is, H(v.,V2»Vo) = (1+Aa(x.))v2 - Xa(x.)v where 9V H = 0,

9v H = 1 + Xa(xi) > 0, and 9V H = - a(xi) > 0 provided the CFL

condition is satisfied.

However, if a(x) is not of one sign, the upwind difference

method is not monotone. A monotone version of the upwind difference

method is

(4.3.10)

where a 1 = a(x 1) and

un+1= u1? - ka" ..DV? - ka+ -D un,
1 x i + i 1

(4.3.1 1a)

and

(4.3.11b)

1 = max(0,a + |a > 0

1 = min(0,a ) « l( a - - |a 1 |) < 0.

If maxla - Ix < 1, then the upwind method (4.3.10) is monotonicity
i i\

upreserving. Without loss of generality assume

increasing grid function. We shall establish that is monotone

is monotone

un

increasing grid function. Since u1? is monotone increasing un_1 <
ui < ui+1 < ui+2- From (431°)i+2-
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u f 1 = Xa+ ̂  + (1+x(a" , - a+ 1 ) )u
n - Aa"

i-2 1+2 ^ 1

Replacing u? ^ with u?, since a ^ > 0,

(4.3.12) un+1 < (1 + xa" «)u? - Xa" -u"
1 i+1 L i+^

Similarly

u = X%U + ° + X ( O \ ) ) u X\
which by replacing u? + 2 with u?+1, since a" 3 < Of

(4.3.13) un+] > Xa+ 1U£ + (1 - Aa* 1 )u
n
+1 .

Subtracting (4.3.12) from (4.3.13)

ui+1 " ui + 1 > (1 " (a^+l "
 a^+i

))(ui+1 " ui }-

Using (4.3.11), a 1 - a' 1 = |a J so that, (1 - X (a < - a" .,)) > 0,
•{ 4--L i -4—L •? -4- i 4- i -I-

provided the CFL condition is satisfied. Thus u?+1-u? > 0 for every

i, that is, un is a monotone increasing grid function of i.

We shall construct a monotone upwind difference method for the

scalar conservation law (4.1.1) (see Harten [27]). Define 6(v,w) to be

f(w)-f(v) < 0
' w-v

0 f(w)-f(v) 0
' w-v

and 6n 1 = 6(uV,u^+1). Consider the nonlinear analogue of (4.3.10)

n+1 n , n n ^n , n n >̂ n Fn
u. ~ u. ~ Ko 4 u. r 1 • K U — 0 J )u r .

1 i + i + L i 4 'x

This method may be written in the conservation form

ui "

where

Fn , n ,Fn ^n^
F. + «i+1(F1+1 - F.).

Writing G(v1 ,v£) = F(v£) = F(v1 ) + 6(v., ,v2) (F(v2) - F (v 1 ) ) , the con-
sis tency condition is sa t i s f i ed since G(v,v) = F(v).
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To establish that the method is monotonicity preserving we shall

show that (4.3.14) may be reduced to (4.3.6). Define

and

i-
(1 - 6

i-

Substitution of these values in (4.3.14) gives (4.3.10) which is

monotonicity preserving provided the CFL condition

max | a

14
X < 1 .

The upwind difference method can be extended to systems of hyper-

bolic conservation laws. As a first step, consider the system of

hyperbolic equations with constant coefficients,

3 v + A3 v = 0,

where A is a constant pxp matrix. By the definition of hyperbolic,

A can be diagonalized by a similarity transformation, that is, there

exists a nonsingular matrix T such that, A = T D T"1, where

D = diag(y-,...,y ) , where y. denote the eigenvalues of A. As in

Section III.1, substituting w = T"lv in (4.3.15) results in p

uncoupled equations of the form

(4.3.16) atWj + Pj3xWj = 0,

each being a special case of (3.11.19). Each component equation can be

approximated by the upwind method (4.3.10),

for j = 1,...,p. This may be written in vector form

u n + 1(4.3.17) u n - (D + |D|)D_un,

where u n is an approximation to w(ih,nk) and

(4.3.18) |D| = diag(|y1|,...,|yp|).

Multiplying (4.3.17) on the left by T transforms the upwind method for

w into an upwind method for v,

(4.3.19) - kA+D_un,
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where un = T u?,

(4.3.20a) A" =

(4.3.20b) A+ =

and

(4.3.21) |A| = T|D|T-l.

Clearly the upwind method (4.3.19) is stable provided the CFL condition

max |y.|X < 1 is satisfied.

To consider systems of hyperbolic conservation laws we shall

restrict our attention to "three point" methods in conservation form,

that is, methods of the form (4.2.3) where the numerical flux is a

function of two arguments (q=1) , G(v-,v_2). We now make precise the

definition of a general "three point" upwind method (see Harten, Lax,

van Leer [32]).

Definition. A finite difference method in conservation form (4.2.3) is

an upwind method if:

1) For v- and v« any two states near some reference state v*, the

numerical flux G may be written in the form

(4.3.22) G(v} ,v2) = F(v*) + A
+(v*) (v., -v*)

+ A-(v*)(v2-v*) + Ody^-v*! + |y_2-y*|),

where A(v) denotes the Jacobian of F(v) and A+ and A" are

defined by (4.3.20) and (4.3.21).

2) When all signal speeds associated with the numerical flux G(v^ ,v_2)

are positive, G(v-,v«) = .F(v-). When all signal speeds associated

with the numerical flux are negative, G(v^ ,v2) = F(v2).

y.i+Y-2
A natural choice for the reference state v* is — j — so that

(4.3.22) reduces to

(4.3.23) G(v^ ,v2) = ̂ (F^) + F(v2)) - Y 1 A C
1 ^ ~ 2 ) | (V2 - v1 )

where using (4.3.20), A+ - A" = |A|, and

lC\~2) = •£(!(v^ + F(v2)) + 0(|v2 - v1 | ) .

Replacing ^ and v2 with u" and u? + 1, respectively, in (4.3.23),

we obtain G 1 in (4.2.3),

7 + «(l^+1 - H?l>

±g j | H i + f i + 1 ^ 0(h).
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Similar ly,

i +i
Substituting G 1 and G 1 into (4.2.3) results in a first order

upwind method

un+1 = un - X(G - - 6 «)

n. n
1+2

where A ^ = A( ^ ) • Observe that the last term on the right hand
i+7

side of (4.3.24) is a diffusion term.

We now construct a second order accurate upwind difference due to

Fromm [16]. To begin we shall consider the scalar equation

(4.3.25) atv + C9xv = 0,

where c is a constant. Approximate the equation by the Lax-Wendroff

method (3.5.3)

(4.3.26) un+1 = un - ckDQu
n

It was shown in Section III.6 that the Lax-Wendroff method has a lag-

ging phase error. In an effort to construct a finite difference with a

zero phase error, Fromm constructed a finite difference method with

second order accuracy that has a leading phase error. The idea of the

construction is to project the exact solution at an advanced time with

|c| X = 1. The solution for |c|x < 1 is obtained by Leith's backward

differencing in time from projected solution. Let £ > k denote an

alternate step and let un represent the approxmate solution at time

nk + £ > (n+1)k. For \c\^ = 1 » t n e solution u11 is obtained by

following the characteristic back to t = nk. (See Section III.4.) The

projected solution is

(4.3.27) un+1 = u n _ K

The projected solution shall be used to obtain an approximate solution

u? . Fromm used an implicit version of the Lax-Wendroff method

(4.3.15)

n+1 n+1 2

(4.3.28) U l ~ U i = -CDQU^1 + M p k l c ^ u " * 1 .

Replacing un in (4.3.28) with its projected value un * and solving

for uf 1,
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// o nn\ n+1 n / , i \r\ ft ( c k ~ h ) ^ T-. n(4.3.29) u t = u i _ 1 - (ck-h)D Qu i_ 1 --* T^-1—D+D_ui_1 .

This finite difference method has a leading phase error. The Lax-

Wendroff method (4.3.26) and (4.3.19) are averaged to obtain a second

order accurate method

(4.3.30) uf 1

- 2 c k h

which is stable provided the CFL conditions, |c|X < 1, is satisfied.

The averaged solution has an improved phase error. This method is

known as Fromm's zero average phase method.

Fromm's zero average phase error method (4.3.30) is actually a

second order accurate upwind difference method. This can be demon-

strated by rewriting (4.3.30),

un-cXhD,un + ^f(1+cX)h(D,u1?, ! - D.u? .,) , c < 0
1 T 1 q. T If I T 1-|

un-cXhD un - ££(1-cx)h(D u}.4 - D un < ) , c > 0.
1 — 1 H- - 1"«" I - 1 - 1

(4.3.30') un+1

This method is not monotonicity preserving, however, van Leer

[76] modified (4.3.30') resulting in a second order accurate upwind

difference method that is monotonicity preserving. (This method will

verify the conjecture made earlier in this section that the class of

monotonicity preserving finite difference methods is larger than the

class of monotone finite difference methods.) van Leer [76] introduces

a "smoothness monitor" 6. defined by

(4.3.31) e^
otherwise.

Fromm's method (4.3.30') with c > 0 may be written as the

average of the two methods

(4.3.32a) un+1 - u" - cXhD_u£ - ̂ -(1-cx)h(D_u"+1 - D_u?)

and

(4.3.32b) un+1 = un - cxhD_u£ - ̂ -(1 -cx)h(D_u^ - D_u"_.,)f

both of which are stable provided the CFL condition, |c|x < 1, is

satisfied. The case when c < 0 is completely analogous. The defini-

tion of monotonicity preserving can be expressed in the following
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fashion. With c > 0, the wave moves to the left and if the CFL

condition is satisfied, then un must lie between un and u?_.j

(and with c < 0, the wave moves to the right and if the CFL condition

is satisfied, then u. lies between u.+« and u.) for every i.

With this monotonicity preserving may be expressed by the inequality

n+1 nu. -u.
(4.3.33) 0 < * n

 1 < 1

for every grid point i. If the two finite difference methods are

monotonicity preserving, then the average of these two methods is

monotonicity preserving.

Consider the modification of (4.3.32)

(4.3.34a) un+1 = un - cXhD_u" - ̂ (1 -cx)h(1 -S (en) ) (D_un+1 - D_u
n)

and

(4.3.34b) un+1 - u" - cxhD_un - ̂ (1 -cx)h(1 -S (en_1)) (D_u
n - D_un_1),

where S is a function to be chosen that is independent of c and x.

The average method is

(4.3.35) un+1 = un - cXhD_un - ̂ £(1-cX)h(D_un+1 - D.u
n_1 )

+ £|-(1-cX)[S(8n)(D_un+r- D_u
n) - S(6n.1)(D^u

n - D^u"^)].

The linearized stability analysis of (4.3.35) yields |c|x < 1 (the

CFL condition) and S2(e) < 1 + 0(h). Suppose D^u^+1 = D_u^_1 so

that Fromm's method (4.3.30') reduces to the monotonicity preserving

method

(4.3.36) un+1 - u" - cxhD_un.

In this case (4.3.35) should reduce to (4.3.36). This will occur

provided

However, if D_uV+1 " D_

and hence,

D.«» D.u? D.u^ D + ^ . , e?.,

s(e")

For 0 < |c|x < 1, the monotonicity condition (4.3.33) must be satis-

fied. For (4.3.34a),
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u n + 1 -un

* 1 = cx

cx + — (i-cx)(i-s(en))(en-D.

Condition (4.3.33) will hold provided 9cX( ±—^) > 0 for

|c| X = 0 and 1, where 8 denote differentiation with respect to

ex. For (4.3.34a) this gives rise to

for cx = 0, and for cX = 1

1 + l(1-S(e^))(1-9n) > 0.

Combining these two inequalities gives

| (1 -S(en)) (1 -e?) | < 2

or

e? - 3 n e? + 1
(4.3.37) -i > s(en) > - ~ .

Simi lar ly , for (4 .3 .34b)

9

or
e" 1-30n

(4.3.38) - p - > S(en) > - g — ^ .
ei-1 ei-1

van Leer [76] chose

l Q i l " 1
S(en) i

ej|

which s a t i s f i e s i n e q u a l i t i e s (4 .3 .37) and ( 4 . 3 . 3 8 ) . This function i s
written ii

(4.3.31),

written in the more convenient form, using the definition of e1?

(4.3.39) S(e") *ttn" , / n , • ID+
Uil + I°-Uil

, otherwise,

where e > 0 is chosen as a measure of negligible variation in the

grid function u.



312

The extension of this method to the case of variable coefficients

is direct. However, as in the case of the first order upwind method,

if c(x) is of one sign, Fromm's method (4.3.30') is in conservation

form. However, if c(x) is not of one sign, Fromm's method is not in

conservation form. Fromm's method can be modified so that it is in

conservation form,

(4.3.40) un+1 = un - cXhDQu
n + ̂ 4(D_u n

+ 1 - D_u
n)

^ M " " - D_un + Dji"^)

1 + 3D_u
n - D j i ^ ) .

Fromm's method (4.3.40) can be extended to a system of hyperbolic

conservation laws (4.1.27). Let A(v) denote the Jacobian of F(v)

and let y- (v),...,y (v) denote the eigenvalues of A(v). There exists

a nonsingular matrix T(v) such that A(v) = T(v)D(v)T"1(v), where D(v) =

diag(yi(v),...,yp(v)). Let |D(v)| = diag( | V} (v) | |yp(v)|). Then

|A(v)| = T(v)|D(v)|T"i(v),

which commutes with A(v). Let u. denote the approximation to

v(ih,nk). In (4.3.40) replace un with un, ex with XA(un), D_un

with D_Fn, and |c| with |A(un)|, that is

H XA(un)hDun X 2 ( )- XA(un)hDnu
n + o —h(D Y™,A - D F

n)

8^(1- IA(u") | X)h(D_Fn+2-D_F
n
+1 - D J ^ + D J ^

*|A(u_n)| n
- 3DFn_F+1

We present one final group of monotonicity preserving upstream

methods, again due to van Leer [76]. These methods are based on the

first order accurate methods due to Godunov [24] for equations of gas

dynamics in Lagrangian coordinates. (Godunov1s method will be discussed

in greater detail in the next section.)

To begin we describe Godunov1s method to approximate the scalar,

linear equation with constant coefficients (4.3.25). Divide the x-axis

into intervals of equal length h, where the i-th interval

I. = [x.jX.,-] with center x - = x. + T. Consider the approximate
L 1 L"" I • • I 1 Z

solution for any x at time t = nk, denoted by un(x) (we can at

least begin, for n = 0, u (x) = f(x)). Project un(x) onto the spa

of functions that are constant on each interval 1^ by setting
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un(x) = un .. for x e I. (un(x) denote the result of this projection),

where

(4.3.42) u = l/*i+1un(x)dx

i+j n i

(see Figure 4.10a). The bar "~~" over a quantity refers to an average

of that quantity. The solution at the next time interval t = (n+1)k

is obtained exactly,

(4.3.43) un+1(x) = un(x-ck)

(see Figure 4.10b). If the CFL condition, |c|x < 1, is satisfied then

this translation of un(x) by an amount ck will not exceed h.

Again, projecting onto the space of piecewise constant functions,

set un+1(x) = un+] for x e I., where

(4.3.44) u ^ = ̂ u ^ 1 (x)dx - yl^u (x-ck)dx

(see Figure 4.10c).
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uu(x)

(i-l)h ih (i+l)h (i+2)h

!*-ck-H H-ck
(i-l)h ih

(i-l)h ih (i+l)h (i+2)h

Figure 4.10 a) Projection of un(x) onto Piecewise Constant Function

un(x) = un .., x e I.; b) Advection of Piecewise Constant un(x) on

(4.3.43) for c > 0; c) Projection of un+1(x) onto Piecewise Constant

Function un+1(x) = u n + ] , x e I..
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n+1

u 1 , x. < x < x.+ ck

u i , x. + ck < x < x.+.| .

Substituting into (4.3.44)

-n+1 1 ,xi+ck-nu 1 = ul u

14 hJxi i

J, i+1 -n dx
h .1 . .1

un -

14

, that is, the centered dividend difference
1/2 n "̂̂ Twhere DQ7 UV = = ^

of un over the interval of length h rather than 2h. Similarly,

for c < 0

un +j = (1 - | c | x )u n
 1 + |c |xun

 3 = un
 1 - | c | x h D y 2 u . + 1 .

i4 ^4 ii i
Combining these two cases gives the first order upwind method (4.3.10)

applied to the piecewise constant (grid averages) u11 « .

Rather than projecting u (x) onto space of piecewise constant

functions, suppose un(x) is projected onto the space of piecewise

linear functions, that is, functions that are linear on each 1^. Define

( 4 . 3 . 4 5 ) u n ( x ) = u n < + (3 u n ( x ) ) , ( x - x - ) , x e I . ,

i4 i 4 i+

where u11 . is given by (4.3.42) and (9 un(x)) * denotes the

i4 X i-4
gradient of un(x) at some point x E I.. As in the piecewise

constant case, the solution at the next time level is

un+1(x) = un(x-ck)

and the projection onto the space of piecewise linear function, denoted

by un+ 1(x), is

(4.3.46) un+1(x) = un+] + (aun+1(x))
i4

- ) , x e I. ,

where un+1 is given by (4.3.44).
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F o r c > 0 a n d x e l±f by ( 4 . 3 . 4 3 ) a n d ( 4 . 3 . 4 5 ) ,

u 1 + (9 un(x)) ^(x-ck-x -) , x. < x < x. + ck

u " + 1 ( x ) =
u . 1 + ( 9

x
u n ( x ) ) . i ( x " c k - x . •,) , xi + ck < x < x.+1

Substituting into (4.3.44)

+1 ! x.+ck
(4.3.47a) un+ = i f L (u11^ 1 ^ ^ ^ ,

1 1-y 1-y l -

x.
V

un(x))
X .

( 3 u n ( x ) )
X

Similarly, for c < 0

(4.3.47b) un+] - un -

i4 14
xu

n(x))^ 3 - Oxu
n(x))B ^

Combining these two cases results in a second order upwind method

applied to the piecewise grid averages u11 1 .

Higher order accuracy can be achieved by projecting un(x) onto

the space of piecewise polynomials of higher degree. van Leer [78]

also considers the projection onto the space of piecewise quadratic

functions.

It remains to describe how (9 un(x)) 1 is to be evaluated.

14
There are several possibilities, of which, two will be discussed here.

First, (9xu
n(x)) ^ can be approximated by a centered difference,

that is, Dnu
n * which is second order accurate. Substitution into

14
(4.3.47) gives the second order upwind method (4.3.30*) applied to the

grid averages un ̂  rather than the function values at the grid points

n 2
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Another possibility is to determine (3 un(x)) - so that un(x)
x i+\

so that un(x) and u (x) have the same first moment, that is, by

using (4.3.45)

JXi+1un(x)(x-X< .,)dx = /x l + 1(^ n
 1

 + Oxu
n(x))< ^x-x^ 1))(x-x> ^dx

= Li+1un(x)(x-x .)dx
xi i+i

x
i

i+i x
(3un(x)) 1 = -I = 1|/ i+1un(x)(x-x -)dx.

i+7 /i+1(x-x ^ ^ x " i+T
xi i+^

This gives rise to a recursive formula for (3 un(x) 1t
x i+^

(4.3.48) (8vu
n+1(x)) 1 = (3 u

n(x)) - + (1-cx)(1-2cx-2c2X2)(3 u
n(x)) -

x i+ x i-ĥ  i+

- cx(3-6cx + 2c2x2)(3xu
n(x)) 1 + 6cx(1-cx)hDj

/2u".

To begin, set n = 0 and

(3_u°(x)) . = if/v
 1+1 f(x) (x-x Odx.

x i+Y i i+7

A complete step of the second order upwind method (4.3.47) with

(4.3.48) is depicted in Figure 4.11.
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a) b)

un(x-ck)

(i-l)h ih (i+l)h (i+2)h (i-l)h ih (i+l)h (i+2)h

c) d)

un+1(x),

un+1(x)

(i-l)h ih (i+l)h (i+2)h (i-l)h ih (i+l)h (i+2)h

Figure 4.11 a) Projection of un(x) onto Piecewise linear Function

un(x) (4.3.45); un(x)b) Advection of Piecewise Linear Function

(4.3.43) for c > 0; c) Projection of u (x) onto Piecewise Linear

Function

step.

1(x) using (4.3.48); d) u (x) ready to begin next
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Now we modify the second order upwind method (4.3.47) so that it

is monotonicity preserving. A sufficient condition for a method

satisfying the CFL condition to be monotonicity preserving is: if un -j

then u i must lie between un ., and
1

for c > 0 and between uun

-

must lie between u

uln o for c < 0.

The term (3 u (x) ) 1 will be modified so that:

1) the linear function (4.3.45) on each interval 1^ does not

assume values outside the range spanned by the adjacent grid

averages, that is, all values of u (x) for in

(4.3.45) lies between un , and u11

l4 14
(see FigureL4.12).

(i-l)h ih (i+l)h (i+2)h

Figure 4.12.

of un(x) for

Slope of un(x)

x e I.

on 1^ is modified so that all values

lie between u11 < and un
 o.
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that is, if un
 1 attains a local

extremum, then (a un(x)) < is set to 0 so that the extremum isx i+j-
not accentuated (see Figure 4.13).

un(x

(i-l)h ih (i+l)h (i+2)h

Figure 4.13. If u < attains a local extremum, then slope

(8 un(x)) * is set to 0.
i

3) If sgn = sgn sqn(3xu
n(x)) ]t then Oxu

n(x))

is set to 0. This introduces some numerical diffusion (see Figure

4.14).

un(x)v

(i-l)h ih (i+l)h (i+2)h

Figure 4.14. If the Slope (a u (x)) 1 does not agree with the trend
x i+2

in adjacent intervals, it is reduced to 0.
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These requirements can be represented by replacing (9 u (x))
x i

in (4.3.35) with

(4.3.49) (9 un(x))mo?° = min{2|Dy2un|,|(9 un(x)) | ,2 | D^ 2u n
+ 1 | }X i+1 U 1 x i+\_ U l+l

sgn(9xu
n(x))i+1 , if sgn DQ u1? =

sgn DQ 7 U? + 1 = sgn(9xu
n(x))> 1 ,

0 , otherwise

(see van Leer [78]).

IV.4. The Godunov and Random Choice Method

In this section we describe two methods based on the solution of

a Riemann problem (see Section IV.1). In the method due to Godunov

[24], the exact solution to a sequence of local Riemann problems is

used to obtain a first order accurate upwind finite difference method

that is monotonicity preserving.

Consider the Riemann problem defined by the hyperbolic system of

conservation laws (4.1.27)

(4.4.1) 9tv + 9xF(v) « 0

along with the step function initial condition

vL , x < 0

(4.4.2) v(x,0) = ji(x) =
vR , x > 0 .

The (weak) solution, called a similarity solution, which depends on the

states vL and vR ad the ratio x/t, called the similarity variable,

will be denoted by R(x/t ,v_L,vR).
L e t vmin(v) =• min y.(v) and y (v) = max y.(v), which

m i n " 1<j<p J " m a x 1<j<p J "
denotes the slowest and fastest signal speed of (4.1.27), respectively,

then the solution of the Riemann problem (4.4.1)-(4.4.2) satisfies

R(x/t,vL,vR)
^L > x / t <

^R ' x / t >
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Suppose that u? is given. Godunov [24] considered the piecewise

constant function of x,

(4.4.3) un(x) = u? ,, x e l!/2.

where lV = [ (i-^)h, (i+̂ -)h] . To advance the solution, from time nk

to (n+1)k, consider the initial-value problem given by (4.4.1) and

(4.4.3). On each interval 1^ = [ih,(i+1)h], this initial-value

problem defines a Riemann problem. The initial-value problem (4.4.1)

and (4.4.3) thus defines a sequence of Riemann problems. If the CFL

condition,

(4.4.4) max |y.(v)|x < i
1 < j <p J " 2

v

is satisfied, the waves generated by the individual Riemann problems

will not interact. In this case, these solutions to the local Riemann

problems can be combined by superposition into a single exact solution

ve(x,t) for nk < t < (n+1)k,

(4.4.5) ve(x,t) = R( . * , u n,u n
+ 1 ), x z I .

To obtain u11 , Godunov projected ve(x,t) onto the space of piece-

wise constant functions by

(4.4.6) un+1 = J-J 1/9v
e(x,(n+1)k)dx.

1 n I|/z

Since ve(x,t) represents an exact solution to (4.4.1), using (4.1.29)
1 17

over the rectangle l/ x [nk,(n+1)k]

(4.4.7) / 1/2v
e(x, (n+1)k)dx - / 1/2v

e(x,nk)dx

" /^+1)kF(ve((i-l)h,t))dt = 0.

Using (4.4.5), ve((i-^)h,t) = R(0,u?_1,u") and ve((i+^)h,t) =

R(0,u?,uJJ+1) an independent of t. Substituting into (4.4.7),



323

Jn£
+1)kF(ve((i-4)h,t))dt - F(R(O,u",un

and

Relation (4.4.7) may be written, with the help of (4.4.6), in the form

(4.4.8) un+1 = un - X(F(R(0,u!?,un+1)) - F(R(0 .u
1?^ ,un)))

= un - X(Fn 1 - F
n , ) ,

where un « = R(0 ,un,u" « ) and Fn « = F(un «). Clearly, Godunov's

method is in conservation form.

The random choice method (also known as Glimm's method) follows

the construction of the Godunov method through the solution of the

Riemann problems and the construction of ve(x,t) in (4.4.5). Where

Godunov's method uses an averaging process, (4.4.6), to advance the

solution to t = (n+1)k, the random choice method chooses a repre-

sentative point value of the locally exact solution to obtain un

This representative point value is achieved by sampling (4.4.5). Let

5̂  denote an equidistributed random variable in the interval ("Z*^

(see Section III.12). Sampling the locally exact solution (4.4.5),

(4.4.9) un+1 = ve((i+5n)h,(n+1)k)

As described in Section III.12, one value of £n is chosen per time

step and used for each value of i.

The CFL condition given by (4.4.4) was necessary so that the
11Iwaves generated at the midpoint of the interval 1/ by the individual

Riemann problems would not propagate beyond their respective intervals

in time k. Thus the waves from the different Riemann problems would

not interact. By explicitly treating the wave interactions from the

individual Riemann problems, Leveque [44] was able to choose a step

size k larger than dictated by the CFL condition.
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The only error estimates available for the approximation of a

nonlinear conservation law by the random choice method were obtained by

Colella [7] for the special case of Burgers' equation. Let

e(h,t) = z|u? - v(ih,nk)|h

denote the discrete L̂  error. For smooth regions

e(h,t) ~ ch|log h|

and for the interaction of a shock with a rarefaction wave

e(h,t) ~ Cl(t-t0)h
1/2|log h| + c2|log h|,

where t^ is the time at which the shock strikes the rarefaction. In

the second error estimate it would appear that the error would grow in

time. However, numerical studies performed by LaVita [36] demonstrate

that there is little growth of the error with time for fixed h.

LaVita1s results indicate that the error behaves like 0(h), inde-

pendent of time, even in the presencee of discontinuities.

The solution to the Riemann problem (4.4.1)-(4.4.2) consists of

p+1 constant states vn,v1,...,v , where vn = vT and v = vD,
— U —~ I "~~P —*U ~~Li ~~P ~~K

separated by p waves. As in Section IV.1, the k-th wave is a rare-

faction if uk(vk_1) < yk(vk), a shock with speed S of yk(vk_1) >

S > uk(.Y.k), and, in the linearly degenerate case, a contact discon-

tinuity propagation with speed VuCvv.i) = ^w^—k^*

Both the Godunov method and the random choice do not make use of

all of the information in R(x/t,v, ,v R). However, the Riemann problem

can be very costly to solve and in many cases is impossible to solve

exactly. It has been proposed (Harten and Lax [31], Roe [54-55]) that

the exact solution R(x/t,vT ,vD) to the Riemann problem (4.4.1)-
— ~~Li -~K

(4.4.2) be replaced with an approximate solution, denoted by
r(x/t,v, ,vD) which has a much less conplex structure. It is essential,
— —Li —~K

however, that this approximation be conservative and satisfy the

entropy inequality (4.1.36).
form

With the aid of (4.4.5), un in (4.4.6) may be written in the

1
~j_i 1 ,• u x"*(i~T)h

nTi _ jfin „/ z n ^\A
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Definition. Let _r(x/t,v ,v ) denote an approximate solution to the
L R

Riemann problem (4.4.1)-(4.4.2). A finite difference method is of

Godunov type if it can be written in the form

(4.4.11) un+1 = l/Q/2r(x/k,un^1,u
n)dx + ̂ J hr(x/k,u

n,u"+1)dx.

Consider a three-point finite difference method in conservation

form ((4.2.3) with q = 1)

(4.4.12) un+1 = un - X(G - - G O ,

i4 u4
where

(4.4.13) G 1 = G(u
n,u n

+ 1)

and GJ denotes the numerical flux (see Section IV.2).

We now present the discrete analogue of the entropy condition

(4.1.36a).

Definition. A finite difference method (4.4.12) is consistent with the

entropy condition (4.1.36a) if

(4.4.14) U n + 1 < U n - x(En
 1 - E

n
 1 ) ,

where u" = U(u") and

(4.4.15) E n
 1 = E ( u n , u n

+ 1 ) .

In this case E(w.. ,w«) is a numerical entropy flux that is consistent

with the entropy flux ¥„,

(4.4.16) E(v,v) = F E(v).

Definition. An approximate solution £(x/t,v_L,vR) of a Riemann

problem (4.4.1)-(4.4.2) is consistent with the integral form of the

conservation law if

h /2 u
(4.4.17) / £(x/t,vL,vR)dx = |(v L + vR)-k(F(vR) - F(v L)) f

-h/2

for h satisfying max |y.(v)|x < -y (the CFL condition (4.4.4)).
1<i<P J



326

Integrating the conservation law (4,4.1) over the rectangle

(4.4.18) fh/2v(x,k)dx - fh/2v(x,0)dx + J^F(v(]j,t) )dt - /^F(v(-fe,t) )dt
-h/2"* -h/2"" u z u - z

However, if the CFL condition (4.4.4) is satisfied by k and h

defining the rectangle, then

/QF(V(§, t))dt = /^F(vR)dt = kF(vR)

and

/QF(v(-j-,t) )dt = /QF(vL)dt = kF(vL).

Also

/h/2v(x,0)dx = §(vT + v p ) .
-h/2" 2 ~ L " R

Substituting these results into (4.1.18),

(4.4.19) Jh/1v(x,t)dx - y(vT + V p) - k(F(vB) - F(vT)).ih/2" 2 -L -R - -R - -L

Definition. An approximate solution £(x/t,y_L,vR) of a Riemann problem

(4.4.1)-(4.4.2) is consistent with the integral form of the entropy

condition if

(4.4.20) /h/2U(r(x/t,vL,vR))dx < §(U(vL) + U(vR))

- k(FF(vp) - F-(vT)).

This inequality is analogous to the entropy inequality (4.1.36b).

The following theorem is due to Harten and Lax [31].

Theorem 4.9. Let xCx/t.v^.Vp^) denote an approximate solution to a

Riemann problem (4.4.1)-(4.4.2). If r satisfies (4.4.17) and

(4.4.20), then the Godunov type method (4.4.11) using r_ is consistent

with (4.4.1) and satisfies the entropy condition (4.4.14).

If the solution of a Godunov type method, which satisfies the

hypothesis of Theorem 4.9, converges boundedly and a.e. to v(x,t) as

h •• 0 for fixed X, then v(x,t) is a weak solution of the conserva-

tion law (4.4.1) and satisfies the entropy condition. This follows

from an extension of Theorem 4.6 (see Harten, Lax, and van Leer [32]).
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In the remainder of this section we consider some particular

approximate solutions £(x/t,vL,vR) to the Riemann problem (4.4.1)-

(4.4.2). These methods are called Riemann solvers.

Roe's [54-56] method of approximating the solution to the Riemann

problem (4.4.1)-(4.4.2) consists of computing the exact solution of the

Riemann problem with equation (4.4.1) replaced by the locally

linearized system

(4.4.21) atv + A(vL,vR)3xv = 0,

where the matrix A(vT ,vD) denotes an approximation to the Jacobian of

F(v),

(4.4.22) I(vR) - l(vL) A(vL,vR)(vR - vL)

Consider the scalar case with Burgers' equation. Using (4.4.22)

and F(v) 1

A(vL,vR)
F(vR)-F(vL)

(v, H- VR) . S.

The exact solution of the linearized Riemann problem gives the approxi-

mate solution to the nonlinear Riemann problem,

(4.2.23) r(x/t,vL,vR) - f(x-St)

x/t < S

x/t > S.

The Riemann solver (4.2.23) is exact if vT > vo, which corre-

sponds to a shock. However, if v, < vR, which corresponds to a rare-

faction wave, Roe's corresponding solution is an expansion shock. An

expansion shock, which is nonphysical, is a discontinuity from which

the characteristics emanate (see Figure 4.9).

Figure 4.9. Roe's Riemann Solver Representing a Rarefaction Wave

Expansion Shock.
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Clearly, in this case the entropy condition i violated.

Consider the linearized Riemann problem corresponding to (4.4.1)-

(4.4.2). In this case A(vL,vR) is a pxp matrix with real eigenvalues,

which are assumed to be ordered, a-j < ĉ  < • • • < a • Let R^(vL,vR)

denote the right eigenvector of A(v, >v«) associated with eigenvalue

o.(v,,vR) for i = 1,...,p. The solution to the Riemann problem

consists of p+1 constant states VQ,V^,...,V , where VQ = vL and

v = vR, which is separated by a fan of p characteristics (see

Figure 410).

dx_

Figure 4.10. Solution of Linearized Riemann Problems.

VJJ-V, may be written in terms of the p linearly independent eigen-
—K —Li

vectors R^

P

(4.4.24) ^R~Y-L = -i Yi^i'

where y. are constants. This represents a system of linear equations

for the y 's. Intermediate states, v, for 1 < k < p-1 may be
J K

obtained from

(4.4.25) .

The exact solution of the linearized Riemann problem gives the approxi-

mate solution of the nonlinear Riemann problem

r(x/t,vR-y_L) = x/t

for k = 0,1,...,p, where -• and a +^ = +«.
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Harten and Hyman [29] have modified Roe's method to eliminate the

nonphysical solution, that is, so that the Riemann solver satisfies the

entropy condition. Define the matrix T(v,,vn), whose i-th column is

R-(vT , V D ) . Multiply equation (4.4.21) on the left by T (vT,vD). If
~—1 ~-"Li T K — L I — K

W = T" (V, ,vt>)v, then equation (4.4.21) reduces to
~~ ~~ ~~Li ~~K ~~

3tw + D(vL,vR)axw = 0,

where D(vL,vR) = diag(a^(vL,vR),...,a (vL,vR)), which represents p

uncoupled scalar equations

(4.4.27) 3tMj + aj^L^R ) 3x wj " °'

The initial condition (4.4.2) becomes

I!1 x < 0

x > 0

where w^ = T~ (vL,vR)vL and wR = T" (V L,V R)V R. Thus the Riemann

problem with p coupled waves has been reduced to p scalar Riemann

problems given by (4.4.27) and

(4.4.28) w.(x,0)

w. T , x < 0
~~J J ^

w, _, x > 0

where w. -, and w. R denote the j-th components of w, and wR,

respectively. The solution of each represents one of the p waves.

As seen above, if w. T < w. D the Roe's method violates the entropy

condition. Harten and Hyman's modification consists of introducing an

intermediate state wt. The addition of the intermediate states adds

diffusion. Let a

e wt.

. and a. R
f

denote the approximate speeds of the

left and right ends of the rarefaction fan, respectively. Define

(4.4.29a)

and

(4.4.29b) a.(vL,vR) + (5 J > R - aj(vL,vR))
 +

where the j-wave is a shock (w. T > w. „).
J y^ J » K

Harten and Hyman's modified approximate solution to the j-th

Riemann problem is
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. x/t

(4.4.30) w .

1 WJ,R '
 x / t

x/t

aj,R '

a j R

The value of w* is chosen so that the consistency condition (4.4.17)

holds. On the interval [-7,7], using (4.4.30) with t = k,

wj,L'
x < k a

S.(x/k,w. L,w. t , ka. x < hot.

x < \ .

Substitution into the integral in (4.4.17) gives

<I + koj,L>wj,L + k(aj,R-aj,L>wj

" I(WJ,L + WJ.R) " kaj^L^R)

- kaj,R>Wj,R

where the flux function is 0.(y,,vR)w.• This may be written

(4.4.31) " aj,L)wj(L

The modified Riemann solver (in terms of v), using v = T w, becomes

(4.4.32) r(x/t,vL,vR) = ^^S.(x/t ( W j L, W j R)Rj(vL,vR)

It remains to describe how the approximate speeds a. T and a. D
J >*-' J »K

are determined. Using Liu's generalization of Oleinik's entropy con-

dition define
(4.4.33a)

and

(4.4.33b) o. .

where v(e) - (1-9)vL + evR

a. T = max a. (vT ,v(e))J »L 0<e<1 J -L -
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In the case where £(v) is convex, (4.4.33) reduces to

(4.4.

and

(4.4.

34a)

34b) SJ,R max(a.(vL,vR),

that is, check (4.4.33) at 6 = 0 and 1. In this case a.(vT,vT) is

the j-th eigenvalue of A(vL,y_L) = A(vL), where A(v,) denotes the

Jacobian of F(v) evaluated at v = vT . Similarly, o.(vD,vn) is the
— — — —L J —K —K

j-th eigenvalue of A(vR,vR) = A(vR).

As an example, consider the scalar conservation laws, Burgers'

equation. In this case

a(vL,vR) = A(vL,vR)

1 2 1 2
2VR " 2VL

Replacing vR with v(e),

a(vL,v(6))

and replacing vL with v(e),

(2-9)vT evR
2

a(v(6),vR)
(i-e)vL d+e)vR

Setting 8

and

and 1 and substituting in (4.4.34)

o^ = min(vL,S)

Op̂  = max(S,vR),

where S - — ^ — • ^ V L < s < VR» corresponding to a rarefaction

wave, \, = V L an(* **R = VR wni-cn a r e ttie exact speeds of the end=

points of the rarefaction fan. Substituting into (4.4.29), <xL = vL
and ĉ  - vR. The intermediate state (4.4.31) is v* - S and the

approximate solution to the Riemann problem is

, x/t < v.

r(x/t,vL,vR) x/t

, x/tV R , ~,U S V R

If vL > S > vR, corresponding to a shock, aL = aR = S and

substituting into (4.4.29), ĉ  = aR - S. In this case the intermediate

state disappears and the approximate solution to the Riemann problem is

r(x/t,vL,vR)

, x/t < S

, x/t > S.
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Roe's Riemann solver includes all of the p-1 intermediate

states. Can Riemann solvers be constructed satisfying the conditions

of Theorem 4.9 while including fewer intermediate states? In Harten,

Lax, and van Leer [3 2] (see also Harten and Lax [31]) Riemann solvers

are constructed with one and two intermediate states. The Riemann

solver with one intermediate state will be described.

Let y denote a lower bound on y . (y) and y denote an

upper bound on ^ m a x(y). The approximate solution to the Riemann

problem (4.4.1)-(4.4.2) is

(4.4.35) r(x/t,vL,vR)

vL, x/t < y
min

v*, ymin < x/t < y11

VR, X/t > y
maX

(see Figure 4.11). The value of y* is chosen so that

dx min

dx max

Figure 4.11. Riemann solver with One Intermediate State.

The consistency condition (4.4.17) holds. On the interval

using (4.4.27) with t = k,

(4.4.27) _r(x/k,yL,vR)

vL, .| < x ky

V*,

V R,

m i n

"77]

Substitution into the integral in (4.4.17) gives

ku
min)vL + k(p

max-umln)v* - ku
max)vR

- k(F(vR) - F(vL)),
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, umaXvR-y
minvL F(vR) - F(vL)

(4.4.36) v max min max min '
y - y y -y

It is shown in Harten, Lax, and van Leer [32] that (4.4.27)-(4.4.28)

along with the associated numerical flux satisfy the entropy inequality

(4.4.20).

Examles of other Riemann solvers are given in Engquist and Osher

[14], Osher [49], and van Leer [78].

IV.5. Corrective and High Resolution Methods

In Section IV.3 it was shown that every monotone finite differ-

ence approximation to a hyperbolic conservation law was first order

accurate and hence, was a second order approximation to a parabolic

equation of the form (4.1.21). F(v) denote the flux function of a

scalar conservation law. If v, and vR denote two states and S

denotes the speed of the discontinuity (given by the Rankine-Hugoniot

condition (4.1.13)), then a flux function in a coordinate system moving

with the discontinuity is given by (4.1.23)),

4.5.1) g(v) = F(v) - Sv.

If g(vT ) = S(VT>) = C, a constant, then the entropy condition becomes

(4.5.2) (g(v) - C)sgn(vR-vL) > 0

for v e ( VL» VR) # *n Section IV.1 it was shown that for strict

inequality in (4.5.2), which corresponds to a shock wave, a viscous

profile exists and the transition width is given by

where e(w) is the diffusion coefficient in (4.1.21). From this we

conclude that, if a monotone finite difference method results in a

discrete shock, then the spread (or width) is inversely proportional to

g(v) - C.

For the case in which (4.5.2) is an equality, which corresponds

to a contact discontinuity, the scalar conservation law reduces to a

linear hyperbolic equation

(4.5.3) 3tv + S3xv - 0.
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Approximate this equation by the Lax-Friedrichs method (4.2.12), which

to second order accuracy approximates the parabolic equation

(4.5.4) 3tv + S3xv = 03xv

and x = k/h (see Section IV.3). Introduce a change

of variable y = x - St, which results in a coordinate system moving

with speed S. Equation (4.5.4) reduces to

(4.5.5a) 3tv - B3yV.

If the initial jump is at x = 0, the initial condition becomes

(4.5 5b) v(y,0)
v y <

v y > °
the solution to (4.5.5) is

v(y.t) = ̂ (vL+vR) +

where erf denotes the error function,

erf(z) = 4jge-r2dv.

Writing the solution in x and by using the value of $,

v(x,t) - (vT+vR) + Jr(vR-vT)erf(
L K Z K L / /2\hn(1-x2SZ)

Thus the width of the transition in a contact discontinuity for the

first order Lax-Friedrichs method (or any first order accurate method)

1/2

1 17.at time t - nk is proportional to n ' , that is

W1^VL'VR^ = c o n s t # n

Similarly, Harten [26] showed that the width off the transition in a

constant discontinuity for a q-th order method at time t = nk is

W (v,,vD) = const.n ^ .
q Li K

We shall first describe corrective methods that can be used in

conjunction with standard finite difference methods to prevent the

smearing of shocks and contact discontinuities. The first of which is

the artificial compression method (ACM) due to Harten [26-27].
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Consider the scalar conservation law (4.1.1)

3tv + 3xF(v) = 0

along with initial condition (4.1.6). Let the solution v(x,t) contain

a shock with speed S(t), when v^(t) and vR(t) denote the states on

the left and right of the shock, respectively. Let the shock be

denoted by (v, (t) , vR(t) ,S (t) ) . Assume that v(x,t) does not take on

any values vetween vT (t) and vT5(t).

Consider a function g(v,t) that satisfies the conditions

1) g(v,t) = 0 for v outside the interval (vL(t) ,vR(t))

2) g(v,t) sgn(vR(t)-vL(t)) > 0 for v in the interval (vL(t),vR(t)).

Such a function g is called an artificial compression flux.

The solution, v(x,t), to (4.1.1) also satisfies the modified

conservation law

(4.5.9) 3tv + 3x(F(v) + g(v,t)) = 0.

v(x,t) does not take on any values between vL(t) and V
R ( O so

that v / (vL(t),vR(t)). By property 1) of g(v,t), for

v / (vL(t),vR(t)), g(v,t) = 0 and equation (4.5.9) reduces to (4.1.1).

Let F(v) = F(v) + g(v,t) denote the modified flux function of

(4.5.9). By property 1) of g(v,t), g(vL(t),t) = g(vR(t)) = 0 and, by

the R-H condition (4.1.13),

F(vR(t)) - F(vL(t)) = (F(vR(t) + g(vR(t),t))

- (F(vL(t)) + g(vL(t),t))

= F(vR(t) - F(vL(t))

= S(t)(vR(t) - vL(t)).

Thus (vL(t),vR(t),S(t)) is a discontinuity for (4.5.9). It remains

to show that it is admissible in the sense that the entropy condition

(4.5.2) is satisfied. Define the flux funtion, g(v), in a coordinate

system moving with the discontinuity (v^(t),vR(t),S(t)),

g(v) = f(v) - S(t)v.
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Again, using property 1) of g(v,t), g(vL) = F(vL) - S(t)vL =
 F ( V L ) ~

S(t)vL = F(vL) - S(t)vL = C = F(vR) - S(t)vR = F(vR) - S(t)vR = g(vR).

The entropy conditin (4.5.2) holds for g(v) = F(v) -̂  S(t)v. Using

this and property 2) of g(v,t),

[g(v)-C]sgn(vR(t)-vL(t))

- [(F(v)+g(v,t)-S(t)v-C]sgn(vR(t)-vL(t))

= [g(v)-C]sgn(vR(t)-vL(t)) + g(v,t)sgn(vR(t)-vL(t)) > 0.

Observe that by property 2) of g(v,t), the entropy condition (4.5.10)

is a strict inequality, so that if (vL(t),vR(t),S(t)) is a contact

discontinuity for the original equation (4.1.1), with

[g(v)-C)sgn(vR(t)-vL(t)) = 0, (vL(t),vR(t),S(t)) is a shock for the

modified equation (4.5.9). Also, if (vL(t),vR(t),S(t)) is a shock

for the original equation (4.1.1), it remains a shock for the modified

equation (4.5.9).

What is the purpose of introducing the artificial compression

flux and the modified conservation law (4.5.9)? Using (4.5.10),

|g(v)-C| > |g(v)-C|

and so the spread of the shock for the modified system, which is

inversely proportional to this quantity, is reduced.

The modified conservation law (4.5.9) could be approximated

directly by monotone finite difference method in conservation form.

However, the addition of the artificial compression flux function to

the flux function of (4.1.1) results in a more restrictive CFL

condition,

max| 3vF + 3vg| X < 1.

For this reason, as well as for ease of application, the arti-

ficial compression method is applied using the split-flux method. This

is similar to the fractional step method. Consider the conservation

law (4.1.1). Approximate (4.1.1) by the monotone finite difference

method in conservation form

u i + 1 = Qui = H
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where G 1 = Gdi^u
1?,..) and G(v,v) = F(v) (see (4.3.3)). The CFL

i+1 x 1+'

condition for (4.5.10) is

max|a(v)|X < 1,
v

where a(v) = 3 F.

Next, consider the conservation law

(4.5.11) atv + 3xg(vft) - 0,

where g(v,t) is the artificial compression flux function. By

Property 1) of g(v,t), g(vL(t),t) = g(vR(t),t) = 0, or

g(vR(t),t)-g(vT (t),t)
K j ± ovR(t) - vL(t)

Thus the discontinuity is a stationary shock. Approximate (4.5.11) by

a finite difference method in conservation form

( 4 . 5 . 1 2 ) u ^ 1 = Q ' u £ = u £ - X f ( G ' 1 - G
1

 1 ) f

where G1 1 = G
1(u1?, u?+1) and G1(v,v) = g(v,t). The monotone

operator Q1 is called an artificial compressor. The CFL condition

for (4.5.12) is

max| 8vg(v,t)|X
1 < 1.

In general, g(v,t) will only be known at the discrete points x^. In

this case, we replace the CFL condition with the discrete form of the

CFL condition

(4.5.13) max |-±^ ^| x' < 1.

Combining the two methods (4.5.10) and (4.5.12) gives rise to the

two-step method

u?+1 = Q'(Qu*)

or

(4.5.14a) un+1 = un - X(G - - G - ) ,

(4.5.14b) u^+1 = u^ - x(ff } - C }).

where G1 . =G'(u?+1
tu}*]). The f i r s t step (4.5.14a) smears the dis-

i+^ t 1+1
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continuity as it propagates it. In the second step (4.5.14b), called a

corrective step, the smeared discontinuity is compressed while not

being propagated. Since the application of Q1 does not involve any

motion, it does not alter the physical time in the solution obtained in

the first step. Thus the timestep k1 = x'h is regarded as a dummy

timestep.

We now describe the artificial compresor Q1. Clearly, the

finite difference method (4.5.14b) should have maximal resolution of a

stationary shock. Harten [26] chose the upwind method in conservation

form

, n+1 _ n i (n i ni s
u i - u i - x (G j - G . i>>

where

(44.5.15) G' 1
 n n

and gn = g(u. ,nk). To see that this i s an upwind method define

n
/ / c i £ \ - j . - r l ~ 8 i n n
( 4 . 5 . 1 6 a ) T , = — — , u 1 + , * «,_

and

( 4 . 5 . 1 6 b ) Y * 1 = m a x ( 0 , Y # -,) = ^ ( Y . 1 + | Y . -, I

(4.5.16b) Y" -, =min(0,Y 1) = j(y -, - |Y <||

The artificial compressor can be written in the form

(4.5.17) u?+1 = u^ - k V -,D+u" - k'Y
+ ^ " u .

i+ i

The CFL condition for (4.5.17) is

(4.5.18) |Y I | Xf < 1

(see Section IV.3). Harten [27] showed that if the CFL condition
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(4.5.18) is satisfied, then the upwind method (4.5.15) (or (4.5.16)) is

monotonicity preserving.

Theorem 4.10. Let un+1 = Q'un, n > 0, where Q' is the artificial

compression flux (4.5.14b) and (4.5.15) satisfying (4.5.18) and with

ui given by

(4.5.19) U. , IT < i < I,

v R . i < I. .

where U. is a monotone grid function. Then u. -• u. pointwise as

n -• « where u. is given by

(4.5.20)

v L , i. x i.

vL + a(vR-vL), i = I

vR , i > I .

where 0 < a < 1 and 1^ < I < IR are uniquely determined by the

conservation relation

IR

o
Z U.

1

1 = 1

(IR-I+a)vR.

The final step is to describe the construction of the artificial

compression flux g(v,t). This will be defined as a grid function. A

problem arises in the implementation of the artificial compression

method, that is, the values vL(t) and V^M * a s well as the shock

location, are not known. The methods must be modified so that this

needed information is obtained from the values of u^.

Construct an artificial compression flux g(v,t) that satisfies

the two conditions

( D g(v,t) - 0(h),

g(v(x+h,t) - g(v(x,t),t) = 0(h2) for v / (vL(t),vR(t)).

(2) g(v,t)sgn|vR(t)-vL(t)) > 0 for v-e (vL(t) ,v R(t)).

One possibility is hD +u^ = u
n
+ 1 - u". For if v is smooth,

v((i+1)h,t)-v(ih,t) = 0(h). Also ( h D + ^ ^ ^u^+1-u^) = |u i + 1-u
n| > 0.
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Clearly a grid function is piecewise monotone. Divide the real

line into a sequence of intervals I. < 1 < I.+j for which u n is

monotone. Define

(4.5.22)
sgn(u n - u n )min(|hD,un|,|hD u n | ) , I. < i < I.

i + 1 i "* J -J

0 , otherwise.

For u?.. defined by (4.5.16a) satisfies |y J < 1. Thus

the discrete CFL condition (4.5.18) reduces to

(4.5.23) X1 < 1.

With this choice of g., the second part of property 1) of the

discrete artificial compression flux is satisfied,

(4.5.24) " gi
0(h2),

provided that 3xv is bounded.

Due to the construction of g^ in (4.5.22), the artificial com-

pressor must be redefined on each of the intervals I. < i < I•.i•

Write

(4.5.25)

where Ql is defined by

(4.5.26) un+1 Q'un

Q1
J
Q' ,

n - u n ) ( | D + u
n | - | D _ u n | ) ,

1. < i I. + 1

otherwise.

If the CFL condition (4.5.23) is satisfied, then u n is monotone on

each interval I. < i < l^-j*

The artificial compression method need only be applied to

intervals [I.,I.+,] which contain a discontinuity. If, however, the

location of the discontinuity is not known, the artificial compression

method may be applied to each interval. If the artificial compression

method is applied on an interval where v is smooth the accuracy of

the solution is not diminished. For, by (4.5.22) and (4.5.23), the

artificial compression method is second order accurate in regions where
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v is smooth while the solution obtained by the monotone finite dif-

ference method (4.5.10) is first order accurate.

Harten [27] shows that in practice the partition into intervals

of monotonicity [I.,I.+^] need not be found. This partition can be

indirectly accomplished by replacing g? in (4.5.20) with

? D.uyi.S « |hD un|)},

where S 1 = sgn(u?,1-u
n). The artificial compression method is

i+1 1+l 1

obtained by substitution of (4.5.27) into (4.5.14b) and (4.5.15).

The analogue of Theorem 4.10 holds where the artificial compres-

sion flux is replaced with the numerical artificial compression flux.

Theorem 4.11. Let u?+1 = Q'u1?, n > 0, where Q1 is the artificial

compressor defined by (4.5.14b), (4.5.15), and (4.5.25) with X1 < 1

and u. given by (4.5.19), where U. is a strictly monotone function.

Then u? •*• u^ pointwise as n -• «, where u^ is given by (4.5.20)-

(4.5.21).

The artificial compression method can be extended to systems of

conservation laws. The method outlined for the scalar conservation law

is applied componentwise to the system of conservation laws. However,

the numerical artificial compression flux (4.5.27) (see Harten [27]),

(4.5.28)

where a. is a nonnegative scalar grid function defined by

min(hD V ? . ,(hD u1? . )S -)
+ J,i " J.i j > i + ^

(4.5.29) a? = max[0, min { }],
1 1 | h ^ | | h D ^ |

where S 1 = sgn(u? .x1 - u
1? . ) and \x) . denotes the j-th

j,i+̂ - J'i+1 J'1 J'1

component of u?, for j = 1 p. (Observe that when p = 1,

(4.5.28)-(4.5.29) reduces to (4.5.27).) This modification constructs

the numerical artificial compression flux in the correct direction.

The flux-connected transport (FCT) method of Boris and Book [3]

(see also Book, Boris, and Hain [2], Boris and Book [4], and Zalesak

[83]) is a corrective or anti-diffusion type method. The method is

motivated by the result that a first order finite difference method,
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(4.5.30) «J+1 = Qu£ ,

that approximates the system of conservation laws (4.1.27)

3_v + d F(v) = 0
L— X— —

is also consistent with the diffusion equation

(4.5.31) 3tv + 9xF(v) = k3x(B(v,x)3xv)

where B(V,A) > 0 is the coefficient of numerical diffusion. Let

r(v,x) denote a positive function and consider the modified diffusion

equation

(4.5.32) 3fcv + 3xF(v) = k3x((8(v,X)-*(v,X))3xv).

Since r(v,X) > 0, e(v,x)-r(v,x) < e(v,x) and as such there is less

diffusion or anti-diffusion.

Rather than solve (4.5.32) directly, flux splitting is used to

solve the system of conservation laws(4.1.27) (which also solves

(4.5.31)) and then solve the diffusion equation

(4.5.33) 3tv - -k3x(r(v,x)3xv).

Let

approximate equation (4.5.33). This method alone is unstable since the

equation it is approximating (4.5.3) is not well-posed (it represents

the backward diffusion equation). The method used to approximate

(4.5.32) is the two-step method

(4.5.34a) un+1 = Qun

(4.5.34b) un+1 = Dun+1.

Combining the two steps gives rise to the method

«f1 - DQu?,

which is stable provided the original finite difference method (4.5.30)

is stable and provided that

(4.5.35) B(v,x) - r(v,x) > 0.

Condition (4.5.35) will place more of a restriction of x than the CFL

condition.

The first step (4.5.34a) which represents the solution to

(4.1.27) results in smearing or diffusing discontinuities, while the

second step (4.5.34b) acts to compress the smeared discontinuities.



343

As an example (see Boris and Book [3]), consider the two-step

Lax-Wendroff method (4,2.26), which is second order accurate. However,

by adding the zero-th order diffusion term ^~D+D_u^, where n > 0

(the diffusion/anti-diffusion coefficient), the method is first order

accurate (Boris and Book [3] chose n = gO • This can be added as a

fractional step to the two-step Lax-Wendroff method, resulting in the

three step method

n+1
(4.5.36a) / 2 = ̂ (un+1 + u

n) - £(Fn+1 - F
n),

(4.5.36b) un+1 = un - X(F \ - F \)
i+? i-^

(4.5.36c) un+1 = un+1 + nh2D+D_u
n .

This method is in conservation form and is monotone.

In the local linearization, A(v) = 3yF(v) is taken to be locally

constant, that is, A = AQ. In this case, "the three steps (4.5.36) can

be combined,

(4.5.37) un+1 = un - T C A Q D ^ + (|2A2 + nk2)D+D_u
n.

As seen in Section III.8, the stability of (4.5.37) can be reduced to

the stability of p scalar equations of the form

where y. denotes the j-th eigenvalue of AQ, for j = 1,...,p.

Taking the discrete Fourier transform of (4.5.38),

where the symbol

? 2 + 2TI)(COSC-1) -

- 4[2n-((y
2X2 + 2T,)2 - y?X2)sin2 f]sin

If the CFL condition, |y.|X < 1, is satisfied and yfx + 2n < 1,

then |p(5)| < 1 (the von Neumann condition) and hence the scalar

method (4.5.38) is stable. This places an additional restriction on X,
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And in the nonlinear cases, for (4.5.36),

(4.5.39) max |y. (v) | X < (1-2n)
1/2

1<j<p J

v

The anti-diffusion equation (4.5.33) is approximated by

un+1 = Du£ = un - nh2D+D_u
n.

This anti-diffusion step is combined with (4.5.36) by adding it as a

fourth step

// c O/-J\ n+1 ~An+1 An+1 ,2~ ~ An+1
(4.5.36d) u^ = Du^ = u^ T nh D^^u^ ,

where the term un in (4.5.36c) is replaced by u^ . The combined

(four-step) method (4.5.36) is stable provided,

max |y.(v)|X < j .
1<j<p J 2

The anti-diffusion method (4.5.36d) may be written in conserva-

tion form

where the anti-diffusion flux

c /An+1 n+1 vI.+1 = n(u1+1 - ut ).

The anti-diffusion method is not monotonicity preserving. This can be

remedied by correcting the anti-diffusion fluxes so that 1) no new

maxima or minima in the approximate solution are generated and 2) no

existing maxima is accentuated (see Section IV.3). Boris and Book [ ]

suggest the modification

(4.5.37) fc 1 = S 1 max{0,min(S -hD un+1.

^ h
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where f * and u. . denote the j-th components of f ., and u. ,
j,i+I J'1 ~i+j - 1

respectively, for j = 1,...,p. The anti-diffusion method in conserva-

tion form becomes

n+1 An+1 srC ^c N

1 + '

where the corrected flux fc - is given by (4.5.37). Another procedure

for modifying the anti-diffusion flux which is better suited to multi-

dimensional conservation laws is presented in Zalesak [77].

The artificial compression method has two advantages over the

flux-corrected transport method. First the ACM has as its stability

requirement the CFL condition while the FCT has a more restrictive

stability condition. Second, the ACM treats contact discontinuities as

shocks and as such prevents the smearing of contact discontinuities.

This is not the case with the FCT, where the smearing of the contact

discontinuity is given by (4.5.7) and (4.5.8) where the proportionality

constants may be small.

It would be desirable for a finite difference method in conserva-

tion form to be of high order accuracy in regions where the solution is

smooth and to be monotonic (first order accurate) at a discontinuity,

this would provide maximal accuracy without oscillations near a

discontinuity. This is the motivation for the self-adjusting hybrid

method of Harten and Zwas [25] (see also Harten [27 ]).

Consider a monotonic finite difference operator Q.. and a q-th

order accurate (q > 2) finite difference operator Q in conservation

form

(4.5.39) u f 1 = Q,u; = u? - X(G1'? - G1'^)

and

(4.5.40) uf 1

f̂ ?)
To construct the hybrid method, we shall take a convex combination of

the two methods by introducing a dimensionless quantitu 9 1, called

14
a switch, where 0 < 6 - < 1. So as not to violate the conservation,

*4
we hybridize Q- and Q through their numerical fluxes. Define the

hybrid finite difference operator Q by
n+1 n n n ,rn rn s
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where

( 4 . 5 . 4 2 ) Gn - = e <G1'n + (1-6 ,)G^^
i+Jf i+Y i+7 i+7 i+^

The switch should have the properties

1) e * 1 at a discontinuity,

2) 8 = 0(hr) in smooth regions,

where r is a positive integer large enough that the solution is q-th

order accurate in smooth regions.

Substituting (4.5.42) into (4.5.41),

= Qun = u n +x(8 .(G1'" - Gq'n)
" 1 " 1 i+ "i+Y "i+

If in property 2) of 8, r > q-1 , that is, in smooth regions

8 = 0(h q~ 1), then

Let £ (5), £^(5), and _g>(5) denote the amplification matrices

of the locally linearized operators Qi , Q , and Q, respectively.

Suppose up (5)11 < 1 + C.jk and ipq(c)ii < 1 + C k, so that the finite

difference methods (4.5.39) and (4.5.40) are stable (see Theorem 2.1).

Set 8 equal to a constant with 0 < 8 < 1, then by locally linear-

izing (4.5.41) and (4.5.42) and taking the discrete Fourier transform,

and

+ d-e)(i+cqk)

= 1 + ck,

where C = eC1 + (1-e)C . Stability of the linearization of (4.5.41)-

(4.5.42) follows from Theorem 2.1.
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As an example, let Q denote the two-step Lax-Wendroff method

(q = 2) and Q̂  denote the monotonic method obtained by adding the

diffusion term -J^—D+D_u? to the second step of the two-step Lax-

Wendroff method (4.5.36a-c). The hybrid method is

n+1

(4.5.43a) u j = 7(u?+1 + u
n) - £(Fn+1 - l")

i+2

(4.5.43b) un+1 = un - X(Fn+? - F ^ ) + nhV(e n «D un).

Harten [2 7] chosen n = •§-, so that for the first order method the

linearized stability condition (4.5.39) is

(4.5.44) max | u.(v)|X < -̂ |

Since the locally linearized Lax-Wendroff method is stable under condi-

tion (4.5.44), which is more restrictive than the CFL condition, the

locally linearized hybrid method is stable under condition (4.5.44).

It remains to describe the construction of the switch 9n .. .

Consider first the scalar conservation law. In this case, 8n ^ is

chosen so that the hybrid method (4.5.43) is monotonicity preserving.

There are many possible choices, one of which is (see Harten

[27])

(4.5.45) 6n 1

where

|hD+u?HhD_u°|
(4.5.46)

|hD+u^|+|hD_u^|

0 , otherwise,

where e > 0 is chosen so that a variation in un which is less than

e is negligible. Compare this with van Leer's monotonicity preserving
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method (4.3.34) with (4.3.49).

Clearly 0 < en < 1, where there are only two cases in which

8n - 1; for |hD+u^| - 0 and |h*_un| > e or |hD+u
n| > e and

|hD_u"| - 0.

Harten [2 7] proves that the hybrid method (4.5.43) with switch

given by (4.5.45)-(4.5.46) is monotonicity preserving for

max|a(v)|x < ̂ jt

where a(v) = 9vF(v).

The switch given by (4.5.45)-(4.5.46) can be extended to systems

of conservation laws. Two such ways are: 1) replace the absolute

value in (4.5.46) with a suitably chosen norm, or 2) replace un in

(4.5.46) with a scalar function of u^ which has a discontinuity when

u? has a discontinuity and is smooth otherwise. This second choice

will be discussed further in Volume II.

Since in regions that contain discontinuities the hybrid method

is essentially first order accurate, the artificial compression method

may be used to sharpen the discontinuities. However, the artificial

compression method must not be used in smooth regions. For this purpose

the switch is used again. Modify the artificial compression method

(4.5.12), (4.5.15), and (4.5.28)-(4.5.29) by

where u£ is the value of u? obtained from the hybrid method

(4.5.41).

Definition. The total variation (TV) of a grid function u = {u^}

(4.5.47) TV(u) = I|ui+1-ui|.

Definition. A finite difference method in conservation form (4.2.6) is

total variation nonincreasing (TVNI) if for all grid functions u = {u.}

of bounded total variation, that is, TV(u) < +»,

(4.5.48) TV(Qu) < TV(u).

The following theorem (Harten [28]) states the hierarchy of the

properties (monotonic, monotonicity preserving, and total variation

nonincreasing) of a finite difference method.
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Theorem 4.12, a) A monotone finite difference method is a TVNI method,

b) A TVNI finite difference method is monotonicity preserving.

A high resolution* method due to Harten [28] uses a first order

accurate 3-point TVNI finite difference method to construct a second

order accurate 5-point TVNI finite difference method. First the high

resolution method will be described for a scalar conservation law

(4.1.1).

A general 5-point finite difference method in conservation form

where G 1 = G(u"_1,u
n,un

+1,u
n
+2) with G(v,v,v,v) =F(v). This may

be rewritten in the form

(4.5.49) un+1 = un + C+ !hD+u^ + C" jhD u
n,

i+2 i"2

where

(4.5.50a) C+ 1 - ^(uj.puj.u^.u^)

and

(4.5.50b) C" 1 = C"(u
n
 2,u£ 1(uj,uj+1),

i

In the 3-point case, C+
 1 - C

+(un,un
+1) and c" 1 - C"(u

n ^ u " ) . For
i + 1

I 7
example, C+ for a 3-point method is obtained by the mean value theorem,

X(G(un,un
+1) - G(u£,u

n)) = -C+(un,un
+1)hD+u

n

Lemma 1. Suppose the coefficients (4.5.50) of the method (4.5.49)

satisfy

(4.5.51a) C+
 1t C" ! > 0

4 i4

*High resolution refers to a narrow transition region between the two
states of a shock.
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and

(4.5.51a) C+ « + C~ , < 1,

then the finite difference method (4.5.49) is TVNI.

Proof: Replacing i with i+1 in (4.5.49) and subtracting (4.5.49)

from this gives

hD,un+1 = C+ .hD.u^! + (1-C" . - C+
 1 )hD. u

n

where hD+u" = hD_u"+1. Using inequalities (4.5.51), the coefficients

of (4.5.52) are nonnegative and

|hD+uf"
1| < C+

+3|hD+u£+1| + (1-C , - C
+ ,)|hD+U;|

l

Summing over i,

TV(un+1)

|hD+u^| + EC" ^ h D ^ ^ I

EC+ ^hD^I + E(1-
1 i+? X

- C"

+u
n| = TV(un).

Thus the condition (4.5.48) in the definition of TVNI is satisfied.
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Consider a first order accurate 3-point TVNI finite difference

method in the form (4.5.49)-(4.5.50) satisfying the assumption in Lemma

1. Since the leading term in the truncation error is k8 (6(v,x)3 v),

this method approximates to second order accuracy the solution of the

diffusion equation

k(3xe(v,x)3xv)

0,

With this in mind, suppose the first order 3-point TVNI method is used

to solve the modified conservation law

which may be written

(4.5.53)

where

(4.5.54)

in the form

3tv + 3x(F(v)

g(v,X) -

•j

kg(v,X)3xv.

3tv + 3x(F(v) + yg(v,X)) = 0,

then it approximates to second order accuracy the solution to the

original conservation law (4.1.1).

Define the numerical flux of the 3-point TVNI method by

(4.5.55) G_+1

where

Fn - Fn

(4.5.56) In , - "n —n' ui+

and a(v) = 3vF(v).

Lemma 2. Suppose the function Q(n) in (4.5.55) satisfies

(4.5.57) |y| < Q(y) < 1 for 0 < |y| < y < 1.

The 3-point finite difference method in conservation form (4.2.6) where

G 1 is given by (4.5.55) is TVNI provided

(4.5.58) X max|In ,| < u.

i4
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Observe that (4.5.58) is a CFL type condition.

Proof. Substituting the numerical flux (4.5.55) with (4.2.6)

(4.5.59) un+1 = u* - X(G - - G «)1 l i+ *4

un + C ihD.u? - C -hD un .
1 i+^ i"7

In this case, using (4.5.57) with y = xin 1f

i4
C* ! - i(Q(xin -) T Xin -) > 0

and

C +
 1 + C" ! - Q(x£

n

4 4
provided 0 < x|an ^ | < y < 1 for every i , or

max | i n
 1 |x < u.

Since C 1 « satisfy the assumption of Lemma 1, the method is TVNI.
i+y

The high resolution method is based on replacing the flux F(v)

in (4.5.55) with F(v) + lg(v,X). Define the modified flux Fm(v) -
1

F(v) + -̂ g(v, X) at the grid points by

(4.5.60a) Fn'm = Fm(un) = Fn + lgn,

(4.5.60b) gn = gCu^.^uJ.u^)

(4.5.60c) x i+Y

(4.5.60d) ^
i+

44
u l+1-u.

Substitution of the modified flux (4.5.60) in the numerical flux

(4.5.55) gives rise to this modified numerical flux
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(4.5.61) Gm

Harten [28] shows that if Q(y) is Lipschitz continuous and gt
satisfies

(4.5.62a) gn
+1 + gn = (Q(xan ^ - (xin 1)

2)hD+u^ + O(h
2)

and

(4.5.62b) g" - g? = Y
n ihD,un = 0(h2),

then the modified numerical flux (4.5.61) may be written in the form

Gm
 1 = G

LW
1 + 0(h2),

where G - denotes the numerical flux for the second order accurate

one-step Lax-Wendroff method,

GLWi = i(F n
L i + F

n) - fe(an i)
2DJ_u

n

Thus if gn can be constructed so that conditions (4.5.62) are satis-

fied, then the modified (5-point) method is second order accurate. Also

g? should be constructed so that the resulting 5-point method is TVNI.

Define

(4.5.63a) gn

where

(4.5.63b)

and

Sn
 1max(0,min(|g

n
 1 | ,g

= Sn
 1min(|g 1|,|

0 , otherwise,

)2)hD+«?

i+1

Harten [28] shows that Q(y) satisfies (4.5.51) (the assumption of

Lemma 1) with gn defined by (4.5.63). So the finite difference

method in conservation form with numerical flux given by (4.5.61) is

TVNI provided the CFL type condition (4.5.58) is satisfied.

It remains to describe Q(y). The numerical diffusion coefficient

has the form
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,X)

(see Section IV.3). A natural choice for Q(y), subject to the con-

straint (4.5.57) of Lemma 1, is Q(y) = |y|. Substitution of this

value in the 3-point method (4.5.59) reduces it to the upstream method

(4.3.13). However, when y = 0, which corresponds to a(v) - 0 giving

rise to a steady shock, 8 * 0 and the entropy condition may be

violated (see Harten [28]). A remedy is to define

Q(y) -
< 2e.

This choice of Q introduces more numerical diffusion for |y| < 2e,

however, B(v,x) > 0 for |y| = x|a(v)| < 1. The only value of y for

which B(v,X) = 0 is y = 1. This can also be remedied by choosing y

in (4.5.57) to be strictly less than 1.

To extend this method to systems of conservation laws (4.1.27),

let A(v) denote the Jacobian of F(v). By the definition of

hyperbolicity there exists a bounded, nonsingular matrix T(v) with

bounded inverse such that T~ (v)A(v)T(v) = D, where D is a diagonal

matrix whose elements are the eigenvalues of A(v). The columns of

T(v) are the right eigenvectors of A(v), _r. (v), j = 1,...,p (see

Section IV.1).

Define u11 = Tr(un + un, < ) and let an denote the component

of hD+u" in the characteristic coordinate system {r.(u ^)

where rn r.(un *), so that
J-i4

(4.5.65)

where _fcn - = £.(un -) and Ai (v) denotes the j-th left eigenvector

j,i+^ J i-f̂-

of A(v).

The high resolution method (4.5.60), (4.5.61), and (4.5.63)

extended to systems of conservation laws consists of

n+1(4.5.66a) u£ - (G - G
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where the numerical flux is

(4.5.66b) G
1

Fn)

(4.5.66c)

(4.5.66d) Sn

>

+gn - Q (Xy1

gn . = Sn
 1max(O,min(|g

n - | ,gn -S
J>1 J.l+J J.i+J J.^J.

sgn(gn

j

(4.5.66e) gn - =i(Q.(Xyn ,) - (Xy *)Z)an

j,i+7 L J J,i+7 J » 1 + 7 J»j

gi,i+1 " y.1,l n

(4.5.66f) Y
n

and

j, 1+7
* 0

0 , a" 1 = 0,
j. 1+7

y^(un - ) , the j-th eigenvalue of A(un , ) .
J 1+J i+

IV.6. Numerical Examples

Here we present the results of a test problem given by the scalar

conservation law, Burgers' equation

(4.6.1a) 3tv + 3x(^v ) - 0,

with the continuous initial condition

, t

(4.6.1b) v(x,t

1 , x < 0

1-x, 0 < x < 1

0 , x > 1.

The solution to this initial-value problem is a compression wave, which

initially, consists of a fan for 0 < x < 1. In constrast to an expan-

sion (rarefaction) wave in which the fan expands with time, for the

compression wave the fan closes (or compresses) with time until a shock
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is formed. In this example, the solution is a continuous wave that

gets steeper until t = 1 , when it becomes a shock. The exact

solution for t < 1 is

(4.6.2a)

and for t > 1

(4.6.2b)

v(x,t)

1 , x < t

(x-1)/(t-1), t < x < 1

0 , x > 0

v(x,t) =

1 , x > (t+1)/2

0 , x < (t+1)/2.

To avoid dealing with boundary conditions x and t are

restricted to the intervals, -1 < x < 3 and 0 < t < 2.5. In all

calculations the grid spacing was taken to be h = 0.02. Figures 4.12-

4.19 depict results at times t = 0.5, 1.0, and 2.5. At time t = 0.5

the wave is still continuous though it is half as wide as initially

(0.5 < x < 1.0). Time t = 1.0 corresponds to the formation of the

shock with speed S = 0.5. And time t = 2.5 corresponds to the

developed shock 0.75 units downstream from its initial position at

x = 1.

Figure 4.12 depicts the results using the Lax-Friedrichs method.

The corners at the endpoints of the compression wave are rounded. The

shock is greatly smeared with the transition spanning twelve to four-

teen grid points at t = 2.5.

Figure 4.13 depicts the results of the first order accurate

upwind method. The corners of the endpoints of the compression wave

are only slightly rounded. The shock is much less smeared with a

transition spanning about four grid points.

Figure 4.14 depicts the results of the upward method with arti-

ficial compression. The approximation to the compression wave is

identical to the results in Figure 4.13. This should be expected since

the ACM is not applied in this region. The shock has a transition

spanning only two grid points.

Figure 4.15 depicts the result of the two-step Lax-Wendroff

method without artificial viscosity. The approximation to the compres-

sion wave is quite accurate. The corners at the endpoints of the

compression wave are only slightly rounded. There is an overshoot at

the shock at time t = 2.5 that goes beyond the range of the plot.

This peak value is 1.39. The transition of the shock at time t = 2.5
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spans two to three grid points. In Figure 4.16 the calculation is

repeated using the artificial viscosity (4.2.36) with e = 0.9. The

overshoot is reduced having peak value 1.12 while the transition of the

shock still spans two to three grid points.

Figure 4.17 depicts the results of the hybrid method of Harten

and Zwas with ACM. In this case the high order method is the two-step

Lax-Wendroff Method. The solution is free of oscillations. The

transition of the shock at time t = 2.5 spans two to three grid

points.

Figure 4.18 depicts the results of the anti-diffusion method of

Boris and Book. The compression wave is very accurately approximated.

There is a slight overshoot behind the shock which the transition at

time t = 2.5 spans only one to two grid points.

Figure 4.19 depicts the results of the random choice method using

the Van der Corput sampling procedure. The corners at the endpoints of

the compression wave are perfectly sharp. The compression wave is not

perfectly smooth. These fluctuations are due to the randomness. The

shock is perfectly sharp, that is, the transition spans zero grid

points. The shock, as represented in the Figure, is not a vertical

segment. This is due to the coarseness of the grid. The location,

however, at time t = 2.5 is one grid point ahead of the shock. On

the average, the shock speed is correct.
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a)

b)

c)

1.9

Figure 4.12. Lax-Friedrichs Method of Times
a) t = 0.5, b) t = 1.0, and c) t = 2.5.
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a)

b)

c)

t.s

Figure 4.13. First Order Upwind Method at Times
a) t = 0.5, b) t = 1.0, and c) t = 2.5.
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a)

0.09

b)

1.0 1.8

C)

1.$ 1.7

Figure 4.14. First Order Upwind Method with ACM at Times
a) t = 0.5, b) t = 1.0, and c) t * 2.5.
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a)

b)

I
1.2 1.6

c)

1.6

maximum overshoot 1.39

1.7 2.0

Figure 4.15. Two-Step Lax-Wendroff Method at Times
a) t - 0.5, b) t - 1.0, and c) t - 2 .5 .
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a)

b)

0.8 i.e 1.2

O

Figure 4.16. Two-Step Lax-Wendroff Method with Artificial
Viscosity at Times a) t = 0.5, b) t = 1.0, and c) t = 2.5.
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a)

b)

I
1.2

1.4

O

Figure 4.17. Hybrid Method of Harten and Zwas with ACM
at Times a) t = 0.5, b) t = 1.0, and c) t = 2.5.
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Figure 4.18. Anti-diffusion Method of Boris and Book at Times
a) t - 0.5, b) t = 1.0, and c) t =2.5.
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a)

b)

c)

Figure 4.19. Random Choice Method with Van der Corput Sampling
Procedure at Times a) t - 0.5, b) t = 1.0, and c) t = 2.5.
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The random choice method, through the Riemann problems, models a

compression wave as a sequence of small shocks. The steepening of the

compression wave is accomplished by removing intermediate values

(states in the Riemann problem) assumed by the wave.

The approximation of a compression wave is particularly sensitive

to the sampling procedure. Suppose there is a fluctuation in this

sampling procedure, for example, two or more consecutive random varia-

bles lie in the left (right) half of the interval ("j*"̂ * This can

result in a large step being created which will be amplified in time.

These artificially large steps result in incorrect (larger) shock

speeds in the Riemann problems. This can result in a more rapid steep-

ening of the compression wave and a premature development of a shock.

As an example, suppose the compression wave problem is solved

using the random choice method with a random sampling procedure rather

than the Van der Corput sampling procedure. The results at time

t = 0.5 are depicted in Figure 4.20. The approximate wave has

steepened into several shocks, in particular, there is a large jump of

.16 at x = .76.

Figure 4.20. Random Choice Method with Random Sampling Procedure
at Time t = 0.5.
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V. STABILITY IN THE PRESENCE OF BOUNDARIES

V.1. Introduction

Consider the system of differential equations

(5.1.1) 3tv = P(9x)v, t > 0 , a < x < b ,

with initial conditions

(5.1.2) v(x,0) = F(x)

and with boundary conditions

(5.1.4)

(5.1.3)

Bv(b,t) = 0,

where v denotes a vector with p components, P is a polynomial in

3X whose coefficients are matrices, and A and 15 are matrices of

rank < p.

Approximate equation (5.1.1) by the finite difference method

^n+1 _ u = z . s j u n

j J

where the £ j 's are pxp matrices. At the center of the grid, away

from the boundaries, everything will be in order, at least at the

outset. However, the boundaries are going to require special

consideration.

In general, the finite difference approximation requires more

boundary conditions than the differential equation requires if it is to

lead to a well posed problem.

For example, consider the equation 8tv = 8xv, 0 < x < l , t > 0

with initial data v(x,0) = f(x). The solution is constant along the

characteristics x + t = constant, that is, v(x,t) = f(x+t), as

depicted in Figure 5.1.

x+t=const.

Figure 5.1.
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A boundary condition can be imposed on the right boundary x = 1 , but

no boundary condition can be imposed on the left boundary.

Suppose the equation is approximated by the Lax-Wendroff method

(3.5.3)

uf 1 = u? + kDQu* + £
2D+D_u*

= a ^ + a2u
n + a3u

n
+1 ,

where a-|,a2, and a$ are constants. Here boundary conditions are

required on both right and left. The floating boundary condition on

the left is going to be imposed to preserve stability and accuracy. It

is this floating (or artificial) boundary condition that is going to be

the source of many problems.

Stability for the pure initial-value problem has been discussed

using the Fourier method. However, the Fourier argument in its
00

previous form does not apply because E û ê -ĥ  does not exist for the
k=-«

initial boundary-value problem.

If p = 1, then the finite difference method can be written in

the form

where ^ is a matrix of (N-1)x(N-1) with h = 1/N. We want to find

the eigenvectors of this matrix (Ĵ . Observe that if u. = e*Ox, then

S+UJ = eiJnuj and so u = {UJ } is an eigenfunction of the shift

operator S+. Can we construct eigenvectors out of the shift operators?

If (̂  is a polynomial in S + (and S_) as in Chapter I, then when

Qjj is applied, u = {u. > is multiplied by p an eigenvalue of (£N«

If | p| < 1 + Ck, where C is a constant, we have boundedness of this

this particular solution. If all are bounded, then we have the

presumption of stability.

For any number a, real or complex, and UJ = eaJ, S+UJ = eauj.

If there are no boundaries, then «UJI = +» and it is not an eigen-

function of S+. However, if we are considering a half plane problem,

x > 0 with a left boundary at x = 0, then eaJ with Re a < 0

becomes an acceptable eigenfunction* of S+ which becomes multiplied

by an eigenvalue p. In this case we must verify that either

| p| < 1 + Ck or the boundary approximation annihilates the eigen-

function. A better definition of eigenfunction and eigenvalue is

required and another formulation of stability will have to be

considered.

The finite difference approximation un(ih,nk) (where the

subscript h denotes the dependence on the mesh spacing), lies in a

sequence of spaces, each of which has a norm and dimension all its own.

Convergence of the approximate solution uh to the exact solution v

*This is not an eigenfunction in the normal sense.



375

should mean that there exists a sequence of spaces S-| ,S2,S3, . .. , a

sequence of norms II • C l), n 1(2), n |(3),..., with 11 n (m) defined

on S , and a sequence of vectors û -j , Uho» uh3»### with uft e S

such that flv-uh n (m) + 0 as m -»• «. Then v must belong to all of

the spaces Sm. Stability should mean that there exists a bound C(t)

independent of the space and independent of m such that HU^RC111) <

C(t). These ideas will be more definitely established in the next two

sections.

V.2. Ryabenki-Godunov Theory.

Consider the initial boundary-value problem (5.1.1)-(5.1.3) . Let

h = (b-a)/N denote the mesh spacing of the grid with which the

interval a < x < b is partitioned. Consider the finite difference

method (5.1.4) written in the form

(5-2.1) ^ =2 hu h ,

where u£ = (un, un,...,uJJ ^) and (̂  is the block matrix of order

p(N-1) x p(N-1) whose row elements are the element matrices (£j used

in defining Q in (5.1.4). The dimension of (Ĵ  grows as h -• 0,

that is, as the mesh is refined.

We are now able to state the key definition of the Ryabenki-

Godunov theory.

Definition 5.1. Consider a sequence of spaces S-| ,S2 ,S3, . .. ,Sm, . ..

with a corresponding sequence of norms n n0), n |(2)f

n |(3),.,.,i l|(m),... and a one-parameter family of operators {£h(k)}

(where there is a relation between h and m). Suppose there exists a

sequence of vectors u ^ e S.j , u ^ e S2, Uh^ e S^,...,uhm e Sm,..., and

a sequence of complex numbers X̂-j , X̂ 2» *h3> • • • » xhm» • • • such that

(1) IU^IOO - 1,

(2) km ->• 0 as m •• 00, where km i s t h e t ime s t e p c o r r e s p o n d i n g t o

mesh spac ing hm ,

(3) n3hmHhra " Mim2^mn ( i n )hm
q • 0 as m + - fo r a l l q,

(4) and Xhm •• X as m -»- »,

then x is said to belong to the spectrum of the family {^h>.

As a result of condition (3) of the definition, uhm and Xhm

are approximate eigenvectors and eigenvalues of £hm« However, the

purpose of weakening this in (3) is to enable us to consider one

boundary without the other in discussing stability. This point will be

clarified as we continue. The values of X in the spectrum are like

the range of the symbol £.

Consider a problem on a finite domain as in problem (5.1.1)-

(5.1.3). Using the definition of the spectrum, the boundary condition

on the left will not affect the boundary condition on the right.
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Similarly, the boundary condition on the right will not affect the

boundary condition on the left. To check stability of a finite domain

problem as above, we have to consider the stability of three cases:

1) the pure initial-value problem,

2) the left-quarter-plane problem, that is, boundary on the right,

3) the right-quarter-plane problem, that is, boundary on the left.

It is shown in the monograph by Godunov and Ryabenki [1 ] that the

spectrum of the original problem is the sum of the spectrums of the

above three cases.

Formally, suppose the finite difference method is of the form

(5.2.2) u n + 1 = (i a js|)u
n ,

with the symbol given by

p(5) = I a e " i j C .
j J

The symbol p can be written in the form p(£) = r(ei£), where

r(z) = E ajz"J. Hence the von Neumann condition takes the form

| r(z)| < 1 + Ck for |z| = 1. These values of the symbol can be

viewed as limits of approximate eigenvalues of the family of finite

difference operators corresponding to the approximate eigenvectors

(5.2.3) ( u h i ) £ = z*, |z| = 1 .

If a boundary on the left, we have to determine if there exist

approximate eigenvectors of the form

(5.2.4) ( u h . ) £ = z*, |z| < 1 ,

where |z| < 1 is required in order that u^i has finite norm.

Similarly, if a boundary is on the right, we have to determine if there

exist approximate eigenvectors of the form

where |z| > 1 is required in order that uft. has finite norm. This

leads to the following theorem.

Theorem 5.1. (a) (Ryabenki-Godunov Condition). A necessary condition

for stability is |x| < 1, where X is in the spectrum of the family

of difference operators.

(b) If the spectrum of the family of difference operators

is not bounded by 1, the scheme is not stable.

Proof: Let X be the point in the spectrum of {^h>. There exists

an approximate eigenvector uh m and an approximate eigenvalue Xhm such

that

U h - X | = 6 and ( a h u h - x h u h ) h ^ = e h > where ^ (m> . 0
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fas te r than h|J for any q. Take u_hm as Hhm»

ro mm mm m

then

xk vycy
"hm " \ r h m " Xhm"hm+ i=0 \~hm '

(a) If | x| < 1, then for some hm, Uhml < 1 a n d 1xhnHhnH <
nuiim • • Letting n = •£, we see that " xhm£hm

!l (m) is bounded.

(b) If |x| > 1, then for some h , Xhm > 1 and we have exponential

growth and hence no stability.

If every X in the spectrum is such that |x| < 1, we have only

a presumption of stability because

1) (2h) is not a norm,

2) the Ryabenki-Godunov condition can be weaker than the von

Neumann condition for the pure initial-value problem. To see this,

suppose Xh = 1 + C/k~", where k is the time step associated withr r £1m m m
the difference operator Qhm* This value of Xhm is an acceptable

approximate eigenvalue with X = 1 as the limit, so that the Ryabenki-

Godunov condition is satisfied. However, Xv, = 1 + C/k is not
um m

allowed by the von Neumann condition. Thus the Ryabenki-Godunov condi-

tion is necessary but not sufficient for stability. An example

demonstrating this will be given below. However, the Ryabenki-Godunov

condition is stronger than the von Neumann condition in the sense that

a larger class of normal modes is considered, for near a boundary there

may be modes which decay away from the boundary and affect the

stability of the difference method.

We now present some examples of computing the spectrum. As a
2
3

first example consider 9t
x = 3X

V»

(5.1.1) with P(z) = z2 and p =

v(0,t) = v(1,t) = 0. Approximate

(5.2.6)

with initial

(5.2.7)

and boundary

(5.2.8)

condition

conditions

where h = 1/N. Letting r ••

• Qu?

« ? "

= k/h2

t > 0, 0

1, where

this by

•»? +

f(ih) ,

UN = °'
, the

< X

v(x

kD+D_u
n

finite

< 1, that is, equation

,0) = f(x), and

difference method may
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be written in matrix form as in the definition, where

1-2r

This represents a family of matrix equations, one member for each grid

size h. The eigenvalues of this matrix are

Xh = 1 - r(cos 2±1 - 1), j = 1,2,...,N-1

and the associated eigenvectors are u^ = {u^}, where the Jl-th com-

ponent is u = Im(exp -̂̂  * ) . We see that I'̂ h—h " Xh—h" = ° a n d —h

satisfies the two boundary conditions.

For the pure initial-value problem we have the symbol p(O = 1 +

2r(cos£-1). And for all values of £ in the domain of p, there

exists a sequence of approximate eigenvalues {Xh> such that Xh -»- p(£)»

In fact, in this case the spectrum of the family {Qn} ^s Just the set

of values assumed by the symbol.

This example was rigged because zero or periodic boundary

conditions ensure that the von Neumann condtion is sufficient for

stability.
o

Consider the equation atv = 3xv, t > 0, 0 < x < 1, with

v(x,0) = f(x), v(0,t) = 1, and v(1,t) = 0. Approximate the equation

and the initial condition by (5.2.6)-(5.2.7) and approximate the

boundary conditions by

u n = 1 and uJJ = 0 ,

where k = 1/N.

Look for solutions of the finite difference method of the form

u. = Cr z , where C is a normalization constant, such that r -»• X,

with X in the spectrum. For |z| = 1, consider the pure initial-

value problem. For |z| < 1, disregard the right boundary condition

and consider only the left boundary conditions. For |z| > 1 disregard

the left boundary condition and consider only the right boundary

condition.

Consider the case where |z| = 1, that is, the pure initial

value problem. In this case the symbol is, as in the first example,

p(O = 1 + 2r(cos£ - 1),

k 1
where r = -«•. |P(C)| < 1, provided that r < -*-.

ti l

Consider the right half-plane problem where the boundary is on

the left. Using the boundary coundition, u« = Crnz = Cr11 = 1 for

all n. This is impossible, however, for if |r| < 1, then rn is

changing for each n. Hence the boundary condition on the left
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eliminates any contribution to the spectrum.

Consider the left half-plane problem, where the boundary is on

the right. Using the boundary condition, u". = Cr nz N = 0 for all n.

For |z| > 1, this is impossible. Hence the boundary condition on the

right also eliminates any contribution to the spectrum.

So again in this case stability is governed by the pure initial-

value problem.

Again, consider 3tv = 3xv, t > 0, 0 < x < 1, with v(x,0) =

f(x), v(1,t) = 0, and some boundary condition on the left. Approximate

the equation and the initial condition by (5.2.6)-(5.2.7) and approxi-

mate the boundary conditions by

OUQ + 3u.| = 0

where h = 1/N and a and B are constants. That is, the left

boundary condition is approximated by OUQ + &u.. = 0. For example, if

the boundary condition on the left is av(0,t) + bvx(0,t) = 0 approxi-
u^-u^

approximated by aun + b ( — ^ — ) = 0. This is in the form aun
Q+ Bu

n = 0,

where a = a - b/h and 3 = b/h.

Look for approximations of the form u n = Cr nz J, where C is a

normalization constant such that r -• X with \ in the spectrum of

the family of difference operators:

n+1 ~ n
Uj = j

= r(crnzj)
= Crn+1zJ.

We have three cases to consider:

1) The case where |z| = 1, which corresponds to the pure

initial-value problem as in the preceeding two examples. Let z = e^h,

then zJ = eia)Jn = eia)X, where x = jh. In this case r = p(-wh),

where p denotes the symbol of the above difference operator for the

pure initial-value problem. r is the approximate eigenvalue, which

for stability, by the Ryabenki-Godunov condition, |r| < 1 is required.
2 1This condition is satisfied provided that r = k/h < ̂ ", the same as

for the pure initial-value problem.

2) Consider the case where |z| > 1, which corresponds to a left

quarter plane problem. The boundary condition on the right yields

uJJ = 0 or Crnz = 0. This has no nontrivial solution. Hence the

problem does not contribute anything to the spectrum.

3) Consider the case where |z| < 1, which corresponds to a

right quarter plane problem. The left boundary condition

OIUQ + 8un = 0 becomes aCrnz + BCrnz = 0 or a + 0z = O, which
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gives z = - -7. Examine Qun = run which is equivalent to
p J J

r u ^ + (1 - 2r)u? + r u ^ = u^
or

run
+1 + (1 - 2r - r)u

n + ru" - 0 .

By substitution of the assumed form of u. = Cr z ,

rz2 + (1 - 2r - r)z + r = 0 .

Solving for r, with z = —-j- ,

And so an approximate eigenvalue r is obtained that depends on the

boundary condition,

If the left boundary condition is av(0,t) + b3xv(0,t), as

above, then a = a - b/h and g = b/h. This gives

L±J± = ? _2
aB (ah-b)b

from which X = 1 - 2r + 2r = 1 , so that |x| < 1 and the Ryabenki-

Godunov condition is satisfied.

We shall now give an example of a boundary generated instability.

In the first example it was shown that if v(0,t) = 0 was approximated

by UQ = 0, there was no trouble. Suppose this boundary condition is

approximated by 2un - u-j = 0 which comes from h D +D_UQ = 0*. Here

a = 2 and g = -1 , so X = lim(1 -2r - a2^g2r) = 1 + ̂  > 1 for all
h+0 aP ^

r = k/h2 > 0. Hence the Ryabenki-Godunov condition is violated. Thus

the method is unstable, where the instability has been brought about by

the boundary condition.

As a demonstration, we use this approximation to the initial-

boundary value problem (5.2.6)-(5.2.8) with f(x) = sin(irx), where

N = 20 and r = 1/2. The growth in the numerical solution at time

t = 0.0625, 0.125, 0.1875, and 0.25 depicted in Figure 5.2 represent

the boundary generated instability.

0 + 0(h2), which is a second order approximation to v = 0.

*This is a reasonable approximation since h2D+D_v = h23 v +
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i.e

Figure 5.2. Boundary Generated Instability

This next example will be one in which the Ryabenki-Godunov

conditions is satisfied yet there are oscillations propagated by the

boundary (see Kreiss and Oliger [11]). Consider 8tv = 3xv, t > 0,

x > 0 with v(x,0) = 1 and v(1,t) = 1. Approximate this equation

by the leap-frog method (3.10.1)

where r = k/h. The characteristics are x + t = constant so that

boundary conditions cannot be imposed at x = 0. However, the finite

difference method will require an artificial boundary condition at

x = 0, UQ = 0, for example.

With this initial data, v(x,t) = 1. Make a change of variable

(5.2.9) (-1)

Then by substitution, the difference equation for w. becomes

-r1 - r(w"

which approximates the equation

3fcW = -9XW, t > 0, x > 0

W(x,0) = 0,

W(0,t) = -1 .
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For this problem the characteristics are x - t = constant, that is,

the characteristics eminate from the boundary x = 0. Hence this

problem allows a boundary condition at x = 0. The solution of this

problem is (see Figure 5.3)

(5.2.10) W(x,t) =

-1

0, t < x

-1 , t > x .

t=x

Figure 5.3. Solution W.

Therefore the approximate solution un (obtained by substitution of

(5.2.10) in (5.2.9) is given by (see Figure 5.4)

1, nk < ih

u

2 "

1 -

1 + (-1) , nk > ih

Figure 5.4. Approximate solution

This is not an instability because the solution u^ is bounded, but

clearly the approximate solution is not correct.

The lesson to be learned from this example is that one must be

careful when overspecifying boundary conditions which is the case when

artificial boundary conditions are imposed. This is a nondissipative

method. It will be seen in the next section that nondissipative

methods are most prone to boundary condition instability. Dissipative

methods will damp some of the oscillations; however, near the boundary

there will still be trouble.

A similar example due to Gustafsson shows how these oscillations

can be made even worse in a finite domain problem. Consider the same

problem above where 0 < x < 1 and the additional boundary condition
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v(1,t) = 0 . Approximate this equation by the leap-frog method as in

the last example. The boundary condition on the left is approximated

by first-order extrapolation, that is, U Q = u^ a n d t*ie boundary

condition on the right is approximated by u". = 0.

Under these conditions it is shown that if the approximate

solution has the form un = Crnz , it grows like

luni2 = constant N ' .

Thus at the boundary x = 0, a wave is generated that grows like

This wave, if not damped, will be reflected at the opposite boundary

x = 1. When this reflected wave reaches the left boundary, x = 0, it

is again increased by another factor of N^/2. This process is

continued.

The oscillations get worse if a higher order extrapolation method

is used to approximate the left boundary condition. Suppose, for

example, the left boundary condition is approximated by D+UQ = 0. It

can be shown that the wave grows like luni2 = constant N(J~'/2)t#

In the final example, (Richtmyer [16]), consider the wave

equation (3.1.1) written as a system

3tv = 3xw

3t w " axv » t > 0, x > 0

with initial conditions

v(x,0) = f(x),

w(x,0) = g(x),

and a given boundary condition at x = 0. Approximate this by the

fractional step method

(5.2.11) w f - w f - r<vi+i ~ vi> •

+ 1 n 2 »4 «4
(5.2.12) vn+1 - vn = r(w f - w ?) ,

where r = k/h. Suppose that the boundary condition at x = 0 is

approximated at i = 0 by

n4
(5.2.13) v£
where q is a constant. We shall see that this approximation of the

boundary condition at x = 0 cannot be imposed for an arbitrary value

of q. Clearly, by the CFL condition, a necessary condition for

stability is r < 1.

Consider situations of the form
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(5.2.14)

and

(5.2.15)

vn = vrV

n-4- i+A
wr z z

where V and W are constants. For |z| = 1 we consider the pure

initial-value problem, which is stable for r < 1.

Consider the right quarter plane problem, where |z| < 1 is

required. Substituting the solution (5.2.14)-(5.2.15) into finite

difference equations (5.2.11) and (5.2.12),

j J

and

or

(5.2.16)

1 . , 1

wr z - wr z

vr•
n + 1 - 1 - v ^ z 1 - r(wr 2z 2-wr 0,

z1/2(r-D

-rr1/2(z-D 1/2
(r-D

In order to have a nontrivial solution, the determinant must vanish,

that is,

z ( r - 1 ) 2 - r 2 r ( z - 1 ) 2 = 0

from which we see that if |z| < 1 and r < 1, then |r| < 1.

Multiplying the first equation in (5.2.16) by W, multiplying

the second equation in (5.2.16) by V and subtracting yields

z 1 / 2 (r-1)W2 - z1/2(r-1)V2 = 0
or

(5.2.17) |V| = | W | .

Substituting the solution (5.2.14)-(5.2.15) into the boundary

condition approximation (5.2.13)

vrn + qwr
n +i 1 / 2 = 0.

Solving for q,

from which i t f o l l o w s , u s i n g ( 5 . 2 . 1 7 ) , t h a t

- | r z | - V 2 > 1 ,
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for |z| < 1

satisfied if

and |r| < 1.

|q| > 1.

Thus the Ryabenki-Godunov condition is

V.3. Stability of Initial Boundary-Value Problems for Hyperbolic

Equations

How does one prescribe boundary conditions for hyperbolic

systems? Consider first the scalar problem

8tv = a3xv, t > 0, x > 0

v(x,0) = f(x)

where a is a real constant. The solution is v(x,t) = f(x + at),

that is, the solution is constant along the characteristics x + at =

There are three cases corresponding to a < 0, a = 0, andconstant,

a > 0.

For the case where a < 0, a boundary condition must be specified

at x = 0, namely v(0,t) = g(t). In this case the characteristics

are emanating from the line x = 0. The characteristics are incoming,

as depicted in Figure 5.5. To ensure continuity

v(0,t)=g(t)

x+at=const.

v(x,0)=f(x) x

Figure 5.5. Characteristics for < 0

require that g(0) = v(0,0) = f(0). This is a compatibility condition.

For the case where a = 0, the equation reduces to an ordinary

differential equation ^ = 0. The characteristics are vertical lines,

and v(x,t) = f(x), as depicted in Figure 5.6.

v(x,0)=f(x) x

Figure 5.6. Characteristics for a = 0.
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Finally, for the case where a > 0, characteristics are entering

entering the boundary x = 0, that is, the characteristics are out-

going, as depicted in Figure 5.7. Boundary conditions cannot be

arbitrarily prescribed at x = 0, for, since the solution is

v(x,t) = f(x + at), v(0,t) = f(at), and prescribing any boundary

condition other than f(at) would be a contradiction.

v(0,t)=f(at)

v(x,0)=f(x) x

Figure 5.7. Characteristics for a > 0.

Next consider the symmetric hyperbolic system in the quarter

3tX = A3xX , t > 0, x > 0

plane

(5.3.1)

with initial condition

v(x,O) = f(x)

where A is a p x p symmetric constant matrix. There exists a

matrix T such that A = T"1_AT, where A. = diag(xi,A2»•••,Ap) is a

diagonal matrix with the eigenvalues of A. If T is multiplied by

appropriate permutation matrices, the elements of A_ are ordered, that

is,

(5.3.2) x1 < x2 < ... < xr < 0 < x r + 1 < x r + 2 < ... < x .

Let _AX = diag(-X1,-X2 -Xr) and A.11 = diag(Xr+1 , Xr+2 ,... , X ) so

that
.1

(5 3 3)

Define w =

(5 3 4)

T~ *V

"-t

so that

=

A =

-A1 0

-A1

Assume for now that A has no zero eigenvalues.



387

The solutions w and w

values of w

are of the form f(x + Xt) . The
(called outgoing variables), at the boundary x = 0,

since X > 0, as in the scalar case, are determined by the initial

conditions, and so boundary conditions for w cannot be prescribed.

However, for w (called incoming variables) since X < 0, as in the

scalar case, values must be prescribed at the boundary x = 0. One

choice would be w = £ (t). However, w is known at the boundary

so a more general boundary condition may be considered,

(5.3.5) w1 = s V 1 + £X(t)

where §} is an rx(p-r)-matrix.

Suppose now we add a boundary on the right, at x = 1. In this

case the incoming variablesat the left boundary are outgoing variables

at the right boundary. Similarly, the outgoing variables at the left

boundary are incoming variables at the right boundary.

At the right boundary, values of w are determined by the initial

conditions and cannot be prescribed, whereas values of w must be

prescribed. One choice of boundary condition is w = £ (t). In

this case, however, w is known at the boundary, so a more general

boundary condition may be considered,

(5.3.6)

where

II

oil is a (p-r) x r matrix (see Figure 5.8).

(outgoing)

Figure 5.8.Incoming and outgoing variables on right and left boundaries

Consider x = 0 being an eigenvalue of A. Let w^ correspond to

X = 0. At the left boundary (x = 0), w° is known, w°(0,t) = _f(0)

for every t as in the scalar case. Similarly, at the right boundary

(x = 0), w° is known, w°(1,t) = ̂ (1) for every t, as in the scalar case.

So a reasonable choice is to treat w^ as an outgoing variable at both

boundaries. Thus the decomposition of w will be different at the two

boundaries. At the left boundary

I I
"A

0 V 1

. I 1

I I
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and at the right boundary

w 1 1

— t

-A1.)
0

0

A 1 1

—

w 1 '

w 1 1

—

Again, consider the quarter-plane problem (5.3.1), where A, as

in (5.3.3), is nonsingular, with boundary conditions (5.3.5) and

f̂ (x) = 0. Approximate the transformed equation (5.3.4) by

u n + 1

(5.3.7)
Qu"

where

(5.3.8)

uJ-0. 0,1 ,2,3, ...,

n1

and Q. are p x p constant matrices. Assume that n^ > 1 and £

and (̂ 2 a r e nonsingular. For the pure initial-value problem, the

symbol (or amplification matrix) is given by

mo

(5.3.9)
*y

Assume that nG(c)fl2 < 1> which guarantees that the method for the

pure initial-value problem is stable.

From the way in which the difference operator (£ is defined in

(5.3.8), the solution of (5.3.7) can be obtained only if boundary

conditions are specified, so that the values of u? for

i = -m-j+1 , . .. ,-1 , 0 are annihilated. Define such boundary conditions

as follows

m
(5.3.10) un = l C.u? + Fn , i = -mi + 1 -1,0,

where CJJ are constants p x p matrices.

Our goal is to derive algebraic stability conditions. In an

early paper by Kreiss [8], algebraic stability conditions were

established for the above initial boundary-value problem under the

additional assumption that the difference method was dissipative of

order 2s, (see Sections III.6 and III.8). With this assumption the

high frequency terms would have no influence.

In a more recent paper by Gustafsson, Kreiss, and Sundstrom [6]

(see also Kreiss and Oliger [11]), by reformulating the notation of

stability algebraic stability conditions were obtained for nondissi-

pative methods, as well as, for the case where A is a function of x

and t. These results will now be presented.
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Introduce two discrete norms; the first is the discrete

over time rather than space defined by

nFnj; = i nFnn2k,MM'k
n=0

2 2 2 1/2where v = (v- + v« +•••+ v ) . The second discrete norm is the

discrete £2~ n o r m over space and time defined by

n k n=0 l

With this stability for the initial boundary-value problem may be

defined.

Definition. The finite difference method (5.3.7) and (5.3.10) is

stable if there exist constants ao and KQ such that for all Fj

with n£j Ok < °° and all a > ao the following estimate holds

(5.3.11) (. - ao)»e- ̂ 4 < Kg , ̂ ,.-.^,2 .

This is not the only choice for definition of stability (see Gustafsson

et al. [6]). However, this definition prohibits the unwanted behavior

in (5.2.9). Also the algebraic conditions can be generalized to a

finite domain problem and variable coefficients.

The question of stability can be reduced to an estimate of the

solution to a resolvent equation. Consider the resolvent equation

(5.3.12) (a - ri)zj = 0, j = 1,2,...,

with n£j2 < °° and

m
(5.3.13) zn = i C..zn + G., i = -m1+1,...f-1,0.

- 1 j = 0"
1 J~ : i ~ 1 '

Equation (5.3.13) is an ordinary differential equation with constant

coefficients and its most general solution can be written in the form

(using continuity arguments)

(5.3.14) z. = Z P.(i)4 .
-1 I I - J 3

where _Pj are polynomials in i with vector coefficients and KJ

with n_tcj II < 1 are solutions of the characteristic equation

m2

(5.3.15) Det| i Q.K. - Tl\ = 0.

The coefficients of the polynomials £j can be obtained by substi-

tuting (5.3.14) into the characteristic equation (5.3.15).



390

The following lemma is due to Gustafsson et al. [6] (see also

Kreiss and Oliger [11]):

Lemma. For |r| > 1 the characteristic equation (5.3.15 has no

solution Kj with H_KJ n = 1 and the number of roots KJ such that

| Kj| < 1 is equal to the number of boundary conditions (5.3.13)

(counted according to their multiplicity).

We now state the main theorem for the quarter plane problem with

constant coefficients.

Theorem 5.2. The Ryabenki-Godunov condition* is satisfied if and only

if the resolvent equation (5.3.12) and (5.3.13) has no eigenvalue r

with |r| > 1. The finite difference method is stable in the sense of

the above definition if and only if there is, in addition to the

Ryabenki-Godunov condition, a constant K > 0 such that for all r,

with |r| > 1, and all Gj

0 9

(|r| - D m < K i |G.r.
j—n^+1 J

This result can be generalized to the case with two boundaries,

Gustafsson et al. [5]:

Theorem 5.3. Consider the finite difference method for t > 0 and

0 < x < 1 and assume that the corresponding left and right quarter

plane problems are stable in the sense of (5.3.11), then the original

problem is stable.

Furthermore the equation 8tv = A8xV .+ IS v can be treated as a

perturbation of the original equation (5.3.1) and the stability of the

finite difference method is given by the following theorem:

Theorem 5.4. Assume that the finite difference method (5.3.7) and

(5.3.9) is stable in the sense of (5.3.11). If the approximation is

perturbed by adding to the difference operators £j in (5.3.8) in

terms of order k, then the resulting finite difference method is

stable in the same sense.

Finally we consider the variable coefficient case with the

equation is

which is approximated by (5.3.10) where

In this setting the Ryabenki-Godunov condition is satisfied if and

only if the resolvent equations (5.3.12) and (5.3.13) with Gj = 0

have no eigenvalues with |x| > 1.
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and where we assume that £j (x) is twice continuously differentiable.

Under this and the assumptions made in the constant coefficient case

the Lax-Nirenberg Theorem (Theorem 3.9) guarantees stability of the

pure initial-value problem. Stability of the initial boundary-value

problem will follow provided the left quarter plane problem with

constant coefficient obtained by replacing £j (x) with £jO) and the

right quarter plane problem with constant coefficients obtained by

replacing £j (x) with (£j(0) are stable. See Kreiss [9].

We shall now present some finite difference methods for initial

boundary-value problems for hyperbolic equations. Two types of methods

will be considered: dissipative and nondissipative.

Consider the quarter plane problem (5.3.1) where without loss of

generality we assume that A is diagonal and the boundary condition is

of the form v1 = S1^11, that is, g(t) = 0.

For the dissipative type method, consider the Lax-Wendroff method

(5.3.17) un+1 = un + ADQu
n + |2A2D+D_u?

along with the boundary condition

(5.3.18) uj = S 1^ 1.

We shall consider ways of specifying UQ . Three possible choices are:

(5.3.19) (hD+)
juJX = 0 , j is a positive integer

/c o OA\ / IINn+1 / ILn , , .IL , ILn
(5.3.20) (u0 ) = (u_0 ) + kA D+(u0 ) ,

where AII= A11 in (5.3.3) since A is diagonal, and

(5.3.21) (uj1 + u ^ ) n + 1 - kAIXD+(uJV
+1

It is shown in Gustafsson et al [5] that the Lax-Wendroff method

(3.5.3) is stable in the sense of (5.3.11) with the boundary condition

(5.3.18) approximated by any of the three choices (5.3.19)-(5.3.21).

For the nondissipative type method, consider the leap-frog method

(3.10.1)

(5.3.22) un+1 - un"1 = 2kAD0u
n.

It is shown in Gustafsson et al [12] that the leap-frog method (5.3.22)

is stable in the sense of (5.3.11) with the boundary condition (5.3.18)
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approximated by (5.3.20) or (5.3.21) but is not stable with the

boundary condition (5.3.18) approximated by (5.3.19). A direct

verification that the boundary condition approximated by (5.3.19)

results in an unstable method is given in Kreiss and Oliger [11].

Here we see that the stability of the approximation to an initial

boundary-value problem depends on the finite difference method and for

the pure initial-value problem.

We shall now present a useful result of Goldberg and Tadmor [2].

This gives a sufficient stability condition for explicit dissipative

difference approximations to initial boundary-value problems in the

quarter plane. This condition is independent of the finite difference

method is used to solve the pure initial-value problem and is given in

terms of the out flow boundary conditions.

Consider the quarter plane problem (5.3.1) where, without loss of

generality, A is assumed to be diagonal with boundary conditions

given by (5.3.5). Approximate this equation by (5.3.7) where Q

defined by (5.3.8) is dissipative of order 2s.

From the way in which the difference operator Q is defined in

(5.3.8), at each time step m- boundary values of u. for i = -m-| +

1 -1,0 are required. For the outflow variables the boundary

condition is approximated by

( 5 . 3 . 2 3 ) E C < V < u " ) n + 1 = E C < ° > < u " ) n , i = -m l +1 - 1 , 0
j=0 ~1J ~1 J j=0 ~1J ~1 3

where C.J * and C.K are constant diagonal matrices of order

(p-r) x (p-r). For the inflow variables the physical boundary

condition is

(5.3.24) (uj)n = Sl(ulo
l)n + £(t),

with the m-|-1 additional conditions of the form

(5.3.25) (u*)n = E D..(u**)n + £ , i = -m +1,...,-1,0

where D^j are constant r x (p-r) matrices and £i are vectors

depending on h and g(t).

The following theorem simplifies the stability conditions, where

stability is in the sense of (5.3.11).

Theorem 5.5. The finite difference approximation (5.3.7), (5.3.8),

(5.3.23)-(5.3.25) is stable if and only if the p-r scalar components

of the outflow variable are stable.

Proof. Since the matrices £j in (5.3.8) are diagonal divide (5.3.7)

in terms of the inflow and outflows variables,
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/ c « o /- \ / I s n+1 .~ I / I \ n
(5.3.26) (u,.) = Q> (ui)
and

(5.3.27) (n\l) = ^"(u* 1) 1 1.

where

a11 • . « aj^i.
j—mi J

and

*J o 2 1 1

As a result of (5.3.27) and the boundary condition (5.3.23), the

outflow problem is self-contained. However, the inflow problem given

by (5.3.26) with boundary conditions (5.3.24) and (5.3.25) depends on

the outflow variables as inhomogeneous boundary values in the boundary

conditions (5.3.24) and (5.3.25). The stability of the original finite

difference method is equivalent to the stability of two separate

problems:

1) the inflow problem (5.3.26) with inhomogeneous boundary

values (5.3.24) and (5.3.25)

2) the outflow problem (5.3.27) with boundary conditions

(5.3.23).

The estimate (5.3.22) as the definition of stability gives bounds

for inhomogeneous boundary values. Hence it suffices to consider the

homogeneous boundary values for the inflow problems. Since Q. are

diagonal, the inflow problem (5.3.26) separates into r independent

dissipative approximations with homogeneous boundary conditions. These

were shown by Kreiss [7] to the stable independent of the finite

difference method for the pure initial-value problem.

Now consider the outflow problem (5.3.27). Similarly, since

Q. , £. . , and Ĉ ! . are diagonal, the outflow problem separates into

p-r independent approximations.

Thus the problem has been reduced to the following scalar problem

v<- = avv, t > 0, x > 0
(5.3.28)

v(x,0) = f(x)

where a > 0. The finite difference method (5.3.7) and (5.3.8) takes

the form

un+1 - Qun

(5.3.29)

u° = f(ih) , i = 0,1 , ...,

where
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where

Q = Z q.Ŝ _ .

The boundary conditions (5.3.23) reduce to

(5.3.30) z cP.^u?*1. = Z c ^ u n
+ . , i = -n^+1 -1,0

where c.. and c.. are constants.

A special case of the boundary condition (5.3.31) called

late

that is,

translatory is when constants c^. and c^. are independent of i,

(5.3.31) z c.u£' = Z c^u" , i = -mi+1 -1,0.
j=0 j=0

In this case, define the boundary method T( a), a = 0,1 by

T ( 1>uf 1 = T(O)u<?, i = 0,±1,±2,...

(5.3.32) T ( a ) = z c^a)si, a = 0,1 .
j=0 J

This boundary method generates the boundary condition (5.3.31) when i

is restricted to -m-|+1 , . .. ,-1 , 0.

The main result of Goldberg and Tadmer [2] provides an easily

verifiable condition that is sufficient for stability, which depends

entirely on the boundary conditions.

Theorem 5.6. The finite difference approximation (5.3.29) and (5.3.31)

is stable if the boundary method (5.3.32) is stable and if

(5.3.33) T u ;(<) = z C> ; K J * 0 for every | < \ < 1.

The stability condition is independent of the finite difference method

for the pure initial-value problem. In addition, if the boundary

method is known to be stable, then stability of the entire finite

difference approximation depends on the condition (5.3.33).

In the case of explicit boundary conditions of the form

(5.3.34) un+1= z C.un, i = -n^+1, ...,-1 ,0,

then T C ) ( K ) = 1 and Theorem 5.6 is automatically satisfied.

Consider the boundary approximation given by the explicit method

u i + 1 = ui + a(ui+1 " ui>» i = -™1
+1.-«-,-1.0

where x = k/h. This method is stable and satisfies the CFL condition

provided x < 1/a. Since this approximation is stable and of the form
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(5.3.34), we see that the approximation to the initial value problem

with the above boundary approximation is stable.

Next consider the boundary approximation given by the implicit

method

u?+1 - a(u£] - uf1) = u^, i = -m1+1 -1,0.

This method is unconditionally stable. Since this approximation is not

of the form (5.3.34), T( 1)(K) must be evaluated,

T O ) ( K ) = 1 - Xa(<-1) = 1 + Xa(1-.c).

Since Xa > 0, for | K| < 1

Re Td)(K) = 1 + xa(1 - Re K) > 1.

From which the stability of the approximation to the pure initial-value

problem with the above boundary approximation is stable.
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Appendix A - The Kreiss Matrix Theorem and Its Consequences

In the vector case we saw that something more than the von

Neumann condition is required for stability. Some of the additional

conditions sufficient for stability were considered in Section II.7.

In this appendix some of the more technical conditions sufficient for

stability are considered.

Consider the finite difference method

(A.1) (̂ u11 = 22u
n~1 , n > 1

where u = (u-| , . . . ,Up)^, Qi and Q2 a r e P x P matrices of the form

with the Chj's and the Q2 j 's P x P constant matrices.

Apply the discrete Fourier transform to (A.1),

(A.2) un(5) = G(Ou
n"1(5), n > 1,

where G(O is the amplification matrix

m4 "1 m2

6(5) = S J u e " 1 ^ E ^2i e" i J C '
j = -m3

 1J j»-m1
 ZJ

By repeated applications of (A.2),

un(5) - G
n(5)u°(5) .

From Theorem 2.1, we see that stability of the finite difference

method is equivalent to G(?) being uniformly bounded for all powers

of n for nk < 1. An equivalent form of this condition is that there

exists a constant a > 0 such that the matrices A = e"a^ G satisfy

the condition

nAnn < K

for all positive integers n, where K is a constant independent of 5.

Definition. Let F be a family of matrices depending on a parameter

?. The family F is called stable (A) if for every A e F and all

n > 0,

BAnn < K ,

397
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where K is a constant independent of A.

A necessary condition for statement (A) to hold is that all

eigenvalues K^ of A lie inside or on the unit circle. Hence it is

necessary for the eigenvalues Xj. of G_ to satsify |Xj[| < ea^ for

some constant a. This is equivalent to the von Neuamnn condition.

We shall now state the Kreiss matrix theorem [4].

Theorem A.1. Let F be a family of square complex matrices A of

order p. The following are equivalent to the family F being

stable.

(R) There exists a constant CR such that for all A e F and all

complex numbers z with |z| > 1, (A-zI^"1 exists and

(A.3) I(zi-A)-1! < CR(|z|-1)-l

(S) There exists constants Cg and Cg and to each A e F a non-

singular matrix S such that

(i) m a x ( n s n , n s ~ i n ) < c s
and

(ii) B = £ A Sf! is upper triangular and its off-diagonal

elements satisfy

when KJ are the diagonal elements of Bj , i.e., the eigenvalues of

A.

(H) There is a constant CH > 0 and for each A e F a positive

definite hermitian matrix H such that

(i) C ^ < H < CR1 ,

(ii) A*H A < H .

Remark. (R) The resolvent condition is used in theoretical proofs.

This contains the von Neumann condition. It tells you that as you get

far from 1 in the complex plane the blow up cannot be too much.

(S) It is observed that the larger the diagonal elements are the

smaller the off-diagonal term must be. This is called the

algebraic (or off-diagonal) condition.

(H) Two norms i na and n n̂  are called equivalent if and only if

there exists a constant CJJ > 0 such that

1

• CJT — a — b H — a

(H) defines a norm. Condition (Hi) states that the new norm is

equivalent to the £2"norm« Condition (Hii) implies that if we have

stability in the new norm, we have stability in the old norm
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(equivalent norm condition).

We shall present a proof that stability is equivalent to the

resolvent condition (R). For a complete proof see Morton and

Scheckler [6]. The most difficult part is to show that the resolvent

condition implies stability.

The proof used here is a modification of a theorem due to Laptev

[5] first found by Gilbert Strang and pointed out to the author by

Gideon Zwas.

Proof; Stability — > (R). Due to stability all of the eigenvalues K.

of A e F lie inside the closed unit disc. Therefore, for |z| > 1,

(zI^-A)"1 exists. By expanding in Taylor series

) " 1 , = | i Anz-(n+1)«

< I .A",|Z-<
n+1>|

0 ~

n=0

< c R | | .
R n=0

where CR is a constant independent of A, using conditions (A).
CR

Hence the resolvent condition is proved.

In order to show that the resolvent condition implies stability

we make use of a contour formula in Theorem 10 of Dunford and Schwartz

[2] to write

(A.4) An = 2 ~ !f z
n(zi-A)"1 dz ,

where the eigenvalues of A lie inside or on the unit circle. Let r

be a circle of radius r > 1 centered at the origin, so that

z = re19 and (A.4) becomes

(A.5) An = V ^ " J 2V ( n + 1 ) e(re i 9l-A)- 1 de .

Let 15 = (rei0_I-A)~ *. Using Cramer's rule, consider a typical

element of B,

where the coefficients UJ and VJ are independent of e. Multiply

(A.6) by the complex conjugate of the denominator gives Re(B£m) and

as rational trigonometric functions with a nonvanishing
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denominator and numerator of degree 2p-1. The denominator is non-

vanishing since p(A) < 1 and |z| > 1 so that det(zI_-A) * 0.

Therefore,

4,(0) = Re(B fJ = -J-

2p-1
E a. cos je+b. sin j 6
=0 J J

2p
I c. cos j 0+d. sin je

j = 0 J J

and
2p-1

E a. cos j 0 + $. sin j0

E Im(B.J = - ^2p
I c. cos j 9+d. sin j 6

j=0 J J

Both <j) and ty do not contain singularities on [0,2TT], since the

denominator does not vanish. Using the property cos n0 cos me =

2"(cos(in+n) 0 + cos(m-n)e), we see by direct calculation that 4>'(0)

and i|>' (0) are real rational trigonometric functions with numerators

of degree 4p-1. Since a trigonometric polynomial of degree

q(= 4p-1) has no more than 2q(8p-2) roots in [0,2ir], <t>(0) and

i|>( 9) has less than 8p regions of monotonicity in [0,2TT]. Using the

second mean value theorem of integral calculus on a typical interval

[ 91 , ©2] where <j> is monotone

?
Je [cos(n+1)0 + sin(n+1) 0] <j,(0)d0

09 09

= fa cos(n+1) 8$(e)de + fa sin(n+1) e«|>(e)de = I- + Io

(sin(n+1) 02~cos(

(s in(n+1)£-cc

1 * L

n

>s(n+1)

+

n

(s

1

+

J

's in(n+1) 0-. -cos(n+1) 9̂  )
1

where % e (BijSo)* ^ o r ^(9) over a typical interval [B^B^]

monotonicity, similar integrals I3 and I4 are obtained. The

integrals 1-| , I2, I3, and I4 satisfy

|X1I ' lI2l < HTT max
[ 0-| , ©2 J

|I3I . |I4I < HTT
 max

By substitution of these inequalities into (A.5),
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| ( A n ) J < |Re(An )A m | + llmCA11)^!

< r T l + 1

. rn + 1 4 2 i m a x | <j> | + 2 I max| ^ |

where the sums are over all regions of monotonicity. Since each sum

has less than 8p terms,

CR

where the resolvent condition has been used. Choose r = 1 + —ry,

then

64epC

K n > J JL

Finally, since «Mn9 < / z |M..| < p Max |M..|,
i j 1 J i j 1 J

for all n > 0 and A e F. This gives an extremely good estimate of

nAnn.
We shall now prove Theroem 3.2 iv).

Definition. A sequence of complex numbers c-|,...,Cp is said to be

nested with nesting constant K if and only if

|cr-cs| < Klc^-cJ for i < r < s < m ,

see Morton and Schechter [6].

It can be seen that any set of p numbers can be ordered so

that it is nested with K < 2P. To see this, taking any one as the

first and choosing the number closest to it as the second, the number

(in the remaining p-2 numbers) closest to the second as the third,

and so on,

lci-1-cil < ki-1-cjl

for j > i. Thus for i < r < s < m

|cr-cs| < |cr-cm| + |cs-cm|
and

|cr-cj < |cr_i-cr| + |cr.i-cj , if r > 1

< 2|cr.1-cm)| < ... < 2r-*|CjL-cm| .
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Similarly, |c8-cm| < 2S-1|c£-cm|. Thus

|cr-c8| < (2r-l+28-t)|cr-cm| < 2P|cs-cJ .

The following theorem is due to Buchanan [1 ].

Theorem A.2. Let F be a family of matrices A which are in upper

triangular form with their eigenvalues nested with constant K. Then

F is stable if and only if the von Neumann condition |tci| < 1, on

the eigenvalues is satisfied and the off-diagonal elements satisfy

(A.8) |Aij| < K max(1-|ici|, 1 - | Kj | , K±-KJ | ) ,

when K is a constant independent of A.

The following proposition gives sufficient conditions for

stability in special cases.

Theorem 2.3.iv). Consider the finite difference method (A.1) whose

amplification matrix G(?) satisfies the von Neumann condition. If

all elements of G(s) are bounded, all but one of the eigenvalues of

G(s) lie in a circle inside of the unit circle; that is, all but one

eigenvalues Xi are such that |XjJ < r < 1 (where r is the radius

of the circle inside the unit circle), then the finite difference

method is stable.

Proof: G can be put into nested triangular form by means of a

unitary transformation. Let M denote the bound on the element of G.

Then the elements of the transformed matrix are still bounded by M.

Without impairing the nesting, take the eigenvalue which does not lie

inside a disc contained in the unit disc to be Xi (the first

diagonal element). Hence, the inequality (A.8) in the Buchanan

theorem is satisfied with K < y-^ . The von Neumann condition is

simply a restriction on the exceptional eigenvalues. Xi, namely

| X-| | < 1 + 0(k). Stability follows from the Buchanan theorem.
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Appendix B. Kreiss's Stability Theorems for Dissipative Methods

Consider the first-order hyperbolic system

(B.1) atv = A3xv , -oo < x < +« , t > 0 ,

NT

'p
Approximate equation (B.1) by the finite difference method

where v = (v̂  ,...,v ) and A is a p x p constant matrix.

(B.2) u?+1 - Q u° .

where
m2

(B.3) Q = z k.S3 ,

and A. are p x p matrices that depend on h and k only. The

amplification matrix G(s) of the finite difference method (B.2) is

(B.4)

Definition. A finite difference method (B.2) is dissipative of

order 2s, where s is a positive integer, if there exists a constant

6 > 0 such that

,2s
<1 -«ur

with | s| < ir , where X.(£) are the eigenvalues of the amplication

matrix G(s) on (B.2).

The importance of the idea of dissipation can be seen from the

following theorem due to Kreiss [3] and simplified by Parlett [6J.

The proof presented here is due to Parlett.

Theorem B.1. Suppose the finite difference method (B.2) approximating

equation (B.1) is

i) accurate of order 2s - 1 , and

ii) dissipative of order 2s ,

then it is stable.

Proof. In order to prove this we shall use a lemma due to Parlett [6J.

Lemma 1. Let L , D , U denote strictly lower triangular diagonal

and upper triangular matrices, respectively. If L + D + IJ is a

normal p x p matrix, then

HUH < CBLII ,

where C is a constant that depends on p.

403
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Proof. The Frobenius norm

2 P , l2

nAir = i |a± . I T

shall be used. Let the Euclidean length of the i-th column of L be

I. , of the i-th row of U be u^.

Since the corresponding rows and columns of a normal matrix have

equal Euclidean length

9 9 9 9 9 9
u f + U j i r + ••• + U j j _ i I • * t + i u i j I + ••• + i u j - i j I

for j = 1,...,p-1. Summing this result for j = 1,...,k and omitting

the \ii-\
2 on the left-hand side,

k 9 k 9 k j-1 9

jfi U J * j=
si £J + j=i mii

 u™j •

Summing the second term on the right by rows,

k 2 k 2 k-1 k 2

I u. < l i. + l l uf .

for k - 1,...,p-1. Using this recursively for k = p-1,p-2,. . . ,1

p-1 2 p-1 k 2 p-1 2
S u. < l l i. < (p-1) I l. .

Hence, HU» < /p-1 HLn.

In Theorem 3.4, if (B.2) is a (2s - 1)-th order accurate

approximation to (B.1), then the amplification matrix G(c) of (B.2)

can be written as

(B.5) G(5) = .

where X = k/h , or

G(O •

where IISO n < C|c| s. Using the definition of hyperbolicity, there

exists a nonsingular matrix T(s) with nTn , HT n < K̂  and such

that TAT" = D , where D is a diagonal matrix with real elements.

Hence,

G I / « . \ _ npiprp"' * N " ~ ^ ^ J. C '\%) — L\3L — e — T ^ 9 T > t

2rwhere jS^J < C'|c| . Let U(£) be a unitary matrix that

triangulates G1 , that is,

U*G'U = U*e"iX—^ U + U*S« U = D' + N ,
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where _Df is diagonal and _D' + 3 ^s upper-triangular.

Clearly the strictly lower-triangular elements of D1 and N

must cancel and hence, have the same norm. However, IP^e"1 —^U is

unitary and so by the above lemma its upper-triangular part has norm

less than a constant times the norm of its lower-triangular part. The

norm of the upper triangular part of U*e — U and hence of U*G'IJ

is 0(U | 2 r ) .

For the upper triangular matrix I)1 + N a positive definite

matrix H will be constructed so that condition (H) of the Kreiss

matrix (Theorem A.1) is satisfied. For any diagonal matrix I) ,

D(D' + N)D"1 = D1 + DND"1 , we have only to choose D so that nDND~1 II

is sufficiently small.

Following the argument of Kreiss [3], take I) = diag(d,d ,..,dn)

with d > 1 and define ND = DND"
1 , then

HNDll = IIDND"
1 II < d"1nNll < Kd"1|?|2r ,

where K is some constant. Choose d such that Kd" < •*? (where 5

is from the definition of dissipation). By condition ii), since

I)1 is diagonal with the eigenvalues of (?' , and hence of G ,

tlD'*D' il < 1 - 261 £|2r and

l ( D ' + ND)*(E>' + N D ) l l < B D ^ D ' I I + 2llNDll + | |N D » 2

Hence,

and

with

(D1 + N)*D2(D' + N) < (1 - 6U|2r)D2 , | 5 | <

G*HG < (1 - 5|c|2r)H < H

T*UD2U*T

Furthermore,

I2

K

4- I < H <

Therefore the two norms are equivalent and by condition (H) of the

Kreiss matrix theorem (Theorem A.1) the finite difference method (B.2)

is stable.

A finite difference method may be dissipative only to an even

order, so the above theorem is of use only for schemes which are

accurate of odd order, that is, 1, 3, .... We now consider a theorem

for finite difference methods that are accurate to an even order (see

Kreiss [3J).
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Theorem B.2. Let the finite difference method (B.2) be dissipative of

order 2r and assume that for |£| < IT the amplification matrix G(£)

(B.4) can be written in the form

2r-2
2(5) = 1 + Z r̂r (-1XAOV + G2 (?) ,

v=1

where nG2rU)n = 0(|s|
2r) and X = £ ; then it is stable.

The proof of this theorem is a direct consequence of two lemmas.

Lemma 2. Let G(O be the amplification matrix of (B.2). Then (B.2)

is stable if there exists a constant C such that for all 5 with

| 5| < TT and all complex s with |s| < 1 , the matrix (sG(£) - I_)~

exists and

(B.6) |(sG(c) - I)"1 | < C(1 - |s|)"1 .

Proof. This follows immediately from the resolvent condition (R) of

the Kreiss matrix theorem (Theorem A.1).

Lemma 3. Let (B.2) be dissipative of order 2r where r is a positive

integer. Then (B.2) is stable if

i) G(s) can be written in the form

(B.7) G(5) - i + G-i <O + 22r(5> • 151 < » .

with lG2r(c)l = 0(|5|
2r) , and

ii) there exists a constant K and for every £ a nonsingular

matrix R with

(B.8) maxdiRn, nR~1 l) < K

such that

(B.9) R(l + 2i(5))5"1 = 2 = diag(Ki Kn) .

Proof. Without a loss of generality (due to (B.8) and (B.9)) assume

that I_ + G-jU) is diagonal. Using Gershgorin's [1] estimates of the

eigenvalues of a matrix, the eigenvalue X̂  of G(O can be ordered

in such a way that

(B.10) |x. - K.| < const. |e|2r .

Hence,

(B.11) sG(5) - 1 =

sq1p

sX2+sq2-1

sVsVi
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where |gj | + |gJk| < const. |e|
2r for j , k = 1,2 p.

Let c . denote the elements of the matrix (sG - I)" and by
ct, p — •—• .

(sG - I_) denote the matrix obtained from (s£ - I) by omitting the

a-th row and the g-th column. By Cramer's rule we obtain estimates for

det(sK - _I)

det(sG - I)

p-1 a

£ "̂  ̂  r ( n sx.
0=1 i >,=1 J v

< const. n |sx - 1|
V=1

Since (B.2) is dissipative of order 2r, |Xt| < 1 - 5|£|
2r ; hence

IsXj - 1| > 1 - | s | |Xj| > 6|c|2r

and

Therefore, by substitution into (B.12)

|ca6| < const. (1 -
a6

< const. 61"p(1 - |s|)"1 ,

(P;1)6*+1"P]

from which stability follows by the first lemma.

Theorem B.2 now follows directly from the definition of

hyperbolicity and Lemma 3.

It should be noted that the first theorem (Theorem B.1) can be

proved using the Lemmas 2 and 3 in this last theorem (Theorem B.2).

Consider the first order system of hyperbolic equations in i

space dimensions

(B.1 3) 3. v = P(x,9 )v , -oo < x. < +00 , j = 1, ...,£ , t > 0 ,
t 2» J

where

I
(B.14) P(x»9

x)
 = s lj(x)9

x »

x = (x.j , ... ,x ) , and B. (x) are p x p matrices whose elements are

functions of x.

And consider the constant coefficient first-order system of hyperbolic

equations in i space dimensions

(B.1 5) 8tv = POx)v , -oo < x. < +00 , j = 1, ...,* , t > 0 ,

where
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I
(B.16) P(3_) - I C a

- 2£ "J x

and £. are p x p constant matrices.

Let v(a),1) denote the Fourier transform of v(x,t) ,

i ( u o x ) v(x,t)dx ,

then by taking the Fourier transform of equation (B.15) we obtain the

system of ordinary differential equations in t

where _P(ijo) , called the symbol of Z(9
X) » is the p x p matrix

(B.17) P(i») - i s Co). .

Approximate equation (B.12) by the finite difference method

(B.18) un+1 = Q un ,

where

mo

j(B.19) I A. (x)S J,
j—m1

 J

and A.(x) are p x p matrices whose elements depend on x , h , and

k. The amplification matrix of (B.18) is denoted by G(x,£) , where

(B.20) G(x,O - S A. (x)e"iJ^- ,

and _| » (̂  , ... , 5 ).

Definition. A finite difference method (B.18) is dissipative of order

2s, where s is a positive integer, if there exists a constant 6 > 0

such that

U.(x ( i)| < 1 - Sli,
2s .

for each x and each 5 , with 1 g 1 < IT , where X. are the

eigenvalues of G(x,g).

Kreiss [3] proved a variable coefficient version of Theorem B.1.

Theorem B.3. Suppose that equation (B.13) and the finite difference

method (B.14) have hermitian coefficient matrices that are Lipschitz

continuous and uniformly bounded. If (B.14) is

i) accurate of order 2r - 1 , and

ii) dissipative of order 2r ,
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then it is stable.

The idea of the proof is similar to that of the proof of Theorem

B.1. However, H (does not have the one property necessary for the

extension to variable coefficients; that is, we need as IIEB + 0 ,
2r-1 A

H = 2 + 0(151 ). H will be reconstructed so that it satisfies this

additional requirement in a neighborhood of £ = 0.

As a first step we shall prove the following theorem for the

case of constant coefficients (due to Parlett [6]).

Theorem B.4. Let equation (B.1) and the finite difference method (B.2)

have constant hermitian coefficients. If for some positive integer r,

(B.2) is

i) accurate of degree 2r - 1 ,

ii) dissipative of order 2r ,

then there exists an hermitian matrix H(£) satisfying

iii) 6 2 < H < Bl for some 0 > 1 ,

iv) G*HG < (1 - 5B_|ll2r)H , i£i < TT ,

v) H = I + 0(i£i2r"1) as i|i*0 ,

where 5 is the constant in the definition of dissipation.

Without a loss of generality asssume that P has been

disgonalized by a unitary transformation, with eigenvalues y,. Let

1 = CFJQ , where £Q is one fixed unit vector and write G(£) in the

form

(B.21) G(|) = M + a2r2 + 0(a2r) ,

where M = e"1— is a diagonal matrix and £ = 3(£n) is a hermitian

matrix.

We shall require a technical lemma to proceed with the proof.

Lemma 4. For a dissipative finite difference method whose symbol G

has the form (B.21) , if Q., = 0 whenever y. = y, for i * k , then

(B.22) Qii < -5 + 0(1) as 5 •• 0 .

Proof. We shall show that the eigenvalues of G equal its diagonal

elements up to order a r. This will follow a stronger form of

Gerschgorin1s theorem (see Gerschgorin [1]) which states that if I of

the Gerschgorin1s circles of a matrix L are disjoint from the rest

then their union contains precisely i eigenvalues of L. This

follows directly from the fact that the eigenvalues of a matrix depend

continuously on its elements.

Let y, be a simple eigenvalue of Y_ and multiply the k-th row

of G by fa which divides the k-th column of G by /o\ This

similarity transformation on G leaves the eigenvalues X. of (5

unchanged. However, it makes the radius of the k-th Gerschgorin circle
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2r+1 /2 2r-112.
O(a ) and those of the remainder O(cr ). Since the centers
of the circles are at G.. , where

(B.23) G i l = e
 1 + a r Q u + 0

and ŷ  * ŷ  for i * k , the k-th Gerschgorin circle is disjoint from

the rest for sufficiently small r. Hence, there is an eigenvalue of

G such that

^^lr Or* Or-

x = e
 k 4- a2rQkk + 0(a

2r) .

By the definition of dissipative |x| < 1 - 5cr , so that

1 - 25a2r > 1 + 2a2rQ, . + 0(a2r)

Q k k < -6 + 0(1) as a • 0 .

If yk is not a simple eigenvalue of j? , all the rows and

columns corresponding to yk are treated as above. Since Q.k = 0

for y. = yk with i * k , the radius of the Gerschgorin circles are

still 0(<x ' )• Therefore, at least one circle contains an

eigenvalue of G so that (B.22) holds for that element.

If for some of the elements Q.. > -6 + 0(1) , these would

become disjoint from those with Q.. > -6 + 0(1) as a + 0 and we

would have a contradiction for then they would contain an eigenvalue of

G.

If two eigenvalues ŷ  and yk of P_ are equal, then since

2. is hermitian, with an appropriate choice of unitary transformation

(used to diagonalize V) we can ensure that the elements Q. are

zero.

Define a hermitian matrix HQ by

0 , if y. = yv
(B.24) Hn = ?.

 K

, if y,- * Pu

and from this the hermitian matrix

(B.25) H = I + <y2r"1 HQ .

Expanding M (in equation (B.21)) in powers of a and using (iv)

(B.26) G*HG - H + a2r[2^ + i^P - iP^] + 0(a2r) .

B"̂  the construction of H , the off-diagonal elements of the expression
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in the bracket of (B.26) are zero.
For _£ = CTJQ , by Lemma 4

(B.27) 2C£ + i(HQP - PHQ) < -25I_ + 0(1) ,

where H« = HQ(JA) is bounded (not uniformly in JLQ)# Hence there is

an <XQ(.IQ) , such that for 0 < a < OniOn) » (iv) a n d (v) are satisfied

in the direction £Q »
 t h a t is» by (B.26) and (B.27)

(B.28) G*HG < H - 26o2rl + 0(<y2r)

< (1 - 6a2r)H for o < oQ .

By the continuity of P and (J a s a function of £ there

exists an e > 0 such that iiĵ  ~ li " < e where 1̂ - 11 = 1 and

Using the same reasoning that leads to (B.28), (iv) and (v) are

satisfied for j, = crĵ  for 0 < a < (^(JLQ). By the Heine-Borel

theorem, the sphere |£| = 1 can be covered by a finite number of such

neighborhoods, in each of which H« can be taken constant. Hence, we

can construct an H(ĵ ) in a finite neighborhood of |j[J < <j« of the

orgin satisfying condition (iii), (iv), and (v). Outside this

neighborhood condition (v) has no effect so H can be defined as in

the proof of Theorem B.1.

We can now proceed to prove Kreiss1 theorem (see Richtmyer and

Morton [7]).

Consider a neighborhood of an arbitrary point, without loss of

generality, taken to be the origin. Consider functions u such that

u(x) = 0 for BXB > e > 0 .

Let (£Q denote the finite difference operator £ in (B.18) at x = 0,

that is,

(B.29) 20 = E j £

and the corresponding symbol of Q~ given by (B.20) at x = 0 , or

(B.30) GQ = G(0,£) = Z Aj(0)e"
iji .

In the Theorem B.3 there exists an hermitian matrix H(0,jO such that

(B.31) H = I + H2r-1(0,i)

where

(B.32) nS2r-i"
 < K«I»2r~1

and & a constant. H satisfies conditions (iv) and (v) of
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that theorem.

Define the operator H by

(B.33) (Hu)(x) - (2TT)P/2 / H(O,a)h)u(o))ei^*-dio ,

where u denotes the Fourier transform of u. Similarly, the operator

H2r_1 is defined by replacing H(0,u>h) in (B.33) with H2r-1(0,»h).

Because of the properties H there is a norm induced by the operator

H , namely

Using this norm

IIGun2 = (Gu,HGu) = (Gu, (I_ + ̂ r - i ^ — ^ = E + F

o
where E = iiGun and F = (Gu,H.2r_^ Gu). This representat ion of E
and F can be decomposed further, namely,

(B.34) llGuil2 = (EQ + FQ) + (E - EQ) + (F - FQ) ,

where EQ = IIGQUII2 and FQ = (GQu,H2r-1 GQu).

The task at hand is to obtain estimates for the three terms on

the right hand side of (B.34).

Define the norm

(B.35) nun2 = / (2 sin(^ i))2pnun2 dk .

Since D+. = 2ie ^ sin(-^ £.) , by substitution into (B.35),

(B.36) nunz = i nDp unz = z nDp.unz .
p j=1 j=1 ~J~

From which null < 2p"qnull for p > q.

We can readily obtain a bound on the first term in (B.34),

(B.37) EQ + FQ = HG0u,,
2 = / ̂

< / u*(1 - j
i P i 9 r **

< / u*(1 - j- 5 Z (2 sin(^ c-)) )Hudto

? 1 A-1 ?
= nuitu - 4- 5K nun ,

— n z r

where K is a constant.

The finite difference operator (̂  may be written in the form

(using the fact that it is accurate of order 2r - 1)
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2r-1 ,
(B.38) S - I

m=0
where

j = 1 "J - J

and

(-1) Y2m+1 DQj

that is, a truncated expansion of h8 in power of the difference
Xj

operator DQ. with Y2m+1 ^ei-n8 real constants. £ D represents the

remainder of order greater than or equal to 2r but whose form is not

needed.

The following technical lemma will be used whose proof can be

found in Kreiss [3].

Lemma 5. Let A(x) denote a uniformly bounded and uniformly Lipschitz

continuous matrix, with Lipschitz constant L. Then for v , u - L2(x)

we have

(u,AhDQjv) = -(hDOju,Av) + ^(u.v) ,

(u,AhD+.v) = -(hD_.u,Av) + $.j(u,v) ,

where ^ and $^ are functions such that

| (fr̂ Ô v) | < hLBuB nvn

for i = 0 and 1.

We may rewrite £ in (B.34) in the form

so that, using Lemma 5,

i(2^ ST P > " 2 = ^ ' t e " " D " = mT (-LD)mneZl ) - I Ij- Pjlu)
m=0 m I " D " m=2r+1 m I D m=2r+1 m I D

+ <t>(u,u)
o

= BUB + (u ,Ru) + <|>(u,u) ,

where R is a finite sum of terms B. (x)D? with p > 2r and <j> is a

bounded function as in the above lemma. The terms (u,Ru) can be

changed by reordering the terras _B. and D to obtain (see Richtmyer

and Morton [7])

(u,Ru) = (Dru,DSru) + i(u,u) ,

where S is a bounded difference operator of order 2r less than that
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of R , $ is a bounded function as in the above lemma, and D is the

product of r factors of the form

2r-1 1 m 2

m=0 m

D+.. Thus

m=0

= nun2 + (Dru,SDru) + 7(u,u) ,

where £5 is a bounded difference operator like J5 and <(> is a bounded

function as in the above lemma.
2 2

However, E = EQ = BGUB - "GQUB and by (B.40) consists maily of

a term in T> = S~ , where |[Q corresponds to ![ at x = 0. Since the

support of u is limited to a sphere of radius c , replace G by

G~ + (G - Gn)g(x) , where g(x) is a smooth function such that
—U — —U — — o

g(x) = 0 for BXB > 2$ and g(x) = 1 for BXB < •% c , where x is

sufficiently small. Thus the integration in E - E^ need only be

extended to a sphere of radius 2. Since the B.(x)'s are hermitian

(see Lemma 10 in Kreiss [3])

(B.41) |E - Eo|

where M- (c) • 0 as x, + 0 and C. in a constant.

For the last term in (B.30)

|F - FQ| - |Re((G + G0)u, 32r-1
 (£ " £o)u-} '

< const. (u,H2r_1(G - G0)u) ,

since G is a bounded difference operator.

Factorize H2r_^ as 32r-1 = —1—2 * w n e r e

H.. = ( E (2 sin i
j = 1

H — u"™ u
9 ~~ 1 9 T* 1 '

and "A" denotes the Fourier transform. It can be seen that

and

where C2 is a constant. Thus by substitution, since H2

hermitian,

is

< BH^ B «H2(G - GQ)u)B

< const. «uirll(G - GQ>
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However, by the definition

P r i

(B.42) B (£ - GQ)uBr < < I |D_J_. (G - GQ)UB
j = 1
P r.i

"" ' const. hBuB< l |G - G n )D] . UB +
j = 1 - - 0 +J -

where M2(c) + 0 as e -• 0 , using the fact that G - GQ is at least a

first order difference operator, so (G - GQ)D^7 is at least of order

r. Combining this result with (B.41)

(B.43) |E - EQ| + |F - FQ| < M(5)iui^ + C^hBuB
2 ,

where M( 5) •• 0 as ? -• 0 and C, is a constant.

For some eQ > 0 , by taking c < CQ the first term on right in

(B.43) dominated by the negative term in (B.37) so that

(B.44)

< (1 + ok) BunB2

where a = ̂  (C1 + C3) , which implies local stability.

In order to obtain the result for a general u , let

E d. (x) =1 be a smooth Gording type (see Hormander [2]) partition of
i L

unity in which each d.(x) is a smooth real-valued function of x

which vanishes outside some sphere S.. At each fixed-point x only a

uniformly bounded number of the d.(x)'s are nonzero. Each sphere S.

is chosen so that (B.44) holds for all un whose support is restricted

to S^. Hence the radius of S^ is taken less than CQ« Define H^

at the center of the sphere S. as above and let

luljj = I Idjuljĵ  = I (d^.H^u) .

This norm satisfies the inequalities common to all H^.

Since, in interchanging d̂  with G only a finite number of

d^'s contribute at each x ,

» ? (di^'3.idi^)
< l (Gd^tHtGdiu

n) + co ns t . hnunR2

< z Bd.unB2 (1 + ok) + c o n s t . hflunB2

1— H^ —
n 2O(k))Bu nB 2
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It has yet to be shown that in general the condition of accuracy

to order 2r - 1 cannot be overcome by these methods.

However, Parlett [6J has proved a theorem under slightly stronger

conditions whose statement will be given.

Definition. A system of differential equation (B.13) is regular

hyperbolic if it is hyperbolic and I? has distinct eigenvalues.

Theorem B.5. Let (B.13) be a regular hyperbolic system with variable

coefficients. Let the coefficients in (B.13) and (B.18) be hermitian,

Lipschitz continuous and uniformly bounded. If for some integer r

greater than one, (B.18) is

i) accurate of order 2r - 2 ,

ii) dissipative of order 2r ,

then (B.18) is stable.
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Appendix C. The Lax-Nirenberg Theorem and a Special Case

As an introduction to the main theorem (the Lax-Nirenberg

Theorem), we shall prove a weaker theorem due to Lax [2] for a single

scalar equation

(C.1) 8tv = a(x) 8xv, t > 0, -« < x < +«.

Approximate equation (C.1) by the finite difference method

(C.2) u?+1 = Qun,

where

(C.3) Q = I1 C.(x)s| .

The symbol of (C.3) is given by

m2

(C.4) p(x,£) = S C. (x)e"i:15.
• j

Theorem C.1 (Lax). The finite difference method (C.2) is stable if

the symbol (C.4) satisfies the following conditions

(i) Lipschitz continuous in x,

(ii) |p(x,c)| < 1 if K * 0,

(iii) p(x,5) = 1 - Q(x)£2p + 0(£ 2 p + 1), when £ is near 0 and

Q(x) > 0 for all x.

Proof; Condition (iii) implies that a certain amount of numerical

viscosity is present.

By condition (ii), for % * 0,

(C.5) 1 - pp* > 0.

Furthermore, by condition (iii),

(C6) 1 - pp* = Q(x)£2p + 0(U|2p+1)

Using (C.5) and (C.6), we can write

(C.7) 1 - pP* - g(xf O(e
l C-1) 2 p,

where g is a positive analytic function and is different from zero

for 5 real. Define

d = /i(e U-1) p.

which is analytic in 5 and Lipschitz continuous in x. Substituting

417
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d into (C.7)

(C.8) 1 = pp* + dd*.

(Conditions (ii) and (iii) were so designed that we could write

(C.8).) Construct the kernel

(C.9) K(x,5,n) = P(X,OP*(X,TO + d(x,Od*(x,n).

It can be seen that K satisfies the Lipschitz condition with respect

to the following norm

(C.10) IK(X)-K(X I)I < const. |x-xi| ,
5

where H-II5 denotes the sum of the L-|-norms of the partial deriva-

tives of K up to the second order in £ and third order in n.

Furthermore, by (C.8)

(C11) K(x,e,O = 1.

It follows from the structure of K in (C.9) that K is given

as the sum of two degenerate positive kernels. Therefore, for any

u c L2 and for every x

Expand K into a Fourier series with respect to n and £

(C.13) K(x,e,n) = I K (x)ei(mT1"u).
Jt,m '

We can express the three properties of K, (C.10)-(C.12), in terms of

the Fourier coefficient. Properties given by (C.10) give rise to

(r inM W (v\ v fv'M * const, (x-x' )(CJ0 } |K*,m(x)-K*,m(x }l < UP|m|3 '

which is obtained by performing, in the integral representation of the

Fourier coefficient of K(x) - K(x'), two integrations by parts with

respect to £ and three integrations by parts with respect to n and

using (C.10) to estimate.

Expanding u into a Fourier series,

Eu).e~ij?
j J

and using the representation of p in (C.4), by substitution into

(C .11), for every x and every sequence {toj} in L2

(C.1T) | zcj <x) «j | 2 < Z « tK £ f m00<V

In (C.12) expanding both sides into a Fourier series and equating

coefficients gives the relation
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where 5 denotes the Kronecker delta.it,m
Let

v 1-Qu 1-rc j(x)«?. J,

then we see v. = u. . Applying (C.11*) to u = u. a "local

energy estimate" is obtained,

(C.14) |vt| < ^\.^lt.

Let r » i-£ and s = i-m and sum (C.14) over i

(C.15) E|v. |2 < l u*K. . Q(ih)u.
i L i,r,s r 1-r'1"s s

The right hand side of (C.15) can be written as

k,r,s r 1" r» 1" s s i,r,s r 1" r« 1" s i-r,i-s s

We want to obtain bounds on the two sums in (C.16). Consider the first

sum; using (C.121), by substitution into (C.15)

(C.17) E|vt| 2 < z|ur|
2 + second term,

i r

Using (C.101) applied to the second term in (C.16),

|u ||u |

* ur(
Ki-r>i>s(

ih) " Ki-r,i-s
(rh))us < 0 ( h ) r ~ Tl S 1

and by the Schwartz inequality,

(C.18) r
L

s
u r ^ i - r , i - s V i I i ; " Ki-r, i-s v r i l " u s < O(h)E r \ \ a \ .

In the term containing |ur| carry out the summations first with

respect to i and s, in the term containing |us| carry out the

summation first with respect to i and r. Using i-r = i and

i-s = m as new indices

0(h)z|ur|2

as an upper bound on the second term in (C.16). Thus (C.15) can be

written in the form

(C.19) E | V£ | 2 < (1 + 0(h) )E|ur|
 2.

i r

Letting x denote any point between 0 and h, inequality (C.19)

holds. Then integrating this inequality with respect to x from 0

to h,

«un+1 12 < (1 + 0(h))

from which stability follows.
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Consider the f i r s t order system of hyperbolic equations in t
space dimensions

(C.20) 8tv = P(x, 3x)v, t > 0, -oo < Xj < +«,, j = 1 , . . . ,£

where
I

(C.21) Z(x»3x) " S l j ( x ) 9
x '

x = (x-| x A) and Bj (x) are pxp matrices whose elements are

functions of x. Approximate equation (C.20) by the finite difference

method

(C.2 2) u n + 1 = Qu11,

where

(C.23) 2 = I A.(x)s{.

and Aj(x) are pxp matrices whose elements are functions of x» n»

and k. The amplification matrix of (C.22) is

m 2

(C.24) £(x,£) = l A. (x)e"LJ-^,

where _£ = (51 ,... , %{).

We shall now state the main result, the Lax-Nirenberg theorem

(see Lax and Nirenberg [2] and Richtmyer and Morton [4]).

Theorem C.2 (Lax-Nirenberg). Suppose in the finite difference method

(C.22) the coefficient matrices Aj(x) are real and symmetric

independent of t and have bounded second derivatives. Suppose the

amplification matrix G(x,£) in (C.24) satisfies

for every x and j,, then the method (C.22) for real vector

functions u n is stable.

This theorem requires much less information about the structure

of the finite difference method (C.22) than Kreiss1 theorem (see

Appendix B ) .

There is no way of viewing the difference between the frozen

coefficient case and the variable coefficient as a small perturbation.

However, suppose that u n has small support, then the difference

operator Q (in the variable coefficient case) resembles the frozen

coefficient case. So we want to write u n = Eu11, where u n have

small support, but not too small.
•j.

Proof: Assume -̂ = 0(1). Consider the hermitian matrix R defined

by

(C25) R = I - G*(x,£)G(x,J_).
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Since iG(x,j[) i < 1 , it follows that R > 0 for all x and £. Let

R A denote the difference operator whose symbol is R(x,£). Since the

Aj(x)'s are differentiable, they are Lipschitz continuous and

(C.26) RA = I - £*£
 + °0O-

Claim. II£II < 1 + 0(k) is equivalent to the inequality

(C.27) (V.RAV) > -Mkivi2

for some vector function v. To see this, suppose (C.27) is true,

then by substitution of (C.26) into (C.27),

(C.28) (v,(

« ivl2 - |Qvi2 > -Mkllvn2.

From which it follows that

2 2
RQvB < 0+Mk)Bvn

and

nQvi|2

avn^O HVM

Thus iî n < 1 + O(k). Conversely, using (C.28),

(v,R Av) = IIVII2 - nQvn2

> iv|2 -

= -Mkiv|2,

where M is some constant.

With this claim to show stability, it suffices to prove the

inequality (C.27) holds.

Let ft.|,ft2»"*a \ ••• b e open sets and let K be a compact set

such that K c ya. , then there exists funtion <j>. (x) e C Q ( Q . ) such

that <J>. (x) > 0, Z<|>. < 1, E<|>. = 1 in K. This is called a smooth

partition of unityJ(see Hormander [1]). Write <(». = d. (since $. > 0) ,

then id. = 1. Scale the partition of unity by defining
j J

e.(x) = d . ( - | ) .

Then Ze? = 1, having support 0(/k), and satisfies a Lipschitz

condition

|ej(x)-e.(x')| < -if- |x-x'|
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We want to show that

(C.29) | (u,!*^) - S(e.u,RAe.u) | < const. kRuB
2.

L e t IiA
 = ?Ii-s+ anc* consider a typical term R^S^, then by

substitution into the left hand side of (C.29),

(C.30) (u.RtS;Ju) - EtejU.R^ejU).

By the definition of the inner product,

.u^S^e.u) = Z(e.u)T(RiS^e,u)Jlh,

so then, by substitution into (C.30), the left hand term in (C.29)

becomes

However,

I j(e.(x) - s|ej(x))
2 = ̂ (le2^2ie.sle. + Z

= 1(1 - 2EejS*;ej+1)

= 1 - rejSiej.

and by substitution into (C.31), we obtain the term

Since ej is Lipschitz continuous,

Kej-S^ej)! < k.(k)"1/2 = /k

and hence

(ej-S^ej)
2 < k.

Since the Aj's are bounded, it follows that the Rj's are bounded

\ ^(^Ii(^)S^uil)h(ej-S^ej)
2| < const, k z(u£u£)h

= const. k«u»2.

Hence, we have proven the inequality (C.29), from which we can

conclude that inequality (C.27) is proved if we can prove that the

following inequality

(C.33) (u ,R u ) > -MkiuJ2,
— x. — a— x. — x

where uA- e^u.
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Take the origin as a point in the support of ulf and expand R

in a Taylor series in space about the origin

p 9R(x,l)
R(x,i) = R(0,£) + I X j — — —

This expansion is valid since the A-;(x)'s have bounded second
~~ 9R

derivatives. Let R ^ U ) = R(0,l) and R ^ ( O = -r11 (X,E)| _n,
~~ ~~ — dX. ~~ J X"~U

Then

(C.34) R(x,£) = R ' ° ' ( O + i x . R ^ U ) + 0(k),
J

where 0(x2) = 0(k), hence we may neglect this term. So define

R x,I R K rXj_

Let R denote the finite difference operator whose symbol is R(x,jO.

Hence, in order to show the inequality in (C.33), we can reduce this

to proving the following inequality

(C.35) (Ho»EAHo)
 > -Mkiu I ,

that is

(C.351) (u ,R(A
0)ufl) + z(v. ,R

(j )u) > -MkBuflH
2.

where v. = x.u.

Since R(x,5.) > 0, there exists a constant M such that

R(°) (£) + x.Rd\z) + Mkl_ > 0

for |x | < /k .

In order to obtain the desired estimate we shall need two

lemmas. The first lemma shall be stated and proved now.

Lemma 1 . Let A and ][ be hermitian matrices such that A + W > 0

and A - B > 0, then for any real number M and two vectors v-| and

Y.2.

Proof: For any vectors w.. and w« we have

((^+^2), (A+fKw^+w^)) + ( ( w ^ ^ ) , (A-BX^-^))

= 2(w1,Aw1) + 2(w2,Aw2) + 2(w1,Bw2) + 2(^2,^^^ > 0.
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So, by substitution of w« = My- and w« = M^e*-9^, where 6 is

suitably chosen, we obtain the desired result.

Let A = R/ (s) + M-kI_ and |[ = /kR^(£)- It can readily be

seen that A and 5 satisfy the conditions of Lemma 1, so that

(j) M2 (0) 2

+
 2M~~^— i i'—A— i P + M1kl1—i£fl *̂

2 2
By the definition of v.., nv. n < 0(k) iiu ji . With this and by
taking M2 = — , the above inequality becomes

Using this estimate for the second term of (C.351), we can obtain a

lower bound for it

(C.37) (uo,!Au,) > (u,,l<
0)u,) •

so that it remains to prove

(C.38) l<ut.Ri
0>«t) " fe jCv^.R^v^) 4

We shall need the second lemma now.

Lemma 2. If the symbol R is hermitian and <j> (x) is a smooth real

scalar function such that <j>(x) < 1, then for u real

(C.39) |Uu,RA<fru) - Uu,<f>RAu)| < K(L+L
2)(k)2Bun2,

where L is the Lipschitz constant for $ and K is a constant

which depends on R only.

Proof: Since R is hermitian and the difference operator RA whose

symbol is R is of the form R^ = R.Ŝ _, then the R.(x)'s are

hermitian. Consider one such term R-Ŝ ., then

(C.40) I = (•u.RjS|*u) - (•u,*RjS^u)

^ j £ + j - <J>Uh))h.

Replacing I by fc-j and j by -j, by (C.40),
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T „

Combining (C.40) and (C.41),

and

(C.42) ij

We see that

and

K|j|knun2,

where K is the Lipschitz constant for R. Combining gives

|I,| < Lj2k2(LnR.n+K)nun2,

from which the inequality follows by summing from j=1 to p.

Let $ in Lemma 2 be set equal to x; then

l(iijt.RA
0)^J£)"(xjU£^A0)^£)| < K(k)2«M£«

2»

where K depends on R^ ' only, or

(C LW ( n^ } - ( ̂  p(0) ^ + 0(\c^\ ^

By substitution of this result (C.43) into (C.42), setting
2 2

j X j = r

(C.44) ( u ^ R ^ ) > ^(u£,R^ uA) " ^ ^ ^ " - J I ' - A -£^ * Q^)11^^11

= l ^ 1 " *Tc""^-£'-A -£^ + °^k) | lii£11 •

k 112
Let u have support such that u = 0 for r > (-̂-) ' and

introduce the auxiliary function <f> defined by

Rewriting (C.44) in terms of the function <t> gives

(C.45) (VfltPi) > ic^u^R^^p
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<)> satisfies the Lipschitz condition where there is /p/k, so by

Lemma 2

(C.46) U2H£,R£
0)]!£) = (•U£,R£°

)*UJI) + O(K
2k2)nu£B

2.

From the Fourier representation of the first term on the right in

(C.46)

Since O(K2k2) = 0 ( k ) , by s u b s t i t u t i o n of (C.46) i n t o ( C . 4 5 ) ,

(n^E^) > O(k)nu£n
2.

We see that in the proof of the last claim the problem had been

reduced to one of constant coefficients.
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Appendix D: Hyperbolic Equations with Discontinuous Initial Data

Consider the hyperbolic equation

(D.1) atv + pdxv = 0 , t > 0,-« < x < +«

with p a constant different from zero. The solution is uniquely

determined by the initial condition

(D.2) v(x,0) - f(x).

Approximation equation (D.1) and (D.2) by

(D.3) un+1 = Qun, n > 0, — < ! < + • ,

where ^ = f(ih). Assume that Q is a polynomial of the form

Q = Q(S+,S_) (and accurate of order p) . Let p(£) = Q(e""i£,e*-£) denote

the symbol of Q.

We shall illustrate the solutions of un of (D.3) for the case

where f(x) is a step function T(0), and

T(yo)

is arbitrary but sufficiently smooth such that

(D.4)
>>yo < x <

0, x <

g(x), x

where g(x)

T € L2(IR).

Consider the characteristic line x + t = 0 of Equation (D.1)

and (D.2). The discontinuity in the initial value of (D.1) and (D.2)

follows the characteristic line. However, in the numerical solution

of (D.3) the discontinuity has spread out over a region surrounding

the characteristic line (see Figure D.1) due to the numerical

dissipation.

\ \
x+Bt=0

Figure D.1. Regions in (x,t)-plane where the disturbance

is greater in absolute value than e > 0.

427
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The solution u? of (D.3) has the feature that when p grows

there appear parasitic waves, which is Gibb's phenomenon (see Dym and

McKean [1]) from higher order terms of Q as displayed in Figure D.2.

Figure D.2. un for p=1 and p>1 ,

We must choose methods that control these waves. It turns out that

dissipation is useful in contolling these waves.

We shall now prove the main theorem of this section which is due

to Apelkrans [9]. We first introduce the notion of contraction.

Definition. Let a and £ be real. We say that p is contractive

of order T > 1, if a function R(£) exists such that for all

0 < a < oto, and for all £,

p(C-ia) = (e a X 8 + a a T)RU),

with |R(5)| < 1 and x = k/h.

Consider (D.1) and (D.2) with initial values

1 , for x = 0,
v(x,0)

v(x,T)

x

0, for x * 0,

then the generalized solution of (D.1) has the form

1 , x + gt = 0,

0, x + Bt * 0.

The estimates given in the theorem and corollary below show that

the influence upon the error from the jump continuity in the initial

data decrease exponentially with the distance from the characteristic

through the origin. The distance from the characteristic through the

origin is given by d(x,t) = |g(x,t)|, where g(x,t) satisfies

equation 3tg = 3(x,t)3xg with g(x,0) = x. In the case of Equation

(D.1), d(x,t) =

Theorem D.1. If p(^) is contractive of order T, then the

following estimates hold for the solutions v(x,t) and uj of (D.1)
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and (D.2) , respectively, where the initial values are given by (D.4)

(D.6) |v(x,t) - un| < c(t)e"V(x>t),

where c(t) is a function of t = nk and independent of h, and

V(x,t) = h"q|6t+x| , where x = ih and g = -^-.

Proof. Let a = 0(hr) , 0 < r < 1 and a real. The exponent r will

be specified later. Make the following transformation

then w. satisfies the difference equation

n+1 = Q'

If p'(?) is the symbol of Q1 , then p'(O = p(£-ia). Using the

stability of Q and the contractivity of p

(D.7) iwji2 < 2

where y = a a h . w. = u. since u. * 0 only for i = 0, hence
n n —

"wi "2 = "u* "2 = ^" Using th definition of the £2" n o r m

(D.8) Bwnn^ > h|w!?|2,

for every i, from which it follows that, by substitution of iiŵll = /K

and inequality (D.8) and (D.7),

/h|wn| < /he a 3 t / h +\

|wn| <

However, |wn| = e"ai|un| and

(D.9) |un| < e o ie a 3 t / h + a.

Choose a = -sign(3t+x)h^/T. The substitution of a into (D.7) gives

where cQ(t) = exp{(-sign(Bt+x)
Tta/X}, q =-7^. and V(x,t) =

h-q| Bt+xI .

If a = 0 (that is, w. = u.), then by the above argument,

|u?| < 1 for x + Bt = 0 and |v(x,t) - u"| < 2, where v(x,t) = 1 on

x + Bt = 0. Choose

C(t)
Co(t) , x + Bt * 0

2 , x + Bt = 0,

which is the desired result.
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The following corollary will be considered which deals with the

case in which the initial values are given by a step function (D.4)

Corollary. If u1? = Qu? is accurate of order p and p is

contractive of order x, then

\nn. - T(-pt)| < C(t)h (^ 1 ) / 2e- V ( x' t )
)

|x+pt|n< y, where V(x,t) = h"q| t+xl , un is the solution of (D.3)

with u. = T(0) , C(t) is independent of h and q = -2-1—, x = ih, and

t = nk.

Proof. First, for a > 0,

lle"ax/hT(0)ll2 < lT(O)linax(E h e "
2 a i ) 1 / 2

•T(0)H /hm a x

To the left of the characteristic line x + pt = 0, since a > 0, we

obtain the desired estimate. This follows from Theorem D.1 with the

right hand side of inequality (D.6) given by a"1/2 = h"1/2x = h(q-1/2.

Let T1 (0) be the step function which is the reflection of T(0)

across the line x = 0 (t-axis). Then for a < 0, as above

0) n2 = O(|a|

Thus the result holds to the right of the characteristic line as

above. Combine T(0) and T1(0) to obtain the smooth function for

every x.

f(0) = T(0) + T1(0).

Let v(x,t) denote solution to (D.1) and (D.2) with f(x) = T(0) and

u? denote solution to corresponding finite difference method (D.3).

Then since Q is accurate of order p, llv(x, t)-u*?ll = 0(hp), provided

that T(0) is sufficiently smooth. For a < 0, write T(0) = T(0)

- T'(0). The estimate follows by use of the triangle inequality.

We shall now prove a theorem which will determine the best pos-

sible x > 1, that is, the largest order of contractivity. We first

need to state a technical lemma (see Section III.3 and Lax [4]).

Lemma 1. If the finite difference method (D.2) is accurate of order

p, then

where U(s)/(i£)P+1 is an analytic function of £.

Observe that since U(O/(i£)P+1 is an analytic function of

S, U(^) may be expanded in a Taylor series of the form
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(D.10) u(e) = co(u)
p+1 + CjdO 1* 2 + ... •

Theorem D.2. Suppose that the finite difference method (D.3) is

accurate of order p and dissipative of order 2s. Let r = 2s - p.

Then there exists a constant aQ > 0, real function R(O, and a

constant a > 0 such that

pU-ia) = e a X e + a a T R U ) , for |a| < aQ,

where |R(5)| < 1 for |s| < TT. Furthermore, T is given by

4s/(r+1) or 8s(r+3) , for p = 2j-1

2s/r, for CQO = 0, p = 4h-2
or h = 1,2, . . .

x = i C Q a > 0 , p = 4 h and p = 2j

6s/(r+2), for COa > 0, p = 4h-2
h = 1,2

CQa < 0, p = 4h

where j = 1,2,... .

Proof. Since the finite difference method (D.3) is dissipative of

order 2s (s a natural number) there exists a constant 6-| > 0

such that

I P(C)| < 1 - 51 ̂
 S, for |c| < ir.

From the above lemma

-6 c2s
• / vi Re(u) 1
IPKZ)I = e < e

Now we write

By expanding U ( ^ - i a ) in a Taylor s e r i e s

UU-ict) = U(O + aU'U) + ...,

where

H ( a , 5 , p ) = Re{aU'(5) +

The l e a d i n g terms of H ( a , 5 , p ) a r e

(D.12) H(o,5 ,p) - Re{C0(aP+ 1 + a 1 a ( i 5 ) P + a

where a. = (^. ) , fo r j = 1,2, . . . . Compare terms of t he form

Ca J + £P~"̂  , where C i s a c o n s t a n t , and j = 0,1 , 2 , . . . ,p-1 wi th
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the terra - 5 2 s i n (D.11). Applying a version of Holder's inequality*
to the terras Co? £p~~l we obtain

| . | j + 1 |5 lp- 1 « d . U I 2 ^ ^ 1 ) / ^ 1 ) + e5
2 s ,

where r = 2s-p. The exponent TJ = 2s(j+1)/(r+1) is a strictly

monotonically increasing function of j for j > 0 and r > 1. We

are interested in the sign of the terms in the expansion in (D.12).

All imaginary terms have dropped out. Consider the case where p is

an odd integer,

(D.13) H(a,5,P) - CQ(a
P+1 + (-1) (p"1} ^ B V " 1 +...)•

From inequality (D.11) the smallest exponent of | ot | is either

4s/(r+1) or 8s/ (r+3) depending on the sign of CQ and of p. If

the negative terms in (D.13) are neglected,

(D.14) H(a,5,p) < e 1 a
T + e2C2s + ...,

where x = 4s/(r+1) or T = 8s/(r+3) and e2 = 0(e), as e -• 0.

Similarly, for the case where p is even (D.14) holds with

T = 2s/r for CQOI < 0, p = 4h - 2 or Coot > 0, p = 4h

and

x = 6s/(r+2) for Co.o < 0, p = 4h - 2 or Coot > 0, p = 4h,

for h = 1,2, ... .

Now by substitution into (D.11)

a6X-(51 -e
| | 1

from which,for j; and a sufficiently small, we can choose e = eo

so small that

where the dots refer to higher order terms in £ and a. Hence there

is a constant a > 0 such that

(D.15) | (ei + ...)ctT| < aaT

for e > eo since e-| is uniformly bounded by the above lemma.

p(£-ia) can be written in the form

(D.16) pU-ia) = e a 0 X + a a TR(O,

^Holder's inequality. Let A > 0, B > 0, and e > 0 be given, then

AB < yA
r + eB9,

where r = q/(q-1), q > 1, and y > 0 uniformly bounded for so > 0,

with eo > 0.
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where |R(£)| < 1 for I and a sufficiently small.

Suppose that in order to obtain (D.16) we had to choose \r\ < £Q

(for some £ A ) . For the case where |£| > £~, the term e~ ^ is

available. By the definition of H, H(a,£,p) •* 0 as | a | -• 0 and

ap\ 6 lls + cax - aaT + H(a,5,p)
|p(F,-ia)| = e 1

for |a| sufficiently small. Hence there exists an

for |a| < a

> 0 such that

where |R(S) < 1 for \l\ < %.

We now consider systems of hyperbolic equations with constant

coefficients. In regions where the exact solution is known to be

smooth, one might expect to obtain better rates of convergence by the

use of higher order methods. In the theorem due to Maj da and Osher

[8] a model differential equation and corresponding general finite

difference method with discontinuous initial data is considered. It

is proven that the rate of convergence between the characteristics

emanating from the origin is fixed independent of the order of the

difference method.

The model differential equation has the form

(D.17) Lv = dj-v - Adxv + Bv = 0

where

V =

The initial values are given

v(x,0)

by

-

0

0

0

c
-1

B =

0 =
H(x)'

0

0

-1

H(x)

where H(x) is the Heaviside function

1 , x > 0

0 , x < 0

Discretize in space only. Consider the finite difference method given

by

(D.18) Liui = a ̂  - (Aii

where

Bui)

and
r2,i

The initial values are given by
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ui(O)
0

It is critical that use the average value of H(x) is used at the grid

point corresponding to x = 0, that is, i = 0. Define

• (0) •(0"))

are finite difference

which are accurate of

The difference operators P1 , i and P2,i

approximations to dx and -d x, respectively,

order r and dissipative of order 2s > r+1.

Let P I ( £ ) and P2(C) denote the symbols of P"|,i and P2

then P-) i - ?2 i i s said to satisfy the ellipticity condition if

where (1+c|>(£)) * 0 for \l\ < % and <1> is an analytic function.

If _B = 0 and the initial data for both components is the

Heaviside function, the model Equation (D.17) reduces to two scalar

equations of the form (D.1). In particular, near the characteristics

x ± t = 0, a Gibbs phenomenon takes place, so that

Tim max |v(x,t)-ui(t)|
h+0 O<t<To

> c > 0

for some constant c. However, In the region Rj defined for any

6 > 0 by

R. = {(x,t)|i^J- > 6 , ̂ ^- > 6, 6 < t < T o},

there is an optimal rate of convergence given by

max |v(x, t)-u. (t) | < c.hr,
(x,t)€R6- - 1 6

where c is constant which depends on 6.

When 15 * 0, _B is a dispersive coupling term and the solution

is smooth everywhere except for a jump continuity in v and its

derivative along with characteristics x ± t = 0. Under these

conditions Maj da and Osher [5] proved the following theorem.

Theorem D.3. Suppose that the finite difference operators P-j ^ and

and dissipative. Assume P-j i - ?2 i

Then in the region

R1

P2 i are accurate of order r

satisfies the ellipticity condition (D.19).

(D.20)

we have the estimate

Rfi n { (x , t ) : l x l < t}

(ih,t)€R'o

2
lu.-vl < c.h

The estimate in (D.20) is sharp in the following sense: If

and R is any region with compact closure in R5, then

r > 2
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maxRu. (t)-v(x, t) I!

lim -5 , > 0
h->0 h z

o
where x = ih. In the region R. = R. n {(x,t)HxH > t}, we obtain the

O 0
estimate

max Ru.-vR < c»hr,
(ih,t)€R

2 1 6

where C5 is a constant that depends on 6. Then the rate of

convergence is optimal in R2.. If r > 2, u-f - v has an asymptotic
o —

error expansion in R* given by
ui - v = h2co(w(x,t)) + 0(h3)

where CQ * 0 is a universal constant and w(x,t) solves the Cauchy

problem Lw = 0 with initial data

6'(0)
w(x,0) -

0

where 61 is the derivative of the Dirac measure.

It should be observed that Richardson extrapolation can be used

to obtain 0(h3) in R^ for the above finite difference method which
6

is accurate of order r > 2. However, this is not the best that can

be obtained.

A better estimate can be achieved if the initial data is

"preprocessed." To this end, consider the Dirichlet kernel given by

sin((N + i)x)
DN(x)

sin(Jj-x)

We define the modified initial data for the semidiscrete (discretiza-

tion in space only) operator (D.18) by the convolution integral

(D.21) J* = -ji !% D (xry)d>(y)dy

~%

where x^ = ih and (2N+1)h = 2%. This is a type of smoothing

operation on the initial data.

For this choice of N and for XJ_ with |i| < N, a periodic

function <j>£ defined on these grid points, the A-th finite Fourier

coefficient is given by

JDU) -§ \ £ e^h , U| <N.

With this the solution to the semi-discrete difference method in

(D.18) with the modified initial data (D.21) is given by

u*?(t) = E e U x J exp((Q(Uh)/h + B ) t ) J D U ) .

By modifying the initial data as in (D.21), in region R1 an optimal

rate of convergence is attained, given by the estimate
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max Hu°(t)-v(x,t) II < Chr,

where C is a positive constant.

Consider the hyperbolic equation with variable coefficients.

(D.22) 5tv + p(x)5xv = 0, t > 0, -« < x < +«,

where p is a real valued function. Its generalized solutions are

uniquely determined by the initial condition

(D.23) v(x,0) = f(x).

Approximate equations (D.22) and (D.23) by

when Q = ?Q.(x)s|. Let p(x,£) = $Q. (x)e"1^ denote the symbol of Q.

Let g(x,t) = c denote a family of characteristics for equation

(D.22) that satisfies g(x,0) = x. Consider the initial condition

v(x,0)

v(x,t)

1 , for x = 0

0 , for x * 0,

then the generalized solution has the form

1 , for g(x,t) = 0,

0 , for g(x,t) * 0.

If f(x) is sufficiently smooth, then equation (D.22) can be

very closely approximated by stable finite difference methods and

realistic error bounds can be achieved (e.g. Lax [4]). However,

suppose f(x) has a discontinuity, this discontinuity propagates in the

solution to equation (D.22) along a characteristic. This propagation

is disturbed in the solution of the corresponding finite difference

method (D.24). A theorem due to Apelkraus [1] gives a sharp bound for

the error and indicates how the error depends on the order of accuracy

of the difference method. This theorem will make use of the Lax-

Nirenberg theorem (Theorem 3.8) in Section III.11.

We shall need to state some technical lemmas and introduce the

idea of uniform contractivity.

Lemma 2. Assume that CQ (in Theorem D.2) is uniformly bounded in

x. Then under the assumptions of Theorem D.2,

R U ) = p(5) + aRoU), a > 0,

where a = hr for 0 < r < 1, and R()(£) is uniformly bounded in x

for | 5| < n.

Proof: From Lemma 1 and from (D.13),
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Hence

Using the definition of dissipative, choose eo for every x in the

in the proof of Theorem D.2. Since CQ is uniformly bounded in x,

there exists a a > 0 in (D.12) which holds for every x. This is

due to the fact that e-| essentially depends on CQ and eo; from

which the lemma follows.

Definition. If Lemma 2 holds for a symbol p, then p is uniformly

contractive of order T.

Lemma 3. Suppose that the coefficient of (D.22), p(x) e CQ, and

the symbol (D.24) is contractive of order x for every x, then it

is uniformly contractive of order %, providing the finite difference

method is accurate of order p.

Proof; By expanding the terms in the finite difference method (D.24)

in a Taylor series we obtain from Equation (D.22) that CQ is a

polynomial in p(x) and its derivatives of order p or less.

Since (3(x) e CQ, we conclude that CQ is uniformly bounded in x

and the result follows by application of Lemma 2.

We shall now state the main theorem.

Theorem P.4. Consider the initial value problem (D.22) and (D.25)

approximated by the finite difference method (D.24) which is accurate

of order p. Suppose that the symbol p(x,£) of (D.24) is

contractive of order i for every x and p(x) e CQ. Then there

exists a function c(t) independent of x and h such that

|v(x,t)-u?| < c(t)e-v(x't),

where v(x,t) = h~^| g(x, t) | , q = (T-1)/T, X = ih, and t = nk.

Proof: Since p(x,£) is contractive of order T, it follows that

|p(x,£)| = |R(x,Oa-0l <
 1

for every x and £. As in the proof of Lemma 3, by expanding the

terms of the difference method (D.24) in a Taylor series (see e.g.

Section III.3 and Lax [6]) that ?Q.(x)jA are polynomials in p(x)

and its derivatives of order up to A-1, where A=1,2,...,p. Since

p(x) e CQ, the conditions of the Lax-Nirenberg theorem hold.
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Make the transformation

(D.26) v(x,t) = e"ag(x't)/hv(x,t)

then v(x,t) satisfies (D.22) with v(x,0) = v(x,0) since v(x,O) * 0

only for x = 0. Similarly, make the transformation

(D.27) w1? = e- a 8 ( x' t ) / hu^

where wn satisfies the finite difference method

(D.28) wj + 1 = Q'w1? = e«g(x,t+k)/hQe-«g(x,t)/hun#

Since p(x) e CQ, it follows that g and its first and second

derivatives are uniformly bounded in x and t. So we may write

o/h(g(x,t) - g(x,t+k)) = -a\gt(x,t) + 0(ah)

= -a\p(x)gx(x,t) + 0(ah)

as h -• 0, since &tg(x,t) = p(x) dxg(x,t). We may now write the

symbol p'(x,£) of Q1 in terms of the symbol of Q, namely

p'(x,Fj = e"aXpgx^(ah)p(x,S-iaaxg(x,t)) + 0(ah)

2 2as h -• 0, uniformly in x and t (since &tg and dxg are

uniformly bounded in x and t) . From Lemma 3 it follows that p is

uniformly contractive of order x, so that

as h -• 0, uniformly in x and T, since R(x,£) = p(x,^) + 0(aT).

Taking a = -(sign g(x,t))h 'T, we can conclude that there

exists a function Ri(x,£) and a constant M > 0 such that

p'(x,e) + p(x,O + bRi(x,5),

where |R-](x,^)| < M-j for all x and £. Hence the difference

operator Q1 can be divided into two difference operators

Q1 = Q + hQ.

By the Lax-Nirenberg theorem, the difference operator Q is stable

and since iiQ^ < • for h sufficiently small, the finite difference

method (D.28) is stable, that is, there exists a function co(t)

independent of x and h such that

"wiM2 < c 0 ^ ^ lwi"2-
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Using (D.29) and following the proof of Theorem D.1 , we obtain the

result

|un| < co(t)e

where v(x,t) = h"q|g(x, t) | , and q =

The proof is completed by observing that un * 0 only when

g(x,t) = 0 (where x = ih and t = nk). Hence there exists a

function c(t) such that

|v(x,t)-u?| < c(t)e-v(x't).

A recent pointwise estimate that extends the results of Majda

and Osher has been made by Mock and Lax [6] for the case of variable

coefficients. They show that for a linear hyperbolic equation with

variable coefficients in any number of dimensions, if the initial data

is preprocessed in an appropriate manner near the discontinuities,

then for a finite difference method of order q, the moments of u

approximate the moments of v to order q. Furthermore, if the

approximate solution is suitably postprocessed, then the approximate

solutions (as well as its derivatives) will differ from the exact

solution, by O(hcl""̂ ) where 6 is as small as one wishes.

The preprocessing of the initial data is accomplished through

the use of the result from numerical integration.

Lemma 4. Let f be any C00 function on H?+, with bounded support.

Given any positive integer q, there exists a quadrature formula

accurate of order q of the form

/ f(x)dx = E w.f(jh)h + 0(hq),
0 j=0 J

where the weights WJ depend on q and WJ = 1 for j > q.

This lemma may be applied twice to obtain the following result:

Lemma 5. Let f be a piecewise Ca function with the discontinuity

located at x = 0. Given any positive integer q,

/ f(x)dx = E w!(f(jh)h + 0(hq),
j — J

where w' = 2wn, w! = w,., for j * 0, and f(0) = ^

This result can be extended to several variables and more than one

discontinuity.

We shall consider an operator L, in one space dimension for

simplicity, of the form

(D.30) L = 5t - P(x,5X) = 9t-B(x)ax,
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and the equation

(D.31) Lv = 0, t > 0, -oo < x < +oo,

where B is a real C00 function. We shall denote the L2 inner

product by

(U,V)L = /u(x)v(x)dx.
2

Also we shall denote the adjoint of L by L* and let v and v*

satisfy Lv = 0 and L*v* = 0, respectively. Furthermore, assume

that either v or v* vanishes for |x| large. Using Green's

theorem, for the strip 0 < t < T,

(D.32) (v(T),v*(T))L = (v(0),v*(0))L .
2 2

Approximate equation (D.31) by a forward difference method accurate of

order q, written in the form

(D.33) u}+ = Qu? = sQ.(ih)u? ..

Let A* denote a backward difference method as in (D.33)

approximating the adjoint equation, written in the form

(D.34) u*n = QV? = EQ*((i+j)h)u*n^.

Mult ip ly ing (D.32) by u*n + 1 and summing

= Eu*n+1 EC
i L j
Eun EQ*((i+j)h)u*nj

Hence, by multiplying both sides by h

(D.35) (un+1,u*n+1) = (un,u*n).

For all integers N, by summing (D.35) from 0 to N-1 ,

(D.36) (u ,u ) = (u ,u ).

We now begin preprocessing the initial data. Assume v is a

piecewise C00 solution of Lv = 0, where the initial data contains a

single discontinuity at x = 0. Let the initial data for the finite

difference method (D.33) be defined by

(D.37) u? = w^v(jh,0) , j * 0

u = V v(°~°> + v(0 + 0))
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where the weights w! are defined as above.

Let <|>(x) be an arbitrary test function in CQ and let v*

denote the solution of

(D.38) L*v* = 0

v*(x,T) = *(x).

Let u?n satisfy (D.34) the finite difference method for the adjoint

equation, with

(D.39) u*N = «j,(ih),

where Nk = T. It can be seen that the finite difference method

(D.34) for the adjoint equation is also accurate of order q. Assuming

Q* is a stable difference operator,

(D.40) u*° = v*(ih,0). + 0(hq).

Making use of the above quadrature formula, where f(x) = v(x,0)v*(x,0)

(a piecewise C00 function with a discontinuity at x = 0) ,

+ 00

(v(0) ,v*(0))T = / f(x)dx = rw'.v(jh,0)v*(ih,0)h + 0(hq).
L 2 -co j J

Using the estimate in (D.40) along with (D.37),

(v(0),v*(0))T = Zu°(u*° + (hq))h + 0(hq)
L2 j J J

= Eu?u*°h + 0(hq)

u°u*°h + O(h').

Using (D.32) and (D.36)

(v(T),v*(T))T = (uN,u*N) + 0(hq)
L2

or, using (D.38) and (D.39)

(D.41) (v(T),«,)T = (uN,*) + 0(hq)
L2

which establishes the desired estimate for the moments of u. Using

(D.40) we can obtain the dependence of error term in (D.41) on <j>.

Rewrite (D.41) as

(v(T),<f,)L = (uN,*) + 0((max l ^ f ) h q ) .

We shall now post-process the approximate solution to obtain a

pointwise estimate from the weak estimate (D.42).

Let s(x) be a function that satisfies the conditions
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Js(x)dx = 1, Jx*s(x)dx = 0, A = 1,2,...,p-1,

where p is an arbitrary integer whose support is contained in the

interval (0,1). Define a specific test function <}> by

where e = h q / ( q + p + 2 ). Using the fact that if g e C^Cy.y+e),

g(y) - Jg(x) (x)dx + O ( E P ) ,

we obtain (provided the interval (y,y+e) contains no discontinuities

of u at time T)

v(y,T) + O(eP) = Jv(x,T) <D (x)dx

= (v(T),<D)L2 .

Substituting into (D.42),

v(y,T) = (uN,<j>) + 0(hq(max ^r+f)) + 0(eP).
dx4

However, using the definition of <|> and e

and

This gives rise to the pointwise estimate

(D.43) v(y,T) = (u\<D) + 0(h q p / ( q + P + 2 ) ) .

A similar estimate is obtained on the interval (Y-e,y). Estimate

(D.43) shows that by post-processing the approximate solution u, u

differs from v by an amount as close to O(ĥ i) as we wish by

choosing p sufficiently large.

These one-sided estimates make it possible to obtain accurate

pointwise estimates up to the discontinuity.
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