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Preface

With the recent commercial success of at least two ultra-long-haul, all-optical,
dense wavelength division multiplexing (WDM) fiber optic transmission systems
(Lucent’s LambdaXtreme and one by Marconi), solitons have at long last found
their proper place in fiber optic transmission. Hence the principal motivation for
writing this book: to provide engineers and applied physicists with a satisfying
understanding of the underlying physical principles and a thorough description of
the practice and capabilities of this new technology. At the same time, we have
attempted to write a book that could serve as the text for a college or graduate-level
course on fiber optic transmission, with emphasis on the fundamental propagation
equation and its consequences, but as well including a discussion of amplifier
spontaneous emission noise and other limiting factors, such as “polarization-mode
dispersion” and other fiber defects.

Another principal goal in the writing of this book has been to achieve genuine
accessibility. Unfortunately, most other books about solitons have been written
by and for mathematical specialists, and thus tend to be at a level of abstrac-
tion that is off-putting for the applied physics and engineering fraternities. At
the other extreme are the numerous book chapters and engineering review arti-
cles that discuss various nonlinear phenomena in fiber optic transmission. All too
often, however, these tend to be very narrowly focused on whatever list of non-
linear “defects” or “penalties” the author deems important at the moment, and
all within the context of a certain limited range of transmission modes. In this
book, we have striven to achieve the middle ground. That is, while the nonlin-
ear Schrödinger (NLS) equation is central to most of what we do in this book,
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xiv Preface

right from the beginning we attempt to dissect that equation and show the action
and physical consequences of each term in it. Thus, while never shying away
from whatever mathematical treatment is needed for a genuine understanding of
the physics, we have also attempted to illustrate all major results with real-world
examples containing realistic parameters. We have also illustrated as much as pos-
sible with graphs and experimental data. Thus, we hope that we have succeeded
in bringing the seemingly exotic world of soliton phenomena down to earth, and
to demonstrate that it is really not that hard to understand after all.

The outline of this book is straightforward. Chapter 1 introduces the NLS equa-
tion and the ordinary soliton, while Chapter 2 treats the more complex but also
more practically useful “dispersion-managed solitons.” In Chapter 3 we take a tem-
porary break from soliton propagation in order to have a thorough discussion of
optical amplifiers and amplifier spontaneous emission noise, the most fundamen-
tally limiting factor in ultra-long-haul transmission. Chapter 4 discusses the soliton
interactions in a very general and fundamental way; featured are those impor-
tant to wavelength division multiplexing, as well as soliton interactions within
a given channel and with noise. Chapters 5 and 6 discuss WDM with ordinary
and dispersion-managed solitons, respectively, both chapters including important
experimental results along with theory. Chapter 7 contains a relatively brief but
easy to understand discussion of polarization-mode dispersion, and Chapter 8 dis-
cusses some issues of experimental techniques and hardware important both to
solitons and to long-haul transmission in general. Finally, as a kind of epilogue,
we have included a brief history of solitons, from the brilliant observations of John
Scott Russell in the early 19th century to the present. In order not to disrupt the
main text, however, the historical material has been deferred to an appendix.

This book represents the distillate of more than two decades (the period from
approximately 1980–2003) of our collaborative work at Bell Laboratories in
Holmdel, NJ, with one of us (Mollenauer) being the experimentalist, and the other
(Gordon), the theorist. That work was driven by the belief that because ultra-long-
haul transmission is inescapably nonlinear, the only proper way to design systems
is to start with a fundamental understanding of pulse propagation in (nonlinear)
fibers and to make full use of the only pulses that are natural to that environment,
namely, solitons. This concept is in contrast to the approach most often taken,
which is to embrace legacy, essentially short-haul technology, and to try somehow
to stretch it to fit the new requirements. Although it took a while to become fully
evident, the record now shows that the former approach has indeed produced the
better results.

We would also like to acknowledge that from the very beginning in our work,
we were much indebted to others, including former Bell Labs colleagues Rogers
Stolen, Akira Hasegawa, Stephen Evangelides, and Pavel Mamyshev; former
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postdocs Fedor Mitschke and Kevin Smith; and the late Professor Hermann Haus
of MIT. Nick Doran, both in his days at British Telecom and later as a professor at
the University of Austin, and Professor Curtis Menyuk and associates at the Uni-
versity of Maryland, Baltimore, also generated many important ideas, especially
with regard to dispersion-managed solitons. More recently, the extensive numeri-
cal simulations of Nadja Mamysheva and of Chongjin Xie have been invaluable,
and it has been highly stimulating to discuss ideas and to work with Chris Xu,
Xing Wei, and Xiang Liu. The experimental work has had the skillful inputs of
Jay Cloonan, Mike Neubelt, Andrew Grant, and Inuk Kang. Finally, but by no
means least, one of us (Mollenauer) has had the most patient help with com-
puter programming and administration from Jürgen Gripp, Andrew Grant, and
Laura Luo, and colleague Ildar Gabitov of the Department of Applied Math at the
University of Arizona, Tucson.

Linn Mollenauer and James Gordon
Monmouth County, New Jersey

August, 2005





Chapter 1

The Nonlinear Schrödinger Equation
and Ordinary Solitons

1.1. Introduction

The basic equation governing the propagation of pulses in optical fibers is known as
the nonlinear Schrödinger equation, or NLS equation for short. It is of fundamental
importance to almost everything we shall discuss in this book. In this chapter we
shall derive that equation and examine some of its most immediate consequences.
Before beginning a detailed study, however, it is useful to have a first look at this
innocent-looking equation and its most significant properties. The NLS equation is

−i
∂u

∂z
= 1

2

∂2u

∂t2
+ |u|2u. (1.1)

As its name suggests, Eq. (1.1) is similar to the well-known Schrödinger equation
of quantum mechanics. Here, of course, it has nothing to do with quantum
mechanics. Rather, it is just Maxwell’s equations, adapted to field propagation
in single-mode optical fiber. However, the analogy to quantum mechanics may be
instructive to some, as the nonlinear term (the second on the right) is analogous
to a negative potential energy, which allows the possibility of self-trapped pulse
solutions. These are the solitons, which are the central concern of this book.

In a single-mode fiber, there is only one possible spatial behavior in the trans-
verse dimensions x and y, so that we need to deal only with appropriate averages
of the field quantities over those dimensions. Thus, the NLS equation involves
only distance along the propagation direction, z, and time, t. The complex quan-
tity u(z, t) is proportional to the light field, with the “central optical frequency”
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2 1 ♦ The Nonlinear Schrödinger Equation and Ordinary Solitons

(a frequency arbitrarily chosen somewhere near the mean frequency of the pulse)
and the mean time of flight to location z removed; the latter is done so that the
pulse always remains in view. The absolute magnitude of u represents the ampli-
tude envelope of the pulse. The phase of u, both in its average change with z and in
its variation across the pulse, is equally important in determining the way a pulse
propagates.

When polarization is an issue, two functions u(z, t) are required, one for each
of the two possible (orthogonal) polarization states. Mild birefringence of the
(nominally cylindrical) fibers tends to make the path-average behavior of these
two functions nearly identical, however, so usually just one u can be taken as
representative, to tell us all we really want to know. (A detailed look at polarization
and its effects is taken up in Chapter 7.)

The solutions u(z, t) of Eq. (1.1) directly yield the temporal form of the pulse
as seen by an observer at the location z; thus, in the context of telecommunica-
tions, time and distance are typically on the scales of picoseconds and kilometers,
respectively. Of course, u can be easily transformed to yield the complementary
picture where the observer takes a snapshot of the pulse (i.e., observes it as a
function of z) at various different times. In the latter picture, one has such familiar
terms as group velocity and group velocity dispersion. In the former picture, one
has (transit) time delay and time delay dispersion. In this book, as in almost all
work on pulse propagation in fibers, we shall adhere to this former view.

It should be emphasized that t in Eq. (1.1) represents retarded time, i.e., ordinary
time, but with the transit time delay of a pulse at the central frequency subtracted
off. Also, in the frequency spectrum of a pulse satisfying Eq. (1.1), the frequency is
the actual frequency minus the central frequency. This makes it much easier to see
changes in the pulse shape and spectrum, and deviations from the expected arrival
time of a pulse, especially after it has traveled a great distance down the fiber.

The first term on the right of Eq. (1.1), the one involving the second derivative
with respect to time, describes the effects of chromatic dispersion. (This is more
evident in the Fourier transform of the equation, where the second derivative with
respect to time becomes more simply minus the square of the frequency.) It is
important to note that this linear term, when acting by itself, does nothing to
change the frequency spectrum of the pulse. It serves only to broaden (or narrow)
the pulse in time.

The second term on the right of Eq. (1.1) is the nonlinear term. Note that it is
just the pulse’s intensity envelope times u itself. It is based on the fact that the
index of refraction, as will be detailed shortly, is dependent on the light intensity.
It is important to note that this term, when acting by itself, does nothing to change
the pulse shape in time. It serves only to broaden (or narrow) the pulse in the
frequency domain.
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We will study many modifications of the NLS equation pertinent to light field
propagation in glass fibers. The foremost is the power loss (or gain) in the fiber.
Loss is primarily due to absorption and scattering. Gain can be incorporated in the
fiber, as we shall detail later. When loss or gain is taken into account, Eq. (1.1)
becomes

−i
∂u

∂z
= 1

2

∂2u

∂t2
+ |u|2u − i

1

2
α u, (1.1a)

where a positive or negative value of α implies, respectively, gain or loss. The
factor of one-half in the α term causes α itself to represent power (or energy) loss
or gain per unit length.

Equation (1.1) is applicable when the loss/gain term can be neglected (as can
happen, even in very long fibers, through the application of loss-canceling optical
gain). It is a much studied equation, as it is one of the few that support solitons.
Solitons are a class of solitary wave pulses that can pass through one another with
no scattering. Zakarov and Shabat [1, 2] most elegantly showed that the general
solution of Eq. (1.1) consists of solitons accompanied by smaller dispersive fields
called “radiation.” They used a method called the “inverse scattering transform,”
which is a kind of nonlinear Fourier transform. (There will be more on the inverse
scattering transform and its consequences in Chapter 4.)

Equation (1.1) has the special solution

u(z, t) = sech(t) exp(iz/2), (1.2)

known as the fundamental soliton. It is a particular pulse of unit amplitude whose
mean frequency is the central frequency. [For the benefit of those unfamiliar with
it, the hyperbolic secant (sech) function, defined as sech(t) = 2/[exp(t)+exp(−t)],
has a shape similar to the more familiar Gaussian function, but it has a narrower
peak and broader wings.] Note that since the phase term in Eq. (1.2) has no
dependence on t, the soliton is completely nondispersive. That is, its shape does
not change with z either in the temporal domain, as shown explicitly here, or in the
frequency domain. It happens that the Fourier transform of a sech function is also
a sech function. In particular, the Fourier transform of Eq. (1.2) is proportional
to sech(πω/2). This invariance with propagation occurs, for the soliton, since the
dispersive and nonlinear terms of the NLS equation cancel each other’s effects,
leaving only a phase shift of the whole pulse. It may at first seem somewhat
mysterious that the dispersive term, which affects the pulse only in the time domain,
can cancel the nonlinear term, which affects the pulse only in the frequency domain.
As we shall soon see, however, the explanation of this seeming paradox is quite
straightforward, since over very short distances both terms modify only the phase
of the pulse.
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At this point the reader may well ask, “Where are the fundamental physical
constants, such as the speed of light or the nonlinear index coefficient, and where
are the parameters particular to the problem, such as the pulse width and power, and
the fiber’s dispersion parameter and core area?” The answer is that they have been
incorporated into definitions of special “soliton units” used to measure distance,
time, and power, in such a way that the NLS equation has the simple appearance
of Eq. (1.1). This scheme of special units provides yet another simplification, this
time to facilitate solution through numerical simulation, and by often enabling
interpretation of the results in terms of a range of pulse parameters, instead of
for just one particular set. The scaling of the soliton units with pulse and fiber
parameters is of fundamental importance, both for understanding and for their
engineering consequences. Thus we shall examine that behavior thoroughly in the
following sections.

The theme of this book is the study of solitons in communications systems. Thus
the pulses we are concerned with are always “narrow band” in the sense that their
spectral width is much less than their mean frequency. As such, we note that the
NLS equation, either as displayed in Eq. (1.1), or with minor modification, tends to
embrace all dispersive and nonlinear phenomena that may be of interest here. For
example, the basic NLS equation supposes that a quadratic function adequately
describes the dispersion relation k(ω) over the bandwidth of concern. For shorter
pulses, this may not be a completely adequate description. Usually, however,
departures from quadratic dispersion are small and can be treated as perturbations
of the basic equation. Another example is the Raman effect, which can transfer
energy from higher frequencies to lower frequencies within a pulse or between
pulses of different frequencies. The NLS equation supposes that the nonlinearity
of the refractive index is instantaneous. The Raman effect can be heuristically
regarded as resulting from a small delay in the establishment of the nonlinear
index. For pulses longer than a few picoseconds in typical glass fibers, these
effects are small and can often be accounted for in simple ways, but they cannot
be neglected. Other yet smaller effects are present, but can usually be ignored for
our purposes.

1.2. Fiber Dispersion and Nonlinearity

1.2.1. Dispersion Relations and Related Velocities

If “weak” monochromatic light at some angular frequency ω enters a fiber, the
wavelength λfiber of the resulting lightwave in the fiber is determined mainly by
the refractive index of the fiber and to a lesser extent by its guiding properties.
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The phase φ of the lightwave has the form φ(z, t) = kz−ωt, where the wavenumber
k is equal to 2π /λfiber , and z is the distance along the fiber. Central to the problem
of lightwave propagation in the fiber is the dependence of the wavenumber k
on the frequency. This is the dispersion relation k = k(ω). For plane waves
in vacuum it is simply k = ω/c. For plane waves in an isotropic transparent
medium it is k = nω/c, where n is the refractive index at frequency ω. For a
single-mode transmission line consisting of fiber core and cladding, we can also
use the same form k = nω/c with the caveat that n has now an effective value
intermediate between the values for core and cladding, depending on the transverse
mode shape.

An observer moving with velocity v = dz/dt will observe the phase φ to change
with time according to

dφ(z, t)

dt
= kv − ω. (1.3)

If we require the phase to be constant in Eq. (1.3), the needed velocity is v =
ω/k. This is the velocity with which any point of constant phase on the wave
travels down the fiber. It is called the phase velocity vp, and its value is just c/n.
If we add a second wave at a slightly different frequency, the combined wave
will be modulated, with greater amplitude where the two frequency components
are in phase and add, and lesser where they are out of phase and subtract. To
follow the modulation envelope, our observer must travel at a velocity such that
the rate of change of the phase difference between the two waves is zero. From
Eq. (1.3) we thus require k1v − ω1 = k2v − ω2, where the indices 1 and 2 refer
to the two waves. The required velocity is v = (ω1 − ω2)/(k1 − k2). The group
velocity vg(ω) is this velocity in the limit of a small frequency difference. Thus,
we have

vg(ω) = dω

dk
. (1.4)

Phase and group velocities usually differ, hence one will generally observe the
phase moving with respect to the envelope of a modulated wave. Finally, consider
a pulse having a continuous band of frequency components. Such a pulse is most
highly peaked if all of its frequency components have the same phase at some
common time and place. The pulse envelope will tend to move with its average
group velocity, but if the group velocity varies with frequency, i.e., there is some
group velocity dispersion, then the pulse will spread as it propagates, becoming
chirped as its various frequency components separate in time. We shall see this
behavior in more detail in the following sections.
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1.2.2. Inverse Group Velocity and Retarded Time

In dealing with lightwave propagation in fibers, it is natural to observe a pulse
as a function of time at various locations along the fiber. To record the progress
of a pulse, we therefore plot power versus t for a succession of values of z. This
has two consequences for how we choose to represent time and velocity. First, the
inverse of Eq. (1.4),

v−1
g (ω) = dk

dω
, (1.5)

or inverse group velocity (rate of change of time with respect to distance), is clearly
more immediately useful than is the group velocity itself. Second, to avoid having
to deal with awkwardly large times as z becomes large, the time window must be
moved as z is varied. However, we can easily manage this movement by invoking
the retarded time mentioned in the introduction (Section 1.1). Once again, a pulse
traveling with the group velocity vg will appear to be stationary in a retarded time
frame t′ such that t′ = t − v−1

g z. This is a standard trick used to simplify the
analysis.

1.2.3. The Dispersion Parameter

As applied to optical fibers, the term “group velocity dispersion” almost always
refers to variation with frequency or wavelength of the inverse group velocity
defined by Eq. (1.5). (More accurately, it is sometimes called “time delay dis-
persion.”) Thus, the term can refer either to the quantity d2k/dω2 (often referred
to in the literature as “β2”), or, as is more frequently encountered, especially in
engineering papers, the wavelength derivative of v−1

g (almost always called “D”).

Thus, D is related to d2k/dω2 or the refractive index by

D = d

dλ

(
v−1

g

)
= −2πc

λ2

d2k

dω2
= −λ

c

d2n

dλ2
. (1.6)

(Incidentally, here, and from now on throughout this book, the symbol λ, without
a subscript, will always refer to the vacuum wavelength.) D is usually expressed
in units of picoseconds of delay, per nanometer of wavelength change, per kilo-
meter of fiber length, while d2k/dω2 (“β2”) is expressed in the related units of
picoseconds squared per kilometer. By a fortunate accident, for wavelengths in
the middle of the 1500-nm band, the numerical values of these two quantities, when
expressed in those units, respectively, are roughly the same, save for algebraic sign.
The conversion factor, at λ = 1555 nm, is (−1.27)x ps/nm-km ∼= x ps−2. Thus, for
example, a dispersion D = 16 ps/nm-km (typical of standard single-mode fiber)
becomes β2 ∼= −20 ps2/km.
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Figure 1.1 Dispersion parameters for several transmission fiber types as a function of
wavelength. For interpretation of the abbreviations, see text.

Figure 1.1 shows D as a function of wavelength for several typical single-mode
transmission fibers, viz., “standard single-mode fiber” or simply “standard SMF,”
“dispersion-shifted (DS) fiber,” “reduced-slope, non-zero dispersion-shifted fiber”
(RS non-zero DS), and “inverse dispersion fiber” (IDF). Another fiber type of
considerable technological importance is the so-called “dispersion-compensating
fiber,” or DCF, whose D ≈ −100 ps/nm-km is beyond the scale of Fig. 1.1.
The dispersion of standard SMF reflects almost entirely the material properties of
the silica-glass core from which it is made. For the other types, however, various
amounts of “modal dispersion” have been added to the material dispersion to
create the respective dispersion curves. [The required modal dispersion is created
through adjustment of the fiber’s “index profile,” i.e., the (often complex) way the
index of refraction varies outward through the fiber’s core and into the cladding.]
Note that the zero dispersion wavelength of the standard single-mode fiber occurs
at about 1300 nm. In ordinary fibers, the addition of modal contributions can only
push that zero dispersion point to longer wavelengths. Thus, solitons, which require
D > 0 (anomalous dispersion), can exist in standard SMF only for wavelengths
greater than about 1300 nm, and only for even greater wavelengths in the others.
(The very recent invention of “photonic-crystal fibers” [3–6] has lifted this barrier,
however, since at least some of them possess D > 0 for wavelengths considerably
shorter than 1300 nm [7, 8].)

For modern silica-glass transmission fibers, the loss factor tends to be dominated
by Rayleigh scattering, which scales as λ−4, until the onset of fundamental infrared
absorption in the 1600-nm region reverses the rapid fall of loss with increasing
wavelength. The loss rate minimum thus tends to occur at roughly 1570 nm for
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most transmission fibers. That minimum value is about 0.19 dB/km for standard
SMF, rises to about 0.21 dB/km for the dispersion-shifted fibers, and tends to
become much larger (∼0.7 dB/km) for the very strongly negative D fibers such
as DCFs. This rise in loss results from increased microscopic irregularities (hence
increased Rayleigh scattering) that accompany the more complex index profiles.
There is a similar monotonic trend in the fiber’s effective core area. Thus, Aeff , in
units of micrometers squared, ranges from a high of 80 µm2 for standard SMF,
through values in the neighborhood of 50 µm2 for the dispersion-shifted fibers, to
a low of about 15 µm2 for DCFs.

1.2.4. Fiber Nonlinearity

The induced polarization in a nonlinear dielectric takes the form

P = ε0

[
χ (1) · E + χ (2) · EE + χ (3) · EEE + · · ·

]
,

where P and E are the polarization and electric field vectors, respectively, and
the susceptibilities χ (n) are nth rank tensors. Since the glass of optical fibers is
isotropic, one has simply χ (1) = n2 − 1, where n is the index of refraction, while
χ (2) = 0. The effects of χ (3) of interest here are nonlinear refraction and four-wave
mixing. Raman scattering becomes important for shorter pulses than we consider
here; third harmonic generation is negligibly small.

In silica-glass fibers, because of their isotropy, and because of the relatively
small value of χ (3), the index can be written, with great accuracy, as

n
(
ω, |E|2

)
= n(ω) + n2|E|2; (1.7)

here n2 is related to χ (3) by

n2 = 3

8n
χ (3)

xxxx , (1.8)

where χ
(3)
xxxx is a scalar component of χ (3), appropriate to whatever polarization

state the light may have at the moment.
Even the highest quality transmission fibers are mildly birefringent, however,

so that the polarization state of the light tends to change significantly on a scale
of no more than a few meters. In the meantime, the nonlinear effects of interest
in long-distance transmission tend to require many kilometers of path for their
development. Thus, in general, in optical fibers we are usually only interested in
n2 as suitably averaged over all possible polarization states. In silica-glass fibers, if
we write the nonlinear index as n2I , where I is the intensity in watts per centimeter
squared, then the latest measurements of n2 yield such a polarization-averaged
value of about 2.6 × 10−16 cm2/W.
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1.3. The NLS Equation: Derivation and Fundamental
Consequences

1.3.1. Derivation

We now consider lightwave propagation in a fiber that has both group velocity
dispersion and index nonlinearity. Let the lightwave in the line be represented by
a scalar function U(z, t) proportional to the complex field amplitude, such that the
power P in the line is given by

P = Pc|U|2. (1.9)

The proportionality constant Pc can be considered as a power unit. For frequen-
cies near some central frequency ω0, the generic dispersion relation k = nω/c can
be expanded to the approximate form

k = k0 + k′(ω − ω0) + 1

2
k′′(ω − ω0)2 + kNLP. (1.10)

Here the primes indicate partial differentiation with respect to ω, and kNL is
given by

kNL = 2π n2

λ Aeff
. (1.11)

Equation (1.11) is derived from the relation k = 2πn/λ applied to the second
term on the right of Eq. (1.7). The quantity Aeff is the effective fiber core area,
i.e., that area which yields the proper average intensity when the pulse power
is divided by it. Note that Eq. (1.10) has the form of a Taylor series expansion
of k(ω, P) in the neighborhood of (ω0, 0). As such, it adequately describes the
propagation of monochromatic waves U = u0 exp(ikz − iωt) in the line so long
as the frequency does not stray too far from ω0. It leads directly to the nonlinear
Schrödinger equation. For solitons in fibers, the last two terms of Eq. (1.10) are
of comparable importance, kNL is positive, k′′ is negative, and succeeding higher
order terms [e.g., k′′′(ω − ω0)3, k′

2(ω − ω0)P, etc.] can be neglected or adequately
treated as perturbations. For the moment, we assume that the line has no loss or
gain; i.e., that the constants k0, k′, k′′, and kNL are all real.

The expression for the inverse group velocity, namely

v−1
g = ∂k

∂ω
= k′ + k′′(ω − ω0), (1.12)

identifies k′ as the inverse group velocity at frequency ω0, and k′′ as its frequency
dispersion constant. (Thus, k′′ is just the quantity we have already discussed in
Section 1.2.3, but this time expressed as a partial derivative, on account of the
assumed additional dependence of k on power.)
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The term kNLP in Eq. (1.10) represents the primary nonlinear effect, self-phase
modulation, resulting from the intensity dependence of the refractive index of the
fiber. Note from Eq. (1.12) that the dependence of the group velocity on power is
among the higher order terms not included in Eq. (1.10).

To derive the NLS equation, it is only necessary to consider the propagation of a
monochromatic field. [If higher terms are included in Eq. (1.10) one must consider
two or more frequencies.] Thus, let U = u0 exp(−iωt + ikz). If we now remove
the central frequency and the corresponding wavenumber from U by defining

u(z, t) = Uei(ω0t−k0z) (1.13a)

so that when U is written out explicitly, u(z, t) becomes

u(z, t) = u0ei[(k−k0)z−(ω−ω0)t], (1.13b)

then the wave equation for u that is necessary and sufficient to reproduce exactly
our initial dispersion relation Eq. (1.10) is

−i
∂u

∂z
= (k − k0)u = ik′ ∂u

∂t
− 1

2
k′′ ∂2u

∂t2
+ kNLPc|u|2u. (1.14)

This can be shown by inserting Eq. (1.13b) in Eq. (1.14).
The standard form of the propagation equation is generated from Eq. (1.14)

by transforming to the retarded time frame (this eliminates the k′ term) and by
choosing unit values of time and distance such that k′′ = −1 and kNL = 1 when
measured in those units and the power unit already mentioned. The appropriate
new variables are

t′ = (t − k′z)/tc, (1.15a)

z′ = z/zc, (1.15b)

where the unit values tc, zc, and Pc satisfy the relations

t2
c /zc = −k′′ = λ2D/(2πc), (1.16a)

zcPc = 1/kNL . (1.16b)

In terms of these new variables, the resulting equation (after we drop the primes
on z and t) is clearly just the NLS equation, Eq. (1.1).

There is an important arbitrariness left in the definitions of the three unit values
zc, tc, and Pc, since there are only two relations [Eqs. (1.16a) and (1.16b)] that
they must satisfy. One unit value may be chosen freely, and thus different real-
world fields can be represented by the same solution of Eq. (1.1), and vice versa.
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In particular, if one solution of Eq. (1.1) is u(t, z), then different scalings of the
same real-world field give other solutions of the form Au(At, A2z), where A is the
ratio of the values of tc. This scaling transformation of the solutions of Eq. (1.1)
can be verified by direct substitution.

For the accurate study of sub-picosecond pulses with correspondingly wide
bandwidths, it is necessary to modify the dispersion relation, Eq. (1.10) and thus
the propagation equation. Higher order terms such as third-order dispersion [pro-
portional to (ω −ω0)3] and power dependence of the group velocity [proportional
to P(ω −ω0)] become appreciable and need to be added. Furthermore, the Raman
effect, which is reproduced in first order by a delay of a few femtoseconds in the
nonlinear response of the fiber, begins to have noticeable consequences.

The reader may well note that this derivation did not begin with Maxwell’s equa-
tions (as might have been anticipated), nor has it depended in any way on specific
reference to lightwaves or optical fiber! (The words “lightwave” and “fiber” in the
opening sentences were not intrinsic to the derivation.) Thus, this derivation can
be taken to apply to any transmission line whose dispersive and nonlinear proper-
ties can be represented by Eq. (1.10). The transmission line need not even involve
light—it could be, for example, a coaxial cable using a nonlinear dielectric or a
string made of suitably nonlinear elastic. In this way, it is much more powerful, and
affords greater insight, than direct transformation of Maxwell’s equations. For the
purposes of this book, of course, we shall specialize it to Maxwell’s equations and
optical fibers. That specialization is the subject of the next section on soliton units.

1.3.2. Soliton Units

Equation (1.1) is often referred to as a dimensionless form of the nonlinear
Schrödinger equation. As already indicated in the introduction, however, it is
more useful to think of it as having specific dimensions, with z, for example, being
a distance always measured in units of zc rather than in meters or kilometers or
any other standard unit. Thus, z = 2 means a distance of 2 × zc. Similarly, tc
and Pc become the units of time and power, respectively. Since we are primarily
interested in solitons, it is convenient to tie these three units (which so far are very
general in meaning) to the specific requirements of solitons. The canonical single
soliton solution of Eq. (1.1), already displayed in Eq. (1.2), has a full width at half
maximum power (FWHM) of 
t = 2 cosh−1(

√
2) ≈ 1.763. In order for this form

to represent some soliton whose FWHM is τ (in picoseconds, for example), we
need simply to take

tc = τ

1.763
. (1.17)
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The unit distance, zc, is a characteristic length for effects of the dispersive term,
and is given by

zc = 1

(1.763)2

2πc

λ2

τ 2

D
, (1.18)

where c and λ are the light velocity and wavelength in vacuum, respectively, and
where D is the dispersion constant, as already described in Section 1.2.3. When
D is expressed in the usual units of picoseconds per nanometer per kilometer, τ in
picoseconds, and for λ =1557 nm, Eq. (1.18) becomes

zc ≈ 0.25τ 2/D, (1.18a)

where zc is in kilometers. Note that for the pulse widths (τ ∼ 15–50 ps) and
dispersion parameters (D ∼ 0.3–1 ps/nm-km) most desirable for long-distance
soliton transmission, zc is hundreds of kilometers.

The unit of power, Pc, is just the soliton peak power, and is given by the formula

Pc = 1

kNLzc
= Aeff

2πn2

λ

zc
=
(

1.763

2π

)2 Aeff λ
3

n2c

D

τ 2
, (1.19)

where n2, the nonlinear coefficient, has the polarization-averaged value already
cited (see Section 1.2.4). Thus, for Aeff ∼ 50 µm2, and λ =1557 nm, one has
Pc ≈ 476/zc, where Pc is in milliwatts and zc is in kilometers. Note that for zc of
hundreds of kilometers, the soliton power is just a few milliwatts.

The soliton pulse energy, another very useful quantity, is given by

Wsol = Pc

∫ ∞

−∞
sech2(t/tc) dt = 2Pctc = 2

1.763
Pcτ = (1.346)Pcτ , (1.20)

or, substituting the expression for Pc in Eq. (1.20), we get

Wsol = 1.763

(2π )2

Aeff λ
3

n2c

D

τ
. (1.20a)

Thus, again for Aeff ∼ 50 µm2, and λ = 1557 nm, one has Wsol ≈ 2000(D/τ ),
where Wsol is in femtojoules and D and τ are in the usual units (ps/nm-km and ps,
respectively). Note that for D = 0.5 ps/nm-km and τ = 20 ps, Wsol is about 50 fJ.
While this is a small energy, it comprises about 4 × 105 photons. As we will show
later, this is what allows us to treat quantum effects in a simple way.

1.3.3. Pulse Motion in the Retarded Time Frame

Another important transformation of the solutions of Eq. (1.1) is that produced by
a carrier frequency shift. Because the inverse group velocity dispersion constant
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has the value −1 in the soliton unit system, a frequency shift produces an inverse
group velocity shift of equal magnitude. Thus, for the same solution as that given
by Eq. (1.2), one finds yet other solutions, frequency shifted by � (in units of t−1

c ),
of the form

u(t + �z, z)e−i(�t+�2z/2). (1.21)

This transformation also applies to any solution of Eq. (1.1).

1.3.4. A Useful Property of Fourier Transforms

Shortly, we shall have need of the following simple relation between the Fourier
transforms of u(t) and those of its time derivatives: Let u(t) and ũ(ω) be Fourier
transforms of each other, i.e.,

u(t) = 1√
2π

∫ +∞

−∞
ũ(ω)e−iωtdω and ũ(ω) = 1√

2π

∫ +∞

−∞
u(t)eiωtdt.

(1.22)

We are using the tilde symbol to imply a function of frequency. Successive time
differentiations of the first expression in Eq. (1.22) show that ∂u(t)/∂t and −iωũ(ω)
are also Fourier transforms of each other, as are ∂2u(t)/∂t2 and −ω2ũ(ω), and so on.

1.3.5. Action of the Dispersive Term in the NLS Equation

To obtain the action of the dispersive term alone, we temporarily turn off the
nonlinear term, so that Eq. (1.1) becomes

∂u

∂z
= i

2

∂2u

∂t2
. (1.23)

The problem is most easily solved in the frequency domain. The Fourier transform
of this last equation yields

∂ ũ

∂z
= − i

2
ω2ũ, (1.24)

and its solution is

ũ(z, ω) = ũ(0, ω)e−iω2z/2. (1.25)

From the form of this general solution, it should be clear that the dispersive term
merely rearranges the phase relations among existing frequency components; it
adds no new ones. To find how the dispersion affects a pulse, we must transform
back to the time domain. An example that has an instructive analytic solution is
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the Gaussian pulse. Taking u(0, t) = e−t2/2, we have ũ(0, ω) = e−ω2/2, and upon
turning the crank we get

u(z, t) = 1√
1 + iz

exp

[ −t2

2(1 + z2)
(1 − iz)

]
. (1.26)

In the near field (z2 � 1) the pulse gets some chirp (change of frequency across the
pulse), but the pulse shape does not change (see Fig. 1.2). In the far field (z2 � 1)
the field approaches

u(z � 1, t) ≈ 1√
1 + iz

exp

(
− t2

2z2
+ i

t2

2z

)
, (1.26a)

which shows how dispersion fans the field out into a spectrum of its various
frequency components. The frequency is chirped; the local frequency, (−1) times
the time derivative of the phase of u, is ω = −t/z. Thus in the far field, the lines
of constant frequency ω fan out according to t(z) = −ωz. Also, there is a general
rule that is demonstrated here: In the far field the intensity distribution |u(z, t)|2 is
proportional to the initial spectral distribution |ũ(0, ω)|2 evaluated at ω = t/z.

As depicted in Fig. 1.2, note that the intensity envelope |u|2 ∝ exp[−t2/(1+z2)].
Thus the pulse width grows as

τ = τ0

√
1 + z2, (1.27)

where τ0 is the initial, minimum pulse width. We see that the change in τ is only to
second order in z at the origin. This may also be seen directly from the differential
equation, where we note that if u(t) has a constant phase, then ∂u/∂z is everywhere
in quadrature with u. This initially slow scaling of pulse width with z is important
to creation of the soliton.

0 1 2 3
0

1

2

3

z/zc

τ/
τ 0

Figure 1.2 Dispersive broadening of a Gaussian pulse with distance.
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1.3.6. Action of the Nonlinear Term in the NLS Equation

To observe the action of the nonlinear term of Eq. (1.1) alone, we turn off the
dispersive term, so the equation becomes simply

∂u

∂z
= i|u|2u. (1.28)

The problem is most naturally solved in the time domain, where the general
solution is

u(z, t) = u(0, t)ei|u|2z. (1.29)

From the form of this general solution, it should be clear that the nonlinear term
modifies the phase shift across the pulse, φ(t), but not the intensity envelope. Thus,
it only adds new frequency components. This is the phenomenon of “self-phase
modulation,” or SPM for short.

To get the spectral spreading, we must transform back to the frequency domain.
Once again, for example, let u(0, t) = e−t2/2. In that case, one has

ũ(z, ω) = 1√
2π

∫ ∞

−∞
u(0, t)ei|u|2zeiωtdt = 1√

2π

∫ ∞

−∞
e−t2/2eize−t2

eiωtdt.

(1.30)

For z � 1, this integral produces a multipeaked spectrum, where the number of
peaks and the overall spectral width increase directly with z (see Fig. 1.3). The
numbers at each spectrum indicate the peak nonlinear phase shift. However, for
z � 1, the integral is approximately

1√
2π

∫ ∞

−∞
e−t2/2

(
1 + ize−t2

)
eiωtdt = ũ(0, ω) + iz√

3
ũ(0, ω)3. (1.31)

Note that once again, the new component is in quadrature with the original pulse,
so the increase in net spectral width scales only as z2. Thus, the initial increase,
here in bandwidth, is also only to second order in z. This behavior is equally
important to the creation of the soliton as was the increase in pulse width from
the dispersive term.

1.4. The Soliton

1.4.1. Origin of the Soliton

We are now finally in a position to discuss the origin of the soliton. In the introduc-
tion (Section 1.1), we stated that the soliton is that pulse for which the nonlinear
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Figure 1.3 Spectral broadening of a Gaussian pulse at zero dispersion. The number at
each spectrum indicates the corresponding peak nonlinear phase shift.

and dispersive terms of the NLS equation cancel each other’s effects. At first, it
may seem mysterious that the tendencies to spectral and temporal broadening can
cancel one another. As we have just taken pains to show, however, whenever one
starts from an unchirped pulse, such as sech(t), there is no broadening of either
kind to first order in z (to be thought of as dz). Instead, the first-order effects of
both terms are just complementary phase shifts dφ(t). We have already seen how
the nonlinear term generates dφ(t) = |u(t)|2dz. For the dispersive effect, first, we
recognize that if f (z, t) is real, then the general equation

∂u

∂z
= if (z, t)u (1.32)

simply generates the phase change dφ(t) = f (0, t)dz in the distance dz. We then
write the reduced NLS equation in the form

∂u

∂z
=
(

i

2u

∂2u

∂t2

)
u. (1.33)

Thus, the dispersive term generates

dφ =
(

1

2u

∂2u

∂t2

)
dz. (1.34)
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Figure 1.4 Dispersive and nonlinear phase shifts of a soliton pulse and their sum.

For u = sech(t), these terms are, respectively,

dφNL = sech2(t) dz and dφdisp. =
[

1

2
− sech2(t)

]
dz. (1.35)

Note that these differentials sum to a constant (see Fig. 1.4), which, when inte-
grated, simply yields a phase shift of z/2 common to the entire pulse. In this way,
we arrive at the simplest form for the soliton, already displayed in Eq. (1.2).

It should also be noted that a common phase shift does nothing to change the
temporal or spectral shapes of a pulse. Thus, as already advertised, the soliton
remains completely nondispersive in both the temporal and frequency domains.
Nevertheless, the associated wavenumber shift of z/(2zc), or simply z/2 in soli-
ton units, is important in understanding interaction of the soliton with perturbing
nonsoliton field components.

1.4.2. Path-average Solitons

For reasons of economy, the loss-canceling optical fiber amplifiers of a long fiber
transmission line are usually spaced apart by a distance, which we shall call the
amplifier span, or Lamp, of several tens of kilometers. This spacing results in a rather
large periodic variation in the signal intensity, as illustrated in Fig. 1.5. In addition,
the dispersion parameter D may vary significantly within each amplifier span
(again, see Fig. 1.5).

Clearly, in that case, the differential phase shifts of the dispersive and nonlinear
terms [see Eq. (1.35)] do not cancel in every element dz of the fiber. Nevertheless,
if the condition

zc � Lamp (1.36)
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Figure 1.5 Sample of transmission line used for numerical test of the path-average soliton
concept. Here the desired D̄ is obtained by combining short lengths of high D fiber with
dispersion-shifted fiber (for which D 	 0), so there are large variations in D, periodic with
the amplifier spacing, as well as in the pulse energy.

is satisfied, and if, furthermore, the path-average values, Ī and D̄ of the intensity and
dispersion, respectively, are the same for every amplifier span, then one can still
have, at least in a practical sense, perfectly good solitons. The reason is that when
the inequality of Eq. (1.36) is well satisfied, as already shown, neither the temporal
nor spectral shapes of the soliton are significantly affected within each span. Thus,
all that matters is that, over each amplifier span, the path-average dispersive and
nonlinear phase shifts cancel (sum to a standard constant). Figure 1.6 illustrates
how very well this concept of “path-average” solitons [9–13] can work.1 Through
numerical simulation, it shows τ = 50 ps solitons before and after traversal of
15,000 km of transmission line whose spans are those of Fig. 1.5. For this case,
zc/Lamp ≈ 16. The difference between the output and input solitons, which can
only be seen on the logarithmic plot, appears in the form of very low-intensity tails
on the pulse. This defect, usually known as “dispersive wave radiation,” represents
the nonsoliton component of the pulse. When it is as small as shown here, it is
usually of no practical import. Even when zc/Lamp is as small as three or four, the
path-average soliton concept still works fairly well.

1 Although the meaning of the name tends to be obscure, the “guiding center solitons” of Ref. [13]
are essentially path-average solitons. We prefer the latter name, however, as it is more accurately
descriptive, is better known, and avoids confusion with the more apt use of the word “guiding” in
connection with jitter reducing filters (see Chapter 3).
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Figure 1.6 Solitons, for which zc 	 440 km, at input and after traversing 15,000 km of
the transmission line of Fig. 1.5. Note that the defects (dispersive tails on the pulse) are
extremely small. The defects have also been computed analytically.

There is another, complementary, insightful way of understanding the behavior
of path-average solitons, wherein the periodic fluctuations of the amplifier spans
are seen as a perturbation to provide phase matching between the solitons on the
one hand, and the linear, or dispersive, waves on the other. As we have just seen
in the foregoing discussion, the dispersion relation for solitons is just ksol = 1/2
(in soliton units), while that for the linear waves is klin = −(1/2)ω2. Clearly, the
amplifier spans provide kpert = 2πzc/Lamp. The phase-matching condition is

kpert = ksol − klin. (1.37)

If, as illustrated in Fig. 1.7, kpert is so large that the phase matching occurs only
where the spectral density of the soliton is small, then the path-average solitons
work well. On the other hand, if kpert approaches 1/2, then the phase matching will
be to a region of high spectral density, where a large fraction of the soliton’s energy
will drain away into dispersive (linear) waves, and the path-average soliton will not
work well. In this regard it is important to note that the inverse group velocity of
the linear waves is proportional to kpert − 1/2. Hence when kpert � 1/2, the linear
waves created by the perturbation quickly leave the vicinity of the soliton, reducing
their interaction with the soliton. The opposite occurs as kpert approaches 1/2.
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Figure 1.7 Dispersion relations (k(ω) for the soliton and for linear waves, and the spectral
density of the soliton. A perturbation of wave vector kpert phase matches linear waves of
frequency ω to the corresponding region of the soliton’s spectrum.

It is interesting that, historically, the concept of path-average solitons, and the
associated resonance condition for disaster (kpert = 1/2), were first encountered [9]
in these terms of phase matching.

1.4.3. Soliton Transmission in Dispersion-tapered Fiber

With ever-increasing bit rate, eventually the soliton pulse width, and hence zc,
become so short that it is no longer possible to satisfy the inequality of Eq. (1.36)
in a satisfactory way. Nevertheless, in principle at least, there is still a way to
have perfect soliton transmission with lumped amplifiers, and that is to taper the
fiber’s dispersion parameter D(z) to the same exponential decay curve as that of
the intensity itself. That is, D(z) should be given by

D(z) = αLampD̄

1 − exp(−αLamp)
e−αz = D0e−αz (1.38)
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so that Eq. (1.1a) becomes

−i
∂u

∂z
= D0

2D̄
e−αz ∂2u

∂t2
+ |u|2u − i(α/2)u. (1.39)

Clearly, the phase shifts generated by the dispersive and nonlinear terms of
Eq. (1.39) will cancel in each and every segment dz of the amplifier span, so
the solitons will be without perturbation. It is also easily understood that an
N-step approximation to the ideal dispersion taper of Eq. (1.38) can be tremen-
dously helpful, even when N is as small as two or three. Later, in the chapter on
WDM with ordinary solitons, we shall show how that tapered dispersion can help
to avoid excessive growth of four-wave mixing components (see Chapter 5).

1.4.4. More General Forms for the Soliton

Any single real-world soliton can be expressed in the simple form of Eq. (1.2) by
the appropriate choice of scale and central frequency. Alternatively, application to
Eq. (1.2) of the scale and frequency transformations discussed in Sections 1.3.1
and 1.3.3, respectively, yields the more general form

u = A sech[A(t − t0 + �z)] exp[−i�t + i
1

2

(
A2 − �2

)
z + iφ0]. (1.40)

The form given by Eq. (1.40) is necessary to the consideration of perturbation or
multisoliton problems, such as soliton–soliton collisions in WDM, for example.
The four parameters (A, �, t0, φ0) completely describe any single soliton. The first
two give the amplitude and frequency of the soliton, while the second two describe
the initial conditions at z = 0.

1.4.5. Numerical Solution of the NLS Equation: The Split-step
Fourier Method

The NLS equation is generally difficult to solve analytically. Numerical solution,
however, can be remarkably efficient, when it is based on the “split-step Fourier”
method (Fig. 1.8). The method is based on the fact that the effects of the dispersive
term are most naturally dealt with in the frequency domain, while those of the

z z + h z + 2h

Figure 1.8 Scheme of the split-step method.
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nonlinear term are best handled in the time domain. Thus, each increment h in z
is treated in two consecutive steps, as follows:

step 1: u(z, t) → ũ(z, ω); ũnew(z, ω) = ũ(z, ω)e−i(ω2/2)h;

and

step 2: ũnew(z, ω) → unew(z, t); u(z + h, t) = unew(z, t)ei|u|2h.

That is, in step 1, u(z, t) is Fourier transformed to ũ(z, ω), and then, to reflect the
dispersive effects of the element h, an intermediate state, ũnew(z, ω), is computed
from ũ(z, ω) according to the analytic solution of Eq. (1.23). In step 2, ũnew(z, ω)
is Fourier transformed back to make an intermediate state, unew(z, t). Then, from
unew(z, t), u(z + h, t) is computed according to the analytic solution of Eq. (1.27),
so that it now reflects the nonlinear effect of the element h as well. To increase
the accuracy of this scheme, in essence because one does not know whether the
dispersive change or the nonlinear change should come first, it is best to do a
half step of nonlinear change at the beginning of the sequence and then to do
another half step of nonlinear change at the end. Based on the ideas just discussed
with respect to path-average solitons, one can easily see that reasonable accuracy
can often be obtained with relatively large step sizes. Finally, note that fiber loss,
amplifier gain, filter response functions, and other frequency-dependent factors
are obviously most easily applied in the frequency domain.



Chapter 2

Dispersion-managed Solitons

2.1. Introduction

For those steeped in the lore of ordinary solitons, dispersion management, with
its strong periodic variation in pulse properties, is strongly counterintuitive.
Nevertheless, in 1995, in a seminal paper, Suzuki et al. [14] reported experi-
mental demonstration of essentially error-free 20-Gbit/s soliton transmission over
9000 km through strong reduction of the normally limiting Gordon–Haus jitter.
The trick was to use a periodic dispersion “map” that allowed the soliton pulse
energy to remain fixed in the face of greatly reduced D̄. A rash of papers soon fol-
lowed, pursuing the enhanced energy [15–18] and general pulse dynamics [19–24]
of these “dispersion-managed solitons.” Thus this early, almost exclusively numer-
ical work was largely focused on the behavior of isolated pulses, as were some
following real-world experiments [25–30].

Papers on “dense WDM” (wavelength division multiplexing involving many,
closely spaced channels) with dispersion-managed solitons tended to come some-
what later [31–35]. Nevertheless, as we shall soon see, dispersion management
is of tremendous importance to dense WDM. Dispersion-managed solitons in
particular offer unique advantages for the formation of ultra-long-haul, dense
WDM, all-optical networks. Before we can even begin to discuss these advan-
tages, however, we must first have the quick overview of dispersion management
and dispersion-managed solitons provided by the following section.

23
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2.1.1. Dispersion Management and Dispersion-managed Solitons

With dispersion management, the transmission line consists of segments of fiber
whose individual dispersion parameters (Dlocal) are of alternating algebraic sign
(Fig. 2.1). Furthermore, this arrangement, or “dispersion map,” is ideally periodic
(although, in practice, it need not be exactly so). For each map period, the accu-
mulated dispersions of the two segments nearly cancel, so that the path-average
dispersion parameter of the map, D̄, is usually much smaller than either D+

local or
|D−

local|. (Typically, D̄ is no greater than a few tenths of a picosecond per nanometer-
kilometer.) To support solitons, D̄ is also positive (anomalous dispersion).

It is instructive first to consider pulse behavior at very low intensities, when only
the dispersive term of the NLS equation is important. In response to the relatively
large, alternating Dlocal values, the pulse width tends to undergo a significantly
large fractional change, periodic with the map. This pulse “breathing” is accom-
panied and promoted by a similarly periodic variation in the chirp parameter, with
the chirp passing through zero at or near the center of each fiber segment. (Note
that the sign of the chirp at the end of each segment is that required for pulse
compression in the following segment.) But on a distance scale typically many
times greater than the map period, there is also a gradual net broadening of the
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Figure 2.1 Dispersion-managed solitons in a nutshell. Top: Scheme of a prototypical
dispersion map. Middle section: Pulse behavior (pulse width above and chirp below) in the
linear limit. Bottom section: Pulse behavior at the power level for solitons. Note that the
plots of pulse bandwidth (above) and pulse width (below) refer to the same zero.
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pulses, in response to the effect of D̄. This behavior is illustrated in the upper half
of Fig. 2.1.

Now, to obtain dispersion-managed solitons, we merely need increase the pulse
intensity until self-phase modulation (see Section 1.3.6) produces a phase shift
across the pulse that just cancels out the net phase shift produced by the dispersive
term within each map period. This periodic cancellation of phase shifts in turn
eliminates the net pulse broadening from D̄, so that the pulse behavior now becomes
truly periodic (the bottom curve of Fig. 2.1). The cancellation of phase shifts is
similar to that obtaining with ordinary solitons (Fig. 1.4), but with the important
difference that here, in general, the variation of phase across the pulse is quite
large. The variation becomes zero, of course, only at the points of zero chirp.

While the pulse field-envelope shape function of the ordinary soliton is sech(t),
that of the dispersion-managed soliton is essentially Gaussian. This is because of
the fact that in each segment, the large dispersive term (which scales with Dlocal)
dominates the much smaller nonlinear term (which scales with D̄), and because
the solution to the NLS equation, in the case of pure dispersion (as already shown
in Section 1.3.5), is a Gaussian.

The bottom half of Fig. 2.1 also shows the variation of pulse bandwidth (BW)
within the map. The fractional change, though small relative to the breathing in
pulse width, is nevertheless of great importance. That is, it tends to significantly
increase the amount of SPM required to generate the nonlinear phase shift needed
to cancel that from the dispersive term. That increase in SPM comes about as
follows: First, note that for a Gaussian pulse undergoing purely dispersive broad-
ening [Eq. (1.26)], the coefficient of t2 in the phase term scales as z/(1 + z2),
or, in the near field, simply as z, thus as z/zc in ordinary units. Since 1/zc [see
Eq. (1.18)] scales as D/τ 2, or equivalently, as D × (BW )2, the net phase shift from

the dispersive term scales approximately as
∫ Lmap

0 D(z)(BW )2 dz, and not just as∫ Lmap
0 D(z) dz. Thus, the fact that the average (BW )2 is larger in the D+ segment

than in the D− segment can bring about a large increase (typically, by a factor of
several times) in the net dispersive phase shift created by the two segments. The
resultant increase in required SPM, which we shall soon calculate more accurately,
means a corresponding increase in soliton pulse energy. This is the origin of the
“energy enhancement factor” that excited so much interest early on [15–18], and
that, as we shall soon see, has very important practical consequences.

It should be noted that the lengths of the individual segments of the dispersion
map need not be equal or nearly equal, as might be inferred from Fig. 2.1. Rather,
the only requirement is that the sum D+L+ + D−L− = D̄Lmap, where D+, L+
and D−, L− refer to the anomalous and normal dispersive segments of the map,
respectively. Thus, for example, it is common to have an 80- to 100-km span
of non-zero dispersion-shifted fiber (D+ ∼ 4–8 ps/nm-km) compensated by a
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several-kilometer-long coil of DCF (D− ∼ −100 ps/nm-km. Save for the very
different lengths of the two segments, however, the pulse behavior in that case is
just like that shown in Fig. 2.1.

Finally, it will be undoubtedly noted that we have not yet discussed the effects
of fiber loss, nor have we discussed schemes for the placement of amplifiers with
respect to the dispersion map. Although it is common engineering practice to place
amplifiers (or points for injection of pump power for Raman gain) at the end of
each map period, that need not necessarily be the arrangement. We shall discuss
these matters more fully in a later section.

2.1.2. Why Dispersion Management?

Dispersion management was invented to meet certain needs of dense WDM
[14, 36–38]. In the first place, four-wave mixing between adjacent channels (a
potentially most harmful effect, since it tends to cause severe amplitude and
timing jitter) is efficiently repressed by the large phase mismatch provided by
the large |Dlocal| values of the individual fiber segments. For example, consider a
system with the parameters Dlocal ≈ 6 ps/nm-km and 
f = 50 GHz (typical for
a 10-Gbit/s per channel system). Equation (4.19) then yields 
k = 0.76/km.
Because of this large phase mismatch, the E field of the four-wave mixing
product spirals rapidly in tight circles in the complex plane, and hence cannot
grow to significant size. [Note that, in this example, the circle is completed
(and hence nearly closes on itself, especially in Raman-amplified systems) once
every 2π /0.76 = 8.2 km.]

Second, fibers having the rather small D values needed for ordinary solitons,
constant over the wide wavelength bands required for dense WDM, simply do
not exist, and probably never will. For dispersion management, however, it is
possible to use combinations of fiber for which the path-average dispersion is
nearly constant. That is, as can be seen from the curves of Fig. 1.1, the dispersion
parameters of most fibers can be fairly represented over a typical WDM band by
the linear approximation D(λ) = D(λ0) + S × (λ − λ0), where λ0 is a wavelength
in the middle of the band and where S = ∂D/∂λ there. Clearly, if the ratio S/D
(or D/S) is the same for the D+ and D− fibers of the map, the (nearly zero) net
dispersion will tend to be constant. Several examples of fiber pairs permitting this
extra degree of freedom in map design are shown in Table 2.1.

Figure 2.2 shows the variation in path-average dispersion parameter typically
obtained from such fiber combinations. Note that the variation in D̄ for a 50-nm-
wide band (sufficient for 125 channels at 50 GHz/channel), centered about the
peak in the curve, is only about ±27% of the median value for that band. This
residual variation results primarily from fourth-order dispersion.
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Table 2.1 Parameters of Some Fiber Types Suitable for Use in Dispersion-
managed WDM Transmission

Fiber D (ps/nm-km) S(ps/nm2) D/S Aeff

Typea (at 1555 nm) (∂D/∂λ) (nm) (µm2)

Standard +16.7 +0.056 298 80
Low-slope DS +6.6 +0.045 147 50
IDF −17.7 −0.057 310 35
High-slope DCF −105 −0.35 300 20
Ultra-slope DCF −115 −0.78 147 18

aNote that the combination of standard fiber with either IDF or high-slope DCF on the one hand, or
of low-slope DS with ultra-slope DCF on the other, should allow for nearly constant D̄.
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Figure 2.2 Measured path-average dispersion parameter (D̄) for a 100-km-span low-slope
DS fiber, compensated with an ≈5.6-km-long coil of matching DCF (see Table 2.1), as a
function of wavelength. The data make an excellent fit to a shallow parabola whose peak
is at the center of the intended WDM band.

2.1.3. Why Dispersion-managed Solitons?

It will be noted that, thus far, the cited needs of dense WDM to be met by dispersion
management do not necessarily require dispersion-managed solitons. But when the
goal is to provide the backbone of an all-optical network, then the periodicity of
the solitons’ behavior, unique to them, becomes vital. The many important issues
surrounding the periodic nature of soliton transmission can be best discussed in
terms of Fig. 2.3. Although the choice is arbitrary, it is convenient to let the map
periods begin and end at the unchirped pulse positions in each coil of DCF, as in
Fig. 2.3. Note that the accumulated linear dispersion values shown there are the
discrete values obtaining at the end of each period, so that they correspond to the
product of D̄ and the particular transmission distance. Note further that the pre-
compensation (“pre-comp”) coil is really an integral part of the first map period,
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Figure 2.3 Dispersion compensation in a DMS system. In this view, the map periods
begin and end at the unchirped pulse positions in each coil of DCF; the accumulated linear
dispersion values shown here are those discrete values obtained at the end of each such
period. Note that the pre-comp and post-comp coils are really just integral parts of the map
periods (see text).

and that the post-compensation (“post-comp”) coil, save for an additional “jitter
reducer,” is likewise an integral part of the final map period. The jitter reducer
ideally represents a dispersion equal to −1/2 of the accumulated linear dispersion,
but the exact value is not at all critical, and thus, in practice, it can be set to the
best value for the longest distance to be encountered in the system. Finally, note
that the “effective net dispersion” for solitons is always zero at the end of each
map period. This scheme of dispersion compensation has the following important
consequences:

1. The pulse parameters (temporal width, bandwidth, energy, chirp, etc.) are
identical at the end of each map period, and the pulses are always well
resolved from each other in time. This periodic behavior in turn means that:

(a) The data can be read instantly anywhere, or at least at the end of any
map period.

(b) Standard (unchirped, minimum width) soliton pulses can be injected
anywhere (i.e., at the beginning of any map period).

2. The pre- and post-comp dispersion values are independent of distance.

These properties are exactly as required for the creation of an all-optical network,
and for efficient, inexpensive system monitoring. Their compatibility with the
use of standard parts (pre- and post-comp coils) are also very important for the
reduction of system cost and for the ease of system assembly. Once again, these
properties are uniquely supplied by dispersion-managed solitons.
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Figure 2.4 Dispersion compensation in a non-DMS system (see text).

It is instructive to look at the dispersion compensation scheme most often used in
non-DMS systems. There it is common to use much greater pre-comp dispersion,
so that the accumulated linear dispersion tends to pass through zero somewhere
near the halfway point of the net transmission distance (see Fig. 2.4). This scheme
represents an attempt to reduce cross-phase modulation (XPM) from interchannel
collisions by greatly broadening the pulses and thus making their peak intensities
lower over at least most of the path. Unfortunately, however, that action simultane-
ously greatly increases nonlinear penalties from certain intrachannel effects, such
as adjacent-pulse interaction and intrachannel four-wave mixing. [The four-wave
mixing tends to produce ghost pulses in the positions of “zeros” (bit slots where
there are no pulses) by transferring energy from adjacent ones [39].] Furthermore,
in strong contrast to solitons, most of the accumulated linear dispersion is not
compensated by self-phase modulation. In consequence, one has the following
facts:

1. Over much of the path, the pulses are strongly overlapped, so that the data
are not immediately readable.

2. The pre- and post-compensation dispersion values must be carefully tuned for
each distance. (The total of pre- and post-dispersion compensation required
is roughly proportional to the total distance.)

3. Even for a fixed distance, dispersion tends to make it impossible to properly
compensate all wavelengths of a wide WDM band with just one set of pre-
and post-compensation coils.

These facts argue strongly against the creation of an all-optical network and
efficient, inexpensive system monitoring!

2.1.4. A Shortcut for Computing DMS Behavior

Thus far, the discussion of dispersion-managed solitons has been largely quali-
tative. For real system design, however, we must compute exact pulse behavior,
often for many different possible dispersion maps, amplifier span gain profiles, and
initial pulse parameters. To do all of this computation by exact numerical solution



30 2 ♦ Dispersion-managed Solitons

of the NLS equation is tedious and time consuming. One can create an efficient
shortcut, however, by taking advantage of the fact that, as already stated, in a
DMS system, the pulse shape is Gaussian to a very good approximation. That is,
by applying that assumed pulse shape, or “Ansatz,” to the NLS equation, one can
create an equivalent set of ordinary differential equations, or ODEs, that are much
easier and faster to solve. Although several other ODE (largely variational [40–42])
approaches have been used by others, the nonvariational ODE method [43] we
describe here is especially efficient and easy to understand.

We write the (Gaussian) signal pulse in the following general form:

u(t) = √
W (η/π )1/4 exp

[
−1

2
(η + iβ)t2

]
, (2.1)

where 1/
√

η is a measure of the pulse width, and β is the chirp parameter. Let η0

refer to the unchirped pulse, i.e., η = η0 when β = 0. Clearly, if we know the
complex number η + iβ, and the pulse energy W , we then know all of the pulse
properties. In particular, for the pulse width in time, we have

1/
√

η = τ /
√

4 ln 2 = τ /1.6651 . . . , (2.2)

where τ is the intensity FWHM. The phase and frequency shifts across the pulse
are, respectively,

φ(t) = −1

2
βt2 (2.3a)

and

δω(t) = −βt. (2.3b)

Finally, the spectrum of the pulse [the Fourier transform, ũ(ω), of Eq. (2.1)] yields
the spectral intensity

|ũ|2 ∝ exp
[
−ηω2/

(
η2 + β2

)]
, (2.4)

which has an FWHM of


f = (1.6651 . . . /2π )
√

(η2 + β2)/η. (2.5)

Thus, the time–bandwidth product is τ
f = 0.441
√

1 + (β/η)2.
By applying the aboveAnsatz to the NLS equation, we get the following complex

ODE (really a pair of coupled ODEs) for η and β:

dq

dz
= i[1 − Kq2(�(1/q))3/2], (2.6)
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where

q(z, K) = η0/(η + iβ). (2.7)

The distance z is always measured in units of the characteristic dispersion length,
which, for a Gaussian pulse, is

zc = 1

4 ln 2

2πc

λ2

τ 2
0

D
. (2.8)

Note that, save for the leading numerical coefficient (which makes it about 1.12×
longer), this “Gaussian” dispersion length is the same as the “sech” dispersion
length of Eq. (1.18). The nonlinear coefficient K is calculated as

K = (2π )2

√
2 4 ln 2

n2c

λ3Aeff

τ 2
0

D
P = P

Pc
, (2.9)

where Aeff is the fiber core area, τ0 refers to the unchirped pulse, P is the peak pulse
power, and Pc is the peak power of an ordinary soliton of pulse width τ0 in fiber
of the (local) dispersion parameter D. Note that K = 1 corresponds to ordinary
solitons (although the Gaussian pulse shape is not quite right in that case), and
that dispersion-managed solitons tend to correspond to |K| � 1. Note also that
zc, K , and Pc are negative when D is negative. Although this convention and, in
particular, the concept of a negative dispersion length and negative unit power,
may seem strange at first, it is self-consistent, and avoids a certain awkwardness
that would occur without it.

If we let z = 0 correspond to the unchirped pulse (η = η0, β = 0), then
q(0, K) = 1. The solution to Eq. (2.6) then has the general form

q(z, K) = 1 + iz + K f (z, K). (2.10)

Note that the linear solution q = 1 + iz is the well-known solution for a
Gaussian pulse subject to pure dispersion, as already discussed in Section 1.3.5
[see Eq. (1.26)]. For K �= 0, a numerical solution is usually required to obtain the
quantity

q(z, K) − 1 − iz = K f (z, K), (2.11)

the so-called nonlinear residue.
Note that loss and the effects of Raman gain can be included by writing

K(z) = K0I(z), (2.12)

where I(z) is a normalized intensity or energy profile.
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Writing the real and imaginary parts of q as x and iy, respectively, the pulse
width, bandwidth, and chirp parameter can be obtained from them as follows:
First, the pulse width in time is

1√
η

= 1√
η0

√
x2 + y2

x


τ = τ0

√
x2 + y2

x


, (2.13)

while the bandwidth is

δω =
√

η2 + β2

η
=
√

η0

x

(

f = 1.665

2π

√
η0

x

)
(2.14)

and the chirp parameter is

β = − η0y

x2 + y2
. (2.15)

Finally, for λ = 1550 nm and n2 = 2.6 × 10−16 cm2/W, the pulse energy is

W (fJ) = 2548.2
50

Aeff (µm2)

D (ps/nm-km)

τ0 (ps)
K . (2.16)

An efficient computer program based on the Maple mathematics package, to
produce ODE solutions as outlined herein, is reproduced in Appendix A. From
input data consisting of details of the dispersion map, Raman pumping conditions,
and input pulse parameters, the program first calculates the signal energy profile
I(z) and, from that, K(z). It then uses the Maple program “dsolve” to obtain solu-
tions of Eq. (2.6), and, finally, it graphs the various pulse parameters as functions
of z. The program is very efficient, so that on a reasonably fast personal computer,
one can obtain a full picture of pulse behavior in a given map in just a matter
of minutes. Thus, the program has proved to be a very useful engineering tool,
enabling the exploration of system performance over a wide range of map designs
and pulse parameters in a relatively short time. It has also engendered a deeper
understanding of the fundamentals of dispersion-managed soliton transmission.
Much of the pulse behavior presented in this chapter was computed with this
program.

2.1.5. Pulse Behavior in Lossless Fiber

Before going on to study pulse behavior in“real” dispersion maps, where loss and
gain tend to complicate matters, it is instructive to survey behavior in lossless
fiber. Accordingly, Figs. 2.5–2.7 plot the most important pulse parameters (pulse
width, bandwidth, and chirp) as functions of distance (normalized to |zc|), with
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Figure 2.5 Pulse width (normalized to that of the unchirped pulse) in lossless fiber as a
function of distance for various values of the nonlinear parameter K. Note that the pulse
broadening in time, driven by the dispersive term, undergoes a monotonic reduction as
K ranges from −1 to 1.
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Figure 2.6 Pulse bandwidth (normalized to that of the unchirped pulse) in lossless fiber
as a function of distance, for various values of the nonlinear parameter K . The change in
bandwidth is, of course, driven by the nonlinear term. Indeed, note that for D < 0, the rate
of growth in bandwidth with z increases monotonically with increasing |K|. For D > 0,
however, the bandwidth declines, and the rate of decline increases with increasing K only
until K ∼ 0.6, when it begins to diminish, reaching 0 at K = 1. Finally, for K > 1, the
bandwidth once again begins to grow with z.
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Figure 2.7 Chirp parameter (normalized to η0) in lossless fiber as a function of distance,
for various values of the nonlinear parameter K . Note that beginning with the unchirped
pulse, the chirp at first increases almost linearly with distance (as the frequency components
of the pulse just begin to separate), then peaks and declines as the separation becomes
complete (when the range of frequencies is spread out over ever greater time).

the nonlinear coefficient K as the parameter. Note that for all three parameters, the
dispersive and nonlinear effects always enhance each other for D < 0, but tend to
diminish each other for D > 0. And of course, for the ordinary soliton (K = 1),
the dispersive and nonlinear effects disappear altogether.

It should be noted that these plots were computed by the ODE method of the
previous section, and hence are based on the Gaussian Ansatz. Thus, while they
are accurate, at least for |K| � 1, they represent a certain degree of approximation
for large |K|. Nevertheless, they give a rather complete and insightful picture, over
the entire range −1 ≤ K ≤ 1, of the interaction of the dispersive and nonlinear
terms of the NLS equation. Therefore, it is recommended to study them thoroughly
and with careful attention to detail.

2.1.6. Adjacent-pulse Interaction

There is one more important general aspect of pulse behavior in dispersion maps to
be considered before we can go on to a detailed examination of specific maps, and
that is the potential for an interaction between adjacent pulses in a data stream,
mitigated by excessive pulse breathing. That is, when adjacent pulses overlap,
each can induce a frequency shift on the other through cross-phase modulation
(see Chapter 4, Section 4.1.1). The interaction can perhaps best be understood
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Figure 2.8 Adjacent-pulse interaction (frequency shifts induced by cross-phase modula-
tion) as a function of pulse width normalized to the bit period T .

from the middle inset of Fig. 2.8. Consider, for example, the action of the rising
intensity envelope of the later of the two overlapping pulses on the earlier one. The
corresponding rising index change leads to the growth of a time-dependent phase
shift of the earlier pulse. Since the induced phase shift increases with time across
the pulse, it corresponds to a negative frequency shift. In like manner, the intensity
envelope of the earlier pulse induces a positive frequency shift on the later pulse.
The fiber’s dispersion then converts these frequency shifts into time shifts. Since
the effect tends to grow slowly, only the path-average dispersion matters in the
long run. Since, for dispersion-managed solitons, one always has D̄ > 0, the net
effect is that of an effective attraction between the two pulses in time.

Figure 2.8 shows how the interaction varies with the pulse width τ ,
as normalized to the bit period T . The calculation for the graph assumes con-
stant pulse widths, and hence does not average the interaction properly over the
range of pulse widths afforded by the pulse breathing. Thus, in particular, it tends
to greatly overestimate the effect in the limit of τ /T ≤ 0.5. Also, it does not
take into account interference between the two pulses. It should be noted that
constructive interference in the region of overlap (the usual case, i.e., where the
adjacent pulses are nominally in-phase) enhances the attraction, while destructive
interference in the region of overlap produces a repulsion. [Later, in Chapter 4,
we shall see how these interference effects are strongly operative in the case of
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ordinary solitons; in particular, see Eq. (4.58) and the discussion immediately
following it.] When dispersion-managed solitons overlap only slightly, however,
they tend to be highly chirped, so that the relative phases of the overlapping parts
vary rapidly in (retarded) time. Thus, in that case, interference effects tend to be
washed out. Despite all of these caveats, the graph of Fig. 2.8 shows the general
trend rather well, viz., that while the interaction is negligible or at least very small
for τ /T ≤ 0.5, it grows to a maximum in the neighborhood of τ /T ∼ 1, and then
declines again for τ /T > 1.

In any event, to avoid the error-inducing time displacements that may result
from the adjacent-pulse interaction, it is wise to restrict the maximum pulse width
in breathing to τmax ≤ T /2. The breathing is so restricted in all of the examples to
follow in this chapter.

Incidentally, it should be noted that the other extreme, where τ /T � 1, is
often called the “quasi-linear” regime, from the somewhat misguided idea that
the resultant low peak intensities of the pulses will significantly reduce unwanted
nonlinear effects. While that may be true for isolated pulses, the simultaneous
overlap and interference of many data pulses from a real data stream will result in
high intensities and serious nonlinear effects.

2.2. Pulse Behavior in Maps Having Gain and Loss

We are now in a position to study the behavior of pulses in maps having gain and
loss and other “real-world” properties. In particular, in the following sections we
shall study behavior in a few practical maps as a function of those parameters that
can be changed once the span lengths, fiber types, and amplification scheme of
a map have been fixed, viz., the unchirped pulse width τ0 and the path-average
dispersion D̄.

2.2.1. A Prototypical Real-world Map

The dispersion map shown in Fig. 2.9 [44] corresponds, with one exception, to
that used in an actual, commercial, ultra-long-haul dense WDM transmission sys-
tem. The mid-span, backward Raman pumping, used here to produce a nearly
perfect bilateral symmetry in the signal intensity profile, is not used commer-
cially for reasons of economy. Nevertheless, it is a very good map to display all
of the significant features. As will be shown later, the changes that occur when
the commercial pumping scheme is used are not particularly significant. In the
following sections, we shall study the pulse behavior in this prototypical map
thoroughly.
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Figure 2.9 Top: The prototypical dispersion map and pumping scheme for Raman gain.
The little rectangular boxes represent WDM couplers for the efficient injection of Raman
pump light at about 100-nm shorter wavelength than that of the signals. Bottom: The signal
energy profile resulting from the Raman gain. Note its nearly perfect bilateral symmetry
about the middle of the main span.

2.2.2. Pulse Behavior in the Prototypical Map for
Optimum Parameters

Figures 2.10–2.12 show pulse behavior (pulse width, bandwidth, and chirp) as
functions of distance, for fixed, “optimum” values of the unchirped pulse width and
of the path-average dispersion (τ0 = 30 ps and D̄ = 0.15 ps/nm-km, respectively),
in the prototypical map of Fig. 2.9.
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Figure 2.10 Pulse width τ vs. z in the map of Fig. 2.9, for τ0 = 30 ps and D̄ = 0.15 ps/
nm-km. Note that the maximum pulse width, τmax , does not significantly exceed 50 ps, or
half the bit period for a transmission rate of 10 Gbit/s.
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Figure 2.11 Bandwidth vs. z in the map of Fig. 2.9, for τ0 = 30 ps and D̄ = 0.15 ps/
nm-km. Note the much smaller fractional breathing of the BW versus that of τ shown
in Fig. 2.10. Note also that just as was seen in Fig. 2.6, the BW is at a maximum at the
unchirped pulse position in the D+ section, while it is at a minimum in the corresponding
position in the D− section.
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Figure 2.12 Chirp vs. z in the map of Fig. 2.9, for τ0 = 30 ps and D̄ = 0.15 ps/nm-km.
Note that the positions of zero chirp correspond exactly to the maxima and minima of the
pulse width and pulse bandwidth as seen in the two previous figures.

2.2.3. Pulse Behavior as a Function of Map Strength

Many important things can be learned from a study of the pulse behavior in a map
as the unchirped pulse width is varied. The study is conveniently carried out in
terms of the map strength parameter, defined as

Smap = (L+/z+
c + |L−/z−

c |)/2, (2.17)

where z+
c and z−

c are the characteristic dispersion lengths [Eq. (2.8)] for the
unchirped pulses in the D+ and D− segments of the map, respectively. Note
that when the two terms of Eq. (2.17) are nearly equal (the usual case), Smap

is essentially just the length of the transmission fiber, as measured in dispersion
units. Note further that Smap scales like 1/τ 2 [or, equivalently, as the (BW )2] of
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the unchirped pulses. Serious dispersion management usually involves Smap > 1.
On the other hand, for Smap � 1, where there is no significant pulse broadening,
note that one just has path-average solitons.

Figure 2.13 shows the degree of pulse breathing in time as a function of Smap.
Since the pulse breathing is strongly dominated by the dispersive term of the NLS
equation, the behavior here is expected to be very similar to that shown in Fig. 1.2.

Indeed, note the very close fit to the function
√

1 + (Smap/2)2, until the ever-rising
nonlinear contribution becomes significant for the larger values of Smap.

Figure 2.14 shows the degree of pulse breathing in bandwidth as a function
of Smap. As discussed earlier, the degree of breathing here is much smaller (by

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Map strength parameter, S

τ m
ax

/τ
m

in

Figure 2.13 Degree of pulse breathing as a function of Smap for dispersion-managed
solitons in the map of Fig. 2.9. D̄ is fixed at 0.15 ps/nm-km. From right to left, the specific
data points correspond to unchirped pulse widths (τ0) of 24, 26, 28, 30, 33, 36, 40, 45, 50,
60, 75, and 100 ps, respectively. The faint dotted line is the function
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Figure 2.14 Degree of pulse breathing in bandwidth as a function of Smap for dispersion-
managed solitons in the map of Fig. 2.9. Again, D̄ is fixed at 0.15 ps/nm-km, and the specific
data points have the same identity as in Fig. 2.13.
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Figure 2.15 Path-average pulse energy as a function of pulse bandwidth for dispersion-
managed solitons in the map of Fig. 2.9, with D̄ once again fixed at 0.15 ps/nm-km. (The
specific data points have the same identity as in Fig. 2.13.) The straight line shows the
energy of ordinary solitons in a map of constant D = 0.15 ps/nm-km.

factors of ∼20× or more) than that of Fig. 2.13, due to the much smaller size of
the nonlinear term in relation to that provided by the local dispersion. Also, note
the different shape of the curve, compared to that of Fig. 2.13. Here the data make
approximate fit to a simple quadratic.

Figure 2.15 shows the path-average pulse energy for dispersion-managed soli-
tons in the map of Fig. 2.9. Here the data are plotted as a function of the (maximum)
pulse bandwidth, in order to facilitate comparison with the energy of ordinary
solitons having the same path-average dispersion. (D̄ = 0.15 ps/nm-km.) The
ever-increasing energy of the dispersion-managed solitons with respect to that of
the ordinary solitons as the pulse bandwidth increases is the energy enhancement
effect mentioned in Section 2.1.1. Figure 2.16 shows the energy enhancement fac-
tor that can be inferred from Fig. 2.15, plotted as a function of Smap. The good fit
to the function 1 + 0.22S2 until S > 3 is in essential accord with that found in
earlier fitting to numerical work [15–18].

Thus far, the value of D̄ has been kept at a fixed value (0.15 ps/nm-km). It is
useful, however, to see how the energy of a dispersion-managed soliton behaves
as D̄ changes. Figure 2.17 shows the path-average energy as a function of D̄, with
the unchirped pulse width as a parameter. Note how a particular pulse energy
can be obtained from a much lower D̄ with dispersion-managed solitons than with
ordinary solitons of the same pulse width. From the figure it can be seen, for exam-
ple, that ∼30-fJ pulses of 30-ps width require D̄ of only ∼0.15 ps/nm-km when
they are dispersion-managed solitons, while the corresponding ordinary solitons
require D ∼ 0.5 ps/nm-km for the same energy. This is another consequence of
the energy enhancement effect. It is of great importance, since the reduction in D̄
means a corresponding reduction in timing jitter from frequency deviations.



2.2. Pulse Behavior in Maps Having Gain and Loss 41

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Map strength parameter, S

E
ne

rg
y 

en
ha

nc
em

en
t f

ac
to

r

Figure 2.16 Energy enhancement factor for dispersion-managed solitons in the map of
Fig. 2.9, with D̄ fixed at 0.15 ps/nm-km, plotted as a function of Smap. (The specific data
points have the same identity as in Fig. 2.13.) The dashed line represents the function
1 + 0.22S2.
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Figure 2.17 Path-average energy of dispersion-managed solitons in the map of Fig. 2.9,
as a function of D̄, with the unchirped pulse width as a parameter. The dashed line shows
the corresponding energy of ordinary solitons of 30-ps pulse width in a map of constant
D = D̄.

2.2.4. Pulse Behavior in a Map with Asymmetric Intensity Profile

If we move the mid-span WDM pump coupler in Fig. 2.9 to the far left end of
the 100-km span and turn it around such that the pump light for Raman gain
travels with the entering signal, then the resulting 50% forward/50% backward
Raman pumping leads to the signal intensity profile shown in Fig. 2.18. Note
that the bilateral symmetry of the intensity profile shown in Fig. 2.9 has been
destroyed, since the average intensity in the left half of the 100-km span is now
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Figure 2.18 Signal intensity profile resulting when a 50% forward/50% backward Raman
pumping scheme is used for the 100-km span of Fig. 2.9. The solid line shows the normal
case, and the dashed line shows the increased energy required for dispersion-managed
solitons when a 41-GHz FWHM Gaussian filter is inserted at the output end of the map.

several decibels greater than that in the right half. The resultant curves of pulse
width versus distance are shown in Fig. 2.19. Note that without the filter, pulse
breathing is also no longer symmetric, with the position of the minimum width
moved toward the higher intensity region of the map, while the presence of the
filter tends to restore the symmetry of the breathing [45].

The pulse width behavior of Fig. 2.19 can be understood by reference to
Fig. 2.20, which shows the corresponding curves of pulse bandwidth versus dis-
tance. The explanation lies in the fact that the rate of change of bandwidth with
distance increases monotonically with increasing intensity, so the rate of increase
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Figure 2.19 Pulse width vs. distance for dispersion-managed solitons in the map of
Fig. 2.9 with the asymmetric intensity profile of Fig. 2.18. (The solid and dashed curves
refer to the cases without and with filter, respectively, as in Fig. 2.18.) Note the resultant
asymmetry in the breathing for the normal case, and the restoration of symmetry by the
insertion of the filter.
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Figure 2.20 Pulse bandwidth vs. distance for dispersion-managed solitons in the map of
Fig. 2.9 with the asymmetric intensity profile of Fig. 2.18, where, once again, the solid and
dashed curves refer to the cases without and with the filter, respectively.

in the left half of the map (with greater intensity) is greater than the rate of decrease
in the right half of the map (with lower intensity). Thus, in the normal case (with-
out the frequency filter), since the bandwidth must return at the end of the map to
its original value, the maximum bandwidth (and hence the minimum pulse width)
must occur before the middle of the map. (Remember that the two extremes must
occur in exactly the same place.) On the other hand, the step reduction in bandwidth
provided by the filter forces the curve of bandwidth to tilt upward such that the
position of maximum bandwidth (and correspondingly, the position of minimum
pulse width) is restored to the center of the map.

Frequency filters like the one we have used here are sometimes employed to
reduce noise-induced frequency, timing, and amplitude jitter in soliton transmis-
sion systems; as such they are known as “frequency-guiding filters” or simply
“guiding filters.” We shall discuss guiding filters at greater length in Chapter 3,
Section 3.5. In the meantime, the asymmetric pulse breathing obtained in the nor-
mal case, while not ideal, usually does not have very serious consequences. This
is true in part because of the fact that the maximum pulse width always corre-
sponds to the region of lowest intensity, so that the adjacent-pulse interaction is
correspondingly reduced.

2.3. Map Scaling to Higher Bit Rates

All of the real-world examples of pulse behavior we have examined in Sec-
tions 2.2.2–2.2.4, with a minimum pulse width τ0 of ∼30 ps and τmax ∼ 50 ps,
refer to a bit rate of ∼10 Gbit/s. Since τ0 scales inversely with the bit rate, and
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Figure 2.21 Illustration of map scaling to higher bit rates. The two pulse widths shown
for each bit rate are τ0 and τmax , respectively (for other details, see text).

since zc scales as τ0
2/Dloc, to maintain the same pattern of pulse breathing as the

bit rate is increased, the combination of segment lengths Lseg and corresponding
Dloc values must be scaled such that Lseg/zc remains constant. (Note that this is the
same as saying that the map strength Smap must be held constant.) A few examples
of how such scaling might be carried out are shown in Fig. 2.21.

The map shown in Fig. 2.21 for 10 Gbit/s is just the prototypical map of Fig. 2.9.
For 20 Gbit/s, the scheme shown is to use a negative D transmission fiber, with
|D−| ∼= D+, for compensation, rather than DCF, and to make |Dloc| just half of
the former value. Thus, zc and Lseg are each reduced by the same factor (2) in
achievement of the desired scaling. For a number of practical reasons, not the
least of which is the fact that it is difficult to manufacture dispersion-shifted fibers
without a certain degree of wander with distance in D itself, it is probably not a
good idea to reduce |Dloc| to much less than about 3 ps/nm-km, in order to keep
the fractional changes in Dloc within reasonable bounds. Thus, for the transition
from 20 to 40 Gbit/s, the necessary scaling is best achieved simply by a further
reduction in Lseg by a factor of 4. When the dispersion parameter changes sign as
often as in our example for 40 Gbit/s, the result is often referred to as “dispersion-
managed cable.” Since fiber cables tend to be delivered and installed in segments
no longer than about 6 km each, which then have to be spliced together in the field,
the installation of such dispersion-managed cables should not be at all impractical.

2.4. Dispersion-managed Solitons: Summary

By now the reader should have a rather good understanding of dispersion man-
agement and dispersion-managed solitons. Although dispersion-managed solitons
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cannot in general be treated analytically, as we have seen here, there are three basic
principles that govern their behavior: First, the dispersive term is locally dominant,
so that the pulse shape (Gaussian) and pulse breathing are accordingly very close
to that expected from linear dispersion alone. Second, the pulse behavior becomes
periodic with the period of the dispersion map (and hence solitons exist) when there
is just enough nonlinear phase shift across the pulse to cancel the net phase shift
from the dispersive term, as averaged over the entire map period. Third, periodic
variation in the pulse bandwidth, though small relative to the breathing in pulse
width, nevertheless tends to greatly magnify the net phase shift from the dispersive
term; this in turn requires the canceling nonlinear phase shift, and hence the soliton
pulse energy, to be similarly magnified for the well-known energy enhancement
effect.

The detailed consequences of these principles for any particular map can be
obtained quickly and easily through application of the ODE method outlined in
this chapter. In particular, the ODE method yields a complete and dependable
picture of the pulse behavior and an accurate value for the soliton energy.

It is perhaps useful at this point to make comparison among the three types
of solitons we have studied in Chapters 1 and 2, viz., classical, path-average,
and dispersion-managed solitons. The comparison is made in Table 2.2. Note that
descent through the rows of Table 2.2 shows a rapid growth in pulse variation
and a corresponding increase in degrees of freedom for system design. Thus, for
example, while classical solitons rigidly require a fixed pulse energy and a fixed
fiber dispersion parameter, both path-average and dispersion-managed solitons
can tolerate considerable periodic variation in both of those parameters. The maps
for dispersion-managed solitons can be based on fiber combinations that uniquely
supply the nearly constant values of D̄ required for dense WDM and the large values
of Dloc required for thorough suppression of interchannel four-wave mixing. In
comparison with classical or path-average solitons, dispersion-managed solitons

Table 2.2 The Three Types of Solitons Compared

Soliton
type

Phase shifts from
dispersion and
nonlinear terms

Pulse behavior
Map

strengthWidth and BW Chirp

Classical True differentials Constant 0 n.a.a

Path-average Small but finite; ∼Constant Periodic Smap � 1
cancel with Lamp

Dispersion- Large periodic variation; Large but stable Smap > 1
managed cancel with Lmap periodic variation (typically ∼2–4)

an.a., Not applicable.
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allow a given pulse energy to be obtained with much lower values of D̄, thus
affording a great reduction in timing jitter induced by frequency fluctuations. In
Chapter 6 we shall see how dispersion-managed solitons allow for a much higher
degree of control over soliton–soliton collisions, with a consequent suppression
of unwanted effects.



Chapter 3

Spontaneous Emission and Its Effects

3.1. Some Basic Concepts

3.1.1. Fundamental Modes of the Radiation Field

The field in an optical fiber transmission line that arrives at some location z can use-
fully be resolved into Fourier components. These may be called temporal modes
of the field. The word mode is used in a number of ways. In a fiber with a large
core, there may be several transverse modes, that is, different transverse field
patterns that the fiber can support. We are concerned here only with fibers that
support only one transverse mode. Such fibers are called single (transverse)-mode
fibers, with the word transverse usually omitted. In addition, in the very nearly
cylindrical fibers that are primarily in use, there are two independent polariza-
tion modes, which give rise to a defect called polarization-mode dispersion, as
discussed in Chapter 7.

Consider the temporal modes of a single polarization mode. In some appropri-
ately long time T (see below), the field u(t, z) that arrives at some location z can
be resolved into a sum of orthogonal Fourier components

u(z, t) =
∑

n

anun(t) where un(t) = exp(−i2πνnt)/
√

T , (3.1)

where an is a complex coefficient and νn is the frequency of the nth mode. The
different modes are made orthogonal by imposing periodic boundary conditions,

47
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so that un(t + T ) = un(t). This requirement is satisfied by νn = n/T , so that
we have∫ T+t0

t0
u∗

n(t)um(t) dt = 1

T

∫ t0+T

t0
exp[i2π (νn − νm)t]dt = δ(m, n), (3.2)

where δ(m, n) is the Kroneker delta function (zero when n �= m and one when
n = m). The frequency separation of the modes is 1/T , so the number of modes
N in a bandwidth B is just N = BT . In a communications system, an important
parameter is the number of modes in the effective optical bandwidth of the receiver
and in the bit period, as this determines how much noise the receiver sees. This is
just BrecTbit . One can think of the appropriately long time T (see above) simply
as Tbit , or as some much longer time, in which case the number of modes per bit
period is just the total number of modes in T divided by the number of bit periods
in T . The result is the same.

With our usual normalization making |u|2 the optical power in the fiber, the total
energy W passing position z in time T is

W =
∫ t0+T

t0
|u(z, t)|2dt =

∑
n

|an|2. (3.3)

Thus |an|2 is the energy in the nth mode. The average power passing position z
during the interval T is W /T , and so the average power per unit bandwidth is
W /BT , which is equal to W /N . Thus the average power per unit bandwidth is
equal to the average energy per mode. We note that each mode has a unique
frequency. Its equation of motion, dun/dt = −i2πνnun, is that of a simple harmonic
oscillator (SHO). Thus, the field that arrives at z can be likened to a collection
of SHOs.

Another useful descriptor of the field is a degree of freedom (DOF). Each field
mode is considered to comprise two independent DOFs corresponding to its two
quadrature components, represented by the real and imaginary parts of an. In other
words, un(t) and iun(t) are independent DOFs. The number of independent DOFs
in the field is therefore twice the number of modes. More generally, we can think
of any bounded function of time that is contained in the interval T as occupying
one of some complete set of DOFs of the field. For example, the soliton function
us = sech(t) exp(−i�t) occupies one DOF of the field if the interval T is long
enough to contain it. Mathematically this poses a problem, since us extends over all
time, but for all practical purposes it does not. Independent DOFs uj and uk within

the time interval T satisfy the relation � ∫ t0+T
t0

u∗
j uk dt = 0. Thus ius occupies

another of the same complete set of independent DOFs. This concept of DOFs is
useful in considering the perturbations of solitons caused by the noise injected into
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a communications line by amplifiers. For example, suppose ε is a small positive
real number (ε � 1). If one adds εus to us, the energy of the soliton is increased.
If one adds iεus to us, the phase of the soliton is changed.

When the two polarization modes of the field are considered, the total number
of modes and DOFs is doubled.

3.1.2. Thermal Noise

At low frequencies, where hν/kT is small, the average noise power per unit band-
width in a transmission line in thermal equilibrium with its surroundings is well
known to be kT , where k is the Boltzmann constant and T is the absolute temper-
ature. Where noise is concerned, the average energy per mode, which is identical
with the average power per unit bandwidth, is called the equipartition energy.
At room temperature, 20◦C or 293◦K, the ratio hν/kT is unity at an infrared
wavelength of 49 µm. At the wavelengths used in photonic communications, e.g.,
1.55 µm, where hν is considerably larger than kT , there are very few thermal
photons to worry about.

According to Planck’s law, the thermal equipartition energy is hν/(exp(hν/kT )−
1), which can be seen to approach kT when hν/kT � 1. If one carries the exponen-
tial to second order in hν/kT , the high-temperature asymptote becomes kT −hν/2.
This equipartition energy may be thought of as the photon energy hν times the
average number n̄ of photons per field mode. Thus n̄ = (exp(hν/kT ) − 1)−1. As
hν/kT becomes greater than unity, n̄ goes exponentially to zero. This prevents
the so-called ultraviolet catastrophe, which the earlier classical theory wrongly
predicted.

Note the emphasis on energy. Quantum mechanics, which is necessary to under-
stand Planck’s law, among many other things, deals relatively easily with energy
levels and transitions between them, absorbing or emitting photons. It has more
trouble dealing with coherence. For example, when the maser was being born
in the 1950s, many atomic physicists of renown had trouble accepting the idea
that the output of a maser oscillator could be a coherent field, like the output of
electronic oscillators, such as klystrons and magnetrons.

The correspondence principle dictates that quantum mechanics must approach
classical mechanics when the number of quanta involved gets large. In a typical
communication system such as we are concerned with here, the equipartition
energy of the noise corresponds to many photons, and each optical pulse has an
energy corresponding to many more photons. So we would expect that a clas-
sical theory would suffice, and indeed all of the analysis in this book is based on
classical theory, i.e., Maxwell’s equations, and the experimental results agree well
with the theory.
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The appropriate classical field picture is, in essence, one that ignores the dis-
creteness of the energy, and so mostly forgets about the photon, except as a unit
of energy. It is often called the Wigner picture. It has sound foundations, which
are beyond the scope of this book, as an approximation to the exact quantum field
theory. It is not exact in cases where just a few photons are involved (no classical
theory can be), but in the context of this book, it gives all of the correct answers.

We have noted that the field that arrives at z in time T is akin to a collection
of harmonic oscillators whose number equals the number of modes of the field.
The ground state of a harmonic oscillator in quantum mechanics has an energy
one-half quantum above the zero of the potential energy, and its coordinate and
momentum have Gaussian distributions about zero, exactly like random Gaussian
noise with half a quantum of energy. To accommodate these “zero-point” fluc-
tuations of the field, which are quite real, we must add an energy equal to the
energy of half a photon to the equipartition noise energy. While this notion, if
extended to ever higher frequencies, would bring back the ultraviolet catastro-
phe, it does no such harm in narrow frequency ranges. In every case pertinent to
this book, it gives excellent approximations to whatever exact answers have been
derived from quantum field theory. To be more precise, it gives results correct
to first order in the quantum energy hν. For example, the first-order term −hν/2
disappears from the high-temperature limit of the thermal equipartition energy. In
this regard, it is important to note that the field propagation equation, the NLS
equation, is nonlinear. This makes problems for the quantum field theorists, but
because the classical picture is correct to first order in the quantum energy, it still
gives excellent results.

It is one of the properties of quantum mechanics that the zero-point noise fluctu-
ations of the field cannot be seen directly by an energy detector, but they are seen
by a coherent receiver such as a heterodyne detector or a laser amplifier. Further-
more, an energy detector sees the energy fluctuations caused by the interference
of the zero-point noise with any other fields that may be present, such as signal
fields.

3.1.3. Spontaneous Emission Noise

The most common view of spontaneous emission originated with Einstein, who
introduced the concept of induced and spontaneous emission. In this (energy)
view, particles in the lower states of transitions that are resonant with a field
absorb photons, while particles in the corresponding upper states emit photons
in two ways, by induced emission, which is the inverse of absorption, and by
incoherent spontaneous emission. The ratio of spontaneous emission to induced
emission and absorption is required to account for thermal noise. If we go by this
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picture in a fiber with absorbing and emitting particles, and consider noise, we get
the relation

dWeq

dz
= C[(N2 − N1)Weq + hνN2], (3.4)

where Weq is the equipartition energy (noise power per unit bandwidth), C is a
coupling coefficient, and N1 and N2 are, respectively, the number of particles in
lower and upper states. The equilibrium situation dWeq/dz = 0 requires that Weq =
hνN2/(N1 − N2). Boltzmann’s law says that in thermal equilibrium, N1/N2 =
exp(hν/kT ), so we get Weq = hν/(exp(hν/kT )−1), which agrees with Planck’s law.

If the parameters in Eq. (3.4) are constant over some distance, say from 0 to z,
its solution is

Weq(z) = GWeq(0) + N2

N2 − N1
(G − 1)hν; G = exp(C(N2 − N1)z), (3.5)

where Weq(0) is the noise input at z = 0.
If N2 > N1 this equation describes the growth of noise in an amplifier. In the

jargon of the optical amplifier field, the quantity N2/(N2 −N1) is called the “excess
spontaneous emission factor,” or nsp. In more complicated circumstances, say if
the parameters vary over the length of the amplifier, this result can still be described
by the generic equation

Weq(z) = GWeq(0) + nsp(G − 1)hν, (3.6)

where G is the power gain of the amplifier and nsp is a numerical parameter whose
minimum value is one (when N1 = 0).

If N1 > N2 in Eq. (3.5), G is less than one, so it describes a loss mechanism.
Many lossy parts of a photonic transmission system are passive, in which case N2

is effectively zero. In such a case, as one can see from Eq. (3.4), the equipartition
noise energy Weq simply decays toward zero. If we relabel G as L, where L < 1
(representing loss), Eq. (3.5) becomes

Weq(z) = LWeq(0); L = exp(−C(N1 − N2)z). (3.7)

This quantum view of the spontaneous and stimulated emission of noise is quite
correct. It shows precisely what a detector of energy would record. But not all
detectors are energy detectors. Furthermore, if a signal field is present, things get
more complicated. Following the energy in a communications system leads to a
raft of unnecessary complications.

In the classical field picture, which ignores the discreteness of the energy, the
spontaneous emission noise and zero-point noise are additive Gaussian fields. The
zero-point noise is accounted for by adding hν/2 to the equipartition noise energy,
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and this zero-point noise is treated as no different from the rest of the noise.
The growth of the noise energy is then described by the equation

dWeq

dz
= C[(N2 − N1)Weq + 1

2
hν(N1 + N2)], (3.8)

whose solution, on the same basis as Eq. (3.5), is

Weq(z) = GWeq(0) + 1

2

N2 + N1

N2 − N1
(G − 1)hν = GWeq(0) +

(
nsp − 1

2

)
(G − 1)hν.

(3.9)

Similarly, the equation corresponding to Eq. (3.7) is

Weq(z) = LWeq(0) + 1

2
(1 − L)hν. (3.10)

Figure 3.1 attempts to summarize all we have said so far about the energy and
field pictures of noise. Note that the equipartition energy Weq in the field picture
is always exactly hν/2 greater than that in the energy picture. What has changed is
our view of the process. In the field view, random Gaussian noise is emitted into
the field both by excited state particles and by ground state particles. According to
Eq. (3.8), if N2 + N1 is a constant, the rate of spontaneous noise emission is inde-
pendent of the ratio N2/N1. A passive loss mechanism (with N2 = 0) now leads via
Eq. (3.8) to an equilibrium vacuum state where Weq = hν/2, and these zero-point
noise fluctuations are continually absorbed and re-emitted. Furthermore, our view
of spontaneous emission has changed. If we have an amplifier looking at a vacuum
(dark) field, in the energy view the noise output comes exclusively from amplified
spontaneous emission in the amplifier, whereas in the field view the noise output
comes partly from the amplified zero-point input, and the rest comes spontaneously
from the amplifier. For example, for an ideal amplifier (N1 = 0), Eq. (3.9) gives
GWeq(z) = GWeq(0) + (G − 1)hν/2. Here the spontaneous emission noise from

n
G n

n L n

G > 1

L < 1

L n

Energy Picture:

G(n + 1/2)

Ln + 1/2

Field Picture:

nsp(G − 1)

Gn + nsp(G − 1)
n + 1/2

n + 1/2

G

L

} G

L
L(n + 1/2)

}
(1 − L) / 2

} Gn + nsp(G − 1)+ 1/2

(nsp − 1/2)(G − 1)G > 1

L < 1

Figure 3.1 Illustration of the energy and field pictures of noise. On the left of each element
are the noise inputs; on the right, the lower lines are amplified input noise and the upper
lines are spontaneous emission noise; total noise is on the far right. (The energies here are
all in units of the photon energy hν.)
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the amplifier has been reduced by a factor of two from that in the energy picture.
As it turns out, in computations of bit error rates and such, the optical noise at the
receiver is much greater then hν/2, so the effect of adding the zero-point noise is
usually negligible.

So what is the fuss all about? Do lower state particles actually emit noise into the
system? The answer is yes, in a very real sense. First, consider the energy picture.
If one could put exactly N photons into an attenuator (N2 = 0), the output would
be a binomial distribution of photons, so there would be fluctuations of the output
energy. If N is large, and there is much attenuation, the output tends to a Poisson
distribution. Hence the output is noisy. This kind of noise in the energy picture
is called partition noise. Now, consider the field picture. The input of exactly N
photons is a nonclassical situation, but one can approach it by assuming an input
field with random phase and a small energy distribution, in keeping with the uncer-
tainty product 
 N 
φ ≥ 1. As the input field is attenuated, the zero-point noise
field grows, resulting in almost exactly the same energy distributions, although
now the distributions are continuous rather than discrete. To illustrate this point,
Fig. 3.2 compares a Poisson distribution having a mean of six photons with a
classical energy distribution corresponding to a signal field having the energy of
six photons plus additive Gaussian noise having the mean energy of half a pho-
ton. For the Poisson distribution, the probability for n photons is placed at an
energy of n + 1/2 to facilitate the comparison. One can see that even for a noise
energy corresponding to a very few photons, the classical field picture reproduces
the quantum energy picture quite well.

0

0.04

0.08

0.12

0.16

2 4 10

Energy/hν
12 14 16 180 6 8

P
ro

ba
bi

lit
y

Figure 3.2 Probability distributions derived from energy and classical field pictures
compared. Points: Poisson distribution with a mean of six photons in the energy picture.
Solid line: Classical energy distribution corresponding to a signal field with the energy
of six photons plus additive Gaussian noise with mean energy of half a photon.
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The advantage of the field picture is that we can confidently use the wealth of
science and engineering built up for communications systems at lower frequencies.
The electromagnetic fields in communications are broadly broken up into signal
fields, those we want, and noise fields, those we do not want. The field picture is
now conventionally used in dealing with optical signals, as we do in this book.
It is in dealing with noise that some of the unnecessary complications arise. If one
has the case of signal plus additive Gaussian noise, the field picture simply takes
u = uS +uN , where uS is the signal and uN is the noise. Since |u|2 is the power, and

|u|2 = |uS|2 + u∗
N uS + u∗

SuN + |uN |2, (3.11)

the energy picture finds two separate kinds of noise. The sum of the second and
third terms of this expression, which in the field picture is simply the interference
of signal and noise, is known in the literature as “signal–spontaneous beat” noise,
while the last term is known similarly as “spontaneous–spontaneous beat” noise.
If uN is just the zero-point field, an energy detector cannot see the |uN |2 term, but it
does see the signal–spontaneous beat noise, which in the energy picture is known
as photon shot noise.

As an example of the utility of the field picture, consider the noise figure of a
linear amplifier. Conventionally, the noise figure NF of an amplifier is the ratio of
signal-to-noise at the output to signal-to-noise at the input, where signal and noise
are measured in power, and the noise figure is usually stated in decibels (dB). For
linear amplifiers, this simply reduces to the output noise power divided by the prod-
uct of the input noise power and the amplifier gain, or NF = Weq(out)/(GWeq(in)).
At low frequencies, the input noise is assumed to be the unavoidable minimum of
thermal noise. In the field picture of photonic systems, the minimum input noise to
an amplifier is the zero-point noise Weq = (1/2)hν, and the corresponding output
noise from the amplifier is [see Eq. (3.9)] Weq(z) = (1 + 2nsp(G − 1))hν/2. Thus
the noise figure is 1/G + 2nsp(1 − 1/G). If there is no amplifier gain (G = 1), the
noise figure is unity, which translates to 0 dB. For high gain (G � 1), the noise
figure approaches 2nsp. The minimum possible value of the high gain noise figure
is 2 (3 dB) when nsp = 1. The mavens of the energy picture have reached this
same conclusion, albeit by a more difficult route.

As we go forward in this book, the reader will notice that the zero-point noise
is mostly ignored. The energy picture is used to discuss noise generation [see
Eq. (3.6)]. This makes contact with almost all of the literature. In fact, the zero-
point noise is mostly ignorable—for example, where we discuss error rates—
because the noise at the detector is so much greater. Also, in a typical section of
a photonic transmission line consisting of a lossy section of fiber compensated by
some gain mechanism, it makes little difference where the noise is generated—that
is, whether the noise is generated solely by the gain (the energy picture) or by both
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gain and loss (the field picture). Here, because of the nonlinearity of the propagation
equation, it does make some small difference, and it would be very interesting to
find some situation where that difference might be measurable. It is important to
realize, however, that the most accurate classical picture includes the zero-point
noise, as we saw in the discussion of noise figure. Certain other situations, such as
discussions of “squeezing the vacuum” using solitons, are easily explained using
the classical picture, including the zero-point noise field.

3.2. Optical Amplifiers

3.2.1. The Raman Effect and Raman Amplification

The Raman effect in silica-glass fibers begins with a pump-induced transition to
a virtual state, followed by emission from it, where the emission terminates on
an excited state of the lattice; emission of an optical phonon (which typically
takes place within a few femtoseconds) then completes return to the ground state
(see Fig. 3.3). Because of the extremely fast relaxation, the population of the
terminal state of the optical emission tends to be determined by equilibrium with
the surrounding phonon bath, and hence is almost independent of the rates of
optical pumping and emission. Thus, in contrast to erbium amplifiers, both the
shape of the Raman gain band (see Fig. 3.4) and the excess spontaneous emission
factor are essentially independent of pump and signal levels.

For gain in the neighborhood of the very broad peak of the Raman gain band, and
when the fiber is at or near room temperature, the excess spontaneous emission
factor nsp ∼= 1.1 (noise figure ∼= 3.5 dB). Nevertheless, Raman gain is prized,
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Figure 3.3 Optical transitions of the Raman effect.
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Figure 3.4 Relative strength of Raman gain versus the frequency difference between
pump and signal photons. The parallel and perpendicular symbols refer to co-polarized
and orthogonally polarized pump and signal, respectively. Reproduced with permission of
Dougherty et al. [46].

more than anything else, for the great noise reduction afforded (as will be detailed
shortly) by its ability to distribute gain over long fiber spans.

The position of the Raman gain peak depends only on the pump wavelength.
Thus, it is possible to create a broad (up to ∼8 THz wide), flat gain band, exactly
where it is needed, just by combining the right powers at several different, carefully
chosen pump wavelengths. This ease with which flat gain bands can be attained
and controlled for dense WDM constitutes the second greatest advantage of Raman
gain. It is so important that we shall treat it in detail later in Chapter 8.

Significant Raman gain is obtained only for that component of the signal that
is polarized in the same way as the pump. Although at first this would seem to be
crippling, it turns out not to be a serious problem. The modest birefringence of
even the very best fibers is sufficient to cause the polarization states of the signal
and pump to evolve on a scale of just a few meters. Thus, the counter-propagating
signal and pump tend to undergo a thorough averaging of relative polarization
states, and usually dispersion will cause a smaller, but still effective, polarization
averaging when the pump and signal co-propagate. Furthermore, the pump lasers
themselves can be effectively depolarized with a few simple techniques that will
be detailed later.

3.2.2. Erbium Fiber Amplifiers

Discovered in 1987 [47, 48], erbium fiber amplifiers have been described in
great detail elsewhere [49–51]. Therefore, this section sketches only the most
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fundamental points—essentially just that needed for the following discussion of
the growth of noise in long chains of amplifiers.

A typical erbium amplifier consists of a few to some tens of meters of fiber
whose core is doped with ∼0.1% by weight of Er3+ ions and optically pumped
at either 1480 nm or 980 nm (or both). Since the lengths involved are very short
on the scale of typical transmission distances, they are rightfully considered as
“lumped” amplifiers. The SiO2 host fibers (typically co-doped with Al, Ge, or P)
are largely compatible with ordinary transmission fibers and thus can usually be
fusion spliced directly to them.

The three lowest energy levels of the Er3+ ion (the only ones of major sig-
nificance for amplification) are diagrammed in Fig. 3.5. As shown there, the
electrostatic field of the surrounding ions of the glass splits these highly degenerate
levels into manifolds of 5, 4, and 3 sublevels, for the 4I15/2,4I13/2, and 4I11/2 levels,
respectively. Since each of the sublevels is strongly broadened through interaction
with phonons, the sublevels of each manifold tend to form an unresolved contin-
uum. It should be further noted that since the host is a glass, the perturbing field,
and hence the degree of splitting, tends to vary from site to site, thus adding a
degree of inhomogeneous broadening to the mechanisms already cited. The emis-
sion and absorption cross-sections of the gain transition (that between the 4I15/2

and 4I13/2 manifolds) are plotted as functions of wavelength in Fig. 3.6. It should
be noted that since the gain transition is first-order forbidden, the radiative time
is long (∼10 ms). Since, even at room temperature, kT is smaller than the total
energy spread of either manifold (and since, further, phonon-induced relaxation
rates among the levels of a manifold are on a much shorter time scale than 10 ms),
absorption tends to take place mainly from the lower levels of the 4I15/2 manifold,
and emission from the lower levels of the 4I13/2 manifold. Thus, the emission and
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Figure 3.5 Simplified energy level diagram of Er.
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Figure 3.6 Emission and absorption cross-sections plotted as functions of wavelength for
the gain transition of Er3+ in glass at room temperature. Reproduced with permission from
Nufern Corporation, E. Granby, Connecticut.

absorption cross-sections are highly skewed to the high and low energy sides of
the central wavelength (≈1530 nm), respectively. At any wavelength, the net gain
coefficient αg (<0 for absorption) is given by

αg(λ) = σe(λ)n2 − σa(λ)n1, (3.12)

where σe and σa are the emission and absorption cross-sections, and n2 and n1 are
the population densities of the excited and ground states, respectively.

The region of high gain cross-section, extending from the central wavelength to
about 1560 nm, is known as the “C” band. Note that because of the different shapes
of σe(λ) and σa(λ), realization of a given fraction of the gain potential requires
a higher degree of population inversion at the short wavelength end than at the
long wavelength end of the C band. Thus, the shape of the αg(λ) curve is highly
dependent on the degree of population inversion (see Fig. 3.7). While this does
not pose much of a problem when only a narrow band of signal wavelengths is
involved, it becomes a very serious one for the creation of gain-flattened amplifier
bands for dense WDM.

The ratio σa/σe of about 3/1 at 1480 nm (see Fig. 3.6) means that at most
≈75% population inversion can be produced by pumping at that wavelength, for
a resultant minimum nsp of 1.5, or equivalently, a best noise figure of ∼5 dB.
Pumping at 980 nm to the 4I11/2 manifold (always accompanied by very fast
nonradiative relaxation to the 4I13/2 manifold) avoids this problem, so that with
intense pumping, one can have nsp ∼= 1.0 (noise figure ∼= 3.0 dB). Nevertheless,
practical considerations, such as the possible need to avoid creating too great a
variation in gain across the C band, often increase these numbers significantly.

Amplifiers can also be made for the so-called L band, i.e., the long-wavelength
region of Fig. 3.6 extending from ∼1560 to ∼1600 nm. This is done by pumping
a long, heavily doped fiber such that the amplified spontaneous emission (ASE)



3.2. Optical Amplifiers 59

1530 1540 1550 1560

1530 1540 1550 1560

0 0

Wavelength (nm)

50%

60%

70%

80%

90%

100%
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Figure 3.8 Gain of Er L band amplifier as a function of wavelength for pumping con-
ditions yielding exceptionally flat gain. Reproduced with permission from Ylä-Jarkko
et al. [52].

from the C band nearly equalizes the excited and ground state populations (thus
nearly killing the C band gain). The much greater ratio of σe/σa in the L band,
however, allows for the existence of significant gain there with reasonable noise
figure. The resultant net gain vs. wavelength for such an L band amplifier is shown
in Fig. 3.8. Since transitions in the L band terminate on elevated states that are
only partially populated, the shape of the gain curve is much less dependent on
the pumping rate than it is in the C band. By the same token, however, the L band
shape depends rather strongly on the temperature, such that in critical applications,
the erbium fiber’s temperature must be regulated.

When erbium fiber amplifiers were first introduced in the late 1980s, they were
much appreciated for their ability to provide up to several tens of decibels of
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polarization-independent power gain, with low noise figure, and with pump powers
of just a few tens of milliwatts (just about the maximum available from commercial
semiconductor lasers of the time). Thus, they can be relatively inexpensive and
handy amplifiers for many small-signal, modest-bandwidth applications. Also,
the long radiative lifetime of the gain transition enables erbium amplifiers to store
considerable energy from a pump of modest power and then to release it all in a
short burst of much higher peak power, as in certain pulsed laser applications. But it
must also be noted that often, for application to dense WDM, separate C and L band
amplifiers (usually each a complex, high-output power, multistage device) must be
multiplexed together. The net result is a very complex device indeed, with many
high-powered pump lasers, isolators, gain-leveling filters, WDM multiplexers,
etc. The complexity rapidly becomes greater than, and the cost comparable to, the
relatively simple set of multiplexed lasers used for Raman pumping.

3.3. ASE Growth in a Chain of Amplifiers and
Fiber Spans

3.3.1. Theoretical Behavior of the Model System

We begin with a general model of a long-haul system that includes the possibility
of lumped amplification. Figure 3.9 shows the prototypical system. In the system
shown, each amplifier contributes a noise power per unit bandwidth, or equipar-
tition energy, of Weq = (G − 1)nsphν [Eq. (3.6)]. Since the gain from the output
of each amplifier to the system output (z = Z) is unity, the noise at the detector
is just

weq = N(G − 1)nsp = αZ

ln G
(G − 1)nsp, (3.13)

where α is the natural logarithm of the fiber loss rate, and where, to simplify
appearances, we have substituted weq = Weq/hν.

For perfectly uniform Raman gain, we can let N become very large, G → 1+ε,
where ε � 1, and set nsp = 1.1, so Eq. (3.13) becomes

weq = αZ × 1.1. (3.14)

Ps Ps
Trans.

G G G G1/G 1/G 1/G 1/G

N amps
Detector

Figure 3.9 Prototypical ultra-long-haul system, with N amplifiers of power gain G
preceded by N fiber spans of loss factor 1/G.
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From Eq. (3.14), we can immediately see that uniform Raman gain provides the
lowest possible noise at the system output. Furthermore, from a comparison with
Eq. (3.13), it is clear that the noise with high-gain lumped amplifiers is much
higher. Consider, for example, amplifiers of 20-dB gain (as would be required for
spans of length approaching 100 km); the noise at system output is then nearly
22 times, or 13.4 dB greater than with uniform Raman gain!

For injection of Raman pump power every distance L along the path (non-
uniform Raman gain), each dz of path contributes G − 1 = αg(z) dz, so one has

weq = αZ × 1.1 × 1

αL

∫ L

0
αg(z) g(z) dz, (3.15)

where g(z) is the net gain from z to L. Although the noise here is intermediate
between that of Eqs. (3.13) and (3.14), as we shall soon see, for fiber spans of
100 km or less, the result is much closer to that of Eq. (3.14).

The range of acceptable signal levels is bounded on the low side by the onset of
significant errors from inadequate signal-to-noise (S/N) ratio, and on the high side
by the onset of significant errors from nonlinear effects. Since the most important
nonlinear effects (primarily SPM and XPM) tend to scale with the path-average
signal power, to facilitate comparison, we should calculate the corresponding path-
average value of the noise. Thus, we must multiply the span input noise powers just
calculated by the appropriate ratios of path-average to span input power. For the
case of lumped amplifiers, that path-average factor is

P̄sig

Psig(0)
= 1

L

∫ L

0
exp(−αz) dz = G − 1

G ln G
.

Multiplying Eq. (3.13) by this factor, we get the path-average noise for the case
of lumped amplifiers:1

w̄eq = αZ ×
{

nsp
1

G

[
G − 1

ln G

]2
}

= αZ × {
nsp F(G)

}
. (3.16)

Note that the path-average noise for lumped amplifiers, while still considerable
for high gains, is nevertheless substantially smaller than the noise at the detector
[Eq. (3.13)] for the same gain.

For the case of Raman gain, where the pump power is injected every distance L,
a similar calculation yields:

w̄eq = αZ ×
{

1.1 × 1

αL

∫ L

0
αg(z) g(z) dz × 1

L

∫ L

0
Psig(z)/Psig(0) dz

}
. (3.17)

1 The quantity F(G), implicitly defined by Eq. (3.16), will be needed later in this chapter. F(G) was
originally defined in Reference [54].
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In both Eqs. (3.16) and (3.17), the quantities inside large {} are the penalty factors,
which can be interpreted equally well as follows:

1. The factor by which the path-average noise increases (over αZ) for constant
path-average signal power, or

2. The factor of increase in path-average signal power (hence, increase in
nonlinear penalties) required to maintain a given S/N ratio.

Although the preceding expressions for these penalty factors may not be immedi-
ately transparent, they have been evaluated numerically and are plotted in Fig. 3.10
for lumped amplifiers and for various situations of Raman pumping. Note that
although the difference in penalty between the lumped and Raman amplifier curves
begins with the modest difference in their nsp values, and does not change much
for span lengths of just a first few tens of kilometers, eventually, it becomes sub-
stantial, ≈6–8 dB in the neighborhood (≈100 km) of typical terrestrial amplifier
hut spacings. To the extent that the limits of error-free transmission are governed
by the growth of spontaneous emission noise, this 6- to 8-dB difference repre-
sents the factor (4–6×) by which the maximum transmission distance is increased
when all-Raman amplification is substituted for lumped erbium amplifiers. It was
this great increase in reach that first attracted systems developers to the all-Raman
approach. Note also that although the penalty with purely backward Raman pump-
ing is nearly 3 dB at 100 km, the use of combined forward–backward pumping
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Figure 3.10 Noise penalty factors from Eqs. (3.16) and (3.17), plotted as a function of span
loss. Solid line: Lumped (erbium) amplifiers, with noise figure 5 dB. Dotted line: Raman
gain from 100% backward pumping. Dashed line: Raman gain from 50% forward/50%
backward pumping. All penalty factors have been normalized to the nsp = 1.1 of Raman
gain, so that the Raman penalty curves will begin at 0 dB.
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cuts that penalty to about a half. Finally, note that if the ≈100-km spans could
be backward pumped at mid-span as well as at their far ends, the noise penalty is
reduced to <1 dB, making it almost negligible. Such mid-span pumping also has
the practical advantage of reducing the powers required of the individual pump
lasers by a factor of two [53].

3.3.2. Experimental Test of ASE Growth

An accurate experimental test of the predictions of Eq. (3.17) has been made by
using the recirculating loop shown schematically in Fig. 3.11. As shown there, the
loop consists of six 100-km-long spans of non-zero dispersion-shifted fiber, each
span properly compensated by a coil of DCF, with the DCF backward pumped,
and provision made for forward as well as backward pumping of the 100-km
spans. (For the experimental result reported here, the forward-pumping WDM
couplers were moved to allow the normally forward pumps to be used as mid-span
backward pumps.) When the loss of the DCF coils, the WDM couplers, and all the
hardware (acousto-optic modulator, gain equalizer, etc.) used to close the loop on
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Figure 3.11 All-Raman amplified recirculating loop used in test of spontaneous emission
noise growth. The net dispersion of the loop-closing amplifiers is essentially zero. The
small rectangular boxes are WDM couplers for the introduction of Raman pump light
(Xmtr, transmitter).
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itself is factored in, the effective loss per 100 km of transmission fiber is about 30
dB. (The length of fiber in the DCF and loop-closing amplifiers is not included in
the reported transmission distance.)

The noise measurements begin with determination, on a polarization-insensitive
optical spectrum analyzer (OSA), of the ratio of the spectral intensity of a 10-Gbit/s
data stream with the usual half-occupancy of bit periods, to the spectral intensity
of the noise in an adjacent, empty channel, and with the OSA’s spectral resolution
wide enough to completely take in the entire spectrum of the pulse stream. That raw
S/N ratio is then corrected by adding 6 dB to correct to just one polarization mode
and for the unoccupied bit periods, and is further corrected to reflect the noise in the
bandwidth (10 GHz in this case) corresponding to the bit period. (It should be noted
that others often report the raw S/N ratio, but without the listed corrections and
as measured with somewhat arbitrarily chosen spectral resolution.) Our corrected
measurement then yields the fundamental quantity S/N = Wsol/Weq. An indepen-
dent determination of the signal pulse energy then lets us compute the noise itself;
the result (reported as equipartition energy) is plotted in Fig. 3.12 as a function of
the total transmission distance. The slope of the best-fit straight line makes almost
perfect fit to the prediction of Eq. (3.17), based on the effective loss per 100 km
just cited, and upon the ≈1-dB penalty factor from the mid-span pumping. The
slight offset at the origin represents the noise contributed by the transmitter, and
from the pre-amplifier shown in Fig. 3.11. In the absence of nonlinear penalties,
the minimum S/N ratio required for a bit error rate (BER) < 1 × 10−9 is ≈100.
Thus, the S/N ratio shown in Fig. 3.12 for 8000 km, even if degraded a decibel or
so for Rayleigh double backscattering of the signal (see next section) or modest
nonlinear penalties, is more than adequate for “error-free” transmission.
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3.3.3. Rayleigh Double Backscattering

One disadvantage with Raman pumping of long spans is that Rayleigh double
backscattering of the signal can add significantly to the spontaneous emission
noise. The problem arises because of the fact that large Raman gain near the end
of a backward-pumped span amplifies the backscattered signal just as much as it
amplifies the signal itself; thus, the double backscattered signal experiences the
Raman gain twice. Since the backscattered signal appears only in active channels,
it is not included in the measured noise reported in Fig. 3.12 and so must be
separately accounted for.

Rayleigh scattering is from index and density fluctuations that are small on
the scale of the light wavelength, and thus it is isotropic. As already pointed
out in Chapter 1, Rayleigh scattering tends to account for all or nearly all of the
energy loss coefficient α of high-quality transmission fibers in the 1550-nm region.
The Rayleigh backscattering coefficient is

β = αR
δ�

4π
= αR

4

[
N .A.

n

]2

, (3.18)

where αR is that part of the loss coefficient attributable to Rayleigh scattering,
δ� is the solid angle of the scattered light captured by the fiber’s core, n is the
core’s index of refraction, and N .A., the numerical aperture, is just the sin of the
half angle of the cone of light emerging from a cleaved fiber end. Table 3.1 lists
β and the parameters needed for its calculation for several common fiber types.

Since isolators are always used between spans, the double backscattered noise
can be computed on a per-span basis, just as with ASE noise. (The noise of either
kind at the receiving end of the system is then just the per-span noise times the
number of spans.) Figure 3.13 shows a representative normalized signal energy
profile H(z) = Psig(z)/Psig(0) created by backward Raman pumping of a fiber
span and the setup for calculating the Rayleigh double backscattered fraction of
the signal accumulated over its entire length L. As the signal travels from z to z′,
its energy clearly gains by the factor H(z′)/H(z). Note, however, that the light

Table 3.1 Rayleigh Scattering Loss Coefficient, Numerical Aperture, Index of Refrac-
tion n, and Backscattering Coefficient β at 1550 nm for Three Representative Fiber
Types

Fiber type αR/0.23 (dB/km) N .A. n β (dB/km) β2 (dB/km2)

Standard SMF 0.20 0.13 1.456 −41 −82
Dispersion shifted 0.20 0.17 1.456 −38.6 −77.2
DCF 0.35 0.2 1.456 −35 −70
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Figure 3.13 Normalized signal power H(z) in a backward Raman pumped span of
length L.

backscattered at z′ experiences exactly the same gain as it travels back to point z.
Thus, the net backscattered light at point z as accumulated by backscattering from
points in the interval L −→ z is

Pbs(z) =
∫ L

z
P(0) β H(z′)H(z′)

H(z)
dz′ = P(0) β2 H(L)

∫ L

0
H2(z′) dz′. (3.19)

The double backscattered light from the entire span is then

Pdbs(L) = β

∫ L

0
Pbs(z)

H(L)

H(z)
dz = P(0) β2

H(z)

∫ L

z

[
1

H2(z)

∫ L

z
H2(z′) dz′

]
dz.

(3.20)

Dividing Eq. 3.20 by the signal output power P(0)H(L), and multiplying by 1/2
to account for the fact that the Rayleigh double backscattering represents a time
average of the signals from many bit periods, statistically only 1/2 occupied in
the original signal, we finally get the desired double backscattered noise-to-signal
(N/S) pulse energy ratio:

(N /S)dbs = 1

2
β2
∫ L

z

[
1

H2(z)

∫ L

z
H2(z′) dz′

]
dz. (3.21)

Figure 3.14 shows the per-span N/S ratio as calculated from Eq. 3.21, plotted
as a function of span length, for various Raman gain configurations (including
lossless fiber and zero Raman gain). For comparison, also shown there is the (per-
span) ASE noise-to-signal ratio based on an assumed signal pulse energy of 20 fJ
and the ASE noise energies reported in Fig. 3.14. The relative importance of the
Rayleigh double backscattered signal noise is, of course, in direct proportion to
the absolute signal level itself. The uppermost (solid) line in Fig. 3.14 plots the
ASE noise-to-signal ratio for 20-fJ pulses and the Weq of Fig. 3.12. Comparing that
with the double backscattered noise curves of Fig. 3.14, we can calculate that for
the case of 25% forward/75% backward pumping of 100-km spans, the Rayleigh
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pulse energy ratio (1.5×Weq/Wsig) for an assumed pulse energy of 20 fJ and the Weq shown
in Fig. 3.12. The factor of 1.5 is required to put the 10-GHz bandwidth of Weq on an equal
footing with the ≈15-GHz bandwidth of the Rayleigh double backscattered noise, which
is the same as that of the original signal.

double backscattering increases the net noise by about 23% [so that it reduces
the net S/N ratio to about 1/1.23 (−0.9 dB)] of the values shown in Fig. 3.10,
already a significant reduction. For the case of 100% backward pumping (again of
100-km spans), on the other hand, the decrease in net S/N ratio is by (a probably
intolerable) −2.6 dB. From this example, we can see why the Raman pumping of
long spans to complete transparency by back pumping alone is not generally done.
Rather, one either uses a combination of forward/backward pumping, or excess
gain in the following coil of DCF. Finally, note that mid-span pumping (of the
same 100-km spans), and insertion of an isolator there as well, tends to make the
Rayleigh double backscattered signal noise almost insignificantly small.

3.4. ASE-induced Errors

3.4.1. Amplitude or Energy Errors

There are two main sources of error that affect the soliton system, fluctuations of
the pulse energies and of their arrival times. At each amplifier, the addition of the
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ASE noise changes the energy, central frequency, mean time, and phase of the
solitons in statistically random ways. The changes in mean time and phase are of
little importance in the present context. The other two changes can be analyzed
separately. We shall focus on the energy fluctuations in this section, and on the
frequency changes and the resultant jitter in arrival times in the next.

The energy fluctuations are quite similar to those that occur in a linear system.
The argument is as follows: The system is effectively linear over short distances,
so there is no difference in the way the noise field is injected into the system.
The only difference in the soliton system is that the energy changes of first order
in the noise field (the so-called signal–spontaneous noise) are captured by the
solitons, which then reshape themselves as they propagate. This reshaping is done
with no significant change in energy. Thus the energy fluctuations at the receiver
are like those that would occur if the system were linear and dispersion free.

To evaluate the errors incurred by the energy fluctuations, some model detector
must be chosen. For simplicity we shall assume that the detector consists first
of an optical filter of bandwidth B0, followed by a photodetector, followed by an
integrator, so that in effect the total energy that passes the optical filter in each time
slot T is measured. The detectors actually used in most systems do not work this
way, but the good ones give similar results. Let m = KB0T , where K = 1 or 2 is
the number of polarization states to which the receiver is sensitive. The sampling
theorem says that the detected optical field has approximately 2m independent
degrees of freedom, and without loss of generality the soliton may be considered
to occupy just one of these. The mean ASE noise energy per DOF is one-half of the
equipartition energy, or Weq/2. Thus, if we let S be the ratio of the total energy in a
bit period to the equipartition energy Weq, then S becomes the sum of the squares of
2m independent Gaussian random field variables, each with variance equal to 1/2.
All but one of these have zero mean values. The exception has a mean value that is
the square root of the normalized unperturbed soliton energy, S1. One can think of
S as the square of the radius to a point in a 2m dimensional euclidian space whose
coordinates are the real amplitudes of the normalized DOF field components.

On the basis of this picture, we get the following results. First, in terms of the
unit energy Weq, the mean and variance of the energy of each noise mode are both
unity. Thus, the mean and variance of the distribution of S for a “zero” (soliton
absent) are both equal to m. For a “one” (soliton present), the mean of the energy
distribution is also obtained just by adding the expected energies of the individual
components, and hence is equal to S1 + m. The corresponding variance is an
entirely different story, however, because of the above-mentioned fact that the
soliton adds coherently to the noise field in its DOF. If we designate the stochastic
noise field in the ith DOF by εi, the soliton field of magnitude

√
S1 adds vectorially

in the complex plane to the fields ε1 and its quadrature complement ε2 as shown
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√

S1) with the noise field term ε1
of its DOF and the quadrature complement ε2 in the complex plane. From the geometry
shown here, clearly, the field ε1 has a much greater effect on the pulse energy S than does ε2.
Also, keep in mind that with an expected value of 0, ε is just as likely negative as positive,
so that it can also reduce the size of the signal’s field and energy. The effects of the other
2m − 2 noise field components, not shown here, are similar to that of ε2.

in Fig. 3.15. The signal energy S is the sum of the squares of the fields in the
2m DOFs:

S =
(√

S1 + ε1

)2 +
2m∑
i=2

ε2
i . (3.22)

Expanding Eq. (3.22) and using the fact that 〈S〉 = S1 +m (see above), we then get

S − 〈S〉 = 2
√

S1ε1 +
2m∑
i=1

ε2
i − m. (3.23)

To calculate the variance 〈(S − 〈S〉)2〉, we must make use of the facts that the
Gaussian distribution functions for the εi have second and fourth moments 〈ε2

i 〉 =
1/2 and 〈ε4

i 〉 = 3/4, respectively, and that the expected value of a product of
stochastically independent terms is the product of their expected values. After a
bit of manipulation, the final result is〈

(S − 〈S〉)2〉 = 2S1 + m. (3.24)

Note that this variance is usually much bigger than the corresponding variance (m)
for the zeros. Thus, spontaneous emission noise typically creates a much larger
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spread of energies among the ones than it does among the zeros. Incidentally, in
the variances, the term m represents the “spontaneous–spontaneous beat” noise,
while the term 2S1 represents the “signal–spontaneous beat” noise, both mentioned
earlier [see Eq. (3.11) and the subsequent text].

The exact probability densities for S are given by [54]

P0(S) = Sm−1

(m − 1)! exp(−S) (3.25)

for a “zero,” and by

P1(S) =
(

S

S1

)(m−1
2

)
exp[−(S + S1)] Im−1(2

√
SS1) (3.26)

for a “one,” where Im−1 signifies a modified Bessel function of the first kind. It
will be noted that the exponential and Bessel function terms in Eq. (3.26) tend to
be very small and very large, respectively. While such numbers are not a problem
for computers, the combination tends to make the expression somewhat opaque.
Thus, the following approximate asymptotic form of Eq. (3.26) can give one a
more immediate feel for the behavior of Eq. (3.26) in the regions where it is valid:

P1(S)≈ 1

2
√

πS

(
S

S1

)(m−1/2
2

)
exp

[
−(

√
S−√S1)2

] (
1− 4(m−1)2−1

16
√

S S1
+···

)
.

(3.26a)

The approximation is valid in regions where the quantity (4(m−1)2−1)/
16

√
S S1 �1.

The functions P0(S) and P1(S) are often approximated by Gaussians. Gaussian
distributions are determined solely by their means and variances. From the means
and variances cited above, the approximate Gaussian distributions are

P0G(S)= 1√
2π m

exp
(
−(S−m)2/(2m)

)
(3.27)

and

P1G(S)= 1√
2π (2S1+m)

exp
(
−(S−S1−m)2/(4S1+2m)

)
. (3.28)

The probability distributions P0 and P1 and their Gaussian approximations
are shown in Fig. 3.16, for the combination S1 =100 and m=8. Note that the
exact probability distributions are somewhat asymmetric, with tails longer on
their high-energy sides than on their low-energy sides. Note also that the P0 and
P1 distributions are peaked at or very near m=8 and S1+m=108, respectively,
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P1G. Note that the plots in the upper panel are to different linear scales, in order to better
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the probability densities, P(S) and the error rates are two different things, the latter being
the integral under the tail of the first, so the vertical scale of the log plots plays two different
roles here.]

reflecting the fact that the corresponding means are exactly 8 and 108, regardless
of whether the distributions are exact or Gaussian approximations.

Using these probability distributions, one determines error rates by choosing a
decision level Sd that equates the probability that S >Sd for a “zero” with the prob-
ability that S <Sd for a “one.” In Fig. 3.16, these decision levels and their resulting
error rates are indicated by circled dots. These points lie close to the cross-over
points of their respective probability distributions on the logarithmic plot because
the required integrals of the distribution tails produce multiplying factors of order
one. Note that the optimum decision level is higher, but the corresponding error
rate is lower, for the exact distributions (P0 and P1) than for their Gaussian approx-
imations. Figure 3.17 plots the similarly determined optimum decision levels and
corresponding minimum error rates as a function of the fundamental S/N ratio S1.
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Note that the more accurate computation of error rates continues to yield fewer
errors than does the Gaussian approximation. For a larger value of m (larger optical
bandwidth) the difference would be smaller.

3.4.2. The Q Factor and the Gaussian Approximation

Although the discussion thus far has centered on amplitude errors, as already
noted, jitter in pulse arrival times and still other effects, such as polarization-mode
dispersion (treated in Chapter 7), can also play a significant, and sometimes the
dominant, role. Just as with amplitude errors, these other sources of error are also
often fairly well represented by Gaussian probability distributions. The quantity Q,
related to the bit error rate (BER) through the complementary error function,

BER= 1

2
erfc

(
Q/

√
2
)

, (3.29)

has become a more or less universally accepted parameter to characterize the net
bit error rate in such Gaussian approximation. From the very general way that the
Q factor is now used, Eq. (3.29) can be considered the definition of Q, i.e., Q/

√
2

is simply that argument of the complementary error function that yields the BER.
Nevertheless, as we shall soon see, Q is very simply related to the means and
variances of Gaussian distributions. Thus, it tends to be theoretically convenient
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and exceptionally suitable for the description of measured error rates, where it is
often possible to find the means and variances of the probability distributions, but it
is not easy to determine the exact form of the distribution tails. Finally, for the error
rates of practical concern, the corresponding Q factors represent convenient and
easily remembered numbers; for example, for a BER of 10−9, the corresponding
value of Q is 6. Incidentally, there is an approximate form of Eq. (3.29) that can
be used when Q≥3:

BER≈
(

2π (Q2+2)
)−1/2

exp(−Q2/2). (3.29a)

The error function and the complementary error function are defined as

erf(x)= 2√
π

∫ x

0
exp

(
−t2

)
dt and erfc(x)= 2√

π

∫ ∞

x
exp

(
−t2

)
dt.

They are defined so that erf(x)+erfc(x)=1. Note that together they occupy only
half of a complete Gaussian function. Note also that by symmetry, (t →−t), the
complementary error function can also be expressed as

erfc(x)= 2√
π

∫ −x

−∞
exp

(
−t2

)
dt.

The latter form of the erfc function applies directly to the tail below the distribution
peak, while the former form applies similarly to the tail above the peak.

Let us now consider the most general case: Given two Gaussian probability
distributions, P0(x) for a “zero,” and P1(x) for a “one,” with means respectively
µ0 and µ1 and with variances respectively σ 2

0 and σ 2
1 , we want to calculate the best

decision level and the resulting error rate. Assume that µ1 >µ0. With a decision
level µd somewhere between µ0 and µ1, the probability of making an error when
reading a “zero” is (1/2)erfc((µd −µ0)/

√
2σ0), and the probability of making an

error when reading a “one” is (1/2)erfc((µ1−µd)/
√

2σ1). As already noted in the
previous section, errors are minimized when the two error rates are equal, that is,
when (µd −µ0)/σ0 = (µ1−µd)/σ1. From this, we find that the optimum decision
level, and the resulting error rate for both “ones” and “zeros”, are

µd = µ0σ1+µ1σ0

σ1+σ0
(3.30a)

and

BER= 1

2
erfc

(
1√
2

µ1−µ0

σ0+σ1

)
. (3.30b)
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Thus, from Eq. (3.30b), the value of Q needed to determine error rates from
Eq. (3.29) is simply

Q= µ1−µ0

σ1+σ0
. (3.31)

Let us now return to the specific case of amplitude error. Substituting m,
S1+m,

√
m, and

√
S1+m for µ0, µ1, σ0, andσ1, respectively, into Eqs. (3.30a) and

(3.30b), we get a decision level and a BER given by

Sd = (S1+m)
√

m+m
√

2S1+m√
m+√

2S1+m
(3.32a)

and

BER= 1

2
erfc

(
S1√

2m+√
4S1+2m

)
. (3.32b)

For the combination S1 =100 and m=8 used in Fig. 1.16, these equations yield
Sd =24.396 and BER =3.378×10−9, respectively. The data for the Gaussian BER
curve of Fig. 3.17 were calculated from Eq. (3.32b).

From the approximate form of Eq. (3.29), it is evident that the logarithm of the
BER is almost linearly dependent on Q2. Thus, in the engineering world, the value
of Q2 is cited more often than that of Q itself; furthermore, it is common practice
to quote the quantity 10 log10(Q2), i.e., Q2 is quoted in “dB.” Figure 3.18 plots
log10(BER) versus Q2 in decibels.
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Figure 3.18 Logarithm of bit error rate for amplitude errors (in the Gaussian approxima-
tion) plotted as a function of Q2 in decibels.
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3.4.3. The Gordon–Haus Effect

The ASE noise also acts to produce random variations of the solitons’ central
frequencies. The fiber’s chromatic dispersion then converts these variations in
frequency to a jitter in pulse arrival times, known as the Gordon–Haus effect [55].
Such timing jitter can move some pulses out of their proper time slots. Thus, the
Gordon–Haus effect is a fundamental and potentially serious cause of errors in
soliton transmission.

The calculation of the jitter can be summarized as follows: Recall that each
DOF of the noise field produced by an amplifier has a mean path-average energy of
(1/2)W̄amp(ν). The field of one such DOF shifts the frequency of the solitons. From
perturbation theory one can deduce that the effective noise field component has the
form δu= iausol tanh(t) (see Fig. 3.19), and that it shifts the solitons’ frequency by
an amount δ�=2a/3. Here a is a real random Gaussian variable whose variance
(3/4)W̄amp(ν) is determined by the DOF’s mean energy requirement. The solitons’
random frequency shift therefore has a variance of

〈
δ�2〉

amp = 1

3
W̄amp(ν). (3.33)

Since in soliton units (see Chapter 1, Section 1.3.3) the inverse velocity shift is
numerically just −1 times the frequency shift, the net time shift of a given pulse is

δt =−
∑
amps

δ�nzn, (3.34)

where zn is the distance from the nth amplifier to the end. On the right side of
Eq. (3.34) we have the sum of N independent variables, each of which has a
Gaussian distribution. In such a case the sum also has a Gaussian distribution
whose variance is the sum of the variances of the individual terms. Thus, the

usol

δu

Figure 3.19 Noise component that modifies the frequency of a soliton in relation to the
field envelope of the soliton. The two field components are in quadrature.
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variance of δt is

〈
δt2〉= 〈δ�2〉

amp

∑
amps

z2
n = W̄amp(ν)

3

Z3

3Lamp
, (3.35)

where, for the second step in Eq. (3.35), Z represents the total system length, and
we have approximated the discrete sum over the (many) amplifiers by an integral.
Now, substituting lnG/α for Lamp and using the path-average form of Eq. (3.13),
we obtain

〈
δt2〉= 1

9
nspF(G)hνZ3. (3.36)

(From now on in this chapter, we shall write the variance in arrival times, 〈δt2〉,
as σ 2, so σ then becomes the corresponding standard deviation.) Translated from
soliton units into practical units, Eq. (3.36) becomes

σ 2
gh =3600nspF(G)

α

Aeff

D

τ
Z3, (3.37)

where σgh is in ps, F(G) is as defined by Eq. (3.16), the fiber loss factor α is in
km−1, the effective fiber core area Aeff is in µm2, the group delay dispersion D is
in ps/nm-km, τ is the soliton full width at half maximum intensity in ps, and Z
is the total system length in Mm (1 Mm = 1000 km). [The numerical constant
in Eq. (3.37) is not dimensionless.] We can deduce from Eq. (3.37) that σ 2

gh is
proportional to the energy of the solitons, since the latter is also proportional
to D/τ .

To get a feeling for the size of the effect, consider the example Z = 9 Mm (trans-
Pacific distance), τ = 20 ps, D = 0.5 ps/nm-km, Aeff = 50 µm2, α = 0.048 km−1,
nsp = 1.4, and F = 1.19 (∼30-km amplifier spacing); Eq. (3.37) then yields
σgh = 11 ps.

The bit error rate from the Gordon–Haus effect is the probability that a pulse
will arrive outside the acceptance window of the detection system. If the window
width is 2w and we assume that these errors only affect the “ones,” then the BER
has a Q value of w/σ [see Eq. (3.31)]. For example, this implies that for an error
rate no greater than 1×10−9, 2w=12σgh. Now, the upper bound on 2w is just
the bit period, although practical considerations may make the effective value of
2w somewhat smaller. Note, therefore, that for the example given above, where
σgh =11 ps, the quantity 12σgh corresponds to a maximum allowable bit rate of
about 7.5 Gbit/s.



3.4. ASE-induced Errors 77

3.4.4. Gordon–Haus Effect for Dispersion-managed Solitons

For dispersion-managed solitons, the standard deviation, σ , of the Gordon–Haus
jitter can be computed as

σ (ps)=1.005. . . (ps/nm)

√
Weq

Wsol

√
Z

L

D̄ (ps/nm-km)

τ (ps)
Z (km), (3.38)

where Weq is the equipartition energy per span, L is the span length, and τ is the
unchirped pulse width. Equation (3.38) is just the square root of Eq. (3.37), rewrit-
ten to display the quantities Wsol and D̄/τ explicitly, as those two quantities are
not rigidly coupled for dispersion-managed as they are for ordinary solitons (for
ordinary solitons, Wsol ∝ D̄/τ ). Now, by virtue of the energy enhancement effect
discussed earlier, for the same Wsol, the value of D̄/τ is several times smaller for
dispersion-managed than it is for ordinary solitons. Then σ [by virtue of Eq. (3.38)]
is also smaller for dispersion-managed solitons by the same factor. Thus, while the
Gordon–Haus effect tends to impose a serious penalty in ultra-long-haul transmis-
sion with ordinary solitons at 10 Gbit/s, it poses much less of a threat for the same
with dispersion-managed solitons (DMSs), at least when it is the sole source of
timing jitter. That is, note from the data of Fig. 3.20 that the total spread in arrival
times out to the 10−9 probability level (≈13σ ) is a small fraction of the bit period
at 10 Gbit/s, especially when the optimal post-dispersion compensation is used.
(On the other hand, note that the same spread is comparable to the bit period at
40 Gbit/s.)
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Figure 3.20 Standard deviation of the Gordon–Haus jitter vs. distance for a DMS system
like that shown in Fig. 3.11. Solid curve: Without post-dispersion compensation [the full
result from Eq. (3.38)]. Dashed curve: With optimum post-dispersion compensation [half
the result of Eq. (3.38)].
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3.4.5. The Acoustic Effect

Traditionally, the Gordon–Haus effect is considered to be the dominant source
of timing jitter. There is, however, another contribution, one arising from an
acoustic interaction among the pulses. Unlike the bit-rate-independent Gordon–
Haus jitter, the acoustic jitter increases with bit rate, and as we shall soon see, it
also increases as a higher power of the distance. Thus the acoustic jitter tends to
becomes important for the combination of great distance and high bit rate. In this
section we briefly review what is known about the acoustic effect.

The acoustic effect appeared in the earliest long-distance soliton transmission
experiments [56] as an unpredicted “long-range” interaction: one that enabled
pairs of solitons separated by at least several nanoseconds (and which were thus far
beyond the reach of direct nonlinear interaction) to significantly alter each other’s
optical frequencies, and hence to displace each other in time. Shortly thereafter,
Dianov et al. [57] correctly identified the source of the interaction as an acoustic
wave, generated through electrostriction as the soliton propagates down the fiber
(see Fig. 3.21).

Other pulses, following in the wake of the soliton, experience effects of the
index change induced by the acoustic wave. In particular, they suffer a steady
“acceleration,” or rate of change of inverse group velocity with distance, dv−1

g /dz,
proportional to the local slope of the induced index change (again, see Fig. 3.21).
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Figure 3.21 Solid curve: Relative index change due to the acoustic effect following
passage of a soliton at t =0. Dotted curve: Relative force acting on the following soliton at t;
this curve is proportional to the time derivative of the relative index curve. For these curves,
the interacting solitons are assumed to have a common state of polarization. The effect is
only weakly dependent on their relative polarizations, however.
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In a broadband transmission line, when this steady acceleration is integrated over z,
it yields δv−1

g ∝ z, and a second such integration yields a time displacement δt ∝ z2.
It can be shown that the standard deviation of the acoustic effect for a fiber with
Aeff =50µm2 is approximately [58, 59],

σa ≈8.6
D2

τ

√
R−0.99

Z2

2
, (3.39)

where σa is in ps, D is in ps/nm-km, τ is in ps, R is in Gbit/s, and Z is in Mm.
Comparing Eq. (3.39) with the square root of Eq. (3.37), note the different power
dependencies on D, τ , R, and Z , most of which have already been discussed for
both the Gordon–Haus and the acoustic effects. For the acoustic jitter, the scaling
of σa as D2/τ is easily understood, since it is clearly in direct proportion to the
soliton energy, or D/τ , and the extra factor in D is required for the conversion of
frequency shifts into timing shifts.

3.4.6. Phase-shift Keying and the Gordon–Mollenauer Effect

Differential Phase-shift Keying

Thus far in this book, we have discussed the representation of digital “ones” and
“zeros” in an optical data stream as the simple presence or absence of a pulse,
respectively, in the most commonly used encoding method known as “amplitude-
shift keying” (ASK), or more recently as “on–off keying” (OOK). Recently, how-
ever, there has been much interest in a phase-shift encoding method known as
“differential phase-shift keying,” or DPSK, where ones and zeros are represented
by a π or 0 phase-shift difference between successive pulses (see Fig. 3.22). There
are two reasons for this interest. First, as with any phase- or frequency-shift keying,
each bit slot contains a nominally standard pulse. Thus, absent the effects of noise,
each pulse should experience exactly the same set of nonlinear interactions as
every other pulse, so that effects such as timing jitter from collisions in WDM
should disappear. Second, in a sufficiently linear system, DPSK provides a nearly
3-dB improvement in effective signal-to-noise ratio [60]; (see Fig. 3.23). The
improvement stems from the doubled output swing between ones and zeros at
the output of the balanced receiver that results from coherent addition of the pulse
fields in the Mach–Zehnder (MZ) interferometer (for a more complete explanation,
see Xu et al. [60]).

As the system becomes more nonlinear, however, the effective S/N ratio of a
DPSK system is rapidly degraded [61,62] as the nonlinear term begins to convert
amplitude noise into phase noise. This phenomenon, known as the “Gordon–
Mollenauer” effect [63], is the subject of the next section.
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PC: Pulse carver
PM: Phase modulator
MZDI: MZ delay inteferometer with 1 bit delay 
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Figure 3.22 (a) Basic scheme for a return-to-zero (RZ), DPSK transmission system. At the
transmitter, a phase modulator (“encoder”) imposes relative phase shifts of 0 or π uniformly
across each RZ pulse. At the receiving end, transit times through the two arms of the Mach–
Zehnder (MZ) interferometer differ by exactly one bit period, such that successive incoming
pulses precisely overlap in time at its output; interference then causes all of the energy of
each pulse pair to appear at one or the other of its two output ports. The electrical output
of the balanced receiver reflects the algebraic difference between its two inputs. (b) Phasor
diagrams of the received optical E fields for OOK and RZ-DPSK, assuming the same peak
pulse power for each. DFB, Distributed feedback; NRZ, non-return-to-zero. Reproduced
with permission from Xu et al. [60].

The Gordon–Mollenauer Effect

Just as in the theory of the Gordon–Haus effect, we are concerned with a particu-
lar component of the noise field produced by each amplifier in a chain like that of
Fig. 3.9. The phase of a pulse is affected by that part of the noise field that looks
like the pulse itself, and both of its degrees of freedom play a role. That part in
quadrature with the pulse, which we shall call E1, is responsible for generating
the linear contribution δφL , and that part in phase with the pulse, E2, generates
the nonlinear part δφNL that is responsible for the Gordon–Mollenauer effect (see
Fig. 3.24). Once again, the expected energies associated with these degrees of
freedom, 〈W1〉amp and 〈W2〉amp, are each equal to (Weq)amp/2. From Fig. 3.24,
and using the small angle approximation, we have δφL ∼=E1/Esig. Since each
of the field quantities is proportional to the square root of its associated energy,
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Figure 3.23 Log10(BER) vs. fundamental S/N ratio for both RZ-DPSK and OOK; note
the nearly 3-dB reduction in required S/N ratio for a given BER with DPSK. Adapted from
Xu et al. [60].
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Figure 3.24 Phasor diagram showing addition of noise fields E1 and E2 at the output of
an amplifier to Esig, and the resultant phase shifts δφL and δφNL produced. The relative
sizes of the noise fields to the signal field have been greatly exaggerated here for clarity.

the variance 〈δφ2
L〉amp = (Weq)amp/(2Wsig). Thus, after transmission over a net

distance Z , we have

〈
δφ2

L

〉
Z =

∑
amps

〈
δφ2

L

〉= Weq

2Wsig
= 1

2S
, (3.40)

where S is the fundamental signal-to-noise ratio.
For the nonlinear effect, we must first calculate the noise-induced changes in

pulse energy. Since the additions at each amplifier are small, the only significant
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change comes from addition of the E2 noise field. Keeping only the cross term from
the quantity (Esig+E2)2 and expressing the result in terms of equivalent energies,
we get δWsig =2

√
Wsig

√
W2. Squaring again and substituting the expected value

(Weq/2)amp for W2, we get〈
δW2

sig

〉
amp = 2Wsig(Weq)amp. (3.41)

For the nonlinear phase shift, we shall need the appropriate path-averages over the
following fiber spans, so Eq. (3.41) can be rewritten as〈

δW̄2
sig

〉
amp = 2W̄sig(W̄eq)amp. (3.41a)

The change in nonlinear phase shift produced by the nth amplifier, counting back
from the receiver, is then

(δφNL)n = kNL
δW̄sig

τ
nL, (3.42)

where the nonlinear coefficient kNL = (2πn2)/(λAeff ) is as defined by Eq. (1.11),
and where τ is an effective pulse width, such that the fraction δW̄sig/τ yields the
correct path-average power. [Thus, for dispersion-managed solitons, τ is not the
unchirped (minimum) pulse width; rather, it is a value lying somewhere between
the minimum and maximum widths.] Squaring Eq. (3.42) and using the energy
variance from Eq. (3.41a), we obtain

〈δφ2
NL〉n = 2

(
kNL nL

τ

)2

W̄sigW̄eq. (3.43)

Since the δφNL contributed by each amplifier is independent of all the others, the
net variance for transmission over the distance Z is

〈
δφ2

NL

〉= (Z/L)∑
n=1

〈
δφ2

NL

〉
n = 2

(
kNLL

τ

)2

W̄sigW̄eq

(Z/L)∑
n=1

n2. (3.44)

Using the fact that the final sum in Eq. (3.44) is essentially equal to (Z/L)3/3,
regrouping terms and then using the substitutions φNL =kNL(W̄sig/τ )Z and W̄eq =
(Z/L)(W̄eq)amp, we finally obtain

〈
δφ2

NL

〉= 2

3
φ2

NL
W̄eq

W̄sig
= 2

3
φ2

NL/S, (3.44a)

the principal result of Gordon and Mollenauer [63]. For DPSK, which involves the
difference in phase between two independent terms, each of which has a variance
given by Eq. (3.44a), the effective variance is twice the result of Eq. (3.44a).



3.4. ASE-induced Errors 83

Note from Eqs. (3.40) and (3.44) that the variances of δφL and δφNL vary as W̄−1
sig

and W̄sig, respectively. Thus the total variance is minimized when the two terms are
equal, and this occurs when φNL is approximately 1 radian (rad). Note also that the
variance of δφNL scales as Z3, just as in the Gordon–Haus effect, while that of δφL

scales only as Z . Thus, as Z is increased in ultra-long-haul transmission, DPSK
is eventually defeated by the Gordon–Mollenauer effect, while OOK continues to
function. This important scaling can perhaps be best appreciated through a specific
example. Figure 3.25 shows some results from Xu et al. [61], viz., BER measure-
ments, carried out in the recirculating loop of Fig. 3.11, comparing transmission
with DPSK vs. that for single-channel OOK. For DPSK, W̄sig =5.1 fJ yielded the
best BER performance (see Fig. 3.25). For that energy, the pulses are definitely
not solitons, and hence tend to suffer considerable net dispersive broadening over
5 Mm, and S ≈81 at that distance. Thus, we can only make the rough estimate
φNL ≈1.1 rad. Nevertheless, it is clear that in this case, the resultant 〈δφ2

NL〉 is
small enough that the BER performance is dominated by the direct effects of ampli-
tude jitter and not by the Gordon–Mollenauer effect. For the higher DPSK energy
(W̄sig =8.9 fJ), however, the situation is reversed. At 5 Mm, for that increased
energy, φNL ≈2.76 rad and S ≈142. Using those quantities in Eqs. (3.44) and
(3.40), we get 〈δφ2

NL〉=0.036 and 〈δφ2
L〉=0.0035, respectively. Summing the

two variances, multiplying by the factor of two required for DPSK, and taking
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Figure 3.25 BER vs. distance, as measured in the recirculating loop of Fig. 3.11, for DPSK
and single-channel OOK transmissions. Black squares: BER for single-channel DPSK at
the optimal path-average pulse energy (W̄sig =5.1 fJ). Open squares: WDM DPSK mea-
surement, with W̄sig =8.9 fJ. (With DPSK, however, the difference between WDM and
single-channel performance is small; hence, the important difference here is in the pulse
energies.) All of the data mentioned thus far are from Xu et al. [61]. Open circles: BER for
OOK at a pulse energy of 17.8 fJ. Dashed circles: The same, but for 1.4× greater soliton
pulse energy; this last set of data is from Chapter 6, Fig. 6.22.
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the square root, we get an effective standard deviation σeff =0.28. Correspond-
ing to the ≈10−7 BER rate observed at 5 Mm, ±5×σeff =±1.4 rad, which is
remarkably close to the theoretical threshold for errors of |δφ|=π /2; at the same
time, increased S drastically reduces the BER directly from amplitude jitter. Thus,
for this latter case, the Gordon–Mollenauer effect is clearly the dominant source
of errors. By contrast, since the only nonlinear penalty in single-channel DMS
transmission is from the Gordon–Haus effect (almost negligible for the range of
parameters in Fig. 3.25), the distance for a given BER tends to scale in direct
proportion to W̄sig, and considerably higher values of W̄sig are allowed.

3.4.7. Optimization of the Pulse Energy for Best
BER Performance

It should be clear from the discussion in Sections 3.2 and 3.3 that energy errors
decrease, while errors from the Gordon–Haus jitter increase, with increasing soli-
ton pulse energy Wsol. Thus there will be an optimum value of Wsol for which the
combined error rates are a minimum. Since Wsol ∝D/τ , one can hope to attain
that optimum value of Wsol by adjusting D and τ . There are, of course, cer-
tain limitations on the practical ranges for both parameters. For example, lack of
perfect uniformity of fiber preforms and other factors tend to limit the smallest
values of D that can be produced reliably. To avoid significant interaction between
nearest-neighbor soliton pulses, τ can be no more than ∼20–25% of the bit period.
Nevertheless, D/τ can usually be adjusted over a considerable range.

The optimum value of Wsol can be most efficiently found from a diagram [54]
like that shown in Fig. 3.26, where, for a fixed value of the transmission distance,
the rates for both energy and timing errors are plotted as a function of the parame-
ter τ /D. Proceeding from the far right, where Wsol is smallest, note that at first, only
energy errors are significant, but as Wsol decreases, those errors fall off exponen-
tially. Eventually, timing errors become significant and then dominate. Also note
that although the energy errors are bit-rate independent, the timing errors are not,
since the allowable size of the acceptance window in time is determined by the bit
period. Note that for transmission at 5 Gbit/s, the optimum value of τ /D≈70 nm-
km. If we choose D=0.5 ps/nm-km, a value large enough to be reproducible, then
we have τ =35 ps, a value short enough relative to the (200 ps) bit period to allow
for negligible pulse interactions.

The curves of Fig. 3.26 would seem to imply a maximum allowable bit rate not
much greater than 5 Gbit/s for trans-Pacific soliton transmission over a broadband
transmission line (at least not for the specific choice of parameters reflected there).
As is thoroughly explored in the section following this one, however, the technique
of passive regeneration known as “guiding filters” has enabled that limit to be
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Figure 3.26 Bit error rates for energy and timing errors, as a function of the parameter
τ /D, for a transmission distance of 9 Mm (the trans-Pacific distance). The other assumed
parameters are fiber loss rate, 0.21 dB/km; Lamp =30 km; nsp =1.5; Aeff =50µm2; m=8
(see Section 3.3.1).

surpassed by a large factor. Thus, the theory in this section and its predictions
are largely of interest as background for the understanding of transmission using
filters. Nevertheless, for the record, we close this section by citing results of an
experimental test, made a number of years ago [64], of single-channel transmission
at 5 Gbit/s. Although made with guiding filters, the filters were only of the weak,
fixed, tuned type, so the results that would have been obtained without filters may
reasonably be projected from them (see Fig. 3.27).

3.5. Frequency-guiding Filters

3.5.1. Introduction

In mid-1991, two groups independently suggested the idea that the Gordon–Haus
jitter and other noise effects could be significantly suppressed in soliton transmis-
sion systems simply through a narrowing of the amplifier gain-bandwidth [65,66].
In practice this means the use of narrow-band filters, typically one per ampli-
fier. Figure 3.28 shows appropriate filter response curves in comparison with the
spectrum of a 20-ps-wide soliton. The fundamental idea is that any soliton whose
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Figure 3.27 Experimentally measured bit error rate for a single-channel rate of 5 Gbit/s,
as a function of transmission distance, and with a 213-bit-long random sequence. Curve
labeled “with”: Weak, fixed frequency-guiding filters used. Curve labeled “without”: scaled-
back projection with no filters. The other parameters are fiber loss rate, 0.21 dB/km; Lamp =
28 km; D=0.7 ps/nm-km; nsp =1.6; τ =40 ps; Aeff =35µm2. At the receiver, the effective
window width was about 170 ps.
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Figure 3.28 Intensity response curves of practical etalon guiding filter, Gaussian with
same peak curvature, and spectrum of 20-ps soliton. The etalon mirrors have R = 9% and
their 2.0-mm spacing creates the 75-GHz free spectral range.

central frequency has strayed from the filter peak will be returned to the peak,
in a characteristic damping length 
, by virtue of the differential loss the filters
induce across its spectrum. The resultant damping of the frequency jitter leads in
turn to a corresponding damping of the jitter in pulse arrival times. For example,
in Eq. (3.35) for the variance of the Gordon–Haus jitter, when guiding filters are
used, the quantities z2

n in the sum are all replaced with the common factor 
2.
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Thus, the factor Z3/3 in the final expression is replaced by the (potentially much
smaller) factor Z ×
2.

The filters also cause a reduction in amplitude jitter. Consider, for example, a
pulse with greater than normal power; that pulse will be narrower in time, have
greater bandwidth, and hence experience greater loss from passage through the
filter than the normal pulse, and, of course, the opposite will occur for a pulse of
less than standard power. Thus, amplitude jitter also tends to be dampened out,
as will be detailed later, in essentially the same characteristic length 
 as is the
frequency jitter.

Since the major benefit comes from the filter response in the neighborhood of its
peak, the etalon filter whose shallow response is shown in Fig. 3.28 provides almost
as much benefit as a complete Gaussian filter. But the etalon, with its multiple
peaks, has the great fundamental advantage that it is compatible with extensive
WDM. The etalons also have the practical advantage that they are simple, cheap,
and can be easily made in a rugged and highly stable form.

It should be understood that linear pulses cannot traverse a long chain of such
filters: After a sufficient distance, their spectra will be greatly narrowed, and the
pulses correspondingly spread out in time. The solitons survive because they can
regenerate the lost frequency components, more or less continuously, from the
nonlinear term of the NLS equation. On the other hand, the amplifiers must supply
a certain excess gain to compensate for the net loss the solitons suffer from passage
through the filters. As a result, noise components at or near the filter peak grow
exponentially with distance. In order to keep the noise growth under control, the
filters can be made only so strong, so the maximum possible benefit from them
tends to be somewhat limited. For example, Fig. 3.29 shows the standard deviation
of timing jitter, as a function of distance, for systems with the optimum strength
filters (those experimentally observed [64] to produce the best BER performance),
and for those with no filters. Note that at the trans-Pacific distance of 9 Mm, the
filters reduce the standard deviation of the jitter by a factor somewhat less than
two times.

3.5.2. Sliding-frequency Guiding Filters

There is a simple and elegant way [67] to overcome the noise growth, and hence
the limited performance, of a system of fixed-frequency filters. The trick is to
“slide,” i.e., translate, the peak frequency of the filters with distance along the
transmission line (see Fig. 3.30). As long as the sliding is gradual enough, the
solitons will follow, in accord with the same “guiding” principle that dampens
the jitter. On the other hand, the noise, being essentially “linear,” can follow
only the horizontal path in Fig. 3.30. Thus, the sliding creates a transmission
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Figure 3.29 Computed standard deviations, σGH , of pure Gordon–Haus jitter as a function
of total path, for a broadband transmission line (“no filters”), and for one having optimum
strength, fixed-frequency guiding filters. The optimum filter strength, determined experi-
mentally, corresponds to one uncoated, 1.5-mm-thick solid quartz etalon filter every 78 km.
The other pertinent transmission line and soliton parameters in the strength-determining
experiment were D = 0.7 ps/nm-km, nsp = 1.4, and τ = 40 ps. (The BER data of Fig. 3.17
were obtained in the same experiments [64].)
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Figure 3.30 Transmission of sliding-frequency guiding filters versus z.

line that is opaque to noise for all but a small, final fraction of its length, yet
remains transparent to solitons. In consequence, the filters can be made many
times stronger, and the jitter reduced by a correspondingly large factor, with the
final result that the maximum bit rate can be increased at least severalfold over that
possible without sliding. The sliding-frequency filters provide many other impor-
tant benefits, beyond the simple suppression of timing and amplitude jitter. Note,
for example, that they suppress all noise-like fields, whatsoever the source, such
as dispersive wave radiation from imperfect input pulses or other perturbations.
They provide tight regulation of all of the fundamental soliton properties, such
as energy, pulse width, and optical frequency. As will be detailed later, in WDM
the filters suppress timing shifts and other defects from soliton–soliton collisions,
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and they provide a powerful regulation of the relative signal strengths among the
channels in the face of wavelength-dependent amplifier gain. Thus, in short, the
sliding-frequency guiding filters can be regarded as an effective form of passive,
all-optical regeneration, and one that is uniquely compatible with WDM.

Finally, it should be noted that the required set of hundreds of sliding-frequency
filters can be more easily and cheaply supplied than the corresponding set of fixed-
frequency filters! That is, unlike the fixed-frequency mode, in which all filters must
be carefully tuned to a common standard, for the sliding-frequency mode, no tuning
at all is required. Rather, only a statistically uniform distribution of frequencies is
needed. Provided the distribution is over at least one or more free spectral ranges,
simple ordering of the filters should be able to provide any reasonable desired
sliding rate.

3.5.3. Analytic Theory of Guiding Filters

In the mathematical representation of a transmission line with filters, in general,
only numerical solutions are possible when the exact response functions of real fil-
ters are used. Nevertheless, analytic solutions are possible when the filter response
is approximated by a truncated series expansion [67]. When expanded in a Taylor
series, the logarithm of the filter response function F takes the general form:

lnF(ω−ωf )= iζ1(ω−ωf )−ζ2(ω−ωf )2−iζ3(ω−ωf )3+··· (3.45)

where ωf is the filter peak frequency, and where the constants ζ are all real and
positive. The first-order term can be ignored, since the linear phase shift it provides
serves only to translate the pulses in time. While higher order filter terms can have
important effects, the most fundamental features are revealed by analytic solutions
to the simplified propagation equation employing only the second-order term,

∂u

∂z
= i

[
1

2

∂2u

∂t2
+u∗u2

]
+ 1

2

[
α−η

(
i
∂

∂t
−ωf

)2
]

u, (3.46)

where α is the gain required to overcome the loss imposed on the solitons by
the filters, and where η=2ζ2. (Both continuously distributed quantities α and
η are easily converted into lumped, periodic equivalents.) Without filter sliding
(dωf /dz ≡ω′

f = 0), and where, for convenience, we set ωf =0, the exact stationary
solution is

u=√
P sech(t)exp(iφ), (3.47)

where

φ =Kz−ν lncosh(t),
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and where the parameters (α,η,P,ν,K) must satisfy

ν = 3

2η

[(
1+ 8η2

9

)1/2

−1

]
= 2

3
η− 4

27
η3+··· , (3.48a)

α= (η/3)
(

1+ν2
)

, (3.48b)

P =
(

1+η2
)(

1−ν2/2
)

, (3.48c)

K = (1/2)
(

1−ν2
)
+
(
ν2/3

)(
2−ν2

)
. (3.48d)

Note from Eq. (3.47) that the pulse’s frequency is chirped, i.e., ∂φ/∂t =−ν tanh(t).
Because of this chirp, the root-mean-square (rms) bandwidth is increased by the
factor (1+ν2)1/2.

Numerical simulation involving real filters shows that the principal features
(the chirp, extra bandwidth, and increased peak power) of the above solution are
approximately preserved. The major differences lie in slight asymmetries induced
in u(t) and in its spectrum by the third-order filter term, and in the fact that, through
a complex chain of events, those asymmetries cause the soliton mean frequency
to come to rest somewhat above the filter peak.

Numerical simulation has also shown that sliding (within certain limits, given
below) does not significantly alter this solution. Sliding does, however, have the
potential to alter the damping of amplitude and frequency fluctuations. To get
some notion of the effects of sliding on damping, we introduce the general form
for the soliton u=Asech(At−q)exp(−i�t+iφ) into Eq. (3.46). We then obtain
the following pair of coupled, first-order perturbation equations:

1

A

dA

dz
=α−η

[
(�−ωf )2+ 1

3
A2
]

, (3.49a)

d�

dz
=−2

3
η(�−ωf )A2. (3.49b)

According to Eq. (3.49b), equilibrium at A=1 and at constant ω′
f requires that

the lag 
�≡ (�−ωf ) of the soliton mean frequency behind the filter freq-
uencies is


�=− 3

2η
ω′

f . (3.50)

Equation (3.50), as written, correctly predicts the difference in lag frequencies for
up versus down sliding, 
�u−
�d . To account for the offset in 
� produced by
the third-order filter term (mentioned above for the case of no sliding), one must
add a positive constant (as determined empirically from numerical simulation) to
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the right-hand side of Eq. (3.50). Equation (3.50) then correctly predicts 
� for all
sliding rates. For etalon filters, the offset in 
� has been estimated from the third-
order filter term [68]. That is, it has been shown from perturbation theory that


�offset ≈ 6

5
ζ3, (3.51)

where ζ3 is computed as

ζ3 = 1.762 . . .

6

(1+R)

(1−R)

η

τF
(3.51a)

where F is the free spectral range of the etalon filters. Combining Eqs. (3.50),
(3.51), and (3.51a), one obtains


�=
[

1.762 . . .

5

(1+R)

(1−R)

η

τF

]
− 3

2η
ωf ′ . (3.50a)

Note that the two terms in Eq. (3.50a) tend to cancel for up-sliding (ω′
f >0), while

they add for down-sliding. Since the damping of the filters is best for the smallest
|
�| [see Eq. (3.52)] below, up-sliding is definitely preferable to down-sliding.

Equations (3.49a) and (3.49b), when linearized in small soliton frequency and
amplitude displacements δ and a, respectively, yield two eigenvalues (damping
constants),

γ1 = 2

3
η(1+√

6
�) and γ2 = 2

3
η(1−√

6
�), (3.52)

with corresponding normal modes x1 =δ+√
2/3a and x2 =δ−√

2/3a. This
implies a monotonic decrease of damping for both frequency and amplitude fluc-
tuations with increasing |
�| and, through Eq. (3.50), the existence of maximum
allowable sliding rates for stability. The numerical simulations performed to date
with real filters are at least qualitatively consistent with these predictions.

In principle, based on the damping constants of Eq. (3.52), one can go on to
write expressions for the variances in soliton energy and arrival time. It is not
at all clear, however, how accurate such expressions would be in predicting the
effects of strong, real filters. Nevertheless, since we are primarily interested in the
behavior for γ z �1, where the energy fluctuations have come to equilibrium with
the noise, the energy variance can be written as〈

δE2
sol

〉
E2

sol

≈ N

γEEsol
= N
E

Esol
, (3.53)

where N is the spontaneous emission noise spectral density generated per unit
length of the transmission line, Esol is the soliton pulse energy, and where
the effective damping length, 
E ≡1/γE , is expected to increase monotonically
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with increasing |
�|. Note that Eq. (3.53) implies that as far as the noise growth
of “ones” is concerned, the system is never effectively longer than 
E . Since the
characteristic damping lengths with sliding frequency filters are typically ∼500 km
or less, this means a very large reduction of amplitude jitter in transoceanic systems.

As far as the variance in timing jitter is concerned, we have already seen that,
for γ z �1, the factor Z3/3 is replaced by Z
2

t . In other words, the variance in
timing jitter is subject to a reduction factor

f (γt ,z)≈ 3

(γtZ)2
=3

(

t

Z

)2

, (3.54)

where 
t is also expected to increase monotonically with increasing |
�|.
Although 
E and 
t are in general different, nevertheless, for Gaussian filters,
both are expected to be approximately equal to 3/(2η) in the neighborhood of

�=0.

For a transmission line using Fabry–Perot etalon filters with mirror spacing d
and reflectivity R, the parameters η, ω′

f , and α, in soliton units, are computed from
the corresponding “real-world” quantities as follows:

η= 8πR

(1−R)2

(
d

λ

)2 1

cDLf
, (3.55a)

ω′
f =4π2f ′ctc

3/
(
λ2D

)
, (3.55b)

α=αRtc
22πc/

(
λ2D

)
. (3.55c)

Here f ′ and αR are just ω′
f /2π and α, respectively, but as expressed in “real” units

(such as GHz/Mm, for example), tc ≡τ /1.763 . . . [Eq. (1.17)], and Lf is the filter
spacing.

We can now illustrate the power of sliding-frequency filters through a specific
numerical example. Anticipating a bit from the next section, where we discuss the
optimum choice of filter parameters, we choose the following soliton and fiber
parameters: D=0.5 ps/nm-km, τ =16 ps, so zc =128 km. The sliding rate will be
13 GHz/Mm (note that this means that the total sliding will be just about 1 nm in
the trans-Pacific distance), so by Eq. (3.55b), ω′

f =0.095. For the filters, we choose
R= 8%, 2-mm air-gap etalons, with Lf =50 km. By Eq. (3.55a), η=0.52. Thus,
we have α=0.185, and by Eq. (3.55c), αR =1.4/Mm. For the damping constants
of shallow etalons, however, η has a certain functional dependence on τ , and must
be degraded to about ηeff =0.4 for the 16-ps pulses to be used here.

The relative noise growth with sliding-frequency filters is easily simulated.
Figure 3.31 shows the results of such a simulation for the conditions of our example:
Note that while the sliding keeps the peak spectral density clamped to a value less
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Figure 3.31 Noise spectral density, normalized to value at 10 Mm with no filtering, as a
function of frequency and distance, for the conditions of our example (one R = 9%, 75-GHz
free spectral range etalon filter per 50 km, sliding rate = 13 GHz/Mm, αR = 1.4/Mm).
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Figure 3.32 Standard deviations of the soliton energy (“ones”) and of the noise in empty
bit periods (“zeros”) vs. distance, both normalized to the soliton energy, for the sliding-filter
scheme of Fig. 3.30 (dotted curves), and with no filtering at all, save for a single filter at
z, passing only 8 noise modes (solid curves). Assumed fiber loss rate and effective core
area are 0.21 dB/km and 50 µm2, respectively; amplifier spacing and excess spontaneous
emission factor are ≈30 km and 1.4, respectively.

than would be obtained at 10 Mm without filtering, without the sliding, the noise
would potentially grow by e14, or about 1.2 million times, in the same distance!
(Long before that could happen, however, the amplifiers would saturate.) Also
note the spectral narrowness of the noise.

In Fig. 3.32 normalized standard deviations of the soliton energy (“ones”) and of
the noise energy in empty bit periods (“zeros”) are shown as functions of distance.
These curves are obtained from Eq. (3.53) and the estimate 
E ≈600 km [from
ηeff ≈0.4 and Eq. (3.52), data of Fig. 3.31, and the analysis of Section 3.3]. Note
that with the filtering, both standard deviations soon become clamped to small,
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Figure 3.33 Standard deviation of Gordon–Haus jitter, σGH , as a function of total path.
Solid curve: With strong, sliding-frequency guiding filters. Dashed curve: No filters at all.
Conditions: τ = 16 ps, D = 0.5 ps/nm-km; nsp = 1.4; F(G)= 1.1; filter strength parameter
η= 0.5; damping length 
≈ 600 km.

indefinitely maintained values, corresponding to immeasurably small bit error
rates. Finally, in Fig. 3.33, the standard deviation of the Gordon–Haus jitter is
plotted vs. distance, both for when the sliding filters are used and for when there
are no filters at all. Note the nearly 10× reduction in σGH at 10 Mm, and compare
with the same factor from Fig. 3.29.

3.5.4. Experimental Confirmation

Measurement of Noise and Amplitude Jitter

The following two figures refer to experimental transmission with sliding-
frequency guiding filters, where the parameters are at least similar, if not identical,
to those in the example just cited. Figure 3.34 shows the signal and noise levels

15 Mm

In
te

ns
ity

0

signal + noise

noise

Figure 3.34 Noise and signal levels during a transmission using strong, sliding-frequency
filters. The signal level is represented by the thick, upper line, while the noise level is
represented by the fine line immediately above the zero signal level.
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Figure 3.35 Observed amplitude jitter reduction with successive round trips in a
transmission using sliding-frequency filters.

during a 15-Mm-long transmission, where the signal train was purposely made
not quite long enough to fill the recirculating loop. Thus, once each round trip, for
a period too brief (a few microseconds) for the amplifier populations to change
significantly, one sees only the noise. Note that, just as in the theoretical model
(Fig. 3.32), the noise grows only for a few megameters and then saturates at a
steady, low value. In another early experiment with sliding-frequency filters, the
pulse source was a mode-locked, erbium fiber ring laser, which had been purposely
maladjusted to produce a substantial amplitude jitter at a few tens of kilohertz.
Figure 3.35 shows the very rapid reduction in that amplitude jitter with successive
round trips in the recirculating loop. The data shown there imply a damping length
of about 400 km, which is consistent with the filter strength parameter of η≈0.6
and the known dispersion length zc = 160 km [see Eq. (3.52)].

3.5.5. Measurement of Timing Jitter

The timing jitter in a transmission using sliding-frequency filters has been mea-
sured accurately by observing the dependence of the BER on the position, with
respect to the expected pulse arrival times, of a nearly square acceptance window
in time [69]. The scheme, which involved time division demultiplexing, is shown
in Fig. 3.36. The fundamental measurement is of the time span (inferred from
the precision phase shifter in Fig. 3.26), for which the BER is ≤10−10 for each
distance. The resultant spans, or time-phase margins, are plotted in Fig. 3.37, as a
function of distance, for three different cases: (1) a 2.5-Gbit/s data stream (which,
since it also passes through the loop mirror, can be thought of as a 10-Gbit/s
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Figure 3.36 Scheme for the pulse timing measurements. Main elements of the clock
recovery are the detector, the high-Q, 10-GHz resonator, and the divide-by-4 chip. The
wavelength-dependent couplers in the loop mirror (small rectangular boxes) each contain
an interference filter that transmits at the signal wavelength (≈1557 nm) and reflects the
λ=1534-nm switching pulses.
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Figure 3.37 Time-phase margin vs. distance. Bullets: 2.5 Gbit/s. Squares: 10 Gbit/s,
adjacent pulses orthogonally polarized. Triangles: 10 Gbit/s, all pulses co-polarized.

data stream for which only every fourth 2.5-Gbit/s subchannel is occupied); (2)
a true 10-Gbit/s data stream with adjacent pulses orthogonally polarized; (3) a
10-Gbit/s data stream with all pulses co-polarized. Note that the error-free dis-
tances (for which the phase margin first becomes zero) are 48, 35, and 24 Mm,
respectively.
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Figure 3.38 Standard deviation of jitter vs. distance for (bottom to top) 2.5 Gbit/s,
10 Gbit/s with adjacent pulses orthogonally polarized, and 10 Gbit/s with adjacent pulses
co-polarized. Squares: Experimental points, as extrapolated from the data of Fig. 3.27.

Solid curve: Best fit to theoretical curve of form σ =
√

σ 2
0 +σ 2

GH +σ 2
lin. Dotted curve: σGH .

Dashed line: σlin.

From the known properties of the error function, the difference between the
effective width (here 82 ps) of the acceptance window and the measured time-
phase margin at 10−10 BER should be ≈13σ of the Gaussian distribution in pulse
arrival times. From this fact, one can then obtain the plots of σ shown in Fig. 3.38.
Note that in all three cases shown there, the data make good fit to a curve of
the form

σ =
√

σ 2
0 +σ 2

GH +σ 2
lin, (3.56)
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where σ0,σGH , and σlin represent the standard deviations of the source jitter (a
constant), filter-damped Gordon–Haus jitter (varies as z1/2), and jitter whose σ

varies linearly with z, respectively. The best-fit Gordon–Haus term (σGH ) is always
about two times greater than expected for the known parameters of the experiment,
and for the damping length of ≈400 km as calculated, and as confirmed by the
independent measurement of the damping of amplitude jitter (Fig. 3.35). The
frequency offset of the pulse spectra from the filter peaks is very small and can
thus at best account for only a small part of the discrepancy, despite speculation to
the contrary [70]. Thus, the only likely explanation here is in terms of the noise-
like fields of dispersive wave radiation. Among the perturbations that may be
responsible for significant amounts of such noise are the fiber’s birefringence (see
Chapter 7) and the periodic intensity associated with the use of lumped amplifiers
(Section 1.4.2).

There are two contributions to the linear term, polarization jitter and the acoustic
effect (Section 3.4.5). (The polarization jitter arises from a noise-induced spread
in the polarization states of the solitons, and the conversion of that spread by the
fiber’s birefringence into a timing jitter. This effect will be discussed further in
Chapter 7.) Since both contributions have essentially Gaussian distributions, the

effects add as σlin =
√

σ 2
pol +σ 2

a . For a filtered transmission line, the factor Z2/2 in

Eq. (3.39) is replaced with Z ×
. Thus modified, Eq. (3.39) becomes

σa =8.6
D2

τ
Z


√
R−0.99. (3.39a)

Using the bit-rate dependence of σa and the slopes of σlin from the two lower plots
of Fig. 3.37, one can easily extract values for σpol and σa. At Z =10 Mm, those
values are σpol =0.80 ps, σa,2.5 =0.50 ps, and σa,10 =1.21 ps. The experimental
values for σa are just 7% less than predicted by Eq. (3.39a), a remarkable degree
of agreement.

Bit error rate measurements have been made at 12.5 and 15 Gbit/s, as well as
at the 10 Gbit/s already cited. Figure 3.39 summarizes those results. Finally, it
should be noted that by using sliding-frequency guiding filters, LeGuen et al. [71]
achieved error-free transmission at 20 Gbit/s over more than 14 Mm.

3.5.6. Stability Range

The range of soliton pulse energies for which the transmission with sliding-
frequency filters is stable and error-free will henceforth be simply referred to
as the “stability range.” It is important for the stability range to be large enough (at
least several decibels) to allow for the aging of amplifier pump lasers, and other
factors that may tend to degrade the signal strength with time, in real systems.
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Figure 3.39 Measured bit error rate as a function of distance, at 10, 12.5, and 15 Gbit/s.
In all cases, adjacent pulses were orthogonally polarized, and the data stream was a repeated,
214-bit random word.

Perhaps not surprisingly, the stability range is a function of both the filter strength
parameter (η) and the sliding rate (ω′

f ). The following brief summary is of an
experimental determination of that dependence, and of the optimum values for
those parameters [72].

The experiment was carried out in a small recirculating loop with piezo-driven
etalon sliding-frequency filters having fixed reflectivity (R= 9%) and fixed mir-
ror spacing (d =1.5 mm), and where Lf = 39 km. Because of the fact that η is
inversely proportional to D [see Eq. (3.55a)], the fiber’s third-order dispersion
(∂D/∂λ=0.7 ps/km-nm2) enabled η to be varied simply through change of the
signal wavelength itself. At the same time, the signal power at equilibrium, hence
the soliton pulse energies, could be controlled by way of the pump power supplied
to the loop amplifiers. Thus, the experiment consisted simply of measuring, for
each signal wavelength, and for a fixed sliding rate, the maximum and minimum
signal power levels for which a transmission over 10 Mm was stable and error-
free. The results are shown in Fig. 3.40. Note that while error-free propagation
ceases for η≥0.8, the stability range reaches a maximum, of nearly two to one, for
η≈ 0.4. Figure 3.41 shows the complementary data, i.e., the measured stability
range as a function of sliding rate, for fixed η=0.4. Note that here, too, there is an
optimum rate, of about 13 GHz/Mm. Essentially the same results as in Figs. 3.40
and 3.41 were obtained for two other values of Lf (26 and 50 km, respectively)
and for etalons having a free spectral range (FSR) of 75 GHz (as opposed to
100 GHz).

The existence of Emin is easily predicted from the analysis of Section 3.5.3.
That is, for stability, neither of the damping constants can be negative, so from
Eq. (3.52), one has |
�|≤1/

√
6. From Eq. (3.50) or (3.50a), one then gets a
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Figure 3.40 Fiber dispersion D (solid line), filter strength parameter η (dotted line),
and experimentally determined allowable soliton pulse energy limits Emax and Emin (filled
squares and open circles, respectively), as functions of the signal wavelength λ, for a
fixed sliding rate of 13 GHz/Mm.
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Figure 3.41 Experimentally determined allowable soliton pulse energy limits Emax and
Emin (filled squares and open circles, respectively), and their ratio (stars), as functions of
the frequency sliding rate f ′, for fixed, optimum filter strength parameter, η=0.4.

maximum allowed sliding rate, ω′
f , in soliton units. Finally, from Eq. (3.55b),

one sees that, for fixed real sliding rate f ′ and for fixed D, ω′
f increases as

the third power of the pulse width, and hence inversely as the third power of
the pulse energy. Perhaps less abstractly, one can easily see that as the pulse
energy is lowered, the rate at which the nonlinear term can alter the soliton’s
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frequency will eventually become so low that it can no longer keep up with the filter
sliding.

The existence of the upper limit, Emax , may be somewhat less obvious, but
it has to do with the fact that eventually, as its energy is raised, the soliton’s
bandwidth, hence its loss from the filters, becomes too great. Here numerical
simulation was helpful in elucidating the precise failure mechanism. Figure 3.42
shows the simulated pulse intensity evolution at η=0.4 for different values of
αR. Note that for αR below some critical value (here ≈1.45/Mm), there is no
stable solution, and the pulse disappears after some distance of propagation;
this corresponds to the lower energy limit already discussed. Above this lower
limit, there is a range of allowable values of αR (between 1.5/Mm and 3.5/Mm
in Fig. 3.42). Nevertheless, one can see nondecaying oscillations in the pulse
intensity evolution for the higher values of αR. These oscillations are due to a
nonsoliton component, not completely removed by the sliding, and generated
by the perturbing effects of the filtering and sliding. If the excess gain is fur-
ther increased, this nonsoliton component evolves into a second soliton. Clearly,
this process determines the upper limit of the excess gain and of the soliton
energy.
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Figure 3.42 Soliton peak intensities as a function of distance, as determined by numerical
simulation, for filter strength η=0.4 and for various values of excess gain. The number
next to each curve represents the excess gain parameter, αR, in units of Mm−1.
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3.5.7. Filtering in Time

Another form of optical regeneration for solitons involves the use of intensity
modulators periodically placed along the transmission line, and timed to open
only during the middle of each bit period. The mean position in time of a pulse
that is either early or late is thus guided back to the center of its bit period in
a manner that is analogous to the guiding in the frequency domain provided by
the etalon filters. Note, for example, that like frequency filtering, this “filtering in
time” requires excess gain to overcome the loss imposed by the modulators, even
to those arriving exactly on time. Unlike frequency filtering, however, filtering in
time is not stable by itself; rather, it must always be accompanied by a proportional
amount of frequency filtering. The principal advantage of filtering in time is that it
corrects timing jitter directly, rather than indirectly as the frequency filtering does.
Thus (when combined with filtering in the frequency domain), it can offer error-free
transmission over an indefinitely long distance, at least in principle [73, 74].

Unfortunately, however, filtering in time shares several of the most fundamental
disadvantages of electronic regeneration. For one, it is incompatible with WDM.
(To do WDM, at each regenerator, the N channels must be demultiplexed, sepa-
rately regenerated, and then remultiplexed, in a process that is at once cumbersome
and expensive.) Second, each regenerator requires a quantity of complex, active
hardware, including clock recovery, adjustable delay lines, and modulator drive,
in addition to the modulator itself. (Compare with the extremely simple, inexpen-
sive, and strictly passive etalon filters of the pure frequency filtering.) There are
serious technical difficulties as well, such as the fact that nonchirping intensity
modulators, whose insertion loss is polarization independent, simply do not exist
at present. Thus, filtering in time would not seem to be economically or technically
competitive.



Chapter 4

Soliton Interactions

In previous chapters, we have discussed only single solitons in the absence of noise
fields (radiation) or other solitons. In a typical communication system, there will
be many solitons in each channel as well as many different channels, and there
will be noise, so it is important to understand their interactions. In this chapter,
we discuss the theory of soliton collisions in different WDM channels, that is,
of solitons of significantly different frequencies. Also, we apply some results of
the inverse scattering transform (IST) to the interaction of small linear noise fields
with solitons, and to the interaction of solitons in the same channel, that is, with the
same central frequency, that get close together in time. For the highest possible bit
rates, one wants the solitons in each channel as close together in time as possible,
and the channels as close together in frequency as possible.

4.1. Soliton–soliton Collisions in WDM

In WDM, solitons of different channels gradually overtake and pass through each
other (see Fig. 4.1). Because the solitons interact with each other, the time of
overlap is known as a “collision.” An important parameter here is the collision
length, Lcoll, or the distance the solitons must travel down the fiber together in the
act of passing through each other. If Lcoll is defined to begin and end with overlap
at the half-power points, then transparently

Lcoll = 2τ

D
λ
, (4.1)

where 
λ=λ1−λ2. For example, for τ =20 ps, D=0.5 ps/nm-km, and

λ= 0.6 nm, Lcoll =133 km.
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z

λ1 λ1λ2 λ2

Figure 4.1 Two stages of a soliton–soliton collision. Because of the anomalous group
velocity dispersion, the shorter wavelength soliton (λ1) gradually overtakes and passes
through the longer wavelength one (λ2).

The interaction stems, of course, from the nonlinear term in the NLS equa-
tion. In a single-channel transmission, the only significant effect of that term is
the self -phase modulation resulting from the self-induced index change at each
pulse. During collisions, however, each pulse experiences an additional nonlinear
index change as induced by the other pulse or pulses; as will be detailed shortly,
the resultant cross-phase modulation tends to produce transient shifts in the mean
frequency, or group velocity, of each pulse. Finally, the nonlinear term enables
the colliding pulses to produce fields at the frequencies ωS =2ω1−ω2 and ωA =
2ω2−ω1 (the “Stokes” and “anti-Stokes” frequencies, respectively) in the process
known as four-wave mixing. In general, these effects have the potential to bring
about a significant exchange of energy and momentum between the pulses, and
hence to create serious timing and amplitude jitter. Under the right conditions,
however, with solitons the nonlinear effects are only transient, i.e., the solitons
emerge from a collision with pulse shapes, widths, energies, and momenta com-
pletely unchanged. It is this potential for nearly perfect transparency to one another
that makes solitons so well adapted for WDM.

4.1.1. Soliton Collisions in Lossless and Constant-dispersion Fiber

It is useful first to consider the ideal case of lossless and constant-dispersion
fiber. It is the simplest example of perfect transparency, and it is the easiest to
analyze. It is of more than academic interest, however, since it can also serve as
the paradigm for a number of practically realizable situations with real fibers and
lumped amplifiers. In particular, it is the exact mathematical equivalent of the (at
least approximately) realizable case of dispersion-tapered fiber spans.

Let us look at the collision of two solitons of equal amplitude in different chan-
nels. Except when they are actually in collision, the two solitons can be written in
the more general form

u1 = sech(t−t10+�1z)exp[−i�1t+i
(
1−�2

1

)
z/2+iφ10],

u2 = sech(t−t20+�2z)exp[−i�2t+i
(
1−�2

2

)
z/2+iφ20].

(4.2)
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We are free to choose the central frequency. For convenience then, let us set
�2 =−�1 =�; note that this makes the solitons move with equal but opposite
velocities in the retarded time frame. Also note that this makes Lcoll =1.763/�
(=1.763 ×zc/�tc in ordinary units). Before and after the collision the amplitudes
and frequencies of the two solitons are unchanged, but there are changes, as we
shall see, in the quantities t10, t20, φ10, and φ20. These changes in the mean time
and phase of the two solitons are due to the fact that the mean frequencies of
the two solitons are perturbed during the collision by the cross-phase modula-
tion. Here we discuss the case where the changes are small perturbations. For
the unperturbed solitons we can set t10, t20, φ10, and φ20 to zero for simplicity,
since the changes in these quantities do not depend on their initial values. Now
the collision occurs at z =0.

Now insert u=u1+u2 into the NLS equation for lossless fiber, expand, and
group the terms according to their frequency dependencies. The channel spacing
is 2�. The half-intensity bandwidth of each soliton is 
ω=2×1.763/π =1.1222.
Thus, so long as �>2, the soliton spectra do not overlap appreciably. We get four
equations: one for each soliton at ±�, and one each for the terms at ±3�. The lat-
ter correspond to the previously mentioned four-wave mixing components. Since,
for the special case under consideration here, these components are weak and dis-
appear completely after the collision, they will be neglected for now. Assuming,
for the moment, that the pulses are co-polarized, the equation for u1 is

∂u1

∂z
= i

1

2

∂2u1

∂t2
+i|u1|2u1+2i|u2|2u1. (4.3)

The first two terms on the right in Eq. (4.3) correspond to the NLS equation for
the isolated pulse, u1. The last term in Eq. (4.3) corresponds to the cross-phase
modulation and is zero except when the pulses overlap. It produces a shift in the
phase φ1 of the soliton u1 at the rate

∂φ1(z, t)

∂z
=2|u2(z, t)|2. (4.4)

This phase shift is not uniform over the pulse. Since, however, we are looking
for the shift in φ10 caused by the cross-phase modulation, we need only its mean
value. To calculate the mean of Eq. (4.4), we use the weighting factor |u1(z, t)|2/2
[since the weighting factor must integrate to unity, and

∫∞
−∞ sech2(t)dt =2], and

use the unperturbed solitons in the integral. We thus obtain

d

dz
δφ10(z)=

∫ ∞

−∞
sech2(t−�z)sech2(t+�z) dt. (4.5)

This expression can be easily integrated over z, since then t−�z and t+�z can
be taken as independent variables. The resulting phase shift from this perturbation
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calculation is δφ10 =2/�. Interchanging subscripts in Eq. (4.5) shows that the
phase shift δφ20 of soliton u2 is equal to δφ10 of soliton u1.

We now consider the frequency shifts during the collision and the resulting
shifts in the mean time of the solitons. It can be shown rigorously from the NLS
equation that the inverse group velocity of a pulse is given by minus one times
its mean frequency. Hence the mean time delay is the integral over z of minus
the mean frequency. We will now see how the mean frequency of a soliton pulse
varies during a collision.

The “instantaneous” frequency within a pulse is minus the time derivative of
its phase. Let �1+ω1(t,z) be the instantaneous frequency of soliton u1. The fre-
quency shift ω1(t,z) exists only during the collision. The phase shift of Eq. (4.4)
creates the frequency shift ω1 at the rate

∂ω1

∂z
=− ∂

∂z

∂φ1

∂t
=− ∂

∂t

∂φ1

∂z
=− ∂

∂t

(
2|u2|2

)
. (4.6)

Again, this frequency shift is not uniform across the pulse, but all we need is its
mean value. Using the same weighting factor |u1(z, t)|2/2 as before, and labeling
〈ω1〉 as δ�1, we get

d

dz
δ�1 =−

∫ ∞

−∞
|u1|2 ∂

∂t
|u2|2 dt =−1

2

∫ ∞

−∞

(
|u1|2 ∂

∂t
|u2|2−|u2|2 ∂

∂t
|u1|2

)
dt.

(4.7)

The equivalence of the two expressions on the right of Eq. (4.7) can be shown
by partial integration. Interchanging subscripts in Eq. (4.7) shows that the mean
frequency shift δ�2 of soliton u2 is minus the frequency shift δ�1 of soliton u1.
Using the unperturbed solitons in the integral, we get from the second one

d

dz
δ�2 =− d

dz
δ�1 = 1

2�

d

dz

∫ ∞

−∞
sech2(t−�z)sech2(t+�z) dt, (4.8)

whence

δ�2 =−δ�1 = 1

2�

∫ ∞

−∞
sech2(t−�z)sech2(t+�z) dt

= 4�zcosh(2�z)−2sinh(2�z)

�sinh3(2�z)
.

(4.9)

The peak frequency shift, at z =0, is δ�2 =−δ�1 =2/(3�). Finally, Eq. (4.9) can
be integrated to yield the net time displacements:

δt10 =−δt20 =1/�2. (4.10)

Equation (4.8) (multiplied by −1) represents the “acceleration,” i.e., the rate of
change of inverse group velocity with distance into the collision.
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Later in this chapter we obtain the exact expressions for the collision-induced
phase and time shifts, correct for any channel spacing. For the case studied here,
with solitons of equal amplitude, the exact results are

δφ10 =δφ20 =2tan−1(1/�),

δt10 =−δt20 = ln(1+1/�2).

These results are derived from a purely mathematical analysis starting from an
exact solution of the two-soliton problem and, therefore, do not shed much light
on the processes involved in a collision.

The preceding expressions for the acceleration and the velocity shift [Eqs. (4.8)
and (4.9)] may not be particularly transparent. When numerically evaluated and
graphed, however, they are seen to be simply behaved (see Fig. 4.2). The impor-
tance of including the acceleration curve in Fig. 4.2 will become apparent in the
next chapter. Note, either from the graph or from the pertinent equations, that
the pulses attract each other, while their frequencies repel one another. Also note
that, as advertised, the completed collision leaves the soliton intact, with the same
frequency and amplitude it had before the collision. Thus, the only changes are
the time shifts δt10 and δt20 and the associated phase shifts δφ10 and δφ20. As will
be shown later, guiding filters tend to remove these unwanted time shifts.

The discussion in this section has thus far been almost entirely in terms of
soliton units. For convenient future reference, however, we now list formulas
for the principal quantities in practical units. First, in terms of the full-channel

−2 −1 0 1 2
z / Lcoll 

00

dvg
−1/dz

δvg
−1

δt

Figure 4.2 Acceleration (dv−1
g /dz), velocity shift (δv−1

g =−δ�), and time shift of the
slower pulse, during a soliton–soliton collision in a lossless fiber. [For the faster (higher
frequency) pulse, turn this graph upside down.] The maximum inverse group velocity shift
(δv−1

g )max =2/(3�), and δtmax =�−2.
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separation 
ν and the pulse width τ , the half-channel separation in soliton units is

�= π

1.763
τ
ν =1.782τ
ν. (4.11a)

The maximum frequency shift during the collision, δν, and the net time
displacement, δt, when expressed in practical units, are, respectively,

δν =±
(

1.763

π

)2 1

3τ 2
ν
=± 0.105

τ 2
ν
(4.11b)

and

δt =± 1.763

π2τ
ν2
=±0.1786

τ
ν2
. (4.11c)

(The number 1.763 represents 2cosh−1(
√

2), the dimensionless ratio τ /tc.) For
example, consider a collision between 20-ps solitons in channels separated by
75 GHz (0.6 nm). Then Eqs. (4.11a), (4.11b), and (4.11c) yield, respectively,
�=2.67 (more than big enough for effective separation of the soliton spectra),
δν =±3.5 GHz, and δt =±1.59 ps. Note that in this case � is not much larger
than one, but the general features of the collision remain valid.

4.1.2. Four-wave Mixing

We now take up the two temporarily neglected equations from the preceding expan-
sion of the NLS equation and the four-wave mixing products that result. During a
collision between solitons in channels centered at frequencies �2 and �1, the non-
linear term in the propagation equation produces anti-Stokes and Stokes sidebands
centered, respectively, at frequencies

�A =2�2−�1 =�2+�21 and �S =2�1−�2 =�1−�21,

where �21 =�2−�1, by the four-wave mixing process (see Fig. 4.3). At the
“anti-Stokes” frequency �A, the propagation equation is

−i
∂uA

∂z
= 1

2

∂2uA

∂t2
+u2

2u∗
1, (4.12)

ΩS Ω1 Ω2 ΩA

∆ω 

∆ω ∆ω 

Figure 4.3 The spectra of pulses from different channels and the sidebands generated by
their interaction through four-wave mixing.
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where u2 represents the soliton at frequency �2, and u1 represents the soliton at
frequency �1. The propagation equation for the Stokes sideband is obtained by
substituting uS for uA and interchanging u1 and u2 in Eq. (4.12).

An important feature of the production of these sidebands is phase matching,
or wavenumber matching. If the two solitons are as described in Eq. (4.2), i.e.,
both have amplitude A=1, the soliton at frequency �1 has the wavenumber k1 =
(1−�2

1)/2 and the soliton at frequency �2 has the wavenumber k2 = (1−�2
2)/2.

Thus the driving term u2
2u∗

1 in Eq. (4.12) has the wavenumber 2k2−k1 = (1−2�2
2+

�2
1)/2. On the other hand, small fields at frequency �A have the linear dispersion

relation kA =−�2
A/2. As a result, there is a wavenumber mismatch 
k given by


k =2k2−k1−kA = (1−2�2
2+�2

1+�2
A)/2=1/2+(�2−�1)2. (4.13)

This is analogous to the frequency mismatch of an oscillator driven off reso-
nance. Note that the wavenumber of a soliton with amplitude unity and central
frequency � is the sum of (1/2), which is produced by the nonlinearity, and −�2/2,
which is the linear dispersion relation. Later in this book there is a discussion
of the effects of higher order linear dispersion, particularly the third-order term
d3k/(d�)3. By expanding the first expression for 
k in Eq. (4.13) as a power
series in � around �2, one sees that 
k depends only on even orders in the linear
dispersion relation and so does not depend on the third-order term. That is,


k =1/2+(�2−�1)2 ∂2k

(∂�)2
+O

(
∂4k

(∂�)4

)
, (4.14)

where the derivatives are evaluated at the frequency �2. Again, results for the
Stokes sideband are obtained by replacing uA by uS and interchanging u1 and u2.

Four-wave Mixing with Continuous Waves

As a preamble to dealing with the soliton problem, consider what would happen
in Eq. (4.12) if u2 and u1 were continuous waves at the respective frequencies
ω2 =�2 and ω1 =�1. Thus, if

u1 =η1 exp(−iω1t+ik1z) and u2 =η2 exp(−iω2t+ik2z), (4.15)

where η1 and η2 are small real amplitudes, then

u2
2u∗

1 =η2
2η1 exp(−iωAt+i(2k2−k1)z),

where ωA =2ω2−ω1. With this driving term, the general solution to Eq. (4.12) is

uA = η2
2η1


k
exp(−iωAt){exp[i(2k2−k1)z]+aexp(ikAz)}, (4.16)
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where kA =−ω2
A/2. In this exercise, 
k =2k2−k1−kA = (ω2−ω1)2 is the linear

part of the wavenumber mismatch [see Eq. (4.13)], and a is a numerical constant
that depends on the assumed initial conditions. For example, if uA =0 at z =0,
then a=−1. The first term in the numerator of Eq. (4.16) represents the particular
solution of Eq. (4.12), while the second term represents the homogeneous solution
(at the same frequency but with the driving term absent). If a �=0, the amplitude
of uA is oscillatory with a period 
z of 2π /
k due to the interference of the two
terms in Eq. (4.16). For example, if a is real, then from Eqs. (4.16) and (4.15),
we have

|uA|2 = |u2|4|u1|2

k2

(
1+a2+2acos(
k z)

)
. (4.17)

For use in later chapters, it is helpful to transform Eq. (4.17) to ordinary units. The
quantity |u|2 represents the power (P) in the various channels. According to the
usual procedure, in standard units, P becomes P/Pc and 
k becomes 
k zc. Since
Pczc =1/kNL , we get the result

PA =
(

kNLP2


k

)2

P1

(
1+a2+2acos(
k z)

)
.

Then if we take a=−1 (i.e., assume that u1 and u2 are injected at the beginning
of the fiber), we get

PA =2

(
kNLP2


k

)2

P1(1−cos(
k z))=4

(
kNLP2


k

)2

P1 sin2(
k z/2), (4.18)

where kNL = (2π n2)/(λAeff ) [Eq. (1.11)], where


k = λ2D

2πc
(ω2−ω1)2 = −2πcD

(
δλ

λ

)2

, (4.19)

and δλ corresponds to ω2−ω1. As before, the corresponding formula for PS can
be obtained by interchanging subscripts 1 and 2 in Eq. (4.18).

If the two cw waves are large enough that the nonlinear effects cannot be
ignored, then the wavenumbers k1 and k2 are modified to read

k1 =−ω2
1/2+η2

1 and k2 =−ω2
2/2+η2

2,

so the wavenumber mismatch 
k =2k2−k1−kA becomes 
k = (ω2−ω1)2+
2η2

2 −η2
1. In ordinary units, this becomes


k =−cD

2π

(
δλ

λ

)2

+kNL(2P2−P1). (4.19a)

Note that from the linear dispersion relation, 
k = (ω2−ω1)2. If we take ω2 =�

and ω1 =−�, then 
k =4�2, and the period 
z is π /(2�2), which is typically
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shorter than the collision length Lcoll =1.763/� for the two solitons. For example,
if �=2.5, then 
z =0.251, while Lcoll =0.705.

Now consider the actual collision of two solitons in different channels. As
before, let us take �2 =−�1 =�, so that �A =3�. The propagation equation for
the anti-Stokes wave is

−i
∂uA

∂z
= 1

2

∂2uA

∂t2
+sech2(t+�z)sech(t−�z)exp[−i3�t+i(1−�2)z/2].

(4.20)

On the assumption that 4�2 �1, a first approximation is that uA follows the driving
term adiabatically. Another way of saying this is that the rate of change with z of
the soliton envelopes is slow enough that derivatives of the sech functions can be
neglected. The adiabatic solution is [see Eq. (4.16)]

uA(z, t)= 1

4�2
sech2(t+�z)sech(t−�z)exp

[
−i3�t+i

(
1−2�2)z/2

]
. (4.21)

Except for a phase shift proportional to 1/�, this is the same as the solution given
in the next section, derived there from the inverse scattering transform.

The growth and decay of the four-wave mixing (FWM) power during a two-
soliton collision, as inferred from the absolute value of Eq. (4.21) squared, is
shown in Fig. 4.4. Note that even for the smallest frequency separations that might
be encountered in practice (�2−�1 ≈5 or �≈2.5), the peak FWM sideband
power (Pc/16�4) tends to be a very small fraction (0.16% for �=2.5) of the
soliton power Pc. As functions of time at the center of the collision, the FWM
sidebands are roughly sech2 in shape, but have only about 53% of the width of the

0 0.5 1−0.5−1
z/Lcoll

0

F
W

M
  s

id
eb

an
d 

po
w

er

0

Fr
eq

ue
nc

y 
sh

ift

Pc/(16Ω4)

Figure 4.4 Heavy, solid line: Peak power of either of the two FWM sidebands produced
in a collision between two solitons separated in frequency by 2�, plotted as a function of
z/Lcoll; the maximum of this curve is Pc/16�4. Dashed line: The corresponding frequency
shift, shown for comparison.
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solitons. Thus, the energy in each FWM sideband is smaller still, less than 0.1%
of Wsol. Of course, it is of equal importance that the FWM sidebands disappear
altogether after the collision is complete.

Despite this disarming behavior of the FWM sidebands in lossless fiber, how-
ever, in real systems with gain, loss, and other perturbations, the behavior can be
quite different. The issue here is the potential for phase matching. That is, if there
is a perturbation whose period closely matches 
z =2π /
k [see the discussion
of Eq. (4.16)], the two halves of the oscillatory cycle do not quite cancel, and, as
discussed in some detail in Chapter 5, Section 5.5, the four-wave mixing compo-
nents can build up considerably. This is a condition that can and must be avoided.
In the case of the two-soliton collision, Eq. (4.21) corresponds only to the driven
solution. If the solitons are perturbed at some location z1, the field uA is no longer
the driven solution for the perturbed solitons. It must, therefore, be resolved into
the new driven solution plus some of the homogeneous solution, which propagates
with the wavenumber kA. If the same perturbation happens again at a location z2,
a similar piece of the homogeneous solution is created. Now if z2−z1 =
z, the
two homogeneous components are in phase and add constructively. Thus a pertur-
bation with wavenumber 2π /
k can cause a significant buildup of the anti-Stokes
field uA and a similar buildup of the Stokes wave uS .

4.2. Applications of the Inverse Scattering Transform

The inverse scattering transform (IST) is a kind of nonlinear Fourier transform.
It has been shown via the IST that under the conditions of nonlinearity and disper-
sion that allow solitons, a general field consists of solitons and dispersive radiation.
In the absence of radiation, it provides exact analytical solutions for the case of
many solitons in the form of sets of algebraic equations, N equations for N soli-
tons. While these are available, they rapidly become unwieldy, so for N>2 they
are not very useful. In this section we will use some results gleaned from the IST
to look into the case of one soliton interacting with a small dispersive field and
at the general interaction of two solitons. We reproduce the results obtained in
the preceding sections of this chapter and, in addition, discuss the interaction of
neighboring solitons in the same channel.

When a small linear noise-like field interacts with a soliton, its Fourier compo-
nents suffer phase shifts while traversing the soliton, depending on the frequency
difference between the linear field component and the central frequency of the
soliton. This results in a small shift of the mean time of any small linear wave
packet that passes the soliton.
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Soliton interactions occur when two or more solitons come close together in
time. If two solitons of the same frequency, and thus of the same group velocity,
are too close, they either attract or repel each other, depending on their phase
relationship. If the solitons are in phase, their fields constructively interfere in the
overlap region between them, resulting in an attractive force. If they are out of
phase, their fields destructively interfere in the overlap region, resulting in a repul-
sive force. Solitons of different central frequencies have different group velocities,
so they can pass one another. While two solitons are in collision, the nonlinear
term |u|2u creates sideband fields at multiples of their frequency separation via
four-wave mixing. Being solitons (no scattering), we expect that these sideband
fields must disappear at the end of the collision, and so they do for solitons of
the basic NLS equation. The solitons themselves, while they suffer no changes in
amplitude or frequency as a result of a collision, do suffer transient frequency shifts
during the collision due to cross-phase modulation, which result in small time and
phase shifts similar to those experienced by small linear fields. In a communi-
cation system, with losses and gains, these sidebands and frequency excursions
cause problems, and must be considered carefully.

There are a few situations in which the IST can cast some light on the behavior
of solitons of the basic NLS equation. There is the case of a small amplitude field
when a soliton is present. There is the case of two solitons. (For those interested
in pursuing the IST, we refer to the literature.)

4.2.1. One Soliton and Noise

Suppose that we have the situation of a small amplitude field such as noise in
the presence of a soliton. Amplifiers inject noise into a transmission fiber, and
the injected noise that overlaps a soliton makes small random alterations in the
parameters of the soliton (mean time, phase, amplitude, and frequency). Other
small amplitude fields that are orthogonal to the soliton, in the sense that they do
not alter the soliton parameters, are called radiation. We look here into how the
soliton influences the radiation fields. Let us(z, t) represent the initial soliton and
up(z, t) represent the radiation. If we put u=us+up in the NLS equation, and keep
only terms linear in up, we get an equation of the form

−i
∂up

∂z
= 1

2

∂2up

∂t2
+2|us|2up+u2

s u∗
p. (4.22)

Solutions to this equation yield perturbations of the radiative field caused by the
soliton. Suppose that the soliton us is the fundamental soliton.

us = sech(t)exp(iz/2).
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If the small radiative field is temporally separate from the soliton, it simply satisfies
the linear dispersive equation. If the radiative field consists primarily of frequency
components in the neighborhood of some mean frequency ω, note that the term
u2

s u∗
p in Eq. (4.22) creates a sideband at the image frequency −ω if the radiation

encounters the soliton.
By linearization of the radiative field in the IST, the solution to Eq. (4.22) comes

out as follows [75]. Let f (z, t) be any solution of the linear dispersive equation,

−i
∂f

∂z
= 1

2

∂2f

∂t2
, (4.23)

i.e., the NLS equation without the nonlinear term. For every such function f (z, t)
that satisfies the linear equation, there is a corresponding function up, as given by

up =−∂2f

∂t2
+2tanh(t)

∂f

∂t
−tanh2(t)f +u2

s f ∗, (4.24)

which is a solution of Eq. (4.22). This may be verified (with some difficulty) by
inserting Eq. (4.24) into Eq. (4.22).

Consider now a spectral component of f at frequency �, such that at location
z, f (z, t)= f̃ (z,�)exp(−i�t). Then we find

up(z, t)= (�−i tanh(t))2 f̃ (z,�)exp(−i�t)+u2
s f̃ ∗(z,�)exp(i�t). (4.25)

Notice that up suffers a frequency-dependent phase shift while traversing the soli-
ton, and that a sideband field at the mirror image frequency −� (remember that
the central frequency of the soliton is zero) appears at the location of the soliton.
The “instantaneous” frequency of the part of up proportional to exp(−iωt), given
by ω=−�(u−1 ∂u/∂t) is

ω=�

(
1+ sech2(t)

�2+tanh2(t)

)
= �(�2+1)

�2+tanh2(t)
.

The instantaneous frequency of this radiative field component returns to its original
value once it passes the soliton. The frequency excursion of the radiative field as it
passes the soliton is always away from the soliton frequency. It can get very large
if the frequency of a radiative field component approaches that of the soliton.

The frequency-dependent phase shifts encountered by the spectral components
of up give rise to a shift in the mean time of any wave packet that passes the
soliton. Suppose that a small radiative field in the form of a wave packet traverses
the soliton. As a function of z and ω, spectral components of the wave packet
f (z, t)= 1√

2π

∫
f̃ (ω,z)exp(−iωt) vary as

f̃ (z,ω)= f̃ (0,ω)exp(−iω2z/2).
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Suppose that the spectrum of the wave packet consists only of positive frequencies
(higher than the soliton), and that the wave packet starts well behind the soliton, at
positive t, so that we can take tanh(t)=1 in Eq. (4.25). As it propagates, the wave
packet will pass the soliton and later will appear at negative t, where we can take
tanh(t)=−1. Before its encounter with the soliton, the spectral components of up

vary as

ũp = (ω−i)2 f̃ (0,ω)exp
(
−iω2z/2

)
=
(
ω2+1

)
f̃ (0,ω)exp

[
−iω2z/2−i2tan−1(1/ω)

]
.

(4.26)

The mean time of any wave packet is given by

〈t〉=W−1
∫ ∞

−∞
ũ∗(−i∂ ũ/∂ω)dω,

where W =∫∞
−∞ ũ∗ũdω. Applied to Eq. (4.26), we get the result

〈t〉=〈t〉z=0−〈ω〉z+
〈

2

ω2+1

〉
, (4.27)

where we have used d tan−1(1/ω)/dω=−1/(1+ω2). Similarly, after the encounter
with the soliton, the spectral components of up are

ũp =
(
ω2+1

)
f̃ (0,ω)exp

[
−iω2z/2+i2tan−1(1/ω)

]
, (4.28)

and the corresponding mean time is

〈t〉=〈t〉z=0−〈ω〉z−
〈

2

ω2+1

〉
. (4.29)

The total time shift of the wave packet is the mean value of −4/(ω2+1). We see
that this wave packet, at frequencies higher than the soliton, is shifted ahead in
time. Similarly, a wave packet at frequencies lower than the soliton is shifted back
in time by the same amount in its encounter with the soliton. This behavior is
reflected in the collisions of two solitons, as we have seen previously, and which
we now consider from the vantage point of the IST.

4.2.2. Two Solitons

Solutions of the NLS equation corresponding to an integral number N of solitons
have been given in the form of the solutions of a set of N algebraic equations.
For completeness, we give here the form of those equations, even though we will
consider only pairs of solitons.
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Let Aj be the amplitude, and �j the frequency, of the jth soliton in a set of N
solitons of various amplitudes and frequencies, locations, and phases. At various
locations, solitons of different frequencies will collide, but since there is no scat-
tering in these collisions, the set of amplitudes and frequencies remains the same
before and after any collisions. The parameters Aj and �j are therefore basic con-
stants of the motion of the solitons. Whenever the jth soliton is apart from the
others, it will always have the amplitude Aj and the frequency �j. On the other
hand, as we have already seen, collisions occasion transient frequency shifts of
the colliding solitons, resulting in position and phase shifts, as well as transient
sidebands at multiples of their frequency separation. The multisoliton function
accounts for all of these effects.

The general N soliton function is given by [76]

u(z, t)=
N∑

k=1

uk(z, t). (4.30)

The uk(z, t) satisfy the set of algebraic relations

N∑
k=1

Mjk
(
γ −1

j +γ ∗
k

)
uk =1, j =1 . . .N , (4.31)

where

Mjk = (Aj +Ak −i(�j −�k))−1 (4.32)

and

γj =exp{Aj(t−tj0+�jz)+i[−�jz+ 1

2

(
A2

j −�2
j

)
z+φj0]}. (4.33)

In the case of one soliton (N =1), there is only one equation, which is easily solved.
The result (omitting the j subscript) is

u=Asech[A(t−t0+�z)]exp{i[−�z+ 1

2

(
A2−�2)z+φ0]}, (4.34)

which reproduces the general form of the single soliton. In the general case of N
solitons, the jth soliton peaks near where

t = tj0−�jz.

However, it is shifted both in time and phase in order to account for the interactions
that occur when the solitons collide. This multisoliton function is symmetrical with
respect to the soliton collisions. That is, it takes each collision into account by
ascribing oppositely directed time and phase shifts before and after the collision.
One can show that these shifts are additive. It does not matter whether a set of
solitons collide successively or all at once, the total shifts are the same.
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The case of two solitons is already somewhat cumbersome, but it is instructive.
To simplify the result without losing insight, we take A1 =1+a and A2 =1−a,
where |a|≤1, so that the sum of their amplitudes is 2, and also �1 =�(1−a),
�2 =−�(1+a), so that they have equal and opposite “momenta” A�. Also we
take t10 = (1−a)t0 and t20 =−(1+a)t0, so that the solitons collide when �z = t0,
and finally we take φ10 =−φ20 =φ0. In what follows we will always assume that
�≥0, so that soliton number one is always traveling with or faster than soliton
number two, and if we are to witness a collision, soliton number one must start
behind soliton number two, that is, at positive time. If a>0, soliton number one
is larger than soliton number two.

Using the above parameters, we have

M−1
11 =2(1+a) M−1

22 =2(1−a) M−1
12 =2(1−i�) M−1

21 =2(1+i�),

γ1 =exp(t+y+i(θ +φ)),

γ2 =exp(t−y+i(θ −φ)),

where

y=at+(1−a2)(�z−t0),

θ =a�t+
(

1

2

)(
1+a2)(1−�2)z,

φ =−�t+a
(
1+�2)z+φ0.

Note that y is a surrogate for �z−t0. The first soliton is to be found near t =
−(1−a)(�z−t0), and in this region, y≈ (1−a)(�z−t0). The second soliton is to
be found near t = (1+a)(�z−t0), and in this region, y≈ (1+a)(�z−t0).

Solution of the two equations for the two-soliton function yields

u(z, t)= exp(iθ )(f11+f12+f21+f22)(
a2+�2

)
cosh(2t)+(1+�2

)
cosh(2y)−(1−a2

)
cos(2φ)

, (4.35)

where

f11 = (1+a)(1+i�)(a−i�)exp(t−y+iφ),

f12 = (1+a)(1−i�)(a+i�)exp(−t+y+iφ),

f21 = (1−a)(1+i�)(−a−i�)exp(−t−y−iφ),

f22 = (1−a)(1−i�)(−a+i�)exp(t+y−iφ).

This function describes the two solitons at all locations and all times. We will
look into some of its many guises. In the special case �=0, the two solitons have
the same frequency and never completely separate. Otherwise, if �>0, the two
solitons pass through each other. Assume, for the moment, that t0 =0, so that the
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soliton collision occurs at z =0. Well before the collision, at large negative z, y
is large and negative near the solitons. The first (faster) soliton appears when t is
large and positive. Hence, in Eq. (4.35) the exponential exp(t−y) in f11 is much
larger than the others, so that we can neglect f12, f21, and f22. Likewise, the second
(slower) soliton appears where t is large and negative, and here the exponential
in f21 is dominant. After the collision, at large positive z, y is large and positive.
The first soliton appears when t is negative, so f12 is the dominant term, and the
second soliton appears when t is positive, so f22 is the dominant term.

Consider the first soliton. Before the collision, at large negative y and positive t,
we need keep only the term f11 in the numerator, and only the exponentials exp(2t)
and exp(−2y) in the denominator of Eq. (4.35). If we label u here as u11, we get

u11 = 2(1+a)(1+i�)(a−i�)ei(θ+φ)(
a2+�2

)
et+y+(1+�2)e−t−y

= (1+a)sech(t+y−η/2)exp[i(θ +φ−δφ1/2)], (4.36)

where

η= ln
[(

1+�2)/(a2+�2)] and δφ1 =2
(

tan−1(1/�)−tan−1(a/�)
)
.

We can write this result, using the original parameters of the first soliton, as

u11 =A1 sech[A1(t+�1z)−η/2]exp[i(−�1t+
(

1

2

)(
A2

1−�2
1

)
z−δφ1/2)].

(4.37)

This describes the first soliton before having suffered a phase shift and a time
displacement due to the collision with the second soliton. The displacements that
occur here are purely kinematic. They are predictive of the soliton collision rather
than of its result.

After the collision, at large positive �z, the first soliton is expected at negative
time, where exp(−2t) and exp(2y) are very big. Thus f12 dominates the numerator
of Eq. (4.35), and we get

u12 = 2(1+a)(1−i�)(a+i�)ei(θ+φ)(
a2+�2

)
e−t−y+(1+�2

)
et+y

=A1 sech[A1(t+�1z)+η/2]exp
[
i(−�1t+

(
1

2

)(
A2

1−�2
1

)
z+δφ1/2)

]
.

(4.38)

In a similar fashion, we find that well before the collision, at large negative �z,
the second soliton is found at negative time, so f21 dominates the numerator of
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Eq. (4.35). In this region we find

u21 =A2 sech[A2(t+�2z)+η/2]exp

[
i

(
−�2t+

(
1

2

)(
A2

2−�2
2

)
z−δφ2/2

)]
,

(4.39)

where

δφ2 =2
(

tan−1(1/�)+tan−1(a/�)
)
.

After the collision, at large positive �z, the second soliton is found at positive
time. Here, f22 dominates the numerator of Eq. (4.35), and we get

u22 =A2 sech[A2(t+�2z)−η/2]exp
[
i
(−�2t+

(
1

2

)(
A2

2−�2
2

)
z+δφ2/2

)]
.

(4.40)

(As a sanity check, note that if a=1, so that the second soliton is missing, both
the phase shift and the time displacement of the first soliton are reduced to zero.)

Solitons in Different Channels

Of particular pertinence to this book is the case where a=0 (A1 =A2 =1) and
�2 �1, corresponding to solitons in different channels. In this case the total
phase shift is ≈2/|� and the total time shift is ≈−1/�2. The time shifts are created
by frequency shifts during the collision, and these are important to know. A way
to look at the collision is to note that each soliton passes though a potential well
caused by the other. If we take a=0 and �2 �1, the part of u proportional to
f11+f12, which is primarily the first soliton, is

u1 = 2ei(θ+φ)
[
cosh(t−�z)−i 1

�
sinh(t−�z)

]
cosh(2t)+(1+ 1

�2

)
cosh(2�z)− 1

�2 cos(2φ)
. (4.41)

Since |�|2 �1, in order to find the frequency variation of the first soliton dur-
ing the collision, we can ignore 1/�2 factors in Eq. (4.41). Then, using the
formula cosh(2t)+cosh(2�z)=2cosh(t+�z)cosh(t−�z) in the denominator of
Eq. (4.41), it can be reduced to

u1 ≈ sech(t+�z)exp
[
i
(
θ +φ− 1

�
tanh(t−�z)

)]
. (4.42)

Note that Eq. (4.42) reproduces the collision’s phase shift, but not the time shift,
because the latter is proportional to 1/�2. The mean frequency of the first soliton
during the collision is given by

〈ω〉= i

2

∫ ∞

−∞
dt u∗

1
∂u1

∂t
. (4.43)
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Only the phase of u1 contributes to this integral. The result is

〈ω〉=�+ 1

2�

∫ ∞

−∞
dt sech2(t−�z)sech2(t+�z), (4.44)

in agreement with the earlier result in Eq. (4.9).
The net time displacement due to the collision should be minus the integral over

z of the transient frequency change during the collision. Integration of Eq. (4.44)
over z yields the result δt =−1/�2, in agreement with our earlier result. The
frequency shift, and time displacement for the second soliton, at frequency −�,
are the negatives of those for the first soliton.

Four-wave Mixing

In the previous paragraphs we ignored the effect of the cos(2φ) term in the denom-
inator of Eq. (4.41). For the solitons in different channels, as discussed earlier,
this term produces small sidebands (four-wave mixing products). The first soliton,
at frequency �, is accompanied during the collision by sidebands at frequencies
3� and −�. Likewise, the second soliton, at frequency −�, is accompanied dur-
ing the collision by sidebands at frequencies −3� and �. In this chapter we are
looking at the behavior of solitons of the basic NLS equation, and in this case the
sidebands are small and disappear after the collision. Later on, when we discuss
systems with losses and gains, the sidebands can persist or grow, and must be
taken into account. Since �2 �1, we can expand Eq. (4.41) in a power series in
cos(2φ) and keep only the first term. We still ignore other terms in Eq. (4.41) of
order �−2. The anti-Stokes sideband ua at 3� is

ua = 1

4�2
sech2(t+�z)sech(t−�z)

×exp
[
i
(−3�t+ 1

2
(1−�2)z− 1

�
tanh(t−�z)

)]
, (4.45)

where we have replaced φ by its value −�t and θ by
( 1

2

)
(1−�2)z. The other

sideband originating from the first soliton coincides in frequency with the second
soliton, but since it is of order �−2, its effects are mostly ignorable. A similar
argument applied to the second soliton finds a Stokes sideband at frequency −3�

and a sideband at frequency � that adds to soliton number one.

Solitons in the Same Channel

To examine the interactions of solitons in the same frequency channel, we need
to examine the case where both solitons have nearly the same size (a2 �1) and
nearly the same frequency (�2 �1). In this case, the cos(2φ) term of Eq. (4.35),
which creates the four-wave mixing products when the two solitons are in different
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channels, modulates the behavior of solitons in the same channel. Let ρ =a−i�.
If we neglect terms of order |ρ|2 with respect to unity, the two-soliton function,
Eq. (4.35), reduces to

u(z, t)= exp(iθ )( f11+f12+f21+f22)

|ρ|2 cosh(2t)+cosh(2y)−cos(2φ)
, (4.46)

where

f11 =ρ exp(t−y+iφ+ρ∗),

f12 =ρ∗ exp(−t+y+iφ+ρ),

f21 =−ρ∗ exp(−t−y−iφ−ρ),

f22 =−ρ exp(t+y−iφ−ρ∗),

and

y+iφ =ρt+iρz−t0+iφ0.

The problem is now to find the solitons represented by this function. In the
numerator, we add the parts that pertain to positive time, f11 and f22, and the
parts that pertain to negative time, f12 and f21. In the denominator, we use the
relation cosh(2y)−cos(2φ)=2sinh(y+iφ)sinh(y−iφ) and, in cosh(2t), keep only
the positive exponential at positive time and the negative exponential at negative
time. The latter approximation means that the result is not valid in a small interval
around t =0, or alternately that it is valid only when the solitons are pretty well
resolved. We get the suggestive result

u(z, t)=u+(z, t)+u−(z, t), (4.47)

where u+ is the part of u at positive time,

u+(z, t)=eiθ −4ρ sinh(y−iφ−ρ∗)

|ρ|2 exp(t)+4sinh(y+iφ)sinh(y−iφ)exp(−t)
,

and u− is the part of u at negative time,

u−(z, t)=eiθ 4ρ∗ sinh(y+iφ+ρ)

|ρ|2 exp(−t)+4sinh(y+iφ)sinh(y−iφ)exp(t)
.

Next, we rewrite y+iφ to separate its time-dependent factor. Since ρ is small, the
motion of the solitons is slow, and we will be looking in regions where ρt is small,
while ρz may not be small. Define

ζ = iρz−t0+iφ0 =�z−t0+i(az+φ0) (4.48)
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so that y+iφ =ρt+ζ , while y+iφ+ρ =ρ(t+1)+ζ , and y−iφ−ρ∗ =
ρ∗(t−1)+ζ ∗. Now expand the sinh terms using sinh(a+b)=cosh(a)sinh(b)+
sinh(a)cosh(b). Using the presumed smallness of ρt, we get

sinh(ρt+ζ )≈ sinh(ζ )+ρt cosh(ζ )≈ sinh(ζ )exp(ρt coth(ζ )). (4.49)

The crucial step in our quest for the solitons is the transformation

sinh(ζ )= i
1

2
ρ exp(q+iψ), (4.50)

which converts Eq. (4.47) to exponential form. The initial factor i on the right
side of Eq. (4.50) is not necessary, as it could be incorporated in exp(iψ), but it
is convenient in what follows. As we shall see, the variable q is approximately
half the interval between the solitons. It is always positive when the solitons are
resolved. Taking the z derivative of Eq. (4.50), we get

cosh(ζ )= 1

2
(qz +iψz)exp(q+iψ), (4.51)

where the subscript z represents differentiation with respect to z. Dividing these
last two equations yields

ρ coth(ζ )=ψz −iqz. (4.52)

Putting these relations into Eq. (4.49) yields

sinh(ρt+ζ )= i
1

2
ρ exp(q+ψzt+i(ψ−qzt)). (4.53)

Similarly,

sinh(ρ(t+1)+ζ )= i
1

2
ρ exp(q+ψzt+i(ψ−qzt)+ψz −iqz) (4.54)

and

sinh(ρ∗(t−1)+ζ ∗)= i
1

2
ρ exp(q+ψzt−i(ψ−qzt)−ψz −iqz). (4.55)

The solitons appear when we insert these relations into Eq. (4.47). The result is

u=exp[i(θ −qz)]{(1−ψz)sech[(1−ψz)t−q]exp[−i(ψ−qzt)]
+(1+ψz)sech[(1+ψz)t+q]exp[i(ψ−qzt)]}. (4.56)

In this expression one of the solitons has amplitude 1+ψz and frequency qz

while the other has amplitude 1−ψz and frequency −qz. The temporal separa-
tion between the two solitons is 2q (to first order in ψz). These values change
while the solitons interact. Equation (4.56) covers a multitude of behaviors of the
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two-soliton system. It is generally difficult to find the basic parameters of solitons
from knowledge of some initial state of the field. In the present case this is possi-
ble. From a field in the form of Eq. (4.56), the field variables [q,ψ ,qz,ψz] at any
location can be used to find the basic constants of the two-soliton state [a,�, t0,φ0].
Particularly important is the frequency parameter �, as it tells whether the soli-
tons separate and how fast. Suppose that we create a two-soliton state in the form
of Eq. (4.56), say at z =0. We can recover the basic parameters of the solitons
from Eqs. (4.50) and (4.51). Using these two equations and applying the formula
cosh2(ζ )−sinh2(ζ )=1, we obtain the important relation

(a−i�)2 =ρ2 = (ψz −iqz)2+4exp(−2q−i2ψ). (4.57)

Apart from an ambiguity in sign, Eq. (4.57) gives the values of a and �. The sign
ambiguity is resolved by the convention that � is always positive, so that if and
when the two solitons are completely separate, soliton number one has positive
frequency and amplitude 1+a, while soliton number two has negative frequency
and amplitude 1−a. If, in fact, the solitons are far apart, so that q�1, we find
from Eq. (4.57) that

a−i�=±(ψz −iqz).

If qz is positive, then �=qz and a=ψz, while if qz is negative, then �=−qz

and a=−ψz. In the former case, we see from Eq. (4.56) that soliton number one
is ahead of soliton number two and that the temporal distance between them is
increasing. In the latter case, soliton number one is behind soliton number two,
and the temporal distance between them is decreasing. Having found the values of
a and �, the values of t0 and φ0 can also be derived from Eqs. (4.50) and (4.51),
as we will illustrate in a few cases.

The equations of motion of the two solitons can be gleaned by differentiating
Eq. (4.57) with respect to z. Since ρ is a constant, we get the relation

ψzz −iqzz = i4exp(−2q−i2ψ).

Separating the real and imaginary parts of this relation gives

ψzz =4exp(−2q)sin(2ψ) and qzz =−4exp(−2q)cos(2ψ), (4.58)

which shows that the soliton motion can be described by distance-dependent forces
that vary with the solitons’ relative phase angle. If ψ =0, the two solitons are
approaching one another, while if ψ =π /2, they are moving apart. Note that
ψ =0 is an unstable situation, while ψ =π /2 is stable. The two-soliton function
is a solution of these two equations subject to the appropriate initial conditions.
Another look at the soliton motion comes from Eq. (4.50). Multiplying Eq. (4.50)
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by its conjugate, and using 2sinh(ζ )sinh(ζ ∗)=cosh(ζ +ζ ∗)−cosh(ζ −ζ ∗) and
Eq. (4.48), gives

|ρ2|exp(2q)=2[cosh(2�z−2t0)−cos(2az+2φ0)]. (4.59)

Equation (4.59) shows that unless � is zero, the two solitons eventually separate.
It also shows that the cosine term modulates the temporal location of the solitons
only when they are relatively close to each other, because, of course, the modu-
lation occurs due to their interaction, which depends on their separation and their
relative phase.

Some initial conditions deserve comment. Assume that the two solitons are
initially injected at z =0. The subscript 0 indicates an initial value. Suppose that
the two solitons are injected with equal amplitudes and frequencies, but are not
necessarily in phase, so that the initial state has the form

u= sech(t−q0)exp(−iψ0)+sech(t+q0)exp(iψ0). (4.60)

In the general Eq. (4.56) this result is obtained by setting both ψz0 and qz0 equal
to zero. The common phase θ is not important, but we could set it to zero also.
For this case, Eq. (4.57) becomes

ρ =a−i�=±2exp(−q0−iψ0).

The plus sign applies when 0≤ψ0 <π and the minus sign applies otherwise, since
� is nonnegative. The values of the soliton parameters a and � thus depend on
the relative phase of the two injected solitons. This is a reminder that a and �

are constant parameters that represent the amplitudes and frequencies of the soli-
tons when and if they are far apart; they do not represent the actual amplitudes
and frequencies of the solitons while they are interacting. Only in the case ψ0 =0
or π , when the two solitons are initially in phase, do they not eventually separate.
Assume now that 0≤ψ0 <π so that the plus sign applies. Equation (4.48) gives
ζ0 =−t0+iφ0. From Eqs. (4.50) and (4.51) we get sinh(ζ0)= i and cosh(ζ0)=0,
so that t0 =0 and φ0 =π /2. This completes the discovery of the soliton parameters
from the initial condition. Using these values, Eq. (4.59) yields the result

exp(2q)= 1

2
[cosh(2�z)+cos(2az)]exp(2q0). (4.61)

If ψ0 =0, so that the two solitons are initially in phase, we see that �=0 and
a=2exp(−q0). In this case, exp(2q)= 1

2 [1+cos(2az)]exp(2q0). Since we require
q to be a positive quantity, taking the square root of this last expression gives

exp(q)=exp(q0)|cos(az)|.
The solitons are seen to oscillate about each other. Our approximation describes
the two-soliton state only while the solitons are resolved, so it does not describe the
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collision in detail. However, the exact function is available if one wants to see the
details of the collision. One might be tempted to think of this last situation as a
bound state of the two solitons. However, we have seen that the attractive force
is phase dependent. Thus, any small perturbation that alters the phase relation of
the two solitons will give � a finite value, so that the two solitons will eventually
separate.

Another case that illustrates the behavior of the two-soliton system occurs when
the solitons are injected with the same frequency and the same phase, but not nec-
essarily with the same amplitude. This case is reproduced by taking qz0 =ψ0 =0
in Eq. (4.56). This time we find from Eq. (4.57) that ρ =a−i� is real, with

a2 =ψ2
z0+4exp(−2q0).

From Eqs. (4.48), (4.50), and (4.51), the initial conditions yield

sinh(−t0+iφ0)= iaexp(q0)/2 and cosh(−t0+iφ0)= iψz0 exp(q0)/2.

Expanding the cosh and sinh terms into real and imaginary parts shows that
φ0 =±π /2 and cosh(t0)= (a/2)exp(q0). With these results Eq. (4.59) yields

exp(2q)= 2

a2
[cosh(2t0)+cos(2az)]= 4

a2
[cosh2(t0)−sin2(az)]

=exp(2q0)−4sin2(az)/a2.
(4.62)

We see in this case that the two solitons oscillate about fixed positions, in general
not passing each other. This happens because the relative phase of the two soli-
tons varies with time and so they alternately attract and repel one another. This
case and the previous one have a common situation, the latter when the solitons
have the same initial phase, and here when the two solitons have the same ini-
tial amplitude. If ψz0 =0, then a2 =4exp(−2q0), and we get from Eq. (4.62) that
exp(2q)=exp(2q0)cos2(az), in agreement with the previous result.

A third simple case is the insertion of two solitons with equal amplitudes and
phases, but with slightly different frequencies. Here we find from Eq. (4.57) that
(a−i�)2 =4exp(−2q0)−q2

z0. The two solitons remain together (�=0) so long
as the initial frequency difference is small enough. The two solitons stay together
only in special cases. It is clear from Eq. (4.57) that small changes of the initial
soliton parameters in these special cases can give a finite value to �, indicating
that the solitons will eventually separate. Thus the two solitons are never bound
in the usual sense.





Chapter 5

Wavelength Division Multiplexing
with Ordinary Solitons

5.1. Introduction

In the previous chapter, we have seen that in lossless and constant-dispersion
fiber, collisions between ordinary solitons of distinctly different frequencies are
perfectly elastic. That is, after the collision is completed, there is no net exchange
of energy or momentum of either soliton. This perfect transparency would seem
to make ordinary solitons ideal for use in dense WDM. Unfortunately, however,
the loss and/or varying dispersion of real fibers tend to destroy the symmetries
necessary for such transparency, so that the emerging solitons suffer significant
frequency shifts (which dispersion then converts into timing shifts) and loss of
energy. In principle, these defects can be perfectly corrected through the use of
fibers whose dispersion profile, D(z), tracks the loss/gain-induced intensity profile
I(z) (for example, fibers with exponentially tapered D used between lumped ampli-
fiers.) Indeed, as will be reported on later in this chapter, step-wise approximations
to such exponentially dispersion-tapered spans have allowed for successful exper-
imental demonstration of six-channel WDM over distances of 10,000 km or more.
Further expansion of the channel count, however, is severely limited by the very
narrow range of wavelengths over which single fiber types can provide the correct
sub-picosecond/nn-km dispersion values necessary for ordinary solitons, and the
cost of production of fibers with custom-shaped dispersion profiles is seen as pro-
hibitively expensive. Thus, in the commercial world, dense WDM with solitons
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is now concentrated almost entirely on the much more versatile and practical
dispersion-managed solitons, as will be described in the next chapter.

In the meantime, the material of this chapter is worthy of the reader’s careful
study, as a necessary background for a complete understanding and appreciation of
dense WDM with dispersion-managed solitons, if for nothing else. For one thing,
as we shall see later, the more complex collisions of dispersion-managed solitons
really consist of many ordinary soliton-like “mini-collisons,” so the present study
is a most useful foundation for understanding of those more complex collisions.
Second, comparison of the different scaling properties of collisions of ordinary
solitons with those of dispersion-managed solitons is illuminating. Third, in the
experiments to be described here, sliding-frequency guiding filters provided a very
strong and useful control over the WDM with ordinary solitons in several different
ways. It is interesting to consider the possibility of extending such control to dense
WDM with dispersion-managed solitons.

5.2. Effects of Periodic Loss and Variable Dispersion

The periodic intensity fluctuations in a system with real fiber and lumped amplifiers
can serve to destroy the perfect asymmetry of the acceleration curve of Fig. 4.2, and
hence to result in a net residual velocity shift and associated timing displacement
[77]. For the purposes of illustration, Fig. 5.1 shows an extreme such case, where
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Figure 5.1 (Heavy curve) acceleration and (thin curve) inverse velocity shift (∝−δf )
for a collision centered at an amplifier, and where Lcoll =Lamp/2. The sawtooth curve at
the bottom of the figure shows the relative intensities of the spans when Lamp =100 km. A
set of parameters yielding Lcoll =50 km is τ =20 ps, D̄=0.5 ps/nm-km, and 
λ=1.6 nm
(
f =200 GHz). Note the severe asymmetry of the acceleration curve, and the resultant
large residual velocity shift (−0.165 in soliton units, corresponding to δf =4.63 GHz).



5.2. Effects of Periodic Loss and Variable Dispersion 129

the collision length is half the amplifier spacing, and where the collision is centered
at an amplifier. Note that just prior to the amplifier, where the intensity is low, the
acceleration curve is correspondingly attenuated, while just the opposite happens
in the space immediately following the amplifier. Thus, most of the integral of the
acceleration curve comes from the right half of the graph, and, as a result, there
is a large residual velocity (frequency) shift. The residual frequency shift here
(4.63 GHz) really is large. Note that when its wavelength equivalent is multiplied
by D̄=0.5 ps/nm-km and by a characteristic filter damping length of say, 600 km,
the resultant time shift is ≈11 ps. When further magnified by the typical spread of
nearly zero to at least several tens of collisions in a transoceanic length, that time
shift would result in a completely disastrous timing jitter.

On the other extreme, where the collision length is large relative to the ampli-
fier spacing, one might reasonably expect the velocity curve to look much like
that of Fig. 4.2. For example, Fig. 5.2 shows what happens when Lcoll is just
2.5Lamp. Although the acceleration curve in Fig. 5.2 contains large discontinuities
at each amplifier, its integral looks remarkably close to the ideal velocity curve
(Fig. 4.2). Most importantly, the velocity returns almost exactly to zero following
the collision. In the following section, it will be shown analytically that the residual
velocity is essentially zero as long as the condition

Lcoll ≥2Lamp (5.1)

is satisfied. Note that this condition, combined with Eq. (4.1), puts an upper bound
on the maximum allowable channel spacing:


λmax = τ

DLamp
. (5.2)
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Figure 5.2 Acceleration and velocity shift for a collision centered at an amplifier, in
constant D fiber, and where Lcoll =2.5Lamp. Note how the velocity curve here closely
approximates the ideal of lossless fiber (Fig. 4.2).
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Figure 5.3 Acceleration and velocity curves for a collision centered at a discontinuity
in D, and where, for simplicity, the fiber is lossless.

For example, let τ =20 ps, D=0.5 ps/nm-km, and Lamp =33 km. Equation (5.2)
then yields 
λmax ≈1.2 nm; with nearest channel wavelength spacings of 0.6
or 0.4 nm, the maximum allowable number of channels is just three or four,
respectively. As will be shown later, however, this limit can be expanded through
the use of dispersion-tapered spans.

Variation in the fiber’s chromatic dispersion can also upset the symmetry of
the collision. For example, Fig. 5.3 illustrates what happens when the collision
is centered at a discontinuity in D. To keep the example pure, here the fiber is
lossless. Note the different length scales on either side of the discontinuity in D.
These occur, or course, because the length scale for the collision, or for any part
of it, is Lcoll, which is in turn inversely proportional to D [see Eq. (4.1)].

5.3. Analytical Theory of Collisions in Perturbed Spans

We are concerned here with soliton propagation and collisions where there are
variations of gain (loss) and dispersion on a distance scale much less than the
characteristic dispersion length zc [Eq. (1.18)], i.e., we assume that we have the
conditions for good path-average solitons. The propagation equation for the optical
field can then be written as

−i

[
∂u

∂z
− α(z)

2
u

]
= 
(z)

2

∂2u

∂t2
+ |u|2u, (5.3)
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where, by assumption, in a distance much smaller than unity, the gain (loss)
coefficient α averages to zero, while the normalized dispersion parameter 
(z)=
D(z)/D̄ averages to one.

We can change Eq. (5.3) to a more useful form by the following transfor-
mation: Let

u′ =u/
√

G and dz′ =
dz, (5.4)

where the parameter G(z) satisfies the equation dG/dz =αG, and averages
over z to unity. [Thus, note that G(z) can be thought of as a normalized power
gain factor =P(z)/P̄.] To specify z′ completely as a function of z, we can set z′ =0
when z =0. The effect of this transformation is to remove the amplitude and dis-
persion variations from u. Note that because 
 averages to one in a short distance,
z and z′ never get very far apart. If the variation of 
 is periodic, for example, then
z′ and z are equal again after each period. The modified equation has the form

−i
∂u′

∂z′ = 1

2

∂2u′

∂t2
+g |u′|2u′, (5.5)

where g(z′)=G(z)/
(z). Note that g(z′)dz′ =G(z)dz′, so that g(z′) averages over
z′ to unity. The original variations in dispersion and gain loss are thus equivalent
to a variation of the nonlinear coefficient.

Even before any further analysis, it is useful to take stock of what has already
been accomplished. First, it is of the greatest importance that G and 
 are no
longer needed separately, but can be folded into a single parameter (g, equal to
their ratio). Second, note that when g(z)=1, Eq. (5.5) becomes just the standard
NLS equation. This happens whenever G(z) and 
(z) track each other, as, for
example, when D(z) falls off between lumped amplifiers at the same exponential
rate as does the signal power. Thus we come to the powerful conclusion that all
of the perfect transparencies of Chapter 4 for lossless and constant-dispersion
fiber apply equally under the more general condition that one simply has g(z′)=1.
We shall make use of this result in the following section.

We can now take up the case of colliding solitons with nonoverlapping frequency
spectra. The analysis proceeds exactly as it did in Chapter 4, if [in Eqs. (4.7) and
(4.8)] we merely put primes on all us and on z, and multiply all nonlinear terms
by g(z′). Thus, Eq. (4.8) becomes

d�

dz
= g

2�

d

dz′

∫
sech2(t+�z′) sech2(t−�z′)dt, (5.6)

which, of course, reduces to Eq. (4.8) when g=1. There is a net frequency shift
from a completed collision when g depends on z′, however. Integrating Eq. (5.6)
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over z′, and doing a partial integration on the right-hand side, yields for this
frequency shift

δ�=− 1

2�

∫
dz′ dg

dz′

∫
sech2(t+�z′) sech2(t−�z′)dt. (5.7)

Finally, Eq. (5.7) is reduced to a simpler form by doing a spatial Fourier reso-
lution of g. Thus, let g(z′)=∫ dk g̃(k) exp(ikz). After inserting this transform in
Eq. (5.7), doing the z′ derivative, and changing integration variables from z′ and
t to �z′±t, Eq. (5.7) reduces to

δ�= −i

4�2

∫
dk k g̃(k)

[∫
ds exp

(
i

ks

2�

)
sech2(s)

]2

. (5.8)

The integral over s in Eq. (5.8) evaluates to 2χ / sinh(χ ), where χ =πk/(4�). Also,
since g(z′) is real, we have g̃(−k)= g̃∗(k). Thus, we can write Eq. (5.8) as

δ�= Im
32

π2

∫ ∞

0
dk

g̃(k)

k

χ4

sinh2(χ )
. (5.9)

Equation (5.9) is the fundamental result of our analysis.
We are primarily interested in cases where the variations of gain and dispersion

are periodic. For such cases, g̃(z′) reduces to a sum over spatial harmonics of the
fundamental period, with wavenumbers k =2πn/Lpert , and Eq. (5.9) becomes

δ�= 16Lpert

π3

∞∑
n=1

Im g̃n
n3χ4

sinh2(nχ )
, (5.10)

where χ =π2/(2�Lpert), and g̃n is the average of g(z) exp(−i2πnz′/Lpert), that is,

g̃n = 1

Lpert

∫ Lpert

0
(G/
) exp(−i2πnz′/Lpert)dz′. (5.11)

Note that since the (z′) collision length Lcoll =1.7627/�, we have χ =2.7995
Lcoll/Lpert . Figure 5.4 plots the factor n3χ4/ sinh(nχ ) of Eq. (5.10) vs. χ and
Lcoll/Lpert . The plot reveals first, for Lcoll/Lpert >1, that only the fundamental
makes significant contribution to δ�, and second, and of greatest importance, that
δ� becomes negligibly small for Lcoll/Lpert not much greater than 2. Note how
this agrees very well with the behavior we have seen in Figs. 5.1 and 5.2.

In the preceding development, the collisions are centered at z = z′ =0.
To extend the results to collisions centered at some general z′

coll, note that mov-
ing the collision forward a distance z′ along the fiber is equivalent to moving the
fiber (amplifiers and spatial variations in D included) backward by the same dis-
tance, which has the result of multiplying g̃n by the factor exp(i2nπ z′

coll/Lpert).
To express this result in z requires replacement of z′

coll by
∫ zcoll

0 
dz.
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Figure 5.4 The function n3χ4/ sinh(nχ ) vs. χ or Lcoll/Lpert =χ /2.7995 for n=1 (the
fundamental) (heavy solid line), n=2 (the second harmonic) (thin solid line), n=3 (the
third harmonic) (dashed line).

It may be helpful to look at a few simple cases. For example, for lumped
amplifiers between spans of constant-dispersion fiber, we have 
=1 and z′ = z
everywhere, and Lpert =Lamp. From Eq. (5.11) one can easily compute

g̃n = aexp(inφc)

a + i2πn
, (5.12)

where φc = 2π zcoll/Lamp and a=αLamp. For the case Lcoll/Lamp >1, where only
the fundamental is important, the imaginary part of Eq. (5.12) can be written as

Im g̃= 1√
1+(2π /a)2

sin(φc−arctan(2π /a)). (5.13)

Figure 5.5 is a plot of Eq. (5.13) for a=1.92 (corresponding to Lamp =40 km and
α=0.048/km). Thus, it could apply to the situation of Fig. 5.2, or to the same but
with greater channel separation for shorter Lcoll (and hence much greater residual
frequency shift than the very small one of Fig. 5.2). Note the sinusoidal variation
(as would be expected when only the fundamental is important) and the fact that
the extremes of frequency shift occur when the collisions are centered just ahead
of the amplifiers (but not exactly at them), and just ahead of the mid-span position.

For cases like that of Fig. 5.3 (lossless fiber with dispersion variation), let
the dispersion change from 
1 to 
2 at a (z) distance L1 <Lpert . Since 
 must
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Figure 5.5 Im g̃ vs. zcoll/Lamp where Lamp =40 km (a=1.92). (Amplifiers are located at
0 and 1.) Note that the extrema correspond to collisions centered just ahead of the amplifiers
and just ahead of mid-span.

average to unity, we must have 
1L1+
2(Lpert −L1)=Lpert . In this case we can
use dz′ =
dz to express Eq. (5.11) as an integral in z, with the result

g̃n = 
1 − 
2

πn
1
2
sin(nφ1/2)exp(in(φc − φ1/2)), (5.14)

where φ1 = 2π
1L1/Lpert and (essentially as before), φc = 2πz′
coll/Lpert . Equa-

tion (5.14) can be used to generalize on results like that of Fig. 5.3.

5.4. Dispersion-tapered Fiber Spans

In the previous section, we have seen proof that when D(z) perfectly tracks the
signal intensity profile factor [G(z)], the propagation equation [Eq. (5.5)] reverts
to the unperturbed NLS equation, with the result that collisions have the per-
fect transparency described in Chapter 3. Unfortunately, however, fiber spans
having the ideal exponential taper in D (for use between lumped amplifiers) are
not available commercially (and almost certainly never will be). Thus, at present
it is necessary to use a step-wise approximation. Figure 5.6 illustrates the opti-
mum three-step approximation to the ideal taper. There, the length of each step is
inversely proportional to the D value of the step. Note that that makes the steps all
have equal lengths, as measured in soliton units.

Using such an N-step approximation to the ideal dispersion taper increases the
limit on maximum channel spacing imposed by Eq. (5.2) by a factor of N . That is,
one now has


λmax = Nτ

DLamp
. (5.2a)
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Figure 5.6 Ideal exponential taper of D and the best, three-step approximation to it for a
fiber span with Lamp =33.3 km and loss rate of 0.21 dB/km.

In practice, once N is large enough, the intensity variation over each step becomes
so small that the perturbations become acceptably small in any event. In that case,
the limit of Eq. (5.2a) is no longer significant.

5.5. Pseudo Phase Matching of Four-wave
Mixing in WDM

In Chapter 4, we found that the maximum FWM energy produced during a soliton–
soliton collision in lossless fiber is small, typically less than 0.1% of Wsol, and
that it disappears entirely after the collision is over. In real systems involving
periodic gain and loss or other perturbations, however, the situation can be very
different. In particular, if the transmission line has periodic perturbations with kpert

in resonance with the phase mismatch of the FWM, i.e., when

Nkpert =
k (N =1,2,3, . . .), (5.15)

then one has pseudo phase matching, and the FWM product can grow steadily
[78]. The perturbations can correspond to the gain/loss cycle whose period is
the amplifier spacing, Lamp, and/or to periodic variations of the fiber parameters
(dispersion, mode area). For the case of lumped amplifiers, kpert =2π /Lamp and
the pseudo phase-matching conditions are met when

Lamp =NLres ≡2πN /
k. (5.16)

Figure 5.7 illustrates such pseudo phase matching in the development of FWM
between two cw waves as they traverse four 40-km spans of fiber with loss factor
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Figure 5.7 Solid, spiral curve: Growth of complex amplitude of FWM resulting from
interaction of two cw waves as they traverse four, 40-km spans of fiber with loss factor
0.048/km and when 
k = (2π /40)km−1. Note how the resonant pseudo phase matching
(N =1) creates a spiral that increases in net length with passage through successive amplifier
spans. Dashed circle: The same, but in lossless fiber and with the same path-average signal
powers. In this case, the circle simply closes on itself after each 40-km fiber span.

α=0.048/km and separated by lumped amplifiers. Keep in mind that the intensities
of the FWM products scale as the square of the amplitudes shown there, and
compare the ever-growing spiral of the pseudo phase-matched case with the closed
circular path in lossless fiber. From those considerations, the efficiency of pseudo
phase matching in promoting rapid FWM growth should be well evident.

Although FWM generation during a soliton–soliton collision is more compli-
cated than with continuous waves, the basic features remain the same. Figure 5.8
shows the numerically simulated growth in energy of the FWM products at ωA,S

during a single collision of two solitons. [The particular parameters represented
there are those of certain experiments [28, 29], viz., τ =20 ps, adjacent channel
separation 
f =75 GHz (
λ=0.6 nm at λ=1556 nm), and where the path-
average dispersion D̄=0.5 ps/nm-km.] For these parameters, Lres =44.4 km.
Note that for the case of lossless fiber of constant dispersion, and for the case
of real fiber with exponentially tapered dispersion, the FWM energy disappears
completely following the collision. Also note that due to the fact that the solitons
have finite temporal and spectral envelopes, and due to the effect of cross-phase
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Figure 5.8 Growth of FWM energy during a single soliton–soliton collision, for three
different conditions: lossless fiber with constant dispersion (small, smooth curve), real fiber
with lumped amplifiers spaced 33.3 km apart and exponentially tapered dispersion (small,
jagged curve), and real fiber with lumped amplifiers spaced 33.3 km apart and constant
dispersion (large, jagged curve). The FWM energy is for a single sideband and is normalized
to the soliton pulse energy. Note that for the first two cases, the FWM energy disappears
completely following the collision, while for the third case, where there is effective pseudo
phase matching, the FWM energy builds to a large residual value.

modulation (which shifts the pulse carrier frequencies during the collision), the
oscillations of the FWM energy with the period of Lres are almost completely
washed out. Finally, for the case of real fiber with constant dispersion, the colli-
sion produces a residual FWM energy several times larger than the (temporary)
peak obtained with lossless fiber.

Although the residual energy from the pseudo phase-matched collision of
Fig. 5.8 may seem small, the fields from a succession of such collisions can easily
build to a dangerously high value. Such uncontrolled growth of the FWM imposes
penalties on the transmission by two different mechanisms. First, since the energy
represented by the FWM fields is not reabsorbed by the solitons, the solitons tend
to lose energy with each collision. Since the net energy loss of a given soliton
depends on the number of collisions it has suffered, and upon the addition of four-
wave mixing fields with essentially random phases, it directly creates amplitude
jitter. The energy loss leads to timing jitter as well, both through the intimate cou-
pling between amplitude and frequency inherent in filtered systems, and through
its tendency to asymmetrize the collision, and hence to induce net velocity shifts.
Finally, certain noise fields in the same band with the FWM products can influence
the solitons’ frequencies, in a kind of extended Gordon–Haus effect. Thus, even
in a two-channel WDM, there can be serious penalties (see Fig. 5.9). Moreover,
if the wavelengths of the FWM products coincide with the wavelengths of other
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Figure 5.9 Pulses that have traversed a 10-Mm transmission line with Lamp =33 km and
constant D=0.5 ps/nm-km, and that have undergone collisions with an adjacent channel,
0.6 nm away, containing all ones. In this numerical simulation, there were no guiding filters.
A small seed of noise was added, but only in the FWM sidebands; thus, the large amplitude
and timing jitter seen here are from uncontrolled growth of FWM alone.

WDM channels (possible only when there exist three or more channels), the run-
away FWM becomes an additional source of noise fields to act on those channels.
In that way, the well-known amplitude and timing jitter effects of spontaneous
emission are enhanced.

The growth of FWM can often be controlled adequately with the use of one
or another of the N-step approximations to the ideal exponential dispersion taper
discussed in Section 5.4. Figure 5.10 plots the residual FWM intensity resulting
from a single collision, as a function of Lamp, for various numbers of steps in D
per Lamp, for the channel separation of 0.6 nm, and for the τ =20-ps solitons and
D̄=0.5 ps/nm-km of Fig. 5.8. Figure 5.11 does the same, but for twice the channel
separation (1.2 nm). First, note that the intensity scale in Fig. 5.10 is approximately
a factor of 25 =32 times that of Fig. 5.11, just as implied by Eqs. (5.12) and (5.14),
and by the fact that Lcoll scales inversely as the channel spacing. This scaling is
easily generalized; for channels spaced n times the adjacent channel spacing, the
FWM intensity should scale as n−5. This apparently rapid falloff in FWM effect is
tempered somewhat by the fact that the number of collisions tends to increase as n
increases, and that it is really the vector addition of residual field quantities from
at least several successive collisions that is to be feared here. Also note that the
number of steps required for total suppression of the FWM intensity increases with
increasing channel spacing. For example, in Fig. 5.10, just two steps are required
for Lamp in the neighborhood of 30 km, while four steps are required for the same
in Fig. 5.11. Finally, note that because of the finite nature of the pulse widths and
collision lengths, the resonances in Figs. 5.10 and 5.11 are fairly broad.
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Figure 5.10 Residual FWM energy following a single collision of 20-ps solitons in chan-
nels spaced 0.6 nm apart in a chain of fiber spans with D̄=0.5 ps/nm-km, as a function of
the amplifier spacing, for constant D, and for the optimal 2-, 3-, and 4-step approximations
to the ideal exponential taper. The FWM energy is for a single sideband and is normalized
to the soliton pulse energy. No noise seed was used in these simulations.
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Figure 5.11 The same as Fig. 5.10, except that here the channel spacing is twice as great,
i.e., it is 1.2 nm.

As a further potential danger due to pseudo phase matching, we note that
four-wave mixing in its presence can cause large (≈10%) changes in the soli-
ton’s energies and equally significant changes in their frequencies in the course of
a single collision of three solitons, one in each of three adjacent equally spaced
channels [79].
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5.6. Control of Collision-induced Timing
Displacements

With the use of dispersion-tapered fiber spans, the only major penalty in WDM
comes from the collision-induced timing displacements given by Eq. (4.10) or
(4.11c). Since some pulses undergo dozens of collisions, while others nearly
none, in the course of a transoceanic transmission, the resultant timing jitter can
be substantial, even when the time displacement from a single collision is no more
than a picosecond or two. It so happens, however, that the frequency-guiding fil-
ters nearly eliminate that jitter as well [80]. The argument can be made as follows:
First, to simplify the notation, let δv−1

g →v and ∂v−1
g /∂z →a. Without filtering,

let the colliding solitons accelerate each other by a0(z), whose first z integral is
v0(z), and whose second z integral is t0(z). We require only that the completed
collision must leave no residual velocity shift (see Fig. 5.2, for example). Thus,

v0(∞)=
∫ ∞

−∞
a0(z)dz =0. (5.17)

For simplicity, we assume that the filters are continuously distributed, and they
provide a damping (acceleration) ad =−γ v=−v/
, where γ and 
 are the damp-
ing constant and characteristic damping length, respectively [see Eq. (3.52)]. The
equation of motion then becomes:

dv

dz
=a0(z)−v(z)/
. (5.18)

Equation (5.18) can be rewritten as

v(z)=
[

a0(z)− dv

dz

]

. (5.18a)

To get t, we simply integrate Eq. (5.18a):

t(z)=
∫ z

−∞
v(x)dx =
×

∫ z

−∞

[
a0(x)− dv

dx

]
dx. (5.19)

We are primarily interested in t(∞):

t(∞)=
×
∫ ∞

−∞
a0(x)dx−
×

∫ ∞

−∞
dv. (5.19a)

The first term on the right = 0 by virtue of Eq. (5.16). The second term is just v(∞),
which, for a filtered system with no excitation beyond a certain point, must = 0.
Figure 5.12 shows the quantities δf corresponding to −v(z) and t(z), numerically
simulated for the case of lumped filters. One can see from the figure how the timing
displacement is nulled: The filters reduce the maximum frequency (velocity) shift,
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Figure 5.12 The frequency and time shifts, as a function of distance, resulting from a
collision in a transmission line with lumped amplifiers and lumped filters spaced by 33.3 km;
the other parameters are D=0.5 ps/nm-km; τ =20 ps; channel spacing, 
λ=0.6 nm;
damping length, 
=400 km.

so that the acceleration in the second half of the collision causes an overshoot in
frequency; the area under the long tail of the frequency curve thus produced just
cancels the area under the main peak.

Real filters, such as etalons, do not always perform exactly as in the simplified
model given here. In the first place, with real filters, the damping force is not
always strictly proportional to −v, or equivalently, to δf . Second, the time delay
through the filters exhibits a certain dispersion as the signal frequency moves
off the filter peak. Nevertheless, numerical simulation shows that the etalons used
in the theoretical examples and in the experiments cited here tend to cancel out at
least 80% of the timing displacements. That large improvement has turned out to
be sufficient for most purposes.

5.7. Effects of Polarization

Thus far in the discussion, we have assumed that the colliding pulses are
co-polarized. It is important to note, however, that all of the effects discussed
so far (XPM and FWM) are significantly affected by polarization, and all in the
same way. Although we defer a full-blown discussion of polarization until the
following section, the state of affairs can be summarized as follows: First, just
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as for the path-averaged solitons, the residual birefringence of even the highest
quality transmission fibers available at present is large enough that over the (tens
or hundreds of kilometers long) path of a single collision, the Stokes vectors rep-
resenting the polarization states of the individual pulses tend to rotate, more or
less at random, many times over and around the Poincaré sphere. Thus, in that
way, the polarization tends to be well averaged over a representative sample of
all possible states during a collision. On the other hand, the relative polarization,
i.e., the angle between the Stokes vectors, of the colliding pulses tends to be only
mildly affected. (The relative polarization is affected by two things: the dispersion
in the fiber’s linear birefringence and, as will be detailed in Chapter 7, a nonlinear
birefringence induced by the collision itself.) Thus, even in the worst case, to
first order at least, one can treat the relative polarization during a collision as a
constant, so polarization does not significantly affect the symmetries of the colli-
sion. Nevertheless, under those conditions (of thorough averaging over absolute
polarization states, while relative polarization states are preserved), the frequency
shifts induced by XPM and the intensities of FWM products are both just half as
great for orthogonally polarized pulses as they are for co-polarized pulses. This
fact is of obvious practical importance.

5.8. Gain Equalization with Guiding Filters

The inevitable variation of amplifier gain with wavelength presents a problem for
WDM, one that becomes ever more serious with increasing system length. In linear
transmission (such as NRZ), where no self-stabilization of the pulse energies is
possible, custom-designed, wavelength-dependent loss elements must be inserted
periodically along the line to try to compensate for the variable amplifier gain.
Even then, however, in practice it has proved difficult to maintain even roughly
equal signal levels among the various channels. For soliton transmission using
guiding filters, however, the guiding filters themselves provide a powerful, built-
in feedback mechanism for controlling the relative strengths of the various signal
channels in the face of variable amplifier gain. As should be evident from the
discussion of guiding filters already presented (Chapter 3), the control stems from
the fact that the guiding filters provide a loss that increases monotonically with
the soliton bandwidth, and hence with the soliton energy. Thus, for a channel
seeing excess amplifier gain, a modest increase in soliton energy quickly creates
a compensating loss, and the signal growth is halted.

Since the soliton bandwidth scales as τ−1 ∝W /D, where W is the soliton
pulse energy [see Eq. (1.20a)], the soliton’s energy loss from the guiding filters
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can be written as a monotonically increasing function of (W /D). For Gaussian
filters, the relation f (W /D) is quadratic; for the shallow etalon filters used in prac-
tice, however, f (W /D) is more nearly linear. The energy evolution of N WDM
channels in a soliton transmission line with sliding filters can then be described by
the following system of coupled nonlinear equations [81]:

1

Wi

dWi

dz
= αi

1+mR(W1+W2+···+WN )/Psat
−αLi −f (Wi/Di). (5.20)

Here the subscript i=1, . . . ,N identifies that the particular channel, Wi(z) is its
energy, αi is its small-signal gain coefficient, αLi is its linear loss rate, m is the
mark-to-space ratio (usually 1/2), R is the per-channel bit rate, Psat is the saturation
power of the amplifiers, and Di(z) is the dispersion at the ith channel wavelength
(the dispersion could change with distance z due to the combined action of the
frequency sliding and third-order dispersion). Note that the Eq. (5.20) fix the
equilibrium values of Wi/Di according to the various αi. Thus, when the αi are
all nearly the same, the various channel energies will scale in direct proportion
to D(λ). In the usual situation where the third-order dispersion is essentially a
constant, then the channel energies will be in direct proportion to their separation
in wavelength from λ0, the wavelength of zero D. It should also be noted that the
Eqs. (5.20) are essentially the same as Eq. (3.49a), with the frequency offset term
omitted. [Recall that in soliton units, one has W =A (not W =A2), and recognize
that the quantity α in Eq. (3.49a) is just a compact way of writing the sum of the first
two terms on the right-hand side of the Eq. (5.20).] Finally, for Gaussian filters,
f (W /D)=const.×W2. Thus, just as a linearized version of Eq. (3.49a) was shown
to be a damping equation, the linearized version of the Eq. (5.20) is essentially the
same damping equation, with Wdf /dW as the damping constant. Thus, one has

W
df

dW
= 1



, (5.21)

where, at least for Gaussian filters, 
 is the same characteristic damping length as
discussed in Section 4.3.

Figure 5.13 shows the solution to the Eq. (5.20) for the case of three channels
with significantly different small-signal gain rates, both with and without filters.
Note how the filters quickly lock the signal energies to tightly clustered equilibrium
values. By contrast, the large divergence in channel energies that occur when no
filters are used will clearly lead to large penalties and disastrous error rates. Thus,
the ability of the guiding filters to regulate the relative channel energies constitutes
a major and very important advantage for solitons over all other possible modes
of WDM.
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Figure 5.13 Growth with distance of signal pulse energies in WDM channels having
relative gain rates of ±1 and 0 dB/Mm, respectively, for a system using sliding-frequency
filters (damping length 
=400 km) and for no filters at all.

5.9. Experimental Confirmation

Some years ago, the ideas in this chapter were tested in transmissions of up to eight
channels at per-channel rates of 5 and 10 Gbit/s (with the major emphasis on the
greater rate) [82, 83]. While many aspects of the transmissions were monitored,
the ultimate criterion of success was to achieve measured BER rates of 1×10−9

or less on all channels, over at least the trans-Pacific distance of 9 Mm.
Figure 5.14 is an overall schematic of the signal source. The soliton pulse shaper,

based on a LiNbO3 Mach–Zehnder type modulator, both carves out the pulses and
provides them with a controlled and desired chirp [84]. (A full description of the
pulse carver is provided in Chapter 8, Section 8.1.1.) After a second modulator
imposes the data (a 215-bit, random pattern), the 4-km length of standard fiber
(D≈17 ps/nm-km at 1557 nm) compresses the pulses to ≈20 ps; it also separates
the bits of adjacent channels by 40 ps, and this separation prevents the occurrence
of half-collisions at the input to the transmission line for all but the most widely
spaced channels. Finally, the 3.7-m length of polarization-maintaining (PM) fiber,
used as a multiple half-wave plate, enables adjacent channels to be launched with
orthogonal polarizations.

The orthogonal polarizations provide two significant benefits: First, they
reduce the interchannel interaction by a factor of two over that obtained with
co-polarization states. Second, at least where the number of channels is even,
the net optical power in the transmission line is essentially unpolarized, so the
amplifiers exhibit no significant polarization-dependent gain from polarization
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Figure 5.14 Source for soliton WDM experiments at 10 Gbit/s per channel.
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Figure 5.15 Recirculating loop with sliding-frequency filters and dispersion-tapered fiber
spans. The acousto-optic (AO) modulators act as optical switches with very large on–off
ratios to control the sequencing of each transmission. That is, initially, the lower switch is
held closed, and the upper switch is open long enough for the source to fill the recirculating
loop with data and to bring the amplifier chain to equilibrium. The conditions of the two
switches are then simultaneously reversed, so that the loop is closed on itself, and there is no
longer an external source. During each such transmission, a linear ramp voltage is applied
to the piezo-driven filters to produce the desired sliding of the filter frequencies. Samples
of the signal, corresponding to successive round trips, emerge more or less continuously
from the signal-out port.

hole burning. Thus, here there is no need for polarization scrambling of the indi-
vidual channels. There is more here than just the avoidance of unnecessary and
expensive hardware, however, since the fiber’s birefringence tends to convert
polarization scrambling into timing jitter. It should also be noted that the order of
the pulse shaper and the data modulator is of no consequence.

The recirculating loop (see Fig. 5.15) contained six spans of 33.3 km each
between (Er C band) amplifiers, each span dispersion-tapered typically in three or
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four steps, with span path-average value D̄=0.5±0.05 ps/nm-km at 1557 nm.
Two out of every three loop amplifiers are immediately followed by piezo-driven,
Fabry–Perot etalon filters, each having a 75-GHz (0.6 nm at 1557 nm) free spectral
range and mirror reflectivities of 9%; this combination provides the optimum
path-average filter strength of η≈ 0.4 at 1557 nm.

At the receiver, the desired 10-Gbit/s channel is first selected by a wavelength
filter, and is then time-division demultiplexed to 2.5 Gbit/s by a polarization-
insensitive electro-optic modulator having a 3-dB bandwidth of 14 GHz and
driven by a locally recovered clock (see Fig. 5.16). The demultiplexer provides a
nearly square acceptance window in time, one bit period wide.

Figure 5.17 shows a typical set of BER data. Note the tight clustering of the BER
performance for all channels. Figure 5.18 plots the measured error-free distances
vs. the number, N , of 10-Gbit/s channels. For each of these points, the BER was
better than 1×10−9 on all N channels. Note that most of the data points corre-
spond to loop amplifiers pumped at 1480 nm, with corresponding high noise figure
(≈6 dB) and narrow gain-bandwidth. The last point corresponds to pumping at
980 nm, however, where the noise figure is much closer to 3 dB and the gain band-
width is improved, at least toward shorter wavelengths. The error-free distances
represented in Fig. 5.18 tend to be determined by a low-level error floor, which is
only very weakly dependent on distance. This dependence is especially noticeable
for the largest values of N . Thus, even small future improvements should enable
both the error-free distances and the maximum number of allowable channels to
be increased.

An experiment was also performed at 5 Gbit/s per channel (six channels), with
the same apparatus, simply by programming the pattern generator to eliminate
every second pulse of the otherwise 10-Gbit/s data. As the only other substantial
change, consistent with the lower bit rate, the time-acceptance window of the
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Figure 5.16 Time division demultiplexer (T-flip-flops = toggle flip-flop chips).
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Figure 5.18 Measured error-free distances vs. number, N , of channels at 10 Gbit/s per
channel.

demultiplexer (Fig. 5.16) was opened up by a factor of two. For that experiment,
the error-free distance was greater than 40 Mm on all channels. The great increase
in error-free distance was due primarily to two factors: First, at half the bit rate,
the rate of collisions was decreased by half. Second, of course, the doubled time-
acceptance window greatly increased the tolerance to timing jitter.

Finally, Fig. 5.19 shows an example of the spectrum of the WDM transmission.
Although the example corresponds to a particular distance (10 Mm), the spectrum
looks just the same at any but the very shortest distances. In all of the experi-
ments, regardless of the number of channels, the spectra all had the same feature,
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Figure 5.19 Optical spectrum of 9×10-Gbit/sWDM transmission, as measured at 10 Mm.
Note that the dashed line connecting the spectral peaks of the individual channels passes
accurately through the wavelength of zero dispersion, λ0. This behavior results from the
strong regulation of the soliton pulse energies provided by the sliding-frequency filters.
Following initial adjustment, it becomes independent of distance.

viz., that the spectral peaks could all be joined by a straight line that passed through
the zero intensity axis at λ0, the wavelength of zero dispersion. All of this occurred
in the face of considerable amplifier gain variation over the total wavelength span.
Thus, in these spectra we have direct and complete confirmation of the ideas pre-
sented in Section 5.7, where the guiding filters were shown to provide a very tight
control over the relative signal strengths of the various channels.



Chapter 6

Wavelength Division Multiplexing
with Dispersion-managed Solitons

6.1. Soliton–soliton Collisions

In Chapter 5, we have just seen how the perfect transparency of ordinary solitons
to one another in lossless fiber begins to break down in real fiber, and thus to cause
certain problems and limitations for dense WDM. In Chapter 2, however, we have
already seen how the phase mismatch created by the large values of local dispersion
tends to make four-wave mixing during soliton–soliton collisions negligibly small
in dispersion-managed systems. Thus, in contrast to ordinary solitons, the only
nonlinear penalty for dense WDM with dispersion management stems from cross-
phase modulation during the collisions, and the timing jitter that results from it.
As will soon be evident, however, even in this regard there are great differences,
one of the most fundamental of these being the fact that with dispersion-managed
solitons, the collision length is essentially independent of channel spacing, again
with generally positive consequences. Finally, we shall see how a recently invented
trick of dispersion management tends to render the jitter from collisions so small
that the performance of a dense WDM system becomes nearly indistinguishable
from that of a single, isolated channel.

6.1.1. General Description of Collisions and the Collision Length

As we have just seen in the previous two chapters, in WDM with ordinary solitons,
pulses in a shorter wavelength channel steadily overtake and pass through the
pulses of a longer wavelength channel. With dispersion management, however,

149
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Figure 6.1 Relative motion in retarded time of a pair of soliton pulses from adjacent
channels separated by 50 GHz; for convenience, the lower frequency pulse (horizontal
line at st =0) is fixed in retarded time—thus, the higher frequency pulse displays the
entire relative motion (the sawtooth path). The dispersion map consists of 80-km spans of
D=6-ps/nm-km fiber, compensated by a coil of DCF to yield D̄=0.15 ps/nm-km. Note the
two breaks in the distance scale, necessitated by the extremely great length of the overall
collision.

the situation is more complicated: In response to the large and rapidly alternating
D values, solitons from different channels race back and forth with respect to each
other in retarded time. Thus, collisions between pairs of solitons tend to consist
of fast, repeated, “mini-collisions,” [35,85] that individually tend to produce only
small displacements of the pulses in frequency and time. But when the ratio of
local-to-path-average dispersion is very high (as it usually is), then the colliding
pair tends to undergo a very large number of such mini-collisions before the solitons
cease to cross each other’s paths. Thus, the net length for an overall collision tends
to be long—typically several thousands of kilometers.

Figure 6.1 illustrates a typical case of the relative motion of a pair of colliding,
dispersion-managed solitons in adjacent channels. The sawtooth represents the
motion of the higher frequency pulse, while the lower frequency pulse (for con-
venience, made stationary in retarded time) is represented by the horizonal line
at t =0. Note that the time displacement during passage through the (D+) main
transmission span (the more gently sloping line of the sawtooth) is almost, but not
quite, reset after transmission through the coil of DCF (the very steep segment of
the sawtooth). Thus, the sawtooth pattern descends only very slowly, with slope
D̄
λ, where 
λ is the channel separation.

From the figure one can also see that the overall collision tends to consist of
three distinct phases: First, it begins where the pulses tend to achieve maximum
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Figure 6.2 Frequency shift, as a function of distance, of the lower frequency pulse of the
colliding pair of dispersion-managed solitons of Fig. 6.1, as determined by exact numerical
solution of the NLS equation. (An equal but opposite frequency shift is induced into the
higher frequency pulse.) The colliding pulses are orthogonally polarized. Mid-span Raman
pumping minimizes signal intensity variation along the main span, in order to make the
frequency-shift curve symmetric.

overlap at the junction between the +D and −D fibers; note that each of these
half-collisions tends to produce a net frequency shift that is approximately twice
as great (when |D+|≈|D−|) as the peak shift of a collision completed in just one
kind of fiber. Thus, the net effect of these half-collisions is to produce a steep
wall of rise (or fall) in frequency shift (see Fig. 6.2). The middle part consists of
complete collisions that tend to produce only small net effects, especially when
they take place in a region of small intensity gradient. (The curve of Fig. 6.2 cor-
responds to the use of mid-span backward Raman pumping to produce a relatively
small and symmetrical intensity profile, as, for example, is shown in Fig. 2.9.)
Finally, at the end, once again we have half-collisions, but this time at the other
junction of the +D and −D fibers; these produce a steep decline (or increase) of
frequency, back to zero net shift (again, see Fig. 6.2).

If we define Lcoll as beginning and ending when the pulses completely overlap
during the half-collisions, a study of Fig. 6.1 reveals that over the course of an entire
collision, the sawtooth motion must descend by its peak-to-peak amplitude, equal
to (D+−D̄)L+
λ, where D+ and L+ refer to the +D segment of the dispersion
map. It is natural to think of that time displacement as an effective width, τeff , of
the colliding pulse. As should be evident from the figure, τeff must be equal to
Lcoll times the slope (cited above) of the sawtooth pattern. Thus we have

Lcoll = τeff

D̄
λ
= (D+−D̄)L+

D̄
∼= D+L+

D̄
. (6.1)
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Note that when the specific parameters of the map of Fig. 6.1 are entered into it,
Eq. (6.1) yields Lcoll =3200 km, in excellent agreement with the figure. Also, note
that τeff =192 ps, in accord with the peak-to-peak amplitude of the sawtooth in
Fig. 6.1. Most important of all, however, note that Lcoll as defined by Eq. (6.1)
is completely independent of the channel separation, in stark contrast to the case
of collisions between ordinary solitons. This fact is of great importance for the
practicality of dense WDM with dispersion-managed solitons, as it obviously
avoids one of the major problems with ordinary solitons encountered in Chapter 5.

It should be noted that for a more general definition of Lcoll that will remain
accurate and meaningful when the map strength is made very small or zero, it
is necessary to add the collision length for ordinary solitons [2τ /(D̄
λ)] to the
right-hand side of Eq. (6.1). Nevertheless, as the simpler definition of Eq. (6.1) is
perfectly adequate when the dispersion map has the usual strength (S ≈2 or more),
that is the one we shall use in the following sections.

6.1.2. Collision-induced Frequency and Time Shifts

From the description just given, it should be clear that an exact analytic the-
ory of collisions between dispersion-managed solitons is probably not feasible.
Nevertheless, in this section, we outline a “quasi-analytic” model, based on care-
ful observation of many exact numerical simulations like that of Fig. 6.2 and on
analytic treatment of some of the simpler constituent elements. In our model, we
replace the actual shape of the frequency-shift curves of Fig. 6.2 with a perfect
rectangle that yields approximately the same maximum frequency shift and, more
importantly, the same time shift as the real thing. While admittedly a bit “rough
and ready,” our model reveals the fundamentally important scaling with Lcoll and
the channel spacing, and it yields numerical results that are at once essentially
accurate and surprisingly invariant to change in certain details. Finally, it provides
the basis for a satisfactory mathematical model of the all-important timing jitter
that results from the collisions.

As already discussed in Chapter 4, the relative state of polarization of colliding
pulses is important, since the XPM (and hence, all of the subsequent collisional
effects) are just half as great when the pulses are orthogonally polarized as when
they are co-polarized. Although the absolute states of polarization of the collid-
ing solitons tend to evolve rapidly along the fiber (with major changes typically
occurring every few meters), in low-polarization-mode dispersion (PMD) fiber,
their relative states of polarization tend to remain fixed over long distances (many
thousands of kilometers); this is especially true for pulses in adjacent channels that
are initially either co-polarized or orthogonally polarized. Therefore, to handle this
matter in our model, we introduce the polarization coefficient Cpol, which equals 1
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when the interacting channels are co-polarized, and 1/2 when they are orthogonally
polarized.

The frequency shifts of the half-collisions are the sum of two shifts: that created
when the pulses come together in the +D fiber, and that created when they sub-
sequently back away from each other in the −D fiber. From the known effects of
XPM on colliding pulses in fiber of constant D, we can then obtain

δfhalf -coll =Cpol
n2

Aeff λ

[
1

D+
+ a

|D−|
]

Wsol


λτ
, (6.2)

where Aeff is the effective area of the +D fiber and where a is the ratio of Aeff

to the core area of the −D fiber. (Note that when the −D fiber is DCF, the major
contribution comes from the +D fiber.) To obtain the net frequency shift of the
overall collision, we must first calculate the effective number of half-collisions,
i.e., the number of collisions required to advance the turn-around point of the half-
collisions by 2τ , where τ is the pulse intensity FWHM. Since the time advance
per collision is LmapD̄
λ, the effective number of half-collisions is

Ncoll = 2τ

LmapD̄
λ
. (6.3)

The net frequency shift of the overall collision is then obtained by multiplying
Eq. (6.2) by Eq. (6.3):

δf =Cpol
n2

Aeff λ

[
1

D+
+ a

|D−|
]

Wsol


λτ
× 2τ

Lmap D̄
λ
. (6.4a)

For Aeff =50µm2, λ=1550 nm, and expressing Wsol in fJ and the other quantities
in the usual units of ps/nm-km, nm, and ps, respectively, Eq. (6.4a) becomes

δf (GHz)=±0.335Cpol

[
1

D+
+ a

|D−|
]

2Wsol

Lmap D̄ (
λ)2
. (6.4b)

[Note that the numerical coefficient in Eq. (6.4b) is not dimensionless.] If we put
the particular parameters (the data from the captions, plus Cpol =0.5 and a=2.5)
for the collision of Figs. 6.1 and 6.2 into Eq. (6.4b), we get δf =0.74 GHz, in
good agreement with the mean of the “middle” of the numerical solution shown
in Fig. 6.2.

The time shift associated with the collision is exactly

δt(z) = −λ2

c

∫ z

−∞
δf (z′)D(z′)dz′, (6.5)

where D(z) step changes back and forth between D+ and D−. Figure 6.3 plots δt(z)
for the collision of Fig. 6.2. The large oscillations in δt seen there result, of course,
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Figure 6.3 Time shift, as a function of distance, of the lower frequency pulse of the
colliding pair of dispersion-managed solitons of Fig. 6.1, as determined by exact numerical
solution of the NLS equation. (An equal but opposite time shift is induced into the higher
frequency pulse.) Conditions are exactly as in Fig. 6.2.

from the fact that the δf of the moment is alternately multiplied by the large positive
and negative terms D+L+ and D−L−, respectively. For our purposes in calculating
the timing jitter, however, the oscillations are of little interest, since all we really
need is the net time shift obtained at the very end of the collision. Note further
that at the extreme ends of the overall collision, the result of each completed mini-
collision is in the “wrong” direction, i.e., in the direction of negative δt. The reason
is that δt(z) grows as the sum of two terms: the area under the curve of frequency
shift (which, of course, must increase monotonically with z) and a second term that
oscillates between negative and positive values. Since the second term vanishes
at the end of the collision [86], the net time shift of the overall collision can be
estimated as

δt ≡ δt(∞) = −λ2

c
D̄
∑

n

Lmap δfn, (6.5a)

where δfn is the height of the nth step of the mini-collisions and where the sum
in Eq. (6.5a) is the area under the frequency-shift curve, such as that of Fig. 6.2.
Now, since in our simple model the area under the frequency-shift curve can be
written as the δf from Eq. (6.4) times Lcoll, we finally have

δt = −λ2

c
D̄δf Lcoll. (6.5b)

Inserting Eqs. (6.4b) and (6.1) into Eq. (6.5b) and regrouping terms, we obtain

δt (ps)=±0.335Cpol

[
1+a

D+
|D−|

]
L+

Lmap

2Wsol

cD̄

λ2

(
λ)2
. (6.5c)

Once again, Wsol, c, and all terms in D must be in fJ, km/s, and ps/nm-km,
respectively, in order to make this equation valid for the particular numerical
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Figure 6.4 Frequency shift, as a function of distance, for a collision like that of Fig. 6.2,
except that now the channel spacing is 150 GHz.

coefficient shown. (Note that all other factors on the right-hand side of this equa-
tion, save the numerical coefficient itself, are dimensionless.) For the parameters
of the collision of Fig. 6.2, Eq. (6.5c) yields δt ≈2.9 ps, in good agreement with
the numerical result of Fig. 6.3. (Again, the result is for orthogonally polarized
colliding pulses; δt is twice as great when the pulses are co-polarized.)

It is extremely important, as we shall discuss shortly, that the XPM-induced fre-
quency and time shifts scale as the inverse square of the channel separation (
λ).
It should be noted that this scaling has been nicely confirmed in many exact numer-
ical simulations. For example, Fig. 6.4 shows the same collision as Fig. 6.2, but
for a three times greater channel separation. Note that the peak frequency shift is
indeed nine times smaller. Note further, however, that except for its steeper walls,
the collision has about the same shape and essentially the same width as with the
smaller channel spacing.

It is also extremely important that complete collisions exhibit essentially zero
residual frequency shifts, as evidenced by the curves of Figs. 6.2 and 6.4 and by
countless other exact numerical simulations. Later we shall see evidence that this
rule does not break down until Lcoll becomes shorter than about four periods of the
dispersion map. Although here, too, there is no exact analytical proof, the behavior
undoubtedly has a certain similarity to that obtained with ordinary solitons when
Lcoll is long enough with respect to Lpert , just as we have already seen in Chapter 5.

For incomplete collisions, however, the story is different. It may happen that,
at or near the transmitter, the colliding solitons are on top of each other in the
middle of a span, so that the overall collision begins near the middle of a complete
collision (see Fig. 6.5). Such partial collisions can produce even greater time shifts,
since they produce a large residual frequency shift that does not disappear. In that
case, the length factor in Eq. (6.5) is not Lcoll, but nearly the entire distance of the
transmission. Also note that the algebraic sign of the frequency shift (and hence
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Figure 6.5 Frequency shift, as a function of distance, of the half-collision version of the
collision of Fig. 6.2. Note that the time shift is now proportional to the area underneath the
tail of the curve.
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Figure 6.6 Frequency shift, as a function of distance, of the collision like that of Fig. 6.2,
except that in this case, the lack of mid-span pumping produces a considerably greater
variation of signal intensity across the main span.

that of the corresponding time shift) is opposite to those produced by the complete
collision.

Finally, we note that the more usual distributions of signal intensity with dis-
tance over the span (as, for example, in Fig. 2.18) tend to introduce a significant
asymmetry into the curves of collision-induced frequency shift (see Fig. 6.6). This
occurs because at the beginning of the overall collision, the half-collisions take
place at the low-intensity junction of the main and DCF spans, while at the end of
the overall collision, the half-collisions take place at the high-intensity junction of
those spans. Despite the rather dramatic change in shape, however, the area under
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the curve (and hence the resultant net time shift) does not seem to change, at least
not significantly, as has been verified through many numerical simulations. Thus,
our simple model can still yield the correct time shift.

6.1.3. Calculating the Jitter

Thus far we have discussed the collision interaction of just two solitons. In the
course of a long-haul transmission, however, each pulse of a given channel expe-
riences many collisions with pulses of all of the other channels. In this section, we
calculate the timing jitter resulting from those collisions.

For the purposes of this section, it is convenient to reserve the term 
λ for the
nearest neighbor channel separation only, so that the general separation becomes
m
λ, where m is a positive integer, and to define δtm as the time displacement
resulting from collision with one pulse from a channel separated by m
λ. Thus,
from Eq. (6.5c), we have both

δtm =δt1/m2 (6.6)

and a way to calculate δt1 from all the pertinent parameters of the system.
Let 
tm represent the net time displacement of a pulse from collisions with

all of the bits in the channel separated by m
λ, as the pulse traverses the entire
transmission distance Z . Thus we have 
tm =δtm ncoll, where ncoll is the particular
number of collisions occurring in the transmission distance Z . Since, if all pulses
experienced the same 
tm, there would be no jitter, what we really want is the
variance in 
tm, 〈


t2
m

〉=δt2
m

〈
δn2

coll

〉
. (6.7)

Clearly, our task is now to calculate 〈δn2
coll〉, as follows: First, the minimum

distance between subsequent collisions with pulses from the mth channel, lcoll, is

lcoll ∼= T

D̄m
λ
, (6.8)

where T is the bit period. Thus, the maximum possible number of collisions with
pulses of the mth channel is

Nm = D̄m
λZ

T
. (6.9)

Now, we assume random data where, in any given bit period, the presence of
a pulse or its absence has probabilities p=q=1/2, respectively. The probability
distribution of ncoll is then the binomial distribution

P(ncoll;Nm,p)= Nm(Nm−1) . . .(Nm−ncoll +1)

(ncoll)! p(ncoll) q(Nm−ncoll), (6.10)
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Figure 6.7 The binomial probability distribution for Nm =24. As Nm becomes larger, its
width becomes a smaller fraction of Nm, and the peak probability becomes smaller.

whose variance is simply Nm pq=Nm/4. (For those unfamiliar with it, the envelope
of this discrete distribution looks approximately like a Gaussian; see Fig. 6.7.)
Substituting 1/4× the right-hand side of Eq. (6.9) for 〈δn2

coll〉, and δt1/m2 for δtm
[from Eq. (6.6)] in Eq. (6.7), and regrouping terms, we obtain〈


t2
m

〉
=δt2

1
D̄
λ

4T

Z

m3
(6.11)

for the variance in timing jitter induced by interaction with the mth channel.
Since the 
tm are statistically independent, the variance of the net jitter of a

given channel is just the sum of the 〈
t2
m〉 over all other channels. There are two

more significant variables to be considered here: (1) whether adjacent channels are
orthogonally polarized or co-polarized and (2) whether the channel in question is
at one far edge of the WDM band or somewhere in its middle. To facilitate matters,
once again it will be convenient to make a slight change in notation. That is, we
now remove Cpol from the δtm (and hence from the 
tm) in order to display it
explicitly. Let the total number of channels be M+1, with M1 on one side of the
affected channel and M2 on the other. (Thus M1+M2 =M.) The variance of the
net jitter can then be written as

〈

t2

〉
=

M−1∑
m=1

〈
δt2

m

〉
=δt2

1
D̄
λ

4T
Z

[ M1∑
m=1

(Cpol)
2
m m−3+

M2∑
m=1

(Cpol)
2
m m−3

]
,

(6.12)

where (Cpol)2
m =1 when all channels are co-polarized and (Cpol)2

m = (5/8 +
3/8(−1)m) when adjacent channels are orthogonally polarized. (Note that for the
latter case, C2

pol alternates between 1/4 and 1 as m goes from odd to even values.)
The standard deviation for each of these cases is given, of course, by the square root
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Figure 6.8 The square root of the final sum in Eq. (6.12) for the cases where the affected
channel is at one far end of the WDM band, plotted as a function of the total number of
interacting channels. Note that these quantities scarcely change for M >3. The asymptotic
values here are approximately 1.0964 and 0.6428 for the co-polarized and orthogonally
polarized cases, respectively (ratio @1.70). When the affected channel is at least several
channels in from either edge of the WDM band, multiply each of these values by

√
2.

of the respective variance. Figure 6.8 plots the square root of the final sums (the
quantities in square brackets) in Eq. (6.12), for the cases where M1 =M, M2 =0
(i.e., where the affected channel is at one far edge of the WDM band). When the
affected channel is at least three or more channels in from an edge, the correspond-
ing variances are essentially doubled, so the standard deviations are increased
by

√
2. Notice how quickly the sums converge to an asymptotic value, such that

the net effect of all channels removed more than about 3
λ is almost negligible.
One important consequence of this fact is that numerical simulations need employ
no more than about six to eight channels to yield realistic results.

In order to have some idea of the magnitude of jitter created by Eq. (6.12)
and its effects, let us apply it to a system with 100-km, DCF-compensated
spans, and orthogonally polarized adjacent channels, whose experimental behav-
ior will be reported on later in this chapter. First, from Eq. (6.5a), we
insert D+ =7 ps/nm-km, |D−|=100 ps/nm-km, D̄=0.15 ps/nm-km, a=2.5,
L+ =100 km, Lmap ∼=107 km, λ=1570 nm, 
λ=0.4 nm, and Wsol =25 fJ,
and obtain δt1 =6.297 ps. We then insert δt1, T =100 ps, and for the sum,
the quantity 2×(0.6427)2 (appropriate for a channel in the middle of a group
with orthogonal polarization of adjacent channels) into Eq. (6.12) and take the
square root. The result is plotted in Fig. 6.9. It is also realistic for this par-
ticular system to assume that the bit error rate is completely dominated by the
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Figure 6.9 The standard deviation of collision-induced timing jitter as derived from the
square root of Eq. (6.12), plotted as a function of transmission distance Z , for a channel
anywhere in the middle of a large number of channels with spacing 
λ=0.4 nm and
orthogonal polarization of adjacent channels. Major system parameters: 100-km spans
with D=7 ps/nm-km, compensated by DCF such that D̄=0.15 ps/nm-km; Wsol =25 fJ.
For other details, see text.
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Figure 6.10 Computed bit error rate as a function of transmission distance Z when the
errors are due entirely to timing jitter having the standard deviation given in Fig. 6.9. The
assumed acceptance window at the detector is 70 ps wide.

collision-induced jitter. The computed bit error rate, based on the jitter curve of
Fig. 6.9 and an assumed acceptance window at the detector of 70 ps, is plotted in
Fig. 6.10. We shall soon see that the BER of Fig. 6.10 is in excellent accord with
experiments.

At the beginning of this chapter, we asserted that the only significant nonlinear
defect in WDM with dispersion-managed solitons was the timing jitter we have
just calculated. Figure 6.11 offers direct proof of that assertion from an exact
numerical simulation: the eye diagram of one in the middle of eight channels
after 8000-km transmission through the system referred to in Figs. 6.9 and 6.10.
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Figure 6.11 Numerically simulated electrical eye diagrams after 8000-km transmission
through the system referred to in Figs. 6.9 and 6.10, for a middle channel out of eight
channels. ASE is not included; the only effect is that of the collisions. A different, 27-bit
random pattern was used for each channel. Left: The unaltered eye. Right: The eye with
timing jitter artificially removed.

Note from Fig. 6.11 that artificial removal of the timing jitter almost completely
opens the eye (there remains only a very small residual closure from modest
amplitude jitter). Thus, we can conclude that the rather severely penalizing closure
of the unaltered eye does indeed stem almost entirely from the collision-induced
timing jitter, and little else.

6.1.4. Large Reduction of Jitter through Use of
Periodic-group-delay Dispersion Compensation

From Fig. 6.10, it should be evident that collision-induced timing jitter is the
limiting factor for low BER transmission distance. (For Raman-amplified systems,
at least, ASE noise typically does not cause significant error until the transmission
distance exceeds 10,000 km or more.) Thus, it would be very desirable to have a
way to significantly reduce the collision-induced jitter. In particular, if only a way
could be found to reduce Lcoll, the time shift per collision (the δtm) and hence the
jitter would be reduced as well. At first it would appear, however, that there is no
way to improve the situation, since the factors involved in Lcoll [Eq. (6.1)] seem to
be fixed by the requirements for well-behaved dispersion-managed solitons with
the correct energy. But there happens to be a way to create a new and independent
interchannel path-average dispersion, D̄inter , to determine Lcoll, without in any way
disturbing the D̄ effective within a given channel (which can now be designated the
intrachannel dispersion, or D̄intra), required for proper maintenance of the solitons
and their energies. With introduction of the new D̄inter , Eq. (6.1) becomes

Lcoll = (D+L+)

D̄inter
. (6.1a)

The way to accomplish this change is to use a “periodic-group-delay dispersion
compensation module,” or PGD-DCM, whose group-delay period is equal to the
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Figure 6.12 Left: Basic scheme of a Gires–Tournois etalon, used to obtain frequency-
dependent delay times. Right: Showing how cascaded etalons of different resonance
frequencies and different peak delay times can create net delay linearly dependent on
frequency, as indicated by the dashed lines.

WDM channel spacing, to do at least part of the dispersion compensation of
each span [87].

While several different types of PGD-DCMs have been developed [88–90],
perhaps the most successful are those [91] based on a set of Gires–Tournois etalons
(see Fig. 6.12). Gires–Tournois etalons are used in reflection, and the back mir-
ror has 100% reflectivity, so that the net reflectivity of the device is nominally
independent of frequency. Time delay is a different matter, however: Light in res-
onance bounces back and forth several times, while that off resonance tends to be
returned immediately, thereby yielding a frequency-dependent delay. By cascad-
ing a number of such etalons where each is tuned to a different frequency and each
has a different peak delay (again, see Fig. 6.12), it is possible to create an amaz-
ingly smooth curve of net delay with linear slope across a good fraction of the free
spectral range. For our purpose here, however, the fundamentally important fact is
that the mean group delay does not change from channel to channel (see Fig. 6.13
for typical behavior).

To understand how the new D̄inter is created by the use of a PGD device, we
need to look at the relative motion in retarded time of a pair of colliding pulses,
similar to that we have already made in Fig. 6.1. Now, however, we must consider
the more general case where a fraction f of the span dispersion is compensated by
a PGD device, while the remainder is compensated by fiber (see Fig. 6.14).

Note from Fig. 6.14 that of the reset time formerly supplied by the DCF,
now the fraction f is missing, so the sawtooth descends with a new, steeper
slope, which we write as D̄inter 
λ. Since the slope of the sawtooth is also
( f |D−|L−/Lmap + D̄)
λ= f D+L+/Lmap + (1−f )D̄, we have

D̄inter = f D+L+/Lmap + (1−f )D̄≈ f D+, (6.13)

where the approximation is a good one for all but very small f . Note that D̄inter

ranges from the very small value D̄ at f =0 to a many times greater value
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Figure 6.13 Measured group delay of a Gires–Tournois etalon-based DCM, with channel
spacing of 50 GHz (0.4 nm). Note that the mean group delays for each channel are the same.
Also note the lack of detectable delay ripple in the usable frequency regions. Insertion loss =
2.6 dB. This extremely stable and robust device was made byAvanex, Inc., of Freemont, CA.
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Figure 6.14 Relative motion in retarded time of a pair of colliding pulses from neighboring
channels separated by 50 GHz, where 100-km spans of D = 6-ps/nm-km fiber, save for a
small D̄, are fractionally compensated f by a PGD device, and (1−f ) by a DCF module.
(For the particular behavior shown here, f =0.2.)
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≈D+ at f =1. Note also that for the particular value f =0.2 used in Fig. 6.14,
Lcoll ∼=400 km, approximately a 10× reduction from the case where f =0. Thus,
Lcoll decreases very rapidly as f increases.

Note that in our theory of the collisions and collision-induced jitter, in all equa-
tions based solely on the rate that the pulses move through each other [viz.,
Eqs. (6.1), (6.3), (6.4), (6.8), and (6.9)], D̄ must be replaced by D̄inter . On the
other hand, while the D̄ explicitly displayed in Eq. (6.5), as the scale factor for
converting wavelength shifts to time shifts, must retain the intrachannel value D̄,
the other two factors in Eq. (6.5) each contain a D̄ in the denominator that must
be converted to D̄inter . Thus, the factor D̄−1 in Eq. (6.5c) must be replaced by
D̄/D̄2

inter , so that Eq. (6.5c) becomes

δt1 (ps)=±0.335Cpol

[
1+a

D+
|D−|

]
L+

Lmap

2Wsol

c

λ2

(
λ)2

D̄

D̄2
inter

. (6.5d)

Finally, since the D̄ explicitly displayed in Eqs. (6.11) and (6.12) is a D̄inter , the
net scaling of the variances of the timing jitter is as D̄−3

inter . With those changes
in place, it is reasonable to assume that our theory of the collision effects will
continue to work as D̄inter increases, or, equivalently, as Lcoll decreases. Thus,
we should also expect to see a great decline in the collision-induced jitter as Lcoll

decreases. Exact numerical simulations show that this assumption is essentially
correct, at least until Lcoll becomes too short.

Indeed, the rapid decline in Lcoll as f is increased from zero [Eq. (6.13)] has
profound effects, as can be clearly seen from the curves of collision-induced fre-
quency shifts shown in Fig. 6.15. First, note from Fig. 6.15 that for f =0 and
f =0.2, the frequency shifts ultimately return to zero. The most striking feature
of these “frequency-conserving” collisions is the great shrinkage in all measures of
the collision size as f goes from 0 to 0.2: First, as already seen in Fig. 6.15, Lcoll is
reduced by a factor of nearly 10 times, and the peak frequency shift is reduced by a
similar factor. From the same numerical simulations, we find that the correspond-
ing time displacements are 4.62 and 0.07 ps, respectively, for a 66-fold reduction.
More generally, exact numerical simulations show that the time shifts scale as L1.85

coll
as f increases (and Lcoll decreases) throughout the region of frequency-conserving
collisions (see Fig. 6.16). As already noted, however, Eq. (6.5) of our theoretical
model predicts that δt1 scales as D̄−2

inter , thus as L2
coll. At this point, there is no ready

explanation for this difference in power law between the exact simulations and
our simple theory. On the other hand, because the difference is small, the potential
reduction in jitter is still very great.

We also find that as f becomes significantly greater than about 0.2 (so that Lcoll

ceases to cover at least several span lengths), the collisions are in general no longer
frequency conserving, as illustrated in Fig. 6.15 for the particular case f =0.8.
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Figure 6.15 Frequency shifts of the lower frequency of two colliding pulses from adjacent
channels in the system of Fig. 6.2, for the indicated values of f ; in all cases the channels
are co-polarized, the effective core area =50 µm2, D̄=0.15 ps/nm-km, and the spans are
backward Raman pumped only.
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Figure 6.16 Collision-induced time shift δt1 as a function of Lcoll , determined from exact
numerical simulations for the dispersion map of Fig. 6.13; 
λ=0.4 nm (
f =50 GHz).

Figure 6.17 shows the absolute value of the maximum residual frequency shift as
a function of Lcoll; note that the values tend to become very small for Lcoll greater
than about four span lengths. The situation is similar to that discussed in Chapter 3
for dense WDM with ordinary solitons, and is principally associated with the ten-
dency of intensity gradients to destroy the symmetry of the collisions. And again,
as with ordinary solitons, the effect is to be avoided, since otherwise the residual
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Figure 6.17 Absolute values of maximum residual frequency shifts for collisions in the
map of Fig. 6.14, as a function of Lcoll/Lspan; again, 
λ=0.4 nm (
f =50 GHz). To gain
this data, for a given Lcoll , the simulation was repeated over and over again with different
starting points for the collision, until an approximate maximum residual shift was found.

frequency shifts, when compounded with the dispersion remaining to the end of
the transmission, can once again produce large time shifts.

Exact numerical simulations [87] also provided the first indication of just how
very much smaller the jitter would become with reduction of Lcoll. The simulations
were for 100-km spans of fiber with D=+6 ps/nm-km, dispersion-compensated
with various combinations of DCF and PGD-DCMs. Other details were essen-
tially as earlier in this chapter (unchirped pulse width τ =33 ps, channel spacing
50 GHz, etc.). Figure 6.18 shows a representative set of results from those many
simulations, the eye diagrams as seen after 8000 km. As is immediately obvi-
ous from the figure, the quality of the eyes changes dramatically as f is varied.
Note in particular that while the eyes are more or less uniformly bad at f =0
(100% compensation by DCF), independently of the Raman pumping conditions,
at f =0.2 they are excellent for the case of uniform intensity and still very good
for 25% forward/75% backward Raman pumping. (Also here the adjacent chan-
nels are co-polarized, yielding a factor of 1.7× greater jitter than the orthogonally
polarized case of Fig. 6.9.) When the residual frequency shifts are zero (the case
of lossless fiber), the very small remaining jitter seen in the plots probably cor-
responds mainly to the effects of partial collisions at the input (which our simple
model does not take into account). (In our simple model, without the partial colli-
sions, 〈
t2〉 is expected to scale as L−3

coll, implying a reduction by a factor of about
30× in its standard deviation when Lcoll is reduced by a factor of 10. Even when
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Figure 6.18 Optical eye diagrams at 8000 km in dense WDM with 10-Gbit/s channels spaced 50 GHz apart, with all channels co-polarized,
and with no ASE, for the values of f shown. Top row: Lossless fiber. Bottom row: With 25% forward/75% backward Raman pumping. All other
parameters are the same as those of the system of Fig. 6.13.
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Figure 6.19 Total spread in pulse arrival times as measured from numerically simulated
eye diagrams at 8000 km in dense WDM with 10-Gbit/s channels spaced 50 GHz apart,
with all channels co-polarized, and with noASE, plotted as a function of f . Black diamonds:
With backward Raman pumping only. White squares: With 25% forward/75% backward
Raman pumping. Black triangles: With mid-span backward Raman pumping. White squares
with ×: Lossless fiber. Spans 80 km long; all other parameters are the same as those of the
system of Fig. 6.13.

corrected for the empirical scaling factor shown in Fig. 6.16, the standard devi-
ation is reduced by the very substantial factor of ≈20×. By either standard, the
jitter should become almost invisible in the plots.) Finally, the extra jitter seen in
the lower row and in the f =0.2 and 1 columns corresponds mainly to the effects
of the residual frequency shifts resulting from the intensity gradients in the spans.

A great many simulations like those of Fig. 6.18 have been carried out for the
entire range 0≤ f ≤1 and for a number of different intensity profiles. Except for
the relatively minor difference that the spans in those simulations were 80 km
rather than 100 km long, all of the other conditions were the same as those of
Figs. 6.14 and 6.18. Figure 6.19 plots, as a function of f , the total spread in pulse
arrival times (a quantity at least roughly proportional to the standard deviation)
measured directly from the simulated eye diagrams. There is one plot for each of
the following intensity profiles (listed here in ascending order of intensity gradi-
ent): (1) lossless fiber (zero gradient), (2) mid-span backward Raman pumping,
(3) 25% forward/75% backward Raman pumping, and (4) 100% backward Raman
pumping. Note that for the region f ≤0.2 (the region of “frequency-conserving”
collisions), the points for all of those profiles tend to remain tightly clustered and
rapidly descend to a minimum in the neighborhood of f =0.2, while for f >0.2,
they begin to fan out and, for all but the lossless case, begin a rapid rise in response
to the effects of growing residual frequency shifts. Thus, despite the diversity and
complexity of the behavior seen in the region f >0.2, there is a well-defined and
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nearly universal minimum with respect to f in the jitter. Already fairly broad for
the case of the steepest intensity profile (100% backward Raman pumping), the
minimum becomes ever broader as the intensity profiles become less severe.

To calculate the conditions for minimum jitter analytically, it would be neces-
sary to have a proper analysis of the jitter induced by the residual frequency shifts.
As suggested by the behavior seen in the right side of Fig. 6.19 (the region f >0.2,
where such jitter dominates), however, it is clear that such analysis would be at
best complex, as, among other things, it would have to take into account details
of the particular intensity profile. It would also have to deal with the “resonances”
(like that seen in Fig. 6.19 at f ≈0.5), where the relative time advance of colliding
pulses is an integral multiple of the bit period, such that successive collisions tend
to begin at the same place in the intensity profile. In passing, perhaps it should
also be noted that the power law of dependence of the jitter on Z will be like that
of the Gordon–Haus effect (i.e., 〈δt2〉∝Z3), rather than the linear dependence
on Z [Eq. (6.12)] we have found for the frequency-conserving collisions. That
is, just as in the Gordon–Haus effect, the residual frequency shift of each colli-
sion must be multiplied by the dispersion (hence distance) remaining to the end
of the transmission. Because of all that complexity, and because the final result
would not tell us much of practical interest beyond what can be easily found out
(as in Fig. 6.19) from a few quick numerical simulations, we shall not attempt such
analysis here.

6.2. Experimental Tests

The experiments reported on here [92–94] were carried out in 2003, when, for
the first time, hardware became available for efficient, large-scale tests of dense
WDM at 10 Gbit/s per channel using dispersion-managed solitons. That was also
a time not long after the concept of the PGD technique had been born and was
beginning to be digested. Thus, it was possible to make, in a rapid succession of
experiments, a thorough and very meaningful comparison between dense WDM
using the conventional dispersion compensation and that using the PGD devices.
As the reader will soon see, the experimental results make amazingly good fit to the
theoretical models we have just explored here. Finally, part of the record-setting
results are very closely related to recently active commercial practice.

6.2.1. Experimental Setup

For all tests, the transmitter (Fig. 6.20) contained two sets of 80 DFB lasers, the
lasers of each set tuned to a grid of 100 GHz spacing, with their combined outputs
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Figure 6.20 Schematic of the 160-channel transmitter. All leads up to the polarization
combiner were polarization-maintaining.

fed through a common, LiNbO3, Mach–Zehnder modulator-based pulse carver,
and then through a second, similar modulator used to impose data. The pulse
carvers were driven sinusoidally at 5 GHz and biased to yield two pulses per cycle
in a very good approximation to Gaussian pulses of 33 ps FWHM. (For further
details of the pulse carvers, see Chapter 8, Section 8.1.) Each data modulator
was driven with its own independent pseudo-random pattern. (Typically, pattern
lengths were 215 bits long, but extensive tests with pattern lengths ranging from 27

to 221 bits showed little or no dependence of BER performance on pattern length.)
Finally, the two sets of channels, with their frequencies offset from each other by
50 GHz, were brought together with a polarization combiner to yield an array of as
many as 160 channels, such that adjacent channels had orthogonal polarizations.

The recirculating loop contained six 100-km spans of Lucent “True Wave Extra
Reduced Slope Fiber” (D≈7 ps/nm-km at 1570 nm), which could be compensated
either 100% by DCF alone, or ≈80% by DCF and most of the remainder by the
PGD modules referred to in Fig. 6.13. Figure 6.21 is a schematic of the loop as
compensated by the latter, and Fig. 3.11 shows exactly the same loop, but with
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Figure 6.21 The recirculating loop of Fig. 3.11, but with PGD modules added to each of
the six spans.

the pure DCF compensation. It was possible to switch between either of these two
compensation modes in just an hour or so.

Pre- and post-dispersion compensation were carried out as discussed in Chap-
ter 2, Section 2.1.3; for details of the pre-compensation, see Fig. 6.21. About half
of the final DCF coil, plus the SMF and 8 km of Raman fiber (D=−18 ps/nm-km)
shown in Fig. 6.21, form the major part of the post-compensation; the remainder
was in one or another Raman-pumped coil of DCF just ahead of the temporal lens
and receiver. Thus, the “jitter reducer” part of the post-dispersion compensation
could be adjusted, but was usually at the optimum value for a distance of about
5000 km; once again, however, that value was not at all critical.

To reduce the noise penalty to the absolute minimum, the transmission spans
were backward Raman pumped every 50 km, to just a few decibels less than
net zero gain; the excess loss was made up by net gain in the backward Raman-
pumped DCF modules. That pumping scheme yielded about a 1-dB advantage
over forward/backward pumping (see Fig. 3.10), and it avoided some of the poten-
tial mode equipartition noise problems associated with forward pumping. A mild
etalon guiding filter (with free spectral range = the channel spacing) was used
once every 300 km to overcome the effects of a weak adjacent-pulse interaction.
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The temporal lens (see Chapter 8, Section 8.2) was used just ahead of the detector,
to yield the widest possible square acceptance window in time (the effective width
was about 70 ps). Finally, a polarization scrambler was inserted into the recirculat-
ing loop, to more realistically simulate the random polarization-mode dispersion
(see Chapter 7) and polarization-dependent loss (PDL) effects of a real system.
[The scrambler consisted of nothing more than two piezoelectric transducers, each
driven at its respective (and somewhat different) resonance frequency in the neigh-
borhood of 1 MHz, and squeezing on a fiber to form oscillating wave plates.]
The measured PMD parameter for the entire loop averaged 0.05 ps/

√
km (typi-

cal for high-quality transmission fibers), and the measured PDL was a relatively
benign 0.5 dB/600 km.

6.2.2. Experimental Results

Figure 6.22 shows the principal experimental result, the measured BER vs. distance
of a typical WDM channel, for WDM with the two different forms of dispersion
compensation mentioned previously, and for a single, isolated channel (i.e., with
all other WDM channels turned off). The most remarkable thing here is the very
large displacement toward greater transmission distances of the PGD-WDM curve
from the conventionally compensated WDM curve, and its very close proximity to
the single-channel results. Since there is no possibility of collision-induced jitter
in the single-channel experiment, while the WDM with conventional dispersion
compensation is clearly dominated by such jitter, the experimental curves of
Fig. 6.22 make it unambiguously clear that the PGD dispersion compensation has
reduced the collisional jitter to almost negligible proportions, just as predicted.

The thin dashed line next to the single-channel result is a theoretical curve
based on amplitude errors from ASE only; the derivation of this curve will be
given in the following section. The thin solid line next to the curve of WDM with
conventional compensation is based on our theoretical model for the collisional
timing jitter, so it is essentially that of Fig. 6.10, but as adjusted to account for
the mild damping effect of the guiding filters. Note the good fit for both of these
curves, except in the region of very low bit error rates. The differences here are
almost certainly due to the effects of polarization-mode dispersion (discussed in
greater detail in Chapter 7). That is, with the polarization scrambler turned off,
a fixed polarization controller in the loop can always be adjusted to change the
polarization state of the observed channel to the orthogonal polarization upon
each circuit around the loop, thereby (at least temporarily) virtually nulling out
the PMD. As observed many times, whenever that is done, the BER plunges by
several orders of magnitude in the region of very low error rates. Thus, there is
every reason to believe that the fits would have been better in the low error-rate
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Figure 6.22 Experimentally measured BER vs. distance for a typical WDM channel near
the middle (≈1570 nm) of a WDM band covering ≈1549−1594 nm; channel spacing
50 GHz (@0.4 nm); adjacent channels orthogonally polarized. Triangles: WDM using con-
ventional dispersion compensation. The nearby thin solid line is the associated theoretical
curve assuming errors from collision-induced timing jitter only. Diamonds: WDM using the
PGD-complemented dispersion compensation. Squares: Single-channel result (the same as
diamonds but with only one channel present). The thin dashed line is a theoretical curve
assuming only amplitude errors resulting from ASE. Except for the indicated changes, all
other conditions were identical for all three experiments. No forward error correction was
used. For other details, see text.

region if the measurements had been done in that way. Constant drift in the correct
(PMD-nulling) polarization adjustment with changing temperature and the poor
statistics of BER measurements made over short time intervals, however, make
such measurements difficult and not entirely reliable, so they are not usually done.

It is important to understand the relative significance of the BER data at the
low and high error-rate ends of the range shown in Fig. 6.21. Years ago, when
fiber optic transmission was in its infancy, the standard was that raw bit error
rates had to be extremely low, less than about 1×10−9 or perhaps even smaller.
With the development of highly efficient forms of forward error correction (FEC),
however, the once highly conservative telecommunications industry began to fall
in line with the rest of the digital world, and much higher raw bit error rates began
to be acceptable. In particular, now there exist FEC algorithms that allow for
correction, with a mere 7% overhead of extra bits, of raw error rates in excess of
1×10−3 to <1×10−15. Furthermore, the high-speed chips for implementing such
FEC have become relatively cheap and readily available. Thus, raw bit error rates
as great as or even higher than the highest shown in Fig. 6.22 are now generally
considered acceptable in the telecommunications industry.

Figure 6.23 shows the measured intrachannel path-average dispersion (D̄intra)
when the PGD compensation scheme is in place. [Because D̄intra is valid only
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Figure 6.23 D̄intra vs. wavelength for the recirculating loop of Fig. 6.21.

over frequency intervals narrower than the 50-GHz channel spacing (Fig. 6.13),
the relative time of flight measurements had to be made with a special technique,
described in Section 8.4.2 of Chapter 8.] Of immediate interest here, however, is
the fact that D̄intra dips far below the desired value of ≈0.15 ps/nm-km at the far
ends of the WDM band. Fortunately, as predicted theoretically and confirmed by
numerical simulation, it should not be necessary to make a correction in every
span. Rather, it should suffice if the period for the correction is short relative to the
characteristic dispersion length for the solitons, which in this case is ≈1600 km.
(A thorough set of numerical studies [95, 96] of the effects of random variation
in D on DMS pulse behavior has shown essentially the same stabilization with
frequent enough “pinning” of D̄ to the correct value.) Thus, making correction just
once per round-trip in the 600-km loop should be good enough. In a real system,
one could then employ one or another of several possible devices providing a
dispersion curve complementary to that shown in Fig. 6.21. Since such a device
was lacking at the time of the experiments, the next best thing was done: Depending
on the wavelength range being tested, one or two small coils of SMF were added
to the loop to provide the best approximate correction. Although that makes D̄intra

too large for optimum performance of the middle channels, they are still present,
and still functioning, albeit at somewhat worse error rate. Of greater importance,
since only the channels in the immediate neighborhood of the channel being tested
have a significant effect on it, the test carried out in this way still shows perfectly
well how the system performs.

Finally, Fig. 6.24 shows the measured BER vs. wavelength for 109 channels,
stretching from ≈1549 to 1594 nm, at the fixed distances of 9000 and 18,000 km.
The exact number of channels represented here (109) is a bit arbitrary and is limited
more by accidental details of the experiment, such as the increasing difficulty in
controlling the gain flatness at the extreme ends of the band, than by anything
fundamental. The gradually rising error rates toward the short wavelength end of
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Figure 6.24 Measured BER vs. wavelength for 109 channels of 10 Gbit/s each at distances
of 9000 and 18,000 km.

the band probably stem from decreased penetration of the Raman pump light, and
hence increased ASE noise, with decreasing wavelength. (The longer wavelength
pump light extracts power from the shorter pump wavelengths through Raman
interaction between the two.)

So what do the data of Fig. 6.24 prove? As far as the effect of collisions on
BER performance is concerned, very little beyond what would have been proved
by the same sorts of data but with a total of no more than about eight or so
channels, as can be seen from a glance at Fig. 6.8. On the other hand, they do
confirm the assertion, made previously, that substantial correction to D̄intra needs
to be made no more often than once per 600 km or so. And finally, of course, they
demonstrate that even under the less favorable conditions of a terrestrial system,
with dispersion-managed solitons and all-Raman amplification, one can have a
terabit-capacity system whose range is nearly half the circumference of the Earth.
Such has never before been demonstrated.

6.2.3. Calculation of the Theoretical BER Curve for
Single-channel Transmission

The somewhat involved story behind the theoretical curve in Fig. 6.22 of BER
resulting only from ASE-induced amplitude errors is as follows. First, the guiding
filters were Fabry–Perot etalons, used in reflection, with front and back mirror
reflectivities of R=0.04 and R=0.7, respectively, and whose free spectral ranges
exactly matched the channel spacing of 50 GHz. Their transmission characteristics
are shown in Fig. 6.24. As discussed in Chapter 3, Section 3.3, the use of such filters
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imposes a loss on the solitons, which must be compensated by a small excess gain.
In the meantime, the filters narrow the noise spectrum. The noise spectrum resulting
from use of one every 300 km of the filters of Fig. 6.25, computed as a function of
transmission distance Z , is shown in Fig. 6.26. Computation of the BER rate must
take that noise spectrum into account. Substituting m, S1+m,

√
m, and

√
S1+m
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for µ0, µ1, σ0, andσ1, respectively, into Eq. (3.31), the Q factor becomes

Q(S1,m) = S1√
2S1+m+√

m
, (6.14)

where S is the signal-to-noise ratio, m=2×BW (GHz)/10 is the number of modes
of the radiation field getting to the detector, and BW is the noise bandwidth created
by the filters. From Fig. 3.12, we find that the path-average noise (equipartition
energy) = 0.0135Z fJ (Z in Mm), so for a path-average signal pulse energy of
25 fJ, without the filters, we have S1 =25/(0.0135Z)=1850/Z . To account for the
exponential rise in the noise and the ever-decreasing bandwidth from the filters
(both as inferred from Fig. 6.26), however, we must write

S1 = 1850

Z exp(0.044Z)
and m∼= 40

Z
. (6.15)

In the Gaussian approximation, the bit error rate is then given by

BER(Z) = 1

2
erfc

[
1√
2

Q

(
1850

Z exp(0.044Z)
,
40

Z

)]
. (6.16)

The dashed line in Fig. 6.22 is the log10 of the BER(Z) computed from Eq. (6.16).





Chapter 7

Polarization and Its Effects

7.1. Apologia

Thus far in this book, we have tended to gloss over polarization and effects of the
fiber’s birefringence on it. That is, for the most part, we have been content to note
the thorough polarization averaging, created by the fiber’s random residual bire-
fringence, over those distances for which the nonlinear term has significant effects.
We have used that averaging to justify further neglect of polarization. Neverthe-
less, there are certain important polarization phenomena that require examination.
One of these is called polarization-mode dispersion, PMD for short, which makes
the transit time for a pulse dependent on its polarization history and produces some
dispersive wave radiation in the process. The other is the fact that colliding soli-
tons in WDM alter each other’s polarization states. Therefore, we now examine
the linear birefringence of fibers and its statistical properties, the birefringence
induced nonlinearly by the pulse itself, and the effects of both on transmission.
A review of the basic properties of PMD in linear transmission lines is given in
Gordon and Kogelnik [97].

7.2. Polarization States and the Stokes–Poincaré Picture

If z is the propagation direction, and x̂ and ŷ are unit vectors in the x and y dir-
ections, respectively, a unit normalized polarization vector can be written as û=
(rx̂+sŷ), where r and s are complex numbers with |r|2+|s|2 =1, so that û∗ ·û=1.

179
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A corresponding normalized real field component at frequency ω has the form

Re(u)=Re(rx̂+sŷ)eiψ : ψ =kz−ωt+�. (7.1)

If the phases of r and s are both changed by the same amount δ�, then � in
Eq. (7.1) simply changes to �+δ�. With no loss of generality we can therefore
express r and s in polar form by r =cos(θ )exp(−iφ) and s= sin(θ )exp(iφ), where
0≤θ ≤π /2 so that cos(θ )=|r| and sin(θ )=|s|. Thus the real field can be written
as

Re(u)= x̂ cos(θ )cos(ψ−φ)+ ŷsin(θ )cos(ψ+φ). (7.1a)

One way to visualize the polarization state of the field is to plot the motion of the
vector Re(u) in an x–y coordinate system as ψ varies from 0 to 2π . The resulting
figure is generally an ellipse. The state of polarization of the field is determined
by the shape of the ellipse and by the direction of motion of the vector around the
ellipse. It is independent of the constant � in the phase ψ . In general, a change from
φ to −φ reverses the direction of motion around the same ellipse, since Eq. (7.1a)
is invariant to a sign change of both φ and ψ . When φ =0 or φ =π /2, the ellipse
degenerates into a straight line making an angle θ or −θ , respectively, with the
x axis. This represents linear polarization. When φ =π /4, the axes of the ellipse
are the x and y axes, and they have lengths of 2cos(θ ) and 2sin(θ ), respectively.
When θ =π /4, so that cos(θ )= sin(θ )=1/

√
2, the axes of the ellipse are rotated

by π /4 from the x and y axes, and they have lengths of 2|cos(φ)| and 2|sin(φ)|,
respectively. When both φ and ψ are equal to π /4, the ellipse degenerates to a
circle and we have circular polarization.

A more useful tool for visualizing the state of polarization as it varies during
transmission is the real three-dimensional Stokes vector. A Stokes vector Ŝ of unit
length is derived from the normalized polarization vector in Eq. (7.1) or (7.1a).
It has the Cartesian components

S1 =|r|2−|s|2 =cos(2θ ), (7.2a)

S2 =2Re(r∗s)= sin(2θ )cos(2φ), (7.2b)

S3 =2Im(r∗s)= sin(2θ )sin(2φ). (7.2c)

From Eqs. (7.2a)–(7.2c), however, it can be seen that the angles 2θ and 2φ are,
respectively, the polar and azimuthal angles of the vector Ŝ in a spherical coordi-
nate system with the S1 axis as the polar axis.1 A unit sphere centered on such a
coordinate system, known as the Poincaré sphere, can be extremely useful for the

1 In the Poincaré representation, the S3 axis is often referred to as the polar axis. Neverthe-
less, Eqs. (7.2a)–(7.2c) require S1 as the true polar axis and yield the conventional Poincaré
representation.
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Figure 7.1 The Poincaré sphere, with unit Stokes vector Ŝ represented in it. Note that
the S1 axis is the polar axis, and not S3. Stokes vectors for linear polarization are confined
to the S1, S2 plane, while those out of that plane correspond to elliptical polarizations;
Stokes vectors corresponding to circular polarization are confined to the S3 axis.

visualization of Ŝ (see Fig. 7.1). It is worth noting that S1 is proportional to the
difference in the powers that would emerge from linear polarizers in the x and y
directions, S2 is likewise proportional to the difference in the powers that would
emerge from linear polarizers rotated from the previous two by an angle of π /4,
thus bisecting the x and y directions, while S3 is the difference between the powers
that would emerge from left and right circular polarizers. Hence the Stokes vector
can be measured directly, and instruments to do so are now fairly common. One can
verify that the (S1,S2) plane represents plane-polarized fields (2φ =0orπ ), while
the S3 axis represents circularly polarized fields. Note that the Stokes vectors corre-
sponding to the orthogonal polarization states x̂ ∼ (r =1,s=0) and ŷ∼ (s=1,r =0)
lie antiparallel along the S1 axis. More generally, two polarization vectors ûa and
ûb are orthogonal if û∗

a ·ûb =0. Thus (s∗x̂−r∗ŷ) represents the state orthogonal
to (rx̂+sŷ) and the Stokes vectors of these two polarization states always lie
antiparallel along the same axis.

7.3. Linear Birefringence of Transmission Fibers

7.3.1. Birefringence Element and Its Effects

Consider the effect on Ŝ of a short length dz of birefringent fiber. There are many
reasons for such birefringence, principal among them being a slight ellipticity
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Figure 7.2 Element of fiber with birefringence axis x′.

of the fiber, or some strain in it. Suppose first that the principal states of the
birefringence are the x and y linear polarizations (θ =0 in Fig. 7.2). If δk is the
corresponding difference in wavenumber, then, in the course of traversing the piece
of fiber, a phase shift δφ =δkdz will develop in the quantity rs∗. Consequently,
the Stokes vector precesses through the angle δφ around the S1 axis, marking out
a cone. The corresponding generalization is that for any birefringence, the Stokes
vector precesses through an angle δφ =δkdz around the axis in Stokes space that
corresponds to the two principal states of the birefringence. If β is a vector whose
length is δk and which lies along this axis of birefringence, then Ŝ precesses
around β according to the equation

dŜ
dz

=−β×Ŝ. (7.3)

Figure 7.3 illustrates this behavior. When δφ reaches 2π , Ŝ has swept out a com-
plete cone. An optical element of this sort is called a full-wave plate. In a fiber, the
needed length 2π /δk =λ(k/δk) is called the beat length. It is typically very short,
a few meters to tens of meters. If the birefringence axis varies in a random way
along the fiber, the Stokes vector soon comes to have a random direction on the
Poincaré sphere.

Along with the wavenumber birefringence just discussed comes a birefringence
in the inverse group velocity. Let b=dβ/dω. If β does not change direction with
frequency (in practice, the change tends to be negligibly small), then we have

b= dβ

dω
= dδk

dω
=δv−1

g , (7.4)

where b, for example, is the magnitude (length) of the vector b, and the last
equality is so because dk/dω=v−1

g holds for each of the two principal states of
polarization. Referring again to our piece of fiber with x–y birefringence, the
average time delay for the energy of field in the polarization state (rx̂+sŷ) is
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Figure 7.3 The birefringence element β causes S to precess in a cone around it.

proportional to (|r|2−|s|2) and thus to S1. In general, the time delay is proportional
to the projection of Ŝ on the birefringence axis, and so we get

dtd = 1

2
Ŝ·bdz. (7.5)

7.3.2. Calculus for Long Fibers

In a typical transmission fiber both the strength and axis of the birefringence vary
along the length of the fiber, causing the Stokes vector to wander more or less
randomly around the Poincaré sphere. The motion of Ŝ in going between any two
points in the fiber can be expressed formally by

Ŝ(z2)=M(z2,z1)·Ŝ(z1), (7.6)

where M is a rotation matrix, a (3×3) form of a Mueller matrix, and M(z1,z2) is
the inverse of M(z2,z1). For a long fiber of length Z , the total delay caused by the
birefringence can be written as

td = 1

2

∫ Z

0
Ŝ(z)·b(z)dz = 1

2
Ŝ(0)·

∫ Z

0
[M(0,z)·b(z)z = 1

2
Ŝ(0)·T, (7.7)

where we have used the inverse Mueller matrix to project the vector dot product at
location z back to the input of the fiber, and the last equality defines the vector T.
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Figure 7.4 Relative time delay, in long fiber, of pulse with polarization vector Ŝ.

We call T the polarization time-dispersion vector [98].2 Its length is the difference
between the maximum and minimum delay times, and the Stokes vectors pointing
in its positive and negative directions represent the principal states of polarization
for which the delay times are, respectively, longest and shortest. It behaves very
much like the local birefringence, except that its magnitude and direction on the
Poincaré sphere are more rapidly frequency dependent (see Fig. 7.4). In the case
of linear propagation, any input pulse can be resolved into a linear combination of
components in the two principal states, which have different delays. As a result,
one sees the output pulse width vary as a function of the input polarization, its
mean delay time being given by Eq. (7.7). In the case of soliton propagation, if
the PMD is not too big, the nonlinear effects hold the pulse together, so that the
pulse width does not change, but its mean delay time also obeys Eq. (7.7). Soliton
propagation is further discussed below.

7.3.3. Growth of T with Increasing Fiber Span Length

We can think of a long fiber as concatenation of two shorter fibers, joined at some
point z = z1. Accordingly, the vector T for the whole fiber can be split into two
pieces as

T=
∫ z1

0
M(0,z)·b(z)dz+M(0,z1)·

∫ Z

z1

M(z1,z)·b(z)dz (7.8)

=T1+M(0,z1)·T2,

where T1 and T2 are the T vectors for the two sections taken individually. We are
primarily interested in fiber spans that are long with respect to the characteristic
distance (typically only a few meters) for the reorientation of b. In that case, the

2 Prior to the appearance of the paper by Mollenauer and Gordon [98], however, the polarization
dispersion vector and its statistical properties had already been thoroughly explored by Poole and co-
authors (see, for example, Refs. [99] and [100]). Note that the vector � in those papers is the same as
M(Z ,0) ·T here, where Z is the length of the fiber.
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direction of T2 is at random with respect to that of T1; furthermore, since there
is no correlation between M(0,z1) and T2, the second term in the preceding sum
is still oriented at random with respect to the first. This division can be iterated,
giving

T=T1+
N−1∑
i=2

M(0,zi)·Ti, (7.9)

until the T vectors of the individual sections cease being uncorrelated. From this
exercise it should be obvious that the growth of T (the magnitude of T) is a random
walk process, where T is expected to grow as z1/2. Another way of seeing this is
to look at the quantity

T2 =T·T=
∫ Z

0

∫ Z

0
[M(0,z)·b(z)]·[M(0,z′)·b(z′)]dz′dz

=
∫ Z

0

∫ Z

0
b(z)·M(z,z′)·b(z′)dzdz′. (7.10)

Beyond the length over which b(z) is correlated with M(z,z′)·b(z′) this double
integral is expected to grow noisily but roughly linearly with Z . To take a simple
example, imagine a fiber, initially with a constant linear birefringence, which is
cut into short sections of length lsect and put back together after each section has
been rotated through a random angle around its cylindrical axis. Then, referring to
Eq. (7.10), since b(z) is oriented along the local birefringence axis, M(z,z′) reduces
to the identity matrix so long as z and z′ are both in the same section. There is no
correlation between the directions of b(z) in the different sections, so in getting
the expected value of T2, the first integral over z′ reduces simply to b2lsect , and
the second integral produces the factor Z .

An expected value of T is usually inferred from measurements made over a
wide band of optical frequencies. As the fiber is cut back, the data [101] indeed
tend to fit a curve of form

T (z)=Dpz1/2. (7.11)

Dp is known as the polarization-mode dispersion parameter. For the highest
quality transmission fibers available at present, Dp �0.05 ps/km1/2.

7.3.4. Statistical Properties of T

The PMD parameter Dp for a length of fiber is found from averaging the values
of T obtained over a rather broad range of frequencies. The distribution of T
values so obtained tends to be Maxwellian. Changing the temperature of a fiber
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leads to similar results. This distribution can be understood as follows. The value
of T is sensitive to the wavenumber birefringence of the fiber, since this is what
causes precession of the Stokes vector, and so determines the values of the Mueller
matrices. We have seen that T can be considered to be the sum of a large number
of independent vectors Ti from fiber sections, each projected to the beginning of
the fiber by the appropriate Mueller matrix. As these Mueller matrices are changed
by changing frequency, say, one would expect the components of T to have nearly
independent Gaussian distributions.

If each of the three components of T in Stokes space (T1,T2,T3) has an indepen-
dent Gaussian distribution with standard deviation σ , then the distribution of T has
spherical symmetry, and the magnitude of T will have a Maxwellian distribution,
as illustrated in Fig. 7.5. The probability that T lies between T and T +dT is

p(T )dT =
√

2

π

1

σ 3
T2e−1/2(T /σ )2

dT . (7.12)

The most probable value of T /σ is
√

2≈1.414, its mean value is
√

8/π ≈1.596,
and its standard deviation is

√
3≈1.732. By definition Dp is the mean value of T

divided by the square root of the length of the fiber, so that σ =Dp
√

πZ/8. As an
example, if Dp ∼ 0.1 ps/km1/2 and Z =10,000 km, then σ ∼ 6.3 ps. As a final bit
of housekeeping here, note from Eq. (7.7) that the delay time for a pulse is half
of the component of T along the direction of Ŝ(0). Thus the expected standard
deviation of the pulse delay is σdelay =σ /2=Dp

√
πZ/32.

7.4. Soliton Propagation

We now consider soliton pulse propagation in a randomly birefringent fiber.
First, it is known that the nonlinear coefficient n2 is a function of polarization,
varying, relative to its polarization average, from 9/8 for linear polarization to 3/4
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for circular polarization (on average, linear polarization is twice as likely as circular
polarization). The changes in n2 as a soliton’s polarization state varies during
propagation causes some radiative loss of energy. However, this loss is much
smaller than is a similar loss due to PMD and may be ignored. To avoid unnec-
essary complication, we shall therefore continue to treat n2 as though it were
polarization independent.

We now come to consider the residual birefringence. On the often-used assump-
tion that the local form of the birefringence is not very important overall, we shall
invoke a well-worn model similar to that used above in which the fiber is com-
posed of short sections of constant linear birefringence, whose axes are assumed
randomly directed, and whose magnitude may also have some random distribu-
tion. Consider the effect of one such section. We can denote the slow and fast axes
of this piece of fiber by the orthogonal unit vectors x̂ and ŷ. The entering soliton
will be in some linear combination of these two polarization states and will in
general have the form

u(z, t)= (rx̂+sŷ)sech(t), (7.13)

where the polarization state vector has unit length, as before, satisfying (|r|2+
|s|2 =1). After traversing the section of length l, this soliton will have changed to
the form

u(z+l, t)=eiθ [reiφ x̂ sech(t−ε)+se−iφ ŷsech(t+ε)
]
, (7.14)

where the angle φ = (1/2)δk l arises from the local wavenumber birefringence δk,
while ε = (1/2)bl is half the time delay birefringence of the fiber section. For good
fibers ε is a very small number. Using this, we can expand the sech functions to
first order in ε [d sech(t)/dt =−sech(t) tanh(t)] and, with a bit of manipulation,
arrive at

u(z+l, t)≈eiθ
[(

reiφ x̂+se−iφ ŷ
)

sech
(

t−ε
(
|r|2−|s|2

))
+ ε2rs

(
s∗eiφ x̂−r∗e−iφ ŷ

)
sech(t) tanh(t)

]
.

(7.15)

We have split the terms proportional to ε into two parts, one having the same
polarization state as the soliton, which we put back together with the soliton, and
the other having a polarization state orthogonal to the soliton. We see that the soli-
ton’s polarization state and PMD time delay have changed in accordance with our
previous general discussion. The field scattered into the orthogonal polarization
state, proportional to sech(t) tanh(t), can be shown to be a dispersive field, and so
represents a loss mechanism for the soliton. The fractional energy loss due to this
section of fiber is the ratio of the time integrals of |u|2 in the two orthogonal polar-
ization states, which yields δE/E = (4/3)|rs|2ε2, independent of φ. If we assume



188 7 ♦ Polarization and Its Effects

that the birefringent time delay stays small with respect to the pulse width of the
soliton, then the scattered fields will be uncorrelated, and the total loss will be the
sum of the energies scattered from each section. To find the expected loss, it is
appropriate to do an average over polarizations. From Eq. (7.2) one can see that
4|rs|2 is the sum of squares of the S2 and S3 components of the unit Stokes vector
Ŝ, and therefore its polarization average is 2/3. Using this, and evaluating ε, we get

αpmdl = δE

E
= 1

18
b2l2, (7.16)

where αpmd is the exponential energy loss coefficient. In comparison, the time
delay for this section, δtd =ε(|r|2−|s|2), is proportional the the S1 component of
Ŝ, so its polarization average is zero, but its variance is

σ 2
d = 1

3
ε2 = 1

12
b2l2. (7.17)

The loss due to PMD is therefore related to the variance of the time delay by
αpmdl = (2/3)σ 2

d . Since the loss and the variance of the time delay both grow
linearly with the number of sections, the loss for a length z of fiber will be
given by

αpmdz = 2

3
σ 2

d (z)= π

48
D2

pz. (7.18)

This equation is written in soliton units. It can be made dimension-free by dividing
its right side by t2

c , or (τ /1.7627)2; removing the common factor of z as well,
one gets

αpmd =0.2034D2
p/τ 2. (7.19a)

To take a good fiber as an example, with Dp =0.1ps/km1/2, then a pulse with
τ =20 ps yields αpmd =5×10−6/km, or 0.005/Mm. Although the loss rate in
soliton energy due to PMD appears small in this case, note that the total energy
lost in 10 Mm is 5% of the soliton’s energy. Since this lost energy is scattered
into dispersive waves, it can add significantly to the total noise, especially in
a broadband transmission line. On the other hand, sliding-frequency filters (see
Chapter 3, Section 3.4) control the growth of this noise just as effectively as they
control the growth of spontaneous emission noise.

It should also be noted from Eq. (7.18a) that the loss rate from PMD increases
rapidly with decreasing pulse width. For example, for the maximum pulse width
(τ ≈2 ps) permitting a single-channel rate of 100 Gbit/s, and again for Dp =
0.1ps/km1/2, αpmd rises to 0.5/Mm, a value large enough to cause very serious
problems. This is yet another reason why, for the attainment of very large net bit
rates, dense WDM is by far the better choice.
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If the value of Dp gets too big, solitons can become unstable. For distances of
the order of zc, essentially linear propagation occurs, so a soliton has a chance of
being split into its two principal state components. Some years ago, a criterion
for stability was established by numerical simulation, using a kind of worst-case
scenario [102]. In soliton units, the result was simply

Dp ≤0.27tc/z1/2
c . (7.19)

Using Eq. (7.19) with the equality sign to establish the largest allowable Dp, and
setting Dpz1/2 ≈ tc, note that a linear pulse would split into two pieces spaced by tc
in a distance (0.27−2 ≈14)×zc. Under those same conditions, however, nonlinear
effects hold the soliton together over an indefinitely long distance of propagation.
From Eq. (2.15a), we recall that tc/z1/2

c scales with the dispersion constant D, so
in standard units Eq. (7.19) becomes

Dp ≤0.3D1/2. (7.19a)

Note that for Dp = 0.1 ps/km−1/2, Eq. (7.19a) is satisfied for D as small as
about 0.11 ps/nm-km. [For an example of what can happen when the criterion
of Eq. (7.19a) is violated, see Wai et al. [103].]

It is interesting that even at the stability border, the loss calculated from
Eq. (7.18) seems very small. If we use Eq. (7.19) with an equals sign, then from
Eq. (7.18) we get αpmd =0.048/zc, which does not seem big enough to signal
impending doom for the soliton. The answer to this conundrum is probably in the
statistics. The loss was calculated on the basis of polarization averaging, while
the split-up of a soliton can occur in any section of the transmission fiber a few zc

long if the T vector for that section is big enough. Simulations also support this
conclusion. So long as the soliton transmission is stable, the loss (per zc) is quite
small.

7.5. Polarization Scattering by Soliton–soliton
Collisions

As already noted in the introduction to this chapter, colliding solitons in WDM
alter each other’s polarization states. Although this polarization scattering was
described earlier by Manakov [104, 105], its consequences were not gener-
ally appreciated until they became manifest in a later experiment [106]. In the
experiment, each of several 10-Gbit/s WDM channels was subdivided into two
polarization (and time) division multiplexed, 5-Gbit/s subchannels. As had been
known for some time [107], such polarization division multiplexing works well,
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Figure 7.6 Experimentally measured degree of polarization for a given wavelength
channel as a function of distance. No WDM: Only one channel present on the trans-
mission line. WDM: Two channels present on the line. Channel separations: Solid line,
0.6 nm; dashed line, 1.2 nm; dotted line, 1.8 nm. In all cases, the channels were initially
co-polarized.

at least in the absence of WDM. Indeed, in the experiment, with only one such
polarization-multiplexed, 10-Gbit/s channel present, the orthogonality of the 5-
Gbit/s subchannels was well maintained over transoceanic distances, and the
transmission was error-free. As soon as a second WDM channel was added, how-
ever, polarization scattering from the collisions destroyed the orthogonality of the
subchannels, and the error rate became high for all but very short distances. To
confirm that polarization scattering was to blame, the degree of polarization of each
10-Gbit/s channel (this time with all pulses initially co-polarized) was measured as
a function of distance. The results are summarized in Fig. 7.6. With only one chan-
nel present (no WDM), as expected, the degree of polarization (DOP) was only
slightly reduced in 10 Mm, from the mild effects of spontaneous emission [106].
With just one other channel present, however, the degree of polarization of either
channel was reduced nearly to zero in the same distance.

The origin of the polarization scattering in WDM transmission is not hard to
understand. It comes about because the magnitude of the cross-phase modulation
(XPM) between waves of different frequencies is dependent on their relative polar-
izations, being twice as large for co-polarized waves as for orthogonally polarized
waves. One can think of this as a nonlinearly induced effective birefringence,
keeping in mind that the birefringence seen by each of the waves is different from
that seen by the other. We discuss this effect in more detail later. Consider now a
collision between solitons in two different frequency channels of a WDM system.
Label the solitons a and b. The XPM phase shift given to the component of soliton
a co-polarized with soliton b is twice as large as that given to the component of



7.5. Polarization Scattering by Soliton–soliton Collisions 191

soliton a orthogonal to soliton b. The result is a change in the polarization state
of soliton a. In terms of the three-dimensional Stokes vector representation of
a soliton’s polarization state, the first-order result is a precession of soliton a’s
Stokes vector around that of soliton b. Soliton b is similarly influenced by soli-
ton a, so their Stokes vectors precess around one another. The XPM occurs only
while the solitons overlap, and after a completed collision, the differential phase
shift (which, as we shall show, equals the precession angle of the Stokes vec-
tors) is approximately equal to Lcoll/(1.76zc). Note that there is no change in the
polarizations of either soliton if they are in the same or orthogonal polarization
states.

To analyze the polarization scattering in detail, we describe the optical field
envelope in a fiber, in the manner of Eq. (7.13), using

u=uxx̂+uyŷ. (7.20)

Here ux and uy are the x and y components of the field, normalized so that
u∗ ·u=|ux|2+|uy|2 is the optical power in the fiber. Instead of the Stokes vec-
tor of unit length used in Section 7.2, we shall here use an instantaneous Stokes
vector with the components (S1,S2,S3) = (|ux|2−|uy|2,2Re(u∗

x uy),2Im(u∗
x uy)), so

that the length of the Stokes vector is the optical power. Using a unitary transfor-
mation (the Jones matrix), we can mathematically eliminate the rapid motion of the
polarization of the optical field caused by the fiber’s wavenumber birefringence.
Then, taking into account that the collision length for the solitons of interest here
is short enough (Lcoll ≤200 km) that the effects of polarization dispersion on the
relative polarizations of the two fields can be neglected, and that the nonlinear
term is averaged over all polarizations, we are left with a much simplified version
of the propagation equation, known as the Manakov equation [104, 105]:

−i
∂u
∂z

= 1

2

∂2u
∂t2

+(u∗ ·u)u. (7.21)

Now, if u is composed of two fields with distinctly separable frequency ranges
(e.g., pulses in a WDM system), we can isolate the terms of Eq. (7.21) in each
frequency range. If the two frequencies are identified by subscripts a and b, then
for the frequency of ua, we find the equation

−i
∂ua

∂z
= 1

2

∂2ua

∂t2
+(u∗

a ·ua)ua+(u∗
b ·ub)ua+(u∗

b ·ua)ub. (7.22)

The equation for the frequency of ub is obtained by interchanging indices. There
are three nonlinear terms on the right-hand side of Eq. (7.22). The first is the
self-phase modulation term, while the second and third constitute the polarization-
dependent XPM. For co-polarized fields, the second and third terms become
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identical [compare with Eq. (5.3)], while for orthogonally polarized fields, the
third term goes to zero.

By expanding Eq. (7.22) into its field components, it is straightforward to show
that the XPM terms of Eq. (7.22) modify the Stokes vector of the a field according
to the equation

∂Sa

∂z
=Sa×Sb. (7.23)

This equation and that for Sb (exchange subscripts) show that the nonlinear term
causes the Stokes vectors of the two fields to precess around one another, so that
∂(Sa+Sb)/∂z =0. It is important to note from Eq. (7.23) that when the pulses are
either exactly co-polarized or exactly orthogonally polarized, there is no scattering.
Thus, for example, in the experiment of Fig. 7.5, there was no scattering between
the initially co-polarized channels, until the fiber’s PMD itself gradually opened
up the angle between their Stokes vectors.

To apply Eq. (7.23) to solitons, we have only to integrate it over the course of a
collision. In first order, if we neglect the simultaneous precession of soliton b, then
the integration of Eq. (7.23) gives an effective precession angle of Sa around Sb.
Single solitons of Eq. (7.21) have the general form

u(z, t)= ûAsech[A(t+�z)]exp
[
iz
(

A2−�2
)

/2−i�t
]

, (7.24)

where û is a unit normalized polarization vector (û∗ ·û=1). To evaluate the pre-
cession angle most easily, let ua be a stationary soliton (�a =0), and let ub be a
soliton substantially displaced in frequency (|�b|�1). Then the integration over
the collision involves the integration over z of A2

b sech2[Ab(t+�bz)], which gives
a precession angle of 2Ab/�b. This formula uses soliton units. Noting that the
full spectral width of the soliton in Eq. (7.24) is 
ω= (2/π )×1.763A, we can
re-express the polarization angle in the dimensionally independent form


θa ∼1.78

νb


νab
, (7.25)

where 
θa is the precession angle for the stationary soliton, 
νb is the full (spec-
tral) width at half maximum of the passing soliton, and 
νab is the frequency
separation of the two solitons. Note the inverse dependence of the change in polar-
ization angle on channel separation (
νab). Because of the fact that the number
of collisions in a given distance is in direct proportion to 
νab, however, the net
spread in polarization vectors tends to be independent of channel separation, as
observed experimentally (Fig. 7.5). Note also that Eq. (7.25) is valid whether or
not the colliding solitons are equal in amplitude. Since the bandwidth of a soliton
is proportional to its amplitude, the collision of two unequal solitons will yield
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unequal precessions for the two. In the WDM experiments described in Chapter 5,
the ratio of the channel spacing to the soliton’s spectral FWHM was about five,
which would make the precession angle per collision about 0.35 radians. This is
a small enough angle to make the preceding theory applicable, and yet is large
enough that just a few collisions are enough to prohibit the use of polarization
division multiplexing.

The argument just presented gives results applicable to a WDM communications
system, where the channel spacing is much greater than the soliton bandwidth, so
that the precession angle in a collision is small. Manakov [104, 105] was able to
show that Eq. (7.21) supports polarized solitons in the strict sense. A collision
of two solitons therefore does not give rise to any scattered radiation. The soli-
tons emerge from the collision with their energies and velocities unchanged, but
their polarizations change as well as their positions and phases. A translation of
Manakov’s result gives the following Stokes–Poincaré picture. If colliding solitons
a and b have amplitudes Aa and Ab, and normalized Stokes vectors Ŝa and Ŝb, then
the vector A≡AaŜa+AbŜb remains the same before and after the collision. As a
result of the collision, the two Stokes vectors Ŝa and Ŝb precess around the axis
defined by A through an angle φ whose tangent is given by tanφ =2A�/(�2−A2),
where � is the difference between the solitons’ frequencies and A is the length of
the vector A. With a little practice in geometry, one can show that when �2 �A2,
the exact result reduces to the approximate one just given.

Another consequence of the polarization scattering from collisions, more fun-
damental than the simple prohibition of polarization division multiplexing, is a
jitter in pulse arrival times, mediated by the fiber birefringence. Mollenauer and
Gordon [98] described a qualitatively similar birefringence-mediated jitter, as ini-
tiated by the (relatively small) noise-induced scatter in polarization states. As the
spread in polarization states from collisions tends to be much larger (note that it
eventually tends to spread the Stokes vectors over a large fraction of the Poincaré
sphere), the jitter is correspondingly greater, and in a typical case can easily add at
least a few tens of picoseconds to the total spread in arrival times over trans-oceanic
distances. This represents a significant reduction in safety margin for individual
channel rates of 10 Gbit/s or more. Nevertheless, note that in the WDM results
reported in Section 5.9, reduction, while undoubtedly present, was not fatal.





Chapter 8

Hardware and Measurement
Techniques

8.1. Soliton Sources

For best performance, soliton transmission requires a reliable source of unchirped
pulses, whose intensity envelopes are, to good approximation, either of Gaussian
or sech2 shape, and whose repetition rate can be easily adjusted to the desired
bit rate. Many of the early experiments, however, were carried out using mode-
locked, electrically driven semiconductor lasers, which tend to produce chirped
and asymmetrical pulses with widths that are hard to control. They also require very
careful matching of the cavity’s c/2L resonance frequency (where L is the cavity
length) to match the microwave drive frequency, since even very small mismatches
tend to cause large changes in the pulse characteristics. Harmonically mode-locked
erbium fiber ring lasers can provide unchirped, essentially Gaussian pulses, but
they require even more complex adjustment, viz., the round-trip times of an internal
stabilizing Fabry–Perot etalon and of the fiber ring must be simultaneously adjusted
to match, respectively, 1× and an exact integral multiple of the bit period. In
sum, both forms of mode-locked laser were much too complex, expensive, and
fussy to be viable candidates for use in practical systems, especially where dense
WDM may require 100 or more such devices in one and the same transmitter.
By contrast, the scheme alluded to in earlier chapters to use a sinusoidally driven
LiNbO3 Mach–Zehnder modulator to carve pulses from the output of a cw laser
tends to meet all requirements simply and at relatively low cost.

195
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8.1.1. The Pulse Carver

The LiNbO3 Mach–Zehnder modulators used for the pulse carver come in two
forms: “X-cut” and “Z-cut.” Note from Fig. 8.1 that the X-cut version automatically
provides for the creation of equal but opposite phase shifts in the two arms of
the interferometer from the single drive electrode, so that the carved pulses are
always unchirped. In the Z-cut version, however, unchirped pulses are obtained
only when the two drive electrodes are supplied with voltages that are equal in
amplitude but π out of phase with each other; that arrangement is assumed in the
following description when a Z-cut device is used. Perhaps it should also be noted
here that the optical inputs to the modulators must be linearly polarized, with the
optical E field aligned along the Z axis.

The basic scheme of operation of the pulse carver is simple: As shown in Fig. 8.2,
the drive voltage for the LiNbO3 modulator is a pure sinusoid whose frequency
is equal to half the bit rate and whose peak-to-peak amplitude exactly matches
the voltage difference between successive nulls of the modulator [84]. With the
modulator bias adjusted for peak transmission without the sinusoidal drive, two
identical pulses are produced per cycle of the drive voltage, one on its upswing
and the second on its downswing. That is, with the modulator biased as just stated,
the transfer function is

I/I0 = cos2(πV /V0), (8.1)

where I and I0 are the transmitted and input intensities, respectively, V is the
applied voltage (exclusive of the bias), and V0 represents the voltage difference
between successive nulls. Applying the voltage V (t)= (V0/2)cos(π t/T ), where

z x

zx
X-cut: Z-cut:

RF electrode:
Ground plane:
LiNbO3 Xtal:  

Optical waveguide:
Internal poling field:
Applied fields:

Figure 8.1 Cross-sections of X-cut and Z-cut LiNbO3 Mach–Zehnder modulators. Note
that in the X-cut version, the single drive electrode provides fields that aid and oppose the
large internal field in the two interferometer arms, respectively, while the two electrodes of
the Z-cut version must be oppositely driven to achieve the same effect. RF, Radio frequency;
Xtal, crystal.
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Figure 8.2 Basic principle of the pulse carver. Asinusoidal drive voltage whose frequency
is half the bit rate swings the modulator transmission between two adjacent nulls. The two
nearly Gaussian pulses created per cycle of the drive voltage are shown on the right. (The
particular drive frequency and time scales indicated here are, of course, for a 10-Gbit/s
source.)

T is the bit period (T =100 ps in the figure), the transmitted intensity becomes

I(t) = I0 cos2( π
2 cos(π t/T )). (8.2)

Any simple graphics program will confirm that Eq. (8.2) yields pulses whose shape
makes a nearly perfect fit (save in its far wings) to a Gaussian whose intensity
FWHM is ∼=T /3, just as shown on the right side of Fig. 8.2.

Figure 8.3 is a schematic of the 10-Gbit/s pulse carver used for the dense WDM
experiments described in Chapter 6, Section 6.2. It uses an X-cut modulator for
the simplicity afforded by the single-port drive and the automatic production of
chirp-free pulses. (When a Z-cut modulator is used, the drive must be split into two
equal parts, which are then made π apart in phase through the use of connecting
cables having a precisely controlled differential in their lengths. Although not
exceptionally difficult, this arrangement adds unnecessary complexity and cost.)
The microwave amplifier in the lower right-hand corner of the figure operates in
saturation to provide a fixed output voltage for a range of input voltages. Note
that its output is split into three parts, with one part being used to feed the power
amplifier that drives the modulator. The power amplifier is also over-driven, so
that its output can be controlled very reliably and simply by adjustment of its
dc power supply voltage. [At 5 GHz, the required voltage swing is typically no
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Figure 8.3 Schematic of a 10-Gbit/s pulse carver. MZ, Mach–Zehnder; MW, microwave;
SPL, splitter.

more than about 12 V peak-to-peak, or about 4.24 V rms, which corresponds to
360 mW of microwave power into the ≈50-ohm load presented by the modulator.
Thus, the 30-dBm (1 W) output power capability of the amplifier shown in Fig. 8.3
represents a bit of overkill.] To guarantee a pure sinusoidal drive to the modulator,
the amplifier’s output is filtered to eliminate all higher harmonics of its 5-GHz
output. It will be noted that one great advantage of this particular pulse carver
scheme is that it is not dependent on details of the modulator’s frequency response.
Rather, the only requirement is that sufficient drive voltage be available for a single
frequency at just half the bit rate. Thus, this scheme can be extended to higher bit
rates, such as 40 Gbit/s, without much difficulty.

Most of the other components to the right of the modulator are part of a scheme
to provide automatic bias control. The control scheme is based on the fact that
unless the bias is correct, the pulses are unevenly spaced in time, so that the
pulse train contains a significant Fourier component at 5 GHz. Thus, as the bias is
moved through the correct setting, the 5-GHz component at first decreases, then
passes through zero at the correct setting, and then grows again, but with the
opposite phase with respect to that of the 5-GHz modulator drive. To measure
the 5-GHz component, as shown in the figure, a sample of the pulse train is split
off, detected, amplified, passed through a 5-GHz filter, and finally sent to the
radio frequency (RF) input port of a phase-sensitive detector (variously known as
a “double-balanced mixer”), where it is compared with (beat against) a properly
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phased sample of the 5-GHz drive voltage. Since the two inputs to the phase-
sensitive detector are at exactly the same frequency, its output is a dc voltage whose
polarity depends on the relative phase of the two inputs, and which nominally
becomes zero for zero input into the right-hand (RF input) port. Thus, the output
of the phase-sensitive detector affords the desired error signal, which, when greatly
multiplied by an inexpensive “op-amp,” locks the system to exactly the dc bias
required for proper operation of the modulator. Since the balance of the phase-
sensitive detector is often not quite perfect, it typically tends to produce a dc output
of a few millivolts even when the RF input is exactly zero; this imbalance is offset
by the bias adjustment to the op-amp shown in the figure. It should also be noted
that for the wrong adjustment of the microwave (MW) delay line (for the 5-GHz
reference), the system will lock in to a mode producing the inverse of the pulse
train shown in Fig. 8.2; clearly, the best adjustment is in the middle of the range
providing the correct pulse train. Finally, it should be noted that this scheme for
bias adjustment, which has been used with great success for many years, avoids
the cumbersome “dithering” of alternative schemes and tends to provide a faster
and more precise lock to the correct bias.

It will be noted from Fig. 8.3 that a 10-GHz clock for synchronizing the pulse
pattern generator is derived by frequency doubling of the 5-GHz reference input.
In a real transmission system, however, that arrangement must be reversed, since
there, the fundamental clock input will always be at the fundamental (10 GHz) bit
rate. In that case, a simple “toggle flip-flop” chip can be used to divide the 10-GHz
clock input frequency by two, to yield the 5 GHz required for the modulator drive.
That arrangement should be just as cheap, simple, and reliable as the one shown
in Fig. 8.3.

Certain details of the optical interconnection of the pulse carver to the cw
laser source and to the following data modulator (as in Fig. 6.20, for example)
are also important. First, since both modulators require inputs with the cor-
rectly aligned linear polarization, it is highly desirable that correctly aligned
polarization-maintaining fibers be used for all interconnections. Although ordi-
nary fibers provided with polarization controllers can be used in principle, thermal
and mechanical drift makes it nearly impossible to maintain correct polarization
settings, and the number of adjustments required for a dense WDM system is
tediously large. Second, the arrangement for an entire transmitter can be simpli-
fied if both pulse carver and data modulators are contained in the same package
and are directly optically coupled together. At the time of this writing (2005), a
check of the World Wide Web shows that at least one manufacturer now supplies
just such convenient combinations, with features custom tailored for dispersion-
managed soliton transmission, no less! One of those special features is an integral
detector at the modulator’s output. To see how that might be possible, see Fig. 8.4.
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Figure 8.4 Possible input and output configurations of a LiNbO3 modulator. Traditionally,
only two of the four ports of the Mach–Zehnder interferometer were brought out, so that
each end of the modulator tended to look like the left-hand side of the figure. But there is
no reason that two ports cannot be brought out at either end, as shown on the right-hand
side of the figure. In that case, one of such a pair can be the working output, while the other
can be directly coupled to a detector for monitoring purposes, or as part of the bias control
scheme of Fig. 8.3.

8.2. The Temporal Lens

In Chapter 3, it has already been pointed out that in the presence of significant
jitter in pulse arrival times, the ideal detection system bases its decisions on the
integral of all the energy arriving at the detector in each bit period. Unfortunately,
however, such “integrate-and-dump” detectors do not yet seem to exist. Rather,
it is common for the detection system to base its decision on a sample integrated
over only a small fraction of the bit period, supposedly about 20 ps wide in the
typical 10-Gbit/s system, with the consequent imposition of severe penalties from
timing jitter. In the absence of effective integrate-and-dump detectors, however,
there is another way to largely avoid such penalties, and that is through the use
of a so-called temporal lens [108–111]. The basic scheme of the temporal lens is
shown in Fig. 8.5. As can be seen, the device consists of nothing more than a phase
modulator, appropriately driven in synchronism with the locally recovered clock,
and followed by an essentially linear dispersive element (usually a coil of fiber).
The phase modulator gives each incoming pulse a frequency shift proportional
to its jitter displacement, and the dispersive element then serves to translate, or

phase mod.
Jittered pulses in

MW amp.
& pulse shaper

Locally recovered clock

Dispersive element
(fiber or Bragg grating) 

Unjittered pulses 
out to receiver

Figure 8.5 Basic scheme of the temporal lens.
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“focus,” each pulse onto the mean arrival time (modulo the bit period). The net
effect is then to considerably widen the effective acceptance window for arrival
times.

In the ideal mode of operation, the phase shift, φ(t), produced by the modulator
is a series of truncated parabolas, centered about the middle of each bit period,
such that the corresponding frequency shift [the time derivative of φ(t)] is directly
proportional to time as measured from the center of each period (see Fig. 8.6).
At microwave frequencies, however, the voltage waveform for this ideal mode
is very hard to produce, so that in practice, it is usually necessary to settle for a
simple sinusoid, peaked at the centers of the successive bit periods. Nevertheless,
this compromise also works very well, as can be seen from Fig. 8.7, where the
fraction of the pulse energy used for decision making is plotted as a function of
arrival time, for three cases: (1) a perfect integrate-and-dump detector, (2) the
sinusoidally driven temporal lens, and (3) the ordinary detector with an ≈20-ps
integration time. Note that while the acceptance window for the ordinary detector
is scarcely wider than the 33-ps pulse itself, the temporal lens opens up that window
to at least 60 ps, a width not much smaller than that of the ideal integrate-and-dump
detector. The rather dramatic effect of the temporal lens is shown in yet another
way in Fig. 8.8, which shows eye diagrams from a dense WDM transmission
experiment, as seen with and without the use of the lens.

Any device used at the receiver needs to have an essentially polarization-
independent response. Unfortunately, however, as already noted in Section 8.1,
LiNbO3 modulators are very strongly polarization dependent. The most straight-
forward way around this problem is to use a polarization diversity scheme. The one

−20 20 40 60 80 120

Time (ps)

Frequency shift

Early pulse Late pulse

φ(t) Produced by Modulator

Figure 8.6 Temporal details of the ideal mode of operation.
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Figure 8.7 Fraction of the energy of a 33-ps-wide Gaussian pulse available for decision
making, plotted as a function of arrival time, for the following cases: (1) a perfect integrate-
and-dump detector, (2) a sinusoidally driven temporal lens, and (3) the ordinary detector
with an ≈20-ps integration time.

Without temporal lens With temporal lens

Figure 8.8 Eye diagrams at 7200 km of one channel of a dense WDM experiment at
10 Gbit/s and 50-kHz channel separation, using dispersion-managed solitons, with and
without use of the temporal lens. Although the measured BER for the situation on the left
was ≈10−6, that for the right was better than 10−9.

we have used [108,109] (see Fig. 8.9) performed extremely well, as the polarization
dependence of the device was nearly immeasurable.

8.2.1. Analytical Treatment

The discussion here of the temporal lens has thus far been largely qualitative,
and the potential of the temporal lens to change the shape of the pulses has been
ignored. The following quantitative treatment is intended to fill that void. It is
based on the ordinary differential equations outlined in Chapter 2, Section 2.1.4,
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Figure 8.9 Polarization diversity scheme for the temporal lens. The first polarization split-
ter separates the input of arbitrary polarization into its two, orthogonal, linearly polarized
components. Each of those components is then sent through its own phase modulator. The
outputs of the two phase modulators are then combined by a second polarization combiner
before being sent on to the dispersive fiber. Note that the input and output (polarization-
maintaining) fiber leads, as well as the coaxial cables to the modulators, must constitute
three carefully matched pairs in length.

and, for simplicity, it assumes the ideal model of Fig. 8.6. Also, since the problem
is essentially a linear one, we shall treat all elements as lossless. Nevertheless, the
treatment here should be adequate to convey all of the really important ideas.

At the input to the phase modulator, we assume the unchirped pulse

u0(t) = u0 exp

[
−1

2
η0(t−δt)2

]
, (8.3)

where δt is the displacement of the center of the pulse from t =0 (the middle of
the bit period). It will be recalled from Section 2.1.4 that 1/

√
η is a measure of the

pulse width; that is, the pulse intensity FWHM τ =√
4ln2/

√
η.

The quadratic phase shift imposed by the modulator can be written in terms of
a chirp parameter βmod , so that after the modulator, we have

u1(t) = u0 exp

[
−1

2
η0(t−δt)2−i

(
1

2
βmodt2

)]
, (8.4)

which can be rewritten as

u1(t) = u′
0 exp

[
−1

2
(η0+iβmod)(t−δt)2−i(βmodδt)t

]
. (8.4a)

[Here u′
0 differs from u0 only because it has absorbed the constant phase term

exp(iβmod(δt)2/2).] Note that although the pulse still has the same width (τ0), it
now has a linear chirp βmod and a shift in mean frequency of δω=−βmodδt. When
the pulse is then put through a linear element of dispersion


 = 1/βmod , (8.5)



204 8 ♦ Hardware and Measurement Techniques

it will then be moved in time by δω
=−δt, exactly as needed for focusing onto
the center of the bit period. Note that although 
 and βmod have the same algebraic
sign, the pair can be either positive or negative. (The curves of Fig. 8.6 correspond
to βmod >0.)

The potential of the temporal lens to modify the widths of the pulses emerging
from it constitutes a second kind of temporal focusing that should be analyzed.
From Eq. (2.10), we know that when the pulses are subject to a linear element of
dispersion 
, the quantity q=η0/(η+iβmod) must obey the equation

q2 = q1+i
η0, (8.6)

where q2 and q1 represent the values after and just before the dispersive element,
respectively. From Eq. (8.4a), we have q1 =η0/(η0+iβmod). Thus, combining
Eqs. (8.5) and (8.6), we have

1

η2+iβ2
= 1

η0+iβmod
+ i

βmod
. (8.7)

With a bit of manipulation, Eq. (8.7) can be rewritten as

η2+iβ2 = β2
mod /η0 + −iβmod . (8.7a)

Finally, substituting βmod =gη0 into Eq. (8.7a), we obtain the final pulse width

τ2 = τ0/g. (8.8)

It is important to know the peak-to-peak swing in phase, δφmax , required from
the modulator. Let us assume an inital pulse width τ0 =T /3 (T is the bit period),
so 1/(η0)=T /(3

√
4ln2). Thus we have

δφmax = 1

2
βmod(T /2)2 = (g/8)(η0T2) = 3

√
4ln2

8
= (3.1192 . . .)g, (8.9)

or nearly π radians at g=1.
It is also now easy to calculate the required dispersion, 
, for “focus.” For

example, for g=1, where βmod =η0, we have 
=1/βmod =1/η0 =τ 2
0 /(4ln2),

so for τ0 =33 ps, 
=393ps2 →−315 ps/nm, a dispersion easily supplied by a
modest coil of DCF.

8.2.2. Some Practical Details of Operation

With the more practical sinusoidal drive, the optimum window shape (see Fig. 8.7)
is obtained when the peak frequency shifts (occurring at t =±T /4) are the same
as those of the parabolic drive at the same times. In that case, it can easily be
shown that the required peak-to-peak drive for the sinusoid is (2/π )× that for the
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parabolic drive. Thus, for g=1, where previously we found that the required peak-
to-peak parabolic drive is ≈π , the corresponding requirement for the sinusoidal
drive is just 2 radians peak-to-peak. The voltage swing required to produce that
phase shift at 10 GHz in most LiNbO3 modulators is typically on the order of
3–6 V, corresponding to RF powers in the very modest range of ∼20–80 mW into
the 50-ohm load posed by the modulator. Thus, it is still quite practical to double
that drive to obtain g=2 and to halve the required dispersion. An experimental
test seems to show that the temporal lens works as well or even better under that
higher drive condition. In practice, the modulator drive voltage is adjusted until
the best focus is obtained, as seen from an eye diagram on a sampling scope.

It is also important to know when the phase modulator drive is correctly syn-
chronized with the mean pulse arrival time. The required information is easily
obtained from the optical spectrum of the pulse train. That is, if the adjustment is
correct, the spectrum after the modulator is perfectly symmetrical about the orig-
inal spectral position, but when the drive is late (early), the spectrum is strongly
skewed to the low-frequency (high-frequency) side of the original spectral center.
(The rule given here is for βmod >0; for βmod <0, the association between late–
early/low–high is reversed.) It should also be noted, however, that there are really
two phase settings that result in perfect symmetry of the spectrum, the second one
an incorrect adjustment, corresponding to a defocusing of the pulses away from
the center of the bit period. The appearance of the eye diagram makes it obvious
whether the choice is correct or not, however.

Finally, it should be noted that when a coil of fiber is used as the dispersive
element, the clock phase at the output of the fiber, relative to that at its input,
will tend to drift significantly with changing temperature. Thus, the temporal lens
requires its own clock recovery at the modulator, independent from the later clock
recovery used for the decision circuit of the detector.

8.2.3. The Need for an Integrate-and-dump Detector

While it has proved to be a wonderful tool in the laboratory, the temporal lens
tends to be too complex and expensive for practical acceptance in a dense WDM
system. (Each channel would need its own proper lens.) By contrast, the integrate-
and-dump detector, which, as we have seen, could potentially provide just as
good or even better performance (Fig. 8.7), as could an electronic device on a
single chip, would be much cheaper. With the extremely high-speed electronics
now being developed for 40 Gbit/s, there is no reason why a high-performance
integrate-and-dump chip could not be developed for 10 Gbit/s. Integration over
entire bit periods could be obtained by splitting the output of the detector between
two identical circuits processing successive bit periods. In each circuit, the detector
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voltage would be converted into a current source feeding an integrating capacitor.
Following integration over the first full bit period, interrogation and capacitor
discharge would follow in the second. (In the meantime, integration over that
second bit period would be carried out by the other circuit.) Outputs of the two
decision circuits would then be combined to yield the net integrate-and-dump
detector output.

8.3. Clock Recovery

Clock recovery is much easier when the signals are in RZ (return-to-zero) format,
as they are for soliton transmission, than when they are in NRZ (non-return-to-zero)
format. The reason is that an RZ signal train always has a large Fourier component
at the frequency of the bit rate, while NRZ has none of the same for random data.
Thus, for RZ signals, there are two straightforward and relatively easy ways to
effect clock recovery. The first, shown schematically in Fig. 8.10, consists of a
current- or voltage-controlled oscillator, phase-locked to the incoming RZ data
through a phase-sensitive detector. The oscillator, for example, might be based
on a sub-millimeter-diameter sphere of the ferromagnetic material YIG (yttrium–
iron–garnet), whose microwave resonance frequency is directly proportional to
a applied magnetic field. With a permanent magnet providing the major part of
the required field, a small coil carrying just milliamperes of current can complete

I or V
Controlled
Oscillator 

Phase
Sens.

Detector

Op
Amp

Optical RZ data in

Clk. out

Figure 8.10 Clock recovery for RZ data based on a current- or voltage-controlled oscil-
lator in a phase-locked loop. As shown here, a detected sample of the incoming data is
compared in a phase-sensitive detector with the output of the oscillator, thereby creating
an error signal that serves to lock the oscillator’s phase to that of the fundamental Fourier
component of the incoming data stream.
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the tuning. A detected sample of the incoming data is beat against the oscillator’s
output in a phase-sensitive detector to generate an error signal that controls the
frequency, and ultimately the exact phase of the oscillator, through an amplified
version of the phase-sensitive detector’s output. This overall arrangement, known
as a phase-locked loop, has the fundamental advantage of being able to respond to
a range of clock rates, and with proper design, it can be very stable and dependable.
Hence, this is the version that is almost universally chosen for commercial telecom-
munication systems. Compact, relatively inexpensive, pre-engineered versions of
the hardware shown in Fig. 8.10 are readily available.

The second form of clock recovery is strictly passive and consists of nothing
more than a very high-Q-factor resonator, tuned to the clock frequency, which
serves as a filter to extract the fundamental Fourier component from the incoming
RZ data (see Fig. 8.11). The resonator shown there is based on the TE011 mode,
used for a long time in wave meters because of its potentially very high Q factor.
One reason for the high Q factor is that in the TE011 mode, surface currents in the
cylinder walls make circular paths in the plane normal to the cylinder axis. Thus,
no current must flow across the (potentially lossy) joint between the cylinder walls
and the end caps. Rather, as shown in the figure, a small gap is purposely introduced
between the walls and the end caps to help suppress unwanted modes. The loaded
Q factors of several 10-GHz resonators like that of Fig. 8.11, whether machined
of copper or aluminum, had measured values consistently in excess of 10,000.

h

2a

H

Screw-actuated plunger
for fine tuning

Small dia. coaxial cables with
shorted loops in horizontal

plane for input/output
coupling to resonator H field

Figure 8.11 Microwave resonator for clock recovery of RZ data, based on the high-Q
TE011 wave-meter mode of a right cylindrical cavity. For that mode, the shape of the H field
paths are as shown; the E fields (not shown) make circular paths in the plane normal to the
cylinder axis. Formulas for calculating the resonant frequency from the diameter 2a and
height h of the cylinder are given in the text.
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The resonance frequency f0 is given rather accurately by

f0 = c

1.64a

√
1+0.6745(a/h)2, (8.10)

where a is the cylinder radius, h is its height, and c is the speed of light.
Note that Eq. (8.10) yields f =10 GHz from the combination of a=19 mm and
h=55 mm.

Since the Q factor is defined as the ratio of the energy stored in the resonator to
the loss per radian, and since voltage scales as the square root of power, if the input
to the resonator is removed at t =0, at resonance its output voltage rings down as

V (t) = V0 sin(2π t/T )exp(−π t/(TQ)), (8.11)

where T =1/f0 is the bit period. Since the characteristic ring-down time of TQ/π
represents more than 3000 bit periods at Q=10,000, the resonator’s output main-
tains the clock over much longer strings of zeros than are ever encountered
in practice. Furthermore, the phase of the resonator’s voltage output represents
the input phase as averaged over a similar number of bit periods. Thus, the stan-
dard deviation in time-phase jitter at the resonator’s output should be reduced from
that at input by a factor of ≈√

π /Q, or about 1/56th for Q=10,000. That factor
is sufficient to reduce even the worst of the typically encountered jitter to a truly
negligible level (less than a few tenths of a picosecond).

The principal advantages of the high-Q resonator as a clock recovery device lie
mainly in its simplicity, its low cost, and its ability to follow rapid changes in input
phase. Its greatest disadvantages lie in the fact that it must be tuned manually
to maintain resonance with changing clock frequency, and that the phase of its
output is strongly dependent on detuning in the neighborhood of resonance. Those
disadvantages tend to make it unsuitable for commercial transmission, and thus
restrict its use to the laboratory only. Even there, the potential for detuning from
changes in both ambient temperature and humidity require constant vigilance of
its adjustment.

8.4. Dispersion Measurement

Dispersion is clearly an all-important parameter in soliton transmission. Therefore,
it is equally important to be able to measure the dispersion of real fibers, both the
path-average values that determine soliton pulse energies and the local values that
play such an important role in dispersion management. This section describes
several important techniques for the measurement of both kinds of dispersion.
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8.4.1. Measurement of Path-average Dispersion
in Ordinary Maps

In an ordinary system (one not using PGD devices), measurement of the path-
average dispersion parameter D̄(λ) of a recirculating loop is fairly straightforward
if a complete WDM transmitter and its associated set of source lasers are available.
For each mean wavelength of the measurement, pairs of source wavelengths are
selected, symmetrically surrounding the mean wavelength, and typically spaced
apart from each other by a few nanometers, such that the expected D̄ of a few
tenths of a ps/nm-km will produce relative time displacements of a few hundreds
of picoseconds in just one pass through the 400- to 600-km-long loop. Such mea-
surements are easily and accurately made on a sampling scope, especially if the
pattern generator is set to create a few ones (pulses) surrounded on both sides by
several empty bit slots. Note that it is necessary to take the difference in relative
time displacements between measurements made in two places, first at the imme-
diate entry to the loop, and the second at its immediate output, so that the effect
of extraneous dispersion is not included. The path-average dispersion parameter
is then just that net time difference divided by the path length and the wavelength
separation of the two lasers. The measurements reported in Fig. 2.2 were made in
just that way.

8.4.2. Measurement When PGD Devices Are Involved

In Chapter 6, Section 6.1.4, we found that the use of PGD dispersion compensators
creates two distinctly different kinds and values of path-average dispersion, viz.,
D̄inter and D̄intra. Clearly, the former can be measured as just described, with only
the source laser spacings reduced to the minimum (the nearest channel spacing),
to compensate for that fact that D̄inter tends to be many times greater than the
normal D̄. For measurement of D̄intra, however, we have a more difficult problem,
since now both wavelengths of the measurement must lie within a given channel.
Additionally, both must lie well within the linear region of the group-delay curves
of the PGD device (see Fig. 6.13). Thus, the two wavelengths must be separated
by less than about 0.2 nm, a difference too small to be maintained accurately.
Furthermore, since the time displacements on just a single pass through the loop
tend to be very small, much more accurate results can be obtained by observing
the displacements following substantial numbers of round-trips.

To circumvent the problem of the very small wavelength separation required
of the sources, the measurements reported in Fig. 6.23 used the following trick.
The source for each measurement was just a single laser, tuned exactly to the
center of a particular channel. In the meantime, however, a phase modulator,
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Figure 8.12 Scheme for using a phase modulator to create a source of two closely spaced
wavelengths for measurement of D̄intra in a system using PGD devices. As shown here, the
modulator produces equal but opposite frequency or wavelength shifts on alternate pulses
of a repeated 1010 . . . pattern.

driven sinusoidally at one-fourth the bit rate (2.5 GHz), was imposed between the
transmitter and the loop, and it was phased so as to produce the maximum possible
frequency shifts of alternating sign on pulses of a repeated 1010… pattern (see
Fig. 8.12). The wavelength difference between pulses induced by the modulator
was not measured directly. Rather, the pulses were first sent through a fiber of
accurately known dispersion (a length of standard SMF) and the induced time
displacements were noted. The ratio of the relative time displacements in the loop
to those of the calibration fiber, multiplied by its dispersion, yielded the results
shown in Fig. 6.23.

8.4.3. The Dispersion Optical Time Domain Reflectometer

Almost from the very beginnings of the era of dispersion management, it became
clear that something was terribly wrong with at least some dispersion-shifted fibers.
In dense WDM, four-wave mixing products were often much greater than they
should have been. Or all too often, the measured dispersion of a fiber segment
would bear little relation to the dispersion of the longer spool from which it was
cut. Such observations created a strong incentive to find a nondestructive way
to measure the chromatic dispersion of a fiber as a function of distance along its
length. While methods based on modulational instability [112] and on a search for
the phase-matching condition in four-wave mixing [113] were proposed and tested,
those methods really represented attempts to measure λ0, the wavelength of zero
dispersion, rather than D itself. Aside from the fact that λ0 is often far removed from
the wavelength range of interest, those methods further required extensive data-
taking over a considerable wavelength range, so that the measurements for just one
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fiber took a long time. By contrast, the method we describe here, invented in early
1996 [114], and improved by 1998 [115], measures the map D(λi,z) directly and
with great accuracy, where λi is the wavelength of one of the two fixed-wavelength
sources used, and the data for a given map can be taken (including many repetitions
for signal averaging), processed, and displayed in just a few seconds. The method
was immediately seized upon by colleagues at what was then Lucent Denmark
as a desperately needed way to monitor their efforts to improve the uniformity
of various dispersion-shifted and dispersion-compensating fibers, and it was soon
used in the field to survey already installed fibers in long-haul transmission lines.
At least one commercial version also became available.

The method is based on the fact that four-wave mixing sidebands oscillate
in amplitude with a spatial frequency that is directly proportional to D(z). As
an intense pulse containing the two wavelengths λ1 and λ2 propagates down the
fiber, the oscillating sidebands it generates are observed at the fiber’s input through
Rayleigh backscattering. Thus the sideband intensity as a function of z is converted
into an equivalent return time, in the well-known principle of optical time domain
reflectometry (OTDR). Thus, our new instrument soon came to be known as the
dispersion OTDR, or more simply, as the DOTDR.

Basic Principles of Operation

As already noted, the method involves launching, simultaneously, strong, sub-
microsecond pulses at λ1 and λ2 into the fiber, so that they may generate FWM
product fields at the Stokes and anti-Stokes wavelengths, λS and λA, sequentially
in each part of the fiber. Consider the field at λS , for example. Because of the phase
mismatch δk [see Eq. (4.19)], the corresponding power PS(z) oscillates with the
spatial frequency

FS = 1/�S = (δk)/(2π ) = cD(λ1)[δλ/λ]2. (8.12)

Measuring the frequency FS(z) then measures D(λ1,z), with spatial resolution �S .
�S is typically in the sub-kilometer range.

The intensity oscillations, however, can be observed only in Rayleigh backscat-
tering at the input end of the fiber. There the signal will fluctuate in intensity at a
temporal frequency

fsig(t) = (c/2n)FS(z), (8.13)

where n is the effective index of refraction of the fiber and where t is the round-trip
time from the fiber input to point z and return, i.e.,

t = (2nz)/c. (8.14)
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Note that for n=1.46, δt is 9.73µs for each kilometer of path. Combining
Eqs. (8.12) and (8.13), we finally obtain

D(λ1,z) =
(

2n/c2
)

(λ1/δλ)2fsig[t = (2n/c)z]. (8.15)

The frequencies dictated by Eq. (8.15) are typically in the range of some tens to a
few hundreds of kilohertz.

From Eq. (4.18), and from the known loss and scattering properties of the
fiber, one can estimate the strength of the Rayleigh backscattered signal. For the
case where the input pulses at λ1 and λ2 are co-polarized, and where there is no
significant initial signal at λS and λA, the signal power at λS can be computed as

PS(z) = 4

(
λ

Dcδλ2

)2
(

n2P0
1

Aeff

)2

P0
2 sin2(δkz/2) × βδz exp(−4αz). (8.16)

[A similar expression yields the signal power, PA(z), at λA.] In Eq. (8.16),
P0

1 and P0
2 are the pulse powers at the fiber input, β is the Rayleigh backscat-

tering coefficient [see Eq. (3.18) and Table 3.1], δz is the fiber length occupied by
the pulses at any given time, and, consistent with the notation used earlier in this
book, α is the fiber’s loss coefficient, Aeff is the effective area of the fiber core, and
n2 is the nonlinear index coefficient. [The factor of four in the exponential loss term
stems from the combined facts that the quantity P2

1P2 declines as exp(−3αz), while
the Rayleigh backscattering at z suffers an additional loss factor of exp(−αz) in
returning to the fiber input.] Note that the factor sin2(δkz/2) in Eq. (8.16) provides
the desired intensity oscillations of PS(z). For pulse input powers (P0

1 and P0
2) on

the order of 1 W, Eq. (8.16) predicts, and actual measurements confirm, adequate
signal strength for measurement of spans up to many tens of kilometers long.

Finally, at high powers, the nonlinear contribution to δk might become
significant. From Eq. (4.19a), for the process 2ω1 →ω2+ωS , that contribution is

δknl = kNL(2P1−P2), (8.17)

with a similar expression (just reverse the subscripts 1 and 2) for the process 2ω2 →
ω1+ωA, and where kNL = (2πn2)/(λAeff ) is that already defined by Eq. (1.11).
Note that for the process 2ω1 →ω2+ωS , δknl is zero if P2 =2P1. (For the process
2ω2 →ω1+ωA, δknl is zero if P1 =2P2.) Even if the appropriate one of those
conditions is not precisely met, however, note that δknl will tend to be only a small
fraction of the linear δk for all but D very close to zero, since kNL is numerically
just ∼2.5 W−1 km−1 for Aeff =50µm2 and λ∼1550 nm.
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Technical Details of the Instrument

Figure 8.13 shows a schematic of the instrument. A multiwavelength semiconduc-
tor laser, originally designed as a source for dense WDM, provides any desired
pair of wavelengths from a grid with spacing 0.6 nm and covering most of the
erbium amplifier C band. The laser contains an extra-cavity semiconductor optical
amplifier switch, which is used to create 0.8-µs pulses at a 2- to 3-kHz repeti-
tion rate. The following erbium-doped fiber amplifier (EDFA) increases the pulse
power to ∼1 W, before the pulses travel through the circulator and a wavelength
division multiplexer into the fiber under test. Rayleigh backscattered light exits
the third port of the circulator. A high-finesse, tunable etalon with bandpass of
0.1 nm selects the signal either at λS or at λA. The signal is then detected and its
ac components are electronically amplified and filtered to remove useless high-
frequency components. It is then processed by a personal computer (PC) equipped

(∆λ = 0.1 nm)

EDFA
Fiber
under
test

tunable narrow
opt. bandpass
at λS or λA

PINFET

tunable lowpass
(50kHz–500kHz)

(ADC= analog-digital converter)
(MPC = multipurpose controller)

pulsed multi λ laser
with external cavity

semiconductor switch

0.8 µs,
2–3 kHz

PC for control,
measurement
and analysis

MPC ADC

select
λSλAλ1 and λ2 λ1λ2

Figure 8.13 Schematic of the dispersion OTDR. Dual-wavelength pulses created by the
multiwavelength laser are amplified by an EDFA to as much as 1-W power levels before
being sent on to the fiber under test. The Rayleigh backscattered signals are directed by
the circulator to a second EDFA before wavelength selection by an extremely narrow-band
optical filter. For details of electronic processing of the signals following detection, see text.
PINFET, Photodiode plus field-effect transistor.
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with a data acquisition board. The data board contains 12-bit analog-to-digital
converters having a maximum interlaced sampling rate of 20 MHz.

The computer is programmed to take a user-specified number of measurements
and display the averaged signal. Typically, thousands of scans can be taken and
averaged in just a couple of seconds, for a large increase in signal-to-noise ratio.
A special, fast, and efficient algorithm was devised to calculate the dispersion and
the dispersion parameter as a function of distance. The scheme of the algorithm is
sketched in Fig. 8.14. The algorithm converts the linear oscillation given by the
signal into a circular oscillation by taking its fast Fourier transform (FFT), elim-
inating the negative part of the symmetric spectrum, and then taking the inverse
FFT. As shown in the figure, the resulting signal is a curve that spirals around
in the complex plane. The absolute value of D(z) is directly proportional to the
curvature of this complex signal. Finally, the accumulated dispersion is computed
as the integral of D. Even for the longest fibers the algorithm needs only a fraction
of a second to compute the dispersion maps.

Strong four-wave mixing in the semiconductor amplifier switch of the source
laser produces significant seed fields at the Stokes and anti-Stokes wavelengths.
The seeds provide two important benefits. First, without the seed, from time to

Re

Im (R, Φ)

FFT

Discard
negative

frequencies inverse FFT

Distance

Distance Distance

Signal

DD∫

Frequency

Frequency

Φ vs. distance Φ vs. distanceaccum. disp. map dispersion map

Figure 8.14 Computer algorithm for processing the signal. The signal is first transformed
into the frequency domain, and its negative frequencies eliminated. The inverse transfor-
mation then yields a spiral in the complex plane, with time (or the equivalent distance) a
parameter along the spiral. �(z) and its z derivative become the accumulated dispersion
and D(z), respectively.
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time there arise situations where the Stokes vector rotates about a center at or near
the origin of the complex plane, so that the required oscillations in the signal power
tend to disappear. With the seed, however, the center of rotation is always well
away from the origin, so that this catastrophe can never happen. Second, with the
seed field, the instrument’s sensitivity is increased, since in that case, the detected
signal results from the beat between the relatively large seed field and the smaller
FWM field generated in the fiber. With the seed field, the measurement range in
dispersion-shifted fiber is extended to beyond 50 km, even without the help of
Raman gain.

Results of a Few Sample Measurements

To begin with the simplest case, Fig. 8.15 shows the FWM signal and correspond-
ing measured D(z) for a 22-km length of standard SMF. Since D of standard SMF
depends almost entirely on material properties, the measured D(z) is essentially
constant, as expected. Note the corresponding constant frequency of the FWM
signal.

Figure 8.16 shows the FWM signal and corresponding measured D(z) for a
24-km length of dispersion-shifted fiber. Note the considerable variation of D with
z in this case, and the corresponding change in FWM frequency. To demonstrate
the high degree of consistency of the measurements, this fiber was measured first
from one end and then from the other. Note how very closely the two curves of
D(z) fit one another.
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Figure 8.15 FWM signal and D(z), as measured by the dispersion OTDR for a 22-km
length of standard SMF.
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Figure 8.16 FWM signal and D(z), as measured by the dispersion OTDR for a 24-km
length of dispersion-shifted fiber.
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Figure 8.17 FWM signal and D(z), as measured by the dispersion OTDR for a 22-km
length of DCF. Backward Raman pumping produced the signal rise at the far end of the span.

The dispersion OTDR is equally effective with fibers of very high disper-
sion. Figure 8.17 shows the FWM signal and corresponding measured D(z) for a
22-km length of DCF. There are several interesting points here. First, to make this
measurement, the wavelength spacing δλ had to be reduced to the smallest value
available (0.6 nm), in order to keep the FWM oscillation frequency low enough.
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Second, since the loss rate in this particular coil of DCF was exceptionally high
at 0.51 dB/km, Raman gain from backward pumping was used to maintain the
signal levels for a good S/N ratio over the entire 22-km length. Third, the high
oscillation frequency shown here corresponds to a spatial resolution length of
about 200 m.

Figure 8.18 shows a measurement of 75 km of a dispersion-shifted fiber with
a loss coefficient of 0.21 dB/km. Since the average value of D was small and
the distance long, a wavelength spacing δλ=2.4 nm was chosen to have a good
compromise between spatial resolution and signal strength. First the measurements
were made on the entire span, with Raman pumping from both ends, and then on
sub-spans of 25-km length each, without pumping. Note that without pumping, a
measurement of the entire 75 km would not be possible, since in that case the signal
power would decrease by an untenable 63 dB over the length of the span. From the
nearly perfect fit of the two resultant sets of curves, we infer that the measurement
uncertainty is small. For example, the accumulated dispersion deviates by less
than ±0.1 ps/nm over the first 25 km, by less than ±0.2 over the next 25 km,
and by less than ±0.3 km over the last 25 km. This means that the accumulated
dispersion has an exceedingly small relative uncertainty of ±0.3% over these
distances. Finally, note that D varies from about −2 to −0.3 ps/nm-km, a ratio of
≈6 to 1! This huge variation shows how important it is for the construction of
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Figure 8.18 D(z) and the net dispersion [
∫ z

0 D(z)dz] as measured by the dispersion OTDR
for a 75-km length of dispersion-shifted fiber, with both backward and forward Raman
pumping used to keep the S/N ratio high enough over the entire span. Measurements of each
of the three 25-km sub-spans, made separately and without Raman gain, are appropriately
superimposed (dashed lines) on the 75-km measurements; note the excellent fit.



218 8 ♦ Hardware and Measurement Techniques

dispersion-managed systems to be able to measure the actual dispersion maps of
the fibers.

8.5. Accurate Measurement of Pulse Widths Using a
Detector with Finite Response Time

The attempt is often made to measure the temporal width and shape of a pulse
with a fast detector and a sampling scope. The response of the detector and the
following electronics often adds significant distortion and error, however, espe-
cially when the detector response time is a significant fraction of the pulse width.
But if a microwave spectrum analyzer is available, the measurement can be made
essentially independent of the detector response. The idea is first to calibrate the
detector by measuring the microwave spectrum of the detector’s response to a
train of known, reference pulses, whose widths are preferably short on the scale of
the detector response. The ratio of that measured response to the expected Fourier
transform of the reference pulses is then stored, to be used as a set of normaliz-
ing factors. The spectral intensities of a given measurement are divided by those
normalizing factors, and the adjusted spectrum is then fit to a spectrum of the
suspected pulse shape and width. Admittedly, the technique has its limitations:
Since the intensity detector loses all phase information, the measurements do not
yield a true inverse Fourier transform. It cannot distinguish between symmetrical
and asymmetrical pulse shapes. It yields no information about whether or not the
pulse is chirped. Finally, it yields the mean behavior of an entire pulse train, and
not of individual pulses. But when one can be reasonably sure on other grounds
that the pulse is symmetrical, it can yield accurate measurement of the pulse inten-
sity envelope shape and width. For that reason, and on account of its sensitivity,
it was used successfully in a number of the first long-haul soliton transmission
experiments [116–119].

It should be noted that the Fourier transform of a pulse’s intensity envelope
is significantly different from the pulse spectral densities that have been referred
to earlier in this book. The latter represents the square of the absolute value of
the Fourier transform of the amplitude function u(t), a spectral distribution that is
considerably narrower than the former. Table 8.1 and Fig. 8.19 attempt to make
that very clear for the common cases of Gaussian and sech pulses.

Since the measurement involves the behavior of long pulse trains, the resul-
tant spectrum reflects the influence of timing jitter, and it was used for the first
successful measurement of Gordon–Haus jitter. The analysis for any jitter with a
Gaussian distribution is as follows: The detector current I(t) (proportional to the
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Table 8.1 Pulse Shapes, Their Spectral Densities, and Fourier Transforms of Their
Intensity Envelopes Compareda

Pulse shape Intensity (|u(t)|2) Spectral density (|ũ(f )|2) Fourier transform of |u(t)|2

Gaussian e−(1.665t/τ )2
e−(2π f τ /1.665)2

e−(π f τ /1.665)2

sech sech2(1.763t/τ ) sech2(π2f τ /1.763) (π2f τ /1.763)csch(π2f τ /1.763)

aAs usual, τ is the pulse intensity FWHM.
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Figure 8.19 Fourier transform of intensity envelope (solid curve) and spectral density
(dashed curve) for unchirped, τ =30 ps (intensity FWHM) Gaussian (left) and sech (right)
pulses.

optical intensity) can be written as
∑N

n=1 I1(t−tn), where I1 is the contribution from
a single pulse and N is the number of pulses in the train. Its Fourier transform is
then

Ĩ( f ) =
∫

I(t)exp(i2π ft) = Ĩ1( f )
N∑

n=1

exp(i2π ftn), (8.18)

where f is the microwave frequency. Now, let tn =nT + τn, where T is the expected
period between pulses and τn is the random Gaussian timing jitter. Furthermore,
note that for a long pulse train, Ĩ( f ) is significantly large only for the harmonic
series fm ≡m/T . Then Eq. (8.18) becomes

Ĩ( fm) = Ĩ1( fm)
N∑

n=1

exp(i2π fmτn). (8.18a)

Now (as has been noted earlier several times in this book), for a random Gaussian

variable x, with variance σ 2, one has 〈exp(iλx)〉=exp
(
− 1

2
λ2σ 2

)
. Thus, the
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Figure 8.20 Microwave spectra of 1-GHz pulse repetition rate pulse trains. Solid curve:
Theoretical spectral envelope for unjittered, τ =50 ps, sech2 intensity envelope pulse train.
Dashed curve: Expected spectral envelope for the same pulse train, but jittered, with σGH =
20 ps. The vertical lines show the discrete spectrum of the pulse train.

microwave spectral intensity of the detector’s output is

〈Ĩ( fm) 〉 = NĨ1( fm)exp

[
−1

2
(2π fmσ )2

]
. (8.19)

Figure 8.20 shows the effect of σ =20 ps Gordon–Haus jitter on the microwave
spectrum of the intensity envelope of a train of τ =50 ps pulses. The figure approx-
imately reproduces one typical result from a real experiment [119]. (In the real
experiment, the pulse repetition rate was only 200 MHz, so the density of harmon-
ics was 5× as great, but that has no effect whatsoever on the shape of the spectral
envelope.)

Finally, it should be noted that this technique has become something of a fixture
in recirculating loop experiments as a monitor of the health of the recirculating
pulse train. In a transmission with a bit rate of 10 Gbit/s, for random data the
harmonic series is at 10, 20, 30, . . . GHz, so there tend to be only a few harmonics
within the range of the microwave spectrum analyzer (typically 0–22 GHz,
although 0–50-GHz instruments have recently become available). Nevertheless,
simple monitoring of the strength of the 10-GHz- or especially the 20-GHz-
harmonic as a function of time (hence as a function of distance) as each transmission
progresses can yield immediate feedback on whether or not the solitons are being
maintained at proper energy levels, and on whether or not they are significantly
affected by timing jitter. (Harmonic strength that does not droop is best.)
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8.6. Flat Raman Gain for Dense WDM

The purpose of this section is simply to show how relatively easy it is to obtain
flat Raman gain for dense WDM. We begin with the pumping scheme used for
an all-Raman amplified recirculating loop used for dense WDM experiments
that immediately preceded those described in Chapter 6, Section 6.2. It was a
480-km loop containing six 80-km spans of dispersion-shifted fiber (DSF), each
compensated by DCF. The pumping scheme is shown in Fig. 8.21. Note that
there are only six lasers for each span, three for the DCF and three for each
80-km length of DSF. For the main span, a pair of longer wavelength pump
lasers are polarization-multiplexed together before being combined by a WDM
coupler with a short-wavelength pump laser. For the DCF, the arrangement is
reversed, with two shorter wavelength lasers polarization-multiplexed together
before being wavelength-multiplexed with the longer wavelength laser. It should
be noted that the shorter wavelength lasers play a dual role here, since they act
as pumps for the longer wavelength Raman pumps, thereby helping those longer
pump wavelengths to penetrate deeper into the fiber, as well as to supply gain
directly to the shorter signal wavelengths. The lasers were all simple Fabry–Perot
cavity lasers with no external tuning element, so the lasing well above threshold
tended to occur in a band of many modes centered at the peak of the laser’s gain
band. Since the c/(2L) mode spacing of such lasers is typically ∼30 GHz, or about
0.2 nm at 1450 nm, the 6- to 8-nm-wide lasing bands typically contained on the
order of 30 or more frequencies (see Fig. 8.22). It is very important that the laser’s
power (∼200 mW) be spread out in that way, since the threshold for stimulated
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Figure 8.22 Spectra of the Raman pumps shown in Fig. 8.21.

Brillouin backscattering in the fibers of interest here is typically no more than
about 10–15 mW for light contained in the Brillouin scattering bandwidth of just a
few megahertz. (Stimulated backscattering, if it were allowed to occur, would act
like a mirror to prevent the Raman pump light from significantly penetrating the
fiber.) The spread of the laser’s output over many frequencies also makes it easy
to thoroughly depolarize the pump light simply by passing it through an appro-
priate length of PM fiber whose axis is skewed with respect to the original linear
polarization. That is, acting as a multiple wave plate, the PM fiber rapidly spreads
the polarization states of the various modes over the Poincaré sphere.

It is also handy that the center of the lasing band can be temperature tuned over
a considerable range (∼±10 nm), because that much tuning is very helpful for the
achievement of flat gain. (Thus, the wavelengths listed for the lasers in Fig. 8.21
tend to be nominal only.) With a bit of such tweaking of the mean wavelengths of
the individual lasers, the resultant gain band can be remarkably flat (see Fig. 8.23).
Note that over a gain band a bit wider than the erbium C band, the net gain variation
is no greater than about ±0.5 dB out of a total gain (for the six spans of the loop)
of 132 dB.

More lasers are needed as the WDM band becomes wider. Figure 8.24 shows
the arrangement used for pumping of the loop for the WDM experiments described
in Chapter 6, Section 6.2. Note that there are now eleven lasers altogether for each
100-km span, comprising four lasers for each of the two 50-km sub-spans, and
three more for the DCF coil. Otherwise, the details are much as described above
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Figure 8.23 Net gain (gain − loss) vs. wavelength for six spans using the Raman pumping
scheme shown in Fig. 8.21. The total gain here is 132 dB.
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Figure 8.24 All-Raman pumping scheme for 100-km spans of dispersion-shifted fiber,
mid-span back pumped, and compensated by DCF.

for the scheme of Fig. 8.21—that is, lasers of similar wavelength first polarization-
multiplexed together, followed by wavelength multiplexing of the shorter with the
longer wavelength groups.Also, as before, the listed wavelengths are nominal only.

Figure 8.25 is a curve of the net gain (this time out of 170 dB) of the six-span loop
versus wavelength for a temperature tuning of the lasers designed to achieve the
maximum possible WDM bandwidth. Although the gain variation is now bigger
(≈±1.5 dB), the WDM band is twice as wide (≈60 nm). The situation shown
here is not that obtained for the experiments in Section 6.2, however; there, the
lasers were tuned somewhat closer together, and all to longer wavelengths, to best
support the somewhat narrower WDM band (≈1549–1594 nm) of Fig. 6.24. As
a result of the closer pump wavelength spacing, the gain dip in the middle of the
WDM band was not as deep as that seen in Fig. 8.25.

For any given WDM band, the set of wavelengths and powers for the various
pump lasers was initially determined from a calculus designed to achieve minimum
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Figure 8.25 Net gain (gain − loss) vs. wavelength for six spans using the Raman pumping
scheme shown in Fig. 8.24. The total gain here is 170 dB.

possible gain variation. Although beyond the scope of this book, that calculus has
been fully described elsewhere [120]. It took into account the Raman interactions
among all of the pump and signal wavelengths and the change in fiber-effective
cross-section with wavelength, such that the signal gain was always calculated
from correct profiles of the pump powers as functions of distance. Although the
computed parameters almost always produced a gain profile close to that pre-
dicted, the final configuration almost always involved a certain amount of empirical
tweaking.

8.6.1. Gain Flatness Achievable from a Continuum of
Pump Wavelengths

We have just seen how a handful of pump wavelengths can produce a Raman
gain profile having remarkably small ripple. A very natural question then is, if
the number of pump wavelengths could be greatly increased, perhaps even to
form an effective continuum, could the gain flatness be improved, and if so, by
what factor? There is a straightforward answer to that question in the context
of the so-called “Raman smart pump”[121]: Imagine a pump laser whose optical
frequency is swept back and forth periodically so rapidly that all parts of a counter-
propagating signal would tend to experience the same spatially averaged effect
from the pump, and where the pump power spectral density, Pp(νp), is determined
by the relative amount of time spent at each frequency. Note that this scheme
completely eliminates the potential for complicating Raman interaction among
the pump frequencies, since each is spatially separated from all others as it travels
down the fiber. The total gain g(νs) (νs is the signal frequency) can then be very
simply written as

lng(νs) =
∫

G(νp−νs)Pp(νp)dνp, (8.20)
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Figure 8.26 Illustrating the potential performance of a Raman smart pump. Dashed curve:
Computed pump spectral intensity. Solid curve: The resultant Raman gain. Gain ripple in
the flat region is less than 0.01 dB peak-to-peak.

where G(νp−νs) is the Raman gain coefficient like that shown in Fig. 3.3, and
where Pp(νp) has already been multiplied by the appropriate exponential decay
factor and integrated over z. In principle, Eq. (8.20) can be solved for the distribu-
tion Pp(νp) required for a given g(νs) (such as flat gain over a particular frequency
range), by making use of the fact that the Fourier transform of the convolution of
the product of two terms is just the simple product of the Fourier transforms of the
individual terms. For flat gain, however, the need to specify reasonable skirts to
the flat region provides a significant complication. Thus, in practice, it has turned
out to be better to solve the problem “brute force” by repeatedly adjusting the
relative powers of a large number of discrete pump frequencies on a uniform grid
until the desired gain distribution is attained. (Although it sounds tedious, the
necessary number of iterations can be carried out on a fast PC in no more than
a minute or two.) Figure 8.26 shows the results of one of many such computa-
tions [120,121]. Note the apparently dead flat gain region of approximately 8-THz
width, or enough space for 160 WDM channels at the standard spacing of 50 GHz.
An expanded view of that region reveals a peak-to-peak gain ripple of less than
0.01 dB, representing only 0.05% variation out of the nominal 20-dB gain. Similar
computations reveal that the 15-THz-wide span of pump frequencies required here
can be reduced to less than 12 THz, with only an approximately twofold increase in
gain ripple, and that a 5-THz-wide flat gain region requires only a 10-THz span of
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pump frequencies. Still further computations reveal that just about any reasonable
gain profile could be produced by the smart pump. Thus, for example, one could
also have a gain linearly rising with frequency at just the right rate to compensate
for the Raman interaction between signal frequencies, or an even more complex
gain profile to compensate for gain ripple produced elsewhere.

The catch here is the fact that, to date at least, no one seems to know how to
produce the high-powered (many hundreds of milliwatts) pump lasers capable of
being rapidly (at rates on the order of 1 MHz) tuned over the frequency ranges
required for the smart pump. Nevertheless, even with present technology, it might
be possible to produce a lower powered version to provide convenient correction
to system gain ripple. In any event, the idea of the smart pump is too intriguing to
be ignored.

8.6.2. A “Radical” Proposal

In the very conservative telecommunications industry, tradition dies hard. The
issue here is the “amplifier huts” used to house the amplifiers and other hardware
needed periodically along a long-haul transmission line. A hardcover training
manual, dated 1938, for employees of the AT&T “long-lines” department, shows
several photographs of such “huts,” which are in fact most substantial one- and two-
story brick buildings! In those days, the huts housed vacuum tube amplifiers for
the open-air lines and coaxial cables carrying signals primarily at sub-megahertz
frequencies. Another photo shows the interior of a hut, complete with thousands
of pounds of lead-acid storage batteries and rack after rack of amplifiers and
other gear. With the advent of optical transmission, except for replacement of the
vacuum tube amplifiers with semiconductor-based optical repeaters, apparently
things did not change very much. Clearly, all of that real estate represents a costly
investment that is equally costly to maintain. It is no wonder, then, that a major holy
grail of the industry was to make the spacing between such “repeater” locations
as great as possible. That tradition and the mind-set that goes with it tend to
remain to this day. Hence the designation “radical” for the modest proposal we
make here.

The proposal is that in the context of all-optical transmission, the huts represent
a costly and unnecessary anachronism. They should be replaced with underground
manholes, no more than about 2-m deep, that would house little more than a few
Raman pump modules (see Fig. 8.27). Since the pump modules would consume
just a few tens of watts each (including power for thermoelectric cooling), they
could be powered from an electrical cable of modest size, buried along with the
fibers, and carrying dc voltage just low enough (say 1 kV) to allow for easy
transformation to the few volts required for the modules.
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Figure 8.27 Manholes to replace amplifier huts. The arrangement shown here would span
the typical 400- to 600-km distance between node points.

There would be many advantages, both technical and economic, from such an
arrangement. First, the low cost of the manholes would enable spacings of no
more than about 40 km. By thus allowing for backward Raman pumping with
such close spacing, as we have already seen, the noise penalty would become
essentially zero, and nonlinear penalties would tend to be reduced. Additionally,
since the required Raman pump power scales in direct proportion to the distance
between points of pump injection, the cost of the modules would go down and
their reliability would increase. The temporary loss of any one module would
tend not to be fatal, since the modest gain lost (about 8 dB) could be easily made
up by increased output from a few surrounding modules. Second, the thermal
environment a few meters underground tends to be stable and benign (cool). This
would make cooling of the pump modules easier, and fiber dispersion would no
longer be subject to significant thermal variation. (Major temperature changes are
particularly problematic when DCF modules are involved.) Also, of course, no air
conditioning would be required! Finally, the arrangement would tend to allow for
more flexible and efficient dispersion map design: Map periods would no longer
be rigidly fixed to the present 80- to 100-km hut spacing, thereby facilitating
proper dispersion-managed soliton transmission at bit rates >10 Gbit/s. Lossy and
expensive DCF modules might be eliminated altogether, so maps would use the
more efficient design employing transmission spans with D values of alternating
signs. In short, terrestrial system design would tend to gain much, if not all, of the
flexibility enjoyed in undersea systems, but with vastly greater ease of monitoring,
maintenance, and access for repair.





Appendix A

A Sample Maple Program for the
ODE Method

A.1. Introduction

The following pages are a printout of a program for efficient numerical computation
of pulse behavior in a dispersion map by the ODE method described in Chapter 2,
Section 2.1.4. The program was written by Bell Labs colleague Jürgen Gripp in
the late 1990s and is based on the Maple mathematics software package. It has
since proved to be an extremely handy tool for exploration of the behavior of
dispersion-managed solitons, and for map design. (Many of the graphs presented
in Chapter 2 were generated with this program.)

Following is an outline of the program sections:

● Section 1 (Initialization) simply sets up a few general computing parameters
and defines a few physical constants.

● Section 2 (Fundamental Input Parameters) allows the user to specify details
of the dispersion map, viz., the number of different fiber segments in the
map, and for each segment, its length, its D value, effective core area, loss
coefficient, and Raman gain coefficient. Usually, only the length of the +
(or −) D fiber is specified, and the program then calculates the length of the
other type to provide a user-specified D̄. In the convention used here, the
fiber segments are numbered 1, 2, 3, . . . , from left to right, i.e., in order of
increasing distance z. Provision is also made for specifying splice losses, and
the free spectral range of an etalon filter if one is used. Here also the user
specifies an unchirped pulse width.

229
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● Section 3 (Calculate Derivative Parameters) calculates quantities such as zc,
the characteristic dispersion length [Eq. (2.8)], the total map length, and the
map strength parameter S [Eq. (2.17)].

● Section 4 (Calculate Intensity Profile with and without Raman Gain) estab-
lishes analytic formulas for calculating the Raman pump and signal powers as
a function of distance. In the sample program shown here, the Raman pump-
ing is all in the “backward” direction, i.e., the pump light enters the right end
of each segment and travels left, counter to the signals. (The program can
and has been modified to allow for forward Raman pumping, and for lumped
amplifiers as well. For the case of lumped amplifiers, the intensity profiles
are, of course, just decaying exponentials.)

● Section 5 (Define and Plot Intensity Profile for a Given Raman Pump Power)
computes actual pump and signal powers as functions of z from a user specified
set of input pump powers. (The user must keep changing the set of pump
powers until he gets the desired signal power profile.) This section sets the
stage for computation of the quantity K(z) [Eq. (2.12)] in the next section.

● Section 6 (Calculate Pulse Evolution) iteratively applies the Maple routine
“dsolve” to ODE Eq. (2.6), and adjusts the signal power and input pulse chirp
parameter until the pulse at the output of the map essentially matches that at
its input.

● Section 7 (Calculate Graphs) does just that, as functions of z, for whatever
subset one wants from the pulse’s energy, width, bandwidth, chirp parameter,
as well as q and qNL . Other requested Maple output is shown in italics.

As was shown in Chapter 2, Section 2.2.4, the location of either of the zero chirp
points is a function of the intensity profile, and hence is unknown before the ODE
has been solved. Thus, for whatever map starting point is chosen, the program
must try different values of the chirp parameter for that starting point as well as
different pulse energies, until a satisfactory match is found between the pulses at
map output and map input. As long as the starting point is not too close to the
beginning or end points of a +D or −D fiber span, the program always converges
very quickly to a solution. On the other hand, if it is at or too close to an end point,
the program tends to become unstable and dsolve cannot find a solution. Thus, it
is usually helpful to start the program at or near the mid-point of a span, as was
done in the sample shown here, where the length of DCF (which in reality is all
one piece) was divided in two. Note that the Raman pump powers at the inputs to
segments 1 and 4 (the two halves of the DCF coil) are in a ratio determined by the
loss in the first-pumped segment of the DCF.
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The guiding etalon filter is in transmissive mode, and R is the intensity reflection
coefficient common to both mirrors. The program as written always places the filter
at the very far end of the map. Although the curve of transmission vs. frequency
of a typical etalon guiding filter tends to be shallow and almost sinusoidal (see
Fig. 3.28), consistent with the assumptions of the ODE method, the program
replaces the actual curve with a Gaussian whose curvature matches that of the
etalon at the transmission peak (see Fig. 6.25). In the program, the filter also
does not impose a frequency-dependent delay, or phase shift, as real filters do.
Thus, in the program, the only effect of the filter is to produce a step change in
the bandwidth of the pulse’s (Gaussian) spectrum (see, for example, Fig. 2.20).
Nevertheless, because of the fact that the pulse bandwidth is usually less than
about 30% of the etalon’s free spectral range (which is always made equal to the
WDM channel spacing), and because the dispersive effects of the filter tend to be
small and of odd (mostly third) order, the program computes the principal effects
of the filter with reasonable accuracy.

Finally, the first two lines of section 2 (beginning “DeleteOld”) allow the user
to choose between clearing out the old data when beginning a new program, or
saving data in order to create multiple-curve plots. For example, it is often useful
to run the program for a given map, but with a sequence of different values of
the unchirped pulse width; in that case, choose the option “DeleteOld := No”
by commenting out the other. In that way, each successive run will produce yet
another curve in each of the plots.
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A.2. The Maple Program

Initialization
restart:
Digits := 12:
colorcode :=   [red, green, blue, magenta, cyan, green, black, blue]:
with(plots) :   with(linalg):
setoptions(titlefont=[TIMES, ROMAN, 14], axesfont= [TIMES, ROMAN, 14],  labelfont=[TIMES, ROMAN, 14]):
pi :=  evalf(Pi): # establishing a numerical value for Pi
lambda :=   1550.0: # wavelength (nm)
c :=        2.9979e5: # speed of light (km/s)
n2 :=    2.6e-20: # nonlinear index (m^2/W)
Cs :=     2.0 * log(2.) * lambda^2 / pi / c: # proportionality factor for dispersion length (m*s*1e27)

Fundamental Input Parameters
#DeleteOld := No;
DeleteOld := Yes; # plot several calculations with colorcode
Tau:=    30: #unchirped  pulsewidth (ps)
FSR :=   50:  # free Spectral Range of etalon filter (GHz)
D_TW     := 7:
D_DCF    := -100:
D_bar    := 0.15: # path average dispersion parameter
##### the following lines depend on the design of the dispersion map ############
Num :=  4: # number of different fiber segments in the map
Length   := 100+L_DCF: # total map length
L_DCF1   := -50*(D_TW  -  D_bar) / D_DCF;
L_DCF2   := -50*(D_TW  -  D_bar) / D_DCF;
L_DCF   :=  L_DCF1  +  L_DCF2;
L_TW1  := 50; 
L_TW2  := 50;
LineTkns := [2, 3, 2, 3]: # line thickness in plots
Len := [L_DCF1,  L_TW1,  L_TW2,  L_DCF2]; # lengths of individual pieces (km)
Disp := [D_DCF,   D_TW,   D_TW,   D_DCF]: # dispersion parameter (ps/nm-km)
Aeff := [19, 50, 50, 19]: # fiber effective core area (um^2)
Alpha := [0.7,  0.21,  0.21,  0.7]: # loss coefficients (dB/km)
Gain := [160,  52,   52,   160]: # Raman gain coefficients (um^2/W-km)
Apply_G1 := [1, 0, 0, 0]: # where Raman pump 1 enters
Apply_G2 := [0, 1, 0, 0]: # where Raman pump 2 enters
Apply_G3 := [0, 0, 1, 0]: # where Raman pump 3 enters
Apply_G4 := [0, 0, 0, 1]: # where Raman pump 4 enters
Spl_loss := [0.0, 0.0, 0.0, 0.0, 0.0]: # splice loss (dB)

 

DeleteOld := Yes
L_DCF1 := 3.42500000000
L_DCF2 := 3.42500000000
L_DCF := 6.85000000000
L_TW1 := 50
L_TW2 := 50

Len := [3.42500000000, 50, 50, 3.42500000000]
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Calculate Derivative Parameters
alpha_s := Alpha * ln(10.0) / 10.0: # loss (1/km)
alpha_p := alpha_s * (1550.0 / 1465.0)^4: # loss (1/km)
zc := map(x -> Tau^2 / Cs / x, Disp): # characteristic dispersion length (km)
spl_loss := Spl_loss * ln(10.0) / 10.0;
Spl_pos[1] := 0:
spl_pos[1] := 0:
for n from 1 to Num do:
   len[n] := Len[n] / zc[n]; # normalized piece length
   Spl_pos[n + 1] := Spl_pos[n] + Len[n]:
   spl_pos[n + 1] := spl_pos[n] + len[n]:
od:
Length:= Spl_pos[Num + 1]; # total span length (km)
D_bar:= dotprod(Disp, Len) / (Length-L_DCF);        # average dispersion (ps/nm-km)
S  := add(abs(len[n]), n=1..Num)/2; # map strength

Length := 106.850000000
D_bar := 0.150000000000
S := 2.72100353831

Calculate Intensity Profile with and without Raman Gain
Ip1[Num + 1] := (n, z) -> 1:
for n from Num by -1 to 1 do:        # calculate 1. pump intensity profile
   Ip1[n]:=(n,z)->(exp(-spl_loss[n+1]*Apply_G1[n]))*Ip1[n+1](n+1,Spl_pos[n+1])
             * exp(Apply_G1[n]*alpha_p[n]*(z-Spl_pos[n+1])):
od:
Ip2[Num + 1] := (n, z) -> 1:
for n from Num by -1 to 1 do:        # calculate 2. pump intensity profile
   Ip2[n]:=(n,z)->(exp(-spl_loss[n+1]*Apply_G2[n]))*Ip2[n+1](n+1,Spl_pos[n+1])
             * exp(Apply_G2[n]*alpha_p[n]*(z-Spl_pos[n+1])):
od:
Ip3[Num + 1] := (n, z) -> 1:
for n from Num by -1 to 1 do:        # calculate 3. pump intensity profile
   Ip3[n]:=(n,z)->(exp(-spl_loss[n+1]*Apply_G3[n]))*Ip3[n+1](n+1,Spl_pos[n+1])
             * exp(Apply_G3[n]*alpha_p[n]*(z-Spl_pos[n + 1])):
od:
Ip4[Num + 1] := (n, z) -> 1:
for n from Num by -1 to 1 do:        # calculate 4. pump intensity profile
   Ip4[n]:=(n,z)->(exp(-spl_loss[n+1]*Apply_G4[n]))*Ip4[n+1](n+1,Spl_pos[n+1])
            * exp(Apply_G4[n]*alpha_p[n]*(z-Spl_pos[n+1])):
od:
Is[0] := (n, z) -> 1:
for n from 1 to Num do:        # calculate signal intensity profile (without Raman gain)
   Is[n]:=(n,z)->(exp(-spl_loss[n]))*Is[n-1](n-1,Spl_pos[n])
            *exp(-alpha_s[n]*(z-Spl_pos[n])):
od:
Is_RG[0] := (n, z) -> 1:
for n from 1 to Num do:        # calculate signal intensity profile (with Raman gain)
   Is_RG[n] := (n, z) -> (exp(-spl_loss[n])) * Is_RG[n - 1](n - 1, Spl_pos[n])
             * Is[n](n, z) / Is[n](n, Spl_pos[n])
     * exp(Gain[n] / 8e4 * (Apply_G1[n] * Wpump1 * Ip1[n](n, Spl_pos[n])
 + Apply_G2[n] * Wpump2 * Ip2[n](n, Spl_pos[n])
 + Apply_G3[n] * Wpump3 * Ip3[n](n, Spl_pos[n])
 + Apply_G4[n] * Wpump4 * Ip4[n](n, Spl_pos[n]))
                / alpha_p[n] * (exp(alpha_p[n] * (z - Spl_pos[n])) - 1)):
od:
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Define and Plot Intensity Profile for Given Raman Pump Power
Wpump1:= 140.0; # pump power in mW
Wpump2:= 237.0 ; # pump power in mW
Wpump3:= 237.0 ; # pump power in mW
Wpump4:= 81.0; # pump power in mW
zmax  := 100: # step size for calculation of average signal power
P_Ip1:=[]:  P_Ip2:=[]:  P_Ip3:=[]:  P_Ip4:=[]:        # initialize Raman pump plots as empty sets
P_Is:=[]: # initialize signal plot without Raman pump as empty set
P_Is_RG:=[]: # initialize Raman pump plots as empty sets
n:= 'n': # unassign variable n (required for sum)
W_ave:=sum(add(Is_RG[n](n,z/zmax*(Spl_pos[n+1]-Spl_pos[n])+Spl_pos[n]),z=1..zmax)
        /zmax * (Spl_pos[n+1] - Spl_pos[n]), n=1..Num) / Length;
 for n from 1 to Num do: # add pieces to sets of plots
   P_Ip1:= [op(P_Ip1), plot(10*log10(Ip1[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1],  color= blue)]:
   P_Ip2:= [op(P_Ip2), plot(10*log10(Ip2[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1],  color= green)]:
   P_Ip3:= [op(P_Ip3), plot(10*log10(Ip3[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1],  color = cyan)]:
   P_Ip4:= [op(P_Ip4), plot(10*log10(Ip4[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1],  color= red)]:
   P_Is:=   [op(P_Is),  plot(10*log10(Is[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1],  color = red,thickness=2)]:
   P_Is_RG:=[op(P_Is_RG),plot(10*log10(Is_RG[n](n,z)),  z=Spl_pos[n]..Spl_pos[n+1], y=-8.0..2.0, 
       color=blue,thickness=4)]:
 od:
 P_ave:= plot([z, 10*log10(W_ave),  z=0..Length],   color=blue):
 display(P_Is_RG, P_ave);  # plot signal with and without Raman pump
 #display(P_Ip1, P_Ip2,P_Ip3); # plot Raman pumps
 Is_end_SF:=Is_RG[Num](Num, Spl_pos[Num]):        # relative signal power at end of span

Wpump1 := 152.0
Wpump2 := 236.0
Wpump3 := 236.0
Wpump4 := 76.0
W_ave := 0.755827251687
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Calculate Pulse Evolution (this adjusts pulse energy to get periodic
pulse width) with Target Mirror Reflectivity
#############################################################################
 final_R := 0.0:
 initial_chirp := 0:        # adjust prechirp to get wanted mirror refl. (next paragraph)
 delta_chirp := 0.03:
 R0  := 0.0: # initial mirror reflectivity
 K0 := -0.012:        # initial pulse energy (negative if first dispersion negative!)
 R := 1e6:
 eps_R := 0.001:
 loop_no := 1:
 while (abs(final_R - R) > eps_R) do:
 print(loop_no, `initial chirp`, initial_chirp);
 #############################################################################
 dK := 0.01: # step size
 eps := 0.0001:        # precision
 Iq_end[3] := 2 * eps:
 while (abs(Iq_end[3]) > eps) do:
   for m in [-1, 1, 0] do:
     K := K0 + m * dK:
     ################# calculate prechirp ##########################
     if (abs(initial_chirp) > 0.001) then
       Isignal:=z->Is_RG[1](1, zc[1]*z)/Is_RG[1](1,0);
       ode:={diff(Rq(z),z)=K*Isignal(z)*2*Rq(z)*Iq(z)*(Rq(z)/(Rq(z)^2+Iq(z)^2))^1.5,
         diff(Iq(z),z)=1-K*Isignal(z)*(Rq(z)^2-Iq(z)^2)*(Rq(z)/(Rq(z)^2+Iq(z)^2))^1.5,
               Rq(0)=1,Iq(0)=0};
       q_ini:=dsolve(ode,{Rq(z),Iq(z)}, type=numeric,output=listprocedure):
       R_ini:=subs(q_ini,Rq(z)):        # Re(q) is proportional to 1/BW^2
       I_ini:=subs(q_ini, Iq(z)): #Im(q) is proportional to the dispersion
       f_chirp := -I_ini / (R_ini^2+I_ini^2):
       z_zero:=-initial_chirp:
       eps_z_zero:=abs(initial_chirp / 100.0):
       while (abs(f_chirp(z_zero)-initial_chirp) > eps_z_zero) do:
         z_zero:=z_zero*initial_chirp / f_chirp(z_zero);
       od:
     else
       z_zero:= 0;
       R_ini(z_zero):= 1:
       I_ini(z_zero):= 0;
     fi:
     Rq_ini:= R_ini(z_zero);
     Iq_ini:= I_ini(z_zero);
     ############ end of prechirp calculation ######################
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    for n from 1 to Num do:
       Isignal:=z->Is_RG[n](n,zc[n]*(z-spl_pos[n])+Spl_pos[n]) / Is_RG[n](n, Spl_pos[n]);
       ode:={diff(Rq(z),z)=K*Isignal(z)*2*Rq(z)*Iq(z)*(Rq(z) / (Rq(z)^2 + Iq(z)^2))^1.5,
         diff(Iq(z),z)=1-K*Isignal(z)*(Rq(z)^2-Iq(z)^2)*(Rq(z) / (Rq(z)^2 + Iq(z)^2))^1.5,
               Rq(spl_pos[n]) = Rq_ini, Iq(spl_pos[n]) = Iq_ini};
       q[n]:= dsolve(ode, {Rq(z),Iq(z)}, type=numeric, output=listprocedure):
       Req[n]:= subs(q[n], Rq(z)):        # Re(q) is proportional to 1/BW^2
       Imq[n]:= subs(q[n], Iq(z)): # Im(q) is proportional to the dispersion
       if (n < Num)
         then K:= K*exp(-spl_loss[n+1])*Isignal(spl_pos[n+1]) / Isignal(spl_pos[n])* Aeff[n] / Aeff[n+1]*
Disp[n] / Disp[n+1];
       fi:
       Rq_ini:=Req[n](spl_pos[n+1]):
       Iq_ini:= Imq[n](spl_pos[n+1]):
     od:
     Iq_end[m+2]:= Iq_ini - I_ini(z_zero):
   od:
   print (`K0=`, K0);
   if evalf(abs(Iq_end[3])) > eps then
     A := (Iq_end[3] - Iq_end[1]) / 2.0:
     B := Iq_end[1] + Iq_end[3] - 2 * Iq_end[2]:
     ff := 2 * Iq_end[2] * B / A^2:
     if abs(ff) < 1e-5
       then K0 := K0 - dK * Iq_end[2] / A:
       else K0 := K0 - dK * A / B * (1 - sqrt(1 - ff)):
     fi:
     dK := -dK * Iq_end[2] / A:
   fi:
 od:
 Rq_end:= Rq_ini:
 Iq_L := Iq_ini:
W0 := sqrt(2.*ln(2.)) / 2 / pi^(3/2) / n2 / c*lambda^3 * Aeff[1]*K0*Disp[1] / Tau* 1e-24:
 print (`Initial pulse energy W0 (pJ) =`, W0);        
 print (`Average pulse energy (pJ) =`, W0 * W_ave);
 ############
 dR  := 0.005:        # step size
 eps := 0.0001: # precision
 b   := (Tau / 1665.1)^2:
 deltaRq[3] := 2 * eps:
 while (abs(deltaRq[3]) > eps) do:
   for m in [-1, 1, 0] do:
     R   := R0 + m * dR:
     Q   := 4. * R / (1-R)^2:                       # Q factor of etalon (1)
     xmax:= 5. / sqrt(b):
     d00 := (1177.4/Tau)^2*(1 / (evalf(int(x^2*exp(-b*x^2)/(1+Q*sin(x/FSR/2)^2), x=0..xmax)/ 
int(exp(-b*x^2)/(1+Q*sin(x / FSR / 2)^2),x=0..xmax))) - 2*b);
     d0   := d00 / Rq_end;
     deltaRq[m + 2] := R_ini(z_zero) - Rq_end - d0;
   od:
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   if (abs(deltaRq[3]) > eps) then
     A := (deltaRq[3] - deltaRq[1]) / 2.0:
     B := deltaRq[1] + deltaRq[3] - 2 * deltaRq[2]:
     ff := 2 * deltaRq[2] * B / A^2:
     if abs(ff) < 1e-5
      then R0 := R0 - dR * deltaRq[2] / A:
       else R0 := R0 - dR * A / B * (1 - sqrt(1 - ff)):
     fi:
     dR := -dR * deltaRq[2] / A:
   fi:
   print (`R=`, R);
 od:
 ############
 if (round(loop_no) = 1) then
   ini_ch[1] := initial_chirp:
   fin_R[1] := R:
   if (R < final_R) then
     initial_chirp := initial_chirp + delta_chirp;
   else
     initial_chirp := initial_chirp - delta_chirp;
   fi:
 else
   ini_ch[loop_no] := initial_chirp:
   fin_R[loop_no] := R:
   initial_chirp := ini_ch[loop_no] + (ini_ch[loop_no] - ini_ch[loop_no - 1])*
 (final_R - fin_R[loop_no])/ (fin_R[loop_no] - fin_R[loop_no - 1]);
 fi:
 loop_no := loop_no + 1;
 od:
 initial_chirp := ini_ch[loop_no - 1];
 print (“=========================   done   ============================”);
 ############

1, initial chirp, 0

K0=, −0.012

K0=, −0.0124149891830

K0=, −0.0124150633251

Initial pulse energy W0 (pJ) =, 0.0397153883315

Average pulse energy (pJ) =, 0.0285782889419

R=, 0.

R=, 0.000921377853846

R=, 0.000921401031166

initial_chirp := 0

“==========================   done   ================ ===========”
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Calculate Graphs
 if (DeleteOld = Yes)         # set DeleteOld to ‘No’ to keep old plots
 then
   P_E:= []: P_q:= []: P_qNL:= []: P_PW:= []: P_BW:= []: P_CH:= []:
   T_E := “Pulse Energy  -  Average Values (pJ): ”: 
   T_q := “The complex quantity q”:
   T_qNL := qNL  -  required R, D (ps/nm-km): ”:
   T_PW := “Pulsewidth  -  Initial Values (ps): ”:
   T_BW := “Bandwidth”: 
   T_CH := “Chirp  -  Initial Values: ”:
 fi:
 PlotNo := nops(P_q) / Num + 1:
 print (PlotNo);
 P_E := [op(P_E), plot([z, 10 * log10(W0 * W_ave), z = 0..Length], color=colorcode[PlotNo])]:
 for n from 1 to Num do:
   if (spl_pos[n] < spl_pos[n + 1])
     then P_range := spl_pos[n]..spl_pos[n + 1];
     else P_range := spl_pos[n + 1]..spl_pos[n];
   fi:
   z_real := (z - spl_pos[n]) * zc[n] + Spl_pos[n]:
   P_E:= [op(P_E),plot(10*log10(W0*Is_RG[n](n,z)), z=Spl_pos[n]..Spl_pos[n + 1],
             color=colorcode[PlotNo], thickness=LineTkns[n])]:
   P_q:= [op(P_q),odeplot(q[n],[Rq(z),Iq(z)], P_range,
             color=colorcode[PlotNo], thickness=LineTkns[n])]:
   P_qNL:=[op(P_qNL),odeplot(q[n],[Rq(z)-R_ini(z_zero),Iq(z)-z-I_ini(z_zero)],
          P_range,color=colorcode[PlotNo], thickness=LineTkns[n])]:
   P_PW:=[op(P_PW),odeplot(q[n],[z_real,Tau*sqrt((Rq(z)^2+Iq(z)^2) / Rq(z))],
          P_range,color=colorcode[PlotNo], thickness=LineTkns[n])]:
   P_BW:=[op(P_BW),odeplot(q[n],[z_real,440 / (Tau * sqrt(Rq(z)))],
          P_range,color=colorcode[PlotNo], thickness=LineTkns[n])]:
   P_CH:=[op(P_CH),odeplot(q[n],[z_real,-Iq(z) / (Rq(z)^2+Iq(z)^2)],
          P_range,color=colorcode[PlotNo], thickness=LineTkns[n])]:
 od:
 T_E   := sprintf(“%s  %s=%.5f”, T_E, colorcode[PlotNo], W0 * W_ave): 
 T_qNL := sprintf(“%s  %s=%.3f, %.3f, %.3f”,T_qNL,colorcode[PlotNo],R,D_bar,
          0.28288138 * Tau^2 * (spl_pos[Num + 1] - Iq_L) / Length): 
 T_PW  := sprintf(“%s  %s=%.1f”, T_PW, colorcode[PlotNo], Tau): 
 T_CH  := sprintf(“%s  %s=%.3f”, T_CH, colorcode[PlotNo], initial_chirp): 

Plot Graphs
 display(P_E,   title = T_E);        # plot all graphs at once
 #display(P_q,   title = T_q);
 #display(P_qNL, title = T_qNL);
 display(P_PW,  title = T_PW);
 display(P_BW,  title = T_BW);
 display(P_CH,  title = T_CH)
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Appendix B

A Brief History of Solitons

B.1. Apologia

The general subject of solitons has become a vast one, with ramifications in many
fields of science and technology. This very brief history does not even begin to
attempt to cover such an extensive field. Rather, it is necessarily focused on the
background to the specific technical subject matter of this book—solitons in optical
fibers, and specifically, their use in optical communications. It also provides the
proper place to discuss some important ideas that did not easily fit into the principal
scheme of this book.

B.2. The Beginning: John Scott Russell and
His Discovery

The Union Canal winds along the Scottish lowlands, from Falkirk to the Lochrin
Basin in Edinburgh. With width and depth of about 4 and 1.5 meters, respectively,
other than the fact that there is not one lock or sluice in its 50-km length, there
would seem to be little to distinguish it from many another early 19th century
canal. But in 1834, it was the site of a momentous discovery by the then 26-year-
old recently appointed lecturer at Herriot Watt University in Edinburgh, and later
naval architect, John Scott Russell. Scott Russell’s experience, which took place

241
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at Hermiston, close to the Riccarton campus of Herriot Watt, is best appreciated
from his own words [122]:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have called the
Wave of Translation.

Scott Russell’s “solitary…Wave of Translation,” as an essentially nondispersive
wave, was, of course, the water-wave analog of the fundamental soliton discussed
in this book. What is truly solitary about the experience, however, is not the
wave itself—surely, similar events had occurred time and again, and been ignored;
rather, it was Scott Russell’s recognition that he had just witnessed something truly
important, and worth following up on. He did just that, by building a 30-foot-long
water tank in his back yard so that he might generate and make a controlled study
of the solitary waves. Through a careful series of measurements, he determined
the following empirical formula for the velocity of his solitary waves:

v =√
g(h+k), (B.1)

“k being the height of the crest of the wave above the plane of repose of the fluid,
h the depth throughout the fluid in repose, and g the measure of gravity.” Later, as
a naval architect, Scott Russell had the idea that his solitary wave could somehow
be used to improve the efficiency of sailing vessels. One can only speculate on
how pleased he might have been if he could have known that some day, albeit in
a very different context, his stationary waves would play an important role in the
world of engineering.

Scott Russell tried very hard, but in vain, to find the equation of motion for his
solitary waves. His lack of success is understandable, however, since the mathe-
matical basis of classical physics was then just in its infancy, partial differential
equations were a novel concept, and nonlinear differential equations were virtually
unheard of. In particular, he examined theoretical models by Lagrange, Poisson,
Cauchy, Kelland, and Airy, among others, and found them all wanting, with none
able to predict his experimentally determined formula [Eq. (B.1)] for the group
velocity.
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B.2.1. The Equation of Korteweg and de Vries

Many years had to pass before two Dutchmen, Diederik Korteweg and Gustav
de Vries, in 1895, published [123] the famous equation that bears their names
and describes Scott Russell’s solitary waves. In its original form, the Korteweg–
de Vries (KdV) equation is

∂ζ

∂t
+c

∂ζ

∂z
+ 3c

2h
ζ

∂ζ

∂z
+ ch2

6
δ
∂3ζ

∂z3
=0, (B.2)

where ζ (z, t) is the height of the fluid above its plane of repose, c=√
gh is the

velocity of a wave of infinitesimal height on the surface of fluid h deep, and δ is a
parameter derived from the coefficient of surface tension, the gravitational constant
g, and h. For k �h, Eq. (B.2) has the solution

ζ =k sech2[√k/2(z−Vt)], (B.3)

where V =c(1+k/2h). Note that this velocity is just the small-amplitude expansion
of Scott Russell’s original formula [Eq. (B.1)].

Equation (B.2) can be reduced to “dimensionless” form with the equivalent of
the soliton units of Chapter 1. By first changing to a frame moving at velocity c to
eliminate the second term in Eq. (B.2), and then renormalizing by setting t′ = t/T ,
z′ = z/Z , and u=ζ /η, one gets

∂u

∂t′
+ 3c

2h

ηT

X
u

∂u

∂z′ +
ch2

6
δ

T

Z3

∂3u

∂z′3 =0. (B.4)

The soliton units η,T ,Z must satisfy the equations

ηT

Z
= 4h

c
and

T

Z3
= 6

ch2δ
.

As in the treatment of the NLS equation, there are three parameters and only two
equations, but it is convenient to set η=1. Dropping the primes, the transformed
Eq. (B.4) becomes

∂u

∂t
+6u

∂u

∂z
+ ∂3u

∂z3
=0, (B.5)

which is the modern, canonical form of the KdV equation. Its solitary solution is

u(z, t) = asech2(
√

a/2(z−2at)). (B.6)

Except for the facts that the velocity (2a) is just the incremental velocity, i.e., the
net velocity with c subtracted off, and that all terms are now in soliton units, the
solution Eq. (B.6) is clearly the same as that of Eq. (B.3). [Note that the incremental
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velocity of Eq. (B.3), multiplied by T /Z =4h/c for transformation to soliton units,
becomes 2k, i.e., twice the amplitude, just as in Eq. (B.6).]

It is important to note the similarities and the differences between this solitary
solution and the soliton of the NLS equation that we have studied in this book.
Although the KdV wave has the same shape (sech2) as the intensity envelope of
the NLS soliton, note that its group velocity (2a) is proportional to its amplitude,
while its width is

√
2/a. Thus a higher amplitude (and thinner) solitary wave,

initially behind a lower, wider one, will eventually overtake and pass through the
lower wave.

B.2.2. How Solitary Waves Became Solitons

We must now fast-forward in time, to 1965, when Norman Zabusky and Martin
Kruskal, both then working at Bell Laboratories in Murray Hill, New Jersey, were
investigating numerical solutions of the KdV equation. In particular, they noticed
that colliding solitary waves of the KdV equation emerged from the collision with
all of their original properties intact. They further noticed that sinusoidal waves
would evolve into solitary waves plus dispersive radiation. Because of this particle-
like behavior of the solitary waves, they decided to name them “solitons” [124].
The name was apt and caught on quickly, especially in the world of mathematical
physics. After all, the soliton was perhaps the first “particle” to be discovered with
pure mathematics!

Incidentally, in his water tank experiments, Scott Russell had observed that his
solitary waves could pass through each other and emerge without change. In his
day, however, since the concept of fundamental particles scarcely existed, he could
not have been expected to see his waves as such.

B.3. Solitons in Optical Fibers

B.3.1. Origins of the Nonlinear Schrödinger Equation

The NLS equation is much newer than the KdV equation.1 A stationary version
of the NLS equation (one without the time-derivative term) first appeared in 1950
within the context of superconductivity [125], and in the 1960s, the stationary ver-
sion was used to describe the self-focusing of light in nonlinear media [126–128].
Atime-dependent version first appeared in 1961, where it was used to describe Bose
condensates in solid state physics [129–131]. Nevertheless, Zakharov, in 1967,

1 We wish to thank Ildar Gabitov for considerable help with this sketch of the origins of the NLS
equation.
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was the first to use the time-dependent NLS equation to describe the evolution of
optical wave packets in nonlinear dielectric media [132]. The one-dimensional,
time-dependent version (basically, the one we have studied in this book) also first
appeared in 1967 [133]. As already pointed out in Chapter 1 of this book, Zakharov
and Shabat [1,2] were the first to show that the general solution of the NLS equation
consisted of solitons accompanied by dispersive wave radiation, and in Chapter 4
we have been introduced to some of the powerful and useful tools that can be
derived from their inverse scattering theory.

B.3.2. First Application to Optical Fibers

In the early 1970s, when the technology of low-loss optical fibers was still in its
infancy, Akira Hasegawa was a theoretician at Bell Labs in Murray Hill, NJ. As a
specialist in plasma physics, however, Hasegawa knew about the NLS equation,
and he knew about Zakharov’s application of the NLS equation to the general
problem of dielectric media. Hasegawa was thus primed to realize that the NLS
equation was appropriate for the calculation of pulse propagation in optical fibers,
and that they should therefore support solitons. In a seminal work published in
1973 [134], he and co-author Frederick Tappert showed how the NLS equation
applied to single-mode fibers, derived the essential properties of the corresponding
solitons, and in supporting numerical simulation, showed that the solitons were
stable and robust. It is noteworthy that at the time, fibers having low loss in the
region of anomalous dispersion (λ>1300 nm; see Chapter 1, Section 1.2.3) did
not exist. Traces of heavy metal and OH ions, not thoroughly purged until several
years later, created significant absorption in that longer wavelength region, forcing
the loss minimum to the much shorter wavelength of about 800 nm. Thus, the
paper by Hasegawa and Tappert [134] was also a work of genuine foresight and
imagination. [Also because of that loss problem, Hasagewa and Tappert followed
up almost immediately with another paper [135] describing “dark” solitons, i.e.,
sech-shaped holes in a cw background, which could exist in the presence of normal
dispersion. For a number of practical reasons, however, the dark solitons have
never been used for transmission.]

B.3.3. Higher Order Solitons

In another seminal work that appeared soon after the Hasegawa and Tappert papers,
Satsuma and Yajima [136], using the inverse scattering method of Zakharov and
Shabat, studied the resolution of various initial wave functions into solitons and
dispersive wave radiation. Among the input functions they studied was the special
case u(t,z =0)=Asech(t). They found that this input pulse contains a number of
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fundamental solitons, with amplitudes Aj given by the positive values of 2A−1,
2A−3, 2A−5, and so on, accompanied generally by a small amount of radia-
tion. Thus, for 0.5<A≤1.5 there is one soliton, for 1.5<A≤2.5 there are two
solitons, and so forth. Recall that the energy of the input pulse is equal to 2A2,
while the energy of each fundamental soliton is equal to 2Aj. From this, it is easy
to show that when A is an integer N , the input pulse contains just N fundamental
solitons with amplitudes 1, 3, 5, . . . 2N −1, and there is no radiation. These input
pulses, namely u(t,z =0)=N sech(t), have been heuristically called N th order
solitons.

Satsuma and Yajima also discovered that when A=N the pulse behavior under-
goes a pattern of narrowing and splitting with a period, in soliton units, of z0 =π /2.
Translated into real-world units, this “soliton period” is

z0 = π

2
zc = 1

(1.763)2

π2c

λ2

τ 2

D
, (B.7)

where zc is the characteristic dispersion length defined by Eq. (1.18). Satsuma and
Yajima provided the following analytic solution for the case N =2,

u(z, t) = 4exp(−iz/2)[cosh(3t)+3cosh(t)exp(−i4z)]

cosh(4t)+4cosh(2t)+3cos(4z)
. (B.8)

We note that the formalism of Satsuma and Yajima yields the soliton functions as
the complex conjugates of ours.

Using the equations given in the beginning of Chapter 4, Section 4.2.2, analytic
forms for the N =2 and N =3 solitons can be derived without great difficulty
(hint, take A1 =1, A2 =3, A3 =5, and φ10 =0, φ20 =π , and φ30 =0). The result
for the N =3 soliton is

u(z, t)=6eiz/2

×
cosh(8t)+8ei4z cosh(6t)+(18ei4z +10ei12z

)
cosh(4t)

+ (
16+40ei12z

)
cosh(2t)+16ei16z +22.5ei8z +2.5e−i8z

cosh(9t)+9cosh(7t)+36cos(4z)cosh(5t)
+ (64+20cos(12z))cosh(3t)+(36+90cos(8z))cosh(t)

(B.9)

Note that the N =2 and N =3 soliton functions at z =0 are respectively expan-
sions of the quantity N cosh[(N2−1)t]/ cosh[N2t]=N sech(t). Note also that the
arguments of the phase terms are all multiples of 4z, so that these functions repeat
with the aforementioned soliton period of z0 =π /2. All of the higher order solitons
have these properties.

Figure B.1 graphs the temporal behavior of the power |u(z, t)|2 of the N =2 and
N =3 solitons for several values of z.
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Figure B.1 Behavior of the N =2 and N =3 solitons, compared with that of the funda-
mental (N =1) soliton. Note that the vertical scale for the fundamental soliton has been
magnified with respect to that of the other two.

It should be emphasized that for each N >1, the higher order soliton is really
a nonlinear superposition of N fundamental solitons (with amplitudes Aj of 1, 3,
5, . . . , 2N −1). The substantial pulse narrowing and splitting seen in Fig. B.1 results
from periodic interference among the solitons. It is also so that the higher order
solitons, unlike the fundamental soliton, are not stable in the face of perturbations.
Perturbations which differently affect the frequencies of the underlying solitons,
such as third-order dispersion or the ASE noise from amplifiers, cause the under-
lying solitons to come apart as the pulse propagates. Nevertheless, as we shall soon
see, the higher order solitons were of great importance to the first experimental
observation of solitons in optical fibers and to a femtosecond pulse source known
as the “soliton laser.”

B.3.4. First Experimental Observation

[To avoid a certain awkwardness, the account in this section is in the first person
of L. F. Mollenauer.]



248 Appendix B ♦ A Brief History of Solitons

In the early 1970s, the most common sources of picosecond light pulses were
synchronously pumped, mode-locked lasers using a thin stream of solvent contain-
ing one or another organic dye as the gain medium. Since there appeared to be no
dyes for similar laser action in the near infrared, I spent several years developing
substitutes based on certain color centers in alkali halide crystals [137]. By the
late 1970s, two color centers, the “F+

2 ” center in the host NaCl, and the “Tl0(1)”
center in the host KCl, both pumped at 1060 nm by a cw, Nd:YAG laser, could
provide continuous tuning over the ranges of ≈1420–1780 and ≈1400–1600 nm,
respectively, with cw output powers at band center on the order of 1 W. As these
laser-active centers were unstable at room temperature, they and their equally del-
icate alkali halide hosts had to be maintained in high vacuum on a copper finger
cooled to 77 K (liquid N2 temperature), not a small nuisance! Nevertheless, when
synchronously pumped, the corresponding lasers could produce unchirped pulses
of about 7-ps width at a repetition rate of 100 MHz. Thus, despite all of the sur-
rounding technical difficulty, as “the only game in town” for such service, they
were very welcome at the time.

In very late 1979 or early 1980, colleague Rogers Stolen acquired a 700-m
length of one of the very first fibers having low loss in the 1500-nm region, a
fiber that was also like standard SMF in its other characteristics. Since we had the
picosecond laser source as well, we were eager to try to observe the soliton, pulse
compression, and possibly even some of the more complex behavior predicted
by Satsuma and Yajima.

The first experimental observation [138] was straightforward. Using microscope
objectives, we coupled the mode-locked color center laser’s output into the fiber,
and the fiber’s output into an autocorrelator (see Fig. B.2) for observation of the
shapes of the emerging pulses. It was then simply a question of observing the pulse
behavior as we gradually raised the power coupled into the fiber. We had already
noted that for the 7-ps pulse width and for the assumed fiber dispersion parameter
D of 16 ps/nm-km (later corrected to 15 ps/nm-km [139]), the soliton period z0

should have been about 1260 m (later 1350 m), or very nearly twice the 700-m
length of the fiber; thus, we anticipated behavior, at the appropriate power levels,
like that shown in the z/z0 =1/2 column of Fig. B.1. Figure B.3 shows the resultant
autocorrelation traces at certain critical peak pulse powers. From left to right, as the
input power increases, we see, first, significant dispersive broadening, followed
by return to the original pulse width at the power (≈1.2 W) for the fundamental
soliton, then, at 4.2× that power (5 W), the narrowing expected at the half soliton
period of the N =2 soliton, followed at 9.5× and 18×, the autocorrelation patterns
of the expected two- and three-fold splitting at the half soliton period of the N =3
and N =4 higher order solitons, respectively. (Note that the measured power
ratios, to within the limits of experimental error, essentially follow the expected
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Figure B.2 Schematic diagram of the autocorrelator. The input beam is divided into two
roughly equal beams, which, after traveling separate paths, are brought together in the
nonlinear crystal. Second harmonic light is generated only if pulses from both beams are
simultaneously present in the crystal. Thus the strength of the second harmonic (registered
by the photomultiplier) reflects the temporal overlap of the pulses in the two converging
beams. A measurement of second harmonic intensity as a function of relative delay (created
by motion of the corner cube) then yields the pulse shape in autocorrelation. (The silicon
filter passes 1500-nm light but keeps out visible room light.)
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Figure B.3 Autocorrelation shapes of pulses emerging from a z @ z0/2 length of fiber
for various input powers. Seen from left to right are first, dispersive broadening, then the
anticipated behaviors of the N =1, N =2, N =3, and N =4 solitons, respectively. Peak
pulse powers at the fiber’s input are indicated below each trace. The vertical scales of the
various traces have been arbitrarily adjusted to give all approximately equal peak height.

sequence of 1, 22, 32, and 42.) Since we would have considered it success merely
to see the fundamental soliton and some degree of pulse narrowing above the
soliton power, we were elated at these results, which were obtained all within the
course of one afternoon’s measurements.

In hindsight, the fact that the available fiber was almost exactly z0/2 in length
represents a wonderful bit of serendipity. That is, had it been significantly less
than z0/2, we would have missed the sharply defined pulse behavior that occurs at
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the half-period point, especially for the N ≥2 solitons. Had it been too long, on
the other hand, we probably would have been reluctant to cut it; at that time, that
700-m length of fiber was considered precious.

Finally, it should be noted that, thanks to (co-author) Gordon, our paper [138]
also contained a complete translation between the dimensionless world of the
then available theoretical literature and the real world, i.e., it established the basis
for the “soliton units” described in Section 1.3.2 of Chapter 1. The understanding
generated, especially of how the soliton behavior scaled with τ and D, was seminal
to all of our further work.

B.3.5. The Soliton Laser

The soliton compression we had just witnessed seemed to offer a promising way to
significantly shorten the pulses produced by the mode-locked, color center laser.
Indeed, in a follow-up study [140], we were able to narrow the laser’s pulses to
a small fraction (as small as 0.26 ps) of the initial 7-ps width simply by sending
the laser’s output, at high power, through a judiciously chosen length of fiber.
But there was at least one serious drawback: with increasing degree of compres-
sion, the energy left over in the uncompressed “wings” of the pulse represented an
ever greater fraction (>70% for compression to 0.26 ps) of the total pulse energy.
So then we began to wonder, what would happen if we were to somehow try to feed
back the narrowed pulses into the laser? Wouldn’t that stimulate the laser itself to
produce ever shorter pulses, until some sort of equilibrium were reached? With
those thoughts in mind, we built and tested the device shown in Fig. B.4, which

SYNC - PUMPED,
MODE-LOCKED

COLOR CENTER LASER

BIREFRINGENCE
TUNER PLATES

PUMP
BEAM

M1

M3

M2

M0

L2

∆Z1

λ ~ 1.5 mm

∆Z
2

L1

S

Xtal

SINGLE-MODE,
POL PRESERVING

FIBER OF LENGTH L

OUTPUT

Figure B.4 Schematic of the soliton laser.
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we called the “soliton laser” [141]. With the external fiber loop length carefully
adjusted (
z2 in Fig. B.4) to be an integral multiple of the main cavity length, the
device immediately began to provide sub-picosecond pulses. Data taken with an
ever shorter succession of control fiber lengths seemed to indicate that the device
operated on N =2 solitons, with the control fiber length L just a bit shorter than
one-half soliton period (see Fig. B.5). Figure B.6 shows autocorrelation traces of
the shortest pulses produced in that first round of experiments.

The data of Fig. B.5 were a bit rough, however, since at the time, the soli-
ton laser action started and stopped sporadically as vibration and thermal drift
caused the relative lengths of the two coupled cavities to vary in and out of the
proper interference condition. Later, however, servo stabilization of the relative
cavity lengths by postdoc Fedor Mitschke and myself [142] enabled the laser to
settle down to a very low-noise mode of operation where the output pulses exhib-
ited nearly textbook-perfect, sech2 shapes. That clean and very stable mode of
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Figure B.5 Control fiber length L and peak fiber input powers for the soliton laser as
functions of the produced pulse width τ .
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Figure B.6 Autocorrelation traces of (left) 150-fs FWHM pulses produced by the soliton
laser and (right) the same, after compression to 50 fs by a short length of external fiber.

operation continued down to the shortest pulses produced by the stabilized soliton
laser (τ =60 fs directly, and 19 fs after compression in an external fiber). Careful
study of the stabilized laser operating in that best mode showed that the control
fiber was actually closer to just z0/4 long, so that the pulses returned to the laser
were considerably narrower than the output pulses. We also discovered that after
the soliton laser action had begun, pumping of the color center laser could be
switched from the synchronous pulsed mode to simple cw pumping, as the soliton
laser action was sufficient to maintain mode locking all by itself.

Later, others discovered that soliton pulse narrowing was not absolutely nec-
essary for the production of short pulses in coupled cavity lasers. In the concept
of “additive pulse mode locking” [143,144], self-phase modulation from a purely
nonlinear element in the external cavity causes the returned pulses to interfere
constructively with the main laser pulses near their peaks, while interfering
destructively with them in their wings (thereby producing a narrower pulse). (The
nonlinear phase shift would be similar to that shown in Fig. 1.4 of Chapter 1.)
It was shown, both theoretically and experimentally, that such additive pulse mode
locking could be equally effective in the production of ultra-short pulses.

Nevertheless, our soliton laser really did involve the pulse narrowing of N =2
solitons. It generated a lot of excitement in its day, and it spurred an entire cottage
industry for the production of femtosecond pulses from lasers using nonlinear
elements to enhance the mode locking. In our own laboratory, it provided the
pulse source for at least one important experimental discovery, as related in the
following section.

B.3.6. Discovery of the Soliton Self-frequency Shift

Mitschke and I decided to use pulses from the newly stabilized soliton laser to
study soliton propagation in the sub-picosecond regime. Launching τ ≈500 fs
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pulses into a 392-m length of fiber, we observed nearly 100× broadening at the
lowest power levels, since zc is only ≈4 m for that initial pulse width. With
increasing power, we saw pulse narrowing until the power reached the soliton
power, Pc, at which point the initial pulse width was restored; thus far, there
was nothing new or unexpected. But as the power was increased beyond Pc, as
seen in autocorrelation, the pulse developed a satellite, which began to split off
very rapidly in time as the power was further increased. At first, this behavior
was very puzzling, since there seemed to be no reasonable cause for the great
temporal splitting. The optical spectrum, however, revealed that the satellite was
really a weak, spectrally narrow, nonsoliton component of the input pulse, which
remained at the original optical frequency, while the bulk of the energy was in the
spectrally much broader soliton, which was very strongly shifted to lower optical
frequencies. Raising the power significantly above Pc created an initial temporal
narrowing and spectral broadening of the soliton, which in turn greatly increased
its spectral shift to lower frequencies. The overall frequency shifts were huge;
for example, for τ =560 fs and 260 fs at fiber input and output, respectively, the
soliton was down-shifted by 8 THz at the fiber’s output [145].

We quickly came to realize that the only plausible explanation was a self-Raman
effect, whereby the higher frequency components of the pulse provide Raman gain
for the lower frequency ones, with the result that the pulse’s energy is continu-
ously transferred to ever lower frequencies [145].2 Note from Fig. 3.4 that the
Raman gain coefficient in optical fibers is roughly in direct proportion to the fre-
quency difference between pump and signal, and essentially extends right down
to zero frequency difference. In that approximation, the effective differential gain
across the pulse’s spectrum should increase as the square of its spectral width, and
hence as τ−2. Since the soliton’s peak power also scales as τ−2, the net rate of
soliton self-frequency shift should scale as τ−4. Shortly after he had been shown
the experimental results, Jim Gordon produced a theoretical model [147] that
predicted the following rate of soliton self-frequency shift:

dν0/dz = 0.0436h(τ )/τ 4. (B.10)

Here dν0/dz is in THz/km, the soliton pulse width τ is in ps, and h(τ ) is a func-
tion, derived from the actual Raman gain curve, that oscillates between limits of
about 0.4 and 1 as the pulse width ranges from 20 fs to 10 ps (see Fig. B.7). [h(τ )
is set = 1 in the approximation that the Raman gain coefficient is directly propor-
tional to the difference between pump and signal frequencies.] Equation (B.10)

2 After publication of our paper [145], we learned that E. M. Dianov et al. from the GPI in Moscow
had made similar observations of the self-Raman shift of solitons about a year earlier [146].
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Figure B.7 The function h(τ ) for silica fibers, numerically computed from the Raman
gain curve.

provided values that were in agreement with the experimental data to within a
factor of 2 or better.

It should be noted that as large as the soliton self-frequency shift is for pulses
in the sub-picosecond regime, because of its scaling as τ−4, it tends to be negli-
gibly small for the sort of pulse widths normally used in telecommunications. For
example, according to Eq. (B.10), an ordinary soliton with τ =25 ps would shift
frequency at rate of ≈1×10−5 GHz/km, so the net shift in 10,000 km would be
all of about 0.1 GHz, and the frequency shifts of a dispersion-managed soliton of
the same unchirped pulse width would be still smaller. But even if the frequency-
shifting rate were to become several orders of magnitude higher (as it might for
pulse widths suitable for bit rates of 40 Gbit/s or higher), the frequency shifts could
be easily countered by the use of frequency-guiding filters.

B.3.7. First Demonstration of Ultra-long-haul
Soliton Transmission

Theoretical predictions that solitons could be transmitted over thousands of kilo-
meters of fiber with periodic (Raman) amplification [148–150] had existed for a
number of years before the first experimental demonstration. Part of the reason for
this delay rested in the fact that the theoretical ideas were far ahead of hardware
development. In the engineering world, however, predictions tend to grow stale
and become discredited without the hard proof of an experimental test. With that
thought in mind, in early 1988, postdoc Kevin Smith and I set about to make the
first test [116], despite the impending difficulties.

The experimental setup was deceptively simple. It consisted of a 42-km length
of standard SMF, closed on itself with 95% efficiency at the signal wavelength of
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1600 nm, and brought to unity gain by Raman pumping at 1500 nm by 300 mW of
cw power from a color center laser. A second color center laser provided τ =55 ps
pulses at a 100-MHz repetition rate. The pulse trains emerging from this primitive
recirculating loop were detected and their quality determined from their microwave
spectra, as detailed in Section 8.5 of Chapter 8. Acousto-optic modulators turned
the pump and signal sources on and off at appropriate times to allow for repeated
transmissions of N round-trips each. The microwave spectrum analyzer was trig-
gered electronically to begin measurements for a fixed time interval at the end of
each transmission.

Since a WDM coupler suitable for closing the loop on itself was not available,
we had to fashion our own in the form of an all-fiber, Mach–Zehnder interferometer
from two 3-dB splitters. The interferometer had to be carefully temperature tuned
to enable nearly 100% efficient coupling of the pump light into the loop, while
simultaneously closing the loop on itself with nearly 95% efficiency at the signal
wavelength. To avoid Brillouin backscattering of the pump light, we had to broaden
the spectrum of the pump laser with a homemade lithium niobate frequency mod-
ulator driven at a frequency of several hundreds of megahertz. Coupling of the
free-space laser beams into the fibers was accomplished by dipping the fiber ends
into a well of index-matching halocarbon oil (for zero back reflection and zero
absorption at 1500 nm) whose bottom was formed by one surface of the micro-
scope objective used for mode-matching into the fiber. Those touchy and sensitive
couplings had to be constantly maintained at the highest possible efficiency, since
every milliwatt of pump power was precious. Finally, at least to an outsider, the
sight of a very large optical table loaded with bulky free-space lasers (which were
constantly breaking down) must have seemed more than a bit incongruous for the
task at hand. In our minds, however, those lasers were just temporary substitutes
for the vastly more efficient and smaller semiconductor lasers we were sure would
become available in due course. Perhaps it should also be noted that success of the
experiment was due in no small way to the persistence and skill of Kevin Smith.

Despite the fact that the fiber’s dispersion (≈18 ps/nm-km at 1600 nm) was more
than 30× too large (thereby making both the signal energies and the Gordon–Haus
jitter much greater than necessary), the experiment was able to demonstrate faithful
maintenance of the solitons over more than 4000 km (see Fig. B.8). At the time,
this was considered a most satisfactory result.

A short while later, with the same apparatus, Smith and I were able to demon-
strate adiabatic compression and expansion of the soliton pulses [117] in a
convincing demonstration of just how very robust the solitons were. The demon-
stration in turn was a most useful foil to some of the misconceptions held by some
about solitons. Also at that time, we observed the “long-range interaction” [118]
(the acoustic effect) already discussed in Chapter 3, Section 3.4.5.
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Figure B.8 Plot of the effective transmitted pulse width, τeff , as a function of distance,
in the first demonstration of long-haul soliton transmission.

B.3.8. A Public Relations Coup

Those who are required to present ideas on the grand scale tend to prefer them in
capsule form. Thus, it should have come as no surprise that one day, the request
came down to me through the chain of command that the then director of Bell
Labs needed a single-view graph that “would enable him to explain solitons to
bankers.” Nevertheless, I was at a total loss to know how to respond. How could
the NLS equation, the canceling nonlinear and dispersive phase shifts, and all
the intervening development (essentially, the core of Chapter 1 of this book) be
crammed into a single picture? Shortly after hearing of the challenge, however,
postdoc Stephen Evangelides said that he had an inspiration. His idea was based
on the well known view that the soliton is a self-trapped pulse. That is, the little
blip of index change it produces through the nonlinear term forms a potential well
to trap the pulse. Evangelides’ simple but brilliantly conceived analog was that of
a group of runners on a soft mattress, as shown in Fig. B.9. Perhaps needless to
say, the runners viewgraph became an instant hit, and was passed down rapidly
through the various levels of management. Since the analog works so very well,
it was a great help, not just for explaining what the soliton is, but also for getting
across the idea that the fundamental soliton is a truly stable and robust entity.

B.4. The Soliton Legacy

The soliton community has influenced fiber optic transmission far beyond the
creation of any one particular system, such as Lucent’s LambdaXtreme. Many
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SOLITONS: The bunching of high-intensity light.  The light pulse
creates a moving “valley” (of higher dielectric constant material).

RUNNING ON A MATTRESS: The moving valley pulls along slower
runners and retards the faster ones.

Figure B.9 A group of runners on a soft mattress as an analog of the soliton as a
self-trapped pulse. The heavy-set fellow at the rear, who represents the low frequency
components of the pulse, and would normally fall behind, can’t, because he is running
downhill, while the woman in front, who represents the high-frequency components, and
would normally go racing ahead, can’t, because she is always running uphill!

ideas and concepts, now commonplace, originated with the soliton community.
This section represents an attempt to recognize at least some of those contributions.

B.4.1. Introduction of the NLS Equation

Today, prepackaged programs for solving the NLS equation numerically are readily
available commercially, and just about everyone in the business of engineering
fiber optic transmission systems makes use of them. It has not always been that way,
however. For a long time after Zakharov introduced the NLS equation for the study
of optical pulse propagation in nonlinear dielectric media, and Hasegawa’s first
application of it to fiber optics, the NLS equation tended to remain the province of
the soliton fraternity. In those days, numerical simulation using the NLS equation
was a “do it yourself” activity, i.e., everyone had to write his own program. It was
not until the early 1990s that outsiders (primarily those designing undersea cable
systems) began to use numerical simulation of the NLS equation as an inexpensive
way to check performance of an already designed system. Even there, however,
the NLS equation was not the fountainhead of ideas that it had been for such a
long time in the soliton world. In support of this view, a glance at the index of
the two-volume set “Optical Fiber Telecommunications III” (Kaminov and Koch,
eds.) [151], published in 1997, and something of a bible in the industry, is most
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revealing: The only reference to the NLS equation is in Chapter 12 (on solitons,
written by ourselves), while Chapter 8, “Fiber Nonlinearities and Their Impact on
Transmission Systems” never mentions the NLS equation, not even once!

So what changed attitudes, and so quickly? Almost certainly, it was the conflu-
ence in the late 1990s of ultra-long-haul transmission and dense WDM, especially
in the world of terrestrial transmission. The manifold nonlinear effects encoun-
tered there forced use of the NLS equation as a sine qua non of system design. The
rising importance and success of dispersion management probably played a major
role as well, since it was surely recognized that pulse behavior in that context was
not fully predictable without recourse to the NLS equation or its ODE equivalent.

B.4.2. Understanding of the Nonlinear Interaction of
Signals and Noise

In a strictly linear transmission line, noise and signal fields can be treated com-
pletely independently of each other, and need to be added only at the detector.
As the seminal paper [55] of Gordon and Haus showed, however, in real fibers,
one does so at his peril: As already discussed in Chapter 3, Section 3.4.3, the often
severely limiting Gordon–Haus jitter arises from more or less continual nonlin-
ear interaction between the signals and the noise all along the transmission path.
We have also seen how this same dynamic is echoed in the Gordon–Mollenauer
effect (Section 3.4.6). Unfortunately, when the Gordon and Haus paper [55] first
appeared, at least some got the misguided idea that the effect applies to solitons
only. In fact, it applies, and equally so, to all modes of transmission. The Gordon–
Haus effect was calculated in terms of solitons only because solitons represent the
one transmission mode for which the calculation is tractable analytically. Thus,
nonlinear simulations, whether they involve solitons or some other transmission
mode, are just plain wrong and can generate seriously misleading results if the
ASE noise is not added as it occurs all along the transmission line.

B.4.3. Transparency and the Dream of the All-optical Network

It will probably be conceded, without much argument, that the dream of a truly all-
optical, ultra-long-haul network arose from the soliton fraternity. It is only natural
that the idea should have arisen there. After all, the limitations of ASE noise
growth aside, solitons are the only pulses expected to be able to go on more or
less indefinitely without significant change or the need for electronic regeneration.
They are also the only pulses truly amenable to purely optical regeneration, as with
the use of sliding-frequency guiding filters, for example. Thus, it should come as
no surprise that the first commercial, truly ultra-long-haul transmission system
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(Lucent’s LambdaXtreme), designed to be the backbone of an all-optical network,
is based on (dispersion-managed) solitons. Perhaps it should be noted that the paper
by Mollenauer et al. [150], written in 1986, for all its naiveté, was nevertheless
remarkably prescient. That is, in its most general features and performance, the
envisioned system was remarkably similar to LambdaXtreme: It was to be a dense
WDM system, using solitons and all-Raman amplification, with a projected reach
of many thousands of kilometers and a capacity of at least 100 Gbit/s. (In 1986,
100 Gbit/s was considered to be many times greater than would ever be needed.)

Perhaps it should also be pointed out that throughout the intervening years, there
were some individuals who thought they had air-tight arguments as to why such
transparency either would never be achieved or should not be the goal. A com-
bination of technological advances on the one hand, and the economic pressures
against extensive electronic regeneration in ultra-long-haul dense WDM on the
other, finally put all of those arguments to rest.
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