

Practical Aspects of Embedded System Design
using Microcontrollers

Jivan S. Parab • Santosh A. Shinde
Vinod G. Shelake • Rajanish K. Kamat
Gourish M. Naik

Practical Aspects of
Embedded System Design
using Microcontrollers

Jivan S. Parab Santosh A. Shinde
Goa University Shivaji University
Goa, 403 206 Kolhapur, 416 004
India India

Vinod G. Shelake Dr. Rajanish K. Kamat
Shivaji University Shivaji University
Kolhapur, 416 004 Kolhapur, 416 004
India India

Dr. Gourish M. Naik
Goa University
Goa, 403 206
India

ISBN 978-1-4020-8392-1 e-ISBN 978-1-4020-8393-8

Library of Congress Control Number: 2008928690

© 2008 Springer Science + Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
 permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Foreword

My perception regarding embedded systems goes on the following lines “Embedded
Systems are very simple. It just takes a genius to understand its simplicity” and
I know that authors of this book are the genius in this subject. With their many years
of experience in industry consultancy and academia they posses the arts and science
of designing successful, working and useful Embedded Systems. The “Art”, part
comes with a mix of knowledge, experience, intuition and creativeness that the
readers will witness from the various case studies developed in this book. While
their “Science” and “Engineering” foundations are evident from the adopted design
methodologies guaranteeing correctness with proper hardware selection and time
as well as memory efficient code. In fact this is the second book on this subject by
the same team. I have gone through the first one “Exploring C for Microcontrollers:
A hands on Approach” published by Springer and found it very informative. I learnt
that the book is popular with embedded designers in US and UK. The same
approach of “Learning by Doing” as in explored in the first book has also been
extended for this second book.

The most significant aspect about embedded systems that I like is its unique
synergy between hardware and software. An Embedded Engineer is supposed to be
an expert in multiple domains such as microcontrollers, FPGAs, digital logic,
C programming, sensors, instrumentation and last but not the least even nuts and
bolts i.e. mechatronics. With a continued interaction with some of the authors of
this book, I found them to possess expertise in this field having multiple facets.
Namely Dr. Gourish Naik has been instrumental since his IISc days to incorporate
Embedded Systems aspects in academics. Dr. R.K. Kamat who was offered a posi-
tion in Motorola in Europe possess great capability in design and the development
of Embedded Systems.

Now let me focus on the very need of this book. As all of us are aware since their
inception, embedded systems have caused a tremendous change in society, a
change that is continuing from last few decades at a pace surpassing every imagina-
tion. With their increasing significance in world markets, there is a scarcity of
experienced embedded system professionals. I learnt that embedded systems devel-
opment professionals have handicapped Hong Kong industrialists’ ability to exploit
high added value market potentials in embedded systems products. In Europe, the
European Commission has recognized the importance of embedded systems by

v

creating a new unit in the IST Directorate. The visions surrounding the AMI-space
(embedded systems everywhere, described in the context of human life as ‘ambient
intelligence’) have considerably influenced the 6th Framework Programme of the
IST domain. However, with such growing activities in this field, the scarcity of
experienced embedded systems development professionals is quite natural. This
has spurred a growing emphasis on embedded systems education in most of the US,
UK and Indian universities for nurturing quality human resource in this field of
significant importance. While the academics are trying to do their best in inculcat-
ing the concepts, there are very few course wares or books that will practically
cover the concepts. This book will help in filling up the supply-demand gap in
training the Embedded Systems Professionals.

The book covers applications based on two widely used 8 bit microcontrollers
viz. PIC series from Microchip and MCS51 series from Atmel. Authors have chosen
the right microcontroller for the right application. The latest chips have been used
in developing the applications. Self explanatory C code with proper documentation
is given for each application. Routine things such as lengthy datasheets have been
skipped. Good web resources have been identified so that the readers can simply
find the details after going through the Web URLs.

With these few words, I strongly recommend this book for intermediate pro-
grammers, electronics, electrical, instrumentation engineers or any individual who
is inclined to take up his/ her career in this field. I am sure that reader will welcome
this book and gain great concepts by adopting the practical approach taken up
throughout the book.

Dr. B. Selvan

Dr. Balakrishnan Selvan obtained a Ph.D. in 1991,
from the University of Bradford’s Postgraduate
School of Studies in Information Systems
Engineering. In 1983 he received a M.Sc. degree
in Electrical Communication Engineering from the
Indian Institute of Science, Bangalore. Between
the years of 1984 and 1997 he held various teach-
ing and research appointments, in the field of com-
munications and computing, at universities in
Singapore and UK. In 1997 he joined Alcatel
Submarine Networks at Greenwich, London, as a
Principal Engineer for design and development of
DWDM terminal equipment. In 2003 he set up his
own consultancy firm, which specialise in provid-
ing information technology solutions for small
business in and around South East London.

Dr. Selvan is a Chartered Engineer (UK
Engineering Council), and a member of the
Institution of Engineering and Technology (UK).

vi Foreword

Author’s Profile

vii

Jivan S. Parab, Goa University, Goa, India
After graduating from Goa University, Jivan was
hired by Masibus Instruments Pvt. Ltd., as a
design engineer. After working for a year in
Masibus, Jivan shifted to academics and joined
Goa University, Goa, as he was concerned about
the increasing diabetic patients in India and
abroad. He was passionate about development of
low cost, portable glucometer for poor people.
With his rich experience in designing heterogene-
ous Embedded Systems comprising of microcon-
trollers, FPGAs and onboard flash, he has almost
completed the project and very soon will be
launching the same with his completion of doc-
torate in the same topic.

Santosh A. Shinde, Shivaji University,
Kolhapur, India
Santosh had a stint in Embedded Instrumentation
by practically working in Wimson Electronics
Pvt. Ltd., as an R&D Engineer in their SMD divi-
sion. Santosh has worked with many of the popu-
lar microcontrollers from Intel, Atmel, Philips
and Microchip. He is experienced in program-
ming in C, C++, under LINUX, DOS, and Win9x,
WinXP. He is also familiar with many EDA tools
such as Handel-C, Modelsim, Gerber, Orcad,
Mentor Graphics, Xilinx, and CAD software. He
will be submitting his doctorate very soon on
FPGA based programmable ASIC for circum-
venting SPAM.

“Website of the research group may be seen at URL: http://www.rkkamat.in”.

Vinod G. Shelake, Shivaji University, Kolhapur,
India
Vinod is always been fascinated about developing
Embedded products for computer network secu-
rity. In order to gain real life experience, he joined
Software Technology Parks of India, an autono-
mous body under Government of India, who has
build and maintains the countrywide backbone of
Internet exchanges. As an avid embedded enthu-
siast, he left STPI to devote more time on R&D in
this field. Currently he is busy in development of
a FPGA based firewall with lots of novel features
than those existing in market. Vinod holds Masters
in Electronics specialized in Embedded Systems
and soon he will submit his dissertation for Ph.D.
in Embedded VLSI systems.

Dr. Rajanish K. Kamat, Shivaji University,
Kolhapur, India
Dr. Rajanish K. Kamat loves Electronics, Internet
and all the high tech latest things in the world.
He’s in them all the time. When he is not tapping
keys for a research paper or a book like this, he is
either teaching for Masters student or guiding
research to Ph.D. students. Dr. Kamat is right now
working with Shivaji University, Kolhapur where
he is involved in teaching, research and consul-
tancy. Besides he is also taking care of Internet
gateway of Shivaji University. He has been
exposed to almost every variant of mechanical
and electronic computing device there is (and has
been). This everyday contact with the electronic
industry allows Dr. Kamat to bring this real-world
experience to the books like this. His expertise
has been recognized by the Department of Science
and Technology, Government of India by award-
ing him a major project on Soft IP cores under the
Young Scientist Scheme. He is a single point con-
tact for all the authors.

viii Auhtor’s Profile

Dr. Gourish M. Naik, Goa University, Goa,
India
Embedded devices are not Dr. Gourish Naik’s
only love. He enjoys to be literally “on the road”
to modify Electronics in cars. He’s also walked
among his share of optical communications too as
a part of his Ph.D. work way back in 1987 from
the prestigious Indian Institute of Science,
Bangalore. Computers, Electronics, Robotics
continued to be his hobbies and that’s why he has
taken up teaching and research as a full time pro-
fession. At Goa University, Dr. G.M. Naik is
heading the Electronics as well as Instrumentation
sections and has earned reputation as a consultant
all over in India. He has been instrumental to
incorporate the latest in Embedded Systems in the
curriculum. University Grants Commission, the
nodal body for the universities in India has recog-
nized and appreciated his efforts by granting him
“Innovative Program” in Embedded Systems.

Auhtor’s Profile ix

Preface

Embedded Systems: A Component Based Software Industry

According to Business Communications Company Inc. (BCC) research report the
embedded software business is predicted to grow from about $1.6 billion in 2004
to $3.5 billion by 2009, at an average annual growth rate (AAGR) of 16%. The
growth rate for the Embedded hardware will reach $78.7 billion in 2009. The esti-
mated growth rate is propelled by several key themes: namely the penetration of
Applications Specific Processors (ASPs) as well as stand-alone chips such as
microprocessors and microcontrollers, which has cannibalized their sells as com-
pared to the consumption volume of stand-alone Micro-Processing Units (MPUs),
Application Specific Integrated Circuits (ASIC), Field Programmable Gate Arrays
(FPGA) and Digital Signal Processors (DSP). In general the growth of system-on-
a-chip components has really revitalized the embedded system market. Another
report by the Indian Semiconductor Association (ISA) and Frost & Sullivan sup-
ports the flourishing growth rate statistics. It states that semiconductor and embed-
ded industry is projected to bloom from $3.25 billion in 2005 to $43.7 billion by
2015. With such an attractive growth statistics, the field of embedded systems now
influences many industrial sectors including automotive, aerospace, consumer elec-
tronics, communications, medical and manufacturing. Today it is the fastest grow-
ing sector in IT and still open with many opportunities. Traditional research in
Embedded Systems is in progress in good number of research fields such as soft-
ware, Real Time Operating System (RTOS), new communication protocols, micro-
controller based system, low power design, immunity to Electro-Magnetic
Interference EMI, etc. to name a few. We have taken up the design aspects of
Microcontroller based Embedded Systems with more emphasis on the software.

Who This Book is For

Last year the ‘IDC’ a premier global market intelligence firm’s analysis revealed that
the embedded industry product development is expected to be as high as $75 billion.
This entails the industry requirement of trained human resource with mixed skill set

xi

both in hardware and software. Unfortunately, the synergetic demand of hardware and
software or some times even referred to as firmware competency has lead to a supply-
demand gap of HR in this field. This gap expressed in numerical figures lead to
requirement of around 150,000 embedded engineers in the current year and more in
years to come to serve the global embedded industry. Our previous as well as the current
book published under the realm of Springer are the ultimate solutions to bridge the
supply – demand gap of Embedded System professionals. The book is intended for
graduate and postgraduate students from the Electrical, Electronics, Computer and
Instrumentation Engineering. It is equally beneficial for industry professionals, hobby-
ists and software people who would like to try their luck with Embedded Systems.
Undoubtedly, some people can use this book in laboratory courses. Experience pro-
grammers can skip some basic part and get right into the application case studies.

We promise that the potential readers can lessen the steepness of the learning
curve for Embedded Systems by using this book. Through this book, we hope for
you to be able to switch to Microcontrollers and Embedded Systems in the shortest
possible timeframe. Back when we started our career in this field, we weren’t lucky
enough to have a book like this to learn from! As such, a reader will find lots of
information for newcomers, even those who have not programmed much before. On
the other end of the scale, we have worked hard to put in this book lot of information
on advanced functionality in Embedded Systems such as I2C. If you are a veteran
user looking to take your microcontroller based design skills above and beyond
where they are right now, we are hoping you will find there is lots to be had here.

“Hands on Approach”

As Aristotle said: “What we have to learn to do, we learn by doing.” The approach
adopted by us is “Practical Design” and will definitely inspire the student and
design community to learn on their own. A quote from W. McKeachie, “Professors
known as outstanding lecturers do two things; they use a simple plan and many
examples.” Yes!! We have given the bare minimum theoretical aspects and rest all
is the practical circuit diagrams and complete C code with 33 case studies so as to
enjoy implementing the stuff in laboratory. The book is developed with the main
goal of making the task of learning Embedded C something fun that you do not
have to worry about. There is a famous quotation by Jim Rohn, “Formal education
will make you a living; self education will make you a fortune.” With this book we
are offering the potential readers an opportunity to learn on their own and enter into
the ubiquitous world of Microcontroller based Embedded Systems.

What is Different about this Book?

A.A. Hodge said “He is wise who knows the sources of knowledge – who knows
who has written and where it is to be found.” True enough! We have skipped the
routine theoretical aspects of microcontrollers such as lengthy description of registers,

xii Preface

on –chip memory map, pinout, sinking sourcing current values, etc. (Open any
textbook, and these things are right there). Instead we assume that either the poten-
tial reader is aware of these things or he will resort to the web references listed at
the end of the book.

Some of the salient features of the book are as follows:

● The book is presented so as to refer in whatever order you want. Once you have
the prerequisite basics down, we encourage you to flick through the table of
contents, find something that interests you most, and start reading from there.

● It covers design based on the representative members of both RISC and CISC
architectures.

● The most interesting are the 33 number of case studies. We have undertaken
several tasks necessary for building a good source of case study material. A good
taxonomy is built, and a large collection of primary sources is presented as web
based resources.

● The devices chosen for the applications are from the industry leading vendors
such as Atmel, Microchip, Philips, Maxim and so on.

● It is made sure that all the above mentioned devices are available in the market
and most of them are cost effective.

● Clear and precise circuit diagrams along with complete listing of C source code per
application will enable the reader to experiment the given stuff in his laboratory.

● A lucid flow of the resource material and the participatory style will definitely
make you friendly with the subject matter.

● Actual screenshots taken and embedded in the text to illustrate the concepts.
● Another feature is reusability of the code. With little modification the codes

developed in this book may fit in your embedded application saving you from
the labor of reinventing the wheel.

● Yet another feature is Simulate-ability of the code that will boost the confidence
of the readers and enable them to go one step forward towards testing the same
on the hardware platform.

How This Book Was Prepared?

The book is a result of author’s many years of experience in academics, research
and industry. With the overwhelmed response received to the first book “Exploring
C for Microcontrollers: A hands on approach” published by Springer in May 2007,
authors were more than happy. However, many readers expressed a balanced cover-
age of RISC and CISC architectures. Authors acted on these suggestions and
framed the existing book. Looking at I2C popularity a chapter was devoted for the
same. Similarly the most popular PIC16F877 was chosen for the case studies. For
the sake of comparison another equally popular microcontroller from CISC architecture
AT89S52 was chosen for a set of case studies covered in last chapter. Thanks to our
student community who is now largely placed in reputed industries for identifying the
problem statements for the case studies.

Preface xiii

Chapter Descriptions

We recommend you to begin by reading through the summary paragraphs of each
chapter below, which introduce each section and provide you with a good overall
picture of how the book is organized.

Chapter 1 is the “Welcome Speech” for inspiring the potential readers. It focuses
on the importance of the subject. In this chapter there are several references of
many forecasts, that visualizes the growing importance of embedded systems in
years to come. After reading through one gets a realization that the traditional aca-
demic courses focusing either mostly on hardware as in many Electronics/ Electrical
Engineering programs or mostly on software as in many Computer Science pro-
grams will not suffice the expertise in this synergetic domain. Latest trends and
statistics from leading marketing and research firms will convenience the reader to
kick start their venture in this field. Coverage of MPLAB for PIC will introduce
to the IDE environment for PIC. The IDE for the AT89s52 has been skipped as it
is already been found its way in the earlier book by the same authors.

Rest of the book proceeds towards a systematic building block approach.
Chapters 2–5 are based on PIC16F877 while the Chapter 6 applications use
AT89S52 microcontroller.

Chapter 2 covers the fundamental aspects of microcontroller based system
design from interaction to ambient environment point of view. It begins with the
basic LED interfacing and its variation and moves on to the more complex inter-
faces such as seven segment LED, LCD, buzzer interfacing, etc. In many situations
the embedded device resorts to polling a switch status for intelligent branching of
the code. Sometimes in more complicated circumstances the status of a number of
signals coming from the switch needs to be sensed. In this chapter we have taken
care of both of them. A basic DIP switch interfacing and the thumbwheel switch
interfacing is presented in depth.

Analog signals are very common inputs to embedded systems. Transducers and
sensors such as temperature, pressure, velocity, humidity are truly analog. Therefore
we need to convert these analog signals in to digital so that the PIC can read it.
Upon processing in digital domain again the PIC has to enable/disable or control
the actuators back in analog domain. This core issue of digitization and control is
taken up in Chapter 3. This chapter will further boost your interest as it covers lots
of interesting variations such as using onchip ADC of PIC, interfacing external
ADC for mutichannel data logging applications. PWM based DAC is certainly
more competent with the theoretically infinite resolution. Again the combination of
ADC and a port pin of PIC is used for the temperature control application avoiding
the power hungry DAC. Temperature being chosen owing to its universality in most
of the control systems. Generation of PNR signal and waveforms serves the testing
applications for the embedded products.

Although hyper terminal was more used with Win 98, but still in the age of Win
XP it has become a serial gateway for group of embedded appliances to be control-
led from a PC terminal. Many embedded systems compliant for the PC serial

xiv Preface

communication now use their own propriety terminal emulation programs. But with
out experience there is nothing robust like a hyper terminal for the serial emulation.
In Chapter 4 we have revised a step by step procedure for setting up the hyper terminal
for communicating with the embedded board. The case studies developed here com-
prises of displaying data on Hyper Terminal from the PIC processor, getting sensor
output (LM35) on the hyper terminal and actuating a relay. Additionally, we have
demonstrated stepper motor control by outputting the speed, direction, etc. from
the hyper terminal. A potential developer may take these applications to a greater
heights such as domestic appliance control, home light control, home security opening,
closing the door with camera interface using a single PC with the hyper terminal.
Other intention is to motive the user for writing such a GUI (may be using Visual
Basic or Visual C++) for serial communication or even for the upcoming USB.

Embedded world is witnessing incorporation of many new protocols for intercon-
nectivity with each other. I2C, SPI, CAN, UART are some of the latest protocol suites
used with the embedded products. Chapter 5 is all about I2C and application based on
it. Why we have taken this particular suite? There are two reasons. First it is the most
popular one. The popularity is realized by the fact that its 7 bit addressing space has
been now upgraded to 10 bit to fit more client devices. Second reason being once you
understand one protocol, other will follow on the similar lines with few differences
here and there. The chapter begin with basic case studies such as I2C based RTC and
serial EPROM interfacing. Then it moves on to the interfacing of two different ADC
chips viz. PCF8591 and AD1236. Main difference is the resolution offered by these
ADCs. We want to emphasize here that the appropriate device with the desired speci-
fications should be used for the intended application. After all we are embedded
developers and we value the specifications more than any other engineering disciplines.
An intelligent reader can make out the difference in resolution by comparing the
above two interfacing approaches. An embedded application will be incomplete without
making its impact in an analog world. Therefore the last application of this chapter In
order to generate different wave, we have interface I2C based DAC (MAX5822) to
PIC. Here the values corresponding to respective waveform is sent to DAC serially
using SDA line and then subsequently you may view it on the CRO.

The last chapter is an odd man out in the RISC domain. Most of the embedded
system applications do not require more than what provided by the AT89S52
microcontroller a popular derivative of the basic 8051. With 8 Kbytes of Flash, 256
bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/
counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip
oscillator, and clock circuitry you have everything that is required in the world for
a successful embedded application. More than this you will feel at home with the
support of powerful tools IDEs and webforums of enthusiastic developers working
with this device. We have developed many interesting case studies such as a night
lamp controller, automation of a nylon rubber stamp making machine, digital IC
tester, etc. The tiny BIOS opens yet another window of programming style based
on the ISRs. Designers are always been wondered how to partition the things in
analog and digital domains. The salinity measurement system evidences the benefits
of accomplishing the nonlinearity correction in analog domain that reduces the

Preface xv

computing burden of the microcontroller and helps in getting optimized timing
even with CISC architecture. The sensor interfacing being the universal application
for microcontrollers, we have gone a step further towards making them fault toler-
ant and accurate measuring systems with their arrays. The common philosophy of
applications developed in this chapter is their inherent computing complexity apart
from the conventional stress on I/O and onchip resources for which the microcon-
troller is best suited. With this chapter a potential reader can compare the performance
of PIC16F877 a RISC processor with the CISC AT89S52. Efforts towards inter-
changing the processors for the given application will give an insight as regards to
the choice of a proper microcontroller for appropriate application. With this, we left
the decision of the “RISC Vs CISC” debate to the wise reader. Not the least the
universality of Embedded C and the almost unchanging program structure will
prove its usefulness for the embedded paradigm.

Errors

Warning: The programs given in this book may contain errors. Authors assume no
liability for any damage or accidents or any sort of mental harassment of the readers.

This note is not uncommon in these days of legal litigations. However, we promise
you that we have taken all the efforts to make the book free of any sort of errors.
But “To Err is Human”. Should you come across any errors or would like to seek
any clarifications regarding the hardware, software, availability of chips, etc. please
feel free to give a shout by email to Dr. R.K. Kamat at rkk_eln@unishivaji.ac.in.
He is a single contact point for all the authors.

At Last

The goal of the present book is to empower the potential reader having more or less
programming or electronics experience, to build embedded systems using micro-
controllers around the home, office, store, etc. We have tried our best to overcome
the lack of hands on approach with our maturity in this domain The book will serve
a good reference for the academic people and overcome the fear of the newbie’s in
this field. Because after all as teachers we believe in what Linda Conway has said,
“It’s not what is poured into a student that counts, but what is planted.”

We wish you all the best for planting the concepts of embedded systems in your
minds that will feel your life with happiness.

Jivan S. Parab
Santosh A. Shinde
Vinod G. Shelake

Dr. R.K. Kamat
Dr. G.M. Naik

xvi Preface

Acknowledgement

Several key people helped us to make this project successful. First and foremost
Professor M.M. Salunkhe, Vice Chancellor of Shivaji University, Kolhapur, India
for encouragement and support. Further Dr. Kamat and Dr. Naik would like to
thank their respective wives for their understanding and patience shown when the
preparation of the book took time which could have been spent with the family. Our
thanks are then to Dr. Kamat’s wife Rucha and Dr. Naik’s wife Deepa.

Jivan wants to thank his sisters Jyoti and Jagurti and parents for all the support
received. Thanks are also due to our friend circle Kunal, Rupesh, Roy, Jesni, Yogan,
Jaymala, Mahesh, Mamata and Sapana for giving inputs for the case studies.
Mr. Rajendra Gad deserves special thanks for the support received at Goa University.

Mr. Santosh Shinde would like to thank his parents as well as his friends
Mr. Abhijeet and Masoom for their support. Mr. Vinod Shelake would like to
thanks parents and Mrs. Sharyu for their support.

Particular thanks goes to Shivaji University and Goa University authorities for
the support received towards the infrastructure, kits and PCs used while preparing
the book.

All the authors would like to express their special appreciation towards
Dr. B. Selvan who has readily agreed to review the book and consented for express-
ing the same in the form of foreword. Thanks are due to Mr. Mark de Jongh, Senior
Publishing Editor and Mrs. Cindy Zitter from Springer for prompt communication
and online support all the time.

Jivan S. Parab
Santosh A. Shinde
Vinod G. Shelake

Dr. R.K. Kamat
Dr. G.M. Naik

xvii

Contents

Foreword ... v

Author’s Profile .. vii

Preface ... xi

Acknowledgement .. xvii

1 Introduction .. 1

 1.1 Defi ning Embedded Systems .. 2
 1.2 Essential Attributes of Embedded Systems 3
 1.3 Embedded Systems Historical Aspects ... 4
 1.4 Embedded Solutions Continue to Flood Market 5
 1.5 Latest Trends in Embedded Systems .. 6
 1.6 Competition for Processing Cores in Embedded Systems 7
 1.7 Programming Paradigm for Microcontrollers 8
 1.8 Our Approach: “Towards a Full Proof ‘C’ Library

for Embedded Systems” .. 9
 1.9 Finalizing Hardware .. 10
1.10 Exploring PIC16F877 for Embedded Systems 11
1.11 A Word About IDE ... 12
1.12 Details About the AT89S52 and Its Development

Environment .. 18

2 Interacting with the Outside World Using
Simple I/O Devices ... 19

2.1 LED Interfacing .. 19
2.2 Switch (DIP) Interfacing ... 22
2.3 Interfacing Buzzer ... 24
2.4 Keypad Interfacing .. 26
2.5 Thumbwheel Switches Interface ... 29
2.6 Seven Segment Display Interfacing .. 32

xix

2.7 LCD Interface to the PIC .. 36
2.8 Relay Interface to the PIC .. 39

3 Accessing On-Chip and Off-Chip Peripherals 43

3.1 Using the On-Chip ADC .. 43
3.2 Interfacing ADC (0809) to PIC .. 47
3.3 Opto-Isolator Interfacing .. 50
3.4 DAC Implementation Using On-Chip PWM 52
3.5 Waveform Generation Using PIC ... 54
3.6 Pseudo-Random Number Generation Through PIC 57
3.7 On-Off Temperature Controller Using On-Chip ADC 59
3.8 Implementing a PID Temperature Controller Using

PIC16F877 .. 63

4 Serial Interface to PIC .. 69

4.1 Configuring Hyper Terminal .. 70
4.2 Setting Up Hyper Terminal ... 70
4.3 Displaying Data on Hyper Terminal ... 73
4.4 Hyper Terminal Interface: Getting Sensor Signal

on Hyper Terminal .. 75
4.5 Hyper Terminal Based Control: Controlling an Actuator

such as Relay from PC Hyper Terminal ... 76
4.6 Controlling a Stepper Motor from Hyper Terminal:

Hyper Terminal Keyboard Provides Direction 77

5 PIC Interfaced to I2C Compatible Devices .. 79

5.1 Details of I2C Interface ... 79
5.1.1 Basic Features ... 79
5.1.2 Sequence of Events in I2C Suite ... 80
5.1.3 Modes Supported by I2C ... 81
5.1.4 Synchronization and Arbitration in the I2C Bus 81
5.1.5 Evolving Specifications of I2C Bus 82

5.2 I2C Based Real Time Clock .. 83
5.3 Serial I2C Based EPROM24AA256 Interface to PIC16F877........... 86

5.3.1 Where EPROM Fits in Embedded Systems? 86
5.3.2 Advantages of Serial EPROM .. 86
5.3.3 Serial EPROM Execution Cycle ... 87
5.3.4 Features of EPROM24AA256 .. 87
5.3.5 Interfacing Aspects ... 89

5.4 I2C Based PCF8591ADC Interface ... 90
5.4.1 Advantages of Serial ADC Interface 90
5.4.2 PCF8591 I2C Compliant Serial ADC 91
5.4.3 PCF8591 Features ... 91

xx Contents

5.4.4 A/D Conversion of PCF8591 .. 91
5.5 I2C Based ADC – AD1236 ... 93

5.5.1 AD1236 from Maxim ... 93
5.5.2 Features of MAX1236 .. 93
5.5.3 Conversion Technique and Other Details 94

5.6 MAX5822 DAC Interfaced to PIC ... 96
5.6.1 Features ... 96
5.6.2 Equation for Output Voltage ... 97

6 Embedded Control Applications Using AT 89S52 103

6.1 Night Lamp Controller ... 103
6.2 Microcontroller Based Control for Nylon Rubber

Stamp Making Machine .. 108
6.3 A Tiny BIOS or Diagnostic Interface with MCS51 113
6.4 Simple Digital IC Tester for 74XX Series .. 118
6.5 Microcontroller Based Salinity Measurement System 123
6.6 Fault Tolerant Sensor Interface ... 128
6.7 Sensor Matrix Interface .. 132
6.8 Design Microcontroller Based Servo Controller 136

References ... 143

Index .. 147

Contents xxi

Chapter 1
Introduction

Welcome to the world of ‘Embedded System’s dreamland’!
Operational excellence in training, research and consultancy of more than a decade,
has resulted in crafting this book. Our aim is to make learning so much more fun
than learning from books or traditional classroom setting and as the name indicates
more emphasis on practical knowledge. The primary focus on ‘application oriented
system design’ is to bridge the gap between industry requirements and students’
skill set. Read through and implement the code presented here for your laboratory
experiment and we promise that your employability skills will be significantly
increased as you will be closer to the industrial applications described here. Starting
from fairly basic experiments such as LED, LCD interfacing this book will show
you how to go about realizing bigger systems and complex applications. However,
the potential reader of this book should have a basic knowledge of C programming
and initial practical experience in compiling and debugging programs. It is ideal for
programmers and engineers who already have some understanding of programming
and who now wish to gain a solid understanding of the use of C for embedded sys-
tems. Even if you do not have any experience of C in an embedded system, you will
successively build it with the participating approach of the book. The hands-on
training approach and lots of industry oriented real life exercises will take you to a
large step forward in your Embedded C-programming. Thus this book is an oppor-
tunity to program a test embedded system using industry standard development
tools and debugging aids. The importance of embedded systems is illustrated by
following that now 94% of the chips/microprocessors produced in the market are
for embedded products.

So if you have missed the bus for participating in this rapidly growing field then
you can catch up by adopting the hands on approach of this book. Chapter 1 pro-
ceeds on following lines:

1.1 Defining Embedded Systems
1.2 Essential Attributes of Embedded Systems
1.3 Embedded Systems Historical Aspects
1.4 Embedded Solutions Continue to Flood Market
1.5 Latest Trends in Embedded Systems
1.6 Competition for Processing cores in Embedded Systems

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 1
© Springer Science + Business Media B.V. 2008

2 1 Introduction

 1.7 Programming Paradigm for Microcontrollers
 1.8 Our Approach: “Towards a Full Proof ‘C’ Library for Embedded Systems”
 1.9 Finalizing Hardware
1.10 Exploring PIC16F877 for Embedded Systems
1.11 A Word About IDE
1.12 Details About the AT89S52 and Its Development Environment

1.1 Defining Embedded Systems

It is little difficult, and somewhat controversial, to formulate a precise definition of
Embedded System. Definitions given by various references are as follows:

● An embedded system is a special-purpose computer system designed to perform
one or a few dedicated functions, sometimes with real-time computing con-
straints [12].

● Specialized computer system hardware that is used in larger systems or machines to
control devices such as automobiles, home appliances, and office equipment [17].

● Any electronic system that uses a CPU chip, but that is not a general-purpose
workstation, desktop or laptop computer. Such systems generally use microproc-
essors, or they may use custom-designed chips or both [13].

● An embedded system is some combination of computer hardware and software,
either fixed in capability or programmable, that is specifically designed for a
particular kind of application device [14].

● An embedded system is a combination of computer circuitry and software that
is built into a product for purposes such as control, monitoring and communica-
tion without human intervention [15].

All the above definitions of the embedded systems project them as a part pf the
computing systems. However, the embedded systems stands very much apart from
the computing systems in several respects. Definition given by the Institution of
Electrical Engineers (IEE) looks more practical.

IEE defines Embedded Systems [18] as: “the devices used to control, monitor or
assist the operation of equipment, machinery or plant. “Embedded” reflects the fact
that they are an integral part of the system. In many cases their embeddedness may
be such that their presents is far from obvious to the casual observer and even the
more technically skilled might need to examine the operations of a piece of equip-
ment for some time before being able to conclude that an embedded control system
was involved in its function. At the other extreme, a general-purpose computer may
be used to control the operations of a large complex processing plant, and its pres-
ence will be obvious.”

From applications point of view [19] Embedded systems are defined as systems
in every “intelligent” device that is infiltrating our daily lives: the cell phone in your
pocket, and all the wireless infrastructure behind it; the Palm Pilot on your desk;
the Internet router your e-mails are channeled through; your big-screen home

1.2 Essential Attributes of Embedded Systems 3

theater system; the air traffic control station as well as the delayed aircraft it is
monitoring! Software now makes up 90% of the value of these devices.

The controversial aspects in defining an Embedded systems are due to their con-
stant evolution at a rapid pace. For example today’s cell phones or personal gadgets
have built in intelligence with more and more functionality, so whether they fir in
“embedded” arena or migrating towards the “personal computer” domain? On the
other hand some embedded products are built with PC motherboard without other
peripherals such as keyboards. Again it becomes difficult to classify them under PC
domain or solely under Embedded. The situation further poses challenges as these
days the embedded system has to run database management systems such as SQL, in
addition to their dedicated one and only one task. An interesting aspect of the embed-
ded system seems to be emerging with the vanishing demarcation between them and
PC domain as a computer whose end special purpose function is not to be a computer
or computer but for non-computer purpose. The most current definition of the
Embedded System incorporating most of their functional aspects is as follows:

“A specialized computer system that is part of a larger sys-tem or machine.
Typically, an embedded system is housed on a single microprocessor board with the
programs stored in ROM. Virtually all appliances that have a digital inter-face like
watches, microwaves, VCRs, cars utilize embed-ded systems. Some embedded
systems include an operating system, but many are so specialized that the entire
logic can be implemented as a single program [25].”

1.2 Essential Attributes of Embedded Systems

The definitions from various sources gives an insight as regards to the essential
attributes of the embedded systems. They are as follows:

● Single/dedicated tasking
● Power constrained (requires weight efficiency)
● Memory constrained (requires code size efficiency)
● Real time response (requires run time efficiency)
● Firmware dominated with currency and time efficiency
● Reliability and fault tolerant architecture
● Simplified user interface (generally no GUI)
● Less human interaction (infinite loop approach)
● Very frequent interaction with the ambient physical medium (reactive systems)
● Works with special purpose OS (rather than general purpose such as Linux or

Ms Windows)
● Minimum interrupt latency
● Generally mass produced/high volume systems (cost effective)
● Maintainability
● Safety
● Security

4 1 Introduction

The field of Embedded Systems appears to be at the cross-section of many technol-
ogies and subject areas. As far as the functionality is concerned, it derives the concepts
from Electronics (microprocessors, microcontrollers, etc.) and Computer Science
(operating system issues, software engineering, etc.). As the system interacts with
the physical environment the key concepts of sensors, control engineering, com-
munication technology such as optical networking, etc. also plays a vital role in
increasing the utility of the system. With the growing impact of the Internet and
web era, Ethernet interfacing and on chip TCP/IP are being embedded on the
embedded board. Growing trend in this area is hardware software co-design and use
of FPGA based customized embedded processors from third party vendors to
achieve real time response, power, weight and computational efficiency.

1.3 Embedded Systems Historical Aspects

The history of embedded systems goes way back to the sixties. However, the
systems developed those days could not penetrate themselves for the common man
due to their prohibitively high cost and limited portability. An article from
Embedded Technology Journal quotes: “With the attributes mentioned in the previ-
ous heading, it is clear that such a system could have been developed with only with
the advent of the microprocessors. To briefly trace the history of embedded systems
architectures, we have moved rapidly from systems-in-chassis to systems-on-board,
then into system-on-chip (SoC) integration over the past decade. Each time we have
integrated, our power density has increased as our form factors shrank. Interestingly,
today, embedded systems have more in common with supercomputers than with
commodity desktop and laptop machines”. It is further analyzed that both super-
computers and embedded computers have hit the wall of diminishing returns on
single-thread, Von Neumann processors and have moved into the domain of multi-
core and alternative architecture processing [22]. It has been reported [23] that, the
first embedded system to be produced in large quantities was the Autonetics D-17
guidance computer which was used in the Minuteman missile, released in 1961. It
was built from discrete transistor logic and had a hard disk for main memory. When
the Minuteman II went into production in 1966, the D-17 was replaced with a new
computer that was the first high-volume use of integrated circuits. This process
reduced the price of ICs from $1,000 each to $3 each which made it affordable to
use them on commercial products [23].

The real era of Embedded dominance took off in 1992, with the foundation of
the PC/104 Consortium by Ampro, RTD, and other manufacturers. The group
established a format for Intel microprocessors based on a motherboard approxi-
mately four inches square, and just under an inch high. The boards were stackable,
allowing a very powerful computer to be assembled in a box approximately four
inches square, or even less [21]. Today, there are estimated to be well over 100
different companies making PC/104 products. There are PC/104 cards to add

ethernet, FireWire, hard drives, RAM drives, video cards, audio cards, general I/O,
flash cards, modems, GPS, cellular telephone, wireless Internet, and more, to the
PC/104 motherboard of your choice. References [23] quote that “the title of the first
modern embedded system is often given to the Apollo Guidance Computer which
was developed by Charles Stark Draper at the MIT Instrumentation Laboratory.
Each spaceflight to the moon had two of these computers and they ran the inertial
guidance systems of the command module and LEM. When the project began, the
computer was considered the riskiest item as it used the new monolithic integrated
circuits, to reduce the size and weight.” The major events that marked the history
of Embedded Systems were [24]:

● In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor and
formed Integrated Electronics (Intel).

● At Intel in 1971, Federico Faggin, Ted Hoff, and Stan Mazor invented the first
single chip microprocessor, the 4004, a 4-bit microprocessor.

● In 1974, the 8008 and 8080, 8-bit microprocessors, were designed at Intel using
NMOS technology.

● In 1974, Motorola also released the MC6800, an 8-bit microprocessor.
● During early 1980s, microcontrollers began to be designed optimized towards

power and physical size.
● Intel came out with the 8051 microcontroller; while Motorola produced the

6805, 6808, 6811, and 6812.
● In 1999, Motorola shipped its 2 billionth MC68HC05 microcontroller.
● In 2004, Motorola spun off its microcontroller division as Freescale Semiconductor.

1.4 Embedded Solutions Continue to Flood Market

Around a decade ago (in 1995), Mary Ryan, in EEDesign, has wrote “… but
embedded chips form the backbone of the electronics driven world in which we
live… they are part of almost everything that runs on electricity” and today we are
evidencing the same with the growth statistics in this sector. Following reports from
various sources emphasizes the same.

● Of the nine billion processors manufactured in 2005, less than 2% became the
brains of new PCs, Macs, and Unix workstations. The other 8.8 billion went into
embedded systems [6].

● Recently published research by Venture Development Corporation (VDC) con-
cludes that over 4 billion embedded systems/devices were shipped worldwide in
2006. According to VDC’s 2007 Embedded Systems Market Statistics report,
significant growth in the number of embedded shipments is expected to continue
over the coming years [7]. This well known independent technology market
research and strategy consulting firm has also predicted that through 2009, the
number of embedded devices shipping with a commercial and/or open source

1.4 Embedded Solutions Continue to Flood Market 5

6 1 Introduction

operating system will grow at a faster rate than shipments of devices with an
in-house/proprietary operating system or with no formal operating system.

● The prospects for growth of Linux adoption in the mobile and embedded space
are significantly promising. According to the Canalys report on Q2 2007 market
share, Linux holds 13.3% of the global smartphone market, which puts it ahead
of the Windows, BlackBerry, and Palm operating systems. In China, where the
smartphone market is huge and growing at an extremely rapid pace, Linux is
used on 30% of all smartphone handsets [8]. It is further predicted that the year
2008 won’t be the Year of the Linux Desktop, but there will be more rapid
growth in the mobile and embedded markets as Linux-based phones and ultrap-
ortable products emerge and gain popularity.

● Between 2006 and 2010, the market volume for automotive microcontrollers
will expand about 63%, concludes a study from market researcher Frost &
Sullivan [10]. The main factor to drive the demand is the proliferation of
electronic content in vehicles aiming at reducing human errors as well as the
increasing number of safety features such as radars, ultra sonic sensors and
multiplexing with all of them requiring increasing amounts of processing power
and intelligence. The study forecasts the market to grow from $5.83 billion in
2006 to $9.52 billion in 2010.

● A new comprehensive analysis on the Microcontroller market predicts that 2007
worldwide microcontroller revenue will increase by 10% to nearly $14 billion.
The fastest growing segment within microcontrollers is the 32-bit market, which
is estimated to be growing at a compound annual growth rate of 16% each year,
compared to the overall market for microcontrollers which should garner around
8% growth each year on average [11].

● The worldwide portable flash player market exploded in 2003 and is expected to grow
from 12.5 million units in 2003 to over 50 million units in 2008 [20].

1.5 Latest Trends in Embedded Systems

With the ever pervasive requirement, Embedded systems are being influenced
by several factors such as interoperability, security, cost and openness. These
issues are being discussed in forums such as IEEE for standardization and policy
making [26].

● The field of embedded systems is likely to grow by leaps and bounds due to the
prevailing need of making the computer transparent and ubiquitous.

● TCP/IP, embedded browsing, and Java will be latest buzz words in this sector.
● A new paradigm of IP-less addressing scheme based on properties or content is

going to be developed due to the unsuitability of the traditional IP suite for the
embedded nodes.

● Embedded microprocessor oriented towards server I/O, built in networking
protocols will be more used.

● A huge potential exists for microelectronic mechanical systems, so that these
cheaper and smaller sensors and actuators can be employed to create ubiquitous
smart environments.

● With the increasing significance to the ‘connectivity’ theme, the embedded
products need to adopt standards at hardware, software and middleware levels.
Only this will ensure interoperability between these devices.

● As most of the applications are small and works even with the 8 bit functionality,
there is going to be personalized level development in this field which is fuelled
by the availability of the software tools in the form of freeware.

● Reconfiguration is a key issue as the state of art embedded applications demands
online debugging, self healing and correcting by rebooting the system
software.

● Scalability, security, real time response and high availability will be more impor-
tant issues for the Embedded Systems.

● Software is going to be a deciding factor as there is lot of constraint on the
memory. The emerging flash technology will certainly decide the cost of the
product.

● Embedded operating systems will be facing the tradeoff of compactness Vs pro-
viding full functionality and sophistication.

● Almost 60% of all the processors used are 8-bit technology, because not only
they satisfy the requirement but also leads to the cost effectiveness.

1.6 Competition for Processing Cores in Embedded Systems

Microcontrollers were developed out of the need for small, low power systems.
They do not have the expandability or performance as compared to the microproc-
essors which came into the market much before. The main intention behind their
development is to use them in domains such as control, consumer applications such
as personal electronic devices, defense applications and office appliances such as
facsimile machines, printers, etc. where the general purpose architecture of micro-
processors turns out to be negative in several respects. Although these days there is
a growing trend to use the customized microcontrollers popularly known as flexible
microcontrollers from third party vendors such as picoblaze from Xilinx or Nios
from Altera on a FPGA platform, the importance of the 8 bit microcontrollers such
as PIC or MCS51 series has no way affected. It has been reported that “the next-
generation automotive electronic systems need highly specialized, cost-optimized
devices to meet market requirements. Considering the dramatic increase in devel-
opment costs for state-of-the-art process technologies, specialization of traditional
microcontrollers no longer makes business sense. Neither do feature-rich devices
targeted at broad-base markets, as they are often too expensive. Alternatively, the
flexible microcontroller solution offers a process to develop the exact microcontrol-
ler for a specific application by implementing it into an FPGA for prototyping
[58].” However, for the most of the day to day applications the capabilities and

1.6 Competition for Processing Cores in Embedded Systems 7

8 1 Introduction

onchip resources of PIC or MCS51 series devices are no way proved to be bottle-
neck. That’s why we are witnessing the penetration of these tiny chips which are
hidden inside a surprising number of products such as a microwave oven, a car
engine, home automation, TV, VCR just to name a few. Although the FPGA’s have
strikingly powerful features such as programming and reprogramming as needed
during the design process, rapid prototyping and faster time-to-market, field
upgradeability, etc. still these devices have to go a long way as a core of Embedded
Systems designed by hobbysists, student and academic community. With this focal
view, this book covers most of the needed stuff of the representative member of PIC
and MCS51 series microcontrollers so as to inculcate their embedding as a process-
ing core for the intended applications.

1.7 Programming Paradigm for Microcontrollers

Embedded systems programming is the programming of an embedded system in some
device using the permitted programming interfaces provided by that system [16].

Although initially the designers were skeptical about the usefulness of ‘C’ for
microcontroller programming paradigm, later they found that there is nothing like
it to program in C rather than the traditional assembly. ‘C’ is by now the most popu-
lar and widely used language for programming microcontrollers. Hardware pro-
grammers and firmware experts found many features of this language as most
promising for effectively using the onchip resources provided by the manufactur-
ers. It is therefore that C has been listed ahead of assembly, C++ and Java in the
popularity charts of Embedded Systems. For programming microcontrollers such
as MCS51, PIC, AVR C is more useful owing to its closeness to the hardware. On
the other hand C++ tends to be used for large programs where the object oriented
features can be used to advantage. As far as the Embedded sector is concerned there
is a very remote possibility that C++ will replace C in near future. The main com-
petitor of ‘C’ is the assembly language, which has been outlasted by C in wide-
spread use. However in the mainstream general purpose programming paradigm,
languages such as Java are however more intended to replace C++.

Some of the high level features of the traditional ‘C’ have been revised and cus-
tomized by the IDEs of the microcontrollers to access the hardware resources
effectively.
Pure C lacks in the some of the things such as [9]:

● Impossible to check whether or not there were an overflow after arithmetic
operation (in order to check this you have to read overflow flag).

● It is impossible to organize multithreaded operations, because for this you
should save register values to save the states.

The above aspects have been incorporated in the Embedded C and most of the
IDEs. Most of the underlying concepts regarding the ‘C’ for microcontroller
programming have been covered in our latest book published by Springer [27].

1.8 Our Approach: “Towards a Full Proof ‘C’ Library
for Embedded Systems”

A famous saying about software “If architects built houses the way software engi-
neers built software, the first woodpecker that came along would destroy civilization”
is seen more valid for the embedded software. That’s why this book gives a complete
listing of the ‘C’ programs keeping aside the theoretical algorithms, flowcharts or
pseudo codes. We are adopting this approach for several reasons. First and foremost
is there are several texts giving theory and we want to go away from this and present
something useful and executable stuff for testing in the laboratory. Secondly, with
many years of experience in this field we found that the software is the main culprit
in project failure. This view is validated with sound theoretical analysis which entails
that the underlying hardware of the embedded product has been evolved and became
almost standard. Today many standardization frameworks such as IEEE exists forcing
the manufacturers to obey the certifications and incorporate measures to make their
product platform independent, fault tolerant to some extent and interactive by follow-
ing widely accepted communication protocols. However, the software part which
keeps on changing per application, has been at the mercy of the programmers.

An interesting article [28], explains why software has been the most crucial part
of Embedded Systems. Here the authors deliberate the reasons as:

● Increasing complexity of the software as compared to hardware due to an infi-
nite number of possible execution paths, handling of huge data, etc. The hard-
ware design comparatively has to follow less number of complicated states.

● Software is extremely sensitive to errors. A single incorrect setting or resetting
of the flag completely changes the program execution and gives wrong results.

● Software is difficult to test even with today’s sophisticated simulators.
Sometimes in the Embedded arena we need to see whether the simulated output
will really come true or cause a catastrophic failure.

● As contrasted to hardware where one can define the test points clearly, the soft-
ware is hardly prone to check the correlations between various variables used in
the program. No doubt the watch windows are provided to help debug, but prac-
tically one can’t keep all watch window per variable.

● Lastly unlike the hardware there is lack of professional standards for software.

It is aid that the software project failures have a lot in common with airplane crashes. Just
as pilots never intend to crash, software developers don’t aim to fail. When a commercial
plane crashes, investigators look at many factors, such as the weather, maintenance
records, the pilot’s disposition and training, and cultural factors within the airline.
Similarly, we need to look at the business environment, technical management, project
management, and organizational culture to get to the roots of software failures [29].

With the increasing importance to the embedded software, there is need to incor-
porate certain software failure case studies in academics as well as industry oriented
courseware, which is yet to be done. Some interesting case studies related to system
failure due to software lacunae are as follows.

1.8 Our Approach: “Towards a Full Proof ‘C’ Library for Embedded Systems” 9

10 1 Introduction

The Therac 25 was supposed treat cancer patients and save their lives by zapping
tumors with targeted blasts of radiation. Instead, the device delivered massive over-
doses that killed three patients and injured several others because of software
glitches by a lone programmer whose code was never properly inspected and tested
[30]. Ironically, today’s most popular programming languages, C and C++, are
among the most error prone. That’s because C compilers have plenty of latitude to
compile and link – without providing any diagnostics – code that can produce seri-
ous run-time errors, especially when ported to a new processor. Dan Saks, an author
who has documented nearly 40 “gotchas” says that “There are a lot of little goodies
in C that programmers are not fully aware of,” “The lesson is to understand what
you can assume and what you can’t [31].”

1.9 Finalizing Hardware

This book describes two types of microcontrollers for designing embedded sys-
tems. Chapter 2–5 are based on PIC series 16F877 basically a RISC architecture.
Chapter 6 is based on Atmel 89S52 microcontroller designed with CISC philoso-
phy. Almost all the books focus on only a single microcontroller. Then, why two in
this book? The reason behind using two types of microcontrollers is to demonstrate
their basic capabilities and their proper choice for the intended application. Thus a
designer can practically experience the basic difference between them and decide
where the square peg fits in the round hole.

The basic bottlenecks [32] in using the CISC microcontrollers for the emebed-
ded applications are as follows:

● Long and unpredictable interrupt latencies (slowing down the entire application)
● Vast instruction sets give slow decoding (complexity of decoder is nore)
● Frequent accesses to Memory which are generally slower devices
● Slow procedure calling
● Strictly one job at a time (dedicated ISR per interrupt or device)
● Software has to be structured to suit architecture (to facilitate fast task switching)
● Redundant instructions and addressing modes (popular quote: 20% instructions

used 80% of time)
● Inconsistent instruction sets
● Bus not fully utilized (idle buses most of the time as the decoder is all the while

busy due to complex instruction set)

On the other hand the RISC processors has very simple instructions operating at a
faster speed, almost one instruction per clock cycle. Hardwired implementation of
the control unit in RISC gives them VLSI area saving advantage compared to the
micro-code implementation of their counterparts. Few more appealing points of
RISC architecture [33] are as follows:

● RISC employs initial design methodology to incorporate only frequently used
instructions in the instruction set and thus achieves the same function performed
by a much more complex instruction in a CISC.

● RISC processor has a large number of general-purpose registers, largely reduc-
ing the frequency of the most time consuming memory access.

● Interms of clock rate, the RISC with its much simpler circuits can have a higher
clock rate that again increases the performance of a processor.

● The RISC processor can provide processing power more than three times of a
CISC processor in a particular field of application.

The RISC disadvantage sometimes is the difficulty in the design of compilers.
Interestingly many embedded computer users have known and taken advantage of
the benefits of RISC (reduced instruction set computers) versus ×86 CISC (com-
plex instruction set computer) processors for years. But one of the main advantages
has always been one of the main drawbacks – the variety of RISC choices has pre-
vented a standard approach to specifying portions of the RISC design. The choice
eventually came down to designing a custom RISC-based single board computer
(SBC), or choosing an industry-standard form-factor – even if it didn’t quite fit the
application’s space or I/O requirements [34].

1.10 Exploring PIC16F877 for Embedded Systems

Historically, PIC (Peripheral Interface Controller) is the IC which was developed to
control peripheral devices, alleviating the load from the main CPU.
The core features of PIC16F877 as per the data sheet [35, 36] are as follows:

● High performance RISC CPU
● Only 35 single word instructions to learn
● All single cycle instructions except for program branches which are two cycle
● Operating speed: DC – 20 MHz clock input
● DC – 200 ns instruction cycle
● Up to 8 K × 14 words of FLASH Program Memory,
● Up to 368 × 8 bytes of Data Memory (RAM)
● Up to 256 × 8 bytes of EEPROM Data Memory
● Pinout compatible to the PIC16C73B/74B/76/77
● Interrupt capability (up to 14 sources)
● Eight level deep hardware stack
● Direct, indirect and relative addressing modes
● Power-on Reset (POR)
● Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
● Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
● Programmable code protection
● Power saving SLEEP mode
● Selectable oscillator options
● Low power, high speed CMOS FLASH/EEPROM technology
● Fully static design
● In-Circuit Serial Programming (ICSP) via two pins
● Single 5 V In-Circuit Serial Programming capability

1.10 Exploring PIC16F877 for Embedded Systems 11

12 1 Introduction

● In-Circuit Debugging via two pins
● Processor read/write access to program memory
● Wide operating voltage range: 2.0–5.5 V
● High Sink/Source Current: 25 mA
● Commercial, Industrial and Extended temperature ranges
● Low-power consumption:
 –<0.6 mA typical @ 3 V, 4 MHz
 –20 µA typical @ 3 V, 32 kHz
 –<1 µA typical standby current

PIC16F877 is a popular choice of Embedded community. The foremost reason is
that it offers high pin count and minimal cost.

Many developers have come out readymade programmers for PIC16F877. Good
ones we found on the Internet are

● http://www.angelfire.com/ok3/masterbyte/ A project to home-built a reliable PIC
16F87X based programmer and development system. Moreover, a 32 bit native
software has been developed around this programmer. It is written on the webpage
that it can also program the PIC16F84 and the I2C serial EEPROM 24LC16.

● http://feng3.cool.ne.jp/en/pg5v2.html “Multi PIC Programmer 5 Ver.2” is a PIC
programmer, which can program to 8-pin to 40-pin devices using single ZIF
socket. It is in order to enable it to program 40-pin devices like PIC16F877 with
a ZIF socket.

● http://www.ise.pw.edu.pl/~wzab/picprog/picprog.html Although there are many
free programmers for PIC16 × 84 microcontrollers, most of them do not support
so called “margining” – verifying of programmed contents at different power
supply voltages. But the one given here supports margining. The programmer is
provided as “free hardware”. Author has given permission to reproduce it and
use for any purpose (even commercial) without paying any fee, but why not visit
his web URL and appreciate his efforts.

1.11 A Word About IDE

In the confines of a software project, “spending $2,000 on tools might save you
$100,000 in programming effort,” said Stewart of Embedded Research Solutions.
True enough! Understanding the IDE plays an important role in simulation
and programming. We have used MPLAB for the PIC16F877. MPLAB is an
integration of a compiler, an assembler, a project manager, an editor, a debugger,
simulator, and an assortment of other tools within one Windows application. A user
developing an application can do many things such as code development, compile,
debug and test and application with the MPLAB IDE. Most important thing is
availability as a freeware and can be downloaded from website [37]. We want to
introduce the MPLAB IDE and illustrate working with it in a step by step manner
as follows:

Step 1: Running MPLAB IDE
To start MPLAB IDE, double click on MPLAB IDE the following screen will

appear.

Step 2: Selecting the device
Click on configuration®click on select Device(PIC16F877) then following win-

dow will appear and click ok.

1.11 A Word About IDE 13

14 1 Introduction

Step 3: Setting up language tool
On tool bar menu select project®set language tool locations, the window shown

below will appear.

Expand the CCS C compiler and select C compiler under executables and
Then press ok.

Step 4: Creating the project
Chose project®Project wizard, the following welocome window will appear.

Click on next to continue the next dialog (Step 1) allows you to select the device,
which you have already done make sure that it displays PIC16F877. If it does not,
select the PIC16F877 from drop down menu. Then click next again it displays fol-
lowing window.

1.11 A Word About IDE 15

16 1 Introduction

Click on next that will allows you to select project working directory and Name
to the project as shown below, then click next®next®finish.

Then click next®next®finish the follow window will appear.

Step 5: Create new file
Choose file→new, type the you c code for respective application and save it with

C extension as shown below.

Step 6: Adding files to the project
Right click on source file in the project window and then add your c file e.g.

serial.c, then right click on header files, then browse the PIC16F877 header file
where PIC C compiler is installed, e.g. C:\Program files\PICC\Devices\16F877.h.

After doing above steps the final window appears as shown below.

1.11 A Word About IDE 17

18 1 Introduction

Step 7: Building project
Click on project®build option-®project, then select PCM option in compiler

then click ok.
Step 8: Programming the device with any available programmer or the ones

mentioned in previous article.

1.12 Details About the AT89S52 and Its Development
Environment

The last chapter of this book is solely on AT89S52. We are not giving here anything
regarding the device, its IDE and other stuff. Interested readers may go through our
previous book [27]: “Exploring C for Microcontrollers: A Hands on Approach”
authored by Jivan S. Parab, Vinod G. Shelake, Rajanish K. Kamat and Gourish M.
Naik and published by Springer recently in May 2007. In addition most of the
essential details may be explored by referring the references [37–40].

Chapter 2
Interacting with the Outside World Using
Simple I/O Devices

The microcontroller interacts with the outside world by means of devices such as
LEDs, relays, LCDs extra. This chapter covers all the interfacing aspects of PIC to
the outside world. The interfacing aspects in general comprises of solving the
current/voltage in compatibility issues, introducing drivers, current protection
resistors, port saving measures and satisfying the timing requirements. A good
reference to solve these incompatibility issues may be seen in the online URL given
at reference [53]. The code developed in this chapter is quite useful and may be
treated as a software library in any project design.
Following case studies are developed:

2.1 LED Interfacing
2.2 Switch (DIP) Interfacing
2.3 Interfacing Buzzer
2.4 Keypad Interfacing
2.5 Thumbwheel Switch Interfacing
2.6 Seven Segment Display Interfacing
2.7 LCD Interface to the PIC
2.8 Relay Interface to the PIC

2.1 LED Interfacing

LEDs the tiny semiconductor devices, passes an electric current to in only one
direction and produce light as a byproduct of current flow. These days they have
challenged the mere existence of the fluorescent lights, as they run cooler and last
longer. The lighting industry is being dominated by LEDs and they are now domi-
nating the commercial world, with their optimum energy use and lesser mainte-
nance costs. Recently even the video screens, animated signs, traffic lights and
home lights are some of the domains being ruled by the arrays of tiny LEDs.

The role of LED’s as a binary indicator for indication and diagnostics is undis-
putable. Although it is one of the most simplest interfacing, it presents a range of
opportunities when used for applications such as advertisement displays, home

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 19
© Springer Science + Business Media B.V. 2008

20 2 Interacting with the Outside World Using Simple I/O Devices

show pieces, etc. Many of the embedded system products makes use of the SMD
LED’s (owing to manufacturing ease) although they are less brighter than their
through hole counterparts.

The LEDs can be interfaced to the microcontroller in either in ‘active high’ or
‘active low’ mode. However the ‘active low’ mode gives certain advantages as ground-
ing the cathode is much easier and reliable than outputting logic 1 from the port pin.
With the active low mode the sinking capacity of the microcontroller is more important
than the sourcing. In this module three case studies pertaining to the LED interfacing
have been developed useful for different applications in Embedded Systems.

Program 2.1 Blinking of the LED
This application is analogous to the “Hello World” program for the software engineer
in making. This simplest LED interfacing (Fig. 2.1) exercise helps to kick start the
programming and enhances the confidence level. It also clarifies the basic infinite
loop theory of the embedded systems by using while{1} construct. The concept of
passing the delay values to the built in delay routine in the PIC C is demonstrated.
Program Source Code
**
// Program to illustrate the blinking LEDs connected to the Port B of PIC16F877.
——————————————————————————————————————-
#include<16f877.h>// Include the header file of the PIC16F877 device.
#use delay(clock=20000000)// Use the clock of 20 MHz for the delay
void main()// Start of the main program.
{
while(1) // loop for the LED ON-Off.

Fig. 2.1 LED interface to PIC16F877

2.1 LED Interfacing 21

 {
 output_b(0×ff); // Out 0XFF to the Port B.
 delay_ms(500); // Delay of 500 ms.
 output_b(0×0); // Out 0X 00 to the port B.
 delay_ms(500);
}// end of for loop.
}
**
Blinking frequency variation can be verified by changing the delay count.
Program 2.2 Blink and send the data pattern stored in array
The application is all about making a configurable LED arrays by sending the display
data pattern through an array. A slight extension of this application with more LEDs
connected to the other ports (which will form the LED matrix) is quite useful for display-
ing the moving images with limited animation. In the present application, patterns to be
displayed are stored in an array and sent to the LEDs interleaving a short blinking.
Program Source Code
**
/* Program for the LED interfacing to the PIC16F877. LEDs are connected to the
port B. The LEDs are ON-Off with the predefined software delay. And after ON-
Off 10 times send the data stored in Array.
Program to illustrate the blinking and sending the data pattern stored in array to the
LEDs connected to the PIC16F877.*/
——–
#include<16f877.h> // Include the header file of the PIC16F877 device.
#use delay(clock=20000000) // Use the clock of 20 MHz for the delay
unsigned int led[]={0×FE,0×FD,0×FB,0×F7,0×EF,0×Df,0×Bf,0×7f};
unsigned int i; // define the integer.
void main() // Start of the main program.
{
while(1) // loop for the LED ON-Off.
 {
 for(i=0;i<10;i++) // switch leds ON-OFF for 10 times
 {
 output_b(0×ff); // Out 0×FF to the Port B.
 delay_ms(500); // Delay of 500 ms.
 output_b(0×0); // Out 0× 00 to the port B.
 delay_ms(500);
 } // end of for loop.
 for(i=0;i<8;i++) // send the sequence stored in arrray
 {
 output_d(led[i]); // Send the Data stored in the Array.
 delay_ms(500); // Delay of 500 ms.
 }
 } // End of While loop
} // End of main.
**

22 2 Interacting with the Outside World Using Simple I/O Devices

Program 2.3 LED ON-OFF by using shift operators
This application is one step towards “scrolling marquee LED signs”. Such applica-
tions make use of the IC shift registers for the purpose of scrolling. However, the
same is achieved by using the ‘shift’ operator that scrolls the data pattern stored in
an array in a sequential fashion.
Program Source Code
**
//This Program for LED interface
//Data Lines – PORT B
—————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
unsigned int i;
char a;
void main()
{
a=0×01;
 while(1)
 {
 for(i=0;i<10;i++){ // switch leds on OFF for 10 times
 output_b(0×ff);
 delay_ms(500);
 output_b(0×0);
 delay_ms(500);
 }
for(i=0;i<8;i++)
 {
 output_b(a);
 delay_ms(500);
 a=a<<1; // send the sequence stored in array
 if (a==0×0)
 a = 0×01;
}} }
**

2.2 Switch (DIP) Interfacing

Program 2.4 DIP switch interfacing
A Dual In Line Package (DIP) switch is an electric switch that is packaged in a group in
a standard dual in-line package (DIP). DIP switches are primarily used for setting up vari-
ous configuration options. Some of the applications of the DIP switches are as follows:

● Configuring of defaults on computer boards
● Changing the baud rate on modems

● Setting default options for video cards
● Configuration of pin-outs on cables
● Assigning address on the PC’s system bus to an peripheral or I/O bus
● Selecting IRQs in PCs

The DIP switches can be interfaced to the microcontroller either by using a pull-up
resistor (i.e. by connecting the switches to Vcc through a current limiting resistor) or
in a pull-down mode with a small value resistor between the microcontroller pin and
ground. The former method ensures the sinking current limitations of the microcon-
troller pin although it gives logic 0 for switch closure. The latter method as shown in
Fig. 2.2 gives logic 1 for the switch closure, however results in a larger current dissi-
pation during the switch closure. In this application status of the DIP switches is read
through port B and the same is sent to the LEDs interfaced to port D.
Program Source Code

/* This program will read the DIP switched connected to port B and outputs the
same on LEDS, which are connected to port D */

2.2 Switch (DIP) Interfacing 23

Fig. 2.2 DIP switch interface to PIC16F877

24 2 Interacting with the Outside World Using Simple I/O Devices

// Data Lines (DIP switched is connected to PORT B
// LEDs are connected to PORT D
————————————————————————————————————
#include<16F877.h>
#use delay(clock=20000000)
unsigned char read; // Define the Character Read
void main() // Start of the main function.
{
 output_d(0×ff); // Out the 0X FF to the Port D connected to LEDs
while(1)
 {
 read=input_b(); // Read the data from the DIP switch connected to the
 Port B.
 delay_ms(500); // Delay of 500 ms
 output_d(read); // Out the Read data to port D.
 }
}
**

2.3 Interfacing Buzzer

Piezoelectric sound components are known for their penetrating tones that are free
of harmonics. These devices works on the principle of activating the piezoelectric
diaphragm that consists of a piezoelectric ceramic plate with electrodes on both
sides and a metal plate either of brass or stainless steel. With their low power
requirement, these devices can be driven by the microcontroller port to produce
high acoustic output. With the Application of the DC voltage through the port line
causes these devices to produce mechanical distortion to the diaphragm. Even by
applying an AC voltage/variable pulses using the timer counter of the microcontrol-
ler will move the diaphragm in a repeated bending motion, creating different sound
effects. The devices such as Murata’s PKB24SPC-3601-B0 piezoelectric buzzers
[51] are useful for microcontroller interfacing.

Program 2.5 Buzzer interfacing
This application demonstrates a buzzer interfacing to the PIC microcontroller (refer
Fig. 2.3).
Program Source Code
**
/* Program illustrates the interfacing of the Buzzer connected to the pin 0 of the
Port D. with the predefined software Delay. */
——————————————————————————————————————–
#include<16F877.h>
#use delay(clock=20000000)
void main()

{
 while(1)
{
 output_high(PIN_D0); // buzzer is connected to pin D0
 delay_ms(300);
 output_low(PIN_D0);
 delay_ms(300);
 }
}
**
Program 2.6 Activating buzzer with pin sense
This application is all about activating the buzzer upon pressing the push button
key. It can be modified for many possibilities such as ‘quiz buzzer’, ‘safety alarm’,
etc. Debouncing has to be done whenever the mechanical switches are involved.
This is accomplished by introducing a software delay in this application.

2.3 Interfacing Buzzer 25

Fig. 2.3 Buzzer interface to PIC16F877

26 2 Interacting with the Outside World Using Simple I/O Devices

Program Source Code
**
/* This program illustrate the Pin D1 is connected to push button which will act as
an input. The Status is indicated by the Buzzer activation connected to the port pin
D0. /*
————————————————————————————————————
#include<16F877.h>
#use delay(clock=20000000)
void main()
{
 while(1)
{
 if(input(PIN_D1)==0)
 {
 output_high(PIN_D0); // buzzer is connected to pin D0
 delay_ms(50);
 }
 else
 {
 output_low(PIN_D0);
 delay_ms(50);
 }
 }
 }
**

2.4 Keypad Interfacing

Almost all the embedded instruments require a front panel keypad interface to
facilitate modifications of the instrument settings. The Series 96 is Grayhill’s most
economical 4 × 4 keypad family [1,2]. The contact system utilizes conductive rub-
ber to mate the appropriate PC board traces. These keypads are offered in matrix
circuitry, with shielded and backlit options. The specifications required for interfac-
ing (refer Fig. 2.4) are reproduced here. More details are available from the com-
pany website available at reference 1. The 10 K resistor works as a pull up resistor
for the active row input.
Specifications:

● Rating Criteria
● Rating at 12 Vdc: 5 mA for 0.5 s
● Contact Bounce: <12 ms
● Contact Resistance: <100Ω (at stated operating force)
● Voltage Breakdown: 250 Vac between components
● Mechanical Operation Life: 1,000,000 operations per key

Program 2.7 Hex keypad interfacing
The program works on the principle of scanning the rows and columns. The key
pressed is displayed on the PC through HyperTerminal.
Program Source Code
**
// Program for On-Board Key interface
————————————————————————————————————
#include<16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=PIN_C6,rcv=PIN_C7)
unsigned char row1[4]={0×fe,0×fd,0×fb,0×f7},value;
unsigned char row,col,colread,a,b,c,i;
void display(int);
void main()
{
 printf(“ n r Key Interface”);
 while(1)
 {
 row=0×fe;
delay_ms(500);
 for(i=0;i<4;i++)
 {
 output_d(row);
 colread=input_d();
col=colread &0×f0;

2.4 Keypad Interfacing 27

Fig. 2.4 Hex keypad interfacing

28 2 Interacting with the Outside World Using Simple I/O Devices

 if(col<0×f0)
 {
 display(colread);
 }
else{
 row=row1[i];
}}}}
void display(int x)
{
 switch(x)
 {
 case 0×ee:
 value =0×00;
 putc(‘0’);
 break;
 case 0×de:
 value =0×01;
 putc(‘1’);
 break;
 case 0×be:
 value =0×02;
 putc(‘2’);
 break;
 case 0×7e:
 value =0×03;
 putc(‘3’);
 break;
 case 0×ed:
 value =0×04;
 putc(‘4’);
 break;
 case 0×dd:
 value =0×05;
 putc(‘5’);
 break;
 case 0×bd:
 value =0×06;
 putc(‘6’);
 break;
 case 0×7d:
 value =0×07;
 putc(‘7’);
 break;
 case 0×eb:
 value =0×08;

 putc(‘8’);
 break;
 case 0×db:
 value =0×09;
 putc(‘9’);
 break;
 case 0×bb:
 value =0×A;
 putc(‘A’);
 break;
 case 0×7b:
 value =0×0B;
 putc(‘B’);
 break;
 case 0×e7:
 value =0×0C;
 putc(‘C’);
 break;
 case 0×d7:
 value =0×0D;
 putc(‘D’);
 break;
 case 0×b7:
 value =0×0E;
 putc(‘E’);
 break;
 case 0×77:
 value =0×0F;
 putc(‘F’);
 break;
 }
 output_d(value);
}
**

2.5 Thumbwheel Switches Interface

Thumbwheel switches are ideal for inputting data in terms of number or code for a
manufacturing, process automation, and measurement systems. These switches are
mounted at the front panel so that the data can be inputted by an operator.

Thumbwheel switches are also found in conjunction with the programmable
logic controller (PLC) as a standard input device. They are available in three basic
varieties viz. octal, binary coded decimal (BCD), and hexadecimal.

2.5 Thumbwheel Switches Interface 29

30 2 Interacting with the Outside World Using Simple I/O Devices

Standard thumbwheel switches are available from number of manufacturers [3–5].
One of the popular thumbwheel switches is EECO’s 1400 series switches [3] that
feature snap-in front mounting in a large, easy to use package size. Multiswitch
assemblies can be created easily by snapping the switches together, with no extra
hardware requirement. The 1400 series offers a choice of thumbwheel, push-set or
lock-set actuator methods. The lock-set model eliminates the possibility of acciden-
tal setting changes in critical applications. The 1400 series offers several 10 and 16
position binary and decimal output codes. Options such as diode provision termina-
tion, stops and F-pins for P.C. board mounting make the 1400 series switch a popu-
lar choice among design engineers [3]. The diodes are used on the port lines for
isolation purpose (Refer Fig. 2.5).
Program 2.8 Thumbwheel switch interface
Program Source Code
**
//C program to Read thumbwheel switch and display the value on 4 7 segment
// Thumbwheel switch is connected to PORTD
// PB5 —>serial data for segment
//PB6 —> clock
———-
#include<16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
unsigned int unit,tens,hundred,thousand;
char
seq[16]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90,0X88,
0X80,0XC6,0XC0,0X86,0X8E};
void display(char);
void clear(void);
void main (void)

Fig. 2.5 Thumbwheel switch interface to PIC16F877

 {
long int i;
int N;
while (1) {
N=input_d();
 unit =N%10;
 tens=(N/10)%10;
 hundred=(N/100)%10;
 thousand=(N/1000);
clear();
display (seq[thousand]);
delay_ms(100);
display (seq[hundred]);
delay_ms(100);
display (seq[tens]);
delay_ms(100);
display (seq[unit]);
delay_ms(100);
}}
void display(char k)
{
unsigned char mask;
int i;
mask=0×80;
for(i=0;i<0×08;i++)
{
 if(k&mask)
 output_high(PIN_B5);
 else
 output_low(PIN_B5);
 output_low(PIN_B6);
 output_high(PIN_B6);
 output_low(PIN_B6);
 mask=mask>>1;
}}
void clear(void)
{
int i;
for (i=0;i<33;i++)
{
output_high(PIN_B5);;
output_low(PIN_B6);output_high(PIN_B6);output_low(PIN_B6);
}
}
**

2.5 Thumbwheel Switches Interface 31

32 2 Interacting with the Outside World Using Simple I/O Devices

2.6 Seven Segment Display Interfacing

The seven segment display are still been used in Embedded Applications (where the
users do not want compromise with the display intensity) in spite of the dominance
of the LCDs. They basically comprises of arrangement of the LEDs in “Eight” (8)
passion, and a Dot (.) with a common electrode, lead (Anode or Cathode). Two
types of Seven segment displays are available in market. The first one is common
anode in which all the anodes of the LEDs are connected together, leaving the
cathodes open for connection. The second one is common cathode in which all the
cathodes of the LEDs are connected together, leaving the anodes open for connec-
tion. The common cathode is more popular than its counterpart since grounding the
cathodes is much easy and reliable than powering the common anodes. Few exam-
ples of the commercially available seven segment LEDs are as follows:

Part number/
trade name

Common
cathode/anode Company Features

MAN6960 Common anode FAIRCHILD 2,200 ucd luminous intensity @ 10 mA
LDS-C516RI Common cathode LITEON 2,200 ucd luminous intensity @ 10 mA
LDS-A516RI Common anode LITEON 2,200 ucd luminous intensity @ 10 mA
AND-2307SCL Common cathode AND Opto-

Electronics
GaAsP/GaP–Red; GaP–Green
7 Segment, Large Size; 2.3˝

AND-2307GAL Common anode AND Display–green, OptoElectronics
face–gray

MSQ6911C Common anode FAIRCHILD 2,200 ucd luminous intensity @ 20 mA.
High efficiency. Right hand decimal

KW1-2302CS Common cathode GTC Super bright, super big 2.3≤ single digit,
42 mcd luminous intensity @ 10 mA

In this application common cathode seven segment displays is interfaced to the PIC on a
multiplex basis. There are several advantages of going for a multiplexed display such as:

● Less wiring
● Low power driving electronics
● Above two issues leads to better economics
● Reduced power consumption as only one seven segment display will be opera-

tional at a time

The ‘persistence of vision’ mechanism of the multiplexed display works well for a
limited number of displays.

As an illustration only two displays are interfaced (Fig. 2.6). This can be
extended to eight displays using all the lines of port B.
Program 2.9 Display the count from 00-99 on two seven segment display
Program Source Code
**
//This Program displays the count from 00-99 on 2- seven segment connected
trough binary decoder
//segment are connected to PORTD
——————————————————————————————————————-

#include<16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
void main()
{
int i;
int uni, ten;
while(1){
for (i=0; i<100; i++)
{
uni = (i%10);
ten = (i/10);
uni = uni << 4;
output_d(ten|uni);
delay_ms(100);
}
}
}
**
Program 2.10 Down count from value set on DIP

2.6 Seven Segment Display Interfacing 33

Fig. 2.6 Seven segment display interface to PIC16F877

34 2 Interacting with the Outside World Using Simple I/O Devices

In this program decoded output are not used but instead character sequences are
generated.
Program Source Code
**
// C program to down count from value set on DIP switch to 00 in the first 2 digit
(hex).
// DIP switch is connected to PORTD
// PB5 —>serial data
//PB6 —> clock
——————————————————————————————————————
#include<16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
unsigned int unit,ten,hundred,tenth;
char
seq[16]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90,0X88,
0X80,0XC6,0XC0,0X86,0X8E};
void display(char);
void clear(void);
void main (void) {
long int i;
int N;
while (1) {
N=input_d();
for (i=N;i>=0;i–)
 {
 unit =(i%16);
 ten=(i/16);
clear();
display (seq[ten]);
delay_ms(100);
display (seq[unit]);
delay_ms(100);
}
}
}
void display(char k)
{
unsigned char mask;
int i;
mask=0X80;
for(i=0;i<0x08;i++)
{
 if(k&mask)
 output_high(PIN_B5);
 else

 output_low(PIN_B5);
 output_low(PIN_B6);
 output_high(PIN_B6);
output_low(PIN_B6);
 mask=mask>>1;
}
}
void clear(void)
{
int i;
for (i=0;i<33;i++)
{
output_high(PIN_B5);;
output_low(PIN_B6);output_high(PIN_B6);output_low(PIN_B6);
}}
**
In this application, the PIC starts counting up from the binary values set by the DIP
switches (refer Fig. 2.7).
Program 2.11 Up count from value set on DIP
Program Source Code
**
// C program to up count from value set on DIP switch to 00 in the first 2 digit
(binary).
// this program can be easily modified for the 4 digit display.
// DIP switch is connected to PORTD
// PB5 —>serial data
//PB5 —> clock
——————————————————————————————————————-
#include<16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
unsigned int unit,ten,hundred,tenth;
char
seq[16]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90,0X88,
0X80,0XC6,0XC0,0X86, 0X8E};
void display(char);
void clear(void);
void main (void)
{
long int i;
int N;
while (1) {
N=input_d();
for (i=N;i>=0;i–)
 {
 unit =(i%10);

2.6 Seven Segment Display Interfacing 35

36 2 Interacting with the Outside World Using Simple I/O Devices

 ten=(i/10);
clear();
display (seq[ten]);
delay_ms(100);
display (seq[unit]);
delay_ms(100);
}}}
void display(char k)
{
unsigned char mask;
int i;
mask=0X80;
for(i=0;i<0×08;i++)
{
 if(k&mask)
 output_high(PIN_B5);
 else
 output_low(PIN_B5);
 output_low(PIN_B6);
 output_high(PIN_B6);
output_low(PIN_B6);
 mask=mask>>1;
}}
void clear(void)
{
int i;
for (i=0;i<33;i++)
{
output_high(PIN_B5);;
output_low(PIN_B6);output_high(PIN_B6);output_low(PIN_B6);
}
}
//Note: The above programs can be modified to display four digits by adding
more seven segment displays.
**

2.7 LCD Interface to the PIC

The embedded projects becomes spicy with the addition of alphanumeric LCD that
facilitates the user instructions as well as project response in alphanumeric form
which makes the application professional and easy to use. It not only enhances the

presentation aspects but eases the debugging process by setting single stepping,
breakpoints and interrupts wherever required.

HD44780 Character LCD is a popular industry standard liquid crystal display
(LCD) display device designed for interfacing with microcontrollers. It has capabil-
ity to display in 16 × 2 configurations. These LCDs are found in many appliances
such as copiers, fax machines, laser printers, industrial test equipment, networking
equipment such as routers and storage devices, etc. to name a few.

Manufacture’s data sheet [6] and even many web pages [7] covers the commands
for the LCD. By adding a shift register a two wire interface for the LCD is also been
developed [52]

Pin configuration for LCD HD44780

Pin number Description

1 Ground
2 Vcc
3 Contrast voltage
4 ‘R/S’ Instruction/register select
 • By setting the bit, byte at the current LCD “cursor” position can be

 read or written
 • Resetting the bit indicates, either an instruction being sent to the LCD

or the execution status of the last instruction being read back
5 ‘R/W’ Read/write LCD registers
6 ‘E’ Clock
 Used to initiate the data transfer within the LCD
7–14 Data I/O Pins

2.7 LCD Interface to the PIC 37

Fig. 2.7 DIP switch and seven segment display interface to PIC16F877

38 2 Interacting with the Outside World Using Simple I/O Devices

Program 2.12 LCD Interface to PIC (Refer Fig. 2.8)
Program Source Code
**
// This program the string “This is our 2nd book on embedded system” on the
LCD.
————————————————————————————————————
#include<16F877.h>
#use delay(clock=20000000)
unsigned int array[]={“Thanks to publishers”};
unsigned char a,i,b,j;
void INITlcd(void);
void ENABLE (void) ;
void LINE(int);
void main()
{
 while(1){
 INITlcd();
 LINE(1);
 for (i=0;i<16;i++)
 {
 if(i==8)
 LINE(2);
 b=array[i];
 output_d(b);
 ENABLE();
}
 output_low(PIN_B0);
 output_d(0×01);
 ENABLE();
 output_high(PIN_B0);
LINE(1);
for (i=16;i<33;i++)
 {
 if(i==24)
 LINE(2);
 b=array[i];
 output_d(b);
 ENABLE();
}
}}
void ENABLE(void) {
output_high(PIN_B2);
delay_ms(10);
output_low(PIN_B2);
delay_ms(10);

}
void LINE(int j){
 if (j==1) {
 output_low(PIN_B0); output_low(PIN_B1);
 output_d(0×80);
 ENABLE();
 output_high(PIN_B0);
 }
 else
 {
 output_low(PIN_B0);
 output_low(PIN_B1);
 output_d(0×C0);
 ENABLE();
 output_high(PIN_B0);;
 }}
void INITlcd(void)
{ output_low(PIN_B0);//RS
output_low(PIN_B1);//RW
output_low(PIN_B2);//EL
output_d(0×38);
 ENABLE();
ENABLE();
ENABLE();
ENABLE();
output_d(0×06);
ENABLE();
 output_d(0×0E);
 ENABLE();
 output_d(0×01);
 ENABLE();
}
**

2.8 Relay Interface to the PIC

Interfacing electromagnetic relays to the microcontroller port poses several chal-
lenges as they require more driving current than that supplied by the port pin.
Moreover the relay may cause damage to the port itself. This is more true regarding
the reed relays. The back emf issue can be sorted out by connecting a free wheeling
diode of appropriate reverse rating across the relay coil. The current requirement of
the relay can be met by introducing a driver transistor. For added isolation it is rec-
ommended to employ an optocoupler such as CNY17, PC123 between the port

2.8 Relay Interface to the PIC 39

40 2 Interacting with the Outside World Using Simple I/O Devices

lines and relay driver. In case the current requirement of the relay is not getting
sufficed by the driver transistor then a Darlington Pair like TIP122 can be used
which can go safely upto 5 A of current. Another good option could be a IC driver
such as ULN2003 to drive multiple relays in one go through the microcontroller
ports.
Program 2.13 Relay interfacing (Refer Fig. 2.9)
Program Source Code
**
// this program illustrates the switching on-off relay based on pin sense.
————————————————————————————————————
#include<16F877.h>
#use delay (clock=20000000)
void main()
{
 while(1)
 {
 if(input(PIN_B3)==1)
 {
 output_high(PIN_B4); // relay is connected to pin B4
 delay_ms(500);

Fig. 2.8 LCD HD44780 interface to PIC16F877

 }
 else
 {
 output_low(PIN_B4);
 delay_ms(500);
 }
 }}
**
Program 2.14 Relay on off based on temperature sense
Program Source Code
**
/* Program Illustrate the Relay on off on the basis of temperature sensed form the
Temperature Sensor LM35. */
——————————————————————————————————————–
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
int adcdata,chadress,dataavg=0;

2.8 Relay Interface to the PIC 41

Fig. 2.9 Relay interface to PIC16F877

42 2 Interacting with the Outside World Using Simple I/O Devices

main()
{
 for(chadress=0;chadress<=7;chadress++)
 {
 output_d(chadress); // send channel address on port D
 delay_ms(50);
 output_high(PIN_B0); //ale is connected to B0
 delay_ms(50);
 output_low(PIN_B0);
output_low(PIN_B1); //eoc is connected to B1
output_low(PIN_B2); //soc is connected to B2
 delay_ms(200);
 output_high(PIN_B2); /*0 to 1 transition req to clear sar */
 delay_ms(200);
 output_low(PIN_B2); /*1 to 0 transition req to start conversion */
while(input(PIN_B1)==1)
 {
 adcdata=input_d();
 adcdata=adcdata+0×30;
 dataavg= (dataavg+adcdata);
 }
}
if(dataavg>=50)
{
output_low(PIN_B4); //if tem exceeds 50 deg stitch of the bulb
}
else
{
output_high(PIN_B4);
}}
**

Chapter 3
Accessing On-Chip and Off-Chip Peripherals

The PIC microcontroller is designed with on-chip ADC. However, sometimes the
system requires a multi-channel digitization. The processed digitized version needs
to be conveyed to the analog domain by using DAC. An optocoupler is required many
a times for safely driving without causing any damage to the microcontroller itself.
The case studies developed in this chapter will serve all the hardware and software
requirements for the process industries where the PIC will be the core processor for
the algorithmic implementation. Moreover the waveform generation and the pseudo
random signal generation through PIC may be used for test signal generation.
Following case studies are developed in this chapter:

3.1 Using On-Chip ADC
3.2 Interfacing ADC0809 to PIC
3.3 Optoisolator Interfacing
3.4 DAC Implementation Using On-Chip PWM
3.5 Waveform Generation Using PIC
3.6 Pseudo-Random Number Generation Through PIC
3.7 ON-OFF Temperature Controller Using On Chip ADC
3.8 Implementing a PID Temperature Controller Using PIC16F877

3.1 Using the On-Chip ADC

One of the capabilities of the PIC16F877 which makes it an ideal device for data
acquisition systems is its eight channels, 10 bit ADC. This can be usefully com-
bined with the USART and 256 bytes of EEPROM to make an ideal single chip
data acquisition solution. Moreover power consumption can be significantly
reduced by using the sleep mode with the aid of the timer 1. In this application
(shown in Fig. 3.1) the ambient temperature is measured using LM35 which gener-
ates a higher output voltage than thermocouples and exhibit greater linearity as
compared to thermistors. The features of LM35 are as follows:

● Output voltage proportional to the Celsius temperature
● Scale factor.01 V/°C

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 43
© Springer Science + Business Media B.V. 2008

44 3 Accessing On-Chip and Off-Chip Peripherals

● No need of any external calibration or trimming
● Accuracy of ±0.4°C at room temperature and ±0.8°C over a range of 0°C to

+100°C.
● LM35DZ draws only 60 µA from its supply
● Low self-heating less than 0.1°C temperature rise in still air

In this application the temperature measured using LM35 is displayed on the
LCD.
Program 3.1 Program for data logging using on-chip ADC
Program Source Code
**
// this is c code which makes use of on chip ADC.
———————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
#include<lcd.h>
int adc_data;
void main()
{
 setup_adc_ports(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 lcdint();
 while(1)

Fig. 3.1 Using on-chip ADC of PIC16F877

 {
 adc_data = read_adc();
 lcd_data(adc_data,0×a2);
 }
}
// this is part of above program i.e. code for <lcd.h> header file
#include<string.h>
void lcd_int();
void busycheck();
void lcd_string(unsigned char,unsigned int);
unsigned int array1[]={“ On Chip ADC ”};
unsigned int array2[]={“ADC Value :”};
unsigned char arr[]={“0123456789”};
unsigned char a,i,b;
void lcdint(){
 output_low(PIN_B3);
 output_high(PIN_B1);
 busycheck();
 output_d(0×38); /* Entry mode set */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×06); /* function set */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×01); /* clear display */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×0c); /* cursor on */
 output_high(PIN_B3);
 output_low(PIN_B3);
 lcd_string(array1,0×82);
 lcd_string(array2,0× c4);
 busycheck();
 output_d(0×d4);
 output_high(PIN_B3);
 output_low(PIN_B3);
 for (i=0;i<20;i++)
 {
 busycheck();
 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);

3.1 Using the On-Chip ADC 45

46 3 Accessing On-Chip and Off-Chip Peripherals

 output_d('-');
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void lcd_string(unsigned char str,unsigned addr1)
{
 int i,l;
 l = strlen(str);
 busycheck();
 output_d(addr1); /* starting address */
 output_high(PIN_B3);
 output_low(PIN_B3);
 for (i=0;i<l;i++)
 {
 busycheck();
 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);
 b=str[i];
 output_d(b);
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void lcd_data(int8 dat,unsigned addr)
{
 unsigned int d10,d1,i,bcd,temp,d100;
 d100= dat/100;
 temp = dat%100;
 d10 = temp /10;
 d1= temp %10;
 busycheck();
 output_d(addr);
 output_high(PIN_B3);
 output_low(PIN_B3);
 for(i=0;i<0×03;i++)
 {
 if(i==0×00)
 bcd = d100;
 if(i==0×01)
 bcd = d10;
 else if(i==0×02)
 bcd = d1;
 busycheck();

 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);
 output_d(arr[bcd]);
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void busycheck()
{
 output_d(0×02);
 output_low(PIN_B1);
 output_high(PIN_B1);
 delay_ms(2);
busy:
 output_high(PIN_B3);
 output_low(PIN_B3);
 a=input_d();
 if ((a&0×80)==0×80)
 goto busy;
 output_d(0×0);
 output_low(PIN_B1);
 output_high(PIN_B1);
 delay_us(10);
}
**
The above program can be slightly modified by using a reciprocal conversion factor
i.e. 100°C/V. With the implementation of the following equation to convert output volt-
age to temperature the measurement can be done from linearly from 0°C to 100°C.

Temperature C) Vout C/V)((*� �= 100

This gives Vout as 1 V,when temperature is 100°C.

3.2 Interfacing ADC (0809) to PIC

National Semiconductor ADC0808/ADC0809 is popularly known as “Data Acquisition
Devices (DAD)”. They have built in elements required for most of the standard data
acquisition system. This device comprises of an 8-bit A/D converter, 8-channel multi-
plexer with an address input latch, and associated control logic. Interfacing with the
PIC becomes hassle free with minimum requirements of external components by using
these devices. Important feature of these devices along with application note may be
seen on the web URL of National Semiconductor [54]. Some notable features are

3.2 Interfacing ADC (0809) to PIC 47

48 3 Accessing On-Chip and Off-Chip Peripherals

● Operates ratiometrically or with 5 Vdc or analog span adjusted voltage reference
● No zero or full scale adjust required
● Eight-channel multiplexer with address logic
● 0–5 V input range with single 5 V power supply
● Outputs meet TTL voltage level specifications
● ADC0808 equivalent to MM74C949

ADC0809 comprises of CMOS logic gates which typically have build-in protection
diodes. This makes them much less vulnerable to ESD damage than power MOS tran-
sistors. However, few precautionary measures are better when handling these devices
[55].

● All unused inputs must be connected to GND or +5 V to prevent excessive cur-
rent consumption and erratic behavior.

● Never connect an input signal to a CMOS device when the power is off.
● Never store unprotected CMOS in non-conductive trays.
● Place CMOS devices pin down in conductive foam when they are not stored in

a conductive tray or installed in a circuit.
● Use a battery powered or ESD protected soldering iron to solder MOS

chips.
● If not using a ground strap, when in doubt ground yourself! This will avoid nasty

static discharges.

A very simple procedure without using the microcontroller can also be adopted for test-
ing this ADC [55]. Connect the ADC0809 in the free-running mode; that is the START
input pulse (as well as the ALE) provided by the EOC output. Connect all the address
lines LOW and tie all inputs LOW except for IN0 (Pin 26). Use a 555 timer to provide
a TTL pulse train of about 200 kHz for the clock. Input an adjustable 0–5 V DC at IN0
(pin 26) using a 5 or 10 KW potentiometer connected between the 5 V supply and
ground. For several input voltages, display the 8-bit output using the LEDs of your
diagnostic circuitry. Record these readings. Change the frequency of the clock while
observing the EOC output. One can also find out the conversion time (100 µS) from
these observations.

Program 3.2 Eight channel ADC (0809) interfacing (Refer Fig. 3.2)
Program Source Code
**
// Program to illustrate the external 8 Channel ADC0809 interface to PIC16F877.
——————————————————————————————————————–
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
int adcdata, chadress;
main()
{
 for(chadress=0;chadress<=7;chadress++)

 {
 output_d(chadress); // send channel address on port D
 delay_ms(50);
 output_high(PIN_B0); //ale is connected to B0
 delay_ms(50);
 output_low(PIN_B0);
output_low(PIN_B1); //eoc is connected to B1
output_low(PIN_B2); //soc is connected to B2
 delay_ms(200);
 output_high(PIN_B2); /*0 to 1 transition required to clear SAR */
 delay_ms(200);
 output_low(PIN_B2); /*1 to 0 transition required to start conversion */
while(input(PIN_B1)==1)
 {
 adcdata=input_d();
 adcdata=adcdata+0×30;
 printf(“\n adc value is =”,adcdata);
}}}
**

Fig. 3.2 Interfacing ADC 0809 to PIC

3.2 Interfacing ADC (0809) to PIC 49

50 3 Accessing On-Chip and Off-Chip Peripherals

3.3 Opto-Isolator Interfacing

Optoisolators, are the devices having at least one emitter, which is optically coupled
to a photo-detector through some sort of an insulating medium. Also popularly
known as optical coupler or optocoupler, it is a semiconductor device that allows
signals to be transferred between two circuits, with complete electrical isolation.
These devices typically find their applications in circumstances where a low volt-
age circuit such as microcontroller port or logic gates, is driving high voltage cir-
cuits having inductive loads. The optical isolation prevents the back emf damaging
the low voltage circuit and thus ensures complete safety.

Optocouplers are available in several configurations; the basic one is with a LED
and a phototransistor. The main competitors of optocouplers are the isolation trans-
formers, but the former allows DC coupling between source and load, even in the
severe over voltage conditions on the load side, while the later might fail to do so in
such conditions. Many variations exist as far as the optical is concerned. There are
optocouplers with air or a dielectric waveguide as the optical transmission medium.

The CNY17 series optocouplers from Fairchild Semiconductors consists of a
phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a
six-lead plastic dual inline package. The elements are mounted on one leadframe
using a coplanar technique, providing a fixed distance between input and output for
highest safety requirements. These devices are recommended for safe protective sepa-
ration against electrical shock according to safety class II (reinforced isolation):

● For application class I–IV at mains voltage 3,300 V
● For application class I–III at mains voltage 3,600 V according to VDE 0884

(Table 2)

They are suitable for applications in Switch-mode power supplies, computer
peripheral interface, microprocessor system interface, line receiver, etc.[55].
As per the Temic Semiconductor [55] application note these standards are as follows:

● VDE0884: Optocoupler providing protective separation
● VDE0804: Telecommunication apparatus and data processing
● VDE0805/IEC 950/EN6095: Office machines (applied for reinforced isolation

for mains voltages 3,400 VRMS)
● VDE0860/lEC 65: Safety for mains operated electronic and related household

apparatus

Complete datasheet is available on the web [56].
Program 3.3 Opto-isolator interfacing (Fig. 3.3 and Fig. 3.4)
Program Source Code
**
/* Program to illustrate the stepper motor driving using the Opto-Isolator CNY17. the
sequence of characters is send to activate the coils of the stepper motor (Fig. 3.4)
interface to PIC. */
——–

#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
unsigned char a;
void main()
{
 output_c(0×f0);
while(1)
{
 output_c(0×f9);
 delay_ms(10);
 output_c(0×f5);
 delay_ms(10);
 output_c(0×f6);

Fig. 3.3 Opto-isolator interfacing to PIC16F877

3.3 Opto-Isolator Interfacing 51

52 3 Accessing On-Chip and Off-Chip Peripherals

 delay_ms(10);
 output_c(0×fa);
 delay_ms(10);
}
}
**

3.4 DAC Implementation Using On-Chip PWM

A good number of embedded microcontroller applications require generation of
analog signals for actuating the final control element or simply for communicating
with the analog world. Many designers go for an integrated or stand-alone digital-
to-analog converter (DAC). However, in lieu of the external DAC, PWM signals
provided as a part of the on-chip resources can be used for generating the required
analog signals (as shown in Fig. 3.5). They scan be used to create both dc and ac
analog signals. One difficulty with the built-in digital to analog converter (DAC)
provided by many microcontrollers is lack of sufficient resolution. Higher end, and
more expensive, microcontrollers provide either an parallel port or an I2C based
interface for connecting to an external DAC chip. This leads not only to higher
price of these microcontrollers, but combined with the expense of an external DAC
chip, pushes up component count, total cost and reliability.

In order to solve the above mentioned problems, many low cost microcontrollers
today include pulse width modulation (PWM) as a regular feature. PWM based

Fig. 3.4 Stepper motor

DAC finds lot of applications in motor speed control, light dimmer applications,
controlling a SMPS and even in digital audio. PWM offers several advantages over
an analog control. For example, using PWM to control the brightness of a lamp, the
heat dissipated from the lamp is less than the heat generated from an analog control
that converts the current to heat. Hence, less power is delivered to the load (light),
which will prolong the life cycle of the load [57].

The basic mechanism of PWM based DAC is as follows. PWM signal is a digital
signal with fixed frequency but varying duty cycle. For implementation of the DAC,
the duty cycle of the PWM signal is varied with time, and subsequently the variable
duty cycle signal is filtered using analog filter.

The resolution of a PWM DAC is equivalent to the resolution of the PWM signal
used to create the DAC. The resolution of the PWM signal depends on the length
of the counter and the smallest possible duty-cycle change in the PWM counter.
Mathematically this is expressed as

Required in counts = (Length 0 counter in counts)/Smallest duty
 cycle change in counts

On the same lines, the frequency required for the PWM output signal can be calcu-
lated. It is equivalent to the update rate of the DAC, since each change in PWM duty
cycle is the equivalent of one DAC sample. The frequency required for the PWM
timer will depend on the required PWM signal frequency and the desired resolu-
tion. Mathematical foundation and microcontroller based implementation has been
covered by an application note by Texas Instruments [56].

Required PWM Timer Frequency = PWM Signal Frequency × 2n

Where n is the desired resolution.
Program 3.4 DAC implementation using on-chip PWM of PIC16F877 (Refer
Fig. 3.6)
Program Source Code
**
// Program to illustrate the DAC implementation using on-chip PWM
———
#include <16f877.h>
#use delay(clock=10000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

Fig. 3.5 Block schematic of DAC implementation using on-chip PWM

3.4 DAC Implementation Using On-Chip PWM 53

54 3 Accessing On-Chip and Off-Chip Peripherals

unsigned int value;
void main()
{
setup_ccp1(CCP_PWM);
setup_timer_2(T2_DIV_BY_1, 127, 1);
while(TRUE)
 {
 value=read_adc();
 set_pwm1_duty(0×7f);
 } }

3.5 Waveform Generation Using PIC

The present application is all about generation of waveforms using PIC16F877. In general
microcontroller based waveform generators are preferred in many applications as they can
be used to generate sequential bit patterns with predictable timing combined with fre-
quency. Programmable waveform generation is used in many test applications such load
susceptibility testing, dynamic response evaluation, repetitive stimulus application, etc.

This application generates waveforms to port B of PIC16F877.

Fig. 3.6 DAC implementation using on-chip PWM of PIC16F877

Program 3.5 Square wave generation
Program Source Code
**
// Program to illustrate the Square Wave generation
——————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
unsigned char a;
unsigned char b,c;
void main()
{
while(1){
 output_high(PIN_A0);
 output_b(0×00);
 delay_ms(5);
 output_b(0×ff);
 delay_ms(5);
 }
}
**
Program 3.6 Triangular wave generation
Program Source Code
**
// Program to illustrate the Triangular Wave generation
——————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
unsigned char a;
unsigned char i;
void main()
{
 output_a(0×02);
while(1)
 {
 for(i=0×00;i<0×ff;i++)
 {
 output_b(i);
 }
 for(i=0×ff;i>0;i–)
 {
 output_b(i);
 }
 }
}
**

3.5 Waveform Generation Using PIC 55

56 3 Accessing On-Chip and Off-Chip Peripherals

Program 3.7 Negative RAMP generation
Program Source Code
**
// Program to illustrate the Negative Ramp generation
——————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
unsigned char a;
unsigned char i;
void main()
{
 output_a(0×08);
 while(1)
 {
 for(i=0×ff;i>0;i–)
 {
 output_b(i);
 }
 }
}
**
Program 3.8 Sine wave generation
Program Source Code
**
// Program to illustrate the Sine Wave generation
——————————————————————————————————————-
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=PIN_c6,rcv=PIN_c7)
void change(void);
unsigned int i;
unsigned int16 ab[]={9,2047,2403,2747,3071,3363,3615,3820,3971,4063,4095,
4063,3971,3820,3615,3363,3071,2747,2403,2047,1692,1347,1024,731,479,274,1
23,31,0,31,123,274,479,731,1024,1347,1692,7899};
void main()
{
 output_a(0×10);
 while(1)
 {
 for(i=1;i < 37;i++)
 {
 output_b(ab[i]/100);
 } } }
**

3.6 Pseudo-Random Number Generation Through PIC

Program 3.9 Pseudo random number generation (Refer Fig. 3.7)
Program Source Code
**
//This program illustrate to generate random number by using inbuilt ADC
——————————————————————————————————————–
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
#include<lcd.h>
int Randomdata;
void main()
{
 setup_adc_ports(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 lcdint();
 while(1)
 {
 Randomdata = read_adc();
 lcd_data(Randomdata,0×a2);
 }
}
**

Fig. 3.7 Analog random voltage generation using Zener and Op-amps

3.6 Pseudo-Random Number Generation Through PIC 57

58 3 Accessing On-Chip and Off-Chip Peripherals

Program 3.10 Generate random number by using external
ADC0808 interface to PIC (Refer Fig. 3.8)
Program Source Code
**
/* Program illustrate the random number generation using PIC16F877 and the
external ADC 0808 connected. */
——————————————————————————————————————–
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
#include<lcd.h>
int randomdata,chadress;
main()
{
 for(chadress=0;chadress<=7;chadress++)
 {
 output_d(chadress); // send channel address on port D
 delay_ms(50);
 output_high(PIN_B0); //ale is connected to B0
 delay_ms(50);
 output_low(PIN_B0);
output_low(PIN_B1); //eoc is connected to B1
output_low(PIN_B2); //soc is connected to B2
 delay_ms(200);
 output_high(PIN_B2); /*0 to 1 transition req to clear sar */
 delay_ms(200);
 output_low(PIN_B2); /*1 to 0 transition req to start convertion */

Fig. 3.8 Generate random number by using external ADC0808 interface to PIC

while(input(PIN_B1)==1)
 {
 randomdata=input_d();
 randomdata=adcdata+0×30;
lcd_data(randomdata,0×a2);
 printf(“\n adc value is =”,randomdata);
 }
}}
**

3.7 On-Off Temperature Controller Using On-Chip ADC

Program 3.11 In the case-study a simple ON-OFF temperature controller is
designed using LM35 as sensor, the output of which is digitized using the
onchip ADC. The control action is implemented using the relay driven through
port line B3. The program code is self explanatory.
Program Source Code
**
// Program illustrate ON-OFF temperature controller using on-chip ADC.
—————————————————————————————————————
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
#include<lcd.h>
int adc_data;
void main()
{
 setup_adc_ports(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 lcdint();
 while(1)
 {
 adc_data = read_adc();
 lcd_data(adc_data,0×a2);
 }}
// this is part of above program i.e. code for <lcd.h> header file
#include<string.h>
void lcd_int();
void busycheck();
void lcd_string(unsigned char,unsigned int);
unsigned int array1[]={“ On Chip ADC ”};
unsigned int array2[]={“ADC Value :”};
unsigned char arr[]={“0123456789”};

3.7 On-Off Temperature Controller Using On-Chip ADC 59

60 3 Accessing On-Chip and Off-Chip Peripherals

unsigned char a,i,b;
void lcdint(){
 output_low(PIN_B3);
 output_high(PIN_B1);
 busycheck();
 output_d(0×38); /* Entry mode set */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×06); /* function set */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×01); /* clear display */
 output_high(PIN_B3);
 output_low(PIN_B3);
 busycheck();
 output_d(0×0c); /* cursor on */
 output_high(PIN_B3);
 output_low(PIN_B3);
 lcd_string(array1,0×82);
 lcd_string(array2,0× c4);
 busycheck();
 output_d(0×d4);
 output_high(PIN_B3);
 output_low(PIN_B3);
 for (i=0;i<20;i++)
 {
 busycheck();
 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);
 output_d('−');
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void lcd_string(unsigned char str,unsigned addr1)
{
 int i,l;
 l = strlen(str);
 busycheck();
 output_d(addr1); /* starting address */
 output_high(PIN_B3);
 output_low(PIN_B3);

 for (i=0;i<l;i++)
 {
 busycheck();
 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);
 b=str[i];
 output_d(b);
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void lcd_data(int8 dat,unsigned addr)
{
 unsigned int d10,d1,i,bcd,temp,d100;
 d100= dat/100;
 temp = dat%100;
 d10 = temp /10;
 d1 = temp %10;
 busycheck();
 output_d(addr);
 output_high(PIN_B3);
 output_low(PIN_B3);
 for(i=0;i<0×03;i++)
 {
 if(i==0×00)
 bcd = d100;
 if(i==0×01)
 bcd = d10;
 else if(i==0×02)
 bcd = d1;
 busycheck();
 output_d(0×01);
 output_low(PIN_B1);
 output_high(PIN_B1);
 output_d(arr[bcd]);
 output_high(PIN_B3);
 output_low(PIN_B3);
 }
}
void busycheck()
{
 output_d(0×02);
 output_low(PIN_B1);
 output_high(PIN_B1);

3.7 On-Off Temperature Controller Using On-Chip ADC 61

62 3 Accessing On-Chip and Off-Chip Peripherals

 delay_ms(2);
busy:
 output_high(PIN_B3);
 output_low(PIN_B3);
 a=input_d();
 if ((a&0×80)==0×80)
goto busy;
 output_d(0×0);
 output_low(PIN_B1);
 output_high(PIN_B1);
 delay_us(10);
}
**

Fig. 3.9 Schematic of PID temperature controller using PIC16F877

3.8 Implementing a PID Temperature Controller
Using PIC16F877

Over the last 50 years the PID control algorithm has gained wide popularity in
process industries. PID is a feedback control system in which the controller output
is proportional to the error and also depending on the integral and derivative of the
error.

PID control is superior to the other control strategies in several respects. For
instance, the proportional controller exhibits a relatively high overshoot, a long
settling time as well as a steady-state error and a offset which remains even after
the control is accomplished. The integral controller has still higher overshoot
than the proportional controller due to the inherently slower starting of integra-
tion process, but with elimination of the offset of the proportional control. PI
controller combines the properties of the P and I and exhibits no offset but with
the same problems of higher overshoot and settling time. The PD controller
almost solves the problems of overshoot owing to the high dynamic response of
the derivative action; a small value of offset still persists due to the proportional
action. However, the PID control combines all the plus points of the P, I and D
strategies and thus exhibits a overshoot than the PD controller and no offset due
to the I action.

Due to the above mentioned advantages PID has almost become a universal
control strategy. Three levels of tuning are required in this control strategy –
Proportional, Integral, and Derivative.
Program 3.12 PID temperature controller (Refer Fig. 3.9) using PIC16F877
Program Source Code
**
// Temperature controller based on PID
———————————————————————————————————–
#include<16F877.h>
#use delay(clock=20000000)
unsigned char a,i,b,j;
void INITlcd(void);
void ENABLE (void) ;
void LINE(int);
int keyb(void);
void dis(int);
int setpt= 60;
int kp= 12, ki=1,kd=11,C=1;
void main(void)
{
char test[]=“PID”;
char *p;
int j,newt,error1,error2, rate =1,sum,currenttemp1;
setup_adc_ports(ALL_ANALOG);

3.8 Implementing a PID Temperature Controller Using PIC16F877 63

64 3 Accessing On-Chip and Off-Chip Peripherals

 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
INITlcd();
LINE(1);
p=&test;
for(j=0;j<17;j++)
{
if(j==0)LINE(1);
if(j==8)LINE(2);
output_d(*p++);
ENABLE();
delay_ms(10);
while(1)
{
j=0;
j=keyb();
if(j>8)j=0;
if(j==1){
setpt++;
dis(j);
C=6;}
if(j==1){
setpt–;
dis(j);
C=7;
if(j==3){
kp++;
dis(j);
C=6;
}
if(j==4){
kp–;
dis(j);
C=7;
}
if(j==5){
ki++;
dis(j);
C=6;
}
if(j==6){
ki–;
dis(j);
C=7;
}

if(j==7){
kd++;
dis(j);
C=6;
}
if(j==8){
kd–;
dis(j);
C=7;
}
currenttemp1= read_adc();
currenttemp1=currenttemp1*2;
error1=setpt-currenttemp1;
newt=currenttemp1+kp*error1;
sum=sum+error1;
newt=(newt+(kd*sum));
newt=(newt+(kd*sum*(error2-error1)));
error2=error1;
if(newt>255)
{
newt=255;
sum=sum-error1;
}
if(newt<0)
{
newt=0;
sum=sum-error1;
}
output_b(newt); // port B is connected to DAC0808
if((j==0)&&(C<1))
dis(0×09);
delay_ms(10);
if(C>=1)
C–;
}
}}}
void ENABLE(void)
{
 output_high(PIN_E2);
delay_ms(10);
 output_low(PIN_E2);
delay_ms(10);
}
void LINE(int j){
 if (j==1) {

3.8 Implementing a PID Temperature Controller Using PIC16F877 65

66 3 Accessing On-Chip and Off-Chip Peripherals

 output_low(PIN_E0); output_low(PIN_E1);
 output_d(0×80);
 ENABLE();
 output_high(PIN_E0);
 }
 else
 {
 output_low(PIN_E0); output_low(PIN_E1);
 output_d(0×C0); // PORT D LCD data lines
 ENABLE();
 output_high(PIN_E0);;
 }}
void INITlcd(void)
{ output_low(PIN_E0);//RS
output_low(PIN_E1);//RW
output_low(PIN_E2);//EL
output_d(0×38);
 ENABLE();
ENABLE();
ENABLE();
ENABLE();
output_d(0×06);
ENABLE();
 output_d(0×0E);
 ENABLE();
 output_d(0×01);
 ENABLE();
}
int keyb(void){
int key=0;
output_c(0×FE)
delay_ms(10);
readkey=input_c();
if (readkey==0×EE) key = 1;
if (readkey==0×DE) key = 2;
if (readkey==0×BE) key = 3;
if (readkey==0×7E) key = 4;
return(key);
}
void dis(int j)
{
char code currenttemp[]=“ Tem = ”;
char code inS[]=“ increment setpt ”;
char code dec[]=“ decrement setpt”;
char code ikp[]=“ increment kp ”;

char code dkp[]=“ decrement kp ”;
char code iki[]=“ increment ki ”;
char code dki[]=“ decrement ki ”;
char code ikd[]=“ increment kd ”;
char code dkd[]=“ decrement kd ”;
char *p;
int k,currenttemp1 ;
if(j !=9){
INITlcd();
if(j==1) p=&inS ;
if(j==2) p=&dec ;
if(j==3) p=&ikp ;
if(j==4) p=&dkp ;
if(j==5) p=&iki ;
if(j==6) p=&dki ;
if(j==7) p=&ikd ;
if(j==8) p=&dkd ;
for(k=0;k<17;k++)
{
if(k==0) line(1);
if(k==8) line(2);
output_d(*p++);
ENABLE();
}
delay_ms(50);
INITlcd();
LINE(1);
output_d(((setpt/100)+0×30));
ENABLE();
output_d((((setpt/10)%10)+0×30));
ENABLE();
output_d(((setpt%10)+0×30));
ENABLE();
delay_ms(500);
INITlcd();
LINE(1);
output_d((((kp/10))+0×30));
ENABLE();
output_d(((kp%10)+0×30));
ENABLE();
delay_ms(50);
INITlcd();
LINE(2);
output_d(((((ki/10))+0×30)));
ENABLE();

3.8 Implementing a PID Temperature Controller Using PIC16F877 67

68 3 Accessing On-Chip and Off-Chip Peripherals

output_d(((ki%10)+0×30));
ENABLE();
delay_ms(50);
INITlcd();
LINE(1);
output_d((((kd/10))+0×30));
ENABLE();
output_d(((kd%10)+0×30));
ENABLE();
delay_ms(50);
}
if(j==7)
{
p=¤ttemp;
INITlcd();
for(k=0;k<8;k++)
{
if(k==0)
LINE(1);
output_d(*p++);
ENABLE();
}
currenttemp1= read_adc();
LINE(2);
output_d(((currenttemp1/1000)+0×30));
ENABLE();
output_d((((currenttemp1/100)%10)+0×30));
ENABLE();
output_d(((((currenttemp1/10))%10)+0×30));
ENABLE();
output_d((((currenttemp1)%10)+0×30));
ENABLE();
}
}
**

Chapter 4
Serial Interface to PIC

This chapter discusses case studies developed for interfacing PIC through
HyperTerminal. Following applications are developed:

4.1 Configuring HyperTerminal
4.2 Setting up HyperTerminal
4.3 Displaying Data on HyperTerminal
4.4 HyperTerminal Interface: Getting Sensor Signal on HyperTerminal
4.5 HyperTerminal Based Control: Controlling an Actuator Such as Relay from

PC HyperTerminal
4.6 Controlling a Stepper Motor from HyperTerminal: HyperTerminal Keyboard

Provides Direction

HyperTerminal is a data communications utility program that has been distrib-
uted with many Microsoft Windows® operating systems, including Windows 95,
Windows 98, Windows Me, Windows 2000, and Windows XP. It is a program for
connecting a computer to other computers. It can also be set for accessing Telnet
sites, bulletin board systems (BBSs), online services, using the connectivity options
such as a modem or a null modem cable or even through Ethernet connection. With
the advent of world wide web where sophisticated protocols are taking care of the
online communication, the use of HyperTerminal has become almost rare. However
for an embedded engineer, it is still a great debugging tool for testing the modems
or send the commands to the embedded appliance connected to PC. It can be as well
used for sending bulky files without setting up the network for the PC. Moreover,
this is really useful for the old PCs where the setting up of the network is difficult.

By default the ‘HyperTerminal’ application resides in the communications
option. It can be activated by following the following steps (refer Fig. 4.1):

● Click Start on the desktop
● Go to All Programs
● Click Accessories
● Click Communications
● Clicking HyperTerminal to start the program

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 69
© Springer Science + Business Media B.V. 2008

70 4 Serial Interface to PIC

If the HyperTerminal is bring used for the first time, it will seek information to
configure. This includes “Location Information” such as country, area code,
modem or TCP/IP and tone/pulse dialing options.

In case the user wants to use the ‘HyperTerminal’ program other than the MS
Windows, then there are couple of sharewares which is doing the same things. The
download URLs are given in the references [41, 42]. In fact they have more capa-
bilities than that included in MS Windows [43].

The main advantage of the HyperTerminal is importing the data directly in other
applications such as Excel to plot the graph or to visualize the trends online.

4.1 Configuring HyperTerminal

The step by step procedure given below will help you to configure the
HyperTerminal for executing the case studies developed here.

1. Configuring HyperTerminal

4.2 Setting Up HyperTerminal

Following step by step procedure will guide you to setup the HyperTerminal for the
applications developed in this chapter.

1. Click the HyperTerminal icon and through the file option create “new Connection”
“File:NewConnection” Name the connection (for example, PIC 1).
 (refer Fig. 4.2)

2. Select the appropriate “COM” port. Care has to be taken to select the appropriate
COM port and its cousin. This means if a modem is connected to COM2 then
its cousin COM4 should be avoided for the data logging application given here
(because the cousin port also shares the same interrupt). (refer Fig. 4.3)

Fig. 4.1 Locating the “HyperTerminal” in WINDOWS

Fig. 4.2 Setting the necessary parameters of the HyperTerminal

3. Set “Bits per second” to 9,600.
4. Set “Data Bits” to 8.
5. Set “parity” to none.
6. Set “Stop Bits” to 1.
7. Set “Flow control” to none.
8. Click OK – the HyperTerminal screen should appear
9. The configuration can be saved by selecting the “File” menu select “Save As”

that saves the configuration file to any convenient folder

4.2 Setting Up HyperTerminal 71

72 4 Serial Interface to PIC

Fig. 4.2 (continued)

Fig. 4.3 HyperTerminal is now ready interaction with the selected COM port

A shortcut to the configuration file can be created and placed on the desktop for
easy reference. HyperTerminal setup procedure is described in many technical
manuals on web and may be referred for in depth information [44–46].

4.3 Displaying Data on HyperTerminal

RS232 (single-ended) communication with PC was introduced way back in 1962.
Till date it has marked its successful existence and has been widely used through
the embedded industry for various data logging and other applications. The main
reason attributed to the popularity is the simplicity and reliability for data commu-
nication below 256 kbps as most of the embedded system applications do not vio-
late this limit.

In RS-232, there is a provision of independent channels for full-duplex commu-
nications. The signals are represented by voltage levels with respect to a system
common i.e. wither a power or logic ground. The “idle” state (MARK) corresponds
to negative signal level with respect to common, while the “active” state (SPACE)
corresponds to positive signal level with respect to common. There are good num-
bers of handshaking lines which can be used for specifying communications proto-
col. A common ground between the DTE and DCE is required for communication
through RS-232.

In case of RS232 standard the data is bi-polar with the voltage levels as
follows:

● +3 to +12 V corresponds to an “ON” or 0-state (SPACE) condition
● −3 to −12 V corresponds to an “OFF” 1-state (MARK) condition
● +3 to −3 V corresponds to the “dead area” kept to absorb line noise

A standard serial interfacing for PC, RS232C, requires negative logic, i.e., logic ‘1’
is −3 to −12 V and logic ‘0’ is +3 to +12 V. While the microcontroller follows the
TTL compatibility. In order to achieve the compatibility a popular converter chip
used is MAX232. The MAX-232 has 2-channel RS232C port and requires external
10 uF capacitors. Another possibility to sort out the incompatibility issue is by
using the DS275 chip, which is smaller in size and requires no external capacitors.
The applications developed in this chapter resorts to MAX-232 for achieving
compatibility.

Online tutorials for indepth information regarding the RS-232 and MAX-232 are
available on Internet [47, 48].

The DB-9 (also called as DE-9 D-sub 9-pin connector) connector is used for the
connections as shown in Fig. 4.4. One caution while connections are made is that
the pin numbers for transmit and receive (3 and 2) are opposite of those of the DB-
25 connector (2 and 3). This decides the device as DTE or DCE.
Program 4.1 Serial transmission only
This program transmits the serial string though HyperTerminal. The clock is speci-
fied for fixing the baud rate.

4.3 Displaying Data on HyperTerminal 73

74 4 Serial Interface to PIC

Program Source Code

// Program to transmit the serial string through HyperTerminal.
———————————————————————————
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
void main()
 {
 while(1)
 {
 printf(“\n\r Welcome. . .”); // String to transmit.
 }
 }

Program 4.2 Serial reception and transmission
This program facilitates both transmission and reception through HyperTerminal.

Program Source Code

// Program to both Serial Reception and Transmission through HyperTerminal.
———————————————————————————
#include<16f877.h>
#use delay(clock=20000000)

Fig. 4.4 HyperTerminal interface to PIC16F877 through MAX232

#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
void main()
 {
 printf(“\n\r Serial Reception and Transmission”);
 printf(“\n\r Press Key On the Keyboard”);
 printf(“\n\r”);
 while(1)
 {
 putc(getc());
 }
 }

4.4 HyperTerminal Interface: Getting Sensor Signal on
HyperTerminal

This temperature monitoring application senses and logs the temperature value onto
the HyperTerminal. LM35 precision integrated-circuit temperature sensors, is used
for temperature sening. It offers linearly output proportional to the Celsius
(Centigrade) temperature at no extra requirement of external calibration or trimming.
It is available at fairly low cost owing to the trimming and calibration at the wafer level.
Moreover the low output impedance of LM35, in addition to the higly linear output, and
precise inherent calibration facilitates easy interfacing to the outside world. As shown in

Fig. 4.5 Receiving sensor data on the HyperTerminal

4.4 HyperTerminal Interface: Getting Sensor Signal on HyperTerminal 75

76 4 Serial Interface to PIC

Fig. 4.5 only a unity gain amplifer serves the prupose that too required for isolation.
readout or control circuitry especially easy. In the present pplication it is used with
single power supply of +5 V. The self heating is assured minimum as it draws a
merely 60 µA of current from the supply. Onchip ADC of the PIC16F877 is used for
digitization of the analog signal corresponding to the temperature data.

The datasheets of LM35 and OP-07 are available at online URL mentioned in
the references at [49, 50].

With the execution of the following program the temperature value os displayed
on the HyperTerminal.
Program 4.3 HyperTerminal interface: getting sensor signal on HyperTerminal
Program Source Code

\\ Program to Read the signal from the temperature sensor LM35 on HyperTerminal.
———————————————————————————
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
int adc_data;
void main()
{
 setup_adc_ports(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 while(1)
 {
 adc_data = read_adc();
 printf(“\n\r Temperature %d”,adc_data);
 }
}

4.5 HyperTerminal Based Control: Controlling an Actuator
such as Relay from PC HyperTerminal

With this application, the relay connected to the port line RB4 of PIC16F877
microcontroller using HyperTerminal. This case study can be modified of course by
addition of few more hardware components and using port lines to build a home
automation project.
Program 4.4 Controlling an actuator such as relay from PC HyperTerminal
Program Source Code

* Program to control the Relay connected to the Microcontroller through PC
HyperTerminal */
// Relay connected to Pin RB4 of the PIC microcontroller.
———————————————————————————
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
char a;
void main()
 {
 printf(“\n\r Press O to turn on the Relay”);
 printf(“\n\r Press S to turn off the Relay”);
 while(1)
 {
 a=putc(getc());
 if(a==‘O’) // If Key pressed is ‘O’
 {
 output_high(PIN_B4); // turn on relay is connected to pin RB4
 delay_ms(500);
 }
 if(a==‘S’) // If Key pressed is ‘S’
 {
 output_low(PIN_B4); //turnoff the relay
 delay_ms(500);
 }
 }}

4.6 Controlling a Stepper Motor from HyperTerminal:
HyperTerminal Keyboard Provides Direction

Program 4.5 Stepper motor control through HyperTerminal
Program Source Code

\\ Program to control the stepper motor connected to PIC using PC
HyperTerminal.
/* Port D is connected to the stepper motor driver circuit.
Modes selection through HyperTerminal: - When
Key ‘R’ Run the Motor.
Key ‘S’ Stop the Motor.
Key ‘C’ Run the Motor in clockwise direction.
Key ‘A’ Run the Motor in Anti-clockwise direction.

4.6 Controlling a Stepper Motor from HyperTerminal 77

78 4 Serial Interface to PIC

———————————————————————————
#include<16f877.h>
#use delay(clock=20000000)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
char a;
unsigned char mot[4] = {0×0a,0×06,0×05,0×09};
unsigned char run,clkwise;
int i;
void init(void);
void init()
{
unsigned char y,z;
y=putc(getc());
if (y== ‘R’)
 run=1;
 if (y == ‘S’)
 run=0;
 if (y== ‘C’)
 clkwise=1;
 if (y == ‘A’)
 clkwise=0;
 }
void main()
 {
 printf(“\n\r Press R to start the motor”);
 printf(“\n\r Press S to stop the motor”);
 printf(“\n\r Press C to rotate motor in clockwise direction”);
 printf(“\n\r Press A to rotate motor in Anti-clockwise direction”);
{
init();
run=1;
clkwise=1;
while(1)
{
while(run==1)
{if(clkwise==1){
 for (i=0;i<4 ; i++)
 { output_d(mot [i]);
 delay_ms(100);
 }}
 else{for (i=3;i<=0 ; i−)
 { output_d(mot [i]);
 delay_ms(100);
}
}
}}}}

Chapter 5
PIC Interfaced to I2C Compatible Devices

I2C stands for Inter-Integrated Circuit is a multi-master serial computer bus
developed by Philips in 1980s. It is an ideal interface widely used for attaching
low-speed peripherals to a embedded systems. Some of the popular basic applica-
tions of the I2C interface include EEPROMS, DDR2 SDRAM or NVRAM mem-
ory module interfacing, facilitating systems management for PCI cards commonly
through an SMBus 2.0 connection, low speed ADC, DAC interfacing. The inter-
face has also been widely used for changing contrast, hue, and color balance set-
tings in display monitors, adjusting the volume settings in intelligent sound
systems, data logging from sensors and adjusting fan speed. The popularity of the
I2C interface has grown at a rpid pace in the audio and video application domains.
The I2C protocol has now been adopted by several leading chip manufacturers
like Xicor, SGS-Thomson, Siemens, Intel, TI, Maxim, Atmel, and Analog Devices.
Following applications are developed in this chapter which will give you an over-
view of the interface aspects of this popular standard.

5.1 Details of I2C Interface
5.2 I2C Based Real Time Clock
5.3 Serial I2C Based EPROM24AA256 Interface to PIC16F877
5.4 I2C Based PCF8591ADC Interface
5.5 I2C Based ADC – AD1236
5.6 Max5822 DAC Interfaced to PIC

5.1 Details of I2C Interface

5.1.1 Basic Features

The I2C bus comprises of a bi-directional Serial Clock Line [SCL] and Serial Data
Lines [SDA]. Both the SCL and SDA lines are pulled high via an Rp resistor as
shown in Fig. 5.1. As per the datasheet the resistor Rs is optional, and used for ESD
protection for ‘Hot-Swap’ devices.

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 79
© Springer Science + Business Media B.V. 2008

80 5 PIC Interfaced to I2C Compatible Devices

The physical topology of the I2C bus is two active wires and a ground connection. The
active wires, called SDA and SCL, are both bi-directional (as shown in Fig. 5.1). SDA is
the Serial Data line, and SCL is the Serial Clock line. Every device connected to the bus
is assigned an unique address. Then these devices can act as a receiver and/or transmitter,
depending on the configuration. Devices such as an LCD driver can act as only a receiver,
while a memory, I/O chip, ASIC. Microcontroller can be both transmitter and receiver.
The I2C bus is a multi-master bus in which more than one device is capable of initiating
a data transfer to others connected on the bus. Once such a device goes into ‘Bus Master’
mode all the other devices acts as Bus Slaves (as shown in Fig. 5.2). Generally all the bus
masters are microcontroller.

5.1.2 Sequence of Events in I2C Suite

I2C works as per the master/slave protocol. Master initiates the communication and
then following sequence of events takes place for the communication purpose [59]:

1. The Master device issues a start condition. This condition conveys all the slave
devices to listen on the serial data line for further instructions.

2. The Master device then sends the address of the target slave device along with a
read/write flag.

3. The Slave device with the matching address responds with an acknowledgement
signal to confirm the readiness for communication.

4. Communication then starts between the Master and the corresponding Slave on
the data bus. Both the master and slave can receive or transmit data depending

Fig. 5.1 Bidirectional interface for the I2C

Fig. 5.2 Devices connected master slave mode using I2C bus

on whether the communication is a read or write. The transmitter sends 8-bits of
data to the receiver which replies with a 1-bit acknowledgement.

5. When the communication is complete, the master issues a stop condition indi-
cating that everything is done. The I2C frame is shown in Fig. 5.3.

5.1.3 Modes Supported by I2C

I2C protocol; supports the following modes [60]:

 1. Master Transmitter Mode – Serial data output through SDA while SCL outputs
the serial clock

 2. Master Receiver Mode – Serial data is received via SDA while SCL outputs the
serial clock

 3. Slave Receiver Mode – Serial data and the serial clock are received through
SDA and SCL

 4. Slave Transmitter Mode – Serial data is transmitted via SDA while the serial
clock is input through SCL

 5. Data transfers up to 100 Kbps in standard mode and up to 400 Kbps in
fast-mode.

 6. Bi-directional data transfer
 7. Own address and General Call address detection
 8. Seven-bit addressing format
 9. Fixed data width of 8 bits
10. Data transfer in multiples of bytes
11. One-byte write and read buffer

5.1.4 Synchronization and Arbitration in the I2C Bus

There are couple of situations in which care is to be taken for synchronizing
between the devices. The situation arises due to the fact that each master has to
generate its own clock signal. The varying clock signal rates causes synchroniza-
tion problems. The arbitration issue arises to prevent more than one master to be
active on the bus on any given moment. I2C masters must have the synchronization
and arbitration logic to counter the above mentioned issues.

The internal logic goes on following lines. I2C master has two internal counters
for counting the length of a high value and low value on the SLC line. With single

Fig. 5.3 I2C communication protocol sequences of events

5.1 Details of I2C Interface 81

82 5 PIC Interfaced to I2C Compatible Devices

master present on the bus, these two counters define the clock frequency. With two
or more masters connected in parallel, these counters fail to run at the same speed.
Once this situation arises, it can be handled by synchronization and arbitration logic.

The multi-master situation is detected as the SLC clock line is pulled up to the
supply voltage with an external pull-up resistor and has to pull low by the master to
initiate the communication. Switching low of the SLC line by one of the masters,
makes the other masters aware of the situation and inturn they reset their counter,
regardless of the current count. Subsequently they all internally switch to the low state
and their low-period counter starts counting. The situation reverses when the I2C
master decides to switch the SLC line again to the high state after some time. The
contention situation is automatically taken care of by the basic fact that the SLC clock
line will not switch to the high state as long as there is at least one I2C master still
counting the low period. Should the last I2C master decide to switch SLC to the high
state; the clock line immediately changes state. All the masters with faster counters
will be just waiting for this moment and starts counting the high line as son as the line
switches state. This entails that the SLC clock line is defined by the fastest I2C master
attached to the bus, and the length of the low period by the slowest participant.

5.1.5 Evolving Specifications of I2C Bus

After its development in 1982, the I2C protocol suite is constantly undergoing
improvements. The improvements are updates regularly on many websites [61].

5.1.5.1 Version 1.0 – 1992

This version of the 1992 I2C-bus specification included the following
modifications:

● Omission of the programming of a slave address by software. However, soon
they realized the complications in and it was never implemented

● Omission of “low-speed mode”
● Addition of the Fast-mode which allows a fourfold increase of the bit rate up to

400 kbit/s still maintaining the downward compatibility
● Addition of 10-bit addressing which increased the additional slave addresses

upto 1024
● Slope control and input filtering FOR FAST-MODE DEVICES was specified to

make them EMC compliant

5.1.5.2 Version 2.0 – 1998

By this time the bus had penetrated in over 1,000 different ICs and licensed to more
than 50 companies. The version 2.0 met those requirements and included the
following modifications:

● Addition of the high-speed mode (Hs-mode). Inturn the bit rate goes up to 3.4
Mbit/s

● The low output level and hysteresis of devices with a supply voltage of 2 V and
below has been adapted to meet the required noise margins and to maintain the
compatibility with higher supply voltage devices

● Omission of the 0.6 V at 6 mA requirement for the output stages of Fast-mode
devices

● The fixed input levels for new devices were replaced by bus voltage-related
levels

● Application information for bi-directional level shifter was added

5.1.5.3 Version 2.1 – 2000

The Version 2.1 of the I2C-bus specification is the most current one. Following
minor modifications are done:

● After a repeated START condition in Hs-mode, it is possible to stretch the clock
signal SCLH

● Some timing parameters in Hs-mode have been relaxed

Details of the latest version may be obtained from Internet [61].

5.2 I2C Based Real Time Clock

The PCF8583 used in this application is a clock/calendar circuit based on a 2048-bit static
CMOS RAM organized as 256 words by 8 bits. The mechanism of I2C bus has been used
to pass addresses and data. Built-in word address register is automatically after each writ-
ten or read data byte. Address pin A0 is used for programming the hardware address,
allowing the connection of two devices to the bus without additional hardware.

The built-in 32.768 kHz oscillator circuit and the first 8 bytes of the RAM are used for
the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm
registers or used as free RAM space. The remaining 240 bytes are free RAM locations.

The features are listed on website of NXP which is a top 10 semiconductor
company founded by Philips [62]. The website further lists the features:

● I2C-bus interface operating supply voltage: 2.5–6 V? Clock operating supply
voltage (0– + 70°C): 1.0–6.0 V

● 240 × 8-bit low-voltage RAM
● Data retention voltage: 1.0–6 V
● Operating current (at fSCL = 0 Hz): max. 50 µA
● Clock function with four year calendar
● Universal timer with alarm and overflow indication
● 24 or 12 h format

5.2 I2C Based Real Time Clock 83

84 5 PIC Interfaced to I2C Compatible Devices

● 32.768 kHz or 50 Hz time base
● Serial input/output bus (I2C)
● Automatic word address incrementing
● Programmable alarm, timer and interrupt function
● Slave address:

– READ: A1 or A3
– WRITE: A0 or A2.
The pins and their designated functions are as follows:
Pin Designated function
A0 Address inputs
INT Comparator or an interrupt
SDA, SCL I2C bus
OSCIN, OSCOUT Connect to 32,768 Hz watch crystal derived from PIC
Vcc +5 V DC
GND Ground

The registers available in the device are as follows:
00 Control/status
01 Hundredth of a second
02 Seconds
03 Minutes
04 Hours
05 Year/date
06 Weekdays/months
07 Timer
08 Alarm control
09–0f Alarm registers or RAM
0f–ff RAM

Complete datasheet may be downloaded from the web URL [63].
Program 5.1 I2C Based real time clock (Refer Fig. 5.4)

Program Source Code

// I2C based Real time Clock
 DEVICE ADDRESS – 0XA0 – 0XA1
——————————————————————————————————
#include <16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3)
unsigned int time[]={0×30,0×57,0×12};
unsigned int readtime[0×03];
unsigned long int hour,second,minute;
int i,j;
void set_rtc_time()
{
 for (i=2;i<=4;i++)
 {
 i2c_start();

 i2c_write(0xa0 | 0x00);
 i2c_write(i);
 i2c_write(time[(i-2)]);
 i2c_stop();
 }
}
void get_rtc_time()
{
 for (i=2;i<=4;i++)
 {
 i2c_start();
 i2c_write(0xa0);
 i2c_write(i);
 i2c_start();
 i2c_write(0×a0 | 0×01);
 readtime[(i-2)]=i2c_read(0);
 i2c_stop();
 }
}
void main()
{
 set_rtc_time();
while(1)
 {
 get_rtc_time();
 hour = readtime[2];
 minute = readtime[1];
 second=readtime[0];

Fig. 5.4 I2C based real time clock

5.2 I2C Based Real Time Clock 85

86 5 PIC Interfaced to I2C Compatible Devices

 printf(“ Time : %× : %× : %× ¹n¹r”,readtime[2],readtime[1],readtime[0]);
 }
}

The same code can be modified to display the time on LCD. The format of Time
you will observe is 00:00:00(Hours:Min:Sec). In order ot generate this timing, the
clock given to RTC chip is 32.768 kHz

5.3 Serial I2C Based EPROM 24AA256 Interface to
PIC16F877

5.3.1 Where EPROM Fits in Embedded Systems?

An EEPROM or Electrically Erasable Programmable Read-Only Memory, comprises
of arrays of floating-gate transistors on chip used for non-volatile storage of data.
EPROM’s are heavily used in Embedded Sensor Systems and Embedded Instrumentation.
The sensor system to be pretested before deployment of the sensor for field applications
can rely on the EPROM test readings for comparison and to decide whether it is working
properly. The above mentioned testing can be carried out without removing the sensor
from socket. Another application of the EPROM in Embedded Sensor System is storing
the look up tables for calibration purpose. Even the nonlinearity of the sensors such as
thermistor can be corrected using this method.

The serial EEPROM typically operates in three phases: OP-Code Phase, Address
Phase and Data Phase. The OP-Code is usually the first 8-bits input to the serial input pin
of the EEPROM device (or with most I2C devices, is implicit); followed by 8–24 bits of
addressing depending on the depth of the device, then data to be read or written.

5.3.2 Advantages of Serial EPROM

Advantages of serial EPROM interfacing are covered in one of the application note
by microchip [64]. They include:

1. Requirement of minimum number of I/Os typically two to four port lines to
accomplish complete interfacing.

2. Small footprint. The available package size ranges for densities of 256–16 K
bits, is space-saving 8 pin PDIP and 150 mil wide SOIC packaging.

3. Less current consumption typically of the order of 3 mA due to limited I/O ports.
4. Offers Byte programmability i.e. ability to erase and program one byte at a time

without affecting the contents of the other memory locations in the array.
5. Supports clock rates of up to 6 MHz, however many devices are now I2C compliant

and supports data rate upto 100 kHz and 400 kHz.

On the other hand the competitors pf serial EPROM’s, the parallel ones offers some
comparatively positive features interms of memory density and AC performance.
However, in the age of memory constrained code development, the low memory
space is the standard metrics of the Embedded Systems.

5.3.3 Serial EPROM Execution Cycle

Each EEPROM device comes with its own set of OP-Code instructions to map to
different functions. In general the microcontroller and EPROMs with the serial interfaces
such as I2C or SPI goes in a handshake manner with timely exchange of the control
signals. Following signal are almost standard ones for the serial EPROMs:

● Write Enable (WREN)
● Write Disable (WRDI)
● Read Status Register (RDSR)
● Write Status Register (WRSR)
● Read Data (READ)
● Write Data (WRITE)

The above mentioned EEPROM devices supports some standard modes such as

● Program
● Sector Erase
● Chip Erase commands
● Byte programming

The reason behind the presentation of the I2C based serial EPROM interfacing to
PIC microcontroller will be justified if one goes through Fig. 5.5.

 In this application I2C compliant serial EPROM 24AA256 is interfaced to the
PIC16F877.

5.3.4 Features of EPROM 24AA256

The Microchip Technology Inc. 24AA256/24LC256/ 24FC256 (24XX256*) is a 32 K
× 8 (256 Kbit) Serial Electrically Erasable PROM, capable of operation across a broad
voltage range (1.8–5.5 V). The thrust application areas for this low power device are
personal communications and data acquisition. Microchip applications note on this
256 K I2C CMOS Serial EEPROM lists the features of this device [65].

● Constructed with Low-power CMOS technology:
 – Maximum write current 3 mA at 5.5 V
 – Maximum read current 400 µA at 5.5 V
 – Standby current 100 nA typical at 5.5 V

5.3 Serial I2C Based EPROM 24AA256 Interface to PIC16F877 87

88 5 PIC Interfaced to I2C Compatible Devices

● Two-wire serial interface bus, I2C compatible
● Cascadable for up to eight devices
● Self-timed erase/write cycle
● Sixty-four-byte Page Write mode available
● Five milliseconds maximum write cycle time
● Hardware write-protect for entire array
● Output slope control to eliminate ground bounce
● Schmitt Trigger inputs for noise suppression
● One million erase/write cycles
● Electrostatic discharge protection > 4,000 V
● Data retention > 200 years
● Eight-pin PDIP, SOIC, TSSOP, MSOP and DFN packages, 14-lead TSSOP

package
● Standard and Pb-free finishes available

Fig. 5.5 Various applications of serial EPROM in day to day life

5.3.5 Interfacing Aspects

The A0, A1 and A2 inputs are designated as “User Configurable Chip Select”
signals.

Multiple devices can be connected by setting appropriate logic levels on these
pins. With three select lines maximum eight devices can be connected. The logic
levels on these pins are compared with the corresponding bits in the slave address
and accordingly the chip selection is done. In the present application, (shown in
Fig. 5.6) the MSOP package of 24AA256 is used for which the pins A0 and A1 are
not connected as per instructions in the data sheet.
Program 5.2 Read and write data to/from I2C based EPROM

Program Source Code

// Program to Read /Write the Data to/from serial EEPROM
// Address - ‘1010 0010’
——————————————————————————————————-
#include <16F877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3)
int address;
int data;
void main()
{
printf(“¹n¹r EEPROM Write Data is 0×55”);
 i2c_start();
 i2c_write(0×a2);
 i2c_write(0×00);
 i2c_write(0×00);
 i2c_write(0×55);
 i2c_stop();
while(1)
 {
 i2c_start();
 i2c_write(0xa2);
 i2c_write(0);
 i2c_write(0);
 i2c_start();
 i2c_write(0xa3);
 data=i2c_read(0);
 i2c_stop();
 printf(“¹n¹r %× ”,data);
 output_d(data); // Port D s connected to LEDS
 }

5.3 Serial I2C Based EPROM 24AA256 Interface to PIC16F877 89

90 5 PIC Interfaced to I2C Compatible Devices

}

Here you will observe that, the pattern/data stored in serial EPROM, is read and dis-
played again both on the HyperTerminal and LEDs connected to port D of the
PIC.

5.4 I2C Based PCF 8591ADC Interface

5.4.1 Advantages of Serial ADC Interface

This application demonstrates a serial ADC interfacing to the PIC microcontroller.
At the outset, it is worthwhile to take a review of the pros and cons of the serial
ADC. A conventional parallel ADC is generally connected directly or possibly
through buffers to the data bus of the microcontroller that takes care of the inter-
facing needs. The advantage of this scheme is reading the digitized output at a
time, however at the expense of more hardware and built in multiplexer in case
of multi-channel versions of such ADCs. Serial ADC accomplishes the post digi-
tization transfer of the signal in a serial fashion over a single line. A common
clock in a typical I2C or SPI interface dictates the transfer rate and in multi-
channel versions, additional bits corresponding to the channel IDs are incorpo-
rated. The key advantage of the serial ADCs and for that matter any other serial
peripherals can be appreciated from a space saving point of view. Due to the
above mentioned advantage manufacturers offer these devices in an 8-pin DIP or
SO package and designers get the benefit of simpler PCB deign with few tracks
for their embedded product.

Fig. 5.6 Serial EPROM connected to PIC16F877

5.4.2 PCF 8591 I2C Compliant Serial ADC

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisi-
tion device with four analog inputs, one analog output and a serial I2C-bus interface
manufactured by Philips. In compliance with the I2C protocol, three address pins
A0, A1 and A2 are used for configuring the hardware address. Eight such devices
can be connected to the I2C-bus without additional hardware.

PCF8591 is widely used in applications such as analog input multiplexing, on-
chip track and hold function, 8-bit analog-to-digital conversion and an 8-bit digital-
to-analog conversion. The maximum conversion rate is only limited by the
maximum data transfer rate of the I2C bus.

5.4.3 PCF 8591 Features

The features of this device with a detailed data sheet can be downloaded from the
Internet [66]. The features are as follows:

● Single power supply
● Operating supply voltage 2.5–6 V
● Low standby current
● Serial input/output via I2C-bus
● Address by three hardware address pins
● Sampling rate given by I2C-bus speed
● Four analog inputs programmable as single-ended or differential inputs
● Auto-incremented channel selection
● Analog voltage range from VSS to VDD
● On-chip track and hold circuit
● Eight-bit successive approximation A/D conversion
● Multiplying DAC with one analog output

Application notes in the following domain may be seen on web [66]:

● Closed loop control systems
● Low power converter for remote data acquisition
● Battery operated equipment
● Acquisition of analog values in automotive, audio and TV applications

5.4.4 A/D Conversion of PCF8591

The A/D converter of PCF8591 is based on successive approximation conversion
technique. Conversion cycle is initiated at the trailing edge of the acknowledge
clock pulse and is carried on simultaneously with the transmission of the result

5.4 I2C Based PCF 8591ADC Interface 91

92 5 PIC Interfaced to I2C Compatible Devices

of the previous conversion. After initiation of the conversion cycle, the input voltage
of the selected channel is sampled, stored on chip and then digitized in 8 bit
binary equivalent. The ADC has on chip data registers for storage of results and
an auto increment flag to indicate selection of the next channel. A self testing of
the device can be done by doing the power on reset and checking the first byte as 80 H.

As a CMOS device certain precautions are to be taken care of such as connecting
the inputs either to to VSS or VDD when not in use. Also connecting the analog
inputs AGND or VREF when they are not required. The excessive ground and supply
noise and cross talk can be minimized by careful PCB design. Decoupling capacitors
(>10 µF) are recommended for power supply and reference voltage inputs [67].
Program 5.3 I2C based PCF8591 ADC interface to PIC16F877 (Refer
Fig. 5.7)

Program Source Code

/* Program illustrates reading the data from the I2C Based ADC PCF8591 to the
PIC16F877. */
————————————————————————————————–
#include <16f877.H>
#use delay(clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6, rcv=PIN_C7)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3)
#include<lcd1.h>
int data;
void main()
{

Fig. 5.7 I2C Based PCF 8591 ADC interface to PIC16F877

 i2c_start();
 i2c_write(0×9e); //Device Address
 i2c_write(0×41); //Analog input with channel 1
 lcdint();
 while(1){
 i2c_start();
 i2c_write(0×9f); //Device Address
 data=i2c_read(0);
 lcd_data(data,0×a2);
 printf(“¹n¹r adc Data : %x ”,data);
 i2c_stop();
 }
}

Here the temperature sensor LM35 is connected to channel 0 (AIN0,), The cur-
rent temperature is displayed on LCD and also on HyperTerminal.

5.5 I2C Based ADC – AD1236

5.5.1 AD1236 from Maxim

In case your embedded system product needs more bit capability and resolution
than the PCF8591, then this application will definitely help you. It is based on the
MAX1236 a low-power, 12-bit, multi-channel analog-to-digital converters (ADCs)
having additional features such as internal track/hold (T/H), voltage reference,
clock, and most important an I2C-compatible 2-wire serial interface. The supply
requirement is as low as a single supply of 4.5–5.5 V with a current consumption
of only 670 µA at the maximum sampling rate of 94.4 ksps. In case, the application
demands further lowering down the rated current then the ADC can be operated at
less than 230 µA for sampling rates under 46 ksps. The ADC uses a unique “Auto
Shutdown” technology that powers down the devices between conversions, reduc-
ing supply current to less than 1 µA at low throughput rates. The MAX1236 comes
with four analog input channels, software configurable fully differential analog
inputs for unipolar or bipolar, and single-ended or differential operation. It features
a 4.096 V internal reference is available in an 8-pin µMAX® package.

5.5.2 Features of MAX1236

The key features of this device are listed on the web URL of Maxim [68]. Some of
them are as follows:

5.5 I2C Based ADC – AD1236 93

94 5 PIC Interfaced to I2C Compatible Devices

● High-Speed I2C-Compatible Serial Interface
 ° 400 kHz Fast Mode
 ° 1.7 MHz High-Speed Mode
● Single-Supply 4.5–5.5 V
● Internal Reference 4.096 V
● External Reference: 1 V to VDD
● Internal Clock
● Four-Channel Single-Ended or 2-Channel Fully Differential input
● Internal FIFO with Channel-Scan Mode
● Low Power consumption at different conversion rates.
 ° 670 µA at 94.4 ksps
 ° 230 µA at 40 ksps
 ° 60 µA at 10 ksps
 ° 6 µA at 1 ksps
 ° 0.5 µA in Power-Down Mode
● Software-Configurable Unipolar/Bipolar
● Small Packages 8-Pin µMAX

5.5.3 Conversion Technique and Other Details

The MAX1236ADCs uses successive-approximation conversion techniques along
with built in fully differential input track/hold (T/H) circuitry to capture and convert
an analog signal to a serial 12-bit digital output. Owing to its low power require-
ment and adaptability to different conversion rates this ADC finds lots of applica-
tions in the following embedded domains:

● Battery-Powered Test Equipment
● Handheld Portable Applications
● Medical Instruments
● Receive Signal Strength Indicators
● Solar-Powered Remote Systems
● System Supervision

Application notes on these domains are available on Internet [69].
Program 5.4 Read the serial value from I2C based ADC MAX1236 (Refer
Fig. 5.8)

Program Source Code

/* This program is used to read the adc value from I2C BASED ADC - MAX1236
having ADDRESS - ‘01101000’ i.e. 68 or 69 in hexadecimal. */
—————————————————————————————————–
#include <16F877.h>
#use delay (clock=20000000)
#use rs232(baud=19200, xmit=PIN_C6,rcv=PIN_C7)
#use I2C(MASTER, sda=PIN_C4,scl=PIN_C3)

#include<lcd1.h>
unsigned int adc_datahi,adc_datalw;
unsigned int16 adc_data;
Void main ()
{
 lcdint ();
 While (1)
 {
 i2c_start();
 i2c_write(0×68); // device address
 i2c_write(0×fa);
 i2c_write(0×01);
 i2c_stop();
 delay_ms(10);
 i2c_start();
 i2c_write(0×69);
 adc_datahi = i2c_read();
 adc_datalw = i2c_read();
 adc_data=make16(adc_datahi,adc_datalw);
 i2c_stop();
 adc_datahi = adc_datahi &0×0f;
 lcd_data(adc_data,0×a2);
 printf(“¹n adc %x%x ”,adc_datahi,adc_datalw);
 }
 }

Fig. 5.8 I2C based ADC MAX1236 interface to PIC16F877

5.5 I2C Based ADC – AD1236 95

96 5 PIC Interfaced to I2C Compatible Devices

Here the temperature sensor LM35 is connected to channel 0 (AIN0,). The current
Temperature sensed is displayed on LCD and also on HyperTerminal.

5.6 MAX5822 DAC Interfaced to PIC

The MAX5822 is a dual, 12-bit, voltage-output, I2C compliant digital-to-analog con-
verter with clock frequency upto 400 kHz and single supply voltage from 2.7 to 5.5 V.
The device is an ideal match for battery powered instrumentation owing to its low
current consumption of the order of 115 µA at 3.6 V supply voltage supported by a
power-down mode which lowers the current consumption to less than 1 µA. Few more
features that makes it value addition for the embedded instrumentation are CMOS
compatible inputs buffered with Schmitt triggers, facilitating direct interfacing to opto-
coupled and transformer-isolated interfaces. The digital noise arising due to address
mismatch in I2C network is minimized by feedthrough network that disconnects the
clock (SCL) signal from the rest of the network upon detection of address mismatch.
The miniature 8-pin µMAX® package further helps in portability aspects.

5.6.1 Features

● Features listed on the Maxim website [70] are as follows:
● Ultra-Low Supply Current
 ° 115 µA at VDD = 3.6 V
 ° 135 µA at VDD = 5.5 V
● 300 nA Low-Power Power-Down Mode
● Single 2.7–5.5 V Supply Voltage
● Fast 400 kHz I2C-Compatible 2-Wire Serial Interface
● Schmitt-Trigger Inputs for Direct Interfacing to Optocouplers
● Rail-to-Rail Output Buffer Amplifiers
● Three Software-Selectable Power-Down Output Impedances
 ° 100 kΩ, 1 kΩ, and High Impedance
● Read-Back Mode for Bus and Data Checking
● Power-On Reset to Zero
● Eight-Pin µMAX Package

The application domains [70] mentioned for this DAC are

● Battery-Powered Instrumentation
● Digital Gain and Offset Adjustments
● Low-Cost Instrumentation
● Programmable Attenuators
● Programmable Voltage and Current Sources
● VCO/Varactor Diode Control

5.6.2 Equation for Output Voltage

The MAX5822’s input coding is binary. The output voltage is given by the follow-
ing equation:

 Vout Vref x D N= () / 2

where,
N = 12 (bits)
D = the decimal value of the input code ranging from 0 to 4095

Program 5.5 Sine wave generation by using Max5822 DAC

Program Source Code

/* program illustrate generation of sine wave by using Max5822 DAC */
———————————————————————————————————–
#include <16f877.h>
#use delay(clock=20000000)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
//#use I2C(MASTER,sda=pin_c4,scl=pin_c3)
int i,j;
unsigned int16 ab[]={2047,2403,2747,3071,3363,3615,3820,3971,4063,4095,4063,
3971,3820,3615,3363,3071,2747,2403,2047,1692,1347,1024,731,479,274,123,31,
0,31,123,274,479,731,1024,1347,1692,7899};
void main()
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×F0);
 i2c_write(0×04);
 i2c_stop();
while(1)
{
 i2c_start();
 i2c_write(0×72);
 for (i=0;i<37;i++)
 {
 i2c_write(ab[i]/0×100);
 i2c_write(ab[i]%0×100);
 }
 i2c_stop();
}
}

5.6 MAX 5822 DAC Interfaced to PIC 97

98 5 PIC Interfaced to I2C Compatible Devices

Program 5.6 Square wave generation by using Max5822 DAC (Refer Fig. 5.9)
Program Source Code

// this program to generate square wave by using Max5822 DAC
————————————————————————————————
#include <16f877.h>
#use delay(clock=20000000)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3,slow)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
int i,j;
void main()
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×F0);
 i2c_write(0×04);
 i2c_stop();
while(1)
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×0f);
 i2c_write(0×ff);
 i2c_stop();
 i2c_start();

Fig. 5.9 DAC MAX5822 interfacing to PIC16F877

 i2c_write(0×72);
 i2c_write(0×00);
 i2c_write(0×0);
 i2c_stop();
}
}

Program 5.7 Triangular wave generation by using Max5822 DAC (Refer
Fig. 5.9)
Program Source Code

// program illustrate generation of Triangular wave by using Max5822 DAC
——————————————————————————————————
#include <16f877.h>
#use delay(clock=20000000)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3,slow)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
int i,j;
void main()
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×F0);
 i2c_write(0×04);
 i2c_stop();
while(1)
{
 for(i=0×0;i<0×0f;i++)
 {
 for(j=0×0;j<0×ff;j++)
 {
 i2c_start();
 i2c_write(0×72);
 i2c_write(i);
 i2c_write(j);
 i2c_stop();
 }
 }
 for(i=0×0f;i>0×0;i–)
 {
 for(j=0×ff;j>0×0;j–)
 {
 i2c_start();
 i2c_write(0×72);
 i2c_write(i);
 i2c_write(j);

5.6 MAX 5822 DAC Interfaced to PIC 99

100 5 PIC Interfaced to I2C Compatible Devices

 i2c_stop();
 }
 }
}
}

Program 5.8 Negative ramp wave generation by using Max5822 DAC (Refer
Fig. 5.9)
Program Source Code

/* program illustrate generation of negative Ramp wave by using Max5822 DAC */
——————————————————————————————————-
#include <16f877.h>
#use delay(clock=20000000)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3,slow)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
int i,j;
void main()
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×F0);
 i2c_write(0×04);
 i2c_stop();
while(1)
{
 for(i=0;i<0×0f;i++)
 {
 for(j=0;j<0×ff;j++)
 {
 i2c_start();
 i2c_write(0×72);
 i2c_write(i);
 i2c_write(j);
 i2c_stop();
 }
 }
}
}

Program 5.9 Positive ramp wave generation by using Max5822 DAC (Refer
Fig. 5.9)
Program Source Code

/* program illustrate generation of positive going ramp wave by using Max5822 DAC
——————————————————————————————————–
#include <16f877.h>

#use delay(clock=20000000)
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3,slow)
#use rs232(baud=19200,xmit=pin_c6,rcv=pin_c7)
int i,j;
void main()
{
 i2c_start();
 i2c_write(0×72);
 i2c_write(0×F0);
 i2c_write(0×04);
 i2c_stop();
while(1)
{
 for(i=0×0f;i>0×0;i–)
 {
 for(j=0×ff;j>0×0;j–)
 {
 i2c_start();
 i2c_write(0×72);
 i2c_write(i);
 i2c_write(j);
 i2c_stop();
 }
 }
}
}

5.6 MAX 5822 DAC Interfaced to PIC 101

Chapter 6
Embedded Control Applications Using
AT89S52

This chapter is a complete diversion from the PIC16F877. Here we are back to a
very popular CISC architecture i.e. Atmel 89S52. Let us justify the reasons for the
departure from what follows right away since Chapter 2. At the outset, we submit
that the talk of the town “RISC versus CISC debate” has almost come to an end with
the state of art complex microprocessor architectures, ASICs and commercial off-
the-shelf (COTS) architectures. However, the market statistics won’t forgive us if we
ignore the fact that today the MCS51 series accounts for the more than 25% of the
8 bit Microcontroller worldwide market, with part volumes exceeding 100,000,000
or more units per annum. We must give justice to the investment to the tune of
billions of dollars and most importantly programming expertise that comes from
millions of programmer hours apart from the efforts taken to launch full proof IDEs,
compliers, debuggers and other tools. Therefore we have taken the most popular
representative sample of MCS51 series i.e. Atmel 89S52 for the applications
chosen in this chapter. Following case studies are developed in this chapter:

6.1 Night Lamp Controller
6.2 Microcontroller Based Control for Nylon Rubber Stamp Making Machine

Control
6.3 A Tiny BIOS or Diagnostic Interface with MCS51
6.4 Simple Digital IC Tester
6.5 Microcontroller Based Salinity Measurement System
6.6 Fault Tolerant Sensor Interface
6.7 Sensor Matrix Interface
6.8 Design Micricontroller Based Servo Controller

6.1 Night Lamp Controller

In this application automatic switching of night lamp is implemented using the on-
chip timer of the AT89S52 microcontroller (as shown in Fig. 6.1). The time elapsed
is displayed on the LCD. This application will not only relieve the user from the turn-
ing on and off the lamp but also lessens the electricity consumption and sometimes
also useful to give an illusion of someone’s presence for the thieves.

J.S. Parab, et al., Practical Aspects of Embedded System Design using Microcontrollers, 103
© Springer Science + Business Media B.V. 2008

104 6 Embedded Control Applications Using AT89S52

A slight modification by introducing a light sensing module will make this cir-
cuit fully automatic.
Program 6.1 Night lamp controller
Program Source Code

// Program illustrates the Night lamp controller using the microcontroller.
—————————————————————————————————
#include <REG52.H> /* special function register declarations */
 /* for the intended 8051 derivative */
sbit RS = P2∧0; // LCD Initialization signals
sbit RW = P2∧1;
sbit EL = P2∧2;
sbit Relay = P2∧3; // Relay connected to P2.3 pin of the

controller
sbit R1 = P3∧0; //Key board signals
sbit R2 = P3∧1;
sbit R3 = P3∧2;

Fig. 6.1 Circuit diagram for night light controller using 89S52 microcontroller

sbit R4= P3∧3;
sbit C1 = P3∧4;
sbit C2 = P3∧5;
sbit C3 = P3∧6;
sbit C4 = P3∧7;
void Delay(int);
void INIT(void);
void ENABLE(void);
void LINE(int);
int keyb(void);
void settime(void);
void starttimer(void);
void check_timeout(int);
int settime1=10; // Default time
int set_temp;
void settime(void) // Routine to set time to keep the lamp on
{
int ten_pos=0, unit_pos=0;
while(!(ten_pos=keyb()));
while(!(unit_pos=keyb()));
P1=(((ten_pos))+0×30);
ENABLE();
P1=((unit_pos)+0×30);
ENABLE();
Delay(2000);
settime1= ten_pos*10 + unit_pos;
}
void starttimer()
{
Relay=1; // Turn on the Lamp
set_temp= settime1;
check_timeout(set_temp);
set_temp−;
P1=(((set_temp)/10)+0×30); // display the remaining time on LCD
ENABLE();
P1=((set_temp/10)%10+0×30); // display the remaining time on LCD
ENABLE();
Delay(2000);
}
void check_timeout(g) // check if count is zero and according

switch off the Lamp
{
if(g == 0)
{
Relay=0; // turn off the Lamp

6.1 Night Lamp Controller 105

106 6 Embedded Control Applications Using AT89S52

}
}
void main(void)
{
char test[]=“Night lamp controller”;
char code set_msg[]=“ 1-> set time”;
char code start_msg[]=“ 2-> start timer ”;
char *p;
int j;
INIT(); // Initaialization routine for LCD
LINE(1);
p=&test;
for(j=0;j<17;j++)
{
if(j==0)LINE(1);
if(j==8)LINE(2);
P1=*p++;
ENABLE();
Delay(200);
}
while(1){
RS = 1;
p=&set_msg;
for(j=0;j<17;j++)
{
if(j==0)LINE(1);
if(j==8)LINE(2);
P1=*p++;
ENABLE();
Delay(200);
}
RS = 1;
p=&start_msg;
for(j=0;j<17;j++)
{
if(j==0)LINE(1);
if(j==8)LINE(2);
P1=*p++;
ENABLE();
Delay(200);
}
j=0;
j=keyb();
if(j>0);

if(j==1){ // if key 1 is pressed then set the timer to
keep the Lamp oN

settime();
}
if(j==2){ // if key 2 is pressed then start the timer to

count in down mode
starttimer();
}
}
}
void Delay(int k) // Dealay routine
{
int i,j;
for (j=0;j<k+1;j++){
for (i=0;i<100;i++);
}}
void ENABLE(void)
{
EL=1;
Delay(1);
EL=0;
Delay(1);
}
void LINE(int i){
 if (i==1) {
 RS=0;
 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 }
}
void INIT(void)
{
 RS=0;
 RW=0;
 EL=0;

6.1 Night Lamp Controller 107

108 6 Embedded Control Applications Using AT89S52

 P1 = 0×38;
 ENABLE();
 ENABLE();
 ENABLE();
 ENABLE();
 P1 = 0×06;
 ENABLE();
 P1 = 0×0E;
 ENABLE();
 P1 = 0×01;
 ENABLE();
}
int keyb(void){
int key=0;
C1=1;
C2=1;C3=1;C4=1;R1=0;R2=1;R3=1;R4=1;
if (C1==0) key = 1;
if (C2==0) key = 2;
if (C3==0) key = 3;
if (C4==0) key = 4;
return(key);
}

6.2 Microcontroller Based Control for Nylon Rubber Stamp
Making Machine

Rubber stamping is a craft in which some type of ink made of dye or pigment is
applied to an image or pattern that has been carved, molded, laser engraved or vul-
canized, onto a sheet of rubber. Spanish explorers were pioneers in developing this
“sticky substance” that bounced, used by South American Indians. In 1736, Charles
Marie de la Condamine, a French scientist studying the Amazon, sent a piece of
“India Rubber” back to France [71]. With the widespread use of the rubber stamps,
there are good number of manufacturers making the machines for rubber stamps
[72]. Most of these machines are based on the vulcanizing press mechanism. It is
the most cost effective methods of making rubber stamps and leads to cost effec-
tiveness especially in case of mass produced stamps. In this process a batch of
stamps is produced using a mould. For making the mould a standard process is
adopted. The first step is making a master plate manufactured from metal or poly-
mer. The master plate comprises of the necessary artwork/text to be used for mak-
ing an impression in the mould. Thus made master plate is then pressed into the
matrix board which further acts on the rubber. A definite cycle of heat and pressure
is applied to the master plate and matrix board inside a Vulcanizing press. With this

the Matrix follows the shape of the artwork/text provided by the master plate,
which subsequently hardens on cooling. Once the mould is ready as per the above
process, the raw rubber stamp gum is placed on top of the mould and then placed
inside the stamp press. Hydraulic pressure is placed upon the rubber and the mould
from within the stamp press causing the rubber to melt into the areas of the mould
that contain the images and text, curing and hardening takes about 10 min. Once
cured the sheet of rubber is pulled away from the mould and cut up into individual
stamps to be affixed to mounts [73].

Most of the rubber stamp making machines has a built in mechanism to accom-
plish the manufacturing process described above. However, for following this proc-
ess an experienced human operator is required which will decide the pressure and
temperature cycles to be applied? In this application we have automated the entire
process by incorporating the 89S52 microcontroller based system design that will
suffice most of the manual rubber stamp making machines.

The microcontroller based automation as shown in Fig. 6.2, leads to certain definite
advantages such as consistency, less manufacturing time and simplified operation. The
consistency is achieved with the exact application of downward pressure and dwell-
time set by the thumbwheel switches. The hot-stamping operation is also completed
within a very short amount of time with exact application of the power through the
relay mechanism. The LCD display not only ensures the ease of operation, but also
provides some valuable information such as the number of imprints completed, proc-
ess temperature and pressure. The operation commences with the application of paddle
operated switch.

Fig. 6.2 Microcontroller based control for nylon rubber stamp making machine

6.2 Microcontroller Based Control for Nylon Rubber Stamp Making Machine 109

110 6 Embedded Control Applications Using AT89S52

Program 6.2 Microcontroller based control for nylon rubber stamp making
machine
Program Source Code

/* Program Illustrate the Microcontroller 89S52 based control for Nylon Rubber
Stamp Making Machine.*/
—————————————————————————————————-
#include <REG52.H> /* special function register declarations */
 /* for the intended 8051 derivative */
#include <stdio.h> /* prototype declarations for I/O functions */
sbit RS = P2∧0;
sbit RW = P2∧1;
sbit EN = P2∧2;
sbit Sw1= P2∧3;
sbit RL=P3∧5;
sbit dat=P3∧6;
sbit clk= P3∧7;
unsigned int unit,ten,hundred,tenth,tens,tenthou,thousand;
void delay(int); /* Stop Exection with Serial Intr. */
void INIT(void);
void ENABLE(void);
void LINE(int);
void display(char);
void clear(void);
void delay(void);
char
seq[16]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90,0X88,
0X80,0XC6,0XC0,0X86,0X8E};
void main (void) {
int i,N;
while (1) {
N=P1;
if (Sw1==0)
 {
 unit =(N%10);
 ten=(N/10)%10;
 hundred=(N/100)%10;
tenth=(N/1000);
clear();
display (seq[tenth]);
display (seq[hundred]);
display (seq[ten]);
display (seq[unit]);
INIT();
LINE(1);

P1=tenthou;
ENABLE();
P1=thousand;
ENABLE();
P1=hundred;
ENABLE();
P1=tens;
ENABLE();
P1=unit;
ENABLE();
RL=1;
delay ();
clear ();
}
else
{
for (i=N; i>=0;i–)
 { unit =(N%10);
 ten=(N/10)%10;
 hundred=(N/100)%10;
tenth=(N/1000);
clear();
display (seq[ten]);
display (seq[unit]);
delay();
INIT();
LINE(1);
P1=tenthou;
ENABLE();
P1=thousand;
ENABLE();
P1=hundred;
ENABLE();
P1=tens;
ENABLE();
P1=unit;
ENABLE();
}
RL=0;
 }
}
}
void LINE(int i){
 if (i==1) {
 RS=0;

6.2 Microcontroller Based Control for Nylon Rubber Stamp Making Machine 111

112 6 Embedded Control Applications Using AT89S52

 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 }
}
void delay()
{
int i,j;
for (j=0;j<10;j++){
for (i=0;i<100;i++);
}}
void ENABLE(void)
{
EN=1;
delay();
EN=0;
delay();
}
void INIT(void)
{
 RS=0; /*initialization of LCD display*/
 RW=0;
 EN=0;
 P1 = 0×38;
 ENABLE();
 ENABLE();
 ENABLE();
 ENABLE();
 P1 = 0×06;
 ENABLE();
 P1 = 0×0E;
 ENABLE();
 P1 = 0×01;
 ENABLE();
}
void display(char k)

{
unsigned char mask;
int i;
mask=0X80;
for(i=0;i<8;i++)
{
 if(k&mask)
 dat=1;
 else
 dat=0;
 clk=0;
 clk=1;
 clk=0;
 mask=mask>>1;
}
}
void clear(void)
{
int i;
for (i=0;i<33;i++)
{
dat=1;
clk=0;clk=1;clk=0;
}
}

6.3 A Tiny BIOS or Diagnostic Interface with MCS51

BIOS, in computing, stands for Basic Input/Output System that refers to the soft-
ware code run by a computer after powered on. Its primary function is to prepare
the machine so other software programs stored on various media (such as hard
drives, floppies, and CDs) can load, execute, and assume control of the computer.

In this case study a program is developed in which few I/O routines like LCD
interfacing, keyboard interfacing, etc. have been developed as per the BIOS style of
coding. It is organized in such a way that the information such as port addresses,
characters to be displayed are passed as parameters to the interrupt service routine.
Program 6.3 A tiny BIOS or diagnostic interface with MCS51 (Refer
Fig. 6.3)
Program Source Code

/* Program to illustrate the Tiny BIOS interface with the Microcontroller 89S52.*/

6.3 A Tiny BIOS or Diagnostic Interface with MCS51 113

114 6 Embedded Control Applications Using AT89S52

—————————————————————————————————
#include <REG52.H> /* special function register declarations */
 /* for the intended 8051 derivative */
#include <stdio.h> /* prototype declarations for I/O functions */
sbit RS = P2∧0;
sbit RW = P2∧1;
sbit EL = P2∧2;
sbit Relay = P2∧4;
sbit R1 = P0∧0;
sbit R2 = P0∧1;
sbit R3 = P0∧2;
sbit R4 = P0∧3;
sbit C1 = P0∧4;
sbit C2 = P0∧5;
sbit C3 = P0∧6;
sbit C4 = P0∧7;
char array[]=“EMBEDDED C PROGRAMMING IS INTERRESTING ”;
void Delay(int);
void INIT(void);
void ENABLE(void);
void LINE(int);
int keyb(void);
char getascii(int);

Fig. 6.3 A tiny BIOS or diagnostic interface with MCS51

char getascii(int k)
{
 int ascii;
 if(k<10)
 ascii=k+0×30;
 if (k==10) ascii=0×30;
return (ascii);
 }
int keyb(void){
int key=0;
C1=1;
C2=1;
C3=1;
C4=1;
R1=0;
R2=1;
R3=1;
R4=1;
if (C1==0) key = 1;
if (C2==0) key = 2;
if (C3==0) key = 3;
if (C4==0) key = 4;
R1=1;
R2=0;
R3=1;
R4=1;
if (C1==0) key = 5;
if (C2==0) key = 6;
if (C3==0) key = 7;
if (C4==0) key = 8;
R1=1;
R2=1;
R3=0;
R4=1;
if (C1==0) key = 9;
if (C2==0) key = 10;
if (C3==0) key = 11;
if (C4==0) key = 12;
R1=1;
R2=1;
R3=1;
R4=0;
if (C1==0) key = 13;
if (C2==0) key = 14;
if (C3==0) key = 15;

6.3 A Tiny BIOS or Diagnostic Interface with MCS51 115

116 6 Embedded Control Applications Using AT89S52

if (C4==0) key = 16;
return(key);
}
void LINE(int i)
 {
 if (i==1)
 {
 RS=0;
 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 }
 }
void Delay(int k)
 {
 int i,j;
 for (j=0;j<k+1;j++)
 {
 for (i=0;i<10000;i++);
 }
 }
void ENABLE(void)
 {
 EL=1;
 Delay(1);
 EL=0;
 Delay(1);
 }
void INIT(void) /*initialization of LCD display*/
 {
 RS=0;
 RW=0;
 EL=0;
 P1 = 0×38;
 ENABLE();

 ENABLE();
 ENABLE();
 ENABLE();
 P1 = 0×06;
 ENABLE();
 P1 = 0×0E;
 ENABLE();
 P1 = 0×01;
 ENABLE();
 }
void main (void)
 {
 char b;
 int j;
while (1)
 {
j=0;
j = keyb();
if (j!=0){
if (j==1) // display on LCD is enabled
{
INIT();
 LINE (1);
 for (b=0;b<30;b++)
 {
 if (b==8)
 LINE(2);
 P1=array[b];
 ENABLE();
 }
RS=0;
P1=0×01;
ENABLE();
RS=1;
LINE(1);
for (b=16;b<33;b++)
 {
 if (b==24)
 LINE(2);
 P1=array[b];
 ENABLE();
 }
}
else if (j==2)

6.3 A Tiny BIOS or Diagnostic Interface with MCS51 117

118 6 Embedded Control Applications Using AT89S52

{
Relay=1; //‘switch on the relay
Delay(10000);
Relay=0; // switch off the relay after 10 s
}
//else if(j==3)
//{
//activate some other peripherals like LEDs, HyperTerminal communication, serial
7 SEG, etc.
//}
} }
}

Note: Many monitor routine may be added on similar lines.

6.4 Simple Digital IC Tester for 74XX Series

Digital IC testing is by itself a completely different philosophy. In this case study
we have employed AT89S52 for the testing purpose. The basic approach is based
on table lookup of the truth tables which are invoked based on the IC the type of
the IC inserted in the socket. User has to specify the IC number by entering through
the keyboard such as key1 corresponds to 7400, key2 to 7408, etc.

By interfacing additional external memory one can modify the application for
testing more digital ICs. Fig. 6.4 shows the block schematic while the circuit dia-
gram is as per Fig. 6.5.

Fig. 6.4 Block diagram of simple digital IC tester for the 74XX series

6.4 Simple Digital IC Tester for 74XX Series 119

Fig. 6.5 Schematic of simple digital IC tester for 74XX series

Program 6.4 Simple digital IC tester for the 74XX series
Program Source Code
**
/* Program illustrates the Simple Digital IC tester for 74XX series using 89S52
microcontroller*/
———————————————————————————————————-
#include <REG52.H> /* special function register declarations */
#include <stdio.h> /* for the intended 8051 derivative */
sbit RS = P2∧0;
sbit RW = P2∧1;
sbit EL = P2∧2;
sbit R1 = P0∧0;
sbit R2 = P0∧1;
sbit R3 = P0∧2;
sbit R4 = P0∧3;
sbit C1 = P0∧4;
sbit C2 = P0∧5;
sbit C3 = P0∧6;
sbit C4 = P0∧7;
sbit a = P2∧3;
sbit b= P2∧4;
sbit c = P2∧5;

120 6 Embedded Control Applications Using AT89S52

sbit d = P2∧6;
void Delay(int); /* Stop Exection with Serial Intr. */
void INIT(void);
void ENABLE(void);
void LINE(int);
int keyb(void);
void LINE(int i){
 if (i==1) {
 RS=0;
 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 }
}
void delay(int k)
{
int i,j;
for (j=0;j<k+1;j++){
for (i=0;i<100;i++);
} }
void ENABLE(void)
{
EL=1;
delay(1);
EL=0;
delay(1);
}
void INIT(void)
{
 RS=0;
 RW=0;
 EL=0;
 P1 = 0×38;
 ENABLE();
 ENABLE();
 ENABLE();

 ENABLE();
 P1 = 0×06;
 ENABLE();
 P1 = 0×0E;
 ENABLE();
 P1 = 0×01;
 ENABLE();
}
int keyb(void){
int key=0;
C1=1;
C2=1;
C3=1;
C4=1;
R1=0;
R2=1;
R3=1;
R4=1;
if (C1==0) key = 1;
if (C2==0) key = 2;
if (C3==0) key = 3;
if (C4==0) key = 4;
R1=1;
R2=0;
R3=1;
R4=1;
if (C1==0) key = 5;
if (C2==0) key = 6;
if (C3==0) key = 7;
if (C4==0) key = 8;
R1=1;
R2=1;
R3=0;
R4=1;
if (C1==0) key = 9;
if (C2==0) key = 10;
if (C3==0) key = 11;
if (C4==0) key = 12;
R1=1;
R2=1;
R3=1;
R4=0;
if (C1==0) key = 13;
if (C2==0) key = 14;
if (C3==0) key = 15;

6.4 Simple Digital IC Tester for 74XX Series 121

122 6 Embedded Control Applications Using AT89S52

if (C4==0) key = 16;
return(key);
}
void main(void) {
int j,i,Read;
char *p;
char status[]=“Digital Ic tester”;
char status1[]=“gate is faulty”;
char status2[]=“Gate is ok”;
INIT();
LINE(1);
p=&status;
for (i=0;i<17;i++)
{
if(i==0) LINE(1);
if(i==8) LINE(2);
P1=*p++;
ENABLE();
Delay(200);
}
while(1){
j=0;
j = keyb();
if (j==1){
 //it is 7400 NAND gate
P3=0; // input to all gate of 7400 (only one pattern)
Read=P2; //output of gate is read by 89C52
if (a=b=c=d=1)
{
P3=0×55;
Read=P2;
if (a=b=c=d=0)
{
P3=0×aa;
Read=P2;
if (a=b=d=c=0)
{
P3=0×ff;
Read=P2;
if (a=b=c=d=0)
{
p=&status2;
for(i=0;i<17;i++)
{
if(i==0)LINE(1);

if(i==8)LINE(2);
P1=*p++;
ENABLE();
Delay(200);
} } } } } }
else
{
p=&status1;
for(i=0;i<17;i++)
{
if(i==0)LINE(1);
if(i==8)LINE(2);
P1=*p++;
ENABLE();
Delay(200);
} }
}
}
//if (j=2)
//{
//similar routine for other gate for e.g. 7404
//}
//if (j=3)
//{
//similar routine for other gate for e.g. 7408
//}
**

6.5 Microcontroller Based Salinity Measurement System

Conductivity and salinity are the two most common water related parameters
measured by Scientists and Engineers for assessment and research purpose [74].
Salinity is the presence of soluble salts in soils or waters. It is a general term used to
describe the presence of elevated levels of different salts such as sodium chloride,
magnesium and calcium sulfates and bicarbonates, in soil and water. It usually results
from water tables rising to, or close to, the ground surface [75]. There are many good
reasons why salinity measurement is treated as the most important in several proc-
esses. For instance one of the main reason for the growth of unwanted algae is a low
salinity of the water in a tank. It is also instrumental in and deciding factor in saltwater
fish’s osmoregulatory behavior. Soil salinity a yet another important parameter is a
measure of the total amount of soluble salt in soil. It is reported that [76], as salinity
levels increase, plants extract water less easily from soil, aggravating water stress
conditions. High soil salinity can also cause nutrient imbalances, result in the

6.5 Microcontroller Based Salinity Measurement System 123

124 6 Embedded Control Applications Using AT89S52

accumulation of elements toxic to plants, and reduce water infiltration if the level of
one salt element sodium is high.

The sensing module used in this application is based on the Debye-Hückel [77]
that starts from the assumption that the electrical potential fluctuations due to the
ions in an electrolyte are small. At each point, a potential shift f will give rise to a
charge density opposing the fluctuation:

r f S= (/)e kT c zi i
2 2

where the c’s are the concentrations in ions m−3.
A conductivity probe based on the above theory has been designed [78] and use-

fully used for many applications. The main intention behind including this applica-
tion is to demonstrate the complementary advantages of the analog signal
conditioning when it is usefully combined with the microcontrollers. The conduc-
tivity modulating probe embedded in an oscillator circuit exhibit extra sensitivity at
increased resolution. The non-linearity is corrected using the linearization circuit in
the analog domain itself. Such an approach definitely offloads the linearization
burden of the microcontroller and enables quick sampling especially required in
dynamic salinity changing conditions. The block schematic and the analog signal
diagrams are shown in Figs. 6.6–6.8.

Fig. 6.6 Microcontroller based smart salinity measurement systems

Fig. 6.7 Oscillator driven salinity probe

Fig. 6.8 Analog signal conditioning

6.5 Microcontroller Based Salinity Measurement System 125

126 6 Embedded Control Applications Using AT89S52

Program 6.5 Microcontroller based salinity measurement
Program Source Code
**
/* Program illustrates the Microcontroller based Salinity Measurement.
———————————————————————————————————
C program:
#include <REG52.H> /* special function register declarations */
#include <stdio.h>
/* for the intended 8051 derivative */
sbit RS = P3∧0;
sbit RW = P3∧1;
sbit EL = P3∧2;
sbit SOC= P2∧4;
sbit EOC= P2∧3;
sbit ALE= P2∧6;

sbit a =P2∧2;
sbit b = P2∧1;
sbit c =P2∧0;
void delay(int);
void INIT(void);
void ENABLE(void);
void LINE(int);
void LINE(int i)
{ if(i==1)
{ RS=0;
RW=0;
P0=0×80;
ENABLE();
RS=1;
}else
{RS=0;
RW=0;
P0=0×C0;
ENABLE();
RS=1;
}
}
void delay(int k)
{int i,j;
for (j=0;j<k+1;j++)
{for (i=0;i<10000;i++);
} }
void ENABLE (void)
–

6.5 Microcontroller Based Salinity Measurement System 127

 EL=1;
delay(1);
EL=0;
delay(1);
}
void INIT(void) // Initialization of the LCD by giving the proper commands.
{ RS=0;
RW=0;
EL=0;
P0 = 0×38; // 2 lines and 5*7 matrix LCD.
ENABLE();
ENABLE();
ENABLE();
ENABLE();
P0 = 0×06; //Shift cursor to left
ENABLE();
P0 = 0×0E; // Display ON, Cursor Blinking
ENABLE();
P0 = 0×01; // Clear display Screen
ENABLE();
}
void main (void)
{int unit, tens, hundred, unit1, tens1, hundred1;
unsigned char d;
a=0;
b=0;
c=0;
while(1)
{
P1=0×ff;
SOC=1;
delay(8);
SOC=0;
delay(8);
SOC=1;
delay(8);
d=P1;
}
unit = (d%10);
tens = (d/10)%10;
hundred = (d/100);
unit = (unit + 0×30);
unit1=unit+unit;
tens = (tens + 0×30);
tens1=tens+tens;

128 6 Embedded Control Applications Using AT89S52

hundred = (hundred + 0×30);
hundred1=hundred+hundred;
INIT();
LINE(1);
P0=hundred1;
ENABLE();
P0=tens1;
ENABLE();
P0=‘.’;
ENABLE();
P0=unit1;
ENABLE();
P0=‘c’;
ENABLE();
} }
**

6.6 Fault Tolerant Sensor Interface

Program 6.6 Fault tolerant sensor interface
A System having sensors that can adjust in any environment, the system consists of
substitute or standby sensor. At the start 89C52 controller read all sensors for a sta-
ble value A. in read the sensor’s one at a time to check for large variations, if large
variation found in the readings and switch it to the standby sensors
Program Source Code (Refer Fig. 6.9)
**
/* Program illustrates the fault tolerant sensor interface */
———————————————————————————————————
#include<reg52.h>
sbit ale=P2∧3;
sbit row_soc=P2∧2;
sbit eoc=P2∧1;
sbit RS = P2∧4;
sbit RW = P2∧5;
sbit EL = P2∧6;
int temp=27;
void line(int);
void ENABLE(void);
void INIT(void);
void delay(int);
void main(void)
 {
 int col,address,data_read[7]; /*try with char*/

6.6 Fault Tolerant Sensor Interface
129

Fig. 6.9 Fault tolerant sensor interface

130 6 Embedded Control Applications Using AT89S52

int temp=27;
char *p;
int k,h,j;
char nofault[]=“There is no fault”;
char fault[]=“System is faulty”;
 row_soc=1;
 col=0;
 while(1)
 {
for(h=0;h<3;h++)
{
 row_soc=∼row_soc;
 for(col=0;col<=3;col++)
 {
address=(col & 0×07); /*allow only lower 3bits*/
 P2=address;
delay(10); /*allow address to stabilise*/
 ale=1; /*ale P2∼3 intially it’s zero above*/
 delay(10);
 ale=0;
 eoc=0;
 row_soc=0;
 delay(200);
 row_soc=1; /*0 to 1 transition req to clear sar */
 delay(200);
 row_soc=0; /*1 to 0 transition req to start convertion */
 while(eoc==1); /* conversion complete,does eoc need to b config input before
//reading*/
data_read[address]=P0;
INIT();
 line(1);
 P1=((data_read[address] /1000)+0×30);
 ENABLE();
 P1=(((data_read[address] / 100)%10)+0×30);
 ENABLE();
 P1=(((data_read[address] /10)%10)+0×30);
 ENABLE();
 P1=((data_read[address] %10)+0×30);
 ENABLE();
 P1=‘o’;
ENABLE();
P1=‘C’;
ENABLE();
}
for (j=0;j<=7;j++)

6.6 Fault Tolerant Sensor Interface 131

{
if((temp <=(data_read[j]-5))||(temp >=(data_read[j]+5)))
{
 INIT();
p=&nofault;
for (k=0;k<17;k++)
{
if (k==0) line(1);
if (k==8) line(2);
P1=*p++;
ENABLE();
} }
 else // switch to another matrix
{
INIT();
p=&fault;
for (k=0;k<17;k++)
{
if (k==0) line(1);
if (k==8) line(2);
P1=*p++;
ENABLE();
//(Routine for another sensor matrix which may be connected to port 0)
//repeat a program to generate to send address and read data and display the data on
LCD)
}
 }
 }
} } }
void line(int i)
 {
 if (i==1)
 {
 RS=0;
 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();

132 6 Embedded Control Applications Using AT89S52

 RS=1;
 }
 }
void enable(void)
 {
 EL=1;
 delay(2);
 EL=0;
 delay(2);
 }
void INIT(void)
 {
 RS=0;
 RW=0;
 EL=0;
 P1 = 0×38;
 enable();
 enable();
 enable();
 enable();
 P1 = 0×06;
 enable();
 P1 = 0×0E;
 enable();
 P1 = 0×01;
 enable();
 }
void delay(int k)
{
int i,j;
 for(i=0;i<k;i++)
 {
 for(j=0;j<1000;j++);
 }
 }
**

6.7 Sensor Matrix Interface

Program to read the data from temperature sensor which is connected to ADC
0808(8 bit) and display the temperature on LCD panel.
Program 6.7 Sensor matrix interface (Refer Fig. 6.10)

6.7 Sensor M
atrix Interface

133

Fig. 6.10 Schematic of sensor matrix interface to AT89S52

134 6 Embedded Control Applications Using AT89S52

Program Source Code
**
/ * Program to read the data from temperature sensor which is connected to ADC
0808(8 bit) and display the temperature on LCD panel*/
/* 1. Put address on lines
 2. Delay (stabilise address)
 3. Put ale high
 4. Rising edge on soc clear’s reg n falling edge starts conversion
 5. Wait for eoc high
 6. Read data lines and display.inc address and continue*/
/*lcd data on port1, control on port 2high
adc data on port0,address,ale on port 2low*/
//ale n soc can b on single line (delay)
/*latch address n use same lines as soc eoc*/
———————————————————————————————————
#include<reg52.h>
sbit ale=P2∧3;
sbit row_soc=P2∧2;
sbit eoc=P2∧1;
sbit RS = P2∧4;
sbit RW = P2∧5;
sbit EL = P2∧6;
void line();
void enable(void);
void INIT(void);
void delay(int);
void main(void)
{
int col,address,data_read[7]; /*try with char*/
row_soc=1;
col=0;
while(1)
{
 row_soc=∼row_soc;
 for(col=0;col<=3;col++)
 {
 address=(col & 0×07); /*allow only lower 3bits*/
P2=address;
 delay(10); /*allow address to stabilize*/
ale=1; /*ale P2∼3 initially it’s zero above*/
delay(10);
 ale=0;
eoc=0;
 row_soc=0;
 delay(200);

 row_soc=1; /*0 to 1 transition require to clear sar */
 delay(200);
 row_soc=0; /*1 to 0 transition require to start conversion */
while(eoc==1); /* conversion complete, does eoc need to be

configure input before reading*/
data_read[address]=P0;
INIT();
line();
P1=((data_read[address] /1000)+0×30);
 enable();
 P1=(((data_read[address] / 100)%10)+0×30);
 enable();
 P1=(((data_read[address] /10)%10)+0×30);
 enable();
 P1=((data_read[address] %10)+0×30);
 enable();
P1=‘o’;
enable();
P1=‘C’;
enable();
}
 }
 // if(address>1)address=0;
 }
 void line(void)
 {
 //if (i==1)
 {
 RS=0;
 RW=0;
 P1=0×80;
 enable();
 RS=1;
 }
/* else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 } */
 }
void enable(void)
 {

6.7 Sensor Matrix Interface 135

136 6 Embedded Control Applications Using AT89S52

 EL=1;
 delay(2);
 EL=0;
 delay(2);
 }
void INIT(void)
 {
 RS=0;
 RW=0;
 EL=0;
 P1 = 0×38;
 enable();
 enable();
 enable();
 enable();
 P1 = 0×06;
 enable();
 P1 = 0×0E;
 enable();
 P1 = 0×01;
 enable();
 }
void delay(int k)
{
int i,j;
for(i=0;i<k;i++)
{
for(j=0;j<1000;j++);
 }
}
**

6.8 Design Microcontroller Based Servo Controller

Servo controllers are popularly used in motion control industries. The underlying
concepts of servo control have not changed significantly in the last 50 years, but
definitely there has been evolution in this field. A closed loop servo control system
offers improved accuracy, good transient response besides reduction in the steady
state errors and exhibits limited sensitivity to load parameters.

The application developed here is keeping in view the interested mechatronics
professionals who are now relying on the microcontroller for increased portability,
ease of programming, accuracy and flexibility. The main thrust in these applica-
tions is fixing the exact positions for the motors used for driving the actuators.

Apart from the load calculations and other mechanical aspects such as vibration
analysis, overshoot, undershoot, etc. programming plays an important role to tailor
the setup as per the requirement. In the following application a motor control is
illustrated by using microcontroller. The setpoint is simulated using the potentio-
meter. The block schematic is shown in Fig. 6.11.
Program 6.8 Microcontroller based servo controller
Program Source Code
**
/* Program to illustrate the Servo motor controller using 89S52 microcontroller. */
———————————————————————————————————–
#include <REG52.H> /* special function register declarations */
/* for the intended 8051 derivative */
sbit RS = P2∧0;
sbit RW = P2∧1;
sbit EL = P2∧2;
sbit soc = P1∧0;
sbit eoc = P1∧1;
sbit a = P1∧4;
sbit b = P1∧5;
sbit c = P1∧6;
sbit d = P1∧7;
sbit R1 = P3∧0;
sbit R2 = P3∧1;
sbit R3 = P3∧2;
sbit R4= P3∧3;
sbit C1 = P3∧4;

6.8 Design Microcontroller Based Servo Controller 137

Fig. 6.11 Block diagram of the microcontroller based servo controller

138 6 Embedded Control Applications Using AT89S52

sbit C2 = P3∧5;
sbit C3 = P3∧6;
sbit C4 = P3∧7;
void Delay(int);
void INIT(void);
void ENABLE(void);
void LINE(int);
int keyb(void);
int setpt=30;
void dis(int);
void main(void)
{
char test[]=“servo motor”;
char *p;
int j,currentspeed,currentvolt,corrected ;
INIT();
LINE(1);
p=&test;
for(j=0;j<17;j++)
{
if(j==0)
LINE(1);
if(j==8)
LINE(2);
P1=*p++;
ENABLE();
Delay(200);
while(1)
{
j=0;
j=keyb();
if(j>8)j=0;
if(j==1){
setpt++;
dis(j);
c=6;}
if(j==1){
setpt–;
dis(j);
c=7;
}
currentvolt=P2;
currentspeed =currentvolt*2;
corrected=setpt-currentvolt;
P0=corrected; // output the corrected value to motor

}}}
void Delay(int k)
{
int i,j;
for (j=0;j<k+1;j++){
for (i=0;i<100;i++);
}}
void ENABLE(void)
{
EL=1;
Delay(1);
EL=0;
Delay(1);
}
void LINE(int i){
 if (i==1) {
 RS=0;
 RW=0;
 P1=0×80;
 ENABLE();
 RS=1;
 }
 else
 {
 RS=0;
 RW=0;
 P1=0×C0;
 ENABLE();
 RS=1;
 }
}
void INIT(void)
{
 RS=0;
 RW=0;
 EL=0;
 P1 = 0×38;
 ENABLE();
 ENABLE();
 ENABLE();
 ENABLE();
 P1 = 0×06;
 ENABLE();
 P1 = 0×0E;
 ENABLE();

6.8 Design Microcontroller Based Servo Controller 139

140 6 Embedded Control Applications Using AT89S52

 P1 = 0×01;
 ENABLE();
}
int keyb(void){
int key=0;
C1=1;
C2=1;C3=1;C4=1;R1=0;R2=1;R3=1;R4=1;
if (C1==0) key = 1;
if (C2==0) key = 2;
if (C3==0) key = 3;
if (C4==0) key = 4;
return(key);
}
void dis(int j)
{
char code volt[]=“ voltage = ”;
char code inS[]=“ increment setpt ”;
char code dec[]=“ decrement setpt”;
char *p;
int k ,currentspeed,currentvolt;
if(j !=9){
INIT() ;
if(j==1) p=&inS ;
if(j==2) p=&dec ;
for(k=0;k<17;k++)
{
if(k==0) LINE(1);
if(k==8) LINE(2);
P1=*p++;
ENABLE();
}
Delay(500);
INIT();
LINE(1);
P1=((setpt/100)+0×30);
ENABLE();
P1=(((setpt/10)%10)+0×30);
ENABLE();
P1=((setpt%10)+0×30);
ENABLE();
Delay(2000);
}
if(j==7)
{
p=& volt;

INIT();
for(k=0;k<8;k++)
{
if(k==0)LINE(1);
P1=*p++;
ENABLE();
}
Delay(400);
soc=0;
Delay(200);
soc=1;
Delay(200);
soc=0;
Delay(200);
eoc=0;
while(eoc==1);
currentvolt=P2;
LINE(2);
P1=((currentspeed/1000)+0×30);
ENABLE();
P1=(((currentspeed/100)%10)+0×30);
ENABLE();
P1=((((currentspeed/10))%10)+0×30);
ENABLE();
P1=((currentspeed%10)+0×30);
ENABLE();
} }
**

6.8 Design Microcontroller Based Servo Controller 141

References

 1. Keypad from JK Microsystems http://www.jkmicro.com/products/accessories/keypad.html
 2. Keypad data manual: www.grayhill.com or http://www.jkmicro.com
 3. EECO Pushwheel and Thumbwheel Switches http://www.eecoswitch.com/Catalog%20Files/

cat_thum.htm
 4. Thumbwheel switches by purdy Electronics Corporation http://www.purdyelectronics.com/

products/switches/thumb.cfm
 5. Thumbwheel switchon Global Spec http://electronic-components.globalspec. com/

Industrial-Directory/thumbwheel_switch
 6. (http://www.netrino.com/Embedded-Systems/Glossary Netrino: The Embedded Systems

Expert)
 7. http://edageek.com/2007/12/31/vdc-embedded-systems/ VDC Publishes 2007 Embedded

Systems Market Statistics Report
 8. http://64.233.183.104/search?q=cache:y0zFFo7vIJ8J:arstechnica.com/news.ars/post/20080104-

evaluating-prospects-for-linux-growth-in-2008.html+Embedded+systems+popularity+Statisti
cs+2008&hl=en&ct=clnk&cd=5&gl=in Evaluating prospects for Linux growth in 2008 by
Ryan Paul | Published: January 04, 2008

 9. www.scienceprog.com/microcontroller-c-programming Microcontroller C programming
10. http://eetimes.eu/germany/202101848 Automotive applications to drive microcontroller mar-

ket, Christoph Hammerschmidt, EE Times Europe
11. http://www.electronics.ca/presscenter/articles/580/1/New-Study-Predicts-10-percent-Growth-

for-Microcontrollers/Page1.html New Study Predicts 10 percent Growth for Microcontrollers,
By Electronics.ca Research Network Published 06/28/2007

12. Michael Barr. Embedded Systems Glossary. Netrino Technical Library. Retrieved on
2007-04-21

13. http://www.pcmag.com/encyclopedia_term/0,2542,t=embedded+system&i=42554,00.asp
Definition of: embedded system

14. http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci837507,00.html Search
EnterpriseLinux.com Definitions

15. http://www.linfo.org/embedded_system.html Embedded System Definition
16. http://whatis.techtarget.com/definition/0,,sid9_gci212053,00.html# embedded systems

programming
17. http://www.bitpipe.com/tlist/Embedded-Systems-Hardware.html Embedded Systems

Hardware
18. http://www.ssiembedded.com/embedded_systems_definition.html Definition of Embedded

Systems
19. www.ibm.com/developerworks/rational/library/459.html Testing embedded systems: Do you

have the GuTs for it? Vincent Encontre, November 2004
20. www.itfacts.biz

143

144 References

21. http://www.ad-mkt-review.com/public_html/air/ai200205.html Embedded Systems Take Off,
by Glen Emerson Morris

22. http://www.embeddedtechjournal.com/articles_2005/20051122_sc05.htm Supercomputing To
Go HPEC Raises its Head at SC|05 by Kevin Morris, Embedded Technology Journal,
November 22, 2005

23. http://computer-engineering.science-tips.org/computer-organization/embedded-systems/intro-
duction-to-embedded-systems.html Introduction to Embedded Systems, Saturday, 19 January
2008

24. www.async.elen.utah.edu/ myers/ece5780/lectures/lec2-2×3.pdf Lecture notes on Embedded
System Design

25. www.webopedia.com/TERM/E/embedded_system.html Definition of Embedded System
26. www.hpl.hp.com/personal/Dejan_Milojicic/embedded.pdf Embedded Systems trends war by

Dejan Milojicic, Hewlett Packard Laboratories
27. “Exploring C for Microcontrollers: A Hands on Approach,” Jivan S. Parab, Vinod G. Shelake,

Rajanish K. Kamat and Gourish M. Naik, London: Springer, 2007
28. http://www.embedded.com/2000/0011/0011feat1.htm Safety First: Avoiding Software Mishaps

Charles Knutson and Sam Carmichael
29. http://spectrum.ieee.org/sep05/1685 IEEE Spectrum Online Why Software Fails, by Robert N.

Charette, First Published September 2005
30. http://www.informationweek.com/research/showArticle.jhtml?articleID=185300011&pgno=1

Embedded Experts: Fix Code Bugs Or Cost Lives Attendees at last week’s Embedded Systems
Conference got an earful on the high price to be paid by poorly written or tested code, by Rick
Merritt EE Times, April 10, 2006

31. http://www.informationweek.com/research/showArticle.jhtml?articleID=185300011&pgno=2
&queryText= Embedded Experts: Fix Code Bugs Or Cost Lives

32. http://www.hitex.co.uk/c166/risc.html RISC Architectures For Embedded Applications
Introduction

33. www.electronicsforu.com/electronicsforu/articles/hits.asp?id=1106 ANUPAMA PROCESSOR
A Boon for Embedded System Design and Realisation

34. http://www.cotsjournalonline.com/home/article.php?id=100267 Defining a Standard for
Embedded RISC Systems, February 2005

35. ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf: PIC datasheet
36. web.mit.edu/rec/datasheets/PIC16F84.pdf PIC Data sheet
37. www.atmel.com/dyn/resources/prod_documents/doc1919.pdf AT 89S52 datasheet
38. www.keil.com/dd/docs/datashts/atmel/at89s52_ds.pdf AT 89S52 datasheet
39. www.keil.com/ Keil IDE for 89S52
40. http://www.ikalogic.com/isp.php In System Programming (ISP) for ATMEL chips, A step by

step construction guide, by Ibrahim Kamal
41. http://www.soft32.com/download_139.html Download the HyperTerminal Private Edition 6.3:

A simple terminal communications program used for accessing Telnet sites, terminal-to-host
communications, and file transfer

42. http://www.brothersoft.com/downloads/hyper-terminal.html Hyper Terminal Free Download
43. http://www.freedownloadscenter.com/Network_and_Internet/Terminals_and_Telnet_Clients/

HyperTerminal_Private_Edition.html HyperTerminal Private Edition 3.0
44. www.shortridge.com/pdf/hyperterminalprocedure10703.pdf RS232 Download using

HyperTerminal™, Application note by Shortridge Instruments, Inc.
45. www.ozitronics.com/download/hyperterminal.pdf How to set up and use Windows ‘Hyperterminal’
46. www.cyq.com/htdocs/hyperterminal.htm hyper terminal setup
47. http://www.arcelect.com/rs232.htm RS 232 Tutorial
48. http://www.kmitl.ac.th/ kswichit%20/MAX232/MAX232.htm RS232C Level Converter by

Wichit Sirichote, kswichit@kmitl.ac.th
49. http://www.national.com/mpf/LM/LM35.html LM35 - Precision Centigrade Temperature

Sensor
50. http://www.analog.com/en/prod/0,2877,OP07,00.html OP07 Ultralow Offset Voltage

Operational Amplifier

References 145

51. http://www.murata.com/ Document P15E6.pdf 03.8.20 PIEZOELECTRIC SOUND
COMPONENTS, APPLICATION MANUAL

52. http://www.rentron.com/Myke1.htm Build your own “2-Wire LCD Interface” using the
PIC16C84 microcontroller by Myke Predko

53. http://mic.unn.ac.uk/miclearning/modules/micros/ch5/micro05notes.html Tutorial 5 –
Interfacing to the Outside World

54. www.national.com/pf/DC/ADC0809.html Data sheet of ADC 0809
55. http://www.mines.edu/Academic/courses/physics/phgn317/lab7/Lab7_02.htm PH317 Lab 7 –

Digital-Analog/Analog-Digital Converters
56. http://focus.ti.com/lit/an/slaa116/slaa116.pdf Using PWM Timer_B as a DAC, Application

Report SLAA116 – December 2000
57. www.agilent.com Agilent PWM Waveform Generation Using U1252A DMM Application Note
58. http://www.electronicsweekly.com/Articles/2006/06/09/38623/Choosing+a+microcontroller.

htm Choosing a microcontroller by John Anderson, Cyan Technology, Friday, 9 June 2006
59. http://www.totalphase.com/support/articles/article01/ I2C Background
60. http://www.cast-inc.com/cores/i2c/index.shtml I2C Philips Serial Bus Interface Core
61. www.esacademy.com/faq/i2c/general/I2C-Bus_Specification.pdf THE I2C-BUS

SPECIFICATION, VERSION 2.1, JANUARY 2000
62. http://www.nxp.com/#/pip/pip=[pip=PCF8583_5]|pp=[v=d,t=pip,i=PCF8583_5,

fi=53497,ps=0][0] Clock/calendar with 240 × 8-bit RAM
63. dhost.info/ky3orr/funkcje/download.php?dzial=pliki&link=dokumentacje/pcf8583.pdf

PCF8583 Datasheet
64. www.electroscheme.ru/datasheet/Microchip/00551%20-%20Serial%20vs%20Parallel%20EE

PROM.pdf Serial EEPROM Solutions vs. Parallel Solutions Application note 551
65. www.parallax.com/Portals/0/Downloads/docs/prod/oem/24LC256.pdf 24AA256/24LC256/

24FC256 Datasheet
66. http:/ /www.nxp.com/#/pip/pip=[pip=PCF8591_6]|pp=[v=d,t=pip,i=PCF8591_

6,fi=43674,ps=0][0] PCF8591 8-bit A/D and D/A converter datasheet
67. PCF8591, 8-bit A/D and D/A converter datasheet 2003 Jan 27 retrieved from http://www.nxp.

com/#/pip/pip=[pip=PCF8591_6]|pp=[v=d,t=pip,i=PCF8591_6,fi=43674,ps=0][0]
68. http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3271 MAX 1236 product information
69. MAX1236–MAX1239 2.7 V to 3.6 V and 4.5 V to 5.5 V, Low-Power, 4-/12-Channel, 2-Wire

Serial, 12-Bit ADCs datasheet retrieved from http://www.maxim-ic.com/quick_view2.
cfm?t=qv&qv_pk=3271#Applications%2FUses

70. http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3290 MAX5822 Dual, 12-Bit, Low-
Power, 2-Wire, Serial Voltage-Output DAC

71. http://www.rubberstampingfun.com/rsepage.html Rubber Stamping & Maya Indians: A Brief
History

72. Rubber stamp making machine manufacturing company. http://www.polydiam.com/shop/ www.
kivicoatings.com www.prestostamps.com www.instastamp.com.au www.markstamps.com

73. http://ezinearticles.com/?How-to-Make-Rubber-Stamps:-Comparing-Methods-of-
Manufacture&id=198663 How to Make Rubber Stamps: Comparing Methods of Manufacture
by Robert De Rooy

74. http://www.advmnc.com/greenspan/ec.htm Webpage of Electrical conductivity Sensors
75. http://www.nrw.qld.gov.au/salinity/whatis.html What is Salinity?
76. http://extension.usu.edu/files/agpubs/salini.htm SALINITY AND PLANT TOLERANCE, by

Jan Kotuby-Amacher, Director, Utah State University Analytical Labs, Rich Koenig, Extension
Soils Specialist and Boyd Kitchen, Uintah County Extension Agent

77. http://www.cartage.org.lb/en/themes/sciences/chemistry/Electrochemis/TheoryElectrolytes/
Debye/Debye.htm The Debye-Hückel theory

78. “Smart Salinity Measurement System with Analog Pre-linearizer”, R.K. Kamat et al.
International Symposium on Smart Materials and Systems, ISSMS – 2004, India

Index

A
24AA256, 79, 86–90
AD1236, 79, 93–96
ADC0809, 43, 47–49
ADC external, 44, 47, 48, 58
ADC onchip, 59–63, 76, 91
Altera, 7
Application specific integrated circuits

(ASICs), 80, 103
AT 89S52, 18, 103–141
Atmel, 10, 79, 103

B
8 Bit microcontrollers, 7, 103
Buzzer, 24–26

C
CCS C compiler, 14
CISC, 10, 11, 103
CNY17, 39, 50

D
DAC, 43, 52–54, 79, 91, 96–101
Data acquisition devices (DAD), 47, 91
Data logging, 44–47, 70, 73, 79
Digital IC tester, 118–123
DIP switch, 22–24, 34, 35, 37
Down count, 33, 34

E
EEPROM, 11, 12, 43, 79, 86, 87, 89
Embedded C, 1, 8, 114
Embedded systems, 1–12, 20, 38, 73, 79, 86,

87, 93
EPROM 24AA256, 86–90

F
Fault tolerant sensor,

128–132
FPGA, 4, 7, 8

H
HD 44780, 37, 40
Historical aspects, 4–5
Hyperterminal, 27, 69–78, 90, 118

I
I2C, 12, 52, 79–101

L
LCD, 1, 19, 32, 36–40, 44–46, 57–61,

66, 80, 86, 93, 95, 96, 103–106,
109, 112, 113, 116, 117, 127, 131,
132, 134

LED, 1, 19–24, 32, 48, 50, 89,
90, 118

LM35, 41, 43, 44, 59, 75, 76

M
MAX 1236, 93–95
MAX232, 73, 74
MAX 5822, 96–101
MCS 51 series, 7, 8, 103,

113–118
Microchip, 86, 87
Microcontrollers, 4–8, 10, 12, 18–20, 23, 24,

37, 39, 40, 43, 48, 50, 52–54, 73, 76,
77, 80, 87, 90, 103, 104, 108–113, 119,
123–128, 136–141

MM74C949, 48
MPLAB, 12, 13

147

148 Index

N
Night lamp controller, 103–108
Nios, 7
Nylon rubber stamp, 108–113

O
OP-07, 76
Optoisolator, 50–52

P
PCF8583, 83
PCF 8591, 90–93
PIC16F877, 11–12, 15, 17, 20, 37, 43, 54,

62–68, 76, 87, 92
Positive ramp, 100–101
Pseudo-random number generation, 57–59
PWM, 52–54

R
Ramp, 56, 100
Real time clock, 83–86
Relay, 19, 39–42, 59, 76–77, 104, 105, 109,

114, 118
RISC, 10, 11, 103
RS232C, 73

S
Salinity measurement, 123–128
Sensor matrix, 131–136
Sensors, 4, 6, 7, 41, 59, 75–76, 79, 86, 93, 96,

128, 131–134

Serial interface, 69–78, 87, 88, 93, 94, 96
Servo controller, 136–141
Seven segment display, 32–37
Shift operators, 22
Sine wave, 56–57, 97–98
Stepper motor, 50, 52, 77–78
System-on-chip (SoC), 4, 49, 58, 126–128,

130, 134, 135, 137, 141

T
Thumbwheel switch, 29–31, 109
Tiny BIOS, 113–118
TIP122, 40
Transducers, xiv
Triangular wave, 55, 99–100

U
ULN 2003, 40
Up count, 35–36
USART, 42

V
VDE 0804, 50
VDE 0805/IEC 950/EN 6095, 50
VDE 0860/lEC 65, 50
VDE 0884, 50

X
Xilinx, 7

	Contents
	Foreword
	Author's Profile
	Preface
	Acknowledgement
	1. Introduction
	1.1 Defining Embedded Systems
	1.2 Essential Attributes of Embedded Systems
	1.3 Embedded Systems Historical Aspects
	1.4 Embedded Solutions Continue to Flood Market
	1.5 Latest Trends in Embedded Systems
	1.6 Competition for Processing Cores in Embedded Systems
	1.7 Programming Paradigm for Microcontrollers
	1.8 Our Approach: "Towards a Full Proof 'C' Library for Embedded Systems"
	1.9 Finalizing Hardware
	1.10 Exploring PIC16F877 for Embedded Systems
	1.11 A Word About IDE
	1.12 Details About the AT89S52 and Its Development Environment

	2. Interacting with the Outside World Using Simple I/O Devices
	2.1 LED Interfacing
	2.2 Switch (DIP) Interfacing
	2.3 Interfacing Buzzer
	2.4 Keypad Interfacing
	2.5 Thumbwheel Switches Interface
	2.6 Seven Segment Display Interfacing
	2.7 LCD Interface to the PIC
	2.8 Relay Interface to the PIC

	3. Accessing On-Chip and Off-Chip Peripherals
	3.1 Using the On-Chip ADC
	3.2 Interfacing ADC (0809) to PIC
	3.3 Opto-Isolator Interfacing
	3.4 DAC Implementation Using On-Chip PWM
	3.5 Waveform Generation Using PIC
	3.6 Pseudo-Random Number Generation Through PIC
	3.7 On-Off Temperature Controller Using On-Chip ADC
	3.8 Implementing a PID Temperature Controller Using PIC16F877

	4. Serial Interface to PIC
	4.1 Configuring Hyper Terminal
	4.2 Setting Up Hyper Terminal
	4.3 Displaying Data on Hyper Terminal
	4.4 Hyper Terminal Interface: Getting Sensor Signal on Hyper Terminal
	4.5 Hyper Terminal Based Control: Controlling an Actuator such as Relay from PC Hyper Terminal
	4.6 Controlling a Stepper Motor from Hyper Terminal: Hyper Terminal Keyboard Provides Direction

	5. PIC Interfaced to I[sup(2)]C Compatible Devices
	5.1 Details of I2C Interface
	5.1.1 Basic Features
	5.1.2 Sequence of Events in I[sup(2)]C Suite
	5.1.3 Modes Supported by I[sup(2)]C
	5.1.4 Synchronization and Arbitration in the I[sup(2)]C Bus
	5.1.5 Evolving Specifications of I[sup(2)]C Bus

	5.2 I[sup(2)]C Based Real Time Clock
	5.3 Serial I[sup(2)]C Based EPROM24AA256 Interface to PIC16F877
	5.3.1 Where EPROM Fits in Embedded Systems?
	5.3.2 Advantages of Serial EPROM
	5.3.3 Serial EPROM Execution Cycle
	5.3.4 Features of EPROM24AA256
	5.3.5 Interfacing Aspects

	5.4 I[sup(2)]C Based PCF8591ADC Interface
	5.4.1 Advantages of Serial ADC Interface
	5.4.2 PCF8591 I[sup(2)]C Compliant Serial ADC
	5.4.3 PCF8591 Features
	5.4.4 A/D Conversion of PCF8591

	5.5 I[sup(2)]C Based ADC – AD1236
	5.5.1 AD1236 from Maxim
	5.5.2 Features of MAX1236
	5.5.3 Conversion Technique and Other Details

	5.6 MAX5822 DAC Interfaced to PIC
	5.6.1 Features
	5.6.2 Equation for Output Voltage

	6. Embedded Control Applications Using AT 89S52
	6.1 Night Lamp Controller
	6.2 Microcontroller Based Control for Nylon Rubber Stamp Making Machine
	6.3 A Tiny BIOS or Diagnostic Interface with MCS51
	6.4 Simple Digital IC Tester for 74XX Series
	6.5 Microcontroller Based Salinity Measurement System
	6.6 Fault Tolerant Sensor Interface
	6.7 Sensor Matrix Interface
	6.8 Design Microcontroller Based Servo Controller

	References
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

