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ABSTRACT
Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multi-
ples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy
observations is important in many speech and audio applications, where it is commonly referred to
as pitch estimation. These applications include analysis, compression, separation, enhancement, au-
tomatic transcription and many more. In this book, an introduction to pitch estimation is given and
a number of statistical methods for pitch estimation are presented.The basic signal models and asso-
ciated estimation theoretical bounds are introduced, and the properties of speech and audio signals
are discussed and illustrated. The presented methods include both single- and multi-pitch estima-
tors based on statistical approaches, like maximum likelihood and maximum a posteriori methods,
filtering methods based on both static and optimal adaptive designs, and subspace methods based
on the principles of subspace orthogonality and shift-invariance. The application of these methods
to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and
their performance is assessed under various conditions and their properties discussed. Finally, the
estimators are compared in terms of computational and statistical efficiency, generalizability and
robustness.

KEYWORDS
estimation theory, spectral estimation, pitch estimation, pitch detection, fundamental
frequency estimation, statistical signal processing, order estimation, model selection,
audio processing, audio analysis, music transcription, speech processing, comb filtering,
subspace methods, optimal filtering
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Preface
This book is the result of four years of research that started with the publication of our first

paper on pitch estimation back in 2004 [31]. It contains a collection of methods for pitch estimation
(and detection), a pitch estimation toolbox if you will, based mostly on our own publications in
the area [21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 81, 85] along with supplementary material,
based on the work of other authors, that fits within the framework, complements our work, and is
representative of methodologies commonly employed in practical pitch estimation algorithms. All
the methods presented in this book have in common that they are based on an estimation theoretical
approach to pitch estimation and a parametric model of the observed signal. This book does not
address all aspects in relation to pitch estimation, but it does contain a collection of tools that can
help in obtaining parameters that describe the important characteristics at signal level. It is our hope
that the book will provide the reader with a set of useful tools, inspiration for solving problems in
relation to pitch estimation, and an improved understanding of the fundamental problems in relation
to pitch estimation. In that spirit, MATLAB implementations of some of the estimators that can
be found in this book are available online1.

The book consists of five chapters: Chapter 1 is basically an introduction to pitch estimation,
containing the basic signal models, associated bounds on the accuracy of the parameters of such
models, and a discussion of the issues that one has to address in constructing and evaluating pitch
estimators. Chapter 2 contains a collection of methods for single- and multi-pitch estimation based
on statistical models, in particular maximum likelihood and maximum a posteriori estimation. In
Chapter 3, we present a number of classical methods based on filtering and some more recent
methods based on the principle of optimal filtering. These are loosely based on Capon’s classic
optimal beamformer design. Finally, subspace-based methods that rely on the principles of subspace
orthogonality and shift-invariance are presented in Chapter 4. In the last chapter, Chapter 5, the
parameterization of periodic signals is completed by a presentation of a number of methods for
finding the amplitudes and phases given a set of frequencies. Each chapter, except the first, ends
with first some experimental results and then a discussion of the fundamental properties of the
various methodologies and pitch estimators. It is not within the scope of this book to provide very
detailed simulations results; rather we will refer to the papers where such results can be found.

A number of people, our friends, colleagues, and present and former students,have contributed
to this work in various ways and deserve to be thanked. First of all, we wish to thank all the co-authors
on our papers on pitch estimation, namely Søren Holdt Jensen, Søren Vang Andersen, Petre Stoica,
Jesper Højvang Jensen, Jesper Kjær Nielsen, Jesper Rindom Jensen, Samuel D. Somasundaram, and
Pedro Vera-Candeas. Also, the following people volunteered (more or less) for proof reading the
1http://www.morganclaypool.com/page/multi-pitch
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manuscript, and we are thankful for their contributions in the form of either countless corrections
or suggestions: Jesper Højvang Jensen, Jan Østergaard, Daniele Giacobello, and Jesper Rindom
Jensen2. Finally, Mads Græsbøll Christensen also wishes to thank Dan P. W. Ellis, Ken Rose, Bob
Sturm, Gäel Richard, Betrand David, Roland Badeau, and A. Taylan Cemgil for hosting him on his
travels and for many enlightening discussions on speech and audio processing, estimation theory,
and music.

Mads Græsbøll Christensen
Dept. of Electronic Systems
Aalborg University, Denmark

Andreas Jakobsson
Dept. of Mathematical Statistics
Lund University, Sweden

February 2009

2None of the people mentioned here are related, as far as we know, despite several of them sharing the same last name.



Symbols and Notation

x Scalar
x Vector
X Matrix
(·)k kth source
(·)(i) ith iteration
(̂·) Estimate
(·)T Transposition
(·)∗ Complex conjugation
(·)H Hermitian transposition
p(·) Probability density function
p(·; ·) Likelihood function
p(·|·) Conditional probability density function
E{·} Expectation operator
E{·|·} Conditional expectation operator
det(·) Matrix determinant
rank(·) Matrix rank
dim(·) Subspace dimension
R(·) Range (column space)
‖ · ‖2 Vector or matrix 2-norm
‖ · ‖F Matrix Frobenius norm
I Identity matrix
bl Vector where [bl]v = 0 for v �= l and [bl]l = 1
[·]jk (j, k)th entry of matrix
�·� Floor function
K Number of sources
N Number of samples (i.e., segment length)
M Covariance matrix size/sub-vector length
x(n) Observed signal
x(n) Observed signal vector (length M)
x Observed signal vector with M = N

X(ω) Fourier transform of x(n)

�x(ω) Power Spectral Density of x(n)

e(n) Observation noise
R Covariance matrix of x(n)
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Q Covariance matrix of e(n)
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∑K
k=1 LK

ωk Fundamental frequency of kth source
ak,l Complex amplitude of lth harmonic of kth source
Ak,l Amplitude of lth harmonic of kth source
φk,l Phase of lth harmonic of kth source
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ψl Frequency of the l sinusoids (no source assignment)
ek(n) Observation noise kth source
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LS Least-Squares
MAFI MAtched FIlterbank
MAP Maximum A Posteriori
MCA Multiple constraint Capon Amplitude estimator
MDL Minimum Description Length
MIDI Musical Instrument Digital Interface
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
MODE Method Of Direction Estimation
MSE Mean Square Error
MUSIC Multiple Signal Classification
NLS Nonlinear Least-Squares
PDF Probability Density Function
PSD Power Spectral Density
PSNR Pseudo Signal-to-Noise Ratio (usually in dB)
PSTN Public Switched Telephone Network
RMSE Root Mean Square (estimation) Error
SAMOS Subspace-based Automatic Model Order Selection
SNR Signal-to-Noise Ratio (usually in dB)
WLS Weighted Least-Squares





1

C H A P T E R 1

Fundamentals

1.1 INTRODUCTION

In his attempt to solve the heat equation for a metal plate in the early 19th century, Jean Baptiste
Joseph Fourier inadvertently discovered what we now refer to as Fourier series, and in doing so,he also
revolutionized mathematics. A Fourier series is a decomposition of a periodic function into a possibly
infinite sum of sinusoids, i.e., simple oscillating functions. These sinusoids all repeat over the same
interval, meaning that they have frequencies that are integer multiples of a fundamental frequency.
This book is about estimation of this fundamental frequency from noisy observations, a task often
referred to as pitch estimation. Let us explore a bit further what is meant by pitch. In the context
of music, the American Standard Association defines the term pitch as “that attribute of auditory
sensation in terms of which sounds may be ordered on a musical scale” [4], while the American
National Standards definition is “that attribute of auditory sensation in terms of which sounds may
be ordered on a scale extending from low to high” [3].The keywords here are auditory and sensation.
In the introduction of [129], this leads the authors to conclude that “the word pitch should not be
used to refer to a physical attribute of a sound” [129]. We will do exactly the opposite, although
not out of spite, and frequently use the word pitch synonymously with fundamental frequency to
refer to the physical attribute of signals associated with Fourier series. In fact, we will use it to refer
to the fundamental frequency of periodic signals of any origin. We should, perhaps, make use of
the less ambiguous term fundamental frequency, but it is a much less elegant term, especially when
considering the estimation of the parameters of multiple such periodic waveforms, i.e., multi-pitch
estimation. More specifically, we will use the terms pitch and fundamental frequency to refer to the
number of repetitions per time interval of a periodic signal and the term pitch period to refer to
the time interval between such repetitions. We will also use the term pitch estimation to cover both
single- and multi-pitch estimation.

Sometimes the problem of pitch estimation is referred to as pitch detection.Usually, a detection
problem is defined as the problem of accepting or rejecting a hypothesis or accepting one from a
set of hypotheses, while an estimation problem has to do with finding a certain number or quantity
(see, e.g., [89, 90]). Since pitch as per our definition is generally a continuous phenomenon, the
problem of finding the pitch is an estimation problem, while the problem of determining whether
any pitch is present is a detection problem. One could of course argue that the problem of finding
musical notes is a detection problem, since these are discrete, but pitch estimation extends beyond
this problem. Certain problems can be seen as either estimation or detection problems, like the
problem of determining the number of periodic components in an observed signal or detecting
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the presence of tones or ensembles of tones in music–sometimes we may not know whether the
underlying quantity we are looking for is, in fact, continuous or discrete. But since even musical
tones may be modulated due to, e.g., glissando or vibrato, the problem is generally a continuous one,
even if the estimates will later be quantized to a discrete musical scale.

The focus of this book is on high-resolution parametric methods for pitch estimation, i.e.,
methods based on parametric models of the observed signal that are able to come close to the optimal
performance. A second trait of the methods considered in this book is that they are all based on
rigorous mathematics, relying on such well-established methodologies as statistics, optimal filtering,
linear algebra, and convex and sometimes nonlinear optimization. This leads to an understanding
of the conditions under which the methods are expected to work and when and why they may
fail. Estimators are typically assessed in terms of bias and variance and the determination of these
quantities for various estimator are important tasks, since they provide insights into fundamental
properties of an estimator. Bias is defined as the difference between the true parameter value and the
expected value of the estimate and if this difference is zero for all possible true parameter values, the
estimator is said to be unbiased. When we say that an estimator is good, we generally mean that the
bias and variance are low. Sometimes estimators are also referred to as being robust. This generally
means that the estimator performs well under adverse conditions like a low number of samples, a
low signal-to-noise ratio, or that it is insensitive to assumptions being violated, e.g., the model being
wrong.

1.2 RELATED WORK

Beyond the methods discussed in this book, there are of course many others (our sincere apologies to
everybody whom we have forgotten to mention). We will now briefly discuss some of those. There
exists many so-called non-parametric methods based on, for example, the auto-correlation function
(e.g., [139]), the cross-correlation function [167], the averaged magnitude difference function [145],
the averaged squared difference function, or the cepstrum [1, 123]. All these methods are all based
on measuring the similarity of the signal with a delayed version of the same signal in some sense,
as is [117]. The difference between these methods lies essentially in terms of how the similarity is
measured. They generally suffer from the problem that the solution is not unique even in the ideal
case, i.e., there exists multiple lags for which the signal is similar to itself. Another example of a
non-parametric method is the so-called harmonic product spectrum of [124] (see also [42]). For an
overview of non-parametric methods, we will refer the interested reader to one of the few other books
on pitch estimation, namely [75] (see also [76]) and the classical paper [63]; for examples of more
recent work on methods of various origins, see [41, 49, 52, 104, 105, 130, 131, 168, 169, 175] and
the references therein. In some cases, it may be difficult to classify methods, like those of [92, 140],
which are based on various heuristics and ideas. Another class of methods that will not be treated
in this book, but yet deserves to be mentioned here, is the class of methods based on models of the
human auditory system. Rather than taking their starting point in the properties of the signal, these
methods are based on the properties of the human ear and brain. The rationale is that, apparently,
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the human auditory system has a remarkable ability to estimate multiple simultaneous pitches and
separate the various sources from each other, and, perhaps, by mimicking the process, we can design
a system that can do the same. For examples of such methods see [93] and the references therein,
and for an overview of all things related to pitch perception, see [129] and the more general text
books on psycho-acoustics [119, 181]. We would like to stress that the objective of such methods
may be quite different from the objective of the methods presented in this book. The former class of
methods may aim at modeling the human auditory system, e.g., predicting the outcome of listening
experiments for the purpose of better understanding the human auditory system or deriving models
that may be applied in various signal processing tasks in, for example, audio coding or hearing aids
[37, 38, 171, 172]. The latter class of methods, i.e., the class of methods considered in this book, is
concerned with finding the parameters that are most likely to explain the observed signal, and this
is generally a different concept altogether than modeling the peculiarities of the human auditory
system (see [20] for a discussion of this and [29] for some examples where it makes more sense).
Among the statistical parametric methods an important methodology is notably absent, namely the
Bayesian approach (aside from the occasional MAP estimator).The reasons for this are quite simple:
the topic is big enough to warrant a book by itself and does not lend itself to a short introduction
suitable for this book. Besides, other people are more qualified at writing a book on this topic. We
do, however, believe that the field is very promising and that many interesting results have already
been published, e.g., [15, 16, 40, 61, 62]. It is especially promising in terms of building hierarchies
of estimation and detection problems, incorporating prior information and at extracting abstract
high-level information. For examples of this see, e.g., [15, 94]. It should be stressed that many of the
methods discussed in this book may be combined with the other methods, which may be especially
beneficial for those operating on a higher (semantic) levels, like the Bayesian tracking methods that
deal with various aspects of pitch estimation, as these are basically complementary to ours.

1.3 SOME APPLICATIONS
There are many applications in which pitch estimation plays an important role. Below, some of these
are listed and discussed. While we will here focus on speech and audio applications, the methods
considered in this book can be used for any kind of periodic signal, like electrocardiogram (ECG)
signals.

Separation A parameterization of a signal into components allows for a natural separation of sources
if the signal components have a close relation to the sources. In the case of periodic signals, the
models employed throughout this book form such a model.Once the fundamental frequency of
all sources has been found, the remaining parameters are easily found and a full parameteriza-
tion of the individual sources is available, an idea that has been used in, e.g., [18]. Alternatively,
one can directly estimate the signals of the individual sources using the pitch [148, 149, 180].
The sources that can be separated using these models include voiced speech and tones of mu-
sical instruments. This means that important problems such as the cocktail party problem can
be solved, in principle, via source separation based on pitch estimation. This principle is also
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employed in many computational auditory scene analysis (CASA) schemes (see, e.g., [176])
and is also commonly believed to be a governing principle in the functioning of the human
auditory system [129]. The problem of classifying musical instruments is also easy, relatively
speaking, once the fundamental frequencies have been found [96].

Enhancement Signal enhancement, or de-noising, deals with removing unwanted noise from an
observed signal. This may be beneficial for many reasons. Human listeners will, for example,
tend to suffer from fatigue if they have to listen to noisy signals for an extended period of
time. Also, the perceived quality of a signal can often be improved by removing the noise.
Enhancement algorithms are commonly used as a front-end processor for speech recognizers
and coders so that these systems do not have to incorporate models of the background noise
in the processing. In this connection, it should be noted that the use of such pre-processing
only makes sense if the subsequent processing is suboptimal. Using parametric models, the
enhancement problem is almost trivially solved, meaning that it is a matter of finding good
estimates of the parameters that describe the signal of interest, whereby the effect of the noise is
minimized. In practice, this is done by taking the characteristics of the noise and the properties
of the signal of interest into account in the estimation process. An example of a practical speech
enhancement systems based on a parametric model can be found in [84].

Compression The signal models used in this book can also form a basis for signal compression.
Audio signals are often stationary (i.e., their characteristics stay the same) over about 30 ms
and sampled at sampling frequencies of 44.1 kHz, this leads to segments leading to segments
consisting of 1323 real-valued samples. If such a signal contains a single tone, it means that all
the samples can be represented by, and a signal reconstructed from, a fundamental frequency,
an amplitude and a phase for each harmonic. This may be useful for several purposes. First of
all, these parameters may be quantized and transmitted, i.e., an audio coder can be based on
this principle and several such coders exist, e.g., [78, 134] (see also [19, 28] for an overview
of the authors’ own contributions within this field). Also for coding of speech signals, where
voiced speech segments can be efficiently coded as a single periodic source, such models have
been applied [110, 115, 144]. Furthermore, pitch estimators are also often used in linear
predictive speech coding for so-called long-term predictors (see, e.g., [95]). But it may also
be useful for a different purpose, namely low-complexity signal processing. Because the signal
is represented using only few parameters compared to the number of samples, it may lead to
much faster algorithms by operating directly on the parameters instead of the samples and
then reconstruct the processed signal from the parameters (see also the next item).

Modification It is possible to perform many kinds of signal modification based on parametric
models. In fact, sometimes otherwise complicated signal modifications become simple when
using an appropriate model. Some classical examples of modifications that become relatively
simple for a model consisting of a sum of sinusoids is pitch transposition, also known as
pitch shifting or pitch-scale modification, and modification of the duration without altering
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the pitch, sometimes referred to as time-scale modification [57, 58, 113, 114]. Filtering, of
course, also becomes a simple operation asymptotically when dealing with sinusoids, and it is
also simple to apply dynamic range compression in the reconstruction of audio signals using
a parametric model. There exist also many more esoteric modifications, like voice morphing.
In the context of speech coding for packet-based networks, it is also possible to compensate
for packet losses using sinusoidal models by interpolation or extrapolation in the compressed
domain [110, 144].

Transcription The information required to reproduce a piece of music is represented by musicians
using sheet music. Transcription of music into sheet music is today mostly done by hand,
i.e., by musicians, and it requires years of training to do this, and it is a very time-consuming
and thus a costly affair. Sheet music contains such information as time signatures, chords,
scales, individual tones, duration, etc., information that is also the key ingredients of Musical
Instrument Digital Interface (MIDI) files. An important problem is thus the identification of
individual tones, simultaneous tones in chords and ensembles of tones over time that constitute
musical scales. The identification of such tones is the same as pitch estimation and detection.
Automatic transcription is, therefore, an important application of the methods considered in
this book, and it is sometimes considered the holy grail of pitch estimation. For more on the
specifics of automatic transcription of music, we refer the interested reader to [15]. A common
way of evaluating automatic transcription is by synthesizing the audio from the transcribed
data using MIDI synthesis.

Tuning In music, tuning is the process of adjusting a musical instrument such that tones produced
by the instrument obey certain relations, referred to as relative tuning, and are consistent with
a reference, like the tone A being 440 Hz (others are sometimes used). Tones that are too
high are said to be sharp, while tones that are too low are said to be flat. Depending on the
instrument, this may be simple or complicated, and the frequency at which this has to be done
may vary a lot, as, for example, the tension of the strings on a guitar may vary with the weather
and usage. An obvious application of pitch estimators is for tuning of musical instruments,
and as any musician will attest, it is critical that pitch estimators are very accurate for this
application.

Classification Since the pitch estimated over time essentially contains all tonal information of a
piece of music, it can also be used for identifying songs. Similarly, musical styles, periods and
genres can largely be recognized by features derived from pitch, such as musical scales. The
features of musical sounds is typically divided into pitch and timbre (aside from loudness and
spatial location), where timbre is defined as “that attribute of auditory sensation in terms of
which a listener can judge that two sounds similarly presented and having the same loudness
and pitch are dissimilar” [4]. Timbre is, therefore, related to the spectral envelope and to the
distribution of the amplitudes of the harmonics of a periodic source.Timbre forms the basis of
many music information retrieval systems, in particular genre classification applications (see,
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e.g., [170]), and the parametric representations used in this book may, therefore, directly or
indirectly, be used for this.

1.4 SIGNAL MODELS
We will now introduce the fundamentals of the signal model and notation that will be here along
with some assumptions that are often used. Throughout the book, we will be working on discrete-
time signals, i.e., signals that have been sampled, and we will assume that they have been done so
in an appropriate manner. First, we introduce a signal, termed a source, consisting a set of complex
sinusoids having frequencies that are integer multiples of a fundamental frequency ωk > 0, corrupted
by an additive noise. The individual sinusoids are referred to as harmonics and the sinusoids are said
to be harmonically related. Such a signal can be written for n = 0, . . . , N − 1 as

xk(n) =
Lk∑
l=1

ak,le
jωkln + ek(n) (1.1)

=sk(n) + ek(n), (1.2)

where ak,l = Ak,le
jφk,l is the complex amplitude of the lth harmonic of the source, indexed by k,

and ek(n) is the noise, which is assumed to be zero-mean complex-valued. The complex amplitude
is composed of a real, non-zero amplitude Al > 0 and a phase φk,l . The number of harmonics, Lk ,
is termed the order of the model and it may be considered either known or unknown. In either case,
it is required that ωkLk < 2π . Here, we have implicitly assumed that the model in (1.1) is valid for
n = 0, . . . , N − 1, i.e., that the same parameters and noise characteristics accurately describe the
signal over that interval. We will refer to this property as stationarity. Note that the model in (1.1)
is sometimes referred to in the literature as the harmonic sinusoidal model. All the unknown real
parameters of interest we will organize in a vector defined as

θk = [
ωk Ak,1 φk,1 · · · Ak,Lk

φk,Lk

]T
, (1.3)

where (·)T denotes the transpose. The exact definition of this parameter vector may vary depending
on the context and the signal model. Consider, for example, that we may also sometimes be interested
in the parameters of the noise ek(n).

Signals of the form (1.1) are periodic, except for the contribution of the noise, with sk(n) being
the periodic part, which is sometimes also referred to as the deterministic part. In fact, any periodic
signal can be decomposed using (1.1), except for some pathological examples that, fortunately, are
generally not of interest in engineering applications, and the conditions for convergence of Fourier
series are trivially fulfilled when dealing with band-limited signals. We refer to signals of the form
in (1.1) as single-pitch signals, since all sinusoids can be described by a single pitch. Examples of
such signals are voiced speech, wind instruments like trumpets, ECG signals (except for pregnant
women), individual notes of guitars, violins, etc. In Figure 1.1, an example of a periodic signal is
depicted, more specifically a speech signal sampled at 8 kHz. It can be seen to consist of a basic
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Figure 1.1: Example of a real periodic signal, a voiced speech signal sampled at 8 kHz, having a funda-
mental frequency of approximately 165 Hz.

repeating waveform. In Figure 1.2, the same signal is shown, but now with Gaussian noise added to
it, and its magnitude spectrum can be seen in Figure 1.3. The problem of finding the fundamental
frequency of such a signal is referred to as pitch estimation or fundamental frequency estimation.
Again, it must be stressed that what we here refer to as pitch is not necessarily the same as perceived
pitch. Some times the term pitch period is also used in the literature. Here, we will denote this
quantity τk (in samples). It is related to the fundamental frequency as ωk = 2π 1

τk
. The fundamental

frequency ωk in radians is related to the physical frequency fk (in Hertz) as

ωk = 2π
fk

fc

, (1.4)

where fc is the sampling frequency, which is here the number of complex samples per second, as
indicated by subscript c (see Appendix A for an explanation), which is related to the number of
real samples per second as 2fc = fr . The signal models that are used in this book are all based on
complex representations. The reasons for this are twofold. Firstly, the complex representation leads
to a simpler notation and requires less bookkeeping, and, secondly, it leads to computationally more
efficient algorithms as only half the number of sinusoidal components is required and only half as
many samples are required – when using complex algebra. As speech and audio signals are real, we
will have to map the real signals to complex signals; this can be done using the discrete-time analytic
signal as described in Appendix A. It should be stressed that for very low fundamental frequencies,
it may be necessary to use the real signal model to obtain accurate estimates (see also Section 1.6).

Although the title of this book suggests that we are interested in the fundamental frequency,
we will also discuss methods for finding the other signal parameters and in some cases also the noise



8 1. FUNDAMENTALS

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

Time [ms]

A
m

pl
itu

de

Figure 1.2: Example of a noisy periodic signal, here the signal in Figure 1.1 in additive white Gaussian
noise.
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Figure 1.3: Power spectrum of the periodic signal in Figure 1.2.

characteristics.This is useful for many applications, for example when the signal is to be reconstructed
using the signal model as is the case in coding applications. The reason for the emphasis on the
fundamental frequency is that this problem is much harder than finding the amplitudes and phases.
Indeed, for a known fundamental frequency the problem of finding the complex amplitudes is quite
simple in comparison, since these parameters are linear.
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In many cases, like in most music, the observed signal consists of many such periodic signals,
in which case the signal model should be written as

x(n) =
K∑

k=1

xk(n) =
K∑

k=1

Lk∑
l=1

ak,le
jωkln + e(n) (1.5)

=s(n) + e(n). (1.6)

We refer to such signals at multi-pitch signals and the model as the multi-pitch model. For this
model, the full parameter vector is

θ =
[

θT
1 · · · θT

K

]T
. (1.7)

Chords played on an instrument are examples of signals that can be described by (1.5). In this sense,
the term source refers not to individual instruments but to individual notes played on instruments.
Recorded speech signals where many speakers speak at the same time are also examples of multi-pitch
signals. It is also important to note that even signals that originally are single-pitch may be rendered
multi-pitch signals by various processing or the environment. For example, reverberation in a room
may lead to the observed signal consisting of several single-pitch signals. The single-pitch case can
be described as either a special case of (1.5) with K = 1 or as the case where the individual sources
in (1.1) are observed. In Figure 1.5, an example of a multi-pitch signal is shown. It contains the
sum of the speech signal in 1.1 and the speech signal in Figure 1.4, the latter having a fundamental
frequency of approximately 205 Hz. As can be seen, the signal appears to be much more complicated
than any of the individual sources.

Sometimes it is useful to disregard the structure of the above signal model at first and consider
the following instead:

x(n) =
K∑

k=1

Lk∑
l=1

ak,le
jψk,ln + ek(n) (1.8)

=
L∑

l=1

ale
jψln + e(n), (1.9)

where we will use a single subscript when the source assignment is not important and a double
subscript for the frequency when it is. Based on this model, one could, for example, estimate the
L = ∑K

k=1 Lk frequencies {ψl}Ll=1 and then fit these estimates to form an estimate of ωk . We will
make use of this model from time to time and we will refer to {ψl}Ll=1 as the set of unconstrained
frequencies and (1.9) as the unconstrained model.

As mentioned, we are here primarily interested in estimating the fundamental frequency.
However, it must be emphasized that even when only a subset of the parameters is of interest, the
rest may have to be estimated, implicitly, to yield correct estimates. For example, the background
noise, which may or may not be produced by the instrument or the speaker, can be white or colored
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Figure 1.4: Another periodic signal, also a voiced speech signal sampled at 8 kHz, where the fundamental
frequency is about 205 Hz.

Gaussian noise, and the number of sinusoidal components can be unknown and variable. These
conditions will in many cases affect our ability to estimate the fundamental frequency. The noise
characteristics is also important in certain applications, like analysis, classification and compression
of music signals.

At this point, it is to elaborate on the meaning of the noise term in our signal models.
In estimation theory, the sum of sinusoids is often referred to as deterministic signal components
characterized by deterministic but unknown parameters. If we know these parameters, we can predict
exactly what the signal will look like. In contrast, the noise is considered to be stochastic and it is,
therefore, not possible to accurately predict the observed signal, only its general characteristics. In
this terminology, all stochastic signal components are considered noise, even if they are desired parts
of the signal. In speech and music signals, stochastic signal components may be the bow noise of a
violin, or the unvoiced signal components of a speech signal, and these are very important parts of
the signal. However, in relation to estimating the deterministic signal parts, these are still referred
to as noise, since they will limit the accuracy at which we can expect to determine the parameters.

Many of the methods considered in this book operate on sub-vectors consisting of M con-
secutive samples of the observed signal as

x(n) = [ x(n) · · · x(n + M − 1) ]T , (1.10)

where M ≤ N , and similarly for the sources xk(n) and the noise e(n) leading to vectors xk(n) and
e(n). We remind the reader that these signals were defined for n = 0, . . . , N − 1 and note that
the constant M may be chosen differently in the book depending on the context. Define a matrix
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Figure 1.5: An example of a multi-pitch signal consisting the two speech signals, specifically the signals
of Figures 1.1 and 1.4. Additionally, white Gaussian noise has been added.

Zk ∈ C
M×Lk having a Vandermonde structure,being constructed fromLk complex sinusoidal vectors

as

Zk = [ z(ωk) z(ωk2) · · · z(ωkLk) ], (1.11)

with z(ω) = [ 1 ejω · · · ejω(M−1) ]T , and a vector containing the complex amplitudes as ak =
[ ak,1 · · · ak,Lk

]T . Introducing zk = ejωk , the Vandermonde matrix can be seen to exhibit the
following polynomial structure:

Zk =

⎡⎢⎢⎢⎣
1 1 · · · 1

ejωk ejωk2 · · · ejωkLk

...
...

. . .
...

ejωk(M−1) ejωk(M−1)2 · · · ejωkLk(M−1)

⎤⎥⎥⎥⎦ (1.12)

=

⎡⎢⎢⎢⎢⎣
1 1 · · · 1
z1
k z2

k · · · z
Lk

k
...

...
. . .

...

z
(M−1)
k z

(M−1)2
k · · · z

(M−1)Lk

k

⎤⎥⎥⎥⎥⎦ . (1.13)
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Using these definitions, the signal model in (1.5) can be written as

x(n) =
K∑

k=1

Zk

⎡⎢⎣ ejωk1n 0
. . .

0 ejωkLkn

⎤⎥⎦ ak + e(n) (1.14)

�
K∑

k=1

Zkak(n) + e(n) (1.15)

or as

x(n) �
K∑

k=1

Zk(n)ak + e(n). (1.16)

As can be seen, either the complex amplitudes or the Vandermonde matrix can be seen as being
varying over n, i.e., ak(n) = Dnak and Zk(n) = ZkDn with

Dn =
⎡⎢⎣ ejωk1n 0

. . .

0 ejωkLkn

⎤⎥⎦ . (1.17)

Regarding the dimensions of these matrices, we assume throughout the book that the number
of samples N and the sub-vector length M are chosen larger than the total number of unknown
parameters, i.e., the matrices Zk as well as the augmented matrix Z = [

Z1 · · · ZK

]
are assumed

to be tall and have full rank for a distinct set of frequencies.

1.5 COVARIANCE MATRIX MODEL
We will make extensive use of the covariance matrix of the sub-vectors. This matrix is defined as

R = E
{

x(n)xH (n)
}

. (1.18)

Here, E {·} and (·)H denote the statistical expectation and the conjugate transpose, respectively. In
practice, the covariance matrix is unknown and is generally replaced by the sample covariance matrix
defined as

R̂ = 1

N − M + 1

N−M∑
n=0

x(n)xH (n). (1.19)

Clearly, for R̂ to be invertible, we require that M < N
2 + 1. In the following, we will assume that M

is chosen accordingly whenever the inverse of the covariance matrix is used. We will also generally
let the dimensions of the covariance matrix be proportional to the number of samples as the perfor-
mance turns out to depend on both parameters (see [157] for an explanation of this phenomenon).
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As is well-known, the covariance matrix estimate in (1.19) is the maximum likelihood estimate
for Gaussian distributed signals provided that the sub-vectors are independent. Furthermore, it is
generally consistent for ergodic processes regardless of their distributions, meaning that the estimate
will tend towards the true covariance matrix as the number of observations goes to infinity.

In deriving the estimators, we will make extensive use of the properties of the ideal covariance
matrix in (1.18),but in practice it will be replaced by the sample covariance matrix as defined in (1.19).
It should be clear from the context which of the two we are referring to. Assuming that the sources
are statistically independent, the covariance matrix of the observed signal can be written as

R =
K∑

k=1

Rk =
K∑

k=1

E
{

xk(n)xH
k (n)

}
. (1.20)

Inserting the signal model for the individual sources in this expression, we can write the covariance
matrix as

R =
K∑

k=1

E
{
(Zkak(n) + ek(n)) (Zkak(n) + ek(n))H

}
(1.21)

=
K∑

k=1

ZkE
{

ak(n)aH
k (n)

}
ZH

k + E
{

ek(n)eH
k (n)

}
(1.22)

=
K∑

k=1

ZkPkZH
k + Q , (1.23)

where Zk is assumed to be deterministic. The matrix Q is the covariance matrix of e(n), i.e.,

Q = E
{

e(n)eH (n)
}

(1.24)

=
K∑

k=1

E
{

ek(n)eH
k (n)

}
=

K∑
k=1

Qk (1.25)

also referred to as the noise covariance matrix with Qk denoting the noise covariance matrix of the
kth source observation noise, ek(n). The matrix Pk is the covariance matrix of the amplitudes, i.e.,

Pk = E
{

ak(n)aH
k (n)

}
. (1.26)

If the phases of the harmonics are statistically independent and uniformly distributed on the interval
(−π, π ], this matrix can be simplified as

Pk = diag
([

A2
k,1 · · · A2

k,Lk

])
. (1.27)

We will make extensive use of this assumption throughout the book. The more specific assumptions
with respect to the observed signal vary depending on the methodology in question. Some methods
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rely on the observation noise being white and Gaussian distributed, while others rely on it being
white. Some methods require that the number of harmonics and sources are known, while, in other
cases, these can be estimated jointly with the fundamental frequency, amplitudes and so forth. In
this section, we have only mentioned the most general assumptions and we will discuss the more
specific ones in the respective chapters.

Figure 1.6: Spectrogram of voiced speech signal, utterance: “Why were you away a year, Roy?”.

1.6 SPEECH AND AUDIO SIGNALS

Having introduced the fundamental signal model that we will use throughout this book, it is time to
discuss whether this model is appropriate for speech and audio signals. Audio signals are particularly
troublesome due to the wide variety of such signals. Even when considering only man-made signals
such as those produced by musical instruments the variation is overwhelming. It is perhaps impossible
to construct a signal model that can explain all phenomena that can be observed in audio signals
while also arriving at a useful estimator. In many cases, it is possible to construct dedicated solutions
that are based on the specific properties of the observed signals, like, for example, the methods based
on physical models of the piano. Such methods may be useful for tuning of pianos and automatic
transcription of solo piano music but may be entirely inappropriate for other musical instruments.
Below we list and discuss the major problems in relation to estimation theoretical approaches for
fundamental frequency estimation and the choices that the algorithm designer has to make.
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Non-stationarity Most methods rely on the signal being stationary within the observation time,
i.e., in a particular segment, but both speech and music may be subject to changes. The pitch
of voiced speech tends to evolve continuously and an extreme example of this are diphthongs.
This is illustrated in Figure 1.6, showing the spectrogram of a voiced speech signal. Music on
the other hand, is comprised of discrete tones and may thus be subject to discontinuous changes
from one tone to another, but it may also be subject to continuous changes in pitch when,
for example, vibrato or glissando is applied. These problems may often not be too much of a
concern and can be alleviated by simply using short segments, but, depending on the particular
kind of scheme, it may be possible to account for non-stationarity in the estimation process by
polynomial amplitude and phase models, e.g., [61] or the tracking schemes in [15, 35, 46, 135].
Another possibility is to use an adaptive segmentation of the signal. It is, actually, possible
to do this in an optimal way for an additive cost function, like one based on log-likelihoods
(see [132] and [133] for some examples of this, though not based on a statistical framework).

Noise Characteristics Estimators are based, implicitly or explicitly, on various assumptions con-
cerning the observed signal and some of these assumptions pertain to the nature of the stochas-
tic signal components also known in estimation theoretical terms as observation noise. There
are several aspects of the noise characteristics that may be of concern to us, primarily the noise
PDF. It is highly estimator-dependent how critical these assumptions are. It is, for example,
well-known that for white Gaussian noise, the least-squares estimator is equivalent to the
maximum likelihood estimator and is thus optimal for sufficiently large number of samples,
but, for certain problems, it is still asymptotically efficient even if the noise is colored [153].
The subspace methods, on the other hand, are based on the noise being white, but do not rely
on it having any specific PDF. It does, however, appear that the assumption of the stochastic
signal components being Gaussian but colored is generally sufficient in speech and audio pro-
cessing, as these assumptions are very common in the literature. Sometimes, the noise is also
allowed to have a time-varying variance. In certain problems, the Gaussian assumption seems
to be a very poor fit of the observed data. This is, for example, the case when estimating the
parameters of an auto-regressive model for voiced speech segments. A Laplacian assumption
has been shown to lead to better and more robust estimates [59]. For an interesting read on
the history of the Gaussian distribution, its properties, and problems where it appears to be a
bad choice, we refer the reader to [91].

Order Estimation Determining the number of sources and the number of harmonics for each
source are at the heart of the pitch estimation problem. If these quantities are not known or
estimated along the way, the resulting pitch estimates may be non-unique. More specifically, in
the context of parametric pitch estimation, the much discussed problems of pitch halvings and
doublings1 are often artifacts of erroneous order estimates. For speech and audio signals, the

1The focus on these phenomena is a bit curious and sometimes distracting as the problem is more general than that and often only
a symptom of a more fundamental issue. In fact, spurious estimates may be obtained for integer ratios, i.e., q

p with q, p ∈ N , of
the true fundamental frequency.
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model order may vary from one segment to another and it is, therefore, necessary to estimate
it on a frame-by-frame basis. This phenomenon can clearly be seen from the spectrogram in
Figure 1.6. It is also worth noting that the Cramér-Rao lower bound for the fundamental
frequency estimation problem indicates that it is actually beneficial to estimate the order
adaptively over time to achieve the highest possible accuracy (see Section 1.8). The number
of harmonics that can be said to be in the signal with any statistical certainty will also depend
on the SNR as harmonics having small amplitudes may be completely buried in noise.

Model Selection The problem of model selection is intimately related to the model order estimation
problem. As we have discussed, different models may apply to different kinds of signals. An
estimator that should be valid for a large range of instruments and signals should thus take
this into account. One way to do this is to test different models for a particular signal and then
use the one that is most likely to explain the observed signal. For example, speech signals are
often classified as either being periodic (voiced) or a realization of a stochastic process, e.g.,
a colored Gaussian process (unvoiced). A different approach is to use a very general model
that can account for all (or most) phenomenon from which it is possible to extract simpler
structures. An example of such a model is the perturbed model of [34], which reduces to the
usual harmonic model when the perturbations are small (see also Section 1.7 for more on this).

Overlapping Harmonics The next issue is that of spectrally overlapping harmonics, meaning the
problem of interaction between either the harmonics of one source or the harmonics of different
sources. This happens when the frequencies of two sinusoids are close to each other relative to
the number of observations. This can of course always happen for a multi-pitch signal, but it
may happen also for any single-pitch signal when the fundamental frequency is very low and/or
the number of samples is low. The problem is twofold. Firstly, a low number of samples will
cause spectral overlap, i.e., non-zero inner products, of the harmonics for a low fundamental
frequency.Secondly, it will cause spectral overlap between the low harmonics and their complex
conjugates. For some of the estimators considered in this book, it is straightforward, but
computationally demanding, to take this phenomenon into account, like for the least-squares
based methods, while it is more difficult for others. It should be noted that the accuracy
at which it is mathematically possible to estimate the fundamental frequency will depend
on such phenomena, and, as the fundamental frequency tends towards zero, it will, in fact,
become mathematically impossible to estimate the pitch [23]. Interaction between harmonics
is a fairly predictable phenomenon, though, for the single-pitch case, but, for multi-pitch
signals, it can become very complicated. This is especially true for music signals, since musical
chords are comprised of sources whose fundamental frequencies are related by simple relations,
like a root 5 chord where the second note of the chord has a fundamental frequency, which is
approximately 1.5 of the root. It is easy to imagine that this can cause all sorts of problems.

Inharmonicity The harmonic signal is based on the assumption that the harmonics have frequencies
that are integer multiples of the fundamental. This assumption does not always hold, for
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instance, as the stiffness of a string of a musical instrument may cause the harmonics to be
stretched meaning that they have frequencies that are higher than the integer multiples and
get progressively further from it for higher harmonics [53, 54]. This phenomenon is known as
inharmonicity and can be observed from the signal shown in Figure 1.7 as it is not perfectly
periodic. Both the problem of inharmonicity and non-stationarity can also be seen as problems
related to model mismatch, meaning that if the integer relationship between the fundamental
and its harmonics is used, the model we use does not fit the observed signal. Model mismatch
often leads to biased parameter estimates and this is exactly what happens if the inharmonicity
phenomenon is ignored for, e.g., a piano [34] (see also [92]).

Missing Harmonics It sometimes happens that a signal consists of only a subset of the integer
multiples of the fundamental. For example, in the PSTN telephone network, speech signals
are commonly high-pass filtered at about 300 Hz, meaning that the lower harmonics for
speakers having pitches below 300 Hz will be missing from the observed signal. Similarly, a
signal may consist of only even or odd harmonics, or some harmonics may be so buried in
noise that it is not possible to determine whether they are there or not. For some methods,
such phenomena may not cause any problems as a zero amplitude sinusoid does not make any
difference and the fundamental frequency capturing the frequencies of the harmonics is still the
same, while for others, like subspace methods, it may be critical to account for. In some cases,
like for the PSTN telephone network, we know that the harmonics are missing and can easily
take the high-pass filter into account.There may be cases, though, where we cannot know this.
Generally, these problems can be alleviated by considering different patterns, like only odd or
even harmonics, and then seeing the problem as a joint pitch estimation and model selection
problem. For the methods considered in this book that can take different model orders into
account, it is usually also straightforward to extend those principles to account for missing
harmonics, but it will usually lead to an unnecessarily complicated notation, which is why we
will not discuss the problem any further.

It is our opinion that estimation theory is the art of constructing simple and elegant methods
that solve real-life problems based on rigorous mathematics, be it statistics or linear algebra. To
arrive at such methods, it may be necessary to make a number of simplifying assumptions. But
by being explicit about these assumptions, an understanding of the properties of the method can
be achieved and it can be predicted, with high accuracy, when the method will work and when
it most likely will not and why. As an example of why simplifications are necessary, consider the
multi-pitch estimation problem. It is possible, in principle, to evaluate the likelihood function for all
combinations of fundamental frequencies, number of sources, number of harmonics, different noise
PDFs and so forth, but it is not simple and generally not useful in practice to do so; the necessary
computation time will be prohibitive for most real-life applications.
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Figure 1.7: A segment of a piano note illustrating the inharmonicity phenomenon.

1.7 OTHER SIGNAL MODELS
It has been observed by many researchers that speech and audio signals are not perfectly harmonic in
the real world [53, 58, 103] and this may be important in some applications, even if it does lead to a
reasonable fundamental frequency estimate. For example, if a full model of the individual sources is
desired, then also the amplitudes have to be estimated. It is easy to imagine that the amplitudes may
be wrong if the peak is not located exactly at an integer times the fundamental frequency. For audio
coding applications, such errors may be audible and have to be taken into account. A number of
phenomena may cause the signals to deviate from perfect periodicity. A well-known example of this
is stiff-stringed instruments that give rise to harmonics whose frequencies are not integer multiples
of a fundamental. An example of such a model for stiff-stringed instruments is

ψk,l = ωkl
√

1 + Bkl2, (1.28)

where Bk 	 1 is an unknown, positive stiffness parameter that varies with the type of string being
used.This model is derived by solving differential equations for waves travelling along a string [146].
This model has been used in various methods, e.g., [34, 49, 62].

It is important to note that one can arrive at other models depending on the assumptions
one make, with some examples being given in [146]. Also, interaction effects between the bridge of
a guitar and its body occur, and these may cause the harmonics to have frequencies that are lower
than integer multiples of the fundamental. Interestingly, our terminology of k denoting the source is
consistent with this phenomenon as opposed to, e.g., k denoting a particular instrument. It is usually
straightforward to incorporate such models in estimators, only one has to either somehow find Bk a
priori or estimate it jointly with the other model parameters. The main problem with these models
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is that they are instrument dependent and sometimes also depend on other things too and one may
have to consider many such models to construct a fundamental frequency estimator that may be
applicable to a wide range of instruments. An alternative model is the so-called perturbed model
where the frequency of each individual harmonic may be shifted by a small perturbation �k,l , i.e.,

ψk,l = ωkl + �k,l. (1.29)

One may reasonably wonder how the introduction of Lk additional nonlinear parameters is supposed
to help solve our problem. First of all, this model covers, in principle, all other variations of the
harmonic models and the unconstrained model too, if one allows arbitrarily large perturbations.
Secondly, it is often possible to solve for the perturbations in a computationally efficient manner,
depending on the specific estimator under consideration. And in the sense of the set of perturbations
�k,l being stochastic, one can argue that an estimator should be robust to such phenomena. This is
the philosophy we will employ in the remainder of the book. It must be emphasized, though, that it
is possible to incorporate models like the one in (1.28) in all the estimators considered in this book.

There exists also a number of models and methods that take into account the non-stationary
nature of many speech and audio signals, e.g., [61], by introducing, for example, polynomial models
of the amplitude and phase. Some of these models can be incorporated in some of the estimators
considered in this book, although the use of more complicated signal models often lead to com-
putationally less efficient algorithms and are, therefore, best avoided. It is our opinion, and also
our experience, that the problem of non-stationarity is less important than the more fundamental
problems of finding the parameters, including the model order and the noise characteristics, that
characterize (1.5). More specifically, it is a matter of using short absolute segment lengths so that
the signal model is a good approximation of the observed signal. It may of course be the case that
the variations of the parameters are of interest as would be the case in transcription of music where
bends, slides and vibrato play an important role. In that case, the signal models should be modified
accordingly.

1.8 PARAMETER ESTIMATION BOUNDS

It is possible to derive various bounds on the accuracy at which it is possible to estimate some
parameters of a model. This is useful for evaluation purposes, but such bounds can also be quite
informative, which turns out to be the case for the fundamental frequency estimation problem.
When simple closed-form expressions for these bounds exist, one can determine how the problem
depends on various conditions, like the number of observations or the signal-to-noise ratio (SNR).
The Cramér-Rao lower bound (CRLB) is one such bound for unbiased parameter estimates and we
will now introduce the fundamental results related to this bound. For a comprehensive introduction
to the CRLB, we refer the interested reader to the excellent book [89] and for examples of other
bounds, see [116, 141]. An estimator is said to be unbiased if it results in an estimate θ̂i of the ith
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parameter θi of the parameter vector θ ∈ R
P whose expected value is the true parameter, i.e.,

E
{
θ̂i

}
= θi ∀θi, (1.30)

and the difference θi − E
{
θ̂i

}
, if any, is referred to as the bias. The CRLB of the parameter is given

by

var(θ̂i) ≥
[

I−1(θ)
]
ii

, (1.31)

where var(·) denotes the variance defined as

var(θ̂i) = E
{(

θ̂i − E
{
θ̂i

})2
}

, (1.32)

and I(θ) is the P × P Fischer information matrix evaluated for the true parameter vector θ , which
is here considered to be deterministic but unknown. The Fischer information matrix is defined as[

I(θ)
]
il

= −E
{

∂2 ln p(x; θ)

∂θi∂θl

}
, (1.33)

with ln p(x; θ) being the log-likelihood function of the observed signal x ∈ C
N .The bound in (1.31)

holds under the so-called regularity condition (see [89]), which is

E
{

∂ ln p(x; θ)

∂θ

}
= 0 ∀θ . (1.34)

Here,∂ ln p(x; θ)/∂θ is defined to be a column vector. In both of the equations above, the expectation
is taken with respect to p(x; θ). For the case where the observation vector is complex Gaussian with
mean μ(θ) and covariance matrix Q (θ), i.e., x ∼ N (μ(θ), Q (θ)), the CRLB is given by [153]

[
I(θ)

]
il

= Tr

{
Q −1(θ)

∂Q (θ)

∂θi

Q −1(θ)
∂Q (θ)

∂θl

}
+ 2 Re

{
∂μH (θ)

∂θi

Q −1(θ)
∂μ(θ)

∂θl

}
. (1.35)

Here, ∂μ(θ)/∂θi is defined to be a column vector containing the entries of the vector μ(θ) differ-
entiated with respect to the ith parameter of θ and similarly for the matrix derivative.

For the case where the covariance matrix Q (θ) does not depend on any of the parameters in
θ , we denote it Q . Furthermore, under the assumed conditions, (1.35) reduces to

[
I(θ)

]
il

= 2 Re

{
∂μH (θ)

∂θi

Q −1 ∂μ(θ)

∂θl

}
. (1.36)

We will now briefly present the CRLBs associated with finding the parameters of a periodic signal
from xk(n). For simplicity, we consider the case where ek(n) is white Gaussian and independent
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having variance σ 2
k . In this case, we have that Qk = σ 2

k I. Despite these seemingly restrictive as-
sumptions, we can still learn some interesting facts about our problem. For a single source and a high
number of samples, i.e., N  1, the lower bound on the variance of unbiased parameter estimates
can be found using (1.36) and are given by (see [23] and [122] for details)

var(ω̂k) ≥ 6σ 2
k

N(N2 − 1)
∑Lk

l=1 A2
k,l l

2
(1.37)

var(Âk,l) ≥ σ 2
k

2N
(1.38)

var(φ̂k,l) ≥ σ 2
k

2N

(
1

A2
k,l

+ 3l2(N − 1)2∑Lk

m=1 Ak,mm2(N2 − 1)

)
. (1.39)

The right-hand side of these equations are referred to as the CRLBs of the respective parameters.
The CRLB for the fundamental frequency can be seen to depend on the pseudo signal-to-noise
ratio (PSNR), defined in dB as

PSNR = 10 log10

∑L
l=1 A2

k,l l
2

σ 2
k

[dB], (1.40)

while the bound for the phase depends on both this quantity and the local SNR, A2
k,l/σ

2
k . Under the

assumption that the sources are independent and that the harmonic frequencies are distinct, (1.37)
can also be expected to hold approximately for the problem of estimating the fundamental frequencies
in (1.5) for the multi-pitch case,only σk has to be replaced by σ .The bounds will not be valid, though,
when there is a significant spectral overlap of the harmonics, i.e., for low fundamental frequencies
(see [23]) and when the harmonics of a multi-pitch signal overlap. In these cases, the bounds will
be much higher, which will be revealed by the exact CRLB [107]. Also, it must be stressed that
for a low number of samples, the exact CRLB for the various parameters will depend on the other
parameters, including those of other sources.

Interestingly, the CRLBs associated with estimating the parameters of the unconstrained
model from xk(n) are somewhat different. More specifically, these are [88]

var(ψ̂k,l) ≥ 6σ 2
k

N(N2 − 1)A2
k,l

(1.41)

var(Âk,l) ≥ σ 2
k

2N
(1.42)

var(φ̂k,l) ≥ 2σ 2
k (2N − 1)

A2
k,lN(N + 1)

. (1.43)

As can be seen, the bounds are different for the frequency parameters and the phases with these
depending on the local SNR, while the amplitude bound is the same. This underlines that although
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the problem of fundamental frequency estimation is related to frequency estimation, the problems
and their properties and pitfalls are different.The bounds associated with the fundamental frequency
estimation problem suggest that this problem is simpler in the sense that we should be able to do this
more accurately than estimating any individual frequencies. Having pondered this, one may suspect
that it is a more robust procedure to search directly for the fundamental frequency, and indeed this
turns out to be the case. We will return to this later on.

1.9 EVALUATION OF PITCH ESTIMATORS
So how does one go about evaluating pitch estimators? There are several aspects of pitch estimators
that need to be evaluated to determine their properties and robustness. Below, some common test
methodologies and signals are listed and discussed.

Monte Carlo The Monte Carlo method is a method for random sampling, where the same exper-
iment is repeated many times and each time, all stochastic components are randomized. The
stochastic components could, for example, be the noise that is added to a signal or even model
parameters, such as the model order, fundamental frequency, amplitude or phase of a periodic
source. For each set of realization, parameters of interest are estimated and the statistics of the
estimates, like variance and bias, are calculated. The higher the number of times the experi-
ment is repeated, the better, but for complicated nonlinear problems, like the pitch estimation
problem, it is often only possible to do this in the order of hundreds of times. The Monte
Carlo method can be used in combination with either real or synthetic signals, but are most
often used in combination with synthetic signals.

Synthetic Signals Synthetic signals generated using the assumed signal model can be used for
answering the following questions: given that the signal model is correct, what is then the
accuracy at which we can determine the various parameters, and how does the performance
depend on various conditions and user parameters such as the segment length, the signal-
to-noise ratio, the sub-vector length, and other quantities. This is also a good way to ensure
that the estimators have been correctly implemented. One can experimentally determine how
close the estimator is to the optimal performance by estimating the mean squared estimation
error using the Monte Carlo method and compare it to the CRLB and the performance
of other estimators. More importantly, estimators frequently exhibit so-called thresholding
behavior for nonlinear estimation problems, meaning that below a certain number of samples
(or PSNR), the method ceases to work and results in non-informative estimates. Monte Carlo
simulations using synthetic signals can help to determine under which circumstances this
will happen. Using synthetic signals, it can also be determined how sensitive the method is
to various assumptions by violating these assumptions in simulations, for example, by using
colored noise instead of white noise.

MIDI Signals Signals generated using MIDI are, perhaps, best characterized as being somewhere
in-between synthetic and real signals,depending on the type and quality of the synthesizer used.
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The good thing about using MIDI generated signals is that the ground truth data (i.e., the true
pitch) is readily available and that the environment is fairly controllable and the experiments
reproducible. But it is not always simple to determine exactly what kind of synthesis is used
and/or how close to real signals the generated signals are; some may be based on real sampled
signals, while others may be based on physical models of musical instruments or extremely
simplistic mathematical tricks. One can, though, safely assume that they are generated using
a model that is at least as complicated as those of equations (1.1) and (1.5). To be safe, one
can of course use several different MIDI synthesizers.

Real Signals The synthetic signal methods do not answer the very important question of whether
the assumed signal model is in fact correct. Only the application of the algorithm to real signals
can answer that. There are many databases of real music and speech signals available on the
Internet, but there are two major problems with using real data: a) often no ground truth data
is available, meaning that we have nothing but our own expectations to compare the estimates
with, which makes the results rather subjective, and b) even when such ground truth data is
available, it is usually not available at the accuracy needed to determine whether an estimator is
optimal or how far it is from being optimal, and usually only crude performance measures can
be applied in these types of evaluations. Furthermore, even when some kind of ground truth
data is available, it may be of course be completely wrong, or the pitch may be ambiguous.
Consider, for example, a segment containing silence and then the onset of a tone. Is there a
pitch in such a segment or is an algorithm right in saying that there is only silence? Or what
about the more complicated creaky voice phenomenon (see [99])? It is often the case that
researchers have resorted to pruning such cases manually, as is the case in the results reported
in [41]. This, of course, introduces an arbitrary and subjective element in the evaluation and it
is then meaningless to compare results at a high granularity. In many cases, though, real signals
can be used for providing illustrative examples, which can be used for qualitative analysis of
the behavior of estimators. For example, by analyzing the examples where a particular method
appears to fail, care should, however, be taken in choosing the signals. Some signals exhibit
higher degrees of stationarity and inharmonicity than others. The Monte Carlo method can
be applied to real signals by adding, for example, noise to the signal to analyze the behavior of
the estimates as a function of the SNR or other parameters.

It is often recommendable to keep the experiments as simple as possible, at least at first; we
cannot possibly hope to solve complicated problems if we cannot even solve simple ones.The authors
of this book recommend that the following tests be performed when evaluating the performance
of pitch estimators: most importantly, the variance and bias of the estimator should be evaluated
under various conditions, like different N , M , ωk , Lk , K , PSNR, SNR, and different amplitude
distributions using the Monte Carlo method and synthetic signals generated using the assumed
signal model. A good measure is the root mean square estimation error (RMSE), which is defined
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as

RMSE =
√√√√ 1

SK

K∑
k=1

S∑
s=1

(
ω̂

(s)
k − ωk

)2
, (1.44)

where ωk and ω̂
(s)
k are the true fundamental frequency and the estimate for source k in Monte Carlo

iteration s, and with S being the number of Monte Carlo trials. By comparing the RMSE to the
CRLB, this quantity determines a) how close the method is to being optimal under good conditions,
and b) the thresholding behavior of the estimators, i.e., under which conditions the estimator can be
expected to work and how it compares to other estimators. The robustness of the estimator towards
the issues discussed in Section 1.6 can also be evaluated using the Monte Carlo method based on
synthetic signals. In doing so, it is likely that several assumptions will be violated, and this will reveal
the robustness of the estimator towards such violations. The key point here is that these are likely
to occur when dealing with real speech and audio signals.
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C H A P T E R 2

Statistical Methods

2.1 INTRODUCTION
The basic idea of statistical estimation methods is to pose a model of the observed signal in terms
of a probability density function (PDF), which is parameterized by in our case the parameters of
sets of harmonically related sinusoids. Within this framework, the parameters of these sinusoids are
often viewed as being deterministic but unknown, while the observation noise, i.e., any stochastic
signal components, are considered random. These deterministic but unknown parameters can then
be estimated by maximizing the so-called likelihood of the observed signal, i.e., the parameters that
are most likely to explain the observed signal are the maximum likelihood estimates. The objective
function is referred to as the likelihood function as it is viewed as a function of the unknown
parameters rather than the observed signal. The principle of maximum likelihood estimation is
probably the most commonly used and estimators based on it are well-known to have excellent
performance for a large number of samples. For certain cases, like the Gaussian case, the maximum
likelihood estimator also has a simple form, in fact, it is the minimizer of a weighted squared error
and for white Gaussian observation noise, it is the even simpler minimizer of the 2-norm, i.e., the
least-squares estimator. It is, however, complicated to derive computationally efficient methods for
finding nonlinear parameters like the frequencies of sinusoids and this is exactly the goal of this
chapter. We will first present the fundamentals of maximum likelihood estimation and maximum a
posteriori (MAP) estimation, and we then show how these principles can be used in various ways
for finding the fundamental frequency of periodic signals and solve some of the associated problem
such as model selection and order estimation.

2.2 MAXIMUM LIKELIHOOD ESTIMATION
It seems natural to adapt this well-merited scheme to our problem and we will here first consider
only the single-pitch case, i.e., K = 1. The method can be generalized to the multi-pitch scenario,
but in its exact form, it is not very useful, since it leads to a complicated multi-dimensional nonlinear
optimization problem, but later we will consider an approximate solution. We will now present the
maximum likelihood method for finding the parameters of a single periodic signal. The algorithm
operates on a signal sub-vector at time n, defined as

xk(n) = [ xk(n) · · · xk(n + M − 1) ]T , (2.1)

which is constructed from the observed single-pitch signal xk(n). For many signals, such a sub-vector
can be modeled as a sum of Lk harmonically related complex sinusoids in colored Gaussian noise
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ek having covariance matrix Qk , i.e.,

xk(n) = sk(n) + ek(n) (2.2)
= Zk(n)ak + ek(n), (2.3)

with ak = [ Ak,1e
jφk,1 · · · Ak,Lk

ejφk,Lk ]T being a vector containing the complex amplitudes. Fur-
thermore, Zk(n) is a Vandermonde matrix at time n, defined as

Zk(n) = [
z1(n) · · · zLk

(n)
]
, (2.4)

where the mth entry of the column vector zl(n) ∈ C
M is defined as [zl(n)]m = ejω0l(n+m−1). Since

xk(n) has length M and we have N observations of xk(n), we can thus construct a set of G =
N − M + 1 different sub-vectors {xk(n)}G−1

n=0 .
Next, we introduce the signal and noise parameter vector θk containing the fundamental

frequency ωk , the complex amplitudes {Ak,le
jφk,l } and thereby implicitly the order Lk and the noise

covariance matrix Qk of the model in (2.3). Assuming that Qk is invertible, the likelihood function
of the observed signal sub-vector xk(n) can then be written as

p(xk(n); θk) = 1

πMdet(Qk)
e−eH

k (n)Q −1
k ek(n), (2.5)

with det(·) denoting the matrix determinant. Now, assuming that the deterministic part sk(n) is
stationary and ek(n) is independent and identically distributed over n, the likelihood of the observed
set of vectors {xk(n)}G−1

n=0 can be written as

p({xk(n)}; θk) =
G−1∏
n=0

p(xk(n); θk)

= 1

πMGdet(Qk)G
e−∑G−1

n=0 eH
k (n)Q −1

k ek(n).

(2.6)

Although the approach of splitting the signal into sub-vectors x(n) is inherently suboptimal, since it
ignores inter-vector dependencies, it is required in order to estimate the signal and noise covariance
matrices. Taking the logarithm of (2.6), we get the so-called log-likelihood function, i.e.,

L(θk) =
G−1∑
n=0

ln p(xk(n); θk)

= −GM ln π − G ln det(Qk) −
G−1∑
n=0

eH
k (n)Q −1

k ek(n).

(2.7)

The maximum likelihood estimates of the parameters θk are then

θ̂k = arg max L(θk), (2.8)
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which are found by estimating the noise vector as

êk(n) = xk(n) − ŝk(n) (2.9)

where the deterministic part of the signal model ŝk(n) is constructed from the parameter estimates.
The main difficulty in evaluating this cost function is that the fundamental frequency is a

nonlinear parameter and that the noise covariance matrix Qk generally is unknown. The amplitudes
and phases, on the other hand, can be seen in (2.3) to be linear complex parameters that can easily be
found given the fundamental frequency and the noise covariance matrix. Given the (invertible) noise
covariance matrix Qk , the complex amplitudes ak can be found, for a certain candidate fundamental
frequency, using weighted least-squares (WLS) as

âk =
(

G−1∑
n=0

ZH
k (n)Q −1

k Zk(n)

)−1 G−1∑
n=0

ZH
k (n)Q −1

k x(n), (2.10)

where the inverse exists for tall or square Zk , i.e., for Lk ≤ M , constructed from a distinct set of
frequencies.

2.3 NOISE COVARIANCE MATRIX ESTIMATION
Next, we will address how to estimate the noise covariance matrix in an efficient manner. Defining
Zk = Zk(0) and assuming that the phases of the harmonics are independent and uniformly dis-
tributed on the interval (−π, π ], the covariance matrix Rk ∈ C

M×M of the signal in (2.3) can be
written as (see [155, 156]),

Rk = E
{

xk(n)xH
k (n)

}
= ZkPkZH

k + Qk (2.11)

where
Pk = E

{
akaH

k

}
= diag

([
A2

k,1 · · · A2
k,Lk

])
. (2.12)

The noise covariance matrix Qk is most often unknown and an estimate has to be obtained. Here,
we will do this based on the signal covariance model in (2.11). In practice, the signal covariance
matrix also is unknown and is replaced by an estimate, the sample covariance matrix, i.e.,

R̂k = 1

G

G−1∑
n=0

xk(n)xH
k (n). (2.13)

There are some inherent tradeoffs in the choices of N and M and thereby G. The number of
observations N should be chosen appropriately such that the signal xk(n) can be assumed to be
stationary, while M should be chosen such that all significant non-zero correlations in the covariance
matrix are modeled. On the other hand, M should also not be chosen higher than strictly necessary,
since the goodness of the signal covariance matrix estimate in (2.13) depends on G being as high
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as possible. Additionally, since the evaluation of the likelihood function requires the existence (and
calculation) of the inverse of the noise covariance matrix, it is required that rank

(
Qk

) = M . This in
turn implies that G ≥ M and hence M < N

2 + 1. For a particular candidate fundamental frequency,
we can construct the Vandermonde matrix Zk in (2.11). However, we also need an estimate of the
sinusoidal amplitudes in Pk to obtain a noise covariance matrix estimate. An obvious approach is
to use the estimated signal covariance matrix instead of the noise covariance matrix resulting in a
Capon-like amplitude estimator or one of the other amplitude estimates discussed in Chapter 5. A
simple and asymptotically efficient estimate (see [155]) of the complex amplitudes for approximating
the likelihood for various fundamental frequencies and orders is

âk =
(

G−1∑
n=0

ZH
k (n)Zk(n)

)−1 G−1∑
n=0

ZH
k (n)xk(n), (2.14)

which can be approximated for large N as

âk ≈ 1

MG

G−1∑
n=0

ZH
k (n)xk(n). (2.15)

This is a number of phase-shifted fast Fourier transforms (FFTs), since Zk(n) can be written as

Zk(n) = Zk

⎡⎢⎣ ejωkn 0
. . .

0 ejωkLkn

⎤⎥⎦ . (2.16)

Having found the complex amplitudes associated with a certain candidate fundamental frequency,
we can now estimate the noise covariance matrix from the order Lk sinusoidal model as

Q̂k = R̂k − ZkP̂kZH
k = R̂k −

Lk∑
l=1

Â2
k,lzlzH

l , (2.17)

with P̂k = diag
([

Â2
k,1 · · · Â2

k,l

])
. The inverse noise covariance matrix may be needed for

and direct inversion for different model orders and fundamental frequencies poses a significant
computational burden.Therefore, it is advantageous to compute it using the matrix inversion lemma.
This leads to the following iterative expression for the inverse covariance matrix for l = 1, 2, . . . , Lk :

(
Q̂ (l)

k

)−1 =
(

Q̂ (l−1)
k

)−1 +
(

Q̂ (l−1)
k

)−1 Â2
k,lzlzH

l

1 − Â2
k,lz

H
l

(
Q̂ (l−1)

k

)−1
zl

(
Q̂ (l−1)

k

)−1
, (2.18)
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with
(

Q̂ (0)
k

)−1 = R̂−1
k . Similarly, the matrix determinant lemma can be used for computing the

determinant of Q (l)
k in iteration l recursively as

det
(

Q̂ (l)
k

)
= det

(
Q̂ (l−1)

k − Â2
k,lzlzH

l

)
(2.19)

=
(

1 − Â2
k,lz

H
l

(
Q̂ (l−1)

k

)−1
zl

)
det

(
Q̂ (l−1)

k

)
. (2.20)

It must be stressed that the amplitude estimates used in updating the determinant and the inverse
noise covariance matrix estimates should be chosen with care, since particular estimates may lead
to rank deficiency in some cases. It can be seen that the likelihood function contains the term∑G−1

n=0 eH
k (n)Q −1

k ek(n). If we replace the vectors ek(n) by estimates obtained as

êk(n) = xk(n) − ŝk(n), (2.21)

and the noise covariance matrix by its estimate Q̂k , we can write the term as

G−1∑
n=0

êH
k (n)Q̂ −1

k êk(n) = Tr

{
G−1∑
n=0

êH
k (n)Q̂ −1

k êk(n)

}
(2.22)

= Tr

{
Q̂ −1

k

G−1∑
n=0

êk(n)êH
k (n)

}
. (2.23)

Realizing that
∑G−1

n=0 êk(n)êH
k (n) is the scaled sample noise covariance matrix obtained using the

estimated deterministic signal components ŝk(n), we get that

G−1∑
n=0

êH
k (n)Q̂ −1

k êk(n) = Tr
{

Q̂ −1
k Q̂kG

}
= MG, (2.24)

which means that this term is constant. The likelihood function therefore only depends on the
determinant of Q̂k , but we can make use of the inverse noise covariance update formula for efficient
computation of this quantity so our efforts have not been futile. It should be noted that the matrix
obtained from

∑G−1
n=0 êk(n)êH

k (n) may not be the exact inverse of the matrix obtained using (2.18),
since the latter is based on Pk being diagonal.

An alternative approach to pitch estimation in the presence of colored noise is the method
of [48], which is also based on maximum likelihood principles.

2.4 WHITE NOISE CASE
In some cases, the stochastic part of the signal model in (1.1) is white or approximately so. Not only
can the computational complexity of the maximum likelihood estimator be reduced significantly,
but the inherent sub-optimality of covariance matrix-based methods can be avoided. For the white
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noise case, the structure of the noise covariance matrix is now known, i.e., it reduces to a scaled
diagonal matrix Qk = σ 2

k I where σk is the variance of the noise ek(n). This has the consequence
that we no longer need to estimate a full covariance matrix but only the variance, and, therefore,
there is no need to split the observed signal into sub-vectors, i.e., we can simply set M = N and thus
G = 1. For notational simplicity, we define êk(0) = êk and xk(0) = xk . The log-likelihood function
can now be written as

L(θk) = −N ln π − N ln σ 2
k − 1

σ 2
k

‖êk‖2
2. (2.25)

It can be seen that the maximum likelihood estimator (MLE) is simply the minimizer of the 2-norm
of the modeling error êk .Since the fundamental frequency is a nonlinear parameter, the method based
on minimizing the 2-norm is called the nonlinear least-squares (NLS) method. The noise variance
is generally unknown too, and we need to form an estimate of it to evaluate the log-likelihood, and,
like the noise covariance matrix estimate, this estimate will depend on the order Lk . For a particular
fundamental frequency candidate, assuming Lk harmonics, the maximum likelihood noise variance
estimate is

σ̂ 2
k = 1

N
‖xk − �Zxk‖2

2, (2.26)

where �Zk
is the projection matrix defined as

�Zk
= Zk

(
ZH

k Zk

)−1
ZH

k . (2.27)

The estimate in (2.26) is basically obtained by replacing the amplitudes by least-squares estimates.
We note that, given the frequencies of the harmonics, the least-squares amplitude estimates can
be obtained in an efficient manner by a recursive implementation [39]. Complex sinusoids are
asymptotically orthogonal for any set of distinct frequencies, which means that the projection matrix
�Zk

can be approximated as

lim
N→∞ N�Zk

= lim
N→∞ NZk

(
ZH

k Zk

)−1
ZH

k (2.28)

= ZkZH
k . (2.29)

Here, it should be stressed, that for a given N , this approximation will get progressively worse as
ωk gets smaller and it may be quite poor for low ωk . Using the approximation in (2.29), the noise
variance estimate can be simplified, i.e.,

σ̂ 2
k ≈ 1

N
‖xk − 1

N
ZkZH

k xk‖2
2. (2.30)

We then get the following log-likelihood function, which depends only on ωk by inserting this
variance estimate into (2.25),

L(ωk) ≈ −N ln π − N ln σ̂ 2
k − N. (2.31)
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We see that the amplitude can be found for various fundamental frequencies and orders using one
FFT, this time, however, we are ignoring the noise color. From (2.31), we can observe a problem
in relation to the model order. As the order Lk is increased, the log-likelihood is increased and
therefore the maximum likelihood estimator will lead to the choice of the highest possible order.
This phenomenon is illustrated in Figure 2.1 where (2.31) is shown as a function of the model order
for a synthetic signal with Lk = 5. We will return to this problem and its solution later on.
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Figure 2.1: Typical log-likelihood function as a function of the model order for a synthetic periodic
signal with the true order being five in white Gaussian noise.

Writing out the log-likelihood function, we see that for a given model order Lk the estimator
reduces to

ω̂k = arg max
ωk

xH
k �Zk

xk (2.32)

≈ arg max
ωk

xH
k ZkZH

k xk (2.33)

= arg max
ωk

‖ZH
k xk‖2

2, (2.34)

where the last two lines follow from the asymptotic approximation, while the first line is exact. In
practice, the estimator can be implemented by first evaluating the cost function on a coarse grid from
which an initial estimate can be obtained. This initial estimate can then be refined using various
numerical optimization techniques such as steepest descent and Newton’s method (see, e.g., [6]).
For the specific estimator considered here, such methods can be found in [33].
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The estimator in (2.34) can be implemented efficiently by forming such a coarse initial estimate
using an FFT. To see this, we introduce the Fourier transform of the observed signal xk(n) as

Xk(ω) =
N−1∑
n=0

xk(n)e−jωn, (2.35)

from which we see that the cost function can be expressed as

‖ZH
k xk‖2

2 =
Lk∑
l=1

|
N−1∑
n=0

xk(n)e−jωkln|2 (2.36)

=
Lk∑
l=1

|Xk(ωkl)|2. (2.37)

The quantity |X(ωkl)|2 is known in estimation theoretical terms as the periodogram (except for
a scale factor) when obtained from finite length data records. It can be seen that the estimator
reduces to a summation over the periodogram estimate of the power spectral density evaluated at
the harmonic frequencies.This shows that the so-called sub-harmonic summation method [74] and
the harmonic sum spectrum method [124] are asymptotically identical to the maximum likelihood
estimator, whose exact version has previously been proposed in [168]. The method of [136] is
essentially the same estimator, although modified to account for colored noise (on a historical note,
the interested reader may also wish to consult [70]). In Figure 2.2, the cost function (2.37) is plotted
for two different models orders for the noisy signal in Figure 1.2 having the spectrum shown in
Figure 1.3. A number of things can be observed from the figure. First, for the true model order,
Lk = 5, the cost function has a global maximum for the true fundamental at ωk = 0.3142, but for
Lk = 8 the global maximum is at half the true fundamental. This clearly shows the importance of
using the correct order. Second, it can also be seen that the cost functions are multi-modal, meaning
that they have multiple extrema. These extrema are all quite narrow making numerical optimization
difficult for large N . In Figure 2.3, the cost functions for the two signals in Figures 1.1 and 1.4 are
shown.

About the use of the asymptotic approximations, it should be noted that these may not be
very accurate for speech signals while this is often less of an issue for music signals, as music signals
frequently can be assumed stationary over longer time intervals. As we have already stated, the
approximation becomes increasingly worse the less separated the harmonics are in frequency. A
change of sampling frequency does not generally alleviate this problem, as the normalized frequency
is lowered by an increase in the sampling frequency. However, the CRLB does suggest that, with
respect to the influence of the noise, it is, in fact, beneficial to use a high sampling frequency.

It is straight-forward to incorporate the parametric inharmonicity model of equation (1.28)
in these estimators. Consider, for example, the cost function in (2.37).To apply the model of (1.28),
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Figure 2.2: Approximate maximum likelihood cost function (2.37) evaluated for different model order
for a synthetic signal having a fundamental frequency of 0.3142. The estimates can be identified as the
largest peak.

we only have to replace the frequencies ωkl by ψk,l = ωkl
√

1 + Bkl2, i.e., the estimator becomes

(ω̂k, B̂k) = arg max
ωk,Bk

Lk∑
l=1

|Xk(ψk,l)|2 (2.38)

= arg max
ωk,Bk

Lk∑
l=1

|Xk(ωkl
√

1 + Bkl2)|2, (2.39)

which means that we, in principle, have to sweep over combinations of the two nonlinear parameters
to obtain the estimates.

It is worth noting that, because the white noise case is so much simpler than the colored
case, the estimator presented here may be preferred over the colored noise estimator in real-time
applications even if the noise is known not to be completely white, as it may still provide adequately
accurate estimates, especially so if the model order is known, since the nonlinear least-squares method
is asymptotically efficient for the parameters of the individual harmonics even for colored noise [153].

2.5 SOME MAXIMUM A POSTERIORI ESTIMATORS
An alternative to maximum likelihood estimation is maximum a posteriori (MAP) estimation, where
the so-called posterior PDF is maximized, i.e.,

θ̂k = arg max
θ k

p(θk|xk). (2.40)
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Figure 2.3: Approximate maximum likelihood cost function for the two signals in Figures 1.1 and 1.4,
respectively.

This means that the parameters that are most likely, given the observation xk , are chosen as the
estimates. Bayes’ rule states that we may rewrite the posterior PDF as

p(θk|xk) = p(xk|θk)p(θk)

p(xk)
, (2.41)

and, since p(xk) is constant once xk has been observed, we may maximize p(xk|θk)p(θk) instead of
(2.40), or, more conveniently, its logarithm, i.e.,

θ̂k = arg max
θ k

ln p(xk|θk) + ln p(θk). (2.42)

The density p(θk) is referred to as a prior on θk as it incorporates prior information on the distribution
of the parameters, and this is exactly the strength of this approach. The estimator can be seen to
be comprised of two terms: a log-likelihood term and a log-prior term; in the case where p(θk) is
constant, the method essentially reduces to the maximum likelihood estimator.

As an example of its applications to pitch estimation consider the following: it has been noted
by many authors that the frequencies of the fundamental frequencies in speech and audio signals are
not uniformly distributed over the whole interval and this can be taken into account using the MAP
approach. Similarly, one may argue that the tones of music are more likely to occur at fundamental
frequencies equivalent to the tones of musical scales or tunings. There are, in other words, a myriad
of possible applications of this principle, but we will here consider only two.

First, we will consider the case of incorporating prior knowledge of the distribution of the
fundamental frequency in our estimation framework. Recall that the log-likelihood function of the
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observed signal for the case of white Gaussian noise is given by

ln p(xk|ωk) = −N ln π − N ln σ̂ 2
k − N. (2.43)

To be able to make use of the general MAP estimator in (2.42), we assume uniform priors on
the amplitudes and the noise variance, and that these parameters are mutually independent and
independent of the fundamental frequency. In that case, we can substitute the variance estimate
in (2.43) by

σ̂ 2
k = 1

N
‖xk − Zk

(
ZH

k Zk

)−1
ZH

k xk‖2
2. (2.44)

Next, we introduce a log-prior ln p(ωk) on the fundamental frequency. By combining these expres-
sion with the estimator in (2.42) and dropping all constant terms, we obtain

ω̂k = arg max
ωk

−N ln σ̂ 2
k + ln p(ωk) (2.45)

= arg max
ωk

−N ln ‖xk − Zk

(
ZH

k Zk

)−1
ZH

k xk‖2
2 + ln p(ωk). (2.46)

By writing out the 2-norm as in (2.34), we get

ω̂k = arg max
ωk

−N ln ‖xk − Zk

(
ZH

k Zk

)−1
ZH

k xk‖2
2 + ln p(ωk) (2.47)

≈ arg max
ωk

−N ln

(
xH
k xk − 1

N
xH
k ZkZH

k xk

)
+ ln p(ωk), (2.48)

where we have used the asymptotic properties of the Vandermonde matrix like in (2.29) to obtain
the last line. Using Parseval’s relation, the estimator can also be expressed in the frequency domain
as

ω̂k = arg max
ωk

−N ln

⎛⎝ 1

2π

∫ π

−π

|Xk(ψ)|2dψ − 1

N

Lk∑
l=1

|Xk(ωkl)|2
⎞⎠+ ln p(ωk). (2.49)

It can be seen from (2.49) that the log-prior acts like a penalty term in the optimization problem
associated with the estimation problem. For most speech and audio signals, a good log-prior would
be one that emphasizes low frequencies. Priors that would achieve this could be Laplacian, Rayleigh
or Maxwell distributions.

We proceed to examine the perturbed signal model introduced in (1.29) where the frequencies
of the harmonics are allowed to deviate from being integer multiples of the fundamental. More
specifically, we will use the following signal model

xk(n) =
Lk∑
l=1

ak,le
j (ωkl+�k,l)n + ek(n) (2.50)
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in combination with the MAP approach to solve the problem of finding the fundamental frequency.
We will assume uniform priors and independence of the fundamental frequency and the amplitudes.
Furthermore, we assume that the noise variance is known. The log-likelihood function is then given
by

ln p(xk|ωk, {�k,l}) = −N ln π − N ln σ 2
k − 1

σ 2
k

‖êk‖2
2, (2.51)

where

êk = xk − Zk

(
ZH

k Zk

)−1
ZH

k xk. (2.52)

To be able to solve the problem of finding the fundamental frequency of (2.50), we need to impose
some restrictions on the perturbations, {�k,l}. Specifically, if we allow these to become arbitrarily
large, any ωk will fit. Therefore, the traditional ML method cannot be used. We expect that most
of the perturbations will be rather small, but also that a few large ones may occur. A PDF that
describes such distributions is the Laplacian PDF and this is what we will use here. Assuming that
the perturbations are independent, their log-prior is given by

ln p({�k,l}) = −Lk ln 2γ − 1

γ

Lk∑
l=1

|�k,l| (2.53)

= −Lk ln 2γ − 1

γ
‖�k‖1, (2.54)

where �k = [ �k,1 . . . �k,Lk
] and 2γ 2 is the variance with γ > 0. By combining (2.51) and (2.54)

using (2.42), we obtain the following estimator:(
ω̂k, {�̂k,l}

)
= arg max

ωk,{�k,l}
ln p(xk|ωk, {�k,l}) + ln p({�k,l}) (2.55)

= arg max
ωk,{�k,l}

−N ln π − N ln σ 2
k − 1

σ 2
k

‖êk‖2
2 − Lk ln 2γ − 1

γ
‖�k‖1

= arg min
ωk,{�k,l}

1

σ 2
k

‖êk‖2
2 + 1

γ
‖�k‖1 (2.56)

= arg min
ωk,{�k,l}

‖êk‖2
2 + σ 2

k

γ
‖�k‖1. (2.57)

This is a joint nonlinear optimization problem over the fundamental frequency and all the per-
turbations. Regrettably, it appears to be nontrivial to solve this problem. An optimization problem
of the form in (2.57) is also known as a regularized optimization where the last term is referred
to as the regularization term and σ 2

k /γ as the regularization constant. It is worth noting that the
regularization constant depends not only on the variance of the perturbations but also on the noise
variance.
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Using the same asymptotic approximations as in (2.49), we can simplify the estimator some-
what, i.e., (

ω̂k, {�̂k,l}
)

= arg min
ωk,{�k,l}

‖êk‖2
2 + σ 2

k

γ
‖�k‖1 (2.58)

= arg max
ωk,{�k,l}

1

N

Lk∑
l=1

|Xk(ωkl + �l)|2 − σ 2
k

γ

Lk∑
l=1

|�k,l|. (2.59)

It is perhaps still not clear how to solve this problem, but by substituting �k,l by ψk,l − ωkl and
ωkl + �k,l by ψk,l and observing that the inner multidimensional nonlinear optimization problem
can be decoupled into a number of one-dimensional problems, we obtain

ω̂k = arg max
ωk

max{�k,l}
1

N

Lk∑
l=1

|Xk(ωkl + �k,l)|2 − σ 2
k

γ

Lk∑
l=1

|�k,l| (2.60)

= arg max
ωk

max{ψk,l}
1

N

Lk∑
l=1

|Xk(ψk,l)|2 − σ 2
k

γ

Lk∑
l=1

|ψk,l − ωkl| (2.61)

= arg max
ωk

1

N

Lk∑
l=1

max
ψk,l

(
|Xk(ψk,l)|2 − σ 2

k

γ
|ψk,l − ωkl|

)
. (2.62)

The last line shows that it is actually possible to solve the problem for a given candidate fundamental
frequency by simply finding the peak of a modified periodogram |Xk(ψk,l)|2 where a penalty term
has been added. The good thing is that the periodogram only has to be calculated once and the rest
is a matter of adding different penalty terms. Once the fundamental frequency has been determined,
the frequencies of the individual harmonics can be obtained as

ψ̂k,l = arg max
ψk,l

(
|Xk(ψk,l)|2 − σ 2

k

γ
|ψk,l − ω̂kl|

)
(2.63)

and the perturbations as �̂k,l = ω̂kl − ψ̂k,l .
It is curious to note that the estimators in (2.49) and (2.62) are different. Suppose that we

had used a similar prior on ωk in (2.49) as in (2.54). Then, (2.49) would consist of the logarithm of
the error norm and a regularization term consisting of merely a norm, as opposed to (2.62) where
both terms are simply scaled vector norms. Interestingly, the estimator in (2.62) is of the form
usually referred to as a regularized cost function in optimization, which is sometimes justified as a
MAP-like estimator. Also, the basic idea of the estimator proposed in [92], i.e., that amplitudes are
usually smooth over frequency, can also be cast in the framework of MAP estimation by introducing
a prior on the differences between the real amplitudes of adjacent harmonics. This can be realized
by introducing a so-called smoothing regularization term [14], although some additional work is
required, since this prior applies to the real amplitudes and not the complex ones.
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2.6 MAP MODEL AND ORDER SELECTION

We will now address the problem of choosing between different models and different model orders
from a statistical perspective.The problem of selecting between different model orders is a special case
of the general model selection problem, where the models under consideration are nested, meaning
that the simple models are special cases of the more complicated models. As has been discussed, the
problem of determining the model order and the number of sources is the key to solving the pitch
and multi-pitch estimation problems using parametric models.The model selection problem can, for
example, be used for determining which of the usual harmonic model or the inharmonicity model
should be used for a particular signal, whether there is just noise present and for taking missing
harmonics into account. The most commonly used methods for order selection are the Akaike
information criterion (AIC) [2] and the minimum description length criterion (MDL) [142, 143]
(see also [151]). These method comprise a “goodness of fit” term and an order dependent penalty
term that penalizes more complex models. It is easy to see why the penalty term is needed: a more
complex model is generally capable of fitting the data better than a simple one, even though the
simple model is the one that was used for generating the data. It was shown in [44] that linear
and nonlinear parameters should not be given equal weight, something which is easy to see for the
frequency estimation problem.

The subject of model and order selection is worthy of an entire book on its own, and we
will here only present some results and some brief arguments. More specifically, will derive model
and order selection criteria using the MAP approach of [43, 44] (see also [160]). For simplicity,
we will do this for the single-pitch case, i.e., based on xk even though the principles can be used
for multi-pitch signals too, for example in combination with some of the methods considered later
in this chapter. First, we introduce Zq = {0, 1, . . . , q − 1} which is the candidate model index set
with Mm, m ∈ Zq being the candidate models. Examples of candidate models that we would like
to be able to choose from are: white Gaussian noise, colored Gaussian noise, various numbers of
harmonically related sinusoids, sinusoids where the harmonics are not exact integer multiples of the
fundamental and so forth. The principle of MAP-based model selection is to choose the model that
maximizes the a posteriori probability of the model given the observation xk . It is easy to see that
this can be written as

M̂k = arg max
Mm,m∈Zq

p(Mm|xk) (2.64)

= arg max
Mm,m∈Zq

p(xk|Mm)p(Mm)

p(xk)
. (2.65)

Assuming that all the models are equally probable, i.e.,

p(Mm) = 1

q
(2.66)
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and noting that p(xk) is constant once xk has been observed, the MAP model selection criterion
reduces to

M̂k = arg max
Mm,m∈Zq

p(xk|Mm), (2.67)

which is the likelihood function when seen as a function of Mm. Since the various models also
depend on a number of unknown parameters, like amplitudes, phases, fundamental frequencies and
so forth, here denoted θk , we will integrate those out as

p(xk|Mm) =
∫
�k

p(xk|θk,Mm)p(θk|Mm)dθk. (2.68)

Note that the parameter vector θk depends on the model Mm, but we have here omitted this
dependency in the notation. It is not generally possible to obtain any simple analytic expression for
the integral in (2.68), especially for complicated nonlinear models such as ours, and we must seek
another way of evaluating this integral. One such way is numerical integration, but we will here
instead use the approach of [43, 44] based on the method of Laplace integration. Assuming that the
likelihood function is highly peaked around maximum likelihood estimates θ̂k , which is usually the
case for high N , (2.68) can be written as [43, 44] (see also [160])∫

�k

p(xk|θk,Mm)p(θk|Mm)dθk = (2π)Dk/2 det
(

Ĥk

)−1/2
p(xk|θ̂k,Mm)p(θ̂k|Mm), (2.69)

where Dk is the number of parameters and

Ĥk = − ∂2 ln p(xk|θk,Mm)

∂θk∂θT
k

∣∣∣∣∣
θ k=θ̂ k

(2.70)

is the Hessian of the log-likelihood function evaluated at θ̂k . Note that all parameters are real-
valued and that the expression for the real multivariate Gaussian PDF is therefore used. Taking the
logarithm of the right-hand side of (2.69) and sticking to tradition and ignoring terms of order
O(1) and Dk

2 ln (2π), which is negligible for large N , we get

M̂k = arg min
Mm,m∈Zq

− ln p(xk|θ̂k,Mm)︸ ︷︷ ︸
log-likelihood

+ 1

2
ln det

(
Ĥk

)
︸ ︷︷ ︸

penalty

, (2.71)

which can be used directly for selecting between various models and orders. Moreover, a vague prior
on p(θk|Mm) has been used to obtain (2.71) from (2.69) (see [43]). Now we will derive a criterion
for selecting the model order of the single-pitch model in (1.1) and detecting the presence of a
periodic source. To do this, observe that the Hessian defined in (2.70) is related to the Fischer
information matrix (1.33) in a simple way. Only, it is evaluated in θ̂k and no expectation is taken,
and it is, therefore, often referred to as the observed information matrix. It was shown in [160] that
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(2.70) can be used as an approximation (for large N ) of the Fischer information matrix, and, hence,
also vice versa, leading to the following approximation:

Ĥk ≈ −E

{
∂2 ln p(xk|θk)

∂θk∂θT
k

}∣∣∣∣∣
θ k=θ̂ k

(2.72)

The benefit of using (2.72) over (2.70) is that the former is readily available in the literature for
most models, something that also is the case for our model. The diagonal terms are therefore given
by (1.37)-(1.39) (the off-diagonal terms can be found in [23]), and we introduce the normalization
matrix (see [160])

KN =
[

N−3/2 0
O N−1/2I

]
(2.73)

where I is an 2Lk × 2Lk identity matrix.The first diagonal term is due to the fundamental frequency
with the remainder being due to the Lk amplitudes and phases. Using this normalization matrix, we
can write the determinant of the Hessian in (2.71) as

det
(

Ĥk

)
= det

(
K−2

N

)
det

(
KN ĤkKN

)
. (2.74)

And, finally, by observing that KN ĤkKN = O(1) and taking the logarithm of (2.74), we obtain

ln det
(

Ĥk

)
= ln det

(
K−2

N

)
+ ln det

(
KN ĤkKN

)
(2.75)

= ln det
(

K−2
N

)
+ O(1) (2.76)

= 3 ln N + 2Lk ln N + O(1). (2.77)

When the additive noise is a white complex Gaussian process, the log-likelihood function in (2.71)
is N ln σ 2

k (see Section 2.4) where σ 2
k then has to be replaced by an estimate for each candidate order

Lk , denoted as σ̂ 2
k (Lk). Finally, when substituting (2.77) into (2.71), we obtain the following simple

and useful expression for selecting the model order:

L̂k = arg min
Lk

N ln σ̂ 2
k (Lk)︸ ︷︷ ︸

log-likelihood

+ 3

2
ln N + Lk ln N︸ ︷︷ ︸

penalty

(2.78)

To determine whether any harmonics are present at all, i.e., to perform pitch detection, the above
cost function should be compared to the log-likelihood of the zero order model, meaning that no
harmonics are present if

N ln σ̂ 2
k (0) < N ln σ̂ 2

k (L̂k) + 3

2
ln N + L̂k ln N, (2.79)

where σ̂ 2
k (0) is simply the variance of the observed signal. The rule in (2.79) is essentially a pitch

detection rule as it detects the presence of a pitch. It can be seen that both (2.78) and (2.79) require the
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determination of the noise variance for each candidate model order. The criterion in (2.78) reflects
the tradeoff between the variance of the residual and the complexity of the model. For example, for
a high model order, the estimated variance will be low, but the number of parameters will be high.
Conversely, for a low model order, there are only few parameters but a high variance residual. The
MAP order estimation criterion in (2.78) is shown, for a given fundamental frequency, in Figure 2.4
along with the log-likelihood term N ln σ̂ 2

k (Lk) for a synthetic signal that consists of five harmonics.
It can be seen that MAP criterion leads to identification of the correct model order. In Figure 2.5,
fundamental frequency estimates obtained using a joint fundamental frequency and order estimator
based on (2.78) and (2.37) are shown in the bottom panel. The estimates were obtained from 30 ms
segments of the voiced speech signal having the spectrogram shown in the top panel. It can be seen,
that even when the number of harmonics varies greatly, the estimator is still accurate. It can also be
seen that the estimator is able to provide accurate estimates despite the rapid changes in pitch.
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Figure 2.4: MAP model selection criterion and log-likelihood term for a synthetic signal with Lk = 5.

Similar criteria can be obtained for other signal models, like the perturbed model or the
parametric inharmonicity model and the principles described here can be used for selecting between
the various models in a signal-adaptive manner, but one has to derive the exact criterion for each
such model. For linear models (in fact, for most models), the Hessian grows without bound as N

increases ([44, 160]). In that case, the determinant of the Hessian can be simplified as

det
(

Ĥk

)
= det

(
N

1

N
Ĥk

)
(2.80)

= det (NI) det

(
1

N
Ĥk

)
, (2.81)
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Figure 2.5: Voiced speech signal spectrogram (top) and pitch estimates obtained using a joint funda-
mental frequency and order estimator (bottom).

where the identity matrix is Dk × Dk (again with Dk being the number of real parameters). It then
follows that

ln det
(

Ĥk

)
= DK ln N + O(1), (2.82)

which can be used in combination with (2.71) to obtain order estimates.
In connection with the general problem of finding the number of sinusoids in noise using

statistical methods, the interested reader may also want to consult [55, 56, 68, 87] on the matter.
Later, we will show how subspace methods can be used for this.

2.7 FAST MULTI-PITCH ESTIMATION
We will now proceed to present a simple and computationally efficient method for multi-pitch
estimation based on the principles considered in this chapter. As we have seen, the maximum
likelihood estimator reduces to the minimizer of the 2-norm of the modeling error for white Gaussian
noise. The fundamental frequency estimator based on this principle is what we refer to as the
nonlinear least-squares (NLS) method. It turns out that the even when the noise is colored, the
NLS method is still asymptotically efficient meaning that it attains the CRLB for large N [153].
This means that for finding the fundamental frequency, we need not worry about the color of the
noise too much and this simplifies the problem significantly. However, it should be stressed, that for
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the problems of model and order selection the color of the noise is in fact important (see, e.g., [30]
for a demonstration of this) as it affects both the likelihood term and the penalty term in the MAP
method.

For convenience, we define a signal vector containing all N samples of the observed signal as
x = x(0) with M = N . The NLS estimates are obtained as the set of fundamental frequencies and
amplitudes that minimize the 2-norm of the difference between this signal vector and the signal
model, i.e.,

{ω̂k} = arg min{ak},{ωk}

∥∥∥∥∥x −
K∑

k=1

Zkak

∥∥∥∥∥
2

2

. (2.83)

Assuming that all the frequencies in {Zk} are distinct and well separated and that N  1, (2.83)
can be well-approximated by finding the fundamental frequency of the individual sources, i.e.,

ω̂k = arg min
ak,ωk

‖x − Zkak‖2
2 . (2.84)

The minimizations of (2.83) and (2.84) are equivalent only when the matrices {Zk} are orthogonal.
This is only the case for peculiar special cases for finite length signals, but is true asymptotically in N

as long as no harmonics overlap. Therefore, the two cost functions can be expected to yield similar
results for large N .

Minimizing (2.84) with respect to the complex amplitudes ak gives the estimates âk =(
ZH

k Zk

)−1 ZH
k x, which, when inserted in (2.84), yields

ω̂k = arg max
ωk

xH Zk

(
ZH

k Zk

)−1
ZH

k x (2.85)

≈ arg max
ωk

xH ZkZH
k x, (2.86)

where the last line follows from the assumption that N  1. In Figure 2.6, the cost function of the
estimator in (2.86) is shown for the mixture of the two signals in Figures 1.1 and 1.4 in additive
white Gaussian noise. The fundamental frequencies can be identified as the two largest peaks, and
it can be seen that the fundamental frequencies of the two sources, i.e., 205 Hz and 165 Hz, are,
in fact, found using this method. However, it can also be seen that the cost function is extremely
complicated containing multiple very sharp peaks.

The first estimator in (2.85) is exact for the single-pitch case where x is replaced by xk . The
resulting cost function can be written as ‖ZH

k x‖2
2 where the matrix product ZH

k x can be implemented
efficiently for a linear grid search over ωk using a FFT algorithm. An alternative interpretation of
the approximate NLS estimator is as follows: the cost function can be written as

∑L
l=1 ‖z(ωkl)

H x‖2
2,

which is the periodogram power spectral density estimate of x evaluated at and summed over the
harmonic frequencies ωkl.

Interestingly, the cost function in (2.86) can be also be written as

‖ZH
k x‖2

2 = Tr
[

ZH
k xxH Zk

]
. (2.87)
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Figure 2.6: Approximate maximum likelihood cost function for the mixture of the two signals in Fig-
ures 1.1 and 1.4 having fundamental frequencies 205 and 165 Hz. Note that some noise has been added.

We can instead take the expected value after replacing x by the sub-vector x(n), with M < N , in
(2.87), i.e.,

E
{
‖ZH

k x(n)‖2
2

}
= Tr

[
ZH

k RZk

]
, (2.88)

which results in the following estimator:

ω̂k = arg max
ωk

Tr
[

ZH
k RZk

]
. (2.89)

Instead of matching the signal model to a single snapshot of x as in (2.87), this estimator matches
the model to the covariance matrix. Later, we will see that this leads to a filterbank interpretation of
this method and an asymptotic relation to optimal filtering methods.

2.8 EXPECTATION MAXIMIZATION
The next algorithm is based on the Expectation Maximization (EM) algorithm [101], whose name
is somewhat of a misnomer. The EM algorithm is an iterative method for maximum likelihood
estimation involving several nonlinear parameters. The method presented here is based on [33],
which may be considered a special case of [51]. More specifically, [51] deals with the general problem
of estimating of the parameters of superimposed signals. The curious reader may also want to
consult [159] for an alternative explanation of the EM algorithm. In our case, the superimposed
signals are the periodic sources.
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We will now prove the convergence of the EM algorithm following [111] before exploring
the details for the problem at hand. The log-likelihood of the observed data is defined as

L(θ) = ln p(x; θ). (2.90)

We can rewrite this function by introducing the variable y, which we will then integrate out, as

ln p(x; θ) = ln
∫

p(x, y; θ)dy (2.91)

= ln
∫

p(x, y; θ)
p(y|x; θ̂)

p(y|x; θ̂)
dy, (2.92)

where we have multiplied and divided by p(y|x; θ̂) to obtain the last line. Next, we note that this
can be interpreted as a conditional expectation over y, i.e.,

ln
∫

p(x, y; θ)

p(y|x; θ̂)
p(y|x; θ̂)dy = ln Ey

{
p(x, y; θ)

p(y|x; θ̂)

∣∣∣∣x; θ̂

}
, (2.93)

where Ey

{
·
∣∣∣∣x; θ̂

}
is the conditional expectation over y conditioned on x. The key observation

regarding the convergence of the EM algorithm follows from Jensen’s inequality,, which states
that f (Ex{x}) ≥ Ex{f (x)} for a concave function f (x). Therefore, we may rewrite the conditional
expectation as

ln Ey

{
p(x, y; θ)

p(y|x; θ̂)

∣∣∣∣x; θ̂

}
≥ Ey

{
ln

(
p(x, y; θ)

p(y|x; θ̂)

) ∣∣∣∣x; θ̂

}
(2.94)

=
∫

ln

(
p(x, y; θ)

p(y|x; θ̂)

)
p(y|x; θ̂)dy. (2.95)

The right-hand side of the last line, we can simplify further as∫
ln

(
p(x, y; θ)

p(y|x; θ̂)

)
p(y|x; θ̂)dy =

∫
ln p(x, y; θ)p(y|x; θ̂)dy (2.96)

−
∫

ln p(y|x; θ̂)p(y|x; θ̂)dy, (2.97)

from which we define two quantities, namely

U(θ , θ̂) =
∫

ln p(y, x; θ)p(y|x; θ̂)dy (2.98)

= Ey

{
ln p(y, x; θ)

∣∣∣∣x; θ̂

}
(2.99)
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and

V (θ , θ̂) =
∫

ln p(y; θ)p(y|x; θ̂)dy (2.100)

= Ey

{
ln p(y; θ)

∣∣∣∣x; θ̂

}
. (2.101)

From these definitions and (2.94), it follows that

L(θ) ≥ U(θ , θ̂) − V (θ̂ , θ̂). (2.102)

Assuming continuity of the functions, we can choose a θ such that U(θ, θ̂) ≥ U(θ̂ , θ̂), implying
the following relation between the log-likelihood of θ̂ and θ:

L(θ) ≥ U(θ, θ̂) − V (θ̂ , θ̂) (2.103)
≥ U(θ̂ , θ̂) − V (θ̂ , θ̂) (2.104)
= L(θ̂). (2.105)

This means that by maximizing U(θ , θ̂) we also increase the log-likelihood of the observed data.
This is the fundamental idea of the EM algorithm.

We will now proceed to derive the specifics of the multi-pitch estimation problem based on
the parametric signal model. First, we write the observed signal model in (1.5) as a sum of K sources
in white additive Gaussian noise, i.e., x = ∑K

k=1 xk ∈ C
N , where the individual sources are given by

xk = Zkak + βke. (2.106)

Here, the noise source is arbitrarily decomposed into K sources as ek(n) = βke where βk ≥ 0 is
chosen so that

∑K
k=1 βk = 1. In the framework of the EM algorithm, the set of vectors {xk} is

referred to as the complete data, which is unobservable, while the observed data is the vector x.
These vectors are assumed to be jointly Gaussian. The two data sets are related through a many-to-
one mapping and this vector is therefore referred to as the incomplete data. The problem of interest
is then to estimate the complete data set, or in our case its parameters, from the incomplete data.
We start out by stacking our complete data in a vector y as

y =
[

xT
1 xT

2 · · · xT
K

]T
. (2.107)

We can now write the incomplete data as a function of this vector, i.e., x = Hy, where H is composed
of K identity matrices having dimensions N × N , i.e., H = [

I · · · I
]
. Note that his mapping is

completely arbitrary and that we could have picked others.
In each iteration, where (i) denotes the iteration number, the EM algorithm consists of two

steps. The first, termed the expectation- or E-step, is the calculation of the conditional expectation
of the log-likelihood function, i.e.,

U(θ , θ (i)) =
∫

ln p(y, x; θ)p(y|x; θ (i))dy, (2.108)
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where θ (i) is a vector containing the ith iteration estimates of the parameters and θ is the unknown
parameter vector that parameterizes the likelihood function. Note that the function in (2.108) may
be considered a function only of the complete data, since the observed data is completely specified
by the complete data. Using (2.108), updated parameters are found in the maximization- or M-step
by maximizing the above function, i.e.,

θ (i+1) = arg max
θ

U(θ , θ (i)). (2.109)

The two steps of the EM algorithm are particularly simple due to the noise term being Gaussian
and white (for additional details, we refer to [51] and the references therein). The E-step reduces to
the following where an estimate of the kth source in noise is obtained based on the parameters of
the previous iteration:

x̂(i)
k = Z(i)

k â(i)
k + βk

(
x −

K∑
k=1

Z(i)
k â(i)

k

)
, (2.110)

where Z(i)
k is the Vandermonde matrix constructed from the fundamental frequency estimate ω̂

(i)
k .

The problem of estimating the fundamental frequencies then becomes

ω̂
(i+1)
k = arg max

ωk

x̂(i)H
k Zk

(
ZH

k Zk

)−1
ZH

k x̂(i)
k (2.111)

≈ arg max
ωk

x̂(i)H
k ZkZH

k x̂(i)
k (2.112)

= arg max
ωk

Lk∑
l=1

|X̂(i)
k (ωkl)|2, (2.113)

where X̂
(i)
k (ω) is the Fourier transform of the source estimate, i.e., x̂(i)

k (n).The amplitudes are needed
to form the source estimates in (2.110) and can be found, given ω̂

(i+1)
k , as

â(i+1)
k =

(
Z(i+1)H

k Z(i+1)
k

)−1
Z(i+1)H

k x̂(i)
k , (2.114)

or using the asymptotic approximation â(i+1)
k ≈ 1

N
Z(i+1)H

k x̂(i)
k . The E-step in (2.110) and the M-

step (2.113) are then repeated until some convergence criterion is met. The M-step in (2.113) can
be seen to be identical to the NLS, except that (2.113) operates on the estimated source vector x̂(i)

k

rather than the observed signal vector x(n). This has also led authors to use the EM algorithm to
separate multiple speakers [18]. It is worth noting that refined estimates can be obtained in this
framework using a numerical optimization approach, like Newton’s method, if desired.

As can be seen, the EM algorithm splits the difficult joint estimation problem into a number
of much simpler estimation problems by estimating the individual sources. In each iteration of the
algorithm, the log-likelihood of the observed data is increased and the algorithm is guaranteed to
converge, at least to a local maximum, under mild conditions. The main difficulty in using the EM
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algorithm is in obtaining the initial parameter estimates required to estimate the individual sources
in (2.110). One possibility is to use the fast multi-pitch estimation method discussed in Section 2.7
or the method considered next.

2.9 ANOTHER RELATED METHOD
Many different methods for pitch estimation have been proposed in very different contexts and many
are based on the nonlinear least-squares method. One such method that seems to have received some
attention stems from the research community devoted to wavelets and sparse decompositions (also
known as atomic decompositions). It is known as the Harmonic Matching Pursuit [66]. It is based
on the following idea: define the residual at iteration i as

r(i)(n) = x(n) −
i∑

k=1

Lk∑
l=1

ak,le
jωkln, (2.115)

which can also be written as

r(i)(n) = r(i−1)(n) −
Li∑
l=1

ai,le
jωi ln. (2.116)

The idea is then to use this residual for estimating the model parameters iteratively for each source.
The residual can be thought of as a noise estimate, i.e., an estimate of e(n), that gets progressively
better as the number of iterations grows. It is initialized as r(0)(n) = x(n), i.e., we start out with
simply using the observed signal. The signal model is then built iteratively from this residual by
estimating the model parameters by solving the following problem:

min
ωi,ai

∥∥∥r(i−1) − Ziai

∥∥∥2

2
, (2.117)

where r(i) is a vector containing the residual. Solving first for the complex amplitudes ai , we get

âi =
(

ZH
i Zi

)−1
ZH

i r(i−1). (2.118)

Substituting this into (2.117), we get the fundamental frequency estimator

ω̂i = arg min
ωi

∥∥∥∥r(i−1) − Zi

(
ZH

i Zi

)−1
ZH

i r(i−1)

∥∥∥∥2

2
(2.119)

= arg max
ωi

r(i−1)H Zi

(
ZH

i Zi

)−1
ZH

i r(i−1) (2.120)

≈ arg max
ωi

r(i−1)H ZiZH
i r(i−1), (2.121)

where the last line is only a computationally efficient approximation.The model parameters are then
obtained for i = 1, . . . , K by first generating the residual using (2.116), then finding the fundamental
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frequency that minimizes the 2-norm of the modeling error using (2.120) and the amplitudes using
(2.118). It is a simple method that overcomes some, but not all, of the shortcomings of the fast
multi-pitch estimation scheme in Section 2.7. It has the desirable property that the 2-norm, or
whatever norm is used, decreases in each iteration, i.e., we are certain that in terms of modeling the
observed signal, we are getting a better model. However, this is not to be confused with obtaining
good estimates of the underlying parameters! Comparing the Harmonic Matching Pursuit to the
EM algorithm in Section 2.8, we see that these methods are similar in structure; in fact, it is easy to
see that the former algorithm is just a cruder version of the EM algorithm in which the parameters
of early iterations are not re-estimated during later iterations. In this sense, one might consider the
Harmonic Matching Pursuit a poor man’s EM algorithm (except for the use of {βk} in forming the
source estimates). It will result in the maximum likelihood estimates under the same conditions as
the fast multi-pitch estimator in Section 2.7, i.e., asymptotically in N for Gaussian noise. It should
also be noted that the method, as presented in [66], does not address the very important related
problem of model order estimation. This can be solved by combining it with the approach described
in Section 2.6.

2.10 HARMONIC FITTING
An alternative way to estimate the fundamental frequency is to first find the frequencies of the
unconstrained model using one of the many available methods for doing that and then find the
fundamental frequency that best match those frequencies.We will refer to such methods as harmonic
fitting methods. Such methods are based on a principle known as the EXIP (EXtended Invariance
Principle) [163] (see also [166]) where first the parameters of an unstructured models are found and
then fitted to a structured model. This methodology has been employed extensively in the literature
on pitch estimation (although its theoretical foundations have usually not been explored in detail),
and here we will present a representative method based on this principle. The method in question
is the so-called Markov-like weighted least-squares (WLS) method of [107] (see also the related
method [17]), and we will follow the derivation and definitions of that paper. Let {ψk,l} be the
set of unconstrained frequencies estimated from xk(n) and let {Ak,l} and {φk,l} be the respective
amplitudes and phases of the complex sinusoids having those frequencies. We will here assume that
Lk is known and that the noise ek(n) is white Gaussian having variance σ 2

k . Define

θ ′
k = [

Ak,1 φk,1 ψk,1 · · · Ak,Lk
φk,Lk

ψk,Lk

]T (2.122)

and
η′

k = [
ωk Ak,1 φk,1 · · · Ak,Lk

φk,Lk

]T
. (2.123)

The basic idea of the method is that there exists a full rank so-called selection matrix S′ ∈
Z

3Lk×(2Lk+1) that relates the vectors θ ′
k and η′

k as

θ ′
k = S′η′

k. (2.124)
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We can now use this relation to find an estimate of η′
k using parameters estimates θ̂

′
k obtained using

the unconstrained model as

η̂
′
k = arg min

η′
k

∥∥∥W′ 1
2

(
θ̂

′
k − S′η′

k

)∥∥∥2

2
, (2.125)

where W′ is a weighting matrix defined as

W′ = CRLB−1(θ̂
′
k), (2.126)

and CRLB−1(θ̂
′
k) is the inverse of the CRLB matrix. This estimator is known as the Markov-like

WLS estimator. The CRLB matrix for the unconstrained model is, fortunately, well-documented
in the literature and is asymptotically simple. Specifically, the matrix W′ becomes diagonal for large
N , i.e.,

W′ =
⎡⎢⎣ W′

1 0
. . .

0 W′
Lk

⎤⎥⎦ . (2.127)

where the individual sub-matrices contain the inverse of the CRLB matrix for the individual sinu-
soids of the unconstrained model (see, e.g., [88, 153]), i.e.,

W′
l = 1

σ 2
k

⎡⎢⎣ 2N 0 0
0 2NÂ2

k,l N2Â2
k,l

0 N2Â2
k,l

2
3N3Â2

k,l

⎤⎥⎦ . (2.128)

Since W′
l is also block diagonal, it follows that the weighting in (2.125) does not lead to refined

estimates of the amplitude and it may therefore be left out of our estimation problem. Consequently,
we define θk ∈ R

2Lk and ηk ∈ R
Lk+1 like θ ′

k and η′
k but without the amplitudes. Now we may

rewrite (2.124) as

θk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
2 0 0 · · · 0

...
...

0 0 0 · · · 1
Lk 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηk � Sηk. (2.129)

As before, we can state our estimator as the minimizer of the norm of the error between the left and
the right side of this expression, i.e.,

η̂k = arg min
ηk

∥∥∥W
1
2

(
θ̂k − Sηk

)∥∥∥2

2
, (2.130)
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where θ̂k is a set of initial estimates found based on the unconstrained model. In this case, W is a
block diagonal matrix constructed from the sub-matrices Wl defined as

Wl = 1

σ 2
k

[
2NÂ2

k,l N2Â2
k,l

N2Â2
k,l

2
3N3Â2

k,l

]
. (2.131)

Using these definitions,we can now simplify the cost function associated with our estimation problem
as follows:

J =
∥∥∥W

1
2

(
θ̂k − Sηk

)∥∥∥2

2
(2.132)

= 1

σ 2
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[
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ωkl
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k,l N2Â2
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N2Â2
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]([
φ̂k,l
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−
[
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ωkl
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= 1

σ 2
k

Lk∑
l=1

Â2
k,l([2N(φ̂k,l − φk,l) + N2(ψ̂k,l − lωk)](φ̂k,l − φk,l)

+
[
N2(φ̂k,l − φk,l) + 2

3
N3(ψ̂k,l − lωk)

]
(ψ̂k,l − lωk)). (2.133)

Since we are only interested in the fundamental frequency, we will now proceed to substitute the
phases {φk,l} by estimates obtained from a certain candidate frequency ωk . We do this by differen-
tiating the cost function above with respect to φk,l and equating the result with zero, whereby we
obtain

φk,l = φ̂k,l + N

2
(ψ̂k,l − lωk) (2.134)

for l = 1, . . . , Lk . By substituting this expression into (2.133), we get

J = N3

6σ 2
k

Lk∑
l=1

Â2
k,l

(
ψ̂k,l − lωk

)2
. (2.135)

By differentiating this expression by ωk and setting the resulting expression equal to zero, we obtain
the following estimate of the fundamental frequency:

ω̂k =
∑Lk

l=1 lÂ2
k,lψ̂k,l∑Lk

l=1 l2Â2
k,l

. (2.136)

This estimate is essentially closed-form, but it does require that the amplitudes and an initial set
of unconstrained frequencies are found. The method was demonstrated to have excellent statistical
performance approaching the CRLB for large SNRs and number of observations N [107]. In fact, it is
asymptotically equivalent to the maximum likelihood estimate even if the initial frequency estimates
are not statistically efficient, but only consistent as would be the case if the frequencies are found
using MUSIC [150], MODE [161, 162] or ESPRIT [147]. However, as was demonstrated in [23],
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the method is more sensitive to adverse conditions than methods that do not rely on intermediate
estimates of the unconstrained frequencies. It is easy to imagine that spurious frequency estimates
may cause large errors in estimates obtained using (2.136) and the same is likely to be the case for
similar methods based on harmonic fitting. Also, when some of the harmonics may be missing, the
optimization problem becomes complicated. It should be noted that the extension of this scheme to
the multi-pitch case is nontrivial, since it would require that the unconstrained model is partitioned
into sets of sinusoids belonging to different sources. For an overview of methods for finding the
unconstrained frequencies, see, e.g., [88, 135, 156].
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Figure 2.7: RMSE as a function of N with PSNR = 10 dB for one and two sources, respectively.

2.11 SOME RESULTS
In this section, we will report some basic experimental results regarding some of the statistical
methods considered in this chapter. The results are obtained from a number of experiments based
on Monte Carlo simulations using synthetic signals. In all experiments, signals were generated
using the model in (1.5) with a white complex Gaussian noise source and 100 iterations were run
for each free variable to estimate the RMSE. The experiments have been run for a single source
having ω1 = 0.2964 and for two sources where an additional source having fundamental frequency
ω2 = 0.2257. Both sources consist of three harmonics having unit amplitudes, i.e., Ak,l = 1, ∀ k, l

and uniformly distributed phases that are randomized in each iteration. In the experiments, we show
the performance of the methods of Sections 2.4, 2.7 and 2.8 as these are representative of common
pitch estimators. Note that the methods of Sections 2.4 and 2.7 are denoted ANLS for approximate
(or asymptotic) NLS in the figures. In Figure 2.7, the RMSE is shown as a function of the number of
samples N for PSNR = 10 dB for one and two sources, respectively. Similarly, the RMSE is shown
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Figure 2.8: RMSE as a function of the PSNR with N = 200 for one and two sources, respectively.

as a function of the PSNR for N = 200 in Figure 2.8. Also shown in the figures, is the single-pitch
CRLB, which is also a valid bound for the multi-pitch case, although an overly optimistic one when
the harmonics of several sources overlap. Generally, one would expect the bound to be attainable
when the harmonics of the sources are well-separated in frequency.The conclusions are clear: for the
single-pitch case, the ANLS is actually very accurate, in fact, it attains the CRLB for the intervals
of N and PSNRs tested here, so it can be claimed to be optimal under these conditions. However,
when a second source is introduced, it does not perform well at all, as it ignores all interaction effects
between the two sources. The EM algorithm, on the other hand, is able to mitigate this and attain
the CRLB for reasonably high N and PSNRs. To investigate how the methods are able to handle
closely spaced sources, the RMSE is shown as a function of the difference between the fundamental
frequencies, i.e., � = |ω1 − ω2|, in Figure 2.9 for N = 250 and PSNR = 10 dB. In this simulation,
ω1 is kept fixed at 0.2964 while ω2 is varied from 0.2257 to 0.2964. It can be seen that the ANLS
method does not perform well under these circumstances, while the EM algorithm, which is just an
iterative NLS method, is, in fact, able to attain the CRLB until the two fundamental frequencies are
too close. In Figure 2.10 and 2.11, the performance of the MAP-based order estimation criterion
in (2.78) is shown in the form of the percentage of correctly estimated model orders as a function of
N and the PSNR, respectively. The experimental conditions were as follows. A single-pitch signal
having a fundamental frequency of 0.8170 and five unit amplitude harmonics in white Gaussian
noise were used and 1000 Monte Carlo iterations were run. Note that the orders were found given
the true fundamental frequency and that the noise variance was estimated using the exact ML
formulation in (2.26). As can be seen from the two figures, the MAP criterion is able to find the
correct model order almost all the time under these conditions.
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Figure 2.10: Percentage of correctly estimated model orders as a function of N with PSNR = 10 dB.

2.12 DISCUSSION

The methods considered in this chapter have a number of desirable features. They are statistically
efficient when their exact formulations are used, i.e., without any use of approximations, meaning
that they attain the CRLB for a high number of samples. For the single-pitch case, the associated
optimization problem is one-dimensional nonlinear, something that, in principle, easily can be
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Figure 2.11: Percentage of correctly estimated model orders as a function of the PSNR with N = 500.

applied to real signals, although the complexity may be prohibitive for a large number of samples.
It is, however, more problematic for the multi-pitch case where the associated problem is multi-
dimensional. One can, of course, simply ignore that there are multiple sources, whereby one gets
the method of Section 2.7. However, as shown in [33], the statistical performance of this method
is, actually, quite poor, especially so for a low number of samples. This led to the use of the EM
algorithm, which, as was also shown in [33], performs excellently, even under adverse conditions
like when the fundamental frequencies of two sources are close. It does, however, suffer from two
major drawbacks: it requires a lot of iterations for such cases and is thus computationally complex,
and it has to be initialized appropriately or it will not converge to anything meaningful. It therefore
offers only a partial solution–and this problem turns even worse when also the model and order
selection problems are included. Another desirable property of the maximum likelihood methods
is that simple implementations based on FFTs can be obtained for the problem at hand when the
observation noise is white and Gaussian by asymptotic approximations that we know will get better
as the number of samples increase. Also, a number of the problems associated with pitch estimation
can be solved consistently within the framework of statistical estimation.This is, for example, the case
of model selection and order estimation. It is also fairly easy to incorporate prior knowledge in the
form of prior parameter distributions in the estimation process. When dealing with the estimation of
sinusoidal frequencies, it is also well-known that even if the noise is colored, the LS-based methods
are still asymptotically efficient, but the presence of colored noise may complicate the problems
of model and order selection [30]. Given a set of unconstrained frequencies, it is also possible to
combine these, in an optimal way, to form a fundamental frequency estimate, as we have seen in
Section 2.10. In fact, this method has excellent statistical performance, as reported in [107]. It does,
however, not perform well under adverse conditions (see [23]) as it turns out to be very sensitive to
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spurious frequency estimates. In the context of signal compression and modeling applications where
the signal is reconstructed from the parameters, the methods based on the white Gaussian noise
assumption also have the desirable property that they lead to a minimization of the reconstruction
error in the sense of the 2-norm.



57

C H A P T E R 3

Filtering Methods

3.1 INTRODUCTION
An intuitive idea for estimating the fundamental frequency is to filter the observed signal with a filter
whose frequency response contains peaks at the harmonic frequencies. The fundamental frequency
can then be found by maximizing the output power of the filter. Or, similarly, minimize the output
power of a set of filters having notches at those frequencies. One could, for example, use a number of
peak or notch filters for this, or perhaps design more flexible filters. Such a methodology has other
applications too. It can be used for extracting the periodic contents of a signal from the background
noise, i.e., signal enhancement or de-noising, or it can be used to extract one periodic source of many,
i.e., signal separation.

In this chapter, we will pursue these ideas and present a number of different methods based
on filtering. The first two methods are based on user designed filters, i.e., they are constrained to
particular kinds of filters. Then, we consider more complicated designs based on signal adaptive
optimal filters known from beamforming, i.e., spatial filtering and direction of arrival estimation.

The methods considered in this chapter can be applied both to single- and multi-pitch signals
and have been demonstrated to have good statistical properties, i.e., low variance and low bias, for
the multi pitch estimation problem, and we will, therefore, base our derivations on the signal x(n),
which may contain multiple periodic sources.

3.2 COMB FILTERING
That a signal is periodic means that some basic waveform repeats with a certain frequency. Mathe-
matically, we may express this as x(n) ≈ x(n − D) where D is the repetition or pitch period. From
this observation it follows that a measure of the periodicity can be obtained using a metric on e(n)

defined as
e(n) = x(n) − αx(n − D), (3.1)

where the constant α ∈ C is introduced to allow for some variation of the amplitude. Taking the
z-transform of this expression we get

E(z) = X(z) − αX(z)z−D (3.2)
= X(z)(1 − αz−D), (3.3)

which shows us that the process of matching a signal by a delayed version of itself can be seen as
a filtering problem, where the output of the filter is the modeling error e(n). More specifically, the
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transfer function H(z) of the filter that operates on x(n) can be seen to be

H(z) = E(z)

X(z)
= (1 − αz−D). (3.4)

This mathematical structure is known as a comb filter.The comb filtering approach has a rich history
for fundamental frequency estimation and related problems, such as enhancement [109, 120, 122].
Usually, however, the comb filter in (3.4) is not used as it is restricted to integer pitch periods and is
rather inefficient. Instead, one can derive more efficient methods based on notch filters. For a good
introduction to notch and comb filters, we refer the interested reader to [126]. Notch filters are filters
that cancel out, or attenuate, signal components at certain frequencies. In the complex case, these
typically have the following form (see [122]):

H(z) = 1 + βz−1

1 + ρβz−1
= P(z)

P (ρ−1z)
, (3.5)

where β is a complex coefficient and 0 < ρ < 1 is real. Since a periodic signal is comprised of
possibly many harmonics, we can use Lk such notch filters having notches at frequencies {ψi}. Such
a filter can be factorized into the following form

P(z) =
Lk∏
i=1

(1 − ejψi z−1) (3.6)

= 1 + β1z
−1 + β2z

−2 + . . . + βLk
z−Lk , (3.7)

which has zeros on the unit circle at the desired frequencies and complex coefficients {βi}. For the real
case, the notch frequencies would come in complex-conjugate pairs {±ψi} and the corresponding
coefficients would be real. The polynomial in (3.7) defines the numerator as in (3.5), while the
denominator is

P(ρ−1z) =
Lk∏
i=1

(1 − ρejψi z−1) (3.8)

= 1 + ρβ1z
−1 + ρ2β2z

−2 + . . . + ρLkβLk
z−Lk , (3.9)

where 0 < ρ < 1 is a parameter, which may be considered known or unknown, that leads to poles
located inside the unit circle at the same angles as those of P(z) but on a circle having a radius of ρ.
Typical values for ρ are 0.95–0.995 [122]. In our case, the desired frequencies are given by ψl = ωkl,
where ωk is considered an unknown parameter, and the zeros of (3.7) are then located with regular
intervals on the unit circle of the z-plane. In Figure 3.1, this is illustrated with the figure showing
the poles and zeros of the comb filter in the z-plane. The frequency response of the same filter is
plotted in Figure 3.2.

Note that in certain special cases, the polynomial defined in (3.7) reduces to a form similar to
that of (3.4), but those special cases are generally not of interest here. Combining (3.7) and (3.9)
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Figure 3.1: Z-plane representation of the zeros (circles) and poles (x-mark) of a comb filter for ρ = 0.95
and ωk = 0.6283 and Lk = 5.

in a manner similar to that of the notch filter in (3.5), we obtain the following filter:

H(z) = P(z)

P (ρ−1z)
= 1 + β1z

−1 + β2z
−2 + . . . + βLk

z−Lk

1 + ρβ1z−1 + ρ2β2z−2 + . . . + ρLkβLk
z−Lk

. (3.10)

By applying this filter for various candidate fundamental frequencies to our observed signal x(n), we
can obtain the filtered signal e(n) where the harmonics have been suppressed. This can be expressed
as

E(z) = X(z)H(z), (3.11)

which results in the following difference function from which the residual or error signal is readily
obtained:

e(n) = x(n) + β1x(n − 1) + β2x(n − 2) + . . . + βLk
x(n − Lk)

− ρβ1e(n − 1) − ρ2β2e(n − 2) − . . . − ρLkβLk
e(n − Lk). (3.12)

Finally, we can use this signal for defining the following metric:

J =
N∑

n=1

|e(n)|2, (3.13)

and this cost function can then be subject to optimization. The principle can be used for finding the
fundamental frequency by calculating (3.13) as a function of the unknown fundamental frequency,
i.e.,

ω̂k = arg min
ωk

J (3.14)
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Figure 3.2: Frequency response (magnitude) of the comb filter for ρ = 0.95 and ωk = 0.6283 and
Lk = 5.

and also ρ if desired. This is illustrated in Figure 3.3 where the cost function in (3.13) is shown
for a signal having a fundamental frequency of 0.3142 and five harmonics. The fundamental idea
of [122] is to use this principle in a recursive manner by minimizing (3.13) given an initial estimate
of the fundamental frequency and the model order. Hereby, a computationally efficient scheme that
can be used for either suppressing or enhancing the periodic contents of x(n) is obtained. Note that
in the scheme of [122], also the optimal ρ is found in the process. Interestingly, the comb filtering
approach has been used in EM-like iterations (see Section 2.8) for multi-pitch estimation in [18].

3.3 FILTERBANK INTERPRETATION OF NLS
Before moving on to signal adaptive optimal filter methods, we will explore the relation between the
maximum likelihood method for white Gaussian noise, i.e., the NLS method, and filtering methods.
First, we construct a vector from M consecutive time-reversed samples of the observed signal, i.e.,

x(n) = [ x(n) x(n − 1) · · · x(n − M + 1) ]T , (3.15)

with M ≤ N . Next, we introduce the output signal yk,l(n) of the lth filter for the kth source having
coefficients hk,l(n) as

yk,l(n) =
M−1∑
m=0

hk,l(m)x(n − m) = hH
k,lx(n), (3.16)

with hk,l being a vector containing the filter coefficients of the lth filter, i.e.,

hk,l = [
hk,l(0) · · · hk,l(M − 1)

]H
. (3.17)
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Figure 3.3: Cost function in (3.13) with ρ = 0.95 for a synthetic periodic signal.The estimate is obtained
as the fundamental frequency that minimizes the cost function, i.e., the output power of the comb filter.

Defining the covariance matrix as R = E
{

x(n)xH (n)
}
, the output power of the lth filter can be

written as

E
{
|yk,l(n)|2

}
= E

{
hH

k,lx(n)xH (n)hk,l

}
(3.18)

= hH
k,lRhk,l . (3.19)

The total output power of all the filters is thus

Lk∑
l=1

E
{
|yk,l(n)|2

}
=

Lk∑
l=1

hH
k,lRhk,l . (3.20)

Defining a matrix Hk consisting of the filters {hk,l} as

Hk = [
hk,1 · · · hk,Lk

]
, (3.21)

we can write the total output power as a sum of the powers of the indivudal subband signals, i.e.,

Lk∑
l=1

E
{
|yk,l(n)|2

}
= Tr

[
HH

k RHk

]
. (3.22)

The task is then to design or choose a filter or a filterbank, and this can be done in several ways.
Suppose we construct the filters from finite length complex sinusoids as

hk,l =
[

e−jωkl0 · · · e−jωkl(M−1)
]T

, (3.23)
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which is the same as the vector z(ωkl) defined earlier except for the complex conjugation.The matrix
Hk is, therefore, also identical to the Vandermonde matrix Zk , although we will here define it as1

Zk = [ z(ωk) · · · z(ωkLk) ], (3.24)

with z(ω) = [ 1 e−jω · · · e−jω(M−1) ]T .Then, we may write the total output power of the filterbank
as

Tr
[

HH
k RHk

]
= Tr

[
ZH

k RZk

]
(3.25)

= E
{

Tr
[

ZH
k x(n)xH (n)Zk

]}
(3.26)

= E
{

Tr
[

xH (n)ZkZH
k x(n)

]}
(3.27)

= E
{
‖ZH

k x(n)‖2
2

}
. (3.28)

By replacing the expectation operator by a finite sum over the realizations x(n), we get the FFT
method introduced earlier, averaged over the sub-vectors x(n). Furthermore, by using only one
sub-vector of length N , it becomes asymptotically equivalent (in N ) to the nonlinear least-squares
method and the white noise maximum likelihood method.

3.4 OPTIMAL FILTERBANK DESIGN
We will now look further into designing filters that are optimal given some criteria picked by the
designer and given a sequence of the observed signal. The next couple of methods are based on
equality constrained quadratic optimization, i.e., convex optimization. For an in-depth treatment of
this subject, we refer to two excellent textbooks in the area, namely [14] and [6].

An intuitive approach is to find a set of filters that pass power undistorted at specific frequen-
cies, in our case the harmonic frequencies, while minimizing the power at all other frequencies. This
problem can be formulated mathematically as the optimization problem:

min
Hk

Tr
[

HH
k RHk

]
s.t. HH

k Zk = I, (3.29)

where I is the Lk × Lk identity matrix. Furthermore, the matrix Zk ∈ C
M×Lk has a Vandermonde

structure and is constructed from Lk complex sinusoidal vectors as

Zk = [ z(ωk) · · · z(ωkLk) ], (3.30)

with z(ω) = [ 1 e−jω · · · e−jω(M−1) ]T . In words, the matrix contains the harmonically related
complex sinusoids. The constraints basically state that the Fourier transform of the filters have unit
gain at the harmonic frequencies. Using the method of Lagrange multipliers, the unconstrained

1 That Zk and z(ωkl) are the complex-conjugate of the usual definitions is due to the sub-vectors x(n) being time-reversed.
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optimization problem can be written as

L({hk,l}, {λl}) =
Lk∑
l=1

hH
k,lRhk,l −

(
hH

k,lZk − bT
l

)
λl (3.31)

with [bl]v = 0 for v �= l and [bl]v = 1 for v = l, i.e.,

bl = [ 0 · · · 0︸ ︷︷ ︸
l−1

1 0 · · · 0︸ ︷︷ ︸
Lk−l

] (3.32)

meaning that each individual filter is constrained to have unit gain for a certain harmonic frequency
and zero gain for the others. It is easy to see that this can be written using a more convenient form
as

L(Hk, �) = Tr
{

HH
k RHk

}
− Tr

{(
HH

k Zk − I
)

�
}

, (3.33)

where the matrix � contains all the Lagrange multiplier vectors λl associated with the various filters
of the filterbank, i.e.,

� = [ λ1 · · · λLK
]. (3.34)

By differentiation with respect to the filters and the Lagrange multipliers, we obtain that the gradient
of the composite cost function is

∇L(Hk, �) =
[

RHk − Zk�

−ZH
k Hk + I

]
(3.35)

=
[

R −Zk

−ZH
k 0

] [
Hk

�

]
+
[

0
I

]
. (3.36)

By setting these matrix equations equal to zero, we readily obtain that the Lagrange multipliers that
solve the original problem are

� =
(

ZH
k R−1Zk

)−1
, (3.37)

and that the optimal filterbank expressed in terms of the Lagrange multipliers is

Hk = R−1Zk�. (3.38)

By substituting the solution for the Lagrange multipliers, the filter bank matrix Hk solving (3.29)
can be seen to be given by

Hk = R−1Zk

(
ZH

k R−1Zk

)−1
. (3.39)

This data and frequency dependent filter bank can then be used to estimate the fundamental fre-
quency by treating the fundamental frequency as an unknown variable and maximizing the power
of the filter’s output. This approach leads us to the following estimator:

ω̂k = arg max
ωk

Tr

[(
ZH

k R−1Zk

)−1
]

. (3.40)
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This expression depends only on the covariance matrix and the Vandermonde matrix constructed
for different candidate fundamental frequencies. By tracking the covariance matrix (or its inverse)
over time, signal adaptive optimal filters can be found. Since the optimal filter design in (3.39) and
the estimator in (3.40) involve the inverse covariance matrix, R, this matrix is required to have rank
M , which is fulfilled for M < N/2 + 1. A practical way of implementing the estimator in (3.40) is
to first evaluate the cost function on a coarse grid and then use a numerical optimization method
for finding high-resolution estimates (see [33]).

In Figure 3.4, the output power of the optimal filterbank is shown as a function of the
fundamental frequency for the signals shown in Figures 1.1 and 1.4. It can be seen that the cost
function contains extremely narrow peaks and that the maximization of this cost function leads to
an accurate estimate of the fundamental frequency. The same thing is shown in Figure 3.5, only this
time for the mixture of the two signals in noise. From the last figure, it can be seen that the peaks
corresponding to the fundamental frequencies of the two sources stand out rather clearly, yet the
cost function is still very complicated.
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Figure 3.4: Cost function for the estimator based on the optimal filterbank obtain for the two signals in
Figures 1.1 and 1.4, respectively.

3.5 OPTIMAL FILTER DESIGN

There is an alternative formulation of the filter design problem that we will now examine further.
Suppose that we wish to design a single filter for the kth source, hk that passes the signal undistorted
at the harmonic frequencies and suppresses everything else. This filter design problem can be stated
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Figure 3.5: Cost function for the estimator based on the optimal filterbank for a mixture of the two
signals in Figures 1.1 and 1.4 having fundamental frequencies 205 and 165 Hz, respectively.

mathematically as

min
hk

hH
k Rhk s.t. hH

k z(ωkl) = 1, (3.41)

for l = 1, . . . , Lk.

It is worth noting that the single filter in (3.41) is designed subject to Lk constraints, whereas
in (3.29) the filter bank is designed using a number of constraints for each filter. Clearly, these two
formulations are related; we will return to this relation later on. First, we will derive the optimal filter.
Introducing the Lagrange multipliers λ = [

λ1 · · · λLk

]T , the Lagrangian dual function associated
with the problem stated above can be written as

L(hk, λ) = hH
k Rhk −

(
hH

k Z − 1T
)

λ (3.42)

with 1 = [ 1 · · · 1 ]T . Taking the derivative with respect to the unknown filter impulse response,
hk , and the Lagrange multipliers, we get

∇L(hk, λ) =
[

Rhk − Zkλ

−ZH
k hk + 1

]
(3.43)

=
[

R −Zk

−ZH
k 0

] [
hk

λ

]
+
[

0
1

]
. (3.44)

By setting this expression equal to zero, i.e.,∇L(hk, λ) = 0, and solving for the unknowns,we obtain,
as with the filterbank design, the optimal Lagrange multipliers for which the equality constraints
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are satisfied as
λ =

(
ZH

k R−1Zk

)−1
1 (3.45)

and the optimal filter as
hk = R−1Zkλ. (3.46)

By combining the last two expressions, we get the optimal filter expressed in terms of the covariance
matrix and the Vandermonde matrix Zk , i.e.,

hk = R−1Zk

(
ZH

k R−1Zk

)−1
1. (3.47)

The output power of this filter can then be expressed as

hH
k Rhk = 1H

(
ZH

k R−1Zk

)−1
1, (3.48)

which, as for the first design, depends only on the inverse of R and the Vandermonde matrix Zk . By
maximizing the output power, we readily obtain an estimate of the fundamental frequency as

ω̂k = arg max
ωk

1H
(

ZH
k R−1Zk

)−1
1. (3.49)

In Figure 3.6, the frequency response of the optimal filter in (3.48) is depicted for ωk = 0.3142 and
Lk = 5 for white noise, i.e., R = σ 2I, which leads to the optimal filter hk = Zk

(
ZH

k Zk

)−1 1. The
filter length is M = 50.
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Figure 3.6: Frequency response (magnitude) of the optimal filter for ωk = 0.3142 and Lk = 5 for white
noise.
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3.6 ASYMPTOTIC ANALYSIS
We will now relate the two filter design methods and the associated estimators in (3.40) and (3.49).
On the one hand, the optimization problem in (3.29) allows for more degrees of freedom, since
Lk filters of length M are designed, while (3.41) involves only a single filter. On the other hand,
the former design is based on L2

k constraints as opposed to the latter approach only involving Lk .
Comparing the optimal filters in (3.39) and (3.47), we observe that the latter can be written in terms
of the former as

hk = R−1Zk

(
ZH

k R−1Zk

)−1
1 (3.50)

= Hk1 =
L∑

l=1

hk,l, (3.51)

so, clearly, the two methods are related. Using this to rewrite the output power in (3.48), we get

hH
k Rhk =

(
L∑

l=1

hH
k,l

)
R

(
L∑

m=1

hk,m

)
, (3.52)

as opposed to

Tr
[

HH
k RHk

]
=

L∑
l=1

hH
k,lRhk,l (3.53)

for the filterbank approach. It can be seen that the single-filter approach includes the cross-terms
hH

k,lRhk,m, for l �= m, while these do not appear in (3.53). From this it follows that the cost functions
are generally different, i.e.,

1H
(

ZH
k R−1Zk

)−1
1 �= Tr

[(
ZH

k R−1Zk

)−1
]

(3.54)

hH
k Rhk �= Tr

[
HH

k RHk

]
, (3.55)

with equality if the cross-terms cancel out or are zero. This means that the two filters will result in
different output powers and thus possibly different estimates. Next, we will analyze the asymptotic
properties of the cost function

lim
M→∞ M1H

(
ZH

k R−1Zk

)−1
1, (3.56)

where M has been introduced to ensure convergence. For simplicity, we will in the following deriva-
tions assume that the power spectral density of x(n) is finite and non-zero. Although this is strictly
speaking not the case for our signal model, the analysis will nonetheless provide some insights into
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the properties of the filtering methods. In the analysis, we will make use of the following result (see,
e.g., [7])

lim
M→∞

(
AB

) =
(

lim
M→∞ A

)(
lim

M→∞ B
)

(3.57)

where it is assumed that the limits limM→∞ A and limM→∞ B exist for the individual elements of
A and B. Furthermore, it can be shown that(

lim
M→∞ A−1

)
=
(

lim
M→∞ A

)−1

. (3.58)

Applying (3.57) and (3.58) to the cost function in (3.56), we get

lim
M→∞ M1H

(
ZH

k R−1Zk

)−1
1 = 1H

(
lim

M→∞
1

M
ZH

k R−1Zk

)−1

1. (3.59)

We are now left with the problem of determining the limit

lim
M→∞

1

M
ZH

k R−1Zk. (3.60)

In doing so, we will make use of the asymptotic equivalence of Toeplitz and circulant matrices. For
a given Toeplitz matrix, here R, we can construct an asymptotically equivalent circulant M × M

matrix C in the sense that [65]

lim
M→∞

1√
M

‖C − R‖F = 0, (3.61)

where ‖ · ‖F is the Frobenius norm and the limit is taken over the dimensions of C and R. The
conditions under which this was derived in [65] apply to the noise covariance matrix when the
stochastic components are generated by a moving average or a stable auto-regressive process. More
specifically, the auto-correlation sequence has to be absolutely summable. The result also applies
to the deterministic signal components as ZkPkZk is asymptotically the EVD of the covariance
matrix of Zkak (except for a scaling–see also Section 1.5) and circulant. A circulant matrix C has the
eigenvalue decomposition C = U	UH where U is the Fourier matrix. Thus, the complex sinusoids
in Zk are asymptotically eigenvectors of R. This allows us to determine the limit as (see [65, 69])

lim
M→∞

1

M
ZH

k RZk =
⎡⎢⎣ �x(ωk) 0

. . .

0 �x(ωkLk)

⎤⎥⎦ , (3.62)

with �x(ω) being the power spectral density of x(n). Similarly, an expression for the inverse of R
can be obtained as C−1 = U	−1UH (again, see [65] for details). We now arrive at the following
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(see also [69] and [155]):

lim
M→∞

1

M
ZH

k R−1Zk =
⎡⎢⎣ �−1

x (ωk) 0
. . .

0 �−1
x (ωkLk)

⎤⎥⎦ . (3.63)

Asymptotically, (3.49) can, therefore, be written as

lim
M→∞ M1H

(
ZH

k R−1Zk

)−1
1 =

Lk∑
l=1

�x(ωkl), (3.64)

which is simply the sum over the power spectral density evaluated at the harmonic frequencies.
Similar derivations for the filterbank formulation yield

lim
M→∞ M Tr

[(
ZH

k R−1Zk

)−1
]

=
Lk∑
l=1

�x(ωkl), (3.65)

which is the same as (3.64). Note that for a finite M , the above expression still involves only the
diagonal terms because of the trace. However, the diagonal terms are then not the power spectral
density �x(ω) evaluated at certain points. Thus, from the above analysis, we conclude that the two
cost functions are different for finite M and may yield different estimates, but are asymptotically
equivalent. This equivalence is essentially due to

(
ZH

k R−1Zk

)−1 being asymptotically diagonal. In
[26], the two approaches were also reported to have similar performance although the output power
estimates deviate. Another interesting consequence of the analysis in this section is that the methods
based on optimal filtering yield results that are asymptotically equivalent to those of obtained using
the NLS method as described in Section 3.3.

3.7 INVERSE COVARIANCE MATRIX
The two methods based on optimal filtering involve the inverse covariance matrix. We will now
analyze the properties of the estimators further by finding a closed-form expression for the inverse
of the covariance matrix based on the covariance matrix model introduced in Section 1.5. For the
single-pitch case, the covariance matrix model is

Rk =E
{

xk(n)xH
k (n)

}
(3.66)

=ZkPkZH
k + Qk, (3.67)

and, for simplicity, we will use this model in the following. A variation of the matrix inversion lemma
states that for matrices A, B, C, D(

A + BCD
)−1 = A−1 − A−1B

(
C−1 + DA−1B

)−1
DA−1 (3.68)
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provided that the respective matrix inverses exist. It can be seen that (3.68) is of the same form
as (3.67). This provides us with a useful closed-form expression of the covariance matrix model, i.e.,

R−1
k =

(
ZkPkZH

k + Qk

)−1
(3.69)

= Q −1
k − Q −1

k Zk

(
P−1

k + ZH
k Q −1

k Zk

)−1
ZH

k Q −1
k . (3.70)

Note that P−1
k exists for a set of sinusoids having distinct frequencies and non-zero amplitudes and

so does the inverse noise covariance matrix Q −1
k as long as the noise has non-zero variance.

Now, to analyze (3.70) further, we evaluate the estimators for a candidate fundamental fre-
quency generating a Vandermonde matrix Ẑk .The cost functions of the estimators based on optimal
filtering then involve the following:

ẐH
k R−1

k Ẑk = ẐH
k Q −1

k Ẑk − ẐH
k Q −1

k Zk

(
P−1

k + ZH
k Q −1

k Zk

)−1
ZH

k Q −1
k Ẑk, (3.71)

and we will normalize this matrix and analyze its behavior as M tends to infinity, i.e.,

lim
M→∞

1

M
ẐH

k R−1
k Ẑk = lim

M→∞
1

M
ẐH

k Q −1
k Ẑk (3.72)

− lim
M→∞

1

M
ẐH

k Q −1
k Zk

(
lim

M→∞
1

M
P−1

k + lim
M→∞

1

M
ZH

k Q −1
k Zk

)−1

lim
M→∞

1

M
ZH

k Q −1
k Ẑk.

Noting that limM→∞ 1
M

P−1
k = 0, we obtain

lim
M→∞

1

M
ẐH

k R−1
k Ẑk = lim

M→∞
1

M
ẐH

k Q −1
k Ẑk (3.73)

− lim
M→∞

1

M
ẐH

k Q −1
k Zk

(
lim

M→∞
1

M
ZH

k Q −1
k Zk

)−1

lim
M→∞

1

M
ZH

k Q −1
k Ẑk.

Furthermore, by substituting Ẑk by Zk in (3.72), i.e., by evaluating the expression for the true
fundamental frequency, we get

lim
M→∞

1

M
ZH

k R−1
k Zk = lim

M→∞
1

M
ZH

k Q −1
k Zk − lim

M→∞
1

M
ZH

k Q −1
k Zk

×
(

lim
M→∞

1

M
ZH

k Q −1
k Zk

)−1

lim
M→∞

1

M
ZH

k Q −1
k Zk = 0, (3.74)

which shows that the expression tends to the zero matrix as M approaches infinity when the ex-
pression is evaluated for the true fundamental frequency. The normalized cost functions of the two
optimal filtering approaches in (3.64) and (3.65), therefore, can be though of as tending towards in-
finity.The results of [65, 155] can be applied directly to determine the limit limM→∞ 1

M
ẐH

k Q −1
k Ẑk ,

which occurs in several of the equations above. This is because the autocorrelation sequence of the
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noise processes ek(n) can safely be assumed to be absolutely summable and have a smooth and
non-zero power spectral density �ek

(ω) for common noise sources such as stable auto-regressive
and moving average processes. Therefore, the limit is

lim
M→∞

1

M
ẐH

k Q −1
k Ẑk =

⎡⎢⎣ �−1
ek

(ω̂k) 0
. . .

0 �−1
ek

(ω̂kLk)

⎤⎥⎦ . (3.75)

For the white noise case, the noise covariance matrix is diagonal, i.e., Qk = σ 2
k I. In this case, the

inverse of the covariance matrix model is

R−1
k = Q −1

k − Q −1
k Zk

(
P−1

k + ZH
k Q −1

k Zk

)−1
ZH

k Q −1
k (3.76)

= 1

σ 2
k

I − 1

σ 2
k

IZk

(
P−1

k + ZH
k

1

σ 2
k

IZk

)−1

ZH
k

1

σ 2
k

I (3.77)

= 1

σ 2
k

(
I − Zk

(
σ 2

k P−1
k + ZH

k Zk

)−1
ZH

k

)
. (3.78)

Next, we note that asymptotically, the complex sinusoids in the columns of Zk are orthogonal, i.e.,

lim
M→∞

1

M
ZH

k Zk = I. (3.79)

For large M (and thus N ), the inverse covariance matrix can be approximated as

R−1
k ≈ 1

σ 2
k

(
I − Zk

(
σ 2

k P−1
k + MIk

)−1
ZH

k

)
. (3.80)

It can be observed that the remaining matrix inversion involves two diagonal matrices that can be
rewritten as

σ 2
k P−1

k + MIk = diag

([
σ 2

k

A2
k,1

+ M · · · σ 2
k

A2
k,Lk

+ M

])
, (3.81)

which leads to the inverse(
σ 2

k P−1
k + MI

)−1 = diag

([
A2

k,1

σ 2
k + MA2

k,1

· · · A2
k,Lk

σ 2
k + MA2

k,Lk

])
(3.82)

� 	k. (3.83)

Finally, we arrive at the following expression, which is an asymptotic approximation of the inverse
of the matrix covariance model:

R−1
k ≈ 1

σ 2
k

(
I − Zk	kZH

k

)
. (3.84)

Interestingly, it can be seen that the inverse exhibits a similar structure as the covariance matrix
model.
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3.8 VARIANCE AND ORDER ESTIMATION
We will now show how to use these filters for estimating the variance of the signal once the harmonics
have been filtered out. This is useful for determining the number of harmonics using the methods
considered in Section 2.6. We will do this based on the filterbank design. First, we define an estimate
of the noise as

ê(n) = x(n) − yk(n), (3.85)

which we will refer to as the residual. Moreover, yk(n) is the sum of the input signal filtered by the
filterbank, i.e.,

yk(n) =
M−1∑
m=0

Lk∑
l=1

hk,l(m)x(n − m) (3.86)

=
M−1∑
m=0

hk(m)x(n − m), (3.87)

where hk(m) is the sum over the impulse responses of the filters of the filterbank. From the relation
between the single filter design and the filterbank design in (3.51), it is now clear that when used
this way, the two approaches lead to the same output signal yk(n). This also offers some insights
into the difference between the designs in (3.29) and (3.41). More specifically, the difference is in
the way the output power is measured, where (3.29) is based on the assumption that the power is
additive over the filters. We can now write the noise estimate as

ê(n) = x(n) −
M−1∑
m=0

hk(m)x(n − m) (3.88)

� gH
k x(n), (3.89)

where gk = [ (1 − hk(0)) − hk(1) · · · − hk(M − 1) ]H is the modified filter. From the noise esti-
mate, we can now estimate the noise variance for the Lkth order model as

σ̂ 2(Lk) = E
{
|ê(n)|2

}
= E

{
gH
k x(n)xH (n)gk

}
(3.90)

= gH
k Rgk. (3.91)

This expression is, however, not very convenient for a number of reasons: A notable property of the
estimator in (3.49) is that it does not require the calculation of the filter and that the output power
expression in (3.48) is simpler than the expression for the optimal filter in (3.47). To use (3.91)
directly, we would first have to calculate the optimal filter using (3.47), then calculate the modified
filter gk , before evaluating (3.91). Instead, we simplify the evaluation of (3.91) by defining the
modified filter as gk = b1 − hk where, as defined earlier,

b1 = [ 1 0 · · · 0 ]H . (3.92)
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Next, we use this definition to rewrite the variance estimate as

σ̂ 2(Lk) = gH
k Rgk = (b1 − hk)

H R(b1 − hk) (3.93)
= bH

1 Rb1 − bH
1 Rhk − hH

k Rb1 + hH
k Rhk. (3.94)

The first term can be identified to equal the variance of the observed signal x(n), i.e., bH
1 Rb1 =

E
{|x(n)|2}, and hH

k Rhk we know from (3.48). Writing out the cross-terms bH
1 Rhk using (3.47)

yields

bH
1 Rhk = bH

1 RR−1Zk

(
ZH

k R−1Zk

)−1
1 (3.95)

= bH
1 Zk

(
ZH

k R−1Zk

)−1
1. (3.96)

Furthermore, it can easily be verified that bH
1 Zk = 1H , from which it can be concluded that

bH
1 Rhk = 1H

(
ZH

k R−1Zk

)−1
1 (3.97)

= hH
k Rhk. (3.98)

Therefore, the variance estimate can be expressed as

σ̂ 2(Lk) = σ̂ 2(0) − 1H
(

ZH
k R−1Zk

)−1
1, (3.99)

where σ̂ 2(0) = E
{|x(n)|2}. The variance estimate in (3.99) conveniently features the same ex-

pression as in the fundamental frequency estimation criterion in (3.49). This means that the same
expression can be used for determining the model order and the fundamental frequency, i.e., the
approach allows for joint estimation of the model order and the fundamental frequency.The variance
estimate in (3.99) also shows that the same filter that maximizes the output power minimizes the
variance of the residual. A more conventional variance estimate could be formed by first finding the
frequency using, e.g., (3.49) and then finding the amplitudes of the signal model using least-squares
to obtain a noise variance estimate. Since the discussed procedure uses the same information in find-
ing the fundamental frequency and the noise variance, it is superior to the least-squares approach
in terms of computational complexity. Note that for finite filter lengths, the output of the filters
considered here are generally “power levels” and not power spectral densities (see [100]), which
is consistent with our use of the filters for estimating the variance. Asymptotically, the filters do
comprise power spectral density estimates [26].

By inserting (3.99) in (2.78), the model order can be determined using the MAP criterion for
a given fundamental frequency. By combining the variance estimate in (3.99) with (2.78), we obtain
the following fundamental frequency estimator for the case of unknown model orders (for Lk > 0):

ω̂k = arg min
ωk

min
Lk

N ln σ̂ 2(Lk) + 3

2
ln N + Lk ln N (3.100)

= arg min
ωk

min
Lk

N ln

(
σ̂ 2(0) − 1H

(
ZH

k R−1Zk

)−1
1
)

+ 3

2
ln N + Lk ln N, (3.101)
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where the model order is also estimated in the process. To determine whether any harmonics are
present at all, the criterion in (2.79) can be used. In Figure 3.7, a typical example of the cost
function in (3.101) is plotted along with the log-likelihood term N ln σ 2(Lk) for 100 samples of
a signal consisting of five harmonics having a fundamental frequency of 0.6283 in white Gaussian
noise. It can be seen that for Lk > 5, the log-likelihood term does not decrease significantly, and as
a result, the correct model order can be determined using the MAP criterion.
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Figure 3.7: MAP model selection criterion and log-likelihood term for a periodic signal having five
harmonics in white Gaussian noise.

3.9 FAST IMPLEMENTATION
Both the filterbank method and the single filter method require the calculation of the following
matrix for every combination of candidate fundamental frequencies and orders:(

ZH
k R−1Zk

)−1
, (3.102)

where the respective cost function are formed as either the trace or the sum of all elements of this
matrix. Since this requires a matrix inversion and matrix multiplications, all of cubic complexity, for
each pair, there is a considerable computational burden of using these methods. We will now present
an efficient implementation of the matrix inversion in (3.102). The inverse covariance matrix is less
of a concern for two reasons. Firstly, it has to be calculated only once per segment, and secondly,
many standard methods exist for updating the matrix inverse over time (see, e.g., [73]).

The fast implementation that we will now derive, is based on the matrix inversion lemma,
which states that for a matrix partitioned into matrices A ∈ C

m×m, B ∈ C
n×n, C ∈ C

m×n, D ∈
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C
n×m, the inverse can be calculated as:[

A C
D B

]−1

=
[

A−1 O
O O

]
+
[ −A−1C

I

] (
B − DA−1C

)−1 [ −DA−1 I
]
. (3.103)

To apply this principle to the calculation of (3.102), we first define the matrix composed of vectors
corresponding to the Lk − 1 first harmonics of the full matrix Zk as

Z(Lk−1)
k = [ z(ωk) · · · z(ωk(Lk − 1)) ] , (3.104)

and a vector containing the last harmonic Lk as

z(Lk)
k =

[
e−jωkLk0 · · · e−jωkLk(M−1)

]T
. (3.105)

Using these definitions, we can now rewrite (3.102) into a form similar to the left-hand side
of (3.103), i.e.,(

ZH
k R−1Zk

)−1 =
[

Z(Lk−1)H
k R−1Z(Lk−1)

k Z(Lk−1)H
k R−1z(Lk)

k

z(Lk)H
k R−1Z(Lk−1)

k z(Lk)H
k R−1z(Lk)

k

]−1

(3.106)

� 
Lk
, (3.107)

where 
Lk
is the matrix (3.102) calculated for an order Lk model. Next, define the scalar quantity

ξLk
= z(Lk)H

k R−1z(Lk)
k (3.108)

and the vector
ηLk

= Z(Lk−1)H
k R−1z(Lk)

k . (3.109)

We can now express the matrix in (3.102) in terms of the order (Lk − 1) matrix 
Lk−1, ξLk
, and

ηLk
using (3.103) as


Lk
=
[


Lk−1 0
O 0

]
+
[ −
Lk−1ηLk

1

]
1

ξH
Lk

− ηH
Lk


Lk−1ηLk

[
−ηH

Lk

Lk−1 1

]
(3.110)

=
[


Lk−1 0
O 0

]
+ 1

ξH
Lk

− ηH
Lk


Lk−1ηLk

[

Lk−1ηLk

ηH
Lk


Lk−1 −
Lk−1ηLk

−ηH
Lk


Lk−1 1

]
(3.111)

�
[


Lk−1 0
O 0

]
+ 1

βLk

[
ζLk

ζH
Lk

−ζLk

−ζH
Lk

1

]
. (3.112)

This shows once 
Lk−1 is known, 
Lk
can be obtained in a simple way.To use this result to calculate

the cost functions for the estimators (3.40) and (3.49) for a model order Lk , we proceed as follows.
For a given ωk , calculate the order 1 inverse matrix as


1 = 1

ξ1
, (3.113)
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and then for l = 2, . . . , Lk calculate the required quantities and update the inverse matrix, i.e.,

ξl = z(l)H
k R−1z(l)

k (3.114)
ηl = Z(l−1)H

k R−1z(l)
k (3.115)

ζ l = 
l−1ηl (3.116)
βl = ξl − ηH

l 
l−1ηl (3.117)


l =
[


l−1 0
O 0

]
+ 1

βl

[
ζ lζ

H
l −ζ l

−ζH
l 1

]
, (3.118)

using which the estimators in (3.40) and (3.49) along with the variance estimate in (3.99) can be
implemented. We note in passing that, as usual, all the inner products involving complex sinusoids
of different frequencies can be calculated efficiently using FFTs.
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Figure 3.8: RMSE as a function of N with PSNR = 10 dB for one and two sources, respectively.

3.10 SOME RESULTS
We will end this chapter by first investigating the statistical properties of the optimal filtering ap-
proaches. As was shown in [27], the filterbank and single filter approaches have similar performance,
although they appear to sometimes exhibit slightly different thresholding behaviour. For this rea-
sons, we will evaluate the performance of the filterbank method in Monte Carlo simulations using
synthetic signals generated from the ideal model in (1.5). The experiments are run for one and two
sources having fundamental frequencies ω1 = 0.2964 and ω2 = 0.2257, three harmonics each and
uniformly distributed phases and unit amplitudes, i.e., Ak,l = 1, ∀ k, l. In each of the following
experiments, 100 iterations were used to determine the RMSE for each point on the curves and
a covariance matrix and filter length of M = �N/5� were used. First, the performance has been
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Figure 3.9: RMSE as a function of the PSNR with N = 200 for one and two sources, respectively.
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Figure 3.10: RMSE as a function of the difference between the fundamental frequencies of two source,
i.e., � = |ω1 − ω2| for N = 250 and PSNR = 10 dB.

investigated as a function of N and the results are shown in Figure 3.8 for PSNR = 10 dB. It can
be seen that the optimal filtering method under investigation (the filterbank method, to be specific)
performs well for a single source, following but not attaining the CRLB. When a second source is
introduced, some thresholding behavior can, though, be observed. The same general observations
can be made of the RMSE as a function of the PSNR for N = 200 as seen in Figure 3.9; for one
source, it performs well for the entire test range, while for two sources, the method exhibits some
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thresholding behavior. In Figure 3.10, the performance is shown as a function of � = |ω1 − ω2|,
i.e., the difference between the fundamental frequencies for a multi-pitch signal containing two
sources with ω1 being fixed at 0.2964 and ω2 is varied from 0.2257 to 0.2964. The curve is obtain
for N = 250 and PSNR = 10 dB. It can be seen that the method performs quite well, in fact, quite
similarly to the ther other algorithms in terms of the thresholding behavior for closely spaced fre-
quencies. As was demonstrated in Section 2.11, the MAP criterion works extremely well under the
tested conditions, and we will now see what happens when the maximum likelihood noise variance
estimate is replaced by one obtained using the optimal filtering approach presented in Section 3.8
by carrying out the same experiment, as before for a given ωk . Note that, as we have seen, it does not
matter, which of the two optimal designs is used for this application. 1000 Monte Carlo iterations
were run for a single-pitch signal having fundamental frequency 0.8170, five harmonics and unit
amplitudes. A filter length and covariance matrix of size M = N/4 was used in these experiments.
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Figure 3.11: Percentage of correctly estimated model orders as a function of N with PSNR = 10 dB.

In Figure 3.11, the percentage of correctly estimated orders is shown as a function of the number of
samples N for PSNR = 40 dB. Curiously, it can be observed that the method exhibits bad perfor-
mance for low N . Since the only difference between this method and the one used in Section 3.8 is
the noise variance estimate, we conclude that this estimate appears to be poor for low N . Note that
this will also depends of the fundamental frequency. But for high N the method tends to estimating
the true model order with a high accuracy.The method can be observed to perform well as a function
of the PSNR in Figure 3.12 for a high number of samples, here N = 500, with the method breaking
down when approaching 0 dB. Similarly, the importance of the choice of the filter length M has been
investigated by keeping the number of observed samples N fixed at 200 samples and the PSNR at 40
dB while varying the M . The results are shown in Figure 3.13 and show that the method is indeed
somewhat sensitive to the filter length, especially compared to other methods (see the respective
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Figure 3.12: Percentage of correctly estimated model orders as a function of the PSNR with N = 500.

chapters). More specifically, it shows that M should not be chosen too close to M/2 or too low, and
our prior choice of M/4 appears to be a good one.
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Figure 3.13: Percentage of correctly estimated model orders as a function of M for N = 200 and with
PSNR = 40 dB.
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3.11 DISCUSSION
The filtering approach to fundamental frequency estimation is very intuitive and it is, therefore, not
surprising that such approaches have been used for a long time. As we have seen, the approximate
maximum likelihood method for single-pitch estimation can also be interpreted as a filtering method.
As a result, one would also expect these methods to have quite good statistical properties, and, as we
have seen, this also turns out to be the case. The methods are generally not optimal in an estimation
theoretical sense, i.e., they do not attain the CRLB, exhibiting a constant gap (in dB) as a function of
N and the PSNR [33] (for more on the performance of the comb filtering approach for the single-
pitch case, see [122]). They do, however, provide increasingly better estimates as a function of the
number of samples and PSNR, as expected. For the multi-pitch case, the optimal filtering approaches
have been shown to have some remarkable properties: it has excellent performance even under adverse
conditions, for example, for two closely spaced sources [33]. In fact, it performs almost as well as
the EM algorithm while being purely based on a single-pitch model, something that is not the case
for neither the EM algorithm or the MUSIC method2. This can be explained by some observations
that have been made in the application of similar optimal filters in array processing [106]. More
specifically, it has been observed that the optimization procedure will result in filters that seek to
suppress strong interfering sources, like other periodic sources. As we have seen, it is also possible to
use the filtering approaches to obtain order estimates (and joint fundamental frequency and order
estimates) by obtaining a variance estimate by filtering out the harmonics for different model orders
and using statistical order estimation methods. However, it has been reported in [27] that this results
in somewhat poor order estimates for a low number of samples. The major drawback of the optimal
filtering approaches is the associated computational complexity. But as we have seen, it is possible
to implement the methods recursively over the model order. Additionally, one can also use the FFT
for calculating the cost function efficiently. In practice, it can sometimes also be quite difficult to
locate the global extrema of the cost functions associated with the optimal filtering approaches as
the peaks may be extremely narrow for large N and M . This requires that the cost functions are
evaluated on a very fine grid and it may also be a challenge to perform numerical optimization using
gradient or Hessian methods. Another drawback is that it is not always obvious how to incorporate
prior knowledge in a consistent way, something that was easily done for the statistical methods.

2The MUSIC method depends on knowledge of the total number of sinusoids.
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Subspace Methods

4.1 INTRODUCTION

In subspace methods, the full space is divided into a subspace known as the signal subspace, that spans
the space of the signal of interest, and its orthogonal complement, the so-called noise subspace. The
properties of these subspaces are then exploited for various estimation and identification tasks (e.g.,
[71, 86, 98, 173, 174]). Subspace methods have a rich history in sinusoidal parameter estimation and
are among the most eloquent estimators available today. Especially for the estimation of sinusoidal
frequencies, a ubiquitous problem occurring in spectral estimation and direction-of-arrival problems
in array processing, these methods have proven successful during the past three decades. Perhaps the
most prominent subspace methods for frequency estimation are the Multiple Signal Classification
(MUSIC) method [12, 150] and the Estimation of Signal Parameters by Rotational Invariance
Techniques (ESPRIT) method of [147], while the earliest example of such methods is perhaps [128].
Fundamental frequency estimation, i.e., the problem of estimating the fundamental frequency of a set
of harmonically related sinusoids, is an important component in many speech and audio processing
systems. Until recently, however, this problem has not received much attention in the literature on
subspace-based estimation. In [23], a joint fundamental frequency and order estimator based on the
subspace orthogonality property of MUSIC was proposed and its application to analysis of speech and
audio signals was demonstrated. In later publications, this method was extended to the multi-pitch
case [21, 33] and the perturbed model [34]. In this chapter, we will present some subspace methods
for fundamental frequency and order estimation along with the required background material.

4.2 SIGNAL AND NOISE SUBSPACE IDENTIFICATION

We start out this section, in which we will present some fundamental definitions, relations and
results, by defining x(n) as a signal vector containing M samples of the observed signal, i.e., x(n) =
[ x(n) x(n + 1) · · · x(n + M − 1) ]T . Define the M × L Vandermonde matrix Z as consisting of
the Vandermonde matrices for all the sources, i.e.,

Z = [
Z1 · · · ZK

]
, (4.1)

where L = ∑K
k=1 Lk , and similarly a vector containing the complex amplitudes as

a(n) = [
aT

1 (n) · · · aT
K(n)

]T
. (4.2)



82 4. SUBSPACE METHODS

In the following, we assume that the all the frequencies are distinct. This is the case as long as the
sources do not share any harmonics. We will start out by using our model of the observed signal, i.e.,

x(n) =
K∑

k=1

Zkak(n) + e(n) (4.3)

= Za(n) + e(n), (4.4)

with Zk ∈ C
M×Lk and ak(n) ∈ C

Lk . Assuming that E
{

e(n)eH (n)
} = σ 2I and that the sources are

statistically independent, the covariance matrix R ∈ C
M×M (with L < M) of the signal in (4.4) can

be shown to be

R =E
{

x(n)xH (n)
}

(4.5)

=
K∑

k=1

ZkPkZH
k + σ 2I (4.6)

=ZPZH + σ 2I (4.7)

where E
{

ak(n)aH
k (n)

} = Pk . It is worth noting that the decomposition in (4.6) does not depend
on the noise being Gaussian, only on it being white. Assuming that the elements of ak(n) are zero
mean and statistically independent, the matrix Pk becomes diagonal, i.e.,

Pk = diag
(
[ A2

k,1 · · · A2
k,Lk

]
)

(4.8)

and
P = diag ([ P1 · · · PK ]) . (4.9)

Also, here σ 2 denotes the variance of the additive noise, e(n), and I is the M × M identity matrix.
It is important to realize that

∑K
k=1 ZkPkZH

k has rank L = ∑K
k=1 Lk , since all the columns of Z

are linearly independent when the frequencies are distinct. Let

R = U�UH (4.10)

be the eigenvalue decomposition (EVD) of the covariance matrix. Since the covariance matrix is
positive definite and symmetric by construction, U contains the M orthonormal eigenvectors of R,
i.e.,

U = [
u1 · · · uM

]
, (4.11)

and � is a diagonal matrix containing the corresponding positive eigenvalues, λk , ordered as λ1 ≥
λ2 ≥ . . . ≥ λM . Additionally, it can be seen from (4.6) that λL+1 = . . . = λM = σ 2 due to the noise
being white.

The subspace-based methods are based on a partitioning of the eigenvectors into a set be-
longing to the signal subspace Z , spanned by the columns of Z, and an orthogonal complement
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known as the noise subspace G. Let S be formed from the eigenvectors corresponding to the L most
significant eigenvalues, i.e.,

S = [
u1 · · · uL

]
. (4.12)

We denote the subspace that is spanned by the columns of S R (S) and henceforth refer to it as the
signal subspace. Similarly, let G be formed from the eigenvectors corresponding to the M − L least
significant eigenvalues, i.e.,

G = [
uL+1 · · · uM

]
, (4.13)

where R (G) is referred to as the noise subspace. Using these definitions, we can now manipulate
the EVD in (4.10) to obtain U

(
� − σ 2I

)
UH = ∑K

k=1 ZkPkZH
k and partition the EVD as

R = [
S G

] ([ � 0
0 0

]
+ σ 2I

)[
SH

GH

]
, (4.14)

where � = diag
([ λ1 − σ 2 · · · λL − σ 2 ]) is a diagonal matrix containing the eigenvalues of the

deterministic parts of the covariance matrix. From this it is clear that we can express the covariance
matrix of all the sinusoids as

S�SH =
K∑

k=1

ZkPkZH
k . (4.15)

It must be stressed that the space spanned by the L most significant eigenvectors is the same space
that is spanned by all the sinusoids and that a subset of either is not generally equivalent to a subset
of the other.

4.3 SUBSPACE PROPERTIES
From equation (4.15), it is easy to see that the columns of S, i.e., the signal subspace eigenvectors,
span the same space as the columns of Z and that the columns of Z, therefore, also are orthogonal
to the columns of G, i.e., the noise subspace eigenvectors. Mathematically, this can be written as

ZH G = 0 (4.16)

and for sub-matrices corresponding to the individual sources as

ZH
k G = 0 ∀k. (4.17)

This is what we will refer to as the subspace orthogonality property.The idea of the MUSIC algorithm
[12, 150] and the later refinement root-MUSIC [11] (see also [77]) is to exploit this relation for
estimation purposes as follows: we can find an estimate of the matrix G from the EVD of the sample
covariance matrix for an observed signal. Given this matrix, we can find the nonlinear parameters
that characterize the columns of Z as the parameters that generate a Z that is orthogonal to G.
The remaining question is then how to measure orthogonality in a multi-dimensional space in a
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well-defined way. We will return to this question later on. The statistical properties of MUSIC for
a known order have been studied extensively in [50, 157, 158].

There is a distinct property of the signal model considered in this book that can be used for
estimation purposes and we will now explore this in more detail. By post-multiplication of (4.15)
by S, the following relation between the signal subspace eigenvectors and the Vandermonde matrix
can be established (see [156]):

S = ZB (4.18)

with B = PZH S�−1. Note that this expression can be used directly for finding parameter estimates
(see, e.g., [98]). Next, we define the matrices Z and Z, constructed by removing the last and first
rows of Z, i.e.,

Z = [
I 0

]
Z and Z = [

0 I
]

Z, (4.19)

where I is now the (M − 1) × (M − 1) identity matrix. Similarly, we define from the signal subspace
eigenvectors S,

S = [
I 0

]
S and S = [

0 I
]

S. (4.20)

From these definitions and (4.18), the matrices S and Z can be related through the matrix B as
S = ZB. Then, due to the particular structure of Z, known as the shift-invariance property, the
following can be seen to hold:

Z = ZD and S = S
, (4.21)

with D = diag
([ ejψ1 · · · ejψL ]). The matrix relating S to S can be written as


 = B−1DB. (4.22)

The matrices 
 and D are thus related by a similarity transform. Note that it is not generally possible
to relate the sub-matrices Zk associated with the various sources to sub-matrices in S and the relation
considered here thus applies only to the full matrix Z.

4.4 PRE-WHITENING
Perhaps the biggest weakness of the subspace methods is that they rely on the noise being white.
If the noise is not white, the decomposition of the covariance matrix and the partitioning of the
eigenvectors into signal and noise subspaces may not hold, and, consequently, the signal and noise
subspace eigenvectors cannot easily be identified from the eigenvalues.This is especially troublesome
in connection with speech and audio signals where stochastic signal components are inherent parts
of the signal and change all the time, often abruptly. In the array processing literature, where many of
the subspace methods were first published, this problem is often suggested solved by pre-whitening
of the signal, i.e., by applying a filter that makes the stochastic signal parts white. Consider the signal
model in (4.4) for the case where the noise is not white. In that case, the covariance matrix model is

R =E
{

x(n)xH (n)
}

(4.23)

=ZPZH + Q , (4.24)
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where Q = E{e(n)eH (n)} is the noise covariance matrix. Let

Q = V	VH (4.25)

be the EVD of this matrix and define the matrix W as

W = 	− 1
2 VH . (4.26)

By multiplying the observed signal vectors by this matrix, we get

E
{

Wx(n)xH (n)WH
}

=WE
{

x(n)xH (n)
}

WH (4.27)

=WZPZH WH + WQWH . (4.28)

By substituting the noise covariance matrix by its EVD, we get

WQWH = WV	VH WH (4.29)

= 	− 1
2 VH V	VH V	− 1

2 = I. (4.30)

So, by multiplying the input signal vector by the matrix W, the noise covariance matrix is reduced to
an identity matrix. One, therefore, refers to this matrix as a pre-whitening matrix. A computationally
less demanding alternative to the pre-whitener in (4.26) is the Cholesky factor. Since covariance
matrices are symmetric and positive definite, so are their inverses and the Cholesky factorization of
the inverse noise covariance matrix Q −1 is (see, e.g., [64])

Q −1 = LLH , (4.31)

where L is an M × M lower triangular matrix also known as the Cholesky factor. This matrix can
also be used for pre-whitening by pre-multiplying x(n) by LH as

LH QL = LH L−H L−1L = I, (4.32)

and this is preferable, since, once the pre-whitener has been calculated, the matrix-vector product
LH x(n) can be more efficiently implemented than Wx(n) due to the triangular structure of L. For
the special case of pre-whitening for rank-deficient covariance matrices, we refer the reader to [72].

The principles discussed here work well when the noise is stationary and where an optimal pre-
whitener can be found from measurements when only the noise is present, but as already mentioned
this may not be the case for speech and audio signals. It may still be possible, though, to apply a
fixed pre-whitening filter that works well on average.The optimal pre-whitener, though, is obviously
adaptive. An example of a pre-whitening system for audio signals can be found in [137]. It should
also be noted that, although described here in the context of subspace methods, the principle can be
applied to also the statistical methods and the filtering methods to obtain simpler estimators.
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4.5 RANK ESTIMATION USING EIGENVALUES
We will now show how to determine the dimensions of the signal and noise subspaces from the
eigenvalues of the sample covariance matrix, i.e., the ranks of the matrices Z and G. In the case of
single-pitch estimation, this amounts to determining the number of harmonics, since rank(S) = Lk ,
while for the multi-pitch case, it is equivalent to estimating the total number of harmonics for all
sources as rank(S) = ∑K

k=1 Lk = L. We will do this by first deriving the log-likelihood function
based on the eigenvalues of the covariance matrix and later show how to use this for finding the
subspace dimension. Assuming that our signal vector x(n) is Gaussian and zero-mean, its likelihood
function is given by

p(x(n); ζ ) = 1

πM det(R)
e−xH (n)R−1x(n), (4.33)

where ζ contains our parameter set, here consisting of the signal subspace eigenvalues and eigen-
vectors along with the noise variance. For a collection of G such independent vectors, the likelihood
function is

p({x(n)}; ζ ) =
G−1∏
n=0

p(x(n); ζ ) (4.34)

= 1

πGM det(R)G
e−∑G

n=0 xH (n)R−1x(n). (4.35)

By taking the logarithm, we obtain the log-likelihood function

L(ζ ) = ln p({x(n)}; ζ ) (4.36)

= −GM ln π − G ln det(R) −
G−1∑
n=0

xH (n)R−1x(n). (4.37)

By noting that xH (n)R−1x(n) = Tr{xH (n)R−1x(n)}, we may rewrite this into

L(ζ ) = −GM ln π − G ln det(R) − Tr

{
G−1∑
n=0

xH (n)R−1x(n)

}
(4.38)

= −GM ln π − G ln det(R) − Tr

{
R−1

G−1∑
n=0

x(n)xH (n)

}
. (4.39)

Next, we identify
∑G−1

n=0 x(n)xH (n) as the sample covariance matrix R̂ scaled by G, whereby we get

L(ζ ) = −GM ln π − G ln det(R) − G Tr
{

R−1R̂
}

. (4.40)

From the derivations of the covariance matrix model and its eigenvalue decomposition in the previous
section, we know that for a candidate signal subspace dimension L′, the covariance matrix can be
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written as

R′ =
L′∑

v=1

(λv − σ 2)uvuH
v + σ 2I. (4.41)

The maximum likelihood estimates of the eigenvalues and the eigenvectors of (4.41) are obtained
from the EVD of the sample covariance matrix [5] (see also [13]), here denoted {λ̂v} and {ûv},
respectively. For a candidate signal subspace dimension L′, we readily obtain an estimate of the noise
variance from the eigenvalues as

σ̂ 2 = 1

M − L′
M∑

v=L′+1

λ̂v. (4.42)

Substituting these into our expression for the log-likelihood function, we get

L(ζ ) = −GM ln π − G ln det(R′) − G Tr
{

R′−1R̂
}

(4.43)

= −GM ln π − G ln det(R′) − GM, (4.44)

since

Tr
{

R′−1R̂
}

= L +
M∑

v=L′+1

λ̂v

σ̂ 2
= L +

∑M
v=L′+1 λ̂v

1
M−L′

∑M
v=L′+1 λ̂v

(4.45)

= L + (M − L)

∑M
v=L′+1 λ̂v∑M
v=L′+1 λ̂v

= M (4.46)

and finally

L(ζ ) = −GM ln π − G ln

⎛⎝ L′∏
v=1

λ̂v

M∏
v=L′+1

σ̂ 2

⎞⎠− GM (4.47)

= −GM ln π − G ln

⎛⎜⎝ L′∏
v=1

λ̂v

⎛⎝ 1

M − L′
M∑

v=L′+1

λ̂v

⎞⎠M−L′⎞⎟⎠− GM, (4.48)

which is the log-likelihood function expressed as in [13]. To arrive at the expression used in [177],
we first observe that the determinant may also be written as

L′∏
v=1

λ̂v =
∏M

v=1 λ̂v∏M
v=L′+1 λ̂v

= det(R′)∏M
v=L′+1 λ̂v

. (4.49)
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Inserting this into the log-likelihood function leads us to the following:

L(ζ ) = −GM ln π − G ln

⎛⎜⎝ ∏M
v=1 λ̂v∏M

v=L′+1 λ̂v

⎛⎝ 1

M − L′
M∑

v=L′+1

λ̂v

⎞⎠M−L′⎞⎟⎠− GM (4.50)

= −GM ln π − G ln
M∏

v=1

λ̂v − G(M − L′) ln
1

M−L′
∑M

v=L′+1 λ̂v∏M
v=L′+1 λ̂

1/(M−L′)
v

− GM. (4.51)

Since
∏M

v=1 λ̂v is constant the log likelihood function depends only on the ratio between the arith-
metic and geometric means of the eigenvalues {λ̂v}Mv=L′+1 as shown in [177]. This expression can
now be used for determining the dimension of the signal subspace by combining the log-likelihood
function with an appropriate penalty function such as the AIC or the MDL criterion. But before
we can do this, we need to determine the number of free parameters in our estimation problem
(see [177] for details on this). Here, these consist of the L′ real eigenvalues, the noise variance, and
L′ complex eigenvectors of length M . This amounts to L′ + 1 + 2ML′ degrees of freedom, but due
to the eigenvectors being constrained to unit norm and orthogonal, we are left with L′(2M − L′) + 1
degrees of freedom. Using the AIC or MDL in combination with (4.51), we obtain the following
cost function for determining the dimension of the signal subspace:

J (L′) = −L(ζ ) + (L′(2M − L′) + 1)ν (4.52)

where

ν =
{

2 for AIC
1
2 ln N for MDL

(4.53)

By minimizing this cost function, the signal subspace dimension and thus the number of sinusoids
can be determined from the eigenvalues of the sample covariance matrix. This is illustrated in
Figures 4.1 and 4.2 where the eigenvalues of a typical sample covariance matrix are shown for a
signal containing five harmonics and the associated log-ratio between the arithmetic and geometric
means of the eigenvalues and the MDL cost function are shown, respectively. Note that additive
constants have been ignored.

It should be noted that AIC results in overestimation of the model order, meaning that it will
result in a model order that is higher than the true one. On the other hand, it can be shown that the
MDL is consistent [108], but both methods may fail in the presence of colored noise [178]. We refer
the interested reader to [108] for a detailed discussion and analysis of the behavior of such criteria.

4.6 ANGLES BETWEEN SUBSPACES
As we have seen, the orthogonality property states that for the true parameters, the matrix Z ∈
C

M×L is orthogonal to the noise subspace eigenvectors in G ∈ C
M×M−L. The question is then
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Figure 4.1: Empirical eigenvalues of a typical sample covariance matrix.The signal subspace has dimen-
sion five in this example.

how to measure the extend to which this relation holds. The concept of orthogonality is, of course,
intimately related to the concept of angles, but it is a non-trivial question how to define angles in
multiple dimensions. We will now proceed to derive an appropriate measure based on the angles
between subspaces as known from linear algebra.The principal angles {θk} between the two subspaces
Z = R(Z) and G = R(G) are defined recursively for k = 1, . . . , K as [64]

cos (θk) = max
u∈Z

max
v∈G

uH v
‖u‖2‖v‖2

= uH
k vk, (4.54)

where K is the minimal dimension of the two subspaces, i.e., K = min{L, M − L} and uH ui = 0
and vH vi = 0 for i = 1, . . . , k − 1. Moreover, the normalization in the denominator of (4.54) is
included to ensure that the vectors have unit norm.

The principal angles are usually defined using orthonormal bases for the two subspaces [64].
Here, we will instead use their projection matrices, since these are uniquely defined and will be useful
later on. The projection matrix for a subspace X is defined as

�X = X
(

XH X
)−1

XH . (4.55)

We note that such projections matrices are Hermitian, i.e., �H
X = �X and have the properties

�m
X = �X for m = 1, 2, . . . and ‖�X‖2

F = dim(X ) where dim(·) is the dimension of the subspace.
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Figure 4.2: Log-ratio between the geometric and arithmetic means and the MDL cost function for the
eigenvalues in Figure 4.1.

For subspace G, the projection matrix is

�G = G
(

GH G
)−1

GH (4.56)

= GGH , (4.57)

due to the columns of G being orthonormal, while, for subspace Z , the projection matrix is

�Z = Z
(

ZH Z
)−1

ZH . (4.58)

We can now write (4.54) into something more useful using the two projection matrices (4.57)
and (4.58), i.e.,

cos (θk) = max
y

max
z

yH�Z�Gz
‖y‖2‖z‖2

(4.59)

= yH
k �Z�Gzk = κk, (4.60)

for k = 1, . . . , K . We also require that the vectors are orthogonal, i.e., yH yi = 0 and zH zi = 0 for
i = 1, . . . , k − 1. It follows that {κk} are the singular values of the matrix product �Z�G ordered
by decreasing value, and the two sets of vectors {y} and {z} are the left and right singular vectors
of the matrix product, respectively. The corresponding principal angles, therefore, are ordered and
bounded as

0 ≤ θ1 ≤ . . . ≤ θK ≤ π

2
. (4.61)
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The singular values are related to the Frobenius norm of the product �Z�G in the following way:

‖�Z�G‖2
F = Tr

{
�Z�G�H

G�H
Z

}
(4.62)

= Tr {�Z�G} =
K∑

k=1

κ2
k . (4.63)

Interestingly, this can be related to the Frobenius norm of the difference between the two projection
matrices, i.e.,

‖�Z − �G‖2
F = Tr{�Z + �G − 2�Z�G} (4.64)

= L + (M − L) − 2 Tr{�Z�G} (4.65)
= M − 2‖�Z�G‖2

F . (4.66)

As can be seen, the minimization of (4.63) is the same as maximization of the Frobenius norm of
the difference between the projection matrices. The Frobenius norm of the product �Z�G can also
be rewritten as

‖�Z�G‖2
F = Tr

{
�Z�G�H

G�H
Z

}
= Tr

{
�Z�H

G

}
(4.67)

= Tr

{
Z
(

ZH Z
)−1

ZH GGH

}
. (4.68)

This expression can be seen to be somewhat complicated, since it involves matrix inversion. It can
be simplified by noting, as we have done numerous times, that the columns of Z consist of complex
sinusoids that are asymptotically orthogonal for any distinct set of frequencies, i.e.,

lim
M→∞ M�Z = lim

M→∞ MZ
(

ZH Z
)−1

ZH (4.69)

= ZZH . (4.70)

Using this as an approximation for finite M , we can simplify (4.68) into a familiar form:

‖�Z�G‖2
F = Tr

{
Z
(

ZH Z
)−1

ZH GGH

}
≈ 1

M
Tr
{

ZH GGH Z
}

= 1

M
‖ZH G‖2

F . (4.71)

Except for the scaling 1/M , this is the reciprocal of the original MUSIC cost function as introduced
in [150]. By combining (4.63) and (4.71), we get

1

M
‖ZH G‖2

F ≈
K∑

k=1

κ2
k =

K∑
k=1

cos2(θk). (4.72)
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This means that the original MUSIC cost function can be understood in the context of angles
between subspaces. Curiously, this interpretation holds only for signal models consisting of vectors
that are orthogonal or asymptotically orthogonal.

We now arrive at a measure of the extent to which the orthogonality property holds by
averaging over all the nontrivial principal angles K = min{L, M − L} between A and G as

1

K

K∑
k=1

cos2(θk) = 1

K

K∑
k=1

κ2
k = 1

K
‖�Z�G‖2

F (4.73)

≈ 1

MK
‖ZH G‖2

F � J. (4.74)

This measure has the desirable property that it is bounded and only zero when all angles are π
2 , i.e.,

when the subspaces A and B are orthogonal in all directions. Additionally, the intersection of the
subspaces is the range of the set of principal vectors for which cos(θk) = 1. The measure can easily
be seen to be bounded as

0 ≤ 1

K

K∑
k=1

cos2(θk) ≤ 1. (4.75)

If the division by K is left out, the measure is, in principle, unbounded. Note that the bound is also
asymptotically valid for the right-most expression in (4.74).

It is also possible to express the measure in (4.74) in terms of the signal subspace eigenvectors.
More specifically, due to the columns of S and G spanning complementary subspaces, we have that

I = SSH + GGH . (4.76)

Using this, we can rewrite (4.74) as

J = 1

MK
‖ZH G‖2

F (4.77)

= 1

MK
Tr
{

ZH GGH Z
}

= 1

MK
Tr
{

ZH
(

I − SSH
)

Z
}

(4.78)

= 1

MK

(
Tr
{

ZH Z
}

− Tr
{

ZH SSH Z
})

(4.79)

= 1

MK

(
ML − ‖ZH S‖2

F

)
, (4.80)

where the last line follows from ‖Z‖2
F being ML. The relation extends beyond this measure. In

fact, we could have redefined the angles between the subspaces using (4.76) and arrived at similar
results, only the angle between the subspaces should now be minimized instead of maximized. It is
generally beneficial in terms of computational complexity to use (4.80) instead of (4.77) whenever
the dimension of the signal subspace is smaller than the dimension of the noise subspace (and vice
versa).
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The measure in (4.74) can be brought into a familiar form, similar to the statistical order
estimation criteria like the MAP criterion in Section 2.6 by taking the logarithm of (4.74), i.e.,

ln J = ln ‖ZH G‖2
F − ln(MK), (4.81)

which can be seen to consist of two familiar terms: a “goodness of fit” measure and an order-dependent
penalty function.

4.7 ESTIMATION USING ORTHOGONALITY
As mentioned previously, the MUSIC algorithm is based on the observation that R (G)

⊥ R (Z), i.e., that the matrix Z is orthogonal to the noise subspace. For the single-pitch case, the
covariance matrix model is

Rk =E
{

xk(n)xH
k (n)

}
(4.82)

=ZkPkZH
k + σ 2I. (4.83)

As we have seen, the noise subspace eigenvectors in the matrix G are then orthogonal to the columns
of the matrix Zk , i.e., the complex sinusoids. This can be exploited for estimating the parameters
of Zk , in our case a single parameter, the fundamental frequency ωk , by forming a matrix Zk for
different candidate frequencies and measuring the angles between the subspaces, i.e.,

ω̂k = arg min
ωk

‖ZH
k G‖2

F (4.84)

= arg min
ωk

Lk∑
l=1

‖zH (ωkl)G‖2
2. (4.85)

Or, in words, we find an estimate of the fundamental frequency by maximizing the angles between
the subspaces R(Zk) and R(G). Note that the normalization in (4.74) is excluded here, since it is a
constant. In Figure 4.3, an example of the cost function in (4.85) is shown for the signals in Figures
1.1 and 1.4, respectively. As can be seen, the fundamental frequencies can easily be identified as the
global minima of the respective cost functions.

As we have discussed, the number of harmonics in Zk and thus also the rank of G is generally
unknown and has to be estimated on a segment-to-segment basis. This can be done using the
eigenvalues as discussed earlier, but it is also possible to do so from the eigenvectors using the
concept of angles between subspaces. The key observation is that the subspace properties discussed
in Section 4.3 only hold when the matrices Zk , S and G are partitioned into subspaces having the
right rank, i.e., Zk will only be orthogonal to G and span the same space as S when the true model
order is used. This is essentially because the sinusoids are linearly independent but not orthogonal,
i.e., a subset of eigenvectors does not span the same space as a subset of sinusoids. By changing the
estimator in (4.85) to include also the model order as an optimization parameter, we can take this
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Figure 4.3: Cost function in (4.85) based on subspace orthogonality for the two signals in Figures 1.1
and 1.4, respectively.

into account, but now we have to include the normalization in (4.74), since this changes with the
model order. Using (4.74), we thus arrive at the following expression

ω̂k = arg min
ωk

min
Lk

1

MK
‖ZH

k G‖2
F (4.86)

= arg min
ωk

min
Lk

1

MK

Lk∑
l=1

‖zH (ωkl)G‖2
2, (4.87)

with K = min{Lk, M − Lk}. Note that the model order is also found in the process. The interval
over which to optimize Lk must be chosen with care and depends on the fundamental frequency,
since, to avoid aliasing, ωkLk < 2π . If the normalization is not used, the estimator will not work as
the error will grow as a function of the matrix dimensions. Minimizing the cost function of (4.85)
is equivalent to maximizing the average of the angles between the subspaces. Therefore, if the cost
function is exactly zero, all angles between the two subspaces are π

2 . An example of the cost function
as a function of the model order is shown in Figure 4.4 for a signal containing five harmonics, i.e.,
Lk = 5. More specifically, the function shown is arg minωk

1
MK

∑Lk

l=1 ‖zH (ωkl)G‖2
2, which depends

only on the model order. As can be seen, the true model order can be identified quite clearly from
the curve. In Figure 4.5, estimates obtained using (4.87) are shown in the bottom panel for the
clarinet signal whose spectrogram is depicted in the top panel. The estimates were obtained from
30 ms segments and with M = N/2. As can be seen, the estimates are rather accurate following the
spectrogram as expected, even as the number of harmonics vary. It can also be seen that the signal
is, in fact, a multi-pitch signal during the transitions from one note to another.



4.7. ESTIMATION USING ORTHOGONALITY 95

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Harmonics

C
os

t F
un

ct
io

n

Figure 4.4: An example of the cost function based on subspace orthogonality as a function of the model
order Lk for a signal where the true order is five.

We will now generalize the estimators to take into account the presence of multiple periodic
components at the same time. To recapitulate, the covariance matrix model for the multi-pitch case
is

R =
K∑

k=1

ZkPkZH
k + σ 2I (4.88)

=ZPZH + σ 2I. (4.89)

The subspace orthogonality property states that the matrix Z and all its sub-matrices are orthogonal
to G, i.e.,

ZH G = 0 and ZH
k G = 0 ∀k. (4.90)

Note that the rank of G is related to the rank of Z and thus depends on all the sub-matrices Zk . First,
assume that the model orders are known and thus also the dimensions of the subspaces. Writing out
the formula for the angles between the subspaces spanned by the columns of Z and G, we get

‖ZH G‖2
F =

K∑
k=1

‖ZH
k G‖2

F , (4.91)

which shows the cost function is additive over the sub-matrices associated with the individual sources.
The estimates of the set of fundamental frequencies that lead to orthogonal matrices Z and G are
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Figure 4.5: Clarinet signal spectrogram (top) and pitch estimates obtained using the joint estimator
(bottom).

thus

{ω̂k} = arg min{ωk}
‖ZH G‖2

F = arg min{ωk}

K∑
k=1

‖ZH
k G‖2

F (4.92)

= arg
K∑

k=1

min
ωk

‖ZH
k G‖2

F , (4.93)

where the last line follows from the minimization being independent for each source k.This facilitates
estimation optimization of the cost function independently for the individual sources, i.e.,

ω̂k = arg min
ωk

‖ZH
k G‖2

F ∀k. (4.94)

It can be seen that the problem is effectively decoupled into a number of simpler problems. This
is a notable feature of the subspace method. Unlike the optimal maximum likelihood estimator, it
leads naturally to a set of optimization problems that each depend only on one single nonlinear
parameter, ωk . The fact, or assumption, that leads to this, is that E

{
ak(n)ak(n)H

} = Pk is diagonal.
In Figure 4.6, the cost function of the subspace-based multi-pitch estimator in (4.94) is depicted.
As can be seen, it does lead to accurate estimates, but the cost function can also be seen to be much
more complicated than for the single-pitch case.

For the case where the model orders {Lk} and thus the rank of G are unknown, the problem
becomes more complicated, but can still be solved within this framework. As before, we include an
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Figure 4.6: Cost function (4.94) based on subspace orthogonality for a mixture of the two signals in
Figures 1.1 and 1.4 having fundamental frequencies 205 and 165 Hz, respectively.

optimization over the orders {Lk} to obtain the set of fundamental frequencies as

{ω̂k} = arg min{ωk}
min{Lk}

1

MK
‖ZH G‖2

F (4.95)

= arg min{ωk}
min{Lk}

K∑
k=1

1

MK
‖ZH

k G‖2
F , (4.96)

where K = min{∑K
k=1 Lk, M −∑K

k=1 Lk}, since the dimensions of the signal and noise subspaces
depend on the total number of harmonics. We see that the problem now requires an optimization
over the set of fundamental frequencies {ωk} and the orders {Lk}, and needless to say, this is a
complicated problem. Fortunately, it is possible to simplify it somewhat, by realizing that given the
set of orders {Lk}, the noise subspace eigenvectors in G are given too and the additivity of the cost
function over the sub-matrices can be used, i.e.,

min{ωk}
min{Lk}

1

MK

K∑
k=1

‖ZH
k G‖2

F = min{Lk}

K∑
k=1

min
ωk

1

MK
‖ZH

k G‖2
F . (4.97)

which facilitates optimization for each individual source given the orders.
An alternative to the joint optimization over the orders and fundamental frequency is to first

determine the subspace dimensions using the unconstrained model whereby the total number of
sinusoids can be found from the angles between the subspaces. However, the joint optimization
procedure is generally preferable, and especially so for the single-pitch case, because it has been
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observed to be more robust to adverse conditions. Nevertheless, it may still lead to a significant
simplification of the problem for the multi-pitch case, since the matrix G then is known (and fixed)
throughout the optimization. Additionally, knowledge of the subspace dimensions also limit the
optimization range for the set of orders {Lk}.

The major sources of computational complexity of the subspace method are the computation
of the EVD of the covariance matrix, the matrix product ZH

k G, and the evaluation of the Frobenius
norm. We will now show how the last two steps can be implemented efficiently using FFTs. First,
we define the Fourier matrix F ∈ C

F×F , with F  N , as

F =

⎡⎢⎢⎢⎣
1 1 1 · · · 1
1 z1 z2 · · · zF−1

...
...

...
...

1 z(F−1) z2(F−1) · · · z(F−1)(F−1)

⎤⎥⎥⎥⎦ , (4.98)

where z = ej2π 1
F . Next, we define a matrix D ∈ R

F×M containing the squared absolute values of
the inverse FFTs of the zero-padded eigenvectors in U as

[
D
]
lm

=
∣∣∣∣∣
[

FH

[
U
0

]]
lm

∣∣∣∣∣
2

, (4.99)

with
[
D
]
lm

being the (l, m)th element of D. For a candidate pair of a fundamental frequency of
2π

f
F

and an order Lk , the Frobenius norm can be calculated as

‖ZH
k G‖2

F =
M∑

m=Lk+1

Lk∑
l=1

[
D
]
(f l+1)m

. (4.100)

Thus, the complexity of calculating ‖ZH G‖2
F for different ωk and Lk can be significantly reduced

by calculating the inverse FFT of all the eigenvectors once for each given data set. We note that
some of the eigenvectors, corresponding to the largest eigenvalues, can be excluded from definition
of (4.99), since there is a lower bound on Lk . Here, we have included all of them for notational
simplicity.The FFT approach can then be combined with numerical optimization methods in order
to obtain estimates that are not restricted to the FFT bins. For more on this, we refer the interested
reader to [21, 23, 33].

Regarding the calculation of the EVD of the covariance matrix, it is possible to update it
recursively over time using so-called subspace trackers (see, e.g., [36, 165]), which leads to a consid-
erable reduction of the required computation time. The computation of the EVD has complexity
O(M3), while the most efficient subspace trackers are able to reduce the complexity to O(ML), with
L being the dimension of the signal subspace to be tracked, i.e., L = ∑K

k=1 Lk , in the most extreme
case. There is, however, one caveat: if the order is unknown and is determined using the angles
between subspaces, then the subspace tracker must track the eigenvectors and not just an arbitrary
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basis of the space. The reason is this: a sub-partitioning of the basis is not generally equivalent to
the sub-partitioning of the eigenvectors (see [85] for a detailed discussion of this). Some examples
of subspace trackers that track only an arbitrary basis are PAST [179], NIC [118], FAPI [8], and
FDPM [45], while the PASTd [179], SWASVD3 [10], LORAF3 [165], and FST [138] are ex-
amples of subspace trackers that track the eigenvectors and are thus applicable to the problem of
determining the model order from the eigenvectors. It should be noted that for the multi-pitch case,
the entire signal subspace has to be tracked.

4.8 ROBUST ESTIMATION
We will now show how to take into account that the harmonic frequencies are not exact integer
multiples of a fundamental frequency.We will do this for the single-pitch case, i.e., we will operate on
the signal xk(n) and also assume that the number of harmonics Lk is known or found a priori. It is,
however, straightforward to relax these assumptions. We are here concerned with a set of sinusoids
having frequencies {ψk,l} corrupted by an additive white complex circularly symmetric Gaussian
noise, ek(n), for n = 0, . . . , N − 1,

xk(n) =
L∑

l=1

ak,le
jψk,ln + ek(n), (4.101)

i.e., we will use the unconstrained model. For the perfectly harmonic case, the frequencies of the
harmonics are exact integer multiples of a fundamental frequency ωk , i.e., ψk,l = ωkl with l ∈ N,
in which case the signal model in (4.101) is characterized by a single nonlinear parameter. As
already discussed, this model is not always a good fit. Depending on the instrument, different
parametric models of the inharmonicity of the harmonics can be derived from physical models
(see, e.g., [54]). An example of such a model for stiff-stringed instruments is ψk,l = ωkl

√
1 + Bkl2

where Bk 	 1 is an unknown, positive stiffness parameter. Allowing for this deviation, the model
in (4.101) now contains two unknown nonlinear parameters, namely ωk and Bk , which complicates
matters somewhat. Instead, we will here use a model where the frequencies {ωl} are modeled as
ωl = ω0l + �l with {�l} being a set of small unknown perturbations that are to be estimated along
with the fundamental frequency ω0. We refer to this frequency model as the perturbed model. The
perturbations {�l} should be small, since arbitrarily large perturbations will result in meaningless
estimates of ω0.

Based on the angles between the subspaces, the fundamental frequency ωk and the stiffness
parameter Bk of the parametric inharmonicity model can be estimated in a straight-forward manner.
Specifically, the Zk matrix is constructed from the two parameters as

Zk =
[

z(ωk

√
1 + Bk) · · · z(ωkLk

√
1 + BkL

2
k)

]
. (4.102)

Using this matrix, we can obtain estimates of the fundamental frequency and stiffness parameter as

(ω̂k, B̂k) = arg min
ωk,Bk

‖ZH
k G‖2

F , (4.103)
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which has to be evaluated for a large range of combinations of the two parameters. Here, the matrix
G can be the noise subspace of either the covariance matrix of the single-pitch or multi-pitch signals,
whichever is available.

The more interesting question is how the fundamental frequency and the individual frequen-
cies can be found for the perturbed model where ψk,l = ωkl + �k,l , i.e., the Vandermonde matrix
containing the complex sinusoids is now characterized by ωk and {�k,l} as

Zk = [
z(ωk + �k,l) · · · z(ωkLk + �k,L)

]
. (4.104)

Regrettably, direct minimization of the MUSIC cost function will not only be very computationally
demanding, we now have Lk + 1 nonlinear parameters, but it will also not lead to any meaningful
estimates of the fundamental frequency as we have no control over the distribution of the pertur-
bations {�k,l}. Instead, the idea employed here is to estimate the parameters by redefining the cost
function as

J (ωk, {�k,l}) = Tr
{

ZH
k GGH Zk

}
+ P({�k,l}), (4.105)

where P(·) is a penalty function; here a non-decreasing function of a metric with P({0}) = 0. Also,
it is desirable that the penalty function is additive over the harmonics. Therefore, a natural choice is
P({�k,l}) = ∑Lk

l=1 νk,l|�k,l|p with p ≥ 1 which penalizes large perturbations �k,l . Also, {νk,l} is a
set of positive regularization constants. To simplify the estimator, we note that the Frobenius norm
is additive over the columns of Zk , i.e.,

J (ωk, {�k,l}) = Tr
{

ZH
k GGH Zk

}
+

Lk∑
l=1

νk,l|�k,l|p (4.106)

=
Lk∑
l=1

zH (ωkl + �k,l)GGH z(ωkl + �k,l) +
Lk∑
l=1

νk,l|�k,l|p. (4.107)

Furthermore, by substituting ψk,l by ωkl + �k,l and �k,l by ψk,l − ωkl in (4.107), we get the
following cost function

J (ωk, {ψk,l}) =
Lk∑
l=1

zH (ψk,l)GGH z(ψk,l) + νk,l|ωk,l − ωkl|p. (4.108)

It can be seen that the first term no longer depends on the fundamental frequency or the perturbations
but only on the frequency of the lth harmonic ψk,l . Moreover, the first term in (4.108) can be seen
to be the reciprocal of the MUSIC pseudo-spectrum, which, conveniently, has to be calculated only
once for each segment. It can also be seen that the cost function is additive over independent terms
and, therefore, the minimization of the cost function can be performed independently for each
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harmonic. The fundamental frequency estimate can be rewritten as follows:

ω̂k = arg min
ωk

min{ψk,l}

⎧⎨⎩
Lk∑
l=1

zH (ψk,l)GGH z(ψk,l) + νk,l|ψk,l − ωkl|p
⎫⎬⎭

= arg min
ωk

Lk∑
l=1

min
ψk,l

{
zH (ψk,l)GGH z(ψk,l) + νk,l|ψk,l − ωkl|p

}
,

where the frequencies {ψk,l} and thus perturbations are also found implicitly. It should now also be
clear why it is beneficial that the penalty function is additive over the harmonics. This estimator
is expected to be more robust towards model mismatch than the ideal model and the parametric
inharmonicity model. For a given ω̂k , the frequencies can simply be found for l = 1, . . . , Lk as

ω̂k = arg min
ψk,l

{
zH (ψk,l)GGH z(ψk,l) + νk,l|ψk,l − ω̂kl|p

}
, (4.109)

where only the penalty term changes over l. The regularization constants can be interpreted in the
following ways:

• For large regularization constants νk,l , the ensuing perturbation will be small and the model
reduces to the perfectly harmonic case, whereas for νk,l close to zero, the estimates reduces to
unconstrained frequencies, from which no meaningful fundamental frequency estimate can be
found.

• The combination of a log-likelihood function with a penalty term is equivalent to a MAP
approach with the penalty term being a log-prior on the perturbations. For a Gaussian prior,
for example, we would have p = 2 and νk,l = 1/(2ρ2

k,l) with ρ2
k,l being the variance of the

perturbations of the lth harmonic (see Section 2.5 for more on MAP estimation).

• The regularization constants νk,l can also be interpreted as Lagrange multipliers. This means
that the estimator can be thought of as a constrained estimator with a set of implicit constraints.
In this sense, the method is conceptually related to the robust Capon beamformer of [164],
which is based on explicit constraints.

It may be worth modifying the penalty function such that less emphasis is put on perturbations for
higher harmonics or even use an asymmetrical penalty function, since the parametric inharmonicity
model suggest that the harmonics will be higher than the integer multiple of the fundamental. This
can be realized by, for example, using a piecewise linear norm (see, e.g., [14]). The main difficulty
of the approach discussed in this section is that one needs to pick the regularization constants,
something that may be difficult to do in practice.
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4.9 ESTIMATION USING SHIFT-INVARIANCE
As we have seen, it is possible to estimate the dimension of the signal subspace using the eigenvalues of
the sample covariance matrix. Interestingly, it is also possible to determine the rank of the matrices
from the eigenvectors by exploiting certain properties of the signal subspace, namely the shift-
invariance property.We will now review some methods for order estimation based on these principles,
namely the ESTER [9] and SAMOS [127] methods.The ESTER and SAMOS methods are derived
from the ESPRIT method [147],which is based on R (S) = R (Z) and the shift-invariance property
of the matrix Z. The sinusoidal parameters are found using (4.21) by constructing the matrices S
and S as shown in (4.20) and then solving for 
 in

S ≈ S
, (4.110)

in some sense. For instance,


̂ = arg min



‖S − S
‖2
F (4.111)

=
(

SH S
)−1

SH S, (4.112)

where the sinusoidal frequencies are found from the eigenvalues of 
̂ via the relation in (4.22). The
key observation is that equation (4.110) holds only when the eigenvectors of R are partitioned into
a signal and a noise subspace such that the dimension of the signal subspace equals the true number
of sinusoids. The argument is the same as before: the individual sinusoids in the columns of Z do
not span the same space as individual eigenvectors and the same goes for subsets of sinusoids.

An order estimate can be obtained using the ESTER method in the following way: First, the
sample covariance matrix and its EVD are found. Afterwards, the matrices S and S are constructed
for each L from the EVD and the matrix 
 is estimated. Finally, the order is found by measuring
the goodness of the fit in (4.110) as

J (L) = ‖S − S
̂‖2
2, (4.113)

for various candidate orders L and then picking the one for which the modeling error is minimized
in the sense of (4.113).

The SAMOS method works in a similar way. It is based on the rationale that the extent
to which the relation in (4.110) holds can be measured from the singular values {ηk}2L

k=1 of the

augmented matrix  =
[

S S
]

for various L as

J (L) = 1

L

2L∑
k=L+1

η2
k, (4.114)

since  will have rank L when the columns of S can be described accurately as linear combinations
of the columns in S. The order estimate is then found as the minimizer of the cost function (4.114).



4.9. ESTIMATION USING SHIFT-INVARIANCE 103

This method requires that a singular value decomposition is calculated for each candidate order L.
The SAMOS and ESTER methods are based on the same principle and essentially use the same
measure and can, therefore, be expected to perform similarly. The ESTER method is, however,
preferably in that it allows for a wider range of candidate orders and an efficient implementation
exists as was shown in [9].

It is also possible to use the shift-invariance property of the signal model to estimate the
fundamental frequency.The method presented next applies to the single-pitch case and S, therefore,
in the following, denotes the eigenvectors of the signal subspace of the covariance matrix for the
kth source, i.e., Rk In practice, the expectation operator in (4.6) is replaced by a finite sum and
the right relation in (4.21) holds only approximately and the underlying assumptions may only be
approximations of the observed phenomenon. The sinusoidal parameters are, therefore, found by
constructing the matrices S and S and then solving for 
 in S ≈ S
 like in (4.112) or using total
least-squares. The sinusoidal frequencies are then obtained using the empirical EVD of 
̂ via the
relation in (4.22), i.e.,


̂ = CD̂C−1 (4.115)

with C containing the empirical eigenvectors of 
̂ and

D̂ = diag
(
[ ejψ̂1 · · · ejψ̂Lk ]

)
, (4.116)

where {ψ̂v}Lk

v=1 is a set of unconstrained frequencies. It is not clear how to estimate the fundamental
frequency from these equations, since the eigenvalues are not constrained to be equally spaced on the
unit circle.We proceed as follows: We order the eigenvalues and eigenvectors in (4.115) by increasing
arguments, i.e., ψ̂1 ≤ . . . ≤ ψ̂Lk

. Using the shift-invariance property in (4.21) and (4.22), we can
write S = SB−1DB, and thus

S ≈ SCD̂C−1. (4.117)

Defining the diagonal matrix containing the unknown fundamental frequency as

D̃ = diag
(
[ ejωk · · · ejωkLk ]

)
, (4.118)

we introduce the cost function
J � ‖S − SCD̃C−1‖2

F , (4.119)

from which the fundamental frequency can be estimated as

ω̂k = arg min
ωk

J, (4.120)

where only D̃ depends on ωk . Note that also the order Lk can be estimated in this manner. It can be
seen from (4.21) that in the ideal case, we have equality in (4.117). So, instead we may introduce
the modified cost function as

J � ‖SC − SCD̃‖2
F (4.121)

= ‖V − WD̃‖2
F , (4.122)
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where V = SC and W = SC. As C is not orthogonal, the minimization of this expression generally
is not equivalent to minimizing (4.119). The cost function in (4.122) can be expanded as

J = − 2 Re
(

Tr
{

VD̃H WH
})

(4.123)

+ Tr
{

VVH
}

+ Tr
{

WD̃D̃H WH
}

. (4.124)

It can be seen that the last two terms are constant and need not be included in the optimization,
and we, therefore, introduce H = WH V and redefine the cost function as

J � −2 Re
(

Tr
{

HD̃H
})

(4.125)

= −2 Re

⎛⎝ Lk∑
l=1

hle
−jωkl

⎞⎠ (4.126)

with hl = [
H
]
ll

and proceed as before and use (4.120) with this cost function for finding the
fundamental frequency. The cost function in (4.126) can be seen to consist of a polynomial, i.e.,∑Lk

l=1 hlz
−l . It is shown in Figure 4.7 as a function of the fundamental frequency for a signal having

fundamental frequency 0.3142 and five harmonics. It can be seen that the cost function is very
smooth, especially so compared to the cost function in Figure 4.3. Although it does not show here,
the cost function is, actually, multi-modal and can contain multiple minima.
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Figure 4.7: Cost function based on the shift-invariance of the signal subspace for a signal having fun-
damental frequency 0.3142.

We note that the method discussed here is superior to fitting the model matrix to the signal
subspace using the relation in (4.18) and the MUSIC method in terms of computational complexity;
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in fact, the method is quite simple and fast.The question is, however, how exactly the method differs
from direct fitting of the fundamental frequency to the unconstrained frequencies in (4.117), i.e.,

ω̂k = arg min
ωk

‖D̂ − D̃‖2
F , (4.127)

To answer this question, we consider the ideal case, where the right relation in (4.21) holds exactly.
In that case, we may write

S = S
̂. (4.128)

Using this relation to rewrite (4.119), we get

J = ‖S
̂ − SCD̃C−1‖2
F (4.129)

= ‖SCD̂C−1 − SCD̃C−1‖2
F (4.130)

= ‖SC
(

D̂ − D̃
)

C−1‖2
F , (4.131)

which is different from the original cost function as defined in (4.127).The WLS method of Section
2.10 is essentially a closed-form fit of the fundamental frequency to the unconstrained frequencies
in a weighted least-squares sense, but it requires that the amplitudes are known or are estimated.
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Figure 4.8: RMSE as a function of N with PSNR = 10 for one and two sources, respectively.

4.10 SOME RESULTS
We will now present some experimental results from Monte Carlo simulations based on synthetic
signals.We will do this for the method based on subspace orthogonality and angles between subspaces
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Figure 4.9: RMSE as a function of the PSNR with N = 200 for one and two sources, respectively.
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Figure 4.10: RMSE as a function of the difference between the fundamental frequencies of two source,
i.e., � = |ω1 − ω2| for N = 250 and PSNR = 10.

for signals generated using the model in (1.5) in additive white Gaussian noise (for a discussion for
the methods based on the shift-invariance property, see the next section). For each combination of
parameters, 100 iterations were run and the RMSE was estimated from these.The experiments have
been run for two sources, i.e., a multi-pitch signal, with the sources having fundamental frequencies
0.2964 and 0.2257, uniformly distributed phases, unit amplitudes and three harmonics, and for the
single-pitch case consisting of only the source having fundamental frequency 0.2964. A sub-vector
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length of N/2 has been used throughout these experiments. In the first experiments, we assume that
the model order is known and use the estimator in (4.94). In Figure 4.8, the RMSE is plotted as
a function of the number of samples N , while the PSNR is held constant at 10 dB. Similarly, N is
kept fixed at 200, while the PSNR is varied in the second experiment, with the results being shown
in Figure 4.9. In both figures, the results are shown for both one and two sources. Note the CRLB
shown here is the asymptotic CRLB, which is expected to hold for multiple sources as well when
these are well-separated in frequency. For one source, i.e., for single-pitch signals, the method can
be seen to perform well following the CRLB closely, although it does not attain it. When a second
source is introduced, it can be seen that the estimator now exhibits thresholding behavior at low
PSNRs and for low N , however this happens at very low N and PSNRs. In Figure 4.10, the RMSE
is plotted as a function of the difference between the fundamental frequencies for the two sources,
� = |ω1 − ω2|, where ω1 is kept fixed at 0.2964 while ω2 is varied from 0.2257 to 0.2964 with
N = 250 and PSNR = 10 dB. This experiment serves the purpose of testing the estimator under
adverse conditions as closely spaced fundamental frequency will lead to interaction effects between
the harmonics. Like the other algorithms (see Sections 2.11 and 3.10), the subspace-based method
can be seen to perform quite well under these circumstances, below which the RMSE deviates from
the CRLB by an order of magnitude, can be seen to be occur at quite low differences betweent
the fundamental frequencies. Also, the ability of the method to estimate the correct model order
has been investigated in simulations. The subspace-based method for estimating the model order
is fundamentally different from those used in Sections 2.11 and 3.10 as these are both statistical
methods. In this experiment, we run 1000 iterations and assume that the fundamental frequency is
known, here 0.8170, and use the criterion in (4.87) for determining the model order for a single-pitch
signal consisting of five unit-amplitude harmonics and uniformly distributed phases.The percentage
of correctly estimated model order is shown as a function of N for PSNR = 40 dB in Figure 4.11
and as a function of the PSNR for N = 500 in Figure 4.12. The influence of the covariance matrix
size M has also been investigated for N = 200 and PSNR = 40 dB with the results being shown
in Figure 4.13. The method can be seen to perform extremely well, in fact, it performs just as well
or better than the MAP-criterion (see Section 2.11) estimating the correct order with a very low
probability of error. To summarize, the method based on the angles between subspaces performs
well both with respect to fundamental frequency and order estimation.

4.11 DISCUSSION

As we have seen in this chapter, the problem of single- and multi-pitch estimation can be solved
using subspace methods, and so can the associated problem of order estimation. In fact, several
ways of doing this through the eigenvalues or eigenvectors of the covariance matrix exist. The shift-
invariance principle of ESPRIT can be used for finding the fundamental frequency and the model
order jointly.The resulting cost function turns out to be very smooth, compared to those of, e.g., NLS
and MUSIC, as was observed in [22], and it is, therefore, both computationally and conceptually easy
to perform numerical optimization using this principle. But, while ESPRIT is an extremely elegant
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Figure 4.11: Percentage of correctly estimated model orders as a function of N with PSNR = 40 dB.
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Figure 4.12: Percentage of correctly estimated model orders as a function of the PSNR with N = 500.

and conceptually simple solution to the problem of finding the frequencies of an unconstrained
model, it is more complicated to apply it to pitch estimation and it does not easily lend itself
to generalization to multi-pitch estimation. Also, it has been found to be very sensitive to spurious
frequency estimates. Under good conditions, it does perform similarly to the MUSIC approach [22].
The MUSIC approach, which is based on the principle of measuring the angles between the noise
subspace and the candidate model, on the other hand, has been demonstrated in [23] to be robust
and provide high-resolution estimates of both the fundamental frequency and the model order for
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Figure 4.13: Percentage of correctly estimated model orders as a function of M for N = 200 and with
PSNR = 40 dB.

the single-pitch case. Furthermore, for the multi-pitch case, the MUSIC approach leads to a natural
decoupling of the multi-dimensional problem into a set of one-dimensional problems for the case
of the model orders being known [33]. When the model orders are not known, the decoupling is
only partial. A prominent feature of both the ESPRIT and MUSIC methods is that they offer a
geometric alternative to finding the model order using statistical methods, something that, as we have
seen, requires that many approximations be applied [44, 160]. It should be noted that the subspace
methods are generally suboptimal as can be observed from the constant gap (in dB) between the
RMSE curve and the CRLB [22, 23, 33], unlike the maximum likelihood methods of Chapter 2,
but their performance increases as a function of the PSNR and the number of samples. In real
applications, this is, however, less of an issue compared to that of robustness. The MUSIC approach
has been seen to be less robust to adverse conditions, and it requires knowledge of the number of
harmonics for all sources to work. For single-pitch estimation, the main drawback of the subspace
methods is the computational complexity, but this can be lessened using subspace trackers and the
use of FFTs and rootings methods. Also, the assumption that the observation noise is white may
cause a problem, although we have observed this to be much less of an issue for the pitch estimation
problem than the problem of finding unconstrained frequencies. Like for the filtering approaches,
it is not straightforward to incorporate prior knowledge in the subspace methods, although certain
relations exist between MUSIC and maximum likelihood estimation [157, 158].
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C H A P T E R 5

Amplitude Estimation

5.1 INTRODUCTION
Often, it is not only important to know the fundamental frequency of a periodic signal, but also to
know the strength of such components. In some cases, even the phases of the individual harmonics
may be of interest, for example, if the signal is to be reconstructed from the model or a modification
thereof. The amplitude estimation problem is commonly recurring in a wide range of applications,
and several parametric and non-parametric approaches to form such an estimate can be found in the
literature. In this chapter, we will briefly review some such techniques, assuming that the frequencies
of these periodic components have already been determined using one of the techniques discussed
in the earlier chapters. As a result, we will here consider a slight generalization of the signal models
given in (1.1) and (1.5), and instead study a signal consisting of L complex-valued sinusoids, namely
the unconstrained model

x(n) =
L∑

l=1

ale
jψln + e(n), (5.1)

for n = 0, . . . , N − 1, where L as well as {ψl}Ll=1 are assumed known, with ψk �= ψl for k �= l, and
where e(n) denotes a zero mean, complex-valued, and assumed stationary (and possibly colored)
additive noise. The complex amplitudes can also be expressed in terms of their (real) amplitude
and phase as al = Ale

jφl . Thus, the problem of interest is given {x(n)}N−1
n=0 , estimate the complex

amplitudes {al}Ll=1. In the following, we begin by addressing this estimation problem assuming that
the corrupting additive noise has a known covariance structure, thus allowing for the forming of a
whitened signal. Then, we proceed to relax this often quite restrictive assumption, allowing for an
unknown coloring of the additive noise, something that is particularly relevant for speech and audio
signals.

5.2 LEAST-SQUARES ESTIMATION
We begin by examining the commonly used least-squares (LS) approaches to estimate the unknown
amplitudes. Consider the observed, and possibly pre-whitened, signal x(n), defined in (5.1). Then,

⎡⎢⎣ x(0)
...

x(N − 1)

⎤⎥⎦ =

⎡⎢⎢⎢⎣
1 . . . 1

ejψ1 . . . ejψL

...
. . .

...

ejψ1(N−1) . . . ejψL(N−1)

⎤⎥⎥⎥⎦
⎡⎢⎣ a1

...

aL

⎤⎥⎦+
⎡⎢⎣ e(0)

...

e(N − 1)

⎤⎥⎦ (5.2)
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or, using a vector-matrix notation,
x = Za + e. (5.3)

The well-known LS estimate of the unknown amplitude vector is then

â =
(

ZH Z
)−1

ZH x, (5.4)

which is a statistically efficient estimator for all N ≥ L for white Gaussian noise [155]. As is well
known, LS-approaches do not account for the (possibly existing) correlation of the additive noise,
and are, therefore, in general, suboptimal. However, as shown in e.g. [155], if the noise is Gaussian,
the above estimator is still asymptotically efficient, i.e., for sufficiently large data lengths, the variance
of â will reach the corresponding CRLB, given by (see, e.g., [152])

CRLB(â) =
(

ZH Q −1Z
)−1

, (5.5)

where Q = E{eeH }, which for an additive unit variance white noise implies that Q = I. Alterna-
tively, an approximate LS estimate may be formed from the L largest peaks of the DFT of {x(n)}N−1

n=0 ,
i.e.,

âl = 1

N

N−1∑
n=0

x(n)e−jψln, for l = 1, . . . , L. (5.6)

In [155], the authors show that this computationally much simpler approximate LS estimator is also
statistically efficient asymptotically. The estimate in (5.4) often (but not always) yields preferable
estimates, i.e., having lower mean-squared error (MSE), as compared to the estimate in (5.6).

5.3 CAPON- AND APES-LIKE AMPLITUDE ESTIMATES
In general, the additive noise can not be assumed to be white or to have a predetermined noise
covariance matrix. We now proceed to examine possibilities to form Capon- and APES-like ampli-
tude estimators, allowing for an arbitrary coloring of the corrupting noise. Such estimators may be
formed in several ways, but all share the common characteristic that they form a bank of narrowband
filters designed such that the total power at the filter output is minimized whereas the frequency or
frequencies of interest are constrained appropriately. Splitting the measured data set into N − M + 1
sub-vectors of length M allows us to define

x(n)
�= [

x(n) . . . x(n + M − 1)
]T (5.7)

=

⎡⎢⎢⎢⎣
1 . . . 1

ejψ1 . . . ejψL

...
. . .

...

ejψ1(M−1) . . . ejψL(M−1)

⎤⎥⎥⎥⎦
⎡⎢⎣ a1e

jψ1n

...

aLejψLn

⎤⎥⎦+
⎡⎢⎣ e(n)

...

e(n + M − 1)

⎤⎥⎦ (5.8)

�= Z(n)a + e(n), (5.9)
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where

Z(n) = Z

⎡⎢⎣ ejψ1n

. . .

ejψLn

⎤⎥⎦ �= ZDn. (5.10)

By then introducing a set of narrowband filters, hl , designed such that a (generic) frequency of
interest, ψl , for ψl ∈ [0, 2π ], is passed undistorted by each filter, while minimizing the total power
of the filter output, we may form an estimate of the (squared) amplitudes as

Â2
l = E

{
|hH

l x(n)|2
}

= hH
l E

{
x(n)x(n)H

}
hl

�= hH
l Rhl , (5.11)

for l = 1, . . . , L. The objective to minimize the total filtered power implies that the filters should
be designed such that

hl = arg min
hl

hH
l Rhl , , (5.12)

while the requirement to pass the frequency of interest appropriately leads to the constraint

hH
l z(ψl) = 1, (5.13)

where
z(ψl) = [

1 ejψl . . . ejψl(M−1)
]T

, (5.14)

i.e., the filter only constrains the frequency of interest to be passed undistorted, while minimizing
the power from all other frequencies. We stress that for each frequency of interest, each filter is then
only constrained for this single frequency, effectively ignoring the finer structure of the signal. As an
alternative, one may instead impose L constraints to each filter, such that

hH
l Z =

[
0 . . . 0︸ ︷︷ ︸

l−1

1 0 . . . 0︸ ︷︷ ︸
L−l

] �= bl , (5.15)

which not only pass the lth frequency undistorted, but also actively places nulls at the frequencies
of the other (L − 1) frequencies. Using Lagrange multipliers, it is easy to show that the filter
solving (5.12), under the constraint (5.13), is found as (see, e.g., [6, 156])

hl = R−1z(ψl)

zH (ψl)R−1z(ψl)
, (5.16)

suggesting the classical (power spectrum) Capon amplitude (CCA) estimator

Âl =
√

hH
l Rhl =

(
zH (ψl)R−1z(ψl)

)−1/2
(5.17)

for l = 1, . . . , L under the assumption that R is invertible, which is the case for M < N
2 + 1. The

estimate in (5.17) is highly structured and allows for an efficient implementation by exploiting the
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Gohberg-Semencul formula to find a closed-form expression for R−1 or, alternatively, the general-
ized Schur algorithm to form an estimate of the Cholesky factor of R−1, in combination with fast
FFT-based matrix-vector multiplication techniques (see, e.g., [60, 102, 121] for further details).

Reminiscent to the derivations in Chapter 3, introducing the Lagrange multipliers λ =[
λ1 . . . λL

]
, the Lagrange dual function for solving (5.12) under the constraint (5.15) can

be written as
L(hl , λ) = hH

l Rhl −
(

hH
l Z − bl

)
λ. (5.18)

Taking the derivatives with respect to the unknown filter impulse response, hl , as well as the Lagrange
multiplier, we get

∇L(hl , λ) =
[

R −Z
−ZH 0

] [
hl

λ

]
+
[

0
bl

]
(5.19)

which, if setting ∇L(hl , λ) = 0, yields

λ = (
ZH R−1Z

)−1bl (5.20)
hl = R−1Zλ. (5.21)

If combined, this implies that
hl = R−1Z

(
ZH R−1Z

)−1bl (5.22)

which leads to the multiple constraint Capon amplitude (MCA) estimate given by

Âl =
√

bT
l

(
ZH R−1Z

)−1bl (5.23)

for l = 1, . . . , L. We note that using the matrix inversion lemma, the estimator in (5.23) may be
formed iteratively over l in a computationally efficient manner using the FFT [79].

As a third alternative, one may use (5.9) to instead form a weighted LS estimate of the
unknown amplitude vector [155]

â =
[

N−M∑
n=0

ZH (n)Q̂ −1Z(n)

]−1 [N−M∑
n=0

ZH (n)Q̂ −1x(n)

]
, (5.24)

where Q̂ denotes an estimate of the noise covariance matrix, which is assumed to be invertible. To
form such an estimate, introduce the (forward-only) sample covariance matrix estimate

R̂ = 1

N − M + 1

N−M∑
n=0

x(n)xH (n) (5.25)

which, for large (N − M + 1), converges to R = ZPZH + Q , where

P =
⎡⎢⎣ A2

1 0
. . .

0 A2
L

⎤⎥⎦ . (5.26)
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As shown in [155], for sufficiently large N and M ,

Q̂ −1Z(n) = R̂−1Z
(

P̂ZH Q̂ −1Z + I
)

Dn ≈ R̂−1ZDn

(
P̂ZH Q̂ −1Z + I

)
, (5.27)

where P̂ is some initial estimate of P. Inserting (5.27) in (5.24), noting that P̂ZH Q̂ −1Z + I will
cancel out, yields the extended (amplitude spectrum) Capon amplitude (ECA) estimator

â =
[

N−M∑
n=0

ZH (n)R̂−1Z(n)

]−1 [N−M∑
n=0

ZH (n)R̂−1x(n)

]
, (5.28)

which, interestingly, does not depend on the initial estimate P̂. It is worth noting that the ECA
estimator can be interpreted as extending the CCA estimator in (5.17) to multiple sinusoids;however,
the ECA estimator yields an estimate of the complex-valued amplitudes, whereas the both the CCA
and MCA estimators instead estimate the magnitude of the amplitudes.

As a fourth option, one may define L filters for each frequency of interest, forming a matrix
filter, H = [

h1 . . . hL

]
, and express the design criteria as

min
H

Tr
{

HH RH
}

subject to HH Z = I. (5.29)

As shown in (3.39), this filter minimize the sum of the power from all the filters, i.e.,

Tr
{

HH RH
}

=
L∑

l=1

hH
l Rhl , (5.30)

whereas the constraint in (5.29) ensures that each of the L filters, for each frequency of interest,
passes a single sinusoid undistorted while nulling all the others. The filter minimization (5.29) is
given by (see, e.g., [6, 156])

H = R−1Z
(

ZH R−1Z
)−1

, (5.31)

which implies that

Tr
[

HH RH
]

= Tr
[(

ZH R−1Z
)−1

]
. (5.32)

Filtering x(n), defined in (5.9), using this filter yields

z(n)
�= HH x(n) = Dna + HH e(n)

�= Dna + w(n), (5.33)

implying that the noise covariance matrix, Q̂ , in (5.24) can be formed using an APES-like estimate
formed as [155]

Q̂ = R̂ −
L∑

l=1

slsH
l , (5.34)
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where

sl = 1

N − M + 1

N−M∑
n=0

x(n)e−jψln. (5.35)

Inserting (5.34) in (5.24) yields the extended APES amplitude (EAA) estimator. As suggested
in [155], an alternative APES-based amplitude estimator may also be formed by instead exploiting
the matched-filterbank (MAFI) approach. From (5.33), we note that

zl(n) = ale
jψln + wl(n), (5.36)

where zl(n) and wl(n) denote the lth element of z(n) and w(n), respectively, will only depend on
one another via the correlation between wl(n) and wp(n), for l �= p. Ignoring this correlation, one
may form a least-squares estimate of the complex amplitudes as

âl = 1

N − M + 1

N−M∑
n=0

zl(n)e−jψln. (5.37)

The resulting MAFI amplitude estimator offers both reliable and robust amplitude estimates, often
being preferable to the other Capon- and APES-based estimators for sinusoids in colored noise [155].
It is worth remarking that all the presented covariance-based amplitude estimators strongly depend
on the quality of the covariance matrix estimate. As is well known, the true covariance matrix should
be a Toeplitz matrix, whereas the estimate given by (5.25) will, in general, not be Toeplitz. Thus,
one could imagine that it would be preferable to instead form the estimate such that the inherent
Toeplitz structure is imposed on the estimate. In general, this is not the case, and such estimators will
commonly exhibit poor spectral resolution as compared to the outer-product estimate given by (5.25).
Instead, it is often better to only require that the covariance matrix estimate R̃ is persymmetric, i.e.,
being symmetric about the cross-diagonal1, such that

R̃ = JR̃T J (5.38)

where J is the M × M exchange matrix

J =
⎡⎢⎣ 0 1

. .
.

1 0

⎤⎥⎦ (5.39)

As was shown in [83], one often obtain improved spectral estimates by using the persymmetric
forward-backward averaged (FB) sample covariance matrix estimate

R̃ = 1

2

(
R̂ + JR̂T J

)
(5.40)

1This as every Toeplitz matrix is persymmetric, while every persymmetric matrix is not Toeplitz.
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where R̂ is the forward-only (F) sample covariance matrix estimate given by (5.25). This is also
the case for the here discussed covariance-based amplitude estimators, which preferably should be
formed with an estimate of R being computed using (5.40) instead of (5.25).The only exceptions are
the EAA and MAFI algorithms, which, similarly to the F- and FB-APES versions (see also [106]),
require some further attention. Reminiscent to the FB-APES algorithm, one then needs to take the
structure of the backward data vector into account, estimating Q̂ as

Q̂ = R̃ −
L∑

l=1

SlSH
l , (5.41)

where

Sl = 1√
2

[
sl s̆l

]
(5.42)

s̆l = 1

N − M + 1

N−M∑
n=0

x̆(n)e−jψln. (5.43)

with x̆(n) denoting the backward data vector

x̆(n) = [
x∗(N − n − 1) x∗(N − n − 2) . . . x∗(N − n − M)

]T
, (5.44)

which is defined for n = 0, 1, . . . , N − M .
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Figure 5.1: RMSE of the discussed amplitude estimators as a function of the local SNR for N = 160
and M = 40.
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Figure 5.2: Bias of the discussed amplitude estimators as a function of the local SNR, with N = 160
and M = 40.

5.4 SOME RESULTS AND DISCUSSION

The performance of the discussed estimators, and in particular the data-dependent Capon- and
APES-based estimators, will depend on the examined data set. However, some general conclusions
may be drawn from numerical studies. For cases with sufficient data lengths, containing well spaced
sinusoidal components corrupted by white noise, the LS estimators in (5.4) and (5.6) are often
preferable due to their numerical simplicities. For this case, the LS estimator in (5.4) is the maximum
likelihood (ML) estimator of the complex amplitudes, whereas (5.6) will only be approximately
ML, requiring the spectral lines to be well spaced. For the more realistic colored noise case, the
LS estimator in (5.4) will asymptotically achieve the same performance2 as the ML estimator [153].
Similarly, the Capon- and APES-based estimators will both be asymptotically efficient. However, for
finite data lengths, the estimators have quite different properties. In particular, it was shown in [154]
and [106] that the Capon estimator will be biased downwards, whereas the APES estimator will be
unbiased (within a second-order approximation). In general, the APES spectral estimator will also
have better performance than the Capon estimator, although at the price of a somewhat lower spectral
resolution [82]. Examining the here discussed Capon- and APES-based amplitude estimators, one
may similarly conclude that the F-EAA and the MAFI estimators will have preferable performance
as compared to the Capon-based estimators, which will exhibit a bias downwards. As noted above,
the FB-versions are in general preferable, except for the FB-EAA, which suffers from occasional
numerical instabilities, making it unreliable. In terms of complexity, the MAFI estimator has a

2One way to interpret this result is to note that the sinusoidal components have a zero-width support, on which the additive noise
can be well modelled as having a flat spectrum.
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lower computational cost than the EAA estimator, as well as offering somewhat better performance,
suggesting that the former should be preferred in most cases.
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Figure 5.3: RMSE of the discussed amplitude estimators as a function of the data length, using M =
�N/4�.
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Figure 5.4: RMSE of the discussed amplitude estimators as a function of the filter length, N = 160.

Using Monte Carlo simulations, it is easy to confirm the above conclusions on synthetic data.
For simplicity, we will here only examine the case of four complex sinusoids corrupted by white
Gaussian noise, examining how the performance of the estimators depend on the selected data and



120 5. AMPLITUDE ESTIMATION

filter lengths, as well as the local SNR, defined as A2
l /σ

2 (see also Section 1.8). The simulation set
was selected (arbitrarily) to consist of the absolute frequencies ψ = 2πf , with f = 0.12, 0.24, 0.36
and 0.48, with amplitudes 1, 0.7, 0.5 and 0.3, and with uniformly distributed random phase that is
randomized in each iteration. Figures 5.1, 5.3, and 5.4 show the RMSE for the forward-backward
estimators (except for EAA) as obtained from 1000 Monte Carlo simulations of the amplitude
estimates for the first sinusoidal component as a function of the local SNR, N , and M . As expected,
being the ML estimate, the LS estimator in (5.4) offers preferable performance, but the MAFI
estimators can be seen to achieve almost the same performance. From Figure 5.1, one may note the
puzzling fact that the Capon-based estimators seems to have only a minor performance improvement
with increasing SNR. However, this should be expected as the Capon-based estimators will be biased
downwards, whereas the APES-based estimators will be unbiased [154]. This can also be seen in
Figure 5.2, showing the bias of the estimators. Finally, similar to result found in the literature for the
Capon- and APES spectral estimators, the figures also show that about M = �N/4� seems to be a
reasonable choice for the filter length, although this obviously will depend on the examined data to
some extent.
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The Analytic Signal
As we have seen, the signal models used throughout this book have been complex. We will now
show how to map a real signal to a complex one using the Hilbert transform (for an introduction
to the Hilbert transform, see [67]). We will now introduce the Hilbert transform and define the
so-called analytic signal. Let xr(n) be a discrete real signal. The discrete Hilbert transform, H{·}, of
this, denoted xi(n), is then defined as (see e.g. [125])

xi(n) = H{xr(n)} =
∞∑

m=−∞
h(m)xr(n − m). (A.1)

where h(n) is the impulse response of the discrete Hilbert transform given by

h(n) =
{

2 sin2(πn/2)
πn

, n �= 0
0, n = 0

. (A.2)

A useful way of looking at the Hilbert transform, and perhaps a more intuitive definition, is in the
frequency domain:

Xi(ω) = H(ω)Xr(ω), with H(ω) =
{ −j, for 0 < ω < π

j, for −π < ω < 0
, (A.3)

where Xi(ω) and Xr(ω) are the Fourier transforms of xi(n) and xr(n), respectively, and H(ω) is the
Fourier transform of h(n). The so-called discrete-time analytic signal is then defined as

xc(n) = xr(n) + jxi(n). (A.4)

It is easy to see that xr(n) = Re{xc(n)}. By taking the Fourier transform of this expression, we get

Xc(ω) = Xr(ω) + jXi(ω) (A.5)
= Xr(ω) + jH(ω)Xr(ω), (A.6)

and using (A.3), we obtain that the analytic signal has the following spectrum:

Xc(ω) =
{

2Xr(ω), for 0 < ω < π

0, for −π < ω < 0
. (A.7)

It can be seen that the Fourier transform of the analytic signal in (A.4) is zero for negative frequencies
and equal to the spectrum of xr(n) times two for positive frequencies. In other words, a real signal
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contains complex sinusoids in complex conjugate pairs, while the analytic signal only contains the
positive frequencies. Thereby, we have removed half of the sinusoidal components. Since Xc(ω) is
only nonzero in half its spectrum, it is possible to down-sample it by a factor of two, i.e.,

x(n) = xc(2n) (A.8)

without loss, assuming that the real signal was obtain by appropriate sampling so that no significant
signal energy is present in X(π) and X(0).This also leads to a reduction in computational complexity
as signal vectors are now only half the length, although as a result the algebra is complex. It is not
only advisable to down-sample the signal by a factor of two for complexity reasons, it may also be
necessary to avoid rank deficient covariance matrices. If we have Nr real samples of xr(n), then
we have N = Nr/2 complex samples x(N) assuming that Nr is even. Consequently, the sampling
frequency associated with the analytic signal is fc = fr/2, where fr is the sampling frequency at
which the real signal xr(n) has been obtained.

Caveat emptor! Solving estimation problems using the real and analytic signals do not always
yield identical estimates or estimators. If there exists considerable signal energy close to 0 and π in
Xr(ω) (relative to N ), there will be interaction effects between the negative and positive sides of the
spectrum, and by using the analytic signal, this will be ignored. For example, consider a real signal
consisting of a complex sinusoid having a low frequency and its complex conjugate. Due to finite
window lengths, their side- and main-lobes will overlap and cause the peaks of the spectrum to shift.
If the frequency is estimated from the spectrum of the analytic signal, the estimate will be biased
due to this interaction. As the number of samples N is increased, these effects will be lessened and
we are able to estimate frequencies closer to DC, so under the condition that the number of samples
is high, and that usually only audio contents between 20 and 20 kHz is present (or can be filtered
out without loss), we should be safe. In many estimators, it is possible to account for the interaction,
but in most cases, it is simply not worth it in terms of the added computational burden.

The question remains how to actually compute the analytic signal. The impulse response of
the Hilbert transform filter in (A.2) is infinite and cannot be implemented directly. Fortunately, it
can be implemented efficiently using the fast Fourier transform (FFT) such that the implementation
satisfies that a) the real value of the analytic signal is equal to the original real sequence, and b) the
real and imaginary parts of the analytic signal are orthogonal (see [47] for an improved method).
More specifically, the down-sampled analytic signal x(n) can be obtained from Nr real samples xr(n)

as follows [112]:

• The Nr-point discrete Fourier transform Xr(k) of xr(n) is computed using the FFT, i.e.,

Xr(k) =
N−1∑
n=0

xr(n)e−j2π k
N

n, (A.9)

for k = 0, . . . , Nr − 1.
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• From this the Nr/2 point discrete Fourier transform of the down-sampled analytic signal X(k)

is formed as

X(k) =
{

Xr(0) + X(Nr

2 ) for k = 0
2Xr(k) for 1 ≤ k ≤ Nr

2 − 1
. (A.10)

• Finally, we calculate the time-domain down-sampled analytic signal x(n) using an Nr/2 point
discrete Fourier transform scaled by 1/2, i.e.,

x(n) = 1

Nr

Nr/2−1∑
k=0

X(k)e
j2π k

Nr /2 n
, (A.11)

for n = 0, . . . , Nr/2 − 1.

The down-sampled analytic signal x(n) can now be used for estimation purposes based on the
complex signal models preferred in this book. To recover the original real signal xr(n) from x(n) or
a model thereof, the following procedure can be used:

• First, calculate the Nr/2-point discrete Fourier transform of x(n), i.e.,

X(k) =
Nr/2−1∑

n=0

x(n)e
−j2π k

Nr /2 n
, (A.12)

for k = 0, . . . , Nr/2 − 1.

• Zero-pad this transform to obtain the Nr-point discrete Fourier transform of xc(n), i.e.,

Xc(k) =
{

X(k) for 0 ≤ k ≤ Nr

2 − 1
0 for Nr

2 ≤ k ≤ Nr − 1
. (A.13)

• Calculate the analytic signal using the Nr-point inverse Fourier transform, i.e.,

xc(n) = 2

Nr

Nr−1∑
k=0

Xc(k)e
j2π k

Nr
n
. (A.14)

• From xc(n) obtain the corresponding real signal as xr(n) = Re{xc(n)}.
At this point it should be stressed that this particular procedure, although simple, intuitive and
computationally efficient, is not without its problems, aside from the problems generally associated
with using the ideal analytic signal mentioned earlier. From filter design theory, it is well-known
that direct manipulation of the coefficients of a discrete Fourier transform is a problematic, yet
tempting, way of designing digital filters. It is sometimes referred to as the frequency sampling
design method. The resulting filters may have some poor characteristics such as excessive ripples
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in between frequency points and this is also the case for this Hilbert transform implementation.
Furthermore, aliasing phenomena may also occcur depending on the particular processing taking
place. Nonetheless, it is still often worthwhile to use the analytic signal as computed here due to
the savings in computation time. Finally, we note that it is possible to formulate a time-recursive
updating of the analytic signal [80].
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