
EMBEDDED SYSTEM DESIGN



Embedded System Design

by

PETER MARWEDEL
University of Dortmund, Germany



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10  1-4020-7690-8 (HB)
ISBN-13  978-1-4020-7690-9 (HB)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved
© 2006 Springer 
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-10  0-387-29237-3 (PB)
ISBN-13  978-0-387-29237-3 (PB)



This book is dedicated
to my family.



Contents

Preface

Acknowledgments xvii

1. INTRODUCTION 1

1.1 Terms and scope 1

1.2 Application areas 5

1.3 Growing importance of embedded systems 8

1.4 Structure of this book 9

2. SPECIFICATIONS 13

2.1 Requirements 13

2.2 Models of computation 16

2.3 StateCharts 18

2.3.1 Modeling of hierarchy 19

2.3.2 Timers 23

2.3.3 Edge labels and StateCharts semantics 24

2.3.4 Evaluation and extensions 26

2.4 General language characteristics 27

2.4.1 Synchronous and asynchronous languages 27

2.4.2 Process concepts 28

2.4.3 Synchronization and communication 28

vii

xiii



EMBEDDED SYSTEM DESIGN

2.4.4 Specifying timing 29

2.4.5 Using non-standard I/O devices 30

2.5 SDL 30

2.6 Petri nets 36

2.6.1 Introduction 36

2.6.2 Condition/event nets 40

2.6.3 Place/transition nets 40

2.6.4 Predicate/transition nets 42

2.6.5 Evaluation 44

2.7 Message Sequence Charts 44

2.8 UML 45

2.9 Process networks 50

2.9.1 Task graphs 50

2.9.2 Asynchronous message passing 53

2.9.3 Synchronous message passing 55

2.10 Java 58

2.11 VHDL 59

2.11.1 Introduction 59

2.11.2 Entities and architectures 60

2.11.3 Multi-valued logic and IEEE 1164 62

2.11.4 VHDL processes and simulation semantics 69

2.12 SystemC 73

2.13 Verilog and SystemVerilog 75

2.14 SpecC 76

2.15 Additional languages 77

2.16 Levels of hardware modeling 79

2.17 Language comparison 82

2.18 Dependability requirements 83

viii



Contents

3. EMBEDDED SYSTEM HARDWARE 87

3.1 Introduction 87

3.2 Input 88

3.2.1 Sensors 88

3.2.2 Sample-and-hold circuits 90

3.2.3 A/D-converters 91

3.3 Communication 93

3.3.1 Requirements 94

3.3.2 Electrical robustness 95

3.3.3 Guaranteeing real-time behavior 96

3.3.4 Examples 97

3.4 Processing Units 98

3.4.1 Overview 98

3.4.2 Application-Specific Circuits (ASICs) 100

3.4.3 Processors 100

3.4.4 Reconfigurable Logic 115

3.5 Memories 118

3.6 Output 120

3.6.1 D/A-converters 121

3.6.2 Actuators 122

4. EMBEDDED OPERATING SYSTEMS,
MIDDLEWARE, AND SCHEDULING 125

4.1 Prediction of execution times 126

4.2 Scheduling in real-time systems 127

4.2.1 Classification of scheduling algorithms 128

4.2.2 Aperiodic scheduling 131

4.2.3 Periodic scheduling 135

4.2.4 Resource access protocols 140

4.3 Embedded operating systems 143

ix



EMBEDDED SYSTEM DESIGN

4.3.1 General requirements 143

4.3.2 Real-time operating systems 144

4.4 Middleware 148

4.4.1 Real-time data bases 148

4.4.2 Access to remote objects 149

5. IMPLEMENTING EMBEDDED SYSTEMS:
HARDWARE/SOFTWARE CODESIGN 151

5.1 Task level concurrency management 153

5.2 High-level optimizations 157

5.2.1 Floating-point to fixed-point conversion 157

5.2.2 Simple loop transformations 159

5.2.3 Loop tiling/blocking 160

5.2.4 Loop splitting 163

5.2.5 Array folding 165

5.3 Hardware/software partitioning 167

5.3.1 Introduction 167

5.3.2 COOL 168

5.4 Compilers for embedded systems 177

5.4.1 Introduction 177

5.4.2 Energy-aware compilation 178

5.4.3 Compilation for digital signal processors 181

5.4.4 Compilation for multimedia processors 184

5.4.5 Compilation for VLIW processors 184

5.4.6 Compilation for network processors 185

5.4.7
design space exploration 185

5.5 Voltage Scaling and Power Management 186

5.5.1 Dynamic Voltage Scaling 186

5.5.2 Dynamic power management (DPM) 189

x

Compiler generation, retargetable compilers
and



Contents

5.6 Actual design flows and tools 190

5.6.1 SpecC methodology 190

5.6.2 IMEC tool flow 191

5.6.3 The COSYMA design flow 194

5.6.4 Ptolemy II 195

5.6.5 The OCTOPUS design flow 196

6. VALIDATION 199

6.1 Introduction 199

6.2 Simulation 200

6.3 Rapid Prototyping and Emulation 201

6.4 Test 201

6.4.1 Scope 201

6.4.2 Design for testability 202

6.4.3 Self-test programs 205

6.5 Fault simulation 206

6.6 Fault injection 207

6.7 Risk- and dependability analysis 207

6.8 Formal Verification 209

212

About the author 227

List of Figures 229

Index 236

xi

References



Preface

Importance of embedded systems

Embedded systems can be defined as information processing systems embed-
ded into enclosing products such as cars, telecommunication or fabrication
equipment. Such systems come with a large number of common character-
istics, including real-time constraints, and dependability as well as efficiency
requirements. Embedded system technology is essential for providing ubiq-
uitous information, one of the key goals of modern information technology
(IT).

Following the success of IT for office and workflow applications, embedded
systems are considered to be the most important application area of informa-
tion technology during the coming years. Due to this expectation, the term
post-PC era was coined. This term denotes the fact that in the future, standard-
PCs will be a less dominant kind of hardware. Processors and software will be
used in much smaller systems and will in many cases even be invisible (this
led to the term the disappearing computer). It is obvious that many technical
products have to be technologically advanced to find customers’ interest. Cars,
cameras, TV sets, mobile phones etc. can hardly be sold any more unless they
come with smart software. The number of processors in embedded systems
already exceeds the number of processors in PCs, and this trend is expected
to continue. According to forecasts, the size of embedded software will also
increase at a large rate. Another kind of Moore’s law was predicted: For many
products in the area of consumer electronics the amount of code is doubling
every two years [Vaandrager, 1998].

This importance of embedded systems is so far not well reflected in many of the
current curricula. This book is intended as an aid for changing this situation. It
provides the material for a first course on embedded systems, but can also be
used by non-student readers.

xiii



EMBEDDED SYSTEM DESIGN

Audience for this book

This book intended for the following audience:

Computer science, computer engineering and electrical engineering stu-
dents who would like to specialize in embedded systems. The book should
be appropriate for third year students who do have a basic knowledge of
computer hardware and software. This book is intended to pave the way
for more advanced topics that should be covered in a follow-up course.

Engineers who have so far worked on systems hardware and who have to
move more towards software of embedded systems. This book should pro-
vide enough background to understand the relevant technical publications.

Professors designing a new curriculum for embedded systems.

Curriculum integration of embedded systems

The book assumes a basic understanding in the following areas (see fig. 0.1):

electrical networks at the high-school level (e.g. Kirchhoff’s laws),

operational amplifiers (optional),

computer hardware, for example at the level of the introductory book by
J.L. Hennessy and D.A. Patterson [Hennessy and Patterson, 1995],

fundamental digital circuits such as gates and registers,

computer programming,

finite state machines,

fundamental mathematical concepts such as tuples, integrals, and linear
equations,

algorithms (graph algorithms and optimization algorithms such as branch
and bound),

the concept of NP-completeness.

A key goal of this book is to provide an overview of embedded system design
and to relate the most important topics in embedded system design to each
other. It should help to motivate students and teachers to look at more details.
While the book covers a number of topics in detail, others are covered only
briefly. These brief sections have been included in order to put a number of

xiv



Figure 0.1. Positioning of the topics of this book

related issues into perspective. Furthermore, this approach allows lecturers to
have appropriate links in the book for adding complementary material of their
choice. The book should be complemented by follow-up courses providing a
more specialized knowledge in some of the following areas:

digital signal processing,

robotics,

machine vision,

sensors and actors,

real-time systems, real-time operating systems, and scheduling,

control systems,

specification languages for embedded systems,

computer-aided design tools for application-specific hardware,

formal verification of hardware systems,

testing of hardware and software systems,

performance evaluation of computer systems,

low-power design techniques,

security and dependability of computer systems,

ubiquitous computing,

application areas such as telecom, automotive, medical equipment, and
smart homes,

xvPreface



EMBEDDED SYSTEM DESIGN

impact of embedded systems.

A course using this book should be complemented by an exiting lab, using, for
example, small robots, such as Lego MindstormT M or similar robots. Another
option is to let students gain some practical experience with StateCharts-based
tools.

Additional information related to the book can be obtained from the fol-
lowing web page:

http://ls12-www.cs.uni-dortmund.de/∼marwedel/kluwer-es-book.

This page includes links to slides, exercises, hints for running labs, references
to selected recent publications and error corrections. Readers who discover er-
rors or who would like to make comments on how to improve the book should
send an e-mail to peter.marwedel@udo.edu.

Assignments could also use the information in complementary books [Ganssle,
1992], [Ball, 1996], [Ball, 1998], [Barr, 1999], [Ganssle, 2000], [Wolf, 2001],
[Buttazzo, 2002].

The use of names in this book without any reference to copyrights or trademark
rights does not imply that these names are not protected by these.

Please enjoy reading the book!

Dortmund (Germany), September 2003

P. Marwedel

Welcome to the current updated version of this book! The merger of Kluwer
and Springer publishers makes it possible to publish this version of the book
less than two years after the initial 2003 version. In the current version, all ty-
pos and errors found in the original version have been corrected. Moreover, all
Internet references have been checked and updated. Apart from these changes,
the content of the book has not been modified. A list of the errors corrected is
available at the web page listed above.

Please enjoy reading this updated book.

Dortmund (Germany), August 2005

P. Marwedel

xvi



Acknowledgments

My PhD students, in particular Lars Wehmeyer, did an excellent job in proof-
reading a preliminary version of this book. Also, the students attending my
course “Introduction to Embedded Systems” of the summer of 2003 (in partic-
ular Lars Bensmann) provided valuable help. In addition, the following col-
leagues and students gave comments or hints which were incorporated into this
book: W. Müller, F. Rammig (U. Paderborn), W. Rosenstiel (U. Tübingen), R.
Dömer (UC Irvine), and W. Kluge (U. Kiel). Material from the following per-
sons was used to prepare this book: G. C. Buttazzo, D. Gajski, R. Gupta, J.
P. Hayes, H. Kopetz, R. Leupers, R. Niemann, W. Rosenstiel, and H. Takada.
Corrections to the 2003 hardcopy version of the book were proposed by David
Hec, Thomas Wiederkehr, and Thorsten Wilmer. Of course, the author is re-
sponsible for all remaining errors and mistakes.

Acknowledgments also go to all those who have patiently accepted the author’s
additional workload during the writing of this book and his resulting reduced
availability for professional as well as personal partners.

ported the publication of the book from its initial conception.
Their supporthas been stimulating during the work on this book.

xvii

Finally, it should be mentioned that Kluwer Academic Publishers (now
Springer) has sup



Chapter 1

INTRODUCTION

1.1 Terms and scope

Until the late eighties, information processing was associated with large main-
frame computers and huge tape drives. During the nineties, this shifted towards
information processing being associated with personal computers, PCs. The
trend towards miniaturization continues and the majority of information pro-
cessing devices will be small portable computers integrated into larger prod-
ucts. Their presence in these larger products, such as telecommunication equip-
ment will be less obvious than for the PC. Hence, the new trend has also been
called the disappearing computer. However, with this new trend, the com-
puter will actually not disappear, it will be everywhere. This new type of
information technology applications has also been called ubiquitous com-
puting [Weiser, 2003], pervasive computing [Hansmann, 2001], [Burkhardt,
2001], and ambient intelligence [Koninklijke Philips Electronics N.V., 2003],
[Marzano and Aarts, 2003]. These three terms focus on only slightly different
aspects of future information technology. Ubiquitous computing focuses on the
long term goal of providing “information anytime, anywhere”, whereas perva-
sive computing focuses a somewhat more on practical aspects and the exploita-
tion of already available technology. For ambient intelligence, there is some
emphasis on communication technology in future homes and smart buildings.
Embedded systems are one of the origins of these three areas and they provide
a major part of the necessary technology. Embedded systems are informa-
tion processing systems that are embedded into a larger product and that
are normally not directly visible to the user. Examples of embedded systems
include information processing systems in telecommunication equipment, in
transportation systems, in fabrication equipment and in consumer electronics.
Common characteristics of these systems are the following:

1



2 EMBEDDED SYSTEM DESIGN

Frequently, embedded systems are connected to the physical environment
through sensors collecting information about that environment and actua-
tors1 controlling that environment.

Embedded systems have to be dependable.

Many embedded systems are safety-critical and therefore have to be de-
pendable. Nuclear power plants are an example of extremely safety-critical
systems that are at least partially controlled by software. Dependability
is, however, also important in other systems, such as cars, trains, airplanes
etc. A key reason for being safety-critical is that these systems are directly
connected to the environment and have an immediate impact on the envi-
ronment.

Dependability encompasses the following aspects of a system:

1 Reliability: Reliability is the probability that a system will not fail.

2 Maintainability: Maintainability is the probability that a failing sys-
tem can be repaired within a certain time-frame.

3 Availability: Availability is the probability that the system is available.
Both the reliability and the maintainability must be high in order to
achieve a high availability.

4 Safety: This term describes the property that a failing system will not
cause any harm.

5 Security: This term describes the property that confidential data re-
mains confidential and that authentic communication is guaranteed.

Embedded systems have to be efficient. The following metrics can be used
for evaluating the efficiency of embedded systems:

1 Energy: Many embedded systems are mobile systems obtaining their
energy through batteries. According to forecasts [SEMATECH, 2003],
battery technology will improve only at a very slow rate. However,
computational requirements are increasing at a rapid rate (especially for
multimedia applications) and customers are expecting long run-times
from their batteries. Therefore, the available electrical energy must be
used very efficiently.

2 Code-size: All the code to be run on an embedded system has to be
stored with the system. Typically, there are no hard discs on which
code can be stored. Dynamically adding additional code is still an ex-
ception and limited to cases such as Java-phones and set-top boxes.

1In this context, actuators are devices converting numerical values into physical effects.



Introduction 3

Due to all the other constraints, this means that the code-size should
be as small as possible for the intended application. This is especially
true for systems on a chip (SoCs), systems for which all the informa-
tion processing circuits are included on a single chip. If the instruction
memory is to be integrated onto this chip, it should be used very effi-
ciently.

3 Run-time efficiency: The minimum amount of resources should be
used for implementing the required functionality. We should be able to
meet time constraints using the least amount of hardware resources and
energy. In order to reduce the energy consumption, clock frequencies
and supply voltages should be as small as possible. Also, only the
necessary hardware components should be present. Components which
do not improve the worst case execution time (such as many caches or
memory management units) can be omitted.

4 Weight: All portable systems must be of low weight. Low weight is
frequently an important argument for buying a certain system.

5 Cost: For high-volume embedded systems, especially in consumer
electronics, competitiveness on the market is an extremely crucial is-
sue, and efficient use of hardware components and the software devel-
opment budget are required.

These systems are dedicated towards a certain application.

For example, processors running control software in a car or a train will
always run that software, and there will be no attempt to run a computer
game or spreadsheet program on the same processor. There are mainly two
reasons for this:

1 Running additional programs would make those systems less depend-
able.

2 Running additional programs is only feasible if resources such as mem-
ory are unused. No unused resources should be present in an efficient
system.

Most embedded systems do not use keyboards, mice and large computer
monitors for their user-interface. Instead, there is a dedicated user-inter-
face consisting of push-buttons, steering wheels, pedals etc. Because of
this, the user hardly recognizes that information processing is involved.
Due to this, the new era of computing has also been characterized by the
disappearing computer.

Many embedded systems must meet real-time constraints. Not complet-
ing computations within a given time-frame can result in a serious loss of



4 EMBEDDED SYSTEM DESIGN

the quality provided by the system (for example, if the audio or video qual-
ity is affected) or may cause harm to the user (for example, if cars, trains
or planes do not operate in the predicted way). A time-constraint is called
hard if not meeting that constraint could result in a catastrophe [Kopetz,
1997]. All other time constraints are called soft.

Many of today’s information processing systems are using techniques for
speeding-up information processing on the average. For example, caches
improve the average performance of a system. In other cases, reliable com-
munication is achieved by repeating certain transmissions. For example,
Internet protocols typically rely on resending messages in case the original
messages have been lost. On the average, such repetitions result in a (hope-
fully only) small loss of performance, even though for a certain message
the communication delay can be orders of magnitude larger than the nor-
mal delay. In the context of real-time systems, arguments about the average
performance or delay cannot be accepted. A guaranteed system response
has to be explained without statistical arguments [Kopetz, 1997].

Many embedded systems are hybrid systems in the sense that they include
analog and digital parts. Analog parts use continuous signal values in con-
tinuous time, whereas digital parts use discrete signal values in discrete
time.

Typically, embedded systems are reactive systems. They can be defined
as follows: A reactive system is one that is in continual interaction with its
environment and executes at a pace determined by that environment [Bergé
et al., 1995]. Reactive systems can be thought of as being in a certain state,
waiting for an input. For each input, they perform some computation and
generate an output and a new state. Therefore, automata are very good mod-
els of such systems. Mathematical functions, which describe the problems
solved by most algorithms, would be an inappropriate model.

Embedded systems are under-represented in teaching and in public dis-
cussions. Embedded chips aren’t hyped in TV and magazine ads ...[Ryan,
1995]. One of the problems in teaching embedded system design is the
equipment which is needed to make the topic interesting and practical.
Also, real embedded systems are very complex and hence difficult to teach.

Due to this set of common characteristics (except for the last one), it does make
sense to analyze common approaches for designing embedded systems, instead
of looking at the different application areas only in isolation.

Actually, not every embedded system will have all the above characteristics.
We can define the term “embedded system” also in the following way: Infor-
mation processing systems meeting most of the characteristics listed above are



Introduction 5

called embedded systems. This definition includes some fuzziness. However,
it seems to be neither necessary nor possible to remove this fuzziness.

Most of the characteristics of embedded systems can also be found in a re-
cently introduced type of computing: ubiquitous or pervasive computing, also
called ambient intelligence. The key goal of this type of computing is to make
information available anytime, anywhere. It does therefore comprise commu-
nication technology. Fig. 1.1 shows a graphical representation of how ubiq-
uitous computing is influenced by embedded systems and by communication
technology.

Figure 1.1. Influence of embedded systems on ubiquitous computing

For example, ubiquitous computing has to meet real-time and dependability re-
quirements of embedded systems while using fundamental techniques of com-
munication technology, such as networking.

1.2 Application areas

The following list comprises key areas in which embedded systems are used:

Automotive electronics: Modern cars can be sold only if they contain a
significant amount of electronics. These include air bag control systems,
engine control systems, anti-braking systems (ABS), air-conditioning, GPS-
systems, safety features, and many more.

Aircraft electronics: A significant amount of the total value of airplanes
is due to the information processing equipment, including flight control
systems, anti-collision systems, pilot information systems, and others. De-
pendability is of utmost importance.



6 EMBEDDED SYSTEM DESIGN

Trains: For trains, the situation is similar to the one discussed for cars and
airplanes. Again, safety features contribute significantly to the total value
of trains, and dependability is extremely important.

Telecommunication: Mobile phones have been one of the fastest grow-
ing markets in the recent years. For mobile phones, radio frequency (RF)
design, digital signal processing and low power design are key aspects.

Medical systems: There is a huge potential for improving the medical
service by taking advantage of information processing taking place within
medical equipment.

Military applications: Information processing has been used in military
equipment for many years. In fact, some of the very first computers ana-
lyzed military radar signals.

Authentication systems: Embedded systems can be used for authentica-
tion purposes.

For example, advanced payment systems can provide more security than
classical systems. The SMARTpen R© [IMEC, 1997] is an example of such
an advanced payment system (see fig. 1.2).

Force−
and

sensors

Mixed−signal

transmitter
ASIC +

to host PC

Batteries Tilt−
sensor

Ink

Push−buttons

acceleration−

Figure 1.2. SMARTpen

The SMARTpen is a pen-like instrument analyzing physical parameters
while its user is signing. Physical parameters include the tilt, force and
acceleration. These values are transmitted to a host PC and compared with
information available about the user. As a result, it can be checked if both
the image of the signature as well as the way it has been produced coincide
with the stored information.

Other authentication systems include finger print sensors or face recogni-
tion systems.

Consumer electronics: Video and audio equipment is a very important
sector of the electronics industry. The information processing integrated
into such equipment is steadily growing. New services and better qual-
ity are implemented using advanced digital signal processing techniques.



Introduction 7

Many TV sets, multimedia phones, and game consoles comprise high-
performance processors and memory systems. They represent special cases
of embedded systems.

Fabrication equipment: Fabrication equipment is a very traditional area in
which embedded systems have been employed for decades. Safety is very
important for such systems, the energy consumption is less a problem. As
an example, fig. 1.3 (taken from Kopetz [Kopetz, 1997]) shows a container
connected to a pipe. The pipe includes a valve and a sensor. Using the
readout from the sensor, a computer may have to control the amount of
liquid leaving the pipe.

Figure 1.3. Controlling a valve

The valve is an example of an actuator (see definition on page 2).

Smart buildings: Information processing can be used to increase the com-
fort level in buildings, can reduce the energy consumption within buildings,
and can improve safety and security. Subsystems which traditionally were
unrelated have to be connected for this purpose. There is a trend towards
integrating air-conditioning, lighting, access control, accounting and dis-
tribution of information into a single system. For example, energy can be
saved on cooling, heating and lighting of rooms which are empty. Available
rooms can be displayed at appropriate places, simplifying ad-hoc meetings
and cleaning. Air condition noise can be reduced to a level required for the
actual operating conditions. Intelligent usage of blinds can optimize light-
ing and air-conditioning. Tolerance levels of air conditioning subsystems
can be increased for empty rooms, and the lighting can be automatically
reduced. Lists of non-empty rooms can be displayed at the entrance of
the building in emergency situations (provided the required power is still
available).

Initially, such systems will mostly be present only in high-tech office build-
ings.

Robotics: Robotics is also a traditional area in which embedded systems
have been used. Mechanical aspects are very important for robots. Most of



8 EMBEDDED SYSTEM DESIGN

the characteristics described above also apply to robotics. Recently, some
new kinds of robots, modeled after animals or human beings, have been
designed. Fig. 1.4 shows such a robot.

Figure 1.4. Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl für Angewandte
Mechanik, TU München), c©TU München

This set of examples demonstrates the huge variety of embedded systems. Why
does it make sense to consider all these types of embedded systems in one
book? It makes sense because information processing in these systems has
many common characteristics, despite being physically so different.

1.3 Growing importance of embedded systems

The size of the embedded system market can be analyzed from a variety of
perspectives. Looking at the number of processors that are currently used, it
has been estimated that about 79% of all the processors are used in embedded
systems2. Many of the embedded processors are 8-bit processors, but despite
this, 75% of all 32-bit processors are integrated into embedded systems [Stiller,
2000]. Already in 1996, it was estimated that the average American came into
contact with 60 microprocessors per day [Camposano and Wolf, 1996]. Some

2Source: Electronic design.



Introduction 9

high-end cars contain more than 100 processors3. These numbers are much
larger than what is typically expected, since most people do not realize that
they are using processors. The importance of embedded systems was also
stated by journalist Mary Ryan [Ryan, 1995]:

... embedded chips form the backbone of the electronics driven world in which
we live. ... they are part of almost everything that runs on electricity.

According to quite a number of forecasts, the embedded system market will
soon be much larger than the market for PC-like systems. Also, the amount
of software used in embedded systems is expected to increase. According to
Vaandrager, for many products in the area of consumer electronics the amount
of code is doubling every two years [Vaandrager, 1998].

Embedded systems form the basis of the so-called post-PC era, in which infor-
mation processing is more and more moving away from just PCs to embedded
systems.

The growing number of applications results in the need for design technologies
supporting the design of embedded systems. Currently available technologies
and tools still have important limitations. For example, there is still a need for
better specification languages, tools generating implementations from specifi-
cations, timing verifiers, real-time operating systems, low-power design tech-
niques, and design techniques for dependable systems. This book should help
teaching the essential issues and should be a stepping stone for starting more
research in the area.

1.4 Structure of this book

Traditionally, the focus of a number of books on embedded systems is on ex-
plaining the use of micro-controllers, including their memory, I/O and interrupt
structure. There are many such books [Ganssle, 1992], [Ball, 1996], [Ball,
1998], [Barr, 1999], [Ganssle, 2000].

Due to this increasing complexity of embedded systems, this focus has to
be extended to include at least the different specification languages, hard-
ware/software codesign, compiler techniques, scheduling and validation tech-
niques. In the current book, we will be covering all these areas. The goal is to
provide students with an introduction to embedded systems, enabling students
to put the different areas into perspective.

For further details, we recommend a number of sources (some of which have
also been used in preparing this book):

3According to personal communication.



10 EMBEDDED SYSTEM DESIGN

There is a large number of sources of information on specification lan-
guages. These include earlier books by Young [Young, 1982], Burns and
Wellings [Burns and Wellings, 1990] and Bergé [Bergé et al., 1995]. There
is a huge amount of information on new languages such as SystemC [Müller
et al., 2003], SpecC [Gajski et al., 2000], Java etc.

Approaches for designing and using real-time operating systems (RTOSes)
are presented in a book by Kopetz [Kopetz, 1997].

Real-time scheduling is covered comprehensively in the books by Buttazzo
[Buttazzo, 2002] and by Krishna and Shin [Krishna and Shin, 1997].

Lecture manuscripts of Rajiv Gupta [Gupta, 1998] provide a survey of em-
bedded systems.

Robotics is an area that is closely linked with embedded systems. We rec-
ommend the book by Fu, Gonzalez and Lee [Fu et al., 1987] for information
on robotics.

Additional information is provided by the ARTIST roadmap [Bouyssounouse
and Sifakis, 2005] and a book by Vahid [Vahid, 2002].

The structure of this book corresponds to that of a simplified design informa-
tion flow for embedded systems, shown in figure 1.5.

specification

standard software

realizationimplementation: hw/sw codesign
− task concurrency management
− high−level transformations
− design space exploration
− hardware/software partitioning
− compilation, scheduling

...... ...
(from all phases)

validation; evaluation (performance, energy consumption, safety, ..)

(RTOS, ...)

HW−components

software

...

hardwarehardware−design

ap
pl

ic
at

io
n 

kn
ow

le
dg

e

Figure 1.5. Simplified design information flow

The design information flow starts with ideas in people’s heads. These ideas
must be captured in a design specification. In addition, standard hardware and
software components are typically available and should be reused whenever
possible.

Design activities start from the specification. Typically, they involve a con-
sideration of both hardware and software, since both have to be taken into



Introduction 11

account for embedded system design. Design activities comprise mapping
operations to concurrent tasks, high-level transformations (such as advanced
loop transformations), mapping of operations to either hardware or software
(called hardware/software partitioning), design space exploration, compilation,
and scheduling. It may be necessary to design special purpose hardware or to
optimize processor architectures for a given application. However, hardware
design is not covered in this book. Standard compilers can be used for the
compilation. However, they are frequently not optimized for embedded pro-
cessors. Therefore, we will also briefly cover compiler techniques that should
be applied in order to obtain the required efficiency. Once binary code has
been obtained for each task, it can be scheduled precisely. Final software and
hardware descriptions can be merged, resulting in a complete description of
the design and providing input for fabrication.

At the current state of the art, none of the design steps can be guaranteed to be
correct. Therefore, it is necessary to validate the design. Validation consists of
checking intermediate or final design descriptions against other descriptions.
Evaluation is another activity that is required during various phases of the de-
sign. Various properties can be evaluated, including performance, dependabil-
ity, energy consumption, manufacturability etc.

Note that fig. 1.5 represents the flow of information about the design object.
The sequence of design activities has to be consistent with that flow. This
does not mean, however, that design activities correspond to a simple path
from ideas to the final product. In practice, some design activities have to be
repeated. For example, it may become necessary to return to the specification
or to obtain additional application knowledge. It may also become necessary
to consider additional standard operating systems if the initially considered
operating system cannot be used for performance reasons.

Consistent with the design information flow, this book is structured as fol-
lows: in chapter 2, we will discuss specification languages. Key hardware
components of embedded systems will be presented in chapter 3. Chapter 4 is
devoted towards the description of real-time operating systems, other types of
such middleware, and standard scheduling techniques. Standard design tech-
niques for implementing embedded systems - including compilation issues -
will be discussed in chapter 5. Finally, validation will be covered in the last
chapter.



Chapter 2

SPECIFICATIONS

2.1 Requirements

Consistent with the simplified design flow (see fig. 1.5), we will now describe
requirements and approaches for specifying embedded systems.

There may still be cases in which the specification of embedded systems is
captured in a natural language, such as English. However, this approach is
absolutely inappropriate since it lacks key requirements for specification tech-
niques: it is necessary to check specifications for completeness, absence of
contradictions and it should be possible to derive implementations from the
specification in a systematic way. Therefore, specifications should be captured
in machine readable, formal languages. Specification languages for embedded
systems should be capable of representing the following features1:

Hierarchy: Human beings are generally not capable of comprehending
systems that contain many objects (states, components) having complex
relations with each other. The description of all real-life systems needs
more objects than human beings can understand. Hierarchy is the only
mechanism that helps to solve this dilemma. Hierarchies can be introduced
such that humans need to handle only a small number of objects at any
time.

There are two kinds of hierarchies:

1Information from the books of Burns et al. [Burns and Wellings, 1990], Bergé et al. [Bergé et al., 1995]
and Gajski et al. [Gajski et al., 1994] is used in this list.

13



14 EMBEDDED SYSTEM DESIGN

– Behavioral hierarchies: Behavioral hierarchies are hierarchies con-
taining objects necessary to describe the system behavior. States, events
and output signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems
are composed of physical components.
For example, embedded systems can be comprised of processors, mem-
ories, actors and sensors. Processors, in turn, include registers, multi-
plexers and adders. Multiplexers are composed of gates.

Timing-behavior: Since explicit timing requirements are one of the char-
acteristics of embedded systems, timing requirements must be captured in
the specification.

State-oriented behavior: It was already mentioned in chapter 1 that au-
tomata provide a good mechanism for modeling reactive systems. There-
fore, the state-oriented behavior provided by automata should be easy to
describe. However, classical automata models are insufficient, since they
cannot model timing and since hierarchy is not supported.

Event-handling: Due to the reactive nature of embedded systems, mecha-
nisms for describing events must exist. Such events may be external events
(caused by the environment) or internal events (caused by components of
the system).

No obstacles to the generation of efficient implementations: Since em-
bedded systems have to be efficient, no obstacles prohibiting the generation
of efficient realizations should be present in the specification.

Support for the design of dependable systems: Specification techniques
should provide support for designing dependable systems. For example,
specification languages should have unambiguous semantics, facilitate for-
mal verification and be capable of describing security and safety require-
ments.

Exception-oriented behavior: In many practical, systems exceptions do
occur. In order to design dependable systems, it must be possible to de-
scribe actions to handle exceptions easily. It is not acceptable that excep-
tions have to be indicated for each and every state (like in the case of clas-
sical state diagrams). Example: In fig. 2.1, input k might correspond to an
exception.

Specifying this exception at each state makes the diagram very complex.
The situation would get worse for larger state diagrams with many transi-
tions. We will later show, how all the transitions can be replaced by a single
one.



Specifications 15

A B C D E

Z

f

m k
k k k

k

i jg h

Figure 2.1. State diagram with exception k

Concurrency: Real-life systems are distributed, concurrent systems. It is
therefore necessary to be able to specify concurrency conveniently.

Synchronization and communication: Concurrent actions have to be
able to communicate and it must be possible to agree on the use of re-
sources. For example, it is necessary to express mutual exclusion.

Presence of programming elements: Usual programming languages have
proven to be a convenient means of expressing computations that have to
be performed. Hence, programming language elements should be available
in the specification technique used. Classical state diagrams do not meet
this requirement.

Executability: Specifications are not automatically consistent with the
ideas in people’s heads. Executing the specification is a means of plausi-
bility checking. Specifications using programming languages have a clear
advantage in this context.

Support for the design of large systems: There is a trend towards large
and complex embedded software programs. Software technology has found
mechanisms for designing such large systems. For example, object-orien-
tation is one such mechanism. It should be available in the specification
methodology.

Domain-specific support: It would of course be nice if the same speci-
fication technique could be applied to all the different types of embedded
systems, since this would minimize the effort for developing specification
techniques and tool support. However, due to the wide range of application
domains, there is little hope that one language can be used to efficiently
represent specifications in all domains. For example, control-dominated,
data-dominated, centralized and distributed applications-domains can all
benefit from language features dedicated towards those domains.

Readability: Of course, specifications have to be readable by human be-
ings. Preferably, they should also be machine-readable into order to process
them in a computer.



16 EMBEDDED SYSTEM DESIGN

Portability and flexibility: Specifications should be independent of spe-
cific hardware platforms so that they can be easily used for a variety of
target platforms. They should be flexible such that small changes of the
system’s features should also require only small changes to the specifica-
tion.

Termination: It should be feasible to identify processes that will terminate
from the specification.

Support for non-standard I/O-devices: Many embedded systems use
I/O-devices other than those typically found on a PC. It should be possi-
ble to describe inputs and outputs for those devices conveniently.

Non-functional properties: Actual systems have to exhibit a number of
non-functional properties, such as fault-tolerance, size, extendibility, ex-
pected lifetime, power consumption, weight, disposability, user friendli-
ness, electromagnetic compatibility (EMC) etc. There is no hope that all
these properties can be defined in a formal way.

Appropriate model of computation: In order to describe computations,
computational models are required. Such models will be described in the
next section.

From the list of requirements, it is already obvious that there will not be any
formal language capable of meeting all these requirements. Therefore, in prac-
tice, we have to live with compromises. The choice of the language used for
an actual design will depend on the application domain and the environment
in which the design has to be performed. In the following, we will present a
survey of languages that can be used for actual designs.

2.2 Models of computation

Applications of information technology have so far very much relied on the
von Neumann paradigm of sequential computing. This paradigm is not appro-
priate for embedded systems, in particular those with real-time requirements,
since there is no notion of time in von Neumann computing. Other models of
computation are more adequate. Models of computation can be described as
follows [Lee, 1999]:

Models of computation define components. Procedures, processes, func-
tions, finite state machines are possible components.

Models of computation define communication protocols. These protocols
constrain the mechanism by which components can interact. Asynchronous



Specifications 17

message passing and rendez-vous based communication are examples of
communication protocols.

Models of computation possibly also define what components know about
each other (the information which components share). For example, they
might share information about global variables.

Models of computation do not define the vocabulary of the interaction of the
components.

Examples of models of computation capable of describing concurrency include
the following [Lee, 1999], [Janka, 2002], [Jantsch, 2003]:

Communicating finite state machines (CFSMs): CFSMs are collections
of finite state machines communicating with each other. Methods for com-
munication must be defined. This model of computation is used, for ex-
ample, for StateCharts (see next section), the StateChart variant StateFlow,
and SDL (see page 30).

Discrete event model: In this model, there are events carrying a totally
ordered time stamp, indicating the time at which the event occurs. Discrete
event simulators typically contain a global event queue sorted by time. The
disadvantage is that it relies on a global notion of one or more event queues,
making it difficult to map the semantic model onto specific implementa-
tions. Examples include VHDL (see page 59), Verilog (see page 75), and
Simulink from MathWorks (see page 79).

Differential equations: Differential equations are capable to model analog
circuits and physical systems. Hence, they can find applications in embed-
ded system modeling.

Asynchronous message passing: In asynchronous message passing, pro-
cesses communicate by sending messages through channels that can buffer
the messages. The sender does not need to wait for the receiver to be ready
to receive the message. In real life, this corresponds to sending a letter. A
potential problem is the fact that messages may have to be stored and that
message buffers can overflow.

There are several variations of this scheme, including Kahn process net-
works (see page 53) and dataflow models.

A dataflow program is specified by a directed graph where the nodes (ver-
tices), called “actors”, represent computations and the arcs represent first-
in first-out (FIFO) channels. The computation performed by each actor is
assumed to be functional, that is, based on the input values only. Each pro-
cess in a dataflow graph is decomposed into a sequence of firings, which
are atomic actions. Each firing produces and consumes tokens.



18 EMBEDDED SYSTEM DESIGN

Of particular interest is synchronous dataflow (SDF), which requires pro-
cesses to consume and produce a fixed number of tokens each firing. SDF
can be statically scheduled, which makes implementations very efficient.

Synchronous message passing: In synchronous message passing, the com-
ponents are processes. They communicate in atomic, instantaneous actions
called rendez-vous. The process reaching the point of communication first
has to wait until the partner has also reached its point of communication.
There is no risk of overflows, but the performance may suffer.

Examples of languages following this model of computation include CSP
(see page 55) and ADA (see page 55).

Different applications may require the use of different models. While some of
the actual languages implement only one of the models, others allow a mix of
models.

2.3 StateCharts

The first actual language which will be presented is StateCharts. StateCharts
was introduced in 1987 by David Harel [Harel, 1987] and later described more
precisely [Drusinsky and Harel, 1989]. StateCharts describes communicating
finite state machines. It based on the shared memory concept of communica-
tion. According to Harel, the name was chosen since it was the only unused
combination of “flow” or “state” with “diagram” or “chart”.

We mentioned in the previous section that we need to describe state-oriented
behavior. State diagrams are a classical method of doing this. Fig. 2.2 (the
same as fig. 2.1) shows an example of a classical state diagram, representing a
finite state machine (FSM).

A B C D E

Z

f

m k
k k k

k

i jg h

Figure 2.2. State diagram

Circles denote states. At any time, deterministic FSMs which we will consider
here, can only be in one of their states. Edges denote state transitions. Edge
labels represent events. If an event happens, the FSM will change its state
as indicated by the edge. FSMs may also generate output (not shown in fig.
2.2). For more information about classical FSMs refer to, for example, Kohavi
[Kohavi, 1987].



Specifications 19

2.3.1 Modeling of hierarchy

StateCharts describe extended FSMs. Due to this, they can be used for mod-
eling state-oriented behavior. The key extension is hierarchy. Hierarchy is
introduced by means of super-states.

Definitions:

States comprising other states are called super-states.

States included in super-states are called sub-states of the super-states.

Fig. 2.3 shows a StateCharts example. It is a hierarchical version of fig. 2.2.

Z

A B C D E

f

g h i j

km

S

Figure 2.3. Hierarchical state diagram

Super-state S includes states A, B, C, D and E. Suppose the FSM is in state Z
(we will also call Z to be an active state). Now, if input m is applied to the
FSM, then A will be the new state. If the FSM is in S and input k is applied,
then Z will be the new state, regardless of whether the FSM is in sub-states A,
B, C, D or E of S. In this example, all states contained in S are non-hierarchical
states. In general, sub-states of S could again be super-states consisting of
sub-states themselves.

Definitions:

Each state which is not composed of other states is called a basic state.

For each basic state s, the super states containing s are called ancestor
states.

The FSM of fig. 2.3 can only be in one of the sub-states of super-state S at any
time. Super states of this type are called OR-super-states2.

2More precisely, they should be called XOR-super-states, since the FSM is in either A, B, D or E. However,
this name is not commonly used in the literature.



20 EMBEDDED SYSTEM DESIGN

In fig. 2.3, k might correspond to an exception for which state S has to be
left. The example already shows that the hierarchy introduced in StateCharts
enables a compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system de-
scription comprises descriptions of subsystems which, in turn, may contain de-
scriptions of subsystems. The description of the entire system can be thought
of as a tree. The root of the tree corresponds to the system as a whole, and
all inner nodes correspond to hierarchical descriptions (in the case of State-
Charts called super-nodes). The leaves of the hierarchy are non-hierarchical
descriptions (in the case of StateCharts called basic states).

So far, we have used explicit, direct edges to basic states to indicate the next
state. The disadvantage of that approach is that the internal structure of super-
states cannot be hidden from the environment. However, in a true hierarchical
environment, we should be able to hide the internal structure so that it can
be described later or changed later without affecting the environment. This is
possible with other mechanisms for describing the next state.

The first additional mechanism is the default state mechanism. It can be used
in super-states to indicate the particular sub-states that will be entered if the
super-states are entered. In diagrams, default states are identified by edges
starting at small filled circles. Fig. 2.4 shows a state diagram using the default
state mechanism. It is equivalent to the diagram in fig. 2.3. Note that the filled
circle does not constitute a state itself.

Z

A B C D E

f

g h i j

k

S

m

Figure 2.4. State diagram using the default state mechanism

Another mechanism for specifying next states is the history mechanism. With
this mechanism, it is possible to return to the last sub-state that was active
before a super-state was left. The history mechanism is symbolized by a circle
containing the letter H. In order to define the next state for the very initial
transition into a super-state, the history mechanism is frequently combined
with the default mechanism. Fig. 2.5 shows an example.

The behavior of the FSM is now somewhat different. If we input m while the
system is in Z, then the FSM will enter A if this is the very first time we enter
S, and otherwise it will enter the last state that we were in. This mechanism



Specifications 21

Z

A B C D E

f

g h i j

S

H

km

Figure 2.5. State diagram using the history and the default state mechanism

has many applications. For example, if k denotes an exception, we could use
input m to return to the state we were in before the exception. States A, B, C, D
and E could also call Z like a procedure. After completing “procedure” Z, we
would return to the calling state.

Fig. 2.5 can also be redrawn as shown if fig. 2.6. In this case, the symbols for
the default and the history mechanism are combined.

Z

A B C D E

f

g h i j

S

k

H

m

Figure 2.6. Combining the symbols for the history and the default state mechanism

Specification techniques must also be able to describe concurrency conve-
niently. Towards this end, StateCharts provides a second class of super-states,
so called AND-states.

Definition: Super-states S are called AND-super-states if the system contain-
ing S will be in all of the sub-states of S whenever it is in S.

An AND-super-state is included in the answering machine shown in fig. 2.7.

An answering machine normally performs two tasks concurrently: it is mon-
itoring the line for incoming calls and the keys for user input. In fig. 2.7, the
corresponding states are called Lwait and Kwait. Incoming calls are processed
in state Lproc while the response to pressed keys is generated in state Kproc.
For the time being, we assume that the on/off switch (generating events key-off
and key-on) is decoded separately and pushing it does not result in entering
Kproc. If this switch is pushed, the line monitoring state as well as the key
monitoring state are left and re-entered only if the machine is switched on.
At that time, default states Lwait and Kwait are entered. While switched on,



22 EMBEDDED SYSTEM DESIGN

off

answering−machine

ring

hangup

Lwait Lproc Kwait Kproc

key pressed

done
(caller)

key−offkey−on

line−monitoring key−monitoring (excl. on/off)

on

Figure 2.7. Answering machine

the machine will always be in the line monitoring state as well as in the key
monitoring state.

For AND-super-states, the sub-states entered as a result of some event can be
defined independently. There can be any combination of history, default and
explicit transitions. It is crucial to understand that all sub-states will always be
entered, even if there is just one explicit transition to one of the sub-states. Ac-
cordingly, transitions out of an AND-super-state will always result in leaving
all the sub-states.

For example, let us modify our answering machine such that the on/off switch,
like all other switches, is decoded in state Kproc (see fig. 2.8).

on

line−monitoring

ring

hangup

Lwait Lproc Kwait Kproc

key pressed

done

answering−machine

(caller)

off key−off

key−on

key−monitoring (incl. on/off)

Figure 2.8. Answering machine with modified on/off switch processing



Specifications 23

If pushing that key is detected in Kproc, a transition is made to the off state.
This transition results in leaving the line-monitoring state as well. Switching
the machine on again results in also entering the line-monitoring state.

Summarizing, we can state the following: States in StateCharts diagrams
are either AND-states, OR-states or basic states.

2.3.2 Timers

Due to the requirement to model time in embedded systems, StateCharts also
provides timers. Timers are denoted by the symbol shown in fig. 2.9 (left).

a 20 ms timeout

Figure 2.9. Timer in StateCharts

After the system has been in the state containing the timer for the specified pe-
riod, a time-out will occur and the system will leave the specified state. Timers
can be used hierarchically.

Timers can be used, for example, at the next lower level of the hierarchy of the
answering machine in order to describe the behavior of state Lproc. Fig. 2.10
shows a possible behavior for that state.

play
text

timeout

Lproc

4 s
lift off talk return

beep beep

dead

timeout

silent
8 s

record

(callee)

Figure 2.10. Servicing the incoming line in Lproc

Due to the exception-like transition for hangups by the caller in fig. 2.7, state
Lproc is terminated whenever the caller hangs up. For hangups (returns) by the
callee, the design of state Lproc results in an inconvenience: If the callee hangs
up the phone first, the telephone will be dead (and quiet) until the caller has
also hung up the phone.



24 EMBEDDED SYSTEM DESIGN

StateCharts do include a number of other language elements. For a full descrip-
tion refer to Harel [Harel, 1987]. A more detailed description of the semantics
of the StateMate implementation of StateCharts is described by Drusinsky and
Harel [Drusinsky and Harel, 1989].

2.3.3 Edge labels and StateCharts semantics

Until now, we have not considered outputs generated by our extended FSMs.
Generated outputs can be specified using edge labels. The general form of an
edge label is “event [condition] / reaction”. All three label parts are optional.
The reaction-part describes the reaction of the FSM to a state transition. Pos-
sible reactions include the generation of events and assignments to variables.
The condition-part implies a test of the values of variables or a test of the cur-
rent state of the system. The event-part refers to a test of current events. Events
can be generated either internally or externally. Internal events are generated as
a result of some transition and are described in reaction-parts. External events
are usually described in the model environment.

Examples:

on-key / on:=1 (Event-test and variable assignment),

[on=1] (Condition test for a variable value),

off-key [not in Lproc] / on:=0 (Event-test, condition test for a state, variable
assignment. The assignment is performed if the event has occurred and the
condition is true).

The semantics of edge labels can only be explained in the context of the se-
mantics of StateCharts. According to the semantics of the StateMate imple-
mentation of StateCharts [Drusinsky and Harel, 1989], a step-based execution
of StateCharts-descriptions is assumed. Each step consists of three phases:

1 In the first phase, the effect of external changes on conditions and events
is evaluated. This includes the evaluation of functions which depend on
external events. This phase does not include any state changes. In our
simple examples, this phase is not actually needed.

2 The next phase is to calculate the set of transitions that should be made in
the current step. Variable assignments are evaluated, but the new values are
only assigned to temporary variables.

3 In the third phase, state transitions become effective and variables obtain
their new values.



Specifications 25

The separation into phases 2 and 3 is especially important in order to guarantee
a deterministic and reproducible behavior of StateCharts models. Consider the
StateCharts model of fig. 2.11.

swap

/a:=1; b:=0

e/a:=b e/b:=a

Figure 2.11. Mutually dependent assignments

Due to the separation into two phases, new values for a and b are stored in
temporary variables, say a’ and b’. In the final phase, temporary variables are
copied into the used-defined variables:

phase 2: a’:=b; b’:=a;

phase 3: a:=a’; b:=b’

As a result, the two variables will be swapped each time an event e happens.
This behavior corresponds to that of two cross-coupled registers (one for each
variable) connected to the same clock (see fig. 2.11) and reflects the operation
of a clocked finite state machine including those two registers.

a

b

clock

Figure 2.12. Cross-coupled registers

Without the separation into two phases, the result would depend on the se-
quence in which the assignments are performed. In any case, the same value
would be assigned to both variables. This separation into (at least) two phases
is quite typical for languages that try to reflect the operation of synchronous
hardware. We will find the same separation in VHDL (see page 73).

The three phases are assumed to be executed for each step. Steps are assumed
to be executed each time events or variables have changed. The execution of
a StateChart model consists of the execution of a sequence of steps (see fig.
2.13), each step consisting of three phases.



26 EMBEDDED SYSTEM DESIGN

Status Status StatusStatus Step Step Step

Figure 2.13. Steps during the execution of a StateCharts model

The set of all values of variables, together with the set of events generated
(and the current time) is defined as the status3 of a StateCharts model. After
executing the third phase, a new status is obtained. The notion of steps allows
us to more precisely define the semantics of events. Events are generated, as
mentioned, either internally or externally. The visibility of events is limited
to the step following the one in which they are generated. Thus, events
behave like single bit values which are stored in permanently enabled registers
at one clock transition and have an effect on the values stored at the next clock
transition. They do not live forever.

Variables, in contrast, retain their values, until they are reassigned. According
to StateCharts semantics, new values of variables are visible to all parts of the
model from the step following the step in which the assignment was made on-
wards. That means, StateCharts semantics implies that new values of variables
are propagated to all parts of a model between two steps. StateCharts implicitly
assumes a broadcast mechanism for updates on variables. For distributed
systems, it will be very difficult to update all variables between two steps. Due
to this broadcast mechanism, StateCharts is not an appropriate language for
modeling distributed systems.

2.3.4 Evaluation and extensions

StateCharts’ main application domain is that of local, control-dominated sys-
tems. The capability of nesting hierarchies at arbitrary levels, with a free choice
of AND- and OR-states, is a key advantage of StateCharts. Another advantage
is that the semantics of StateCharts is defined at a sufficient level of detail
[Drusinsky and Harel, 1989]. Furthermore, there are quite a number of com-
mercial tools based on StateCharts. StateMate (see http://www.ilogix.com),
StateFlow (see http://www.mathworks.com/products/stateflow) and BetterState
(see http://www.windriver.com/products/betterstate/ index.html) are examples
of commercial tools based on StateCharts. Many of these are capable of trans-
lating StateCharts into equivalent descriptions in C or VHDL (see page 59).
From VHDL, hardware can be generated using synthesis tools. Therefore,
StateCharts-based tools provide a complete path from StateCharts-based spec-

3We would normally use the term “state” instead of “status”. However, the term “state” has a different
meaning in StateCharts.



Specifications 27

ifications down to hardware. Generated C programs can be compiled and exe-
cuted. Hence, a path to software-based realizations also exists.

Unfortunately, the efficiency of the automatic translation is frequently a con-
cern. For example, sub-states of AND-states may be mapped to UNIX-pro-
cesses. This concept is acceptable for simulating StateCharts, but will hardly
lead to efficient implementations on small processors. The productivity gain
from object-oriented programming is not available in StateCharts, since it is
not object-oriented. Furthermore, the broadcast mechanism makes it less ap-
propriate for distributed systems. StateCharts do not comprise program con-
structs for describing complex computation and cannot describe hardware struc-
tures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mecha-
nisms for removing the limitations of StateCharts. For example, C-code can
be used to represent program constructs and module charts of StateMate can
represent hardware structures.

2.4 General language characteristics

The previous section provides us with some first examples of properties of
specification languages. These examples help us to understand a more general
discussion of language properties in this section before we will discuss more
languages in the sections that will follow. There are several characteristics by
which we can compare the properties of languages. The first property is related
to the distinction between deterministic and non-deterministic models already
touched in our discussion of StateCharts.

2.4.1 Synchronous and asynchronous languages

A problem which exists for some languages based on general communicating
finite state machines and sets of processes described in ADA or Java is that
they are non-deterministic, since the order in which executable processes are
executed is not specified. The order of execution may well affect the result.
This effect can have a number of negative consequences, such as, for exam-
ple, problems with verifying a certain design. The non-determinism is avoided
with so-called synchronous languages. Synchronous languages describe con-
currently operating automata. ... when automata are composed in parallel,
a transition of the product is made of the “simultaneous” transitions of all
of them [Halbwachs, 1998]. This means: we do not have to consider all the
different sequences of state changes of the automata that would be possible
if each of them had its own clock. Instead, we can assume the presence of a
single global clock. Each clock tick, all inputs are considered, new outputs



28 EMBEDDED SYSTEM DESIGN

and states are calculated and then the transitions are made. This requires a fast
broadcast mechanism for all parts of the model. This idealistic view of con-
currency has the advantage of guaranteeing deterministic behavior. This is a
restriction if compared to the general CFSM model, in which each FSM can
have its own clock. Synchronous languages reflect the principles of operation
in synchronous hardware and also the semantics found in control languages
such as IEC 60848 and STEP 7 (see page 78). Guaranteeing a deterministic
behavior for all language features has been a design goal for the synchronous
languages Esterel (see page 79) [Esterel, 2002] and Lustre [Halbwachs et al.,
1991]. Due to the three simulation phases in StateCharts, StateCharts is also
a synchronous language (and it is deterministic). Just like StateCharts, syn-
chronous languages are difficult to use in a distributed environment, where the
concept of a single clock results in difficulties.

2.4.2 Process concepts

There are several criteria by which we can compare the process concepts in
different programming languages:

The number of processes can be either static or dynamic. A static number
of processes simplifies the implementation and is sufficient if each process
models a piece of hardware and if we do not consider “hot-plugging” (dy-
namically changing the hardware architecture). Otherwise, dynamic pro-
cess creation (and death) should be supported.

Processes can either be statically nested or all declared at the same level.
For example, StateCharts allows nested process declarations while SDL
(see page 30) does not. Nesting provides encapsulation of concerns.

Different techniques for process creation exist. Process creation can result
from an elaboration of the process declaration in the source code, through
the fork and join mechanism (supported for example in Unix), and also
through explicit process creation calls.

StateCharts is limited to a static number of processes. Processes can be nested.
Process creation results from an elaboration of the source code.

2.4.3 Synchronization and communication

There are essentially two communication paradigms: shared memory and
message passing.

For shared memory, all variables can be accessed from all processes. Access
to shared memory should be protected, unless access is totally restricted to



Specifications 29

reads. If writes are involved, exclusive access to the memory must be guar-
anteed while processes are accessing shared memories. Segments of code, for
which exclusive access must be guaranteed, are called critical sections. Sev-
eral mechanisms for guaranteeing exclusive access to resources have been pro-
posed. These include semaphores, conditional critical regions and monitors.
Refer to books on operating systems for a description of the different tech-
niques. Shared memory-based communication can be very fast, but is difficult
to implement in multiprocessor systems if no common memory is physically
available.

For message passing, messages are sent and received just like mails are sent
on the Internet. Message passing can be implemented easily even if no com-
mon memory is available. However, message passing is generally slower than
shared memory based communication. For this kind of communication, we
can distinguish between the following three techniques:

asynchronous message passing, also called non-blocking communica-
tion (see page 17),

synchronous message passing or blocking communication, rendez-vous
based communication (see page 18),

extended rendez-vous, remote invocation: the transmitter is allowed to
continue only after an acknowledgment has been received from the receiver.
The recipient does not have to send this acknowledgment immediately af-
ter receiving the message, but can do some preliminary checking before
actually sending the acknowledgment.

StateCharts allows global variables and hence uses the shared memory model.

2.4.4 Specifying timing

Burns and Wellings [Burns and Wellings, 1990] define the following four re-
quirements for specification languages:

Access to a timer, which provides a means to measure elapsed time:

CSP, for example, meets this requirement by providing channels which are
actually timers. Read operations to such a channel return the current time.

Means for delaying of processes for a specified time:

Typically, real-time languages provide some delay construct. In VHDL, the
wait for-statement (see page 69) can be used.

Possibility to specify timeouts:



30 EMBEDDED SYSTEM DESIGN

Real-time languages usually also provide some timeout construct.

Methods for specifying deadlines and schedules:

Unfortunately, most languages do not allow to specify timing constraints.
If they can be specified at all, they have to be specified in separate control
files, pop-up menus etc.

StateCharts allows timeouts. There is no straightforward way of specifying
other timing requirements.

2.4.5 Using non-standard I/O devices

Some languages include special language features enabling direct control over
I/O devices. For example, ADA allows variables to be mapped to specific
memory addresses. These may be the addresses of memory mapped I/O de-
vices. This way, all I/O operations can be programmed in ADA. ADA also
allows procedures to be bound to interrupt addresses.

No direct support for I/O is available in standard StateCharts, but commercial
implementations can support I/O programming.

2.5 SDL

Because of the use of shared memory and the broadcast mechanism, State-
Charts cannot be used for distributed applications. We will now turn our at-
tention towards a second language, one which is applicable for modeling dis-
tributed systems, namely SDL. SDL was designed for distributed applications
and is based on asynchronous message passing. It dates back to the early sev-
enties. Formal semantics have been available since the late eighties. The lan-
guage was standardized by the ITU (International Telecommunication Union).
The first standards document is the Z.100 Recommendation published in 1980,
with updates in 1984, 1988, 1992 (SDL-92), 1996 and 1999. Relevant versions
of the standard include SDL-88, SDL-92 and SDL-2000 [SDL Forum Society,
2003a].

Many users prefer graphical specification languages while others prefer tex-
tual specification languages. SDL pleases both types of users since it provides
textual as well as graphical formats. Processes are the basic elements of SDL.
Processes represent extended finite state machines. Extensions include oper-
ations on data. Fig. 2.14 shows the graphical symbols used in the graphical
representation of SDL.

As an example, we will consider how the state diagram in fig. 2.15 can be
represented in SDL. Fig. 2.15 is the same as fig. 2.4, except that output has been
added, state Z deleted, and the effect of signal k changed. Fig. 2.16 contains the



Specifications 31

Identifies initial state

input output

state

Figure 2.14. Symbols used in the graphical form of SDL

A B C D E
g/w h/x /yi j/z

f/v

k

Figure 2.15. FSM described in SDL

corresponding graphical SDL representation. Obviously, the representation is
equivalent to the state diagram of fig. 2.15.

C

B D E A A

D EB

h fj

vzyxw

g

A

ki

C

Process P1

Figure 2.16. SDL-representation of fig. 2.15

As an extension to FSMs, SDL processes can perform operations on data. Vari-
ables can be declared locally for processes. Their type can either be pre-defined
or defined in the SDL description itself. SDL supports abstract data types
(ADTs). The syntax for declarations and operations is similar to that in other
languages. Fig. 2.17 shows how declarations, assignments and decisions can
be represented in SDL.

SDL also contains programming language elements such as procedures. Pro-
cedure calls can also be represented graphically. Object-oriented features be-
came available with version SDL-1992 of the language and were extended with
SDL-2000.

Extended FSMs are just the basic elements of SDL descriptions. In general,
SDL descriptions will consist of a set of interacting processes, or FSMs. Pro-



32 EMBEDDED SYSTEM DESIGN

Counter := Counter + 3;DCL
Counter Integer;
 Date String;

(1:10) (11:30) ELSE

Counter

Figure 2.17. Declarations, assignments and decisions in SDL

cesses can send signals to other processes. Semantics of interprocess com-
munication in SDL is based on first-in first-out (FIFO) queues associated
with each process. Signals sent to a particular process will be placed into
the corresponding FIFO-queue (see fig. 2.18). Therefore, SDL is based on
asynchronous message passing.

process 1

process 2

process 3

Figure 2.18. SDL interprocess communication

Each process is assumed to fetch the next available entry from the FIFO queue
and check whether it matches one of the inputs described for the current state.
If it does, the corresponding state transition takes place and output is gener-
ated. The entry from the FIFO-queue is ignored if it does not match any of the
listed inputs (unless the so-called SAVE-mechanism is used). FIFO-queues are
conceptually thought of as being of infinite length. This means: in the descrip-
tion of the semantics of SDL models, FIFO-overflow is never considered. In
actual systems, however, FIFO-queues must be of finite length. This is one of
the problems of SDL: in order to derive realizations from specifications, safe
upper bounds on the length of the FIFO-queues must be proven.



Specifications 33

Process interaction diagrams can be used for visualizing which of the pro-
cesses are communicating with each other. Process interaction diagrams in-
clude channels used for sending and receiving signals. In the case of SDL,
the term “signal” denotes inputs and outputs of modeled automata. Process
interaction diagrams are special cases of block diagrams (see below).

Example: Fig. 2.19 shows a process interaction diagram B1 with channels Sw1
and Sw2. Brackets include the names of signals propagated along a certain
channel.

BLOCK B1

Sw1

Sw2
Signal A.B;

[A,B]

[A]

process P1 process P2

Figure 2.19. Process interaction diagram

There are three ways of indicating the recipient of signals:

1 Through process identifiers: by using identifiers of recipient processes in
the graphical output symbol (see fig. 2.20 (left)).

TO OFFSPRING
Counter

VIA Sw1
Counter

Figure 2.20. Describing signal recipients

Actually, the number of processes does not even need to be fixed at com-
pile time, since processes can be generated dynamically at run-time. OFF-
SPRING represents identifiers of child processes generated dynamically by
a process.

2 Explicitly: by indicating the channel name (see fig. 2.20 (right)). Sw1 is
the name of a channel.

3 Implicitly: if signal names imply the channel names, those channels are
used. Example: for fig. 2.19, signal B will implicitly always be communi-
cated via channel Sw1.

No process can be defined within any other (processes cannot be nested). How-
ever, they can be grouped hierarchically into so-called blocks. Blocks at the
highest hierarchy level are called systems, blocks at the lowest hierarchy level



34 EMBEDDED SYSTEM DESIGN

are called process interaction diagrams. B1 can be used within intermediate
level blocks (such as within B in fig. 2.21).

B1

C3

C2

Block B

C4
B2

Figure 2.21. SDL block

At the highest level in the hierarchy, we have the system (see fig. 2.22). A
system will not have any channels at its boundary if the environment is also
modeled as a block.

C

System S

AB
C’

Figure 2.22. SDL system

Fig. 2.23 shows the hierarchy modeled by block diagrams 2.19, 2.21 and 2.22.
Process interaction diagrams are next to the leaves of the hierarchical descrip-
tion, system descriptions their root. Some of the restrictions of modeling hi-
erarchy are removed in version SDL-2000 of the language. With SDL-2000,
the descriptive power of blocks and processes is harmonized and replaced by a
general agent concept.

P1 P2

B2B1

BA C

S

.......

...

Figure 2.23. SDL hierarchy

In order to support the modeling of time, SDL includes timers. Timers can
be declared locally for processes. They can be set and reset using SET and



Specifications 35

RESET primitives, respectively. Fig. 2.24 shows the use of a timer T. The
diagram corresponds to that of fig. 2.16, with the exceptions that timer T is
set to the current time plus p during the transition from state D to E. For the
transition from E to A we now have a timeout of p time units. If these time
units have elapsed before signal f has arrived, a transition to state A is taken
without generating output signal v.

RESET(T)

RESET(T)

Timer T;

C

B E D E

DB

h j

yxw

g

A

i

Process S

E

f

v

T

A A

SET(now+p,T)

Figure 2.24. Using timer T

SDL can be used, for example, to describe protocol stacks found in computer
networks. Fig. 2.25 shows three processors connected through a router. Com-
munication between processors and the router is based on FIFOs.

C2
C3

C1

Processor A Router Processor B Processor C

System

Figure 2.25. Small computer network described in SDL

The processors as well as the router implement layered protocols (see fig.
2.26).

Each layer describes communication at a more abstract level. The behavior of
each layer is typically modeled as a finite state machine. The detailed descrip-
tion of these FSMs depends on the network protocol and can be quite complex.
Typically, this behavior includes checking and handling error conditions, and
sorting and forwarding of information packages.

Currently (2003) available tools for SDL include interfaces to UML (see page
45), MSCs (see page 44), and CHILL (see page 78) from companies such as



36 EMBEDDED SYSTEM DESIGN

.....

layer−n

.....

layer−n

.....

layer−n

layer−1 layer−1layer−1

Block Processor A Block Processor B Block Processor C

layer−1

layer−2

Block Router

Figure 2.26. Protocol stacks represented in SDL

Telelogic [Telelogic AB, 2003], Cinderella [Cinderella ApS, 2003] and SIN-
TEF. A comprehensive list of tools is available from the SDL forum [SDL
Forum Society, 2003b].

SDL is excellent for distributed applications and was used, for example, for
specifying ISDN. Commercial tools for SDL are available (see, for example,
http: //www. telelogic. com). SDL is not necessarily deterministic (the order,
in which signals arriving at some FIFO at the same time are processed, is not
specified). Reliable implementations require the knowledge of a upper bound
on the length of the FIFOs. This upper bound may be difficult to compute. The
timer concept is sufficient for soft deadlines, but not for hard ones. Hierarchies
are not supported in the same way as in StateCharts. There is no full program-
ming support (but recent revisions of the standard have started to change this)
and no description of non-functional properties.

2.6 Petri nets

2.6.1 Introduction

In 1962, Carl Adam Petri published his method for modeling causal dependen-
cies, which became known as Petri nets. The key strength of Petri nets is this
focus on causal dependencies. Petri nets do not assume any global synchro-
nization and are therefore especially suited for modeling distributed systems.

Conditions, events and a flow relation are the key elements of Petri nets.
Conditions are either satisfied or not satisfied. Events can happen. The flow
relation describes the conditions that must be met before events can happen
and it also describes the conditions that become true if events happen.

Graphical notations for Petri nets typically use circles to denote conditions and
boxes to denote events. Arrows represent flow relations. Fig. 2.27 shows a first
example.



Specifications 37

to go right
train wanting

from the left
train entering track train leaving track

to the right

track available

single−laned
to the left
train going

to the right
train going

Figure 2.27. Single track railroad segment

This example describes mutual exclusion for trains at a railroad track that must
be used in both directions. A token is used to prevent collisions of trains going
into opposite directions. In the Petri net representation, that token is symbol-
ized by a condition in the center of the model. A filled circle denotes the situ-
ation in which the condition is met (this means: the track is available). When
a train wants to go to the right (also denoted by a filled circle in fig. 2.27), the
two conditions that are necessary for the event “train entering track from the
left” are met. We call these two conditions preconditions. If the precondi-
tions of an event are met, it can happen. As a result of that event happening,
the token is no longer available and there is no train waiting to enter the track.
Hence, the preconditions are no longer met and the filled circles disappear (see
fig. 2.28).

to go right
train wanting

track available

to the left
train going

to the right
train going

Figure 2.28. Using resource “track”

However, there is now a train going on that track from the left to the right and
thus the corresponding condition is met (see fig. 2.28). A condition which is



38 EMBEDDED SYSTEM DESIGN

met after an event happened is called a postcondition. In general, an event
can happen only if all its preconditions are true (or met). If it happens, the
preconditions are no longer met and the postconditions become valid. Arrows
identify those conditions which are preconditions of an event and those that
are postconditions of an event. Continuing with our example, we see that a
train leaving the track will return the token to the condition at the center of the
model (see fig. 2.29).

to go right
train wanting

track available

to the left
train going

to the right
train going

Figure 2.29. Freeing resource “track”

If there are two trains competing for the single-track segment (see fig. 2.30),
only one of them can enter.

to go right
train wanting

track available

to the left
train going

to the right
train going

Figure 2.30. Conflict for resource “track”

Let us now consider a larger example:

We are again considering the synchronization of trains. In particular, we are
trying to model high-speed Thalys trains traveling between Amsterdam, Co-
logne, Brussels and Paris. Segments of the train run independently from Ams-
terdam and Cologne to Brussels. There, the segments get connected and then
they run to Paris. On the way back from Paris, they get disconnected at Brus-
sels again. We assume that Thalys trains have to synchronize with some other
train at Paris. The corresponding Petri net is shown in fig. 2.31.



Specifications 39

Figure 2.31. Model of Thalys trains running between Amsterdam, Cologne, Brussels, and
Paris

Places 3 and 10 model trains waiting at Amsterdam and Cologne, respectively.
Transitions 9 and 2 model trains driving from these cities to Brussels. After
their arrival at Brussels, places 9 and 2 contain tokens. Transition 1 denotes
connecting the two trains. The cup symbolizes the driver of one of the trains,
who will have a break at Brussels while the other driver is continuing on to
Paris. Transition 5 models synchronization with other trains at the Gare du
Nord station of Paris. These other trains connect Gare du Nord with some other
station (we have used Gare de Lyon as an example, even though the situation
at Paris is somewhat more complex). Of course, Thalys trains do not use steam
engines; they are just easier to visualize than modern high speed trains.

A key advantage of Petri nets is that they can be the basis for formal proofs
about system properties and that there are standardized ways of generating
such proofs. In order to enable such proofs, we need a more formal definition
of Petri nets.

Gare du Nord

9

8

4

9 2 3

1

5

5

6

6

1

2

7

7

8

11 13

10

310

12

Gare de Lyon

Disconnecting

4

Brussels

Connecting

CologneAmsterdam

Paris



40 EMBEDDED SYSTEM DESIGN

2.6.2 Condition/event nets

Condition/event nets are the first class of Petri nets that we will define more
formally.

Definition: N = (C,E,F) is called a net, iff the following holds:

1 C and E are disjoint sets.

2 F ⊆ (E ×C)∪ (C×E) is a binary relation, called flow relation.

The set C is called conditions and the set E is called events.

Def.: Let N be a net and let x ∈ (C ∪E). •x := {y|yFx} is called the set of
preconditions of x and x • := {y|xFy} is called the set of postconditions of x.

This definition is mostly used for the case of x ∈ E , but it applies also to the
case of x ∈C.

Def.: Let (c,e) ∈C×E .

1 (c,e) is called a loop, if cFe∧ eFc.

2 N is called pure, if F does not contain any loops (see fig. 2.32, left).

Def.: A net is called simple, if no two transitions t1 and t2 have the same set of
pre- and postconditions.

Figure 2.32. Nets which are not pure (left) and not simple (right)

Simple nets with no isolated elements meeting some additional restrictions are
called condition/event nets. Condition/event nets are a special case of bipar-
tite graphs (graphs with two disjoint sets of nodes). We will not discuss those
additional restrictions in detail since we will consider more general classes of
nets in the following.

2.6.3 Place/transition nets

For condition/event nets, there is at most one token per condition. For many
applications, it is useful to remove this restriction and to allow more tokens
per conditions. Nets allowing more than one token per condition are called
place/transition nets. Places correspond to what we so far called conditions and



Specifications 41

transitions correspond to what we so far called events. The number of tokens
per place is called a marking. Mathematically, a marking is a mapping from
the set of places to the set of natural numbers extended by a special symbol ω
denoting infinity.

Let IN0 denote the natural numbers including 0. Then, formally speaking,
place/transition nets can be defined as follows:

Def.: (P,T,F,K,W,M0) is called a place/transition net ⇐⇒
1 N = (P,T,F) is a net with places p ∈ P and transitions t ∈ T .

2 Mapping K : P → (IN0∪{ω})\{0} denotes the capacity of places (ω sym-
bolizes infinite capacity).

3 Mapping W : F → (IN0 \{0}) denotes the weight of graph edges.

4 Mapping M0 : P → IN0 ∪{ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions
can happen and also identify the number of tokens that are generated if a certain
transition takes place. Let M(p) denote a current marking of place p ∈ P and
let M′(p) denote a marking after some transition t ∈ T took place. The weight
of edges belonging to preconditions represents the number of tokens that are
removed from places in the precondition set. Accordingly, the weight of edges
belonging to the postconditions represents the number of tokens that are added
to the places in the postcondition set. Formally, marking M′ is computed as
follows:

M′(p) =






M(p)−W(p, t), if p ∈ •t \ t•
M(p)+W(t, p), if p ∈ t• \ •t
M(p)−W(p, t)+W (t, p), if p ∈ •t ∩ t•
M(p) otherwise

Fig. 2.33 shows an example of how transition t j affects the current marking.

3 2

1

tj

2

1

3 2

1

tj

2

1

Figure 2.33. Generation of a new marking

By default, unlabeled edges are considered to have a weight of 1 and unlabeled
places are considered to have unlimited capacity ω.



42 EMBEDDED SYSTEM DESIGN

We now need to explain the two conditions that must be met before a transition
t ∈ T can take place:

for all places p in the precondition set, the number of tokens must at least
be equal to the weight of the edge from p to t and

for all places p in the postcondition set, the capacity must be large enough
to accommodate the new tokens which t will generate.

Transitions meeting these two conditions are called M-activated. Formally,
this can be defined as follows:

Def.: Transition t ∈ T is said to be M-activated ⇐⇒

(∀p ∈ •t : M(p) ≥W (p, t))∧ (∀p ∈ t• : M(p)+W(t, p) ≤ K(p))

Activated transitions can happen, but they do not need to. If several transi-
tions are activated, the sequence in which they happen is not deterministically
defined.

For place/transition nets, there are standard techniques for generating proofs
of system properties. For example, there may be subsets of places for which
the total number of tokens does not change, no matter which transition fires
[Reisig, 1985]. Such subsets of places are called place invariants. For ex-
ample, the number of trains commuting between Cologne and Paris does not
change in our railway example. The same is true for the trains traveling be-
tween Amsterdam and Paris. Computing such invariants can be the standard
point for verifying required system properties such as mutual exclusion.

2.6.4 Predicate/transition nets

Condition/event nets as well as place/transition nets can quickly become very
large for large examples. A reduction of the size of the nets is frequently
possible with predicate/transition nets. We will demonstrate this, using the so-
called “dining philosophers problem” as an example. The problem is based on
the assumption that a set of philosophers is dining at a round table. In front
of each philosopher, there is a plate containing spaghetti. Between each of the
plates, there is just one fork (see fig. 2.34). Each philosopher is either eating
or thinking. Eating philosophers need their two adjacent forks for that, so they
can only eat if their neighbors are not eating.

This situation can be modeled as a condition/event net, as shown in fig. 2.35.
Conditions t j correspond to the thinking states, conditions e j correspond to the
eating states, and conditions f j represent available forks.



Specifications 43

Figure 2.34. The dining philosophers problem

2

3

2

e

e

e

1

3

1

2

3

1

t

t

t

f

f

f

Figure 2.35. Place/transition net model of the dining philosophers problem

Considering the small size of the problem, this net is already very large. The
size of this net can be reduced by using predicate/transition nets. Fig. 2.36 is a
model of the same problem as a predicate/transition net.

With predicate/transition nets, tokens have an identity and can be distinguished.
We use this in fig. 2.36 in order to distinguish between the three different
philosophers p1 to p3 and to identify fork f3. Furthermore, edges can be labeled
with variables and functions. In the example, we use variables to represent the



44 EMBEDDED SYSTEM DESIGN

l(x) l(x)
r(x)r(x) f uv

x
t

f

e
x x

x

p
1

p  p
2 3

3

Figure 2.36. Predicate/transition net model of the dining philosophers problem

identity of philosophers and functions l(x) and r(x) to denote the left and right
forks of philosopher x, respectively. These two forks are required as a precon-
dition for transition u and returned as a postcondition by transition v. Note that
this model can be easily extended to the case of n > 3 philosophers. We just
need to add more tokens. In contrast to the net in fig. 2.35, the structure of the
net does not have to be changed.

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal depen-
dencies. Standard Petri nets have no notion of time and all decisions can be
taken locally, by just analyzing transitions and their pre- and postconditions.
Therefore, they can be used for modeling geographically distributed systems.
Furthermore, there is a strong theoretical foundation for Petri nets, simplifying
formal proofs of systems properties.

In certain contexts, their strength is also their weakness. If time is to be ex-
plicitely modeled, standard Petri nets cannot be used. Furthermore, standard
Petri nets have no notion of hierarchy and no programming language elements,
let alone object oriented features. In general, it is difficult to represent data.

There are extended versions of Petri nets avoiding the mentioned weaknesses.
However, there is no universal extended version of Petri nets meeting all re-
quirements mentioned at the beginning of this chapter. Nevertheless, due to
the increasing amount of distributed computing, Petri nets became more pop-
ular than they were initially.

2.7 Message Sequence Charts

Message sequence charts (MSCs) provide a graphical means for representing
schedules. MSCs use one dimension (typically the vertical dimension) for



Specifications 45

representing time, and the other dimension for representing geographical dis-
tribution.

MSCs provide the right means for visualizing schedules of trains or busses.
Fig. 2.37 is an example. This example also refers to trains between Amster-
dam, Cologne, Brussels and Paris. Aachen is included as an intermediate stop
between Cologne and Brussels. Vertical segments correspond to times spent at
stations. For one of the trains, there is a timing overlap between the trains com-
ing from Cologne and Amsterdam at Brussels. There is a second train which
travels between Paris and Cologne which is not related to an Amsterdam train.

t

Cologne Aachen Amsterdam Brussels Paris

Figure 2.37. Message sequence diagram

A more realistic example is shown in fig. 2.38. This example [Huerlimann,
2003] describes simulated Swiss railway traffic in the Lötschberg area. Slow
and fast trains can be distinguished by their slope in the graph. The figure
includes information about the time of the day. In this context, the diagram is
called time/distance diagram.

MSCs are appropriate means for representing typical schedules. However, they
fail to provide information about necessary synchronization. For example, in
the presented example it is not known whether the timing overlap at Brus-
sels happens coincidentally or whether some real synchronization for connect-
ing trains is required. Furthermore, permissible deviations from the presented
schedule (min/max timing behavior) can hardly be included in these charts.

2.8 UML

All the languages presented so far require a rather precise knowledge about
the behavior of the system to be specified. Frequently, and especially during
the early specification phases, such knowledge is not available. Very first ideas
about systems are frequently sketched on “napkins” or “envelopes”. Support
for a more systematic approach to these first phases in a design process is the
goal of the major so-called UML standardization effort. UML [OMG, 2005],



46 EMBEDDED SYSTEM DESIGN

T
H

G
W

S
P

R
E

IK

W
E

N
F

R
F

R
S

P

F
R

D

S
T

G
E

V
I

B
R

S
G

A
A

IS V
A

R

M
O

G
N

P
R

E

D
O

D
O

II

10.00 10.00

.10 .10

.20 .20

.30 .30

.40 .40

.50 .50

11.00 11.00

.10 .10

.20 .20

.30 .30

.40 .40

.50 .50

12.00 12.00

53 3

2133

3 45

430 5

53

51452

43 35
5143

2154

1
2

4
4

53 3

513 2

1 25

2

1 2

43 55

3 4

51

403
4

4

41
43045

40

3
5

2144

4
3

35

4414

44043

1 41

2143

51342

5145

33

1 2

53 44

4
23

5134

4
24

4
2

43 431

1
2

4

30

53045

50

44
05

53 5

53025

440 3

4
5

53 5

43

1 22

43 54

1 42

1 52

3

43 34 4
21

3

44153
3

44
1

1 51

53
4

44
03

32

530 5

1 24

Figure 2.38. Railway traffic displayed by a message sequence diagram (courtesy H. Brändli,
IVT, ETH Zürich), c©ETH Zürich

[Fowler and Scott, 1998] stands for “Unified Modeling Language”. UML was
designed by leading software technology experts and is supported by commer-
cial tools. UML primarily aims at the support of the software design process.
UML contains a large number of diagram types and it is, by itself, a com-
plex graphical language. Fortunately, most of the diagram types are variants of
those graphical languages which we have already introduced in this book.

Version 1.4 of UML was not designed for embedded systems. Therefore, it
lacks a number of features required for modeling embedded systems (see page
13). In particular, the following features are missing [McLaughlin and Moore,
1998]:

the partitioning of software into tasks and processes cannot be modeled,

timing behavior cannot be described at all,

the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gain-
ing importance for embedded systems as well. Hence, several proposals for
UML extensions to support real-time applications have been made [McLaugh-
lin and Moore, 1998], [Douglass, 2000]. These extensions have been consid-



Specifications 47

ered during the design of UML 2.0. UML 2.0 includes 13 diagram types (up
from nine in UML 1.4) [Ambler, 2005]:

Sequence diagrams: Sequence diagrams are variants of message sequence
charts. Fig. 2.39 shows an example (based on an example from Gentleware
AG [Poseidon, 2003]).

Client website

displayCatalog.webpage

go to Catalog:navigate

selectproduct:Nav

requestlogin:webpage

Figure 2.39. Segment from an UML sequence diagram

One of the key distinction between the type of diagrams shown in figs.
2.38 and 2.39 is that fig. 2.39 does not include any reference to real time.
UML version 1.4 was not designed for real-time applications. Some of the
restrictions of UML 1.4 have been removed in UML 2.0.

State machine diagrams (called State Diagrams in version 1 of UML):
UML includes a variation of StateCharts and hence allows modeling state
machines.

Activity diagrams: In essence, activity diagrams are extended Petri nets.
Extensions include symbols denoting decisions (just like in ordinary flow
charts). The placement of symbols is somewhat similar to SDL. Fig. 2.40
shows an example.

The example shows the procedure to be followed during a standardization
process. Forks and joins of control correspond to transitions in Petri nets
and they use the symbols (horizontal bars) that were initially used for Petri
nets as well. The diamond at the bottom shows the symbol used for deci-
sions. Activities can be organized into “swim-lanes” (areas between verti-
cal dotted lines) such that the different responsibilities and the documents
exchanged can be visualized.

Deployment diagram: These diagrams are important for embedded sys-
tems: they describe the “execution architecture” of systems (hardware or
software nodes).



48 EMBEDDED SYSTEM DESIGN

RFP
[Issued]

adopted
Specification

Issue RFP

recommend
Vote to

[if YES] [if NO]

Evaluate final
submissions

Finalize
specification

Collaborate with
other submitters submissions

control flow

object flow

input value

co
nd

iti
on

al
 th

re
ad

start activity

fork of control

branch

guard

............

Submit specifi−

join & fork
of control

Specification
[initial proposal]

logy specification
Develop techno−

cation draft

[optional]

Evaluate initial

[final proposal]
Specification

acticity
Begin

Figure 2.40. Activity diagram [Kobryn, 2001]

Package diagrams: Package diagrams represent the partitioning of soft-
ware into software packages. They are similar to module charts in State-
Mate.

Use case diagrams: These diagrams capture typical application scenarios
of the system to be designed. For example, fig. 2.41 [Ambler, 2005] shows
scenarios for customers of some bank.

Class diagrams: These diagrams describe inheritance relations of object
classes.



Specifications 49

withdraw funds

deposit funds

open account

close account

customer

Figure 2.41. Use case example

Timing diagrams: They can be used to show the change of the state of an
object over time.

Communication diagram (called Collaboration diagrams in UML 1.x):
These graphs represent classes, relations between classes, and messages
that are exchanged between them.

Component diagrams: They represent the components used in applica-
tions or systems.

Object diagrams, interaction overview diagrams, composite structure
diagrams: This list consists of three types of diagrams which are less fre-
quently used. Some of them may actually be special cases of other types of
diagrams.

Currently available tools, for example from ilogix (see http://www.ilogix.com),
provide some consistency checking between the different diagram types. Com-
plete checking, however, seems to be impossible. One reason for this is that
the semantics of UML initially was left undefined. It has been argued that
this was done intentionally, since one does not like to bother about the precise
semantics during the early phases of the design. As a consequence, precise,
executable specifications can only be obtained if UML is combined with some
other, executable language. Available design tools have combined UML with
SDL [Telelogic, 1999] and C++. There are, however, also some first attempts
to define the semantics of UML.

In this book, we will not discuss UML in further detail, since all the relevant di-
agram types have already been described. Nevertheless, it is interesting to note
how a technique like Petri nets was initially certainly not a mainstream tech-
nique. Decades after its invention, it has become a frequently applied technique
due to its inclusion in UML.



50 EMBEDDED SYSTEM DESIGN

2.9 Process networks

2.9.1 Task graphs

Process networks have already been mentioned in the context of computa-
tional models. Process networks are modeled with graphs. We will use the
names task graphs and process networks interchangeably, even though these
terms were created by different communities. Nodes in the graph represent
processes performing operations. Processes map input data streams to output
data streams. Processes are often implemented in high-level programming lan-
guages. Typical processes contain (possibly non-terminating) iterations. In
each cycle of the iteration, they consume data from their inputs, processes the
data received, and generate data on their output streams. Edges represent rela-
tions between processes. We will now introduce these graphs at a more detailed
level.

The most obvious relation between processes is their causal dependence: Many
processes can only be executed after other processes have terminated. This
dependence is typically captured in dependence graphs. Fig. 2.42 shows a
dependence graph for a set of processes or tasks.

3

T

4

51

2
T

T T

T

Figure 2.42. Dependence graph

Def.: A dependence graph is a directed graph G = (V,E) in which E ⊆V ×V
is a partial order. If (v1,v2)∈E , then v1 is called an immediate predecessor of
v2 and v2 is called an immediate successor of v1. Suppose E∗ is the transitive
closure of E . If (v1,v2) ∈ E∗, then v1 is called a predecessor of v2 and v2 is
called a successor of v1.

Such dependence graphs form a special case of task graphs. Task graphs
represent relations between a set of processes. Task graphs may contain more
information than modeled in the dependence graph in fig. 2.42. For example,
task graphs may include the following extensions of dependence graphs:

1 Timing information: Tasks may have arrival times, deadlines, periods, and
execution times. In order to take these into account while scheduling tasks,
it may be useful to include this information in the task graphs. Adopting the
notation used in the book by Liu [Liu, 2000], we include possible execution
intervals in fig. 2.43. Tasks T1 to T3 are assumed to be independent.



Specifications 51

1
T2T
3T

(3,10](1,8](0,7]

Figure 2.43. Task graphs including timing information

Significantly more complex combinations of timing and dependence rela-
tions can exist.

2 Distinction between different types of relations between tasks: Prece-
dence relations just model constraints for possible execution sequences. At
a more detailed level, it may be useful to distinguish between constraints for
scheduling and communication between tasks. Communication can again
be described by edges, but additional information may be available for each
of the edges, such as the time of the communication and the amount of in-
formation exchanged. Precedence edges may be kept as a separate type of
edges, since there could be situations in which processes have to execute
sequentially even though they do not exchange information.

In fig. 2.42, input and output (I/O) is not explicitly described. Implicitly
it is assumed that tasks without any predecessor in the task graph might
be receiving input at some time. Also, it is assumed that they generate
output for the successor task and that this output is available only after
the task has terminated. It is often useful to describe input and output more
explicitly. In order to do this, another kind of relation is required. Using the
same symbols as Thoen [Thoen and Catthoor, 2000], we use partially filled
circles for denoting input and output. In fig. 2.44, filled circles identify I/O
edges.

3 4

2

1 5T

T

T T

T

Figure 2.44. Task graphs including I/O-nodes and edges

3 Exclusive access to resources: Tasks may be requesting exclusive access
to some resource, for example to some input/output device or some com-
munication area in memory. Information about necessary exclusive access
should be taken into account during scheduling. Exploiting this informa-
tion might, for example, be used to avoid the priority inversion problem



52 EMBEDDED SYSTEM DESIGN

(see page 141). Information concerning exclusive access to resources can
be included in task graphs.

4 Periodic schedules: Many tasks, especially in digital signal processing, are
periodic. This means that we have to distinguish more carefully between
a task and its execution (the latter is frequently called a job [Liu, 2000]).
Task graphs for such schedules are infinite. Fig. 2.45 shows a task graph
including jobs Jn−1 to Jn+1 of a periodic task.

Jn−1 J Jn n+1.... ...

Figure 2.45. Task graph including jobs of a periodic task

5 Hierarchical graph nodes: The complexity of the computations denoted
by graph nodes may be quite different. On one hand, specified programs
may be quite large and contain thousands of lines of code. On the other
hand, programs can be split into small pieces of code so that in the extreme
case, each of the nodes corresponds only to a single operation. The level
of complexity of graph nodes is also called their granularity. Which gran-
ularity should be used? There is no universal answer to this. For some
purposes, the granularity should be as large as possible. For example, if we
consider each of the nodes as one process to be scheduled by the RTOS, it
may be wise to work with large nodes in order to minimize context-switches
between different processes. For other purposes, it may be better to work
with nodes modeling just a single operation. For example, nodes will have
to be mapped to hardware or to software. If a certain operation (like the
frequently used Discrete Cosine Transform, or DCT) can be mapped to
special purpose hardware, then it should not be buried in a complex node
that contains many other operations. It should rather be modeled as its own
node. In order to avoid frequent changes of the granularity, hierarchical
graph nodes are very useful. For example, at a high hierarchical level, the
nodes may denote complex tasks, at a lower level basic blocks and at an
even lower level individual arithmetic operations. Fig. 2.46 shows a hier-
archical version of the dependence graph in fig. 2.42, using a rectangle to
denote a hierarchical node.

A very comprehensive task graph model, called multi-thread graph (MTG),
was proposed by Thoen [Thoen and Catthoor, 2000]. MTGs are defined as
follows:

Def.: A multi-thread graph M is defined as an 11-tuple
(O,E,V,D,ϑ, ι,Λ,E lat ,E resp,∇i,∇av) where



Specifications 53

3 4

51

2
T

T

T T

T

Figure 2.46. Hierarchical task graph

O is the set of operation nodes. They can be of different types, including
thread, hierarchical thread, or, event, synchro, semaphore, source and sink.
MTGs have single sources and sinks of type source and sink, respectively.
Nodes of type or allow modeling situations in which only one of a set of
tasks is required in order to start the next task. Events model external input.
Semaphores can be used to model mutual exclusion. Synchro nodes provide
acknowledgments to the environment.

E is the set of control edges. Attributes of control edges include timing
information like production and consumption rate.

V , D, and ϑ refer to the access of variables, not discussed in detail in this
text.

ι is the set of input/output nodes,

Λ associates execution latency intervals with all threads,

E lat , E resp, ∇i and ∇av are timing constraints.

As can be seen from the definition, almost all of the presented extensions of
simple precedence graphs are included in MTGs. MTGs are used for the work
described starting at page 191.

2.9.2 Asynchronous message passing

For asynchronous message passing, communication between processes is buff-
ered. Typically, buffers are assumed to be FIFOs of theoretically unbounded
length.

2.9.2.1 Kahn process networks

Kahn process networks (KPN) [Kahn, 1974] are a special case of such process
networks. For KPN, writes are non-blocking, whereas reads block whenever
an attempt is made to read from an empty FIFO queue. There is no other way
for communication between processes except through FIFO-queues. Only a



54 EMBEDDED SYSTEM DESIGN

single process is allowed to read from a certain queue. So, if output data has
to be sent to more than a single process, duplication of data must be done
inside processes. In general, Kahn processes require scheduling at run-time,
since it is difficult to predict their precise behavior over time. The question of
whether or not all finite-length FIFOs are sufficient for an actual KPN model
is undecidable in the general case. Nevertheless, practically useful algorithms
exist [Kienhuis et al., 2000].

2.9.2.2 Synchronous data flow

The synchronous data flow (SDF) model [Lee and Messerschmitt, 1987] can
best be introduced by referring to its graphical notation. Fig. 2.47 (left) shows
a synchronous data flow graph. The graph is a directed graph, nodes A and
B denote computations * and +. SDF graphs, like all data flow graphs, show
computations to be performed and their dependence, but not the order in which
the computations have to be performed (in contrast to specifications in sequen-
tial languages such as C). Inputs to SDF graphs are assumed to consist of an
infinite stream of samples. Nodes can start their computations when their in-
puts are available. Edges must be used whenever there is a data dependency
between any two nodes.

A B

*
1

1

+1

1

1
A B

*
1

1

+1 1

D
1

Figure 2.47. Graphical representations of synchronous data flow

For each execution, the computation in a node is called a firing. For each
firing, a number of tokens, representing data, is consumed and produced. In
synchronous data flow, the number of tokens produced or consumed in one
firing is constant. Constant edge labels denote the corresponding numbers of
tokens. These constants facilitate the modeling of multi-rate signal processing
applications (applications for which certain signals are generated at frequen-
cies that are multiples of other frequencies). The term synchronous data flow
reflects the fact that tokens are consumed from the incoming arcs in a syn-
chronous manner (all at the same instant in time). The term asynchronous
message passing reflects the fact that tokens can be buffered using FIFOs. The
property of producing and consuming a constant number of tokens makes it
possible to determine execution order and memory requirements at compile
time. Hence, complex run-time scheduling of executions is avoided. SDF
graphs may include delays, denoted by the symbol D on an edge (see fig. 2.47



Specifications 55

(right)). SDF graphs can be translated into periodic schedules for mono- as
well as for multi-processor systems (see e.g. [Pino and Lee, 1995]]. A legal
schedule for the simple example of fig. 2.47 would consist of the sequence (A,
B) (repeated forever). A sequence (A, A, B) (A executed twice as many times
as B) would be illegal, since it would accumulate an infinite number of tokens
on the implicit FIFO buffer between A and B.

2.9.3 Synchronous message passing

2.9.3.1 CSP

CSP [Hoare, 1985] (communicating sequential processes) is one of the first
languages comprising mechanisms for interprocess communication. Commu-
nication is based on channels.

Example:

process A process B
..... ......
var a .. var b ...
a := 3; ...
c!a; -- output to channel c c?b; -- input from channel c
end; end;

Both processes will wait for the other process to arrive at the input or out-
put statement. This form of communication is called rendez-vous concept or
blocking communication.

CSP has laid the foundation for the OCCAM language that was proposed as a
programming language of the transputer [Thiébaut, 1995].

2.9.3.2 ADA

During the eighties, the Department of Defense (DoD) in the US realized that
the dependability and maintainability of the software in its military equipment
could soon become a major source of problems, unless some strict policy was
enforced. It was decided that all software should be written in the same real-
time language. Requirements for such a language were formulated. No exist-
ing language met the requirements and, consequently, the design of a new one
was started. The language which was finally accepted was based on PASCAL.
It was called ADA (after Ada Lovelace, who can be considered being the first
(female) programmer). ADA’95 [Kempe, 1995], [Burns and Wellings, 2001]
is an object-oriented extension of the original standard.

One of the interesting features of ADA is the ability to have nested declara-
tions of processes (called tasks in ADA). Tasks are started whenever control



56 EMBEDDED SYSTEM DESIGN

passes into the scope in which they are declared. The following is an example
(according to Burns et al. [Burns and Wellings, 1990]):

procedure example1 is

task a;

task b;

task body a is

-- local declarations for a

begin

-- statements for a

end a;

task body b is

-- local declarations for b

begin

-- statements for b

end b;

begin

-- Tasks a and b will start before the first

-- statement of the body of example1

end;

The communication concept of ADA is another key concept. It is based on
the rendez-vous paradigm. Whenever two tasks want to exchange informa-
tion, the task reaching the “meeting point” first has to wait until its partner
has also reached a corresponding point of control. Syntactically, procedures
are used for describing communication. Procedures which can be called from
other tasks have to be identified by the keyword entry. Example [Burns and
Wellings, 1990]:

task screen out is

entry call (val : character; x, y : integer);

end screen out;

Task screen out includes a procedure named call which can be called from
other processes. Some other task can call this procedure by prefixing it with
the name of the task:

screen out.call(’Z’,10,20);



Specifications 57

The calling task has to wait until the called task has reached a point of control,
at which it accepts calls form other tasks. This point of control is indicated by
the keyword accept:

task body screen out is

...

begin

accept call (val : character; x, y : integer) do

...

end call;

...

end screen out;

Obviously, task screen out may be waiting for several calls at the same time.
The ADA select-statement provides this capability. Example:

task screen output is

entry call ch(val:character; x, y: integer);

entry call int(z, x, y: integer);

end screen out;

task body screen output is

...

select

accept call ch ... do...

end call ch;

or

accept call int ... do ..

end call int;

end select; ...

In this case, task screen out will be waiting until either call ch or call int are
called.

ADA is the language of choice for almost all military equipment produced in
the Western hemisphere.

Again, process networks are not explictly represented as graphs, but these
graphs can be generated from the textual representation.



58 EMBEDDED SYSTEM DESIGN

2.10 Java

Java was designed as a platform-independent language. It can be executed
on any machine for which an interpreter of the internal byte-code represen-
tation of Java-programs is available. This byte-code representation is a very
compact representation, which requires less memory space than a standard bi-
nary machine code representation. Obviously, this is a potential advantage in
system-on-a-chip applications, where memory space is limited.

Also, Java was designed as a safe language. Many potentially dangerous fea-
tures of C or C++ (like pointer arithmetic) are not available in Java. Hence,
Java meets the safety requirements for specification languages for embedded
systems. Java supports exception handling, simplifying recovery in case of
run-time errors. There is no danger of memory leakages due to missing mem-
ory deallocation, since Java provides automatic garbage collection. This fea-
ture avoids potential problems in applications that have to run for months or
even years without ever being restarted. Java also meets the requirement to
support concurrency since it includes threads (light-weight processes).

In addition, Java applications can be implemented quite fast, since Java sup-
ports object orientation and since Java development systems come with pow-
erful libraries.

However, standard Java is not really designed for real-time systems and a num-
ber of characteristics which would make it a real-time programming language
are missing:

The size of Java run-time libraries has to be added to the size of the ap-
plication itself. These run-time libraries can be quite large. Consequently,
only really large applications benefit from the compact representation of
the application itself.

For many embedded applications, direct control over I/O devices is neces-
sary (see page 16). For safety reasons, no direct control over I/O devices is
available in standard Java.

Automatic garbage collection requires some computing time. In standard
Java, the instance in time at which automatic garbage collection is started
cannot be predicted. Hence, the worst case execution time is very difficult
to predict. Only extremely conservative estimates can be made.

Java does not specify the order in which threads are executed if several
threads are ready to run. As a result, worst-case execution time estimates
must be even more conservative.



Specifications 59

First proposals for solving the problems were made by Nilsen. Proposals
include hardware-supported garbage-collection, replacement of the run-time
scheduler and tagging of some of the memory segments [Nilsen, 2004].

In 2003, relevant Java programming environments included the Java Enter-
prise Edition (J2EE), the Java Standard Edition (J2SE), the Java Micro Edition
(J2ME), and CardJava. CardJava is a stripped-down version of Java with em-
phasis on security for SmartCard applications. J2ME is the relevant Java en-
vironment for all other types of embedded systems. Two library profiles have
been defined for J2ME: CDC and CLDC. CLDC is used for mobile phones,
using the so-called MIDP 1.0/2.0 as its standard for the application program-
ming interface (API). CDC is used, for example, for TV sets and powerful
mobile phones. The currently relevant real-time extension of Java is called
“Real-time specification for Java (JSR-1)” [Java Community Process, 2002]
and is supported by TimeSys [TimeSys Inc., 2003].

2.11 VHDL

2.11.1 Introduction

Languages for describing hardware, such as VHDL, are called hardware de-
scription languages (HDLs). Up to the eighties, most design systems used
graphical HDLs. The most common building block was a gate. However, in
addition to using graphical HDLs, we can also use textual HDLs. The strength
of textual languages is that they can easily represent complex computations
including variables, loops, function parameters and recursion. Accordingly,
when digital systems became more complex in the eighties, textual HDLs al-
most completely replaced graphical HDLs. Textual HDLs were initially a re-
search topic at Universities. See Mermet et al. [Mermet et al., 1998] for a
survey of languages designed in Europe in the eighties. MIMOLA was one
of these languages and the author of this book contributed to its design and
applications [Marwedel and Schenk, 1993]. Textual languages became pop-
ular when VHDL and its competitor Verilog (see page 75) were introduced.
VHDL was designed in the context of the VHSIC program of the Department
of Defense (DoD) in the US. VHSIC stands for very high speed integrated cir-
cuits4. Initially, the design of VHDL (VHSIC hardware description language)
was done by three companies: IBM, Intermetrics and Texas Instruments. A
first version of VHDL was published in 1984. Later, VHDL became an IEEE
standard, called IEEE 1076. The first IEEE version was standardized in 1987;
updates were designed in 1992, in 1997 and in 2002.

4The design of the Internet was also part of the VHSIC program.



60 EMBEDDED SYSTEM DESIGN

A key distinction between common software languages and hardware descrip-
tion languages is the need to describe concurrency among different hardware
components. VHDL uses processes for doing this. Each process models one
component of the potentially concurrent hardware. For simple hardware com-
ponents, a single process may be sufficient. More complex components may
need several processes for modeling their operation. Processes communicate
through signals. Signals roughly correspond to physical connections (wires).
Another distinction between software languages and HDLs comes from the
need to model time. VHDL, like all other HDLs, includes the necessary sup-
port.

The design of VHDL used ADA as the starting point, since both languages
were designed for the DoD. Since ADA is based on PASCAL, VHDL has some
of the syntactical flavor of PASCAL. However, the syntax of VHDL is much
more complex and it is necessary not to get distracted by the syntax. In the
current book, we will just focus on some concepts of VHDL which are useful
also in other languages. A full description of VHDL is beyond the scope of
this book. The entire standard is available from IEEE (see [IEEE, 1992]).

2.11.2 Entities and architectures

In VHDL, each unit to be modeled is called a design entity or a VHDL entity.
Design entities are composed of two types of ingredients: an entity declara-
tion and one (or several) architectures (see fig. 2.48). For each entity, the
most recently analyzed architecture will be used by default. Using other archi-
tectures can be specified.

Architecture 1 Architecture 2 Architecture 3

Entity declaration

....

Figure 2.48. An entity consists of an entity declaration and architectures

We will consider a full adder as an example. Full adders have three input ports
and two output ports (see fig. 2.49).

full_adder
a

b

carry_in

sum

carry_out

Figure 2.49. Full-adder and its interface signals



Specifications 61

An entity declaration corresponding to fig. 2.49 is the following:

entity full adder is -- entity declaration

port (a, b, carry in: in Bit; -- input ports

sum, carry out: out Bit); -- output ports

end full adder;

Architectures consist of architecture headers and architectural bodies. We can
distinguish between different styles of bodies, in particular between structural
and behavioral bodies. We will show how the two are different using the full
adder as an example. Behavioral bodies include just enough information to
compute output signals from input signals and the local state (if any), including
the timing behavior of the outputs. The following is an example of this (<=
denotes assignments to signals):

architecture behavior of full adder is -- architecture

begin

sum <= (a xor b) xor carry in after 10 Ns;

carry out <= (a and b) or (a and carry in) or

(b and carry in) after 10 Ns;

end behavior;

VHDL-based simulators are capable of displaying output signal waveforms
resulting from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler
entities. For example, the full adder can be modeled as an entity consisting of
three components (see fig. 2.50). These components are called i1 to i3 and are
of type half adder or or gate.

full_adder

a
b y

x

carry_in sum

z
carry_out

half_adder

half_adder

i1:

i2:
gate
or_
i3:

Figure 2.50. Schematic describing structural body of the full adder

In the 1987 version of VHDL, these components must be declared in a so-
called component declaration. This declaration is very similar (and it serves
the same purpose) as forward declarations in other languages. This declaration
provides the necessary information about the component even if the full de-
scription of that component is not yet stored in the VHDL data base (this may



62 EMBEDDED SYSTEM DESIGN

happen in the case of so-called top-down designs). From the 1992 version of
VHDL onwards, such declarations are not required if the relevant components
are already stored in the component data base.

Connections between local component and entity ports are described in port
maps. The following VHDL code represents the structural body shown in fig.
2.50:

architecture structure of full adder is -- architecture head

component half adder

port (in1, in2 : in Bit; carry :out Bit; sum :out Bit);

end component;

component or gate

port(in1, in2:in Bit; o:out Bit);

end component;

signal x, y, z: Bit; -- local signals

begin -- port map section

i1: half adder -- introduction of half adder i1

port map (a, b, x, y); -- connections between ports

i2: half adder port map (y, carry in, z, sum);

i3: or gate port map (x, z, carry out);

end structure;

2.11.3 Multi-valued logic and IEEE 1164

In this book, we are restricting ourselves to embedded systems implemented
with binary logic. Nevertheless, it may be advisable or necessary to use more
than two values for modeling such systems. For example, our systems might
contain electrical signals of different strengths and it may be necessary to com-
pute the strength and the logic level resulting from a connection of two or more
sources of electrical signals. In the following, we will therefore distinguish be-
tween the level and the strength of a signal. While the former is an abstraction
of the signal voltage, the latter is an abstraction of the impedance (resistance)
of the voltage source. We will be using discrete sets of signal values represent-
ing the signal level and the strength. Using discrete sets of strengths avoids
the problems of having to solve Kirchhoff’s equations and enables us to work
with algebraic techniques. We will also model unknown electrical signals by
special signal values.



Specifications 63

In practice, electronic design systems use a variety of value sets. Some systems
allow only two, while others allow 9 or 46. The overall goal of developing
discrete value sets is to avoid the problems of solving network equations (e.g.
Kirchoff’s laws) and still model existing systems with sufficient precision. In
the following, we will present a systematic technique for building up value
sets and for relating these to each other. We will use the strength of electrical
signals as the key parameter for distinguishing between various value sets. A
systematic way of building up value sets, called CSA-theory, was presented by
Hayes [Hayes, 1982]. We will later show how the standard value set used for
most cases of VHDL-based modeling can be derived as a special case.

2.11.3.1 Two logic values (1 signal strength)

In the simplest case, we will start with just two logic values, called ’0’ and ’1’.
These two values are considered to be of the same strength. This means: if two
wires connect values ’0’ and ’1’, we will not know anything about the resulting
signal level.

A single signal strength may be sufficient if no two wires carrying values ’0’
and ’1’ are connected and no signals of different strength meet at a particular
node of electronic circuits.

2.11.3.2 Three and four logic values (2 signal strengths)

In many circuits, there may be instances in which a certain electrical signal is
not actively driven by any output. This may be the case, when a certain wire is
not connected to ground, the supply voltage or any circuit node.

For example, systems may contain open-collector outputs (see fig. 2.51, left)
or tristate outputs (see fig. 2.51, right). Using appropriate input signals, such
outputs can be effectively disconnected from a wire5.

Obviously, the signal strength of disconnected outputs is the smallest strength
that we can think of. In particular, the signal strength of Z is smaller than that
of ’0’ and ’1’. Furthermore, the signal level of such an output is unknown. This
combination of signal strength and signal value is represented by a logic value
called ’Z’. If a signal of value ’Z’ is connected to another signal, that other signal
will always dominate. For example, if two tristate outputs are connected to the
same bus and if one output contributes a value of ’Z’, the resulting value on the
bus will always be the value contributed by the second output (see fig. 2.52).

5In practice, pull-up transistors may be depletion transistors and the tri-state outputs may be inverting.



64 EMBEDDED SYSTEM DESIGN

PD

Output A

Input

GROUND

VDD

Input = ’0’  −> A disconnected 

GROUND

VDD

enable = ’0’ −> A disconnected

PD

A

f

f

enable

Figure 2.51. Outputs that can be effectively disconnected from a wire

PD

VDD

’Z’ −>

GROUND

bus

PD’

f

f

f’

f’

enable=’0’ enable’=’1’

Figure 2.52. Right output dominates bus

In VHDL, each output is associated with a so-called signal driver. Computing
the value resulting from the contributions of multiple drivers to the same sig-
nal is called resolution and resulting values are computed by functions called
resolution functions.

In most, cases three-valued logic sets {’0’,’1’,’Z’} are extended by a fourth value
called ’X’. ’X’ represents an unknown signal level of the same strength as ’0’ or
’1’. More precisely, we are using ’X’ to represent unknown values of signals
that can be either ’0’ or ’1’ or some voltage representing neither ’0’ nor ’1’6.

The resolution that is required if multiple drivers get connected can be com-
puted very easily, if we make use of a partial order among the four signal values
’0’, ’1’, ’Z’, and ’X’. The partial order is depicted in fig. 2.53.

Edges in this figure reflect the domination of signal values. Edges define a
relation >. If a > b, then a dominates b. ’0’ and ’1’ dominate ’Z’. ’X’ dominates

6There are other interpretations of ’X’, but the one presented above is the most useful one in our context.



Specifications 65

’X’

’0’ ’1’

’Z’

Figure 2.53. Partial order for value set {’0’, ’1’, ’Z’, ’X’}

all other signal values. Based on the relation >, we define a relation ≥. a ≥ b
holds iff a > b or a = b.

We define an operation sup on two signals, which returns the supremum of
the two signal values. The supremum c of the two values a and b is the weak-
est value for which c ≥ a and c ≥ b holds. For example, sup (’Z’, ’0’)=’0’,
sup(’Z’,’1’)=’1’ etc. The interesting observation is that resolution functions
should compute the sup function according to the above definition.

2.11.3.3 Seven signal values (3 signal strengths)

In many circuits, two signal strengths are not sufficient. A common case that
requires more values is the use of depletion transistors (see fig. 2.54).

f PD

A

GROUND

VDD

depletion
transistor

Figure 2.54. Output using depletion transistor

The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltage VDD. The depletion transistor as
well as the “pull-down transistor” PD act as drivers for node A of the circuit
and the signal value at node A can be computed using resolution. The pull-
down transistor provides a driver value of ’0’ or ’Z’, depending upon the input
to PD. The depletion transistor provides a signal value, which is weaker than ’0’
and ’1’. Its signal level corresponds to the signal level of ’1’. We represent the
value contributed by the depletion transistor by ’H’, and we call it a “weak logic
one”. Similarity, there can be weak logic zeros, represented by ’L’. The value
resulting from the possible connection between ’H’ and ’L’ is called a “weak



66 EMBEDDED SYSTEM DESIGN

logic undefined”, denoted as ’W’. As a result, we have three signal strengths
and seven logic values {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’}. Resolution can again be
based on a partial order among these seven values. The corresponding partial
order is shown in fig. 2.55.

’X’

’0’ ’1’

’W’

’L’ ’H’

’Z’

} strongest

}
weakest

medium strength

Figure 2.55. Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’}

This order also defines an operation sup returning the weakest value at least as
strong as the two arguments. For example, sup(’H’,’0’) = ’0’, sup(’H’,’Z’) = ’H’,
sup(’H’,’L’) = ’W’.

’0’ and ’L’ represent the same signal levels, but a different strength. The same
holds for the pairs ’1’ and ’H’. Devices increasing the signal strength are called
amplifiers, devices reducing the signal strength are called attenuators.

2.11.3.4 Ten signal values (4 signal strengths)

In some cases, three signal strengths are not sufficient. For example, there
are circuits using charges stored on wires. Such wires are charged to levels
corresponding to ’0’ or ’1’ during some phases of the operation of the electronic
circuit. This stored charge can control the (high impedance) inputs of some
transistors. However, if these wires get connected to even the weakest signal
source (except ’Z’), they loose their charge and the signal value from that source
dominates.

For example, in fig. 2.56, we are driving a bus from a specialized output. The
bus has a high capacitive load C. While function f is still ’0’, we set φ to ’1’,
charging capacitor C. Then we set φ to ’0’. If the real value of function f be-
comes known and it turns out to be ’1’, we discharge the bus. The key reason for
using pre-charging is that charging a bus using an output like the one shown in
fig. 2.54 is a slow process, since the resistance of depletion transistors is large.
Discharging through regular pull-down transistors PD is a much faster process.



Specifications 67

f PD

GROUND

VDD

φ

Bus

C

Figure 2.56. Pre-charging a bus

In order to model such cases, we need signal values which are weaker than ’H’
and ’L’, but stronger than ’Z’. We call such values “very weak signal values”
and denote them by ’h’ and ’l’. The corresponding very weak unknown value is
denoted by ’w’. As a result, we obtain ten signal values {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’,
’W’, ’h’, ’l’, ’w’}. Using the signal strength, we can again define a partial order
among these values (see fig. 2.57).

’X’

’0’ ’1’

’W’

’L’ ’H’

’w’

’l’ ’h’

’Z’

}

}

}

strongest

medium strength

weakest

pre−charged

Figure 2.57. Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’}

2.11.3.5 Five signal strengths

So far, we have ignored power supply signals. These are stronger than the
strongest signals we have considered so far. Signal value sets taking power
supply signals into account have resulted in the definition of 46-valued value
sets [Coelho, 1989]. However, such models are not very popular.



68 EMBEDDED SYSTEM DESIGN

2.11.3.6 IEEE 1164

In VHDL, there is no predefined number of signal values, except for some
basic support for two-valued logic. Instead, the used value sets can be defined
in VHDL itself and different VHDL models can use different value sets.

However, portability of models would suffer severely if this capability of VHDL
was applied in this way. In order to simplify exchanging VHDL models, a
standard value set was defined and standardized by the IEEE. This standard is
called IEEE 1164 and is employed in many system models. IEEE 1164 has
nine values: {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’U’, ’-’}. The first seven values corre-
spond to the seven signal values described above. ’U’ denotes an uninitialized
value. It is used by simulators for signals that have not been explicitely defined.

’-’ denotes the input don’t care. This value needs some explanation. Fre-
quently, hardware description languages are used for describing Boolean func-
tions. The VHDL select statement is a very convenient means for doing that.
The select statement corresponds to switch and case statements found in
other languages and its meaning is different from the select statement in ADA.

Example: Suppose that we would like to represent the Boolean function

f (a,b,c) = ab + bc

Furthermore, suppose that f should be undefined for the case of a = b = c =’0’.
A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation

’1’ when "10-" -- corresponds to first term

’1’ when "-11" -- corresponds to second term

’X’ when "000"

This way, functions given above could be easily translated into VHDL. Unfor-
tunately, the select statement denotes something completely different. Since
IEEE 1164 is just one of a large number of possible value sets, it does not in-
clude any knowledge about the “meaning” of ’-’. Whenever VHDL tools evalu-
ate select statements like the one above, they check if the selecting expression
(a & b & c in the case above) is equal to the values in the when clauses. In par-
ticular, they check if e.g. a & b & c is equal to "10-". In this context, ’-’ behaves
like any other value: VHDL systems check if c has a value of ’-’. Since ’-’ is
never assigned to any of the variables, these tests will never be true. Therefore,
’-’ is of limited benefit. The non-availability of convenient input don’t care
values is the price that one has to pay for the flexibility of defining value sets
in VHDL itself.



Specifications 69

The nice property of the general discussion on pages 63 to 67 is the following:
it allows us to immediately draw conclusions about the modeling power of
IEEE 1164. The IEEE standard is based on the 7-valued value set described
on page 65 and, therefore, is capable of modeling circuits containing depletion
transistors. It is, however, not capable of modeling charge storage7.

2.11.4 VHDL processes and simulation semantics

VHDL treats components described above as processes. The syntax used
above is just a shorthand for processes. The general syntax for processes is
as follows:

label : -- optional

process

declarations -- optional

begin

statements-- optional

end process ;

Processes may contain wait statements. Such statements can be used to sus-
pend a process. There are the following kinds of wait statements:

wait on signal list; suspend until one of the signals in the list changes;

wait until condition; suspend until condition is met, e.g. a = ’1’;

wait for duration; suspend for a specified period of time;

wait; suspend indefinitely.

As an alternative to explicit wait statements, a list of signals can be added to
the process header. In that case, the process is activated whenever one of the
signals in that list changes its value. Example: The following model of an and-
gate will execute its body once and will restart from the beginning every time
one of the inputs changes its value:

process(x, y) begin

prod <= x AND y ;

end process;

7As an exception, if the capability of modeling depletion transistors or pull-up resistors is not needed, one
could interpret weak values as stored charges. This is, however, not very practical since pull-up resistors
are found in most actual systems.



70 EMBEDDED SYSTEM DESIGN

This model is equivalent to

process begin

prod <= x AND y ;

wait on x,y;

end process;

According to the original standards document [IEEE, 1997], the execution of a
VHDL model is described as follows: The execution of a model consists of an
initialization phase followed by the repetitive execution of process statements
in the description of that model. Each such repetition is said to be a simulation
cycle. In each cycle, the values of all signals in the description are computed.
If as a result of this computation an event occurs on a given signal, process
statements that are sensitive to that signal will resume and will be executed as
part of the simulation cycle.

The initialization phase takes signal initializations into account and executes
each process once. It is described in the standards as follows8:

At the beginning of initialization, the current time, Tc is assumed to be 0 ns.
The initialization phase consists of the following steps:9

The driving value and the effective value of each explicitly declared signal
are computed, and the current value of the signal is set to the effective
value. This value is assumed to have been the value of the signal for an
infinite length of time prior to the start of the simulation. ...

Each ... process in the model is executed until it suspends. ...

The time of the next simulation cycle (which in this case is the first simula-
tion cycle), Tn is calculated according to the rules of step f of the simulation
cycle, below.

Each simulation cycle starts with setting the current time to the next time at
which changes must be considered. This time Tn was either computed during
the initialization or during the last execution of the simulation cycle. Simu-
lation terminates when the current time reaches its maximum, T IME ′HIGH .
According to the original document, the simulation cycle is described as fol-
lows: A simulation cycle consists of the following steps:

8We leave out the discussion of implicitly declared signals and so-called postponed processes introduced in
the 1997 version of VHDL.
9In order not to get lost in the amount of details provided by the standard, some of its sections (indicated by
“...”) are omitted in the citation.



Specifications 71

a) The current time, Tc is set equal to Tn. Simulation is complete when Tn =
T IME ′HIGH and there are no active drivers or process resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may occur as a
result.) ...

This phrase from the document refers to the fact that in the cycle preceeding
the current cycle, new future values for some of the signals have been com-
puted. If Tc corresponds to the time at which these values become valid,
they are now assigned. Note that new values of signals are never immedi-
ately assigned while executing a simulation cycle. They are not assigned
before the next simulation cycle, at the earliest. Signals that change their
value generate so-called events which, in-turn, may enable the execution of
processes that are sensitive to that signal.

c) For each process P, if P is currently sensitive to a signal S and if an event
has occurred on S in this simulation cycle, then P resumes.

d) Each ... process that has resumed in the current simulation cycle is executed
until it suspends.

e) The time of the next simulation cycle, Tn is determined by setting it to the
earliest of

1 TIME’HIGH (This is the end of simulation time).

2 The next time at which a driver becomes active (this is the next instance
in time, at which a driver specifies a new value), or

3 The next time at which a process resumes (this time is determined by
wait on statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.

The iterative nature of simulation cycles is shown in fig. 2.58.

Evaluate processesAssign new values to signals

Future values for signal drivers

Activate all processes sensitive to signal changes

Start of simulation

Figure 2.58. VHDL simulation cycles



72 EMBEDDED SYSTEM DESIGN

Delta (δ) simulation cycles have been the source of many discussions. Their
purpose is to introduce a infinitesimally small delay even in cases in which the
user did not specify any. As an example, we will show the effect of these cycles
using a flip-flop as an example. Fig. 2.59 shows the schematic of the flip-flop.

S

R Q

nQ

Figure 2.59. RS-Flipflop

The flip-flop is modeled in VHDL as follows:

entity RS Flipflop is

port (R: in BIT; -- reset

S: in BIT; -- set

Q: inout BIT; -- output

nQ: inout BIT; -- Q-bar

);

end RS Flipflop;

architecture one of RS Flipflop is

begin

process: (R,S,Q,nQ)

begin

Q <= R nor nQ;

nQ <= S nor Q;

end process;

end one;

Ports Q and nQ must be of mode inout since they are also read internally, which
would not be possible if they were of mode out. Fig. 2.60 shows the simulation
times at which signals are updated for this model.

Simulation terminates after two δ cycles. δ cycles correspond to an infinitesi-
mally small unit of time, which will always exist in reality. δ cycles ensure that
simulation respects causality and that the results do not depend on the order in
which parts of the model are executed by the simulation. Otherwise, simula-
tion would become non-deterministic, which is not what we expect from the
simulation of a real circuit with deterministic behavior. There can be arbitrar-



Specifications 73

0ns 0ns+δ 0ns+2∗δ
R 1 1 1
S 0 0 0
Q 1 0 0
nQ 0 0 1

Figure 2.60. δ cycles for RS-flip-flop

ily many δ cycles before the current time Tc is advanced. This possibility of
infinite loops can be confusing. One of the options of avoiding this possibility
would be to disallow zero delays, which we used in our model of the flip-flop.

A very important concept of VHDL is the separation between the computation
of new values for signals and their actual assignment. This separation enables
deterministic simulation results. In a model containing the lines

a <= b;

b <= a;

signals a and b will always be swapped. If the assignments were performed
immediately, the result would depend on the order in which we execute the
assignments (see also page 25).

2.12 SystemC

Due to the trend of implementing more and more functionality in software,
a growing number of embedded systems includes a mixture of hardware and
software. Most of the embedded system software is specified in C. For exam-
ple, embedded systems implement standards such as MPEG 1/2/4 or decoders
for mobile phone standards such as GSM. The standards are frequently avail-
able in the form of “reference implementations”, consisting of C programs not
optimized for speed but providing the required functionality. The disadvantage
of design methodologies based on VHDL or Verilog is the fact that these stan-
dards have to be rewritten in order to generate hardware. Furthermore, simulat-
ing hardware and software together requires to interfacing software and hard-
ware simulators. Typically, this involves a loss of simulation efficiency and
inconsistent user interfaces. Also, designers have to learn several languages.

Therefore, there has been a search for techniques for representing hardware
structures in software languages. Some fundamental problems have to be
solved before hardware can be modeled with software languages:

Concurrency, as it is found in hardware, has to be modeled in software.



74 EMBEDDED SYSTEM DESIGN

There has to be a representation for simulation time.

Multiple-valued logic and resolution as described earlier must be sup-
ported.

The deterministic behavior of almost all useful hardware circuits must be
guaranteed.

SystemCT M [SystemC, 2002] is a C++ class library designed to solve these
problems. With SystemC, specifications can be written in C or C++, making
appropriate references to the class libraries.

SystemC comprises a notion of processes executed concurrently. Simulation
semantics are similar to VHDL, including the presence of delta cycles. The
execution of these processes is controlled via sensivity lists and calls to wait
primitives. The sensivity list concept of VHDL has been extended to also
include dynamic sensivity lists (in SystemC 2.0).

SystemC includes a model of time. SystemC 1.0 uses floating point numbers to
denote time. In SystemC 2.0, an integer model of time is preferred. SystemC
2.0 also supports physical units such as picoseconds, nanoseconds, microsec-
onds etc.

SystemC data types include all common hardware types: four-valued logic
(’0’, ’1’, ’X’ and ’Z’) and bitvectors of different lengths are supported. Writing
digital signal processing applications is simplified due to the availability of
fixed-point data types.

Deterministic behavior (see page 27) is not guaranteed in general, unless a
certain modeling style is used. Using a command line option, the simulator
can be directed to run processes in different orders. This way, the user can
check if the simulation results depend on the sequence in which the processes
are executed. However, for models of realistic complexity, only the presence
of non-deterministic behavior can be proved, not its absence.

Reusing hardware components in different contexts is simplified by the sep-
aration of computation and communication. SystemC 2.0 provides channels,
ports and interfaces as abstract components for communication.

SystemC has the potential for replacing existing VHDL-based design flows,
even though hardware synthesis from SystemC only starts becoming available
at the time of the writing of this book [Herrera et al., 2003a], [Herrera et al.,
2003b]. Methodology and applications for SystemC-based design is described
in a book on that topic [Müller et al., 2003].



Specifications 75

2.13 Verilog and SystemVerilog

Verilog [Thomas and Moorby, 1991] is another hardware description language.
Initially it was a proprietary language, but it was later standardized as IEEE
standard 1364, with versions called IEEE standard 1364-1995 (Verilog version
1.0) and IEEE standard 1394-2001 (Verilog 2.0). Some features of Verilog are
quite similar to VHDL. Just like in VHDL, designs are described as a set of
connected design entities, and design entities can be described behaviorally.
Also, processes are used to model concurrency of hardware components. Just
like in VHDL, bitvectors and time units are supported. There are, however,
some areas in which Verilog is less flexible and focuses more on comfortable
built-in features. For example, standard Verilog does not include the flexible
mechanisms for defining enumerated types like the ones defined in the IEEE
1164 standard. However, Verilog support for four-valued logic is built into the
language, and the standard IEEE 1364 also provides multiple valued logic with
8 different signal strengths. Multiple-valued logic is more tightly integrated
into Verilog than into VHDL. The Verilog logic system also provides more
features for transistor-level descriptions. However, VHDL is more flexible.
For example, VHDL allows hardware entities to be instantiated in loops. This
can be used to generate a structural description for, e.g. n-bit adders without
having to specify n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the US.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [Accellera,
2005]:

additional language elements for modeling behavior,

C data types such as int and type definition facilities such as typedef and
struct,

definition of interfaces of hardware components as separate entities,

standardized mechanism for calling C/C++ functions and, to some extend,
to call built-in Verilog functions from C,

significantly enhanced features for describing an environment (called test-
bench) for the hardware under design (called CUD), and for using the test-
bench to verify the CUD by simulation,

classes known from object-oriented programming for use within testben-
ches,



76 EMBEDDED SYSTEM DESIGN

dynamic process creation,

standardized interprocess communication and synchronization, including
semaphores,

automatic memory allocation and deallocation,

language features that provide a standardized interface to formal verifica-
tion (see page 199).

Due to the capability of interfacing with C and C++, interfacing to SystemC
models is also possible. Improved facilities for simulation- as well as for for-
mal verification-based design validation and the possible interfacing to Sys-
temC will potentially create a very good acceptance of SystemVerilog.

2.14 SpecC

The SpecC language [Gajski et al., 2000] is based on the clear separation be-
tween communication and computation that should be used for modeling em-
bedded systems. This separation paves the way for re-using components in
different contexts and enables plug-and-play for system components. SpecC
models systems as hierarchical networks of behaviors communicating through
channels. SpecC descriptions consist of behaviors, channels and interfaces.
Behaviors include ports, locally instantiated components, private variables and
functions and a public main function. Channels encapsulate communication.
They include variables and functions, which are used for the definition of a
communication protocol. Interfaces are linking behaviors and channels to-
gether. They declare the communication protocols which are defined in a chan-
nel.

SpecC can model hierarchies with nested behaviors. Fig. 2.61 [Gajski et al.,
2000] shows a component B including sub-components b1 and b2.

c2L R

c1

p1 p2 p3p1 p2 p3

b1 b2

p2p1B

Figure 2.61. Structural hierarchy of SpecC example



Specifications 77

The sub-components are communicating through integer c1 and through chan-
nel c2. The structural hierarchy includes b1 and b2 as the leaves. b1 and b2 are
executed concurrently, denoted by the keyword par in SpecC. This structural
hierarchy is described in the following SpecC model.

interface L {void Write(int x); };

interface R {int Read(void); };

channel C implements L,R

{int Data; bool Valid;

void Write(int x) {Data=x; Valid=true;}
int Read (void)

{while (!Valid) waitfor (10); return (Data);} }
behavior B1(in int p1, L p2, in int p3)

{void main (void) {/* ...*/ p2.Write(p1);} };

behavior B2 (out int p1, R p2, out int p3)

{void main(void) {/*...*/ p3=p2.Read(); } };

behavior B(in int p1, out int p2)

{int c1; C c2; B1 b1(p1, c2, c1); B2 b2(c1, c2, p2);

void main (void)

{par {b1.main(); b2.main();}}
};

Note that the interface protocol implemented in channel C, consisting of meth-
ods for read and write operations, can be changed without changing behaviors
B1 and B2. For example, communication can be bit-serial or parallel and the
choice does not affect the models of B1 and B2. This is a necessary feature for
IP-reuse.

In order to simplify designs containing software and hardware components, the
syntax of SpecC is based on C and C++. In fact, SpecC models are translated
into C++ for simulation.

The communication model of SpecC has inspired communication in SystemC
2.0.

2.15 Additional languages

A large number of languages has been designed for embedded applications.
The following is a list of some of them:



78 EMBEDDED SYSTEM DESIGN

Pearl: Pearl [Deutsches Institut für Normung, 1997] was designed for in-
dustrial control applications. It does include a large repertoire of language
elements for controlling processes and referring to time. It requires an un-
derlying real-time operation system. Pearl has been very popular in Europe
and a large number of industrial control projects has been implemented in
Pearl.

Chill: Chill [Winkler, 2002] was designed for telephone exchange stations.
It was standardized by the CCITT and used in telecommunication equip-
ment. Chill is a kind of extended PASCAL.

IEC 60848, STEP 7 : IEC 60848 [IEC, 2002] and STEP 7 [Berger, 2001]
are two languages that are used in control applications. Both provide graph-
ical elements for describing the system functionality.

SpecCharts: SpecCharts [Gajski et al., 1994], as a predecessor to SpecC,
combines the advantages of StateCharts and VHDL. It is based on the State-
Chart modeling paradigm of automata, but allows their behavior to be de-
scribed in VHDL. In addition, a distinction between transitions to be taken
immediately and transitions to be taken after the completion of all com-
putations is made. The first type of transitions simplifies the modeling
of exceptions. Just like StateCharts, SpecCharts has problems describing
structural hierarchies.

Estelle: This language was designed to describe communication protocols.
Similar to SDL, Estelle assumes communication via channels and FIFO-
buffers. Attempts to unify Estelle and SDL failed.

LOTOS, Z: These languages [Jeffrey and Leduc, 1996], [Spivey, 1992]
are algebraic specification languages enabling precise specifications and
formal proofs. Unfortunately, they are not executable and hence cannot be
used for early design validations.

Silage: This language is tailored towards digital signal processing. It is
a functional language, paving the way for getting rid of sequential, von-
Neumann style of programming. Unfortunately, it has not been accepted
by designers.

Rosetta: The development of the Rosetta language is part of the activities
of the Accellera initiative. Accellera’s mission is to drive worldwide devel-
opment and use of standards required by systems, semiconductor and de-
sign tools companies, which enhance a language-based design automation
process [Accellera, 2002]. The Accellera initiative also works on updating
VHDL and Verilog standards.



Specifications 79

Esterel: The definition of Esterel comprises the following salient features
[Boussinot and de Simone, 1991]: Esterel is a reactive language: when ac-
tivated with an input event, Esterel models react by producing an output
event. Esterel is a synchronous language: all reactions are assumed to be
completed in zero time and it is sufficient to analyze the behavior at discrete
moments in time. This idealized model avoids all discussions about over-
lapping time ranges and about events that arrive while the previous reaction
has not been completed. As other concurrent languages, Esterel has a par-
allelism operator, written ||. Like in StateCharts, communication is based
on a broadcast mechanism. In contrast to StateCharts, however, communi-
cation is instantaneous. This means that all signals generated at a particular
moment in time are also seen by the others parts of the model at the same
moment in time and these other parts, if sensitive to the generated signals,
react at the same moment in time. Several rounds of evaluations may be
required until a stable state (if any) is reached. This propagation of values
during the same macroscopic instant of time corresponds to the δ-cycles of
VHDL and the generation of a next status for the same moment in time in
StateCharts, except that the broadcast is now instantaneous. Instantaneous
broadcast can lead to instantaneous loops. These loops are detected by the
Esterel compiler, but not all infinite loops can be detected by the compiler.
For more and updated information about Esterel, refer to a web site [Es-
terel, 2002].

MATLAB/Simulink: MATLAB/Simulink [Tewari, 2001] is a modeling
and simulation tool based on mathematics. Actual systems can be de-
scribed, for example, in the form of partial differential equations. This ap-
proach is appropriate for modeling physical systems such as cars or trains
and then simulating the behavior of these systems. Also, digital signal
processing systems can be conveniently modeled with MATLAB. In order
to generate implementations, MATLAB/Simulink models first have to be
translated into a language supported by software or hardware design sys-
tems, such as C or VHDL.

2.16 Levels of hardware modeling

In practice, designers start design cycles at various levels of abstraction. In
some cases, these are high levels describing the overall behavior of the system
to be designed. In other cases, the design process starts with the specification
of electrical circuits at lower levels of abstraction. For each of the levels, a
variety of languages exists, and some languages cover at various levels. In the
following, we will describe a set of possible levels. Some lower end levels
are presented here for context reasons. Specifications should not start at those
levels. The following is a list of frequently used names and attributes of levels:



80 EMBEDDED SYSTEM DESIGN

System level models: The term system level is not clearly defined. It is
used here to denote the entire embedded system and the system into which
information processing is embedded (“the product”), and possibly also the
environment (the physical input to the system, reflecting e.g. the roads,
weather conditions etc.). Obviously, such models include mechanical as
well as information processing aspects and it may be difficult to find ap-
propriate simulators. Possible solutions include VHDL-AMS (the analog
extension to VHDL), SystemC or MATLAB. MATLAB and VHDL-AMS
support modeling partial differential equations, which is a key requirement
for modeling mechanical systems. It is a challenge to model information
processing parts of the system in such a way that the simulation model
can also be used for the synthesis of the embedded system. If this is not
possible, error-prone manual translations between different models may be
needed.

Algorithmic level: At this level, we are simulating the algorithms that we
intend to use within the embedded system. For example, we might be sim-
ulating MPEG video encoding algorithms in order to evaluate the resulting
video quality. For such simulations, no reference is made to processors or
instruction sets.

Data types may still allow a higher precision than the final implementation.
For example, MPEG standards use double precision floating point numbers.
The final embedded system will hardly include such data types. If data
types have been selected such that every bit corresponds to exactly one bit
in the final implementation, the model is said to be bit-true. Translating
non-bit-true into bit-true models should be done with tool support (see page
158).

Models at this level may consist of single processes or of sets of cooperating
processes.

Instruction set level: In this case, algorithms have already been compiled
for the instruction set of the processor(s) to be used. Simulations at this
level allow counting the executed number of instructions. There are several
variations of the instruction set level:

– In a coarse-grained model, only the effect of the instructions is sim-
ulated and their timing is not considered. The information available
in assembly reference manuals (instruction set architecture (ISA)) is
sufficient for defining such models.

– Transaction level modeling: In transaction level modeling, transac-
tions, such as bus reads and writes, and communication between differ-
ent components is modeled. Transaction level modeling includes less



Specifications 81

details than cycle-true modeling (see below), enabling significantly su-
perior simulation speeds [Clouard et al., 2003].

– In a more fine-grained model, we might have cycle-true instruction
set simulation. In this case, the exact number of clock cycles required
to run an application can be computed. Defining cycle-true models re-
quires a detailed knowledge about processor hardware in order to cor-
rectly model, for example, pipeline stalls, resource hazards and mem-
ory wait cycles.

Register-transfer level (RTL): At this level, we model all the components
at the register-transfer level, including arithmetic/logic units (ALUs), regis-
ters, memories, muxes and decoders. Models at this level are always cycle-
true. Automatic synthesis from such models is not a major challenge.

Gate-level models: In this case, models contain gates as the basic compo-
nents. Gate-level models provide accurate information about signal tran-
sition probabilities and can therefore also be used for power estimations.
Also delay calculations can be more precise than for the RTL. However,
typically no information about the length of wires and hence no informa-
tion about capacitances is available. Hence, delay and power consumption
calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in
which gates are only used to denote Boolean functions. Gates in such a
model do not necessarily represent physical gates; we are only considering
the behavior of the gates, not the fact that they also represent physical com-
ponents. More precisely, such models should be called “Boolean function
models”10, but this term is not frequently used.

Switch-level models: Switch level models use switches (transistors) as
their basic components. Switch level models use digital values models
(refer to page 62 for a description of possible value sets). In contrast to
gate-level models, switch level models are capable of reflecting bidirec-
tional transfer of information.

Circuit-level models: Circuit theory and its components (current and volt-
age sources, resistors, capacitances, inductances and possibly macro-models
of semiconductors) form the basis of simulations at this level. Simulations
involve partial differential equations. These equations are linear if and only
if the behavior of semiconductors is linearized (approximated). The most
frequently used simulator at this level is SPICE [Vladimirescu, 1987] and
its variants.

10These models could be represented with binary decision diagrams (BDDs) [Wegener, 2000].



82 EMBEDDED SYSTEM DESIGN

Layout models: Layout models reflect the actual circuit layout. Such mod-
els include geometric information. Layout models cannot be simulated
directly, since the geometric information does not directly provide infor-
mation about the behavior. Behavior can be deduced by correlating the
layout model with a behavioral description at a higher level or by extract-
ing circuits from the layout, using knowledge about the representation of
circuit components at the layout level. In a typical design flow, the length of
wires and the corresponding capacitances are extracted from the layout and
back-annotated to descriptions at higher levels. This way, more precision
can be gained for delay and power estimations.

Process and device models: At even lower levels, we can model fabri-
cation processes. Using information from such models, we can compute
parameters (gains, capacitances etc) for devices (transistors).

2.17 Language comparison

None of the languages presented so far meets all the requirements for specifi-
cation languages for embedded systems. Fig. 2.62 presents an overview over
some of the key properties of some of the languages. Exceptions and dynamic
process creation are supposed to be supported in SystemC 3.0.

Behavioral Structural Programming Exceptions Dynamic
Hierarchy Hierarchy Language Supported Process

Language Elements Creation

StateCharts + - - + -
VHDL + + + - -
SpecCharts + - + + -
SDL +- +- +- - +
Petri nets - - - - +
Java + - + + +
SpecC + + + + +
SystemC + + + - (2.0) - (2.0)
ADA + - + + +

Figure 2.62. Language comparison

It is not very likely that a single language will ever meet all requirements, since
some of the requirements are essentially conflicting. A language supporting
hard real-time requirements well may be inconvenient to use for less strict real-
time requirements. A language appropriate for distributed control-dominated
applications may be poor for local data-flow dominated applications. Hence,
we can expect that we will have to live with compromises.



Specifications 83

Which compromises are actually used in practice? In practice, assembly lan-
guage programming was very common in the early years of embedded systems
programming. Programs were small enough to handle the complexity of prob-
lems in assembly languages. The next step is the use of C or derivatives of C.
Due to the ever increasing complexity of embedded system software (see page
9), higher level languages are to follow the introduction of C. Object oriented
languages and SDL are languages which provide the next level of abstraction.
Also, languages like UML are required to capture specifications at an early
design stage. In practice, these languages can be used like shown in fig. 2.63.

VHDL

Net list

hardware

(RT−) UML or equivalent

SDL

C−programs

Assembly programs

Objectcode

(RT−) UML or equivalent

(RT−) Java

Objectcode

Figure 2.63. Using various languages in combination

According to fig. 2.63, languages like SDL or StateCharts can be translated
into C. These C descriptions are then compiled. Starting with SDL or State-
Chart also opens the way to implementing the functionality in hardware, if
translators from these languages to VHDL are provided. Both C and VHDL
will certainly survive as intermediate languages for many years. Java does not
need intermediate steps but does also benefit from good translation concepts to
assembly languages.

2.18 Dependability requirements

The previous sections have mostly focused on the specification of the func-
tional behavior of the system to be designed. However, there may be safety-
critical systems, for which safety requirements are actually the dominating re-
quirement. Safety requirements cannot come in as an afterthought, but have
to be considered right from the beginning. The design of safe and dependable
systems is a topic by its own. This book can only provide a few hints into this
direction.



84 EMBEDDED SYSTEM DESIGN

According to Kopetz [Kopetz, 2003], the following must be taken into account:
For safety-critical systems, the system as a whole must be more dependable
than any of its parts. Allowed failure may be in the order of 1 failure per
109 hours. This may be in the order of 1000 times less than typical failure
rates of chips. Obviously, fault-tolerance mechanisms must be used. Due to
the low acceptable failure rate, systems are not 100% testable. Instead, safety
must be shown by a combination of testing and reasoning. Abstraction must
be used to make the system explainable using a hierarchical set of behavioral
models. Design faults and human failures must be taken into account. In
order to address these challenges, Kopetz proposed the following twelve design
principles:

1 Safety considerations may have to be used as the important part of the
specification, driving the entire design process.

2 Precise specifications of design hypotheses must be made right at the be-
ginning. These include expected failures and their probability.

3 Fault containment regions (FCRs) must be considered. Faults in one FCR
should not affect other FCRs.

4 A consistent notion of time and state must be established. Otherwise, it will
be impossible to differentiate between original and follow-up errors.

5 Well-defined interfaces have to hide the internals of components.

6 It must be ensured that components fail independently.

7 Components should consider themselves to be correct unless two or more
other components pretend the contrary to be true (principle of self-confi-
dence).

8 Fault tolerance mechanisms must be designed such that they do not create
any additional difficulty in explaining the behavior of the system. Fault
tolerance mechanisms should be decoupled from the regular function.

9 The system must be designed for diagnosis. For example, it has to be pos-
sible to identifying existing (but masked) errors.

10 The man-machine interface must be intuitive and forgiving. Safety should
be maintained despite mistakes made by humans.

11 Every anomaly should be recorded. These anomalies may be unobservable
at the regular interface level. This recording should involve internal effects,
since otherwise they may be masked by fault-tolerance mechanisms.



Specifications 85

12 Provide a never-give up strategy. Embedded systems may have to provide
uninterrupted service. The generation of pop-up windows or going offline
is unacceptable.

For further information about dependability and safety issues, contact books
[Laprie, 1992], [Neumann, 1995], [Leveson, 1995], [Storey, 1996], [Geffroy
and Motet, 2002] on those areas.



Chapter 3

EMBEDDED SYSTEM HARDWARE

3.1 Introduction

It is one of the characteristics of embedded systems that both hardware and
software must be taken into account. The reuse of available hard- and software
components is at the heart of the proposed platform-based design method-
ology. The methodology will be described starting at page 151. Consistent
with the need to consider available hardware components and with the design
information flow shown in fig. 3.1, we are now going to describe some of the
essentials of embedded system hardware.

specification

standard software

realizationimplementation: hw/sw codesign
− task concurrency management
− high−level transformations
− design space exploration
− hardware/software partitioning
− compilation, scheduling

...... ...
(from all phases)

validation; evaluation (performance, energy consumption, safety, ..)

(RTOS, ...)

HW−components

software

...

hardwarehardware−design

ap
pl

ic
at

io
n 

kn
ow

le
dg

e

Figure 3.1. Simplified design information flow

Hardware for embedded systems is much less standardized than hardware for
personal computers. Due to the huge variety of embedded system hardware, it
is impossible to provide a comprehensive overview over all types of hardware

87



88 EMBEDDED SYSTEM DESIGN

components. Nevertheless, we will try to provide an overview over some of
the essential components which can be found in most systems.

In many of the embedded systems, especially in control systems, embedded
hardware is used in a loop (see fig. 3.2).

display

D/A converter

sensors

information
processingsample−and−hold

A/D converter

environment actuators

Figure 3.2. Hardware in the loop

In this loop, information about the physical environment is made available
through sensors. Typically, sensors generate continuous sequences of analog
values. In this book, we will restrict ourselves to information processing in
digital computers processing discrete sequences of values. Appropriate con-
versions are performed by two kinds of circuits: sample-and-hold-circuits and
analog-to-digital (A/D) converters. After this conversion, information can be
processed digitally. Generated results can be displayed and also be used to
control the physical environment through actuators. Since most actuators are
analog actuators, conversion from digital to analog signals is also needed.

This model is obviously appropriate for control applications. For other appli-
cations, it can be employed as a first order approximation. For example, in
mobile phones, sensors correspond to the antenna and actuators correspond to
the speakers. In the following, we will describe essential hardware components
of embedded systems following the loop structure of fig. 3.2.

3.2 Input

3.2.1 Sensors

We start with a brief discussion of sensors. Sensors can be designed for virtu-
ally every physical quantity. There are sensors for weight, velocity, accelera-
tion, electrical current, voltage, temperatures etc. A large amount of physical
effects can be used for constructing sensors [Elsevier B.V., 2003a]. Examples
include the law of induction (generation of voltages in an electric field), or
light-electric effects. Also, there are sensors for chemical substances [Elsevier
B.V., 2003b].

In recent years, a huge amount of sensors has been designed and much of
the progress in designing smart systems can be attributed to modern sensor



Embedded System Hardware 89

technology. Hence, it is impossible to cover this subset of embedded hardware
technology comprehensively and we can only give characteristic examples:

Acceleration sensors: Fig. 3.3 shows a small sensor manufactured using
microsystem technology. The sensor contains a small mass in its center.
When accelerated, the mass will be displaced from its standard position,
thereby changing the resistance of the tiny wires connected to the mass.

Figure 3.3. Acceleration sensor (courtesy S. Bütgenbach, IMT, TU Braunschweig), c©TU
Braunschweig, Germany

Rain sensors: In order to remove distraction from drivers, some recent
high end cars contain rain sensors. Using these, the speed of the wipers can
be automatically adjusted to the amount of rain.

Image sensors: There are essentially two kinds of image sensors: charge-
coupled devices (CCDs) and CMOS sensors. In both cases, arrays of light
sensors are used. The architecture of CMOS sensor arrays is similar to that
of standard memories: individual pixels can be randomly addressed and
read out. CMOS sensors use standard CMOS technology for integrated
circuits [Dierickx, 2000]. Due to this, sensors and logic circuits can be
integrated on the same chip. This allows some preprocessing to be done
already on the sensor chip, leading to so-called smart sensors. CMOS sen-
sors require only a single standard supply voltage and interfacing in gen-
eral is easy. Therefore, CMOS-based sensors can be cheap. In contrast,
CCD technology is optimized for optical applications. In CCD technol-
ogy, charges have to be transfered from one pixel to the next until they can
finally be read out at an array boundary. This sequential charge transfer
also gave CCDs their name. Images generated with CCDs can be of higher
quality than those generated using CMOS sensors, since they generate less
noise. However, interfacing is more complex. As a result, CMOS sensors
are appropriate for applications requiring low or medium costs and low or
medium image quality. CCD sensors are more adequate for high quality,



90 EMBEDDED SYSTEM DESIGN

expensive image sensors (such as those found in video cameras and optical
telescopes, for example).

Bio-metrical sensors: Demands for higher security standards as well as
the need to protect mobile and removable equipment have led to an in-
creased interest in authentication. Due to the limitations of password based
security (e.g. stolen and lost passwords), smartcards, bio-metrical sensors
and bio-medical authentication receive significant attention. Bio-medical
authentication tries to identify whether or not a certain person is actually
the person she or he claims to be. Methods for bio-medical authentication
include iris scans, finger print sensors and face recognition. Finger print
sensors are typically fabricated using the same CMOS technology [Weste
et al., 2000] which is used for manufacturing integrated circuits. Possible
applications include notebooks which grant access only if the user’s finger
print is recognized [IBM Inc., 2002]. CCD and CMOS image sensors de-
scribed above are used for face recognition. False accepts as well as false
rejects are an inherent problem of bio-medical authentication. In contrast
to password based authentication, exact matches are not possible.

Artifical eyes: Artificial eye projects have received significant attention.
While some projects attempt to actually affect the eye, others try to provide
vision in an indirect way. The Dobelle Institute is experimenting with a
setup in which a little camera is attached to glasses. This camera is con-
nected to a computer translating these patterns into electrical pulses. These
pulses are then sent directly to the brain, using a direct contact through an
electrode. Currently (2003), the resolution is in the order of 128 by 128 pix-
els, enabling blind persons to drive a car in controlled areas [The Dobelle
Institute, 2003].

Other sensors: Other common sensors include: pressure sensors, proxim-
ity sensors, engine control sensors, Hall effect sensors, and many more.

3.2.2 Sample-and-hold circuits

All known digital computers work in the discrete time domain. This means
they can process discrete sequences of values. Hence, values in the continu-
ous domain have to be converted to the discrete domain. This is the purpose
of sample-and-hold circuits. Fig. 3.4 (left) shows a simple sample-and-hold-
circuit.

In essence, the circuit consists of a clocked transistor and a capacitor. The
transistor operates like a switch. Each time the switch is closed by the clock
signal, the capacitor is charged so that its voltage is practically the same as
the incoming voltage Ve. After opening the switch again, this voltage will



Embedded System Hardware 91

Ve

V x Ve

V x

t

U

Clock

Figure 3.4. Sample-and-hold-circuit

remain essentially unchanged until the switch is closed again. Each of the
values stored on the capacitor can be considered as an element of a discrete
sequence of values Vx, generated from a continuous sequence Ve (see fig. 3.4,
right).

An ideal sample-and-hold circuit would be able to change the voltage at the
capacitor in an arbitrarily short amount of time. This way, the input voltage at a
particular instance in time could be transfered to the capacitor and each element
in the discrete sequence would correspond to the input voltage at a particular
point in time. In practice, however, the transistor has to be kept closed for a
short time window in order to really charge or discharge the capacitor. The
voltage stored on the capacitor will then correspond to a voltage averaged over
that short time window.

3.2.3 A/D-converters

Since we are restricting ourselves to digital computers, we will also have to
work with discrete values representing our input signals. The conversion from
analog to digital values is done by analog-to-digital (A/D) converters. There is
a large range of A/D converters with varying speed/precision characteristics.
In this book, we will present two extreme cases:

Flash A/D converter: This type of A/D converters uses a large number of
comparators. Each comparator has two inputs, denoted as + and -. If the
voltage at input + exceeds that at input -, the output corresponds to a logical
’1’ and it corresponds to a logical ’0’ otherwise1.

In the A/D-converter, all - inputs are connected to a voltage divider. Now, if
input voltage Vx exceeds constant voltage Vref , the comparator at the top of
fig. 3.5 will generate a ’1’. The encoder at the output of the comparators will

1In practice, the case of equal voltages is not relevant, as the actual behavior for very small differences
between the voltages at the two inputs depends on many factors (like temperatures, manufacturing processes
etc.) anyway.



92 EMBEDDED SYSTEM DESIGN

try to identify the most significant ’1’ and will encode the case of Vx > Vref

as the largest output value.

xV

−+

−+

Vref

_
4
Vref

3
R

R

R

R

_
4 ref

_
4 ref
2

1

−+

+−

E
nc

od
in

g

outputs
Digital

Comparators

V

V

Figure 3.5. Flash A/D converter

Now if input voltage Vx is less than Vref , but still larger than 3
4Vref , the

comparator at the top of fig. 3.5 will generate a ’0’, while the next compara-
tor will still signal a ’1’. The encoder will encode this as the second-largest
value.

Similar arguments hold for cases 2
4Vref < Vx < 3

4Vref , 1
4Vref < Vx < 2

4Vref ,
and 0 < Vx < 1

4Vref , which will be encoded as the third-largest, fourth-
largest and smallest value, respectively.

The circuit can convert positive analog input voltages into digital values.
Converting both positive and negative voltages requires some extensions.

The key advantage of the circuit is its speed. It does not need any clock.
The delay between the input and the output is very small and the circuit can
be used easily, for example, for high-speed video applications. The disad-
vantage is its hardware complexity: we need n−1 comparators in order to
distinguish between n values. Imagine using this circuit in generating digi-
tal audio signals for CD recorders. We would need 216 −1 comparators!

Successive approximation: Distinguishing between a large number of dig-
ital values is possible with A/D converters using successive approximation.
The circuit is shown in fig. 3.6.

The key idea of this circuit is to use binary search. Initially, the most sig-
nificant output bit of the successive approximation register is set to ’1’, all
other bits are set to ’0’. This digital value is then converted to an analog



Embedded System Hardware 93

successive approximation register

V x +
−

D/A−conversion

control logic

digital output

Figure 3.6. Circuit using successive approximation

value, corresponding to 0.5× the maximum input voltage2. If Vx exceeds
the generated analog value, the most significant bit is kept at ’1’, otherwise
it is reset to ’0’.

This process is repeated with the next bit. It will remain set to ’1’ if the
input value is either within the second or the fourth quarter of the input
value range. The same procedure is repeated for all the other bits.

The key advantage of the successive approximation technique is its hard-
ware efficiency. In order to distinguish between n digital values, we need
log2(n) bits in the successive approximation register and the D/A converter.
The disadvantage is its speed, since it needs O(log2(n)) steps. These con-
verters can therefore be used for applications, where high precision con-
versions at moderate speeds are required. Examples include audio applica-
tions.

There are several other types of A/D-converters. Techniques for automatically
selecting the most appropriate converter exist [Vogels and Gielen, 2003].

3.3 Communication

Information must be available before it can be processed in an embedded sys-
tem. Information can be communicated through various channels. Channels
are abstract entities characterized by the essential properties of communica-
tion, like maximum information transfer capacity and noise parameters. The
probability of communication errors can be computed using communication
theory techniques. The physical entities enabling communication are called
communication media. Important media classes include: wireless media (ra-
dio frequency media, infrared), optical media (fibers), and wires.

2Fortunately, the conversion from digital to analog values (D/A-conversion) can be implemented very effi-
ciently and can be very fast (see page 121).



94 EMBEDDED SYSTEM DESIGN

There is a huge variety of communication requirements between the various
classes of embedded systems. In general, connecting the different embedded
hardware components is far from trivial. Some common requirements can be
identified.

3.3.1 Requirements

The following list contains some of the requirements that have to be met:

Real-time behavior: This requirement has far-reaching consequences on
the design of the communication system. Some of the low-cost solutions
such as Ethernet fail to meet this requirement.

Efficiency: Connecting different hardware components can be quite expen-
sive. For example, point to point connections in large buildings are almost
impossible. Also, it has been found that separate wires between control
units and external devices in cars significantly add to the cost and the weight
of the car. With separate wires, it is also very difficult to add components.
The need of providing cost efficient designs also affects the way in which
power is made available to external devices. There is frequently the need to
use a central power supply in order to reduce the cost.

Appropriate bandwidth and communication delay: Bandwidth require-
ments of embedded systems may vary. It is important to provide sufficient
bandwidth without making the communication system too expensive.

Support for event-driven communication: Polling-based systems pro-
vide a very predictable real-time behavior. However, their communication
delay may be too large and there should be mechanisms for fast, event-
oriented communication. For example, emergency situations should be
communicated immediately and should not remain unnoticed until some
central controller polls for messages.

Robustness: Embedded systems may be used at extreme temperatures,
close to major sources of electromagnetic radiation etc. Car engines, for
example, can be exposed to temperatures less than -20 and up to +180 de-
grees Celsius (-4 to 356 degrees Fahrenheit). Voltage levels and clock fre-
quencies could be affected due to this large variation in temperatures. Still,
reliable communication must be maintained.

Fault tolerance: Despite all the efforts for robustness, faults may occur.
Embedded systems should be operational even after such faults. Restarts,
like the ones found in personal computers, cannot be accepted. This means
that retries may be required after attempts to communicate failed. A conflict



Embedded System Hardware 95

exists with the first requirement: If we allow retries, then it is difficult to
meet strict real-time requirements.

Maintainability, diagnosability: Obviously, it should be possible to re-
pair embedded systems within reasonable time frames.

Privacy: Ensuring privacy of confidential information may require the use
of encryption.

These communication requirements are a direct consequence of the general
characteristics of embedded systems mentioned in chapter 1. Due to the con-
flicts between some of the requirements, compromises have to be made. For
example, there may be different communication modes: one high-bandwidth
mode guaranteeing real-time behavior but no fault tolerance (this mode is ap-
propriate for multimedia streams) and a second fault-tolerant, low-bandwidth
mode for short messages that must not be dropped.

3.3.2 Electrical robustness

There are some basic techniques for electrical robustness. Digital communi-
cation within chips is normally using so-called single-ended signaling. For
single-ended signaling, signals are propagated on a single wire (see fig. 3.8).

single−ended
output standard input

Ground

Figure 3.7. Single-ended signaling

Such signals are represented by voltages with respect to a common ground
(less frequently by currents). A single ground wire is sufficient for a number
of single-ended signals. Single ended signaling is very much susceptible to
external noise. If external noise (originating from, for example, motors being
switched on) affects the voltage, messages can easily be corrupted. Also, it
is difficult to establish high-quality common ground signals between a large
number of communicating systems, due to the resistance (and inductance) on
the ground wires. This is different for differential signaling. For differential
signaling, each signal needs two wires (see fig. 3.8).

Using differential signaling, binary values are encoded as follows: If the volt-
age on the first wire with respect to the second is positive, then this decoded as
’1’, otherwise values are decoded as ’0’. The two wires will typically be twisted



96 EMBEDDED SYSTEM DESIGN

output

−
+

differential comparator

(local) ground(local) ground

Figure 3.8. Differential signaling

to form so-called twisted pairs. There will be local ground signals, but a non-
zero voltage between the local ground signals does not hurt. Advantages of
differential signaling include:

Noise is added to the two wires in essentially the same way. The comparator
therefore removes almost all the noise.

The logic value depends just on the polarity of the voltage between the
two wires. The magnitude of the voltage can be affected by reflections or
because of the resistance of the wires; this has no effect on the decoded
value.

Signals do not generate any currents on the ground wires. Hence, the qual-
ity of the ground wires becomes less important.

No common ground wire is required. Hence, there is no need to establish a
high quality ground wiring between a large number of communicating part-
ners (this is one of the reasons for using differential signaling for Ethernet).

As a consequence of the properties mentioned so far, differential signaling
allows a larger throughput than single-ended signaling.

However, differential signaling requires two wires for every signal and it also
requires negative voltages (unless it is based on complementary logic signals
using voltages for single-ended signals).

Differential signaling is used, for example, in standard Ethernet-based net-
works.

3.3.3 Guaranteeing real-time behavior

Most computer networks are based on Ethernet standards. For 10 Mbit/s and
100 Mbit/s versions of Ethernet, there can be collisions between various com-
munication partners. This means: several partners are trying to communicate
at about the same time and the signals on the wires are corrupted. Whenever
this occurs, the partners have to stop communications, wait for some time,



Embedded System Hardware 97

and then retry. The waiting time is chosen at random, so that it is not very
likely that the next attempt to communicate results in another collision. This
method is called carrier-sense multiple access/collision detect (CSMA/CD).
For CSMA/CD, communication time can get huge, since conflicts can repeat a
large number of times, even though this is not very likely. Hence, CSMA/CD
cannot be used when real-time constraints have to be met.

This problem can be solved with CSMA/CA (carrier-sense multiple access/
collision avoidance). As the name indicates, collisions are completely avoided,
rather than just detected. For CSMA/CA, priorities are assigned to all part-
ners. Communication media are allocated to communication partners during
arbitration phases, which follow communication phases. During arbitration
phases, partners wanting to communicate indicate this on the media. Partners
finding such indications of higher priority have to immediately remove their
indication.

Provided that there is an upper bound on the time between arbitration phases,
CSMA/CA guarantees a predictable real-time behavior for the partner having
the highest priority. For other partners, real-time behavior can be guaranteed if
the higher priority partners do not continuously request access to the media.

Note that high-speed versions of Ethernet (1 Gbit/s) also avoid collisions.

3.3.4 Examples

Sensor/actuator busses: Sensor/actuator busses provide communication
between simple devices such as switches or lamps and the processing equip-
ment. There may be many such devices and the cost of the wiring needs
special attention for such busses.

Field busses: Field busses are similar to sensor/actuator busses. In general,
they are supposed to support larger data rates than sensor/actuator busses.
Examples of field busses include the following:

– Controller Area Network (CAN): This bus was developed in 1981 by
Bosch and Intel for connecting controllers and peripherals. It is popular
in the automotive industry, since it allows the replacement of a large
amount of wires by a single bus. Due to the size of the automotive
market, CAN components are relatively cheap and are therefore also
used in other areas such as smart homes and fabrication equipment.
CAN has the following properties:

∗ differential signaling with twisted pairs,

∗ arbitration using CSMA/CA,

∗ throughput between 10kbit/s and 1 Mbit/s,



98 EMBEDDED SYSTEM DESIGN

∗ low and high-priority signals,

∗ maximum latency of 134 µs for high priority signals,

∗ coding of signals similar to that of serial (RS-232) lines of PCs,
with modifications for differential signaling.

– The Time-Triggered-Protocol (TTP) [Kopetz and Grunsteidl, 1994]
for fault-tolerant safety systems like airbags in cars.

– FlexRay [FlexRay Consortium, 2002] is a TDMA (Time Division Mul-
tiple Access) protocol which has been developed by the FlexRay con-
sortium (BMW, DaimlerChrysler, General Motors, Ford, Bosch, Mo-
torola and Philips Semiconductors). FlexRay is a combination of a
variant of the TTP and the byteflight [Byteflight Consortium, 2003]
protocol.

– MAP: MAP is a bus designed for car factories.

– EIB: The European Installation Bus (EIB) is a bus designed for smart
homes.

Wireless communication: Wireless communication is becoming more pop-
ular, but communication bandwidth is becoming a scarce resource. As a
result, the frequencies reserved for third generation UMTS mobile phones
have been sold at extremely high prices (at about 500 Euros or dollars per
person living in Germany).

Bluetooth is a standard for connecting devices such as mobile phones and
their headsets.

The wireless version of Ethernet is standardized as IEEE standard 802.11.
It is being used in local area networks (LANs).

DECT is a standard used for wireless phones in Europe.

HomeRF [palowireless, 2003] is a standard for synchronous wireless trans-
mission of speech and multimedia data.

3.4 Processing Units

3.4.1 Overview

For information processing, we will consider ASICs (application-specific inte-
grated circuits) using hardwired multiplexed designs, reconfigurable logic, and
processors. These three technologies are quite different, for example, as far as
their energy efficiency is concerned. Fig. 3.9 (approximating information pro-
vided by H. De Man and Th. Claasen [De Man, 2002]) shows the number of
operations per Watt that can be achieved with a certain hardware technology.



Embedded System Hardware 99

Figure 3.9. Hardware efficiency

Obviously, the number of operations per Watt is increasing as technology ad-
vances to smaller and smaller feature sizes of integrated circuits. However, for
any given technology, the number of operations per Watt is largest for applica-
tion specific hardwired circuits. For reconfigurable logic (see page 115), this
value is about one order of magnitude lower. For programmable processors, it
is about two orders of magnitude lower. On the other hand, processors offer the
largest amount of flexibility, resulting from the flexibility of software. There
is also some flexibility for reconfigurable logic, but it is limited to the size of
applications that can be mapped to such logic. For hardwired designs, there
is no flexibility. This observation also applies for processors: For processors
optimized for the application domain, such as processors optimized for digital
signal processing (DSP processors), power-efficiency values approach those of
reconfigurable logic. For general standard microprocessors, the values for this
figure of merit are the worst.

The energy E for a certain application is closely related to the power P required
per operation, since

E =
Z

Pdt

Hence, reducing the power consumption also decreases the energy consump-
tion, provided that the integral is taken over the same period of time. In some
cases, however, a slightly increased power consumption might lead to a drastic
reduction in the execution time and, hence, might lead to a minimized energy
consumption. So, in some cases a minimized power consumption also corre-
sponds to a minimized energy consumption, but this is not necessarily always
true.



100 EMBEDDED SYSTEM DESIGN

Minimization of power and energy consumption are both important. Power
consumption has an effect on the size of the power supply, the design of the
voltage regulators, the dimensioning of the interconnect, and short term cool-
ing. Minimizing the energy consumption is required especially for mobile
applications, since battery technology is only slowly improving [SEMATECH,
2003], and since the cost of energy may be quite high. Also, a reduced en-
ergy consumption decreases cooling requirements and improves the reliability
(since the lifetime of electronic circuits decreases for high temperatures).

Fig. 3.9 reflects the efficiency/flexibility conflict of currently available hard-
ware technologies: if we want to aim at very power- and energy-efficient de-
signs, we should not use flexible designs based on processors or re-programma-
ble logic and if we go for excellent flexibility, we cannot be power-efficient.
We will consider ASICs first.

3.4.2 Application-Specific Circuits (ASICs)

For high-performance applications and for large markets, application-specific
integrated circuits (ASICs) can be designed. However, the cost of designing
and manufacturing such chips is quite high. For example, the cost of the mask
which is used for transferring geometrical patterns onto the chip can cost about
105 Euros or dollars. Therefore, ASICs are appropriate only if either maximum
energy efficiency is needed and if the market accepts the costs or if a large
number of such systems can be sold.

3.4.3 Processors

The key advantage of processors is their flexibility. With processors, the overall
behavior of embedded systems can be changed by just changing the software
running on those processors. Changes of the behavior may be required in order
to correct design errors, to update the system to a new or changed standard or
in order to add features to the previous system. Because of this, processors
have become very popular. This popularity has also been stressed in the public
press:

At the chip level, embedded chips include micro-controllers and microproces-
sors. Micro-controllers are the true workhorses of the embedded family. They
are the original ’embedded chips’ and include those first employed as con-
trollers in elevators and thermostats [Ryan, 1995].

Embedded processors have to be efficient and they do not need to be instruc-
tion set compatible with commonly used personal computers (PCs). Therefore,
their architectures may be different from those processors found in PCs. Effi-
ciency has a number of different aspects (see page 2) :



Embedded System Hardware 101

Energy-efficiency: Architectures have to be optimized for their energy-
efficiency and we have to make sure that we are not loosing efficiency in
the software generation process. For example, compilers generating 50%
overhead in terms of the number of cycles will take us further away from the
efficiency of ASICs, possibly by even more than 50%, if the supply voltage
and the clock frequency have to be increased in order to meet deadlines.

There is a large amount of techniques available that can make processors
energy efficient and energy efficiency should be considered at various levels
of abstraction, from the design of the instruction set down to the design of
the chip manufacturing process [Burd and Brodersen, 2003]. Gated clock-
ing is an example of such a technique. With gated clocking, parts of the
processor are decoupled from the clock during idle periods. For example,
no clock is applied to the multiplier if no multiplications are executed. Also,
there are attempts, to get rid of the clock for major parts of the processor
altogether. There are two contrasting approaches: globally synchronous,
locally asynchronous processors and globally asynchronous, locally syn-
chronous processors (GALS) [Iyer and Marculescu, 2002].

Two techniques can be applied at a rather high level of abstraction:

– Dynamic power management (DPM): With this approach, processors
have several power saving states in addition to the standard operating
state. Each power saving state has a different power consumption and
a different time for transitions into the operating state. Fig. 3.10 shows
the three states for the StrongArm SA 1100 processor.

run

sleep
90 µs50 mW

400 mW

160µW

10
µs10

µs
90µs160m

s

idle

Figure 3.10. Dynamic power management states of the StrongArm Processor SA 1100

The processor is fully operational in the run state. In the idle state, it
is just monitoring the interrupt inputs. In the sleep state, all on-chip
activity is shutdown. Note the large difference in the power consump-
tion between the sleep state and the other states, and note also the large
delay for transitions from the sleep to the run state.

– Dynamic voltage scaling (DVS): This approach exploits the fact that
the energy consumption of CMOS processors increases quadratically



102 EMBEDDED SYSTEM DESIGN

with the supply voltage Vdd . The power consumption P of CMOS cir-
cuits is given by [Chandrakasan et al., 1992]:

P = α CL V 2
dd f (3.1)

where α is the switching activity, CL is the load capacitance, Vdd is
the supply voltage and f is the clock frequency. The delay of CMOS
circuits can be approximated as [Chandrakasan et al., 1992], [Chan-
drakasan et al., 1995]:

τ = k ·CL · Vdd

(Vdd −Vt)2 (3.2)

where k is a constant, and Vt is the threshold voltage. Vt has an impact
on the transistor input voltage required to switch the transistor on. For
example, for a maximum supply voltage of Vdd,max=3.3 volts, Vt may be
in the order of 0.8 volts. Consequently, the maximum clock frequency
is a function of the supply voltage. However, decreasing the supply
voltage reduces the power quadratically, while the run-time of algo-
rithms is only linearly increased (ignoring the effects of the memory
system). This can be exploited in a technique called dynamic voltage
scaling (DVS). For example, the CrusoeT M processor by Transmeta
provides 32 voltage levels between 1.1 and 1.6 volts, and the clock can
be varied between 200 MHz and 700 MHz in increments of 33 MHz.
Transitions from one voltage/frequency pair to the next takes about
20 ms. Design issues for DVS-capable processors are described in a
paper by Burd and Brodersen [Burd and Brodersen, 2000]. According
to the same paper, potential power savings will exist even for future
technologies with a decreased maximum Vdd , since the threshold volt-
ages will also be decreased (unfortunately, this will lead to increased
leakage currents, increasing the standby power consumption). Two dif-
ferent speed/voltage pairs are provided with the Intel R© SpeedStepT M

technology for the Mobile Pentium R© III.

Code-size efficiency: Minimizing the code size is very important for em-
bedded systems, since hard disc drives are typically not available and since
the capacity of memory is typically also very limited. This is even more
pronounced for systems on a chip (SOCs). For SOCs, the memory and pro-
cessors are implemented on the same chip. In this particular case, memory
is called embedded memory. Embedded memory may be more expensive
to fabricate than separate memory chips, since the fabrication processes for



Embedded System Hardware 103

memories and processors have to be compatible. Nevertheless, a large per-
centage of the total chip area may be consumed by the memory. There are
several techniques for improving the code-size efficiency:

– CISC machines: Standard RISC processors have been designed for
speed, not for code-size efficiency. Earlier Complex Instruction Set
Processors (CISC machines) were actually designed for code-size ef-
ficiency, since they had to be connected to slow memories and caches
were not frequently used. Therefore, “old-fashioned” CISC processors
are finding applications in embedded systems. Motorola’s ColdFire
processors, which are based on the Motorola 68000 family of CISC
processors are an example of this.

– Compression techniques: In order to reduce the amount of silicon
needed for storing instructions as well as in order to reduce the en-
ergy needed for fetching these instructions, instructions are frequently
stored in the memory in compressed form. This reduces both the area
as well as the energy necessary for fetching instructions. Due to the
reduced bandwidth requirements, fetching can also be faster. A (hope-
fully small and fast) decoder is placed between the processor and the
(instruction) memory in order to generate the original instructions on
the fly (see fig. 3.11, right). Instead of using a potentially large mem-
ory of uncompressed instructions, we are storing the instructions in a
compressed format.

ROM

µP

address

ROM

µP

instruction

.

address

instructiondecoder

Figure 3.11. Decompression of compressed instructions

The goals of compression can be summarized as follows:

∗ We would like to save ROM and RAM areas, since these may be
more expensive than the processors themselves.

∗ We would like to use some encoding technique for instructions and
possibly also for data with the following properties:

· There should be little or no run-time penalty for these tech-
niques.



104 EMBEDDED SYSTEM DESIGN

· Decoding should work from a limited context (it is, for exam-
ple, impossible to read the entire program to find the destina-
tion of a branch instruction).

· Word-sizes of the memory, of instructions and addresses have
to be taken into account.

· Branch instructions branching to arbitrary destination addresses
have to be supported.

· Fast encoding is only required if writable data is encoded. Oth-
erwise, fast decoding is sufficient.

There are several variations of this scheme:

∗ For some processors, there is a second instruction set. This sec-
ond instruction set has a narrower instruction format. An example
of this is the ARM processor family. The ARM instruction set is a
32 bit instruction set. The ARM instruction set includes predicated
execution. This means an instruction is executed if and only if a
certain condition is met (see page 113). This condition is encoded
in the first four bits of the instruction format. Most ARM pro-
cessors also provide a second instruction set, with 16 bit wide in-
structions, called THUMB instructions. THUMB instructions are
shorter, since they do not support predication, use shorter and less
register fields and use shorter immediate fields. (see fig. 3.12).

"001" Rd Constant

"1110" "001" "01001"

16−bit Thumb instruction
ADD Rd #constant

source=destination

zero−extension

m
ajor opcode

m
inor opcode

always

"0000"& Constant

instruction
ARM−

’0’&Rd ’0’&Rd

"10"

Figure 3.12. Re-encoding THUMB into ARM instructions

THUMB instructions are dynamically converted into ARM instruc-
tions while programs are running. THUMB instructions can use
only half the registers in arithmetic instructions. Therefore, register-
fields of THUMB instructions are concatenated with a ’0’-bit3. In
the THUMB instruction set, source and destination registers are
identical and the length of constants that can be used, is reduced
by 4 bits. During decoding, pipelining is used to keep the run-time
penalty low.

3Using VHDL-notation (see page 59), concatenation is denoted by an &-sign and constants are enclosed in
quotes in fig. 3.12.



Embedded System Hardware 105

Similar techniques also exist for other processors. The disadvan-
tage of this approach is that the tools (compilers, assemblers, de-
buggers etc.) have to be extended to support a second instruction
set. Therefore, this approach can be quite expensive in terms of
software development cost.

∗ A second approach is the use of dictionaries. With this approach,
each instruction pattern is stored only once. For each value of the
program counter, a look-up table then provides a pointer to the cor-
responding instruction in the instruction table, the dictionary (see
fig. 3.13).

table of used instructions

µP

few entries

<<32 bits

32 bits

pointers to instructions instruction address

.

Figure 3.13. Dictionary approach for instruction compression

This approach relies on the idea that only very few different in-
struction patterns are used. Therefore, only few entries are re-
quired for the the instruction table. Correspondingly, the bit width
of the pointers can be quite small. Many variations of this scheme
exist. Some are called two-level control store [Dasgupta, 1979],
nanoprogramming [Stritter and Gunter, 1979], or procedure ex-
lining [Vahid, 1995].

A comprehensive survey over known compression techniques is avail-
able on the Internet [van de Wiel, 2002].

Run-time efficiency: In order to meet time constraints without having to
use high clock frequencies, architectures can be customized to certain ap-
plication domains, such as digital signal processing (DSP). One can even go
one step further and design application specific instruction set processors
(ASIPs). As an example of domain-specific processors, we will consider
processors for DSP. In digital signal processing, digital filtering is a very
frequent operation. Equation 3.3 describes a digital filter generating an
output sequence y = (y0,y1, ...) from an input sequence x = (x0,x1, ...).



106 EMBEDDED SYSTEM DESIGN

yi =
n−1

∑
j=0

xi−j ∗aj (3.3)

A certain output element yi corresponds to a weighted average over the last
n sequence elements of x and can be computed iteratively using equations
3.4 to 3.6.

yi,j = yi,j−1 + xi−j ∗aj (3.4)

where : yi,−1 = 0 (3.5)

and : yi = yi,n−1 (3.6)

DSPs are designed such that each iteration can be encoded as a single in-
struction. Let us consider an example. Fig. 3.14 shows the internal archi-
tecture of an ADSP 2100 DSP processor.

MFAF
Address−

...

generation
unit (AGU)

A0, A1, A1
registers

Address

D

P

*+,−

+,−

j−i+1
i+1

x

ai

xi,j* aj

yi,j

a

xi−j

MR

AR

AX AY MX MY

Figure 3.14. Internal architecture of the ADSP 2100 processor

The processor has two memories, called D and P. A special address gen-
erating unit (AGU) can be used to provide the pointers for accessing these



Embedded System Hardware 107

memories. There are separate units for additions and multiplications, each
with their own argument registers AX, AY, AF, MX, MY and MF. The multi-
plier is connected to a second adder in order to compute series of multipli-
cations and additions quickly.

For this processor, the update of the partial sum is essentially performed
in a single cycle. For this purpose, the two memories are allocated to hold
the two arrays x and a and address registers are allocated such that relevant
pointers can be easily updated in the AGU. Partial sums yi,j are stored in
MR. The pipelined computation involves registers A1, A2, MX and MY, as
can be seen from the following implementation of the filter.

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j=1; j<=n; j++)

{MR:=MR + MX * MY; MX:=x[A2]; MY:=a[A1];

A1++; A2-- }
A single instruction encodes the loop body, comprising the following oper-
ations:

– reading of two arguments from argument registers MX and MY, multi-
plying them and adding the product to register MR storing values yi,j,

– fetching the next elements of arrays a and x from memories P and D
and storing them in argument registers MX and MY,

– updating pointers to the next arguments, stored in address registers A1
and A2,

– testing for the end of the loop.

This way, each iteration requires just a single instruction. In order to achieve
this, several operations are performed in parallel. For given computational
requirements, this (limited) form of parallelism leads to relatively low clock
frequencies. Furthermore, the registers in this architecture perform differ-
ent functions. They are said to be heterogeneous. Heterogeneous register
files are a common characteristic for DSP processors. In order to avoid
extra cycles for testing for the end of the loop, zero-overhead loop in-
structions are frequently provided in DSP processors. With such instruc-
tions, a single or a small number of instructions can be executed a fixed
number of times. Processors not optimized for DSP would probably need
several instructions per iteration and would therefore require a higher clock
frequency, if available.



108 EMBEDDED SYSTEM DESIGN

3.4.3.1 DSP-Processors

In addition to allowing single instruction realizations of loop bodies for filter-
ing, DSP processors provide a number of other application-domain oriented
features:

Specialized addressing modes: In the filter application described above,
only the last n elements of x need to be available. Ring buffers can be
used for that. These can be implemented easily with modulo addressing. In
modulo addressing, addresses can be incremented and decremented until
the first or last element of the buffer is reached. Additional increments or
decrements will result in addresses pointing to the other end of the buffer.

Separate address generation units: Address generation units (AGUs) are
typically directly connected to the address input of the data memory (see
fig. 3.15).

data
memory

address
register
file A

modify
register
file M

instruction

+/−

1

Figure 3.15. AGU using special address registers

Addresses which are available in address registers can be used in register-
indirect addressing modes. This saves machine instructions, cycles and
energy. In order to increase the usefulness of address registers, instruc-
tion sets typically contain auto-increment and -decrement options for most
instructions using address registers.

Saturating arithmetic: Saturating arithmetic changes the way overflows
and underflows are handled. In standard binary arithmetic, wrap-around is
used for the values returned after an overflow or underflow. Fig. 3.16 shows
an example in which two unsigned four-bit numbers are added. A carry is
generated which cannot be returned in any of the standard registers. The
result register will contain a pattern of all zeros. No result could be further
away from the true result than this one.



Embedded System Hardware 109

0111
+ 1001

Standard wrap-around arithmetic 10000
saturating arithmetic 1111

Figure 3.16. Wrap-around vs. saturating arithmetic for unsigned integers

In saturating arithmetic, we try to return a result which is as close as possi-
ble to the true result. For saturating arithmetic, the largest value is returned
in the case of an overflow and the smallest value is returned in the case of
an underflow. This approach makes sense especially for video and audio
applications: the user will hardly recognize the difference between the true
result value and the largest value that can be represented. Also, it would be
useless to raise exceptions if overflows occur, since it is difficult to handle
exceptions in real-time. Note that we need to know whether we are dealing
with signed or unsigned add instructions in order to return the right value.

Fixed-point arithmetic: Floating-point hardware increases the cost and
power-consumption of processors. Consequently, it has been estimated
that 80 % of the DSP processors do not include floating-point hardware
[Aamodt and Chow, 2000]. However, in addition to supporting integers,
many such processors do support fixed-point numbers. Fixed-point data
types can be specified by a 3-tuple (wl, iwl,sign), where wl is the total
word-length, iwl is the integer word-length (the number of bits left of the
binary point), and sign s ∈ {s,u} denotes whether we are dealing with un-
signed or signed numbers. See also fig. 3.17. Furthermore, there may be
different rounding modes (e.g. truncation) and overflow modes (e.g. satu-
rating and wrap-around arithmetic).

wl

iwl fwl

s

sign binary point

Figure 3.17. Parameters of a fixed-point number system

For fixed-point numbers, the position of the binary point is maintained after
multiplication (some low order bits are truncated or rounded). For fixed-
point processors, this operation is supported by hardware.



110 EMBEDDED SYSTEM DESIGN

Real-time capability: Some of the features of modern processors used
in PCs are designed to improve the average execution time of programs.
In many cases, it is difficult if not impossible to formally verify that they
improve the worst case execution time. In such cases, it may be better not to
implement these features. For example, it is difficult (though not impossible
[Absint, 2002]) to guarantee a certain speedup resulting from the use of
caches. Therefore, many embedded processors do not have caches. Also,
virtual addressing and demand paging are normally not found in embedded
systems.

Multiple memory banks or memories: the usefulness of multiple mem-
ory banks was demonstrated in the ADSP 2100 example: the two memories
D and P allow fetching both arguments at the same time. Several DSP pro-
cessors come with two memory banks.

Heterogenous register files: heterogenous register files were already men-
tioned for the filter application.

Multiply/accumulate instructions: these instructions perform multipli-
cations followed by additions. They were also already used in the filter
application.

3.4.3.2 Multimedia processors

Registers and arithmetic units of many modern architectures are 64 bits wide.
Therefore, two 32 bit data types (“double words”), four 16 bit data types
(“words”) or eight 8 bit data types (“bytes”) can be packed into a single register
(see fig. 3.18).

word 3 word 2 word 1 word 0

64 bits

Figure 3.18. Using 64 bit registers for packed words

Arithmetic units can be designed such that they suppress carry bits at double
word, word or byte boundaries. Multimedia instruction sets exploit this fact by
supporting operations on packed data types. Such instructions are sometimes
called single-instruction, multiple-data (SIMD) instructions, since a single in-
struction encodes operations on several data elements. With bytes packed into
64-bit registers, speed-ups of up to about eight over non-packed data types are
possible. Data types are typically stored in packed form in memory. Unpacking
and packing are avoided if arithmetic operations on packed data types are used.
Furthermore, multimedia instructions can usually be combined with saturating



Embedded System Hardware 111

arithmetic and therefore provide a more efficient form of overflow handling
than standard instructions. Hence, the overall speed-up achieved with multi-
media instructions can be significantly larger than the factor of eight enabled
by operations on packed data types.

3.4.3.3 Very long instruction word (VLIW) processors

Computational demands for embedded systems are increasing, especially when
multimedia applications, advanced coding techniques or cryptography are in-
volved. Performance improvement techniques used in high-performance mi-
croprocessors are not appropriate for embedded systems: driven by the need
for instruction set compatibility, processors found, for example, in PCs spend
a huge amount of resources and energy on automatically finding parallelism in
application programs. Still, their performance is frequently not sufficient. For
embedded systems, we can exploit the fact that instruction set compatibility
with PCs is not required. Therefore, we can use instructions which explicitely
identify operations to be performed in parallel. This is possible with explicit
parallelism instruction set computers (EPICs). With EPICs, detection of
parallelism is moved from the processor to the compiler4. This avoids spend-
ing silicon and energy on the detection of parallelism at runtime. As a special
case, we consider very long instruction word (VLIW) processors. For VLIW
processors, several operations or instructions are encoded in a long instruction
word (sometimes called instruction packet) and are assumed to be executed
in parallel. Each operation/instruction is encoded in a separate field of the in-
struction packet. Each field controls certain hardware units. Four such fields
are used in fig. 3.19, each one controlling one of the hardware units.

floating point
unit

integer
unit

integer
unit

instruction 2instruction 1

unit
memory

instruction 3 instruction 4

instruction packet

Figure 3.19. VLIW architecture (example)

For VLIW architectures, the compiler has to generate instruction packets. This
requires that the compiler is aware of the available hardware units and to sched-
ule their use.

4EPICs are sometimes also used for PCs [Transmeta, 2005, Intel, 2005]. However, legacy problems result
in severe constraints for doing this.



112 EMBEDDED SYSTEM DESIGN

Instruction fields must be present, regardless of whether or not the correspond-
ing functional unit is actually used in a certain instruction cycle. As a result,
the code density of VLIW architectures may be low, if insufficient parallelism
is detected to keep all functional units busy. The problem can be avoided if
more flexibility is added. For example, the Texas Instruments TMS 320C6xx
family of processors implements a variable instruction packet size of up to 256
bits. In each instruction field, one bit is reserved to indicate whether or not the
operation encoded in the next field is still assumed to be executed in parallel
(see fig. 3.20). No instruction bits are wasted for unused functional units.

31 0 31 0 31 0 31 0 31 0 31 0 31 0

1
2
3

A
B
E

C D
F G

0 1 1 0 1 1 0

Cycle Operations

A B C D E F G

Figure 3.20. Instruction packets for TMS 320C6xx

Due to its variable length instruction packets, TMS 320C6xx processors do
not quite correspond to the classical model of VLIW processors. Due to their
explicit description of parallelism, they are EPIC processors, though.

Partitioned Register Files. Implementing register files for VLIW and
EPIC processors is far from trivial. Due to the large number of operations
that can be performed in parallel, a large number of register accesses has to
be provided in parallel. Therefore, a large number of ports is required. How-
ever, the delay, size and energy consumption of register files increases with
their number of ports. Hence, register files with very large numbers of ports
are inefficient. As a consequence, many VLIW/EPIC architectures use parti-
tioned register files. Functional units are then only connected to a subset of
the register files. As an example, fig. 3.21 shows the internal structure of the
TMS 320C6xx processors. These processors have two register files and each
of them is connected to half of the functional units. During each clock cycle,
only a single path from one register file to the functional units connected to the
other register file is available.

Alternative partitionings are considered by Lapinskii et al. [Lapinskii et al.,
2001].

Many DSP processors are actually VLIW processors. As an example, we are
considering the M3-DSP processor [Fettweis et al., 1998]. The M3-DSP pro-



Embedded System Hardware 113

arithm/log.
units

data path A data path B

path to
memory

arithm/log.
units

register file A register file B

Figure 3.21. Partitioned register files for TMS 320C6xx

cessor is a VLIW processors containing (up to) 16 parallel data paths. These
data paths are connected to a group memory, providing the necessary argu-
ments in parallel (see fig. 3.22).

D
at

a−
pa

th
 0

D
at

a−
pa

th
 1

D
at

a−
pa

th
 2

D
at

a−
pa

th
 1

4

D
at

a−
pa

th
 1

5

Interconnection network

.........

256 bit−wide memory

...........

Figure 3.22. M3-DSP (simplified)

Predicated Execution. A potential problem of VLIW and EPIC archi-
tectures is their potentially large delay penalty: This delay penalty might orig-
inate from branch instructions found in some instruction packets. Instruction
packets normally have to pass through pipelines. Each stage of these pipelines
implements only part of the operations to be performed by the instructions ex-
ecuted. The fact that branch instructions exist cannot be detected in the first
stage of the pipeline. When the execution of the branch instruction is finally
completed, additional instructions have already entered the pipeline (see fig.
3.23).



114 EMBEDDED SYSTEM DESIGN

instruction fetch

instruction decode

instruction execute

pipeline
stages

branch

delay slots

register writeback t

Figure 3.23. Branch instruction and delay slots

There are essentially two ways to deal with these additional instructions:

1 They are executed as if no branch had been present. This case is called de-
layed branch. Instruction packet slots that are still executed after a branch
are called branch delay slots. These branch delay slots can be filled with
instructions which would be executed before the branch if there were no
delay slots. However, it is normally difficult to fill all delay slots with use-
ful instructions and some have to be filled with no-operation instructions
(NOPs). The term branch delay penalty denotes the loss of performance
resulting from these NOPs.

2 The pipeline is stalled until instructions from the branch target address have
been fetched. There are no branch delay slots in this case. In this organiza-
tion the branch delay penalty is caused by the stall.

Branch delay penalties can be significant. For example, the TMS 320C6xx
family of processors has up to 40 delay slots. Therefore, efficiency can be im-
proved by avoiding branches, if possible. In order to avoid branches originating
from if-statements, predicated instructions have been introduced. For each
predicated instruction, there is a predicate. This predicate is encoded in a few
bits and evaluated at run-time. If the result is true, the instruction is executed.
Otherwise, it is effectively turned into a NOP. Predication can also be found in
RISC machines such as the ARM processor. Example: ARM instructions, as
introduced on page 104, include a four-bit field. These four bits encode vari-
ous expressions involving the condition code registers. Values stored in these
registers are checked at run-time. They determine whether or not a certain
instruction has an effect.

Predication can be used to implement small if-statements efficiently: the con-
dition is stored in one of the condition registers and if-statement-bodys are
implemented as predicated instructions which depend on this condition. This
way, if-statement bodys can be evaluated in parallel with other operations and
no delay penalty is incurred.



Embedded System Hardware 115

3.4.3.4 Micro-controllers

A large number of the processors in embedded systems are in fact micro-
controllers. Micro-controllers are typically not very complex and can be used
easily. Due to their relevance for designing control systems, we introduce one
of the most frequently used processors: the Intel 8051. This processor has the
following characteristics:

8 bit CPU, optimized for control applications,

large set of operations on Boolean data types,

program address space of 64 k bytes,

separate data address space of 64 k bytes,

4 k bytes of program memory on chip, 128 bytes of data memory on chip,

32 I/O lines, each of which can be addressed individually,

2 counters on the chip,

universal asynchronous receiver/transmitter for serial lines available on the
chip,

clock generation on the chip,

many variations commercially available.

All these characteristics are quite typical for micro-controllers.

3.4.4 Reconfigurable Logic

In many cases, full custom hardware chips (ASICs) are too expensive and
software-based solutions are too slow or too energy consuming. Reconfig-
urable logic provides a solution if algorithms can be efficiently implemented
in custom hardware. It can be almost as fast as special purpose hardware. In
contrast to special purpose hardware, the performed function can be changed
by using configuration data. Due to these properties, reconfigurable logic finds
applications in the following areas:

Fast prototyping: modern ASICs can be very complex and the design
effort can be large and take a long time. It is therefore frequently desirable
to generate a prototype, which can be used for experimenting with a system
which behaves “almost” like the final system. The prototype can be more
costly and larger than the final system. Also, its power consumption can



116 EMBEDDED SYSTEM DESIGN

be larger than the final system, some timing constraints can be relaxed, and
only the essential functions need to be available. Such a system can then be
used for checking the fundamental behavior of the future system.

Low volume applications: If the expected market volume is too small
to justify the development of special purpose ASICs, reconfigurable logic
can be the right hardware technology for applications, which cannot be
implemented in software.

Reconfigurable hardware typically includes random access memory (RAM)
to store configurations during normal operation of the hardware. Such RAM
is normally volatile (the information is stored only while power is applied).
Therefore, the configuration data must be copied into the configuration RAM at
power-up. Persistent storage technology such as read-only memories (ROMs)
and Flash memories will then provide the configuration data.

Field programmable gate arrays (FPGAs) are the most common form of re-
configurable hardware. As the name indicates, such devices are programmable
“in the field” (after fabrication). Furthermore, they consist of arrays of pro-
cessing elements. As an example, fig. 3.24 shows the array structure of Xilinx
Virtex-II arrays (see http://www.xilinx.com).

C
on

fig
ur

ab
le

 L
og

ic

C
on

fig
ur

ab
le

 L
og

ic

Programmble I/Os
............................ ............

I/O BlocksDigital clock manager

CLB CLB CLB CLB CLB CLB

Block RAM Multiplier

Figure 3.24. Floor-plan of Virtex II FPGAs

Currently (in 2003), Virtex II arrays contain up to 112 × 104 configurable
logic blocks (CLBs). These can be connected using a programmable inter-
connect structure. Arrays also contain up to 1108 input/output connections
and special clock processing blocks. In addition, there are up to 168 18 × 18
bit multipliers and 3024 kbits of RAM (Block RAM). Each CLB consists of 4
so-called slices (see fig. 3.25).



Embedded System Hardware 117

X0Y1
slice

X0Y0
slice

slice
X1Y1

slice
X1Y0

sw
itc

h 
m

at
rix

CIN

fast connects
to neighbourghs

COUT

CIN

COUT

Figure 3.25. Virtex II CLB

Each slice contains two 16 bit memories F and G. These memories can be
used as look-up tables (LUT) for implementing all 216 Boolean functions of
4 variables. With the help of multiplexers (MUXF5, MUXFx), several of these
memories can also be combined such that table look-ups for up to 8 variables
are possible. They can also serve as ordinary RAM or as shift registers (SRLs).
Each slice also includes two output registers and some special logic (ORCY,
CY, etc.) for additions (see fig. 3.26).

LUT G

LUT F register
CY

register
CY

SRL 16

SRL 16

ORCY

M
U

X
F

x
M

U
X

F
5

RAM 16

RAM 16

Figure 3.26. Virtex II Slice (simplified)

Configuration data determines the setting of multiplexers in the slices, the
clocking of registers and RAM, the content of RAM components and the con-
nections between CLBs. Typically, this configuration data is generated from
a high-level description of the functionality of the hardware, for example in



118 EMBEDDED SYSTEM DESIGN

VHDL. Ideally, the same description could also be used for generating ASICs
automatically. In practice, some interaction is required.

Integration of reconfigurable computing with processors and software is sim-
plified with the Virtex II Pro series of FPGAs from Xilinx. These FPGAs
contain up to 4 Power-PC processors and faster I/O blocks.

3.5 Memories

Data, programs and FPGA configurations must be stored in some kind of mem-
ory. This must be done in an efficient way. Efficient means run-time, code-size
and energy-efficient. Code-size efficiency requires a good compiler and can
be improved with code compression (see page 103). Memory hierarchies can
be exploited in order to achieve a good run-time and energy efficiency. The
underlying reason is that large memories require more energy per access and
are also slower than small memories.

Fig. 3.27 shows the cycle time and the power as a function of the size of the
memory [Rixner et al., 2000]. The same behavior can be observed for larger
memories.

16 32 64 128

1.1

1.3

1.5

1.7

Cycle time[ns]

file size
Register

0.18µ

12
14

16 32 64 128

2

4
6
8

10

Power[W]

Register
file size

0.18µ

Figure 3.27. Cycle time and power as a function of the memory size

It has been observed that the difference in speeds between processors and mem-
ories is expected to increase (see fig. 3.28).

While the speed of memories is increasing by only a factor of about 1.07 per
year, processor speeds are so far increasing by a factor of 1.5 to 2 per year
[Machanik, 2002]. This means that the gap between processor speeds and
memory speeds is becoming larger.

Therefore, it is important to use smaller and faster memories that act as buffers
between the main memory and the processor. In contrast to PC-like systems,
the architecture of these small memories must guarantee a predictable real-
time performance. A combination of small memories containing frequently
used data and instructions and a larger memory containing the remaining data



Embedded System Hardware 119

2x every 2 years

≥

0 1 2 3 4 5

2

8

1

Speed

years

DRAM (x 1.07 per year)

.

CPU (x
 1.5−2.0 per y

ear)

4

Figure 3.28. Increasing gap between processor and memory speeds

and instructions is generally also more energy efficient than a single, large
memory.

Caches were initially introduced in order to provide good run-time efficiency.
In the context of fig. 3.27 (right) however, it is obvious that caches poten-
tially also improve the energy-efficiency of a memory system. Accesses to
caches are accesses to small memories and therefore may require less energy
per access than large memories. However, for caches it is required that the
hardware checks whether or not the cache has a valid copy of the informa-
tion associated with a certain address. This checking involves checking the
tag fields of caches, containing a subset of the relevant address bits [Hennessy
and Patterson, 1996]. Reading these tags requires additional energy. Also, the
predictability of the real-time performance of caches is frequently low.

Alternatively, small memories can be mapped into the address space (see fig.
3.29).

0

large memory

FFFF..

m
em

or
y 

ad
dr

es
se

s

scratch pad memory

Figure 3.29. Memory map with scratch-pad included

Such memories are called scratch pad memories (SPMs). Frequently used
variables and instructions should be allocated to that address space and no



120 EMBEDDED SYSTEM DESIGN

checking needs to be done in hardware. As a result, the energy per access is
reduced. Fig. 3.30 shows a comparison between the energy required per access
to the scratch-pad (SPM) and the energy required per access to the cache.

1

3

5

7

1024256 4096 16384

scratch pad

4GB address space
1MB address space

set associative
Caches, 2 way

Energy per 64bit access[nJ]

Size

0.5µ SRAM

Figure 3.30. Energy consumption per scratch pad and cache access

For a two-way set associative cache, the two values differ by a factor of about
three. The values in this example were computed using the energy consump-
tion for RAM arrays as estimated by the CACTI cache estimation tool [Wilton
and Jouppi, 1996].

SPMs can improve the memory access times very predictably, if the compiler
is in charge of keeping frequently used variables in the SPM (see page 180).

3.6 Output

Output devices of embedded systems include

displays: Display technology is an area which is extremely important. Ac-
cordingly, a large amount of information [Society for Display Technology,
2003] exists on this technology. Major research and development efforts
lead to new display technology such as organic displays [Gelsen, 2003].
Organic displays are emitting light and can be fabricated with very high
densities. In contrast to LCD displays, they do not need back-light and
polarizing filters. Major changes are therefore expected in these markets.

electro-mechanical devices: these influence the environment through mo-
tors and other electro-mechanical equipment.

Analog as well as digital output devices are used. In the case of analog output
devices, the digital information must first be converted by digital-to-analog
(D/A)-converters.



Embedded System Hardware 121

3.6.1 D/A-converters

D/A-converters are not very complex. Fig. 3.31 shows the schematic of a sim-
ple D/A converter.

Operational
Amplifier

−

+ V

R*2
R*4
R*8

Vref

LSB

x

x

0x

x

1
2
3 R

I

I’

1R

Figure 3.31. D/A-converter

The operational amplifier shown in fig. 3.31 amplifies the voltage difference
between the two inputs by a very large factor (some powers of ten). Due to
resistor R1, resulting output voltages are fed back to input -. Whenever a small
voltage between the two inputs exist, it will be inverted, amplified and fed
back to the inputs, reducing the input voltage. Due to the large amplification,
the differential voltage between the two inputs is reduced to virtually zero.
Since input + is connected to ground, the voltage between input - and ground
is virtually zero and the voltage at input - and ground is said to be virtually
zero. “Virtually” means: zero except for some very small voltage resulting
from a potentially imperfect operational amplifier and practically zero.

The key idea is to first generate a current which is proportional to the value
represented by a bit-vector x and to convert this current into an equivalent
voltage.

According to Kirchhoff’s laws, current I is the sum of the currents through the
resistors. The current through any resistor is zero, if the corresponding element
of bit-vector x is ’0’. If it is ’1’, the current corresponds to the weight of that bit,
since resistor values are chosen accordingly.

I = x3 ∗ Vre f

R
+ x2 ∗ Vre f

2∗R
+ x1 ∗ Vre f

4∗R
+ x0 ∗ Vre f

8∗R

=
Vre f

R
∗

3

∑
i=0

xi ∗2i−3 (3.7)

Also, according to Kirchhoff’s laws and due to the virtual zero at input -, we
have: V + R1 ∗ I′ = 0.



122 EMBEDDED SYSTEM DESIGN

The current into the inputs of the operational amplifier are practically zero, and
the two currents I and I′ are equal: I = I′. Hence:

V + R1 ∗ I = 0 (3.8)

From equations 3.7 and 3.8 we obtain:

−V = Vre f ∗ R1

R
∗

3

∑
i=0

xi ∗2i−3 = Vre f ∗ R1

8∗R
∗nat(x) (3.9)

nat denotes the natural number represented by bit-vector x. Obviously, the
output voltage is proportional to the value represented by x. Positive output
voltages and bit-vectors representing two’s complement numbers require mi-
nor extensions.

An interesting question is this one: suppose that the processors used in the
hardware loop forward values from A/D-converters unchanged to the D/A-
converters. Would it be possible to reconstruct the original analog voltage
from the sensor outputs at the outputs of the D/A-converters? According to
Nyquist’s sampling theorem (see Oppenheim et al. [Oppenheim et al., 1999]),
it is indeed possible, provided that the clock frequency of the sample-and-hold
circuit is at least twice as large as the largest frequency found in the input volt-
age. This does, however, apply only if we have an infinite precision of the
digital values. The limited precision of digital values effectively adds some
noise to the digital signals [Oppenheim et al., 1999], which cannot be com-
pletely removed.

3.6.2 Actuators

There is a huge amount of actuators [Elsevier B.V., 2003a]. Actuators range
from huge ones that are able to move tons of weight to tiny ones with dimen-
sions in the µm area, like the one shown in fig. 3.32.

It is impossible to provide an overview. As an example, we mention only
a special kind of actuators which will become more important in the future:
microsystem technology enables the fabrication of tiny actuators, which can
be put into the human body, for example.

Using such tiny actuators, the amount of drugs fed into the body can be adapted
to the actual need. This allows a much better medication than needle-based
injections. Fig. 3.32 shows a tiny motor manufactured with microsystem tech-
nology. The dimensions are in the µm range. The rotating center is controlled
by electrostatic forces.



Embedded System Hardware 123

Figure 3.32. Microsystem technology based actuator motor (partial view; courtesy E. Ober-
meier, MAT, TU Berlin), c©TU Berlin



Chapter 4

STANDARD SOFTWARE:
EMBEDDED OPERATING SYSTEMS,
MIDDLEWARE, AND SCHEDULING

Not all components of embedded systems need to be designed from scratch.
Instead, there are standard components that can be reused. These components
comprise of knowledge from earlier design efforts and constitute intellectual
property (IP). IP reuse is one key technique in coping with the increasing com-
plexity of designs. Re-using available software components is at the heart of
the platform-based design methodology, which will be briefly presented start-
ing at page 151.

Standard software components that can be reused include: embedded operat-
ing systems (OS), real-time databases, and other forms of middleware. The last
term denotes software providing an intermediate layer between the OS and ap-
plication software (including, for example, libraries for communication). Calls
to standard software components may already have to be included in the spec-
ification. Therefore, information about the application programming interface
(API) of these standard components may already be needed for completing
executable specifications.

Also, there are some standard approaches for scheduling which must be taken
into account and which the designer must be aware of. Particular scheduling
approaches may or may not be supported by a certain operating system. This
constraint must also be taken into account.

Consistent with the design information flow, we will be describing embedded
operating systems, middleware and scheduling in this chapter (see also fig.
4.1).

125



126 EMBEDDED SYSTEM DESIGN

specification

standard software

realizationimplementation: hw/sw codesign
− task concurrency management
− high−level transformations
− design space exploration
− hardware/software partitioning
− compilation, scheduling

...... ...
(from all phases)

validation; evaluation (performance, energy consumption, safety, ..)

(RTOS, ...)

HW−components

software

...

hardwarehardware−design
ap

pl
ic

at
io

n 
kn

ow
le

dg
e

Figure 4.1. Simplified design information flow

4.1 Prediction of execution times

Scheduling of tasks requires some knowledge about the duration of task ex-
ecutions, especially if meeting time constraints has to be guaranteed, as is in
real-time (RT) systems. The worst-case execution time is the basis for most
scheduling algorithms.

Def.: The worst-case execution time (WCET) is an upper bound on the exe-
cution times of tasks.

Computing such a bound is undecidable in the general case. This is obvious
from the fact that it is undecidable whether or not a program terminates. Hence,
the WCET can only be computed for certain programs/tasks. For example, for
programs without recursion and while loops and with constant iteration counts,
the WCET can be computed.

Computing tight upper bounds on the execution time may still be difficult.
Modern processor architectures’ pipelines with their different kinds of hazards
and memory hierarchies with limited predictability of hit rates are a source of
serious overestimations of the WCET. Sometimes, architectural features which
reduce the average execution time but cannot guarantee to reduce the WCET
are completely omitted from the design (see page 110). Computing the WCET
for systems containing caches and pipelines is a research topic (see, for ex-
ample, Healy et al. [Healy et al., 1999] and the web pages of absint [Absint,
2002]). Interrupts and virtual memory (if present) result in more complica-
tions. Accordingly, it is already difficult to compute the WCET for assembly
language programs. Computing tight bounds from a program written in a high-
level language such as C without any knowledge of the generated assembly
code is impossible.



Embedded Operating Systems, Middleware, and Scheduling 127

The WCET may be required for different target technologies. If tasks are
mapped to hardware, the WCET of that hardware needs to be computed. This
may, in turn, require the synthesis of this hardware. Another approach is to
respect timing constraints in hardware synthesis.

For some of the design phases, we might also need information on estimated
average case execution times, in addition to WCETs. Two different approaches
that have been proposed are the following:

Estimated cost and performance values: Quite a number of estimators
have been proposed for this purpose. Examples include the work by Jha
and Dutt [Jha and Dutt, 1993] for hardware, and Jain et al. [Jain et al.,
2001] for software. Generating sufficiently precise estimates requires some
efforts.

Accurate cost and performance values: This is only possible if interfaces
to “software synthesis tools” (compilers) and hardware synthesis tools ex-
ist. This method can be more precise than the previous one, but may be
significantly (and sometimes prohibitively) time consuming.

In order to find good estimates communication must also be considered. Un-
fortunately, it is very hard to predict the communication cost.

4.2 Scheduling in real-time systems

As indicated above, scheduling is one of the key issues in implementing RT-
systems. Scheduling algorithms may be required a number of times during
the design of RT-systems. Very rough calculations may already be required
while fixing the specification. During hardware/software partitioning, some-
what more detailed predictions of execution times may be required. After
compilation, even more detailed knowledge exists about the execution times
and accordingly, more precise schedules can be made. Finally, it may be nec-
essary to decide at run-time which task is to be executed next. Scheduling is
somewhat linked to performance evaluation, mentioned at the bottom of figure
4.1. Like performance evaluation, it cannot be constrained to a single design
step. We include scheduling in this chapter since it is closely linked to the
RTOS, but the reader has to keep in mind that some of the scheduling tech-
nique are independent of the RTOS. In the case of design-time scheduling,
RTOS scheduling may be limited to simple table look-ups for tasks to be exe-
cuted.



128 EMBEDDED SYSTEM DESIGN

4.2.1 Classification of scheduling algorithms

Scheduling algorithms can be classified according to various criteria. Fig. 4.2
shows a possible classification of algorithms (similar schemes are described in
books on the topic [Balarin et al., 1998], [Kwok and Ahmad, 1999], [Stankovic
et al., 1998], [Liu, 2000], [Buttazzo, 2002]).

real−time scheduling

hard deadlines

aperiodicperiodic

preemptive non−preemptive preemptive non−preemptive

static staticdynamic dynamic dynamicstatic static dynamic

soft deadlines
.

Figure 4.2. Classes of scheduling algorithms

Soft and hard deadlines: Scheduling for soft deadlines is frequently based
on extensions to standard operating systems. For example, providing task
and operating system call priorities may be sufficient for systems with soft
deadlines. We will not discuss these systems further in this book. More
work and a detailed analysis is required for hard deadline systems. For
these, we can use dynamic and static schedulers.

Scheduling for periodic and aperiodic tasks

In the following, we will distinguish between periodic, aperiodic and spo-
radic tasks.

Definition: Tasks which must be executed once every p units of time are
called periodic tasks, and p is called their period. Each execution of a
periodic task is called a job.

Definition: Tasks which are not periodic are called aperiodic.

Definition: Aperiodic tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation between the times at
which they request the processor.

Preemptive and non-preemptive scheduling: Non-preemptive schedulers
are based on the assumption that tasks are executed until they are done. As
a result the response time for external events may be quite long if some
tasks have a large execution time. Preemptive schedulers have to be used



Embedded Operating Systems, Middleware, and Scheduling 129

if some tasks have long execution times or if the response time for external
events is required to be short.

Static and dynamic scheduling: Dynamic schedulers take decisions at
run-time. They are quite flexible, but generate overhead at run-time.

Also, they are usually not aware of global contexts such as resource re-
quirements or dependences between tasks. For embedded systems, such
global contexts are typically available at design time and they should be
exploited. Static schedulers take their decisions at design time. They are
based on planning the start times of tasks and generate tables of start times
forwarded to a simple dispatcher. The dispatcher does not take any de-
cisions, but is just in charge of starting tasks at the times indicated in the
table. The dispatcher can be controlled by a timer, causing the dispatcher to
analyze the table. Systems which are totally controlled by a timer are said
to be entirely time triggered (TT systems). Such systems are explained in
detail in the book by Kopetz [Kopetz, 1997]:

In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal con-
trol structure is encoded in a Task-Descriptor List (TDL) that contains
the cyclic schedule for all activities of the node (Figure 4.3). This sched-
ule considers the required precedence and mutual exclusion relationships
among the tasks such that an explicit coordination of the tasks by the op-
erating system at run time is not necessary. Figure 4.3 includes scheduled
task start, task stop and send message (send) activities.

...

... ...
... ...

...

10 start T1 12
17 send M5

stop T1
38 20
47

Dispatcher

send M3

22

Time Action WCET

start T2

Figure 4.3. Task descriptor list in a TT operating system

The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant
....

The main advantage of static scheduling is that it can be easily checked if
timing constraints are met:



130 EMBEDDED SYSTEM DESIGN

For satisfying timing constraints in hard real-time systems, predictability of
the system behavior is the most important concern; pre-run-time scheduling
is often the only practical means of providing predictability in a complex
system (according to Xu and Parnas, as cited by Kopetz).

The main disadvantage is that the response to sporadic events may be quite
poor.

Centralized and distributed scheduling: Multiprocessor scheduling al-
gorithms can either be executed locally on one processor or can be dis-
tributed among a set of processors.

Type and complexity of schedulability test:

In practice, it is very important to know whether or not a schedule exists
for a given set of tasks and constraints.

A set of tasks is said to be schedulable under a given set of constraints, if a
schedule exists for that set of tasks and constraints. For many applications,
schedulability tests are important. Tests which never give wrong results
(called exact tests) are NP-hard in many situations [Garey and Johnson,
1979]. Therefore, sufficient and necessary tests are used instead. For suf-
ficient tests, sufficient conditions for guaranteeing a schedule are checked.
There is a (hopefully small) probability of indicating that no schedule exists
even if there exists one. Necessary tests are based on checking necessary
conditions. They can be used to show that no schedule exists. However,
there may be cases in which no schedule exists and we may still be unable
to prove this.

Mono- and multi-processor scheduling: Simple scheduling algorithms
handle the case of single processors, whereas more complex algorithms
also handle systems comprising multiple processors. For the latter, we
can distinguish between algorithms for homogeneous multi-processor sys-
tems and algorithms for heterogenous multi-processor systems. The latter
are able to handle target-specific execution times and can also be applied
to mixed hardware/software systems, in which some tasks are mapped to
hardware.

Online- and offline scheduling: Online scheduling algorithms schedule
tasks at run-time, based on the information about the tasks arrived so far. In
contrast, offline algorithms schedule tasks, taking a priori knowledge about
arrival times, execution times, and deadlines into account.

Cost function: Different algorithms aim at minimizing different functions.

Def.: Maximum lateness is defined as the difference between the comple-
tion time and the deadline, maximized over all tasks. Maximum lateness is
negative if all tasks complete before their deadline.



Embedded Operating Systems, Middleware, and Scheduling 131

Independent and dependent tasks:

It is possible to distinguish between tasks without any inter-task commu-
nication (in the following called simple, or S-tasks) and other tasks, called
complex tasks. S-tasks can be in one out of two states: ready or running.

The API of a TT-OS supporting S-tasks is quite simple: The application
program interface (API) of an S-task in a TT system consists of three data
structures and two operating system calls. ... The system calls are TERMI-
NATE TASK and ERROR. The TERMINATE TASK system call is executed
whenever the task has reached its termination point. In case of an error
that cannot be handled within the application task, the task terminates its
operation with the ERROR system call [Kopetz, 1997].

4.2.2 Aperiodic scheduling

4.2.2.1 Scheduling with no precedence constraints

Let {Ti} be a set of tasks. Let (see fig. 4.4):

ci be the execution time of Ti,

di be the deadline interval, that is, the time between Ti becoming available
and the time until which Ti has to finish execution.

li be the laxity or slack, defined as

li = di − ci (4.1)

lici

di

t

Availability of Task i

Figure 4.4. Definition of the laxity of a task

If li = 0, then Ti has to be started immediately after it becomes executable.

Let us first consider1 the case of uni-processor systems for which all tasks
arrive at the same time. If all tasks arrive at the same time, preemption is
obviously useless.

1We are using some of the material from the book by Buttazzo [Buttazzo, 2002] for this section. Refer to
this book for additional references.



132 EMBEDDED SYSTEM DESIGN

A very simple scheduling algorithm for this case was found by Jackson in
1955 [Jackson, 1955]. The algorithm is based on Jackson’s rule: Given a
set of n independent tasks, any algorithm that executes the tasks in order of
nondecreasing deadlines is optimal with respect to minimizing the maximum
lateness. The algorithm is called Earliest Due Date (EDD). EDD requires all
tasks to be sorted by their deadlines. If the deadlines are known in advance,
EDD can be implemented as a static scheduling algorithm. Hence, its com-
plexity is O(n log(n)).

Let us consider the case of different arrival times for uni-processor systems
next. Under this scenario, preemption can potentially reduce maximum late-
ness.

The Earliest Deadline First (EDF) algorithm is optimal with respect to min-
imizing the maximum lateness. It is based on the following theorem [Horn,
1974]: Given a set of n independent tasks with arbitrary arrival times, any al-
gorithm that at any instant executes the task with the earliest absolute deadline
among all the ready tasks is optimal with respect to minimizing the maximum
lateness. See Buttazzo [Buttazzo, 2002] for the proof of this property. EDF
requires that, each time a new ready task arrives, it is inserted into a queue
of ready tasks, sorted by their deadlines. Hence, EDF is a dynamic schedul-
ing algorithm. If a newly arrived task is inserted at the head of the queue, the
currently executing task is preempted. If sorted lists are used for the queue,
the complexity of EDF is O(n2). Bucket arrays could be used for reducing the
execution time.

Fig. 4.5 shows a schedule derived with the EDF algorithm. Vertical bars indi-
cate the arrival of tasks.

2 4 6 8 10 12 14 16 18 20 22 t0

T 3

T 2

T 1

Task arrivals
0

4

5

10

3

10

28

29

arrival deadline

T

T
T

3

2
1

duration
33

Figure 4.5. EDF schedule

At time 4, task T2 has an earlier deadline. Therefore it preempts T1. At time
5, task T3 arrives. Due to its later deadline it does not preempt T2.



Embedded Operating Systems, Middleware, and Scheduling 133

Least Laxity (LL), Least Slack Time First (LST), and Minimum Laxity First
(MLF) are three names for another scheduling strategy [Liu, 2000]. According
to LL scheduling, task priorities are a monotonically decreasing function of
the laxity (see equation 4.1; the less laxity, the higher the priority). The laxity
is dynamically changing. LL scheduling is also preemptive. Fig. 4.6 shows an
example of an LL schedule, together with the computations of the laxity.

0

4

5

10

3

10

28

29

arrival deadline

T

T
T

3

2
1

duration
33

l
l
l

(T1)=33−13−6=14
(T2)=28−13−2=13
(T3)=29−13−2=14

(T1)=33−5−6=22
(T2)=28−5−2=21
(T3)=29−5−10=14

l
l

l(T1)=33−4−6=23l
(T2)=28−4−3=21l

l (T3)=29−15−2=12
(T1)=33−15−6=12l

l
l (T3)=29−16−1=12
(T1)=33−16−6=11

T 1

T 2

T 3

2 4 6 8 10 12 14 16 18 20 220 t

Figure 4.6. Least laxity schedule

At time 4, task T1 is preempted, as before. At time 5, T2 is now also preempted,
due to the lower laxity of task T3.

It can be shown (this is left as an exercise in [Liu, 2000]) that LL is also an
optimal scheduling policy for mono-processor systems in this sense that it will
find a schedule if one exists. Due to its dynamic priorities, it cannot be used
with a standard OS providing only fixed priorities. LL scheduling requires pe-
riodic checks of the laxity, and (in contrast to EDF scheduling) the knowledge
of the execution time (and takes it into account).

If preemption is not allowed, optimal schedules may have to leave the pro-
cessor idle at certain times in order to finish tasks with early deadlines arriving
late.

Proof: Let us assume that an optimal non-preemptive scheduler (not having
knowledge about the future) never leaves the processor idle. This scheduler
will then have to schedule the example of fig. 4.7 optimally (it will have to find
a schedule if one exists).

For the example of fig. 4.7 we assume we are given two tasks. Let T1 be a
periodic process with an execution time of 2, a period of 4 and a deadline
interval of 4. Let T2 be a task occasionally becoming available at times 4∗n+1



134 EMBEDDED SYSTEM DESIGN

T1

T2

t2 3 4 5 6 7 8 910

Available Missed deadline Idle

Figure 4.7. Scheduler needs to leave processor idle

and having an execution time and a deadline interval of 1. Let us assume that
the concurrent execution of T1 and T2 is not possible due to some resource
conflict. Under the above assumptions our scheduler has to start the execution
of task T1 at time 0, since it is supposed not to leave any idle time. Since the
scheduler is non-preemptive, it cannot start T2 when it becomes available at
time 1. Hence, T2 misses its deadline. If the scheduler had left the processor
idle (as shown in fig. 4.7 at time 4), a legal schedule would have been found.
Hence, the scheduler is not optimal. This is a contradiction to the assumptions
that optimal schedulers not leaving the processor idle at certain times exist.
q.e.d.

We conclude: In order to avoid missed deadlines the scheduler needs knowl-
edge about the future. If no knowledge about the arrival times is available a
priori, then no online algorithm can decide whether or not to keep the pro-
cessor idle. It has been shown that EDF is still optimal among all scheduling
algorithms not keeping the processor idle at certain times. If arrival times
are known a priori, the scheduling problem becomes NP-hard in general and
branch and bound techniques are typically used for generating schedules.

4.2.2.2 Scheduling with precedence constraints

We start with a task graph reflecting tasks dependences (see fig. 4.8). Task T3
can be executed only after tasks T1 and T2 have completed and sent messages
to T3.

This figure also shows a legal schedule. For static scheduling, this schedule
can be stored in a table, indicating to the dispatcher the times at which tasks
must be started and at which messages must be exchanged.

An optimal algorithm for minimizing the maximum lateness for the case of
simultaneous arrival times was presented by Lawler [Lawler, 1973]. The al-
gorithm is called Latest Deadline First (LDF). LDF is based on a total order
compatible with the partial order described by the task graph. LDF reads the
task graph and, among the tasks with no successors, moves the task with the



Embedded Operating Systems, Middleware, and Scheduling 135

T1 T3

T2

10 20 30 40 50

T2T1 T3

t60 70

M5
M3

Figure 4.8. Precedence graph and schedule

latest deadline into a queue. It then repeats this process for the remaining tasks.
If there is just a global time constraint, LDF essentially performs a topological
sort [Sedgewick, 1988]. At run-time, the tasks are executed in the generated
total order. LDF is non-preemptive and is optimal for mono-processors.

The case of asynchronous arrival times can be handled with a modified EDF
algorithm. The key idea is to transform the problem from a given set of de-
pendent tasks into a set of independent tasks with different timing parameters
[Chetto et al., 1990]. This algorithm is again optimal for uni-processor sys-
tems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic
and Ramamritham [Stankovic and Ramamritham, 1991] can be used.

4.2.3 Periodic scheduling

4.2.3.1 Notation

Next, we will consider the case of periodic tasks. For periodic scheduling, the
best that we can do is to design an algorithm which will always find a schedule
if one exists. A scheduler is defined to be optimal iff it will find a schedule if
one exists.

Let {Ti} be a set of tasks. Each execution of some task Ti is called a job. The
execution time for each job corresponding to one task is assumed to be the
same. Let (see fig. 4.9)

pi be the period of task Ti,

ci be the execution time of Ti,

di be the deadline interval, that is, the time between a job of Ti becoming
available and the time after which the same job Ti has to finish execution.

li be the laxity or slack, defined as



136 EMBEDDED SYSTEM DESIGN

li = di − ci (4.2)

pi

lici

di

Figure 4.9. Notation used for time intervals

If li = 0, then Ti has to be started immediately after it becomes executable.

Let µ denote the accumulated utilization for a set of n processes, that is, the
accumulated execution times of these processes divided by their period:

µ =
n

∑
i=1

ci

pi
(4.3)

Let us assume that the execution times are equal for a number of m proces-
sors. Obviously, equation 4.4 represents a necessary condition for a schedule
to exist:

µ ≤ m (4.4)

4.2.3.2 Independent tasks

Initially, we will restrict ourselves to a description of the case in which tasks
are independent.

Rate monotonic scheduling. Rate monotonic (RM) scheduling [Liu
and Layland, 1973] is probably the most well-known scheduling algorithm for
independent periodic processes. Rate monotonic scheduling is based on the
following assumptions (“RM assumptions”):

1 All tasks that have hard deadlines are periodic.

2 All tasks are independent.

3 di = pi, for all tasks.

4 ci is constant and is known for all tasks.



Embedded Operating Systems, Middleware, and Scheduling 137

5 The time required for context switching is negligible.

6 For a single processor and for n tasks, the following equation holds for the
accumulated utilization µ:

µ =
n

∑
i=1

ci

pi
≤ n(21/n −1) (4.5)

Fig. 4.10 shows the right hand side of equation 4.5.

1
(2    −1)nn

0.2

0.4

0.6

1

0.8

1 3 4 5 6 7 n2 8

0.
72

8

0.
72

4

0.
73

4

0.
74

3

0.
75

7

0.
78

0

0.
82

8

1

Figure 4.10. Right hand side of equation 4.5

The right hand side is about 0.7 for large n:

lim
n→∞

n∗ (21/n −1) = ln(2) (=∼ 0.7) (4.6)

Then, according to the policy for rate monotonic scheduling, the priority of
tasks is a monotonically decreasing function of their period. In other words,
tasks with a short period will get a high priority and tasks with a long period
will be assigned a low priority. RM scheduling is a preemptive scheduling
policy with fixed priorities. It is possible to prove that rate monotonic schedul-
ing is optimal for mono-processor systems. Equation 4.5 requires that some of
the computing power of the processor is not used in order to make sure that all
requests are honored in time.

Fig. 4.11 shows an example of a schedule generated with RM scheduling.

Vertical bars indicate the arrival time of the tasks. Tasks 1 to 3 have a period
of 2, 6 and 6, respectively. Execution times are, 0.5, 2, and 1. Task 1 has
the shortest period and, hence, the highest rate and priority. Each time task 1
becomes available, its jobs preempt the currently active task. Task 2 has the
same period as task 3, and neither of them preempts the other.



138 EMBEDDED SYSTEM DESIGN

0 1 2 3 4 5 6 7 8 9 t

T2

T3

T1

availability of jobs

Figure 4.11. Example of a schedule generated with RM scheduling

RM scheduling has the following important advantages:

RM scheduling is based on static priorities. This simplifies the OS and
opens opportunities for using RM scheduling in a standard operating sys-
tem providing fixed priorities, such as Windows NT (see Ramamritham
[Ramamritham et al., 1998], [Ramamritham, 2002]).

If the above six RM-assumptions (see page 136) are met, all deadlines will
be met (see Buttazzo [Buttazzo, 2002]).

RM scheduling is also the basis for a number of formal proofs of schedulability.

Fig. 4.12 shows a case for which not enough idle time is available to guarantee
schedulability for RM scheduling. One task is has a period of 5, and an exe-
cution time of 3, whereas the second task has a period of 8, and an execution
time of 3. Task T2 is preempted several times.

Figure 4.12. RM schedule does not meet deadline at time 8

For this particular case we have µ = 3
5 + 3

8 = 39
40 , which is 0.975. On the other

hand, 2∗ (2
1
2 − 1) is about 0.828. Hence, schedulability is not guaranteed for

RM scheduling and, in fact, the deadline is missed at time 8. We assume that
the missing computations are not scheduled in the next period.

However, this idle time or spare capacity of the processor is not always re-
quired. It is possible to show that RM scheduling is also optimal, iff instead of
equation (4.5) we have



Embedded Operating Systems, Middleware, and Scheduling 139

µ ≤ 1 (4.7)

provided that the period of all tasks is a multiple of the period of the highest
priority task.

Equations 4.5 or 4.7 provide easy means to check necessary conditions for
schedulability.

Earliest deadline first scheduling. EDF can also be applied to peri-
odic task sets. EDF can be extended to handle the case when deadlines are
different from the periods.

It follows from the optimality of EDF for non-periodic schedules that EDF is
also optimal for periodic schedules. No additional constraints have to be met
to guarantee optimality. This implies that EDF is optimal also for the case
of µ = 1. Accordingly, no deadline is missed if the example of fig. 4.12 is
scheduled with EDF (see fig. 4.13). At time 5, the behavior is different from
that of RM-scheduling: due to the earlier deadline of T2, it is not preempted.

0 6 122 4 8 10 1614 18 20 22 24

T2

T1

t

Figure 4.13. EDF generated schedule for the example of 4.12

Since EDF uses dynamic priorities, it cannot be used with a standard operating
system providing only fixed priorities.

4.2.3.3 Dependent tasks

Scheduling dependent tasks is more difficult than scheduling independent tasks.
The problem of deciding whether or not a schedule exists for a given set of de-
pendent tasks and a given deadline is NP-complete [Garey and Johnson, 1979].
In order to reduce the scheduling effort, different strategies are used:

adding additional resources such that scheduling becomes easier, and

partitioning of scheduling into static and dynamic parts. With this ap-
proach, as many decisions as possible are taken at design time and only
a minimum of decisions is left for run-time.



140 EMBEDDED SYSTEM DESIGN

4.2.3.4 Sporadic events

We could connect sporadic events to interrupts and execute them immediately
if their interrupt priority is the highest in the system. However, quite unpre-
dictable timing behavior would result for all the other tasks. Therefore, special
sporadic task servers are used which execute at regular intervals and check
for ready sporadic tasks. This way, sporadic tasks are essentially turned into
periodic tasks, thereby improving the predictability of the whole system.

4.2.4 Resource access protocols

4.2.4.1 Priority inversion

There are cases in which tasks must be granted exclusive access to resources
such as global shared variables or devices in order to avoid non-deterministic
or otherwise unwanted program behavior. Program sections during which such
exclusive access is required are called critical sections. Operating systems
typically provide primitives for requesting and releasing exclusive access to
resources, also called mutex primitives. Tasks not being granted exclusive
access have to wait until the resource is released. Accordingly, the release
operation has to check for waiting tasks and resume the task of highest priority.
We will call the request operation P(S) and the release operation V(S), where
S corresponds to the particular resource requested. Critical sections should be
short.

For tasks with critical sections, there is a crucial effect called priority inver-
sion. An example of priority inversion is shown in fig. 4.15. We assume that
the priority of task T1 is higher than that of task T2.

t1 t2 t3 4tt0
t

normal execution critical section

V(S)P(S) blocked

1T

P(S) V(S)
2T

1T

Figure 4.14. Priority inversion for two tasks

At time t0, task T2 enters a critical section after requesting exclusive access
to some resource via a operation P. At time t1, task T1 becomes ready and
preempts T2. At time t2, T1 fails getting exclusive access to the resource in
use by T2 and becomes blocked. Task T2 resumes and after some time releases



Embedded Operating Systems, Middleware, and Scheduling 141

the resource. The release operation checks for pending tasks of higher priority
and preempts T2. During the time T1 has been blocked, a lower priority task
has effectively blocked a higher priority task. This effect is called priority
inversion.

In the general case, priority inversion exists if some lower priority task is ef-
fectively preventing a higher priority task from executing due to the exclusive
use of some resource. The necessity of providing exclusive access to some
resources is the main reason for the priority inversion effect.

In the particular case of figure 4.14, the duration of the blocking cannot exceed
the length of the critical section of T2. Unfortunately, there is no such upper
bound in the general case. This can be seen from fig. 4.15.

T1

T2

T3
T2 blocks T1

V(S)P(S)

normal execution critical section

P(S) [sleep] resume

Figure 4.15. Priority inversion with potentially large delay

We assume that tasks T1, T2 and T3 are given. T1 has the highest priority, T2
has a medium priority and T3 has the lowest priority. Furthermore, we assume
that T1 and T3 require exclusive use of some resource via operation P(S). Now,
let T3 be in its critical section when it its preempted by T2. When T1 preempts
T2 and tries to use the same resource that T3 is having exclusive access of, it
blocks and lets T2 continue. As long as T2 is continuing, T3 cannot release the
resource. Hence, T2 is effectively blocking T1 even though the priority of T1
is higher than that of T2. In this example, priority inversion continues as long
as T2 executes. Hence, the duration of the priority inversion situation is not
bounded by the length of any critical section.

One of the most prominent cases of priority inversion happened in the Mars
Pathfinder, where an exclusive use of its a shared memory area led to priority
inversion on Mars [Jones, 1997].

4.2.4.2 Priority inheritance

One way of dealing with priority inversion is to use the priority inheritance
protocol. This protocol works as follows:



142 EMBEDDED SYSTEM DESIGN

Tasks are scheduled according to their active priorities. Tasks with the same
priorities are scheduled on a first-come, first-served basis.

When a task T1 executes P(S) and exclusive access is already granted to
some other task T2, then T1 will become blocked. If the priority of T2 is
lower than that of T1, T2 inherits the priority of T1. Hence, T2 resumes
execution. In general, tasks inherit the highest priority of tasks blocked by
it.

When a task T2 executes V(S), its priority is decreased to the highest prior-
ity of the tasks blocked by it. If no other task is blocked by T2, its priority
is reset to the original value. Furthermore, the highest priority task so far
blocked on S is resumed.

Priority inheritance is transitive: if T1 blocks T0 and T2 blocks T1, then T2
inherits the priority of T0.

In the example of fig. 4.15, T3 would inherit the priority of T1 when T1 exe-
cutes P(S). This would avoid the problem mentioned since T2 could not pre-
empt T3 (see fig. 4.16).

T1

T2

T3

normal execution critical section

V(S)P(S)

V(S)
P(S) [sleep] resumed

Figure 4.16. Priority inheritance for the example of fig. 4.15

Priority inheritance is also used by ADA: during a rendez-vous, the priority of
both tasks is set to their maximum.

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks
operating system used in the pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to “on”. When the
software was shipped, it was set to “off”. The problem on Mars was corrected
by using the debugging facilities of VxWorks to change the flag to “on”, while
the Pathfinder was already on the Mars [Jones, 1997].

While priority inheritance solves some problems, it does not solve others.
There may be a large number of tasks having a high priority and there may



Embedded Operating Systems, Middleware, and Scheduling 143

even be deadlocks. These problems are avoided with the more complex prior-
ity ceiling protocol [Sha et al., 1990].

4.3 Embedded operating systems

4.3.1 General requirements

Except for very simple systems, scheduling, task switching, and I/O require
the support of an operating system suited for embedded applications. Task
switch (or task “dispatch” algorithms multiplex processors such that each task
seems to have its own (virtual) processor. The following are essential features
of real-time and embedded operating systems:

Due to the large variety of embedded systems, there is also a large variety of
requirements for the functionality of embedded OSs. Due to efficiency re-
quirements, it is not possible to work with OSs which provide the union of
all functionalities. Hence, we need operating systems which can be flexibly
tailored towards the application at hand. Configurability is therefore one
of the main characteristics of embedded OSs. Configurability in its simplest
form might just remove unused functions (to some extent, this can be done
by a linker). In a more sophisticated form, conditional compilation can
be employed (taking advantage of #if and #ifdef preprocessor commands).
Dynamic data might be replaced by static data. Advanced compile-time
evaluation and advanced compiler optimizations may also be useful in this
context. Object-orientation could lead to a derivation of proper subclasses.
Verification is a potential problem of systems with a large number of de-
rived tailored OSs. Each and every derived OS must be tested thoroughly.
Takada mentions this as a potential problem for eCos (an open source RTOS
from Red Hat), comprising 100 to 200 configuration points [Takada, 2001].

There is a large variety of peripheral devices employed in embedded sys-
tems. Many embedded systems do not have a hard disc, a keyboard, a
screen or a mouse. There is effectively no device that needs to be sup-
ported by all versions of the OS, except maybe the system timer. Hence,
it makes sense to handle relatively slow devices such as discs and networks
by using special tasks instead of integrating their drivers into the kernel of
the OS.

Protection mechanisms are not always necessary, since embedded sys-
tems are typically designed for a single purpose and untested programs are
hardly ever loaded. After the software has been tested, it can be assumed
to be reliable (protection mechanisms may nevertheless still be needed for
safety and security reasons). In most cases, embedded systems do not have



144 EMBEDDED SYSTEM DESIGN

protection mechanisms. This also applies to input/output. In contrast to
desktop applications, there is no desire to implement I/O instructions as
privileged instructions and tasks can be allowed to do their own I/O. This
matches nicely with the previous item and reduces the overhead of I/O op-
erations.

Example: Let switch correspond to the (memory-mapped) I/O address of
some switch which needs to be checked by some program. We can simply
use a

load register,switch

instruction to query the switch. There is no need to go through an OS
service call, which would create a lot of overhead for saving and restoring
the task context (registers etc.).

Interrupts can be employed by any process. For desktop applications,
it would be a serious source of unreliability to allow any process to use
interrupts directly. Since embedded programs can be considered to be thor-
oughly tested, since protection is not necessary and since efficient control
over a variety of devices is required, it is possible to let interrupts directly
start or stop tasks (e.g. by storing the tasks start address in the interrupt vec-
tor address table). This is substantially more efficient than going through
OS services for the same purpose. However, composability may suffer from
this: if a specific task is directly connected to some interrupt, then it may be
difficult to add another task which also needs to be started by some event.

Many embedded systems are real-time (RT) systems and, hence, the OS
used in this systems must be a real-time operating system (RTOS).

4.3.2 Real-time operating systems

Def.: (A) real-time operating system is an operating system that supports the
construction of real-time systems [Takada, 2001].

What does it take to make an OS an RTOS? The following are the three key
requirements2:

The timing behavior of the OS must be predictable. For each service
of the OS, an upper bound on the execution time must be guaranteed. In
practice, there are various levels of predictability. For example, there may
be sets of OS service calls for which an upper bound is known and for

2This section includes information from Hiroaki Takada’s tutorial [Takada, 2001] on real-time operating
systems at the Asian South-Pacific Design Automation Conference (ASP-DAC) in 2001 for our description
of RTOSs.



Embedded Operating Systems, Middleware, and Scheduling 145

which there is not a significant variation of the execution time. Calls like
“get me the time of the day” may fall into this class. For other calls, there
may be a huge variation. Calls like “get me 4MB of free memory” may
fall into this second class. In particular, the scheduling policy of RTOSs
must be deterministic (standard Java fails badly in this respect, as no order
of execution for a number of executable “threads” is specified). As another
special case we mention garbage collection. In the Java context, various
attempts have been made to provide predictable garbage collection (see
page 58).

There may also be times during which interrupts have to be disabled to
avoid interference between tasks (this is a very simple way of guaranteeing
mutual exclusion on a mono-processor system). The periods during which
interrupts are disabled have to be quite short in order to avoid unpredictable
delays in the processing of critical events.

For RTOSs implementing file systems, it may be necessary to implement
contiguous files (files stored in contiguous disc areas) to avoid unpredictable
disc head movements.

The OS must manage the timing and scheduling of tasks. Scheduling
can be defined as mapping from the set of tasks to intervals of execution
time, including the mapping to start times as a special case. Also, the OS
possibly has to be aware of task deadlines so that the OS can apply appropri-
ate scheduling techniques (there are, however, cases in which scheduling is
completely done off-line and the OS only needs to provide services to start
tasks at specific times or priority levels).

The OS must provide precise time services with a high resolution. Time
services are required, for example, in order to distinguish between original
and subsequent errors. For example, they can help to identify the power
plant(s) that are responsible for a blackout such as the one on America’s
East Coast in 2003. Time services and global synchronization of clocks are
described in detail in the book by Kopetz [Kopetz, 1997].

The OS must be fast. In addition to being predictable, the OS must be
capable of supporting applications with deadlines that are fractions of a
second.

Each RTOS includes a so-called real-time OS kernel. This kernel manages the
resources which are found in every system, including the processor, the mem-
ory and the system timer. Protection mechanisms (except for dependability,
safety or privacy reasons) need not be present.

There are two types of RTOSs:



146 EMBEDDED SYSTEM DESIGN

General purpose OS type RTOSs: for these operating systems, some
drivers, such as disk, network drivers, or audio drivers are implicitly as-
sumed to be present, and they are embedded into the kernel. The appli-
cation software and middleware are implemented on top of the application
programming interface, which is standard for all applications (see fig. 4.17).

device driver

real−time kernel

middleware

application software

middleware

device driver

middleware

device driver

operating system

middleware

application software

device driver

Figure 4.17. Real-time kernel (left) vs. general purpose OS (right)

Real-time kernel type of RTOSs: since there is hardly any standard de-
vice in embedded systems, device drivers are not deeply embedded into
the kernel, but are implemented on top of the kernel. Only the necessary
drivers are included. Applications and middleware may be implemented on
top of appropriate drivers, not on top of a standardized API of the OS.

Major functions in the kernel include the task management, inter-task synchro-
nization and communication, time management and memory management.

While some RTOSs are designed for general embedded applications, others
focus on a specific area. For example, OSEK/VDX OS focuses on automotive
control. Due to this focus, it is a rather compact OS.

Similarly, while some RTOSs provide a standard API, others come with their
own, proprietary API. For example, some RTOSs are compliant with the POSIX
RT-extension [Harbour, 1993] for UNIX, with OSEK/VDX OS, or with the
ITRON specification developed in Japan. Many RT-kernel type of OSs have
their own API. ITRON, mentioned in this context, is a mature RTOS which
employs link-time configuration.

Currently available RTOSs can further be classified into the following three
categories [Gupta, 1998]:

Fast proprietary kernels: According to Gupta, for complex systems, these
kernels are inadequate, because they are designed to be fast, rather than
to be predictable in every respect. Examples include QNX, PDOS, VCOS,
VTRX32, VxWORKS.

Real-time extensions to standard OSs: In order to take advantage of com-
fortable main stream operating systems, hybrid systems have been devel-
oped. For such systems, there is an RT-kernel running all RT-tasks. The



Embedded Operating Systems, Middleware, and Scheduling 147

standard operating system is then executed as one of the tasks (see fig.
4.18).

RT−task 1 RT−task 2

device driverdevice driver

real−time kernel

Standard−OS

non−RT task 1 non−RT task 2

Figure 4.18. Hybrid OSs

This approach has some advantages: the system can be equipped with a
standard OS API, can have graphical user interfaces (GUIs), file systems
etc. and enhancements to standard OSs become quickly available in the
embedded world as well. Also, problems with the standard OS and its non-
RT tasks do not negatively affect the RT-tasks. The standard OS can even
crash and this would not affect the RT-tasks. On the down side, and this is
already visible from fig. 4.18, there may be problems with device drivers,
since the standard OS will have its own device drivers. In order to avoid
interference between the drivers for RT-tasks and those for the other tasks,
it may be necessary to partition devices into those handled by RT-tasks and
those handled by the standard OS. Also, RT-tasks cannot use the services of
the standard OS. So all the nice features like file-system access and GUIs
are normally not available to those tasks, even though some attempts may
be made to bridge the gap between the two types of tasks without loosing
the RT-capability. RT-Linux is an example of such hybrid OSs.

According to Gupta, trying to use a version of a standard OS is not the
correct approach because too many basic and inappropriate underlying
assumptions still exist such as optimizing for the average case (rather than
the worst case), ... ignoring most if not all semantic information, and in-
dependent CPU scheduling and resource allocation. Indeed, dependences
between tasks are not very frequent for most applications of standard oper-
ating systems and are therefore frequently ignored by such systems. This
situation is different for embedded systems, since dependences between
tasks are quite common and they should be taken into account. Unfortu-
nately, this is not always done if extensions to standard operating systems
are used. Furthermore, resource allocation and scheduling are rarely com-
bined for standard operating systems. However, integrated resource alloca-
tion and scheduling algorithms are required in order to guarantee meeting
timing constraints.

There is a number of research systems which aim at avoiding the above
limitations. These include Melody [Wedde and Lind, 1998], and (accord-



148 EMBEDDED SYSTEM DESIGN

ing to Gupta [Gupta, 1998]) MARS, Spring, MARUTI, Arts, Hartos, and
DARK.

Takada [Takada, 2001] mentions low overhead memory protection, temporal
protection of computing resources (how to avoid tasks from computing for
longer periods of time than initially planned), RTOSs for on-chip multipro-
cessors (especially for heterogenous multiprocessors and multi-threaded pro-
cessors) and support for continuous media and quality of service control as
research issues.

Due to the potential growth in the embedded system market, vendors of stan-
dard OSs are actively trying to sell variations of their products (like Embedded
Windows XP and Windows CE [Microsoft Inc., 2003]) and obtain market
shares from traditional vendors such as Wind River Systems [Wind River Sys-
tems, 2003].

4.4 Middleware

4.4.1 Real-time data bases

Data bases provide a convenient and structured way of storing and accessing
information. Accordingly, data bases provide an API for writing and reading
information. A sequence of read and write operations is called a transaction.
Transactions may have to aborted for a variety of reasons: there could be hard-
ware problems, deadlocks, problems with concurrency control etc. A frequent
requirement is that transactions do not affect the state of the data base unless
they have been executed to their very end. Hence, changes caused by transac-
tions are normally not considered to be final until they have been committed.
Most transactions are required to be atomic. This means that the end result
(the new state of the data base) generated by some transaction must be the
same as if the transaction has been fully completed or not at all. Also, the
data base state resulting from a transaction must be consistent. Consistency
requirements include, for example, that the values from read requests belong-
ing to the same transaction are consistent (do not describe a state which never
existed in the environment modeled by the data base). Furthermore, to some
other user of the data base, no intermediate state resulting from a partial exe-
cution of a transaction must be visible (the transactions must be performed as
if they were executed in isolation). Finally, the results of transactions should
be persistent. This property is also called durability of the transactions. To-
gether, the four properties printed in bold are known as ACID properties (see
the book by Krishna and Shin [Krishna and Shin, 1997], chapter 5).

For some data bases, there are soft real-time constraints. For example, time-
constraints for airline reservation systems are soft. In contrast, there may also



Embedded Operating Systems, Middleware, and Scheduling 149

be hard constraints. For example, automatic recognition of pedestrians in auto-
mobile applications and target recognition in military applications must meet
hard real-time constraints. The above requirements make it very difficult to
guarantee hard real-time constraints. For example, transactions may be aborted
various times before they are finally committed. For all data bases relying on
demand paging and on hard discs, the access times to discs are hardly pre-
dictable. Possible solutions include main memory data bases. Embedded data
bases are sometimes small enough to make this approach feasible. In other
cases, it may be possible to relax the ACID requirements. For further informa-
tion, see the book by Krishna and Shin.

4.4.2 Access to remote objects

There are special software packages which facilitate the access to remote ser-
vices. CORBA R©(Common Object Request Broker Architecture) [Object Man-
agement Group (OMG), 2003] is one example of this. With CORBA, remote
objects can be accessed through standardized interfaces. Clients are commu-
nicating with local stubs, imitating the access to the remote objects. These
clients send information about the object to be accessed as well as parameters
(if any) to the Object Request Broker ORB (see fig. 4.19). The ORB then de-
termines the location of the object to be accessed and sends information via
a standardized protocol, e.g. the IIOP protocol to where the object is located.
This information is then forward to the object via a skeleton and the informa-
tion requested from the object (if any) is returned using the ORB again.

IIOP−protocol
ORB2

Skeleton
ObjectClient

ORB1

Stub

Figure 4.19. Access to remote objects using CORBA

Standard CORBA does not provide the predictability required for real-time
applications. Therefore, a separate real-time CORBA (RT-CORBA) standard
has been defined [Object Management Group (OMG), 2002]. A very essential
feature of RT-CORBA is to provide end-to-end predictability of timeliness in a
fixed priority system. This involves respecting thread priorities between client
and server for resolving resource contention, and bounding the latencies of op-
eration invocations. One particular problem of real-time systems is that thread
priorities might not be respected when threads obtain mutually exclusive ac-
cess to resources. This so-called priority inversion problem (see page 140) has
to be addressed in RT-CORBA. RT-CORBA includes provisions for bounding



150 EMBEDDED SYSTEM DESIGN

the time during which such priority inversion can happen.
includes facilities for thread priority management. This priority is independent
of the priorities of the underlying operating system, even though it is compati-
ble with the real-time extensions of the POSIX standard for operating systems
[Harbour, 1993]. The thread priority of clients can be propagated to the server
side. Priority management is also available for primitives providing mutually
exclusive access to resources. The priority inheritance protocol (described on
page 141) must be available in implementations of RT-CORBA. Pools of pre-
existing threads avoid the overhead of thread creation and thread-construction.

As an alternative to CORBA, the message passing interface (MPI) can be used
for communicating between different processors. In order to apply the MPI-
style of communication to real-time systems, a real-time version of MPI, called
MPI/RT has been defined [MPI/RT forum, 2001]. MPI-RT does not cover

nation. MPI/RT is conceived as a potential layer between the operating system
and standard (non real-time) MPI.

RT-CORBA also

some of the issues covered in RT-CORBA, such as thread creation and termi-



Chapter 5

IMPLEMENTING EMBEDDED SYSTEMS:
HARDWARE/SOFTWARE CODESIGN

Once the specification has been completed, design activities can start. This is
consistent with the simplified design information flow (see fig. 5.1).

specification

standard software

realization

...... ...
(from all phases)

validation; evaluation (performance, energy consumption, safety, ..)

(RTOS, ...)

HW−components

software

...

hardwarehardware−design

ap
pl

ic
at

io
n 

kn
ow

le
dg

e

implementation: hw/sw codesign
− task concurrency management
− high−level transformations
− design space exploration
− hardware/software partitioning
− compilation, scheduling

Figure 5.1. Simplified design information flow

It is a characteristic of embedded systems that both hardware and software
have to be considered during their design. Therefore, this type of design is
also called hardware/software codesign. The overall goal is to find the right
combination of hardware and software resulting in the most efficient product
meeting the specification. Therefore, embedded systems cannot be designed
by a synthesis process taking only the behavioral specification into account.
Rather, available components have to be accounted for. There are also other
reasons for this constraint: in order to cope with the increasing complexity of
embedded systems and their stringent time-to-market requirements, reuse is
essentially unavoidable. This led to the term platform-based design:

151



152 EMBEDDED SYSTEM DESIGN

A platform is a family of architectures satisfying a set of constraints imposed
to allow the reuse of hardware and software components. However, a hard-
ware platform is not enough. Quick, reliable, derivative design requires using
a platform application programming interface (API) to extend the platform to-
ward application software. In general, a platform is an abstraction layer that
covers many possible refinements to a lower level. Platform-based design is
a meet-in-the-middle approach: In the top-down design flow, designers map
an instance of the upper platform to an instance of the lower, and propagate
design constraints [Sangiovanni-Vincentelli, 2002].

The mapping is an iterative process in which performance evaluation tools
guide the next assignment. Fig. 5.2 [Herrera et al., 2003a] visualizes this ap-
proach.

System behavior System architecture

Mapping

Performance simulation

Implementation

Software Hardware

Refine

Figure 5.2. Platform-based design

Design activities have to take the existence of available platforms into account.
There is actually a large number of design activities, only some of which can be
presented here and references to available platforms will not always be explicit.
Design activities that are presented include:

Task level concurrency management: This activity is concerned with
identifying the tasks that should be present in the final embedded system.
These tasks may be different from those that were included in the speci-
fication, since there are good reasons for merging and splitting tasks (see
section 5.5.1).

High-level transformations: It has been found that there are many op-
timizing high-level transformations that can be applied to specifications.
For example, loops can be interchanged so that accesses to array compo-
nents become more local. Also, floating point arithmetic can frequently



Implementing embedded systems:hardware/software codesign 153

be replaced by fixed-point arithmetic without any significant loss in qual-
ity. These high-level transformations are typically beyond the capabilities
of available compilers and have to be applied before any compilation is
started.

Hardware/software partitioning: We assume that in the general case,
some function has to be performed by special hardware due to increas-
ing computational requirements [De Man, 2002]. Hardware/software par-
titioning is the activity in charge of mapping operations to either hardware
or software.

Compilation: Those parts of the specification that are mapped to software
have to be compiled. Efficiency of the generated code is improved if the
compiler exploits knowledge about the underlying processor (and possi-
bly the memory) hardware. Therefore, there are special “hardware-aware”
compilers for embedded systems.

Scheduling: Scheduling (mapping of operations to start times) has to be
performed in several contexts. Schedules have to be approximated during
hardware/software partitioning, during task level concurrency management
and possibly also during compilation. Precise schedules can be obtained
for the final code.

Design space exploration: In most of the cases, several designs meet the
specifications. Design space exploration is the process of analyzing the set
of possible designs. Among those designs that meet the specifications, one
design has to be selected.

Particular design flows may use these activities in different orders. There is no
standard set of design activities. We will briefly mention some orders that are
being used at the end of this chapter (see page 190) in order to provide a some
ideas on how actual design flows can look like.

5.1 Task level concurrency management

As mentioned on page 52, the task graphs’ granularity is one of their most
important properties. Even for hierarchical task graphs, it may be useful to
change the granularity of the nodes. The partitioning of specifications into
tasks or processes does not necessarily aim at the maximum implementation
efficiency. Rather, during the specification phase, a clear separation of con-
cerns and a clean software model are more important than caring about the
implementation too much. Hence, there will not necessarily be a one-to-one
correspondence between the tasks in the specification and those in the imple-



154 EMBEDDED SYSTEM DESIGN

mentation. This means that a regrouping of tasks may be advisable. Such a
regrouping is indeed feasible by merging and splitting of tasks.

Merging of task graphs can be performed whenever some task Ti is the im-
mediate predecessor of some other task Tj and if Tj does not have any other
immediate predecessor (see fig. 5.3 with Ti = T3 and Tj = T4). This trans-
formation can lead to a reduced overhead of context-switches if the node is
implemented in software, and it can lead to a larger potential for optimizations
in general.

3 4

1

2

15

2

5

3

T

T

T

T

T T

T

T

T*

Figure 5.3. Merging of tasks

On the other hand, splitting of tasks may be advantageous for the following
reasons:

Tasks may be holding resources (like large amounts of memory) while they
are waiting for some input. In order to maximize the use of these resources, it
may be best to constrain the use of these resources to the time intervals during
which these resources are actually needed. In fig. 5.4, we are assuming that
task T2 requires some input somewhere in its code. In the initial version, the
execution of task T2 can only start if this input is available. We can split the
node into T∗

2 and T∗∗
2 such that the input is only required for the execution of

T∗∗
2 . Now, T∗

2 can start earlier, resulting in more scheduling freedom. This
improved scheduling freedom might improve resource utilization and could
even enable meeting some deadline. It may also have an impact on the memory
required for data storage, since T∗

2 could release some of its memory before
terminating and this memory could be used by other tasks while T∗∗

2 is waiting
for input.

3 43 4

2

1 5 1

2 2

5T

T

T T

T T

T

T

T

T* T**

Figure 5.4. Splitting of tasks



Implementing embedded systems:hardware/software codesign 155

One might argue that the tasks should release resources like large amounts
of memory anyway before waiting for input. However, the readability of the
original specification could suffer from caring about implementation issues in
an early design phase.

Quite complex transformations of the specifications can be performed with
a Petri-net based technique described by Cortadella et al. [Cortadella et al.,
2000]. Their technique starts with a specification consisting of a set of tasks
described in a language called FlowC. FlowC extends C with process headers
and intertask communication specified in the form of READ- and WRITE-
function calls. Fig. 5.5 shows an input specification using FlowC.

float sample,sum; int i;

}}

PROCESS GetData

sum=0;
for (i=0; i<N; i++){
READ(IN,sample,1)
sum+=sample;
WRITE(DATA,sample,1)
}

WRITE(DATA,sum/N,1);

IN

DATA

OUTCOEF

while (1)  {
float c,d; int j;

}}}

PROCESS Filter(InPort DATA, 

case DATA: READ (DATA,d,1);
if (j==N){j=0; d=d*c; WRITE(OUT,d,1);
} else j++;
break;

case COEF: READ(COEF,c,1); break;

while(1) {

(InPort IN, OutPort DATA){  InPort COEF, OutPort OUT){

c=1; j=0;

SELECT(DATA,COEF){

Figure 5.5. System specification

The example uses input ports IN and COEF, as well as output port OUT. Point-
to-point interprocess communication between processes is realized through a
uni-directional buffered channel DATA. Task GetData reads data from the en-
vironment and sends it to channel DATA. Each time N samples have been sent,
their average value is also sent via the same channel. Task Filter reads N values
from the channel (and ignores them) and then reads the average value, multi-
plies the average value by c (c can be read in from port COEF) and writes the
result to port OUT. The third parameter in READ and WRITE calls is the num-
ber of items to be read or written. READ calls are blocking, WRITE calls are
blocking if the number of items in the channel exceed a predefined threshold.
The SELECT statement has the same semantics as the statement with the same
name in ADA (see page 57): execution of this task is suspended until input
arrives from one of the ports. This example meets all criteria for splitting tasks



156 EMBEDDED SYSTEM DESIGN

that were mentioned in the context of fig. 5.4. Both tasks will be waiting for
input while occupying resources. Efficiency could be improved by restructur-
ing these tasks. However, the simple splitting of fig. 5.4 is not sufficient. The
technique proposed by Cortadella et al. is a more comprehensive one. Using
their technique, FlowC-programs are first translated into (extended) Petri-nets.
Petri-nets for each of the tasks are then merged into a single Petri-net. Using
results from Petri-net theory, new tasks are then generated. Fig. 5.6 shows a
possible new task structure.

Init(){

}
sum=0;i=0;c=1;j=0;

L0: if (i<N) return;
DATA=sum/N; d=DATA;
if (j==N) {j=0; d=d*c; WRITE(OUT,d,1);

}else j++;
sum=0; i=0; goto L0

}

Tcoef(){

}
READ(COEF,c,1);

COEF

Tin(){
READ(IN,sample,1);
sum+=sample; i++;
DATA=sample; d=DATA;
if (j==N) {j=0; d=d*c; WRITE(OUT,d,1);

}else j++;

IN OUT

Figure 5.6. Generated software tasks

In this new task structure, there is one task which performs all initializations:
In addition, there is one task for each of the input ports. An efficient imple-
mentation would raise interrupts each time new input is received for a port.
These should be a unique interrupt per port. The tasks could then be started
directly by those interrupts, and there would be no need to invoke the operating
system for that. Communication can be implemented as a single shared global
variable (assuming a shared address space for all tasks). The overall operating
system overhead would be quite small, if required at all.

The code for task Tin shown in fig. 5.6 is the one that is generated by the Petri
net-based inter-task optimization of the task structure. It should be further
optimized by intra-task optimizations, since the test performed for the first if-
statement is always false (j is equal to i-1 in this case, and i and j are reset to 0
whenever i becomes equal to N). For the second if-statement, the test is always
true, since this point of control is only reached if i is equal to N and i is equal to
j whenever label L0 is reached. Also, the number of variables can be reduced.
The following is an optimized version Tin:



Implementing embedded systems:hardware/software codesign 157

Tin () {
READ (IN, sample, 1);

sum += sample; i++;

DATA = sample; d = DATA;

L0: if (i < N) return;

DATA = sum/N; d = DATA;

d = d*c; WRITE(OUT,d,1);

sum = 0; i = 0;

return;

}
The optimized version of Tin could be generated by a very clever compiler.
Unfortunately, hardly any of today’s compilers will perform this optimization.
Nevertheless, the example shows the type of transformations required for gen-
erating “good” task structures. For more details about the task generation, refer
to Cortadella et al. [Cortadella et al., 2000].

Optimizations similar to the one just presented are described in the book by
Thoen [Thoen and Catthoor, 2000]. A list of IMEC’s publications on task
concurrency management is available from IMEC’s web site [IMEC Desics
group, 2003].

5.2 High-level optimizations

There are many high-level optimizations which can potentially improve the
efficiency of embedded software.

5.2.1 Floating-point to fixed-point conversion

Floating-point to fixed-point conversion is a commonly used technique. This
conversion is motivated by the fact that many signal processing standards (such
as MPEG-2 or MPEG-4) are specified in the form of C-programs using floating-
point data types. It is left to the designer to find an efficient implementation of
these standards.

For many signal processing applications, it is possible to replace floating-point
numbers with fixed-point numbers (see page 109). The benefits may be signif-
icant. For example, a reduction of the cycle count by 75% and of the energy
consumption by 76% has been reported for an MPEG-2 video compression al-
gorithm [Hüls, 2002]. However, some loss of precision is normally incurred.
More precisely, there is a tradeoff between the cost of the implementation and



158 EMBEDDED SYSTEM DESIGN

the quality of the algorithm (evaluated e.g. in terms of the so-called signal-
to-noise ratio (SNR)). For small word-lengths, the quality may be seriously
affected. Consequently, floating-point data types may be replaced by fixed-
point data types, but the quality loss has to be analyzed. This replacement was
initially performed manually. However, it is a very tedious and error-prone
process.

Therefore, researchers have tried to support this replacement with tools. One
of the most well-known tools is FRIDGE (fixed-point programming design
environment) [Willems et al., 1997], [Keding et al., 1998]. FRIDGE tools
have been made available commercially as part of the Synopsys System Studio
tool suite [Synopsys, 2005].

In FRIDGE, the design process starts with an algorithm described in C, includ-
ing floating-point numbers. This algorithm is then converted to an algorithm
described in fixed-C. Fixed-C extends C by two fixed-point data types, using
the type definition features of C++. Fixed-C is a subset of C++ and provides
two data types fixed and Fixed. Fixed-point data types can be declared very
much like other variables. The following declaration declares a scalar vari-
able, a pointer, and an array to be fixed-point data types.

fixed a,*b,c[8]

Providing parameters of fixed-point data types can (but does not have to) be
delayed until assignment time:

a=fixed(5,4,s,wt,*b)

This assignment sets the word-length parameter of a to 5 bits, the fractional
word-length to 4 bits, sign to present (s), overflow handling to wrap-around
(w), and the rounding mode to truncation (t). The parameters for variables that
are read in an assignment are determined by the assignment(s) to those vari-
ables. The data type Fixed is similar to fixed, except that a consistency check
between parameters used in the declaration and those used in the assignment
is performed. For every assignment to a variable, parameters (including the
word-length) can be different. This parameter information can be added to the
original C-program before the application is simulated. Simulation provides
value ranges for all assignments. Based on that information, FRIDGE adds
parameter information to all assignments. FRIDGE also infers parameter in-
formation from the context. For example, the maximum value of additions is
considered to be the sum of the arguments. Added parameter information can
be either based on simulations or on worst case considerations. Being based
on simulations, FRIDGE does not necessarily assume the worst case values
that would result from a formal analysis. The resulting C++-program is simu-
lated again to check for the quality loss. The Synopsys version of Fridge uses



Implementing embedded systems:hardware/software codesign 159

SystemC fixed-point data types to express generated data type information.
Accordingly, SystemC can be used for simulating fixed-point data types.

An analysis of the tradeoffs between the additional noise introduced and the
word-length needed was proposed by Shi and Brodersen [Shi and Brodersen,
2003] and also by Menard et al. [Menard and Sentieys, 2002].

5.2.2 Simple loop transformations

There is a number of loop transformations that can be applied to specifications.
The following is a list of standard loop transformations:

Loop permutation: Consider a two-dimensional array. According to the
C standard [Kernighan and Ritchie, 1988], two-dimensional arrays are laid
out in memory as shown in fig. 5.7. Adjacent index values of the second
index are mapped to a contiguous block of locations in memory. This lay-
out is called row-major order [Muchnick, 1997]. Note that the layout for
arrays is different for FORTRAN: Adjacent values of the first index are
mapped to a contiguous block of locations in memory (column major or-
der). Publications describing optimizations for FORTRAN can therefore
be confusing.

j=0

j=1

j=2

k=0
k=1

k=0
k=1

...

...

k=0
k=1{

...

...

...

{
{

Figure 5.7. Memory layout for two-dimensional array p[j][k] in C

For row-major layout, it is usually beneficial to organize loops such that
the last index corresponds to the innermost loop. A corresponding loop
permutation is shown in the following example:

for (k=0; k<=m; k++) for (j=0; j<=n; j++)
for (j=0; j<=n; j++) ⇒ for (k=0; k<=m; k++)

p[j][k] = ... p[j][k] = ...

Such permutations may have a positive effect on the reuse of array elements
in the cache, since the next iteration of the loop body will access an adja-



160 EMBEDDED SYSTEM DESIGN

cent location in memory. Caches are normally organized such that adjacent
locations can be accessed significantly faster than locations that are further
away from the previously accessed location.

Loop fusion, loop fission: There may be cases in which two separate
loops can be merged, and there may be cases in which a single loop is split
into two. The following is an example:

for(j=0; j<=n; j++) for (j=0; j<=n; j++)
p[j]= ... ; {p[j]= ... ;

for (j=0; j<=n; j++) ⇔ p[j]= p[j] + ...}
p[j]= p[j] + ...

The left version may be advantageous if the target processor provides a
zero-overhead loop instruction which can only be used for small loops.
The right version might lead to an improved cache behavior (due to the
improved locality of references to array p), and also increases the potential
for parallel computations within the loop body. As with many other trans-
formations, it is difficult to know which of the transformations leads to the
best code.

Loop unrolling: Loop unrolling is a standard transformation creating sev-
eral instances of the loop body. The following is an example in which the
loop is being unrolled once:

for (j=0; j<=n; j++) for (j=0; j<=n; j+=2)
p[j]= ... ; ⇒ {p[j]= ... ;

p[j+1]= ...}
The number of copies of the loop is called the unrolling factor. Unrolling
factors larger than two are possible. Unrolling reduces the loop overhead
(less branches per execution of the original loop body) and therefore typ-
ically improve the speed. As an extreme case, loops can be completely
unrolled, removing control overhead and branches altogether. However,
unrolling increases code size. Unrolling is normally restricted to loops with
a constant number of iterations.

5.2.3 Loop tiling/blocking

It can be observed that the speed of memories is increasing at a slower rate
than that of processors. Since small memories are faster than large memories
(see page 118), the use of memory hierarchies may be beneficial. Possible
“small” memories include caches and scratch-pad memories. A significant
reuse factor for the information in those memories is required. Otherwise the
memory hierarchy cannot be efficiently exploited.



Implementing embedded systems:hardware/software codesign 161

Reuse effects can be demonstrated by an analysis of the following example.
Let us consider matrix multiplication for arrays of size N × N [Lam et al.,
1991]:

for (i=1; i<=N; i++)

for(k=1; k<=N; k++){
r=X[i,k]; /* to be allocated to a register*/

for (j=1; j<=N; j++)

Z[i,j] += r* Y[k,j]

}
Let us consider access patterns for this code. The same element X[i,k] is used
by all iterations of the innermost loop. Compilers will typically be capable of
allocating this element to a register and reuse it for every execution of the in-
nermost loop. We assume that array elements are allocated in row major order
(as it is standard for C). This means that array elements with adjacent row (right
most) index values are stored in adjacent memory locations. Accordingly, ad-
jacent locations of Z and Y are fetched during the iterations of the innermost
loop. This property is beneficial if the memory system uses prefetching (when-
ever a word is loaded into the cache, loading of the next word is started as well).
Fig. 5.8 shows access patterns for this code.

Z

=

X Y

x
j

k

i

Figure 5.8. Access pattern for unblocked matrix multiplication

For one iteration of the innermost loop, the black areas of arrays Z and Y are
accessed (and loaded into the cache). Whether or not the same information is
still in the cache for the next iteration of the middle or outermost loops depends
on the size of the cache. In the worst case (if N is large or the cache is small),
the information has to be reloaded for every execution of the innermost loop
and cache elements are not reused. The total number of memory references
may be as large as 2 N3 (for references to Z and Y) + N2 (for references to X).

Research on scientific computing led to the design of blocked or tiled algo-
rithms [Xue, 2000], which improve the locality of references. The following
is a tiled version of the above algorithm:



162 EMBEDDED SYSTEM DESIGN

for(kk=1; kk<= N; kk+=B)

for (jj=1; jj<= N; jj+=B)

for (i=1; i<= N; i++)

for (k=kk; k<= min(kk+B-1,N); k++){
r=X[i][k]; /* to be allocated to a register*/

for (j=jj; j<= min(jj+B-1, N); j++)

Z[i][j] += r* Y[k][j]

}
Fig. 5.9 shows the corresponding access pattern.

Figure 5.9. Access pattern for tiled/blocked matrix multiplication

The innermost loop is now restricted so that it accesses less array elements
(those shown in black). If a proper blocking factor is selected, the elements
are still in the cache when the next iteration of the innermost loop starts. The
blocking factor B can be chosen such that the elements of the innermost loops
fit into the cache. In particular, it can be chosen such that a B × B sub-matrix
of Y fits into the cache. This corresponds to a reuse factor of B for Y, since
the elements in the sub-matrix are accessed B times for each iteration of i.
Also, a block of B row elements of Z should fit into the cache. These will
then be reused during the iterations of k, resulting in a reuse factor of B for
Z as well. This reduces the overall number of memory references to at most
2 N3/B (for references to Z and Y) + N2 (for references to X). In practice, the
reuse factor may be less than B. Optimizing the reuse factor has been an area of
comprehensive research. Initial research focused on the performance improve-
ments that can be obtained by tiling. Performance improvements for matrix
multiplication by a factor between 3 and 4.3 was reported by Lam [Lam et al.,
1991]. Possible improvements are expected to increase with the increasing
gap between processor and memory speeds. Tiling can also reduce the energy
consumption of memory systems [Chung et al., 2001].



Implementing embedded systems:hardware/software codesign 163

5.2.4 Loop splitting

Next, we discuss loop splitting as another optimization that can be applied
before compiling the program. Potentially, this optimization could also be
added to compilers.

Many image processing algorithms perform some kind of filtering. This fil-
tering consists of considering the information about a certain pixel as well as
that of some of its neighbors. Corresponding computations are typically quite
regular. However, if the considered pixel is close to the boundary of the image,
not all neighboring pixels exist and the computations have to be modified. In a
straightforward description of the filtering algorithm, these modifications may
result in tests being performed in the innermost loop of the algorithm. A more
efficient version of the algorithm can be generated by splitting the loops such
that one loop body handles the regular cases and a second loop body handles
the exceptions. Figure 5.10 is a graphical representation of this transformation.

Many IF−state−
ments for
margin checking

No checking,
almost all
pixels

Margin

few pixels
checking,+

Figure 5.10. Splitting image processing into regular and special cases

Performing this loop splitting manually is a very difficult and error-prone pro-
cedure. Falk et al. have published an algorithm [Falk and Marwedel, 2003] to
perform a procedure which also works for larger dimensions automatically. It
is based on a sophisticated analysis of accesses to array elements in loops. Op-
timized solutions are generated using genetic algorithms. The following code
shows a loop nest from the MPEG-4 standard performing motion estimation:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++) {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9; ) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (x3<0 ‖ 35<x3‖y3<0‖48<y3)

then block 1; else else block 1;

if (x4<0‖ 35<x4‖y4<0‖48<y4)



164 EMBEDDED SYSTEM DESIGN

then block 2; else else block 2;

}}}}}}
Using Falk’s algorithm, this loop nest is transformed into the following one:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++)

if (x>=10‖y>=14)

for (; y<49; y++)

for (k=0; k<9; k++)

for (l=0; l<9;l++ )

for (i=0; i<4; i++)

for (j=0; j<4;j++) {
then block 1; then block 2}

else {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9; ) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (0 ‖ 35<x3 ‖0‖ 48<y3)

then block 1; else else block 1;

if (x4<0‖ 35<x4‖y4<0‖48<y4)

then block 2; else else block 2;

}}}}}}
Instead of complicated tests in the innermost loop, we now have a splitting
if-statement after the third for-loop statement. All regular cases are handled
in the then-part of this statement. The else-part handles the relatively small
number of remaining cases.

Fig. 5.11 shows the number of cycles that can be saved by loop nest splitting
for various applications and target processors.

For the motion estimation algorithm, cycle counts can be reduced by up to
about 75 % (to 25 % of the original value). Obviously, substantial savings are
possible. This potential should certainly not be ignored.



Implementing embedded systems:hardware/software codesign 165

Figure 5.11. Results for loop splitting

5.2.5 Array folding

Some embedded applications, especially in the multimedia domain, include
large arrays. Since memory space in embedded systems is limited, options
for reducing the storage requirements of arrays should be explored. Fig. 5.12
represents the addresses used by five arrays as a function of time. At any par-
ticular time only a subset of array elements is needed. The maximum number
of elements needed is called the address reference window [De Greef et al.,
1997a]. In fig. 5.12, this maximum is indicated by a double-headed arrow.

t

t

t

tt

&A &C

&D &E

&B

Figure 5.12. Reference patterns for arrays



166 EMBEDDED SYSTEM DESIGN

A classical memory allocation for arrays is shown in fig. 5.13 (left). Each array
is allocated the maximum of the space it requires during the entire execution
time (if we consider global arrays).

t

m
em

or
y 

si
ze

addresses

t

m
em

or
y 

si
ze

addresses

Figure 5.13. Unfolded (left) and inter-array folded (right) arrays

One of the possible improvements, inter-array folding, is shown in fig. 5.13
(right). Arrays which are not needed at overlapping time intervals can share
the same memory space. A second improvement, intra-array folding [De Greef
et al., 1997b], is shown in fig. 5.14. It takes advantage of the limited sets of
components needed within an array. Storage can be saved at the expense of
more complex address computations.

t

m
em

or
y 

si
ze

addresses

Figure 5.14. Intra-array folded arrays

The two kinds of foldings can also be combined.



Implementing embedded systems:hardware/software codesign 167

Other forms of high-level transformations have been analyzed by Chung, Be-
nini and De Micheli [Chung et al., 2001], [Tan et al., 2003]. There are many
additional contributions in this domain in the compiler community.

In particular, function inlining1 replaces function calls by the code of the called
function. This transformation improves the speed of the code, but results in an
increase in the code size. Increased code sizes may be a problem in SoC tech-
nologies. Traditional in-lining techniques rely on the user identifying functions
to be inlined. This is a problem in systems on a chip, since the size of the in-
struction memory is very critical for such systems. Hence, it is important to be
able to constrain the size of the instruction memory and to let design tools find
out automatically which of the functions should be in-lined for a certain size
of the memory. Known approaches for this include techniques by Teich [Te-
ich et al., 1999], Leupers et al. [Leupers and Marwedel, 1999], and [Palkovic
et al., 2002]. These techniques can be either integrated into a compiler or can
be applied as a source-to-source transformation before using any compiler.

5.3 Hardware/software partitioning

5.3.1 Introduction

During the design process, we have to solve the problem of implementing the
specification either in hardware or in the form of programs running on proces-
sors. This section describes some of the techniques for this mapping. Applying
these techniques, we will be able to decide which parts have to be implemented
in hardware and which in software.

By hardware/software partitioning we mean the mapping of task graph nodes
to either hardware or software. A standard procedure for embedding hard-
ware/software partitioning into the overall design flow is shown in fig. 5.15.
We start from a common representation of the specification, e.g. in the form of
task graphs and information about the platform.

For each of the nodes of the task graphs, we need information concerning the
effort required and the benefits received from choosing a certain implemen-
tation of these nodes. For example, execution times must be predicted (see
page 127). It is very hard to predict times required for communication. Nev-
ertheless, two tasks requiring a very high communication bandwidth should
preferably be mapped to the same components. Iterative approaches are used
in many cases. An initial solution to the partitioning problem is generated,
analyzed and then improved.

1The concept of inlining is assumed to be known to the reader from programming courses.



168 EMBEDDED SYSTEM DESIGN

HW−synthesis

simulation

stopyesno

behavior

SW−part HW−part

compilation

partitioning

ok?

platform

Figure 5.15. General view of hardware/software partitioning

Some approaches for partitioning are restricted to mapping task graph nodes
either to special purpose hardware or to software running on a single processor.
Such partitioning can be performed with bipartitioning algorithms for graphs
[Kuchcinski, 2002].

More elaborate partitioning algorithms are capable of mapping graph nodes
to multi-processor systems and hardware. In the following, we will describe
how this can be done using a standard optimization technique from operations
research, integer programming. Our presentation is based on a simplified
version of the optimization proposed for the codesign tool COOL [Niemann,
1998].

5.3.2 COOL

For COOL, the input consists of three parts:

Target technology: This part of the input to COOL comprises information
about the available hardware platform components. COOL supports mul-
tiprocessor systems, but requires that all processors are of the same type,
since it does not include automatic or manual processor selection. The
name of the processor used (as well as information about the correspond-
ing compiler) must be included in this part of the input to COOL. As far
as the application-specific hardware is concerned, the information must be
sufficient for starting automatic hardware synthesis with all required pa-
rameters. In particular, information about the technology library must be
given.

Design constraints: The second part of the input comprises design con-
straints such as the required throughput, latency, maximum memory size,
or maximum area for application-specific hardware.



Implementing embedded systems:hardware/software codesign 169

Behavior: The third part of the input describes the required overall behav-
ior. Hierarchical task graphs are used for this. We can think of, e.g. using
the hierarchical task graph of fig. 2.46 for this.

COOL uses two kinds of edges: communication edges and timing edges.
Communication edges may contain information about the amount of infor-
mation to be exchanged. Timing edges provide timing constraints. COOL
requires the behavior of each of the leaf nodes2 of the graph hierarchy to be
known. COOL expects this behavior to be specified in VHDL3.

For partitioning, COOL uses the following steps:

1 Translation of the behavior into an internal graph model.

2 Translation of the behavior of each node from VHDL into C.

3 Compilation of all C programs for the selected target processor, compu-
tation of the resulting program size, estimation of the resulting execution
time. If simulations are used for the latter, simulation input data must be
available.

4 Synthesis of hardware components: For each leaf node, application-
specific hardware is synthesized. Since quite a number of hardware com-
ponents may have to be synthesized, hardware synthesis should not be too
slow. It was found that commercial synthesis tools focusing on gate level
synthesis can be too slow to be useful for COOL. However, high-level syn-
thesis tools working at the register-transfer-level (using adders, registers,
and multiplexer as components, rather than gates) provide sufficient syn-
thesis speed. Also, such tools can provide sufficiently precise values for
delay times and required silicon area. In the actual implementation, the
OSCAR high-level synthesis tool [Landwehr and Marwedel, 1997] is used.

5 Flattening the hierarchy: The next step is to extract a flat task graph
from the hierarchical flow graph. Since no merging or splitting of nodes
is performed, the granularity used by the designer is maintained. Cost
and performance information gained from compilation and from hardware
synthesis are added to the nodes. This is actually one of the key ideas of
COOL: the information required for hardware/software partitioning is
precomputed and it is computed with good precision. This information
forms the basis for generating cost-minimized designs meeting the design
constraints.

2See page 20 for a definition of this term.
3In retrospect, we now know that C should have been used for this, as this choice would have made the
partitioning for many standards described in C easier.



170 EMBEDDED SYSTEM DESIGN

6 Generating and solving a mathematical model of the optimization prob-
lem: COOL uses integer programming (IP) to solve the optimization prob-
lem. A commercial IP solver is used to find values for decision variables
minimizing the cost. The solution is optimal with respect to the cost func-
tion derived from the available information. However, this cost includes
only a coarse approximation of the communication time. The communica-
tion time between any two nodes of the task graph depends on the mapping
of those nodes to processors and hardware. If both nodes are mapped to
the same processor, communication will be local and thus quite fast. If the
nodes are mapped to different hardware components, communication will
be non-local and may be slower. Modeling communication costs for all pos-
sible mappings of task graph nodes would make the model very complex
and is therefore replaced by iterative improvements of the initial solution.
More details on this step will be presented below.

7 Iterative improvements: In order to work with good estimates of the com-
munication time, adjacent nodes mapped to the same hardware component
are now merged. This merging is shown in fig. 5.16.

3 4

1

2

15

2

5

3

T

T

T

T

T T

T

T

P1 P1

H1 H2 H1 H1 H2 H1

T*

Figure 5.16. Merging of task nodes mapped to the same hardware component

We assume that tasks T1, T2 and T5 are mapped to hardware components
H1 and H2, whereas T3 and T4 are mapped to processor P1. Accordingly,
communication between T3 and T4 is local communication. Therefore, we
merge T3 and T4, and assume that the communication between the two
tasks does not require a communication channel. Communication time can
be now estimated with improved precision. The resulting graph is then used
as new input for mathematical optimization . The previous and the current
step are repeated until no more graph nodes are merged.

8 Interface synthesis: After partitioning, the glue logic required for inter-
facing processors, application-specific hardware and memories is created.



Implementing embedded systems:hardware/software codesign 171

Next, we will describe step 6 in more detail. IP models provide a general
approach for modeling optimization problems. IP models consist of two parts:
a cost function and a set of constraints. Both parts involve references to a set
X = {xi} of integer-valued variables. Cost functions must be linear functions
of those variables. So, they must be of the general form

C = ∑
xi∈X

aixi, with ai ∈ IR,xi ∈ ZZ (5.1)

The set J of constraints must also consist of linear functions of integer-valued
variables. They have to be of the form

∀ j ∈ J : ∑
xi∈X

bi, jxi ≥ c j with bi, j,c j ∈ IR (5.2)

Note that ≥ can be replaced by ≤ in equation (5.2) if constants bi, j are modified
accordingly.

Def.: The integer programming (IP-) problem is the problem of minimizing
cost function (5.1) subject to the constraints given in eq. 5.2. If all variables
are constrained to being either 0 or 1, the corresponding model is called a
0/1-integer programming model. In this case, variables are also denoted as
(binary) decision variables.

For example, assuming that x1, x2 and x3 cannot be negative and must be inte-
gers, the following set of equations represent a 0/1-IP model:

C = 5x1 + 6x2 + 4x3 (5.3)

x1 + x2 + x3 ≥ 2 (5.4)

x1 ≤ 1 (5.5)

x2 ≤ 1 (5.6)

x3 ≤ 1 (5.7)

Due to the constraints, all variables are either 0 or 1. There are four possible
solutions. These are listed in table 5.1. The solution with a cost of 9 is optimal.

Applications requiring maximizing some gain function C′ can be changed into
the above form by setting C = −C′.
IP models can be solved optimally using mathematical programming tech-
niques. Unfortunately, integer programming is NP-complete and execution



172 EMBEDDED SYSTEM DESIGN

x1 x2 x3 C
0 1 1 10
1 0 1 9
1 1 0 11
1 1 1 15

Table 5.1. Possible solutions of the presented IP-problem

times may become very large. Nevertheless, it is useful for solving optimiza-
tion problems as long as the model sizes are not extremely large. Execution
times depend on the number of variables and on the number and structure of
the constraints. Good IP solvers (like lp solve [Berkelaar and et al., 2005] or
CPLEX) can solve well-structured problems containing a few thousand vari-
ables in acceptable computation times (e.g. minutes). For more information
on integer programming and related linear programming, refer to books on
the topic (e.g. to Wolsey [Wolsey, 1998]). Modeling optimization problems
as integer programming problems makes sense despite the complexity of the
problem: many problems can be solved in acceptable execution times and if
they cannot, IP models provide a good starting point for heuristics.

Next, we will describe how partitioning can be modeled using a 0/1-IP model.
The following index sets will be used in the description of the IP model:

Index set I denotes task graph nodes. Each i ∈ I corresponds to one task
graph node.

Index set L denotes task graph node types. Each l ∈ L corresponds to one
task graph node type. For example, there may be nodes describing square
root, Discrete Cosine Transform (DCT) or Discrete Fast Fourier Transform
(DFT) computations. Each of them is counted as one type.

Index set KH denotes hardware component types. Each k ∈ KH corre-
sponds to one hardware component type. For example, there may be special
hardware components for the DCT or the DFT. There is one index value for
the DCT hardware component and one for the FFT hardware component.

For each of the hardware components, there may be multiple copies, or
“instances”. Each instance is identified by an index j ∈ J.

Index set KP denotes processors. Each k′ ∈ KP identifies one of the pro-
cessors (all of which are of the same type).

The following decision variables are required by the model:



Implementing embedded systems:hardware/software codesign 173

Xi,k: this variable will be 1, if node vi is mapped to hardware component
type k ∈ KH and 0 otherwise.

Yi,k: this variable will be 1, if node vi is mapped to processor k ∈ KP and 0
otherwise.

NYl,k: this variable will be 1, if at least one node of type l is mapped to
processor k ∈ KP and 0 otherwise.

T is a mapping I → L from task graph nodes to their corresponding types.

In our particular case, the cost function accumulates the total cost of all hard-
ware units:

C = processor costs + memory costs + cost of application specific hardware

We would obviously minimize the total cost if no processors, memory and
application specific hardware were included in the “design”. Due to the con-
straints, this is not a legal solution. We can now present a brief description of
some of the constraints of the IP model:

Operation assignment constraints: These constraints guarantee that each
operation is implemented either in hardware or in software. The corre-
sponding constraints can be formulated as follows:

∀i ∈ I : ∑
k∈KH

Xi,k + ∑
k∈KP

Yi,k = 1

In plain text, this means the following: for all task graph nodes i, the fol-
lowing must hold: i is implemented either in hardware (setting one of the
Xi,k variables to 1, for some k) or it is implemented in software (setting one
of the Yi,k variables to 1, for some k).

All variables are assumed to be non-negative integer numbers:

Xi,k ∈ IN0, (5.8)

Yi,k ∈ IN0 (5.9)

Additional constraints ensure that decision variables Xi,k and Yi,k have 1 as
an upper bound and, hence, are in fact 0/1-valued variables:



174 EMBEDDED SYSTEM DESIGN

∀i ∈ I : ∀k ∈ KH : Xi,k ≤ 1

∀i ∈ I : ∀k ∈ KP : Yi,k ≤ 1

If the functionality of a certain node of type l is mapped to some proces-
sor k, then this processors’ instruction memory must include a copy of the
software for this function:

∀l ∈ L,∀i : T (vi) = cl,∀k ∈ KP : NYl,k ≥ Yi,k

In plain text, this means: for all types l of task graph nodes and for all nodes
i of this type, the following must hold: if i is mapped to some processor k
(indicated by Yi,k being 1), then the software corresponding to functionality
l must be provided by processor k, and the corresponding software must
exist on that processor (indicated by NYl,k being 1).

Additional constraints ensure that decision variables NYl,k are also 0/1-
valued variables:

∀l ∈ L : ∀k ∈ KP : NYl,k ≤ 1

Resource constraints: The next set of constraints ensures that “not too
many” nodes are mapped to the same hardware component at the same
time. We assume that, for every clock cycle, at most one operation can
be performed per hardware component. Unfortunately, this means that the
partitioning algorithm also has to generate a schedule for executing task
graph nodes. Scheduling by itself is already an NP-complete problem for
most of the relevant problem instances.

Precedence constraints: These constraints ensure that the schedule for
executing operations is consistent with the precedence constraints in the
task graph.

Design constraints: These constraints put a limit on the cost of certain
hardware components, such as memories, processors or area of application-
specific hardware.

Timing constraints: Timing constraints, if present in the input to COOL,
are converted into IP constraints.

Some additional, but less important constraints are not included in this list.



Implementing embedded systems:hardware/software codesign 175

3 4

51

2
T

T

T T

T

Figure 5.17. Task graph

Example: In the following, we will show how these constraints can be gener-
ated for the task graph in fig. 5.17 (the same as the one in fig. 2.46).

Suppose that we have a hardware component library containing three compo-
nents types H1, H2 and H3 with costs of 20, 25 and 30 cost units, respectively.
Furthermore, suppose that we can also use a processor P of cost 5. In addition,
we assume that table 5.2 describes the execution times of our tasks on these
components.

T H1 H2 H3 P

1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Table 5.2. Execution times of tasks T1 to T5 on components

Tasks T1 to T5 can only be executed on the processor or on one application-
specific hardware unit. Obviously, processors are assumed to be cheap but
slow in executing tasks T1, T2, and T5.

The following operation assignment constraints must be generated, assuming
that a maximum of one processor (P1) is to be used:

X1,1 +Y1,1 = 1 (Task 1 either mapped to H1 or to P1)

X2,2 +Y2,1 = 1 (Task 2 either mapped to H2 or to P1)

X3,3 +Y3,1 = 1 (Task 3 either mapped to H3 or to P1)

X4,3 +Y4,1 = 1 (Task 4 either mapped to H3 or to P1)

X5,1 +Y5,1 = 1 (Task 5 either mapped to H1 or to P1)



176 EMBEDDED SYSTEM DESIGN

Furthermore, assume that the types of tasks T1 to T5 are l = 1,2,3,3 and 1,
respectively. Then, the following additional resource constraints are required:

NY1,1 ≥ Y1,1 (5.10)

NY2,1 ≥ Y2,1

NY3,1 ≥ Y3,1

NY3,1 ≥ Y4,1

NY1,1 ≥ Y5,1 (5.11)

Equation 5.10 means: if task 1 is mapped to the processor, then the function
l = 1 must be implemented on that processor. The same function must also be
implemented on the processor if task 5 is mapped to the processor (eq. 5.11).

We have not included timing constraints. However, it is obvious that the pro-
cessor is slow in executing some of the tasks and that application-specific hard-
ware is required for timing constraints below 100 time units.

The cost function is:

C = 20∗#(H1)+ 25∗#(H2)+ 30∗#(H3)+ 5∗#(P)

where #() denotes the number of instances of hardware components. This num-
ber can be computed from the variables introduced so far if the schedule is also
taken into account. For a timing constraint of 100 time units, the minimum cost
design comprises components H1, H2 and P. This means that tasks T3 and T4

are implemented in software and all others in hardware.

In general, due to the complexity of the combined partitioning and scheduling
problem, only small problem instances of the combined problem can be solved
in acceptable run-times. Therefore, the problem is heuristically split into the
scheduling and the partitioning problem: an initial partitioning is based on
estimated execution times and the final scheduling is done after partitioning. If
it turns out that the schedule was too optimistic, the whole process has to be
repeated with tighter timing constraints. Experiments for small examples have
shown that the cost for heuristic solutions is only 1 or 2 % larger than the cost
of optimal results.

Automatic partitioning can be used for analyzing the design space. In the fol-
lowing, we will present results for an audio lab, including mixer, fader, echo,
equalizer and balance units. This example uses earlier target technologies in
order to demonstrate the effect of partitioning. The target hardware consists
of a (slow) SPARC processor, external memory, and application-specific hard-
ware to be designed from an (outdated) 1µ ASIC library. The total allowable



Implementing embedded systems:hardware/software codesign 177

delay is set to 22675 ns, corresponding to a sample rate of 44.1 kHz, as used
in CDs. Fig. 5.18 shows different design points which can be generated by
changing the delay constraint.

Figure 5.18. Design space for audio lab

The unit λ refers to a technology-dependent length unit. It is essentially one
half of the closest distance between the centers of two metal wires on the chip
(also called half-pitch [SEMATECH, 2003]). The design point at the left cor-
responds to a solution implemented completely in hardware, the design point
at the right to a software solution. Other design points use a mixture of hard-
ware and software. The one corresponding to an area of 78.4 λ2 is the cheapest
meeting the deadline.

Obviously, technology has advanced to allow a 100% software-based audio
lab design nowadays. Nevertheless, this example demonstrates the underlying
design methodology which can also be used for more demanding applications,
especially in the high-speed multimedia domain, such as MPEG-4.

5.4 Compilers for embedded systems

5.4.1 Introduction

Obviously, optimizations and compilers are available for the processors used
in PCs and compiler generation for commonly used 32-bit processors is well



178 EMBEDDED SYSTEM DESIGN

understood. For embedded systems, standard compilers are also used in many
cases, since they are typically cheap or even freely available.

However, there are several reasons for designing special optimizations and
compilers for embedded systems:

Processor architectures in embedded systems exhibit special features (see
page 100). These features should be exploited by compilers in order to
generate efficient code.

High levels of optimization are more important than high compilation speed.

Compilers could potentially help to meet and prove real-time constraints.
For example, it may be beneficial to freeze certain cache lines in order to
prevent frequently executed code from being evicted and reloaded several
times.

Compilers may help to reduce the energy consumption of embedded sys-
tems. Compilers performing energy optimizations should be available.

For embedded systems, there is a larger variety of instruction sets. Hence,
there are more processors for which compilers should be available. Some-
times there is even the request to support the optimization of instruction sets
with retargetable compilers. For such compilers, the instruction set can be
specified as an input to a compiler generation system. Such systems can
be used for experimentally modifying instruction sets and then observing
the resulting changes for the generated machine code. This is one partic-
ular case of design space exploration and is supported, for example, by
Tensilica tools [Tensilica Inc., 2003].

Some first approaches for retargetable compilers are described in the first book
on this topic [Marwedel and Goossens, 1995]. Optimizations can be found
in more recent books by Leupers [Leupers, 1997], [Leupers, 2000a]. In this
section, we will present examples of compilation techniques for embedded
processors.

Compilation techniques might also have to support compression techniques
described on pages 103 to 105.

5.4.2 Energy-aware compilation

Many embedded systems are mobile systems which have to run on batteries.
While computational demands on mobile systems are increasing, battery tech-
nology is expected to improve only slowly [SEMATECH, 2003]. Hence, the
availability of energy is a serious bottleneck for new applications.



Implementing embedded systems:hardware/software codesign 179

Saving energy can be done at various levels, including the fabrication process
technology, the device technology, circuit design, the operating system and
the application algorithms. Adequate translation from algorithms to machine
code can also help. High-level optimization techniques such as those presented
on pages 157 to 167 can also help to reduce the energy consumption. In this
section, we will look at compiler optimizations which can reduce the energy
consumption. Power models are very essential ingredients of all power opti-
mizations. A general problem of power models is their frequently very limited
precision4.

One of the first power models was proposed by Tiwari [Tiwari et al., 1994].
The model includes so-called base costs and inter-instruction costs. Base
costs of an instruction correspond to the energy consumed per instruction
execution if an infinite sequence of that instruction is executed. Inter-
instruction costs model the additional energy consumed by the processor
if instructions change. This additional energy is required, for example, due
to switching functional units on and off. This power model focuses on the
consumption in the processor and does not consider the power consumed
in the memory or in other parts of the system.

Another power model was proposed by Simunic et al. [Simunic et al.,
1999]. That model is based on data sheets. The advantage of this approach
is that the contribution of all components of an embedded system to the
energy consumption can be computed. However, the information in data
sheets about average values may be less precise than the information about
maximal or minimal values.

A third model has been proposed by Rusell and Jacome [Russell and Ja-
come, 1998]. This model is based on precise measurements of two fixed
configurations.

Still another model was proposed by Lee [Lee et al., 2001]. This model in-
cludes an detailed analysis of the effects of the pipeline. It does not include
multicycle operations and pipeline stalls.

The encc energy-aware compiler from Dortmund University uses the en-
ergy model by Steinke et al. [Steinke et al., 2001]. It is based on precise
measurements using real hardware. The consumption of the processor as
well as that of the memory in included.

The energy consumption of caches can be computed with CACTI [Wilton
and Jouppi, 1996].

4Deviations of about 50% are frequently mentioned in discussions.



180 EMBEDDED SYSTEM DESIGN

Using models like the one above, the following compiler optimizations have
been used for reducing the energy consumption:

Energy-aware scheduling: the order of instructions can be changed as
long as the meaning of the program does not change. The order can be
changed such that the number of transitions on the instruction bus is min-
imized. This optimization can be performed on the output generated by a
compiler and therefore does not require any change to the compiler.

Energy-aware instruction selection: typically, there are different instruc-
tion sequences for implementing the same source code. In a standard com-
piler, the number of instructions or the number of cycles is used as a cri-
terion (cost function) for selecting a good sequence. This criterion can be
replaced by the energy consumed by that sequence. Steinke and others
found that low-power instruction selection reduces the energy consumption
by some percent.

Replacing the cost function is also possible for other standard compiler
optimizations, such as register pipelining, loop invariant code motion etc.
Possible improvements are also in the order of a few percent.

Exploitation of the memory hierarchy: As explained on page 118, smaller
memories provide faster access and consume less energy per access. There-
fore, a significant amount of energy can be saved if the existence of small
scratch pad memories (SPMs) can be exploited by a compiler. For this
purpose, each basic block and each variable can be modeled as a memory
segment i. For each segment, there is a corresponding size si. Using profil-
ing, it is possible to compute the gain gi of moving segment i to the scratch
pad memory. Let

xi =
{

1 if segment i is mapped to the SPM
0 otherwise

(5.12)

Then, the goal is to maximize

∑
i

gi · xi (5.13)

while respecting the size constraint

∑
i

si · xi ≤ K (5.14)



Implementing embedded systems:hardware/software codesign 181

where K is the size of the SPM.

This problem is known as a knapsack problem. The solution of this problem
is a one-to-one mapping. An integer programming model leading to such a
mapping was presented by Steinke et al. [Steinke et al., 2002b]. For some
benchmark applications, energy reductions of up to about 80% were found,
even though the size of the SPM was just a small fraction of the total code
size of the application. Results for the bubble sort program are shown in
fig. 5.19.

Figure 5.19. Energy reduction by compiler-based mapping to scratch-pad for bubble sort

Obviously, larger SPMs lead to a reduced energy consumption in the main
memory. The energy required in the processor is also reduced, since less
wait cycles are required. Supply voltages have been assumed to be constant.

Code can also be dynamically copied into the SPM, resulting in a many-to-
one mapping. An integer programming model reflecting this more general
optimization problem was also proposed by Steinke et al. [Steinke et al.,
2002a]. Using this more general model, the energy gain can be increased,
especially for applications for which the SPM is too small to contain all hot
spots.

Of all the compiler optimizations analyzed by Steinke, the energy savings
enabled by memory hierarchies are the largest.

5.4.3 Compilation for digital signal processors

Features of DSP processors are described on page 108. Compilers should ex-
ploit these. Techniques for this can be demonstrated using address generation



182 EMBEDDED SYSTEM DESIGN

units as examples. This possibility of generating addresses “for free” has an
important impact on how variables should be laid out in memory. Fig. 5.20
shows an example.

0

1

2

3

b

c

d

a

A−=3
A+=2
A++
A−−

0

1

2

3

c

a

b

d

LOAD A,0

A++
A−−
A−−
A+=2
A++

; a
; c
; d
; c

; b
; d
; a
; c
; d
; c

LOAD A,1; b
A+=2  ; d

Figure 5.20. Comparison of memory layouts

We assume that in some basic block, variables a to d are accessed in the se-
quence (b,d,a,c,d,c). Accessing these variables with register-indirect address-
ing requires, first of all, loading the address of b into an address register (see
fig. 5.20, left). The instruction referring to variable b is not shown in fig. 5.20,
since the current focus is on address generation. Therefore, the generation of
the address for the access to the next variable (d) is considered next. Assuming
that there is just a single address register A, A has to be updated to point to vari-
able d. This requires adding 2 to the register. Again, we ignore the instruction
loading the variable, and we immediately consider the access to a. For this, we
have to subtract 3, and for the next access we have to add 2. Assuming that
the auto-increment and -decrement range is restricted to ± 1, only the last two
accesses shown in fig. 5.20 can be implemented with these operations. In total,
4 instructions for calculating addresses are needed.

In contrast, for the layout in fig. 5.20 (right), 4 address calculations are auto-
increment and -decrement operations which will be executed in parallel with
some operation in the main data path. Only 2 cycles are needed for address
calculations with an offset larger than 1. Again, the instructions actually using
the variables are not shown.

How do we generate such clever memory layouts? Algorithms doing this typ-
ically start from an access graph (see fig. 5.21).

a b

dc

1

2

1

a b

dc

1

2

1
1 d

b

a

c

linear path
maximum

graph
variable access .

memory layout

Figure 5.21. Memory allocation for access sequence (b, d, a, c, d, c) for a single address
register A



Implementing embedded systems:hardware/software codesign 183

Such access graphs have one node for each of the variables and have an edge
for every pair of variables for which there are adjacent accesses. The weight
of such edges corresponds to the number of adjacent accesses to the variables
connected by that edge.

Variables connected by an edge of a high weight should preferably be allocated
to adjacent memory locations. The number of address calculations saved in this
way is equal to the weight of the corresponding edge. For example, if c and d
are allocated to adjacent locations, then the last two accesses in the sequence
can be implemented with auto-increment and -decrement operations.

The overall goal of memory allocation is to find a linear order of variables
in memory maximizing the use of auto-increment and -decrement operations.
This corresponds to finding a linear path of maximum weight in the variable
access graph. Unfortunately, the maximum weighted path problem in graphs
is NP-complete. Hence, it is common to use heuristics for generating such
paths [Liao et al., 1995b], [Sudarsanam et al., 1997]. Most of them are based
on Kruskal’s spanning tree heuristic. They start with a graph with no edges
and then incrementally add edges with decreasing weight, always keeping the
degree of all nodes to at most 2 and avoiding cycles. The order of the variables
in memory will then correspond to the order of the variables along the linear
path.

The algorithm just sketched only covers a simple case. Extensions of this
algorithm cover more complex situations, such as:

n > 1 address registers [Leupers and Marwedel, 1996],

also using modify registers present in the AGU [Leupers and Marwedel,
1996], [Leupers and David, 1998],

extension to arrays [Basu et al., 1999],

larger auto-increment and -decrement ranges [Sudarsanam et al., 1997].

Memory allocation, as described above, improves both the code-size and the
run-time of the generated code. Other proposed optimization algorithms ex-
ploit further architectural features of DSP processors, such as:

multiple memory banks [Sudarsanam and Malik, 1995],

heterogeneous register files [Araujo and Malik, 1995],

modulo addressing,

instruction level parallelism [Leupers and Marwedel, 1995],



184 EMBEDDED SYSTEM DESIGN

multiple operation modes [Liao et al., 1995a].

Other, new optimization techniques are described by Leupers [Leupers, 2000a].

5.4.4 Compilation for multimedia processors

In order to fully support packed data types as described on page 110, com-
pilers must be able to automatically convert operations in loops to operations
on packed data types. Taking advantage of this potential is necessary for gen-
erating efficient software. A very challenging task is to use this feature in
compilers. Compiler algorithms exploiting operations on packed data types
are extensions of vectorizing algorithms originally developed for supercom-
puters, but only some algorithms have been described so far [Fisher and Dietz,
1998], [Fisher and Dietz, 1999], [Leupers, 2000b], [Krall, 2000], [Larsen and
Amarasinghe, 2000].

Automatic parallelization of loops for the M3-DSP (see page 113) requires the
use of vectorization techniques, which achieve significant speedups (compared
to the case of sequential operations, see fig. 5.22) [Lorenz et al., 2002]. For
application dot product 2, the size of the vectors was too small to lead to a
speedup and no vectorization should be performed. The number of cycles can
be reduced by 94 % for benchmark example if vectorization is combined with
an exploitation of zero-overhead-loop instructions.

Figure 5.22. Reduction of the cycle count by vectorization for the M3-DSP

5.4.5 Compilation for VLIW processors

VLIW architectures (see page 111) require special compiler optimizations:



Implementing embedded systems:hardware/software codesign 185

A key optimization required for TMS 320C6xx compilers is to allocate, at
compile time, the functional unit that should execute a certain operation.
Due to the two data paths (see fig. 3.21), this implies a partitioning of the
operations into two sets [Jacome and de Veciana, 1999], [Jacome et al.,
2000], [Leupers, 2000c] and also includes an allocation to one of the regis-
ter files.

VLIW processors frequently have branch delay slots. For VLIW proces-
sors, the branch delay penalty is significantly larger than for other proces-
sors, because each of the branch delay slots could hold a full instruction
packet, not just a single instruction. For example, for the TMS 320C6xx,
the branch delay penalty is 5 × 8 = 40 instructions. In order to avoid this
large penalty, most VLIW processors support predicated execution for a
large number of condition code registers. Predicated execution can be em-
ployed to efficiently implement small if-statements. For large if-statements,
however, conditional branches are more efficient, since these allow mutual
exclusion of then- and else-branches to be exploited in hardware alloca-
tion. The precise tradeoff between the two methods for implementing if-
statements can be found with proper optimization techniques [Mahlke et al.,
1992], [August et al., 1997], [Leupers, 1999].

Due to the large branch delay penalty, inlining (see page 167) is another
optimization that is very useful for VLIW processors.

5.4.6 Compilation for network processors

Network processors are a new type of processors. They are optimized for
high-speed Internet applications. Their instruction sets comprise numerous
instructions for accessing and processing bit fields in streams of information.
Typically, they are programmed in assembly languages, since their through-
put is of utmost importance. Nevertheless, network protocols are becoming
more and more complex and designing compilers for such processors supports
the design of network components. The necessary bit-level details have been
analyzed by Wagner et al. [Wagner and Leupers, 2002]. Wagner obtained a
28% performance gain by exploiting special bit-level instructions of a network
processor.

5.4.7 Compiler generation, retargetable compilers
and design space exploration

When the first compilers were designed, compiler design was a totally manual
process. In the meantime, some of the steps involved in generating a compiler
have been automated or supported by tools. For example, lex and yacc and



186 EMBEDDED SYSTEM DESIGN

more recent versions of these tools (see http://www.combo.org/lex yacc page)
provide a standard means for parsing the source code. Generating machine
instructions is another step which is now supported by tools. For example,
tree pattern matchers such as olive [Sudarsanam, 1997] can be used for this
task. Despite the use of such tools, compiler design is typically not a fully
automated process.

However, there have been many attempts to design retargetable compilers. We
distinguish between different kinds of retargetability:

Developer retargetability: In this case, compiler specialists are responsi-
ble for retargeting compilers to new instruction sets.

User retargetability: In this case, users are responsible for retargeting the
compiler. This approach is much more challenging.

More information about retargetable compilers and their use for design space
exploration can be found in a book by Leupers and Marwedel [Leupers and
Marwedel, 2001].

5.5 Voltage Scaling and Power Management

5.5.1 Dynamic Voltage Scaling

Some embedded processors support dynamic voltage scheduling and dynamic
power management (see page 102). An additional optimization step can be
used to exploit these features. Typically, such an optimization step follows
code generation by the compiler. These optimizations require a global view of
all tasks of the system, including their dependencies, slack times etc.

The potential of dynamic voltage scheduling is demonstrated by the following
example [Ishihara and Yasuura, 1998]. We assume that we have a processor
which runs at three different voltages, 2.5 V, 4.0 V, and 5.0 V. Assuming an
energy consumption of 40 nJ per cycle at 5.0 V, equation 3.1 can be used to
compute the energy consumption at the other voltages (see table 5.3, where 25
nJ is a rounded value).

Vdd [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

Table 5.3. Characteristics of processor with DVS



Implementing embedded systems:hardware/software codesign 187

Furthermore, we assume that our task needs to execute 109 cycles within 25
seconds. There are several ways of doing this, as can be seen from figures 5.23
and 5.24. Using the maximum voltage (case a), see fig. 5.23), it is possible
to shut down the processor during the slack time of 5 seconds (we assume the
power consumption to be zero during this time).

10 cycles@50 MHz9a)

2.5²

4²

5²

5 10 15 20 25

40 J

deadline

[V²]

t [s]

Figure 5.23. Possible voltage schedule

Another option (case b)) is to initially run the processor at full speed and then
reduce the voltage when the remaining cycles can be completed at the lowest
voltage (see fig. 5.24 (top)). Finally, we can run the processor at a clock rate
just large enough to complete the cycles within the available time (case c), see
fig. 5.24 (bottom)).

109 cycles@40 MHz

750M cycles @ 50 MHz + 250M cycles @ 25

2.5²

4²

5²

5 10 15 20 25

2.5²

4²

5²

5 10 15 20 25

b)

c)

32.5 J

25 J

deadline

[V²]

[V²]

t [s]

t [s]

Figure 5.24. Two more possible voltage schedules

The corresponding energy consumptions can be calculated as

Ea = 109 ×40 ·10−9 = 40 [J] (5.15)

Eb = 750 ·106 ×40 ·10−9 + 250 ·106 ×10 ·10−9 = 32.5 [J] (5.16)

Ec = 109 ×25 ·10−9 = 25 [J] (5.17)



188 EMBEDDED SYSTEM DESIGN

A minimum energy consumption is achieved for the ideal supply voltage of
4 Volts. In the following, we use the term variable voltage processor only
for processors that allow any supply voltage up to a certain maximum. It is
expensive to support truly variable voltages, and therefore, actual processors
support only a few fixed voltages.

The observations made for the above example can be generalized into the fol-
lowing statements. The proofs of these statements are given in the paper by
Ishihara and Yasuura.

If a variable voltage processor completes a task before the deadline, the
energy consumption can be reduced5.

If a processor uses a single supply voltage v and completes a task T just
at its deadline, then v is the unique supply voltage which minimizes the
energy consumption of T.

If a processor can only use a number of discrete voltage levels, then a volt-
age schedule with at most two voltages minimizes the energy consumption
under any time constraint.

If a processor can only use a number of discrete voltage levels, then the
two voltages which minimize the energy consumption are the two imme-
diate neighbors of the ideal voltage videal possible for a variable voltage
processor.

The statements can be used for allocating voltages to tasks. Next, we will
consider the allocation of voltages to a set of tasks. We will use the following
notation:

N : the number of tasks
ECj : the number of executed cycles of task j
L : the number of voltages of the target processor
Vi : the ith voltage, with 1 ≤ i ≤ L
Fi : the clock frequency for supply voltage Vi

T : the global deadline at which all tasks must have been completed
Xi, j : the number of clock cycles task j is executed at voltage Vi
SCj : the average switching capacitance during the execution of task j (SCi comprises

the actual capacitance CL and the switching activity α (see eq. 3.1 on page 102))

The voltage scaling problem can then be formulated as an integer programming
(IP) problem (see page 171). Simplifying assumptions of the IP-model include
the following:

5This formulation makes an implicit assumption in lemma 1 of the paper by Ishihara and Yasuura explicit.



Implementing embedded systems:hardware/software codesign 189

There is one target processor that can be operated at a limited number of
discrete voltages.

The time for voltage and frequency switches is negligible.

The worst case number of cycles for each task are known.

Using these assumptions, the IP-problem can be formulated as follows:

Minimize

E =
N

∑
j=1

L

∑
i=1

SCj · xi, j ·V 2
i (5.18)

subject to

L

∑
i=1

xi, j = ECj (5.19)

and

N

∑
j=1

L

∑
i=1

xi j

Fi
≤ T (5.20)

The goal is to find the number xi j of cycles that each task j is executed at a
certain voltage Vi . According to the statements made above, no task will ever
need more than two voltages. Using this model, Ishihara and Yasuura show
that efficiency is typically improved if tasks have a larger number of voltages
to choose from. If large amounts of slack time are available, many voltage
levels help to find close to optimal voltage levels. However, four voltage levels
do already give good results quite frequently.

There are many cases in which tasks actually run faster than predicted by their
worst case execution times. This cannot be exploited by the above algorithm.
This limitation can be removed by using checkpoints at which actual and worst
case execution times are compared, and then to use this information to poten-
tially scale down the voltage [Azevedo et al., 2002]. Also, voltage scaling in
multi-rate task graphs was recently proposed [Schmitz et al., 2002].

5.5.2 Dynamic power management (DPM)

In order to reduce the energy consumption, we can also take advantage of
power saving states, as introduced on page 101. The essential question for ex-
ploiting DPM is: when should we go to a power-saving state? Straight-forward



190 EMBEDDED SYSTEM DESIGN

approaches just use a simple timer to transition into a power-saving state. More
sophisticated approaches model the idle times by stochastic processes and use
these to predict the use of subsystems with more accuracy. Models based on
exponential distributions have been shown to be inaccurate. Sufficiently accu-
rate models include those based on renewal theory [Simunic et al., 2000].

A comprehensive discussion of power management was published by Benini
et al. [Benini and Micheli, 1998]. There are also advanced algorithms which
integrate DVS and DPM into a single optimization approach for saving energy
[Simunic et al., 2001].

Allocating voltages and computing transition times for DPM may be two of
the last steps of optimizing embedded software.

5.6 Actual design flows and tools

5.6.1 SpecC methodology

Chapter 2 includes a brief description of the SpecC language (see page 76).
Fig. 5.25 shows a design flow adopted for the SpecC-based SoC methodology
[Gajski et al., 2000], [Gerstlauer et al., 2001].

This methodology starts with specification capture in SpecC. The SpecC spec-
ification model is executable. Accordingly, simulations can be used to validate
and analyze the model as well as to estimate certain key design parameters. The
next step is architecture exploration. This step comprises allocation, partition-
ing and scheduling. Allocation consists of selecting components (processing
elements (processors, intellectual property components, or custom hardware),
memories, busses) from a library. The next step is partitioning. Partitioning
denotes the mapping of parts of the system specification onto the components.
Variables are mapped to memories, channels to busses, and behaviors to pro-
cessing elements. Scheduling is used to serialize the execution. Fig. 5.25 de-
scribes the flow of information. The actual design exploration will consist of a
number of steps that are consistent with this flow. Architecture exploration is
followed by design validation (in fact, validation and estimation will typically
be intermixed).

In communication synthesis, abstract busses will be replaced by actual wires in
a series of refinements. In the backend, software compilers are used to generate
binary machine code and hardware synthesis tools are used to generate custom
hardware.

A design flow similar to the one shown is supported by the SoC Environment
(SCE) that is available from the University at Irvine. Further information can
be found in the SCE documentation [Center for Embedded Computer Systems,
2003].



Implementing embedded systems:hardware/software codesign 191

Compilation

Validation
Analysis
Estimation

Compilation

Validation
Analysis
Estimation

Compilation

Validation
Analysis
Estimation

Compilation

Validation
Analysis
Estimation

Synthesis flow

Back−end

Manufacturing

Simulation

Simulation

Simulation
model

model

model

model
Simulation

compilation
Hardware

compilation
Software

Capture

Communication synthesis

Communication model

Architecture model

Specification model

Implementation model

Architecture exploration

Implementation

Validation flow

Figure 5.25. Codesign methodology possible with SpecC

5.6.2 IMEC tool flow

The design flow proposed by the “Interuniversitair Micro-Electronica Cen-
trum” (IMEC), Leuven (Belgium) is shown in fig. 5.26. According to this
design flow, specifications can be represented in UML, Java, and Concurrent
C++.

The first set of tools, developed in the context of the Matisse/Dynamic
Memory Management (DMM) project, considers the system at the con-
current process level as a set of concurrent and dynamic processes, whose
specification consists of four types of elements: algorithms, abstract data
types, communication primitives, and real-time requirements. Tools at this
level are able to perform source code transformations on the dynamic data
types (and their access functions) and provide also a memory pool organi-
zation in the virtual memory space.



192 EMBEDDED SYSTEM DESIGN

OCAPI−XL project

ADOPT project

TCM/Matador project

DMM/Matisse project

Data Transfer and Storage Exploration (DTSE)

UML/Java/Concurrent C++−abstraction

Figure 5.26. Global view of IMEC design flow

The second set of tools, developed in the context of the Matador/Task Con-
currency Management (TCM) project, is again considering a system of con-
current processes. For these tools, the emphasis is on mapping tasks to
processors. Different configurations of multi-processor systems are eval-
uated and curves of designs that are non-inferior to others are generated.
These curves provide a view of the design space, and are the basis for final
design decisions. Wong et al. [Wong et al., 2001] describe configurations
for a personal MPEG-4 player. The authors assume that a combination of
StrongArm processors and custom accelerators is to be used and they found
4 configurations that satisfy the timing constraint of 30 ms (see table 5.4).

Processor combination 1 2 3 4

Number of high speed processors 6 5 4 3
Number of low speed processors 0 3 5 7
Total number of processors 6 8 9 10

Table 5.4. Processor configurations

For combinations 1 and 4, the authors report that only one allocation of
tasks to processors meets the timing constraints. For combinations 2 and
3, different time budgets lead to different task to processor mappings and
different energy consumptions.

Design space exploration is based on the concept of Pareto curves, as
shown in fig. 5.27 for configurations 2 and 3. Each line indicates a separa-



Implementing embedded systems:hardware/software codesign 193

global Pareto curve

configuration 2
configuration 3

400

490
480
470
460
450
440
430
420
410

390

E
ne

rg
y 

[m
J]

24 25 26 27 28 3029 Time [ms]

better to use these points

inferior design point

1
234

5

6

12
3

45
6

Figure 5.27. Pareto curves for processor combinations 2 and 3

tion of the design space into two subspaces. For example, the area above
the dashed line (configuration 3) corresponds to design points that are infe-
rior to the design points found for that configuration. For any design in that
area, one could improve either the performance, the energy consumption or
both by using the design points found for configuration 3. Hence, whenever
task to processor mapping leads to a design point in that area, it is ignored6.

For configuration 3, design point 6 is the fastest design that can be gener-
ated. If the deadline is set to less than about 25.5 ms, configuration 2 has to
be used. The overall Pareto curve is obtained as the best of the Pareto curves
for configurations 2 and 3. The concept of Pareto curves is frequently used
for design space exploration, not just for the IMEC design flow.

TCM tools also address the storage and transfer of data between dynami-
cally created tasks (they include a “task-level” version of the Data Transfer
and Storage Exploration (DTSE) tools described next.

The next design transformations are the subject of research in the Data
Transfer and Storage Exploration (DTSE) project. A number of phases is
proposed [Miranda et al., 2004], [IMEC, 2003] aiming at a reduction of
the data transfers between processing components and at a reduction of the
storage requirements.

DTSE optimizations generate quite complex addressing, including modulo
operations. Addressing is subsequently simplified in address optimization
(ADOPT) tools [Miranda et al., 1998], [Ghez et al., 2000].

6IMEC has proposed to use Pareto curve information also for scheduling at run-time.



194 EMBEDDED SYSTEM DESIGN

The resulting code can be used as input to compilers or as input to the final
set of IMEC tools, designed in the OCAPI-XL project. These tools support
the mapping of applications to reconfigurable hardware (see page 115).

5.6.3 The COSYMA design flow

COSYMA (cosynthesis for embedded micro-architectures) [Österling et al.,
1997] is a set of tools for the design of embedded systems. The COSYMA
design flow is shown in fig. 5.28.

compiler

profiling

HW/SW partitioning

constraints, user directives

HL synthesis (BSS)

Synopsys design compiler
compilation

scheduling

HW/SW target model peripheral models

xC   processes

VHDL netlist

& communication synthesis
HDL−code generation

object code

communication synthesis
C−code generation &

run−time analysis

co
m

m
un

ic
at

io
n 

m
od

el
s

sy
nt

he
si

s 
di

re
ct

iv
es

Figure 5.28. COSYMA design flow

COSYMA starts with a specification comprising a set of programs written in
a slightly extended version of C, called Cx. The syntax for each Cx-program
is essentially that of C, extended by a process header. Interprocess communi-
cation is based on predefined C-functions which are later mapped to physical
channels. In addition, the specification includes constraints and user directives



Implementing embedded systems:hardware/software codesign 195

contained in a separate file. Finally, tool-specific directives for particular tools
can be provided as input.

Programs are analyzed by a compiler front-end built from the SUIF set of tools
[The SUIF group, 2003]. This front-end maintains all the information included
in the program code and makes it available in an internal data structure. The
next step is profiling. Profiling identifies the hot spots of the application pro-
grams and provides the information needed for the optimizations that follow.
Early versions of COSYMA used simulation-based profiling. Later versions
also include profiling based on analytical models.

The next step is scheduling. This step is skipped (and therefore shown with
dashed lines) if the input contains only a single process. For multiple pro-
cesses there are two approaches. With the first approach, scheduling generates
a single process from the original set of processes. With the second, newer
approach, scheduling is integrated into hardware/software partitioning. The
granularity used for partitioning is that of basic blocks (maximal sequences
of code containing no branches, except possibly at the end). Since partition-
ing has to take communication costs into account, a detailed analysis of the
information flow in and out of basic blocks is required.

Hardware at the block level (arithmetic units, multiplexers, etc.) is generated
by the Braunschweig high-level synthesis system (BSS). The output of this
system is fed into the commercial Design Compiler from Synopsys, generat-
ing gate-level descriptions. These descriptions are represented in the form of
VHDL structural descriptions.

Binary object code is generated using a standard compiler for the target proces-
sor. The resulting embedded system consists of both hardware and software.
Initial versions of COSYMA supported only mono-processor systems. More
recent versions also support multi-processor systems. A final run-time analysis
(taking communication delays into account) verifies the timing constraints.

The design flow is similar to that of COOL. However, COSYMA is a more
comprehensive system resulting from the effort of a much larger group.

5.6.4 Ptolemy II

The Ptolemy project [Davis et al., 2001] focuses on modeling, simulation, and
design of heterogeneous systems. Emphasis is on embedded systems that mix
technologies, for example analog and digital electronics, hardware and soft-
ware, and electrical and mechanical devices. Ptolemy supports different types
of applications, including signal processing, control applications, sequential
decision making, and user interfaces. Special attention is paid to the gener-
ation of embedded software. The idea is to generate this software from the



196 EMBEDDED SYSTEM DESIGN

model of computation which is most appropriate for a certain application. Ver-
sion 2 of Ptolemy (Ptolemy II) supports the following models of computation
and corresponding domains (see also page 17):

1 Communicating sequential processes (CSP).

2 Continuous time (CT): This model is appropriate for mechanical systems
and analog circuits. It is supported through a set of extensible differential
equation solvers.

3 Discrete event model (DE): this is the model used by many simulators, e.g.
VHDL simulators.

4 Distributed discrete events (DDE). Discrete event systems are difficult to
simulate in parallel, due to the inherent centralized queue of future events.
Attempts to distribute this data structure have not been very successful so
far. Therefore, this special (experimental) domain is introduced. Semantics
can be defined such that distributed simulation becomes more efficient than
in the DE model.

5 Finite state machines (FSM).

6 Process networks (PN), using Kahn process networks (see page 53).

7 Synchronous dataflow (SDF).

8 Synchronous/reactive (SR) model of computation. This model uses discrete
time, but signals do not need to have a value at every clock tick. Esterel (see
page 79) is a language following this style of modeling.

This list clearly shows the focus on different models of computation in the
Ptolemy project.

5.6.5 The OCTOPUS design flow

The OCTOPUS design flow [Awad et al., 1996] is completely dedicated to-
wards the design of embedded software, assuming appropriate wrappers for
hardware. It was observed that there is a poor match between the focus of
object-oriented design techniques on the software object structure and the need
to allocate operations to tasks. This poor match was the main concern that was
addressed in the design of OCTOPUS. OCTOPUS is used within Nokia. Its
design flow includes the following phases:

1 In the systems requirement phase, the behavior of the system is described
by use case diagrams (see page 48) and use cases. The structure of the
environment is described by a so-called context diagram.



Implementing embedded systems:hardware/software codesign 197

2 In the system architecture phase, the structure of the system is broken
down into subsystems. Major interfaces between the subsystems are iden-
tified, but the behavior of the subsystems is not.

3 The subsystem analysis phase is done for every subsystem. In this phase,
class diagrams for the subsystems are generated. The behavior of the sub-
systems can be defined in various ways, including StateCharts, so-called
event lists and event sheets.

4 The result of the next phase, the subsystem design phase, includes outlines
for processes/threads, classes and interprocess messages.

5 In the final phase, called subsystem implementation phase, actual code of
the selected programming language is generated

Obviously, this flow is very much influenced by software technology, with an
adaptation towards distributed systems.



Chapter 6

VALIDATION

6.1 Introduction

One very important aspect of embedded system design has not been considered
so far: validation. Validation is the process of checking whether or not a certain
(possibly partial) design is appropriate for its purpose, meets all constraints and
will perform as expected. Validation is important for any design procedure, and
hardly any system would work as expected, had it not been validated during the
design process. Validation is extremely important for safety-critical embedded
systems.

In theory, we could try to design verified tools which always generate correct
implementations from the specification. In practice, this verification of tools
does not work, except in very simple cases. As a consequence, each and ev-
ery design has to be verified. In order to minimize the number of times that
we have to verify a design, we could try to verify it at the very end of the
design process. Unfortunately, this approach normally does not work, due to
the large differences between the level of abstraction used for the specification
and that used for the implementation. Therefore, validation is required at var-
ious phases during the design procedure (see fig. 6.1). Validation and design
should be intertwined and not be considered as two completely independent
activities1.

It would be nice to have a single validation technique applicable to all vali-
dation problems. In practice, none of the available techniques solves all the

1The same is true for design evaluation, as depicted in fig. 6.1. However, design evaluation is not covered
in this book.

199



200 EMBEDDED SYSTEM DESIGN

specification

standard software

realizationimplementation: hw/sw codesign
− task concurrency management
− high−level transformations
− design space exploration
− hardware/software partitioning
− compilation, scheduling

...... ...
(from all phases)

validation; evaluation (performance, energy consumption, safety, ..)

(RTOS, ...)

HW−components

software

...

hardwarehardware−design
ap

pl
ic

at
io

n 
kn

ow
le

dg
e

Figure 6.1. Simplified design information flow

problems, and a mix of techniques has to be applied. In this chapter, we will
provide a brief overview over the key techniques which are available.

6.2 Simulation

Simulations are a very common technique for validating designs. Simulations
consist of executing a design model on appropriate computing hardware, typ-
ically on general purpose digital computers. Obviously, this requires models
to be executable. All the executable languages introduced in chapter 2 can be
used in simulations, and they can be used at various levels as described starting
at page 79.

The level at which designs are simulated is always a compromise between
simulation speed and accuracy. The faster the simulation, the less accuracy is
available.

So far, we have used the term behavior in the sense of the functional behavior
of systems (its input/output behavior). There are also simulations of some
non-functional behaviors of designs, including the thermal behavior and the
electro-magnetic compatibility (EMC) with other electronic equipment.

For embedded systems, simulations have serious limitations:

Simulations are typically a lot slower than the actual design. Hence, if we
tried to interface the simulator with the actual environment, we would have
quite a number of violations of timing constraints.

Simulations in the real environment may even be dangerous (who would
want to drive a car with unstable control software?).



Validation 201

For many applications, there may be huge amounts of data and it may be
impossible to simulate enough data in the available time. Multimedia appli-
cations are notoriously known for this. For example, simulating the com-
pression of some video stream takes an enormous amount of time.

Most actual systems are too complex to allow simulating all possible cases
(inputs). Hence, simulations can help us to find errors in our designs. They
cannot guarantee absence of errors, since simulations cannot exhaustively
be done for all possible combinations of inputs and internal states.

Due to the limitations, there is an increased emphasis on formal verification
(see page 209).

6.3 Rapid Prototyping and Emulation

There are many cases in which the designs should be tried out in realistic en-
vironments before final versions are manufactured. Control systems in cars
are an excellent example for this. Such systems should be used by drivers
in different environments before mass production is started. Accordingly, the
car industry designs prototypes. These prototypes should essentially behave
like the final systems, but they may be larger, more power consuming and have
other properties which test drivers can accept. Such prototypes can be built, for
example, using FPGAs. Racks containing FPGAs can be stored in the trunk
while test drivers exercise the car.

This approach is not limited to the car industry. There are several other cases
in which prototypes are built from FPGAs. Commercially available emulators
consist of a large number of FPGAs. They come with the required mapping
tools which map specifications to these emulators. Using these emulators, ex-
periments with systems which behave “almost” like the final systems can be
run.

6.4 Test

6.4.1 Scope

In testing, we are applying a set of specially selected input patterns, so-called
test patterns to the input of the system, observe its behavior and compare this
behavior with the expected behavior. Test patterns are normally applied to the
real, already manufactured system. The main purpose of testing is to identify
systems that have not been correctly manufactured (manufacturing test) and to
identify systems that fail later (field test).

Testing includes a number of different actions:



202 EMBEDDED SYSTEM DESIGN

1 test pattern generation,

2 test pattern application,

3 response observation, and

4 result comparison.

In test pattern generation, we try to identify a set of test patterns which distin-
guish correctly working from incorrectly working systems. Test pattern gen-
eration is based on fault models. Such fault models are models of possible
faults. For example, it is possible to use the stuck-at-fault model, which is
based on the assumption, that any internal wire of an electronic circuit is either
permanently connected to ’0’ or ’1’ (this is the so-called stuck-at model). It
has been observed that many faults actually behave as if some wire was perma-
nently connected that way. However, recent CMOS technologies require more
comprehensive fault models. These include transient faults and delay faults
(faults changing the delay of a circuit) explicitly. While good fault models ex-
ist for hardware testing, the same is not true for software testing. Test pattern
generation tries to generate tests for all faults that are possible according to a
certain fault model. The quality of the test pattern set can be evaluated using
the fault coverage. Fault coverage is the percentage of potential faults that can
be found for a given test pattern set:

Coverage =
Number of detectable faults for a given test pattern set

Number of faults possible due to the fault model

In practice, achieving a good product quality requires fault coverages in the
area of 98 to 99 %.

In order to increase the number of options that exist for system validation, it
has been proposed to use test methods already during the design phase. For
example, test pattern sets can be applied to software models of systems in
order to check if two software models behave in the same way. More time-
consuming formal methods need to be applied only to those cases in which
this test-based equivalence check did not fail.

6.4.2 Design for testability

If testing comes in only as an afterthought, it may be very difficult to test a
system. For example, verifying whether or not two finite state machines are
equivalent may require complex homing sequences [Kohavi, 1987] (sequences
returning the FSM to some initial state). In order to simplify tests, special
hardware can be added such that testing becomes easier. The process of de-
signing for better testability is called design for testability, or DfT. Special



Validation 203

purpose hardware for testing finite state machines is a prominent example of
this. Reaching certain states and observing states resulting from the applica-
tion of input patterns is very much simplified with scan design. In scan design,
all flip-flops storing states are connected to form serial shift registers (see fig.
6.2).

λ
δ

Z2
+

Z2

Z1
+

Z1

Z0
+

Z0

m
ux

m
ux

m
ux

X

Y
+

flip−flop

flip−flop

flip−flop

network

Z  =    (X,Z)
Y=   (X,Z)

normal mode/ test modeinputserial

serial output

Figure 6.2. Scan path design

Setting the muxes to scan mode, we can load any state into the three flip-flops
serially. In a second phase, we can apply input patterns to the FSM while the
muxes are set to normal mode. As a result, the FSM will be in a new state.
This new state can be serially shifted out in the third and final phase, using the
serial mode again. The net effect is that we do not need to worry about how to
get into certain states and how to observe whether or not δ has been correctly
implemented while we are generating tests for the FSM. A safe way of testing
FSM transitions is to first shift the “old” state into the shift register chain, then
to apply the input, and finally to shift the resulting new state out of the scan
chain. Effectively, the fact that we are dealing with state-based systems has
an impact only on the two (simple) shift phases, and test pattern generation for
(stateless) Boolean networks can be used for checking for correct outputs. This
means that it is sufficient to use test pattern generation methods for Boolean
functions (stateless networks) instead of caring about homing sequences etc.

Scan design is a technique which works well for single chips. For board-level
integration it is necessary to have some technique for connecting scan chains
of several chips. JTAG is a standard which does exactly this. The standard
defines registers at the boundaries of all chips and a number of test pins and



204 EMBEDDED SYSTEM DESIGN

control commands such that all chips can be connected in scan chains. JTAG
is also known as boundary scan [Parker, 1992].

For chips with a large number of flip-flops, in can take quite some time to set
and read all of them. In order to speed up the process of generating patterns
on the chip, it has been proposed to also integrate hardware for generating test
patterns on the chip. Typically pseudo-random patterns, generated by registers
with feed-back paths are used as test patterns.

In order to also avoid shifting out the response of the circuit under test, re-
sponses are compacted. Compacted responses behave very much like cyclic
redundancy check (CRC) characters in that the probability of generating cor-
rect compacted test responses from an incorrect response can be made very
low (about 2−n where n is the number of bits in the compacted response).

The built-in logic block observer (BILBO) [Könemann et al., 1979] has been
proposed as a circuit combining test pattern generation, test response com-
paction and serial input/output capabilities. A BILBO with three D-type flip-
flops is shown in fig. 6.3.

output
serial

Z

D

Q

Z

D

Q

1 2

1

1

2

2

c

Z 0

D0
Q0

mux nor
xor

0
1

2

c1

clock

input
serial

Figure 6.3. BILBO

Modes of BILBO registers are shown in table 6.1. The 3-bit register shown
in fig. 6.3 can be in scan path, reset, linear-feedback shift register (LFSR) and
normal mode. In LFSR mode, it can be used for either generating pseudo-
random pattern or for compacting responses from inputs (Z0 to Z2).

Typically, BILBOs are used in pairs. One BILBO generates pseudo-random
test patterns, feeding some Boolean network with these patterns. The response
of the Boolean network is then compressed by a second BILBO connected to
the output of the network. At the end of the test sequence, the compacted
response is serially shifted out and compared with the expected response.



Validation 205

c1 c2 Di

’0’ ’0’ ′0′ ⊕Qi−1 = Qi−1 scan path mode
’0’ ’1’ ′0′ ⊕ ′1′ =′ 0′ reset
’1’ ’0’ Zi ⊕Qi−1 LFSR mode
’1’ ’1’ Zi ⊕′1′ = Zi normal mode

Table 6.1. Modes of BILBO registers

DfT hardware is of great help during the prototyping and debugging of hard-
ware. It is also useful to have DfT hardware in the final product, since hardware
fabrication never has a zero defect rate. Testing fabricated hardware signifi-
cantly contributes to the overall cost of a product and mechanisms that reduce
this cost are highly appreciated by all companies.

6.4.3 Self-test programs

One of the key problems of testing modern integrated circuits is their limited
number of pins, making it more and more difficult to access internal compo-
nents. Also, it is getting very difficult to test these circuits at full speed, since
testers must be at least as fast as the circuits themselves. The fact that many
embedded systems are based on processors provides a way out of this dilemma:
processors are capable of running test programs or diagnostics. Such diagnos-
tics have been used to test main frame machines for decades. Fig. 6.4 shows
some components that might be contained in some processor.

instruction
register

register
file

ALU

stuck−at−0−error

Figure 6.4. Segment from processor hardware

The types of faults that are considered are part of the fault model. In order
to test for stuck-at-faults at the input of the ALU, we can execute a small test
program:

store pattern of all ’1’s in register file;

perform xor between constant "0000...00" and register,

test if result contains ’0’ bit,



206 EMBEDDED SYSTEM DESIGN

if yes, report error;

otherwise start test for next stuck-at-fault

Similar small programs can be generated for other stuck-at-errors. Unfortu-
nately, the process of generating diagnostics for main frames has mostly been a
manual one. Some researchers have proposed to generate diagnostics automat-
ically [Brahme and Abraham, 1984], [Krüger, 1986], [Bieker and Marwedel,
1995], [Krstic and Dey, 2002].

6.5 Fault simulation

It is currently not feasible (and it will probably not be feasible) to completely
predict the behavior of systems in the presence of faults. Therefore, the behav-
ior of systems in the presence of faults is frequently simulated. This type of
simulation is called fault simulation. In fault simulation, system models are
modified to reflect the behavior of the system in the presence of a certain fault.

The goals of fault simulation include:

to know the effect of a fault of the components at the system level. Faults
are called redundant if they do not affect the observable behavior of the
system, and

to know whether or not mechanisms for improving fault tolerance actually
help.

Fault simulation requires the simulation of the system for all faults feasible
for the fault model and also for a possibly large number of different input pat-
terns. Accordingly, fault simulation is an extremely time-consuming process.
Different techniques have been proposed to speed up fault simulation. These
techniques include parallel fault simulation. Parallel fault simulation is espe-
cially effective if the system is modeled at the gate level. In this case, internal
signals are single bit signals. This fact enables the mapping of a signal to a
single bit of some machine word of a simulating host machine. AND- and OR-
machine instructions can then be used to simulate Boolean networks. However,
only a single bit would be used per machine word. Efficiency is improved with
parallel fault simulation. In parallel fault simulation, n different test patterns
are simulated at the same time, if n is the machine word size. The values of
each of the n test patterns are mapped to a different bit position in the machine
word. Executing the same set of AND- and OR-instructions will then simulate
the behavior of the Boolean network for n test patterns instead of for just one.



Validation 207

6.6 Fault injection

Fault simulation may be too time-consuming for real systems. If actual systems
are available, fault injection can be used instead. In fault injection, real existing
systems are modified and the overall effect on the system behavior is checked.
Fault injection does not rely on fault models (even though they can be used).
Hence, fault injection has the potential of generating faults that would not have
been predicted by a fault model.

We can distinguish between two types of fault injection:

local faults within the system, and

faults in the environment (behaviors which do not correspond to the specifi-
cation). For example, we can check how the system behaves if it is operated
outside the specified temperature or radiation ranges.

Several methods can be used for fault injection:

Fault injection at the hardware level: Examples include pin-manipulation,
electromagnetic and nuclear radiation.

Fault injection at the software level: Examples include toggling some mem-
ory bits.

According to experiments reported by Kopetz [Kopetz, 1997], software-based
fault injection was essentially as effective as hardware-based fault injection.
Nuclear radiation was a noticeable exception in that it generated errors which
were not generated with other methods.

6.7 Risk- and dependability analysis

Embedded systems (like many products) can cause damages to properties and
lives. It is not possible to reduce the risk of damages to zero. The best that
we can do is to make the probability of damages small, hopefully orders of
magnitude smaller than other risks. For many applications, a probability of a
catastrophe has to be less than 10−9 per hour [Kopetz, 1997], corresponding
to one case per 100,000 systems operating for 10,000 hours. Damages are
resulting from hazards. For each possible damage there is a severity (the
cost) and a probability. Risk can be defined as the product of the two.

Risks can be analyzed with several techniques [Dunn, 2002], [Press, 2003]:

Fault tree Analysis (FTA): FTA is a top-down method of analyzing risks.
The analysis starts with a possible damage and then tries to come up with



208 EMBEDDED SYSTEM DESIGN

possible scenarios that lead to that damage. FTA typically uses a graphical
representation of possible damages, including symbols for AND- and OR-
gates. OR-gates are used if a single event could result in a hazard. AND-
gates are used when several events or conditions are required for that hazard
to exist. Fig. 6.5 shows an example.

User receives mail

No firewall used

TCP/IP port open + OS bug

User clicks on attachment

PC connected to internet 

Floppy includes boot virus

Floppy in drive at boot time

Attachment has virus

Boot sequence checks floppy

OS hazard

.....

.

AND

OR

Figure 6.5. Fault tree

The simple AND- and OR-gates cannot model all situations. For exam-
ple, their modeling power is exceeded if shared resources of some limited
amount (like energy or storage locations) exist. Markov models [Bremaud,
1999] may have to be used to cover such cases.

Failure mode and effect analysis (FMEA): FMEA starts at the compo-
nents and tries to estimate their reliability. Using this information, the re-
liability of the system is computed from the reliability of its parts (corre-
sponding to a bottom-up analysis). The first step is to create a table con-
taining components, possible faults, probability of faults and consequences
on the system behavior. Risks for the system as a whole are then computed
from the table. Table 6.2 shows an example2.

Tools supporting both approaches are available. Both approaches may be used
in “safety cases”. In such cases, an independent authority has to be convinced
that certain technical equipment is indeed safe. One of the commonly re-
quested properties of technical systems is that no single failing component
should potentially cause a catastrophe.

2Realistic fault probabilities are unknown at the time of writing.



Validation 209

Component Failure Consequences Probability Critical?
Processor metal migration no service 10−6 /h yes
... ... ... ... ...

Table 6.2. FMEA table

6.8 Formal Verification

Formal verification is concerned with formally proving a system correct, using
the language of mathematics. First of all, a formal model is required to make
formal verification applicable. This step can hardly be automated and may
require some effort. Once the model is available, we can try to prove certain
properties.

Formal verification techniques can be classified by the type of logics employed:

Propositional logic: In this case, models consist of Boolean formulas de-
scribed with Boolean variables and connectives such as and and or. (State-
less) gate-level logic networks can be conveniently described with proposi-
tional logic. Tools typically aim at checking if two models represented this
way are equivalent. Such tools are called tautology checkers or equiva-
lence checkers. Since propositional logic is decidable, it is also decidable
whether or not the two representations are equivalent (there will be no cases
of doubt). For example, one representation might correspond to gates of an
actual circuit and the other to its specification. Proving the equivalence then
proves the effect of all design transformations (for example, optimizations
for power or delay) to be correct. Tautology checkers can frequently cope
with designs which are too large to allow simulation-based exhaustive val-
idation. The key reason for the power of recent tautology checkers is the
use of Binary Decision Diagrams (BDDs) [Wegener, 2000]. The complex-
ity of equivalence checks of Boolean functions represented with BDDs is
linear in the number of BDD-nodes. In contrast, the equivalence check for
functions represented by sums of products is NP-hard. Still, the number
of BDD-nodes required to represent a certain function has to be taken into
account. Many functions can be efficiently represented with BDDs. In the
general, however, the number of nodes of BDDs grows exponentially with
the number of variables. In those cases in which functions can be efficiently
represented with BDDs, BDD-based equivalence checkers have frequently
replaced simulators and are used to verify gate networks with millions of
transistors. The ability to also verify finite state-machines is very much
limited.



210 EMBEDDED SYSTEM DESIGN

First order logic (FOL): FOL includes quantification, using ∃ and ∀.
Some automation for verifying FOL models is feasible. However, since
FOL is undecidable in general, there may be cases of doubt.

Higher order logic (HOL): Higher order allows functions to be manipu-
lated like other objects (see http://archive.comlab.ox.ac.uk/formal-methods/
hol.html). For higher order logic, proofs can hardly ever be automated and
typically must be done manually with some proof-support.

Model checking

Verification of finite state machines can be performed with model checking.
Model checking aims at the verification of properties of finite state systems. It
analyzes the state space of the system. Verification using this approach requires
three stages:

1 the generation of a model of the system to be verified,

2 the definition of the properties expected from the system, and

3 model checking (the actual verification step).

Accordingly, model checking systems accept the model and properties as input
(see fig. 6.6).

state transition preprocessing

proof or
counterexample

graph

Model checker

properties

Figure 6.6. Inputs for model checking

Verification tools can prove or disprove the properties. In the latter case, they
can provide a counter-example. Model checking is easier to automate than
FOL. Languages used for the definition of properties typically allow the quan-
tification of states.

A popular system for model checking is Clarke’s EMC-system [Clarke and
et al., 2003]. This system accepts properties to be described as CTL formu-
las. CTL stands for “Computational Tree Logics”. CTL-formulas include two
parts:



Validation 211

a path quantifier (this part specifies paths in the state transition diagram),
and

a state quantifier (this part specifies states).

Example: M,s |= AGg means: In the transition graph M, property g holds for
all paths (denoted by A) and all states (denotes by G).

In 1987, model checking was implemented using BDDs. It was possible to
locate several errors in the specification of the future bus protocol.

Extensions are needed in order to also cover real-time behavior and numbers.
More information on formal verification can be found in books on this topic
(refer to, for example, the books by Kropf [Kropf, 1999] and Clarke et al.
[Clarke et al., 2000]).



References

[Aamodt and Chow, 2000] Aamodt, T. and Chow, P. (2000). Embedded ISA support for en-
hanced floating-point to fixed-point ANSI C compilation. 3rd ACM Intern. Conf. on Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES), pages 128–137.

[Absint, 2002] Absint (2002). Absint: WCET analyses. http://www.absint.de/wcet.htm.

[Accellera, 2002] Accellera (2002). EDA industry working groups (for Rosetta). http://www.
eda.org.

[Accellera, 2005] Accellera (2005). SystemVerilog. http://www.systemverilog.org.

[Ambler, 2005] Ambler, S. (2005). The diagrams of UML 2.0. http://www.agilemodeling.
com/essays/umlDiagrams.htm.

[Araujo and Malik, 1995] Araujo, G. and Malik, S. (1995). Optimal code generation for em-
bedded memory non-homogenous register architectures. 8th Int. Symp. on System Synthesis
(ISSS), pages 36–41.

[August et al., 1997] August, D. I., Hwu, W. W., and Mahlke, S. (1997). A framework for
balancing control flow and predication. Ann. Workshop on Microprogramming and Mi-
croarchitecture (MICRO), pages 92–103.

[Awad et al., 1996] Awad, M., Kuusela, J., and Ziegler, J. (1996). Object-Oriented Technology
for Real-Time Systems. Prentice Hall.

[Azevedo et al., 2002] Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum,
A., and Nicolau, A. (2002). Profile-based dynamic voltage scheduling using program check-
points. Design, Automation, and Test in Europe (DATE), pages 168–175.

[Balarin et al., 1998] Balarin, F., Lavagno, L., Murthy, P., and Sangiovanni-Vincentelli, A.
(1998). Scheduling for embedded real-time systems. IEEE Design & Test of Computers,
pages 71–82.

[Ball, 1996] Ball, S. R. (1996). Embedded Microprocessor Systems - Real world designs.
Newnes.

[Ball, 1998] Ball, S. R. (1998). Debugging Embedded Microprocessor Systems. Newnes.

212



213

[Berkelaar and et al., 2005] Berkelaar, M. and et al. (2005). Unixtm manual page of lp solve.
Eindhoven University of Technology, Design Automation Section, current version of source
code available at http://groups.yahoo.com/group/ lp solve/files.

[Bieker and Marwedel, 1995] Bieker, U. and Marwedel, P. (1995). Retargetable self-test pro-
gram generation using constraint logic programming. 32nd Design Automation Conference
(DAC), pages 605–611.

[Boussinot and de Simone, 1991] Boussinot, F. and de Simone, R. (1991). The Esterel lan-
guage. Proc. of the IEEE, Vol. 79, No. 9, pages 1293–1304.

[Bouyssounouse and Sifakis, 2005] Bouyssounouse, B. and Sifakis, J., editors (2005). Embed-
ded Systems Design, The ARTIST Roadmap for Research and Development. Lecture Notes
in Computer Science, Vol. 3436, Springer.

[Brahme and Abraham, 1984] Brahme, D. and Abraham, J. A. (1984). Functional testing of
microprocessors. IEEE Trans. on Computers, pages 475–485.

[Bremaud, 1999] Bremaud, P. (1999). Markov Chains. Springer Verlag.

[Burd and Brodersen, 2000] Burd, T. and Brodersen, R. (2000). Design issues for dynamic
voltage scaling. Intern. Symp. on Low Power Electronics and Design (ISLPED), pages 9–
14.

[Burd and Brodersen, 2003] Burd, T. and Brodersen, R. W. (2003). Energy efficient micropro-
cessor design. Kluwer Academic Publishers.

[Burkhardt, 2001] Burkhardt, J. (2001). Pervasive Computing. Addison-Wesley.

[Burns and Wellings, 1990] Burns, A. and Wellings, A. (1990). Real-Time Systems and Their
Programming Languages. Addison-Wesley.

[Burns and Wellings, 2001] Burns, A. and Wellings, A. (2001). Real-Time Systems and Pro-
gramming Languages (Third Edition). Addison Wesley.

[Buttazzo, 2002] Buttazzo, G. (2002). Hard Real-time computing systems. Kluwer Academic
Publishers, 4th printing.

[Byteflight Consortium, 2003] Byteflight Consortium (2003). Home page. http://www.
byteflight.com.

[Camposano and Wolf, 1996] Camposano, R. and Wolf, W. (1996). Message from the editors-
in-chief. Design Automation for Embedded Systems.

[Barr, 1999] Barr, M. (1999). Programming Embedded Systems. O’Reilly.

[Basu et al., 1999] Basu, A., Leupers, R., and Marwedel, P. (1999). Array index allocation
under register constraints. Int. Conf. on VLSI Design, Goa/India.

[Benini and Micheli, 1998] Benini, L. and Micheli, G. D. (1998). Dynamic Power Manage-
ment – Design Techniques and CAD Tools. Kluwer Academic Publishers.

[Berger, 2001] Berger, H. (2001). Automating with STEP 7 in LAD and FBD: SIMATIC S7-
300/400 Programmable Controllers. Wiley.

[Bergé et al., 1995] Bergé, J.-M., Levia, O., and Rouillard, J. (1995). High-Level System Mod-
eling. Kluwer Academic Publishers.

References



214 EMBEDDED SYSTEM DESIGN

[Chung et al., 2001] Chung, E.-Y., Benini, L., and Micheli, G. D. (2001). Source code trans-
formation based on software cost analysis. In Int. Symp. on System Synthesis (ISSS), pages
153–158.

[Cinderella ApS, 2003] Cinderella ApS (2003). home page. http://www.cinderella.dk.

[Clarke and et al., 2003] Clarke, E. and et al. (2003). Model checking@CMU. http://www-2.
cs.cmu.edu/∼modelcheck/ index.html.

[Clarke et al., 2000] Clarke, E. M., Grumberg, O., and Peled, D. A. (2000). Model Checking.
The MIT Press; Second printing.

[Clouard et al., 2003] Clouard, A., Jain, K., Ghenassia, F., Maillet-Contoz, L., and Strassen,
J. (2003). Using transactional models in SoC design flow. in [Müller et al., 2003], pages
29–64.

[Coelho, 1989] Coelho, D. R. (1989). The VHDL handbook. Kluwer Academic Publishers.

[Cortadella et al., 2000] Cortadella, J., Kondratyev, A., Lavagno, L., Massot, M., Moral, S.,
Passerone, C., Watanabe, Y., and Sangiovanni-Vincentelli, A. (2000). Task generation and
compile-time scheduling for mixed data-control embedded software. Design automation
conference (DAC), pages 489–494.

[Dasgupta, 1979] Dasgupta, S. (1979). The organization of microprogram stores. ACM Com-
puting Surveys, Vol. 11, pages 39–65.

[Davis et al., 2001] Davis, J., Hylands, C., Janneck, J., Lee, E. A., Liu, J., Liu, X., Neuendorf-
fer, S., Sachs, S., Stewart, M., Vissers, K., Whitaker, P., and Xiong, Y. (2001). Overview
of the Ptolemy project. Technical Memorandum UCB/ERL M01/11; http://ptolemy.eecs.
berkeley.edu.

[De Greef et al., 1997a] De Greef, E., Catthoor, F., and Man, H. D. (1997a). Array placement
for storage size reduction in embedded multimedia systems. IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP), pages 66–75.

[De Greef et al., 1997b] De Greef, E., F.Catthoor, and Man, H. (1997b). Memory size reduc-
tion through storage order optimization for embedded parallel multimedia applications. In-
tern. Parallel Proc. Symp.(IPPS) in Proc. Workshop on “Parallel Processing and Multime-
dia”, pages 84–98.

[De Man, 2002] De Man, H. (2002). Keynote session at DATE’02. http://www.
date-conference.com/conference/2002/keynotes/ index.htm.

[Center for Embedded Computer Systems, 2003] Center for Embedded Computer Systems
(2003). SoC Environment. http://www.cecs.uci.edu/∼cad/sce.html.

[Chandrakasan et al., 1992] Chandrakasan, A., Sheng, S., and Brodersen, R. W. (1992). Low-
power CMOS digital design. IEEE Journal of Solid-State Circuits, 27(4):119–123.

[Chandrakasan et al., 1995] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. (1995). Low
power CMOS digital design. Kluwer Academic Publishers.

[Chetto et al., 1990] Chetto, H., Silly, M., and Bouchentouf, T. (1990). Dynamic scheduling of
real-time tasks under precedence constraints. Journal of Real-Time Systems, 2.



215

[Dunn, 2002] Dunn, W. (2002). Practical Design of Safety-Critical Computer Systems. Relia-
bility Press.

[Elsevier B.V., 2003a] Elsevier B.V. (2003a). Sensors and actuators A: Physical. An Interna-
tional Journal.

[Elsevier B.V., 2003b] Elsevier B.V. (2003b). Sensors and actuators B: Chemical. An Interna-
tional Journal.

[Esterel, 2002] Esterel, T. I. (2002). Homepage. http://www.esterel-technologies.com.

[Falk and Marwedel, 2003] Falk, H. and Marwedel, P. (2003). Control flow driven splitting of
loop nests at the source code level. Design, Automation and Test in Europe (DATE), pages
410–415.

[Fettweis et al., 1998] Fettweis, G., Weiss, M., Drescher, W., Walther, U., Engel, F., Kobayashi,
S., and Richter, T. (1998). Breaking new grounds over 3000 MMAC/s: a broadband mobile
multimedia modem DSP. Intern. Conf. on Signal Processing Application & Technology
(ICSPA), available at http://citeseer.ist.psu.edu/111037.html.

[Fisher and Dietz, 1998] Fisher, R. and Dietz, H. G. (1998). Compiling for SIMD within a
single register. Annual Workshop on Lang. & Compilers for Parallel Computing (LCPC),
pages 290–304.

[Fisher and Dietz, 1999] Fisher, R. J. and Dietz, H. G. (1999). The Scc compiler: SWARing
at MMX and 3DNow! Annual Workshop on Lang. & Compilers for Parallel Computing
(LCPC), pages 399–414.

[FlexRay Consortium, 2002] FlexRay Consortium (2002). Flexray R© requirement specifica-
tion. version 2.01. http://www.flexray.de.

[Fowler and Scott, 1998] Fowler, M. and Scott, K. (1998). UML Distilled - Applying the Stan-
dard Object Modeling Language. Addison-Wesley.

[Fu et al., 1987] Fu, K., Gonzalez, R., and Lee, C. (1987). Robotics. McGraw-Hill.

[Gajski et al., 1994] Gajski, D., Vahid, F., Narayan, S., and Gong, J. (1994). Specification and
Design of Embedded Systems. Prentice Hall.

[Gajski et al., 2000] Gajski, D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. (2000). SpecC:
Specification Language Methodology. Kluwer Academic Publishers.

[Deutsches Institut für Normung, 1997] Deutsches Institut für Normung (1997). DIN 66253,
Programmiersprache PEARL, Teil 2 PEARL 90. Beuth-Verlag; English version available
through http://www.din.de.

[Dierickx, 2000] Dierickx, B. (2000). CMOS image sensors - concepts, Photonics West 2000
short course. http://www.fillfactory.com/htm/ technology/htm/publications.htm.

[Douglass, 2000] Douglass, B. P. (2000). Real-Time UML, 2nd edition. Addison Wesley.

[Drusinsky and Harel, 1989] Drusinsky, D. and Harel, D. (1989). Using statecharts for hard-
ware description and synthesis. IEEE Trans. on Computer Design, pages 798–807.

References



216 EMBEDDED SYSTEM DESIGN

[Gerstlauer et al., 2001] Gerstlauer, A., Dömer, R., Peng, J., and Gajski, D. (2001). System
Design: A Practical Guide with SystemC. Kluwer Academic Publishers.

[Ghez et al., 2000] Ghez, C., Miranda, M., Vandecapelle, A., et al. (2000). Systematic high-
level address code transformations for piece-wise linear indexing. Proc. of SIPS.

[Gupta, 1998] Gupta, R. (1998). Introduction to embedded systems. http://www.ics.uci.edu/
∼rgupta/ ics212.html.

[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of reactive systems, a
tutorial and commented bibliography. Tenth International Conference on Computer-Aided
Verification, CAV’98, LNCS 1427, Springer Verlag; see also: http://www-verimag.imag.fr/
PEOPLE/Nicolas.Halbwachs/cav98tutorial.html.

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The
synchronous dataflow language LUSTRE. Proc. of the IEEE, 79:1305–1320.

[Hansmann, 2001] Hansmann, U. (2001). Pervasive Computing. Springer Verlag.

[Harbour, 1993] Harbour, M. G. (1993). RT-POSIX: An overview. http://www.ctr.unican.es/
publications/mgh-1993a.pdf .

[Harel, 1987] Harel, D. (1987). StateCharts: A visual formalism for complex systems. Science
of Computer Programming, pages 231–274.

[Hayes, 1982] Hayes, J. (1982). A unified switching theory with applications to VLSI design.
Proceedings of the IEEE, Vol.70, pages 1140–1151.

[Healy et al., 1999] Healy, C., Arnold, R., Mueller, F., Whalley, D., and Harmon, M. (1999).
Bounding pipeline and instructions cache performance. IEEE Transactions on Computers,
pages 53–70.

[Hennessy and Patterson, 1995] Hennessy, J. L. and Patterson, D. A. (1995). Computer Orga-
nization – The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.

[Hennessy and Patterson, 1996] Hennessy, J. L. and Patterson, D. A. (1996). Computer Archi-
tecture – A Quantitative Approach. Morgan Kaufmann Publishers Inc.

[Herrera et al., 2003a] Herrera, F., Fernández, V., Sánchez, P., and Villar, E. (2003a). Embed-
ded software generation from SystemC for platform based design. in [Müller et al., 2003],
pages 247–272.

[Ganssle, 1992] Ganssle, J. G. (1992). Programming Embedded Systems. Academic Press.

[Ganssle, 2000] Ganssle, J. G. (2000). The Art of Designing Embedded Systems. Newnes.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and In-
tractability. Bell Labaratories, Murray Hill, New Jersey.

[Geffroy and Motet, 2002] Geffroy, J.-C. and Motet, G. (2002). Design of Dependable com-
puting Systems. Kluwer Academic Publishers.

[Gelsen, 2003] Gelsen, O. (2003). Organic displays enter consumer electronics. Opto & Laser
Europe, June; availabe at http://optics.org/articles/ole/8/6/6/1.



217

[Hüls, 2002] Hüls, T. (2002). Optimizing the energy consumption of an MPEG application (in
German). Master thesis, CS Dept., Univ. Dortmund, http:// ls12-www.cs.uni-dortmund.de/
publications/ theses.

[IBM Inc., 2002] IBM Inc. (2002). Security: User authentication. http://www.pc.ibm.com/us/
security/userauth.html.

[IEC, 2002] IEC (2002). GRAFCET specification language for sequential function charts.
http:// tc3.iec.ch/ txt/147.htm.

[IEEE, 1997] IEEE (1997). IEEE Standard VHDL Language Reference Manual (1076-1997).
IEEE.

[IEEE, 1992] IEEE, D. (1992). Draft standard VHDL language reference manual. IEEE Stan-
dards Department, 1992.

[IMEC, 1997] IMEC (1997). LIC-SMARTpen identifies signer. IMEC Newsletter, http://www.
imec.be/wwwinter/mediacenter/en/newsletter 18.pdf .

[IMEC, 2003] IMEC (2003). Design technology program. http://www.imec.be/ovinter/ static
research/designtechnology.shtml.

[IMEC Desics group, 2003] IMEC Desics group (2003). Task concurrency management
(overview of IMEC activities). http://www.imec.be/design/ tcm/ .

[Intel, 2005] Intel (2005). Intel Itanium 2 processor. http://www.intel.com/products/
processor/ itanium2.

[Ishihara and Yasuura, 1998] Ishihara, T. and Yasuura, H. (1998). Voltage scheduling problem
for dynamically variable voltage processors. Intern. Symp. on Low Power Electronics and
Design (ISLPED), pages 197–2002.

[Iyer and Marculescu, 2002] Iyer, A. and Marculescu, D. (2002). Power and performance eval-
uation of globally asynchronous locally synchronous processors. Intern. Symp. on Computer
Architecture (ISCA), pages 158–168.

[Jackson, 1955] Jackson, J. (1955). Scheduling a production line to minimize maximum tardi-
ness. Management Science Research Project 43, University of California, Los Angeles.

[Jacome et al., 2000] Jacome, M., de Veciana, G., and Lapinskii, V. (2000). Exploring perfor-
mance tradeoffs for clustered VLIW ASIPs. IEEE Int. Conf. on Computer-Aided Design
(ICCAD), pages 504–510.

[Herrera et al., 2003b] Herrera, F., Posadas, H., Sánchez, P., and Villar, E. (2003b). Systemic
embedded software generation from SystemC. Design, Automation and Test in Europe
(DATE), pages 10142–10149.

[Hoare, 1985] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall Interna-
tional Series in Computer Science.

[Horn, 1974] Horn, W. (1974). Some simple scheduling algorithms. Naval Research Logistics
Quarterly, Vol. 21, pages 177–185.

[Huerlimann, 2003] Huerlimann, D. (2003). Opentrack home page. http://www.opentrack.ch.

References



218 EMBEDDED SYSTEM DESIGN

[Jantsch, 2003] Jantsch, A. (2003). Modeling Embedded Systems and SoC’s: Concurrency and
Time in Models of Computation. Morgan Kaufmann.

[Java Community Process, 2002] Java Community Process (2002). JSR-1 – real-time specifi-
cation for Java. http://www.jcp.org/en/ jsr/detail?id=1.

[Jeffrey and Leduc, 1996] Jeffrey, A. and Leduc, G. (1996). E-LOTOS core language. http:
//citeseer.ist.psu.edu/ jeffrey96elotos.html.

[Jha and Dutt, 1993] Jha, P. and Dutt, N. (1993). Rapid estimation for parameterized compo-
nents in high-level synthesis. IEEE Transactions on VLSI Systems, pages 296–303.

[Jones, 1997] Jones, M. (1997). What really happened on Mars Rover Pathfinder. in:
P.G.Neumann (ed.): comp.risks, The Risks Digest, Vol. 19, Issue 49; available at http:
//www.cs.berkeley.edu/∼brewer/cs262/PriorityInversion.html.

[Kahn, 1974] Kahn, G. (1974). The semantics of a simple language for parallel programming.
Proc. of the IFIP Congress 74, pages 471–475.

[Keding et al., 1998] Keding, H., Willems, M., Coors, M., and Meyr, H. (1998). FRIDGE:
A fixed-point design and simulation environment. Design, Automation and Test in Europe
(DATE), pages 429–435.

[Kempe, 1995] Kempe, M. (1995). Ada 95 reference manual, iso/iec standard 8652:1995.
(HTML-version), http://www.adahome.com/rm95/ .

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C Program-
ming Language. Prentice Hall.

[Kienhuis et al., 2000] Kienhuis, B., Rijjpkema, E., and Deprettere, E. (2000). Compaan: De-
riving process networks from Matlab for embedded signal processing architectures. Proc.
8th Intern. Workshop on Hardware/Software Codesign (CODES).

[Kobryn, 2001] Kobryn, C. (2001). UML 2001: A standardization Odyssey. Communication of
the ACM (CACM), available at http://www.omg.org/attachments/pdf/UML 2001 CACM
Oct99 p29-Kobryn.pdf , pages 29–36.

[Kohavi, 1987] Kohavi, Z. (1987). Switching and Finite Automata Theory. Tata McGraw-Hill
Publishing Company, New Delhi, 9th reprint.

[Koninklijke Philips Electronics N.V., 2003] Koninklijke Philips Electronics N.V. (2003). Am-
bient intelligence. http://www.philips.com/research/ami.

[Jacome and de Veciana, 1999] Jacome, M. F. and de Veciana, G. (1999). Lower bound on
latency for VLIW ASIP datapaths. IEEE Int. Conf. on Computer-Aided Design (ICCAD),
pages 261–269.

[Jain et al., 2001] Jain, M., Balakrishnan, M., and Kumar, A. (2001). ASIP design method-
ologies : Survey and issues. Fourteenth International Conference on VLSI Design, pages
76–81.

[Janka, 2002] Janka, R. (2002). Specification and Design Methodology for Real-Time Embed-
ded Systems. Kluwer Academic Publishers.



219

[Krishna and Shin, 1997] Krishna, C. and Shin, K. G. (1997). Real-Time Systems. McGraw-
Hill, Computer Science Series.

[Kropf, 1999] Kropf, T. (1999). Introduction to Formal Hardware Verification. Springer-
Verlag.

[Krstic and Dey, 2002] Krstic, A. and Dey, S. (2002). Embedded software-based self-test for
programmable core-based designs. IEEE Design & Test, pages 18–27.

[Krüger, 1986] Krüger, G. (1986). Automatic generation of self-test programs: A new feature
of the MIMOLA design system. 23rd Design Automation Conference (DAC), pages 378–
384.

[Kuchcinski, 2002] Kuchcinski, K. (2002). System partitioning (course notes). http://www.cs.
lth.se/home/Krzysztof Kuchcinski/DES/Lectures/Lecture7.pdf .

[Kwok and Ahmad, 1999] Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algorithms for
allocation directed task graphs to multiprocessors. ACM Computing Surveys, 31:406–471.

[Könemann et al., 1979] Könemann, B., Mucha, J., and Zwiehoff, G. (1979). Built-in logic
block observer. Proc. IEEE Intern. Test Conf., pages 261–266.

[Lam et al., 1991] Lam, M. S., Rothberg, E. E., and Wolf, M. E. (1991). The cache perfor-
mance and optimizations of blocked algorithms. Proceedings of ASPLOS IV, pages 63–74.

[Landwehr and Marwedel, 1997] Landwehr, B. and Marwedel, P. (1997). A new optimization
technique for improving resource exploitation and critical path minimization. 10th Interna-
tional Symposium on System Synthesis (ISSS), pages 65–72.

[Lapinskii et al., 2001] Lapinskii, V., Jacome, M. F., and de Veciana, G. (2001). Application-
specific clustered VLIW datapaths: Early exploration on a parameterized design space.
Technical Report UT-CERC-TR-MFJ/GDV-01-1, Computer Engineering Research Center,
University of Texas at Austin.

[Laprie, 1992] Laprie, J. C., editor (1992). Dependability: basic concepts and terminology in
English, French, German, Italian and Japanese. IFIP WG 10.4, Dependable Computing and
Fault Tolerance, in: volume 5 of Dependable computing and fault tolerant systems, Springer
Verlag.

[Larsen and Amarasinghe, 2000] Larsen, S. and Amarasinghe, S. (2000). Exploiting super-
word parallelism with multimedia instructions sets. Programming Language Design and
Implementation (PLDI), pages 145–156.

[Kopetz, 1997] Kopetz, H. (1997). Real-Time Systems –Design Principles for Distributed Em-
bedded Applications–. Kluwer Academic Publishers.

[Kopetz, 2003] Kopetz, H. (2003). Architecture of safety-critical distributed real-time systems.
Invited Talk; Design, Automation, and Test in Europe (DATE).

[Kopetz and Grunsteidl, 1994] Kopetz, H. and Grunsteidl, G. (1994). TTP –a protocol for
fault-tolerant real-time systems. IEEE Computer, 27:14–23.

[Krall, 2000] Krall, A. (2000). Compilation techniques for multimedia extensions. Interna-
tional Journal of Parallel Programming, 28:347–361.

References



220 EMBEDDED SYSTEM DESIGN

[Leupers, 1997] Leupers, R. (1997). Retargetable Code Generation for Digital Signal Proces-
sors. Kluwer Academic Publishers.

[Leupers, 1999] Leupers, R. (1999). Exploiting conditional instructions in code generation for
embedded VLIW processors. Design, Automation and Test in Europe (DATE).

[Leupers, 2000a] Leupers, R. (2000a). Code Optimization Techniques for Embedded Proces-
sors - Methods, Algorithms, and Tools. Kluwer Academic Publishers.

[Leupers, 2000b] Leupers, R. (2000b). Code selection for media processors with SIMD in-
structions. Design, Automation and Test in Europe (DATE), pages 4–8.

[Leupers, 2000c] Leupers, R. (2000c). Instruction scheduling for clustered VLIW DSPs. Int.
Conf. on Parallel Architectures and Compilation Techniques (PACT), pages 291–300.

[Leupers and David, 1998] Leupers, R. and David, F. (1998). A uniform optimization tech-
nique for offset assignment problems. Int. Symp. on System Synthesis (ISSS), pages 3–8.

[Leupers and Marwedel, 1995] Leupers, R. and Marwedel, P. (1995). Time-constrained code
compaction for DSPs. Int. Symp. on System Synthesis (ISSS), pages 54–59.

[Leupers and Marwedel, 1996] Leupers, R. and Marwedel, P. (1996). Algorithms for address
assignment in DSP code generation. IEEE Int. Conf. on Computer-Aided Design (ICCAD,
pages 109–112.

[Leupers and Marwedel, 1999] Leupers, R. and Marwedel, P. (1999). Function inlining under
code size constraints for embedded processors. IEEE Int. Conf. on Computer-Aided Design
(ICCAD), pages 253–256.

[Leupers and Marwedel, 2001] Leupers, R. and Marwedel, P. (2001). Retargetable Compiler
Technology for Embedded Systems – Tools and Applications. Kluwer Academic Publishers.

[Leveson, 1995] Leveson, N. (1995). Safeware, System safety and Computers. Addison Wes-
ley.

[Liao et al., 1995a] Liao, S., Devadas, S., Keutzer, K., and Tijang, S. (1995a). Code optimiza-
tion techniques for embedded DSP microprocessors. 32nd Design Automation Conference
(DAC), pages 599–604.

[Liao et al., 1995b] Liao, S., Devadas, S., Keutzer, K., Tijang, S., and Wang, A. (1995b). Stor-
age assignment to decrease code size. Programming Language Design and Implementation
(PLDI), pages 186–195.

[Lawler, 1973] Lawler, E. L. (1973). Optimal sequencing of a single machine subject to prece-
dence constraints. Managements Science, Vol. 19, pages 544–546.

[Lee, 1999] Lee, E. (1999). Embedded software – an agenda for research. Technical report,
UCB ERL Memorandum M99/63.

[Lee and Messerschmitt, 1987] Lee, E. and Messerschmitt, D. (1987). Synchronous data flow.
Proc. of the IEEE, vol. 75, pages 1235–1245.

[Lee et al., 2001] Lee, S., Ermedahl, A., , and Min, S. (2001). An accurate instruction-level
energy consumption model for embedded risc processors. ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES).



221

[Mahlke et al., 1992] Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and Bringmann,
R. A. (1992). Effective compiler support for predicated execution using the hyperblock.
MICRO-92, pages 45–54.

[Marwedel and Goossens, 1995] Marwedel, P. and Goossens, G., editors (1995). Code Gener-
ation for Embedded Processors. Kluwer Academic Publishers.

[Marwedel and Schenk, 1993] Marwedel, P. and Schenk, W. (1993). Cooperation of synthesis,
retargetable code generation and testgeneration in the MSS. EDAC-EUROASIC’93, pages
63–69.

[Marzano and Aarts, 2003] Marzano, S. and Aarts, E. (2003). The New Everyday. 010 Pub-
lishers.

[McLaughlin and Moore, 1998] McLaughlin, M. and Moore, A. (1998). Real-Time Exten-
sions to UML. http://www.ddj.com/articles/1998/9812g/9812.htm.

[Menard and Sentieys, 2002] Menard, D. and Sentieys, O. (2002). Automatic evaluation of the
accuracy of fixed-point algorithms. Design, Automation and Test in Europe (DATE), pages
529–535.

[Mermet et al., 1998] Mermet, J., Marwedel, P., Ramming, F. J., Newton, C., Borrione, D., and
Lefaou, C. (1998). Three decades of hardware description languages in europe. Journal of
Electrical Engineering and Information Science, 3:106pp.

[Microsoft Inc., 2003] Microsoft Inc. (2003). Microsoft windows embedded. microsoft.com/
windows/embedded/default.mspx.

[Miranda et al., 2004] Miranda, M., Brockmeyer, E., Meeuwen, T. V., Ghez, C., and Catthoor,
F. (2004). Low power data transfer and communication for SoC. in: C. Piquet (ed.): Lower
Power Electronics and Design, CRC Press, (to be published).

[Miranda et al., 1998] Miranda, M., F.Catthoor, M.Janssen, and Man, H. (1998). High-level
address optimisation and synthesis techniques for data-transfer intensive applications. IEEE
Trans. on VLSI Systems, pages 677–686.

[MPI/RT forum, 2001] MPI/RT forum (2001). Document for the real-time message passing
interface (mpi/rt-1.1. http://www.mpirt.org/drafts/mpirt-report-18dec01.pdf .

[Muchnick, 1997] Muchnick, S. S. (1997). Advanced compiler design and implementation.
Morgan Kaufmann Publishers, Inc.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for
multi-programming in a hard real-time environment. Journal of the Association for Com-
puting Machinery (JACM), pages 40–61.

[Liu, 2000] Liu, J. W. (2000). Real-Time Systems. Prentice Hall.

[Lorenz et al., 2002] Lorenz, M., Wehmeyer, L., Draeger, T., and Leupers, R. (2002). Energy
aware compilation for DSPs with SIMD instructions. LCTES/SCOPES ’02, pages 94–101.

[Machanik, 2002] Machanik, P. (2002). Approaches to addressing the memory wall. Technical
Report, November, Univ. Brisbane.

References



222 EMBEDDED SYSTEM DESIGN

[Object Management Group (OMG), 2002] Object Management Group (OMG) (2002). Real-
time CORBA specification, version 1.1, august 2002. Object Management Group, http:
//www.omg.org/docs/ formal/02-08-02.ps.

[Object Management Group (OMG), 2003] Object Management Group (OMG) (2003).
CORBA R©basics. http://www.omg.org/gettingstarted/corbafaq.htm.

[OMG, 2005] OMG (2005). UMLT M resource page. http://www.uml.org.

[Oppenheim et al., 1999] Oppenheim, A. V., Schafer, R., and Buck, J. R. (1999). Digital Signal
Processing. Pearson Higher Education.

[Österling et al., 1997] Österling, A., Benner, T., Ernst, R., Herrmann, D., Scholz, T., and Ye,
W. (1997). The COSYMA system. http://www.ida.ing.tu-bs.de/research/projects/cosyma/
overview/node1.html.

[Palkovic et al., 2002] Palkovic, M., Miranda, M., and Catthoor, F. (2002). Systematic power-
performance trade-off in MPEG-4 by means of selective function inlining steered by address
optimisation opportunities. Design, Automation, and Test in Europe (DATE), pages 1072–
1079.

[palowireless, 2003] palowireless (2003). HomeRF Resource Center. http://www.homerf.org.

[Parker, 1992] Parker, K. P. (1992). The Boundary Scan Handbook. Kluwer Academic Press.

[Pino and Lee, 1995] Pino, J. L. and Lee, E. (1995). Hierarchical static scheduling of dataflow
graphs onto multiple processors. IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing.

[Poseidon, 2003] Poseidon (2003). Documentation for Poseidon for UML. http://www.
gentleware.com/ index.php?id=documentation.

[Press, 2003] Press, D. (2003). Guidelines for Failure Mode and Effects Analysis for Automo-
tive, Aerospace and General Manufacturing Industries. CRC Press.

[Ramamritham, 2002] Ramamritham, K. (2002). System support for real-time embedded sys-
tems. in: Tutorial 1, 39th Design Automation Conference (DAC).

[Ramamritham et al., 1998] Ramamritham, K., Shen, C., Gonzalez, O., Sen, S., and Shir-
gurkar, S. B. (1998). Using Windows NT for real-time applications: Experimental obser-
vations and recommendations. IEEE Real-Time Technology and Applications Symposium
(RTAS), pages 102–111.

[Reisig, 1985] Reisig, W. (1985). Petri nets. Springer Verlag.

[Müller et al., 2003] Müller, W., Rosenstiel, W., and Ruf, J. (2003). SystemC – Methodologies
and Applications. Kluwer Academic Publications.

[Neumann, 1995] Neumann, P. G. (1995). Computer Related Risks. Addison Wesley.

[Niemann, 1998] Niemann, R. (1998). Hardware/Software Co-Design for Data-Flow Domi-
nated Embedded Systems. Kluwer Academic Publishers.

[Nilsen, 2004] Nilsen, K. (2004). Real-Time Java. http://www.newmonics.com/about/ tech/
realjava.shtml.



223

[Sangiovanni-Vincentelli, 2002] Sangiovanni-Vincentelli, A. (2002). The context for platform-
based design. IEEE Design & Test of Computers, page 120.

[Schmitz et al., 2002] Schmitz, M., Al-Hashimi, B., and Eles, P. (2002). Energy-efficient map-
ping and scheduling for dvs enabled distributed embedded systems. Design, Automation
and Test in Europe (DATE), pages 514–521.

[SDL Forum Society, 2003a] SDL Forum Society (2003a). Home page. http://www.sdl-forum.
org.

[SDL Forum Society, 2003b] SDL Forum Society (2003b). List of commercial tools. http:
//www.sdl-forum.org/Tools/Commercial.htm.

[Sedgewick, 1988] Sedgewick, R. (1988). Algorithms. Addison-Wesley.

[SEMATECH, 2003] SEMATECH (2003). International technology roadmap for semiconduc-
tors (ITRS). http://public.itrs.net.

[Sha et al., 1990] Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance proto-
cols: An approach to real-time synchronisation. IEEE Trans. on Computers, pages 1175–
1185.

[Shi and Brodersen, 2003] Shi, C. and Brodersen, R. (2003). An automated floating-point to
fixed-point conversion methodology. Int. Conf. on Audio Speed and Signal Processing
(ICASSP), pages 529–532.

[Simunic et al., 2000] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and Micheli, G. D.
(2000). Energy efficient design of portable wireless devices. Intern. Symp. on Low Power
Electronics and Design (ISLPED), pages 49–54.

[Simunic et al., 2001] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and Micheli, G. D.
(2001). Dynamic voltage scaling and power management for portable systems. Design
Automation Conference (DAC), pages 524–529.

[Simunic et al., 1999] Simunic, T., Benini, L., and De Micheli, G. (1999). Cycle-accurate
simulation of energy consumption in embedded systems. Design Automation Conference
(DAC), pages 876–872.

[Society for Display Technology, 2003] Society for Display Technology (2003). Home page.
http://www.sid.org.

[Spivey, 1992] Spivey, M. (1992). The Z Notation: A Reference Manual. Prentice Hall Inter-
national Series in Computer Science, 2nd edition.

[Rixner et al., 2000] Rixner, S., Dally, W. J., Khailany, B., Mattson, P., Kapasi, U. J., and
Owens, J. D. (2000). Register organization for media processing. 6th Intern. Symp. on
High-Performance Computer Architecture, pages 375–386.

[Russell and Jacome, 1998] Russell, T. and Jacome, M. F. (1998). Software power estimation
and optimization for high performance, 32-bit embedded processors. Proc. International
Conference on Computer Design (ICCD), pages 328–333.

[Ryan, 1995] Ryan, M. (1995). Market focus – insight into markets that are making the news
in EE Times. http:// techweb.cmp.com/ techweb/eet/embedded/embedded.html(Sept.11).

References



224 EMBEDDED SYSTEM DESIGN

[Steinke et al., 2001] Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel, P. (2001). An
accurate and fine grain instruction-level energy model supporting software optimizations.
Proc. of the International Workshop on Power and Timing Modeling, Optimization and Sim-
ulation (PATMOS).

[Steinke et al., 2002b] Steinke, S., L.Wehmeyer, Lee, B.-S., and Marwedel, P. (2002b). As-
signing program and data objects to scratchpad for energy reduction. Design, Automation
and Test in Europe (DATE), pages 409–417.

[Stiller, 2000] Stiller, A. (2000). New processors (in German). c’t, 22:52.

[Storey, 1996] Storey, N. (1996). Safety-critical Computer Systems. Addison Wesley.

[Stritter and Gunter, 1979] Stritter, E. and Gunter, T. (1979). Microprocessor architecture for
a changing world: The Motorola 68000. IEEE Computer, 12:43–52.

[Sudarsanam, 1997] Sudarsanam, A. (1997). SPAM compiler release. http://www.ee.
princeton.edu/∼spam/release.html.

[Sudarsanam et al., 1997] Sudarsanam, A., Liao, S., and Devadas, S. (1997). Analysis and
evaluation of address arithmetic capabilities in custom DSP architectures. Design Automa-
tion Conference (DAC), pages 287–292.

[Sudarsanam and Malik, 1995] Sudarsanam, A. and Malik, S. (1995). Memory bank and reg-
ister allocation in software synthesis for ASIPs. Intern. Conf. on Computer-Aided Design
(ICCAD), pages 388–392.

[Synopsys, 2005] Synopsys (2005). System studio. http://www.synopsys.com/products/
cocentric studio.

[SystemC, 2002] SystemC (2002). Home page. http://www.SystemC.org.

[Takada, 2001] Takada, H. (2001). Real-time operating system for embedded systems. in:
M. Imai and N. Yoshida (eds.): Tutorial 2 – Software Development Methods for Embedded
Systems, Asia South-Pacific Design Automation Conference (ASP-DAC).

[Tan et al., 2003] Tan, T. K., Raghunathan, A., and Jha, N. K. (2003). Software architectural
transformations: A new approach to low energy embedded software. Design, Automation
and Test in Europe (DATE), pages 11046–11051.

[Teich et al., 1999] Teich, J., Zitzler, E., and Bhattacharyya, S. (1999). 3D exploration of soft-
ware schedules for DSP algorithms. CODES’99, page 168pp.

[Stankovic and Ramamritham, 1991] Stankovic, J. and Ramamritham, K. (1991). The Spring
kernel: a new paradigm for real-time systems. IEEE Software, 8:62–72.

[Stankovic et al., 1998] Stankovic, J., Spuri, M., Ramamritham, K., and Buttazzo, G. (1998).
Deadline Scheduling for Real-Time Systems, EDF and related algorithms. Kluwer Aca-
demic Publishers.

[Steinke et al., 2002a] Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan,
M., and Marwedel, P. (2002a). Reducing energy consumption by dynamic copying of in-
structions onto onchip memory. Int. Symp. on System Synthesis (ISSS), pages 213–218.



225

[The SUIF group, 2003] The SUIF group (2003). SUIF compiler system. http:// suif.stanford.
edu.

[Thiébaut, 1995] Thiébaut, D. (1995). Parallel programming in C for the transputer. http:
//maven.smith.edu/∼thiebaut/ transputer/descript.html.

[Thoen and Catthoor, 2000] Thoen, F. and Catthoor, F. (2000). Modelling, Verification and
Exploration of Task-Level Concurrency in Real-Time Embedded Systems. Kluwer Academic
Publishers.

[Thomas and Moorby, 1991] Thomas, D. E. and Moorby, P. (1991). The verilog hardware
description language. Kluwer Academic Publishers.

[TimeSys Inc., 2003] TimeSys Inc. (2003). Home page. http://www.timesys.com.

[Tiwari et al., 1994] Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded
software: A first step towards software power minimization. IEEE Trans. On VLSI Systems,
pages 437–445.

[Transmeta, 2005] Transmeta, I. (2005). Support: Technical documentations. http://www.
transmeta.com/developers/ techdocs.html.

[Vaandrager, 1998] Vaandrager, F. (1998). Lectures on embedded systems. in Rozenberg,
Vaandrager (eds), LNCS, Vol. 1494.

[Vahid, 1995] Vahid, F. (1995). Procedure exlining. Int. Symp. on System Synthesis (ISSS),
pages 84–89.

[Vahid, 2002] Vahid, F. (2002). Embedded System Design. John Wiley& Sons.

[van de Wiel, 2002] van de Wiel, R. (2002). The code compaction bibliography. This source
has become unavailable, check http://www.iro.umontreal.ca/∼latendre/codeCompression/
codeCompression/node1.html instead.

[Vladimirescu, 1987] Vladimirescu, A. (1987). SPICE user’s guide. Northwest Laboratory for
Integrated Systems, Seattle.

[Vogels and Gielen, 2003] Vogels, M. and Gielen, G. (2003). Figure of merit based selection
of A/D converters. Design, Automation and Test in Europe (DATE), pages 1190–1191.

[Wagner and Leupers, 2002] Wagner, J. and Leupers, R. (2002). Advanced code generation for
network processors with bit packet addressing. Workshop on Network Processors (NP1).

[Telelogic, 1999] Telelogic (1999). Real-Time Extensions to UML. http://www.telelogic.com/
help/search/ index.cfm.

[Telelogic AB, 2003] Telelogic AB (2003). Home page. http://www.telelogic.com.

[Tensilica Inc., 2003] Tensilica Inc. (2003). Home page. http://www.tensilica.com.

[Tewari, 2001] Tewari, A. (2001). Modern Control Design with MATLAB and SIMULINK.
John Wiley and Sons Ltd.

[The Dobelle Institute, 2003] The Dobelle Institute (2003). Home page. http://www.dobelle.
com.

References



226 EMBEDDED SYSTEM DESIGN

[Willems et al., 1997] Willems, M., Bürsgens, V., Keding, H., Grötker, T., and Meyr, H. (1997).
System level fixed-point design based on an interpolative approach. Design Automation
Conference (DAC), pages 293–298.

[Wilton and Jouppi, 1996] Wilton, S. and Jouppi, N. (1996). CACTI: An enhanced access and
cycle time model. Int. Journal on Solid State Circuits, 31(5):677–688.

[Wind River Systems, 2003] Wind River Systems (2003). Web pages. http://www.windriver.
com.

[Winkler, 2002] Winkler, J. (2002). The CHILL homepage. http://www1.informatik.uni-jena.
de/ languages/chill/ chill.htm.

[Wolf, 2001] Wolf, W. (2001). Computers as Components. Morgan Kaufmann Publishers.

[Wolsey, 1998] Wolsey, L. (1998). Integer Programming. Jon Wiley & Sons.

[Wong et al., 2001] Wong, C., Marchal, P., Yang, P., Prayati, A., Catthoor, F., Lauwereins, R.,
Verkest, D., and Man, H. D. (2001). Task concurrency management methodology to sched-
ule the MPEG4 IM1 player on a highly parallel processor platform. 9th Intern. Symp. on
Hardware/Software Codesign (CODES), pages 170–177.

[Xue, 2000] Xue, J. (2000). Loop tiling for parallelism. Kluwer Academic Publishers.

[Young, 1982] Young, S. (1982). Real Time Languages –design and development–. Ellis Hor-
wood.

[Wedde and Lind, 1998] Wedde, H. and Lind, J. (1998). Integration of task scheduling and file
services in the safety-critical system MELODY. EUROMICRO ’98 Workshop on Real-Time
Systems, IEEE Computer Society Press, page 18pp.

[Wegener, 2000] Wegener, I. (2000). Branching programs and binary decision diagrams –
Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications.

[Weiser, 2003] Weiser, M. (2003). Ubiquitous computing. http://www.ubiq.com/hypertext/
weiser/UbiHome.html.

[Weste et al., 2000] Weste, N. H. H., Eshraghian, K., Michael, S., Michael, J. S., and Smith,
J. S. (2000). Principles of CMOS VLSI Design: A Systems Perspective. Addision-Wesley.



About the Author

Peter Marwedel

Peter Marwedel was born in Hamburg, Germany. He received his
PhD in Physics from the University of Kiel, Germany, in 1974.
From 1974 to 1989, he was a faculty member of the Institute for
Computer Science and Applied Mathematics at the same Univer-
sity. He has been a professor at the University of Dortmund, Ger-
many, since 1989. He is heading the embedded systems group at
the computer science department and is also chairing ICD e.V.,
a local company specializing in technology transfer. Through
ICD, the knowledge about compilers for embedded processors is
incorporated into commercial products and is made available to
external customers. Dr. Marwedel was a visiting professor of the
University of Paderborn in 1985/1986 and of the University of
California at Irvine in 1995. He served as Dean of the Computer

Science Department from 1992 to 1995. Dr. Marwedel has been active in making the DATE
conference successful and in initiating the SCOPES series of workshops. He started to work on
high-level synthesis in 1975 (in the context of the MIMOLA project) and focused on the synthe-
sis of very long instruction word (VLIW) machines. Later, he added compilation for embedded
processors (with emphasis on retargetability) to his scope. His projects also include synthesis
of self-test programs for processors. His work comprises codesign, energy-aware compilation.
Recent work on multimedia-based training led to the design of the RaVi multimedia units (see
//ls12-www.cs.uni-dortmund.de/ravi).

Dr. Marwedel is a member of ACM, IEEE CS, and Gesellschaft für Informatik (GI).

He is married and has two daughters and a son. His hobbies include skiing, model railways and
photography.

E-mail: peter.marwedel@udo.edu

Web-site: http://ls12-www.cs.uni-dortmund.de/∼marwedel

227



List of Figures

0.1 Positioning of the topics of this book

1.1 Influence of embedded systems on ubiquitous computing 5

1.2 SMARTpen 6

1.3 Controlling a valve 7

1.4 Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl
für Angewandte Mechanik, TU München), c©TU München 8

1.5 Simplified design information flow 10

2.1 State diagram with exception k 15

2.2 State diagram 18

2.3 Hierarchical state diagram 19

2.4 State diagram using the default state mechanism 20

2.5 State diagram using the history and the default state
mechanism 21

2.6 Combining the symbols for the history and the default
state mechanism 21

2.7 Answering machine 22

2.8 Answering machine with modified on/off switch processing 22

2.9 Timer in StateCharts 23

2.10 Servicing the incoming line in Lproc 23

2.11 Mutually dependent assignments 25

229

xv



230 EMBEDDED SYSTEM DESIGN

2.12 Cross-coupled registers 25

2.13 Steps during the execution of a StateCharts model 26

2.14 Symbols used in the graphical form of SDL 31

2.15 FSM described in SDL 31

2.16 SDL-representation of fig. 2.15 31

2.17 Declarations, assignments and decisions in SDL 32

2.18 SDL interprocess communication 32

2.19 Process interaction diagram 33

2.20 Describing signal recipients 33

2.21 SDL block 34

2.22 SDL system 34

2.23 SDL hierarchy 34

2.24 Using timer T 35

2.25 Small computer network described in SDL 35

2.26 Protocol stacks represented in SDL 36

2.27 Single track railroad segment 37

2.28 Using resource “track” 37

2.29 Freeing resource “track” 38

2.30 Conflict for resource “track” 38

2.31 Model of Thalys trains running between Amsterdam,
Cologne, Brussels, and Paris 39

2.32 Nets which are not pure (left) and not simple (right) 40

2.33 Generation of a new marking 41

2.34 The dining philosophers problem 43

2.35 Place/transition net model of the dining philosophers problem 43

2.36 Predicate/transition net model of the dining philoso-
phers problem 44

2.37 Message sequence diagram 45



List of Figures 231

2.38 Railway traffic displayed by a message sequence dia-
gram (courtesy H. Brändli, IVT, ETH Zürich), c©ETH
Zürich 46

2.39 Segment from an UML sequence diagram 47

2.40 Activity diagram [Kobryn, 2001] 48

2.41 Use case example 49

2.42 Dependence graph 50

2.43 Task graphs including timing information 51

2.44 Task graphs including I/O-nodes and edges 51

2.45 Task graph including jobs of a periodic task 52

2.46 Hierarchical task graph 53

2.47 Graphical representations of synchronous data flow 54

2.48 An entity consists of an entity declaration and architectures 60

2.49 Full-adder and its interface signals 60

2.50 Schematic describing structural body of the full adder 61

2.51 Outputs that can be effectively disconnected from a wire 64

2.52 Right output dominates bus 64

2.53 Partial order for value set {’0’, ’1’, ’Z’, ’X’} 65

2.54 Output using depletion transistor 65

2.55 Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’} 66

2.56 Pre-charging a bus 67

2.57 Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’,
’h’, ’l’, ’w’} 67

2.58 VHDL simulation cycles 71

2.59 RS-Flipflop 72

2.60 δ cycles for RS-flip-flop 73

2.61 Structural hierarchy of SpecC example 76

2.62 Language comparison 82

2.63 Using various languages in combination 83



232 EMBEDDED SYSTEM DESIGN

3.1 Simplified design information flow 87

3.2 Hardware in the loop 88

3.3 Acceleration sensor (courtesy S. Bütgenbach, IMT, TU
Braunschweig), c©TU Braunschweig, Germany 89

3.4 Sample-and-hold-circuit 91

3.5 Flash A/D converter 92

3.6 Circuit using successive approximation 93

3.7 Single-ended signaling 95

3.8 Differential signaling 96

3.9 Hardware efficiency 99

3.10 Dynamic power management states of the StrongArm
Processor SA 1100 101

3.11 Decompression of compressed instructions 103

3.12 Re-encoding THUMB into ARM instructions 104

3.13 Dictionary approach for instruction compression 105

3.14 Internal architecture of the ADSP 2100 processor 106

3.15 AGU using special address registers 108

3.16 Wrap-around vs. saturating arithmetic for unsigned integers 109

3.17 Parameters of a fixed-point number system 109

3.18 Using 64 bit registers for packed words 110

3.19 VLIW architecture (example) 111

3.20 Instruction packets for TMS 320C6xx 112

3.21 Partitioned register files for TMS 320C6xx 113

3.22 M3-DSP (simplified) 113

3.23 Branch instruction and delay slots 114

3.24 Floor-plan of Virtex II FPGAs 116

3.25 Virtex II CLB 117

3.26 Virtex II Slice (simplified) 117

3.27 Cycle time and power as a function of the memory size 118



List of Figures 233

3.28 Increasing gap between processor and memory speeds 119

3.29 Memory map with scratch-pad included 119

3.30 Energy consumption per scratch pad and cache access 120

3.31 D/A-converter 121

3.32 Microsystem technology based actuator motor (partial
view; courtesy E. Obermeier, MAT, TU Berlin), c©TU Berlin 123

4.1 Simplified design information flow 126

4.2 Classes of scheduling algorithms 128

4.3 Task descriptor list in a TT operating system 129

4.4 Definition of the laxity of a task 131

4.5 EDF schedule 132

4.6 Least laxity schedule 133

4.7 Scheduler needs to leave processor idle 134

4.8 Precedence graph and schedule 135

4.9 Notation used for time intervals 136

4.10 Right hand side of equation 4.5 137

4.11 Example of a schedule generated with RM scheduling 138

4.12 RM schedule does not meet deadline at time 8 138

4.13 EDF generated schedule for the example of 4.12 139

4.14 Priority inversion for two tasks 140

4.15 Priority inversion with potentially large delay 141

4.16 Priority inheritance for the example of fig. 4.15 142

4.17 Real-time kernel (left) vs. general purpose OS (right) 146

4.18 Hybrid OSs 147

4.19 Access to remote objects using CORBA 149

5.1 Simplified design information flow 151

5.2 Platform-based design 152

5.3 Merging of tasks 154

5.4 Splitting of tasks 154



234 EMBEDDED SYSTEM DESIGN

5.5 System specification 155

5.6 Generated software tasks 156

5.7 Memory layout for two-dimensional array p[j][k] in C 159

5.8 Access pattern for unblocked matrix multiplication 161

5.9 Access pattern for tiled/blocked matrix multiplication 162

5.10 Splitting image processing into regular and special cases 163

5.11 Results for loop splitting 165

5.12 Reference patterns for arrays 165

5.13 Unfolded (left) and inter-array folded (right) arrays 166

5.14 Intra-array folded arrays 166

5.15 General view of hardware/software partitioning 168

5.16 Merging of task nodes mapped to the same hardware
component 170

5.17 Task graph 175

5.18 Design space for audio lab 177

5.19 Energy reduction by compiler-based mapping to scratch-
pad for bubble sort 181

5.20 Comparison of memory layouts 182

5.21 Memory allocation for access sequence (b, d, a, c, d, c)
for a single address register A 182

5.22 Reduction of the cycle count by vectorization for the
M3-DSP 184

5.23 Possible voltage schedule 187

5.24 Two more possible voltage schedules 187

5.25 Codesign methodology possible with SpecC 191

5.26 Global view of IMEC design flow 192

5.27 Pareto curves for processor combinations 2 and 3 193

5.28 COSYMA design flow 194

6.1 Simplified design information flow 200

6.2 Scan path design 203



List of Figures 235

6.3 BILBO 204

6.4 Segment from processor hardware 205

6.5 Fault tree 208

6.6 Inputs for model checking 210



Index

A/D-converter, 91
ACID-property, 148
actor, 17
actuator, 2, 122
ADA, 55
address generation unit, 108, 183
address register, 182
ambient intelligence, 5, 99, 232
API, 125, 131, 147
application domains, 15
application-specific circuit (ASIC), 98, 100
arithmetic

fixed-point ∼, 109, 157
floating-point ∼, 157
saturating ∼, 108, 109

ARM, 104
artificial eye, 90
ASIC, 98, 100, 115
availability, 2

basic block, 195
behavior

deterministic ∼, 18, 25, 28, 72, 74
non-deterministic ∼, 27
non-functional ∼, 16
real-time ∼, 96

BILBO, 204
Binary Decision Diagram (BDD), 81, 209, 210
Bluetooth, 98
boundary scan, 204
branch delay penalty, 114, 185
broadcast, 26, 28, 30, 79
building

smart ∼, 1, 7

cache, 110, 119
CACTI cache estimation tool, 120
CardJava, 59
causal dependence, 50

channel, 17, 33
charge-coupled devices (CCD), 89
Chill, 78
clock synchronization, 145
code size, 2, 181, 183
communication, 15, 29, 93

blocking ∼, 55
non-blocking ∼, 29

compiler, 177
energy-aware ∼, 178
for digital signal processor, 181
retargetable ∼, 178, 185

composability, 144
compression

dictionary-based ∼, 105
computer

disappearing ∼, xi, 1, 3
computing

pervasive ∼, 1, 5
ubiquitous ∼, 5

concurrency, 15
condition/event net, 40
configurability, 143
configuration

link-time ∼, 146
context switch, 143, 154
contiguous files, 145
controller area network (CAN), 97
COOL, 167, 168, 195
cost, 3, 173

estimated ∼, 127
function for scheduling, 130
function of integer programming, 176
model for energy, 179
model of COOL, 169
model of integer programming, 171
of ASICs, 100
of CCDs, 89
of communication, 94

237



238 EMBEDDED SYSTEM DESIGN

of damages, 207
of energy, 100
of floating point arithmetic, 109
of second instruction set, 105
of testing, 205
of wiring, 97

COSYMA, 194
coverage, 202
critical section, 29, 140
CSA-theory, 63
CSMA/CA, 97
CSP, 55, 196
CTL, 210
curriculum, xii
cyclic redundancy check (CRC), 204

D/A-converter, 121
damage, 207
dataflow, 17

synchronous ∼, 18, 196
deadline, 30, 128, 130, 132, 136, 138, 139, 145
deadline interval, 131, 135
DECT, 98
dependability, 2, 14, 83, 145, 207
dependence graph, 50
depletion transistor, 65
design flow, 10, 87, 151, 200
design for testability, 202
design space estimation, 190
design space exploration, 192
diagnosability, 95
diagrams

of UML, 47
differential signaling, 95
dining philosophers problem, 44
discrete event, 17, 196
dispatcher, 129
dynamic power management (DPM), 189
dynamic voltage scaling (DVS), 101, 102, 186,

187, 192

eCos, 143
EDF, 139
efficiency, 2, 14, 94

code-size ∼, 102
energy ∼, 2, 101, 119
run-time ∼, 3, 105

electro-magnetic compatibility (EMC), 200
embedded system(s), 1

hardware, 87
market of ∼, 8

Embedded Windows XP, 148
energy, 2, 99, 178
EPIC, 111
Estelle, 78
Esterel, 28, 79, 196
European installation bus (EIB), 98

event, 14, 36, 40, 71, 79
exception, 14, 20, 21, 58, 78
executability, 15

failure mode and effect analysis (FMEA), 208
fault

injection, 207
model, 202, 205
simulation, 206
tolerance, 94
tree, 208
tree analysis (FTA), 207

field programmable gate arrays (FPGAs), 116,
194, 201

FIFO, 17, 53, 54, 78
in SDL, 32

finite state machine (FSM), 16, 18, 20, 30, 31,
196, 210

communicating ∼, 17
formal verification, 209

garbage collection, 58, 145
gated clocking, 101
granularity, 52, 195

hardware description language, 59
hardware in the loop, 88
hardware/software codesign, 151
hardware/software partitioning, 167, 190, 195
hazard, 207
hierarchy, 13

in SDL, 33
in StateCharts, 19
leaf, 169
leaves, 20, 34

history mechanism, 20
homing sequence, 203

IEC60848, 78
IEEE 1076, 59
IEEE 1164, 62
IEEE 1364, 75
IEEE 802.11, 98
IMEC, 191
inlining, 185
input, 14, 16, 19, 27, 30, 32, 51, 53–55, 60
input/output, 30
instruction level parallelism, 183
instruction set architecture (ISA), 80
instruction set level, 80
integer programming, 170, 171, 181, 188, 189
intellectual property, 125
interrupt, 144, 145
ITRON, 146

Java, 58, 145
job, 128, 135
JTAG, 204



239

knapsack problem, 181

lab, xiv
language, 13

synchronous ∼, 27
laxity, 131, 135
LDF, 134
locality, 161
logic

first-order ∼, 209
higher order ∼, 210
multi-valued ∼, 62
propositional ∼, 209
reconfigurable ∼, 115

loop
blocking, 160
fission, 160
fusion, 160
permutation, 159
splitting, 163
tiling, 160
unrolling, 160

LOTOS, 78

maintainability, 2, 95
MAP, 98
marking, 41
MATLAB, 79, 80
maximum lateness, 130
memory, 118

bank, 110
hierarchy, 180
layout, 182

message passing, 28
asynchronous ∼, 17, 29
synchronous ∼, 18

message sequence charts (MSC), 44
microcontroller, 115
middleware, 125
MIMOLA, 59
model

discrete event ∼, 17
layout level ∼, 82
of computation, 16
switch-level ∼, 81

module chart, 27
MSC, 44, 45
multi-thread graph, 52
multiply/accumulate instruction, 110
mutex primitives, 140
mutual exclusion, 37, 51, 145

NP-hard, 209

object orientation, 15, 196
occam, 55
OCTOPUS, 196

open collector circuit, 63
operating system

driver, 143
kernel, 146
real-time ∼, 125, 144

optimization, 163, 168, 170–172, 178–181,
183–186, 190, 193

high-level ∼, 157
OSEK, 146

Pareto curves, 192
Pearl, 78
period, 128
periodic schedules, 52
Petri net, 36, 155
place/transition net, 40
platform-based design, 87, 125
portability, 16
post-PC era, xi, 9
power, 99, 178
power models, 179
pre-charging, 66
pre-requisites, xii
predecessor, 50
predicate/transition net, 42
predicated execution, 113, 185
predictability, 126, 130, 140, 144, 149
prefetching, 161
priority ceiling protocol, 143
priority inheritance, 141
priority inversion, 140
privacy, 95
processes, 28
processor, 100, 178

DSP-∼, 108
multimedia ∼, 110, 184
network ∼, 185
very long instruction word (VLIW) ∼,

111
VLIW ∼, 184

program
self-test ∼, 205

protection, 143
Ptolemy, 195

rapid prototyping, 201
readability, 15
real-time, 58

behavior, 94
capability, 110
constraint, 3
CORBA, 149
data bases, 125, 148
hard ∼ constraint, 4
kernel, 145
POSIX, 150

Kahn process network, 53, 19

Index

6



240 EMBEDDED SYSTEM DESIGN

real-time operating system (RTOS), 10, 127,
143–146, 148, 156

register file, 110, 112, 183
register-transfer level, 81
reliability, 2
rendez-vous, 29, 56
resolution function, 64
resource allocation, 147
robotics, 7, 10
robustness, 94, 95
Rosetta, 78
row major order, 159, 161
RTOS, 144

safety, 2, 83, 143
safety case, 208
sample-and-hold circuit, 90
scan design, 202
scan path, 203
schedulability tests, 130
scheduling, 127, 128, 145

dynamic ∼, 129
earliest deadline first ∼, 139
instruction ∼, 180
least laxity ∼, 133
non-preemptive ∼, 128
optimal ∼, 135
rate monotonic ∼, 136

scratch pad memory (SPM), 119, 181
SDF, 54, 196
SDL, 30
security, 2, 143
select-statement, 57, 68
semantics

SDL ∼, 32
StateChart ∼, 24
VHDL ∼, 69

sensor, 2, 88
bio-metrical ∼, 90
image ∼, 89

sequence diagram, 47
shared memory, 28
signal-to-noise-ration (SNR), 158
signaling

differential ∼, 96
single-ended ∼, 95

Silage, 78
SIMD-instructions, 110
simulation, 200

bit-true ∼, 80
cycle-true ∼, 81

Simulink, 79
slack, 131, 135
slides, xiv
SoC, 3, 103
SpecC, 76, 190
SpecCharts, 78

specification languages, 13
sporadic task server, 140
state

ancestor ∼, 19
AND-super ∼, 21
basic ∼, 19
default ∼, 20
diagram, 15, 18
OR-super ∼, 19
super ∼, 19

StateCharts, 18
STEP 7, 78
stuck-at-fault, 202
successive approximation, 92
successor, 50
synchronization, 15, 28
system

dedicated ∼, 3
embedded ∼, 5
hybrid ∼, 4
reactive ∼, 4, 196
time triggered ∼, 129

system level, 80
system on a chip (SoC), 3, 58, 103, 167, 190
SystemC, 73, 80
SystemVerilog, 75

task
aperiodic ∼, 128
concurrency management, 152, 153, 192
periodic ∼, 128, 135
sporadic ∼, 128, 130

task graph, 50
node splitting, 154

termination, 16
test, 201
testability, 202
THUMB, 104
time, 45, 50, 60, 69, 74, 78
time services, 145
timer, 23, 34

in SDL, 35
timing, 29
timing behavior, 14
timing information, 50
transaction level modeling, 80

UML, 45
unified modeling language, 45
user-interface, 3

validation, 199
variable voltage processor, 188
Verilog, 75
VHDL, 25, 59

architecture, 60
entity, 60
port map, 62



241

signal driver, 64
VHDL-AMS, 80
VxWORKS, 146

WCET, 126
weight, 3

Wind River Systems, 148
Windows CE, 148
worst-case execution time, 126

Z language, 78
zero-overhead loop instruction, 107, 160, 184

Index


	



