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While in principle everything may be under
strict control within the machine, the remote
space-time surroundings are in the general
case known to the system by extrapolation
only, that is predicted with some uncertainty.
As psychological functionalism, when
actually carried out, has thus been found to
be forced into probabilism, a cybernetics
with ecological involvement must contain
probabilistic elements. – Egon Brunswik,
1950



Preface

This work was created from the statement “But, all you have to do is make the robot
recognize its surroundings. Salamanders do it, and how complex are they?” Little
did we know what a long path was started with those simple words. This book is
a small step on that path, which we hope leads to robots that can serve as true and
useful assistants to humans. At the least, we hope for some help with the tasks that
are described by the 3 d**** words (dull, dirty, or dangerous).

Fair warning, this work is a synthesis of ideas from many disciplines. As such,
we have depended on the work of many other researchers and philosophers. The
heart of this work, the lens model, comes from the work of Egon Brunswik. Even
though he died in the 1950’s, his ideas are still strong enough to resonate into the
2000’s and into our robot. Another researcher who’s work has greatly influenced
this work is Walter Freeman, Professor Emeritus of Neurobiology at the University
of California, Berkeley. We have relied heavily on his work on preafference and
attention to guide the development of our robot. In addition, we have used research
from a myriad of different fields. Our huge thanks to all the researchers who’s work
we used to synthesize this new theory.

Denver, CO Louise F. Gunderson
July 2008 James P. Gunderson
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Chapter 1
Introduction

Where is my robot?
You know - the one that acts like the ones in the movies; the one that I just tell

what to do, and it goes out and does it. If it has problems, it overcomes them; if
something in the world changes, it deals with the changes. The robot that we can
trust to do the dirty, dangerous jobs out in the real world - where is that robot? What
is preventing us from building and deploying robots like this? While there are a
number of non-trivial and necessary hardware issues, the critical problem does not
seem to be hardware related. We have many examples of small, simple systems that
will (more or less) vacuum a floor, or mow a lawn, or pick up discarded soda cans
in an office. But these systems have a hard time dealing with new situations, like a
t-shirt tossed on the floor, or the neighbor’s cat sunning itself in the yard. We also
have lots of teleoperated systems, from Predator aircraft, to deep sea submersibles,
to bomb disposal robots, to remote controlled inspection systems. These systems
can deal with changes to the world and significant obstacles provided that one or
more humans are in the loop to tell the robot what to do.

So, what happens when a person takes over the joystick, and looks through the
low-resolution, narrow field of view camera of a perimeter-patrol security robot?
Suddenly, where the robot was confounded by simple obstacles and easy to fix situ-
ations, the teleoperated system is able to achieve its goals and complete its mission.
This is despite the fact that in place of a tight sensor-effector loop, we now have a
long delay between taking an action and seeing the results (very long in the case of
NASA’s Mars rovers). We have the same sensor data, we have the same effector ca-
pabilities, we have added a massive delay yet the system performs better. Of course,
it is easy to say that the human is just more intelligent (whatever that means), but
that does not really answer the question. What is it that the human operator brings
to the system?

We believe that a major component of the answer is the ability to reify: the ability
to turn sensory data into symbolic information, which can be used to reason about
the situation, and then to turn a symbolic solution back into sensor/effector actions
that achieve a goal. This bridging process from sensor to symbol and back is the
focus of this book. Since it is the addition of a human to the system that seems to

1



2 1 Introduction

enable success, we draw heavily from current research into what biological systems
(primarily vertebrates) do to succeed the world, and how they do what they do.
We look at some research into cognition on a symbolic level, and research into the
physiology of biological entities on a physical (sensor/effector) level. From these
investigations we derive a computational model of reification, and an infrastructure
to support the mechanism. Finally, we detail the architecture that we have developed
to add a reification to existing robotic systems.

1.1 Bridging the Gap

There has long been a gulf between artificial intelligence researchers who focus on
deliberative symbol manipulation and those who focus on embedding control sys-
tems into robots. Much of this gulf has been ascribed to the different approaches,
working from the symbolic down versus working from the control system up. The
general consensus has been that as the two ends work toward the middle, the gulf
will narrow and narrow until it disappears. Underlying both these beliefs is the as-
sumption that once the core research is addressed, it will just be a matter of pushing
the research frontier toward the opposing viewpoint until they meet. If one contin-
ues the bottom up (or top down) approach long enough, eventually one gets to the
top (or bottom) and the complete problem is solved. However, recent research has
suggested that the gulf may not be bridgeable by work from either side, rather it may
require a specific research approach that is different from either the sensor-based or
the symbolic domains.

From the viewpoint of the embedded systems approach, the critical task is the
recognition of physical and perceptual cues, while mapping those cues onto a sym-
bol system is outside the scope of the research. From the point of view of the delib-
erative approach, a symbol manipulation system is developed, and it is outside the
scope of the symbol system to recognize the physical and perceptual characteristics
that define the thing referred to by the symbol. A purely deliberative system might
be manipulating abstract strings such as ‘block’ and ‘red’. These abstract symbols
have no meaning other than the allowed manipulations in the symbol system. How-
ever, if these symbols are meant to refer to real-world objects or characteristics (e.g.,
if the things referred to have concrete or material existence) then the symbols must
correspond to objects in the real world to be effectively used. In recent research
the terms symbol grounding and symbol anchoring have been used to describe the
process as well.

In a recent paper by Coradeschi and Saffiotti[38], the argument is made that the
Symbol Grounding problem, as presented by Harnad[93], has features in common
with Pattern Recognition. Coradeschi and Saffiotti argue that these two problems
have an area of overlap (See Figure 1.1A), which also overlapped with the anchoring
problem. However, it is more likely that there is in fact no such area of overlap,
and that the process of anchoring or reification spans the gap between these two
domains, as in Figure 1.1B.
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The term reification is taken from philosophy and is defined[134] as “the process
of regarding or treating an abstraction or idea as if it had concrete or material exis-
tence.” Reification is a two way process, because there are two primary information
flows that must be maintained to effectively connect symbols to objects: one is the

symbols onto the objects. This problem is compounded by the fact that a symbol
system typically does not have direct access to the objects in the physical world
except via the mediation of the perceptual system.

1.1.1 Bidirectional Mapping

To be effective the reification bridge must be capable of answering two fundamental
questions:

1. How will symbols appear in the my sensors; and
2. How will this sensor pattern correspond to a symbol?

These correspond to the two functions that a reification system must provide (See
Figure 1.2). If the deliberative system has a reachable goal to achieve and a col-
lection of operators that it can apply to modify the world, it can (with sufficient
time and computational resources) find a sequence of actions or set of behaviors to
achieve that goal. This has been a solved problem since the earliest days of artifi-

Pattern
Recognition

Symbol
GroundingAnchoring

A

Pattern
Recognition

Symbol
GroundingReification

B

Fig. 1.1 Possible relationships of pattern recognition, symbol grounding, and reification. In A,
the problem of anchoring symbols to sensor/action patterns should be approachable by either top-
down or bottom-up improvements. However, in B the problem cannot be solved by either top-down
or bottom-up approaches, since there is no area of overlap. Rather, a third approach is required,
one that solves the reification problem first, which then provides the bridge between symbol and
sensors.

flow from objects in the physical world onto the symbols, the second is from the
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cial intelligence research. However, to achieve this goal in the real world the system
must be capable of finding the things in the real world needed to achieve each of
the actions. It is one thing to produce the step “Pick up the red block from on top
of the blue table,” it is quite another know what the sensor pattern that corresponds
to the symbols will appear like to its sensors; to find the red block in the real world
and grasp it. To be effective, the system needs the ability to build a sensor map that
corresponds to the expected state of the things in the real world. This map must
correspond to the symbols in the internal model. This is the process of determining
how symbols will appear in sensor data, and is one necessary function. The biologic
equivalent of this ability is preafference which will be discussed in detail in Chapter
3.1.2.

The second necessary function is the ability to create symbols out of the sen-
sor data. If one has a robot tasked to deliver mail around the office, it needs to be
capable of noticing the stairs as stairs, not as a series of parallel lines on a level
floor. Failure to correctly put the sensor data into a semantic context can result in
the robot tumbling down the stairs, when it thought it was simply crossing a deco-
ration on the floor. Without this ability, it is not possible for the perceptual system
to recognize exogenous changes to the world, which must be recognized to either
take opportunistic advantage of conditions or to avoid problems which crop up after
the plan has been put into effect. This is the symbol grounding problem, which we
call recognition, and will also be discussed in more detail later. These two basic
functions seem to be features common to almost all vertebrate brains. So it seems
reasonable to begin by looking at the research into primitive vertebrate cognition.

1.2 Reification and Preafference in Biological Entities

For any species to survive, the members of that species must be able to sense and
manipulate their environment so as to find food, avoid predators, and reproduce.
In the case of vertebrate species, these survival mechanisms require the ability to
map sensory data onto a neuronal representation, and to take the resulting behav-
ior choices and map those onto motor actions. They must perform this bidirectional

Fig. 1.2 Reification provides
a bidirectional mapping be-
tween the symbol system used
by the deliberative system and
the sensor based system.
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mapping between the sensory-motor systems and the (potentially primitive) delib-
erative system. Discussing only the problem of finding food, they must be able to
discover how their perceptions of the environment relate to the presence of food.
For extremely simple, non-vertebrate species (e.g., amoebas) this might be a purely
reactive mapping between chemical sensors on the surface and a gradient ascent
behavior. However, for more complex (e.g., vertebrate) species, there is a mapping
between the perception of sensory information, and some neuronal representation
that is manipulated to assure survival. This is the process of recognition. Conversely,
this vertebrate organism must be able, after sensing hunger, to know what features
of the environment to use in the search for food. Current research indicates that this
is done by priming the sensory cortex with the sensations to expect after taking goal
directed action. This is the process of preafference. The combiniation of these two
processes is called reification. Both of these processes are discussed in more detail
later.

While it is clear that humans can reify, it has been argued that more primitive
biological entities are simply “hardwired” reactive systems - they simply respond to
a stimulus without any cognition. However, it can be postulated that, in a changing
environment, an organism that relies only on an inherited reactive system will be at a
disadvantage to one that can reify. If this is true, one would expect to see reification
in very primitive organisms. This leads to the question “How complex does a brain
have to be before it can reify?”

Salamanders have been used for decades by scientists researching brain function.
While the nervous systems of all vertebrates have a common structural plan, the
salamanders and their allied species have preserved a type of brain structure which
closely resembles that of the most primitive amphibians[97]. These brains have most
of the critical functional areas that are shared by all vertebrates, yet their brains are
simple enough to allow clear research results. For example, amphibians do have
specialized, hardwired prey recognition cells, which allow for the recognition of an
object as potential prey[172]. This would suggest that they have the structure of a
hardwired reactive system. However, at least one amphibian, the tiger salamander,
can be trained to recognize a new scent, which implies that they are capable of
reification of new sensory input[51]. Reification occurs at a very low level in the
vertebrate brain. The reification methodology described in this book is guided by
the example of these very primitive brains. It will be described in more detail in
Chapter 3.

1.3 More Advanced Brains

Of course, it might be claimed that these simple creatures use this primitive process,
but we humans are more sophisticated and rely on a more advanced mechanism to
do the same thing. One of the reasons that the tiger salamander brain was chosen
as a model, is that the core functions of all mammalian brains (including ours) have
the same structural components as this primitive brain. It is clear that humans have
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some sort of a reification mechanism. Artists have long known that we interpret vi-
sual images into familiar (if distorted) representations. One practice to overcome
this mapping from the distal image to a distorted proximal image is to inverting the
images, and then draw the upside down image. This allows the artist to duplicate
what is actually there, rather than the interpreted image. Psychologists and philoso-
phers have addressed this non-conscious automatic mechanism for much longer than
artificial intelligence has been a discipline:

We do not see patches of color, but trees and houses; we hear, not indescribable sound, but
voices and violins[119].

It is clear that, in humans, the conscious mind deals not with low-level sensor data,
but with symbols. It is also clear that when we look for things in the environment we
do not look for “three orthogonal rectilinear surfaces of similar dimension, with a
reflective electromagnetic signal with a wavelength of approximately 650 nanome-
ters.” Instead we look for the red block, and some non-conscious mechanism trans-
lates this into the sensory/perceptual indicators that can be used to recognize the
block when we see it.

1.4 What This Book Is and What It Is Not

In this book, we construct a framework that can be used for the construction of a
biologically principled cybernetic brain. We use a mathematical model from cog-
nitive science to construct the Reification Engine. Freeman, among others,
has proposed that only a true working neuronal model of a brain can extract seman-
tics from sensory information[70]. While such a neuronally based model might be
necessary to build a human level intelligence, we believe that for simpler intelli-
gences, this level of fidelity is not required. Therefore, this book does not contain an
attempt to build a working neuronal model. Readers who are interested in that type
of work should look at work by Kosma[117] or Edelman[61], among others.

However, we do not believe that it is sufficient to simply describe an architecture
or a framework that might achieve a gain in intelligence. There is an enormous
gulf between the design and the reality, and the discipline of engineering is based
on bridging that gulf. Except where we specifically call out otherwise, all of the
theories and designs we present have been encoded and tested on an actual robot.
We have found that the practice of embodying the architecture has exposed problems
that can cause the design to fail. Among the aspects of the design that we have not
yet implemented is the learning side of the overall loop.

In addition, in order to be able to proceed with confidence and make claims
about the ability of the system, it is necessary to have complete confidence in the
underlying system. During the development of the software and hardware we have
made extensive use of automated testing. In addition we have done testing in the
robot’s ecosystem. If the test case requires the robot to travel across the room, and
return, we must wait, patiently (or not), for the robot to trundle there and back again.
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We feel that this level of testing is required to demonstrate that reification gives a
robot enough semantic intelligence to reason effectively and achieve goals in the
real world.

1.5 Structure of the Book

The first two chapters examine the clues provided by the brain structure of living
systems. In Chapter 2, we discuss some background material in biology and prob-
ability that is needed for the next chapter, in which we discuss the brain structure
of land vertebrates. Chapters 4 – 5 describe the computational framework needed
to support the Reification Engine and look at the embodiment of sample
robots. A cognitively based mathematical model, taken from the work of Egon
Brunswik, is described in Chapter 6. This is used to produce the design of the
Reification Engine which will be used to bridge the gap from the ‘world-
as-perceived’ to the ‘world-as-modeled’. We merger current research by cognitive
scientists, neurophysiologists, and researchers into artificial intelligence with this
model in Chapter 7 to complete the design for the Reification Engine. In
Chapters 8 – 10, the remaining cognitive structures required for a cybernetic brain
(memory and a deliberative system) are discussed. In Chapter 11, the construction
of the cybernetic brain from its constituent parts is discussed. In Chapter 12, we
discuss the unit testing used in the construction of the brain and the specific robotic
testing done to validate the claims of this book. Finally, in Chapter 13, we draw con-
clusions and discuss future work. This future work includes the need for the robotic
system to be able to learn from and adapt to changes in the world, including the
ability to add new types of knowledge to its model of the world, and to be able to
recognize and reason about new objects, tasks, and goals.

1.6 A Note on Typefaces and Terminology

The construction of the reification system draws on research from many different
disciplines, and each of these has its own terminology. Regardless of the background
of the reader, there will almost certainly be terms of art used in this book that are
unfamiliar. We have tried to compile a glossary of the less well known terms, and
when a term of art is introduced, we have generally called it out by using emphasis.
If the term is unfamiliar, please take a quick look at the glossary (located just before
the reference section), to make sure that we are using it in the way you expect.
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1.6.1 Anthropomorphization

Anthropomorphization is defined as “The attribution of human motivation, charac-
teristics, or behavior to nonhuman organisms or inanimate objects.” As you read
this you will see that we often refer to the robots as ‘he’ or ‘she.’ This is due to a
number of things, but high on the list is the fact that humans ascribe human charac-
teristics to many of the inanimate objects in their environments. If we treat our cars
as human-like, how much more should we anthropomorphize the human-like robots
that we are attempting to create. This process has one significant effect: it defines
our expectations of the object. Since we are designing an intelligent, autonomous
robot, we have similar expectations of the behavior of the robot and the behavior of
a servant. We will try to keep it to a minimum, but I am sure we will miss a few
references.

Trying to keep track of the many aspects of the biologically inspired design, the
implementation, and the concepts can be difficult. This is especially true when we
may be referring to a term from neuroanatomy, one from psychology, and a similar
one from the actual software that we built to embody the mechanism, all in the same
sentence. We have tried to be consistent with the use of different typefaces to call
out the various aspects. In general:

• Normal text is used for the body of the work, and for most psychological or
neuroanatomical terms, once they have been introduced;

• Italics are used to introduce a new term, or to set off the concept from the thing;
• Typewriter face is used when we are referring to a software component;

and finally,
• ‘single quotes’ are used to indicate a conceptual entity as opposed to the physical

thing it refers to, and to set off one term from another, when the context is so
complex that we need an additional mechanism (we have tried to keep this to a
minimum, really).



Chapter 2
Some background material on probability and
biology

In this book, we build a cognitive model that can deal with an uncertain and con-
stantly changing universe. We have ample evidence that living organisms have this
ability, and rely on it for daily survival. Rather than reinventing biology whenever
possible, we use living creatures, such as salamanders or other primitive land verte-
brates, to act as the design guide for the cognitive modules that must be present to
create a successful autonomous robot. However, in order to take advantage of these
biological examples, some of the basic assumptions that underly biology must also
be discussed. The focus of this chapter is summarized by the following questions:

• How do living systems deal with a probabilistic universe?
• How can we discuss these models in a principled way?
• If we are going to use living systems as our guide, why use salamanders and rats

instead of humans?

2.1 Layout

The general layout of this chapter is this: In Section 2.2, the features of the real
world that make a probability-aware system important are discussed. Since all nat-
ural organisms live in this probabilistic environment, it makes sense to look at how
these systems achieve the kind of performance that we desire in our robots. How-
ever, if we are going to derive our design from these biological entities, we need to
explore the concept of a biologically principled argument, rather than the engineer-
ing approach of a mathematically principled argument. The need for a biologically
principled argument is discussed in Section 2.3. The way in which an argument can
be constructed to make it biologically principled is presented in Section 2.4. Finally,
The reasons that we believe our model to be biologically principled are discussed.
This section also includes a discussion of the conservation of the traits that are im-
portant to the success of a species in a dynamic and uncertain environment, and we
will take a brief look at why we have chosen a biologically principled path, rather
than using a mathematically principled mechanism..

9
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2.2 Probability in the Real World

The use of simplifying assumptions is almost a history of science. From the earli-
est beginnings of scientific exploration the goal has been to turn a world perceived
as chaotic and unpredictable into a world that has order and determinism. To meet
this goal, time after time, the choice was made to simplify the model by eliminat-
ing the aspects that were unruly. The exemplar of this tendency is the science of
physics, which began the process of solving problems with assumptions like “In the
absence of air resistance,” and “Given a frictionless plane.” As long as what was
simplified away was not an essential characteristic of the phenomenon being stud-
ied, this process was very effective. The underlying conviction was that the world
was fundamentally a deterministic place, one which ran like clockwork, except for
this nagging unpleasantness associated with the fact the cannon ball did not always
hit the target, the pendulum began to slow down, and the boilers kept exploding.
But, if one could just measure everything a little more accurately, and calculate with
a few more digits, this pesky error term would continue to get smaller and smaller,
and in the limit, vanish. Or so it was believed until it became apparent that some
systems would never behave, some things could not be measured without changing
their values, and, finally, that the basic building blocks of the universe were funda-
mentally probabilistic[125]. The world was perceived as a chaotic and unpredictable
place because it is one; and nothing can be done about it.

In parallel with the developments in physics, the same progression occurred in
the area of machine intelligence. First, the simplifying assumption was made, that
intelligence is deterministic. Then, if one could just measure a little more accurately,
calculate with a few more digits, increase the computational power just a few more
orders of magnitude, the problems associated with deploying intelligent systems
into the real world would get smaller and smaller, and in the limit, vanish. More and
more current research is suggesting that this approach to autonomous robotics will
also fail, and that what is needed is to make the basic building blocks of intelligent
systems probabilistic[115, 151, 194].

Intelligent systems must model the world as uncertain, reason about observed
variability, and simply assume that nothing is certain. However, to be deployed into
the ‘real world’ and function effectively, the intelligent system must also be respon-
sive - having a robot that must stop for even a minute to re-compute a plan can be
inconvenient if the robot is blocking a doorway when it stops, or dangerous if it is
crossing a street. So a balance between the complexity of the representation and the
effectiveness of the results must be achieved.

Fortunately, we have around us living systems that have evolved to live (and
thrive) in a probabilistic world. For all living systems, their perception and their
mapping of symbols onto objects is necessarily probabilistic[162]. We know that
eyes, ears, and other biological sensors are just as prone to error as any electro-
mechanical sensor, and, as anyone who has knocked over a coffee cup, or missed a
easy shot on a pool table will attest, our ability to execute actions in the real world
has only a probability of success, not a guarantee. Living creatures succeed in a
complex, uncertain world, and do so by evaluating the probability of success of their
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plans. Even non-verbal animals make decisions which depend on an assessment of
probabilities[60], and their survival depends on making the correct assessment.

While the argument has been made that, in non-human species, these behaviors
are hardwired, ample research has been done to demonstrate that just as the world
is a dynamic place, many of the cognitive models used by living creatures are also
dynamic, and are changing in response to the experiences of the creature. In nat-
ural systems the state of the surrounding environment can and does change unpre-
dictably. In particular, new prey and predator species appear and old prey and preda-
tor species disappear. This means that the successful species must be able to learn
about new environments, rather that strictly being hardwired. One demonstration
that a stimulus response is not hardwired is the ability of the species to be trained
to recognize a new stimulus. In Section 3.1 we describe the Pavlovian training of
salamanders as an example of their ability to learn new stimulus.

Living systems can both adapt and learn from their experiences. These living
systems express many of the characteristics that we desire in our intelligent, au-
tonomous robots. For living creatures to succeed and achieve their goals, they use
their abilities to function in an uncertain world. This means that, for a robust in-
telligent system (biological or cybernetic) to succeed in the real world, it must be
aware of the probabilistic nature of the world and capable of adapting to new en-
vironments. However, learning from an existing system is not a trivial task. If we
are going to derive our design from biological systems, it is not sufficient to simply
grab a term and redefine it to suit ourselves, we must make sure that the principles
we extract are valid, and that we are applying them correctly.

2.3 Why a Biologically Principled Argument?

It is common in mathematical and computer science discussions to hear that an ar-
gument is (or is not) mathematically principled. In this context, it is understood that
a mathematically principled argument is one in which first, the underlying assump-
tions are valid, and second that any transforms that are applied are applied correctly.
Think about learning how to do proofs in a mathematics or logic class. There is a
complex and formal process that one must follow to extend our knowledge into new
terrain.

John von Neumann presented a lecture at Yale in 1956 in which he laid the
groundwork for the research path that would be followed for the next fifty years.
This path focused on modeling the brain as a digital, mathematical system. How-
ever, he added the note:

It therefore justifies the original assertion, that the nervous system has a prima facia dig-
ital character. Let me add a few words regarding the qualifying ‘prima facia.’ The above
description contains some idealizations and simplifications, which will be discussed sub-
sequently. Once these are taken into account, the digital character no longer stands out so
clearly and unequivocally.[138]
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This viewpoint of abstracting away the details that ‘get in the way’ of a clean
mathematical model is still prevalent. As a result almost all of the research into
artificial intelligence has been driven from the mathematical perspective, so that
in the foreword to the 2000 edition of von Neumann’s lecture, Paul and Patricia
Churchland lamented:

Curiously, however, these two kindred sciences – one focused on artificial cognitive pro-
cesses and the other on natural cognitive processes – pursued their parallel concerns in
substantial isolation from each other, from the 1950s right through to the present. The peo-
ple who earned advanced degrees in computer science typically learned little or (more often)
nothing about the biological brain ... Equally, the people who earned advanced degrees in
neuroscience typically learned little or nothing about computational theory...[34]

The field of artificial intelligence evolved from the study of logic and mathe-
matics, and so much of the underlying culture is mathematical. It is common to
analyze new approaches by confirming that the appropriate mathematical and log-
ical tools have been applied. However, when talking about biologically based arti-
ficial intelligence, one does not generally hear an argument about the way that this
model of intelligence fits into the general pattern of biological intelligences. One
term that is used to describe the correspondence of a model with a biological model
or system is biologically inspired. In fact a biologically inspired argument can be
closely modeled on a biological system as is some biomimetic work on lobsters[5]
and salamanders[100]. However, some work that claims to be biologically inspired,
such as much of the work in the area of cellular autonomy, does not bear a close re-
semblance to any known biological systems. Another term that is used in this arena
is the term biologically defensible. A biologically defensible argument is one that,
while it may copy the specific details of a biologic structure or process, does not
violate basic biological principles [48].

The authors feel that this term does not go far enough. In this work, we will
use the term biologically principled. By biologically principled, we mean an argu-
ment that starts by using basic principles of biology and builds a model from those
principles. As in a mathematically principled argument, in which each piece of the
argument can be derived from the relevant mathematical principles, each piece of a
biologically principled argument should have a basis in the relevant area of biology.

The next logical question is, why is it not enough that a study is mathematically
principled? The problem with any mathematical solution is that it can be coherent
(i.e. cohere to basic principles) without corresponding to the probabilistic real world.
Let us look at the problem of solving the question “What equation gives us the
answer 2”. While there are an infinite number of correct solutions to this equation,
most humans will use a very small number, and most will probably start with “1+1”.
In the same way, there are an infinite number of solutions to the problem of building
an artificial intelligence, that are mathematically coherent.

This falls out of the nature of computers as implementations of Turing Ma-
chines1[132]. If any one program solves a specific problem (e.g., for an input it

1 A Turing machine is a conceptual model of computation which can shown to be capable of
computing anything computable.
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produces the desired output), there are numerous variations on that same program
which will produce the same output. In the trivial case, the replacement of flow-
control structures with functionally equivalent structures produces a different pro-
gram with the same results. Finally, the introduction of non-effective instructions
like assigning a variable value to itself, can be added ad infinitum to produce new
programs that solve the same problem. So, if we can find one solution, we can gen-
erate infinite variations which are functionally equivalent, but different in structure.

Natural intelligences, however, come in a finite variety, and can be classified into
a small number of types. As we discuss in more detail later, all land vertebrate brains
use the same basic structures, from salamanders on up. So rather than giving us an
infinite number of possible brain types, we have a finite number, which makes ex-
perimentation and design a bit easier. But in order to use this finite number, we need
to understand the underlying biological principles that make one biologic solution
to the problem of intelligence different from another.

2.3.1 Biological Principles

So, for an argument to be biologically principled, it must conform to the general
principles of biological systems. All natural intelligences are biological and so obey-
ing basic principles would seem to be at least useful. Yet we often see robots that
clearly violate one or more basic biological principles. For example, even one of the
simplest of all organisms, bacteria, has memory[116]. Certainly, amphibians have
memory. This means that attempts to build memory-free processes are not biolog-
ically principled. However, the pursuit of memory-free and model-free implemen-
tations of intelligent systems has been an active research area in robotics since the
1950’s. This research area has been strongly driven by mathematical principles, at
the expense of biological principles. The driving emphasis is that there are signifi-
cant mathematical complexities associated with maintaining a detailed, consistent,
and accurate model of the outside world - complexities which have often exceeded
that capabilities of available hardware. The work on reactive systems, brought to
the fore by Rodney Brooks[20, 21, 22] has inspired many researchers to explore
mathematically principled designs that violate biological principles.

So why don’t we see the use of biological principles? One problem is that bi-
ology is an observational science. Rather than learning from first principles, as in
mathematics, the student learns by observation and builds a sense of what is bio-
logically plausible over time. So, to use the previous example, a biologist would
know that, at the very least, all animals have some form of memory, therefore they
would reject the use of a memory free model. This brings us to the second problem.
In an observational science, theories must change when they are disproved. This
means that a biologically principled model may have to change, if the theory that
it is based on changes. This is a very different proposition than a mathematically
principled model, since mathematical theories rarely change, they just become su-
perseded. The basic principles of biology are based in observations and this might
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suggest that the biologically principled foundation is too shaky to be relied upon.
While the theories do change, they change very slowly.

2.4 What Is a Biologically Principled Argument?

In this section we propose a definition of some basic biological principles. It should
be noted that, if there are 10 biologists in the room, there are probably 11 lists of
the essential biological principles, so this list is neither exhaustive nor final. It is,
however, a starting point for discussion.

• Biology is an observational science.
• Biological organisms have a hierarchy of structural levels.
• The theory of evolution explains the observed diversity of life.

– Individuals of a species or population vary from one another.
– These variations can be inherited.
– Biological organisms compete for resources such as food and mates.
– Traits which contribute to reproduction and survival in organisms are con-

served across generations.

The basis for this abbreviated set of principles can be found in any good basic
biology text such as Campbell and Reece’s Biology, which is now in its Eighth
Edition [32].

2.4.1 Biology Is an Observational Science

First, and most important, biology is an observational science, like chemistry and
physics. As such it relies on both hypothesis and observation. As all scientists know,
an observation can not validate a hypothesis, but it can disprove it.

Hypothesis therefore plays a necessary role, which no one has ever contested. Only, it
should always be as soon as possible submitted to verification. It goes without saying that, if
it can not stand this test, it must be abandoned without any hesitation. This is, indeed, what
is generally done; but sometimes with a certain impatience. Ah well! this impatience is not
justified. The physicist who has just given up one of his hypotheses should, on the contrary,
rejoice, for he has found an unexpected opportunity of discovery. (H. Poincaré [159], Page
150).

Chemistry and physics are also experimental sciences, much of the progress is
made by performing carefully design experiments. In the biological sciences, be-
cause of the complexity of studying natural systems, careful observation must some-
times take the place of experimentation. In some cases it is physically impossible
to run experiments. There can be several different reasons for this, including the
observation of events in interstellar space such as supernovas, colliding galaxies,
and the evolution of stars. While some recent experimental work has been done on
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interstellar impacts, such as the NASA Deep Impact project, in general, we can’t set
up an experiment to slam a comet into a planetary mass to confirm or disprove a hy-
pothesis. This set of domains also includes the observation of evolutionary change
in the fossil record, research into volcanic eruptions, research into earthquakes, and
so on. Some experimentation may be possible, but in general, one has to observe the
events that naturally occur.

In other cases it is simple to set up a potential experiment, but impossible to do
so without changing the outcomes. This is especially true in the domains of living
systems, such as biology, ecology, and behavioral sciences. Since living systems are
adaptive, and are capable of learning from their environments, any change to the
environment can alter the behavior that is being measured. An example of this is the
observation of stereotyped feeding behavior in amphibians. For many years, most
amphibians feeding behavior was reported as having limited variation of timing or
extent of motion. This limited range of repetitive or ritualistic movement is called
stereotypy. Later work showed that this observed stereotypy was caused by the re-
searchers feeding the animals a single prey type, presented in a uniform manner. In
a more natural environment, this apparent stereotypy vanished. The observations,
while correct, were an artifact of the feeding conditions in the laboratory [47].

Until recently, in the domains of chemistry and physics, it was generally consid-
ered that measuring the results of an experiment had no effect on the outcomes.
However, this also changes when the measured quantities become so small that
quantum effects must be considered. In those cases, the uncertainty principle de-
veloped by Heisenberg[96] must be used. It states that locating a particle in a small
region of space makes the velocity of the particle uncertain; and conversely, that
measuring the velocity of a particle precisely makes the position uncertain. In the
domain of biology and ecology, this principle was so well internalized that no one
ever needed to formalize it. It is well known that, for the observation of animal
behavior in intact ecosystems, the changes in the ecosystem required for the exper-
iment would change the observations.

Finally, some experiments can not be run for ethical reasons, such as some types
of human behavior studies. Before the advent of non-invasive scanning techniques,
the study of neurophysiology depended on the chance occurrence of traumatic dam-
age to the brain, and the observation of any resulting behavioral changes. While
animal studies could rely on damaging specific areas of the brain and observing the
deficits caused by that damage, ablating human brain tissue to see what happens is
not an option. Even now, some types of damage are so rare in humans that only
single case studies are available. Work on animals has provided significant gains to
our understanding of the structure of the brain, but at extreme cost to the animals
being studied.

In these cases, and in others, observational sciences cannot do traditional labo-
ratory experiments, where they would make a single, specific, targeted change to
one variable (while holding the others constant) and precisely measure the results.
Rather, the support for the hypothesis must be derived from a long series of repeated
observations, analyzed statistically, and with luck, demonstrating a conclusive re-
sult. This is a far cry from the techniques of an experimental science like chemistry
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or physics. Yet the methodologies behind the observational sciences are both strict
and well principled.

In all observations and experiments, it is important to demonstrate statistical va-
lidity, but in observation it is of the utmost importance. Creating models from ob-
served data poses some significant hazards. It has been shown that when there are
a number of explanatory variables in a model (more than 50) many variable se-
lection methods will provide regression equations with high correlation values for
independent variables[69]. This means that the features used in a model must be
chosen with great care and thought. This also suggests that, in the absence of other
factors, a more parsimonious model should be favored 2. For an excellent study of
model selection in biological system see [30]. It also should go without saying that
there must be enough experiments or observations to yield statistically significant
answers. So, for any experimental or observational study, in order to conform to
general scientific principles, we must have a hypothesis to be tested, a reasoned ar-
gument for the features to be analyzed, and enough data to support a statistically
significant result. So, this set of requirement is part of the necessary conditions for
a biologically principled study.

2.4.2 Life Has Structure

Biology is based on structural levels. In this hierarchical structure, each level is built
from the level below it. To give one example, the atoms carbon, hydrogen, oxygen,
nitrogen, and sulfur are the building blocks of the 20 amino acids. These 20 amino
acids are the building blocks of all proteins. These proteins are the building blocks
of the components of cells. Cells are the building blocks of all life. This type of
analysis can be repeated in a number of different ways.

There are two important principles at work here, 1) that life is ordered hierar-
chically and 2) that life has structure. Even apparently simple organisms, such as
bacteria, have internal structure. A bacteria has a cell wall to separate it from the
outside. It has a nucleoid, that contains most of its DNA. It has ribosomes, that
translate RNA into proteins. It does not have a uniform internal texture [32]. Brains
also have structure. To look at a specific primitive brain, take the example of the
hagfish. Hagfish are a group of marine, eel-shaped, jawless fishes, that have been
found in the fossil record from approximately 330 million years ago and are still
found in modern oceans [7]. Their ancestors are considered to have evolved before
the evolution of jawed vertebrates. These very primitive vertebrates, have separate
brain areas for different functions[192]. Brains are not like pudding. This means,
that for a cybernetic model of a brain to be biologically principled, the model must
support the structured forms seen in animal brains.

2 Occam’s razor strikes again
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2.4.3 The Theory of Evolution Explains the Observed Diversity of
Life.

This subsection contains a brief and relatively simple overview of evolution. If you
are familiar with evolutionary theory, you might want to skip this section. If you
want to learn more about evolutionary theory, more detailed information can be
found in Futuyma’s book on the subject[73].

The theory of evolution is the unifying principle in modern biology. It was ini-
tially developed by Charles Darwin and published in the Origin of Species in 1859.
In this work, Darwin called the initial theory, the theory of natural selection. The
principles of natural selection are built on the following premises.

First premise - Individuals of a species or population vary from one another. Dar-
win based this premise on the observation of both wild and domesticated species.
In all of these observed species, individuals, even siblings, differ from each other.
In addition, the observation of an individual only discloses the phenotype of the in-
dividual. The phenotype is the qualities of an organism that can be observed, such
as size, color, development and behavior. These qualities are the result of interac-
tions between the genotype of the organism and its environment [106]. Following
Darwin, biologists were able to discover the reasons for the changes in genotype
between even very closely related individuals. There are two basic reasons for vari-
ation. In sexually reproducing species, the offspring inherit half of their genetic ma-
terial from each parent. This recombination of genetic material creates some of vari-
ation in phenotypes. Another cause is a natural rate of genetic mutation. All species,
both sexually and asexually reproducing, have a natural mutation rate, which forms
the basis for all new genes.

Second premise - These variations can be inherited. Again, Darwin based this
premise on the careful observation of both wild and domesticated species, much of
which is memorialized in The Variation of Animals and Plants Under Domestica-
tion[44]. One of his great interests was the breeding of domestic pigeons.

Believing that it is always best to study some special group, I have, after deliberation, taken
up domestic pigeons.[43].

Now, we have the ability to analyze the genes responsible for the inheritance of
variation. This information validated Darwin’s careful observation.

Third premise - Biological organisms compete for resources such as food and
mates. Darwin observed that all organisms produce more offspring than could pos-
sibly survive. He was clearly influenced by Malthus, who in 1821, wrote the influen-
tial book Principles of Political Economy Considered with a View to Their Practical
Application in which he concluded that much human suffering was a consequence
of human overpopulation [124]. Darwin further observed that organisms with a re-
productive advantage would tend to be better represented in the next generation.
The essential argument of natural selection is that, over time, the sum total of small
favorable mutations will result in major changes. Darwin called this descent with
modification. The canonical example of this is the beaks of finches in the Galapagos
islands. It is now estimated that 14 different species of finch found in the Galapagos
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descended from one ancestral finch species over the last 5 million years (or less).
These species differ from each other in size and bill shape. It is hypothesized that the
evolutionary process was driven by differing food sources on the different islands
[164].

Mutations which contribute to reproduction and survival in organisms are con-
served across generations. As we mentioned above, mutations of the genotype are
random. The mutations of the genotype, in conjunction with the environment, will
cause a difference in the features of the resulting phenotype. There are three possible
outcomes for the phenotype. The feature caused by the mutation may have no effect
on the fitness of the organism, in which case the variation is neutral. The feature
caused by the mutation may decrease the fitness of the organism, in which case the
variation will not be conserved. The feature caused by the mutation may increase
the fitness of the organism, in which case the variation will be conserved. So, when
a particular feature is seen to be constant in many related organisms, it can generally
be concluded that the effect of the underlying mutation is either favorable or neu-
tral. More strongly, because natural selection will not favor a neutral variation, if the
feature occurs over a large number of generations, it probably increases fitness.

Because these mutations are happening in all species over time, it is not possible
to directly examine the original individuals and look for changes in its descendants.
Sometimes it is possible to detect changes in bones and structure from the fossil
record, but for brains this is generally not possible. The construction of the rela-
tionships of (invisible) ancestral relationships between living organisms is called
cladistic analysis. This analysis allows for the inference of the place in the evolu-
tionary sequence that a specific variation arose. More information on this subject
can be found in [169]. By the above argument, if a specific variation occurred early
in the evolutionary sequence, and occurs in all of the current descendants of that
organism, it must increase fitness. Cladistic analysis also allows the researcher to
detect when the same feature occurred independently in multiple species. Both con-
servation and independent evolution are strong arguments for the importance of that
feature.

2.5 So Why Is Our Model Biologically Principled?

First, the model we present here is tested in a scientific manner. We have not only
constructed a theory, we have also written the software, and built the body to house
it. By placing this theory into practice, we have allowed it to be tested. Our hy-
pothesis is: This brain (with reification) will perform better than this brain without
reification.

Second, this brain is built in a structured and layered fashion. The components in
this brain are taken, in general, from components in the vertebrate brain. These will
be discussed in more detail in the next chapter.

Third, this model uses as its basis the conservation of important traits. As men-
tioned above, it’s a harsh world out there. All animals are simultaneously searching
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for food and trying not to become someone else’s meal. In order to cope with this
fact, all species have a similar basic strategy, mutate your genes (genotype), and see
how well the mutated organism does in the world (phenotype). This simple strategy
has a few interesting implications. The first of these is the fact that if a mutation
is of advantage to the species’ phenotype, the mutation will be conserved. So what
does that say about brain evolution? Very few major new structures have appeared
in the vertebrate brain [141][192] in the last few million years. Now this should not
be taken to mean that brains have not been evolving over time. While major reor-
ganizations are rare, minor changes in neuronal pathways are constantly occurring
[141]. As was discussed in the previous section, the fact that the basic structures of
a human brain are similar to the basic structures of a salamander brain implies that
something about that structure is important to the survival of both species.

Since we have demonstrated that something about the structure of vertebrate
brains is important, why not just study humans? There are three reasons for this.
First, and possibly most important, making a human level brain has some tricky
moral and ethical implications. If the brain is conscious, is turning it off murder?
Can one control a human level intelligence? Second, for most of the tasks for which
an autonomous intelligence would be used, a human level intelligence is overkill
and it can be demonstrated that too much intelligence is as dangerous as not enough
[85]. Finally, if the relevant data can be obtained, amphibians are simpler to model.
In the words of C. Judson Herrick, a noted neurologist:

From the dawn of interest in the minute structure of the human brain, it was recognized that
the simpler brains of the lower vertebrates present the fundamental features of the human
brain without the numberless complications which obscure these fundamentals in higher
animals[97].

In fact, it has been shown that larval salamanders can have their brain anatomy sur-
gically altered in drastic ways without major behavioral changes.[156] So, simpler
brains will be used as exemplars when possible. In some cases, such as much of the
memory research and some of the neurotransmitter research, it simply is not possi-
ble to obtain the information from non-human subjects. In these cases we will use
what studies are available. When possible, we will draw from studies of more than
one organism.

2.5.1 Why Not Just Use Expected Value?

So, why are we going to all this trouble in the first place? One of the most mathe-
matically principled approaches to dealing with an uncertain and dynamic environ-
ment is the use of probability theory and the expected value calculation. Literally
hundreds of artificial intelligence programs have been written which are based on
calculating the likelihoods of possible outcomes, and ranking their relative costs
and benefits to decide on a course of action (See the summary by Tate[193], for an
overview of Artificial Intelligence software). And these work extremely well, in the
correct circumstances. Unfortunately, one of the necessary conditions for many of
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these systems is a complete, accurate, and exhaustive analysis of the exact likeli-
hoods of every possible action and outcome. In the real world, this is simply not
achievable.

So, in order to try and make a better brain, let us look at how vertebrates have
successfully addressed this type of problem. By human standards, most other verte-
brates are computationally challenged. Many vertebrates, such as birds, rats, mon-
keys, apes, and lions, can learn to identify numbers[81] Alex, a gray parrot, and
Ai, a chimpanzee, learned to use the concept of zero[152][12]. Ayuma, a chim-
panzee, can outperform humans in numeric memory tests[101]. However, there is
no evidence of more complex math, such as an expected value calculation, being
used even by chimpanzees. Even humans, who in general could do the calculations,
use heuristics rather than expected value calculations. This is explored in detail by
Gerd Gigerenzer[75]. These non-expected value approaches seem to work in the
real world.

But, robots are not mathematically handicapped like people. They are capable
of calculating expected values for even very complex situations. So why not use an
expected value calculation? For many of the routine operations of the robot, an ex-
pected value calculation will be used. An expected value calculation has, at its core,
an assumption that all of the outcomes are known and that all of the probabilities can
be computed. But, for many of the conditions that our robots face, these conditions
are not met and so these calculations are not feasible. So, in the next chapter, we
will construct a biologically principled model for a cybernetic brain.



Chapter 3
Using Cognition and Physiology to Build a
Cognitive Model

So why don’t I have my robot yet? What is different about natural systems and the
ones that we construct? What do living systems have that our autonomous robots
lack? What is it that a living brain brings to the table that enables them to function
and succeed in a complex, uncertain, and dynamic world? In order to answer that,
we will start by considering amphibians. For any species to survive, the members
of that species must be able to sense and manipulate their environment so as to find
food, avoid predators, and reproduce. They must be able to perceive the things in
their world, and they must be able to respond appropriately to the circumstances that
they recognize.

3.1 Reification in Biological Entities

Many robotic systems have sensors and effectors that are on par with living systems,
so what makes the difference in a living system such as a salamander? Is it the abil-
ity to plan, the ability to envision the possible outcomes of future actions? In order
to be able to hunt their prey, amphibians have and utilize a very primitive planning
system. It may be nothing more than the ability to predict the future position of a
bug flying by, but it is a primitive model of the future. In this chapter, we will show
that in addition to these abilities, amphibians have the ability to map perceptions
onto symbols and symbols back onto perception. Mapping perceptions onto sym-
bols allows them to learn the perception patterns that represent new food or threat
sources. Mapping symbols onto perceptions allows them to predict the outcome of
their behaviors. Both of these abilities are necessary for survival in the wild. At this
point it is useful to define a few terms: Recognition, Deliberation, and Preafference.

Recognition is the process of mapping sensory input onto a symbolic representa-
tion that can be reasoned about. Philosophers have long argued, and some cognitive
scientists believe, that we (as living systems) do not live in the ‘real world,’ rather
we live in a symbolic representation of the real world [72] that is formed from our
perceptions. This symbolic model is strongly grounded in the real world, but it is
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more like a simplified virtual reality model. It is built by mapping the sensory in-
put into a neuronal representation. We will define this complex mapping of sensory
input into a collection of neuronal representations as recognition. Once a brain has
these neuronal representations, they can be manipulated as symbols.

The process of manipulating these symbols is defined as deliberation. The ma-
nipulation of these symbols depends on a complex structure of relationships be-
tween symbols. For example, given that we have recognized a ‘door’, our under-
standing of door includes attributes: a door can be opened or closed, a door leads
from one space to another space. There are actions that we can take: we know how
to open the door by twisting the handle, and swinging the door on its hinges, etc.
These complex associations are used by the deliberative system to make choices
between actions that might achieve goals.

The second term, preafference, is a little more complex. There is a common
saying that “You see what you expect to see.” Cognitive scientists have long known
that this is literally true for humans. As we move through our days, we are con-
stantly building and updating a complex model of how we expect the world to look,
feel, and sound in the next few moments. Research by Walter Freeman has shown
that vertebrate brains prime their sensory systems with a rough template of what to
expect, and this template is used to reduce the incredible complexity of the world.
His term for this process is preafference: the mapping of the expected state of the
world onto to the expectation of sensory data [72]. Preafference in organisms is dis-
cussed in this chapter, some mechanisms for solving it in cybernetic systems will be
discussed further in Chapter 6.

This two-way mapping of sensor information onto a symbolic representation,
and the mapping of expected states onto an expectation of the sensor information,
we call reification. It appears that this is the key thing that living systems bring
to the table. It allows them to function successfully in the world, and it is a key
deficit in many robots. In order to get an insight into the biological mechanisms of
reification we will examine research on brains of salamanders as a starting position,
then we will move to higher mammals.

3.1.1 Recognition

Starting with recognition, it is clear that any living system must be able to find food.
For sexual species, they must also be able to find mates. These needs require, at a
minimum, the ability to recognize food objects and members of the same species.
The next logical question is, “How much of this recognition is hardwired?”. Put an-
other way, how much of the behavior is coded in the genotype and then expressed
in the phenotype. The answer can be found in the biological literature. If a response
to stimulus across a wide variety of individuals is always the same, then we can hy-
pothesize that the behavior is regulated by the genotype. Starting with salamanders,
some behaviors, such as sexual responses are always the same. The fact that male
salamanders of the species Ambystoma mexicanum always increased their activity
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when exposed to the scent of females of their species suggests that this behavior is
determined by the genotype[147]. It makes sense that mate identification would be
controlled by the genotype. However, for feeding behavior, another basic need, most
amphibians show varied feeding behavior, with diverse types of movements used in
feeding[47]. In effect, feeding behavior appears to be driven by deliberate choices
that are influenced by environmental cues.

But the argument might be made that these behaviors, while varied, are sim-
ply fixed responses to known stimulus. If we can show that new behaviors can
be learned, particularly to novel stimulus, then there is a reasonable argument that
there is some mechanism for recognition of new stimuli. There are some interest-
ing demonstrations that salamanders are in fact capable of learning to recognize
new stimuli. One of these is the recognition, by red backed salamanders (plethodon
cinereus), of the holders of adjacent territories. It was shown that red backed sala-
manders were significantly less likely to attack a salamander with whose scent they
were familiar. They showed more aggression to unfamiliar salamanders. While it is
feasible that a salamander could be genetically programmed to recognize a species-
specific stimulus (like the scent of a male), it is infeasible that such programming
could be used to pre-program the identities of all possible fellow salamanders. This
Dear Enemy phenomenon shows that a salamander is capable of recognizing a num-
ber of others of its species and classifying them as either known or unknown[103].
However, the argument could be made that, recognizing conspecific individuals is a
natural thing, and somehow could be preprogrammed.

So let us go to a completely synthetic experiment. Salamanders can be trained
to learn new odors in a classical conditioning experiment. In experiments done in
the 1990’s, salamanders learned to associate the odor of various synthetic chemi-
cals with an electric shock[51]. This suggests that novel sensory inputs can also be
classified, since associating the smell of buytl acetate with an electric shock is not
something that would be selected for in a natural environment. The classification
of novel input is evidence for a flexible mechanism of recognition that allows the
organism to recognize and classify objects that it has not previously encountered.
Higher animals, such as mice, dogs, and primates are also capable of learning to
recognize new stimulus.

3.1.2 Preafference

Now we turn to preafference. Preafference is defined by W. H. Freeman as:

The preafference precedes feedback by proprioception and interoception loops from the
sensory receptors in the muscles and joints to the spinal column, cerebellum, thalamus,
and somatosensory cortex. The corollary discharges convey information about what is to be
sought by looking, listening, and sniffing, and the returning afferent discharges convey the
current state of the search. When an expected stimulus is present, we experience it. When
not, we imagine it. [72]
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The brains of rats clearly show a preafferent signal when they are expecting a
learned odor. This signal is used to prepare the sensory processors for the results
of an action or, in the case of a learned behavior, for an expected stimulus [110].
Moving to primates, monkeys have been shown to have an modification of neuronal
responses in the visual cortex when a visual stimulus was presented in an expected
location. This modulation was not seen when the stimulus was presented in random
locations[183]. They also have been shown to reach for an object where they saw it
last, even if they can no longer see it[79]. This implies that they have a strong expec-
tation of what they would see (if they could). Humans also reach for the expected
position of occluded objects, implying that they have a model of the expected world
state. This ability to prepare the brain for an expected stimulus is clearly important
for an organism in a constantly changing world.

Now that we have made a colorable argument for the two directions of reifica-
tion, recognition and preafference, we can turn to building a cognitive model of the
process. Reification consists of:

• A recognition mechanism that translates the sensor data into symbols; and
• A preafference mechanism that translates the symbols into the expected sensor

data.

It should be noted that reification does not exist in a vacuum. In order to have
some data to utilize, there must be a a source of sensory data. This is supplied
by the robot’s sensors represented by the perception/action system in Figure 3.1.

Fig. 3.1 The core reification
loop supports the bidirectional
mapping of sensory data onto
symbols and the reverse map-
ping of expected world state
onto what the sensors are
expected to detect. These two
tasks (recognition and preaf-
ference) are critical functions
that all living systems depend
on to survive in the world.

Reification
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This system will sense the world, so that the recognition mechanism has something
to work with. In addition, in order for the preafference mechanism to model the
effects of actions, there need to be actions to work with. This requires a deliberative
system, which takes the symbolic representations of the world and makes a plan.
The execution monitor feeds the actions in the plan to the reification system, which
uses preafference to predict what the sensors will report. So, in order to model what
we know about reification, the model must have the following components:

• A perception/action system that can affect and perceive the world (Chapter 5);
• A recognition mechanism that translates the sensor data into symbols (Chapter

7);
• A deliberative system that can manipulate the symbols (Chapter 10);
• An execution monitor that can sequence the actions coming out of the Delibera-

tion module; and,
• A preafference mechanism that translates the outcomes of the actions into the

expected sensor data (Chapter 7).

Note that the recognition and the preafference mechanisms are two complemen-
tary functions of reification.

In order to discuss its use, we will introduce a hypothetical unnamed robot. Our
hypothetical robot is humanoid, that is to say bipedal, upright, with dextrous grasp-
ing members at the ends of two arms. The robot has human quality vision, hearing,
agility, and strength. We will assume voice input and human level natural language
processing - in short, it is one of the robots we see in the movies. This robot has
been told to pick up a red block. It first creates a plan (details on the deliberation
module can be found in Chapter 10). Then the entire plan (Plan) is passed to the
Execution Monitor, which processes each step in the plan, in sequence. Let
us suppose that the first action is to sense the actual location of the block. This preaf-
ference mechanism, in the reification system, takes the expected symbolic state for
the world after the first action in the plan is taken, for example the red block is on the
table, and creates a matching expected sensor state. It then passes the expected state
and the action (Act+) to the Perception/Action module. The action is taken, and the
resulting world state is sensed. An analysis is made of the difference between the
expected state and the observed state, which is added to the sensor data and is passed
to the recognition mechanism, in the reification system. If the difference between the
observed and the expected state is small enough (the block is approximately where
it is expected to be), the next action of the plan is taken from the execution monitor
and given to the preafference mechanism. However, if the plan has been completed
or the difference between the observed and the expected state is too large (the block
on the table is blue), the sensor data is turned into symbolic data by the recognition
mechanism, which passes this symbolic data back to the deliberation mechanism. In
Chapter 6, we discuss the method that we used to construct a model of reification,
based on a model created by Brunswik.
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3.2 Biological Storage

As you have probably noticed, so far there is no memory in this model. Clearly,
for this model to be biologically principled, there must be at least one memory
structure, if only to store the symbols that correspond to the model of the external
world. This leads us to the observation of biological memory structures. Research
on memory is generally done by studying memory deficits. In animal studies this
is generally done by damaging a part of the brain and experimentally determining
what the animal can, or can not, remember. Since most animals can not explicitly
tell the researcher about their memories, this requires very clever experiments. In
human studies, rather than damaging the subjects, researchers wait for damage to
occur and then test the subjects on their specific memory deficits. Obviously, having
a subject that can explain his/her experience is a major advantage. Therefore, for
memory studies, we will jump straight to human research. Most of the memory
research concerns forms of amnesia (a failure of memory) and the type of damage
that may have caused it. Amnesia comes in two basic flavors. The first, retrograde
amnesia, describes a difficulty in remembering things that happened before a trauma
or illness. The second, anterograde amnesia, describes a difficulty in acquiring new
information after a trauma or illness [149].

Before we continue, it should be noted here that memory researchers do not agree
on all of the following concepts. We have picked what appears, right now, to be rela-
tively well accepted work, but this could change. If the underlying concepts change
radically, then we will change the model to fit the data. Because this book is not
about a brain based device, as discussed above, we are not attempting to model the
actual engram formation and memory recovery. For more details on those processes,
you should read Daniel Schacter’s very entertaining work on memory[178].

One major distinction in memory research is between short and long term mem-
ory (or short and long term storage). In this distinction, short term memory is mem-
ory that is transient, perhaps 20 seconds long. It can only hold a few objects, most
famously 7± 2 [130]. Short term memory was described in 1968 by Akinson and
Shiffrin[4], but as with most memory research, the existence of the long term/short
term memory distinction is debated [149]. Recent work has suggested that short
term memory and long term memory may have different properties [45]. We have
created a Working Memory module to model the short term memory for our
robot.

Another major distinction is between implicit and explicit memory. Implicit
memory is memory that can be used without conscious recollection of previous ex-
perience. One form of implicit memory is procedural memory. This is the memory
of how things are done or rules for doing things. An example of this is a patient, de-
scribed by Schacter, with profound amnesia who could still play golf. This patient
could not remember playing any specific game or even recall the specific details
of the current game, however, his memory for the rules, terminology, and physical
demands of golf was unimpaired [176]. This type of observation is often used to
support the existence of a specific procedural memory system, but this conclusion
not universally held. Some arguments suggest a set of implicit learning systems that
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are operating outside of the cognitive learning system [149]. In our model, procedu-
ral memory is included as part of the perception/action system.

A famous example was described by the physician Clapardéde. He hid a pin in his
hand and then shook the hand of a woman with profoundly anterograde amnesia,
pricking her. Later, she refused to shake his hand, even though she was not able to
explicitly remember the incident. Rather, she made general excuses for not wishing
to shake hands [35]. Even though she was unable to use explicit memory to recall
the incident, her implicit memory caused her to avoid a potentially painful incident.
This implies that the implicit memory can be used by humans and that memory
structures may be significantly more fluid than the division between explicit and
implicit implies. In fact, a patient with both retrograde and anterograde amnesia
was able to use this priming mechanism to learn how to enter data from company
records into a computer[31]. However, at this point a cybernetic memory can have
no implicit part (or it is all implicit, depending on your viewpoint) so, while it is
clearly important, we are not addressing priming as a link between explicit memory
and implicit memory.

3.2.1 Explicit Memory

Explicit memory can be divided into several types, although again, the exact divi-
sions are still being debated. We will use Tulving’s division of explicit memory into
semantic memory and episodic memory[201]. These are described in more detail
below.

3.2.1.1 Episodic Memory

Episodic memory is defined as the storage of events or episodes and the temporal or
spatial relationships between these episodes. The remembering of episodic memory
takes place in the first person[200]. An example of episodic memory would be “I
remember when I first tasted spiced coffee. My friend Ron showed me how to make
it, in the kitchen of the house that I grew up in.” Episodic memory can be thought of
as a log file, in which both the remembered event and the features of the event are
stored. These features may include the basic emotions discussed in 3.3. However,
in humans, episodic memory is somewhat fluid. It can be altered by being verbally
described. It has been demonstrated that after seeing a face, being asked to verbally
describe that face significantly decreases the ability of the subject to subsequently
recognize the face[180]. This decrease in recognition ability is called verbal over-
shadowing. Expertise in an area, such as the identification of the odors of wine, can
decrease the importance of this verbal over-shadowing[150]. It should be noted that
episodic memory can be altered by other processes. Damage to certain regions of the
brain can cause amnesia, such that the person can not recall events from their past,

Implicit memory can also prime recognition tasks, even in people with amnesia[177].
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even though they retain more general knowledge[149]. This is the canonical form
of amnesia where the person loses memory of their personal experiences, while re-
taining memory of what a chair is, and how to drive a car. While we should keep in
mind these subtleties for future research, in this model, episodic memory is stored
as a separate memory module.

3.2.1.2 Semantic Memory

Semantic memory is the memory of the relationships between objects [200]. It may
have emotive or perceptual tags, but these are not required. An example of seman-
tic memory might be “Spiced coffee uses cinnamon, nutmeg, and allspice. Coffee
contains caffeine. Spiced coffee reminds me of my friend Ron. I like Ron (emo-
tive tag).” Notice that this does not have the first person narrative quality of the
Episodic memory. Semantic memory can be modeled as an ontology, but with a few
significant differences from the way in which ontologies are generally designed.
First, it is clearly possible for humans to hold inconsistent ideas in their semantic
memories. This ability is described in detail in Kahneman and Tversky’s Prospect
Theory, which describes the differences in the way that people judge losses and
gains[109][108]. This implies that a model of a semantic memory should not be
subjected to rigid truth maintenance. Second, each human holds a unique semantic
memory. While we all should have learned a selection of the same basic facts in
grade school, the vicissitudes of an adult life will have left us with a significantly
different store of relationships in our semantic memories as adults. Because of these
two facts, we are calling our ontologic model of the semantic memory a personal
rough ontology, to distinguish it from the global truth-maintained ontologies that
are generally used.

Clearly episodic and semantic memory are related. Episodic memory can be con-
sidered as the way in which memory is first encoded. These memories are then
translated and encoded as semantic memory. This ability can be demonstrated not
just in humans, but also in rats[62]. It is clear that sleep enhances this transfer, but
the precise mechanisms are not yet understood[55, 191]. While it is very important
to model this transfer mechanism, it is beyond the scope of this book.

Given the previous discussion, the memory model that we have chosen to used
has four basic modules. These are:

• Semantic memory, which we will call the Personal Rough Ontology.
This is described in Chapter 9.

• Episodic memory, which is described in Chapter 8.
• Short term memory, which is also described in Chapter 8.

After adding in a mechanism to track the internal state of the robot, this results
in the model shown in figure 3.2.
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3.3 Emotion

So far, we have talked about emotive tags in the Episodic and Semantic memory
sections, but the nature of these tags has not been defined. This begs the question,
why would a cybernetic brain need emotion? Starting with the biologically princi-
pled argument, all mammal brains have the same set of basic emotions, driven by the
same neurotransmitters in the brain[146]. In fact, all of the basic neurotransmitters
are conserved across all vertebrates [192].

3.3.1 Emotion as mediator

So what is the point of all this machinery? The brain acts as a mediator between
the inside world of the organism and the outside world in which the organism lives.
Observations of the world trigger emotions and those emotions prepare the body
for the appropriate response [189]. The simplest of these emotions are the basic
emotions FEAR, SEEKING, PANIC, and RAGE [146]

As an example, consider a mouse in the presence of a cat. The scent of the cat
triggers the emotion of fear in the mouse. The fear prepares the physiology of the
mouse to first freeze and then flee. In laboratory experiments designed to explore
the role of fear, mice have been genetically engineered to have no ability to smell

Fig. 3.2 The four mem-
ory systems added onto the
robotic cognition loop.
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a cat [113] or no ability to learn fear [185]. In both cases they act in a fearless way
in the presence of cats, running up to them and smelling them. Needless to say, in a
natural setting, a mouse with no fear of cats would not last long enough to reproduce.
Humans also have difficulty functioning without these emotions. Damasio describes
the social difficulties of a patient who was lacking fear. In this case, the absence of
fear made her too trusting of other people [41].

The same argument about the need for emotions, which in turn trigger behavioral
and physiologic changes, also applies to robotic systems. Let us take the case of a
robot given the task to get on a plank at one end, travel to the other end, and then
get off of the plank. In one case the plank is lying on the ground. In another case the
plank is suspended high enough that the robot will be damaged if it falls. The robot
has the capability to select the speed at which it moves, and the amount of time it
spends sensing its position. Its model includes information about how accurately it
can navigate, and how far it will drift off its planned course. Without some sense
of fear or danger, the robot will travel the plank as fast in the one case as in the
other. However, this is not a desirable behavior, since the consequences of a fall
are significantly more severe in the second case. If the robot is allowed to “feel” the
emotion of fear at the prospect of a fall from a height, then it will exhibit the behavior
of proceeding more cautiously over the suspended plank. The FEAR component has
clear advantages for a robotic system

The SEEKING component would be useful in cases where the robot is tasked to
find objects or to obtain its own energy. The use of PANIC is less clear, but it could
have important survival characteristics. For example, in an emergency situation, the
robot might need to take a chance on damaging itself in order to avoid a dangerous
situation. The use of RAGE is not obvious, but it may be of use in military or security
applications.

In our model, the emotive component will be given to the robot, both in the
storage of episodic memory and semantic memory. This is equivalent to certain
types of inherent fears, such as the fear of cat smell in mice and the fear of hawk
shapes in chickens. In future work, a mechanism will devised for the robot to be
able to derive its own emotive components.



Chapter 4
Representation

One of the distinguishing characteristics of a deliberative system is that it maintains
a representation of the world. Unlike a reactive system[22], which uses the world as
its own model, the deliberative process requires the ability to represent the world as
it currently exists, and also possible future states of the world. The word ‘delibera-
tion’ is defined as discussing or considering all sides or outcomes. These possible
states are necessary to be able to compare alternatives, If our robot is going to be able
to ask “What would happen if I did this?” our deliberative system needs the ability
to maintain models of the current world state, and possible changes to that world.
To consider what might happen, our deliberative system must have some knowledge
of what might go wrong when it attempts to make changes to the world. In addition,
to act intelligently, there must be some consideration of what other events might
occur that would affect the outcomes. Unlike the clean and deterministic world of
chess, our robot will be given jobs to do in the real world, and so it must be capable
of reasoning about the uncertainties in this world. To reason effectively, our robot
must have some way to represent the current and desired states of the world, the
actions it might take to achieve its goals, and the types of events that might disrupt
those goals. In this chapter we present the underlying data structures that are used
to support this representation.

We will first introduce the data structure that we use to represent the state of the
things in the world, which we call a WorldSet. The WorldSetis made up of
a collection of individual descriptors that capture the knowledge about each thing
that is salient to the problem at hand. These representations are designed to provide
multiple layers of support for our deliberation system as it reasons about the world.

In the rest of this chapter we describe in detail the data structures that are used
to represent the world, the goals, and the actions and events that can change the
world. These representations will become the foundation of the tools that our robot
uses to reason, and form the basis of the memory systems used to store knowledge
about the world and its history. In much of this chapter we use an extended example
involving our unnamed humanoid robot. For this example, we have given our robot
a task “Get me the copy of ‘Robots, Reasoning, and Reification’ that I left on the
top of the tall bookcase in the library.” This will require the robot to walk into the
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other room (first opening the door), then the robot will need to figure out how to
grasp the book, which is just out of reach on the top of the book shelf. There are
several possible solutions, such as positioning a chair and standing on it, grabbing a
pointer and pushing the book off the top of the shelf, or going into the closet to grab
a ladder (See figure 4.1 for a idea of the layout). One must keep in mind that while
the physical capabilities of our hypothetical robot far exceed what is available, for
over fifty years symbolic planning systems have been able to solve these kinds of
problems in simulated worlds. One key difference between the real world and these
simulated worlds is that all the needed information is already provided in symbolic
form - no reification is required.

The planning and execution system is based on a simple observe – orient – decide
– act loop[15]. In the observe phase, the robot uses its sensor to detect the state of the
world, and the Reification Enginemaps these data into a symbolic represen-
tation. The second stage of the loop is to orient – to place the state of the world into a
context based on the goals and intentions of the robot. This is accomplished by using
the semantic memory and goal states to extract a salient subset of the robot’s knowl-
edge and focus attention on the salient features. The decide phase is accomplished
by using the deliberative system to generate and evaluate possible actions that might
be used to achieve the robots goals. Finally, a decision is made and a plan of action
is put into effect. This plan includes both what to do, and what to expect as as result
of each action. This information is translated by the Reification Engine into
sensor-specific expectations to enable monitoring by the Perception/Action system.
This closes the loop, and the process of observing the results of the actions begins

Fig. 4.1 The robot is given
the task “Get me the book
from the top of the bookcase.”
The book is out of reach,
so the deliberative system
must formulate a plan to
reach the book. While this
is beyond the capabilities of
most autonomous robotics
systems, the deliberative
systems necessary to solve
this kind of problem have
been available for over half a
century.
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the cycle anew. All of this depends on having a effective way to represent the world,
the goals, and the actions and events that can change then world. In the following
text, we will explore the representation of the state of the world.

If our robot is going to solve this problem, it must be able to sense the world to
assess the current situation. The robot relies on semantic memory to provide context
for the goals and it relies on the Reification Engine to provide a symbolic
representation of the current situation to orient itself. Beyond representing the state
of the world, the robot must also represent the changes that can occur in the world,
both those changes that the robot causes and the changes that occur beyond the
actions of the robot. The effect of executing these actions in the real world must be
modeled in the representation of the world as well. The format and mechanism of
representing these actions is discussed in Section 4.3 below.

4.1 Representing Features of the World

There are several approaches to representing the state of the world. One of the eas-
iest is to use the idea of a ‘closed-world’ assumption. In essence this states that
anything that cannot be proved true, can be assumed to be false. Under this assump-
tion the world can be represented as a collection of propositions, and, using the
machinery of Boolean logic, theorems can be proved about the world. For example,
in the example world described above, the door between the office and the Library
can be represented as (Door, open)if the door is open. If this proposition is
not present, then the system assumes that the door is not open, or closed. Alterna-
tively, one might explicitly state that the door is closed by removing the proposition
(Door, open) and replacing it with the proposition (Door, closed). If the
door can be locked or unlocked as well as open or closed, the machinery needed to
maintain consistency starts to get complex. and these complexities arise from simply
trying to represent a static, deterministic world.

However, given the uncertain and non-deterministic nature of the world, this rep-
resentation scheme has further problems. Some things that may be true at one mo-
ment may become false later. It is also difficult to represent the lack of knowledge
that a robot must deal with, since there is no way to say “I don’t know.” The notion
of boolean logic has been extended by many researchers using techniques such as
continuous valued logic[57, 208] (the truth of a statement is a real number between 0
and 1), and three–valued logic where a proposition can be true, false, or unspecified.

Our representation uses a multi-state logic system in which the features that de-
scribe the things in the world can take on numerous values. Each feature has a name
and a range of specified values that the feature can take on. Each feature also has an
explicit representation of the “I don’t know” state. This is critical in a world where
the robot can not see through walls, and where the state of things might change over
time. For example, in the case of the door we can explicitly represent the possible
states of the door as being the set

Door : {Open,
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HalfOpen,
Closed - Unlocked,
Closed - Locked,
DontKnow}

and any other possible states, provided that they are mutually exclusive. This allows
the robot to utilize a rich representation set, without requiring a large computational
overhead to check for inconsistencies.

The representation models the state of the world by defining a (Feature,Value)
pair, such as (Door,HalfOpen)to represent the door between the office and the
library in Figure 4.1. By defining the set of features and objects in the world, the
deliberation system can create a representation of the problem space as it currently
exists, and a representation of the goal state that it is attempting to achieve. By
utilizing the model of the world, it can record the state of the door even when it is
not actually looking at the door, and can represent the things that it does not know
by utilizing the DontKnow state.

Each Feature–Value pair represents the state of one aspect of the world at a spe-
cific point in time. The entire state of the world can be represented by a collection
of Feature–Value pairs, one for every salient aspect of the world. This collection is
called a WorldSet. The WorldSetcan be visualized as a list of Feature–Value
pairs that specify the state of each Feature that is salient to the problem at hand. If
the state of a feature is not salient the corresponding Feature–Value pair is simply
not included in the list. For example, the orientation of the Pointer in the Library
example might be upright or horizontal but if it is not salient to getting
the book, it can be left out of the WorldSet. Of course, if the pointer becomes
useful to solving the problem, perhaps by using it to push the book off the top of
the bookcase, the Feature–Value pair (PointerOrientation, Vertical)
can be added to the WorldSet.

4.2 Representing Goals

The model that is used to represent the current state of the world can be used directly
to represent future or alternate states of the world. This includes representing a de-
sired state that the system wishes to achieve. By using a state based representation
of goals, we gain several powerful advantages. Since both current state and goals
states are built from the same type, or class, of representation it becomes possible
to do direct comparisons of the differences between the world as it exists and the
world as it is desired to be. This allows the extraction of the set of features that
need to be changed in order to transform the world to meet the goals, and it allows
the deliberative system to not expend computational resources on what does not
have to change. In Chapter 10 a number of specific comparative operators are de-
scribed, which can be used to compare existing and forecast WorldSets against
the WorldSet that represents the goal state of the system.
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4.3 Representing Actions in the World

An action is something that changes the state of the world. If a door is closed, and
the robot opens the door, this action will result in a physical change in the world,
and there must be a way to represent this action in the internal representation of
the world. In the real world, there are three significant components associated with
an action: the conditions under which the action can be taken, the possible results
of taking the action, and the likelihood associated with these results. To allow the
deliberation system to reason about the world, it must also have representations of
these three components.

4.3.1 Enabling Conditions

The physics of the real world make it impossible to close a door that is already
closed; if a door is closed and locked, the door must be unlocked before it can be
opened. These are physically imposed preconditions that determine if an action is
possible, and they must be faithfully preserved in our representation of the actions.
There are additional benefits to modeling these preconditions for the deliberation
system. One of these is that we do not waste time and energy examining actions
that we cannot apply to the given world. This reduces the amount of computation
that our robot must undertake. We can represent these ‘enabling’ conditions by us-
ing the same world state representations that were described above. For example if
we had an action such as OpenTheDoor we can say that the preconditions are
that the door is either HalfOpen or Closed(Unlocked). In any worlds where
these conditions are met, our robot can consider taking the action OpenTheDoor.
The WorldSet representation can be used to capture the preconditions of any ac-
tion. To do this, we deliberately overload the semantics of the DontKnow flag that
is available for any feature in the world. When representing the current state of a
feature, the flag meant that we did not know what the actual value was. When repre-
senting a precondition this same flag has the meaning of “I don’t care.” This means
that the action does not depend on this particular feature being in a specific state.
For example, if the action is to open the door, the color of the door has no bearing
on whether the door can be opened. Brown doors open just as easily as blue doors.
It is only necessary to include in the WorldSet those feature that can impact the
ability to undertake an action, it is not necessary to list all the features which are
irrelevant. This gives us a very parsimonious representation

4.3.2 Outcomes

Once we have the preconditions represented we will also need to represent the re-
sults (or outcomes) of taking the action. In the case of OpenTheDoor, clearly one
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outcome might be that the door is now open, and we would expect this outcome in
the majority of cases. However, in the real world, nothing is certain. So there are
other possibilities that can result. Our hand might slip off the knob, and the door
would still be closed or the hinges might stick, leaving the door only half open, or,
possibly, we might pull too hard and the door would swing open, hit the wall, and
bounce shut again. Any of these are possibilities, and most of us have experienced
all of them at one time or another. If our robot is to be functional in the real world, it,
too, must be aware that these are possibilities, and take them into account. To repre-
sent these in the deliberation system we can utilize the WorldSet in a third way, we
can use them to indicate what features in the world will change in what ways when
an action is applied.

In this application of the WorldSet, we overload the DontKnow/DontCare
flag to have a third meaning. When it is in an outcome, it means DontChange.
Once again we have a very parsimonious structure, since the absence of a specific
Feature-Value pair in a WorldSet means that this feature is unaffected by the
action, and it will retain whatever value it had before the action occurred.

4.3.3 Representing Likelihoods

While we have the ability to represent different possible outcomes, we have yet to
encode the relative frequency with which these outcomes occur. In the door opening
example we specified four possible outcomes, two of which left us with the door
still closed (the slipping hand and the rebound from the wall), one which left the
door partially open (the sticking hinge), and one which accomplished our intended
result of an open door. From personal experience, it is clear that these outcomes
have different likelihoods. Perhaps ninety-nine percent of the time the door actually
opens, and the remaining one percent one of the others occurs. If the robot is going
to be able to function effectively, it must be able to reason about these likelihoods.
In order to reason about them, there must be some representation of the relative
frequency of the possible outcomes.

The traditional approach might be to exhaustively enumerate every possible out-
come, and assign to each some empirical probability. This has the drawback of re-
quiring our system to be more than human, since in the real world, no matter how
many outcomes we enumerate, we will find some other possibility occurring, if we
wait long enough. Not only is this enumeration effectively impossible, it is also
extremely computationally expensive to reason about. Biological systems can not,
and do not attempt to analyze every possible outcome of every possible action they
might undertake. At best, they might consider one or two likely outcomes and then
lump every other possibility into an ill specified “Or something else might happen.”
Our robot uses the same approach, by enumerating a few possible outcomes, and
accepting that beyond these there is a possibility of something else going wrong.

Putting these three pieces together we can define the data structure of an Action
within the representation. An Action consists of:
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1. An identifier
2. A WorldSet that defines the necessary preconditions to enable the Action
3. A list of possible outcomes consisting of

a. The likelihood of this outcome occurring
b. A WorldSet defining what changes if the outcome occurs

4.4 Exogenous Events

As we have said before, the world is not a static place. While our robot is busy
planning and taking steps to achieve its goals, the world is changing. Other entities
are making changes to the state of the world to achieve their goals, and other, less
intentional events are affecting the world - doors swing shut, light bulbs burn out,
cars run out of gas. All of these events are outside the direct control of our robot,
yet they cannot be ignored during our deliberations.

Since the exogenous events are outside the control of our robot, the robot does
not know when these events will occur. If these events are caused by another agent,
the events occur when the other agent causes them to occur, and the robot has no real
way of modeling that process. Alternatively, if the events are non-intentional (e.g., if
the vacuum cleaner breaks a belt, it becomes impossible to vacuum the floor) there
is no effective way to model the complex physics that result in the event occurring.

As a result, we treat all these exogenous events the same, whether they are in-
tentional acts by another entity or are less intentional events. These events cause
changes in the state of the world, exactly the same as an Action (defined above).
In the interests of parsimony, we use the same basic Action data structure to
represent exogenous events. While an Event typically has a single outcome, the
Action data structure can support this. The key difference between An Action
and an Event is that an Action is invoked by the intention of the actor, in this
case our robot, whereas an Event is triggered outside the control of our robot.

To capture this independent nature of the trigger, we represent an Event as a
Poisson distributed random variable. Thus the representation of the vacuum cleaner
belt breaking and disabling the vacuum cleaner has an estimated frequency of oc-
currence. Since the outcome section of an Action has an associated likelihood,
we relabel the likelihood of occurrence as the event frequency. In addition, some
Events have necessary enabling conditions, which are captured in the precondi-
tions field of the Event.



Chapter 5
Perception/Action System

When one thinks of a robot, one typically envisions the physical manifestation of
the robot. The focus is on the hardware that allows the robot to interact with the
world. In this chapter we focus on the hardware: the physical chassis, the sensors,
and the effectors - the components that allow the robot to change the world. These
components as a group are called the Perception/Action system, since they provide
the ability to perceive the world and act on it. Without this the system may be in-
telligent, it may be autonomous, it may be goal driven; but it is just software, not
a robot. A classical example of the Perception/Action system of a robot is “Rosie
the Robot” from the Hanna-Barbera cartoon series “the Jetsons.” This robotic maid
was capable of interacting with the environment to achieve the tasks assigned by
the family, whether that was cleaning up, washing dishes, or walking the dog. For
many people the vision of the future is incomplete without these human-like robotic
servants, whether they are robotic maids or the robots made popular in the Star Wars
movies. In all these cases, the vision of the robot is the chassis, the manipulators,
and the sensors.

But, the robot is the chassis not the brain. If the system has no ability to reason
symbolically, or even no ability to reify the sensed data into a symbolic form, it is
considered a robot as long as it can move about and make changes to the environ-
ment . Thus, a insensate welding robot is a robot. A bomb disposal robot that simply
relays images to the human operator and follows commands issued via a joystick is
a robot. The Perception/Action system, the hardware that embodies the system and
interacts with the world is what makes the robot a robot, not all the fancy reason-
ing that takes place invisibly, inside the system. In this chapter we discuss some of
the theoretical aspects of the Perception/Action system. Then we explain how the
theory is used by introducing two of the robots from our lab, Fred and Basil.

39
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5.1 Robot as Perception/Action System

The Perception/Action system anchors one end of our schematic model of the com-
plete robotics system (See Figure 5.1) since it is the interface between the robotic
system and the outside world. The Perception/Action system of any robot can be
viewed as three distinct subsystems:

1. The physical body, or chassis;
2. The perception subsystem; and,
3. The action subsystem.

Each of these subsystems is dependent on the others to some degree (for exam-
ple the chassis normally is responsible for providing the power to the sensors and
motors) yet each is responsible for providing different abilities to the robot as a
whole.

The robot body provides the structural system that supports and powers the other
subsystems. The perception subsystem includes sensors such as the eyes, the ears,
the radio system, as well as systems for balance, motion, grip strength, and so forth.
The action subsystem might include a wheeled base or legs for mobility, arms for
manipulating objects in the world, additional appendages and devices for informa-
tional manipulation such as the voice, and radio transmission.

While these subsystems will vary considerably from one robot to another, each
has a specific role to play if the robot is going to be able to achieve goals in the
physical world. For example, many current teleoperated systems use a complete
Perception/Action system, but rely on the reasoning and reification provided by the
human at the other end of the control system.

Fig. 5.1 The Percep-
tion/Action system is the
physically embodied aspect
of the robot. It includes all the
hardware necessary to sense
the world, and to take the
actions that will change the
world. It must also provide
protection for the electronic
and mechanical components
that enable the robot to rea-
son, and provide power to all
the subsystems that require
power.
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5.1.1 Robot as Body

The primary function of the body, or chassis, of the robot is to act as the support
for the Perception/Action systems. The actual shape of the chassis will be driven by
the tasks that the specific robot is intended to complete. It might be a generally hu-
manoid shape, an aircraft, a surface ship or submersible, or any number of wheeled
vehicles, traveling on any number of surfaces. Typically, the chassis of a robot is
designed to meet several needs:

1. protection;
2. power;
3. structural support; and
4. mobility.

The function of protection ranges from simply shielding the electronic and me-
chanical systems from everyday damage from bumps, dust, and liquids to complete
protection from hostile environments. Since the control components, the sensors,
and motors are often designed to be enclosed in a relatively safe environment, the
chassis provides that protection. For some robots this protection function is more
extensive. Many robotic systems are employed in underwater exploration and re-
search and for these robot chassis must protect the electronics from water under
significant pressure. Consider the use of robotics systems by the National Aeronau-
tics and Space Administration (NASA). These systems are deployed into extremely
harsh environments and depend on the chassis for critical protection from heat, cold,
radiation, as well as dust when deployed onto extraterrestrial surfaces. In these ex-
treme environments, as well as in more mundane settings, the protections offered by
the chassis are critical if the robot is going to get its work done.

At the other extreme are robots that are designed to be industrial machines. These
chassis are often stripped down with little or no protection of the internal space.
These robots provide structural support for the components, without impeding ac-
cess. In an industrial setting, the costs associated with downtime can be significant
and so for these chassis, the ability to access the hardware is more important than
the protection provided by an external skin. This is also true for robot platforms that
are designed as systems to test the robots themselves. The ability to rapidly modify
the sensors, the effectors and so on is a primary design goal.

Beyond merely protecting the electronic and mechanical components, the chassis
is typically responsible for providing power to enable these components to func-
tion. This can be a complex task in itself, since many robotics systems utilize
combinations of electrical, hydraulic, and pneumatic power, which may be pro-
vided by battery storage, fuel cells, internal combustion engines, or even biological
sources[111]. Even in a simple, all electric powered system there are potential prob-
lems. Electric motors can create large levels of noise on the power bus, noise that
can disrupt the sensors, and can cause problems with the microprocessors that are
controlling the robot. Even when these issues are addressed, there is a limit to the
total available energy, and the power available at any one time. NASA has developed
complex artificial intelligence solutions to solve the problems of load balancing, and
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task scheduling on spacecraft[179] - problems driven by the limited power available
on these platforms.

To enable the robot to sense and act, the chassis must also provide structural
support for the sensors and actuators. The required support varies greatly from one
robot to another, again driven by the tasks that the robot must complete. It is also
dependent on the nature of the sensors and actuators. A simple sonar mounted to
the chassis may require little structural stability beyond that which is required to
protect the electronics inside the body; however, a complex pan-tilt mechanism that
is holding a 10 kilogram laser scanner may require significant structural support to
preserve the accuracy of the scanning while traversing across a grassy field. The
need for structure is at least as significant when actuators are involved. If the task
of the robot is to carry a load, or to extend an arm and pick up a heavy object, the
physical forces involved can require a correspondingly strong and well balanced
structural system.

Finally, many robots outside the factory floor are mobile. To achieve their as-
signed tasks they must be able to move about the workspace. This can be as easy as
rolling from one office to another in a modern building, to having to navigate up and
down stairs that have been designed for humans, to traversing across a rocky field
on Mars.

5.1.2 Robot as Sensor

Regardless of the domain and the tasks, if a robot is going to take deliberative action
to achieve a goal it must be able to sense the state of the domain. At the most
basic levels, if it cannot sense the state of the world, it cannot determine which, if
any, goals have not been achieved. As a result, the two most common models for
deliberate behavior: the Sense - Plan - Act model, and the Observe - Orient - Decide
- Act (OODA) model, place a sensory stage at the beginning of the loop.

The nature of the sensing is task dependent. A robot that is responsible for deliv-
ering mail in an office setting, must be able to detect that it has mail to be delivered,
sense to whom the mail must go, and perceive any potential obstacles along the route
to the recipient[10]. However, a robot that is given the task of deploying a sensor
package to an underwater thermal vent needs very different sensors to localize itself,
detect the heat of the vent, and adjust and maintain its orientation and position in the
face of underwater currents[11, 112, 126]. Regardless of the task and the domain,
before the robot can reason about how to achieve its goals, it must be capable of
sensing the salient aspects of its environment.

As we have indicated above, it is not sufficient to simply sense the environment.
The sensors are the first stage in a complex path that leads from raw sensory data
to a collection of reified symbols that are embedded in a context. It is this symbolic
representation that a goal directed deliberative system (whether biological or cy-
bernetic) reasons about. It is the responsibility of the Perception/Action system to
gather the raw materials from which this symbolic representation will be built.



5.1 Robot as Perception/Action System 43

5.1.3 Robot as Agent of Change

Finally we have the most immediate of the roles - the robot must do things. Ul-
timately, unless the robot can make changes to the world - unless the robot can
undertake actions, it is not a robot. There are many models of how entities interact
with the world, but they must interact. Both the Sense - Plan -Act model and the
OODA[15] loop, end in the same stage: Act. This is the most visible attribute of de-
liberative behavior. We, as humans, make many of our assessments of intelligence,
intentionality, and goal directed behavior by the actions taken by the entity. Indeed
if the entity does not act, it is unclear how it can be considered to have achieved
its goals. In this section we focus on what the action portion of a Perception/Action
system must include, and how these capabilities must also be represented in the
reasoning on the robot.

5.1.3.1 Mobile and Autonomous

In many ways the utility of any robot is determined by the ways in which it can
affect the world in which it is deployed. Since the early 1950’s research laboratories
around the world have had robots wandering the hallways. These robots were typ-
ically small wheeled systems that could maneuver on flat indoor surfaces such as
the floors of hallways and rooms. Unfortunately, their utility was limited since they
could do little more than wander around. While these robots could often be directed
to go to a specific place, there was little or nothing that the robot could do once it
got there. As late as 1997 one of the premier robotics research centers reported on
their robot Xavier, which functions as an office delivery robot, and described the
functionality as:

A basic function of office delivery robots is to satisfy requests of the form “Go to X, then go
to Y.” When the robots arrive at location X, an item, such as a document, is given to them,
which is then removed when they arrive at location Y[186]. (Introduction)

Since Xavier has no arms, this is potentially misleading. The only action that this
robot can take in the world is to move. Great innovation has been applied to the
question “If all the robot can do is go from place to place, how do we make it
useful?” Some of the solutions have been:

1. Robot as service robot (delivery, messenger, etc.);
2. Robot as mobile sensor platform - used for security[135], chemical/biological

survey, cartography, exploration;
3. Robot as mobile joke teller, a web based demonstration project; and,
4. Robot as toy.

In general the model is still “Go to X, do something, go to Y”. Many attempts
have been made to commercialize these autonomous robots, and there have been
some successes[181]. While in some areas, such as mapping of biological and chem-
ical data in undersea applications[174] the robots are of significant value, the most
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successful deployments of mobile autonomous robots have been in the last category
listed: toys. There are literally thousands of robotic toys available, all with the same
problem. While they have Perception/Action systems that can navigate and they
have sounds and lights, they simply do not do much. Contrast this with the immense
strides that have been made in industrial, factory, and laboratory automation.

5.1.3.2 Industrial Automation

There are many robots that have manipulators, and other end effectors for changing
the environment, however many of these robots are not mobile. Industrial robots,
factory and laboratory automation robots and others have very precise tools to
change the world, but they often need to be in tightly controlled environments. Each
action is carefully programmed, and each object which is affected (such as a auto-
mobile body being welded) is precisely positioned. This is due, in part, to the fact
that this type of precise, repetitive action is exactly what is most efficient in a pro-
duction setting, but it is also due to the inability of the robots to effectively make
sense of the world that they are operating in. As a result, any deviation from the pre-
cisely scripted actions can be disastrous. People are kept carefully out of the range
of the robotic manipulators.

Industrial robotics utilizes the Perception/Action system as the front end for a
very tightly controlled machine that performs the programmed manipulations of the
environment. Many of these robots utilize little, if any, direct sensing of the environ-
ment. The parts that they are working on are very precisely placed into well defined
positions, and the actions that are performed have been carefully programmed in ad-
vance. See “The Handbook of Industrial Robots”[148] for an overview. The robots
have very little discretion in what they do, other that a rudimentary level of fail-
ure detection. There has been recent work in using networks of external sensors to
detect and address unpredicted motion in grippers in industrial workcells[203], but
this is still in the research stage.

5.1.3.3 Teleoperated Robots

Another class of successful robots that also have complex and useful manipulators
are the teleoperated robots. These systems utilize the abilities of the human in the
loop to understand what the cameras are showing, and to control the manipulators
to achieve the changes to the world.

Referring back to Figure 5.1, in a pure teleoperated system all of the functionality
that is outside the Perception/Action system (the grayed out portion of the diagram)
is provided by the human operator. The robot is nothing more than an end effector
for the operator. One of the problems experienced by pure teleoperated robots is the
lag between the robot and the operator. Also, the operator of a teleoperated robot can
quickly become overloaded with the details of manipulating the robot and maintain-
ing a good situational awareness. This has resulted in the incorporation of low-level
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intelligence into the robot to act much like reflexes in a biological system. For exam-
ple, NASA’s Sojourner vehicle deployed on Mars during the 1997 Mars Pathfinder
mission was primarily a remotely operated vehicle. The robot would send current
sensor data to the ground station, and the operators would develop a sequence of
operations that would move the robot a short distance, or position an instrument and
collect data. This plan would be uploaded to the robot, and it would be executed.
However, a few on-board sensors and safety routines monitored the execution and
were capable of interrupting the planned sequence. This increase in local control
within the primarily teleoperated robotic platform has been driven by growing mis-
sion duration needs (such as within the Predator unmanned aerial vehicle[157]), and
increased mission complexity.

5.1.4 Low Level Control Loop - Procedural Memory

The Perception/Action system is more than a set of sensors and a collection of effec-
tors. To support reflex-like behaviors and the execution of simple preprogrammed
responses (equivalent to the ‘muscle-memory’ or motor learning of a trained ath-
lete, there must be a low-level control loop. This control loop would correspond to
the control functions supplied by the reflex arcs in the somatic nervous system and
in the metencephalon of the CNS[36].

This control loop allows the Perception/Action system to respond immediately
when specific sensory triggers are detected, without having to pass information
through the reification process to the deliberative system. This pathway is shown
in Figure 5.2.

Fig. 5.2 The internal struc-
ture of the Perception/Action
subsystem includes the mech-
anisms for sensing the world
and for manipulating the
world to achieve goals. In
addition, it also contains a
low-level control loop that
functions analogously to the
reflex mechanisms of biologi-
cal systems.

Perception/Action

Sense

Act

Reflex
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This reflex arc is embedded in the Perception/Action system for a number of
reasons. First, in biological systems reflexes are non-conscious actions that are ef-
fectively hardwired. They are typically associated with mechanisms that directly
increase the survival of the organism, either by reacting to dangerous situations or
be increasing the ability to acquire food. As most graduates of high school biology
class remember, frogs and amphibians show reflex activity even when their brains
have been removed. Anyone who has visited the doctor’s office and been struck on
the knee with that little hammer has also experienced non-conscious reflexes first
hand. The reflexes are often responses to painful stimulus. The way in which these
reflexes are constructed in robots is discussed below.

5.1.4.1 Reflexes and Reactive Systems

In biological systems numerous reflex arcs are external to the CNS. These control
loops are located close to the sensory organs and muscles to reduce the time lag
between the detection of a critical signal and the execution of the reaction. This cor-
responds in many ways to a purely reactive system in the robotics literature. Orig-
inally proposed by Brooks[20], the concept of a reactive system is driven in large
part by the computational complexity of maintaining a detailed and current model
of the world. The core concept was “Intelligence without Representation[22].”

Rather than maintaining a complex model of the world, the idea is to use the
world as its own model. Use direct sensing of the environment to trigger specific
behaviors that would achieve the systems goals. In addition, it is possible to use
additional sensory data to inhibit some behaviors, while enabling others. In this
way, it was felt, complex networks of inhibitory and excitatory interactions would
be capable of producing complex, intelligent behaviors. For an overview of reactive
systems, see Behavior Based Robotics, especially[3]. Much of the work in reactive
systems has drawn from the same biological research that has driven our research.

Interestingly, these reactive system based robots can, rather quickly, achieve be-
haviors that have the appearance of living systems. Behaviors such as navigation,
obstacle avoidance, and both foraging and predation have been demonstrated[13,
74]. Unfortunately, it has proved difficult to demonstrate more deliberative behav-
iors, such as problem solving and complex goal satisfaction. In part this seems to be
due to the self-limiting choice of not maintaining a complex, representational model
of the world[17, 68]. In Chapter 3, we presented data to support the notion that even
very simple biological organisms do in fact maintain relatively complex represen-
tations of the state of the world, and we argued that unless this expensive cognitive
machinery was necessary it would not be evolutionarily conserved. However, it is
also clear that there is a need for systems to have these low-level reactive behaviors
tightly integrated into the Perception/Action systems.
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5.1.5 System Safety and Routine Actions

In deployed robotic systems, the use of safety critical reflex circuits has been seen in
systems such as the Sojourner Rover deployed on Mars. In this robotic system (pri-
marily a teleoperated device) several safety reflex circuits were employed. These
included a tilt sensor that measured the angle of the rover body with respect to the
gravitational field. In at least one programmed action sequence, the tilt sensor de-
tected an excessive angle, and shut down the drive systems before the rover flipped.
This reflex circuit was beyond the control of the operators on Earth, and prevented
a fatal error. The use of these reflex circuits in the Perception/Action systems of
deployed robots has proved its worth, and is included in most future designs[99].

An additional safety function that is commonly incorporated into the Percep-
tion/Action system is obstacle and collision avoidance. These reflexes depend on
directly monitoring the sensory systems for indications of potential or impending
collisions. At the simplest, touch sensors and/or proximity sensors can be moni-
tored and the drive systems can be immediately shutdown upon a detected collision.
This type of reflex requires no real deliberation, nor does it require a world model.
These can be extended into systems that detect a void (often called a ‘negative ob-
stacle’) such as the drop-off associated with a curb, or, for many robotic toys, the
edge of a table. When a drop-off is detected, the system can rapidly steer away from
the drop-off, or back away. These types of reflex arcs clearly mimic the reflexive
behavior of jerking one’s hand away from a hot surface.

In addition to the use of reflex arcs for system safety, it is also common to reduce
the cognitive load on the operators of teleoperated robots by incorporating control
loops for routine operations into the Perception/Action system. For example many
unmanned aerial vehicles (UAVs) have control systems for maintaining altitude and
heading (autopilot), controls for flying a preprogrammed circuit around a specific
location[2] (loiter), or automated takeoff and landing[170]. In addition some sensors
such as video cameras can have automated target tracking controls[199], which will
pan and tilt the camera to keep a designated object in the field of view. Just as with
biological systems, the line between reflex and deliberative action is determined not
by the complexity of the task, but by the volitional nature of the activity. Many
biological organisms have complex activity sequences that are non-volitional, and
exhibit some very simple actions that are not reflexive.

5.2 Examples of Perception/Action Systems

5.2.1 Fred - a simple test robot

Fred is a simple wheeled robot that is designed for indoor tasks such as delivering
objects or patrolling areas. The chassis has two co-axial drive wheels, with non-
driven casters to provide support. The primary controller for the chassis is a Javelin



48 5 Perception/Action System

chip from Parallax Corporation, running their subset of the Java programming lan-
guage.

The chassis is open, and provides little or no protection from the environment.
This is primarily due the the use of the robot as a test and development system.
Having easy access to the internal components simplifies the task of modifying the
hardware. However, since Fred is designed to only function in a controlled test en-
vironment, there is less of a need to provide protection from the environment.

5.2.1.1 Power

Fred is powered by a single 7.5 amp-hour 12V battery, with internal power buses
providing 5V lines for sensors and micro-controller power. The primary battery pro-
vides unconditioned 12V power to the drive motors, and supplies power to a condi-
tioned 5V power supply shared by the sensors. The hardware for the cortical stack
on Fred has an internal voltage regulator and line conditioner to handle line noise
from the drive motors.

5.2.1.2 Drive

The drive system for Fred consists of two co-axial drive wheels. These are roughly
placed under the center of mass of the entire robot, and there are two non-drive cast-
ers arranged perpendicular to the drive axis. These casters provide support when the
robot chassis is at rest, or when transient forces (due to acceleration and decelera-

Fig. 5.3 Fred is a simple indoor service robot.
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tion) affect the balance point. The system is not self balancing, so generally one of
the two casters provides the third point of support for the chassis.

The drive wheels are coupled to reduction gear boxes which are driven by in-
dependent 12V motors. These provide ample power for moving the chassis across
floors, and up and down inclines. There is no capability for traveling up or down
stairs, or over rough terrain. The robot is capable of transiting across typical indoor
discontinuities, such as the transition from carpet to hard floors.

5.2.1.3 Sensors

Fred has a number of active infra-red ranging sensors for close-in sensing, and has
a set of short range ultrasonic ranging modules for obstacle detection. The close-in
sensors are monitored by the main control board, to reduce the response time when
detecting obstacles. The ultrasonic sensors are controlled by in independent sensor
board.

The close-in infra-red ranging sensors are IRODS from HVW Technologies.
They have an effective range of 10cm - 80cm They are based on the Sharp GP2D05
sensors. The field of view for the sensors is approximately 10cm at 50cm range,
or approximately 10deg. They are mounted vertically to provide coverage from ap-
proximately 5cm above the floor to about 15cm above the floor. They are primarily
intended to provide coverage directly in front of the drive wheels. These sensors
provide the detailed detection of obstacles immediately in front of, and to the sides
of, the robot chassis.

Fig. 5.4 A UML style deployment diagram of the primary sub-systems of the physical components
of the robot.
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5.2.1.4 Effectors

At present, Fred has no actuators other than simple movement. Figure 5.4 shows an
overview of the hardware components that make up the Perception/Action system
of Fred. We use a UML style representation to show the hardware dependencies
between the components.

5.2.1.5 Control

Control for the Perception/Action sub-system in Fred is primarily focused on four
aspects:

1. Safety;
2. Homeostasis;
3. Health; and,
4. Communication.

The safety aspect is designed to respond to the close-in IR sensors, and stop the
robot before it hits any obstacles. This is a tight sense-react loop that runs directly
in the drive motor control software. The IR sensors are also used to detect sudden
drop offs in front of the drive wheels, and so prevent the robot from falling down
stairs.

The homeostasis aspect is designed to implement procedural memory, and sim-
ple tasks such as maintaining speed. Procedural memory is the repository of simple
action sequences, such as turning, accelerations, etc.)The procedural memory in-
cludes obstacle avoidance and recovery tasks (e.g., it the robot turned left to avoid
an obstacle, it must correct by turning right). The control software for these types
of tasks are loaded into the Perception/Action system since they are tightly coupled
with the motor control.

Fig. 5.5 The control flow for
the Perception/Action sub-
system of the robot called
Fred. The core of this low-
level loop is: 1) check for
conditions that threaten the
robot (Drop offs, Obsta-
cles), 2) maintain the current
intended behavior (correct
motion), 3) monitor slowly
changing states (battery), 4)
pass the current enteroception
and proprioception data to the
Reification Engine,
and 5) integrate new com-
mand into the current status.
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The health aspect of the control software handles issues such as monitoring bat-
tery state, and confirming connectivity within the internal hardware of the Percep-
tion/Action sub-system.

The Communications aspect provides two way communications with the reifica-
tion and deliberative systems of the robot. This communication includes receiving
new commands and sending current state information.

Fred is a traditional “trash can” robot, functionally equivalent to thousands of
other roughly cylindrical robots roaming the hallways in laboratories around the
world. Any design that claims to be general purpose must be capable of function-
ing on this class of robotic hardware. If the same basic control structures can also
be applied to other robot chassis designs, then there is some merit to a claim of
generality.

5.2.2 Basil

Basil is designed to be an indoor service robot. His primary function is to offer food
and drinks at parties, interact with the people, and to deliver small packages. The
environments in which Basil must operate are often crowded and are very dynamic.
The robot must be able to address changing layouts, obstacles such as tables and
chairs that are frequently moved, and avoid bumping into people that are moving
through the space. This places different demands on most of the systems than the
demands on a simple test robot such as Fred.

5.2.2.1 Power and Drive

In the areas of power and drive systems, there are few differences between Basil and
Fred, other than increased battery capacity, and a chassis that has been increased in

Fig. 5.6 Basil is a simple
indoor service robot. His
exterior is enclosed to protect
the electronics against spills,
and accidental impacts, since
he is designed to work in
and around humans. He also
utilizes a sonar based sensory
system that allows him to
build images similar to that
provided by LIDAR.
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strength. One obvious difference is that Basil’s chassis is enclosed. Unlike a test
robot, Basil requires significant protection from the outside world. One of his tasks
it to serve food and drinks, which requires that the outer skin of the robot be water-
proof, and that there are no easy routes for debris to enter the interior.

In addition, the chassis must be structurally sound. The upper surface of the robot
must be capable of supporting the payloads that are required. These payloads (trays
of food, drinks, or (in the case of the photo in Figure 5.6 the tea pot, cups, and
the associated supplies and equipment) range from a few hundred grams to several
kilograms.

Basil is a tapered octagonal column approximately 1m tall, and the top surface is
approximately 400mm from face to face. His drive system is aligned so that one face
of the octagon is forward, this face provides support for the primary sensors. Each of
the side panels provides protection to the interior of the robot chassis, and so the side
panels also provide a structural component. These panels must be able to withstand
the occasional bumps and impacts that are normal in a crowded dynamic environ-
ment. These panels are thin fiberboard, laminated to semi-rigid anodized aluminum
skin. The resulting surface is waterproof, impact resistant, and looks pretty good.

5.2.2.2 Sensors

Basil uses an array of short range sonars to build an image of the surrounding obsta-
cles. While the resolution of these sensors is low, the ability to reify the raw sonar
data into semantic information allows the robot to function effectively. This pro-
cess is discussed in more detail in Chapter 7 and the comparative performance is
demonstrated in Chapter 12

The ultrasonic sensors are Parallax “Ping)))” sensors. These provide the general
coverage for obstacle detection. Their effective range is 0.02m to approximately 3m,
with an in-plane field of view of approximately 15 degrees. The sensors are arrayed
across the forward surface of the robot.

5.2.2.3 Effectors

Much like the simple test robot, the only effector that Basil has is its ability to move
itself and its payload from one point to another. However, for the design goals of
this robot, that is sufficient.

5.2.2.4 Control

Control for the Perception/Action sub-system in Basil is primarily focused of four
aspects:

1. Safety;
2. Proprioception;
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3. Health; and
4. Communication.

The safety aspect is focused primarily on two things, not running into anything,
and not spilling anything. On the surface these appear to be fairly simple goals. In
the vacuous case Basil can achieve both of these by simply not moving, but that
option is not viable if the robot is going to achieve its goals. To avoid running into
anything, Basil has a relatively tight control loop that uses the sonars to build a
simple map of the nearest obstacles. This map is always monitored by the Percep-
tion/Action system and in the case of an impending impact, the drive system is con-
trolled by a reflex loop that stops the robot, and finds a clear path to travel. This low
level control loop is not sophisticated enough to avoid moving objects which will
impact the robot. This process requires the involvement of higher functions from the
deliberative system.

The second safety aspect is to avoid spilling drinks. To handle this aspect, Basil
is equipped with a drive control loop which moderates the acceleration of the drive
motors, an avoids rapid changes in direction. This is accomplished by low level
monitoring of the desired and actual velocities of the wheels, and performs a feed-
back control system to adjust the velocities. This system is not under the control of
the deliberative system, or the Execution Monitor; it functions independently
of these higher level systems.

The proprioception system focuses on maintaining a representation of the current
state of the robot, with respect to the outside world. It primarily maintains an esti-
mate of the velocity of the robot, and the direction that the robot is facing. These are
maintained using directly available information, since the Perception/Action sys-
tem has control of the drive motors, and is directly controlling the steering com-
mands. Unlike many other systems, there is not a direct estimate of robot posi-
tion. This estimate is maintained by the upper level control system, specifically the
Reification Engine.

The Health aspect is quite limited in this robot. There is a basic monitoring of
the battery state, but there are no sensors for tilt. In fact, Basil is, at present, almost
devoid of internal sensors of any kind. Rather, the robot depends on its ability to
reason about the world to avoid situations that might damage the robot.

From Figure 5.7 it is apparent that Basil might be susceptible to tipping over;
especially with a significant payload. It should also be evident that if Basil were to
tip, it would be impossible for the robot to right itself. This is not a problem for
most biological entities (yes, even turtles and tortoises can right themselves, given
enough time) because being unable to right oneself is not a survival characteristic.
However, it is also clear that most biological systems solve the problem by avoiding
situations in which they might be tipped over. Basil also relies on the ability to
predict conditions in which tipping has a higher probability, and the deliberative
system avoids putting the robot into those conditions.
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5.3 Summary of Perception/Action Systems

The Perception/Action system is the physical manifestation of the robot. It is what
makes the robot a robot and not just a computer. We presented a rough taxonomy
of types of robotic systems. This taxonomy includes the large group of teleoperated
robots, such as bomb-disposal robots, and unmanned air vehicles; it also includes
the very tightly controlled laboratory and factory automation systems. It seems that
(at present) robots can be mobile and autonomous, but restricted to limited manip-
ulation of the world; or they can be sessile and dexterous, active actors in a tightly
controlled world; or they can be mobile and dexterous, but must rely on a human
in the loop to provide the ability to understand the dynamic world, and provide de-
tailed control to make changes. Our focus is not on any of these classes, rather it is
on mobile, autonomous robots. By autonomous robots we mean that class of robots
that can operate without a hand on the joystick, and that are free to change their be-
haviors in response to changes in the environment, or to alterations in their internal
goals.

We examined the necessary functions that the Perception/Action system must
provide to the rest of the systems, the functions of support, and power, of sensors
and actuators. These are the interface between the cybernetic brain and the outside
world, the sources of the information about the world, and the mechanisms that
allow the robot to change the world in order to achieve its goals.

Fig. 5.7 Basil suffers from a
narrow base, with an outward
tapering chassis. In addition,
while efforts have been made
to keep a low center of gravity
in the chassis itself, the nature
of the service role frequently
places significant mass on the
top surface of the robot. This
increases the risk of the robot
tipping over. The lower deck
includes the drive system and
the batteries. The next level
has the low-level controllers,
on the level above this is
the main computer. Each
level also has the short range
sonars. Several of the fascia
panels have been removed to
allow access to the interior.
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Finally we looked at some concrete examples of instantiated robots. Fred is a
robot that was designed as a laboratory test platform, and Basil, a robot that is de-
signed to be turned loose in a crowded room, carrying food and drink to the guests.
This latter robot body was presented in some detail since it will act as one of the
running examples throughout the rest of the book.

These robots have more than just the mechanical manifestation of the robot chas-
sis and sensors. They also include a cybernetic component that must be capable of
reasoning about changes to the environment, and deliberately doing something to
achieve the systems goals. This points out the very tight coupling that is inherent in
designing an autonomous robot. As we will point out in more detail in later chap-
ters, the ‘brain’ cannot be divorced from the ‘brawn.’ If the brain is to control the
robot, the brain must have detailed knowledge about the physical capabilities of
the Perception/Action system, its strengths and its weaknesses. There is also a tight
coupling between the sensors that provide the information and the reasoning sys-
tem that uses that information. This coupling is both necessary and problematic.
In biological organisms this problem has been addressed by a common physiologic
structure that is conserved across a wide range of creatures, effectively the entire
terrestrial vertebrate line. This physiologic structure both isolates the brain, and it
connects it very closely to the rest of the body. In the following chapters we focus
on the ‘brains’ behind the physical robot.



Chapter 6
Design of a Reification Engine

In the previous chapters we have briefly explored the current state of robotics, and
looked at the lessons that can be learned from living systems that do the types of
things we want our robots to do. These lessons have suggested that there is a sig-
nificant component missing from many robotics systems, and supplied by humans
in other types of robots. This component must provide the mapping that enables the
deliberative system to reason about the world in which the robot finds itself, and
must translate the intended actions of that reasoning into behaviors that the robot
can execute.

This chapter focuses on the design of a reification system for mobile robots.
Among the design issues are:

1. how to implement a biologically inspired model?
2. what data structures need to be used to provide an interface between these fun-

damentally different representations? and,
3. what kinds of services must be provided by the Reification Engine to

enable the robot to function effectively?

We begin with defining the criteria that will guide us in the process of making
the design decisions that lead to the Reification Engine.

6.1 Model Selection Criteria

Once we have decided that reification is needed to build a cybernetic brain, then we
must decide how to build it. There are many possible algorithmic solutions to the
reification problem. These range from the biologically inspired population model
of cognitive function described by Freeman and Kozma[70][117] to models derived
from Kahneman and Tversky’s prospect theory[109]. In order to build the model,
one of these must be selected. The selection process is made easier by considering
the characteristics that any candidate algorithm should have. In the following section
we consider a few characteristics that are important to the reification process.
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First, the algorithm must support the concept of the salience of features. For
any recognition process there are a number of possible features in the environment
that could be used. For example, for the recognition of a block in the environment,
the algorithm needs to ignore such features as block color, room temperature, wall
color, floor color, and sound level. Unfortunately, there are many, many features that
could be observed, and (in most judgments) only a small number of these are salient.
One might suggest that the robot be programmed to ignore the aspects that are not
salient. Daniel Dennett expounds on this in his essay “Cognitive Wheels: The Frame
Problem of AI,” which contains a story about a robot that needs to retrieve a spare
battery from a room containing a bomb. After several (explosive) failures due to not
paying attention to enough, or to too much, the designers hit upon the idea of having
it ignore the irrelevant:

“We must teach it the difference between relevant implications and irrelevant implications,”
said the designers, “and teach it to ignore the irrelevant ones.” So they developed a method
of tagging implications as either relevant or irrelevant to the project at hand, and installed
the method in their next model... When they subjected the [the robot] to the test ... They
were surprised to see it sitting outside the room...

“Do something!” they yelled at it. “I am,” it retorted. “I’m busy ignoring some thou-
sands of implications I have determined are irrelevant. Just as soon as I find an irrelevant
implication, I put it on the list of those I must ignore, and...” the bomb went off.[49]

Just as Dennett’s hypothetical robot found far to many implications that had to
be ignored, our robot must have some effective way to only pay attention to those
features that are salient to the judgment.

Hopefully, we have demonstrated that in order for the algorithm to make the
mapping in less than infinite time, it needs to be able to select only the features re-
quired for the decision. These features are the salient set of features for that problem.
Studies on humans and their ability to focus on multiple features at the same time
has shown, that humans can only hold seven plus or minus two features in working
memory at one time[130]. Rather than being considered a deficit when compared to
the millions of things that a simple computer can keep in working memory, this may
be an incredible strength. This limitation has forced living systems to effectively
classify features as salient or not to the task at hand. To be biologically principled
the chosen algorithm must include the concept of salience, and can not require the
consideration of all of the features in the environment at all times.

Another closely related requirement is that the algorithm must be able to handle
uncertainty and error. All observations of the environment are probabilistic by defi-
nition, so uncertainty is inevitable. In addition to uncertainty, the algorithm must be
stable in the presence of error. In a real system, while error can be minimized, it can
not be avoided.

The algorithm must also be reasonably fast. While additional processing time
can (usually) reduce error and uncertainty, for a robotic system in the real world, it
also adds a significant element of danger. Taking the time to reduce the uncertainty
in the speed of the approaching car poses a real danger.

In the interest of parsimony, a desired property would be the ability to use the
same mechanism in both recognition and preafference. Also, since we are empha-
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sizing a biologically principled model, It would also be good if there was some
reason to assume that the algorithm was analogous to that used in biological brains.

6.2 Judgment Analysis

A model that satisfies all of these requirements is judgment analysis. Judgment anal-
ysis is concerned with the ways in which humans make judgments in a probabilistic
and changing world. This theory comes from the field of cognitive psychology and
is based on the work of Egon Brunswik, who viewed the decision-maker as being

[25]. The main problem faced by all living creatures is the overloading of percep-
tual channels. In Brunswik’s work, the decision maker makes judgments using a lens
model [29]. The lens model simplifies the problem, by allowing the decision maker
to assess which cues have high salience to the decision, and pay attention only to
those cues. In general, there is too much going on, too quickly for the system to pay
complete attention to every aspect, and every implication. The lens model proposes
a mechanism that allows the system to discard that which is not salient. The math-
ematical formulation of the lens model is described below. However, Brunswik’s
work consisted not just of theory, but of a careful and detailed observation of human
perception, both the physical and social domains. One of the major advantages of
the use of judgment analysis for reification is that the researchers in this field have
built and extended the lens model by this type of careful observation and analysis.
Since the models have been built and tested on humans, there is at least a colorable
argument that a reification model based on judgment analysis will be biologically
principled.

As was pointed out by the writer in greater detail elsewhere, any organism has to cope
with an environment full of uncertainties. Forced to react quickly or within reasonable lim-
its of time, it must respond before direct contact with the relevant remote conditions in
the environment, such as foodstuffs or traps, friends or enemies, can be established. Egon
Brunswik[27]

The lens model is shown in Figure 6.1. To discuss this model, let us consider the
simple example of our humanoid robot estimating the distance to a child’s building
block lying on a table. In this model, the actual distance to the block is an environ-
mental (distal) state variable (D). The observer has a series of observable (proximal)
cues (xi) relating to this distal variable, such as the size of the retinal representation
of the block, the differences in the image in the right and left eyes, and the blur-
ring of the image. These cues have a probabilistic correlation to the actual state, this
is their ecological validity. In experiments on judgment tasks, the error has been
shown to be approximately gaussian with a mean that approximates the “true” value
[153][89]. The robot weights each of the cues with its specific weight (wi) and uses
a function of these weighted cues to make a judgment as to the true state (d). Be-
cause of the errors in the observation of the cues, the judgment also contains an error
term. This set of cues and weights also has a correlation with the perfect cue and

embedded in an ecology from which he received cues as to the true state of things
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cue weight set, cue utilization validity. The relationship between the judgment and
the correct value must then be defined as a statistical correlation, which Brunswik
named functional validity. This can be used to update the weights placed on the cues
in future judgment tasks[25][28]. This model was based on observation of natural
perception and as such was designed to handle both uncertainty, salience, and speed.

Brunswik’s initial model is described by the equation:

D =
n

∑
i=1

wixi + ε (6.1)

where: D is the environmental state variable
xi is the raw value of the observed feature i
wi is the weight applied to the feature i
εi is the error

This equation reduces to:

D = d + ε (6.2)
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Fig. 6.1 Brunswik’s Lens Model.
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where: D is the environmental state variable
d is the estimate of the environmental state variable
εi is the error

In later work, the input to the lens model was extended past raw numbers. The
lens model was extended to replace the raw observed value (xi) with a function
form f (xi) This function form may be linear, inversely linear, or non linear [190].
The input to the the lens model may also be categorical or probabilistic [37]. The
outcome from one lens may also be used to form the cues for the next. This is called
a hierarchical judgment decision and became the basis for social judgment theory
(SJT) [91]. For the interested reader more information about Egon Brunswik and
judgment analysis can be found in [88], [37] and [92].

Before we dive into the details involved in using the lens model to construct a
Reification Engine, we need to consider the role of probability in judgment
analysis. As mentioned above, ecological validity is the probabilistic relationship
between the actual state of the observed object and the perceived state of the ob-
served object. Functional validity is the organism’s ability to use these observed cues
to make a correct judgment as to the state of the observed objects [29]. This func-
tional validity must be learned in a probabilistic way by each organism. Brunswik
considered that there was a correlation between the state of the cues and the judg-
ment of the observer [24]. Living organisms are not omniscient, there are many
ways in which the cues and the real state of the world can be connected. Each or-
ganism uses its own assessment of the relevance of cues, based on the perceived
success of judgments based on those cues over the course of its experience [28].
This means that it may not be obvious to an observer which cues in the environ-
ment are important to the decision maker and further, that the very form of the lens
model may be different from observer to observer. An example of this difference
can be found in the comparison of the judgments of criminals and householder with
respect to security. In this study, criminals and householders were asked to assess
the vulnerability of a house from a photograph. For some features, such as the pres-
ence of fences, they were in agreement. But, probably because of the different life
experiences of the two groups, they disagreed on the importance of some cues. For
example, 44% of the criminals used a “Beware of Dog” sign as a reason not to
consider a house, while only 18% of the residents did. Criminals also rated the cue
“House value” more highly than residents [184]. While we will address the process
of teaching robots to learn in future work, clearly the learning loop must begin with
the assessment of functional validity.

The relative lack of transparency and uniformity of the judgment process leads
directly to the concept of representative design, which states that appropriate ob-
servations can only be made in the appropriate environment [25]. Observation of a
robot in a laboratory may not tell you anything about the cues that robot will need
to use on a busy street. In the case of training, any dog trainer or nanny can explain
that humans (and dogs) respond to positive reinforcement. But, it not always clear
to the trainer what behavior is being reinforced.
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The giving of Latin before chocolate may result, not in the child’s coming to love Latin, but
merely in an unpleasant propensity to secrete saliva while studying Latin[196].

This means that training and testing must occur in an environment that is as close
as possible to the environment that the robot will be deployed in. The reification
process for a robot will be dependent on the environment it is to be deployed in,
the sensors that it has, and the tasks it is to do. The reification process needed for
the drink serving robot to determine a clump of humans to approach will be very
different from the reification process for a security robot to determine the difference
between a herd of deer and a group of humans.

Another problem is posed by the richness of the sensory environment. The recog-
nition problem is, at its heart, a type of classification problem. Only some of the ob-
servable features will be relevant to the classification problem. While it may seem
counterintuitive, the addition of additional features generally degrades the perfor-
mance of classification algorithms [58]. The lens model deals with this problem by
allowing the organism to, through trial and error, allow the weights of some of the
features to approach zero. While this may seem like the organism is discarding po-
tentially important information, the functional validity loop allows for correction of
the weight, if the feature turns out to be important in judgment. This is no accident,
as Brunswik states explicitly that the organism will always depend on overloaded
channels of information [26].

6.3 Designing the Reification Engine

Based on the above, the use of a lens as the primary structure for reification meets the
design criteria. So, now that we have decided on the type of model, what is needed
is a design that can be implemented. In order to be biologically principled, this de-
sign needs to consider the brain. In order to construct this model, we will bring in
another concept from neurology, that of the percept. A percept is the representation,
in the brain, of something perceived by the senses. In fMRI studies, the creation
and maintenance of percepts can be seen in the brains of human subjects[160]. For
this model, the percept is an instantiation of a lens model. In order to differenti-
ate between the percept in the brain and our creation in code, the software data
structure will be called a PerCept. This PerCept will use raw sensory data to
generate symbols in the recognition process, then the same PerCeptwill be used
to create the expected sensory data from the symbol in the preafference process.
While the technical details are reserved for the next chapter, it should be noted that
the PerCept does not use an analytic solution, rather it uses a data driven pro-
cess. This will allow the robot to learn new percepts, without having to construct an
analytical form.

The recognition process is made easier, because the robot will not be recognizing
objects in a vacuum. In general, even on suddenly awaking, organisms have some
awareness of the state that the environment was in when they last saw it. This means
that, while the position of some things may have changed, the position of stable
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objects such as walls, trees, and rocks, generally will not have changed 1 As will be
described in 9.1.1.2 the permanence and mobility of objects in the environment is
coded into the Personal Rough Ontology. This means that, when the robot
is confronted with a chair, in a specific location, it knows that there was a chair in
the room, if not in that specific place. It would start by using the PerCeptof the
objects that it would be most likely to find in that location. An unusual PerCept,
such as the PerCept for zebra, is likely to get used late in the process, if at all.

The next question is, how are the percepts related? One evocative fact is that, in
human brains, different types of damage can damage different types of visual per-
ception. Depending on the nature of the trauma there may be damage to the percep-
tion of color, form, or motion[168]. This suggests that the processing of these differ-
ent modalities of visual perception may be independent. However, at some point in
the processing, these independent properties must be merged, since a healthy brain
perceives objects with both color and shape. This set of facts suggests the following
nested lens model design, which is shown in Figure 6.2. As with all of the other
models in this text, this is intended to be a high level model, that is a very simplified
sketch of brain function.

In this model, the sensorium of the external world is sensed through the Percep-
tion/Action module. Starting with recognition, let us say that our previously men-
tioned humanoid robot is looking at a dog. The different observations would be
processed by the different lens models. So the form lens might go through a series
of lenses and return a high possibility on quadruped. The color lens might also go

Fig. 6.2 In the nested lens
model the data provided by
the Perception/Action module
is used by many independent
lens models to judge the
identity of the object. These
PerCeptsare then used
in another lens model to
determine the possibility of
the objects being of the class
of the concept.

Concept (Dog)

Lens

Lens

Percept(Movement)

Percept(Color)

P
ercep

tio
n

/A
ctio

n

S
en

so
riu

m

Lens

Percept(Shape)

Lens

1 Certainly there are exceptions to this caused by tornadoes, tsunami, earthquakes, or sadistic
roommates, but the very confusion shown by the victims shows how innately they expected the
state of the world not to have changed as they slept.
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through a series of lenses and return a high possibility on brown. The motion lens
might return a high possibility on fast. These results and their probabilities would
be stored as PerCepts. These PerCepts would then be available to a set of lens
models that would finally result in a high possibility of the object being a dog. Pos-
sibly, if it was a Great Dane, there would be also be a high possibility on the class of
horse. The results of this analysis would be stored as concepts. This would then give
the robot access to additional information about the related concepts. This could be
used to tell the difference between a large dog and a small horse.

Going to preafference, one of the most computationally expensive processes is
making sense of sensor data. Research suggests that biological systems reduce the
complexity of this task by pre-loading the appropriate sensory cortex with a low
fidelity prediction of what the sensors should be detecting. In this way, the complex
task of assigning meaning and correspondence to the data is simplified to one of
matching the actual data with the expected data. If they agree sufficiently closely,
the real world is assumed to be in the expected state. Needless to say, this process
is failure prone, as optical illusions and sleight of hand magic effects remind us.
However, in spite of the failure modes, it is apparently better for overall survival to
quickly assess the state of the world. So, in this case the symbol dog, would have
a percept with a set of lenses attached to it. For an abstract dog, they might be a
large set of possible colors and sizes, but for a specific dog they would have both
the percepts attached to dog, but also the smaller set of percepts related to the color
and size of a specific dog. So the robot would, if it was expecting to see a specific
dog, analyze the percepts related to that dog to answer the question, am I seeing the
dog that I expect to see? The implementation details of this are described in the next
chapter.



Chapter 7
Bridging the Sensor to Symbol Gap

In the introduction we presented a question, which has guided our research over the
last several years. We observed that the state of deployed autonomous robots has
been effectively static since the 1970’s. At the same time, the deployment of teleop-
erated robotic systems (See Figure 7.1 for an example interface), such as remotely
piloted aircraft, deep sea submersibles, and bomb disposal robots has seen extensive
growth. This growth shows clearly that the hardware needed to support functional
robots is available, but that the software to enable intelligent, autonomous operation
is lacking. The question we asked was: “What is the human adding by looking at
a low resolution display, and manipulating low precision joysticks that enables the
robot to achieve the goals?”

We suggested that the role the human was filling was threefold. First, they trans-
lated the raw sensor data (in this case video images) into a semantic representation.
Next, they reasoned about that semantic representation, and produced a symbolic
plan that would achieve their goals. Finally, the human would translate the sym-
bolic plan into expected sensory representations, and execute actions in the physical
world to implement that plan. The middle step - the deliberative process of generat-
ing a symbolic solution to a symbolic problem has been demonstrated on computers
since the early 1960’s[64, 63, 67, 139]. It is the translation to and from the sensor
domain that has been problematic.

In later chapters we will discuss the processes involved in reasoning about the
symbolic representations of problems and the production of solutions. But, without
the robot having the ability to turn the sensor data into symbolic representations,
this deliberative process will have nothing to work on; and without the ability to
translate the symbolic plans into sensor/effector based representation, the robot will
be incapable of implementing the solutions. This bidirectional mapping is the core
of reification.

65
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7.1 Supporting Bidirectional Mapping

The mapping of sensor to symbol and back has been a focus of significant research
over the last several decades. The ability to maintain the correspondence between
the symbolic representations and their sensorium has been pursued from several
different perspectives. It has long been a part of the discussion in philosophy[53,
54, 49], perception[25], cognitive science[168], and cybernetics[38, 182, 202].

There have been two general approaches to this problem. One begins with the
symbols, and attempts to ground (or anchor) them in their sensorium and the other
begins with the sensor data and builds more and more complex patterns from these,
until the patterns have semantic value. The general consensus is that these two ap-
proaches would eventually overlap, and a complete solution would result. This is
the traditional top-down versus bottom-up dialog. It has been pursued diligently,
by very capable researchers for a very long time. However, in spite of the progress
made, the predicted intersection of the two research paths has not occurred.

The general top-down approach suggests that since cognition involves the ma-
nipulation of symbols, one can build a dictionary of the necessary symbols. These
symbols can be defined in terms of a collection of ‘simpler’ symbols, which in turn
can be defined in terms of even simpler symbols. At some point, the symbols be-
come so simple that they can be defined by direct sensory representations. A classic
example would be reasoning about the manipulation of a “Red Block.” The sym-
bol RED BLOCK can be decomposed into the intersection of the symbol RED and
the symbol BLOCK. The symbol RED can be grounded in a direct sensory percep-
tion associated with a primary wavelength of light in some range around 650nm
(nanometers). In a similar way the concept of BLOCK can be grounded in the ar-
ray of visual or tactile representations that can be generated by a roughly rectilinear
object with orthogonal faces.

The general bottom-up approach follows the reverse path, beginning with the
recognition of the pattern generated by those roughly rectilinear orthogonal surfaces
we can build up the symbol of a block, or cube. By building the sensory representa-

Fig. 7.1 In a teleoperated
system, the human acts as a
translator from the raw sen-
sory images (provided by the
video link) to a symbolic rep-
resentation, and once a plan of
action is determined, the op-
erator translates that symbolic
plan into a sensor/actuator
based implementation us-
ing the joysticks and other
controls. Shown here is one
of the authors, using the
teleoperation interface for a
commercial robot.
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tions of a range of reds, we can build support for the symbol RED. Then when we
find a single object that is associated both of these sensory signatures, we can build
up the composite symbol RED BLOCK.

Steven Harnad presents the following conclusion in his paper on the symbol
grounding problem:

The expectation has often been voiced that “top-down” (symbolic) approaches to modeling
cognition will somehow meet “bottom-up” (sensory) approaches somewhere in between.
If the grounding considerations in this paper are valid, then this expectation is hopelessly
modular and there is really only one viable route from sense to symbols: from the ground
up. A free-floating symbolic level like the software level of a computer will never be reached
by this route (or vice versa) – nor is it clear why we should even try to reach such a level,
since it looks as if getting there would just amount to uprooting our symbols from their
intrinsic meanings (thereby merely reducing ourselves to the functional equivalent of a pro-
grammable computer)[94].

In this conclusion, Harnad suggests that the reduction of the representations to
a single, common structure is what limits the programmable computer. Biological
systems, he suggests, are not so limited. Even relying on two representations (one
from the top-down, and the other bottom-up, is significantly fewer than biological
systems utilize. Ongoing research into cognition suggests that there several interven-
ing mechanisms between the purely symbolic representation and the purely sensory
based representations. Recent fMRI research has shown that there is not one single
repository of neurological representations of concepts in the human brain. Rather
there are as many as six spatially distinct representations for different aspects of a
single visually presented object[197]. These representations include:

1. Object token - conscious viewpoint dependent representation;
2. Structural description - how it would look from other perspectives;
3. Object type - the class of the object (e.g. a chair);
4. Associated knowledge - the relationships with other concepts,
5. Emotional associations of the object; and
6. Affordances - the action-centered representation.

This suggests that there many different representations in use. Some are direct
sensory components, others capture the general class-derived aspects, and the as-
sociated knowledge (what we reason about), and the knowledge associated with
the actuators that can manipulate the object. These different representations are en-
coded into different structures within the biological brain, and we encode similar
data structures into the cybernetic brain. The object token, structural description, and
the affordances are maintained and manipulated by the Reification Engine,
enabling it to function as the Sensor to Symbol bridge, while the Object Type, the
Emotional Associations, and the Object Token are encoded into other portions of
the cybernetic brain, just as they are spatially distinct in biological brains. Thus, our
conclusions are based in the biological and neurophysiological data, but they are in
accord with Harnad’s.
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7.1.1 A Third Approach

Rather than approaching the problem from either the top-down or bottom-up per-
spectives, we approach the problem from the middle out. The lens model described
in the previous chapter is the guiding design. Brunswik’s lens model suggests that
there is a mechanism in the human brain that interprets the sensorium, evaluates
the cues, and makes a judgment - assigns semantics to the data. This mechanism
also must be capable of adjusting the weights on the cues based on experience. This
capability is what we are looking for in the reification process. We can imagine
the reification process as the middle component translating between the sensorium
(Brunswik’s ‘cues’) and the semantic representation (the judgment).

There is a tight coupling between the six distinct representations listed above.
In the same manner there is a tight coupling between the representations used by
the Reification Engine, and those used by the Perception/Action system, as
well as those used by the Personal Rough Ontology (this is the mechanism
that stores and manipulates the conceptual model of the world, and is described in
Chapter 9). In Figure 7.2, we focus on the fact that there are several levels of rep-
resentation, spanning from raw sensor data in the Perception/Action system, to the
purely symbolic representations in the deliberative system, yet each of these repre-
sentations may refer to the same object in the outside world. These representations
are not embodied in the code of the various components of the brain, rather they are
data. Biological brains utilize the same basic mechanisms, but apply these ‘func-
tions’ to different data. Similarly, while the Reification Engine is general
across robotic platforms, the representations that it manipulates are specific to a
given platform; and even when they are on the same platform, the mission of the
robot may change the underlying nature of the data as well.

7.2 Reification Architecture

To bridge from the symbolic domain into the sensor/actuator domain and back again,
the Reification Engine must have one foot on each shore. The architecture
of the Reification Engine is shown graphically in Figure 7.3. There are three
main components in the Reification Engine. The core component is the li-
brary of PerCepts, which provide the grounding in the sensor domain. Recall
that PerCept refers to the data structure, while percept is used slightly differ-
ently in cognitive science. Using these PerCepts, the Reification Engine
maintains a model of the world, this Mental Model captures the sensor-derived
knowledge about what things are out there, where they are, and how they are ori-
ented. Finally, the Reification Engine manages a symbolic representation of
the world. This Current World State is provided to the deliberative System, by way
of the Personal Rough Ontology. The library of PerCepts capture the
structural description of things in the world that are perceivable. In the following
sections we will describe the PerCepts and their use. To simplify this description
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we will provide examples of PerCepts, drawn from one of the Perception/Action
systems outlined earlier.

In Chapter 5 we described the hardware and sensors on Basil, the indoor ser-
vice robot. In this section we will explore the Reification Engine as it is
implemented on Basil, since that provides a good overview of the components
that make up this critical aspect of the robot’s brain. The customization of the
Reification Engine to Basil is done by providing data that is specific to
the chassis (the Perception/Action system) and the world that Basil inhabits (the
Personal Rough Ontology and the system goals). The customization is not
achieved by altering the software that makes up the Reification Engine. The
architecture of the Reification Engine is constant across robots, only the
‘knowledge’ of the specific robot changes. We will focus on Basil’s specifics only
to illustrate the Reification Engine.

We use the term PerCept as our symbol for the representation of a perceived
object. This is consistent with many of the working definitions. In our model a
PerCept is the data structure used to hold the information associated with a per-
ceived object. The PerCept has two components: a sensor derived signature that
can be used to recognize the occurrence of the object, and a symbolic component
that links to the semantic representation in the symbolic domain. In addition to
these two data components, the PerCept provides some basic functionality to the
Reification Engine. Each PerCept is associated with a single class of per-

Fig. 7.2 The structure of the
Reification Engine
interaction with the Delibera-
tive System, the Personal
Rough Ontology, the
Execution Monitor, and the
Perception/Action System.
Due to the tight coupling
of these systems, and the
central role played by the
Reification Engine,
the representations and ser-
vices provided by this system
are highly specific to the un-
derlying sensors and actuator
as well as the semantic rep-
resentations needed by the
deliberative system.
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ceivable object. These PerCepts have a symbolic tag (think of it as a name) and
the sensory definition of the object.

Imagine a chair. Many of us maintain a complex hierarchy of chair types in our
minds. There are kitchen chairs, office chairs, recliners, chairs with wheels, chairs
without backs, chairs with padded seats, chairs that creak ominously when we sit in
them. There are specialized chairs: seats in automobiles, benches, couches, dentist’s
chairs, and the ‘naughty chair’ where children have to sit if they have misbehaved.
Yet, in spite of the array of possible chairs, we seem to have a generalized concept
of chair, at least enough to answer the question “Is that a chair?” Much as in Plato’s
notion of the Ideal, or the concept of a ‘class’ in object-oriented programming, we
have a complex structure of symbols that correspond to the different types of chairs.
We can utilize those symbols to reason about the types of chairs we encounter.
The PerCepts have one foot in this complex symbolic structure. Each PerCept
requires a symbolic tag that links into the semantic knowledge used by the delib-
erative system. If the ontology has information that there exists Jim’s chair which
is a specific instance of a short wheeled chair; then there must be a PerCept that
is identified by the semantic tag short wheeled chair, and there must be a thing in
the Mental Model which corresponds to the current state (perhaps position and
orientation) of Jim’s chair.

Fig. 7.3 Using the PerCept
datasets, the Reification
Engine maintains a
Mental Model of the
things in the world, and their
current state. This is used to
create a symbolic represen-
tation of the Current World
State, which is used, in turn,
by the deliberative System.
The Mental Model is
used to both simplify the
recognition of sensor data
(e.g. turning it into symbolic
information) and to generate
preafference images of what
the world would look like if
a predicted change were to
occur.
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The PerCepts also have one foot deep in the sensor world. This sensor based
representation is defined by the physical abilities of the body of the system. Each
robot has its own types and placement of sensors, so the things that it perceives can
and will have different sensor representations. This is true in biological systems as
well. We, as humans, are very sight oriented[205], and so we attach visual represen-
tations to our semantics. We use vision as a primary metaphor for understanding -
do you see what I mean? Look at it this way - at the beginning of the last paragraph,
you read the words “Imagine a chair.” For many of you, a visual image formed in
your mind. However, other species have very different sensor modalities, and so
their percepts will vary considerably. Imagine a human, a dog, and a bat encounter-
ing the same insect. While the human would focus on the appearance of the insect,
the bat would more likely form an acoustically based ’image’ of the bug, and the
dog would generate a scent based model of great complexity.

We utilize a data-driven representation of the sensorium that corresponds to the
object represented by the PerCept. There are two primary reasons for this ap-
proach, one is that it ensures a direct correspondence between the mental model
of the thing and the perception of the thing. We create a dataset which can be
used as a template. This template can be ‘filled in’ with the specifics of the lo-
cation and orientation, and other details, to generate what the sensors would per-
ceive. This contrasts with a more analytic representation of an object and the nec-
essary transforms that could be used to generate the sensorium. There are several
advantages to the dataset approach. Since the identifying characteristics are data,
the Reification Engine can generate new PerCepts by creating new data
representations. If the analytic representation were used, the system would need to
generate new functions and add to its code. Of course, there is a significant dis-
advantage to the dataset approach: the datasets can get large, and are complex.
The penalty we pay for the ability to learn is that much of the mechanism of the
Reification Engine is dedicated to managing the PerCepts to provide the
functions of preafference and recognition (See Figure 7.4).

7.3 PerCepts and Reification

The Reification Engine relies on the PerCepts to provide much of the
capability for the two functions of recognition and preafference. The first func-
tion can be viewed as being able to as the question “Here is the sensor data, how
likely is it that this data corresponds to the object you represent?” This enables
the Reification Engine to perform one of its functions - recognition. The
second function provided by the PerCept is the inverse: “If I (the thing repre-
sented by the PerCept) were here, in this orientation, what would I look like on
the robot’s sensors?” This supports the preafference function of the Reification
Engine.

Each Reification Engine acts as a specific bridge for one Perception/Action
system to a deliberative system.This is driven by the requirement that theReification
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Engine be grounded in the sensors and effectors of the Perception/Action system,
and that the symbolic representations have the characteristics needed by the delib-
erative system. These symbolic representations must encode the semantics that are
needed to reason about the goals of the system. The Reification Engine acts
as a bridge, carrying traffic back and forth between two shores.

The translation between semantic and sensory representations must be specific
to the sensors of the robot and the specific symbols used by the deliberative system.
This has an analogy in humans. Individual humans have similar, but not identical,
sensory systems. Some have more sensitivity to tastes, others are more sensitive to
touch. Some people can sense colors that others cannot. For example, human ge-
netics encode two different genes for sensitivity to the color red. These genes are
encoded on the X chromosome. Most women have identical copies of the red recep-
tor on both X chromosomes and see three colors, but some women have genes for
both of the red receptors, and thus see, not three colors, but four[105]. This means
that to make sense of their visual field, the reification process for vision is more com-
plex for them than for individuals with only one type of the red receptors. Clearly,
these Reification Engines are extremely personal. Therefore, for each type
of robot, the Reification Engine is personalized by library of PerCepts.

Each PerCept is a template described by sensor related data. This means that
while the Reification Engine for a specific robot must be personalized, the
personalization does not mean that the software must be changed. Rather, the soft-

Fig. 7.4 The Reification
Engine provides bidirec-
tional mapping between the
symbolic and the Percep-
tion/Action representations.
It relies on a collection of
PerCepts, which relate the
sensorium to the symbolic.
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ware supporting the recognition and preafference functions is common across many
robot brains, only the data in the datasets change. This is true of both the semantic
and the sensory aspects of a PerCept.

7.3.1 PerCept Data

Each PerCept corresponds to a class of perceptible things that the system can
recognize and reason about. Since the main function of the PerCept is to bridge
between the sensors and the symbolic representation, PerCepts are, first and fore-
most, a description of the structure of the thing. We have chosen to accept the pos-
sible size penalties associated with a data driven representation. Using the chair
example begun earlier, let us look at the PerCept for a simple office chair.

The symbolic tag for the PerCept is short wheeled chair, this distinguishes
it from the taller drafting table chairs (tall wheeled chair) and the wooden chairs
we use at the round table1 The templates for the sensorium are based on what the
objects look like to the robot’s sensors. In the case of many of our robots, we rely
heavily on sonar imagery. These sonar images are built up from an array of individ-
ual, narrow field of view, sonars, each of which returns a distance from the robot to
the closest surface of the object. This is functionally equivalent to the use of LIDAR,
except it has far lower resolution and shorter range.

We represent the sensor image of the office chair with the expected values over
the small number of sonars. See Figure 7.5 for a simple example. If the raw data
were to be used to identify the object, it would necessary to store one template for
every distance, however, it is apparent that all that matters is the relative offset from
a reference point such as the center of the chair. Thus the chair-back in the figure
would be offset behind the chair center by 250mm, while the front edge of the seat
would be offset toward the sonar by about the same amount. With this center-relative
encoding one template will work for a wide range of distances. In practice, as the
robot gets closer to the chair, the side sonars (reporting infinity in the figure) will
begin to show returns from the sides of the seat and the back. So we generate a set
of templates based on the absolute range values. This gives us one view that is used
for the range 300mm to 1249mm, a second for the range 1250mm to 1749mm, and
a third for the range from 1750mm to 2500mm, which is the effective maximum of
the sonars.

A second degree of freedom is the relative viewing angle of the chair. If we
are viewing it from the front, the chair back is offset away from the chair center.
However, if we are viewing the chair from behind, the chair back is offset toward the

1 By this time, it has probably become apparent that our lab is nothing if not functionally oriented.
This results in a certain amount of humor, both intentional and unintended. While in the book we
use type-faces to distinguish between classes and instances and to denote the difference between
the symbol, the concept, and the ‘thing’ itself; discussions at the white board rely on arm-gestures,
facial expressions, and tone of voice. I’m afraid to think what a design meeting would look like if
the video hit the Internet.
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sonar. This relative pose angle is a critical feature in representing the sensor image
of the chair. We address this by maintaining a collection of views from significantly
different relative angles. Interestingly, this is where the relatively low resolution of
our sensors shows an advantage. Since the range resolution is low, and the spatial
resolution is also low, rather than maintaining templates for thousands of relative
angles, a small number is all that is required - in the case of the short wheeled chair
eight rotational views have been sufficient. In the case of objects with greater radial
symmetry the number of angular views drops proportionally.

One of the benefits of the lens model approach is that the weights on the cues re-
flect the significance of a particular cue with respect to a specific lens (See Equation
6.2). We include a weight term in the templates to indicate that certain regions may
have no impact on the judgment during recognition. In addition, the templates can
also be used to encode voids in the object. In some cases the key signature of an ob-
ject may be based on the absence of a return in a specific area. This can be critical in
distinguishing between a chair (with a back) and a stool, for example. The template
based models handle this by tagging specific returns with a ‘must not exist’ value
attached to each element in the template. This is done by attaching a large negative
value to the weight field.

Up to this point, the trade-offs between the data-driven template model, and a
more formal analytical model of the object might seem to be in favor of the ana-
lytical model. After all, with a single analytical model every possible distance and
relative viewing angle can be calculated on the fly, with no increase in the data
needed. However, a simple 3D model of a wheeled chair that we used for the VR

Fig. 7.5 A simple example
of a Sonar Image. The top
section shows the elevation
view of the robot ‘pinging’ an
office chair. The middle panel
shows the plan view, and in
the lower section, the actual
range values for each point
are shown. Sonar images
can be treated as extremely
low resolution LIDAR. On
the surface it would appear
that this lower resolution and
shorter range are disadvan-
tages. However, in practice,
biological systems take ad-
vantage of the much reduced
bandwidth by automatically
ignoring information about
things that are not important.
They have found an effective
balance between too much
data and too little.
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image in Figure 8.2 requires approximately 21KB of data, versus the 7KB needed
for the templates of a similar (but shorter) chair.

Two aspects remain to be addressed before a final assessment can be made. Per-
haps the most critical is the fact that real world objects rarely behave like their
idealized analytic models would suggest. For example, for our short wheeled chair,
the fabric on the seats is often sonar absorbent. As a result, where the analytic model
would require a return, we often ‘see’ nothing. With the data-driven templates, we
use the actual returns, as seen by the specific sonars in the robot, to generate not
what the robot should see, but what the robot does see. In addition, since the real
world is not deterministic, the sensor values are often close to, but not exactly what
the analytical model would predict. As comforting as it might be to say that the real
world is wrong, and we just need better, higher resolution sensors, and larger, more
complex analytical models (along with more advanced processing to handle the ad-
ditional variables, etc.), the harsh reality is that there will always be differences
between the mathematical models and reality, and reality always wins.

The concept of increasing the fidelity of the analytical model brings us to the
final, and most telling advantage to the data-driven, template based solution. Since
the PerCepts are stored, not as software, but as data, it is possible for the robot
itself to add additional PerCepts, adjust the values in the templates, and modify
its knowledge of the world around it. By comparison, it is barely feasible to imag-
ine a mobile robot able to sense an new object and then generate a new analytical
description of the thing, a task that often takes a trained engineer hundreds of hours
to complete. Giving the robot the ability to collect a number of sensory views of an
object, at known distances and orientations is fairly simple. Since this collected data
is already in the form required by the PerCepts, it requires little effort to translate
it into a template. Thus, it is uncertain that the benefits of the analytical solution will
outweigh the costs. The only real cost to the template based approach is the size of
the representations. In Table 7.1 we show some of the actual PerCepts that the
service robot uses. With the largest of these at under 10KB, even a modest computer
has adequate storage capacity for thousands of PerCepts. In addition, since the
data in each PerCept is shared by all instances of the class, this means that the
cost of maintaining an understanding of the world is quite low.

Table 7.1 Sample Sizes of PerCepts

PerCept PoseCount ByteCode Size Note

FauxChair 8 2K Used for Testing
ShortWheeledChair 24 7K office chair
WoodenChair 24 5K office chair
Stool 8 2K simple cubic shape
RoundTable 12 5K 5’ diameter table
NorthWall 1 6K North wall of the lab
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7.3.2 PerCept Function

In addition to being a data structure, there is significant functionality associated with
the PerCepts. To support the ability to transform the data driven template into the
expected sensor image, the PerCept requires a significant number of geometric
operations. The first task is to take the position-independent, pose-independent tem-
plate, and generate from it a representation of the object in its correct position in
three dimensional space, as well as in its correct orientation. The second task it
to take this representation and determine the relative perspective that it has with
relation to the robot’s sensors. The final task is to take this perspective view, and
generate the expected sensor image that would result. These three tasks define the
majority of the machinery that the PerCept must provide.

The main data upon which the PerCepts mechanisms operate are produced
by the specific sensors. In the case of Basil, the primary sensor data are sonar re-
turns. The raw data is an array of distances. While this raw data is useful, Basil
needs to reason, not about the distances, but about the things in the real world that
caused the sonars to reflect. This is common across almost any type of sensor -
the data produced by the sensor is caused by the thing being sensed, and it is the
thing we are interested in, not the data. As a result, the first function provided by
a PerCept is to utilize the knowledge about the sensor to generate a hypotheti-
cal ‘thing’ in the real world that could have generated the sensor data. These are
ObstacleObservations which are spatially located volumes that correspond
to the object (or objects) that might have caused the sensor data. They are encoded
as three intervals, one in each of X, Y and Z, as well as the distance and time at
which the sensing occurred (See Table 7.2). It also includes the confidence that the
sensor has in the datum.

Needless to say, this suggests that the robot is equipped with ‘smart sensors.’
Smart sensors are sensors that do more than simply report data. They have additional
capabilities to preprocess the data and provide additional information. The biologi-
cal support for such smart sensors is widely available, ranging form recent research
into the significant amount of preprocessing that is performed by the retina[205],
to the preprocessing that enables us to understand speech, and suppress background
noise[33]. Some of this occurs in the actual sensory organs, while other sensory
organs depend on very specialized regions of the brain to provide the preprocessing.

Once the ObstacleObservations are available, each PerCept can oper-
ate on the data in several ways. However there is a common group of spatial func-
tions that are shared across many types of reasoning. These generally fall into the
class of spatial reasoning, answering questions like: “What would it look like?” and
“Where is it in relation to me?” or “Should I be able to detect it at all?” Since the
Reification Engine is grounded in the physical sensors of the robot, it has
knowledge about the physical characteristics of those sensors.

In general, this knowledge must include the position and orientation of the sen-
sors on the robot chassis, it must also include the range of the sensors, the field of
view, and the data types that are returned, as well as the physical constants that re-
late the readings to the real world. These are stored in a parameters dataset, which
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Table 7.2 ObstacleObservation Data Type

Data Type Description

XPosition Interval The global X range
YPosition Interval The global Y range
ZPosition Interval The global Z range
Sensed Distance int this is the raw data
Time of Observation long from the system clock
Weight int the weight of the observation in the judg-

ment

is accessible to the PerCepts. This information is needed to enable the PerCept
to generate the preafference images that are needed for reification, and to validate
the existence of the object that the PerCept represents during recognition.

Any PerCept can use the spatial reasoning to translate the sensory data into
a form that is consistent with its model of itself, as viewed by that specific sensor.
It can place itself in space, determine the relative viewing angles from the sensors,
generate the image that the sensors would have of it, and evaluate the actual sensor
data to confirm its presence in the dataset. It can express a confidence that there
is an object of the type that the PerCept represents located here, in this orienta-
tion, and explained by these observations. This is the output of one PerCept. The
Reification Enginemust weigh this against the outputs of other PerCepts,
trying to explain themselves using the same sensory data set, to develop a Mental
Model of the current state of the world - not in sensory terms, but as semantically
tagged objects positioned in space.

7.4 Mental Model

The Mental Model used by the Reification Engine is based in the sen-
sory domain. It contains knowledge about all the perceptual things of which the
robot is aware. This is not limited to things which are immediately perceivable. If
the robot turns its sensors away from a chair for example, it does not lose all knowl-
edge of the chair. Rather, the chair remains in the Mental Model, along with the
last recorded information about its position, and orientation. Thus, when the robot
turns its sensors back toward the chair, it can use preafference to predict the sen-
sor representation of the chair in its last known location. As time elapses with no
referents to the chair, for example if the robot were to go into a different room for
several hours, the detailed knowledge of the chairs position and orientation would
be dropped from the Mental Model.

The Mental Model is a list of things. These are represented in a data struc-
ture called a PThing which indicates a perceivable Thing. Each PThing has
information including:
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• Symbolic Name - matching the corresponding name in the Personal Rough
Ontology;

• Pose - the best estimate of the sensor derived position and orientation of the thing;
• LastUpdateTime - the timestamp of the cast confirmed detection by the Percep-

tion/action system; and
• PerCept - a link to the correct PerCept for the PThings class.

Each of these structures also supports a number of functions, most of which
are used to support the preafference and recognition functions. Recall that the
PerCepts are structural models of the class of things that they represent. Since
these PerCepts do not have information about the specific instances of chairs or
tables, the PThing must work with the general PerCept to produce the specific
recognition of the instance, in its specific location, and its specific pose.

In addition, the PThing has functions to estimate if the sensor data indi-
cate that the thing has moved relative to the robot. These functions are used by
the Reification Engine to determine whether the thing has moved, or the
robot has moved (either of which could account for the change in relative posi-
tion). Finally, the PThing is responsible for updating its own pose, when the
Reification Engine requests such an update.

As we discussed, the Mental Model is the collection of things that the
Reification Engine is tracking at any specific time. As such, in addition to
providing access to the PThings, the Mental Model also provides functional-
ity on its own. The Mental Model maintains a representation of the current state
of the robot as a special thing in its world. It is possible to treat the robot as just
another thing in the Mental Model, but the robot is key to so many aspects of
the reification process, it makes sense to give it special treatment. This eliminates
having to search through the (possibly large) collection of other things in the world
in order to get access to knowledge about the robot.

In addition to direct access to the knowledge of the robot, the Mental Model
provides high level comparison functions between the expected state of the world
and the actual, sensed, data. These functions include the ability to do a fast pre-
sumptive test of consistency, the ability to quickly extract the components of the
sensor data that are inconsistent with the expected model, and a function that allows
the Mental Model to update its estimate of the robot’s position, based on the
available data.

The presumptive consistency check utilizes the ability to quickly generate a view
of how the world should look, given the robot’s position and orientation, and the
Mental Model of where the things in the world are presumed to be. This en-
ables the Reification Engine to quickly assess that everything is going along

Engine
can provide that information to the Execution Monitor, and then update the
more detailed model of the world.

If things are not consistent, the Mental Model has the capability to provide a
detailed report of what things the Perception/Action system is reporting that are in-
consistent, and the Reification Engine can focus on these problematic data,
and attempt to understand them.

pretty much as expected. If things are going as expected, theReification
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7.5 Current World State

The third main data structure in the Reification Engine is the Current World
State. This is a persistent representation of the state of the world - specifically the
placement and orientation of everything that the robot is tracking. This is more ex-
haustive than the immediate Mental Model. It includes things that the robot may
not have encountered for a significant amount of time, and includes the information
about when they were last experienced. The function of this repository is two-fold.
First, it is used to provide specific information to the deliberative system, to enable
that system to achieve its goals. Second, it is used to populate the Mental Model
when returning to previously encountered environments. The Current World State
is accessed less frequently than the Mental Model, and is generally just updated
with current information.

The Current World State has the responsibility of providing semantic information
to the deliberative system. The Mental Model needs to store very detailed state
information about the objects it is tracking. It needs to represent the precise position
of a chair, and the precise orientation of the door, if it is going to build a sensor based
representation of the robot’s perspective of that chair and that door. The deliberative
system does not need to know (in general) the position of the chair to the nearest
millimeter, nor does it (necessarily) know what to do with the angle of the door with
respect to the wall. Rather, it needs to know that the chair is over by the assembly
bench, and that the door is closed. This semantic information is what allows the
Deliberative System to reason about the need to open the door, and that the chair is
out of the way.

Table 7.3 Multiresolution views of the World

Thing Mental Model CWS

Chair1 Pose(10100,500, 128)*a Assembly Bench Area, facing South
Table2 Pose(4500,5000,0) Programming1, facing North
Robot Pose(7000, 3200,224) Room Center, facing NorthWest
Door2 Pose(2641,4115,0) Door closed

a These are objects in the lab, in local coordinates

These two views of the state of the world are the same world, represented at dif-
ferent resolutions. Humans are extremely good at multi-resolution modeling (MRM)
but it has proved difficult to develop effective MRM in machines[1, 165]. The Cur-
rent World State structure provides support for both the semantic and the sensor-
domain representations of the world.
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7.6 Reification functionality

We began this chapter discussing the functions that the Reification Engine
needed to provide to enable the robot to perform in the real world without a human
in the loop. We dove deeply into the nuts and bolts of the mechanisms within the
Reification Engine, and now we have returned to the surface. Once again
we can talk about the bidirectional mapping of recognition and preafference. In
the previous section we focused on the data that the Reification Engine
maintains and depends upon. In this section we address the functions that the
Reification Engine provides to the other systems in the cybernetic brain.
There are primarily four functions:

• Initialization;
• Recognition;
• Preafference; and
• Maintaining the Current World State.

We will look at each of these in a little more detail. However, much of the detail
has already been covered, since the Reification Engine relies on the services
provided by its components to do most of the work.

7.6.1 Initialization

One can envision this coupling by following the path from the initialization of the
Reification Engine through its delivery of a symbolic representation to the
upper layers. Each of these stages will be addressed in more detail in the sections to
follow, so this is a high-level tour.

The deliberative system relies on a complex web of semantic knowledge of
the world. Every thing about which the robot has ‘knowledge’ is represented
semantically in this ontology. Only a small part of this knowledge relates to
thing that are perceptible. This small set of things which are perceivable can, and
must be extracted from the ontology. Each must have a PerCept stored in the
Reification Engine. For example, the specific short wheeled chair next to
the conference table belongs to the class of short wheeled chair. This list is used to
populate the Mental Model. Recall that, generally, the system is initialized very
rarely. Initialization is much like waking up in a hospital room, with amnesia: one
has no idea where one is, or what to expect. And so, general knowledge of chairs
and tables is available, but there may be no knowledge of the current arrangement
of the chairs. While the robot can begin the laborious process of building a mental
model from scratch, having access to previous memories of the state of the world is
beneficial.

Using the memory of the previous world state, each thing in the Mental
Model can be initialized with its last known position and orientation. Now the
Reification Engine can use the data from the Perception/Action system to
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confirm and update the Mental Model. The sensor data may show that a spe-
cific chair has been moved, or that the robot itself is in a different position. The
Reification Engine uses preafference of the things in the Mental Model
and the ability to recognize new things to build a more accurate model of the world,
and this is used to update the symbolic representation of the Current World State.

7.6.2 Mapping the World onto its Model - Recognition

The Reification Engine uses the PerCepts to recognize the state of the
outside world. A simple brute force approach would be to take the sensor data and
attempt to match it against every possible PerCept in the library. Of course there
might be a large number of PerCepts in the library, each of which could be at
any possible distance and a number of possible orientations. The computational
complexity of this task is daunting to say the least. We know that living systems
perform this process quickly and (in general) reliably. We also know that computer-
based recognition is (in general) neither.

There are arguments that the advantage of biological system is in the massive
parallelism of the brain, that the same sensory data is presented to thousands or more
recognition modules at once, and that the best match fires first. There are similar
arguments that the brain is fundamentally operating on a quantum level, and that
recognition has more in common with the collapse of the quantum wave, than any
traditional computer algorithm. As we discussed before, since we are not attempting
to build a structural model of the brain, we need to model only the functionality not
the mechanisms.

We take advantage of the fact that sensing does not occur in a vacuum. Sens-
ing and perception are one step in a continuous cycle, which was preceded by an
earlier perception stage. One of the core functions of reification is to maintain a
(more or less) continuous model of the PerCepts that correspond to the state of
the world[160]. The PerCepts from the last perception, and the Mental Model
built from them, can be used as a guide to shorten the following perceptual process.
This is based on the concepts of ‘thing constancy’[188] and ‘object constancy’. In
effect, the things that we perceive do not (in general) magically appear or disappear.
Thus, we evolve the previous model of the world, based on our knowledge of what
activities are occurring, and predict the ensuing state of the world. With this pre-
dicted model, we can confirm what we expect to see, at a far lower computational
cost than approaching the perceived world de nova.

As an example imagine our robot traversing a room. At the start of the motion,
the robot has a Mental Model of the room, its relative position to the walls, the
distance to the table, the location of the chair. When the robot moves forward, the
Reification Engine updates the expected world state, changing the position
of the robot in the room. When the sensory data arrives from the Perception/Action
system, the robot can ask the PerCept for the table “If I am in this position, and
looking this way, am I seeing you?” Since the PerCept includes the necessary
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structural description, it can quickly confirm (or deny) whether the sensory data is
consistent with the expectation. This can be continued with the chair, the walls, the
picture on the wall; and if the world model is confirmed, it can be updated. This
process does not require querying every possible PerCept, or even querying every
expected PerCept for every possible position and orientation. Rather, it quickly
attempts to confirm the expected world state.

7.6.2.1 Dealing with the Unexpected

Sure, but what if the world is not what the robot expects? What if someone sneaked
in and moved the chair, or simply stepped into the robots field of view? In this case
the presumptive confirmation of the world fails. Now the Reification Engine
begins to expand the range over which the search occurs. If there are people (or other
moving entities) in the world model, they are added to the search “Is it possible that
this person stepped to the left?” “Is it possible that the chair moved?” “Am I really
where I expect to be?” This increases significantly the computational overhead, but
this is consistent with the fMRI data, which shows that it takes longer to recognize
the unexpected. If this level of relaxation of the model fails to produce a consistent
world model further relaxation may occur, less likely objects are added to the search
list (although it will be a while before the robot considers the possibility that a zebra
has suddenly appeared in the living room). This is consistent with the results of
studies on humans in disasters. People who experience dramatic destruction (such
as coming out of a storm cellar after a tornado) report that for several minutes they
cannot place themselves in space, the permanent features that they expected to see,
the buildings, the walls, the trees, have been altered to the point where they cannot
perceive a frame of reference. Nor is this limited to humans, pets can also experience
disorientation due to the disruption of their sensorium, notably the changes to the
landscape of scents that they use to define space[145].

7.6.3 Projecting the Model onto the World - Preafference

The second function that the Reification Engine supports is the projection
of the model onto the world. Preafference is the process of taking the Mental
Model of the world, and generating the view that the robot would see, if every-
thing were like the model. This process produces a virtual reality(VR) representa-
tion of the world as it is expected to be. In effect, the Reification Engine
acts as a rendering engine for the mental model of the world. This rendered image
is used to speed up the process of confirming that the world is pretty much what
we expect. Fortunately, much of the machinery needed to perform this function is
shared by the recognition task. The low-level functions needed to place objects into
relative positions with each other, and to calculate the sensor images of these objects
given the robot’s pose and position were already described above in the sections on
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PerCepts, PThings, and the Mental Model. It is only needed to use these
functions in a different way to generate a preafference image, rather than to recog-
nize the objects in the world. Just as a physical lens bends light regardless of the
direction, our cybernetic lens can be used to either project the sensor domain into
the symbolic, or project the symbolic domain into the sensorium.

To do this projection into the sensor domain, we take advantage of the fact that the
Mental Model has a list of the objects that are expected to be in the world, and
their positions, orientations and properties. With this information, and the machinery
of the PerCepts, generating this rendered image is relatively straight forward. In
the case of our example robot, Basil, this rendered image is a sonar image of what
the sonars would return. The generation of this image is done in three stages:

1. Select the PThings that are in the field of view of the robot;
2. Use the PerCepts, the pose of the object, and the pose of the robot to generate

individual images; and
3. Fuse these individual images into a composite image.

The first of these steps in simply done to reduce the computational burden of the
full process. Rather than attempting to build the sensor images of objects that might
be in another room (recall that the Mental Model tracks things that are not im-
mediately perceivable), or even attempting to generate a complete 360◦ panoramic
view, we only generate images for objects that are likely to be in view. This is
the same process that is used in VR rendering systems in the form of bounding
surfaces[154]. The Reification Engine uses the sensor parameters for the
specific sensors, and slightly over estimates the field of view of the robot. This an-
gular interval is compared with each of the individual objects. We take advantage of
a function of the PerCept that calculates the perceived angular extent of an object,
based on its position and orientation, and the position of the robot. A quick test to
see if the two intervals overlap is sufficient to determine if this object is in the field
of view.

For those PThings that are in the field of view, we can request the PThing
to generate a view - the expected sensor image of the object. This method is spe-
cific to the object and the sensors that are in use. It generates the sensor image
that would be returned by the object if it were viewed in isolation. Basil uses sonar
sensors that are slightly smart, they produce a three dimensional volume that rep-
resents the area from which the sonar return reflected. This view is a collection of
ObstacleObservation that are directly comparable to these sensor returns.

The final step is for the Reification Engine to fuse these individual views
into a complete sensor image. If there is only one object generating a sensor image,
this task is trivial. The difficulties arise when there are multiple objects in the field
of view and there are occlusions (e.g., one object generates a return that blocks the
view of another object). This is a common occurrence as the resolution of the sensor
increases. However, the techniques for resolving occlusions have been well tested
in visual rendering software. Utilizing the information encoded in the individual
returns, and the relative positions of the robot and each item, it is fairly straight
forward (if computationally intensive) to generate a final rendered sensor image.
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This final preafference image can be quickly compared against the actual sensor
image to see if there are major discrepancies.

7.6.4 Updating the Current World State

The final task of the Reification Engine is to take the changes that have
been made to the Mental Model, and project them into the semantic space of the
Current World State. This process requires the translation from the sensor driven,
numerically based information in the Mental Model. The key support structures
for this translation are representations that link the semantic terms utilized by the
deliberative system - the world-state representations presented in Chapter 4, with
representations that are consistent with the PerCepts. For example, The Mental
Model maintains precise locations of the objects that the robot knows about. How-
ever, the deliberative system does not model the location of objects at this resolution.
It keeps track of the fact that the chair is over by the assembly bench, not that it is
at coordinates X=10,100, Y=500. So the Current World State must maintain infor-
mation at the level of detail needed by the deliberative system, using the symbolic
names of the locations in the ontology.

It is important to note that these symbolic names must match the symbolic names
that are known locations in the ontology. The second point to note is that, once
again, these are simply data that describe the space in two ways. When the system
is deployed, it is possible that higher resolution may be required, and the system
can add new locus points, with new symbolic names to its model of the world, and
then reason about these new locations in exactly the same manner as those that are
provided to jump-start the reasoning process. As we said in the introduction, we do
not go into the details of how the system modifies its own representations in this
book. However, it depends of having representations of the knowledge, both on a
semantic, and a physical level that resides wholly in the form of data.

7.7 Wrapping Up Reification

Reification is a critical component necessary for autonomous systems to function
effectively in a dynamic and uncertain world. Reification is the mechanism that
translates between the sensor domain - the world of images, echoes, encoders,
and force transducers - into the semantic domain of chairs and trees, rooms and
fragile packages. In this chapter we looked at a specific implementation of a
Reification Engine. We explored the details of the needed functionality,
some underlying data structures, and presented them with examples for a deployed
robot - Basil the drinks robot. In this section we sum up the various pieces, and look
at how they work together to provide reification to the robot.
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Reification can be viewed as a necessary middle-ware component for autonomous
robots. While the technology for deliberative planning has been available to chess
computers, planning systems, and other decision support software for over 50 years,
it has not been well integrated into mobile robotics. At the same time, industrial
and teleoperated robots have made major strides in capability - industrial robotics
in tightly controlled domains, and teleoperated systems in more dynamic domains
(provided there was a human in the loop). The reification bridge between the sen-
sors and actuators on one side, and the sophisticated deliberative systems has not
been available. It provides recognition services to map the sensorium into symbolic
representations, and provides the complementary service preafference to map the
expected state of the world into the anticipates sensor representations.

The Reification Engine presented here both anchors the deliberative
symbols in the sensor domain, and attaches semantic tags to the patterns presented
by those sensors. It does this, not by extensively hard-coding the patterns, but by
associating the data derived patterns with the meanings used by the ontology. This
data derived approach has several benefits, as well as costs in comparison to an ana-
lytic representation scheme. One of these benefits is that the data driven approach is
based on the actual properties of the objects as viewed by the actual sensors, rather
than an idealized model. As a result, if a given sensor has an idiosyncrasy (perhaps
it is mounted at a slight angle), or if a specific object has a unique property (e.g., it
absorbs both IR and ultrasonic pulses) that is reflected in the data derived pattern.

The second major benefit is that the patterns are simply data. There are sev-
eral basic algorithms that are grounded in the physical relationships of the world:
things like distance calculations, and the determination of relative angles. How-
ever, the representation of objects, sensors, and the structural descriptions of the
world are simply data. This means that the cybernetic brain, and specifically the
Reification Engine, can modify these patterns as it experiences more of the
world, and can modify the parameters in response to the changes that the world will
have on the robot’s own structure. By using data structures for as much as possi-
ble, the robot can both stay synchronous with the dynamic world, and can update
its mental representations as it experiences new things. How the recognition and
preafference services of the Reification Engine are used in the creation and
maintenance of personal experiences and memory are the subject of the next chapter.



Chapter 8
Working Memory and the Construction of
Personal Experiences

In this chapter we focus on how we can generate and store the vast amount of knowl-
edge that our humanoid robot will need to be able to do its job, and how we will
represent the complex relationships that define that knowledge. We focus on three
of the four areas of representation (See Figure 8.1). We describe the mechanisms of
the representation of the current state of the world, the representation of the inter-
nal state of the robot, and how these provide the basis for the generation of episodic
memory. We describe the remaining component of memory - semantic memory, and
its implementation as a Personal Rough Ontologyin Chapter 9.

As described in Chapter 3 these categories of memory can be classified into two
broad classes, long-term and short-term memory. A functionally equivalent way of
looking at the classes is Persistent and Transient memory. Persistent memory in-
cludes the facts and concepts that are used to represent one’s knowledge about the

Fig. 8.1 These are the four
primary memory struc-
tures that are utilized by
the cognitive system of
our robot. The Personal
Rough Ontologyand the
Episodic Memoryare per-
sistent data structures, while
the Working Memoryand
the Internal Stateare
transient.
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world, knowledge about procedures and common activities, as well as one’s mem-
ories of activities and events that have been personally experienced. The transient
memory is more of an instantaneous representation of the immediate state. This
transient snapshot contains both knowledge of the outside world (where the coffee
cup is) and knowledge of the internal state of the robot. This includes both phys-
ical state (proprioceptic and enteroceptic knowledge) and the current goals, plans,
intentions, and expectations.

There is a constant interplay between persistent and transient memory. The cur-
rent state of the living system is transformed into a more permanent record as one’s
episodic memory. In turn, episodic memories are accessed when new, but similar
states are encountered, and these previous experiences affect how one responds to
the current situation. Finally, living systems learn from their experiences, and most
humans are capable of extracting information from their episodic memory to build
semantic memory. Thus, there is a continual flow between past and present, between
what happened then, what is happening now, and what is expected to happen in the
future. For example, perhaps when one is experiencing a severe storm in the fall,
one’s expectations of the outcome and the instantaneous experience is moderated
by the memories of how you felt while riding the roller coaster that day in June
when a severe storm occurred and it started hailing. The fear and panic, that you felt
at that time, may carry over to the current storm. 1 In this chapter we focus on the
transient memory and how it can be used to generate the more persistent episodic
memory.

The two broad categories of persistent and transient memory are broken down
into two subdivisions as follows:

1. Transient Memory

a. Working Memory
b. Internal Memory

2. Persistent Memory

a. Episodic Memory
b. Semantic Memory

We will begin by discussing the transient memory since it acts as the source for
the data that will become the permanent records. This is driven by the nature of
biological organisms and their ability to learn from experience and build complex
permanent representations of abstract knowledge.

8.1 Transient Memory

We make the perhaps controversial decision to define the instantaneous, dynamic
state of things-as-they-are-now as a form of memory. This is driven by three pres-

1 Another possibility is that you will get sweaty when smelling cotton candy.
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sures. The first of these is that when we build our memories, especially episodic
memory, these transitive states are part of those memories. Arguing from the per-
spective of parsimony, there is no need for two different types of representation, if
we can make do with one. The second pressure is the need to have access to both the
Current World State (CWS) and the current internal state of the robot when reason-
ing about what goals to pursue, and what behaviors are being used to successfully
achieve those goals. Finally, these transient states are the raw material of procedural
memory - the transient states that the Perception/Action system goes through in the
process of acquiring a new behavior must be incorporated into procedural memory
such as the necessary steps to make a cappuccino or to prove a theorem.

From a historical robotics perspective, a system with only transient memory cor-
responds closely to a reactive system. A purely reactive system is one that holds
no representation of the previous states of the world, and only responds to the cur-
rent sensor inputs. In the classical definition, if there is no need to store previous
states, then there is no need for any kind of representation. The world is its own
best model, and the overhead of maintaining a consistent, accurate representation
is unwarranted. While this is compelling from a mathematical perspective, and per-
haps from an engineering perspective; it is clear that from the biological perspective
there are significant benefits to having more than a simple, stateless, input – react
system. In addition, our humanoid robot will need to learn from its experiences,
and so, it must be able to represent those experiences in memory. So some form of
representation is required for our robot to function effectively.

8.1.1 Working Memory and the Current World State

Some of the simplest of biological organisms have been shown to maintain models
of the the state of the the world. As discussed above, even simple one celled organ-
isms such as bacteria maintain a primitive model of the intensity of chemical signals
so that they can determine a gradient that will lead them toward food. As humans,
we maintain a very complex model of the current state of the world, to enable us to
both reason about and to act in the pursuit of goals. Research by cognitive scientists
has shown that the working memory used by humans is very limited (in comparison
to more persistent memory) and it appears to be clearly separate from both semantic
and episodic memory[6, 45].

The idea of a separate working memory was adopted fairly early by artificial in-
telligence researchers, perhaps not so much due to the biological inspiration, but due
to the hardware constraints of the computers. During the early years of computers
random access memory (RAM) was extremely limited in capacity, and expensive.
Disk storage on the other hand, was less limited, but significantly slower to access.
This led to a natural devision of long-term storage in one memory structure (the
disk), and working memory in another (RAM) structure. Researchers were effec-
tively forced into developing designs that closely mapped the biological systems.
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Short-term working memory is used in two primary ways: storing the intermedi-
ate products of the deliberative process (which will be discussed in Chapter 10) and
to store the model of the CWS, as far as it is known. The actual data structures used
for storing the CWS were described in more detail in Chapter 4, however a brief
overview is presented here.

As was discussed above, there has been a significant debate in the field of robotics
as to whether any model of the world is necessary, and if some representation is
needed, how complex it needs to be. In addition, there is some debate in the cogni-
tive science community as to how much representation (e.g., modeling) of the world
goes on, and to what degree it is symbolic. Since it has been shown that even sim-
ple biological organisms maintain models of the world, there must be some value
to modeling the outside world. Thus a major component of our transient memory
structure is devoted to maintaining a world model. The world model consists of both
representations of the external state of the world, and representations of the internal
state of the robot.

The primary source of data about the current world state comes from the Per-
ception/Action system by way of the Reification Engine . The current in-
formation from the sensors is processed by the Reification Engine into a
symbolic representation of the world. For example, if the sensors are directed at a
door, the Reification Engine generates the appropriate symbolic represen-
tation of the door, and the symbols are provided as input to the working memory.
These symbols are maintained by the working memory as part of the CWS. How-
ever, unlike a purely reactive system, when the robot turns its sensors away from the
door, the knowledge that a door exists, its location, and any other salient information
does not vanish from the working memory. This enables the deliberative system to
reason about the door, and to take the door into account when planning.

As many researchers have pointed out[21, 65, 77], there are problems with main-
taining a model of the current world state. It can become ‘out of sync’ with the real
world - resulting in plans that fail because they depended on a door being open (as
indicated by the memory of the current world state), but in the meantime the door
has been closed. Of course, these problems occur with any biological organism, hu-
mans included. In part this is due to the limited cognitive capacity of any physical
system, and in part to the fact that the real world is not a static, deterministic place.
A second concern with maintaining a model of the CWS is the computational bur-
den associated with keeping it up to date, and in simply sorting through the large
number of possible facts about the world and selecting the ones that are salient. As
Dreyfus wrote in “What Computers Still Can’t Do:”

It turned out to be very difficult to reproduce in an internal representation for a computer the
necessary richness of environment that would give rise to interesting behavior by a highly
adaptive robot.[53]

Achieving this ‘necessary richness of representation’ is challenging in two ways.
It seems to be necessary to have a wide and deep representation to handle com-
plex goals, yet only a relatively small subset of this representation is required
for any given problem. If the deliberative system has too many symbols to deal
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with, it quickly becomes overloaded, simply managing the representations. There
is current research in neurodynamics that suggests organic brains utilize a non-
representational activation mechanism that is triggered directly by sensory input,
but activates a context-like structure that focuses on the problem at hand[54, 71].
Such a mechanism operates like a hologram, where there is no direct mapping of
a specific place to a specific bit of knowledge. Rather the sensory input activates
memory structures with similar structure, resulting in the recall of salient knowl-
edge.

In the cybernetic brain the actual memory structure for the CWS is a list of
facts that describe the world-as-it-is, or at least as accurate a picture as the sen-
sors and Reification Engine can provide. These facts are represented using
a list of predicates of the form: (Feature,Value), where features are the charac-
teristics and things that make up the world, and the values are the current state of
those things. To use a classical example, let us suppose that our universe is made
up of a table, and a set of colored blocks. This Blocks World example has been
used since the late 1960’s. In this classic form, the state of the world can be repre-
sented with a series of statements like (RedBlock,OnTable), (BlueBlock,OnRed),
(GreenBlock,OnTable). In general, the robot is presumed to have complete and ac-
curate knowledge of the world, and so, the CWS would always have a statement for
the condition of every block. Traditionally, the world model would be boolean, so
that every fact about the world would have a statement indicating that it was true.
In addition, the deliberative systems worked under what is referred to as the Closed
World Assumption[166] which means that anything that is not stated as true can be
assumed to be false. In the real world we need more complex representation than
these simple predicates, and we cannot make the closed world assumption, since
there are many things for which we will not know if they are true or false at any
given point in time.

To limit the size of the Current World State, we restrict our representation to cur-
rently supplied representational symbols from the Reification Engine and
the working memory from the deliberative system. As a result our robot will ‘for-
get’ the current state of objects like doors unless either it has perceived the door
recently, or has been referring to the door in its recent deliberations. The CWS cap-
tures what is known about the current state of the world. With every input from the
Reification Engine, the CWS is updated with new information, and without
any reinforcement, older information is discarded. As a result, the working memory
becomes a self organizing structure, with the symbols that correspond to current
sensory experience and current deliberation being kept current. This begins to act as
a focus or attention mechanism, preventing the deliberative system from becoming
mired down in facts, plans, and goals that are no longer of current interest.

It has been long accepted that there is a critical need for some way to narrow
down the focus of cybernetic reasoning system. The wealth of information that is
required by a system to be reasonably knowledgeable about the world quickly be-
comes overwhelming to the computational resources available to a computer. The
development of some way to focus attention[195] to the subset of information that
is germane to the situation at hand is a critical aspect of reasoning. In addition, the
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ability to provide context sensitive subsets of the total knowledge provides a mech-
anism to address the frame problem[23, 95, 121, 129], by eliminating inappropriate
contexts. Thus the ability to keep a current world state that both has memory of past
states, and also allows world states that are no longer important to drop from the
current awareness is a necessary component of our transient memory.

8.1.2 Internal State

Unlike the CWS and the working memory, where information dynamically appears
and disappears depending on the directed attention of the system, the internal state is
always complete. It is clear that biological systems maintain an accessible model of
their internal state at all times. This information is used both to drive behaviors and it
affects the cognitive and decision making process. In terms of a biological organism,
imagine a rabbit, driven by any one of a number of possible goals: fear, reproduction,
hunger, and so on. If the rabbit is being chased by a fox it will run past that tempting
carrot rather than stop for a bite - regardless of how hungry it is. However, if a
starving rabbit senses both a potential mate and the tempting carrot, the hunger may
impact the behavior or the rabbit. Thus the internal state of the organism affects
the decision making process, which, in turn, affects the behaviors that are enacted.
The internal state consists of a combination of several components. In Chapter 5
we discussed a number of the functions of the Perception/Action system. Many
of the hardware components that are necessary to fulfill these functions have time
varying state. The proprioceptic systems have information about the current position
of joints and effectors, as well as the current power being consumed; the enteroceptic
systems have information about the level of energy in batteries or the amount of fuel
remaining. These data make up a significant part of the internal state of the robot at
any point in time. Biological organisms include this (contrast the state of hunger of
the rabbit discussed above with the fuel reserves of an autonomous aerial vehicle)
as well as the current state of broadband neurotransmitters[42] affecting the central
nervous system. The four basic emotions were discussed in Section 3.3. There are
be analogs to these neurotransmitters in our robot, and to be effective in the real
world, there should be. Consider the rabbit example above, but replace the rabbit
with a UAV, and the fox with a surface to air missile (SAM). Should the UAV pause
to take a tempting photograph of a convoy moving down the road while the SAM is
closing, or should some analog of fear cause the UAV to skip the photo shoot until
the threat is gone?

8.2 Episodic Memory

Episodic memory is the mechanism used to store experience and events. From the
biological evidence it is clear that the mechanisms and nature of episodic memory
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differ from semantic memory. Episodic memory is a system that retains prior expe-
rience and makes those experiences available for current reasoning[82]. It has been
shown to influence the cognitive mechanisms of attention, decision making, and the
categorization of new information. In cases of amnesia, it is common for episodic
memory to be disrupted, while semantic memory continues to function normally. In
addition, recent research by Rosenbaum et al indicate that episodic memory is inde-
pendent from the ability of one human to infer other people’s mental state (Theory
of Mind)[171]. From these data it is clear that episodic memory is a distinct mech-
anism in biological systems.

Numerous mechanisms have been proposed for representing episodic memory
in computer based models of cognition. These models often place episodic mem-
ory into the same storage as semantic memory. In deriving a biologically inspired
model, we have no choice but to separate these memory stores. But, this does not
mean that we must discard previous work. Regardless of where these memories of
experienced events are stored, the mechanisms and representational schema have
been well researched, and several effective proposals are available.

One of the earliest attempts to formalize representing episodic memories was
done by Rumelhart, Lindsay and Norman[173]. While this work was primarily fo-
cusing on the encoding of textual material (e.g., inputs like “Yesterday at school,
the boy hit the window with a stone. The man scolded him”) the encoding that they
proposed is equally effective for any sequence of events, with one modification. Un-
like a dry recitation of a sequence of events, episodic memory contains complex
emotive information. Since episodic memory is personal, it is the memory of what
happened in the life of the individual who experienced the events, the internal state
of the experiencer is also encoded along with the events themselves.

So in addition to the encoding of the sequence of current world states, these
memories must also encode the internal states that were coincident to the external
events. Thus in the episodic memory of the boy who hit the window with a stone
there would be an association perhaps of fear; while in the episodic memory of the
man who scolded the boy, there might be an association of anger.

The analogy of a log file is frequently used as a model for episodic memory. In
this model the episodic memory is viewed as a time sequenced series of snapshots of
the state of the system. While this captures a high fidelity record of the events, it also
contains significant levels of redundancy. Consider such a system logging the state
of an autonomous robot. This robot has obstacle detection using active sonars and
it has navigational data provided by GPS and a digital compass. It has a traditional
drive system with two drive wheels, and front wheel steering, so it must maintain
information about the power sent to the drive wheels, the actual speed of the drive
wheels, and the position of the steering. Finally, it has general information about the
state of the batteries, and possibly sensors monitoring the internal network capacity,
the CPU load, and so on - what NASA refers to as health and safety data[98]:

RobotState(RS) ≡ (time,sonar,navigation,drive,health) (8.1)
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where: time is the timestamp of the observation;
sonar is the current sonar data;
navigation contains the GPS and compass data;
drive contains the drive power, wheel speed, steering; and
health includes the state of the batteries, etc.

If the entire state RS were to be logged with any frequency, the log would be
filled with redundant values that changed slowly. Envision such a robot crossing
an open field - the sonars would be recording the robotic equivalent of “all clear”
hundreds, perhaps thousands of times, while the overall battery state might change
once or twice, if at all. In addition to being inefficient, it does not match our intuitive
notion of episodic memory, which is based not on state but on events that change the
state in a salient way. Recall the brief story of the boy, the stones, and the scolding
man. There is no notion of the continuous recording of where they were, once the
scene in the schoolyard is set. This suggests that only things that have changed
are represented. In addition, there is no description of the weather, the trees, or the
cracks in the pavement; these may have been experienced, but they are not salient
to the memory, and so they are not represented. From this we can conclude that
the episodic memory of living systems is not a long, dull, redundant recording of
the state of every variable, rather it is the record of the events (changes) that were
significant in some way to the episode.

From this it is clear that something more like a change log is required, the ele-
ments of the episodic memory would capture not the entire state of the system, but
only those things which changed during the episode. This places the focus onto the
events that comprise the episode. However, unlike a long running series of differ-
ences, an episode has a beginning, a point in time or space when the episode starts.
In our story, it was “Yesterday, at school.” So an episode begins with a description
of the initial state from which the story begins, and then begins to detail the salient
changes that capture the essence of the story.

Episode ≡ (RS,{Event1,Event2, ...,Eventn}) (8.2)

where: RS is the initial Robot state; and
Eventx are the changes that occurred in sequence.

On the surface this seems fairly straight forward, we have a stream of current
world state data, each entry carefully time stamped to maintain sequence, and we
extract the significant changes as events. These events are stripped of redundant
information so that only the salient changes are represented in the events. And this,
of course, is the difficulty. The question of what constitutes a ‘significant change’
and what criteria are used to detect a ‘salient change’ is fundamentally hard.

As a first pass, one might consider specifying a significant change as one that
exceeds some threshold, but this simply begs several questions. What thresholds
are significant? Are these thresholds constant or do they vary depending on the
task? What if the change is large, but it is one that is predicted to happen? What
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if the change is small, but critical for one task, while the same change in the same
variable is immaterial for a different task? This problem is another version of a core
open question in artificial intelligence research; it is the same problem that Shank
and Abelson addressed with scripts, it lies at the back of the frame problem[128, 49,
131], and others.

The difficulty arises, in part, from the lack of context in a simple log file. The
recording of sensor state does not include any association of the semantic infor-
mation. Rather than relying on some numeric or syntactic attempt to classify the
application of a threshold, we rely on the mapping capability provided by the
Reification Engine. The events that are logged are not simple positions and
sensor data, rather they are mapped onto symbolic representations. These symbolic
representations are instances of the complex web of knowledge that makes up the
Personal Rough Ontology, and thus the relationships that are expressed in
that structure can be used to assess salience.

From this structure, it becomes possible to imagine our robot storing an episode
associated with a specific task such as being directed to travel to a location and
begin monitoring for a toxic plume. While the actual episode might be unreadable
to a human, we can imagine the salient events recorded somewhat like:

• Time X, Location: Parking lot facing north, Speed: 0, Sonar clear, Detector off
• Time X+1, Goal added: travel to field 300m east, monitor for chlorine gas
• Time X+2, Steer right, Set speed: 10
• Time X+3, Heading: NorthEast
• Time X+4, Heading: East, Steer Straight
• Time X+5, Location: 10m east, Sonar: vehicle (V0031:Class Truck, subclass

Pickup truck) detected ahead, Closing speed: Extreme
• Time X+6, Emergency Stop
• Time X+7, Speed:0, Sonar: vehicle (V0031) detected ahead, closing speed: zero
• Time X+8, Steer: Left, Set Speed: 5
• Time X+9, Steer: Straight, Set Speed: 10, Sonar: vehicle (V0031) detected to

right, Closing speed: negative
• Time X+10, Heading: NE, Steer: Right, Location 20m ENE, Sonar: clear
• Time X+11, Heading: E, Steer: Straight, Set Speed: 20
• Time X+12, Location 100m East
• Time X+13, Location 200m East
• Time X+14, Location 280m East, Set Speed 10
• Time X+15, Location 295m East, Detector: on, Set Speed 5
• Time X+16, Location 300m East, Set Speed: 0
• Time X+17, Detector: Activated level: 9, Send Message: “Chlorine detected

300M east of Parking lot”

To summarize in an anthropomorphic sense, the story would be told as:

I was in the parking lot that was the staging area for the HazMat response last Tuesday.
They told me to head out to the east 300m to make sure that the chlorine gas wasn’t drifting
toward the staging area. I no sooner started heading out, than some bozo in a pickup truck
cut right in front of me, and I had to slam on the brakes. After they skidded to a stop, I had
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to detour around them. Once I got past them, I went out into the field, and turned on the
detector. The buzzer went off, and the reading was a nine on the scale, so I radioed it in to
the command post, and they cleared the parking lot.

One difference between the story and the list of events should be clear - the list
is a fairly dry, dare we say mechanical, recitation of changes that the robot detected,
while the story format has a more emotional flavor. In the next section we will
discuss those emotive tags.

8.2.1 Emotive Tags

As we have discussed above, for a biological entity to function effectively in the
world, the emotional states that are influenced by broadband neurotransmitters must
affect the deliberative process, and have been shown to modify the decisions that
are considered to be ‘intelligent’. These emotional states are part of the record and
are embodied in the episodic memories. One of the key aspects of episodic memory
in biological organisms (at least in humans) is that these memories include emotive
tags[155], and the recounting of them can, and does, re-invoke the emotional states
that were part of the experience. It is also clear that the emotive tags associated
with episodic memory affect how these memories generate semantic knowledge. To
support these functions it is necessary to record the emotive tags along with the dry
state changes that make up the list above. The entries around Time X+6 should be
amended to be:

• ...
• Time X+5,(FEAR: HIGH) Location: 10m east, Sonar: obstacle detected ahead,

Closing speed: Extreme
• Time X+6,(FEAR: HIGH)Emergency Stop
• Time X+7,(FEAR: NORMAL) Speed:0, Sonar: obstacle detected ahead, closing

speed: zero
• ...

The addition of these emotive tags is also critical for the system to learn effec-
tively, since they are used to filter the important events from the huge amount of
episodic memory that accumulates from day to day. So the final structure for the
Events in the episodic memory (described in Equation 8.2) becomes:

Event ≡ ((F,R,S,P),{WS1,WS2, ...,WSn}) (8.3)

where: F is the FEAR index;
R is the RAGE index;
S is the SEEK index;
P is the PANIC index; and
WS1 - WSn are the changes to apply (using the WorldSet notation).
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As we discussed earlier, these four emotive tags seem to be common across a
large range of vertebrate species, and are almost the defining characteristics of mam-
mals. A seeking drive has clear applications to robotics, in fact some of the earliest
autonomous robots were hard coded with the behavior of finding a charging station
when the batteries ran low. One early example was the turtles of W. Gray Walter.
These robots were built in the 1950’s utilizing vacuum tube technology for their
cognitive ability, and had the ability to learn from their experiences[204]. The key
behavior built into these robots was a seeking behavior.

Fear, at least in the form of some kind of protection drive is a common drive
in most robots. After all, with robots costing upwards of tens of thousands of dol-
lars, some sort of self protection is a good investment. Yet even low cost robots
are frequently setup with self protection drives. A common early task for hobbyists
starting in robotics is to build the robot that can detect and avoid the edge of the
table - FEAR at its most basic.

It is less clear why panic is conserved across a wide range of biological organ-
isms, yet it is. Panic can have many forms, from a deer freezing in the headlights, to
shortened planning horizons, to a frantic ‘try anything, but do it quickly’ response.
In our robots we tend to focus on the latter two effects, reducing the depth of plan-
ning to more quickly produce a solution, and to lower the acceptability threshold for
plan success probability.

The final emotive tag is rage. Needless to say, giving a robot the ability to be-
come angry is somewhat controversial. It is also unclear what benefit would derive
from the ability. For the moment, we will include the capacity, but not enable the
application.

8.3 Memory Services

The four types of memory are utilized by both the deliberative process and the
Reification Engine. The services provided to each are different, yet they
must be in sync with each other. We will look first at the services provided to the
deliberative system, and then address the services provided to the Reification
Engine.

The deliberative process works from the symbolic model of the current world
state, and the representation of the desired goal states. It also relies on the semantic
knowledge of what things can be done to change the state of the world. All of these
are maintained by the memory system - the ontology provides knowledge of the
things in the world and actions that can be taken, and the transient memory provides
specific knowledge of the state of the world.

These instantiated representations are used to populate the symbolic world model
which is reasoned about by the deliberative system. This knowledge is extracted
and provided to the deliberative system to be reasoned about, and (if possible) the
deliberative system can generate a sequence of actions which can be used to achieve
the goals. If the deliberative system generates a plan to achieve a goal, or goals, each
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step in the plan has an associated symbolic representation of the expected state of
the world. This plan, along with the expected intermediate states become part of the
transient memory, and can be utilized by the Reification Engine during the
preafference step.

8.4 Providing Memory Services to the Reification Process

Reification is the mapping of sensor data onto a symbolic representation, and then
mapping of the symbolic representation of the expectations onto the equivalent
sensor-based expectation. Clearly, there must be a direct connection from the sym-
bolic representations to the sensor-based representations. The memory structures
presented here must support those connections.

The data structures for reification were described in Chapter 7. The basic struc-
ture is a bidirectional mapping with sensor/actuator specific representations on one
side, and symbolic representations on the other. These symbolic representations are
the same symbols as those used in the semantic memory. Thus, when the robot
uses its sensors to perceive the world, these sensor specific data are used by the
Reification Engine to determine the matching symbolic representations for
the current state of the world.

It has been suggested that we do not live in the real world, rather that our con-
scious minds interact with a low fidelity representation of the real world. This virtual
reality is constructed from the information provided by our senses, but is primarily a
symbolic representation of the outside world. In our design this is literally true. The
sensor data is interpreted by the Reification Engine, and a lower resolution,
symbolic representation is generated. The inverse operation is invoked when the ex-
pected state of the world is presented to the Reification Engine to enable
preafference. Recall that PerCepts have associated sensor tags, which capture
the sensor specific indicators of the object that is perceived. These sensor tags are
used by the Reification Engine to generate a sensor specific representation
of what the world should look like. This can be envisioned as a virtual reality image
of the representation of the expected state of the world.

This sensor specific representation is used as a presumptive test against the ac-
tual sensorium. If the actual sensorium matches the expectation to some degree of
accuracy, the conscious mind may never become aware of any discrepancy.

8.5 Memory, What Was That Again?

From this brief outline (the last 20 pages or so...), it is clear that the mechanisms
for memory are very complex, and that the choice of underlying representation has
far reaching effects on the ability of the cybernetic system to behave in a manner
that might be considered intelligent. This complexity must be balanced with the
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clear need for a simple underlying representation, since biological organisms seem
to maximize reuse.

In this chapter we have explored three of the four independent memory struc-
tures: Episodic memory, Working Memory, and the representation of the internal
state of the robotic system. These three types of memory have very different func-
tions, and very different mechanisms; however, each of them is built up out of the
same underlying data structures. These data structures have very different machin-
ery attached to them. In the following chapter we explore the semantic memory.

Fig. 8.2 The equivalent scenes with Reality on the left, and a virtual-reality equivalent on the right.



Chapter 9
Semantic Memory and the Personal Rough
Ontology

Much of the research into the representation of knowledge has been based on how
we, as humans, think about things. The accessible portions of our reasoning are
primarily symbolic. We think in words, in linguistic symbols, but is clear that not
all reasoning creatures think in words. Anyone who has watched a dog ‘figure out’
how to get out of a fenced yard knows that animals can solve some problems that
we would ’reason’ about and it is a safe assumption that that dog did not solve the
problem with a linguistic argument. However, when we try to watch ourselves think,
we see symbolic manipulation. There have been linguists who have argued that it is
not possible to think about something unless one has words (linguistic symbols) to
describe the concepts[206]. So we will begin by looking at how we will represent
symbolic knowledge in the persistent memory.

9.1 Semantic Memory

The question of how to represent knowledge in a computer has been a fundamental
issue since the earliest research into artificial intelligence. While the underlying data
structures are critical, the key question is more focused on how does one represent
the incredibly rich set of concepts, relationships, and structures that make up our
knowledge. In 1968, Quillian stated the question this way:

The central question asked in this research has been: What constitutes a reasonable view of
how semantic information is organized within a person’s memory? In other words: What
sort of representational format can permit the “meanings” of words to be stored, so that
human like use of these meanings is possible?[163]

The primary representational mechanism for long term semantic memory will be
a Personal Rough Ontology. Which begs the question:

101
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9.1.1 What is a Personal Rough Ontology?

Perhaps the first question should be “What is an ontology?” An ontology is a way of
defining the meanings of symbols. Unlike a dictionary, which defines one word by
using sentences, an ontology attempts to capture the relationships between symbols.
The term is primarily used in philosophy as the field of study relating to the precise
utilization of words as descriptors of entities or realities. Any ontology must give
an account of which words refer to entities, which do not, why, and what categories
result. The use of the term has been adopted by researchers in computer science
to focus on the data models that represent a set of concepts within a domain and
the relationships between those concepts. The ontology is used to reason about the
objects within that domain, and this is how we will use the term.

In the domain of computer science, research into ontologies has often focused on
their use as a tool for sharing knowledge between distinct systems[83]. If computer
system ‘A’ refers to a tree, how does computer system ‘B’ make sure that the symbol
tree maps onto the same meaning? While this is of critical import when multiple het-
erogeneous knowledge systems must communicate, our focus is on representations
within a single cybernetic system.

Typically, when an ontology is used to define concepts and the relationships be-
tween them, there are three characteristics that are desired: an ideal ontology should
be complete, consistent, and accurate. These are necessary as a result of the logical
operations that are used to manipulate and query the ontology. Using these logi-
cal operations, a computer can start from a collection of information, and derive
additional statements that must be true, or the computer can demonstrate that a spe-
cific statement cannot be true. Truth in this context means that the statement does
not contradict anything known to be true. The three criteria of completeness, con-
sistency, and accuracy are all required if the ontology is to be reliable. If it is not
complete, it may not be possible to invalidate (prove to be false) any given query,
but if a statement cannot be proved false, it is assumed by the logical operations to
be true - thus false things can be accepted as true. If the ontology is not accurate
- that is to say that it includes statements as true, which are, in reality, false; then
these logical operations will be able to prove false things which are, in fact true.
Finally, if the ontology is inconsistent, if it contains statements as true, which are
contradicted by other statements or derivations, then almost anything can be proved
to be false or true. The logical operations are very literal, very ‘narrow-minded’ and
so they require very carefully cleaned and maintained data sets on which to work.

When dealing with living systems however, the knowledge that they have is nei-
ther clean nor carefully maintained. It is not complete, consistent, or completely
accurate; yet living systems seem to be able to perform effectively in the real world.
Whatever representational scheme we use for our ontology must also be tolerant of
these failings. The structure we utilize is a personal, rough ontology.
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9.1.1.1 Why is it Personal?

An ontology captures the concepts and relationships with which we reason. For all
the very precise definitions that exist in dictionaries, each one of us has our own,
unique, understanding of each concept. As living systems, each of our ontologies
have been built up over the years and decades of our experience, and this results in
an individual collection of relationships and associations with each concept in our
base of knowledge. Consider this quote from Oscar Wilde’s The Picture of Dorian
Gray:

And so he would now study perfumes and the secrets of their manufacture, distilling heavily
scented oils and burning odorous gums from the East. He saw that there was no mood of
the mind that had not its counterpart in the sensuous life, and set himself to discover their
true relations, wondering what there was in frankincense that made one mystical, and in
ambergris that stirred one’s passions, and in violets that woke the memory of dead romances,
and in musk that troubled the brain, and in champak that stained the imagination. [207]

This captures the wealth of associations that are represented in human semantic
memory, and the complex unfolding of these associations upon the activation of a
memory or a concept. Where Wilde’s narrator associated the scents with passions
and romances, another person might have no deep reaction to the same scents, and
would wonder what all the fuss was about. Clearly, each of us maintains our own
personal ontology. While we do not expect that our robots will have the capacity to
experience this depth of association, it is also clear that, if they are to function in
a world populated by humans, they must have more depth that a simple dictionary
style definition of violets.

9.1.1.2 Consistency versus Correspondence, or Why is it Rough?

An ontology is much more that just data. There are also numerous operations on
these data that allow the computer to deduce information that is not explicitly rep-
resented in the ontology, operations that allow the computer to focus attention on
a subset of the total data available, and operations that allow the computer to de-
termine the ’meaning’ of the otherwise meaningless symbols that make up the data
itself.

Humans are not good at maintaining perfectly accurate or consistent bases of
knowledge. This is important to remember when designing a representational struc-
ture and its associated reasoning mechanism, because it will not be possible to
achieve a knowledge base that is perfect. We must be able to represent knowledge
that is incomplete, inconsistent, and inaccurate. Hence, our use of a rough ontology.
In this ontology there is not even an attempt at searching out inconsistencies. The
focus is on maintaining correspondence with the world, and we accept error as a
consequence of the probabilistic nature of reality.

Inconsistency is, in some ways, the most difficult aspect for a computer based
reasoning system to handle. Since the most basic functions of computer based rea-



104 9 Semantic Memory and the Personal Rough Ontology

soning are dependent on logical inferences, inconsistency can result in the ability to
prove everything true, or false, or both.

Correspondence is less of a problem for the reasoning system, since it can func-
tion with no relationship between the symbols and any external referent. However,
if our robot is to achieve goals in the real world, the symbols that it uses must
have correspondence with the things to which they refer. The PerCepts and the
Reification engine allow us to maintain this correspondence without re-
quiring consistency.

9.2 Building Semantic Memory

Once the decision to represent semantic memory as a personal rough ontology has
been made, the question of how to build the data structures and mechanisms re-
mains. There are a number of well designed and fairly mature software packages
that have been developed to build ontologies. However, very few are designed for
the rigors of deploying the ontology into a robotic platform. As we discussed above,
embodied and embedded systems place hard requirements of size, speed, and power
consumption on the processors and software. In addition, many of the existing on-
tological packages are designed for web based applications. Packages such as OWL
and Jena are typical.

These web-based ontologies offer significant benefits to the researcher, and to
the human user. Since it is a daunting task to attempt to compile the vast amounts
of data needed to build a comprehensive ontology, the web-based ontologies use
a divide and conquer approach. Rather than maintaining internal copies of all the
possible sub-domains that might be needed, the ontologies reference other, exter-
nal, ontologies. They do so using the web as a gigantic, distributed storage system.
Unfortunately, our robots may not be able to depend on these external sources for
day to day, and moment to moment operations. Fortunately, we also have somewhat
simpler requirements for our robots, so there is a chance that they can achieve their
goals without relying on terabytes of data stored on the web. In practice, most of
the living systems that act as our exemplars are capable of storing locally the infor-
mation they need to survive. So we need an ontology structure that is not designed
around having constant access to the entire web.

We begin with the traditional approach of using an ordered triple to represent
a relationship. The triple consists of a subject, a relationship, and an object, as in
Equation 9.1.

(sub ject,relationship,ob ject) (9.1)

Using these triples, an ontology is designed to capture and represent the relation-
ships between symbols, and capture the ‘meaning’ of the symbols. For example to
represent that John is a child of Mary, one can specify:
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(John,descendant o f ,Mary) (9.2)

These relationship statements are predicates, and the existence of a predicate in
the data indicates that the predicate is true. This is consistent with the closed world
assumption discussed earlier. In addition to the relationships, the ontology supports
the definition of rules which can specify the properties of the relationships. For
example, the descendant o f relationship is transitive – if A is a descendant of B
and B is a descendant of C, then A is a descendant of C.

(rule : (Xdescendant o fY )∧ (Ydescendant o f Z) (9.3)

then(Xdescendant o f Z)) (9.4)

With the addition of this transitivity rule the reasoning engine in the ontology can
prove the truth of new predicates from the data.

(Bob,descendant o f ,Shirley)∧ (9.5)

(Alice,descendant o f ,Bob)∧ (9.6)

(Shirley,descendant o f ,John) ⇒ (9.7)

(Alice,descendant o f ,John) (9.8)

In this example, the predicates in 9.5 through 9.7 are directly represented in the
data, while the predicate in 9.8 is a derived predicate, based on the transitivity of the
relationship descendant o f .

The ontology package supports the definition of arbitrary relationships and the
creation of rules that are specific to the domain. These rules and relationships can
be created and edited (the old rule removed and a new rule definition added) while
the system is active. Specifically, it is not necessary to shut the ontology package
down and reload it to have the new rules in effect.

The example above defines a single relationship and a single rule that applies
to that relationship. In a more realistic example there are many types of relation-
ships that a single entity might enter into, and there are complex sets of rules that
might apply to any of those relationships. This complexity must be supported by the
ontological underpinnings of the semantic memory.

In addition to the relationships between entities in the ontology, it is possible
to define attributes (or properties) of the entity. For example, with Mary, Bob, and
Shirley, we would include attributes such as height, weight, gender, hair color, and
so on. More abstract properties would also be included, such as the fact that Shirley
is laid-back, while Mary has more of a temper, and that Bob is touchy about his
baldness. These properties are persistent knowledge, and are stored not as relation-
ships but as properties associated with specific instances of people. When reasoning,
these properties interact with knowledge about relationships and classes, enabling
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Bob to reason that since Mary is female and Irish, and since Bob believes that Irish
females are more likely to have anger management issues, this explains why Mary
has a bit of a temper.

9.2.1 Structure of the Ontology

The basic structure of the ontology is a directed multi-graph:

Ontology ≡ (C,E) (9.9)

where: C is a collection of nodes; and
E is a collection of directed Edges from one node to another.

9.2.1.1 A What??

If you are familiar with the concept of a directed multi-graph, feel free to jump
ahead to the next section (Section 9.2.2), if you would like a quick review of graph
structure, read on.

A graph, in the computer science / mathematical sense, is a structure that consists
of nodes (or vertices) and edges. The nodes typically represent the objects and the
edges represent some relationship between the objects. In a traditional graph, the
there can be at most one edge between any two nodes, indicating that the relationship
holds. Any two nodes that do not have an edge between them represent objects
for which the relationship does not hold. In a traditional graph the relationship is
assumed to be symmetric (for example, the equals relationship: if a = b then b = a)

Since not all relationships are symmetric, a directed graph adds the capability of
representing non-symmetric relationships such as the less-than relationship: if a < b
then it cannot be true that b < a. So there would be a ‘less than’ edge going from
a to b, but not one going the other way. In the example above, the descendant o f
relationship is not symmetric. With directed graphs, the idea that there is only one
edge between any two nodes is a little more complex, it is still illegal to have two
edges both running from Node A to Node B, but it is possible to have one edge
going from Node A to Node B, and a second going from Node B to Node A. As an
example think of a likes relationship. It is possible that person A likes person B and
that person B likes person A: this would result in one edge going in each direction
between the two nodes. However, just because person C likes person A, it does not
mean that person A likes person C, and so only the edge from C to A would be
present.

In this way a directed graph can capture complex structure with respect to the
relationship that it represents, however, it is limited to representing a single rela-
tionship. With a multi-graph, that restriction is removed. A multigraph can have a
number of different relationships represented by different types of edges. There can
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be multiple edges connecting any two nodes, with each type of edge representing
the existence of a different relationship (See Figure 9.1).

9.2.2 The nodes in the multi-graph

Referring back to Equation 9.9, we see that the multigraph consists of a collection
of nodes and a collection of directed edges. Each node C corresponds to a symbolic
representation of an entity. The base class for these nodes is a Cept, hence the non-
traditional use of C in equation 9.9. Each Cept may have a collection of properties
that describe it. These properties are used in two ways. First, the ontological system
can use these properties when applying rules, and second the deliberative system
(described in Chapter 10) uses these properties to develop plans to achieve its goals.
To facilitate these uses, the properties are represented as specific relationship arcs to
other Cept.

Cept(C) ≡ (symbol,{P},{R}) (9.10)

where: symbol is the symbolic representation of the concept (its name);

Bob

Mary

Shirley

descendent_of

Loves

Loves
Dislikes

Is_Spouse_of

Fig. 9.1 In this example of a multi-graph, there are three nodes (Bob, Mary, and Shirley) and
several types of edges (Loves, Is Spouse of, Dislikes, Descendant of). The combination of nodes
and edges capture a complex story.
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{P} are the properties; and
{R} are the relationships to other Cepts.

The Cepts in our ontology represent the things about which we have knowl-
edge. These things correspond to the subject and objects of the ordered triple shown
in Equation 9.1. The common element of these things is the symbol and the list of
properties. This base class is extended to represent specific types of knowledge in
the ontology.

9.2.2.1 ConCepts

The simplest variant of a Cept is a ConCept. This is what is represented in a
typical ontology, and makes up the bulk of the information in a semantic memory.
The ConCept extends the basic Cept by adding the idea that a ConCept can
represent either an abstract concept or something more concrete. As an example, the
ConCept of a chair represents a perceptible thing that might exist in the world;
however the ConCept of ‘laid-back’ is not something that is directly perceptible.
Recall from earlier that one of the original purposes of an ontology was to formally
distinguish between those things that are entities from those that are not.

ConCept(C) ≡ (symbol,A,M,T,{P},{R}) (9.11)

where: symbol is the symbolic representation of the concept (its name);
A is the Abstract flag;
M indicates mobile or sessile;
T indicates a permanent object, versus a transient;
{P} are the properties; and,
{R} are the relationships to other Cepts.

Within the scope of our Personal Rough Ontology, we implement this
distinction as a data structure within the ConCept, a simple flag that indicates per-
ceptible or non-perceptible. This is used in the ontology to indicate whether there
is an associated PerCept that links to the Reification Engine. In addi-
tion, all ConCepts have two additional flags. The first of these is used to indicate
whether the concept that is represented is capable of movement. The robot will be
moving through the world, and knowing what things stay put (such as a wall) and
what things can move (such as a car) is an important distinction to the robot. The
final flag is the permanent/transient flag. This is used to indicate whether an object is
always in the space. As an example, if the robot is delivering trays of food, the food
on the trays is eaten by the people. As far as the robot is concerned, the food has
simply disappeared - it does not need to have a complete model of the digestion and
assimilation of the food by the humans. It is convenient to tag certain objects with a
flag that says “This ConCept can be deleted when it is no long of use.” If a new
person arrives at the party, the robot must instantiate a ConCept that corresponds
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to that person, in order to track her movements. However, once the person leaves,
there is no need to continue to update that ConCept, and it can be deleted.

Using the example in equations 9.5 - 9.8, we can construct an example of a
multi-graph. In Figure 9.1 we show the descendant of relationship between Shirley
and Bob (e.g., Bob is Shirley’s son). We add the relationship between Mary and Bob
- they are married, and so there are two directed spouse of arcs, one from Bob to
Mary, and one from Mary to Bob. Unfortunately, While Shirley loves Bob and Bob
loves Mary, Mary does not get along with her mother-in-law, which undoubtedly
causes stress between Shirley and her son. This simple multi-graph consisting of
three nodes and six relationships captures a complex wealth of information in a
clear and concise form.

As another example, consider a chair. The class of chairs has many specific in-
stantiations, including the chair you are probably sitting in right now. This chair, in
specific, has a number of properties including color, shape, softness, and so forth.
However, there is also the more abstract concept of a chair. As a concept it has
relationships with other concepts such as the notion of sitting, support, and rest.
Chair has relationships to legs, seats and backs, and, in some cases, wheels. These
relationships effectively define what makes the symbol chair have meaning, and are
what enables us to thinks about, and reason about chairs. These more abstract ideas
are represented by abstract ConCepts.

9.2.2.2 ActCepts

Much as the ConCepts correspond to nouns, the world is also full of verbs - the
actions and events that cause change. We, as humans, have complex representations
of the things that make changes to our world, and we reason about these continu-
ously. Although knowledge about actions may seem to be fundamentally different
than knowledge about things, they are still symbolic representations about the world.
In the chair discussion above, it seemed natural that there would be a relationship
between a chair and the concept of sitting, just as there seems to be a natural relation-
ship between a bicycle and riding or a ladder and climbing. Note that the conceptual
symbol associated with sitting differs from the mechanics of lowering ones body
into a seated position - that is a function of the perception/action system, and more
correctly corresponds to procedural memory.

To represent the conceptual model of an action, we modify the base Cept
class by adding the necessary enabling conditions to undertake the action (e.g., to
drive the car it is necessary to have a car), and the set of possible outcomes. The
enabling conditions and outcomes can be directly mapped onto the corresponding
components of the action representation used by the deliberative system, and so the
semantic memory fulfills its design goal of being the repository of knowledge for
the reasoning system.

In this case, we have ActCepts that are abstract, such as the general notion
of movement. There are also concrete ActCepts which correspond to specific

The ActCept class is also extended with a category flag, much like theConCept.
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actions that the robot might undertake to achieve a goal. Just as the concrete
ConCepts have corresponding sensor signatures stored in the Reification
Engine, procedural ActCepts have corresponding action sequences stored in
the Perception/Action system. These are the recipes for the execution of a specific
action.

ActCept(A) ≡ (symbol,A,{P},{E},{O}) (9.12)

where: symbol is the symbolic representation of the node (its name);
A is the Abstract flag;
{P} are the properties;
{E} are the enabling conditions; and
{O} are the defined outcomes.

The properties of an ActCept define specific aspects of the action it represents.
Two common properties are the Estimated Execution Time (EET) and the notion of
whether this specific action can be repeated if it fails the first time, or Retry on
Failure (ROF).

9.2.2.3 EventCepts

A specialized form of an action is an event. These are used to capture knowledge of
changes that occur to the world, for which the robot is not the initiator. The general
structure of the EventCept is the same as any action, there are necessary enabling
conditions, and an event has one or more possible outcomes. In general, there is no
equivalent to the unspecified outcome, since if the event caused no sensible changes
to the environment, the event did not really occur.

The most significant difference between an intentional action and an event is
how it is triggered. Where an ActCept is triggered by the robot undertaking the
action, an EventCept is triggered stochastically, if its enabling conditions are
satisfied. As an example, consider the case of a component failure, such as a light
bulb burning out. The enabling condition might be specified as the light bulb being
turned on. Given that the light bulb is on, there is a small, but significant chance
that it can burn out. We represent this probability as a Poisson distributed random
variable[158] with a probability of failing per unit of time.

EventCept(A) ≡ (symbol,{P},{E},{O}) (9.13)

where: symbol is the symbolic representation of the node (its name);
{P} are the properties;
{E} are the enabling conditions; and
{O} are the defined outcomes.



9.2 Building Semantic Memory 111

These EventCepts are used in the deliberative process to evaluate possible
outcomes of a complete plan. Specifically, there can be very good plans (e.g., they
have high success rates when only the intentional actions are considered), however
these plans can enable the possibility of very bad outcomes from the events in the
domain. For example, A robot might decide to carry an object balanced on its end.
If the robot does not get jostled, the plan is short and very successful. However,
the outcome of being bumped by a person in the room (an event that is outside the
control of the robot) must be considered when evaluating the quality of the proposed
plan. The properties that are associated with an EventCept include the relative
frequency of the event, given that it’s enabling conditions are met. The EventCept
provides a mechanism for the deliberative system to reason about these types of
exogenous events. For more details about the exact mechanisms used see Section
10.4.

The four data structures defined above make up the classes that are the nodes
in the semantic memory. Each corresponds to a key type of knowledge that is used
when the system is reasoning about the current state of the world, the goals that need
to be achieved, and the methods that can be used to achieve those goals. However,
the reasoning process is not limited to isolated facts that can be juggled. In addition
to these facts, are the relationships between them. These relationships make up the
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Fig. 9.2 The structural relationships between the types of nodes in the ontology.
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bulk of the semantic memory, and, in essence, are what encode the meaning of the
facts[40].

9.2.3 Relationships, the Edges of the Graph

Each edge in the multi-graph is a directed arc that leads from the subject node to
the object node. Directed arcs are needed since not all relationships are symmetric,
for example, if the type of the relationship is part o f , it makes sense to say that
a leg is part o f a chair; however the reverse is not true. Each edge captures one
specific type of relationship. In figure 9.1 there are two edges leading from Bob to
Mary. One is the loves relationship, and the other is the spouse o f relationship. The
representational schema for the arcs is:

Edge(E) ≡ (type, identi f ier,ToNode, transitivity,strength, likelihood) (9.14)

where: type is the type of the relationship;
identi f ier is the unique identifier of this relationship;
ToNode is the identifier of the destination Node;
transitivity is the transitivity of the relationship;
strength is the strength of the relationship; and
likelihood is the likelihood that the relationship holds.

Each relationship E is an instance of a class of relationships. While the ontology
is very generic, there seem to be a number of relationship types that are common
across ontologies for systems embedded in the physical world. These include rela-
tionships like is a, has a, is part o f , and is at. To facilitate the encoding of capa-
bilities we also add can do which is the relationship between a ConCept and an
ActCept that it is capable of executing.

In the genealogy example above, the relationship descendant o f is the type (or
class) of relationship. In a traditional ontology, it is sufficient to refer to the class
of the relationship, since each relationship is a boolean predicate that either holds
or does not hold. Thus Alice either is John’s granddaughter, or she is not. However,
when one is representing more complex relationships, this elegant, binary nature be-
gins to break down. As an example, consider the classic ontological schema called
the “friend of a friend,” or FOAF ontology[50]. In this ontology, there are numer-
ous boolean relationships such as f riend o f , enemy o f , likes, and hates. While the
mathematics associated with boolean predicate logic are clean and elegant, the real
world is much messier. As a result, all friendships are not created equal, nor are all
enemies hated with equal passion.
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9.2.3.1 Strength

To be able to represent this complexity we replace the boolean predicates with a
more flexible real valued weight term. Using this representation we can capture the
idea that Bob likes Mary with a weighting term of 0.99, while he likes Bill with a
weighting term of only 0.25 - Mary is his spouse and best friend, while Bill is more
of an acquaintance. Thus each use of the f riend o f relationship is an instance of
the class friend of.

9.2.3.2 Transitivity

The use of the transitivity term does not preclude the use of boolean predicates. By
setting the weight to 1.0, each instance of a relationship behaves exactly the same
as the existence of a boolean predicate. However, the machinery that applies rules
and generated new, derived predicates from the explicit data must be more complex.
As an example, a rule based on transitivity (such as the rule shown in Equation 9.4)
must now examine the degree of transitivity. If the f riend o f relationship were con-
sidered transitive, and if Mary is a friend of Bill, and Harry is a friend of Mary; by
transitivity, Harry is a friend of Bill. If Mary is extremely gregarious, she may have
hundreds of friends, and any friend of a friend is awarded all the rights and privi-
leges of close friendship. For Mary, the f riend o f relationship is highly transitive.
Bill, on the other hand, has very few friends, and does not admit just anyone into
that exclusive group. So his transitivity term for the f riend o f relationship is low.

9.2.3.3 Likelihood

In addition to the strength term, there is a term for the likelihood of a relationship
holding. In many cases, a relationship is definitional and thus it either holds or it
does not. So our descendant o f relationship is either true or false - given complete
knowledge. However, what is true, and what we know are not always the same. In the
face of incomplete knowledge, many relationships must be quantified with a likeli-
hood of truth. Using the descendant o f relationship as an example, recent studies
using DNA have shown that descent down the male line is far less certain than might
be supposed. The certainty of a relationship becomes even more problematic with
more abstract relationships, and relationships that change over time. So we encode
this lack of certainty in a likelihood term that can be reasoned about, and adapted as
circumstances change.
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9.2.4 A Note on Representing Probabilities

Probabilities are also used in the ActCept nodes, where an intended action has
a probability of succeeding, and can have several possible failure modes. These
likelihoods are used primarily by the deliberative system when it is evaluating the
outcomes of possible actions that might achieve the system’s goals. Since the uni-
verse is not a static place, and since our robot does not have complete knowledge,
this likelihood will change as the robot gains in knowledge, and responds to changes
in the universe. For example, when our autonomous ground vehicle is fresh from the
factory, the robot might have extremely good tread on its tires. This tread enables
it to accelerate more quickly, and stop very abruptly. So, the probability of a ‘panic
stop’ resulting in a skid is low. However, over time, the tread wears down, and the
stopping characteristics change. If the robot cannot alter its model of the stopping
characteristics, it will be unable to adapt to the changes in the universe, and will be-
gin to fail. So, especially with the action components (ActCepts), the likelihoods
change. This can be thought of as asking the question “How likely is it that this
relationship holds at the present moment?” To support this, the probabilities are not
stored as simple real valued terms, but as pairs of counts: how many times has this
been tried, how many times has it succeeded. These two values provide the neces-
sary information to answer “What is the likelihood of success?”, and to support a
simple updating function as new knowledge is gained.

Likelihood ≡ (successes,attempts) (9.15)

where: successes is the count of successful outcomes; and
attempts is the total attempts of the actions

We can always reduce the counts to a simple likelihood, and provide a method to
produce a real valued representation of the ration of success to the event count. In
this way we can always project the count into a traditional probability value. This
traditional representation contains less information however, and therefore fewer
capabilities. By storing the actual counts associated with the likelihoods we gain
several advantages.

To explore these capabilities, we will use the example of a gripper with rubber
coated fingers. When fresh from the factory, the coefficients of friction are well
known, and so it is a simple matter to estimate the probability of a gripper failing
to hold onto an object, such as a glass. However, over several months of operation,
the rubber coated fingers no longer have the same characteristics that they had when
fresh from the factory. Portions of the gripper that habitually came in contact with
the glasses have worn. In some spots the rubber has been polished and the coefficient
of friction has decreased, in other spots there has been slight abrasion increasing
the grip, in still other spots the rubber has worn away completely, exposing the
underlying metal - with a radically different behavior.



9.4 Transient versus Persistent Knowledge 115

If the likelihood of a failure were stored simply as a single real-valued number,
it would be impossible to accurately update the information about how successful
we can expect the grip operation to be. However, by maintaining both the number
of attempts and the number of successes, we can update the values upon the com-
pletion of every attempt, either recording a successful attempt, or a failure. These
incremental changes will result in a slowly changing likelihood of success, which
corresponds to the actual success probabilities.

In addition, the use of the ordered pair representation allows the system to de-
emphasize older data, in favor of more recent experience. After several years in
service, the original factory specifications have little correlation to the present day
experiences. Since both the number of successes and the total attempts are recorded,
it is a simple matter to perform an exponential decay on the older data, by simply
scaling the two values equally, and then continuing to record the actual successes
and failures. So we support the following methods for the Likelihood class:

• double Likelihood.getProbability();
• void Likelihood.addSuccess();
• void Likelihood.addFailure();
• void Likelihood.decay(double scale)

9.3 Persistent Storage in the Personal Rough Ontology

Ontologies can get large, even for simple systems. As the range and scope of knowl-
edge increases the size of the ontology can increase dramatically. As discussed
above, in biological systems the storage mechanisms for semantic memory are not
completely understood, however it is clear that the storage and retrieval mechanisms
for the vast amounts of semantic information are different from that of short-term,
working memory. In the ontology package, the large store of semantic memory is
designed to be placed into a persistent database, and retrieved as necessary.

The format can be loaded at startup, and placed into RAM for faster access,
provided the computer has sufficient RAM. Naturally this is an artifact of using
a digital computer to emulate a biological system. There is no real equivalent to
shutting the system down and reloading all the knowledge from off-line storage. In
a biological system, shutting the system down may be far too easy, but bringing it
back up again is trickier. as a result, whatever cybernetic mechanism we use, it must
be capable of updating itself on the fly, and this encourages the used of a relational
database for persistent storage, rather than a loadable file system.

9.4 Transient versus Persistent Knowledge

Knowledge changes over time. While many ontologies are designed to capture the
relationships between permanent concepts such as what it means to be a mammal
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or what the definition of a prime number is; there is also a need to represent more
transient information. This might include the properties associated with a person,
such as their hair color, or that fact that Randi is allergic to seafood. This knowledge
also includes the very fact that Randi is a person: that the ConCept that represents
the Randi is a specific instance of the general concept of a Person.

There is a vast amount of relatively transient knowledge (Randi may change her
hair color), far more than can be maintained in working memory at any point in time.
So there must be a more permanent storage place. We include this transient knowl-
edge in the form of properties attached to the ConCept, and use a specific relation-
ship instance o f to link the individual ConCeptto the framework of knowledge of
more abstract concepts. In practice we have two specialized relationships for han-
dling instance ConCepts: thing instance and location instance. These are used to
provide the linkage from the specific instances to two corresponding nodes in the
ontological frame work. These are labeled as Place and Thing (more specifically
StaticThing and DynamicThing in figure 9.2.

In addition, there are instance ConCeptsthat appear and disappear from our
knowledge base. We frequently encounter new people in our day to day interac-
tions. While some of them may become friends or colleagues, many will be a sin-
gle, short-term encounter. While we are interacting with them, we need to access the
complex web of knowledge we have of people, and this can be done by instantiat-
ing an ‘anonymous’ person ConCept. This provides access to generic background
information that allows us to reason about this person, but we do not need (or want)
to clutter our ontology with references to every person we have ever encountered in
our lives.

This is utilized in the interaction between the Personal Rough Ontology
and the Reification Engine. When the robot encounters an object in the real
world, it attempts to classify the object, so that a semantically tagged representation
can be added to the current world state. The CWS includes knowledge about the
permanent persistent features of the world, and it contains information about the
current state of previously encountered transient objects. However, there is no pre-
existing representation for an object that is encountered for the first time.

As an example, consider our robot serving drinks at a cocktail party. It knows
about the general layout of the room - the walls, the big furniture, etc. This is perma-
nent and persistent data. It also knows about the three smaller chairs, which are per-
manent, however, their current location may change as the chairs get moved around.
However, it does not have instantiated representations for all the people who might
arrive. Rather, when the robot encounters a new object, it will attempt to classify it.
Using its sensor data, and the PerCepts that correspond to the currently instan-
tiated objects, it fails to classify the object. It then uses the PerCeptsassociated
with the more general concepts it might encounter. The PerCept for a generic
Person has a high probability of a match, so the Reification Engine uses
this to instantiate a new object in its current world state. This object is not perma-
nent - rather it is transient. It comes into existence, and, after not being reinforced, it
vanishes. In this way the size of the ontology is not ever-increasing with references
to concepts, objects, and entities that will never be accessed again.
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9.5 Extracting Problems for the Deliberative System

The Personal Rough Ontology acts as a repository for the complex knowl-
edge base that represents the robot’s representation of the world it inhabits. Much
of this knowledge is necessary for modeling the relationships and interactions of
the world. Other parts model the things that can be changed and the actions and
events that can change them. When the robot needs to cause changes to the world to
achieve its goals, it is these latter elements of the ontology that are required as inputs
by the deliberative system. Thus a critical requirement of the ontology is the ability
to extract a subset of itself, a problem description, and to provide that problem in a
form that the deliberative system can manipulate.

The deliberative system is described in more detail in the following chapter, but
it functions primarily as a problem solving engine. It is given the description of the
world as it is, and a description of the world as we want it to be. It also needs a
description of the actions and events that can change the state of the world. These
components are packaged up into a problem description.

The Personal Rough Ontology has a single method that, when invoked,
builds a complete problem description:

Problem ≡ (CWS,Goal,Actions,Events) (9.16)

where: CWS is the Current World State;
Goal is the desired Goal State;
Actions is set of Actions that the robot can attempt; and
Events is the set of Events that can change the state of the world.

The Actions and Events are derived from the ActCepts and the EventCepts
which are contained in the ontology, translated into a form that the deliberative sys-
tem can use. This translation involves flattening the ontological structure. Recall that
in the ontology, any given ActCeptmay be an instance of another, more general,
ActCept . For example, Roll is an action that is a specialized form of Locomotion
which is a specialized form of Move. The deliberative system does not need to know
all of the complexities of the hierarchy of movement, it simply needs to know that
the robot can Roll from the library into the office, provided that the intervening door
is open.

9.6 Focusing Attention by Finding Sub-Ontologies

A second result of having a large ontology, is that typically only a small subset of
any ontology will be relevant to any given situation. The ontology must be complete
enough to have information about the many types of situations that the robot might
encounter, so, unless the robot is a very special purpose unit, the ontology will need
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to be fairly comprehensive. If the robot is designed to be a general purpose house-
hold unit, the range of situations that it might encounter is immense, and the detail
required for any given situation is significant. One attempt at a general purpose on-
tology is the Cyc project, spearheaded by Doug Lenat. As of 2005, the Cyc database
included over three million assertions, and over 26,000 relationships[127].

Unfortunately this demand for a complex and comprehensive knowledge base
is directly at odds with the computational complexity of problem solving. As the
size of the knowledge base grows, the complexity of solving a traditional planning
problem grows exponentially. So the deliberative system needs to have a tightly
filtered, focused subset of the problem at hand, not the complete ontology. Thus,
we need the ability to produce a salient subset of all the knowledge in the ontology,
a subset that is significant to the task at hand. Without this ability, the deliberative
system will be drowning in the social dynamics of office politics while attempting
to determine how best to pick up the dog before the pet groomers close.

9.6.1 Weighted Transitivity

When the ontology is used to extract a problem, the general method is to begin
with the differences between the CWS and the goal state. The Current World State
has information about the state of everything the robot knows about. This can be
compared with the state that the robot needs to achieve, as defined by the system
goals. The salient differences in these states are the things that must be changed to
achieve the goal. Note, they may not be the only things that have to change, but at the
very least these features have to be changed from the way they are now to the way we
want them to be. These features are part of a complex hierarchy of features linked by
relationships. So in the process of expanding these sub-ontologies to include these
features, additional related features will be also included in our sub-ontology.

We then can look at those actions that might change the state of the features and
include them in the sub-ontology. These actions are also part of a hierarchy of ac-
tions, and so we expand the subset to include related actions. These actions have spe-
cific enabling conditions which are dependent on other features of the world being
in a given state. So we can add these features and their relations to our sub-ontology,
and then look at the actions that might be able to affect these features. This process
continues alternately adding new features to the sub-ontology, and then adding new
actions that can influence the state of the features. At some point, no new features
will be added to the sub-ontology, and therefore no new actions will be added. At
this point, if it is possible to achieve the goal by the application of intentional ac-
tions, we have the necessary subset. Unfortunately, there is no guarantee that the
subset is any smaller than the original ontology, let alone significantly smaller. This
is due to the nature of ontologies and the graphs that represent them.

In general, the directed multi-graph that makes up the Personal Rough
Ontology is connected. This means that there exists a path (or sequence of edges)
the can be traversed from any node in the graph to any other node. The number of
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edges that must be traversed may be large, but, in general, the path exists. If that path
exists, then eventually, every node on the graph will be included in our sub-ontology.
Yes, it is very unlikely that the fact that the technician at the dog groomer’s is mar-
ried to the receptionist at your wife’s dentist will be useful in figuring out how to
pickup the dog before the groomer’s close for the night. However, it is still possible
that a quick phone call might get them to stay open late. So all these relationships
might be useful to the deliberative system when it is trying to solve the problem. If
some kind of a cut-off could be used to stop the propagation through the ontology,
it would result in smaller and more tractable ontologies. This comes at a cost how-
ever. The cost is that the solution may require one of the actions, or relationships
that have been cut off; and therefore the deliberative system will be unable to solve
a problem which has a theoretic solution.

In spite of this potential problem, we implement this approach in the Personal
Rough Ontology for two reasons. First, even though the hypothetical theoretic
solution may exist, in the real world, no computational system has infinite resources.
As a result, the target is not the theoretic solution, rather it is the solution available to
a limited system. This is the idea of ‘bounded rationality’ developed by Newell and
Simon in the 1970’s[140], and expanded by others[16, 75, 209]. The second reason
that we use this approach is that we can relax the constraint in response to the result
that the deliberative system gets. If a simple, ‘quick and dirty’ sub-ontology does
not produce a solution, we can produce a larger, more complete sub-ontology and
try again. Eventually, this could expand to include attempts that allow solutions that
are more outside the box than the simpler sub-ontologies permit.

The methodology for this adjustable extraction is dependent of the transitivity
term that is part of every relationship. Since every directed edge in the ontology
graph has a transitivity term, every path from one node to another has a value that
is determined by the intervening relationships. If we have a relationship edge from
node A to Node B, with a transitivity of 0.9, and a relationship edge from node B to
node C with a transitivity of 0.8, we can use a simple multiplicative model to calcu-
late the connection between node A and Node C. This multiplicative model results
in a non-increasing weight as more edges are added to the path. Furthermore, if the
transitivity terms are strictly less than 1.0, the path values steadily decrease with
each additional edge. By setting an path transitivity threshold, eventually the prop-
agation of new nodes stops, and therefore the addition of new features is controlled
by this threshold term.

This gives us the ability to generate a sub-ontology that is focused to a greater or
lesser degree, and thus is controlled in size. Smaller sub-ontologies produce smaller
problem specifications, which produce either faster solutions, or they fail to pro-
duce a solution. If no solution is produced, the deliberative system can progressively
widen the scope of the problem until a solution is produced, the world has changed
in such a way that a new goal is more important, or the system terminates.



Chapter 10
Deliberative System

Since the beginnings of computer science the concept of an ‘intelligent’ robot has
been identified with the idea of deliberate actions intended to achieve goals. While
there has been significant research into more reactive systems[9, 14, 22, 68, 74, 107],
these have not produced behaviors with the intelligence that we expected. Rather,
we have seen more and more development of teleoperated systems where the de-
liberative aspects are performed by one or more humans in the loop. Over the same
sixty years we have seen significant advances in ‘intelligent’ software, such as chess
playing programs, complex scheduling systems, and other programs. These software
systems work in a purely symbolic domain which is ideal for deliberation. Unfortu-
nately, the domain that we wish our robots to work in is not a clean, deterministic
domain. We need them to function in our world, constantly changing, uncertain,
and probabilistic. In the first half of the 20th century, it was well understood that the
world was a messy place, and that living systems had to make the best of it. Writ-
ing in 1950, Egon Brunswik was presenting material on the manner in which living
systems dealt with the complex and ever changing world they survived in. In talking
about the mechanisms used to maintain stability in the rapidly changing world, he
suggested that:

[This] injects an element of reasoning into stabilization mechanisms. Implicit reasoning
of this kind may readily be made explicit by modern “cybernetics,” or by ”mathematical
biophysics.”[28]

Unfortunately, rather than incorporating techniques for dealing with the uncertain
world into cybernetics research, the approach was to reduce living systems to com-
puters.

In the middle of the last century there was a significant change in the way sci-
entists envisioned human cognition. The model of cognition as ’information pro-
cessing’ took advantage of new understanding of biological systems, as well as
new insights into the mathematical representation of problem solving. Newell and
Simon[140] writing in the 1970’s state that thinking (cognition) can be explained by
information processing theory, and that such a system is comprised of four elements:

1. an environment;

121
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2. a collection of sensors and effectors that interact with the environment;
3. a set of symbols and the relationships between the symbols; and,
4. a processor that can manipulate these symbols and interact with the environment

through the sensors and effectors.

Implicit in this description in the idea that there is something in the background
that is responsible for mapping from the sensors onto the symbols, and back again.
The deliberative system - that part of cognition that did the ‘thinking’ - worked in
an isolated abstract world of symbols, but in this abstract world it is possible to
deliberate, to reason, to think.

10.1 Deliberation

Deliberation can be defined in many ways, but a key component is the idea of think-
ing about the current state and exploring possible outcomes. It is frequently asso-
ciated with the idea of planning, and intelligence in general. We use the following
definition:

A deliberative system is one that models the world in a symbolic form, and can predict the
future state that will result from the application of intentional actions. These predicted future
states can be used to choose between different possible courses of actions in an attempt to
achieve system goals.

In this chapter we are going to focus on the deliberative system in our robot, see
figure 10.1. One key question that we will ask is ”What does the reification system
have to provide to enable our robot to reason about the world?”

The general model we will present is based on work done on Probability–Aware
Planning and Execution Systems[87] (ProPLAN). This system was developed to
provide fast and effective planning for mobile robots. The planning and execution
system is based on a simple observe – orient – decide – act loop[15]. The delibera-
tive system accesses the Current World State to assess the current situation. It relies
on the Personal Rough Ontology to provide context for the goals and to
orient itself. It then develops a number of possible courses of action which might
achieve the current goals. The deliberative system then selects one of these courses
of action and sends it to the execution system to be implemented. This execution
includes information about the expected outcomes of each step in the plan, and the
execution system monitors the actual outcomes to see if the action succeeded or
failed. If the action succeeded, the next step in the plan is executed, otherwise the
process is restarted from the failed state, and tries once again to achieve its goals.

Recall that there are many different ways that deliberation can be undertaken,
and we have chosen one of these ways to develop our deliberative system. Any
system that can provide the necessary functionality is equally valid, however to fully
explore the deliberative process we need to delve into the details of some system,
and so we have chosen the ProPLAN implementation.

There are three key aspects to the process of machine deliberation:
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1. How does the machine represent and reason about the present state and the sys-
tem’s goals;

2. How does it model the future, and choose between alternative solutions; and
3. How does the system reason about and respond to failures.

Unless our robotic systems can address each of these issues successfully, it will not
be able to function effectively in the dynamic and uncertain world that it will share
with the humans.

The general control flow of the deliberative system is shown in Figure 10.2. The
deliberative system begins with a set of prioritized goals, and examines the current
world state to determine if any goals are unmet. The details of how this is done are
presented in Chapter 11. Once a goal (or goals) have been selected for achievement,
the deliberative system relies on the Personal Rough Ontology to extract a
subset of the current world state and the salient information. This is used in com-
bination with the goals as input to the planning process. The planner first generates
a number of candidate plans, any one of which will achieve the goals with varying
probabilities of success. These plans are then further evaluated for internal conflicts
that might change the success probability. Finally, the plan that is most likely to
succeed is selected for execution.

Fig. 10.1 The Deliberation
Module evaluates the current
state of the world, and the
current goals of the intelligent
system. From these it must
produce a plan of actions
that can achieve the goals.
These actions are based on the
model of the world and the
changes that can be effected
by the system.
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10.2 Reasoning About the Present

The world is a complex place. Every object in the world, and every action that can be
taken exists in a complex web of relationships. Reasoning about these relationships
is a key requirement for being able to model the world, and to achieve the goals of
the system, the robot must be able to model both the present state of the world and
the desired state of the world. It is not sufficient for our robot to know that a door is
a rectangular surface, it must also know that doors can be opened and closed, locked
and unlocked, and that they can be blocks to travel, or can facilitate movement from
one place to another.

When you look across a room, you don’t see a roughly rectilinear object with
a surface (A) roughly normal to the gravitational gradient, approximately 0.75 m
above the floor, and with a perpendicular surface extending upwards at the rear
of surface A. You see a chair. With that knowledge comes a host of relationships,
actions, and behaviors that allow you to reason about the chair. You know that it is
a seat, that it was engineered to hold the mass of an adult human, that you can stand
on it to reach something on a high shelf (but that is not its designed purpose). You
are reminded of other chairs, some soft, some hard; you recall an accident where
the chair collapsed, or went over backwards. You might remember sitting in a chair
while talking with a loved one, or recall a blistering dressing down that you received

Fig. 10.2 The general flow of
the deliberative system is to
first decide what goals are not
currently achieved, and select
one or more. It then builds a
working subset that describes
the problem space. Third,
it generates some candidate
plans. Finally, it evaluates
those plans and selects one for
execution.

Deliberative System

Analyse world
Select Goals

Build Domain

Plan generation

Plan Evaluation
and Selection
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from a boss. Any, or all, of these might flash through your mind in the instant that
your deliberative system becomes aware of the symbolic ‘chair’ across the room.

These relationships, memories, and feelings all contribute to the model that you
form of the world, and they also affect the deliberation that you undertake to solve
the problem of getting a book that you need off the top of the bookcase. If a robotic
system is going to reason about the present, it needs to have similar sort of symbolic
representation of the world in which it exists. Perhaps not as complex, or as broad,
but unless it, too, can evaluate the possibility of climbing up onto the chair to reach
the top of the bookcase, it will be unable to deliberate about possible courses of
actions. Reification can provide the symbols that represent the state of the world,
but our robot needs far more than simple symbols to reason about achieving its
goals.

10.2.1 Sense-Symbols from the Reification Engine

One of the primary functions of the Reification Engine is to provide the
deliberative system with the symbols that correspond to the objects in the world that
have been recognized. Thus in the description above, the Reification Engine
would process the sensory data that correspond to the chair and would pass the
sense symbol chair to the deliberative system. This sense-symbol acts as a key to
access the complex relationships stored in the ontological database. Along with this
sense symbol, additional information is passed along which captures the ephemeral
details of the current situation, information such as scale (how big a chair?), location
(where is the chair?), orientation (is it upright?, has it fallen over?, is it turned toward
the robot or is it facing away?), associations (is there anything on the seat?) and
so forth. This information is situational, it is not a permanent feature or aspect of
chair.

10.2.2 Symbols from the Ontology

Another collection of inputs into the ProPLAN system are the symbols from the
ontological database. These contain the long term knowledge about the world and
the things that make it up. This is the database of what things mean, the semantic
memory of our robot. Stored in an ontology, each symbol is linked to a web of other
symbols and the entire set of relationships define what the symbol means.

There are two events that cause the retrieval of ontological symbols, one is the
existence of a sense symbol in the feed from the Reification Engine. If the
robot has sensed a chair, the Reification Engine will pass chair on to
the deliberative system. In addition, if there were other sense symbols from previ-
ous iterations of the loop, these will still exist in the world model of the deliber-
ative system. For example, if the robot had previously been sensing the bookcase,
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even though the robot has turned, and the bookcase is no longer directly sensed,
the bookcase does not disappear from the world model of the robot. This collec-
tion of things in the world along with the relationships that define them are the raw
materials that the Deliberation Module uses to reason about the world.

10.2.3 Internal State

A third primary component derived from biological systems is the internal state of
the entity. This has a significant impact on the outcome of the deliberative process.
Just as with a biological entity, if the robot has large amounts of energy available, it
may choose a course of action that expends that energy. However, if the batteries are
nearly drained, that course of action may not be possible to execute, and another,
less energy intensive, course of action would be selected.

Without all three of these sources of information, the internal state, the semantic
memory, and the external state of the world, the robot would be hard pressed to
even begin the process of figuring out how to achieve its goals. With these sources
of input, the robot (via the ProPLAN system) can begin to reason about what it can
do to change the world from the current state toward one that meets its goals.

10.2.4 Reasoning with WorldSets

In order to begin the process of deliberation, it is necessary to have tools that allow
the system to compare the state of the world as it is perceived with the state of the
world as it is desired to be. Unless the system can detect that the goals are not met,
there is no way for the system to even begin the process of planning. Unless the
system can contrast the impact that one action might achieve with the effects of a
different action, there can be no real basis for choosing one action over another.
In the act of deliberation is the act of comparing multiple possible future states and
choosing between them, it is necessary to be able to contrast these possible states. To
that end, a number of comparison operators are needed to operate on WorldSets
. The deliberative system we are using has three comparison operators:

1. Equality: is one WorldSet equal to another, WS×WS → Boolean
2. Containment: is one WorldSet contained within another, WS×WS→Boolean
3. Consistency: is one WorldSet consistent with another, WS×WS → Boolean

In addition there are two transforms that can be applied to WorldSets to sup-
port deliberation. These take two WorldSets and produce a new WorldSet as
a return. The transforms are:

1. Fusion: a merging of two WorldSets, WS×WS →WS
2. Difference: what changes need to be made to one WorldSet to make it con-

sistent with another, WS×WS →WS
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Equality takes two WorldSets and produces a boolean value indicating if the
two are equal. This is the most strict of the three comparison operators. Equality
is defined as two WorldSets describing exactly the same configuration of the
world. For each feature i WS1[i] must have the same value as WS2[i]. If the feature
is specified in one, it must be specified with the same value in the other. If the feature
is unspecified in one WorldSet it must also be unspecified in the other:

Equals(WS1,WS2) ≡
∧

i∈F

WS1[i] = WS2[i] (10.1)

Containment is less strict than equality, it has the sense of a subset/superset
relationship in the multi–valued logic used by the deliberative system. If one
WorldSet, WS2, is contained by another, WS1, every feature that is specified in
the container WorldSet must have an identically specified value in the contained
WorldSet. Any feature that is unspecified in the container can have any value, or
may be unspecified, in the contained WorldSet. The formal definition is:

Contains(WS1,WS2) ≡
∧

i∈F

{

true, WS1[i] = DontKnow
WS1[i] = WS2[i], otherwise

(10.2)

The semantics of containment allow the deliberative system to assess whether
a goal has been achieved, since whenever a forecast WorldSet contains the
WorldSet that defines the goal, all of the conditions required by the goal state
have been met. Any conditions which are unspecified in the goal state can have any
values in the forecast. This allows the deliberative system to make the minimum
number of changes to the world to meet the goal.

The final comparison operator supported by the ProPLAN system is the consis-
tency operator. Consistency is less strict than containment, and has the semantics of
not contradictory. The key difference lies in the treatment of unspecified features.
In the consistency test if a feature is unspecified in either of the two WorldSets,
those features are consistent. This contrasts with containment, where the contained
WorldSet must be no less specific than the containing WorldSet:

Consistent(WS1,WS2) ≡
∧

i∈F







true, WS1[i] = DontKnow
true, WS2[i] = DontKnow
WS1[i] = WS2[i], otherwise

(10.3)

The two transform operators, fusion and difference, allow the deliberative system
to reason about the impacts of changes to the forecast WorldSet. Since the core
of deliberate action is to change the world from one state to another, more desired,
state, deliberative systems must be able to reason about the effects of changes be-
fore selecting a course of action. These two operators provide the system with that
reasoning ability.

The fusion operator provides a mechanism for applying the expected effects of
an action to a WorldSet that describes the world in which the action was taken.
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While the fusion operator takes two WorldSets as its parameters, these two
WorldSets have very different semantics. The first term is a representation of
the initial state of the world, while the second parameter represents the changes that
will be applied to the initial state to produce the result of applying the action:

Fusion(WSold ,WSnew)[i] ≡

{

WSold [i], WSnew[i] = DontChange
WSnew[i], otherwise

(10.4)

The final operator we will discuss here is the difference operator. The difference
operator is used to answer the question “Given the current state of the world and the
goal state, what features have to change to transform the current state into the desired
state?” This transform provides the deliberative system with the ability to extract
the salient changes needed to achieve the goal, which can significantly reduce the
computational burden. The difference operator allows a guided search through all
the possible actions that might be undertaken.

Di f f erence(WS1,WS2)[i] ≡

{

DontCare, WS1[i] = WS2[i]
WS2[i], otherwise

(10.5)

These five operators provide the ProPLAN system with a collections of prim-
itive functions that can be used to reason about the the current state of the world,
the systems goals, the range of possible actions that might be used to achieve these
goals, and to deliberate about alternative methods of attempting to achieve its goals.
The question still remains how is the ProPLAN system going to use the tools to
generate and choose a specific path to the future?

10.3 Choosing the Future

In the Library example, our robot is confronted with an unsatisfied goal. It has been
told to go get the book from the library, and needs to come up with a plan to achieve
that goal. Solving problems like this have been identified by many researchers as the
core of intelligence. As Donald Norman put it in “Things that Make Us Smart”[143]

Complex planning is another mental activity at which humans excel. To plan is to consider
several alternative courses of action, weigh the implications of each of those alternatives,
compare then select. Although animals can form simple plans, such as to stack several
objects on top of one another to form a platform that will enable them to reach objects
hanging in the air, chess is beyond their abilities (pg. 126).

In this section we look at how our deliberative system reasons about the cur-
rent state of the world, finds possible ways to achieve its goals, and evaluates those
possible courses of action, finally selecting one to attempt. The word ‘attempt’ is
important. If our robot is going to function in the real world, it cannot assume that
any course of action will succeed. Rather, every plan has a probability of failing, and
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the likelihood of failure of one course of action versus that of an alternative course
affects the selection process.

Beginning in the early 1960’s the process of planning was described as a search
problem[139]. The general idea is that the world is in a specific state. We have a set
of actions available to us, and many of these will change the state of the world into a
new, slightly different, state. From that new state there will be another set of actions
that can be taken, any of which will change the world a little more. If we can find
a sequence of these actions that results in the world being in the state we want, we
can execute these one after another and achieve our goal.

During the last half of the twentieth century numerous planning systems were
based on this concept. A partial list was compiled by Tate et al [193] which in-
cluded systems ranging from the Voyager Spacecraft Mission Sequencer[202] to a
Mechanical Engineers Apprentice Supervisor[175]. For our example, we might en-
vision the robot looking at the current state as “I’m in the office; the book is in the
library; I don’t have the book.” The goal is “I’m in the office; the book is in the
office; I gave you the book ”. Now it needs to look at the many things it might do to
change the current world state into the goal state. It might reason as follows:

1. To give you the book, I need to have the book.
2. To have the book, I need to pick up the book.
3. To pick up the book, I need to reach for the book, so I need to go to the book.
4. The book is in the Library, so I need to go to the Library.
5. To go from the Office to the Library, I need to go through the doorway.
6. Once I have the book, I will be in the Library, to give you the book, I need to go

to the Office.
7. To go from the Library to the Office, I need to go through the doorway.

Reading this from the bottom to the top, we have the makings of a plan to achieve
our goals. Of course, as humans we barely had to consciously think about any of this.
The entire plan most likely appeared in your conscious mind without any thought.
Unfortunately, the computer that is our robot’s brain does not work like that. We
need to be able to specify every step that the program will follow to produce this
plan. Instead, it will follow all sorts of blind alleys that do not lead to getting the
book, and it will do these step by step by step until it finds a good plan. Fortunately,
computers are good at this mind numbing kind of task, and they are exceedingly
fast. Figure 10.3 reproduces the example we presented earlier.

10.3.1 Planning as Search

The brute force approach to planning is to build a list of everything the robot could
possibly do in the current situation. Then it must build the representation of the
world that results for every one of those actions. Then for every one of those world
states, it must build the list of every action that could take place in that world, and
then build another set of worlds that result. Just keep repeating this process over and
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over until either 1) you find yourself int the desired world state, 2) the problem gets
so large that the computer can’t continue, 3) you get tired of waiting or 4) you have
explored every possible world state that can be reached by any possible sequence
of actions, and none of them achieve the goal. An alternative approach is to start
from the goal state and work backwards (sometimes called backward–chaining or
backward reasoning, see Rich and Knight[167]).

The ProPLAN deliberative system is a forward chaining planner. It begins
from the current state of the world, and examines the WorldSets that can be
reached by applying actions which are valid (i.e., the current WorldSet satis-
fies the enabling conditions of the action) in this state. From each of these re-
sulting WorldSets, it examines the actions that can be applied, and the result-
ing WorldSets. These are represented in a directed graph, where each node is a
WorldSet, and each arc is an Action that results in a change to the world. In each
iteration, a node is selected for expansion, the applicable actions are determined,
and new nodes are added to the frontier of the graph for each resulting WorldSet.

The System begins with a planning problem defined as:

Definition 10.1. Planning Problem
A Planning Problem ϒ is a 4-tuple:
ϒ ≡ (F,A, i,g)

where: F is a set of features of the planning domain;
A is a set of Actions that can be taken;
i is the initial WorldSet; and

Fig. 10.3 The robot is given
the task “Get me the book
from the top of the bookcase.”
The book is out of reach,
so the deliberative system
must formulate a plan to
reach the book. While this
is beyond the capabilities of
most autonomous robotics
systems, the deliberative
systems necessary to solve
this kind of problem have
been available for over half a
century.

Bookshelf Closet

Library Ladder

Chair

ChairDesk

B
ook

OfficeDoor

D
oo

r

Robot

Pointer

BookshelfBookshelf

B
o

o
k

sh
el

f

Bookshelf



10.3 Choosing the Future 131

g is the goal WorldSet.

A Planning Problem defines the domain of the problem, the initial state of the
world, the desired state of the world, and the actions that the system can apply to
attempt to achieve the goal state. Since this is a probability aware planning system,
the natural uncertainty of the world will be reflected in the problem specification.
For example, one or more of the features may be unknown at the time the problem
is specified (in our Library example, the actual state of the closet door in the library
may not be known). The goal state will very likely have many unspecified terms,
if they are of no consequence to defining the goal (whether the pointer is still in
the same position or orientation may not matter). Finally, every action will have
possibilities of failure which will mean that some possible outcomes will not be
specified. We want our planner to solve the planning problem by producing a plan,
a sequence of actions which start from the world-as-it-is, and ends in the world-as-
we-want-it. The desired solution to a planning problem is a plan. A Plan is defined
as:

Definition 10.2. Plan
A Plan for planning problem is a sequence of actions An

1 that, if executed in the
absence of exogenous events from the initial state, and the most probable outcome
occurs, will achieve the goal state.

An
1 ≡ {A1,A2,A3, ...,An−1,An} (10.6)

But we want more than this. We want an intelligent robot. In the “Go get me
the book” plan described above, our robot knew that it was unnecessary to open
and close the door several times before going through it. It knew that having picked
up the book once, it did not need to put the book back down, exit the Library and
then re-enter and pick the book up again. Either of these alternatives would have
(eventually) ended with the book being delivered, but they would not be particularly
effective plans.

Definition 10.3. Effective Plan
An Effective Plan is a plan that achieves the goal state, and that contains no sub-
sequence of actions which will achieve the goal state.

From this point forward whenever we discuss plans, we will mean effective plans.
The plan is defined as a sequence of actions, which represent the trajectory through
the state space of the domain. This perspective is very natural in that many humans
envision a solution to a problem as the things one must do to achieve the goal. We
think of transforming the world by our actions. In this view, if the initial conditions
specify a valid precondition for A1 and all actions succeed, the world state after the
execution of An will meet the goal requirements.

However, it is also possible to view the dual of the action-based view. Since
each action begins in an initial world state, and terminates in a second world state,
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the trajectory can be interpreted as a sequence of world states, beginning in the
initial state i and ending in g. If an action is successful, the end state of action An−1

must satisfy the preconditions of action An. So the equivalent definition would be
represented as:

An
1 ≡ {i = WS0,WS1,WS2, ...,WSn−1,WSn = g}, (10.7)

Thus, a plan can also be viewed as a sequence of WorldSets (equation (10.7)),
where WS0 must be the initial state i, and the final state WSn is the goal state g.
Since all Action Outcomes are uncertain, in this latter view each step in the plan
represents a WorldSet with a specific Probability of Occurrence (POC).

Formally:

Definition 10.4. Probability of Occurrence (POC)
Given the Action Sequence An

1 from the initial WS0 to WSn, the Probability of Oc-
currence of a WorldSet WSτ , 0 ≤ τ ≤ n, is defined as:

POC(WSτ) =

{1.0, if τ = 0

∏τ
i=1

m
Max

j=1
(P(Ai.Outcome j)), otherwise (10.8)

where: m is the number of possible outcomes of Action Ai

τ is the step in the plan for which the POC is being calculated

The planning process begins with a planning problemϒ . The pseudo-code for the
algorithm is shown in Figure 10.4, the description will refer the the line numbers in
parentheses on the left.

From the initial state, a single node is created representing the world-as-it-is
(Line 1). This node is assigned a POC of 1.0. The algorithm expands this graph
by selecting the node with the highest POC and testing to see if the goal has been
reached. The initial selection is trivial, since there is only one node in the graph. The
expansion (Lines 4–15) consists of finding every action that can be applied to the
selected node and determining what the resulting world state would be, if that action
were taken and the most probable outcome were to occur (See Definition 10.2).

There are two classes of outcomes, either the outcome is a new world state, one
that has not been added to the graph previously, or the result of this action may
return to a world state that has already been generated. In the case of a new world
state, the state is added as a leaf node into the graph, and the POC is determined
by taking the origination node POC and multiplying it by the likelihood of the most
probable outcome of the action (Eqn. 10.8). This case is handled in Lines 7–9. In the
case of an outcome that returns to a state already included in the graph, it is possible
that the existing node has a lower POC than the new result. If this is so, we update
the graph with the new path to this world state, and use the new, higher, POC as the
likelihood (Lines 11-14). If the new result has a lower POC than the existing node,
the algorithm simple discards the edge and result. As each new node is added to the



10.3 Choosing the Future 133

(1) Initialize graph G with current world state
(2) Loop Select node NMAX with highest POC
(3) Add all Actions applicable to Node NMAX to ActionSet Cas
(4) For each Action Ai in Cas:
(5) Determine Node NOutcome(Ai)

(6) Calculate P(NOutcome(Ai))
(7) If NOutcome(Ai) 6∈ G then
(8) Add NOutcome(Ai) to G
(9) Add Edge E to graph from NMAX to NOutcome(Ai)

(10) Else
(11) If P(NOutcome(Ai)) > P(ExistingNode) then
(12) Update NExisting with P(NOutcome(Ai))
(13) Update NExisting.Source with NMAX

(14) End If
(15) End If
(16) If Goal.Contains(NOutcome(Ai)) then
(17) Extract Plan
(18) End if
(19) Next Action
(20) Mark NMAX as expanded
(20) End Loop

Fig. 10.4 Plan Graph Expansion Algorithm.

plan graph, it is compared to the goal state, and if it contains the goal, the sequence
of actions is extracted from the graph (the path from the root to the leaf node that
contains the goal) and saved as a candidate plan (Lines 16–18).

After all applicable actions have been expanded, the node is marked as expanded
(Line 20). The algorithm continues, selecting the unexpanded node with the highest
POC, and expanding it. The algorithm is similar to Dijkstra’s shortest weighted
path algorithm, and can be implemented using a similar dynamic programming
technique. Since the selection criterion is the POC of the frontier nodes, plans are
generated in rough decreasing probability order. As a result, the algorithm can be
terminated any time after the first plans are generated. It is not quite an anytime
algorithm[56, 66], since there is no bound on the length of time needed to produce
the initial plan. This planning algorithm has the following properties:

1. It is decidable - If there exists a plan that achieves the goals, the planner will
return it;

2. It is complete - All effective plans that achieve the goal will eventually be found;
and

3. It is correct - All plans returned by the planner are effective.

The forward chaining search, coupled with the fact that plans are generated in
a highest probability first order, enables the planner to have flexible termination
conditions. Depending on the nature of the planning domain, and the needs of the
robotics system, the planner can terminate under one of several conditions:

1. A sufficient number of candidate plans have been found;



134 10 Deliberative System

2. A sufficient number of expansions have been completed; or
3. The POC of the best remaining possible solutions fall below a threshold.

In the last two cases, it is possible that the planner has failed to find any candidate
plans. While it has been shown that the planner will eventually find a plan if one
exists, there is no guarantee how quickly such plans will be found, hence the second
and third termination conditions, can be used to re-frame the planning problem as
part of the deliberative system’s response to not finding a feasible plan.

At this stage of the deliberative process, the planning system has produced a
collection of candidate plans, each one will, if executed correctly, achieve the goals
defined in the planning problem with some likelihood. This likelihood has been
calculated, and the plans have been ordered such that the highest likelihood plan
is easily accessible. One might think that, at this point, the deliberative process is
over. However, we must recall that in the interests of producing a plan quickly, we
evaluated the plans based on the most likely outcomes occurring, what if some other
outcome occurs? What if the plan fails?

10.3.2 Adapting to Failure

In a static, deterministic domain it would be sufficient for the deliberative system
to simply return one or more effective plans. If the planning domain were static,
there would be no changes to the state of the world, unless they are made by our
robot. If the world were deterministic, the model of the world that our robot used
for planning would be accurate, and every action our robot took would succeed. This
would mean that the world would undergo the step-by-step transformation outlined
by our plan, and the goals would be achieved. As we know, the real world is not like
this. Our robot’s model of the world depends on limited, inaccurate sensors, and so
is inherently inaccurate. Our robot’s actions can fail, and there are other events in
the world that can change its state into ones that interfere with our robot’s plan. Any
of these failures can interact, causing a compounding of the deviation for our robot’s
idealized vision of the future. So, if our system is to be effecting in this dynamic,
uncertain world, it must be capable of adapting to failure.

Some types of failures are explicitly represented in the ActCepts. The delib-
erative system can reason about these failures before selected a plan to execute.
Suppose there are two candidate plans which are identical in every except one. The
first plan has a failure mode that leaves the robot broken, while the other has no such
disastrous outcome. It would not be intelligent to select between these two plans at
random. So the deliberative system needs a way to evaluate the candidate plans.
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10.4 Plan Evaluation and Selection

The ProPLAN system is aware of the probabilities associated with the outcomes
of each action, however, to reduce the computational burden, it only explores the
worlds that result if the action results in the most likely outcome. This is considered
to be optimistic planning. The algorithm described above does not use resources to
keep track of what might go wrong. Modeling the many ways that things can go
wrong, and producing contingent plans has been shown to have hyper-exponential
complexity[46, 78, 122, 123], which makes it a poor candidate for our robot, which
must deal with a complex and changing world. Rather than increase the complexity
of the planning process, the ProPLAN system takes a different approach. Once the
plans are generated, they are simulated using a Monte Carlo simulation technique.
This allows the deliberative system to assess two things at once. First, it assesses the
negative aspects of the less likely outcomes of each action. Second, by simulating
the execution of the entire plan, if there are interactions between individual actions
in the plan, the Monte Carlo simulation will catch these as well.

Markov Chain Monte Carlo (MCMC) simulation is a technique for evaluating the
outcomes of stochastic processes. In brief, the stochastic process has one or more
well defined random variables, and, for each of these, an independent draw is made
during each simulation. The overall results of the simulation run are recorded, and
the simulation is re-run with new random draws for each variable. This process is re-
peated until sufficient results are obtained to be statistically significant. The results
of each simulation run are treated as a distribution, and are analyzed statistically,
producing an aggregate assessment of the processes behavior. For more informa-
tion of MCMC simulation see Gilks et al[76]. The biggest difficulties with MCMC
simulation are:

1. Acquiring accurate distributions for the random variables in the process; and
2. Building simulator with sufficient fidelity to make the aggregate statistics mean-

ingful.

10.4.1 Acquiring Distributions

The ProPLAN system requires the existence of accurate probability distributions
for each of the actions that the planner can use to achieve its goals, so the first need
is met. The second requirement is a high-fidelity simulator for the domain. Since
the planner is projecting forward the results of the actions it is evaluating, it has
an internal simulator. During the planning process this forecaster is making very
optimistic predictions, however the machinery is present to forecast the results of
any of the outcomes of an action. So very little additional machinery is needed to
create a Monte Carlo simulator. However, the Monte Carlo Simulator provides a
significant benefit to the deliberative system. The simulator does not look only at
the most likely outcomes of the actions, it evaluates the range of possible outcomes.
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When our robot is planning to get the book from the Library, one plan might
include standing on the chair to reach the book, while another requires using the
pointer to push the book off the top of the shelf onto the floor, and bending over
to pick it up. The most likely result of both of these action sequences is that the
book is in the hand of our robot. However, some of the lower probability outcomes
might include the book being pushed off the back of bookcase, to a point where
the robot cannot reach it. This would mean that no plan the robot could generate
would achieve its goals. A low probability outcome of standing on the chair, and
reaching for the book, might be the robot falling and damaging itself. Either of
these outcomes significantly affect the suitability of the corresponding plan in as
much as neither plan would then achieve the goals.

Since the Markov Chain Monte Carlo simulator utilizes the lower probability
outcomes of the actions in the plan, and produces statistical analysis of the overall
plan results, the outcomes that result in plan failure can result in slightly different
value for the overall POC of the plan. This arises from the interaction of different
actions in the plan. Recall that the planner looks at each step in the plan indepen-
dently and only looks at the most likely outcome. The MCMC simulation looks at
the distribution of outcomes that each action can produce, and uses those resulting
world states as inputs to the succeeding action. This can, and does, result in com-
plex interaction terms that materially affect the plan success, and therefore the plan
success rates as calculated by the MCMC simulation. It is these success rates that
are used in the final analysis to select the plan most likely to succeed.

10.4.2 Simulator Fidelity

The question remains “Is the simulator of sufficient fidelity?” Based on the defini-
tions of the actions that part of the planning problem, we know that each action has
a set of mutually exclusive outcomes, with the associated likelihoods. However, it is
also clear that these are not necessarily and exhaustive set of outcomes. There may
be a (possibly large) number of outcomes that are not modeled. From the biological
evidence, it is clear that living systems do not maintain a complete model of the
world, and all the possible events that might occur. It is clear that humans, while
they do some modeling of what might go wrong, do not evaluate every possible out-
come, regardless of its likelihood. When one thinks about going into the kitchen to
grab something to drink, do you plan for events such as meteorites crashing through
the roof, or discovering a snake on the kitchen floor? We, as humans, are considered
to be very effective planners and problem solvers, but there are limits to the compu-
tational burden we can neurologically and psychologically undertake. So, our robot
will have similar limitations, in particular, the fidelity of the simulation will be based
on the fidelity of the world model itself. If our robot can produce a higher fidelity
representation of the world, it will use that improved representation both for plan-
ning how to achieve its goals, and to evaluate what might go wrong when executing
that plan.
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10.5 Summary

This chapter presents the details of the deliberative system, the machinery that al-
lows a robot to reason about the world and to select intentional changes to that
world in the pursuit of its goals. Deliberative systems have been part of the artificial
intelligence arena since the earliest days of computer science, although they have
tended to focus on purely symbolic manipulation. Using the data provided by the
Reification Engine, it is possible to maintain an effective symbolic repre-
sentation of the state of the world as it is. Combining this with the rough ontology’s
representation of semantic memory, the deliberative system can place its goals into
an appropriate context, which allows the symbolic planner to produce effective plans
for goal satisfaction.

The deliberative system has the responsibility of determining the appropriate be-
havior for the robot to achieve its goals. This responsibility is met by performing a
sequence of actions:

1. Select which goals are to be achieved;
2. Extract from the semantic memory a subset of the world state to use as a planning

domain;
3. Use the probability aware planning system to produce a set of feasible plans;
4. Use the MCMC Plan evaluator to assess the overall POC of each plan; finally
5. Select the plan with the highest POC.

The deliberative system brings together a number of the components that neces-
sary to act intentionally in a dynamic world. Several were discussed earlier, and the
focus of this chapter was to present, in perhaps painful detail, the mechanisms that
our autonomous, intelligent robot must have to reason about the world and its com-
plexity. We have shown how the robot can observe the world, not directly, but medi-
ated through the reification process; how the robot can focus attention on the salient
features of the world, to establish a context in which to reason; how it can model the
world, and model the changes that it might make in an attempt to achieve its goals;
and finally, how it can evaluate candidate solutions to its problems, test them against
experience and look at what might go wrong to finally produce a course of action
that might achieve the systems goals.



Chapter 11
Putting it All Together

11.1 How it Fits Together

In this chapter we look at an example that brings all of the elements together. It
would be nice if we could implement the “Go get me the Book” example, but the
huge amount of data required, and the complex interactions between the systems
would take many hundreds of pages to detail. Instead we will use a simple example
with Basil as a stand-in. Basil’s primary purpose is very similar to the humanoid
robot, but the hardware is significantly less advanced. While Basil can approximate
the reasoning of our ideal robot, Basil is quite incapable of opening doors (let alone
unlocking them), cannot carry a ladder (or climb it), nor can Basil knock books off
of the top of a book case using a pointer. Basil can (provided someone puts a book
on the tray) deliver it to a destination in spite of obstacles. Of course, once at the
destination, Basil must wait, with cybernetic patience, until someone takes the book
from the tray.

In spite of these failings, Basil’s cybernetic brain is up to the task of achieving
fairly complex goals in the dynamic and uncertain environment. In this chapter we
will focus on the interactions between the components that have been described
throughout the book, and examine how these components work together to enable a
robot to model the current state of the world, select goals to achieve, develop plans
to achieve those goals, and execute those plans in the real world, while monitoring
the environment to assure that the plan is succeeding.

The four major components that we will look at are:

1. The Perception/Action System;
2. The Reification Engine;
3. The Execution Monitor; and
4. The deliberative system.

As we have said before, these components are tightly coupled. This coupling
occurs in two ways, there is control coupling, shown by the descending arrows
in Figure 11.1; and there is tight coupling in information. Based on the robot’s
goals, the deliberative system generates a plan (a sequence of actions) that can
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achieve the goal. This plan is passed to the Execution Monitor, which ex-
tracts the individual actions, and verifies that they can be executed using the
Reification Engine. These actions are converted into specific commands and
are passed, in turn to the Perception/Action system, where they are finally imple-
mented. The Reification Engine generates a new symbolic representation
of the world, which is used by the Execution Monitor to confirm that the
world is as it is expected to be. This coupling requires that each component have
data representations that corresponds to the representations that are used by the oth-
ers - if the Execution Monitor is testing the viability of an action (such as
”Move to the kitchen”), its model of what this action means must match the model
used by the Reification Engine when it is testing the heading and obstacles
along the path.

At the same time, the components are also coupled in the information that they
use. The upward arrows show the increasing complexity of the representations as
additional meaning is incorporated at each stage. When the sensors report a set of
objects at a given position, there is little information beyond the position of obsta-
cles in space. When these are reified into a chair, the meaning encoded increases, and
the Execution Monitor can evaluate the question of whether a chair (versus a
table or a person) was expected to be there rather than somewhere else. As the sym-
bolic information is placed into the framework provided by the Personal Rough
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Fig. 11.1 This is the general interaction pattern of the major components of the cybernetic brain.
The rough scale shows the increasing ‘cognitive’ capability increasing to the right, and a corre-
sponding increase in the time required for cognition vertically.
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Ontology, the deliberative system can reason that, since the chair is movable, the
robot’s plan should be modified to include pushing the chair out of the way, whereas
if the obstacles reported by the Perception/Action System were a table, the delib-
erative system would ‘know’ that the robot cannot move the table, and so it must
plan to go to the kitchen by a different path. At each stage of this upward process,
the information manipulated depends on shared knowledge with the surrounding
components.

It is well known in computer science and software engineering that excessive
coupling of these two types is bad[120, 161]; it seems, however, that biological or-
ganisms disagree. Brains are incredibly tightly coupled structures, and since our de-
sign is driven by this biology, the cybernetic brain is also tightly coupled. However,
as Fred Brooks said in “No Silver Bullet:”

The complexity of software is an essential property, not an accidental one. Hence, descrip-
tions of a software entity that abstract away its complexity often abstract away its essence.
For three centuries, mathematics and the physical sciences made great strides by construct-
ing simplified models of complex phenomena, deriving properties from the models, and
verifying those properties by experiment. This paradigm worked because the complexities
ignored in the models were not the essential properties of the phenomena. It does not work
when the complexities are the essence[19].

It may be that this level of coupling between these four components is simply
the essential complexity of intelligent software. In Figure 11.1 we place these four
components into a two dimensional continuum. The horizontal axis indicated the
amount of ‘cognitive’ representation that the components utilize. For our purposes,
this corresponds to the amount of meaning (semantics) that the data objects contain.
The vertical axis captures a loose notion of the complexity of the processing in each
component. The speed is inversely proportional to the complexity, and so the delay
increases as the cognitive level increases. This layout is similar to continua proposed
by other researchers in many fields[14, 90, 133]. We will follow the interactions
between these components in two examples: building a semantically tagged map,
and the delivery of food and drink in a complex, dynamic environment.

11.2 Goals and Environment

Up to this point we have been deep down in the nuts and bolts of the system, and,
while we have alluded to system goals, we have not spent much time on describing
them. The goals drive the cybernetic brain. If the brain has no goals, it has no need to
make any changes to the world. Without the need to make changes, there is no need
for a plan, no actions to execute, no commands to issue to the Perception/Action
system. The robot is static, unmoving, and fundamentally uninteresting. So let us
give the robot some goals.

We focus on two classes of goals: symbolic and non-symbolic. It is clear that
many biological systems have goals that are not symbolic such as stay alive and re-
produce. On a lower level there are many goals that biological subsystems ‘achieve’:
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keep the blood oxygenated, maintain temperature , and fight infections. These are
clearly not symbolic goals, we do not wake up each morning and say “I really need
to keep breathing.” In the chapter on Perception/Action systems we discussed these
non-symbolic goals obliquely by putting homeostasis tasks in the same category as
procedural memory. In Figure 11.2, we add the goal structure to the deliberative sys-
tem. We will focus on symbolic goals in this chapter, and follow the flow of control
and the flow of information as the robot attempts to achieve its goals.

There is one other point to make about this diagram. The goals are internal to the
cybernetic brain. It is common in artificial intelligence research to speak of the goals
being ‘given’ to the system from the outside. Indeed, we have spoken that way in
this work on several occasions. However, we take the view that while the goals may
be suggested from the outside, until they are internalized they do not have the force
of law, they’re more like guidelines than actual rules. In addition, note that there is
not a goal, there are goals. The deliberative system has the task of both achieving
goals, and of managing the relative priority of the goals[86, 85]. In order to reason
about the goals they must be internal to the deliberative system.
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Fig. 11.2 In this completed image of the Cybernetic brain we add the system goals to the deliber-
ative system and place the robot into an environment. These goals are symbolic in nature, and can
be of two types: maintenance goals and achievement goals. The environment is the arena in which
the robot functions, it is here that the goals have a context, and here that the changes that the robot
attempts to achieve must be realized. The Perception/Action system crosses the boundary into the
environment to signify that the robot is a part of the world.
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Just as the goals are internal to the robot, the robot is not the extent of the system.
The robot exists in an environment, and that environment impacts the robot. In this
chapter we will examine the robot in the environment of the Gamma Two lab. The
general layout of the lab is shown in Figure 11.3. It is a fairly simple space, but it
is relatively cluttered with tables, chairs and people. Since many of these objects
are moved frequently, the robot must continually update the model of the lab as it
moves around. So we have the basics of a dynamic and uncertain environment, with
changing demands on the robot. This environment approximates the environment in
which the robot will need to function in the real world.

With the example we will first look at how the knowledge of this environment is
encoded so that the robot can reason about it goals.

11.3 Knowledge Sources

The task we will examine is a simple delivery task: take the tea from the kitchen
to the conference table. We will look at the setup for this task, specifically what
information is in the ontology. We will then follow the interaction of the various
systems as we walk the robot through this task. Before the robot can even begin
the process of achieving a goal, it must have enough knowledge to be able to put
the goal into a context (the ConCepts and relationships between them), it must
have enough knowledge to reason about what needs to change to achieve the goal
(instantiated PThings) , and what actions or behaviors can be used to make those
changes (the ActCepts and their effects), it must also have enough knowledge
to understand what to look for in the world to both find the things and to confirm
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Fig. 11.3 The general layout of the lab.
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the changes that have been made (PerCepts). The knowledge that is used by the
robot, ultimately derives from three sources as shown in Table 11.1.

Table 11.1 Information sources within the Cybernetic Brain

System Knowledge Level

Ontology ConCepts and
ActCepts

Semantic

Reification PerCepts Symbolic
Perception/Action Procedural Sensory

Each of these three systems must be loaded with the data that will be used by the
robot to model the world. So in the next few sections we will look at the specific
information that is needed by the robot to undertake tasks in our lab.

11.3.1 Ontological Knowledge

The ontology for this task must consist of basic knowledge about the kinds of things
that the robot might encounter. We will run this test in our lab, so the robot must
have representations for the types of chairs, tables, people, and walls that might
exist. In addition, since the robot is familiar with the lab, it has specific knowledge
about instances of these things. It has a frame of reference that includes a zero point,
which is in the south-west corner of the lab. It knows that there is an East Wall that
marks the eastern boundary of the lab. It knows that the conference table is near
the east wall, and that there is an area known as Program2 that is adjacent to the
conference table. It knows that there are two chairs (short wheeled chairs) near the
programming station. It does not know the precise distances between the walls, nor
the exact locations of the chairs. The ontology represents the approximate positions
of all the known objects in the space, just as you do not know the position of your
chair to within a few millimeters, rather, you ‘know’ that it is near the window.

We begin by loading the ontology with a description of places in the lab. These
are purely symbolic locations, which we rather arbitrarily selected and named.

BotLocation {
front_door, center_window, north_window,
programming1, programming2, server_rack,
stairs, kitchen, back_door, robot_garage,
supply_cabinet, work_bench, tool_cabinet,
assembly_bench, conference_table_area,
room_center}

These place names correspond (roughly) to the features in the lab that we, as
humans, care about. They are not uniform in size, placement, or arrangement. Rather
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they refer to the semantic aspects of the lab. The robot is expected to function in the
lab, on our terms. When we talk to other people, we do not say “Take this over to
X=9000, Y=750,” we say “Take this over to the assembly bench.” The robot is in an
environment that it shares with humans, it must model the world the same way that
humans model the world.

The ontology also contains a high level topology of the lab layout. The area
is tessellated into regions, and there is an equivalent to an adjacency graph in the
ontology that captures the layout. The rough topology is shown visually in Figure
11.4. The topology is significant because is defines how the robot can move through
the space. In fact, the only way that the topology is encoded is as the actions that
it enables. If two areas are adjacent, there is an action encoded that captures the
fact that the robot can move between them. This is a sample of an encoding of the
ActCept that corresponds to the movement from the workbench to the center of
the room:

[A24|GoWorkBenchToRoomCenter|P|[]]
GoWorkBenchToRoomCenter
ROF 1 EET 4000
Enablers 1
Enable 1 (BotLocation, work_bench)
Outcomes 1 0.90 Result 1 (BotLocation, room_center)

As we discussed in Chapter9, this encodes the preconditions for the action: the
robot must be at the workbench, and it encodes the outcomes: with 90% likelihood,
the robot will end up in the center of the room. It also encodes an estimate of how
long the action should take to complete. In this case the the estimated execution time
(EET) is 4000 ms. It also includes an indicator of whether the robot should attempt
the action over again if it fails the first time. The Retry on Failure (ROF) is set to 1,
you can try it once again, but if that also fails the robot must give up. The existence
of this action is the indication that the two areas are connected in the topology, and
if the robot needs to get to the room center, one place that can be used to reach it is
the workbench.

The ontology consists of objects and the relationships between them. For our
robot, the types of relationships are limited, and fairly simple. We begin with seven
basic relationships:

RELATIONSHIPS
[is_a|0]
[has_a|1]
[is_at|2]
[allowed_in|3]
[can_do|4]
[place_inst|5]
[thing_inst|6]

Each relationship has a name (like is a), and an index number. The first three
relationships (is a, has a, and is at) are common to almost any ontological
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structure that involves physical things in an environment. They allow the ontology
to represent ideas like a wheeled chair is a type of chair, and a chair is a type of thing,
or that the wheeled chair is at the conference table, and the tea tray is at the kitchen.
The next two relationships are useful in our ontology to address the issues that there
are limitations to the robots mobility that are not shared by all the entities in the
world. For instance, the people are allowed to go up the stairs, and Basil’s model of
the world must include this; however, Basil’s drive system does not allow the robot
to climb stairs so Basil cannot go up them. In addition, there are many actions that
Basil can undertake, such as loading the tea tray, but there are actions that the robot
is incapable of doing, such as opening a door. The ontology uses the can do and
allowed in relationships to capture the knowledge of Basil’s capabilities.

The last two relationships are used to provide a link between the purely symbolic
representation of the world to the sensory based representations. It is one thing to
know that there is a location called Kitchen, it is another thing to be able to recog-
nize it when you see it. The relationship thing inst stands for the idea that one
symbol is a physically instantiated instance of a more abstract class of thing. This
enables the ontology to capture the knowledge that there may be many instances
of the same type of thing. The ontology represents that the specific chair that I am
currently sitting in as an instance of short wheeled chair, which is a type of chair,
which is a type of thing. The place inst relationship is used to reflect that the
programming station that I am working at is instantiated in the world model. This
knowledge is used to link the ontology information to the perceptual information
stored in the Reification Engine.

The other half of the ontology is composed of the things in the world. Basil’s
world is fairly limited. Between the places that he knows about, and the things in
his world, the entire knowledge base is less than a few kilobytes. There are twenty
ConCepts that basil needs to be aware of for simple tasks:
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Fig. 11.4 The lab topology. This is not stored directly, rather it is stored as the locations and the
ActCepts that indicate that travel is possible for the robot between locations. Each arc corre-
sponds to a single action, with an associated set of preconditions, outcomes, and a likelihood of
success.
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CONCEPTS
[C0|location|N|S|P|[]]
[C1|thing|N|?|?|[1,C0,1.0,1.0]]
[C2|robot|P|?|?|[0,C1,1.0,1.0]]
[C3|Basil|P|M|P|[1,C0,1.0,1.0],[0,C1,1.0,1.0],

[0,C2,1.0,1.0],
[4,A0,1.0,1.0],[4,A1,1.0,1.0],[4,A2,1.0,1.0],
[4,A3,1.0,1.0],[4,A4,1.0,1.0],
...
[4,A38,1.0,1.0],[4,A39,1.0,1.0],[4,A40,1.0,1.0]]

[C4|conference_table|P|M|P|[6,C7,1.0,1.0]]
[C5|tea_tray|P|M|P|[0,C1,1.0,1.0],[2,C0,1.0,1.0]]
[C6|tray_holds|P|?|P|[]]
[C7|table|P|S|P|[0,C1,1.0,1.0]]
[C8|wall|P|S|P|[0,C1,1.0,1.0]]
[C9|short_wheeled_chair|P|S|P|[0,C1,1.0,1.0]]
[C10|east_wall|P|S|P|[6,C8,1.0,1.0]]
[C11|north_wall|P|S|P|[6,C8,1.0,1.0]]
...
[C18|stool|P|M|P|[0,C1,1.0,1.0]]
[C19|toy_stool|P|M|P|[6,C18,1.0,1.0]]

Each ConCept has an index number, a name, a few flags, and then the list of
relationships it has with other ConCepts. The flags indicate three things:

1. Is this Concept perceivable (P), or is it not (N)?
2. Is this Concept something that can move (M) or is it sessile (S)?
3. Is this ConCept a permanent feature of my world (P) or is it transient (T)?

These flags are used to manage the state of the concepts in the ontology, and are
linked to the Current World State.

The last component of the ConCept is the collection of relationships that it has
with the others. These relationships are the directed arcs in the ontology, and they
lead away from the ConCept. So, in the sample above, we see the concept of thing:

[C1|thing|N|?|?|[1,C0,1.0,1.0]]

It has an index of C1, and the symbolic name thing. It is not perceptible (e.g.,
there is no generic thing detector that the robot knows about), it may move, and it
may come and go. Finally, it has one relationship. It is a type 1 relationship, which is
a has a relationship with ConCept C0 (location), this relationship always holds,
and should always be propagated through the ontology.

Contrast this thing concept with that of the Basil concept. Basil is a robot (Con-
cept C2), which is a type of thing, and has a location. Basil also has 40 or so
can do relationships with ActCepts A0 through A40. These actions are what
enable the deliberative system to find plans to achieve goals, such as “Bring Tea to
The Conference Table”
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In a traditional ontology this knowledge of the things and concepts in the world is
frequently the largest, after all, this knowledge of categories and their relationships
is what ontologies are intended to capture. For our robot, we have a fairly thin ontol-
ogy. However, Basil needs very little knowledge about abstract concepts to function
in the real world - however, without sufficient knowledge, the robot cannot maintain
the semantic models that enable it to function. So what is necessary must be there.

11.3.2 Reification Knowledge

The second major class of knowledge that the robot must have is the knowledge
used by the Reification Engine. For every concept that corresponds to a
perceivable thing or location, the robot must know how that thing appears to the
robot’s sensors. The basis of this knowledge is encoded in the PerCepts. Each
perceptible thing has a PerCept, which can be used to identify it, and to build
an expectation of how it would appear in the world. The details of the PerCept
were explored in Chapter 6. In Basil’s simple world, there are PerCepts for the
fixed structure of the lab: the walls, the workbenches and programming stations.
There are also ones for the movable items, the chairs, the tables, the people. These
PerCepts are linked to the corresponding entries in the ontology.

The knowledge that is required for reification is far less complex than that needed
by the deliberative system. This is exactly what we would expect since our design
is biologically driven. While the machinery associated with reification is complex,
the basic data upon which it works is straight forward. Not necessarily small, but
simpler in structure. Referring back to Table 7.1, we see that the size of the data
ranges between 2 and 7 kilobyte for each thing that can be recognized, where the
entire ontology is loaded from a text file that is only 10K.

11.3.3 Perception/Action Knowledge

The final class of knowledge is the low level information in the Perception/Action
system. This primarily consists of implicit memory, and specifically procedural
memory. This is the knowledge the robot used to know how to turn, to move, to use
its sensors, etc. We have spent very little time on these components since they are
very specific to the precise implementation of the robotic chassis. However, this type
of knowledge is the foundation upon which the performance of the robot is built. If
the representations of sensor data and internal and external state are not consistent
with the corresponding representations used during reification, the coupling between
the Perception/Action system and the Reification Engine will break down,
and the robot will be unable to function in the world.
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11.4 The process

Now that we have discussed the knowledge that Basil needs for this simple task,
we can (finally) begin following the process. We will begin at the bottom of the
cognitive continuum, since Basil is a robot, and robots are grounded in the physical
world. We will follow the upward chain in Figure 11.1 until we reach the semantic
level, then follow (in greater detail) the downward path to see how the pieces fit
together.

11.4.1 Perception/Action

Basil begins by sensing the world. Like a biological entity, the process of sensing the
environment is continuous, and unceasing. The sonars ping, the returns are detected,
and the Perception/Action system builds a sonar image. This image, along with
proprioceptic and enteroceptic data is provided to the Reification Engine
on demand, and (in our example) the data indicate that Basil’s batteries are topped
off, the robot is facing east, and has a velocity of zero. There were no returns from
the sonars, so the image is empty. All is right with the world.

11.4.2 Reification

The data are received, and the Reification Engine compares the results with
the expected state of the world. The Current World State indicates that The Robot is
near the work bench (actual robot position X = 6498, Y=1834, θ = 64), and that there
should be nothing on sonar. The raw data and an symbolic summary are combined
into a record for the Episodic Memory and logged, and the Reification
Engine informs the Execution Monitor that everything is as expected. The
complete Current World State is updated.

11.4.3 Execution

The Execution Monitor examines the Plan that was last sent down from
the deliberative system, and finds that it has nothing to do, so it returns control to
the deliberative system. In the process it provides a semantically tagged response
that indicates that all is according to plan.
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11.4.4 Deliberation

The deliberative system (in this case the ProPLAN Probability–aware planner,
with dynamic goal reprioritization) receives the response from the Execution
Monitor and turns to its goal stack to re-evaluate the goals. Here it detects that a
new request has been added to the goal stack: “Bring tea to the Conference table.”

Bingo, after hundreds of thousands of milliseconds with nothing to do, there is
work to be done!

The goal is parsed into a description of the desired WorldSet:

(TrayLocation, conference_table_area)
(tray_state, unloaded)

This is passed to the Personal Rough Ontology, along with the Current
World State, and the salient differences are added to a list of salient features. The on-
tology uses this information to begin compiling a list of actions that might change
the salient differences between the current state and the goal state. These actions
have necessary enabling conditions, which are added to the salient features. This, in
turn, generates more actions that might be needed, which, in turn, generate more fea-
tures. Using the strength of the transitivity relationships, this process slowly winds
down, until a final set of actions are produced. Using the Goal, the Current World
State, and the list of salient actions and features, the ontology builds a problem
description which is returned to the deliberative system.

The deliberative system now begins exploring the space of reachable states and
presses out the boundaries of the possible outcomes until it finds a sequence of
actions that result in a world that meets the goals state. This plan is stored, and the
search continues until a number of candidate plans have been produced. These are
passed to the MCMC simulator for final ranking and the best plan is selected. The
plan looks something like:

GoWorkBenchToRoomCenter
GoWorkBenchToStairs
GoStairsToKitchen
LoadTeaOnTray
GoKitchenToStairs
GoStairsToCenter
GoCenterToConfArea
UnLoadTrayAtConfArea

Each of these actions has a set of necessary enabling condition and the symbolic
representation of what the world should look like associated with it. The overall
plan has an assessment of the probability of success. The deliberative system deter-
mines that the plan is sufficiently likely to succeed, and emits it to the Execution
Monitor for execution. Here we begin the downward path.
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11.4.5 Execution, Reification and Action

Now that the Execution Monitor has a plan to work with, it begins. The first
action is to go from the workbench to the room center. Keep in mind that the de-
liberative system was working in an abstract world of ideas and concepts, but the
execution must occur in the real world. So the Execution Monitor works
closely with the Reification Engine to translate the rarefied symbolic plan
into more a pragmatic format.

The first step is to confirm that the world is sufficiently close to the neces-
sary starting point to allow execution, the enabling conditions are passed to the
Reification Engine and the expected state of the world is used to gener-
ate a preafference image, which is quickly compared to the actual data. It is close
enough (e.g., no necessary preconditions are violated) so the action can be under-
taken. This first action is to move from the workbench to the center of the room.
This action is devoid of any real details, all the planner cared about was that the
robot was somewhere over by the work bench, it had no knowledge of which way
the robot was facing, or its precise location. It is up to the execution system to deal
with the details. Using procedural memory stored in the Perception/Action system,
the robot determines that to get from its precise location to the room center it must
rotate 64 brads counter-clockwise, set the speed to 9, and travel 2000mm. This mus-
cle memory is invoked and the robot trundles off.

This time everything goes smoothly, there are no unexpected obstacles (the pro-
cess is monitored by the Perception/Action system, and constant updates are re-
quested by the Reification Engine to maintain the current world state. Af-
ter about 3 seconds the robot position is within tolerance of the room center, and the
Execution Monitor is given a success response.

This enables the execution system to get the next step in the plan, confirm the
necessary preconditions, and execute the next step. This tight loop of get the next
step, confirm, and execute is followed without any intervention by the deliberative
system, it is completely devoid of higher thought. This is the same basic process
that living systems go through on a moment by moment basis. When you reach for
a coffee cup, the actions are non-conscious, unless you focus on them. Even more
startling is the experience of driving home after a long day, when you suddenly
realize that you are in your driveway, and you don’t really remember the drive. As
long as things were going the way that they were expected to go, there is very little
need for conscious involvement.

But, what happens if things do not go so well?
Let us imagine that we are well into the plan, the tea tray is loaded, and the robot

is on its way to the conference table. The next step is to travel from the room center
to the conference table areas. The preconditions are met, and the procedural memory
is fired. The robot begins to trundle along, and someone steps in front of it.
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11.4.6 Perception/Action - Reflex

The sonars are constantly firing, and as the person steps in front the sonars detect
the obstacle. The short range returns from the sonars are intercepted directly on the
low level motor controller board. This causes a reflex behavior to fire, and Basil
slows to a halt. Since the person is walking past, the sonars clear and Basil begins
moving again. No intervention was required in this case, however, during then event,
the Reification Engine was querying the state of the world on a continuous
basis, and logging the events to episodic memory. This information was also used
to update the Current World State, so it is available to the higher level systems.

Suppose however, that the person refused to move from in front of the robot.
What would have happened then? Recall that each action has additional information
attached to it, specifically an estimated execution time, and a retry on failure count.
If the interruption was long enough, the Execution Monitor would detect the
failure of the action, due to excessive time. This would cause the monitor to query
the ROF counter, to assess whether it should try again. Assuming the action was
allowed a retry, the Execution Monitor would query the Reification
Engine to see if the enabling conditions were still met, and (if so) it would re-
attempt the action. If (by now) the person had moved out of the way, the action
would be restarted (relying on the procedural memory to adapt the specifics for the
new state of the world), and with luck it would complete successfully. Once again,
there would be no involvement of the deliberative system.

11.4.7 Execution Failure

But what if the person did not move, or something else went wrong? If the ROF
counter runs out, or the person does not move, or any of a thousand other things go
wrong, the Execution Monitor reaches a point where it cannot take the next
action in the plan. Let us assume that it was not a person that stepped in front of the
robot, but that there was a chair that had been pushed into the middle of the room,
and it was blocking the robots path.

Since the precondition for moving from the room center to the conference table
included no obstacle in the way, the Reification Engine would report that
the preconditions were not met. The Execution Monitor would respond by
passing the failure message up to the deliberative system, indicating that it had no
way to proceed.

11.4.8 Back Up to Deliberation

Once again control reaches the deliberative system, The system checks the goals,
and the Current World State, and realizes that the deliver the tea goal is still un-
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satisfied. So, it treats the situation as a brand new problem, and passes the relevant
information down to the ontology. The ontology works through the same process,
but a much simpler problem description is generated (recall that the tea is already
loaded on the robot). This new problem description is passed to the planner, and a
new (shorter) plan is generated. This plan takes into account that the path from the
room center directly to the conference table is blocked, and a new plan is generated:

GoCenterToProgramming2
GoProgramming2ToConfArea
UnLoadTrayAtConfArea

This plan is completely independent of the previous deliberation, no copy of
the old plan was kept, no intermediate results were stored. While this may seem
wasteful on the surface, it has been shown that the computational complexity of
trying to repair a plan is just as great as the complexity of solving a new problem,
and can be greater[137]. So we simply start from scratch.

With the new plan the process continues (without a mishap) and after dodging
moving people, and routing around obstacles, the robot successfully navigates to
the general area of the -conference table. But, the high level plan does not know
precisely where the table is, it only knows that it is over by the windows. How will
this abstract action of GoProgramming2ToConfArea be executed? How will
the robot find the table, and position itself in space?

11.4.9 Procedural Memory and Localization

When the Execution Monitor encounters the action to go to the confer-
ence table area, it uses the preafference service provided by the Reification
Engine to get a sensor-based representation of what the world should look
like. This representation is built from the detailed knowledge maintained in the
Reification Engine. This detailed knowledge includes the last known posi-
tion and orientation of the conference table, not in abstract terms, but in the detailed
coordinate system of the lab. The precise position of the robot (to the accuracy that
is available) is also known. This enables the generation of a preafferent sonar image,
that places the exact view of the table, from the robot’s present position.

In addition, these data can be used by the procedural memory in the Percep-
tion/Action system to execute the movement. Given the known position of the table
and the position of the robot, the procedural memory for movement executes two
steps: point and shoot. The point operation simply determines in what direction and
how far the robot needs to turn to be pointing at the estimated position of the table.
The shoot operation executes the necessary command to move the robot the esti-
mated distance to the table, and then stop. Of course, since the conference table is
about 1.5m in diameter, we do not want to aim at the centroid of the table. Rather
we want to aim at the point that is just short of the closest edge of the table. This
is done by using the preafference image that was generated, since this models the
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sensible surface of the table - the closest point that will create a sonar return. By us-
ing this preafference image, generated by the Reification Engine from data
supplied by the Execution Monitor, the procedural memory aims the robot at
precisely the point we need to achieve. Once this command is executed, the preaffer-
ence images are used to monitor the action. By repeatedly comparing the expected
state of the sensorium with the actual data, the system can both confirm the progress,
and localize the robot.

The localization is a critical step. Robots are notorious for getting lost in their
own backyards1. Biological systems localize by sensing the things in the world,
and adjusting their positions, as does the cybernetic brain in Basil. Any time Basil
moves, the estimate of the robot’s position drifts from the actual position. This is
due to errors in the sensors that are used to track position. In general, the further the
travel, and the more turns, the worse the estimate. So what is a robot to do?

As Basil gets closer to the table, the preafference image is based on Basil’s esti-
mated robot position. The actual sensor data is grounded in the actual robot position.
Encoded in Basil’s procedural memory is a simple idea: the robot is usually wrong.
So, if the two images differ, it is more likely that Basin has a bad position estimate,
than that the table has moved. When the edge of the table gets into sensor range,
the two images are compared, and Basil’s position is updated, on the basis that the
robot’s estimate is wrong. With each new sonar image, the position gets progres-
sively closer to the actual position as reported by the real world data. In this way the
mental model that Basil maintains is kept in correspondence with the real world.

Basil has a target position to arrive next to the table, and the robot uses reification
based localization to arrive at that point. When the final position is reached, the Per-
ception/Action system returns an action succeeded response to the Reification
Engine, which, in turn, responds with a success message to the Execution
Monitor. This is passed up to the deliberative system, which determines form the
Current World State that the goal has, in fact, been satisfied. The deliberative system
now re-evaluates the goals and, perhaps it selects a new goal to pursue, or it simply
waits with near infinite cybernetic patience for the next task, the next problem to
solve.

11.5 A Few Notes About the General Flow

In this chapter we have put all the parts together and walked our way through a
simple example. We based this example on Basil since this robot is a functional
instantiation of the cybernetic brain embodied in a robot. The focus was on the flow
of control and information between the four main components: the deliberative,
execution, reification and perception/action systems that make up the robot. These

1 Well, the availability of cheap GPS receivers has enabled robots to know where they are when
outdoors. However, the installation of external beacons for localization in indoor environments
lags behind, and is significantly more expensive, since both the beacons and the receivers must be
installed and maintained.
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components are tightly intertwined, sharing details, and passing responsibility back
and forth as needed. However, this tight coupling may be the minimum needed to
get the kind of intelligent behavior that we want from robots, but of which we have
few examples.

The general flow is a set of nested loops, and the level of cognition drops as we
descend from the deliberative to the perception/action system. At the same time the
speed at which changes occur, and at which decisions must be made increases as we
get closer to the hardware. The trade off is that the lower level systems are generally
using less complete data to make simpler decisions, and that they depend on the
correct context being maintained by the systems above them.

One of the reasons that this kind of tight coupling is discouraged in software is the
difficulty that it causes when one is trying to test the code. This is exacerbated when
there are non-deterministic aspects to the execution paths, and given the need for
the cybernetic brain to react quickly to a dynamic environment, there are many such
aspects to the software that makes up the cybernetic brain. Even in the deliberative
system, the selection of one possible plan over another might favor one plan on one
run, and another plan on the next. So we have the question “If one time on the tea
delivery task it goes by way of the workbench, and the next time it goes through
the center of the room: is one a failure?” In the next chapter we discuss the issues
surrounding the testing of embodied systems, and present the results of some of the
testing on the reification portion of the system to support our original hypothesis
that the addition of reification would improve the ability of the robot to make sense
out of the world.



Chapter 12
Testing

There are two critical aspects of an autonomous intelligent robot that must be tested:
the robot, and the autonomous intelligent aspect. These two aspects require very
different test strategies, and both aspects are difficult to test. We will address them
separately, focusing primarily on the testing methodology in Sections 12.1 - 12.5,
and focusing primarily on the tests themselves in Section 12.6.

Let us set the stage1. It is late on Sunday and your robot is scheduled for a demo
tomorrow. Your team has been tweaking the code to get a new behavior to work
properly. You call a halt to a process and start a final test of the robot, and it fails.
What do you do now? If you are like most of us, you have a large set of possible error
sources, a hardware component could have failed, the new software components
could have failed, or the new software could be causing a communications error
between the hardware components. If you start on the hardware and it turns out to
be the software, you have wasted valuable time, and vice versa. It looks like it is
going to be a long night. This chapter was inspired by that frustration.

12.1 Testing the Robot, or How Does One Test an Embedded
System?

In this chapter we discuss ways to implement eXtreme Programming (XP) method-
ologies on embedded systems. We will start with a brief discussion of XP, and the
advantages that it brings to software development. Then, we will discuss the unique
challenges posed by embedded/robotic systems and propose some solutions. We
will discuss an XP methodology that we have implemented in the development of
robotic code. Finally we demonstrate the final tests that demonstrate the improve-
ment that adding reification gives to the robot’s performance. These final tests are
only possible because we have tested all of the underlying code. Because of this we

1 The first part of this chapter is an extension of work presented at the IROS 2007 Workshop on
Performance Evaluation and Benchmarking for Intelligent Robots and Systems.
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have confidence that the behaviors that we are seeing are not just an artifact of an
undiscovered bug in the code.

12.2 eXtreme Programming

In the last decade many methodologies have been proposed to improve the quality
and reduce the cost of developing software. Among these tools, eXtreme Program-
ming (XP) is becoming widely accepted as a methodology that supports the devel-
opment of highly reliable software. For an overview see Kent Beck’s work[8]. This
is due, in part, to four specific practices: continuous testing, continuous code review
(pair programming), continuous integration, and pragmatic coding standards. Most
of the practices required by XP are the same whether they are applied to a pure soft-
ware development project, or to an embodied system. However, the introduction of
co-development of hardware, firmware, and software requires significant adjustment
of some traditional XP practices. In specific, the application of continuous integra-
tion, and continuous testing require some re-evaluation in the hardware/firmware
domain. According to the National Institutes of Standards and Technology (NIST),
inadequate testing infrastructures result in tens of billions of dollars in additional
costs, and significant over-runs in development time[142]. As mentioned above, one
of the core practices of XP is continuous integration and testing. XP relies on the
use of automated test tools such as the xUnit family (JUnit for Java, CppUnit for
C++, etc.) of programs. These tools allow the developer to produce detailed unit
tests (tests at the function or method level) which can be automatically run, and the
results evaluated, summarized, and displayed to the developer. It is not uncommon
to have several hundred test cases, covering every method and execution path, run
in a few seconds at the press of a button. This allows the developers to make sig-
nificant changes to the code (re-factoring) while remaining confident that no unan-
ticipated side effects have broken the code base. This capability also supports the
nearly continuous integration of the new code into the build process. While these
techniques have been well developed for traditional software projects, their integra-
tion into embodied systems lags behind[187, 114, 84, 52, 18]. In the current model
of hardware/software co-development, this has frequently resulted in software be-
ing developed well in advance of the hardware that it is designed to control. As
a result, the high-level software is often tested in isolation, and integration testing
becomes a significant factor in total development cost and time to deployment. It
would be extremely powerful to have the benefits of continuous testing when deal-
ing with hardware and firmware, but in practice, the notion of unit testing needs to
be extended to handle the new domains.
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12.3 Methodology for Testing Embodied Systems

In this section we discuss a methodology that we have developed for testing em-
bedded systems. In the interests of clarity, the following definitions are used in this
Chapter:

• Software is the high level code, for example the planning and reification system.
• Firmware is the lower level code that controls the hardware.
• The interface allows the passing of information and control between firmware

and software modules.
• The system is the combination of the software, the firmware, the interfaces, and

the hardware.
• A scenario is a preplanned sequence of inputs, for which the preferred output is

known.
• A simulation is an unplanned or random sequence of inputs for which the pre-

ferred output is only known in a probabilistic way.

In traditional software deployment, every effort is made to abstract away from
the specific hardware underlying the virtual machine. This is possible because, for
the most part, the hardware is completely substitutable. One can look at the con-
tinual wars between Apple, Windows, and Linux as an indirect result of a lack of
substitutability. In embodied systems, the hardware is an integral part of the system,
and the substitutability assumption can not be made. This lack of a (more or less)
uniform platform causes the developers to be responsible for the production and
testing of not only high level code but also lower level interface and firmware con-
trol code as shown in Figure 12.1. The fact that the developers may be responsible
all of these components leads to a complex process of co-development. The high
level software must interact with the firmware, which must be written to interact
with the high level software. This tight coupling significantly increases the chances
of software failure. The potential of software failure can be mitigated by automated
testing, but this requires testing both the high level software and the firmware[1].
We have developed a different way of thinking about testing in embodied systems.

Fig. 12.1 Three level struc-
ture of an embodied system.
Frequently, the developers
are responsible for coding
and testing the firmware, in
addition to the high level
software.

 

Hardware 
Tested by bench-based tests 

Firmware 
Tested in situ 

Software 
Tested using automated regression 

tests, as in xUnit testing frameworks 
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The first improvement is the splitting of testing into static testing and dynamic
testing. For software only systems, this would be the difference between regression
testing (static) and full simulation testing (dynamic). The second improvement is a
split between the testing of hardware, firmware, software, interfaces, and system as
a whole. This framework is shown in the table below.

Table 12.1 Breakout of testing levels and classes

Level Static tests Dynamic Tests

Hardware A. Bench Testing -
Firmware B. Static firmware testing (using

mocked components)
E. Scenario Testing of the firmware
(using mocked components)

Software C. Regression Testing F. Scenario or Simulation Testing
Interface D. Static Interface testing G. Scenario Interface Testing
System - H. Full System testing

The first test that happens is bench testing, when the individual components are
tested for input and output parameters, often on the robotic chassis. Once the behav-
ior of the component is known, then the component can be “mocked up” in software
(see Rainsberger[14] for more details on mock objects). This allows the programmer
to create and run regression tests on that component in a software environment such
as jUnit. The next set of static testing will be done on the higher level software (but
as a good XP programmer, you already have a set of regression tests on your high
level software). Once the firmware and software have been tested, then the inter-
faces between them can be tested. So far so good, but thus far only the behavior in a
static environment has been tested. Now, we need to test the system in the presence
of chaos, dropped messages, moving targets, moving obstacles, and other hazards.
Dynamic testing comes in four different flavors. We assume that the high level plan-
ning software has been run through simulation testing. However, in order to make
the firmware and interface testing fit the XP framework, the tests take the form of
pre-scripted scenarios, for which the appropriate behavior is known. This allows the
programmer to have the same confidence in the system’s dynamic behavior that the
regression tests give in the static behavior. It also would be a good idea to write
scenario tests for the high level planner in addition to the probabilistic simulation
tests. Last, but not least, on to system tests, where the robot is taken out and allowed
perform in the real world. This is a much less frustrating experience, since at this
point you have some confidence that the software is working correctly.

So, back to the example in the introduction, what went wrong? The bench test
was probably done correctly as was a static test of the high level software. The
system failed at the system test. Without the static and dynamic test of the firmware
and interface it will take a significant amount of time to discover the mismatch
between the output of a GPS board and the input of the high level software. By
partitioning the tests, this error can be detected before the expensive field testing.
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12.3.1 Benefits of Partitioning the Tests

So, what lift do we get from this partitioning? Ever since the introduction of func-
tional decomposition, it has been clear that neatly decomposed software is easier
to develop. One key reason for this is that software that has been decomposed into
(relatively) independent modules has lower levels of coupling[118]. In this chapter
we are presenting a methodology for decomposing tests into roughly independent
classes, and addressing cross product terms explicitly. This is driven by the need to
effectively cover a large, complex space of test cases, in a domain that is not easy to
exhaustively cover. From the test decomposition shown in Table 1, we can extract six
classes of ‘software only’ tests. High level software has been extensively researched
with respect to testing, and it is not uncommon to have two to three test cases for
every function or method in the code. While the automated testing of firmware is
not as well researched, it is expected that approximately the same test-to-function
ratio will hold. Without any type of decomposition, the number of tests needed to
cover the combination of software, firmware, and interfaces would be:

TestCount = Test f ×Tests (12.1)

where: Test f is the number of firmware tests, and
Tests is the number of high-level software tests.

This results from the need to test each function with each combination of tests
for the other classes. This is significant since it in not uncommon to encounter test
libraries with thousands of individual automated tests. This can easily result in mil-
lions of test cases to assure coverage. It is, of course, possible to reduce the rather
large number of test cases by effectively partitioning the space. If partitioned per-
fectly, the total number of test cases reduces to the sum of the test cases in each class,
a significant reduction. It is rarely possible to partition the test space perfectly, since
there are interactions between the various software components. As a result, we test
the firmware and hardware classes as though they were partitioned perfectly, and
then test the interface between the layers as a separate class of tests. The key con-
dition for the interface testing is the ability to rely on the successful testing of the
components on either side of the interface. In effect, given that the firmware is cor-
rect, and that the software is correct, it becomes possible to test the interface as an
independent class of tests. Given the validity of this assumption, the total number of
tests becomes:

TestCount = Test f +Testi +Tests (12.2)

where: Test f is the number of firmware tests,
Testi is the number of interface tests, and
Tests is the number of high-level software tests.



162 12 Testing

For the case where we have approximately 700 firmware tests, 1100 high-level
software tests, and 200 interface tests; we go from 770,000 unpartitioned tests to
2000 partitioned tests.

12.4 General Testing Guidelines

As mentioned above, the structural decomposition is into three layers: high-level
software, firmware, and hardware. Each of these has characteristics that affect the
way in which testing is done. In order to reduce the costs and delays associated with
systems integration, we have developed several guidelines for the design of auto-
mated tests for the firmware layers in embodied systems. This code is written in a
requirements driven development environment. Practitioners of test driven develop-
ment will notice that the following code guidelines will violate some of their rules.
We have found that for embedded systems the constraints imposed by the combina-
tion of the requirements and the physical environment are limiting enough that the
addition of test driven development may make the coding task impossible. So, the
following are our “in house” testing rules.

• Some things cannot be tested
• Do NOT change the code to make testing easier
• Use public accessors for setting and testing variables
• Test physical constants
• Mock hardware components and interfaces. Note: this often requires duplicating

hardware performance in testable software modules
• The static tests are unit tests, test unit level functions.

12.4.1 General Partitioning Guidelines

Another possible source of confusion is the line between static and dynamic testing,
so here are our rules for that partitioning. Static unit tests are traditional automated
tests, in which the required behavior of a method or function is verified. These tests
typically involve setting up a test harness for a method, invoking the methods with
a specific input set, and confirming that the return data are the expected value(s).
These tests are the staple of all unit testing frameworks. Dynamic unit tests are
used to test the performance of a module under changing conditions. These tests are
critical for embodied systems, such as autonomous robots, since they will almost
always be deployed into dynamic and uncertain domains. Dynamic testing is done
using a scenario generator. This software is built out of traditional unit testing com-
ponents, which have been extended to allow the specification of a sequence of tests,
which correspond to a requirement of dynamic behavior. For example, consider an
autonomous ground vehicle that is expected to detect a dead-end, and avoid getting
‘trapped.’ This required behavior can best be tested by creating a scenario which
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consists of mocking the sensory data that would correspond to the robot entering
the dead-end and detecting the blockage. This scenario would have an expected be-
havior that corresponds to reversing course, extricating the robot from the dead-end,
and proceeding in a manner that would avoid the dead-end.

12.5 Testing in the lab

As a case study, we will use an autonomous ground vehicle that is currently under
development. In Figure 12.2, the autonomous ground vehicle (Kitty) is shown un-
dergoing unconstrained environment testing at a recent robotics exposition. (Please
note that the robot was moving toward the people when the photo was taken) While
there is an emergency stop control system, during these tests the E-Stop was unnec-
essary.

12.5.1 Hardware

Kitty has an architecture that is biologically inspired. Based on research into neuro-
physiology, the core structure uses a model based on the brain stem and functional
units of simple terrestrial vertebrate nervous system. In Figure 12.3, the UML de-

Fig. 12.2 The autonomous
ground vehicle ’Kitty’ during
unconstrained field tests.
Note: Kitty is driving toward
the people at about 4 m/s, and
has just adjusted the steering
for a hard right turn. Kitty
will clear the woman (and her
child) with about 15 cm to
spare.
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ployment diagram for the brain stem of the vehicle is shown. Each of the major
nodes (the cubes in the figure) is an independent processor module. These are real-
time modules which are programmed in a subset of the Java Programming language,
and which emulate the parallel processing capability of living systems. For the en-
tire system for to perform reliably, each of these modules and their components must
function correctly and the interactions between each module must perform correctly.
The XP methodology relies on continuous testing to assure the developers that any
new code that has been integrated is performing correctly, and to assure that the
most recent changes have not caused any previous software to fail.

12.5.2 Static Tests

The static tests focus on the behavior of the structure of the system. It looks at each
component in isolation, and determines that these components do what they are

Fig. 12.3 The UML de-
ployment diagram for an
autonomous ground vehicle.
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expected to do. Usually, this is done by providing specific inputs to the component,
and confirming that then output matches the expected result. As an example, if one
were testing a square root function, the tests would include a few known squares, a
test of zero, and a test of a negative number.

12.5.2.1 Hardware Bench tests

The first stage of testing is making sure that the hardware is doing what it is
supposed to be doing. Without this foundation, it is extremely difficult to debug
software failures. In traditional software-only development, this step is typically
skipped, since the underlying hardware is assumed to be tested and functional. If the
development is being embodied into a commercial, off-the-shelf robotic platform,
this step is often provided by the platform manufacturer. However, if the embod-
ied system is a custom, or in-house developed, platform some level of assurance
must be provided that the hardware is functioning correctly. The second benefit of
this bench testing is that it provides the ‘gold-standard’ data needed to successfully
build software mock objects to use in the firmware testing.

12.5.2.2 Static Firmware Tests

The firmware acts as an abstraction layer between the hardware and the high-level
software. In the past, firmware was frequently developed in hardware specific appli-
cation languages, which generated obstacles to automated testing. Recently, there
has been growing acceptance of higher level languages as the primary development
tools for embedded micro-controllers, and low-level hardware interfaces. The use
of a high-level language such as Java or C++ allows significant flexibility in testing
firmware. For example, Kitty’s brain stem is running on five independent Parallax
Javelin[39] chips, microcontrollers which are programmed in a subset of the Java
programming language. These chips provide Java wrappers for hardware compo-
nents such as Universal Asynchronous Receiver/Transmitters (UARTs), timers, and
motor control systems. When the embedded code is running on the actual chip, these
hardware components are instantiated, and connected to the Java code. During static
testing, it is necessary to test on mocked components, enabling the embedded code
to compile and execute. By building the mock components, we have the ability to
verify the function of the firmware, without having to run the actual hardware[80].
This means that automated static test libraries can be developed and archived. They
can then provide full regression tests at the firmware level. As an example we have
mocked the UART wrapper used by the Javelin chip. A UART is used to provide
serial communications between independent devices. The firmware can instantiate
a UART and assign it to any input/output (I/O) pin on the chip. The mocked UART
has the ability to accept data from the firmware and store it into a transmission
buffer, which is visible to the verification tests. This allows the static test to auto-
matically verify that the order in which the data are transmitted is correct, and that
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each datum has the correct value. If, during development, a change is made that
results in a software error affecting this information packet (perhaps the order of
data is altered, or a data item is skipped) the automated tests will detect and flag
the error. It is important to note that the mocked hardware components should only
have enough fidelity to enable testing the firmware. The focus is not on testing the
hardware itself, that step was completed by the bench testing in the previous step.
The question under consideration is: “If the hardware is working correctly, will the
current firmware code meet the requirements?”

12.5.2.3 Static Software Tests

The static software tests are traditional unit tests. Many of the resources previously
cited provide coverage of the process of testing traditional software. However, it is
important to note that by previously testing the firmware, the testing of the high-
level software can be separated from the testing of the underlying firmware. As
mentioned above, this partitioning significantly reduces both the number of tests
needed to cover the high-level software, and reduces the complexity of those tests.

12.5.2.4 Static Interface Tests

The final leg of the static testing is to test the interfaces between the different com-
ponents. It is entirely possible for two software components to each pass all their
individual tests, yet fail to function as a complete system. In embodied systems this
can become a major problem, since there are typically numerous independent mi-
crocontrollers, processors, and discrete hardware components that must all interact
to meet the system’s requirements. As an example, consider the navigation and com-
munications modules as shown in Figure 12.3. The individual tests on the firmware
code running on each of these modules shows that the navigation board is correctly
reading and packaging the GPS and compass data, and loading that data into the
UART for transmission. In the same manner, the static tests on the communications
board show that it is correctly receiving the data packet, and unpacking it into lo-
cal storage for dissemination. However, even though all the tests are passing, the
system fails in the field tests. This comes about because the navigation board and
the communications board (developed by different teams) have an incompatibility.
This was the cause of the failure of the Mars Climate Orbiter[136]. The use of au-
tomated interface testing can detect and flag these types of errors. In the case of
the interface between the communication board and the navigation board, the tests
would instantiate a copy of the navigation firmware, and load known values, mock
the transmission of the data to the communications board, and then verify that the
correct data is stored on the communications board. This could be caught during the
test writing process as a developer writes:

AssertEquals(COMM.HeightInFeet(),NAV.HeightInMeters());
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In addition, during dynamic testing, the behavioral requirements would detect
and flag the error.

12.5.3 Dynamic tests

The static tests on the firmware focused on the fixed behavior of the methods and
functions. The dynamic tests address issues that occur during continued operations.
These tests include verifying correct behavior in cases such as buffer over-runs,
loss of communication, updating rapidly changing data, and run-time performance.
These types of tests require extending the model of unit tests. In keeping with the
notion of building firm foundations, dynamic tests of the firmware are the logical
starting point.

12.5.3.1 Dynamic Firmware Tests

In the static testing of the firmware, it was necessary to create mock objects that cor-
responded to the structure of the hardware components that the firmware utilized.
These objects must be extended to provide some of the dynamic behavior that the
hardware objects display. As an example, in the case of the UART provided by the
Javelin chip, there is a fixed size transmit/receive buffer. During static testing it was
sufficient to mock the capacity of the buffer, however to support testing of buffer
over-run behavior, it is necessary to mock a certain amount of the run-time behav-
ior. The description of this run-time behavior may be described in the technical
documentation of the hardware, or it may be necessary to discover the behavior by
running additional bench tests. However, not knowing how the hardware performs
under dynamic load means that the developers have a large class of errors that will
only occur at run-time. A case in point was the behavior of the Pathfinder Mars
Rover, which underwent system level resets (unfortunately, on Mars[59]) when a
hardware priority inversion fault occurred. The dynamic firmware tests for the nav-
igation board include building a scenario which will continuously generate and ex-
port compass heading data, to confirm that the firmware does not get overwhelmed.
Additional tests include updating the mocked data registers on the GPS module
during the read by the firmware to verify that the data are consistent. In addition,
general performance tests are run on the firmware loops, to verify that requirements
of update rates are being met.

12.5.3.2 Dynamic Software Tests

The dynamic software tests are a natural extension of the firmware tests. Since
the hardware has been mocked up to provide realistic dynamic behavior, and the
firmware has been tested to verify that its dynamic behavior meets the requirements
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of the system, it is possible to develop similar tests of the dynamic behavior of
the high-level software. In many embodied systems there are additional require-
ments for the high level software. These requirements may include adaptive behav-
iors, learning, and autonomous behaviors. These requirements are aspects of the
high-level software that require dynamic testing of a slightly different nature than
the lower level firmware. For example, if the system is supposed to function au-
tonomously, it may not do the same thing, in the same way, time after time. This may
require dynamic tests which setup the same situation time after time, and record the
behavior of the embodied system. No single test can necessarily answer the ques-
tion ”Is the system performing correctly?” Rather, it may require statistical analysis
of the aggregated result before the automated test can be verified. If the system is
supposed to learn from its actions in the environment, then we compound this ver-
ification problem. It is necessary to run a series of aggregate tests to establish the
current behavior, allow the system to experience failures and learn from them, and
then rerun the aggregate test to establish that the learning has occurred. Now the test
harnesses must provide a complex and dynamic set of test cases, and measure the
change in aggregate response distribution. While it is certain that designing, devel-
oping, and, ironically, testing these test scenarios is a major undertaking; it is clear
that attempting to do this in the field is far more time consuming, and physically
challenging. (Consider setting up a physical test to introduce reliable, repeatable
noise into a sonar sensor, versus pumping ’noise’ into the software mock of the
sonar sensor. See the recent report by Tse et. al.[198] for an example in the manu-
facturing domain.)

12.5.3.3 Dynamic Interface Tests

The dynamic interface tests are extensions of the previous tests. They are more
complex since they are testing the interactions between multiple components in the
system. But the same types of tests that were run to verify the dynamic behavior of
the individual components can be extended with the static interface tests to establish
correct dynamic behavior.

12.5.3.4 System Level Testing

Systems level testing is actually composed of two phases. The first is a general sys-
tems test which is run every time the robot turned on. The second is more interactive
formal systems test protocol.

1) The Robot dance (systems self-test): The first phase is the something we call
“the robot dance,” which is run every time that the system is started. In the “robot
dance” the hardware is self-tested by the machine and the success or failure of that
hardware is announced in a way that the human can understand. So Kitty, on startup,
uses a voice output to say her name and software revision numbers, turns the steer-
ing to the left and right, activates the sonar sensors and announces the results, runs
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backwards and forwards, activates the compass and announces the result, and acti-
vates the GPS and announces the results. The steering and drive train tests explain
the ”robot dance” label. This sequence becomes a hardware regression test, although
the complexity of the test is limited by the need for a human to observe and inter-
pret the results. As we add new hardware, new tests are added to the dance. This
test perhaps the most tedious of the set, because it happens just as you are ready to
test all the new cool behaviors that have just been added and tested since you had
the robot out last. However, this test is also essential. If you have completed all of
the tests, you have an assurance that any anomalous results you may see in the final
test sequence are the result of unexpected interactions and not testable software or
hardware bugs.

2) Formal Systems tests: Finally, we come to the last tests. At this point, you are
probably saying “Enough already, we have tested this to oblivion, what else could
go wrong?” What we have not yet built is trust. This is an autonomous machine that
we are proposing to send into real environments, we need to learn to trust that it will
behave “well” even in situations for which we have not programmed it explicitly
(See Gunderson and Gunderson[144]). This final testing takes the longest, but is
also the most fun. However, if all of the previous testing has been done, we can
be assured that what we are testing is the intended behaviors and not an artifact of
errors in the software or hardware. That is a way to build trust in the system that you
are about to send out into the real world.

12.6 Formal System Tests - Testing In The Real World

In this section we discuss the final (and most fun) type of testing. This is when we
get to watch the robot actually perform. This is also the most time consuming part
of the testing sequence. The automated tests that we ran in the previous section are
fast. Just how fast, you suddenly realize when you take notes on the robot trundling
around for a few days, and realize that the testing is only half done. But it is also a
very rewarding time, because you actually get to watch the robots move in the real
world (not in simulation). So below you will find the tests that mark the transition
from theory to practice.

12.6.1 Testing Recognition

The first set of tests were to determine that the robot could correctly identify objects
for which it has PerCepts. For this test, we exposed the robot to an object,
and record the object that it identifies. This test is required to determine that the
recognition system is working correctly. It should be noted that was not a test that
can be used to measure the system with reification against either a reactive system
or a deliberative system.
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12.6.1.1 Recognition Testing Protocol

In this test we showed the robot a set of different objects. They were:

• A short wheeled chair
• A wooden chair
• A toy box
• A round table
• A person

The robot was pointed directly at each of the objects for 10 times/object, each
time with the object at a different pose and distance. The response of the robot was
recorded. This is a traditionally difficult test, since it relies only on the identifica-
tion of objects without any context. In a living system, this is equivalent to being
knocked unconscious, and waking up in a totally unfamiliar location. The organism
has nothing to go on but direct sensory information, and that is limited to a single
glimpse of the surroundings.

The robot is activated, and allowed to use its sensors to take three independent
sonar images of what is in front of it. These sensor images are processed by the
pattern recognition portion of the Reification Engine and any PerCepts

Fig. 12.4 These are the 4 common objects that the robot must recognize. They include two types
of chairs (a wheeled desk chair, and a legged wooden chair), a small storage box on wheels, and
a large (1.5m diameter) round table. In addition, the robot must be able to recognize a person (not
shown).
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which match above a 90% threshold are listed as possible candidates. A typical
return might look like:

Bird Brain starting
x = 0, y = 0, h = 0
Creating Episodic Memory
Creating Reification Engine
Scanning [(-200:200,1184:1584,165:165,1384,1215259809853,1000)]

[short wheeled chair::(0,1521,0)@0, short wood chair::(0,1309,0)@0]
Scanning [(-200:200,1184:1584,165:165,1384,1215259810967,1000)]

[short wheeled chair::(0,1521,0)@0, short wood chair::(0,1309,0)@0]
Scanning [(-200:200,1184:1584,165:165,1384,1215259812077,1000)]

[short wheeled chair::(0,1521,0)@0, short wood chair::(0,1309,0)@0]
Shutting down
System terminated

In this example, there was a wheeled chair (See Figure 12.4) approximately 1.5m
in front of the robot. The robot returned two possibilities for the sonar images that
it perceived, either a wheeled chair or a wooden chair. Going through the output in
more detail, the first four lines are reporting on the initialization of the cybernetic
brain. This particular brain model is called “Bird Brain” since it has the deliberative
system removed. The robot takes three sonar snapshots, each of which is reported in
two line couplets. The line that begins with “Scanning” shows the observed obsta-
cles that the Perception/Action system generates. The next line of the couplet
shows the symbolic objects that correspond to these observations, along with their
estimated position in global coordinates, and orientation. In all cases there were two
possibilities.

This is a typical result, since the two chairs are almost impossible to distinguish
except in specific poses. One of the most difficult aspects of context-free recognition
is disambiguating the data. As we discussed earlier, one of the major benefits of
reification coupled with memory is that this disambiguation becomes much easier if
the system can rely on previously generated models of the world. However, in this
sequence of tests, that model is intentionally removed from the robot’s memory.

Given that the robot returns a number of possible symbolic returns, the ques-
tion of how to measure the results becomes more complex than the simple approach
of counting up the right versus wrong answers. If the robot only knows about six
objects, how does one score the result if the robot suggests that a particular ob-
ject might be one of several different types? We use a metric called the Jaccard
index[102], also known as the Jaccard Similarity Index. The value ranges from 1.0 -
indicating perfect agreement, to 0.0, indicating a complete miss. The Jaccard Index
reduces the ‘value’ of the agreement as the wideness of the guess increases. We use
the following equation to calculate the Jaccard Index:

JaccardIndex =
M11

M11 +M10 +M01
(12.3)
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where: M11: count(A and B both have a value of true)
M01: count(A is false and B is true)
M10: count(A is true and B is false)
M00: count(A and B both have a value of false)

subject to M11 +M01 +M10 +M00 = totalsamples

In the examples given above, the Jaccard Index is 0.5, since one possibility was
correct, while the other was not.

12.6.1.2 Recognition Testing Results

In this section we will look at the recognition test results. We will show one example
of the raw testing data, and then present summary data for the rest of the testing.

We ran each test series with gradually increasing distances between the robot
and the object to be recognized. This is due, in part, to the rather myopic nature of
Basil’s sonar imagery. As with any sensor there is a maximum range beyond which
the sensor is ineffective. The technical data sheets for Basil’s sonars give a value
of approximately 3m for the maximum range. As with most sensors, the maximum
effective range is frequently less that the rated value. The maximum effective range
is also a function of the specific objects that are being sensed, some objects provide
much clearer sensor images than others, and we found that the lab furniture was no
exception.

For each of the objects, at each of the ranges, the protocol was the same. The
object was initially placed with its center directly in front of the robot at the test
distance. The robot was asked to report what object was in front of it. It took two to
three snapshots of the scene, and then reported what object, or objects, it could rec-
ognize. The object was then moved slightly. This move included rotating the object
and displacing it a small amount both radially (either closer or further away from
the robot) and either closer to or further from the robots centerline. This process was
repeated nine times, to generate ten data points at the distance. The object was then
repositioned at the next test distance, and the process was repeated. We took read-
ings at three different ranges, separated by 0.5m. A typical run would be at 0.75m,
1.25m, and 1.75m, the maximum effective range of the sonars.

From the data in Table 12.2 it is clear that the individual Jaccard Indices are larger
the more precise the robot’s estimate of the object (provided that it is accurate), and
that the result is penalized if the robot includes additional possibilities in its estimate
of the type of object. The Mean Jaccard Index is calculated as a simple arithmetic
mean of the individual results.

The mean results, displayed by object type and distance are summarized in Table
12.3. Several things are very clear from the results. First, even at short ranges the
ability to recognize objects varies widely, from a low of 0.38 to a high of 0.83. Much
of this confusion comes from the fact that it is very difficult to tell the difference
between the chairs from the back. To sonar, they present a nearly identical image of
a short, nearly vertical surface. This is also true of the storage box, which presents
the same short, vertical surface regardless of its orientation (See Figure 12.5).
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Table 12.2 Recognition of Wheeled Chair At 0.75m. The ‘Y’ indicates that the robot indicatied
the actual object might belong to this class of objects.

Wheel Wood Box Table Person JI

Y Y - - Y 0.33
Y Y - - - 0.50
Y - - - - 1.00
Y - - - - 1.00
Y - - - - 1.00
Y - - - - 1.00
Y Y - - - 0.5
Y - - - - 1.00
Y - - - - 1.00
Y - - - - 1.00

Average Jaccard Index = 0.83

Table 12.3 Mean Jaccard Indices of context-free recognition

Range Wheel Wood Box Table Person

Short 0.83 0.38 0.35 0.67 0.79
Mid 0.35 0.30 0.20 0.15 0.80
Long 0.43 0.42 0.12 -a 0.45

a Due to the size of the table, only two ranges are used

A second clear result is that as the object gets further away from the robot, its
ability to distinguish one object from another decreases. This is common with most
sensors. Consider your own ability to tell one person from another if they are a
few feet away, compared to the case where they are several blocks away. You can

Fig. 12.5 This is the side
view of the three most com-
monly confused objects: the
wooden chair, the storage box,
and the wheeled chair. Notice
that in all cases the surface
presented to the robot is a
short vertical surface. These
three objects generate almost
identical sonar images, mak-
ing them almost impossible to
distinguish.
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probably (depending on your eyesight) tell that it is a person, not a dog, from 500
meters, but identifying the exact person may be problematic. The sonar image that
we are using is quite poor, and has very low resolution, hence Basil, like many
people, is quite myopic.

So here we have Basil, activated in an unknown location, allowed one quick
blink, and asked to identify the object at some location in the field of view. In spite
of these handicaps the overall performance averages a Jaccard Index of 0.45, and
was wrong less than 25% of the time. These data were generated with only the
recognition side of the Reification Engine active. This context-free recog-
nition task is quite common in robotics, and the issue of disambiguation is an active
research area. However, living organisms rarely wake-up with no context for their
environment. In general, they have a mental model of what they expect to see when
they open their eyes, and the reification process takes advantage of this mental model
to both simplify the recognition process, and to increase its reliability. In the next
section we look at the results of using reification in the recognition of objects.

12.6.1.3 Disambiguation

Since it is almost impossible for Basil’s sonar to distinguish between the two types
of chairs, it is perhaps unfair to score his performance on both types of chairs. This is
analogous to asking a visitor to a convention of identical twins to tell the twins apart
after a brief meeting. If we accept this limitation and analyze Basil’s performance
on the basis of four categories Chair, Box, Table, and Person, we get a better idea of
the true accuracy. Replicating the raw data in with a single chair category gives the
results shown in table 12.4.

The impact on identifying the wheeled chair as ‘chair’ is negligible, this is due
to the relatively high rate at which if either chair was identified, both would be
reported. However, when we look at the overall accuracy of the system the grouping
of the chairs into a single chair category, increases the overall Jaccard Index from
the 0.45 reported above to an index of 0.62.

12.6.2 Testing Preafference

The performance of the cybernetic brain in a pure recognition mode is reasonable
given the low resolution sensors. However, as we discussed above, this is like asking
someone to identify objects in a completely unexpected scene, given a single glance.
Biological organisms do not function in this way, rather, they maintain a model of
the state of the world, and they use this model to modulate their perception of the
outside world. The next series of tests looks at the effects of having a full reification
mechanism available to the system.

To further the analogy of waking up in an unfamiliar room in a strange country,
the preafference tests are more like waking up in your own room. You are still only
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Table 12.4 Recognition of Wheeled Chair At 0.75m

Wood Box Table Person JI

Y - - Y 0.50
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00
- - - Y 0.00
Y - - - 1.00
Y Y - - 0.50
- - - - 0.00
Y - - - 1.00
Y - - - 1.00
- - - - 0.50
Y - - - 1.00
Y - - - 1.00
Y - - - 1.00

Average Jaccard Index = 0.83

given a quick glance at the scene, but you know your room. You know what kind
of tables and chairs are there, and you know their approximate location within the
room. Given that one quick glance you could probably tell with high accuracy what
was there, if it had been moved very far, etc. This increase in accuracy is due to your
ability to make use of both aspects of a complete reification system. You simplify the
task of building a symbolic representation of the environment by using preafference
to load your sensory cortices, and then using recognition to fill in the rest. You take
advantage of your mental model to confirm what you expect to see, so that you can
focus your cognitive ability on the parts that are unexpected.

In these tests, the robot is given a mental model of the world. This mental model
includes the PerCepts that correspond to the things it has knowledge about -
these are the same five objects: Person, Wheeled Chair, Wooden Chair, Toy Box,
and Round Table. In addition to these PerCepts, the Mental Model includes the
memory of the last known state of the world. Specifically, it includes information
on the robot’s position and orientation, and the position and orientation of objects in
the room. Figure 12.6 is a photo taken from above the test area. The detailed Current
World State is shown in Table 12.5.

Since the robot has this mental model available to it, the cybernetic brain first
generates a preafference expectation of the view, given what it knows about the
world and its own position and orientation. This preafference is used to confirm that
the world is approximately in the configuration that is expected. For example, if
the robot has the CWS described above, and it knows that it is facing toward the



176 12 Testing

round table (a global heading of 192 Binary radians), it does not expect to see the
person in the field of view of its sensors. Nor does it expect to see the chair or the
storage box. So the Reification Engine performs a presumptive test - does
the sensor image match the table in its expected position and orientation. If this
match is acceptable, no general recognition is performed. The robot sees what it
‘expects’ to see, and it goes on. Only if the preafference image is not confirmed by
the sensor image does the system bringing the recognition system into the process
to attempt to resolve the conflicts.

12.6.2.1 Preafference Testing Protocol

In these test we focus on the ability of the robot to correctly classify objects using a
combination of recognition and preafference.

The test protocol was as follows:

1. Place the objects and the robot into their assigned positions;
2. Load the robot with the Current World State;

Fig. 12.6 This is the setup for the Preafference tests. The objects to be classified are groups around
the robot with about 1m between their centroids (except the table which is at 1.5m). The objects
are at 90 degree separation around the robot. One of the authors is the example of a person. Note
the cable connected to the Robot. This is to enable the capture and analysis of the data generated
by the test, the robot is running all software on its onboard processor.
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Table 12.5 Preafference Test Setup

Object Xa Ya θ b

Robot 10500 2900 varies
Round Table 9000 2900 64
Wooden Chair 10500 3900 128
Person 11500 2900 192
Box 10500 3900 0
Wheeled Chairc 11500 2900 192

a mm from origin in Global Coordinates for the lab.
b in Binary Radians compass coordinates.
c replaced the person for latter tests.

3. Orient the robot toward the first object;
4. Allow the robot to report on its classification two to three times;
5. Change the position of the object slightly in X and Y;
6. Repeat 4 and 5 until 30 observations have been recorded;
7. Physically rotate the robot to the next test position; and
8. Repeat 4 - 7, until all objects have been examined.

As in the previous test, we recorded the results of the classification as the set of
objects that the robot returned as possible candidates. Since the preafference process
is a presumptive test, it only returns at most one result. It either fails to classify
anything and returns null, or it does classify something, and returns that single value.
However, if the preafference test fails, the Reification Engine invokes the
general recognition process, as described in the previous tests. Therefore we record
a more complex result than the earlier tests (see Table 12.6).

Table 12.6 Preafference of Wheeled Chair At 1.0m Note this is a subset of a full run. P indi-
cates that the object was classified by Preafference. R indicates that preafference failed, and the
classification was generated by the Recognition system.

Wheel Wood Box Table Person JI

P - - - - 1.00
- R - - R 0.00
P - - - - 1.00
- - - - - 0.00
R R - - - 0.50

Since these tests are rather extensive, and there is little to be gained by presenting
several pages of tables, we will focus on the summary data from the tests.
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12.6.2.2 Preafference Testing Results

We ran tests on six different objects, the five described above in table 12.6, as well
as pointing the robot at nothing to make sure that it did not return a classification.
Each object was classified 30 times, and over the run we altered the position of the
object 10 times. These changes were restricted to relatively small alterations, since
the preafference expects the object to be in a known location and orientation. In the
summary below, we capture the overall performance of the combined preafference
and recognition classification. Later we discuss the comparison between the two
mechanisms.

Table 12.7 Preafference of all objects at mid range. The range was 1m for all objects except the
table, which was at 1.5m. The results are shown as the Jaccard Index.

Object Combined Preafference Recognition

Wheeled Chair 0.75 0.77 0.18
Wood Chair 0.74 0.81 0.33
Storage Box 0.86 1.00 0.00
Round Table 0.60 0.63 0.33
Person 0.94 0.97 0.00
Nothing 1.00 1.00 1.00

There are a couple of notes about the results presented in Table 12.7. The com-
bined column refers to the overall performance of the overall reification process.
Recall that this means the system first attempted to use the presumptive preaffer-
ence test, and only if that failed to confirm the data was the general recognition
algorithm invoked. The following columns show the individual components of the
process. The preafference system provided the classification approximately 75% of
the time, and the recognition system provided the classification approximately 11%
of the time. The remaining cases neither system provided any classification. Over-
all, the complete reification system has a Jaccard index of 0.78 at the mid range,
compared to the recognition only value of 0.36.

In Figure 12.7 we show the relative improvement provided by complete reifica-
tion over simple pattern recognition alone. These comparison tests were done us-
ing exactly the same PerCepts, so there was no additional structural information
available to the cybernetic brain. The only additional information was that the brain
had a model that included the last position of the objects it knew about. Since it knew
where they were the last time it looked, it was able to generate a preafference image
- the way the world was expected to look. Using this expectation, the robot could
quickly and accurately assess whether the world was generally as it was expected
to be. These results was generated with small perturbations of the actual position of
the objects away from their last known position. In spite of these perturbations, the
preafference image enabled the Reification Engine to increase its ability to
both model the world, and to maintain that model. This clearly shows the benefits
provided by reification in robotic systems.
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12.6.3 Testing Self-Localization

The next test is based on the fact that the robot’s motor and wheel assembly are
prone to slippage. Since the robot estimates its position and heading by measuring
the amount of time that the motors are running, its estimated position suffers form
this slippage. Because of accumulated error, this estimate of pose becomes more
inaccurate over time. One way to correct this is to use preafference and object con-
stancy. As the robot moves through space, it creates an image of the expected pose
of the objects in its view. By comparing the observed position of the object with the
actual position of the object, the robot can correct its pose.

12.6.3.1 Localization Protocol

The testing protocol for the localization tests is simple. The robot is placed at a
known location, in a known orientation. The robot is given a mental model that
includes the position and orientation of an object, roughly in front of the robot. The
robot is given an incorrect estimate of its starting position. Without reification, the
robots estimate of its position would have a fixed error, ranging between 100mm
and 250mm.

Fig. 12.7 This chart compares the ability of the robot to classify objects using simple recognition
versus a complete reification process. The full reification process first attempts to do a presumptive
classification, based on the last known position and orientation of the object. If that fails, the recog-
nition process is invoked. The quality of the classification is shown as the Jaccard Index between
the classification set and the actual state.
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In the reification based tests, the robot maintains the same mental model of its
position, however, if the sensor data from the sonar images indicate that the inter-
nally derived estimate is incorrect, it uses the sensor data to adjust its estimate. This
uses the idea that the things in the world do not (in general) spontaneously move
around, or appear or disappear (object constancy).

For the test, the robot is given the opportunity to take a number of sonar images
and generate a final estimate of its actual position. The error is the difference be-
tween the actual position, and the corrected estimate. The tests were run with three
different distances between the robot and the reference object. Since the ability of
the robot to classify objects varies with distance, the distance should affect the abil-
ity to localize.

12.6.3.2 Localization Results

Each test was run multiple times, and the robot could fail to classify the object, and
therefor be unable to localize or the robot would classify the object and make an
adjustment to its position. In Table 12.8 the raw data from a run are reported.

Table 12.8 Raw localization data for a typical test. The reference object is a toy box, and it is
located 1500mm in front of the robot. This is close to the maximum range at which the robot can
correctly classify the object. The middle column shows the correction applied by the localization,
and the final column shows the error.

Initial Error Correction (mm) Error

0 -51 -51
0 -3 -3
0 -3 -3
0 -26 -26
0 -26 -26
250 251 1
250 264 14
250 238 -12
250 251 1
250 264 14
-250 -251 -1
-250 0a 250
-250 -256 -6
-250 -263 -13
-250 -250 0

a The robot failed to classify the object.
The mean squared error over the run was 24.3mm.

In this test sequence, the reference object was the same small toy box used in
many of the previous tests. It was placed approximately 1500mm in front of the
robot. The RMS error was approximately 24mm, however the average error was a
little over a centimeter (13mm) This is important because during actual operations
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the correction terms are applied sequentially, if one correction factor is over, the
next correction is applied to the new estimated position, so the errors tend to cancel
out.

Looking at the results at different distances we get table 12.9.

Table 12.9 This table shows the results for localization tests using the tox box at 1500mm. The
RMS error and the Mean Error are in mm.

Distance RMS error Std. Dev. Mean Error

1000 15.8 12.8 15.7
1500 28.6 36.1 12.0

With the additional information provided by the Reification Engine the
robot can localize itself to within a few centimeters of its actual position. This is
independent of any inertial sensors, odometry, or other navigational aids. Just as a
biological organism (like a human) knows where they are, not by taking readings
off satellites, but by knowing where things are in the world, and sensing where they
stand relative to those reference objects.

12.7 Summary

The deployment of embodied systems such as robots into ‘real world’ environments
is risky. Once a robot is removed from the tightly controlled environment of a lab-
oratory or a factory floor, the range of situations and events that the system must
handle increases dramatically. The experience of successfully ‘testing’ the robot in
the lab, or in a controlled test environment, only to have it fail (sometimes dramat-
ically) in the field is the norm. This unpleasantness has been experienced by teams
from universities, commercial labs, and national governments. These failures can be
avoided by incorporating a more formal test methodology, which takes advantage of
both the recent advances in testing software, and new development methodologies
such as agile development and XP. We present an extension of the XP methodol-
ogy that has been designed to assist developers in producing reliable, well tested
embodied systems. The methodology is based on three core concepts:

1. Partitioning the space of tests into nearly independent classes;
2. Adding a separate class of tests for the cross product terms that result from the

partitioning; and,
3. Extending the testing methodology to include both (traditional) static tests and

dynamic tests.

These expanded tests make extensive use of the concept of ‘mocking,’ producing
lightweight software components to replace either hardware components or heavy-
weight components that interfere with testing. The result of applying these tech-
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niques enables the developers to test, in software, aspects of embodied systems that
previously were tested in the field. This results in far more tests being run, and
the tests being run far more frequently. This combination results is a much higher
level of confidence in the ability of the embodied system to meet its design require-
ments when it is deployed. In the last section of this chapter, we show the results
of the system level tests. These demonstrate that the robot with the Reification
Engineenabled performs better than the system with the reactive component only
enabled.



Chapter 13
Where do we go from here

Normally this section would be called “Conclusions,” but this is just the first step on
a long road. This is a stopping point, where we can catch our breath, before starting
back to work. In the next section, we will outline the next steps on the road. But
now, to recap the book. At this point in time, one can not buy a general purpose
useful robot. Robots like Rosie, from the Jetsons, or R2D2 and 3CPO, from Star
Wars, are simply not available. This is despite the fact that many intelligent people
have spent many years trying to make this happen. So where is my robot?

13.1 A Stopping Point

In order to answer this, we looked at natural intelligent systems, and formed a hy-
pothesis that there was a gap in the theory. Most researchers were working either
from symbolic reasoning down or from reactive systems up. We hypothesise that
there is a gap in the middle. By examination of the exemplars in natural intelligence,
we concluded that there was a missing piece.

This critical piece translates sensor data into symbols and translates symbols into
a sensor based representation. This bidirectional mapping is what bridges the gab
between the symbolic domain and the sensor domain. The two directions are called
recognition and preafference. This capability appears to be a necessary part of a
cybernetic brain that is embodied in the real world. This led to the task of designing
and building a reification Engine.

Since a key aspect of reification is the mental model of perceived objects, we
drew from current research into how living organisms build mental representations
of what they perceive. These structures are called percepts by cognitive scientists.
We used the lens model from Egon Brunswik’s work to build an analog to the natural
percept, and used these percepts to build a reification engine. But reification by itself
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is not terribly useful, so we build a cybernetic brain to go with it. This brain consists of
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• A perception/action system that can affect and perceive the world;
• A reification mechanism that can translate the sensor data into symbols and trans-

late the symbols into sensor data;
• A deliberative system that can manipulate the symbols;
• An execution monitor that can sequence the actions coming out of the Delibera-

tion module;
• A semantic memory (Personal Rough Ontology) to hold general knowl-

edge about the world;
• An episodic memory for storage of personal experiences;
• Working memory for temporary storage; and,
• Internal state storage - for temporary items like hunger, pain, and fear.

These are shown in Figure13.1. The biologic principle for each of these compo-
nents is described in Chapter 3. The implementation details are described in the rest
of the book.

Then, using the full cybernetic brain, we were able to test to see if reification im-
proved the performance of a robot. In Chapter 12, we were able to show that adding
preafference to recognition significantly improved the ability of the robot to seman-
tically tag normal objects in the real world (or at least in our lab). This semantic
tagging allow the robot to use its deliberative system to reason about objects in the
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Fig. 13.1 The cybernetic brain, as currently built
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perceptible world. Reification also allows the robot to know where it is in relation
to the objects that it can identify. This in turn allows it to localize itself, without
specific fiducial marks or other aids.

13.2 Next Steps

13.2.1 Adding Learning to the Model

One of the obvious deficits of this model, is that the robot can not learn. To start with
the simplest type of learning, it must learn to construct its own percepts. For this
book, we have constructed all of the percepts from the sonar data provided by the
robot. Since the percepts are data structures, this is a task that the robot can do much
more effectively that we can 1. The robot also must be able to learn the appropriate
weights for the lens models. The theory of judgment analysis suggests methods by
which the robot can learn these weights by experimentation. It will be interesting to
see what type of models the robot develops with less human intervention.

One form of learning that also needs to be created is the building of new seman-
tic memory (our Personal Rough Ontology) from episodic memory. As we
mentioned previously, it is clear that in living system, there is a way to create new
semantic memory from episodic memory. In the current robots, we have instantiated
episodic memory and semantic memory. But, the Personal Rough Ontology
used in the current cybernetic brain was created by humans. This means that con-
nection between these two types of memory still needs to be created, if the robot is
to build its own ontology. Another related form of learning that still needs to be cre-
ated is the formation of the emotional tags in the episodic memory. If the previously
mentioned episodic to semantic link has been created, then once the emotional tags
are created, they can be moved from the episodic memory into semantic memory.

13.2.2 Adding Additional Data Sources

An advantage of the model is that it allows for the merging of different types of
data. Since the current robot is only using sonar data, it is not taking advantage of
the strength of the lens model. However, given the difficulty of developing even the
simple sonar models, this data fusion will need to wait until the robot is capable of
building its own percepts. One of the next steps will be merging visual and infrared
information into the existing percepts. This will allow for more flexibility in the
ability of the robots to perform useful tasks.

1 Robots don’t get bored, don’t get frustrated, and they rarely make transposition errors
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13.2.3 Porting the Brain into New Bodies

The astute reader will have noticed that we reference robots other than the two de-
scribed in Chapter 5. We have some outdoor robots, that need the cybernetic brains
to perform their intended tasks. One of these tasks will be security patrols. If a robot
can semantically tag its environment, then it can learn what is supposed to be in that
environment. This, in turn, means that it can call for help if it identifies something
that is not supposed to be there, a backpack or bag for example. Another task that
semantic tagging makes possible is mapping. This will depend both on the ability
of the robot to semantically tag objects, but also on its ability to localize itself with
respect to those objects. Closely related to the two previous tasks is the task of mon-
itoring an environmental feature. If the robot can localize itself, then it could be sent
out with monitoring equipment, such as hazardous gas or radioactivity monitors.
This would allow the robot to free up a human in an emergency response situation
(and the robot does not need a ‘moon suit’.

All of these tasks depend on the ability of the robots to learn their own percepts.
So, the next step will be teaching robots to learn. After that, who knows what comes
next.
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Many of the definitions provided here are based on those provided by WikiPedia.

Affordances Affordances are the qualities of an object, or an environment, that
allow an individual to perform an action with that object or in that environment.

Attention To quote William James, “Everyone knows what attention is. It is the
taking possession by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought. Focalization, concen-
tration, of consciousness are of its essence. It implies withdrawal from some things
in order to deal effectively with others, and is a condition which has a real opposite
in the confused, dazed, scatterbrained state which in French is called distraction,
and Zerstreutheit in German[104].”

Cladistic analysis The starting point of cladistic analysis is a group of species and
molecular, morphological, or other data characterizing those species. The end result
is a tree-like relationship diagram called a cladogram. The cladogram graphically
represents a hypothetical evolutionary process. Cladograms are subject to revision
as additional data become available.

Deliberative System A system that models the world in a symbolic form, and
can predict the future state that will result from the application of intentional ac-
tions. These predicted future states can be used to choose between different possible
courses of actions in an attempt to achieve system goals.

Distal Located far from a point of reference, such as an origin, a point of attach-
ment, or the point of perception. Contrast with Proximal.

Engram Engrams are a hypothetical means by which memory traces are stored as
biophysical or biochemical change in the brain (and other neural tissue) in response
to external stimuli. They are also sometimes thought of as a neural network or frag-
ment of memory. The existence of engrams is posited by some scientific theories to
explain the persistence of memory and how memories are stored in the brain. The
existence of neurologically defined engrams is not significantly disputed, though
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its exact mechanism and location has been a persistent focus of research for many
decades.

Enteroception The sensitivity to stimuli originating inside of the body, such as
pain, hunger, etc. Technically enteroception is only the sensing of the internal state
of hollow organs, but we include most of the sensations corresponding to the body
state of the robot. For a robot, this would include battery charge state, the power
applied to drive systems and effectors, damage sensors, etc.

Feature A characteristic of the domain, represented as an enumerated list of al-
lowed values or ranges. In addition to the enumerated values, a Feature can be as-
signed an unspecified state.

Genotype The genotype of an organism is the specific genetic code of that organ-
ism.

Heuristic A heuristic is a trial-and-error method of problem solving often used
when an algorithmic approach is impractical. A heuristic does not guarantee an
optimal solution.

Markov Chain Monte Carlo simulation A technique for evaluating stochastic
processes. It generates multiple simulations, each performing independent stochas-
tic evaluation of the random variables in the process. These simulation runs are
aggregated, and overall statistical analysis is performed to assess the behavior of the
stochastic process.

Ontology A structural representation of terms and symbols which encodes the se-
mantic relationships between the symbols. This allows a deliberative system to rea-
son about the symbols. From Wikipedia: In both computer science and information
science, an ontology is a data model that represents a set of concepts within a do-
main and the relationships between those concepts. It is used to reason about the
objects within that domain. An ideal ontology is accurate, complete, and consistent,
contrast this with the rough ontology.

Percept The mental image formed from the stimulation of sensory systems.

Phenotype The phenotype of an organism is the physical manifestation of that
organism. The phenotype is the result of interactions between the genotype of the
organism and the environment in which that organism lives.

Preafference The mapping of the expectation derived from the symbolic repre-
sentations onto the expected sensory results. It is one of the two components of
reification.

Probability Of Occurrence (POC) The likelihood associated with a forecast state
of the world.

Proprioception The sense of relative positions of neighboring parts of the body.
In the case of a robot it is derived from the position and orientation sensors at the
joints and the effectors.
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Proximal Nearer to a point of reference such as an origin, a point of attachment, or
the midline of the body: the proximal end of a bone. Contrast with Distal.

Pulse width Modulation A power control technique used to control the speed of
direct current motors by applying short (millisecond) bursts of full voltage separated
by periods of no voltage. The ratio of time spend at full power to the total time of
an ’ON/OFF’ cycle is called the duty cycle.

Recognition The mapping of sensory data onto symbolic representations. It is one
of the two components of reification.

Reification The bidirectional mapping of sensory data onto symbolic representa-
tions (recognition), and the mapping of the expectation derived from the symbolic
representations onto the expected sensory results (preafference).

Rough Ontology An ontology that is lacking one of the criteria of an ideal on-
tology. A rough ontology may be inaccurate, incomplete, or internally inconsistent.
The semantic memory of all living systems suffer from one, or more, of these fail-
ings.

Stereotypy The expression of is a repetitive or ritualistic movement, such as feed-
ing behavior in amphibians, or (in the case of humans) a repetitive or ritualistic
movement, posture, or utterance, found in patients with mental retardation, autism
spectrum disorders, tardive dyskinesia and stereotypic movement disorder.

Unspecified In the representation schema of the deliberative system, unspecified
applies to any feature for which the current value is not drawn from the enu-
merated range of legal values. It can have three related semantics either unknown
(DONTKNOW), unimportant (DONTCARE), or unchanged (DONTCHANGE).

WorldSet A WorldSet is a collection of one or more WorldStates. These can be
contiguous WorldStates, defined as having one or more features in the unspecified
state, or can be a collection of noncontiguous WorldStates defined by enumerating
a disjunction of WorldSets.

WorldState The collection of Feature — Value pairs that are salient to the current
deliberation. The WorldState is a unique configuration of the Features that describe
the domain.
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