

IBM Certification Study Guide AIX Performance and System Tuning

ibm.com/redbooks

Redbooks

International Technical Support Organization

IBM Certification Study Guide AIX Performance and System Tuning

December 2000

ke	Λt	

Before using this information and the product it supports, be sure to read the general information in Appendix D, "Special notices" on page 263.

First Edition (December 2000)

This edition applies to AIX Version 4.3 (5765-C34) and subsequent releases running on an RS/6000 or pSeries server.

This document was updated on July 16, 2001.

Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JN9B Building 003 Internal Zip 2834 11400 Burnet Road Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.

Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figuresi
Tablesx
PrefacexiiThe team that wrote this redbookxivComments welcomexv
Chapter 1. Certification overview 1.1 IBM Certified Advanced Technical Expert - RS/6000 AIX 1.1.1 Required prerequisite 1.1.2 Recommended prerequisite 1.1.3 Registration for the certification exam 1.1.4 Core requirement (select three of the following tests) 1.2 Certification education courses 1.3 Education on CD-ROM: IBM AIX Essentials 1.7
Chapter 2. Performance tuning - getting started192.1 Introduction to concepts192.2 CPU performance overview272.3 Memory performance overview272.4 Disk I/O performance overview382.5 Network performance overview422.6 Summary482.7 Quiz462.7.1 Answers46
Chapter 3. CPU and memory performance monitoring tools473.1 The sar command473.1.1 Examples of using the sar command473.1.2 The sar command summary573.1.3 The sadc command593.1.4 The sa1 and sa2 commands59
3.2 The vmstat command
3.4 The tprof command

© Copyright IBM Corp. 2000

3.5.1 The symon global report	80 83
3.5.5 The symon detailed segment report	90 92
3.5.8 The symon command flags	
3.6 The topas command	
3.7 The emstat command	
3.8 Quiz	
3.8.1 Answers	
5.9 Exercises	. 100
Chapter 4. Disk I/O performance monitoring tools	. 107
4.1 Overview	. 107
4.2 The iostat command	. 108
4.2.1 Historical disk I/O	. 110
4.2.2 TTY and CPU utilization report	. 111
4.2.3 The iostat command on SMP systems	. 113
4.2.4 Disk utilization report	. 113
4.3 The lockstat command	. 115
4.4 LVM performance analysis using Islv	. 118
4.4.1 Logical volume attributes	. 118
4.4.2 Logical volume fragmentation	. 122
4.4.3 Logical volume allocation	. 123
4.4.4 Highest LVM performance	. 125
4.5 LVM and file system monitoring	. 125
4.5.1 The filemon command	. 125
4.5.2 Report analysis	. 127
4.5.3 Typical AIX system behavior	. 133
4.6 File system performance	. 134
4.6.1 AIX file system organization	. 134
4.6.2 The fileplace command	. 135
4.6.3 File system de-fragmentation	. 138
4.7 General recommendations on I/O performance	. 138
4.8 Overhead of using performance tools	
4.9 Command summary	. 141
4.9.1 The filemon command	. 141
4.9.2 The fileplace command	. 142
4.9.3 The Islv command	. 142
4.10 Quiz	. 143
4.10.1 Answers	. 147

4.11 Exercises	. 147
Chapter 5. Network performance tools	. 149
5.1 Overview	
5.2 Adapter transmit and receive queue tuning	. 151
5.3 Protocols tuning	
5.4 Network performance monitoring tools	. 155
5.4.1 The vmstat command	. 155
5.4.2 The ping command	. 156
5.4.3 The traceroute command	. 156
5.4.4 The netstat command	. 156
5.4.5 The netpmon command	. 159
5.4.6 The tcpdump and iptrace commands	
5.5 Network performance management tools	
5.6 Name resolution	
5.7 NFS performance tuning	
5.7.1 NFS server-side performance	
5.7.2 NFS client-side performance	
5.7.3 Mount options	
5.8 Command summary	
5.8.1 The netstat command	
5.8.2 The topdump command	
5.8.3 The iptrace command	
·	
5.8.4 The ipreport command	
5.9 Quiz	
5.9.1 Answers	
5.10 Exercises	. 1/4
Chapter 6. Performance management tools	. 177
6.1 The AIX scheduler	
6.1.1 Priority calculation on AIX versions prior to 4.3.2	
6.1.2 Priority calculation on AIX Version 4.3.2 and later	
6.2 Multiple run queues with load balancing in AIX Version 4.3.3	
6.2.1 Initial load balancing	
6.2.2 Idle load balancing	
6.2.3 Frequent periodic load balancing	
, ,	
6.2.4 Infrequent periodic load balancing	
6.3 Scheduler performance management	
6.3.1 The schedtune command	
6.3.2 The nice and renice commands	
6.4 The bindprocessor command	
6.5 The vmtune command	
6.6 Workload Manager	. 198

6.7 Quiz 1 6.7.1 Answers 2 6.8 Exercise 2	200
Chapter 7. Performance scenario walkthroughs 2 7.1 CPU performance scenario 2 7.1.1 Data collection 2 7.1.2 Data analysis 2 7.1.3 Recommendation 2 7.2 I/O performance scenario 2 7.2.1 Data collection 2 7.2.2 Data analysis 2 7.2.3 Recommendation 2 7.3 Additional I/O scenarios 2 7.3.1 CPU and kernel thread I/O wait bottleneck scenario 2 7.3.2 I/O distribution bottleneck scenario 2	201 201 202 203 204 204 206 207 207 207
7.3.3 Logical volume fragmentation scenario27.3.4 Monitoring scenario using filemon27.3.5 Logical volume allocation scenario27.4 Paging performance scenario27.4.1 Data collection27.4.2 Data analysis27.4.3 Recommendation2	211 212 215 215 221
Chapter 8. Scenario assessment quiz.28.1 Scenario one28.1.1 Answers2	225 226
8.2 Scenario two	
Appendix A. The error log2A.1 Overview2A.2 Managing the error log2A.2.1 Configuring error log2A.2.2 Clearing the error log2	237 238 238
A.3.1 The errpt command output	240 241 242
A.4.1 The errpt command	244 246
A.6 Exercises	

Appendix B. Installing the performance tools	. 247
B.1 Command summary	. 254
B.1.1 The installp command	. 254
B.1.2 The Islpp command	. 256
B.1.3 The lppchk command	. 256
B.2 Quiz	. 257
B.2.1 Answers	. 259
B.3 Exercises	. 259
Appendix C. Using the additional material	. 261
C.1 Locating the additional material on the Internet	
C.2 Using the Web material	. 261
C.2.1 System requirements for downloading the Web material	
C.2.2 How to use the Web material	. 261
Appendix D. Special notices	. 263
Appendix E. Related publications	. 267
E.1 IBM Redbooks	
E.2 IBM Redbooks collections	. 267
E.3 Other resources	. 268
E.4 Referenced Web sites	. 268
How to get IBM Redbooks	. 271
IBM Redbooks fax order form	
Abbreviations and acronyms	. 273
Index	. 279
IBM Redbooks review	. 289

Figures

1.	AIX and UNIX education roadmap	16
2.	Certification roadmaps	17
3.	General performance tuning flowchart	21
4.	Process state	22
5.	VMM segments from a client perspective	27
6.	VMM segments from a process perspective	29
7.	VMM memory registers	30
8.	Logical volume device driver	36
9.	Dependencies in a volume group	37
10.	Network parameters	43
11.	Performance tuning flowchart	45
12.	topas command output	98
13.	Disk, LVM and file system levels	107
14.	SMIT screen for changing characteristics of operating system	110
15.	LVM intra-disk positions	121
16.	JFS organization	135
17.	UDP/TCP/IP data flow	151
18.	Run queue prior to AIX Version 4.3.3	180
19.	AIX Version 4, 128 run queues	181
20.	Run queue on AIX Version 4.3.3	184
21.	CPU penalty example	188
22.	The ps command output	227
23.	The vmstat command output	228
	The iostat command output	
25.	The netstat command output	229
26.	The vmstat and iostat command outputs	231
27.	smitty errpt output	240
28.	smitty list_software output	251
29	smitty install, all	252

© Copyright IBM Corp. 2000

Tables

1.	Hardware resources and logical resources	. 20
2.	Processes and threads	. 23
3.	VMM related output from the vmstat command	. 33
4.	Commonly used flags of the sar command	. 52
5.	CPU related ps output	. 69
6.	Memory related ps output	. 71
7.	Commonly used flags of the symon command	. 94
8.	Commonly used flags of the iostat command	108
9.	Commonly used flags of the lockstat command	116
10.	Commonly used flags of the filemon command	141
11.	Commonly used flags of the fileplace command	142
	Commonly used flags of the filemon command	
13.	Commonly used flags of the netstat command	170
14.	Commonly used flags of the tcpdump command	170
15.	Commonly used flags of the iptrace command	171
16.	Commonly used flags of the ipreport command	171
17.	Commonly used flags of the schedtune command	189
18.	Commonly used flags of the nice command	192
19.	Commonly used flags of the renice command	192
	Commonly used flags of the vmtune command	
21.	Commonly used flags of the errpt command	245
	Performance tools overview	
23.	Performance toolbox releases	248
	General installp summary	
25.	Commonly used flags of the lslpp command	256
26.	Commonly used flags of the lppchk command	256

© Copyright IBM Corp. 2000 **xi**

Preface

The AIX and RS/6000 certifications, offered through the Professional Certification Program from IBM are designed to validate the skills required of technical professionals who work in the powerful, and often complex, environments of the AIX operating system and RS/6000 and pSeries servers. A complete set of professional certifications are available. They include:

- IBM Certified AIX User
- IBM Certified Specialist AIX System Administration
- IBM Certified Specialist AIX System Support
- IBM Certified Specialist AIX HACMP
- IBM Certified Specialist Business Intelligence for RS/6000
- IBM Certified Specialist Domino for RS/6000
- IBM Certified Specialist RS/6000 Solution Sales
- IBM Certified Specialist RS/6000 SP and PSSP V3
- IBM Certified Specialist RS/6000 SP
- RS/6000 SP Sales Qualification
- IBM Certified Specialist Web Server for RS/6000
- IBM Certified Advanced Technical Expert RS/6000 AIX

Each certification is developed by following a thorough and rigorous process to ensure the exam is applicable to the job role and is a meaningful and appropriate assessment of skill. Subject matter experts who successfully perform the job participate throughout the entire development process. They bring a wealth of experience into the development process, making the exams much more meaningful than the typical test that only captures classroom knowledge and ensuring the exams are relevant to the *real world*. Thanks to their effort, the test content is both useful and valid. The result of this certification is the value of appropriate measurements of the skills required to perform the job role.

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX Performance and System Tuning certification exam as a selected course of study in order to achieve the IBM Certified Advanced Technical Expert - RS/6000 AIX certification.

This IBM Redbook is designed to provide a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered in the exam.

© Copyright IBM Corp. 2000

This publication does not replace practical experience or is designed to be a stand-alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam.

For additional information about certification and instructions on *How to Register* for an exam, call IBM at 1-800-426-8322 or visit the Web site at: http://www.ibm.com/certify

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Thomas C. Cederlöf is an Education Specialist at IBM Learning Services in Sweden. After working various professions, he was hired as a System Support Specialist in April 1997 at the Nordic AIX Competence Center. After earning his Advanced Technical Expert Certification in 1998, he worked with level 2 support in Scandinavia and the Baltic States and also participated in the itrans program in 1999. Since January 2000, he has been the main instructor for the AIX curriculum in Sweden.

André de Klerk is a Senior IT Specialist at IBM Global Services in South Africa. He has been working for IBM since May 1996. He started his career as a field technician in 1991 and has performed various support roles, including application support and customer consulting. Currently, he is team leader for the Midrange UNIX team at IGS SA.

Thomas Herlin is an Advisory IT Specialist at IBM Global Services in Denmark. He has been working for IBM since May 1998. Before joining IBM, he worked as a Software Engineer designing and developing programs on UNIX platforms. His areas of expertise include system architecture and system integration of AIX-based solutions. He is also a certified SAP technical consultant.

Tomasz Ostaszewski is a computer network architect. He works for Prokom Software SA in Poland - IBM Business Partner. Prokom is the largest IT solution provider in Poland. They offer total solutions, which include application development or third party vendor support. He has three years of experience in RS/6000 and AIX. Currently, he is working on a network project for an insurance company.

The project that produced this publication was managed by:

Scott Vetter IBM Austin

Special thanks to:

Darin Hartman Program Manager, AIX Certification

Thanks to the following people for their invaluable contributions to this project:

Jesse Alcantar IBM Austin **Greg Althaus IBM Austin** Stephen Atkins IBM U.K. **Karl Borman ILS Austin IBM Austin Larry Brenner** Malin Cederberg ILS Sweden **Greg Flaig IBM Austin** John Hance IBM Australia IBM Pakistan **Adnan Ikram Peter Mayes** IBM U.K. **Shawn Mullen IBM Austin Brian Nicholls IBM Austin Robert Olsson** ILS Sweden Michelle Page-Rivera IBM Atlanta **Christopher Snell** IBM Raleigh **Tony Steel** IBM Australia **Wade Wallace IBM Austin**

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your comments about this or other redbooks in one of the following ways:

- Fax the evaluation form found in "IBM Redbooks review" on page 289 to the fax number shown on the form.
- Use the online evaluation form found at ibm.com/redbooks

	 Send y 	our comments	in an Internet no	ote to redbook@us	.ibm.com
xvi IB	BM Certification Study	Guide AIX Perform	ance and System Tu	uning	
	•		•	-	

Chapter 1. Certification overview

This chapter provides an overview of the skill requirements needed to obtain an IBM AIX Specialist certification. The following chapters are designed to provide a comprehensive review of specific topics that are essential for obtaining the certification.

1.1 IBM Certified Advanced Technical Expert - RS/6000 AIX

This level certifies an advanced level of AIX knowledge and understanding, both in breadth and depth. It verifies the ability to perform in-depth analysis, apply complex AIX concepts, and provide resolution to critical problems, all in a variety of areas within RS/6000 AIX.

To attain the IBM Certified Advanced Technical Expert - RS/6000 AIX certification, you must pass four tests.

One test is the prerequisite in either AIX System Administration or AIX System Support. The other three tests are selected from a variety of AIX and RS/6000 topics. These requirements are explained in greater detail in the sections that follow.

1.1.1 Required prerequisite

Prior to attaining the IBM Certified Advanced Technical Expert - RS/6000 AIX certification, you must be certified as either an:

- IBM Certified Specialist AIX System Administration
- IBM Certified Specialist AIX System Support

1.1.2 Recommended prerequisite

A minimum of six to twelve months experience in performing in-depth analysis and applying complex AIX concepts in a variety of areas within RS/6000 AIX is a recommended prerequisite.

1.1.3 Registration for the certification exam

For information about *How to Register* for the certification exam, visit the following Web site:

http://www.ibm.com/certify

© Copyright IBM Corp. 2000

1.1.4 Core requirement (select three of the following tests)

You will receive a Certificate of Proficiency for tests when passed.

1.1.4.1 AIX Installation and System Recovery

The following objectives were used as a basis when the certification test 183 was developed. Some of these topics have been regrouped to provide better organization when discussed in this publication.

Preparation for this exam is the topic of *IBM Certification Study Guide - AIX Installation and System Recovery*, SG24-6183.

Section 1 - Installation and software maintenance

- Install or migrate the operating system.
- · Install a licensed program product.
- Remove an LPP from the system.
- Update a system.
- · Apply a selective fix.
- · Identify and resolve network install problems

Section 2 - System backup and restore

- Perform a complete backup of the system.
- Implement backup using relative and absolute paths.
- Create a mksysb.
- Understand advanced mksysb concepts.
- · Restore files.

Section 3 - System initialization (boot) failures

- · Understand concepts of system initialization.
- Diagnose the cause of a system initialization failure.
- Resolve a system initialization failure.

Section 4 - File systems and LVM recovery

- Perform problem determination on a file system.
- Determine a suitable procedure for replacing a disk.
- Resolve problems caused by incorrect actions taken to change a disk drive.
- · Create a new volume group.
- · Create a logical volume.

- · Understand LVM concepts.
- Resolve a complex LVM problem.

1.1.4.2 AIX Performance and System Tuning

The following objectives were used as a basis when the certification test 184 was developed.

Preparation for this exam is the topic of this publication.

Section 1 - Performance tools and techniques

- Use the iostat command.
- Use the filemon command.
- Use the tprof command.
- Use the netpmon command.
- Interpret iostat output.
- Interpret 1sps output.
- Interpret netstat output.
- Interpret vmstat output.
- Know about perfpmr.
- Know about performance diagnostic tool.
- Look at run queue.
- Look at system calls.

Section 2 - Correcting performance problems

- · Correct disk bottlenecks.
- · Correct NFS bottlenecks.
- · Correct network bottlenecks.
- · Correct communications adapter bottlenecks.
- · Understand random write-behind concepts.
- Understand async I/O performance concepts.
- Understand VMM I/O pacing.
- · Understand file fragmentation.
- Understand logical volume fragmentation.

Section 3 - VMM

- Identify and correct VMM performance problems.
- Correct paging problems.
- Know about tuning file memory usage.
- · Know about memory load control.
- Understand page space allocation issues.

Section 4 - Multiprocessor and process scheduling

- Know SMP commands.
- Use the bindprocessor command.
- Enable, disable, and show status of processors.
- · List CPU utilization per processor.
- Know about ps command and threads.
- Understand locking issues in SMP.
- · Know about process scheduling.
- · Understand priority calculations.
- Understand the effect of schedtune on priorities.

Section 5 - Tuning and customization

- Tune a system for optimum performance.
- Use the no command.
- Customize a LV for optimum performance.
- Configure system parameters.
- Tune network parameters.
- Determine when application tuning is needed.
- Understand real-time tuning.
- · Understand disk striping.
- Tune I/O performance with vmtune.
- Understand RAID performance issues.
- · Perform capacity planning.
- Understand memory usage.

1.1.4.3 AIX Problem Determination Tools and Techniques

The following objectives were used as a basis when the certification test 185 was developed.

Preparation for this exam is the topic of *IBM Certification Study Guide - AIX Problem Determination Tools and Techniques*, SG24-6185.

Section 1 - System dumps

- · Create a system dump.
- Understand valid system dump devices.
- Determine the location of system dump data.
- Identify the status of a system dump by the LED codes.
- Identify appropriate action to take after a system dump.
- Determine if a system dump is successful.
- Use the snap command.

Section 2 - Crash

- Understand the use and purpose of the crash command.
- · Verify the state of a system dump.
- Show the stack trace using crash.
- Use the stat subcommand in crash.
- Manipulate data in the process table.
- Interpret crash stack trace output.
- Interpret crash process output.
- Interpret crash TTY output.

Section 3 - Trace

- Start and stop trace.
- Run trace.
- Report trace information.
- Interpret trace output.
- Use trace to debug process problems.

Section 4 - File system and performance PD tools

- Use tools to identify and correct corrupted file systems.
- Understand file system characteristics.

- · Resolve file system mounting problems.
- · Repair corrupted file systems.
- Use vmstat command.
- Use iostat command.
- Use filemon command.

Section 5 - Network problem determination

- · Use PD tools to identify network problems.
- Resolve a network performance problem.
- Correct problems with host name resolution.
- Diagnose the cause of a problem with NFS mounts.
- Diagnose the cause of a routing problem.
- · Resolve a router problem.

Section 6 - Error logs and diagnostics

- Use error logging.
- · Interpret error reports.
- Invoke and use diagnostic programs.

Section 7 - Other problem determination tools

- Set breakpoints using dbx.
- Step through a program using dbx.
- Run a program with arguments using dbx.
- · Read core files and locate traceback.
- Debug problem using core files.
- · Read shell scripts.
- · Debug shell script problems.

1.1.4.4 AIX Communications

The following objectives were used as a basis when the certification test 186 was developed.

Preparation for this exam is the topic of *IBM Certification Study Guide - AIX Communications*, SG24-6186.

Section 1 - TCP/IP implementation

• Know TCP/IP concepts.

- Understand TCP/IP broadcast packets.
- Use and implement name resolution.
- Understand TCP/IP protocols.
- · Know IP address classes.
- Use interfaces available in LAN communications.
- Understand the relationship between an IP address and the network interface.
- · Log into remote hosts using telnet and rologin.
- Construct /etc/hosts.equiv and ~/.rhosts for trusted users.
- Transfer files between systems using ftp or tftp.
- · Run commands on remote machines.

Section 2 - TCP/IP: DNS implementation

- · Set up a primary name server.
- Set up a secondary name server.
- Set up a client in a domain network.

Section 3 - Routing: implementation

- Apply knowledge of the IP routing algorithm.
- Set up and use the routing table and routes.
- Implement and use subnet masking.

Section 4 - NFS: implementation

- Manipulate local and remote mounts using the automounter.
- · Understand NFS daemons and their roles.
- · Configure and tune an NFS server.
- Configure and tune an NFS client.
- Set up a file system for mounting.
- Understand the /etc/exports file.
- Invoke a predefined mount.

Section 5 - NIS: implementation

- Understand the various NIS daemons.
- · Implement NIS escapes.
- · Create NIS map files.

• Transfer NIS maps.

Section 6 - Network problem determination

- Diagnose and resolve TCP/IP problems.
- · Diagnose and resolve NFS problems.
- Diagnose and resolve NIS problems.

Section 7 - Hardware related PD (modems)

- Determine appropriate diagnostic approach to resolve a modem connection problem.
- Resolve communication configuration problems.

1.1.4.5 HACMP for AIX V4.2

The following objectives were used as a basis when the certification test 167 was developed.

Preparation for this exam is the topic of *IBM Certification Study Guide - AIX HACMP*, SG24-5131.

Section 1 - Pre-installation

- · Conduct a planning session.
 - Set customer expectations at the beginning of the planning session.
 - Gather customer's availability requirements.
 - Articulate trade-offs of different HA configurations.
 - Assist customer in identifying HA applications.
- Evaluate customer environment and tailorable components.
 - Evaluate configuration and identify Single Points of Failure (SPOF).
 - Define and analyze NFS requirements.
 - Identify components affecting HACMP.
 - Identify HACMP event logic customizations.
- · Plan for installation.
 - Develop disk management modification plan.
 - Understand issues regarding single adapter solutions.
 - Produce a test plan.

Section 2 - HACMP implementation

• Configure HACMP solutions.

- Install HACMP code.
- Configure IP Address Takeover (IPAT).
- Configure non-IP heartbeat paths.
- Configure network adapter.
- Customize and tailor AIX.
- Set up shared disk (SSA).
- Set up shared disk (SCSI).
- Verify a cluster configuration.
- Create an application server.
- Set up event notification.
 - Set up event notification and pre/post event scripts.
 - Set up error notification.
- · Post configuration activities.
 - Configure client notification and ARP update.
 - Implement a test plan.
 - Create a snapshot.
 - Create a customization document.
- · Testing and Troubleshooting.
 - Troubleshoot failed IPAT failover.
 - Troubleshoot failed shared volume groups.
 - Troubleshoot failed network configuration.
 - Troubleshoot failed shared disk tests.
 - Troubleshoot failed application.
 - Troubleshoot failed pre/post event scripts.
 - Troubleshoot failed error notifications.
 - Troubleshoot errors reported by cluster verification.

Section 3 - System management

- Communicate with customer.
 - Conduct turnover session.
 - Provide hands-on customer education.
 - Set customer expectations of their HACMP solution's capabilities.

- · Perform systems maintenance.
 - Perform HACMP maintenance tasks (PTFs, adding products, replacing disks, adapters).
 - Perform AIX maintenance tasks.
 - Dynamically update cluster configuration.
 - Perform testing and troubleshooting as a result of changes.

1.1.4.6 RS/6000 SP and PSSP V2.4

The following objectives were used as a basis when the certification test 178 was developed.

Preparation for this exam is the topic of *IBM Certification Study Guide - RS/6000 SP*, SG24-5348.

Section 1 - Implementation and planning

- · Validate software/hardware capability and configuration
 - Determine required software levels (for example: version, release, and modification level).
 - Determine the size, model, and location of the control workstation.
 - Define disk, memory, and I/O (including disk placement).
 - Determine disk space requirements.
 - Understand multi-frame requirements and switch partitioning.
 - Determine the number and type of nodes needed (including features).
 - Determine the number of types of I/O devices (for example: SCSI, RAID, SSA, and so on) needed.
 - Configure external I/O connections.
 - Determine additional network connections required.
 - Create the logical plan for connecting into networks outside the SP.
 - Identify the purpose and bandwidth of connections.
- Plan implementation of key aspects of TCP/IP networking in the SP environment.
 - Create specific host names (both fully qualified and aliases) and TCP/IP address.
 - Netmask value and default routes.
 - Determine the mechanism (for example, /etc/hosts, NIS, DNS) by which name resolution will be made across the system.

- Choose the IP name/address resolver.
- Determine the appropriate common, distributed, and local files/file systems.
 - Determine the physical locations of the file system and home directories.
 - Determine the number of types of I/O devices (for example, SCSI, RAID, SSA, and so on) needed.
 - Configure internal I/O.
 - Determine the mechanism (for example, NFS, AFS, DFS, local) by which file systems will be made across the system.
- Configure and administer the Kerberos Authentication subsystem and manage user IDs on the SP system.
 - Define administrative functions.
 - Determine the Kerberos administration ID.
 - Define administrative functions.
 - Understand the options of end-user management.
 - Understand how to administer authenticated users and instances.
- Define a backup/recovery strategy for the SP which supports node images, control workstation images, applications, and data.
 - Determine backup strategy and understand the implications of multiple unique mksysb images.

Section 2 - Installation and configuration

- Configure an RS/6000 as an SP control workstation.
 - Verify the control workstation system configuration.
 - Configure the TCP/IP network on the control workstation.
 - Install PSSP.
 - Load the SDR with SP configuration information.
 - Configure the SP System Data Repository.
 - Verify control workstation software.
 - Configure TCP/IP name resolution (for example, /etc/hosts, DNS, NIS).
- Perform network installation of images on nodes, using any combination of boot/install servers.
 - Install the images on the nodes.

- Create boot/install servers
- Exercise the SP system resources to verify the correct operation of all required subsystems.
 - Verify all network connections.
 - Verify internal and external I/O connections.
 - Verify switch operations

Section 3 - Application enablement

- Determine whether LoadLeveler would be beneficial to a given SP system configuration.
 - Understand the function of LoadLeveler.
- Define and implement application-specific FSs, VGs, and VSDs for a parallel application.
 - Define application-specific file systems, logical volumes, volume groups, or VSDs.
 - Implement application-specific file systems, logical volumes, volume groups, or VSDs.
- Install and configure problem management tools (for example: event manager, problem manager and perspectives)
 - Install and Configure user-management tools.

Section 4 - Support

- Utilize Problem Determination methodologies (for example, HOSTRESPONDS, SWITCHRESPONDS, error report, log files, DAEMONS, GUIs).
 - Handle resolution of critical problems.
 - Conduct SP-specific problem diagnosis.
 - Interpret error logs that are unique to SP.
- Isolate causes of degraded SP performance, and tune the system accordingly.
 - Understand performance analysis and tuning requirements

1.1.4.7 RS/6000 SP and PSSP V3

The following objectives were used as a basis when the certification test 188 was developed.

Preparation for this exam is the topic of *IBM Certification Study Guide - RS/6000 SP*, SG24-5348.

Section 1 - Implementation planning

- Validate software/hardware capability and configuration
 - Determine required software levels (for example, version, release, and modification level)
 - Determine the size, model, and location of the control workstation.
 - Define disk, memory, and I/O (including disk replacement).
 - Define disk space requirements.
 - Understand multi-frame requirements and switch partitioning.
 - Determine the number and types of nodes needed (including features).
 - Determine the number and types of I/O devices (for example, SCSI, RAID, SSA, and so on) needed.
 - Configure external I/O connections.
 - Determine what additional network connections are required.
 - Create the logical plan for connecting into networks outside the SP.
 - Identify the purpose and bandwidth of connections.
 - Determine if boot/install servers are needed and, if needed, where they are located.
- Implement key aspects of TCP/IP networking in the SP environment.
 - Create specific host names (both fully qualified and aliases), TCP/IP address, netmask value and default routes.
 - Determine the mechanism (for example, /etc/hosts, NIS, DNS) by which name resolution will be made across the system.
 - Determine SP Ethernet topology (segmentation, routing).
 - Determine TCP/IP addressing for switch network.
- Determine the appropriate common, distributed, or local files and file systems.
 - Determine the physical locations of the file system and home directories.
 - Determine the mechanism (for example, NFS, AFS, DFS, local) by which file systems will be made across the system.
- Define a backup/recovery strategy for the SP which supports node image(s), control workstation images, applications, and data.

- Determine backup strategy, including node and CWS images.
- Determine backup strategy and tools for application data.

Section 2 - Installation and configuration

- Configure an RS/6000 as an SP control workstation.
 - Verify the control workstation system configuration.
 - Configure TCP/IP network on the control workstation.
 - Install PSSP.
 - Configure the SDR with SP configuration information.
 - Verify control workstation software.
- Perform network installation of images on nodes, using any combination of boot/install servers.
 - Install the images on the nodes.
 - Define and configure boot/install servers.
 - Check SDR information.
 - Check RSCT daemons (hats, hags, and haem).
- Thoroughly exercise the SP system resources to verify correct information of all required subsystems.
 - Verify all network connections.
 - Verify switch operations.
- Configure and administer the Kerberos Authentication subsystem and manage user IDs.
 - Plan and configure Kerberos functions and procedures.
 - Configure the Kerberos administration ID.
 - Understand and use the options of end-user management.
- Define and configure system partition and perform switch installation.

Section 3 - Application enablement

- Determine whether additional SP-related products (for example, Loadleveler, PTPE, HACWS, NetTAPE, CLIOS) would be beneficial.
- Understand the function of additional SP-related products.
- Define and implement application-specific file systems, logical volumes, VGs and VSDs.
- Install and configure problem management tools (for example, event manager, problem manager, and perspectives).

• Define and manage monitors.

Section 4 - Ongoing support

- Perform software maintenance.
 - Perform system software recovery.
 - Upgrade and migrate system software (applying PTFs and migration).
- Perform SP reconfiguration.
 - Add frames.
 - Add nodes.
 - Migrate nodes.
 - Add/replace switch.
- Utilize Problem Determination methodologies (for example, HOSTRESPONDS, SWITCHRESPONDS, error report, log files, DAEMONS, GUIs).
 - Interpret error logs that are unique to the SP.
 - Diagnose networking problems.
 - Diagnose host response problems.
 - Diagnose switch-specific problems.
- Isolate cause of degraded SP performance and tune the system accordingly.
 - Understand performance analysis and tuning requirements.

1.2 Certification education courses

Courses are offered to help you prepare for the certification tests. Figure 1 and Figure 2 on page 17 provide a roadmap of useful courses. These courses are recommended, but not required, before taking a certification test. At the publication of this guide, the following courses are available. For a current list, visit the Web site http://www.ibm.com/certify

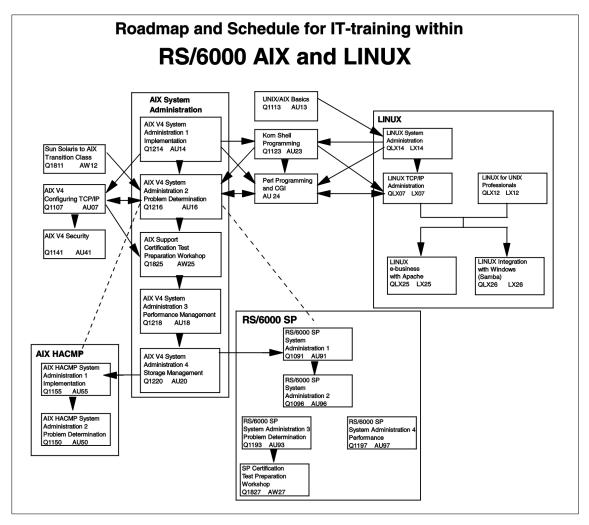


Figure 1. AIX and UNIX education roadmap

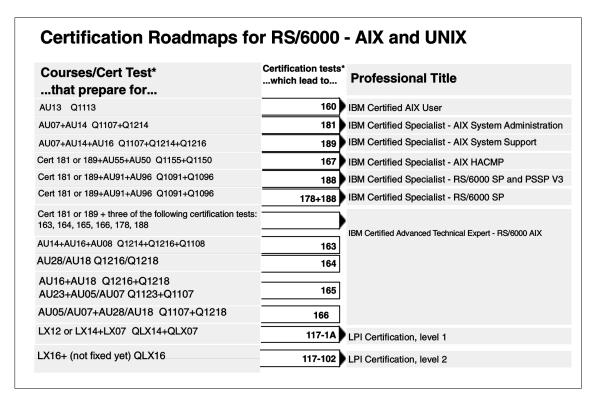


Figure 2. Certification roadmaps

1.3 Education on CD-ROM: IBM AIX Essentials

The new IBM AIX Essentials series offers a dynamic training experience for those who need convenient and cost-effective AIX education. The series consists of five new, content rich, computer-based multimedia training courses based on highly acclaimed, instructor-led AIX classes that have been successfully taught by IBM Education and Training for years.

To order, and for more information and answers to your questions:

- In the U.S., call 800-IBM-TEACH (426-8322) or use the online form at the following URL: http://www.ibm.com/services/learning/aix/#order.
- Outside the U.S., contact your IBM Sales Representative.
- · Contact an IBM Business Partner.

Chapter 2. Performance tuning - getting started

In this chapter, the following topics are covered:

- Introduction to concepts and tools
- · Performance tuning flowchart

In general, the performance tuning issues can be divided into two areas:

- · System management
- Application development

The application developer will usually view performance more from a user's perspective than a system perspective, for example, the user response time and system interactions are the concerns addressed during the design phase, not the overall system performance. This aspect of performance tuning, optimization of code, is outside the scope of this publication. This publication focuses on the system management aspects.

Many of the commands introduced in this chapter are discussed in detail throughout this publication (as referenced).

2.1 Introduction to concepts

Performance management, from a system management point of view, is usually concentrated on the allocation of existing resources, but also includes allocation of additional resources and establishing system policies. Therefore, performance tuning can be defined as the application and allocation of resources to best meet the defined requirements and goals.

From this definition of performance tuning, the following list provides a set of tasks that are part of performance tuning:

1. Identifying the workload.

If the system to tune is a workstation, then the most probable goal is fast response time.

If the system is a multiuser environment, the goal is to maximize throughput within a given response time or minimize response time under a consistent workload.

If the system is a server, maximizing throughput for a given response time is usually the goal.

© Copyright IBM Corp. 2000 19

2. Defining and prioritizing goals.

Before starting a tuning exercise, you need to have clear goals in mind. In other words, how will you know when you have finished tuning the system? Bear in mind that response time and throughput are not the same thing and that you need to focus on one or the other for each application. It is also important to realize that tuning is a process of compromise - that you will likely be taking resources away from one application to give another. A clear understanding of the relative priorities that operate in your environment is also an essential pre-requisite to tuning your system.

3. Identify the required resources.

Performance of a given workload is determined by the availability and speed of certain critical resources. Resources can be divided into two areas - physical resources and logical resources. Table 1 provides examples of hardware resources with their logical resources.

From the points discussed, one through three are part of planning and researching.

Table 1. Hardware resources and logical resources

Hardware resource	Logical resource					
CPU	Process time slice					
Memory	Page frame					
	Stacks					
	Buffers					
	Queues					
	Tables					
Disk space	Logical Volumes					
	File systems					
	Files					
Communication lines	Packets					
	Channels					

4. Minimize resource requirements.

Resource requirements can be minimized by using optimized code, organizing data efficiently, rescheduling low-prioritized jobs, making the right choice when to use remote resources, and so on. This is the stage where the actual hands-on tuning will occur.

5. Controlling allocation of resources.

Resources to control include disk space and process priority control. Disk space for users, or groups of users, can easily be managed with a quota, and process priority can be handled with the Workload Manager or by manipulating the scheduler.

- 6. Repeat steps three to five as necessary.
- 7. Add additional resources as required.

In the following section, a common performance tuning flowchart will be briefly discussed.

2.2 CPU performance overview

When investigating a performance problem, CPU constraint is probably the easiest to find. That is why most performance analysts start by checking for CPU constraints, and then work their way through the flowchart shown in Figure 3.

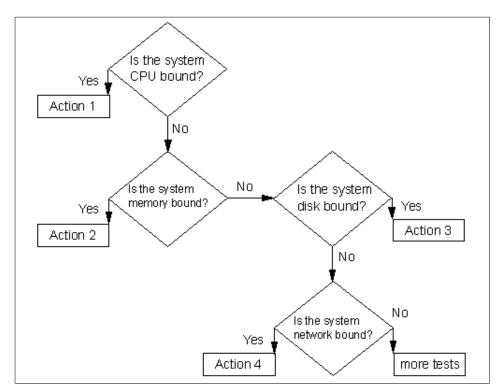


Figure 3. General performance tuning flowchart

If a system is CPU bound, investigation should focus on the two entities using the CPU - processes and threads. The CPUs basic work unit is the thread, so a process must have at least one thread. Commonly (on AIX Version 4), a process is multi-threaded, which means that a process can use multiple threads to accomplish its task. In Figure 4, the relationship between processes and threads is symbolized.

When initiating a process, the first resource to be allocated is a slot in the process table; before this slot is assigned, the process in SNONE state. While the process is undergoing creation (waiting for resources [memory] to be allocated) it is in SIDL state. These two states are together called the I state.

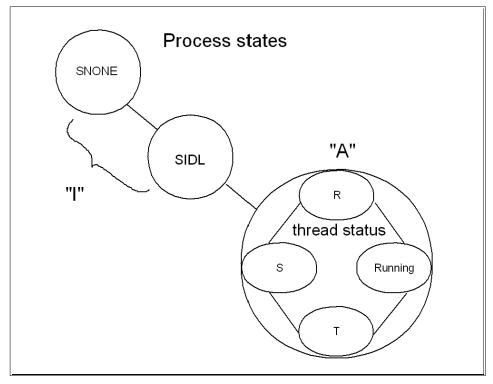


Figure 4. Process state

When a process is in the A state, one or more of its threads are in the R state. This means they are ready to run. A thread in this state has to compete for the CPU with all other threads in the R state. Only one process can use the CPU at any given time.

If a thread is waiting for an event or for I/O, the thread is said to be sleeping, or in the S state. When the I/O is complete, the thread is awakened and placed in the ready to run queue.

If a thread is stopped with the SIGSTOP signal (to be awakened with the SIGCONT signal), it is in the T state while suspended.

Manipulating the run queue, the process and thread dispatcher, and priority calculation are all ways to tune (and misstune, if not carefully done) the CPU. The run queue and how to decide which thread is to be prioritized is discussed in Chapter 6, "Performance management tools" on page 177.

When tuning the CPU, you need to know what can be tuned on a process level and what can be tuned on a thread level and choose accordingly. Table 2 provides a list that associates several process related properties with thread related properties.

Table 2. Processes and threads

Process properties	Thread properties
PID and PGID	TID
UID and GID	Stack
Environment	Scheduling policy
Cwd	Pending signals
File descriptors	Blocked signals

When working in the area of CPU performance tuning, you should use historical performance information for comparison reasons. Usually, performance has subjective view points. To avoid confusion, hard copies of performance statistics, from a time when users did not report poor system performance, should be filed. A very useful tool for this task is the sar command.

The sar command

Two shell scripts, /usr/lib/sa/sa1 and /usr/lib/sa/sa2, are structured to be run by the cron command and provide daily statistics and reports. Sample stanzas are included (but commented out) in the

/var/spool/cron/crontabs/adm crontab file to specify when the cron daemon should run the shell scripts. The sa1 script creates one output file each day and the sa2 scripts collects data and saves the data for one week. Another useful feature of sar is that the output can be specific about the usage for

each processor in a multiprocessor environment, as seen in the following output. The last line is an average output.

```
# sar -P ALL 2 1
```

AIX clie	nt1 3 4	000BC6D	D4C00	07/06/	00
14:46:52	cpu	%usr	%sys	%wio	%idle
14:46:54	0	0	0	0	100
	1	0	1	0	99
	2	0	0	0	100
	3	0	0	0	100
	_	0	0	0	100

More information on the sar command can be found in Section 3.1, "The sar command" on page 47.

Occasionally, the time spent in an application execution or an application startup can be useful to have as reference material. The time command can be used for this.

The time command

Use the time command to understand the performance characteristics of a single program and its synchronous children. It reports the real time, that is, the elapsed time from beginning to end of the program. It also reports the amount of CPU time used by the program. The CPU time is divided into user and sys components. The user value is the time used by the program itself and any library subroutines it calls. The sys value is the time used by system calls invoked by the program (directly or indirectly). An example output follows:

The sum of user + sys is the total direct CPU cost of executing the program. This does not include the CPU costs of parts of the kernel that can be said to run on behalf of the program, but which do not actually run on the program's thread. For example, the cost of stealing page frames to replace the page frames taken from the free list when the program started is not reported as part of the program's CPU consumption. Another example of the time command is provided in Section 7.1, "CPU performance scenario" on page 201.

When starting to analyze a performance problem, most analysts start with the vmstat command, because it provides a brief overall picture of both CPU and memory usage.

The vmstat command

The vmstat command reports statistics about kernel threads, virtual memory, disks, traps, and CPU activity. Reports generated by the vmstat command can be used to balance system load activity. These system-wide statistics (among all processors) are calculated as averages for values expressed as percentages, and as sums otherwise. Most interesting from a CPU point of view are the highlighted two left-hand columns and the highlighted four right-hand columns in the following output:

#	vmstat	2	4

ktł	ır	mem	ory			pag	je			f	aults			ct	u	
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	16998	14612	0	0	0	0	0	0	101	10	8	55	0	44	0
0	1	16998	14611	0	0	0	0	0	0	411	2199	54	0	0	99	0
0	1	16784	14850	0	0	0	0	0	0	412	120	51	0	0	99	0
0	1	16784	14850	0	0	0	0	0	0	412	88	50	0	0	99	0

The r column shows threads in the R state, while the b column shows threads in S state, as shown in Figure 4 on page 22. The four right-hand columns are a breakdown in percentages of CPU time used on user threads, system threads, CPU idle time (running the wait process), and CPU idle time when the system had outstanding disk or NFS I/O requests. For further discussion on the vmstat command, see Section 3.2, "The vmstat command" on page 60.

If the system has poor performance because of a lot of threads on the run queue or many threads waiting for I/O, then ps output is useful to determine which process has used the most CPU resources.

The ps command

The ps command is a flexible tool for identifying the programs that are running on the system and the resources they are using. It displays statistics and status information about processes on the system, such as process or thread ID, I/O activity, CPU, and memory utilization. In Section 3.3, "The ps command" on page 68, the ps command output relevant to a CPU tuning perspective is discussed.

When looking for a run-away process, the next step in the analysis is to find out which part of the process uses the CPU. For this, a profiler is needed. The AIX profiler of preference is tprof.

The tprof command

The tprof command can be runned over a time period to trace the activity of the CPU. The CPU utilization is divided into kernel, user, shared, and other to show how many clock timer ticks were spent in each respective address space. If the user column shows high values, application tuning may be necessary. More information about the tprof command can be found in Section 3.4, "The tprof command" on page 73.

When finding a process that cannot be optimized, another way to tune the process is to lessen its priority in the run queue. This can be accomplished by grouping processes together to be handled by AIX Version 4.3 Workload Manager or by use of the nice and renice commands.

The nice and renice commands

The nice command can run a process at a priority lower than the process' normal priority. You must have root user authority to run a process at a higher priority. The priority of a process is often called its nice value, but while the priority of a process is recalculated at every clock timer tick, the nice value is stable and manipulated with the nice or renice commands. The nice value can range from 0 to 39, with 39 being the lowest priority. For example, if a process normally runs with a default nice value of 20, resetting the nice value with an increment of 5 runs the process at a lower priority, 25, and the process may run slower. More information about the priorities and nice values can be found in Section 6.1.1, "Priority calculation on AIX versions prior to 4.3.2" on page 179, Section 6.1.2, "Priority calculation on AIX Version 4.3.2 and later" on page 182, and Section 6.3.2, "The nice and renice commands" on page 189.

Finally, in the list of common performance tools, there is the schedule command. This command is mentioned last for a reason: do not manipulate the scheduler without thorough knowledge of the scheduler mechanism.

The schedtune command

The priority of most user processes varies with the amount of CPU time the process has used recently. The CPU scheduler's priority calculations are based on two variables, SCHED_R (the weighting factor) and SCHED_D (the decay factor). More information about the scheduler and the scheduler command is covered in Section 6.1, "The AIX scheduler" on page 177 and in Section 6.3.1, "The scheduler command" on page 186.

2.3 Memory performance overview

Memory in AIX is handled by the Virtual Memory Manager (VMM). The Virtual Memory Manager is a facility that makes real memory appear larger than its physical size. The virtual memory system is composed of real memory plus physical disk space where portions of memory that are not currently in use are stored.

The physical part of the virtual memory is divided into three types of segments that reflect where the data is stored. This is symbolized in Figure 5.

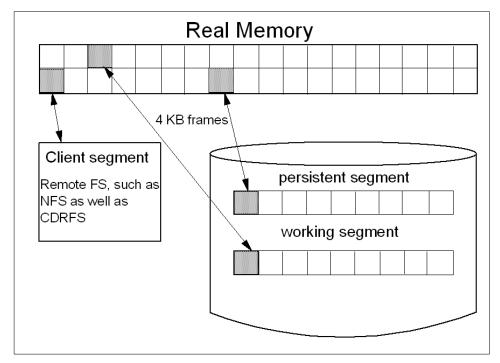


Figure 5. VMM segments from a client perspective

The three types of segments are as follows:

· Persistent segment

A persistent segment persists after use by a process and has (and uses) permanent storage locations on disks. Files containing data or executable programs are mapped to persistent segments. AIX accesses all files as mapped files. This means that programs or file access is started with only a few initial disk pages, which are copied into virtual storage segments. Further pages are page-faulted in on demand.

Working segment

A working segment is transitory and only exists during use by the owning process. It has no permanent disk storage location and therefore is stored to paging space if free page frames in real memory are needed. For example, kernel text segments and the process stack are mapped onto working segments.

· Client segment

A client segment is where the pages are brought in by CDRFS, NFS, or any other remote file system.

A process can use all of these segments, but from a process perspective, the VMM is logically divided into:

· Code and Data segments

The code segment is the executable. This could be placed in a persistent (local) or a client (remote executable) segment. The data segment is data needed for the execution, for example, the process environment.

· Private and Shared segments

The private segment can be a working segment containing data for the process, for example, global variables, allocated memory, and the stack. Segments can also be shared among processes, for example, processes can share code segments, yet have private data segments.

The relationship between the segments is shown in Figure 6.

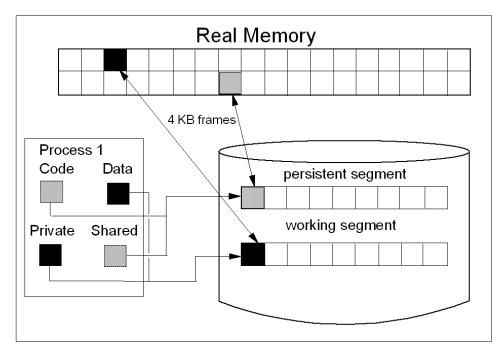


Figure 6. VMM segments from a process perspective

From a process point of view, the memory is further divided into 16 segments, each pointed to by a *segment register*. These segment registers are hardware registers located on the processor. When a process is active, the registers contain the addresses of the 16 segments addressable by that process. Each segment contains a specific set of information, as shown in Figure 7.

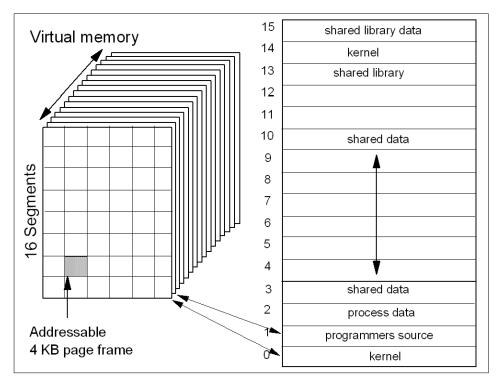


Figure 7. VMM memory registers

Each segment is further divided into 4069-byte pages of information. Each page sits on a 4 KB partition of the disk known as a slot. The VMM is responsible for allocating real memory page frames and resolving references to pages that are not currently in memory. In other words, when the system needs to reference a page that is not currently in memory, the VMM is responsible for finding and resolving the reference of the disk frame.

The VMM maintains a list of free page frames that is used to accommodate pages that must be brought into memory. In memory constrained environments, the VMM must occasionally replenish the free list by moving some of the current data from real memory. This is called *page stealing*. A *page fault* is a request to load a 4 KB data page from disk. A number of places are searched in order to find data.

First, the data and instruction caches are searched. Next, the Translation Lookaside Buffer (TLB) is searched. This is an index of recently used virtual addresses with their page frame IDs. If the data is not in the TLB, the Page Frame Table (PTF) is consulted. This is an index for all real memory pages,

and this index is held in pinned memory. The table is large; therefore, there are indexes to this index. The Hash Anchor Table (HAT) links pages of related segments, in order to get a faster entry point to the main PTF.

To the page stealer, memory is divided into Computational memory and File memory.

- Computational memory are pages that belong to the working segment or program text segment.
- File memory consists of the remaining pages. These are usually pages from the permanent data file in persistent memory.

The page stealer tries to balance these two types of memory usage when stealing pages. The page replacement algorithm can be manipulated.

When starting a process, a slot is assigned, and when a process references a virtual memory page that is on the disk, the referenced page must be paged in and probably one or more pages must be paged out, creating I/O traffic and delaying the start up of the process. AIX attempts to steal real memory pages that are unlikely to be referenced in the near future, using a page replacement algorithm. If the system has too little memory, no RAM pages are good candidates to be paged out, as they will be reused in the near future. When this happens, continuous pagein and pageout occurs. This condition is called thrashing.

When discussing memory, the allocation algorithm is commonly mentioned. The following is a discussion from *System Management Concepts: Operating System and Devices*, SC23-4311, on the allocation algorithm:

The operating system uses the PSALLOC environment variable to determine the mechanism used for memory and paging space allocation. If the PSALLOC environment variable is not set, is set to null, or is set to any value other than early, the system uses the default late allocation algorithm.

The late allocation algorithm does not reserve paging space when a memory request is made; it approves the request and assigns paging space when pages are touched. Some programs allocate large amounts of virtual memory and then use only a fraction of the memory. Examples of such programs are technical applications that use sparse vectors or matrices as data structures. The late allocation algorithm is also more efficient for a real-time, demand-paged kernel such as the one in the operating system.

For Version 4.3.2 and later, the late allocation algorithm is modified to further delay the allocation of paging space. As mentioned previously,

before Version 4.3.2, paging space was allocated when a page was touched. However, this paging space may never be used, especially on systems with large real memory where paging is rare. Therefore, the allocation of paging space is delayed until it is necessary to page out the page, which results in no wasted paging space allocation. This does result, however, in additional overcommitment of paging space. On a system where enough virtual memory is accessed that paging is necessary, the amount of paging space required may be as much as was required on previous releases.

It is possible to overcommit resources when using the late allocation algorithm for paging space allocation. In this case, when one process gets the resource before another, a failure results. The operating system attempts to avoid complete system failure by killing processes affected by the resource overcommitment. The SIGDANGER signal is sent to notify processes that the amount of free paging space is low. If the paging space situation reaches an even more critical state, selected processes that did not receive the SIGDANGER signal are sent a SIGKILL signal.

The user can use the PSALLOC environment variable to switch to an early allocation algorithm for memory and paging space allocation. The early allocation mechanism allocates paging space for the executing process at the time the memory is requested. If there is insufficient paging space available at the time of the request, the early allocation mechanism fails the memory request.

The new paging space allocation algorithm introduced with Version 4.3.2 is also named Deferred Page Space Allocation (DPSA). After a page has been paged out to paging space, the disk block is reserved for that page if that page is paged back into RAM. Therefore, the paging space percentage-used value may not necessarily reflect the number of pages only in the paging space, because some of them may be back in the RAM. If the page that was paged back in is the working storage of a thread, and if the thread releases the memory associated with that page or if the thread exits, then the disk block for that page is released. This affects the output for the ps command and the symon commands on Version 4.3.3. For more information on the differences between Version 4.3.2 and Version 4.3.3 refer to Commands Reference - Volume 5, SBOF-1877 and System Management Concepts: Operating System and Devices, SC23-4311.

When working with memory performance tuning, the first command to use is usually vmstat.

The vmstat command

The vmstat command summarizes the total active virtual memory used by all of the processes running on the system, as well as the number of real-memory page frames on the free list. Active virtual memory is defined as the number of virtual-memory working segment pages that actually have been touched. This number can be larger than the number of real page frames in the machine, because some of the active virtual-memory pages may have been written out to paging space.

When determining if a system is short on memory or if some memory tuning is required, use the <code>vmstat</code> command over a set interval and examine the pi and po columns on the resulting report. These columns indicate the number of paging space page-ins per second and the number of paging space page-outs per second. If the values are constantly non-zero, there may be a memory bottleneck. Having occasional non-zero values are not a concern, because paging is the main principle of virtual memory.

From a VMM tuning perspective, the middle (highlighted) columns are the most interesting. They provide information about the use of virtual and real memory and information about page faults and paging activity.

#	vmstat	2	4

kthr memory		page				faults			cpu							
r	 b	avm	fre	re	pi	 ро	fr	sr	су	in	sy	cs	us	sy	id	 wa
0	0	16590	14475	0	0	0	0	0	0	101	9	8	50	0	50	0
0	1	16590	14474	0	0	0	0	0	0	408	2232	48	0	0	99	0
0	1	16590	14474	0	0	0	0	0	0	406	43	40	0	0	99	0
0	1	16590	14474	0	0	0	0	0	0	405	91	39	0	0	99	0

The highlighted columns are described Table 3.

Table 3. VMM related output from the vmstat command

Column	Description				
avm	Active virtual pages.				
fre	Size of the free list.				
re	Pager input/output list.				
pi	Pages paged in from paging space.				
ро	Pages paged out to paging space.				
fr	Pages freed (page replacement).				

Column	Description
sr	Pages scanned by page-replacement algorithm.
су	Clock cycles by page-replacement algorithm.

For more information about the vmstat command, see Section 3.2, "The vmstat command" on page 60.

Note:

A large portion of real memory is utilized as a cache for file system data. It is not unusual for the size of the free list to remain small.

Another tool used in the initial phase of VMM tuning is the ps command.

The ps command

The ps command can also be used to monitor the memory usage of individual processes. The ps v PID command provides the most comprehensive report on memory-related statistics for an individual process, as discussed in Section 3.3, "The ps command" on page 68.

In the previous discussion, the paging space function of VMM was mentioned. The $_{\rm lsps}$ command is an useful tool to check paging space utilization.

The Isps command

The $_{\mathrm{1sps}}$ command displays the characteristics of paging spaces, such as the paging-space name, physical-volume name, volume-group name, size, percentage of the paging space used, whether the space is active or inactive, and whether the paging space is set to be automatically initiated at system boot. The following is an example of the $_{\mathrm{1sps}}$ command using the -a flag. The -s flag is useful when a summary and total percentage used over several disks is required.

```
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6 hdisk2 rootvg 1024MB 1 yes yes lv
```

When finding problems with memory usage, the symon command provides a more detailed report on what process are using what segments of memory.

The symon command

The symon command provides a more in-depth analysis of memory usage. It is more informative, but also more intrusive, than the ymstat and ps commands. The symon command captures a snapshot of the current state of memory.

There are some significant changes in the flags and in the output from the symon command between AIX Version 4.3.2 and Version 4.3.3. This is discussed in more detail in Section 3.5, "The symon command" on page 77.

The command to use when tuning memory management is vmtune.

The vmtune command

The memory management algorithm tries to keep the size of the free list and the percentage of real memory occupied by persistent segment pages within specified bounds. These bounds can be altered with the vmtune command, which can only be run by the root user. Changes made by this tool remain in effect until the next system reboot. More information on the vmtune command can be found in Section 6.5, "The vmtune command" on page 193.

To test how much (or, perhaps, little) memory is needed for a certain server load, use the rmss command.

The rmss command

The rmss command simulates a system with various sizes of real memory, without having to extract and replace memory boards. By running an application at several memory sizes and collecting performance statistics, you can determine the memory needed to run an application with acceptable performance. The rmss command can be invoked for the following purposes.

- To change the memory size and then exit. This lets you experiment freely with a given memory size.
- To function as a driver program. In this mode, the rmss command executes
 a specified command multiple times over a range of memory sizes, and
 displays important statistics describing command performance at each
 memory size. The command can be an executable or shell script file, with
 or without command line arguments.

2.4 Disk I/O performance overview

The set of operating system commands, library subroutines, and other tools that allow you to establish and control logical volume storage is called the Logical Volume Manager (LVM). The LVM controls disk resources by mapping data between simple and flexible logical views of storage space and the physical disks. The LVM does this using a layer of device driver code that runs above traditional disk device drivers.

The LVM consists of the logical volume device driver (LVDD) and the LVM subroutine interface library. The logical volume device driver is a pseudo-device driver that manages and processes all I/O. It translates logical

addresses into physical addresses and sends I/O requests to specific device drivers. When a process requests a disk read or write, the operation involves the file system, VMM, and LVM, as shown in Figure 8.

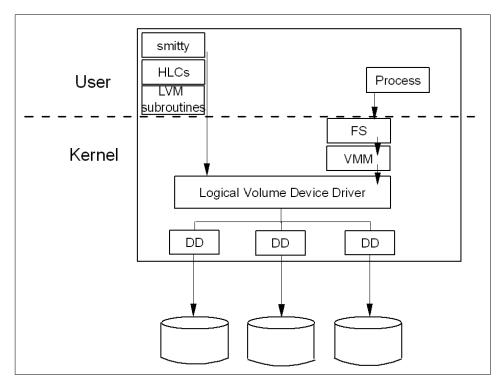


Figure 8. Logical volume device driver

Each individual disk drive, called a physical volume (PV), is named, such as /dev/hdisk0. If the physical volume is in use, it belongs to a volume group (VG). All of the physical volumes in a volume group are divided into physical partitions (PPs) of the same size (by default, 4 MB in volume groups that include physical volumes smaller than 4 GB; 8 MB or more with larger disks).

Within each volume group, one or more logical volumes (LVs) are defined. Each logical volume consists of one or more logical partitions. Each logical partition corresponds to at least one physical partition. If mirroring is specified for the logical volume, additional physical partitions are allocated to store the additional copies of each logical partition. Although the logical partitions are numbered consecutively, the underlying physical partitions are not necessarily consecutive or contiguous.

Figure 9 shows the relationship and dependencies between the logical picture of the volume group with its corresponding physical layout.

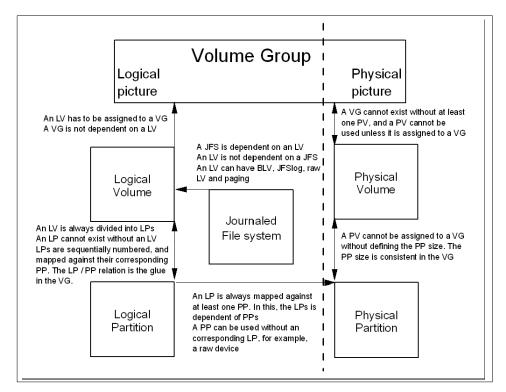


Figure 9. Dependencies in a volume group

Logical volumes can serve a number of system purposes, such as paging, but each logical volume that holds ordinary system data, user data, or programs contains a single journaled file system (JFS). Each JFS consists of a pool of page-size (4096-byte) blocks. When data is written to a file, one or more additional blocks are allocated to that file. These blocks may or may not be contiguous with one another and with other blocks previously allocated to the file.

In AIX Version 4, a given file system can be defined as having a fragment size of less than 4096 bytes. A fragment size can be set to 512, 1024, or 2048 bytes, allowing small files to be stored more efficiently.

While an operating system's file is conceptually a sequential and contiguous string of bytes, the physical reality is very different. Fragmentation may arise from multiple extensions to logical volumes, as well as allocation/release/reallocation activity within a file system. A file system is

fragmented when its available space consists of large numbers of small chunks of space, making it impossible to write out a new file in contiguous blocks.

Access to files in a highly fragmented file system may result in a large number of seeks and longer I/O response times (seek latency dominates I/O response time). For example, if the file is accessed sequentially, a file placement that consists of many widely separated chunks requires more seeks than a placement that consists of one or a few large contiguous chunks.

If the file is accessed randomly, a placement that is widely dispersed requires longer seeks than a placement where the file's blocks are close together.

The VMM tries to anticipate the future need for pages of a sequential file by observing the pattern a program uses to access the file. When the program accesses two successive pages of the file, the VMM assumes that the program will continue to access the file sequentially, and the VMM schedules additional sequential reads of the file. This is called *Sequential-Access Read Ahead*. These reads are overlapped with the program processing, and will make the data available to the program sooner than if the VMM had waited for the program to access the next page before initiating the I/O. The number of pages to be read ahead is determined by two VMM thresholds:

minpgahead A number of pag

A number of pages read ahead when the VMM first detects the sequential access pattern. If the program continues to access the file sequentially, the next read ahead will be for 2 x minpgahead, the next for 4 x minpgahead, and so on until the number of pages reaches maxpgahead.

maxpgahead

A maximum number of pages the VMM will read ahead in a sequential file.

If the program deviates from the sequential-access pattern and accesses a page of the file out of order, sequential read ahead is terminated. It will be resumed with minpgahead pages if the VMM detects a resumption of sequential access by the program. The values of minpgahead and maxpgahead can be set with the vmtune command. More information on the vmtune command can be found in Section 6.5, "The vmtune command" on page 193.

To increase write performance, limit the number of dirty file pages in memory, reduce system overhead, and minimize disk fragmentation, the file system divides each file into 16 KB partitions. The pages of a given partition are not written to disk until the program writes the first byte of the next 16 KB

partition. At that point, the file system forces the four dirty pages of the first partition to be written to disk. The pages of data remain in memory until their frames are reused. If a program accesses any of the pages before their frames are reused, no I/O is required.

If a large number of dirty file pages remain in memory and do not get reused, the sync daemon writes them to disk, which may result in abnormal disk utilization. To distribute the I/O activity more efficiently across the workload, write-behind can be turned on to tell the system how many pages to keep in memory before writing them to disk. The write-behind threshold is on a per-file basis, which causes pages to be written to disk before the sync daemon runs. The I/O is spread more evenly throughout the workload.

There are two types of write-behind: sequential and random. The size of the write-behind partitions and the write-behind threshold can be changed with the vmtune command.

Normal files are automatically mapped to segments to provide mapped files. This means that normal file access bypasses traditional kernel buffers and block I/O routines, allowing files to use more memory when the extra memory is available (file caching is not limited to the declared kernel buffer area).

Because most writes are asynchronous, FIFO I/O queues of several megabytes can build up, which can take several seconds to complete. The performance of an interactive process is severely impacted if every disk read spends several seconds working its way through the queue. In response to this problem, the VMM has an option called I/O pacing to control writes.

I/O pacing does not change the interface or processing logic of I/O. It simply limits the number of I/Os that can be outstanding against a file. When a process tries to exceed that limit, it is suspended until enough outstanding requests have been processed to reach a lower threshold.

Disk-I/O pacing is intended to prevent programs that generate very large amounts of output from saturating the system's I/O facilities and causing the response times of less-demanding programs to deteriorate. Disk-I/O pacing enforces per-segment (which effectively means per-file) *high*- and *low-water marks* on the sum of all pending I/Os. When a process tries to write to a file that already has high-water mark pending writes, the process is put to sleep until enough I/Os have completed to make the number of pending writes less than or equal to the low-water mark. The logic of I/O-request handling does not change. The output from high-volume processes is slowed down somewhat.

When gathering information on I/O performance, the first command to use is iostat.

The iostat command

The iostat command is used for monitoring system input/output device loading by observing the time the physical disks are active in relation to their average transfer rates. This command generates reports that can be used to change the system configuration to better balance the input/output load between physical disks and adapters. The iostat command gathers its information on the protocol layer.

AIX Version 4.3.3 and later contain enhancements to the method used to compute the percentage of CPU time spent waiting on disk I/O (wio time). The method used in AIX Version 4.3.2 and earlier versions of the operating system can, under certain circumstances, give an inflated view of wio time on SMPs. The wio time is reported by the commands sar (%wio), vmstat (wa), and iostat (% iowait).

In AIX Version 4.3.2 and earlier, at each clock timer tick interrupt on each processor (100 times a second per processor), a determination is made as to which of the four categories (usr/sys/wio/idle) to place the last 10 ms of time. If the CPU was busy in usr mode at the time of the clock interrupt, then usr gets the clock tick added into its category. If the CPU was busy in kernel mode at the time of the clock interrupt, then the sys category gets the tick. If the CPU was not busy, a check is made to see if any I/O to disk is in progress. If it is in progress, the wio category is incremented. If no disk I/O is in progress and the CPU is not busy, the idle category gets the tick.

The inflated view of wio time results from all idle CPUs being categorized as wio regardless of the number of threads waiting on I/O. For example, systems with just one thread doing I/O could report over 90 percent wio time, regardless of the number of CPUs it has.

The change in AIX Version 4.3.3 is to mark only an idle CPU as wio if an outstanding I/O was started on that CPU. This method can report much lower wio times when just a few threads are doing I/O and the system is otherwise idle. For example, a system with four CPUs and one thread doing I/O will report a maximum of 25 percent wio time. A system with 12 CPUs and one thread doing I/O will report a maximum of 8.3 percent wio time.

Also, NFS now goes through the buffer cache and waits in those routines are accounted for in the wa statistics.

Another change is that the wa column details the percentage of time the CPU was idle with pending disk I/O to not only local, but also NFS-mounted disks.

More information about the iostat command can be found in Section 4.2, "The iostat command" on page 108.

When experiencing performance problems due to disk I/O, the next step is to find the file system causing the problem. This can be done with the filemon command.

The filemon command

The filemon command uses the trace facility to obtain a detailed picture of I/O activity during a time interval on the various layers of file system utilization, including the logical file system, virtual memory segments, LVM, and physical disk layers. Both summary and detailed reports are generated. More information about the filemon command can be found in Section 4.5.1, "The filemon command" on page 125.

If a file is identified as the problem, the fileplace command can be used to see how the file is stored.

The fileplace command

The fileplace command displays the placement of a specified file within the logical or physical volumes containing the file. By default, the fileplace command lists, to standard output, the ranges of logical volume fragments allocated to the specified file. More information about the fileplace command can be found in Section 4.6.2, "The fileplace command" on page 135.

If a logical volume is identified as a problem, the ${\tt lslv}$ command can provide useful information.

The Isly command

The lslv command shows, among other information, the logical volume fragmentation. If the workload shows a significant degree of I/O dependency, you can use the lslv command to investigate the physical placement of the files on the disk to determine if reorganization at some level would yield an improvement. More information about the lslv command can be found in Section 4.4.2, "Logical volume fragmentation" on page 122 and Section 4.9.3, "The lslv command" on page 142.

2.5 Network performance overview

When performance problems arise and you look for the cause, your local system may not have a problem, while the real problem is buildings away. An easy way to tell if the network is affecting overall performance is to compare those operations that involve the network with those that do not. If you are running a program that does a considerable amount of remote reads and writes and it is running slowly, but everything else seems to be running normally, then it is probably a network problem. Some of the potential network bottlenecks can be caused by the following:

- · Client-network interface
- · Network bandwidth
- Network topology
- · Server network interface
- Server CPU load
- · Server memory usage
- · Server bandwidth
- Inefficient configuration

A large part of network tuning involves tuning TCP/IP to achieve maximum throughput. With the high bandwidth interfaces such as FIDDI and Gigabit Ethernet, this has become even more important. Before attempting to tune network parameters, it helps to understand their use in the processing layer they affect. Figure 10 on page 43 shows the layers involved in a read or write activity across TCP/IP and provides the network parameters used in each layer.

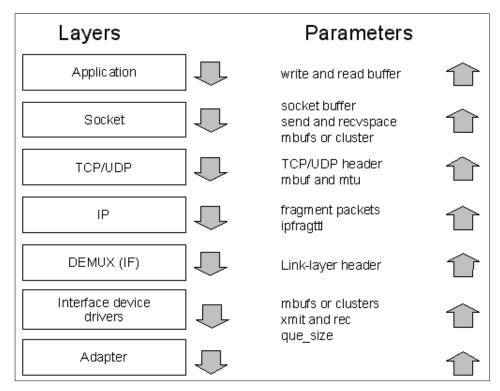


Figure 10. Network parameters

Chapter 5, "Network performance tools" on page 149, discusses, in more detail, how to set mbufs and clusters, network packet settings, and adapter settings for network performance tuning.

The first command to use for gathering information on network performance is the ${\tt netstat}$ command.

The netstat command

The netstat command symbolically displays the contents of various network-related data structures for active connections. The netstat command can also provide useful information on a per protocol basis. For more information on the netstat command, see Section 5.4.4, "The netstat command" on page 156.

If the performance problem is due to NFS load, the ${\tt nfsstat}$ command is useful.

The nfsstat command

NFS gathers statistics on types of NFS operations performed, along with error information and performance indicators. You can use the <code>nfsstat</code> command to identify network problems and observe the type of NFS operations taking place on your system. The <code>nfsstat</code> command displays statistical information about the NFS and Remote Procedure Call (RPC) interfaces to the kernel. The <code>nfsstat</code> command splits its information into server and client parts. For example, use the command:

netstat -r to see how an application uses NFS

The output is divided into server connection- and connectionless-oriented, as well as client connection- and connectionless-oriented.

nfsstat -s to see the server report

The NFS server displays the number of NFS calls received (calls) and rejected (badcalls) due to authentication, as well as the counts and percentages for the various kinds of calls made.

• nfsstat -c to see the client part

The NFS client displays the number of calls sent and rejected, as well as the number of times a client handle was received (clgets) and a count of the various kinds of calls and their respective percentages. For performance monitoring, the nfsstat -c command provides information on whether the network is dropping UDP packets. A network may drop a packet if it cannot handle it. Dropped packets can be the result of the response time of the network hardware or software or an overloaded CPU on the server. Dropped packets are not actually lost, because a replacement request is issued for them.

A high badxid count implies that requests are reaching the various NFS servers, but the servers are too loaded to send replies before the client's RPC calls time out and are retransmitted. The badxid value is incremented each time a duplicate reply is received for a transmitted request (an RPC request retains its XID through all transmission cycles). Excessive retransmissions place an additional strain on the server, further degrading response time.

The retrans column displays the number of times requests were retransmitted due to a time-out while waiting for a response. This situation is related to dropped UDP packets. If the retrans number consistently exceeds five percent of the total calls in column one, it indicates a problem with the server keeping up with demand.

For more information on the nfsstat command, see *Performance Management Guide* and *Commands Reference - Volume 4*, SBOF-1877.

When requiring a more detailed output, the netpmon command, a trace facility, is useful.

The netpmon command

The netpmon command monitors a trace of system events, and reports on network activity and performance during the monitored interval. By default, the netpmon command runs in the background while one or more application programs or system commands are being executed and monitored. The netpmon command automatically starts and monitors a trace of network-related system events in real time. More information on the netpmon command can be found in Chapter 5, "Network performance tools" on page 149.

2.6 Summary

The flowchart shown in the beginning of this chapter is used in the summary (Figure 11). It is modified to include performance suggestions.

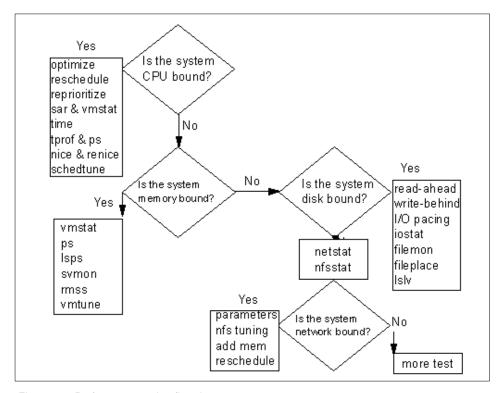


Figure 11. Performance tuning flowchart

2.7 Quiz

The following assessment question helps verify your understanding of the topics discussed in this chapter.

- 1. When paging, cache, and Translation Lookaside Buffer (TLB) metrics or statistics are analyzed for performance, which of the following resources is being analyzed?
 - A. CPU
 - B. Memory
 - C. Disk I/O
 - D. Network I/O

2.7.1 Answers

The following is the preferred answer to the question provided in this section.

1. B

Chapter 3. CPU and memory performance monitoring tools

This chapter takes a detailed look at several CPU and memory performance monitoring tools. The provided examples will assist you in culling the valuable information from the verbose output generated by these tools.

3.1 The sar command

The sar (System Activity Report) command can be used in two ways to collect data: one is to view system data in real time, and the other is to view data previously captured.

The sar command is one of the first performance monitors to be used by an administrator. Although the sar command does give useful information on most system functions, it should be noted that there are other tools that will give more accurate system utilization reports on specific sections within the environment.

3.1.1 Examples of using the sar command

The $_{\mathtt{sar}}$ command, without any flags, will give an output of every line in the file for the current day as collected by the $_{\mathtt{sal}}$ command. The time slice can be set up in the crontab file and, in the following example, it uses the default in the /var/spool/cron/crontabs/adm file:

# sar				
08:00:00	%usr	%sys	%wio	%idle
08:20:00	0	0	0	100
08:40:00	0	0	0	100
09:00:00	0	0	0	100
Average	0	0	0	100

The sar command, using only interval and number flags, will have the output shown in the following example. This is the same as running the sar -u 1 10 command. The 1 specifies the interval in seconds and the 10 specifies the number of times the data is captured.

```
# sar 1 10

AIX server2 3 4 000FA17D4C00 06/30/00

09:14:57 %usr %sys %wio %idle

09:14:58 54 18 28 0
```

© Copyright IBM Corp. 2000 47

09:14:59	40	20	40	0
09:15:00	44	19	38	0
09:15:01	82	14	4	0
09:15:02	66	16	18	0
09:15:03	45	12	43	0
09:15:04	60	17	23	0
09:15:05	47	16	37	0
09:15:06	65	12	23	0
09:15:07	48	8	44	0
Average	55	15	30	0

The $_{\rm sar}$ -a command reports the use of file access system routines specifying how many times per second several of the system file access routines have been called.

sar -a 1 10

AIX server2 3 4 000FA17D4C00 06/30/00 09:28:44 iget/s lookuppn/s dirblk/s 0 1169 09:28:45 277 09:28:46 0 15 50 0 09:28:47 0 09:28:48 0 0 559 19
 09:28:49
 0
 390

 09:28:50
 0
 1467

 09:28:51
 0
 1775

 09:28:52
 0
 2303

 09:28:53
 0
 2832

 09:28:54
 0
 883
 20 137 153 74 50 44 0 77 Average 1144

The sar -c command reports system calls.

sar -c 1 10

AIX server2 3 4 000FA17D4C00 06/30/00

09:33:04	scall/s	sread/s	swrit/s	fork/s	exec/s	rchar/s	wchar/s
09:33:05	1050	279	118	0.00	0.00	911220	5376749
09:33:06	186	19	74	0.00	0.00	3272	3226417
09:33:07	221	19	79	0.00	0.00	3272	3277806
09:33:08	2996	132	400	0.00	0.00	314800	2284933
09:33:09	3304	237	294	0.00	0.00	167733	848174
09:33:10	4186	282	391	0.00	0.00	228196	509414
09:33:11	1938	109	182	1.00	1.00	153703	1297872

09:33:12	3263	179	303	0.00	0.00	242048 1003364
09:33:13	2751	172	258	0.00	0.00	155082 693801
09:33:14	2827	187	285	0.00	0.00	174059 1155239
Average	2273	162	238	0.10	0.10	235271 1966259

The sar -d command reads disk activity with read and write and block size averages. This flag is not documented in the AIX documentation, but is used by some AIX gurus. Use the <code>iostat</code> command instead of the sar -d command.

sar -d 5 3

AIX server2 3 4 000FA17D4C00		06/30/00					
10:08:19	device	%busy	avque	r+w/s	blks/s	avwait	avserv
10:08:24	hdisk0	0	0.0	0	4	0.0	0.0
	hdisk1	0	0.0	0	3	0.0	0.0
	cd0	0	0.0	0	0	0.0	0.0
10:08:29	hdisk0	44	1.0	366	3569	0.0	0.0
	hdisk1	36	0.0	47	2368	0.0	0.0
	cd0	0	0.0	0	0	0.0	0.0
10:08:34	hdisk0	84	2.0	250	1752	0.0	0.0
	hdisk1	16	1.0	19	950	0.0	0.0
	cd0	0	0.0	0	0	0.0	0.0
Average	hdisk0	42	1.0	205	1775	0.0	0.0
5.	hdisk1	17	0.3	22	1107	0.0	0.0
	cd0	0	0.0	0	0	0.0	0.0

The sar -q command reports queue statistics.

sar -q 1 10

AIX server2 3 4 000FA17D4C00 06/30/00

11:08:33	runq-sz	%runocc	swpq-sz	%swpocc
11:08:34			1.0	100
11:08:35			1.0	100
11:08:36			1.0	100
11:08:37	1.0	100		
11:08:38	1.0	100	1.0	100
11:08:39	1.0	100	1.0	100
11:08:40	1.0	100	1.0	100
11:08:41			1.0	100
11:08:42			1.0	100

```
11:08:43 1.0 100
```

Average 1.0 50 1.0 80

The sar -r command reports paging statistics.

sar -r 1 10

AIX server2 3 4 000FA17D4C00 06/30/00

11:16:11	slots	cycle/s	fault/s	odio/s
11:16:12	130767	0.00	472.82	66.02
11:16:13	130767	0.00	989.00	800.00
11:16:14	130767	0.00	44.00	1052.00
11:16:15	130767	0.00	43.00	1040.00
11:16:16	130767	0.00	47.00	1080.00
11:16:17	130767	0.00	43.00	808.00
11:16:18	130767	0.00	40.00	860.00
11:16:19	130767	0.00	46.00	836.00
11:16:20	130767	0.00	47.00	852.00
11:16:21	130767	0.00	48.00	836.00
Average	130767	0	183	821

The ${\tt sar}\,\, {\tt -v}$ command reports status of the process, kernel-thread, i-node, and file tables.

sar -v 1 5

AIX server2 3 4 000FA17D4C00 06/30/00

11:12:39	proc-sz	inod-sz	file-sz	thrd-sz
11:12:40	49/262144	229/42942	315/511	59/524288
11:12:41	46/262144	221/42942	303/511	56/524288
11:12:42	45/262144	220/42942	301/511	55/524288
11:12:43	45/262144	220/42942	301/511	55/524288
11:12:44	45/262144	220/42942	301/511	55/524288

The sar -y command reports TTY device activity per second.

sar -y 1 10

AIX server2 3 4 000FA17D4C00 06/30/00

11:48:36	rawch/s	canch/s	outch/s	rcvin/s	xmtin/s	mdmin/s
11:48:37	0	0	104	63	60	0
11:48:38	0	0	58	9	60	0
11:48:39	0	0	58	69	61	0

11:48:40	0	0	58	68	60	0
11:48:41	0	0	58	69	3	0
11:48:42	0	0	58	68	52	0
11:48:43	0	0	58	69	60	0
11:48:44	0	0	58	25	60	0
11:48:45	0	0	58	42	23	0
11:48:46	0	0	58	68	9	0
Average	0	0	63	55	45	0

Although this is not an exhaustive list of the sar command and command output, it is an indication of what the main flags can do. When running the sar command, a combination of the flags can be used to obtain the output required for analyses. For example:

```
# sar -y -r 1 5
AIX server2 3 4 000FA17D4C00
11:48:56 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
        slots cycle/s fault/s odio/s
       0 0 147
130767 0.00 3.96
11:48:57
                            67
                          0.00
               0
          0
11:48:58
                     102
                            69
                                   58
                                           Ω
       130767
               0.00
                     0.00
                            0.00
        0
               0
11:48:59
                      102
                            68
                                   60
                                          0
       130767 0.00
                     0.00
                            0.00
       0 0
11:49:00
                    102
                                           0
       130767 0.00 0.00 0.00
               0 102
                            68
11:49:01
                                    3
                                           0
       130767 0.00 1.00 4.00
Average
                 0
                    111
                             68
                                   2.8
                                           0
Average 130767
                 0
                      1
                              1
```

3.1.2 The sar command summary

The sar command writes the contents of selected cumulative activity counters in the operating system to standard output.

The sar command syntax is as follows:

```
sar [ { -A | [ -a ] [ -b ] [ -c ] [ -k ] [ -m ] [ -q ] [ -r ] [ -u ] [ -v ]
[ -w ] [ -y ] } ] [ -P ProcessorIdentifier, ... | ALL ] [ -ehh [ :mm [
:ss ] ] ] [ -fFile ] [ -iSeconds ] [ -oFile ] [ -shh [ :mm [ :ss ] ] ]
[ Interval [ Number ] ]
```

The accounting system, based on the values in the *Interval* and *Number* parameters, writes information at the specified intervals in seconds the

specified number of times. The default sampling interval for the *Number* parameter is 1 second. The collected data can also be saved in the file specified by the -o *file* flag.

If CPU utilization is near 100 percent (user + system), the workload sampled is CPU-bound. If a considerable percentage of time is spent in I/O wait, it implies that CPU execution is blocked while waiting for disk I/O. The I/O may be from file accesses or it may be I/O associated with paging due to a lack of sufficient memory.

Note -

hours.

The time the system spends waiting for remote file access is not accumulated in the I/O wait time. If CPU utilization and I/O wait time for a task are relatively low, and the response time is not satisfactory, consider investigating how much time is being spent waiting for remote I/O. Since no high-level command provides statistics on remote I/O wait, trace data may be useful in observing this.

The sar command calls a command named sadc to access system data. Two shell scripts, /usr/lib/sa/sal and /usr/lib/sa/sa2, are structured to be run by the cron command and provide daily statistics and reports. Sample stanzas are included (but commented out) in the /var/spool/cron/crontabs/adm crontab file to specify when the cron daemon should run the shell scripts. Collection of data in this manner is useful to characterize system usage over a period of time and determine peak usage

The commonly used flags of the sar command are provided in Table 4.

Table 4. Commonly used flags of the sar command

Flag	Description
-A	Without the -P flag, this is equivalent to specifying -abckmqruvwy. With the -P flag, this is equivalent to specifying -acmuw.

Flag	Description
-a	Reports use of file access system routines, specifying how many times per second several of the system file access routines have been called. When used with the -P flag, the information is provided for each specified processor; otherwise, it is provided only system-wide. The following values are displayed:
	dirblk/s Number of 512-byte blocks read by the directory search routine to locate a directory entry for a specific file.
	iget/s Number of calls to any of several i-node lookup routines that support multiple file system types. The iget routines return a pointer to the i-node structure of a file or device.
	lookuppn/s Calls to the directory search routine that finds the address of a v-node, given a path name.

Flag	Description
-b	Reports buffer activity for transfers, accesses, and cache (kernel block buffer cache) hit ratios per second. Access to most files in AIX Version 3 bypasses kernel block buffering, and therefore does not generate these statistics. However, if a program opens a block device or a raw character device for I/O, traditional access mechanisms are used, making the generated statistics meaningful. The following values are displayed:
	bread/s, bwrit/s Reports the number of block I/O operations. These I/Os are generally performed by the kernel to manage the block buffer cache area, as discussed in the description of the Iread/s value.
	Iread/s, Iwrit/s Reports the number of logical I/O requests. When a logical read or write to a block device is performed, a logical transfer size of less than a full block size may be requested. The system accesses the physical device units of complete blocks and buffers these blocks in the kernel buffers that have been set aside for this purpose (the block I/O cache area). This cache area is managed by the kernel, so that multiple logical reads and writes to the block device can access previously buffered data from the cache and require no real I/O to the device. Application read and write requests to the block device are reported statistically as logical reads and writes. The block I/O performed by the kernel to the block device in management of the cache area is reported as block reads and block writes.
	pread/s, pwrit/s Reports the number of I/O operations on raw devices. Requested I/O to raw character devices is not buffered as it is for block devices. The I/O is performed to the device directly.
	%rcache, %wcache Reports caching effectiveness (cache hit percentage). This percentage is calculated as: [(100) x (Ireads - breads) / (Ireads)].

Flag	Description
-c	Reports system calls. When used with the -P flag, the information is provided for each specified processor; otherwise, it is provided only system-wide. The following values are displayed:
	exec/s, fork/s Reports the total number of fork and exec system calls.
	sread/s, swrit/s Reports the total number of read/write system calls.
	rchar/s, wchar/s Reports the total number of characters transferred by read/write system calls.
	scall/s Reports the total number of system calls.
-е <i>hh[:mm[:ss]]</i>	Sets the ending time of the report. The default ending time is 18:00.
-f File	Extracts records from File (created by -o File flag). The default value of the File parameter is the current daily data file (the /var/adm/sa/sadd file).
-i Seconds	Selects data records at seconds as close as possible to the number specified by the Seconds parameter. Otherwise, the sar command reports all seconds found in the data file.
-k	Reports kernel process activity. The following values are displayed:
	kexit/s Reports the number of kernel processes terminating per second.
	kproc-ov/s Reports the number of times kernel processes could not be created because of enforcement of process threshold limit.
	ksched/s Reports the number of kernel processes assigned to tasks per second.

Flag	Description
-m	Reports message (sending and receiving) and semaphore (creating, using, or destroying) activities per second. When used with the -P flag, the information is provided for each specified processor; otherwise, it is provided only system-wide. The following values are displayed: msg/s
	Reports the number of IPC message primitives.
	sema/s Reports the number of IPC semaphore primitives.
-o File	Saves the readings in the file in binary form. Each reading is in a separate record and each record contains a tag identifying the time of the reading.
-P ProcessorIdentifie r, ALL	Reports per-processor statistics for the specified processor or processors. Specifying the ALL keyword reports statistics for each individual processor, and globally for all processors. Of the flags which specify the statistics to be reported, only the -a, -c, -m, -u, and -w flags are meaningful with the -P flag.
-q	Reports queue statistics. The following values are displayed:
	runq-sz Reports the average number of kernel threads in the run queue.
	%runocc Reports the percentage of the time the run queue is occupied.
	swpq-sz Reports the average number of kernel threads waiting to be paged in.
	%swpocc Reports the percentage of the time the swap queue is occupied.

Flag	Description
-r	Reports paging statistics. The following values are displayed:
	cycle/s Reports the number of page replacement cycles per second.
	fault/s Reports the number of page faults per second. This is not a count of page faults that generate I/O, because some page faults can be resolved without I/O.
	slots Reports the number of free pages on the paging spaces.
	odio/s Reports the number of nonpaging disk I/Os per second.
-s hh[:mm[:ss]]	Sets the starting time of the data, causing the sar command to extract records time-tagged at, or following, the time specified. The default starting time is 08:00.
-u	Reports per processor or system-wide statistics. When used with the -P flag, the information is provided for each specified processor; otherwise, it is provided only system-wide. Because the -u flag information is expressed as percentages, the system-wide information is simply the average of each individual processor's statistics. Also, the I/O wait state is defined system-wide and not per processor. The following values are displayed:
	%idle Reports the percentage of time the CPU or CPUs were idle with no outstanding disk I/O requests.
	%sys Reports the percentage of time the CPU or CPUs spent in execution at the system (or kernel) level.
	%usr Reports the percentage of time the CPU or CPUs spent in execution at the user (or application) level.
	%wio Reports the percentage of time the CPU or CPUs were idle waiting for disk I/O to complete. For system-wide statistics, this value may be slightly inflated if several processors are idling at the same time (an unusual occurrence).

Flag	Description
-v	Reports status of the process, kernel-thread, i-node, and file tables. The following values are displayed:
	file-sz, inod-sz, proc-sz, thrd-sz Reports the number of entries in use for each table.
-w	Reports system switching activity. When used with the -P flag, the information is provided for each specified processor; otherwise, it is provided only system-wide. The following value is displayed:
	pswch/s Reports the number of context switches per second.
-y	Reports tty device activity per second.
	canch/s Reports tty canonical input queue characters. This field is always 0 (zero) for AIX Version 4 and higher.
	mdmin/s Reports tty modem interrupts.
	outch/s Reports tty output queue characters.
	rawch/s Reports tty input queue characters.
	revin/s Reports tty receive interrupts.
	xmtin/s Reports tty transmit interrupts.

Note -

- The sar command itself can generate a considerable number of reads and writes, depending on the interval at which it is run. Run the sar statistics without the workload to understand the sar command's contribution to your total statistics.
- The sar command reports system unit activity if no other specific content options are requested.

3.1.3 The sadc command

The sade command provides a system data collector report.

The syntax for the sadc command is as follows:

```
sadc [ Interval Number ] [ Outfile ]
```

It samples system data a specified interval measured in seconds (Interval) at a specified number of times (Number). It writes in binary format to the specified file (Outfile) or to the standard output. When both Interval and Number are not specified, a dummy record, which is used at system startup to mark the time when the counter restarts from 0, will be written. The sadc command is intended to be used as a backend to the sar command.

AIX contains a number of counters that are increased as various system actions occur. The various system actions include:

- · System unit utilization counters
- · Buffer usage counters
- · Disk and tape I/O activity counters
- · TTY device activity counters
- · Switching and subroutine counters
- · File access counters
- · Queue activity counters
- · Interprocess communication counters

3.1.4 The sa1 and sa2 commands

The sal command is a shell procedure variant of the sadc command and handles all of the flags and parameters of that command. The sal command collects and stores binary data in the /var/adm/sa/sadd file, where dd is the day of the month.

The syntax for the sal command is as follows:

```
sal [ Interval Number ]
```

The Interval and Number parameters specify that the record should be written number times at interval seconds. If you do not specify these parameters, a single record is written.

The sal command is designed to be started automatically by the cron command. If the sal command is not run daily from the cron command, the

sar command displays a message about the nonexistence of the /usr/lib/sa/sa1 data file.

The $_{\rm sa2}$ command is a variant shell procedure of the $_{\rm sar}$ command, which writes a daily report in the /var/adm/sa/sardd file, where dd is the day of the month. The $_{\rm sa2}$ command handles all of the flags and parameters of the $_{\rm sar}$ command.

The $_{\rm sa2}$ command is designed to be run automatically by the $_{\rm cron}$ command and run concurrently with the $_{\rm sa1}$ command.

The syntax for the sa2 command is as follows:

sa2

3.2 The vmstat command

The vmstat command reports statistics about kernel threads, virtual memory, disks, traps, and CPU activity. Reports generated by the vmstat command can be used to balance system load activity. These system-wide statistics (among all processors) are calculated as averages for values expressed as percentages, and as sums otherwise.

The vmstat command syntax is as follows:

```
vmstat [ -f ] [ -i ] [ -s ] [ PhysicalVolume ] [ Interval [ Count ] ]
```

If the vmstat command is invoked without flags, the report contains a summary of the virtual memory activity since system startup. If the -f flag is specified, the vmstat command reports the number of forks since system startup. The *PhysicalVolume* parameter specifies the name of the physical volume.

An example of the vmstat command without any flags follows:

```
# vmstat
kthr memory page faults cpu
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 15982 1388 0 0 0 8 22 0 113 281 36 1 0 98 1
```

Below is an example of the vmstat command with the -f flag:

```
# vmstat -f
51881 forks
```

The *Interval* parameter specifies the amount of time in seconds between each report. The first report contains statistics for the time since system startup. Subsequent reports contain statistics collected during the interval since the previous report. If the *Interval* parameter is not specified, the vmstat command generates a single report and then exits. The *Count* parameter can only be specified with the *Interval* parameter. If the *Count* parameter is specified, its value determines the number of reports generated and the frequency data is collected in seconds. If the *Interval* parameter is specified without the *Count* parameter, reports are continuously generated. A *Count* parameter of 0 is not allowed.

The following is an example of the vmstat command with the *Interval* and *Count* parameters:

vmstat 1 5

kth	r	mem	ory			pa	ge		i	faults				cpu		
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	15982	1388	0	0	0	8	22	0	113	281	36	1	0	98	1
0	0	15982	1387	0	0	0	0	0	0	108	4194	31	2	3	95	0
0	0	15982	1387	0	0	0	0	0	0	109	286	30	0	0	99	0
0	0	15982	1387	0	0	0	0	0	0	108	285	26	0	0	99	0
0	0	15982	1387	0	0	0	0	0	0	111	286	32	0	0	99	0

The kernel maintains statistics for kernel threads, paging, and interrupt activity, which the <code>vmstat</code> command accesses through the use of the knlist subroutine and the /dev/kmem pseudo-device driver. The disk input/output statistics are maintained by device drivers. For disks, the average transfer rate is determined by using the active time and number of transfers information. The percent active time is computed from the amount of time the drive is busy during the report.

The vmstat command with additional information regarding a specific disk is as follows:

vmstat hdisk1

kth	r	mem	ory			pa	ge			f	aults			CI	pu		di	sk	xfe:	r
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa	1	2	3	4
0	0	16273	8385	0	0	0	9	22	0	115	284	39	1	1	98	1	0			

In the previous example of a report generated by the vmstat command, the column headings and their descriptions have the following meaning.

kthr Kernel thread state changes per second over the sampling interval.

- r Number of kernel threads placed in run queue.
- b Number of kernel threads placed in wait queue (awaiting resource, awaiting input or output).

Memory

Information about the usage of virtual and real memory. Virtual pages are considered active if they are allocated. A page is 4096 bytes.

- avm Active virtual pages. When a process executes, space for working storage is allocated on the paging devices (backing store). This can be used to calculate the amount of paging space assigned to executing processes. The number in the avm field divided by 256 will yield the number of megabytes (MB), system wide, allocated to page space. The lsps -a command also provides information on individual paging space. It is recommended that enough paging space be configured on the system so that the paging space used does not approach 100 percent. When fewer than 128 unallocated pages remain on the paging devices, the system will begin to kill processes to free some paging space.
- fre Size of the free list. The system maintains a buffer of memory frames, called the free list, that will be readily accessible when the VMM needs space. The nominal size of the free list varies depending on the amount of real memory installed. On systems with 64 MB of memory or more, the minimum value (MINFREE) is 120 frames. For systems with less than 64 MB, the value is two times the number of MB of real memory, minus 8. For example, a system with 32 MB would have a MINFREE value of 56 free frames. The MINFREE and MAXFREE limits can be shown using the vmtune command.

Note

A large portion of real memory is utilized as a cache for file system data. It is not unusual for the size of the free list to remain small.

- Page Information about page faults and paging activity. These are averaged over the interval and given in units per second.
 - re Pager input/output list.
 - pi Pages paged in from paging space.
 - po Pages paged out to paging space.
 - fr Pages freed (page replacement).

- sr Pages scanned by page-replacement algorithm.
- cy Clock cycles by page-replacement algorithm.

Faults Trap and interrupt rate averages per second over the sampling interval.

- in Device interrupts.
- sy System calls.
- cs Kernel thread context switches.

CPU Breakdown of percentage usage of CPU time.

- us User time.
- sy System time.
- id CPU idle time.
- wa CPU cycles to determine that the current process is waiting and there is pending disk input/output.

Disk xfer Provides the number of transfers per second to the specified physical volumes that occurred in the sample interval. The *PhysicalVolume* parameter can be used to specify one to four names. Transfer statistics are given for each specified drive in the order specified. This count represents requests to the physical device. It does not imply an amount of data that was read or written. Several logical requests can be combined into one physical request.

The vmstat command, using with the -s flag, writes to the standard output the contents of the sum structure, which contains an absolute count of paging events since system initialization. The -s option is exclusive of the other vmstat command options.

The following is an example of the vmstat command using the -s flag:

```
# vmstat -s
8765020 total address trans. faults
4832918 page ins
2989263 page outs
19 paging space page ins
7 paging space page outs
0 total reclaims
5417148 zero filled pages faults
12633 executable filled pages faults
15031850 pages examined by clock
118 revolutions of the clock hand
```

6086090 pages freed by the clock

105808 backtracks

0 lock misses

0 free frame waits

0 extend XPT waits

2025516 pending I/O waits

3031667 start I/Os

3031667 iodones

24786000 cpu context switches

77240518 device interrupts

0 software interrupts

0 traps

191650677 syscalls

A list of all the possible events is provided in the following.

> address translation page fault. I/O may or may not be required to resolve the page fault. Storage protection page faults (lock misses)

are not included in this count.

page ins Incremented for each page read in by the

virtual memory manager. The count is

incremented for page ins from page space and file space. Along with the page out statistic, this represents the total amount of real I/O initiated by the virtual memory manager.

page outs Incremented for each page written out by the

virtual memory manager. The count is

incremented for page outs to page space and for page outs to file space. Along with the page in statistic, this represents the total amount of real I/O initiated by the virtual

memory manager.

paging space page ins
Incremented for VMM initiated page ins from

paging space only.

paging space only.

total reclaims Incremented when an address translation fault

can be satisfied without initiating a new I/O request. This can occur if the page has been previously requested by VMM, but the I/O has

not yet completed; or if the page was

pre-fetched by VMM's read-ahead algorithm, but was hidden from the faulting segment; or if the page has been put on the free list and has

not yet been reused.

storage and can be satisfied by assigning a

frame and zero-filling it.

pages examined by clock VMM uses a clock-algorithm to implement a

pseudo least recently used (LRU) page replacement scheme. Pages are aged by being examined by the clock. This count is incremented for each page examined by the

clock.

revolutions of the clock hand
Incremented for each VMM clock revolution

(that is, after each complete scan of memory).

selects to free from real memory.

backtracks Incremented for each page fault that occurs

while resolving a previous page fault. (The new page fault must be resolved first and then

initial page faults can be backtracked.)

lock misses VMM enforces locks for concurrency by

removing address ability to a page. A page fault can occur due to a lock miss, and this

count is incremented for each such

occurrence.

VMM while free frames are gathered.

VMM due to a commit in progress for the

segment being accessed.

pending I/O waits Incremented each time a process is waited by

VMM for a page-in I/O to complete.

start I/Os Incremented for each read or write I/O request

initiated by VMM.

iodones Incremented at the completion of each VMM

I/O request.

CPU context switches	Incremented for each CPU context switch (dispatch of a new process).
device interrupts	Incremented for each hardware interrupt.
software interrupts	Incremented for each software interrupt. A software interrupt is a machine instruction similar to a hardware interrupt that saves some state and branches to a service routine. System calls are implemented with software interrupt instructions that branch to the system call handler routine.
traps	Unused by the AIX operating system.

In the following examples, an idle system will be shown, and then load will be put onto the system; the resultant output will be analyzed to investigate potential problems.

Incremented for each system call.

The following is the output of the vmstat command without any load:

vmstat 1 5

syscalls

kth	r	mem	ory			pa	ge			cpu						
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	16057	1291	0	0	0	8	22	0	113	281	36	1	0	98	1
0	0	16057	1290	0	0	0	0	0	0	108	472	25	0	0	99	0
0	0	16057	1290	0	0	0	0	0	0	109	282	32	0	0	99	0
0	0	16057	1290	0	0	0	0	0	0	109	285	26	0	0	99	0
0	0	16057	1290	0	0	0	0	0	0	108	282	29	0	0	99	0

The first output line gives the average since system boot and can be left out when calculating system load. This is the same as running the vmstat command without any flags.

For the purpose of this exercise, the output of the vmtune command is as follows:

```
# /usr/samples/kernel/vmtune
```

```
vmtune: current values:
              -R
                      - f
                           - F
     -P -r
                                -N
26007 104028 2 8 120 128 524288
    - w
            -c -b
        -k
                        -B
                               -u
\verb|maxpin npswarn npskill numclust numfsbufs hd_pbuf\_cnt lvm\_bufcnt lrubucket defps|
104851
    4096 1024 1 93 80
                           9 131072 1
```

```
-s -n -S -h
sync_release_ilock nokillroot v_pinshm strict_maxperm
0 0 0 0 0

number of valid memory pages = 131063 maxperm=79.4% of real memory
maximum pinable=80.0% of real memory minperm=19.8% of real memory
number of file memory pages = 101629 numperm=77.5% of real memory
```

The vmstat command, with only an *Interval* parameter and *Count* parameter, is as follows:

vmstat 1 15

kth	r	mem	ory			pa	age			t	faults	3	cpu						
r	 b	avm	fre	re	pi	ро	fr	sr	су	in	sy	cs	us	sy	id	wa			
0	0	16299	1749	0	0	0	8	21	0	113	281	36	1	0	98	1			
1	1	16299	1529	0	0	0	0	0	0	301	8707	382	52	13	0	35			
1	1	16299	1398	0	0	0	0	0	0	185	6557	238	91	8	0	1			
1	1	16299	1227	0	0	0	0	0	0	225	6705	257	85	15	0	0			
1	0	16299	1049	0	0	0	0	0	0	246	6587	334	71	10	0	19			
1	1	16299	861	0	0	0	0	0	0	250	9051	317	72	19	0	9			
0	1	16265	653	0	0	0	0	0	0	342	10304	1 516	5 37	7 21	1 (43			
4	0	16284	121	0	0	0	16	35	0	253	2432	375	36	6	43	15			
0	0	16284	120	0	0	0	432	1066	0	265	302	246	31	4	54	11			
1	0	16284	121	0	0	0	160	389	0	221	1184	239	8	5	77	10			
0	1	16284	120	0	0	0	576	1447	0	394	2377	525	28	9	39	24			
0	0	16284	122	0	0	0	232	480	0	277	1185	346	21	5	63	11			
0	0	16284	122	0	0	0	384	1630	0	326	1081	400	16	12	51	21			
0	0	16284	126	0	0	0	336	784	0	284	742	326	20	3	59	18			
0	1	16284	126	0	0	0	761	1615	0	336	1032	420	36	4	48	12			

As can be seen, kthr (kernel thread), r (runnable threads), and b (waiting threads) outputs stayed relatively constant and low. The r thread should be less than 5 under a stable workload. This b value should usually be near zero.

In the memory column, the avm (average paging space memory) stayed relatively stable but the fre (free memory frames) value dropped from 1749 to its lowest of 120. If the fre value had dropped below 120 for an extended period of time, this system would be continuously paging in and out, which would lead to system performance problems.

For the page heading, the re, pi, po, and cy values remained relatively constant. The fr and sr rates, however, increased substantially. The pi rate should not go above five; however if a page-in occurs, then there must have been a previous page-out for that page. It is also likely in a memory-constrained environment that each page-in will force a different page

to be stolen and, therefore, paged out. If the system is reading in a significant number of persistent pages, you may see an increase in po without corresponding increases in pi. This situation does not necessarily indicate thrashing, but may warrant investigation into data access patterns of the applications. The fr column represents the number of pages freed and the sr column represents the number of pages scanned by the page placement algorithm. With stable, unfragmented memory, the scan rate and free rate may be nearly equal. On systems with multiple processes using many different pages, the pages are more volatile and disjointed. In this scenario, the scan rate may greatly exceed the free rate.

For the faults heading, the in, sy, and cs values fluctuated at various intervals. There is no steadfast limit to these, as the overhead is minimal, and it is difficult to say what is excessive. The only thing to remember is that the in value will always be higher than 100.

For the cpu heading, the us, sy, id, and wa values also fluctuated dramatically. The output is in percent of CPU utilization. The us output is the amount of time spent by a process executing functions without having to use the system (kernel) mode. The sy time details the amount of time a process spends utilizing system (kernel) resources. Optimum use would have the CPU working 100 percent of the time. This holds true in the case of a single-user system with no need to share the CPU. Generally, if us + sy time is below 90 percent, a single-user system is not considered CPU constrained. However, if us + sy time on a multi-user system exceeds 80 percent, the processes may spend time waiting in the run queue. Response time and throughput might suffer. The id output is the CPU idle time. The wa output is idle time with pending local disk I/O. A wa value over 40 percent could indicate that the disk subsystem may not be balanced properly, or it may be the result of a disk-intensive workload. The four values added together will give a CPU utilization of 100 percent.

3.3 The ps command

In this section, the following topics are covered:

- Use of the ps command in CPU usage study
- Use of the ps command in memory usage study

The \mathtt{ps} command determines which processes are running and the resources they use.

3.3.1 Use of the ps command in a CPU usage study

Three of the possible ps command output columns report CPU usage, each in a different way, as shown in Table 5. These columns will be the topic of discussion in the sections that follow.

Table 5. CPU related ps output

Column	Value
С	Recent used CPU time for process.
TIME	Total CPU time used by the process since it started.
%CPU	Total CPU time used by the process since it started, divided by the elapsed time since the process started. This is a measure of the dependence of the program on CPU.

3.3.1.1 The C column

The C column can be generated by the -I flag and the -f flag. In this column, the CPU utilization of processes or threads is reported. The value is incremented each time the system clock ticks and the process or thread is found to be running. Therefore, it also can be said to be a process penalty for recent CPU usage. The value is decayed by the scheduler by dividing it by 2 once per second when the process is not using CPU. Large values indicate a CPU intensive process and result in lower process priority while small values indicate an I/O intensive process and result in a more favorable priority. In the following example, the totestprog program is a CPU intensive program.

Another aspect of the ps command is the formatted output. The following formatting sorts the output according to the third column with the largest value at top, and shows only five lines of the total output:

```
# ps -ef | sort +3 -r | head -n 5
    UID PID PPID C STIME TTY TIME CMD
    root 22656 27028 101 15:18:31 pts/11 7:43 ./tctestprog
    root 14718 24618 5 15:26:15 pts/17 0:00 ps -ef
    root 4170 1 3 Jun 15 - 12:00 /usr/sbin/syncd 60
    root 21442 24618 2 15:26:15 pts/17 0:00 sort +3 -r
```

From the previous example, you can determine that totestprog is the process using the most CPU, due to the C value of 101.

The following vmstat output shows that the CPU is used about 25 percent by usr processes:

# 7	mst	tat 2 3														
ktł	ır	memo	ory			p	age				fault	S		срі	1	
																-
r	b	avm	fre	re	pi	ро	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	26468	51691	0	0	0	0	0	0	100	91	6	47	0	53	0
1	1	26468	51691	0	0	0	0	0	0	415	35918	237	26	2	71	0
1	1	26468	51691	0	0	0	0	0	0	405	70	26	25	0	75	0

3.3.1.2 The TIME column

The ps command output column TIME is generated with all flags, and it shows the total execution time for the process. This calculation does not take into account when the process was started, as seen in the following output. The same test program is used again, and even though the C column shows that the process gets a lot of CPU time, it is not the process with the largest value in the TIME column:

The syncd, X, and dtsession are all processes that have been active since IPL; that is why they have accumulated more total TIME than the test program.

3.3.1.3 The %CPU column

The %CPU column of the ps command output, generated by the -u or the -v flags, shows the percentage of time the process has used the CPU since the process started. The value is computed by dividing the time the process uses the CPU by the elapsed time of the process. In a multi-processor environment, the value is further divided by the number of available CPUs, because several threads in the same process can run on different CPUs at the same time. Because the time base over which this data is computed

varies, the sum of all %CPU fields can exceed 100 percent. In the example below, there are two ways to sort the extracted output from a system. The first example includes kprocs, for example, PID 516, which is a wait process. The other, more complex command syntax, excludes such kprocs:

```
# ps auxwww | head -n 5
USER
         PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
        18802 25.0 1.0 4140 4160 pts/11 A 15:40:28 5:44 ./tctestprog
root
        516 25.0 5.0 8 15136 - A Jun 15 17246:34 kproc
root
         774 20.6 5.0 8 15136
                                   - A Jun 15 14210:30 kproc
root
       1290 5.9 5.0 8 15136
                                   - A Jun 15 4077:38 kproc
root
# ps gu|head -n1; ps gu|egrep -v "CPU|kproc"|sort +2b -3 -n -r |head -n 5
USER
       PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root
       18802 25.0 1.0 4140 4160 pts/11 A 15:40:28 7:11 ./tctestprog
imnadm 12900 0.0 0.0 264 332 - A Jun 15 0:00 /usr/IMNSearch/ht
         0 0.0 5.0 12 15140 - A Jun 15 4:11 swapper
root 1 0.0 0.0 692 764 - A Jun 15 0:28 /etc/init root 3398 0.0 1.0 1692 2032 - A Jun 15 1:48 /usr/dt/bin/dtses
```

From the output, you can determine that the test program, tctestprog, has used about 25 percent of the available CPU resources since the process started.

3.3.2 Use of the ps command in a memory usage study

The ps command can also provide useful information on memory usage. The most useful output is presented in Table 6 and discussed in the following sections.

Table 6. Memory related ps output

Column	Value
SIZE	The virtual size of the data section of the process in 1 KB units
RSS	The real-memory size of the process in 1 KB units
%MEM	The percentage of real memory used by this process

3.3.2.1 The SIZE column

The v flag generates the SIZE column. This is the virtual size (in the paging space), in kilobytes, of the data section of the process (displayed as SZ by other flags). This value is equal to the number of working segment pages of the process that have been touched times four. If several working segment pages are currently paged out, this number is larger than the amount of real memory being used. SIZE includes pages in the private segment and the shared-library data segment of the process, as in the following example:

```
# ps av |sort +5 -r |head -n 5 | PID TTY STAT TIME PGIN | SIZE | RSS | LIM | TSIZ | TRS | CPU | MMEM | COMMAND |
25298 pts/10 | A | 0:00 | 0 | 2924 | 12 | 32768 | 159 | 0 | 0:0 | 0:0 | smitty |
13160 | 1ft0 | A | 0:00 | 17 | 368 | 72 | 32768 | 40 | 60 | 0:0 | 0:0 | 0:0 | 0:0 |
27028 pts/11 | A | 0:00 | 90 | 292 | 416 | 32768 | 198 | 232 | 0:0 | 1:0 | ksh |
24618 pts/17 | A | 0:04 | 318 | 292 | 408 | 32768 | 198 | 232 | 0:0 | 1:0 | ksh |
```

3.3.2.2 The RSS column

The v flag also produces the RSS column, as shown in the previous example. This is the real-memory (resident set) size in kilobytes of the process. This number is equal to the sum of the number of working segment and code segment pages in memory times four. Remember that code segment pages are shared among all of the currently running instances of the program. If 26 ksh processes are running, only one copy of any given page of the ksh executable program would be in memory, but the $_{\mbox{\footnotesize ps}}$ command would report that code segment size as part of the RSS of each instance of the ksh program.

If you want to sort on the sixth column, you receive the output sorted by the RSS column, as shown in the following example:

```
# ps av |sort +6 -r |head -n 5

PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

21720 pts/1 A 0:00 1 288 568 32768 198 232 0.0 1.0 ksh

27028 pts/11 A 0:00 90 292 416 32768 198 232 0.0 1.0 ksh

24618 pts/17 A 0:04 318 292 408 32768 198 232 0.0 1.0 ksh

15698 pts/1 A 0:00 0 196 292 32768 52 60 0.0 0.0 ps av
```

3.3.2.3 The %MEM column

The %MEM column is generated by the u and the v flags. This is calculated as the sum of the number of working segment and code segment pages in memory times four (that is, the RSS value), divided by the size of the real memory of the machine in KB, times 100, rounded to the nearest full percentage point. This value attempts to convey the percentage of real memory being used by the process. Unfortunately, such as RSS, it tends to exaggerate the cost of a process that is sharing program text with other processes. The rounding to the nearest percentage point causes all of the processes in the system that have RSS values under .005 times real memory size to have a %MEM of 0.0.

The following is an example of the ps %MEM column:

```
# ps au |head -n 1; ps au |egrep -v "RSS"|sort +3 -r |head -n 5
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 22750 0.0 21.0 20752 20812 pts/11 A 17:55:51 0:00./tctestprog2
root 21720 0.0 1.0 484 568 pts/1 A 17:16:14 0:00 ksh
root 25298 0.0 0.0 3080 12 pts/10 A Jun 16 0:00 smitty
```

```
root 27028 0.0 0.0 488 416 pts/11 A 14:53:27 0:00 ksh root 24618 0.0 0.0 488 408 pts/17 A Jun 21 0:04 ksh
```

You can combine all of these columns into one output, by using the gv flags. For example:

```
# ps gv|head -n 1; ps gv|egrep -v "RSS" | sort +6b -7 -n -r |head -n 5
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

15674 pts/11 A 0:01 0 36108 36172 32768 5 24 0.6 24.0 ./tctestp

22742 pts/11 A 0:00 0 20748 20812 32768 5 24 0.0 14.0 ./backups

10256 pts/1 A 0:00 0 15628 15692 32768 5 24 0.0 11.0 ./tctestp

2064 - A 2:13 5 64 6448 xx 0 0 6392 0.0 4.0 kproc

1806 - A 0:20 0 16 6408 xx 0 6 6392 0.0 4.0 kproc
```

In the following list, additional columns in the previous examples are explained:

PGIN

The number of page-ins caused by page faults. Since all I/O operations are classified as page faults by the ps command, this is a measure of I/O volume.

TSIZ

The size of the text (shared-program) image. This is the size of the text section of the executable file. Pages of the text section of the executable program are only brought into memory when they are touched, that is, branched to or loaded from. This number represents only an upper bound on the amount of text that could be loaded. The TSIZ value does not reflect actual memory usage. This TSIZ value can also be seen by executing the dump -ov command against an executable program (for example, dump -ov /usr/bin/1s).

TRS

The size of the resident set (real memory) of text. This is the number of code segment pages multiplied by four. This number exaggerates the memory used for programs where multiple instances are running. The TRS value can be higher than the TSIZ value, because other pages may be included in the code segment, such as the XCOFF header and the loader section.

3.4 The tprof command

In this section the following topics are discussed:

- The use of tprof to study general CPU performance
- The use of tprof on a user program

3.4.1 Using the tprof general report

In the AIX operating system, an interrupt occurs periodically to allow a *housekeeping* kernel routine to run. This occurs 100 times per second. When the tprof command is invoked, it counts every such kernel interrupt as a *tick*. This kernel routine records the process ID and the address of the instruction executing when the interrupt occurs, for use by the tprof command. The tprof command also records whether the process counter is in the kernel address space, user address space, or shared library address space.

A summary ASCII report with the suffix .all is always produced. If no program is specified, the report is named __prof.all. If a program is specified, the report is named __program.all. This report contains an estimate of the amount of CPU time spent in each process that was executing while the tprof program was monitoring the system. It also contains an estimate of the amount of CPU time spent in each of the three address spaces and the amount of time the CPU was idle.

The files containing the reports are left in the working directory. All files created by the tprof command are prefixed by ____ (two underscores).

In the following example, a generic report is generated:

```
# tprof -x sleep 30
Starting Trace now
Starting sleep 30
Wed Jun 28 14:58:58 2000
System: AIX server3 Node: 4 Machine: 000BC6DD4C00
Trace is done now
30.907 secs in measured interval
 * Samples from __trc_rpt2
 * Reached second section of __trc_rpt2
```

In this case, the sleep 30 parameter directs the ${\tt tprof}$ command to run for 30 seconds.

The Total column in the __prof.all is useful. The first section indicates the use of ticks on a per process basis.

Process	PID	TID	Total	Kernel User	Shared	Other
======	===	===	=====	======	=====	=====
wait	516	517	3237	3237 0	0	0
tctestprg	14746	13783	3207	1 3206	0	0
tctestprg	13730	17293	3195	0 3195	0	0
wait	1032	1033	3105	3105 0	0	
wait	1290	1291	138	138 0	0	0

swapper	0	3	10	7	3	0	0
tprof	14156	5443	6	3	3	0	0
trace	16000	14269	3	3	0	0	0
syncd	3158	4735	2	2	0	0	0
tprof	5236	16061	2	2	0	0	0
gil	2064	2839	1	1	0	0	0
gil	2064	3097	1	1	0	0	
trace	15536	14847	1	1	0	0	0
sh	14002	16905	1	1	0	0	0
sleep	14002	16905	1	1	0	0	0
======	===	===	====	=====	====	=====	=====
Total			12910	6503	6407	0	0

Since each tick is 1/100 second, 30 seconds requires a total of 3000 ticks. However, when looking at the output, there are over 12000 total ticks. The result is dependent on the hardware; in this case, a four-way F50, so the available ticks are calculated in the following way:

Time (in seconds) x Number of available CPUs x 100

In the previous output, you can determine that both tctestprg processes use about 3200 ticks, approximately 25 percent of the total available ticks. This is confirmed with the following ps auxwww output:

#	ps	auxwww									
U	SER	PID	%CPU	%MEM	SZ	RSS	TTY ST	'ΑΤ	STIME	TIME	COMMAND
r	oot	14020	25.0	0.0	300	320	pts/1 A		15:23:55	16:45	./tctestprg
r	oot	12280	25.0	0.0	300	320	pts/1 A		15:23:57	16:43	./tctestpra

In the second section of the general report of the tproc command, the total amount of ticks used by a specified type of process is noted. In this section, the total ticks used by a process type are in the Total column, and the number of processes representing that type can be seen in the FREQ column.

Process	FREQ	Total	Kernel	User	Shared	Other
======	===	=====	=====	====	=====	=====
wait	3	6480	6480	0	0	0
tctestprg	2	6402	1	6401	0	0
swapper	1	10	7	3	0	0
tprof	2	8	5	3	0	0
trace	2	4	4	0	0	0
gil	2	2	2	0	0	0
syncd	1	2	2	0	0	0
sh	1	1	1	0	0	0
sleep	1	1	1	0	0	0
======	===	=====	=====	====	=====	=====
Total	15	12910	6503	6407	0	0

3.4.2 Using tprof on a program

The tprof command is also a useful tool for C, C++, or FORTRAN programs that might be CPU-bound. It identifies sections of a program that are most heavily using the CPU. The tprof command executes a program, and then produces a set of files containing reports. The reports are divided down to sub-routine level.

The following example is a basic one; there are many more possibilities outside the scope of this document:

```
# tprof ./tctestprg
Starting Trace now
Starting ./tctestprg
Wed Jun 28 15:57:35 2000
System: AIX server3 Node: 4 Machine: 000BC6DD4C00
Trace is done now
23.258 secs in measured interval
  * Samples from __trc_rpt2
  * Reached second section of __trc_rpt2
(The tctestprg process was manually killed)
```

The output file is named __tctestprg.all, and the output is restricted to the process provided as an argument to the command. The first section is the same as shown in a general report. However, it only reflects a single process.

The second section is a trivial report on the single process.

Process	FREQ	Total	Kernel	User	Shared	Other
======	===	=====	=====	====	=====	=====
./tctestpro	j 1	2156	0	2156	0	0
======	===	=====	=====	====	=====	=====
Total	1	2156	0	2156	0	0

The third section provides information about the subroutines used in the specified process providing information about areas that require tuning.

3.5 The symon command

The symon command is used to display information regarding the current memory state. Although it is a complicated command, you should understand what it can do to assist you in performance monitoring.

The symon command generates seven types of reports:

- Global
- User
- Process
- Segment
- · Detailed segment
- Command
- Workload management class

To run each of these reports, a report indicator flag needs to be used.

With the exception of the symon -G and symon -D reports, the other report options use the same flags with a similar use. In the following sections an example of the command and the output generated is provided. This is not an exhaustive list of functions; rather, it is a short demonstration of the versatility of the symon command. For an explanation of the flags, see Section 3.5.8, "The symon command flags" on page 94.

3.5.1 The symon global report

The global report is generated when the -G flag is specified.

The symon -G command has the following syntax:

```
svmon -G [ -i Interval [ NumIntervals]] [ -z ]
```

Running the symon -G global report command generates the following output:

symon -G

	size	inuse	free	pin	virtual
memory	131063	119922	11141	6807	15924
pg space	131072	305			
	work	pers	clnt		
pin	6816	0	0		
in use	21791	98131	0		

The $_{\rm symon}$ -G command with an interval and the number of intervals, and providing the -z flag to obtain the maximum memory allocated, provides the following output:

svmon -G -i1 5 -z

	size	inuse	free	pin	virtual
memory	131063	125037	6026	6811	15948
pg space	131072	305			
	work	pers	clnt		
pin	6820	0	0		
in use	21950	103087	0		
	size	inuse	free	pin	virtual
memory	131063	125847	5216	6811	15949
pg space	131072	305			
	work	pers	clnt		
pin	6820	0	0		
in use	21954	103893	0		
	size	inuse	free	pin	virtual
memory	131063	126769	4294	6811	15949
pg space	131072	305			
	work	pers	clnt		
pin	6820	0	0		
in use	21954	104815	0		
	size	inuse	free	pin	virtual
memory	131063	127890	3173	6811	15949
pg space	131072	305	5275	0011	20313
	work	pers	clnt		
pin	6820	0	0		
in use	21954	105936	0		
	size	inuse	free	pin	virtual
memory	131063	129092	1971	6811	15949
pg space	131063	305	19/1	0011	13343
py space	131072	202			

	work	pers	clnt
pin	6820	0	0
in use	21954	107138	0

Maximum memory allocated = 432

In the previous example, the headings have the following meanings:

memory	Specifies statistics describing the use of real memory, including:
- size	Number of real memory frames (size of real memory)
- inuse	Number of frames containing pages
- free	Number of frames free
- pin	Number of frames containing pinned pages
- virtual	Number of pages allocated in the system virtual space
- stolen	Number of frames stolen by ${\tt rmss}$ and made unusable by the VMM
pg space	Specifies statistics describing the use of paging space. This data is reported only if the -r flag is not used.
- size	Size of paging space
- inuse	Number of paging space pages in use
pin	Specifies statistics on the subset of real memory containing pinned pages, including:
- work	Number of frames containing pinned pages from working segments
- pers	Number of frames containing pinned pages from persistent segments
- cInt	Number of frames containing pinned pages from client segments
in use	Specifies statistics on the subset of real memory in use, including:
- work	Number of frames containing pages from working segments
- pers	Number of frames containing pages from persistent segments
- cInt	Number of frames containing pages from client segments

3.5.2 The symon user report

The user report is printed when the $-\ensuremath{\text{U}}$ flag is specified.

The ${\tt svmon}$ -U command has the following syntax:

The ${\tt symon}$ -U without any options produces output similar to the following:

#	svmon	-U
---	-------	----

Jser root		Inuse 18447	Pin 1327	Pgsp 175	Virtua 789			
SYSTEM se	gments	Inuse 3816	Pin 1269	Pgsp 175	Virtua 353	al		
Vsid	Esid Type	Description	L	Inuse	Pin	Pqsp	Virtual	Addr Range
0	0 work	kernel seg		3792	1265	175		032767 : 654756553
9352	- work			12	1	0	12	049746
220	- work			6	1	0	6	049746
7a0f	- work			4	1	0	4	049746
502a	- work			2	1	0	2	049746
EXCLUSIVE	segments	Inuse	Pin	Pgsp	Virtua			
		12551	58	0	389	ŧΤ		
Vsid	Esid Type	Description	L	Inuse	Pin	Pqsp	Virtual	Addr Range
7162		/dev/lv00:1		6625	0	-	-	0100987
2b65	- pers /	dev/hd4:4294		0	0	-	-	
1369		/dev/hd3:32		0	0	-	-	
1b63		code,/dev/h		0	0	-	-	021
5b4b	-	code,/dev/h		0	0	-	-	01
1b43	-	/dev/hd2:32		0	0	-	-	00
e6ff	-	/dev/hd4:73		0	0	-	-	
3326	-	code,/dev/h		0	0	-	-	04
2ee6	-	/dev/hd2:14		0	0	-	-	
ea9d	-	/dev/hd2:39		0	0	-	-	04
d67b	-	/dev/hd2:32		0	0	-	-	00
5668		/dev/hd2:98		0	0	-	-	00
466a	-	code,/dev/h		0	0	-	-	04
d21a	-	code,/dev/h		0	0	-	-	01
a41		/dev/hd2:32		0	0	-	-	01
aa15		code,/dev/h		0	0	-	-	00
f1fe	-	/dev/hd2:10		0	0	_	-	02
e9fd		/dev/hd2:10		0	0	-	-	014
c9f9 b9f7	-	/dev/hd2:32		0	0	_		
	-	code,/dev/h		0	0	-	-	015
		code,/dev/h		0	0	_	_	010
alf4	-							
a1f4 3a07	1 pers	code,/dev/h		0	0	-		07
alf4	1 pers 1 pers	code,/dev/h code,/dev/h /dev/hd2:32	d2:10718	0 0	0	-	-	07

User guest	Inuse 0	Pin 0	Pgsp 0	Virtual 0	
User nobody	Inuse 0	Pin 0	Pgsp 0	Virtual 0	
User lpd	Inuse 0	Pin 0	Pgsp 0	Virtual 0	
User nuucp	Inuse 0	Pin 0	Pgsp 0	Virtual 0	
User ipsec	Inuse 0	Pin 0	Pgsp 0	Virtual 0	
User netinst	Inuse 0	Pin 0	Pgsp 0	Virtual 0	==========

To check a particular users' utilization, as well as the total memory allocated, use the following command:

svmon -U root -z

=======		====:	=========	=======	======	======		======	========
User root	5		Inuse	Pin	Pqsp	Virtua	al		
			10980	1322	175	791	L3		
SYSTEM se	egments		Inuse	Pin		Virtua			
			3816	1269	175	353	35		
Vsid	Esid	Туре	Description		Inuse	Pin	Pgsp	Virtual	Addr Range
0	0	work	kernel seg		3792	1265	175	3511	032767 :
									6547565535
9352	-	work			12	1	0	12	049746
220	-	work			6	1	0	6	049746
7a0f	-	work			4	1	0	4	049746
502a	=	work			2	1	0	2	049746
EXCLUSIVE	 Z seamei	nts	Inuse	Pin	Pasp	Virtua	 al		
DMCDODIVI	a beginer	100	5024	53	0	390			
			3021	55	ŭ	330	, ,		
Vsid	Esid	Type	Description		Inuse	Pin	Pgsp	Virtual	Addr Range
1be3	2	work	process priv	rate	580	8	0	579	0675 :
d9fb	-	pers	/dev/hd9var:	86	0	0	-	-	00
c9f9	-	pers	/dev/hd2:327	05	0	0	-	-	03
alf4	1	pers	code,/dev/hd	l2:10765	0	0	-	-	010
3a07	1	pers	code,/dev/hd	l2:10684	0	0	-	-	07
2a05	1	pers	code,/dev/hd	l2:10718	0	0	-	-	0170
d9bb	1	pers	code,/dev/hd	l2:4379	0	0	-	-	020
c955	-	pers	/dev/hd3:33		0	0	-	-	05
4168	-	pers	/dev/hd2:204	85	0	0	-	-	00

2965	- pers	/dev/hd2:204	86	0	0	-	-	07
694d	- pers	/dev/hd9var:	2079	0	0	-	-	00
514a	- pers	/dev/hd9var:	2078	0	0	-	-	00
30a6	- pers	/dev/hd9var:	2048	0	0	_	-	00
4088	- pers	/dev/hd2:409	8	0	0	_	-	01
dbfb	- pers	/dev/hd3:21		0	0	-	-	
SHARED	segments	Inuse	Pin	Pgsp	Virtua	1		
		2140	0	0	47	13		
Vsid	Esid Type	Description		Inuse	Pin	Pgsp	Virtual	Addr Range
8811	d work	shared libra	ry text	2080	0	0	473	065535
e03c	1 pers	code,/dev/hd	2:4204	58	0	_	-	058
2865	- pers	/dev/hd2:323	43	2	0	_	-	01
Maximum	memory alloca	ated = 21473						

The headings have the following meaning:

User	Indicates the user name.
Inuse	Indicates the total number of pages in real memory in segments that are used by the user.
Pin	Indicates the total number of pages pinned in segments that are used by the user.
Pgsp	Indicates the total number of pages reserved or used on paging space by segments that are used by the user.
Virtual	Indicates the total number of pages allocated in the process virtual space.

Once the column heading is displayed, symon displays (if the -d flag is specified) information about all the processes run by the specified login user name. It only contains the column heading of the processes, as described in the process report.

Then $\,{\, {\rm symon}}\,$ displays information about the segments used by those processes.

This set of segments is separated into three categories:

- 1. The segments that are flagged as system segments that are shared by all processes
- 2. The segments that are only used by the set of processes
- 3. The segments that are shared between several users

If the -I flag is specified, then for each segment in the last category, the list of process identifiers that use the segment is displayed. The login user name that executes the process identifier is also displayed.

3.5.3 The symon process report

The process report is generated when the -P flag is specified.

The symon -P command has the following syntax:

The symon -P command process report has output similar to the following:

svmon -P | pg

Pid	Command	1	Inuse	Pin	Pgsp	Virtua	al 6	54-bit	Mthrd
11126	backbyr	name	32698	1266	175	411	L4	N	N
Vsid	Esid	Туре	Description	n	Inuse	Pin	Pgsp	Virtual	Addr Range
7162	-	pers	/dev/lv00:1	17	26650	0	-	-	0100362
0	0	work	kernel seg		3790	1265	175	3509	032767 : 654756553
8811	d	work	shared lib	rary text	2030	0	0	540	065535
c373	-	pers	/dev/hd3:20	061	134	0	-	-	0133
4823	2	work	process pri	ivate	48	1	0	48	047 : 653106553
2969	f	work	shared lib	rary data	22	0	0	17	0749
cdb7	3	pers	shmat/mmap,	,/dev/hd2:	16	0	_	-	016
6d28	1	pers	code,/dev/h	nd2:10334	7	0	-	-	06
5920	-	pers	/dev/hd2:32	2166	1	0	-		00
•	Command		Inuse	Pin	Pqsp	 Virtua		 54-bit	 Mthrd
	telneto	-	6001	1266	175	421		N N	N N
3132	CCINCCC	•	0001	1200	175	12.			14
Vsid	Esid	Type	Description	1	Inuse	Pin	Pasp	Virtual	Addr Range
0			kernel seg		3790	1265	175	3509	032767 : 654756553
8811	d	work	shared lib	rary text	2030	0	0	540	065535
3f24	2	work	process pri	ivate	106	1	0	106	096 : 653066553
fa3f	f	work	shared libi	rary data	73	0	0	58	0640
d67b	-	pers	/dev/hd2:32	2715	1	0	-	-	00
3406	3	work	shmat/mmap		1	0	0	1	00
9c13	1	pers	code,/dev/h	nd2:10763	0	0	-	-	0101
•									
	Command	1	Inuse	Pin	Pgsp	Virtua		54-bit	Mthrd
6968	rtcmd		3794	1266	175	351	L3	N	N
Vsid 0			Description kernel seg	n	Inuse 3790		Pgsp 175		Addr Range 032767 : 654756553
6a0d	2	work	process pri	ivate	4	1	0	4	654756553
baud									

Vsid	Esid Type	e Description		Inuse	Pin	Pgsp	Virtual	Addr Range
0	0 worl	kernel seg		3790	1265	175	3509	032767 :
								6547565535
8010	2 wor	process priv	ate	2	1	0	2	6533965535
Pid	Command	Inuse	Pin	Pgsp	Virtua	al 6	54-bit	Mthrd
0		3	1	0		3	N	N
Vsid	Esid Type	e Description		Inuse	Pin	Pgsp	Virtual	Addr Range
780f	2 work	nrocess priv	ate	3	1	0	3	65338 65535

The svmon -P command can be used to determine the top ten processes using memory, sorted in decreasing order, by the total pages reserved or being used with the following command:

svmon -Pv -t 10 | pg

Pid	Command		Inuse	Pin	Pasn	Virtua	al (64-bit	Mthrd
10294			6579	1275	175	464		N	N
Vsid	Esid	Туре	Description		Inuse	Pin	Pgsp	Virtua	l Addr Range
0	0	work	kernel seg		3792	1265	175	3511	032767:
									6547565535
1be3	2	work	process pri	vate	580	8	0	579	0675 :
									6530965535
8811	d	work	shared libra	ary text	2080	0	0	473	065535
f3fe	f	work	shared libra	ary data	54	0	0	39	0310
4c09	-	work		_	32	0	0	32	032783
2be5	3	work	shmat/mmap		4	2	0	4	032767
472b	-	work			2	0	0	2	032768
2647	-	work			2	0	0	2	032768
e15c	1	pers	code,/dev/h	d2:18475	32	0	-	-	0706
4168	-	pers	/dev/hd2:20	485	0	0	-	-	00
2965	-	pers	/dev/hd2:20	486	0	0	-	-	07
694d	-	pers	/dev/hd9var	:2079	0	0	-	-	00
514a	-	pers	/dev/hd9var	:2078	0	0	_	-	00
9092	-	pers	/dev/hd4:2		1	0	-	-	00
dbfb	-	pers	/dev/hd3:21		0	0	_	-	
		_							
Vsid	Esid Tv	ne De	escription		Inuse	Pin Po	rsn V	irtual	Addr Range
0			kernel seg		3792			3511	032767 :
Ü	0	WOLK	nerner beg		3752	1203	175	3311	6547565535
8811	ď	work	shared libra	arv text	2080	0	0	473	065535
500a			process pri		122		0		0122 :
5000	_		process pri			_	·		6530665535
20	f	work	shared libra	arv data	57	0	0	43	0425
b156			/dev/hd4:42		1		-	-	
d81b			code,/dev/h		9		_	_	08
GOID	_	PCID	code,, dev, ii	az.10333		Ü			00
Pid	 Command		Inuse	Pin	Pgsp	Virtua	al .	 64-bit	Mthrd
5682	sendmai	1: a	6081	1266	175	413	36	N	N
Vsid	Esid	Туре	Description		Inuse	Pin	Pgsp	Virtua	l Addr Range
0	0	work	kernel seg		3792	1265	175	3511	032767 :
									6547565535
8811	d	work	shared libra	ary text	2080	0	0	473	065535
51ea	2	work	process pri	vate	107	1	0	106	0103 :
			~ -						

						6530865535	,
29e5	f work shared library data	60	0	0	46	0417	
71ee	1 pers code,/dev/hd2:10755	38	0	-	-	0106	
59eb	- pers /dev/hd2:32701	4	0	-	-	09	

Each column heading has the following meaning.

Pid Indicates the process ID.

Command Indicates the command the process is running.

Inuse Indicates the total number of pages in real memory from

segments that are used by the process.

Pin Indicates the total number of pages pinned from segments that

are used by the process.

Pgsp Indicates the total number of pages used on paging space by

segments that are used by the process. This number is reported

only if the -r flag is not used.

Virtual Indicates the total number of pages allocated in the process

virtual space.

64-bit Indicates if the process is a 64-bit process (Y) or a 32-bit process

(N).

Mthrd Indicates if the process is multi-threaded (Y) or not (N).

3.5.4 The symon segment report

The segment report is printed when the -S flag is specified.

The symon -s command has the following syntax:

The symon -s command produces the following output:

svmon -S

Vsid	Esid Type Description	Inuse	Pin Pg	sp Vi	rtual	Addr Range
7162	- pers /dev/lv00:17	7638	0	-	-	0100362
680d	- work misc kernel tables	3819	0	0	3819	017054 :
						6348865535
0	- work kernel seg	3792	1265	175	3511	032767 :
						6547565535
82b0	- pers /dev/hd2:26992	2390	0	-	-	02389
8811	- work	2080	0	0	473	065535
• • •						
6be5	- pers /dev/hd2:153907	0	0	-	_	02
67e6	- pers /dev/hd2:47135	0	0	-	-	01
8fdc	- pers /dev/hd2:22746	0	0	-	-	00
7bel	- pers /dev/hd2:53296	0	0	-	-	012

To check the memory usage of the top five working segments according to the number of virtual pages, use the following command:

svmon -S -t 5 -w -v

Vsid Range	Esid Type Description	Inuse	e Pi	n Pgs	p Virtı	ual Addr
680d	- work misc kernel tables	4197	0	0	4197	017064 :
					63	348865535
0	- work kernel seg	3797	1270	175	3516	032767 :
					65	47565535
700e	- work kernel pinned heap	1919	624	0	1920	065535
37ad	- work	770	1	0	770	0764 :
					65	31365535
a8a	- work	770	1	0	770	0927 :
					65	525065535

To print out the memory usage statistics of segments sorted by the number of reserved paging space blocks, use the following command:

svmon -S 680d 700e -g

Vsid	Esid Type Description	Inuse	Pir	ı Pgs	sp Virt	ual Addr
Range						
700e	- work kernel pinned heap	1919	624	0	1920	065535
680d	- work misc kernel tables	4197	0	0	4197	017064 :
					6	348865535

Each column heading has the following meaning.

Vsid	Indicates the virtual segment ID. Identifies a unique

segment in the VMM.

Esid Indicates the effective segment ID. When provided, it

indicates how the segment is used by the process. If the VSID segment is mapped by several processes, but with different ESID values, then this field contains a '-'. In that case, the exact ESID values can be obtained through the -P option applied on each process identifier using the segment.

Type Identifies the type of the segment: pers indicates a

persistent segment, work indicates a working segment, clnt

indicates a client segment, map indicates a mapped segment, and rmap indicates a real memory mapping

segment.

Description

Specifies a textual description of the segment. The value of this column depends on the segment type. If the segment is a persistent segment and is not associated with a log, then the device name and i-node number of the associated file are displayed, separated by a colon. (The device name and i-node can be translated into a file name with the ncheck command.) If the segment is the primary segment of a large file, then the words large file are prepended to the description. If the segment is a persistent segment and is associated with a log, then the string log is displayed.

If the segment is a working segment, then the symon command attempts to determine the role of the segment. For instance, special working segments, such as the kernel and shared library, are recognized by the symon command. If the segment is the private data segment for a process, then private is printed out. If the segment is the code segment for a process, and the segment report is printed out in response to the -P flag, then the word code is prepended to the description.

If the segment is mapped by several processes and used in a different way (for example, a process private segment mapped as shared memory by another process), then the description is empty. The exact description can be obtained through -P flag applied on each process identifier using the segment.

If a segment description is too large to fit in the description space then the description is truncated. The truncated part can be obtained through the -S flag (without -I) on the given segment.

Inuse

Indicates the number of pages in real memory in this segment.

Pin

Indicates the number of pages pinned in this segment.

Pgsp

Indicates the number of pages used on paging space by this segment. This field is relevant only for working segments.

Virtual

Indicates the number of pages allocated for the virtual space of the segment. (Only for working segments.)

VMM manages this value for statistical purposes. It may not be updated. Then the value may be less than the inuse counters.

Address Range Specifies the range(s) the segment pages have been allocated. The working segment may have two ranges, because pages are allocated by starting from both ends and

moving towards the middle.

If the -I flag is present, the list of process identifiers that use that segment is displayed. See the -I flag description for special segments processing.

3.5.5 The symon detailed segment report

The -D flag is used to get a more detailed listing of a segment.

The syntax of the symon -D command is as follows:

```
svmon [-D sid1...sidn [-b] [ -i Interval [ NumIntervals] ] [ -z ] ]
```

To print out the frames belonging to a segment, the command is as follows:

```
# symon -D 700e

Segid: 700e
Type: working
Address Range: 0..65535
Size of page space allocation: 0 pages ( 0.0 Mb)
Virtual: 1920 frames ( 7.5 Mb)
Inuse: 1919 frames ( 7.5 Mb)
```

Page	Frame	Pin
65471	313	Y
65535	311	N
0	314	Y
1	309	Y
2	308	Y
3	305	Y
4	296	Y
5	299	Y
6	294	Y
7	297	Y
8	292	Y
9	295	Y
10	290	Y
381	81019	N
380	115074	N
379	80725	N
3335	57367	Y

3336	59860	Y
3337	107421	N
3338	114966	N
3339	107433	N
3341	95069	Y
3342	70192	Y

To print out the frames belonging to a segment with the status bit of each frame, use the following command:

```
# svmon -D 700e -b
```

Segid: 700e Type: working

Address Range: 0..65535

Size of page space allocation: 0 pages (0.0 Mb)

Virtual: 1920 frames (7.5 Mb) Inuse: 1919 frames (7.5 Mb)

Page	Frame	Pin	Ref	Mod
65471	313	Y	Y	Y
65535	311	N	N	Y
0	314	Y	N	Y
1	309	Y	N	Y
2	308	Y	Y	Y
3	305	Y	Y	Y
4	296	Y	N	Y
5	299	Y	N	Y
6	294	Y	N	Y
7	297	Y	N	Y
8	292	Y	N	Y
9	295	Y	N	Y
10	290	Y	N	Y
381	81019	N	N	Y
380	115074	N	N	Y
379	80725	N	N	Y
3335	57367	Y	N	Y
3336	59860	Y	N	Y
3337	107421	N	N	Y
3338	114966	N	N	Y
3339	107433	N	N	Y
3341	95069	Y	N	Y
3342	70192	Y	Y	Y

The output headings have the following meanings. The segid, type, address range, size of page space allocation, virtual and inuse headings are

explained at the end of Section 3.5.4, "The symon segment report" on page 85.

Page Relative page number to the virtual space. This page number can

be higher than the number of frames in a segment (65532) if the

virtual space is larger than a single segment (large file).

Frame Frame number in real memory.

Pin Indicates if the frame is pinned or not.

Ref Indicates if the frame has been referenced by a process (-b option

only).

Mod Indicates if the frame has been modified by a process (-b option

only).

3.5.6 The symon command report

The command report provides a usage summary of specific commands being run. The command report is printed when the -C flag is specified.

The symon -C command has the following syntax:

To check the memory usage of specific commands, use the following command:

```
# symon -C savevq ftp
```

pg /tmp/file

	.=====								========
Command ft	.p		Inuse	Pin	Pgsp	Virtua	al		
			42104	1271	175	396	56		
SYSTEM segments		Inuse	Pin		Virtua	al			
			3798	1270	175	351	17		
Vsid	Esid	Type	Description		Inuse	Pin	Pasp	Virtual	Addr Range
0			kernel seg		3798			3517	032767:
									6547565535
EXCLUSIVE	segmen	nts	Inuse	Pin	Pasp	Virtua	al		
			36189	1	0	14	18		
Vsid	Feid	Туте	Description		Inuse	Din	Dagn	Virtual	Addr Range
985e			/dev/lv00:17		35977		- 425	viicuai -	040307
322a	2	work	process priv	rate	112	1	0	109	083 :
									6525765535
22c			shared libra	-	53		0	39	0849
64e 1c88		~	code,/dev/hd /dev/hd2:326		44	0	-	-	057
1000	_	hers	/uev/11u2:320	20	3	U	_	-	02

CITABLED			Inuse		Pin	Daan	Virtua				
SHARED s	segments		inuse		PIII	Pgsp	VIILU	i I			
			2117		0	0	3 ()1			
Vsid	Esid	Туре	Descript	ion		Inuse	Pin	Pqsp	Virtual	Addr	Range
0011		1 .				0110			2.01	0 0	
8811	а	work	shared 1	ibrar	y text	2117	0	0	301	06	5535
=======											
Command	savevg		Inuse		Pin	Pgsp	Virtua	al			
savevq	*** com	mand	does not	exist	t ***						

If a command does not own a memory segment, the error, as shown above, will be provided.

To check a command and display the memory statistics for the command, enter the following:

svmon -C ftp -d

========	=====	====:							========
Command ft	q		Inuse	Pin	Pqsp	Virtua	al		
	-		46435	1266	175	396	56		
Pid C	omman	d	Inuse	Pin	Pgsp	Virtua	al	64-bit	Mthrd
2728 f	tp		46435	1266	175	396	56	N	N
			Inuse						
DIDIES SEG	merres		3798		175				
Vsid	Esid	Туре	Description		Inuse	Pin	Pgsp	Virtual	Addr Range
0	0	work	kernel seg						032767 : 6547565535
EXCLUSIVE	segme	nts	Inuse	Pin	Pasp				
	3		40520		0	14			
Vsid			Description			Pin			Addr Range
985e		_	/dev/lv00:1			0			040307
322a	2	work	process priv	<i>r</i> ate	112	1	0	109	083 : 6525765535
22c	f	work	shared libra	ary data	53	0	0	39	0849
64e	1	pers	code,/dev/ho	d2:4550	44	0	-	-	057
1c88	-	pers	/dev/hd2:32	628	3	0	-	-	02
					<u>.</u>				
SHARED seg	ments		Inuse						
			2117	0	0	3(JΙ		
Vsid	Esid	Type	Description		Inuse	Pin	Pgsp	Virtual	Addr Range
8811	d	work	shared libra	ary text	2117	0	0	301	065535

The column headings have the following meaning:

Command Indicates the command name.

Inuse Indicates the total number of pages in real memory in segments that are used by the command (all process running the command).

Pin Indicates the total number of pages pinned in segments that are used by the command (all process running the command).

Pgsp Indicates the total number of pages reserved or used on paging space by segments that are used by the command.

Indicates the total number of pages allocated in the virtual space of the command. Once this column heading is displayed, symon displays (if the -d flag is specified) information about all the processes running the specified command. It only contains the column headings of the processes, as described in a process report. Then symon displays information about the segments used by those processes.

This set of segments is separated into three categories:

- •The segments that are flagged as system that are shared by all processes.
- •The segments that are only used by the set of processes.
- •The segments that are shared between several command names.

If the -I flag is specified, then for each segment in the last category, the list of process identifiers that use the segment is displayed. The command name that the process identifier runs is also displayed. See the -I flag description for special segments processing.

3.5.7 The symon Workload Manager class report

The workload class report is printed when the -W flag is specified. The symon -w command has the following syntax:

Note -

Virtual

The symon -w command must run when Workload Manager must be started.

To check the Workload Manager class statistics, enter the following command:

svmon -W backup

========	=======		====				
Superclass		Inuse	Pin	Pgsp	Virtual		
backup		52833	10	0	50329		
Vsid	Esid Type	Description		Inuse	Pin	Pgsp	Virtual
6784	- work			27989	0	0	28017
1aa18	- work			21887	0	0	21887
14356	- pers	/dev/lv_wlm1:17		1250	0	-	-
173f5	- pers	/dev/lv_wlm2:17		1250	0	-	-
5347	- work			103	2	0	101
c34e	- work			77	0	0	77
1891a	- work			77	0	0	77
14636	- work			46	0	0	37
5327	- work			28	0	0	20
1d83f	- work			16	0	0	18
1e33c	- work			16	0	0	13
10772	- work			15	0	0	13
6a84	- work			15	0	0	13
15457	- work			14	0	0	14
38a1	- work			8	0	0	8
126f0	- work			8	0	0	8
11313	- pers	/dev/hd1:26		6	0	-	-
e50c	- work			5	2	0	5
b549	- work			5	2	0	5
12e3	- work			3	2	0	3
13351	- work			3	0	0	3
14a16	- work			3	0	0	0
12970	- work			3	0	0	5
6904	- work			2	2	0	2
a9c8	- work			1	0	0	3
2320	- pers	/dev/hd1:32		1	0	-	-
		/ 3 / 4 3 -					
1d39f	- pers	/dev/hd2:16870		1	0	-	-
834a	- pers	/dev/hd1:23		1	0	-	-

The column headings in a Workload Manager class report have the following meaning:

Class Indicates the workload class name.

Inuse Indicates the total number of pages in real memory in segments

belonging to the workload class.

Pin Indicates the total number of pages pinned in segments belonging

to the workload class.

Pgsp Indicates the total number of pages reserved or used on paging

space by segments belonging to the workload class.

Virtual Indicates the total number of pages allocated in the virtual space

of the workload class.

Once this columns heading is displayed, symon displays information about the segments belonging to the workload class.

If -I option is specified, then for each segment, the list of process identifiers that use the segment is displayed. The workload class the process belongs to is also displayed. See the -I flag description for special segments processing.

Note

A process belongs to the workload class if its initial thread belongs to it.

3.5.8 The symon command flags

The same flags for symon are used by the different report types, with the exception of the global and detailed segment reports.

Table 7. Commonly used flags of the symon command

Flag	Description
-G	Displays a global report.
-P [pid1 pidN]	Displays memory usage statistics for process $pid1pidN$. pid is a decimal value. If no list of process IDs (PIDs) is supplied, memory usage statistics are displayed for all active processes.

Flag	Description
-S [sid1sidN]	Displays memory-usage statistics for segments sid1sidN. sid is a hexadecimal value. If no list of segment IDs (SIDs) is supplied, memory usage statistics are displayed for all defined segments.
-U [lognm1lognmN]	Displays memory usage statistics for the login name <code>lognm1lognmN.lognm</code> is a string. It is an exact login name. If no list of login identifier is supplied, memory usage statistics are displayed for all defined login identifiers.
-C cmd1cmdN	Displays memory usage statistics for the processes running the command name <code>cmdnm1cmdnmN.cmdnm</code> is a string. It is the exact basename of an executable file.
-W [clnm1clnmN]	Displays memory usage statistics for the workload management class <code>clnm1clnmN.clnm</code> is a string. It is the exact name of a class. If no list of class names are supplied, memory usage statistics are displayed for all defined class names.
-D sid1sidN	Displays memory-usage statistics for segments sidlsidN, and a detailed status of all the frames of each segment.
-n	Indicates that only non-system segments are to be included in the statistics. By default, all segments are analyzed.
-s	Indicates that only system segments are to be included in the statistics. By default, all segments are analyzed.
-W	Indicates that only working segments are to be included in the statistics. By default, all segments are analyzed.
-f	Indicates that only persistent segments (files) are to be included in the statistics. By default, all segments are analyzed.
-с	Indicates that only client segments are to be included in the statistics. By default, all segments are analyzed.

Flag	Description
-u	Indicates that the objects to be printed are sorted in decreasing order by the total number of pages in real memory. It is the default sorting criteria if none of the following flags are present: -p, -g and -v.
-р	Indicates that the object to be printed is sorted in decreasing order by the total number of pages pinned.
-g	Indicates that the object to be printed is sorted in decreasing order by the total number of pages reserved or used on paging space. This flag, in conjunction with the segment report, shifts the non-working segment at the end of the sorted list.
-V	Indicates that the object to be printed is sorted in decreasing order by the total number of pages in virtual space. This flag, in conjunction with the segment report, shifts the non-working segment to the end of the sorted list.
-b	Shows the status of the reference and modified bits of all the displayed frames (detailed report -D). Once shown, the reference bit of the frame is reset. When used with the -i flag, it detects which frames are accessed between each interval. This flag should be used with caution because of its performance impact.
-1	Shows, for each displayed segment, the list of process identifiers that use the segment and, according to the type of report, the entity name (login, command or class) the process belongs to. For special segments, a label is displayed instead of the list of process identifiers.
System segment	This label is displayed for segments that are flagged system.
Unused segment	This label is displayed for segments that are not used by any existing processes.
Shared library text	This label is displayed for segments that contain text of shared library, and that may be used by most of the processes (libc.a). This is to prevent the display of a long list of processed.
-z	Displays the maximum memory size dynamically allocated (malloc) by symon during its execution.

Flag	Description
-m	Displays information about the source segment rather than the mapping segment when a segment is mapping a source segment.
-d	Displays the memory statistics of the processes belonging to a given entity.
-t Count	Displays memory usage statistics for the top <i>Count</i> object to be printed
-i Interval [NumIntervals]	Instructs the symon command to print statistics out repetitively. Statistics are collected and printed every <i>Interval</i> seconds. <i>NumIntervals</i> is the number of repetitions; if not specified, symon runs until user interruption (Ctrl-C).

Note -

If no command line flag is given, then the -G flag is implicit.

Because it may take a few seconds to collect statistics for some options, the observed interval may be larger than the specified interval.

If none of the -u, -p, -g, and -v flags are specified, -u is implicit.

3.6 The topas command

The topas command reports vital statistics about activity on the local system in a character terminal. It requires the AIX Version 4.3.3 perfagent tools fileset to be installed on the system. The topas command has received updates since the time of writing, so check the AIX product documentation for additional features. This command is a kind of compilation of diagnostic commands, such as sar, vmstat, iostat and netstat. Its allows you to see all of the statistics on one screen so it is easy to observe interactions between them. As you can see, in Figure 12 on page 98, the command output is divided into five subsections of statistics:

EVENTS/QUEUES	Displays the per-second frequency of selected system-global events and the average size of the thread run- and wait-queues.
• FILE/TTY	Displays the per-second frequency of selected file and TTY statistics.

PAGING Displays the per-second frequency of paging

statistics.

MEMORY Displays the real memory size and the distribution of

memory in use.

PAGING SPACE Displays size and utilization of paging space.

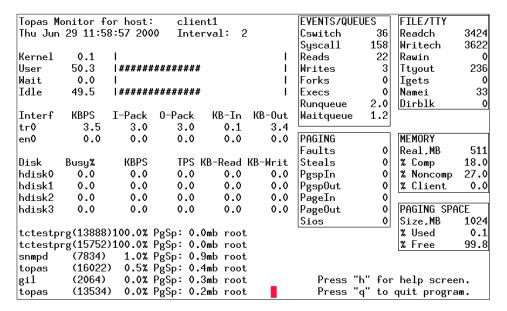


Figure 12. topas command output

On the left side of the output, there is a variable section divided into subsections. The first is a list of the CPU utilization in both numeric and block-graph format:

Kernel	5.0	#	
User	49.7	###########	
Wait	16.1	#####	
Idle	29.0	#######	

The next subsection provides the network interface statistics:

Interf	KBPS	I-Pack	O-Pack	KB-In	KB-Out
tr0	1.0	3.3	2.3	0.1	0.9
en0	0 0	0 1	0 0	0 0	0 0

Next, the physical disks statistic subsection. You can choose the maximum number of disks shown:

Disk	Busy%	KBPS	TPS	KB-Read	KB-Writ
hdisk0	0.0	0.0	0.0	0.0	0.0
hdisk1	0.0	0.0	0.0	0.0	0.0
hdisk2	0.0	0.0	0.0	0.0	0.0
hdisk3	0.0	4056.6	96.9	0.0	4056.6

The last subsection shows process information. Retrieval of process information constitutes the majority of the topas overhead:

```
tctestprg(15752)100.0% PgSp: 0.0mb root tctestprg(13888)100.0% PgSp: 0.0mb root topas (16022) 0.5% PgSp: 0.4mb root cp (18112) 0.0% PgSp: 0.1mb root cp (15558) 0.0% PgSp: 0.1mb root cp (13662) 0.0% PgSp: 0.1mb root
```

While topas is running, it accepts one-character subcommands. Each time the monitoring interval elapses, the program checks for one of the following subcommands and responds to the action requested:

- a Shows all of the variable sections (network, disk, and process) if space allows.
- d Shows disk information. If the requested number of disks and the requested number of network interfaces will fit on a 25-line display, both are shown. If there is space left on a 25-line display to list at least three processes, as many processes as will fit are also displayed.
- h Shows the help screen.
- n Shows network interface information. If the requested number of disks and the requested number of network interfaces will fit on a 25-line display, both are shown. If there is space left on a 25-line display to list at least three processes, as many processes as will fit are also displayed.
- p Shows process information. If the requested number of processes leaves enough space on a 25-line display to also display the requested number of network interfaces, those are shown. If there is also space to show the requested number of disks, those are shown as well.
- q Quit the program.

You can also specify the command output using flags at the command line:

-i Sets the monitoring interval in seconds. The default is two seconds.

- -n Specifies the maximum number of network interfaces shown. If a value of zero is specified, no network information will be displayed.
- -p Specifies the maximum number of processes shown. If a value of zero is specified, no process information will be displayed.

Check the latest documentation for a full set of subcommands and command line options.

3.7 The emstat command

The PowerPC architecture no longer supports, in hardware, 35 POWER instructions. To maintain compatibility with older binaries (which may contain these deleted instructions), the AIX Version 4 kernel includes emulation routines that provide support for the deleted instructions. Attempting to execute a deleted instruction results in an illegal instruction exception. The kernel decodes the illegal instruction, and, if it is a deleted instruction, the kernel runs an emulation routine that functionally emulates the instruction.

The emstat command reports statistics regarding how many instructions the system must emulate. The emulated instruction count should be used to determine if an application needs to be recompiled to eliminate instructions that must be emulated on 601 PowerPC, 604 PowerPC, RS64, or other non-POWER processors. If an instruction must be emulated, more CPU cycles are required to execute this instruction than an instruction that does not have to be emulated.

Most emulation problems are seen on older PowerPC 604 systems. A typical example is a PowerPC 601 system that is upgraded to a 604 system. If performance slows down instead of improving, it is most likely due to emulation.

The solution to emulation is to recompile the application in common mode. The default architecture platform for compilations on AIX Version 4 is common architecture. However, the default architecture on AIX Version 3 was for POWER, POWER2, and PowerPC 601. If these binaries ran on a PowerPC 604, some instructions may be emulated.

To determine whether the emstat command is installed and available, run the following command:

lslpp -1 bos.adt.samples

Note -

In AIX 5L, the emstat command is located in the perfagent.tools fileset

The <code>emstat</code> command works similar to the <code>vmstat</code> command in that you specify an interval time in seconds, and, optionally, the number of intervals. The value in the first column is the cumulative count since system boot, while the value in the second column is the number of instructions emulated during the specified interval. Emulations on the order of many thousands per second can have an impact on performance:

/usr/samples/kernel/emstat 2

emstat total count	emstat interval count
965	965
965	0
965	0
965	0
965	0
967	2
967	0
967	0
974	7
974	0
974	0
974	0
974	0
974	0
1284	310
2171	887
3325	1154

Once emulation has been detected, the next step is to determine which application is emulating instructions. This is much harder to determine. One way is to run only one application at a time and monitor it with the <code>emstat</code> program.

3.8 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

- 1. When monitoring a system with vmstat, which of the following values under the *cpu* heading would indicate that the system is probably CPU bound?
 - A. The value of wa greater than 70.
 - B. The value of id is greater than 70.
 - C. The sum of us and sy is consistently between 99 and 100.
 - D. The sum of id and wa is consistently between 99 and 100.
- 2. Which of the following commands should be used to show the number of system calls per second that are being executed?
 - A. pstat
 - B. vmstat
 - C. filemon
 - D. lockstat
- 3. When using vmstat with intervals, which of the following describes the values of the first line of statistics?
 - A. Averages since the system boot
 - B. Averages since the top of the hour
 - C. Averages since the beginning of the day
 - D. Averages since the beginning of the month
- 4. Using the report from vmstat -s, as shown in the exhibit, which of the following indicates how the paging statistics can be improved?

```
vmstat -s

11228009 total address trans. faults

1791982 page ins

419439 page outs

221142 paging space page ins

231045 paging space page outs

0 total reclaims

3461761 zero filled pages faults

10630 executable filled pages faults

3298154 pages examined by clock

52 revolutions of the clock hand

1199652 pages freed by the clock
```

```
76372 backtracks

0 lock misses

0 free frame waits

0 extend XPT waits

254265 pending I/O waits

823719 start I/Os

823719 iodones

43493481 cpu context switches

140637006 device interrupts

0 software interrupts

0 traps

85003313 syscalls
```

- A. Add paging space.
- B. Increase CPU power.
- C. Add physical memory.
- D. Reduce the number of system calls.
- 5. When monitoring a system using vmstat with an interval, which of the following conclusions should be drawn about the metrics under page pi and page po?
 - A. Occasional small numbers are normal.
 - B. Any non-zero value of pi or po indicates a RAM shortage.
 - C. Any non-zero value of pi or po indicates a paging space shortage.
 - D. Large values are normal only on multi-processor systems.
- 6. When monitoring a system using /usr/bin/vmstat with an interval, how does the size of the interval affect the page pi and page po metrics?
 - A. It should not; the metric is in pages per second.
 - B. The larger the interval, the larger the values.
 - C. The interval only affects the first data line of output.
 - D. The interval only affects the pi column, not the po column.
- 7. Which of the following commands will display the total number of pages paged out to paging space since the system was booted?
 - A. lsps
 - B. iostat
 - C. uptime
 - D. /usr/bin/vmstat -s

- 8. Which of the following tools should be used to analyze memory usage for the whole system at a point in time?
 - A. iostat
 - B. symon
 - C. netstat
 - D. filemon
- 9. In order to obtain a list of the top memory users on an AIX Version 4 system, which of the following commands should be used?
 - A. pstat
 - B. tprof
 - C. symon
 - D. filemon
- 10. Using the ps -el output, as shown in the exhibit, which of the following conclusions is most appropriate to draw?

F	S	UID	PID	PPID	C	PRI	NI	ADDR	SZ	WCAN	TTY	TIME	CMD
202803	S	0	1	0	0	60	20	1004	528		=	131:33	init
260801	S	0	1406	1	0	60	20	4550	208		-	0:00	srcmstr
240801	S	0	1694	1	0	60	20	37cd	176	5a6a024	-	0:01	cron
260801	S	0	2448	1	0	60	20	5d57	144		-	3:18	portmap
240801	S	0	2836	1	0	60	20	34cd	72	5e34398	-	42:42	syncd
42801	S	0	3606	1	0	60	20	50d4	284	cc98	-	0:01	errdemon
260801	S	0	5255	1	0	60	20	5535	148		-	1:00	syslogd
240801	S	0	5541	1	0	59	20	7d9f	60	3f2f8	-	0:00	llbd
240801	S	200	5750	79989	0	60	20	a83	180		pts/10	0:00	-ksh
260801	S	0	6040	1	0	60	20	1565	468		-	7:53	snmpd
60801	S	0	6299	1	0	60	20	2d6b	224		-	0:00	x_st_mgr
240801	S	0	6502	1406	0	60	20	14e7	184	12d0440	-	0:05	qdaemon
40001	S	0	6659	1	0	23		3aae	312	1fca54	hft/0	0:32	userprog

- A. The snmpd process is running at a fixed priority of 60.
- B. If both the syncd process and the portmap process become runable at the same time, then the syncd process would get scheduled first.
- C. If both the userprog process and the qdaemon process become runable at the same time, then the qdaemon process would get scheduled first.
- D. If both the syslogd process and the llbd process become runable at the same time, then the llbd process would get scheduled first.

- 11. Which of the following general operation techniques will best provide a measurable performance improvement of a system?
 - A. Attach SCSI devices in ID order.
 - B. Perform backups at regular intervals.
 - C. Perform regular preventative maintenance of devices with moving parts.
 - D. Reschedule the processing to balance the workload.
- 12. A developer tried to run a sar report and received the following error:

```
sar:0551-201 cannot open /usr/adm/sa/sa12
```

Which of the following procedures should be performed so that the developer can obtain sar reports?

- A. Run bosboot -a -L
- B. Edit inittab to collect data.
- C. Edit crontab to start collecting data.
- D. Run bosboot -ad /dev/ipldevice and then reboot.
- 13. After a migration from an older POWER server to a PowerPC-based server, users complain about decreased performance. Which of the following tools should be used to investigate the performance problem?
 - A. netstat
 - B. iostat
 - ${\sf C}.$ perfpmr
 - D. emstat

3.8.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. C
- 2. B
- 3. A
- 4. C
- 5. A
- 6. A

- 7. D
- 8. B
- 9. C
- 10.D
- 11.D
- 12.C
- 13. D

3.9 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

- 1. Describe how the sar command is set up to collect historical data.
- 2. Describe the differences between the sal and sal commands.
- 3. Describe how the crontab is modified to allow sar to collect data.
- 4. When running the vmstat command, there are either five or six measurement columns; describe all six and show the flag required for the sixth column.
- 5. Describe how a system could be described as CPU bound using the vmstat command. Also, what are the percentages for single and multi processor systems?
- 6. Name the seven types of reports the symon command creates and a brief description of each.
- 7. Which symon command flags are used to display a programs resource utilization?
- 8. Which symon command flags are used to display a user resource utilization on the system?

Chapter 4. Disk I/O performance monitoring tools

The following topics are discussed in this chapter:

- Logical Volume Manager (LVM) performance analysis, using the lslv command.
- Journaled File system (JFS) performance analysis tools, using the filemon and fileplace commands.

All topics and tools discussed in this chapter will provide you with a set of methods in determining logical volume manager, file system, and disk I/O related performance issues.

4.1 Overview

With the AIX operating system, the handling of disk related I/O is based upon different functional levels, as shown in Figure 13.

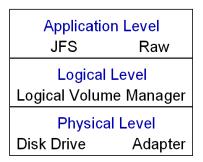


Figure 13. Disk, LVM and file system levels

The lowest level is the physical level, that consists of device drivers accessing the physical disks and using the corresponding adapters. The next level is the logical level, managed by the Logical Volume Manager (LVM), which controls the physical disk resources. The LVM provides a logical mapping of disk resources to the application level. The application level can consist of either the Journaled File System (JFS) or raw access, for example, used by relational database systems.

The performance analysis tools discussed in the following section focus on the logical level (LVM) and on the application level (JFS). The monitoring of the physical level is primarily done by using the <code>iostat</code> command, which is described in Section 4.2, "The iostat command" on page 108.

© Copyright IBM Corp. 2000

Covering the entire subject of the AIX Logical Volume Manager is beyond the scope of this publication. For more background information on the AIX Logical Volume Manager, refer to AIX Logical Volume Manager, from A to Z: Introduction and Concepts, SG24-5432, as well as the AIX Version 4.3 System Management Guide: Operating System and Devices, SC23-2525.

4.2 The iostat command

The iostat command is a useful tool that provides a first indication of I/O related performance problems. The iostat command is capable of reporting CPU statistics, terminal I/O statistics, and disk I/O statistics, that help identify the I/O load on individual components, such as hard disks.

The information from iostat reports can be used to modify system configurations to improve I/O load distribution between physical disks. The iostat command extracts data from AIX kernel I/O counters in the kernel address space, which are updated at every clock tick (1/100 second) for TTY as well as CPU and I/O subsystem activity.

The syntax of the iostat command is as follows:

```
iostat [-d | -t] [physicalVolume ...] [interval | count]
```

The commonly used flags are provided in Table 8.

Table 8. Commonly used flags of the iostat command

Flag	Description
-d	This flag displays only the disk utilization report. The -d flag is exclusive of the -t flag.
-t	This flag displays only the TTY and CPU usage. The -t flag is exclusive of the -d flag.

By using the *physicalVolume* parameter (by specifying the physical volume (PV) name of the individual disk or CD-ROM), iostat generates an I/O report only for the specified PVs. If no PVs are specified, the iostat command generates a report for all drives.

The *interval* parameter specifies the amount of time in seconds between each report. The *count* parameter specifies the number of I/O reports generated. If the interval parameter is specified without the count parameter, the <code>iostat</code> command generates reports continuously.

An example of the iostat command is as follows:

iostat 1 2

tty:	tin 0.0	tou: 41.4		: % use:			% iowait 0.0
Disks: hdisk3 hdisk2 hdisk0 hdisk1 cd0 hdisk4	or or	0.0 0.1 0.0 0.1 0.0 0.1	Kbps 0.3 1.1 0.9 1.5 0.0 0.2	0.0 0.0 0.1		224266 1658678 725871 1660027	
tty:	tin 0.0		t avg-cpu		_		% iowait 0.0
Disks: hdisk3 hdisk2 hdisk0 hdisk1 cd0 hdisk4	ę	16.0 16.0	Kbps 2809.0 2868.8 8419.0 2820.9 0.0	tps 117.7 122.7 263.3 117.7 0.0 0.0	2816 2876 0	_ 0	

This example shows the output of an iostat command run that is updated every second (interval=1) and generated only two reports (count = 2).


Each report is a combination of a TTY and CPU utilization report and a disk utilization report. This example shows a system with five hard disks (hdisk0-hdisk4) and one CD-ROM drive. The first report shows the summary statistics since system startup, providing the collective summary of I/O operations on each drive. From the previous example, you can determine that hdisk1 has been the most actively used drive.

The second report provided is the actual drive usage during a one second interval.

During the report, there was a copy command started to provide disk I/O activity.

4.2.1 Historical disk I/O

In AIX Version 4.3 the system does not collect a history of disk activity by default, as some system resources are consumed for this operation. The system administrator has to decide whether to activate the disk I/O history or not.

Collecting disk I/O history is an AIX operating system setting that can be enabled or disabled in SMIT using: smit chgsys. Figure 14 shows the corresponding SMIT screen.

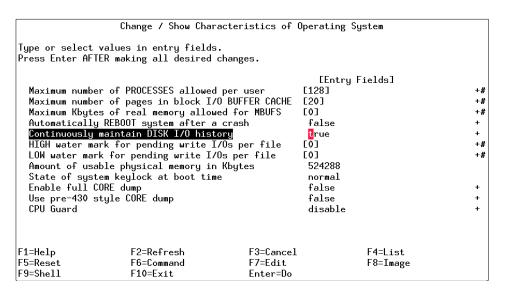


Figure 14. SMIT screen for changing characteristics of operating system

When the historical disk I/O is activated, ignore the first report if you are looking for real-time behavior of your system.

4.2.2 TTY and CPU utilization report

The first report section displayed by the <code>iostat</code> command contains the TTY and CPU utilization report.

The following columns are displayed and their meanings provided:

tin	Shows the total characters per second read by all TTY devices.
tout	Indicates the total characters per second written to all TTY devices.
% user	Shows the percentage of CPU utilization that occurred while executing at the user level (application).
% sys	Shows the percentage of CPU utilization that occurred while executing at the system level (kernel).
% idle	Shows the percentage of time that the CPU or CPUs were idle while the system did not have an outstanding disk I/O request.
% iowait	Shows the percentage of time that the CPU or CPUs were idle during which the system had an outstanding disk I/O request.

The TTY information columns, tin and tout, show the number of characters read and written by all TTY devices. This includes both real and pseudo TTY devices. Real TTY devices are those connected to an asynchronous port, such as serial terminals, modems, FAX, and so on. Pseudo TTY devices are telnet sessions and xterm (or other X based terminal emulators, such as dtterm and aixterm).

Since the processing of character I/O consumes CPU resources, it is important to monitor the relation between increased TTY activity and CPU utilization. If such a relationship exists, the TTY devices, along with the applications using these TTY devices, should be analyzed. For example, a FAX application could be improved by enhancing the speed of the TTY port parameters so that a file transfer would become faster and more efficient. More information about TTY performance, especially when your system has multiport adapters (8-, 16-, or 64-port adapters) can be found in *AIX Versions 3.2 and 4 Performance Tuning Guide*, SC23-2365, in the chapter named Tuning Asynchronous Connections for High-Speed Transfers.

The CPU statistics columns, % user, % sys, % idle, and % iowait, provide information about the CPU usage. The same information is also reported in the vmstat command output in the columns us, sy, id, and wa.

In general, a high % iowait indicates that the system has a memory shortage, due to paging or an inefficient I/O subsystem configuration. Understanding

the I/O bottleneck and improving the efficiency of the I/O subsystem requires more data than iostat can provide.

When the iostat command report shows that a CPU-bound situation does not exist with a high % idle and a % iowait time greater than 25 percent, this might point to an I/O or disk-bound situation.

The following is an example extracted from an iostat command report:

• • •							
tty:	tin	to	ıt avg-cp	u: % use:	r % sys	% idle	% iowait
	0.0	223.	5	0.2	4.2	70.0	25.5
Disks:		% tm_act	Kbps	tps	Kb_read	Kb_wrtn	
hdisk3		2.7	163.2	20.4	1632	0	
hdisk2		2.8	170.8	21.9	1708	0	
hdisk0		0.0	0.0	0.0	0	0	
hdisk1		2.1	175.6	17.3	1756	0	
cd0		0.0	0.0	0.0	0	0	
hdisk4		99.1	715.6	125.0	0	7156	

The preceding example shows a high % iowait due to an I/O bottleneck on hdisk4.

Depending on the actual system, a high % iowait time could also be caused by excessive paging, due to a lack of real memory. It could also be due to unbalanced disk load, fragmented data, or usage patterns.

For an unbalanced disk load, the same <code>iostat</code> report provides the necessary information. But for information about file systems or logical volumes (which are logical resources) you have to use an AIX-specific tool, such as <code>filemon</code> or <code>fileplace</code>. See Chapter 4, "Disk I/O performance monitoring tools" on page 107 for more information.

Alternatively, the iostat command can be used for determining that a performance problem is related to the CPU. Although vmstat should be the preferred tool for this analysis, in the absence of vmstat reports, iostat could be used. A good indication of a CPU bound problem is when % iowait time is zero and the system is not idle (% idle = 0).

To investigate if a system does not have a memory problem, verify that the physical volume that is used for swapping does not have an excessive load. Use the <code>lsps</code> -a command to determine the physical volume of the swap area.

4.2.3 The iostat command on SMP systems

The calculation of I/O wait time on symmetrical multiprocessor (SMP) systems has been modified to provide a more accurate accounting of CPU utilization in commands such as vmstat and iostat.

Prior to AIX Version 4.3.3, the calculation of I/O wait time on SMP systems could result in inflated values (compared to uniprocessor (UP) systems). This was due to a statistical anomaly of the way AIX counted CPU time. The vmstat and iostat commands simply reported the CPU break down into the four categories of usr/sys/wio/idle as tabulated within the kernel. At each clock interrupt on each processor (100 times a second in AIX), a determination is made as to which of the four categories to place the last 10 ms of time. If the CPU is busy in user mode at the time of the clock interrupt, usr gets the clock tick added into its category. If the CPU is busy in kernel mode at the time of the clock interrupt, the sys category gets the tick. If the CPU is not busy, a check is made to see if any disk I/O is in progress. If any disk I/O is in progress, the wio category is incremented. If no disk I/O is in progress and the CPU is not busy, then the idle category gets the tick. Notice in the prior discussion that it does not matter which processor starts the I/O. This fact leads to higher wio times on SMP systems compared to UP systems in some situations.

Since AIX Version 4.3.3, the I/O wait time is no longer inflated; all CPUs are no longer attributed wait time when a disk is busy and the CPU is idle. The decision is based on whether a thread is awaiting an I/O on the CPU being measured. This method can report accurate wio times when just a few threads are doing I/O and the system is otherwise idle.

4.2.4 Disk utilization report

Any potential disk I/O performance problem should be analyzed with the iostat command first. To only report the disk I/O, use the iostat command -d flag. In addition, the disk statistics can be limited to the selected disks by listing the physical volume names.

The iostat disk utilization report displays the following columns:

Disks Shows the names of the physical volumes. They are either disk or CD-ROM, followed by a number. By default, all drives are displayed, unless the drives are specified in the command line.

% tm_act Indicates the percentage of time the physical disk was active. A drive is active during data transfer and command processing, such as seeking to a new location. An increase in the disk active time percentage implies a performance decrease and response

time increase. In general, when the utilization exceeds 40 percent, processes are waiting longer than necessary for I/O to complete, because most UNIX processes sleep while waiting for their I/O requests to complete.

Kbps Indicates the amount of data transferred (read or write) to the drive in KB per second. This is the sum of Kb_read plus Kb_wrtn, divided by the seconds in the reporting interval.

tps Indicates the number of transfers per second that were issued to the physical disk. A transfer is an I/O request at the device driver level to the physical disk. Multiple logical requests can be combined into a single I/O request to the disk. A transfer is of indeterminate size.

Kb_read Displays the total data (in KB) read from the physical volume during the measured interval.

Kb_wrtn Displays the amount of data (in KB) written to the physical volume during the measured interval.

When analyzing the drive utilization report and using the different data columns just described, it is important to notice the patterns and relationships between the data types.

There is normally a relationship between disk utilization %tm_act and data transfer rate tps. If the disk busy rate %tm_act is high, then the tps rate should also be high. However, if you get a high disk busy rate and a low disk transfer rate, you may have either a fragmented logical volume, file system, or individual file. Generally, you do need to be concerned about high disk busy when a disk is being used by a single AIX process (for example, a batch job). For example, if an application reads/writes sequentially, you should expect a high disk transfer rate (tps) and a high disk busy rate (%tm_act).

Kb_read and Kb_wrtn can confirm an understanding of an applications read/write behavior. However, they provide no information on the data access patterns.

An average physical volume utilization greater than 25 percent across all disks indicates an I/O bottleneck. The general conclusion on performance problems on disk, logical volume and file system is that the more drives you have on your system, the better the disk I/O performance.

However, there is a limit to the amount of data that can be handled by the SCSI adapter; hence, the SCSI adapter could become a bottleneck. Especially on RS/6000 systems with SCSI-1 and SCSI-2 adapters, this could

become an issue. To determine if a SCSI adapter is saturated, summarize all the KB/s values for disks located on the same adapter and compare the sum with the SCSI adapter throughput. In general, use 70 percent of the SCSI standard throughput rate. Examples of different SCSI types and their throughput is provided in the following:

- SCSI-1 throughput rate of 3.5 MB/s (70 percent of 5 MB/s)
- SCSI-2 throughput rate of 7 MB/s (70 percent of 10 MB/s)
- Ultra SCSI throughput rate of 28 MB/s (70 percent of 40 MB/s)
- Ultra2 SCSI throughput rate of 56 MB/s (70 percent of 80 MB/s)

If a saturated adapter is discovered, solve the problem by moving disks to other less used adapters already in the system or add an additional SCSI adapter.

For more information about improving disk I/O, refer to the *AIX Versions 3.2* and 4 Performance Tuning Guide, SC23-2365, in the chapter named Monitoring and Tuning Disk I/O.

Note —

As with the vmstat command, iostat can only give a first indication about a performance bottleneck. The system administrator will have to use more in depth analysis tools such as filemon to identify the source of the slowdown. See also Chapter 4, "Disk I/O performance monitoring tools" on page 107 for more info.

4.3 The lockstat command

The lockstat command displays lock-contention statistics on SMP systems.

The AIX kernel locks generated on the systems can be verified and possible contentions identified.

Note -

Before lockstat can be used, you must create, as root, a new boot image with the -L option to enable lock instrumentation:

bosboot -a -d /dev/hdiskx -L

Where x is the number of the bootdisk.

The lockstat command generates a report for each kernel lock that meets all specified conditions. When no conditions are specified, the default values are used.

The syntax of the lockstat command is as follows:

```
lockstat [ -a ] [ -c LockCount ] [ -b BlockRatio ] [ -n CheckCount ] [ -p LockRate ] [ -t MaxLocks ] [ Interval [ Count ] ]
```

The commonly used flags of the lockstat command are provided in Table 9.

Table 9. Commonly used flags of the lockstat command

Flag	Description
-c <lockcount></lockcount>	Specifies how many times a lock must be requested during an interval in order to be displayed. A lock request is a lock operation, which in some cases cannot be satisfied immediately. All lock requests are counted. The default is 200.
-b <blockratio></blockratio>	Specifies a block ratio. When a lock request is not satisfied, it is said to be blocked. A lock must have a block ratio that is higher than BlockRatio to appear in the list. The default of BlockRatio is 5 percent.
-n <checkcount></checkcount>	Specifies the number of locks which are to be checked. The lockstat command sorts locks according to lock activity. This parameter determines how many of the most active locks will be subject to further checking. Limiting the number of locks that are checked maximizes system performance, particularly if lockstat is executed in intervals. The default value is 40.
-p <lockrate></lockrate>	Specifies a percentage of the activity of the most-requested lock in the kernel. Only locks that are more active than this will be listed. The default value is 2, which means that the only locks listed are those requested at least 2 percent as often as the most active lock.
-t <maxlocks></maxlocks>	Specifies the maximum number of locks to be displayed. The default is 10.

If the ${\tt lockstat}$ command is executed with no options, an output similar to the following would be displayed.

lockstat

Subsys	Name	Ocn	Ref/s	%Ref	%Block	%Sleep
PFS	IRDWR_LOCK_CLASS	259	75356	37.49	9.44	0.21
PROC	PROC_INT_CLASS	1	12842	6.39	17.75	0.00

The lockstat command report contains the following data columns:

Subsys The subsystem to which the lock belongs.

Name The symbolic name of the lock class.

Ocn The occurrence number of the lock in its class.

Ref/s The reference rate, or number of lock requests per second.

%Ref The reference rate expressed as a percentage of all lock

requests.

%Block The ratio of blocking lock requests to total lock requests. A block

occurs whenever the lock cannot be taken immediately.

%Sleep The percentage of lock requests that cause the calling thread to

sleep.

Some common subsystems are as follows:

PROC Scheduler, dispatcher, or interrupt handlers

VMM Pages, segment, and freelist

TCP Sockets, NFS PFS Inodes, icache

The name of the lock class defined in AIX can be found in the file /usr/include/sys/lockname.h. Some common classes are:

TOD LOCK CLASS All interrupts that need the Time-of-Day (TOD)

timer

PROC_INT_CLASS Interrupts for processes
U TIMER CLASS Per-process timer lock

The lockstat command can also be run in intervals similar to the lostat command, as shown in the following example:

lockstat 10 100

The first number passed in the command line specifies the amount of time in seconds between each report. Each report contains statistics collected during the interval since the previous report. If no interval is specified, the system gives information covering an interval of one second and then exits. The second number determines the number of reports generated. It can only

be specified if an interval is given.

- Note -

The lockstat command can be CPU intensive because there is overhead involved with lock instrumentation. That is the reason why it is not turned on by default. The overhead of enabling lock instrumentation is typically 3 to 5 percent. Be aware that AIX trace buffers will fill up much quicker when using this option because there are a lot of locks being used.

4.4 LVM performance analysis using Islv

There are various factors that affect logical volume (LV) performance; for example, the allocation position on the disk or the mirroring options. To obtain information about the logical volume, you can use the LVM $_{1s1v}$ command, which provides information on:

LV allocation Placement map of the allocation of blocks on the disk

LV fragmentation Fragmentation of the LV blocks

4.4.1 Logical volume attributes

Use the ${ t lslv}$ command with no flags to view logical volume attributes, as shown in the following output:

# lslv mirrlv			
LOGICAL VOLUME:	mirrlv	VOLUME GROUP:	stripevg
LV IDENTIFIER:	000bc6fd1202118f.3	PERMISSION:	read/write
VG STATE:	active/complete	LV STATE:	closed/syncd
TYPE:	jfs	WRITE VERIFY:	on
MAX LPs:	512	PP SIZE:	16 megabyte(s)
COPIES:	2	SCHED POLICY:	parallel
LPs:	120	PPs:	240
STALE PPs:	0	BB POLICY:	relocatable
INTER-POLICY:	maximum	RELOCATABLE:	yes
INTRA-POLICY:	inner middle	UPPER BOUND:	32
MOUNT POINT:	/u/mirrfs	LABEL:	None
MIRROR WRITE CON	NSISTENCY: on		
EACH LP COPY ON	A SEPARATE PV ?: yes		

The previous example shows the LV attributes of a logical volume mirrly, which is a mirrored logical volume located in the volume group stripevg.

For performance issues, the following attributes have to be taken into account:

COPIES Indicates the number of physical copies. If copies equal 1,

then the LV is un-mirrored. Values of 2 and 3 are used for mirrored LVs. The previous example has a copy value of

2.

INTER-POLICY The inter-physical volume allocation policy specifies which

policy should be used for choosing physical devices to allocate the physical partitions of a logical volume.

INTRA-POLICY The intra-physical volume allocation policy specifies which

strategy should be used for choosing physical partitions

on a physical volume.

MIRROR WRITE CONSISTENCY

The mirror write consistency (MWC) ensures data consistency among mirrored copies of a logical volume during normal I/O processing. For every write to a logical volume, the LVM generates a write request to every mirrored copy. Mirror write consistency recovery should be

performed for most mirrored logical volumes.

WRITE VERIFY Specifies whether to verify all writes to the logical volume

with a follow-up read. This option enhances availability,

but decreases performance.

SHED-POLICY Specifies one of the two types of scheduling policies used

for logical volumes with multiple copies, sequential or

parallel.

BB POLICY Specifies whether to use Bad Block Relocation, which

redirects I/O requests from a bad disk block to a valid one.

RELOCATABLE Specifies whether to allow the relocation of the logical

volume during volume group reorganization.

UPPER BOUND Specifies the maximum number of physical volumes for

allocation.

4.4.1.1 Mirroring

To enhance the availability of a logical volume, AIX supports data mirroring by providing multiple copies of the logical volumes on different disks.

When using mirroring, the write scheduling policies are:

Sequential The sequential write policy waits for the write operation to

complete for the previous physical partition before starting

the next write operation.

Parallel The parallel write policy starts the write operation for all

the physical partitions of a logical partition at the same time. The write returns when the slowest write operation is

completed.

The parallel write scheduling policy provides the best performance and is the preferred option when creating the mirrored LV.

In general, the following recommendations provides the highest LVM availability:

- Use three logical partition copies (mirror twice) and include at least three physical volumes.
- Write verify should be switched on.
- Inter disk policy should be set to minimum, which sets the mirroring copies equal to the number of physical volumes.
- Disk allocation policy should be set to strict, which establishes that no LP copies are on the same disk.
- The copies on the physical volumes should be attached to separate busses, adapters, and power supplies.

Providing the highest availability, however, can have a negative impact on LVM performance; therefore, some of the settings may need to be altered depending on your requirements.

4.4.1.2 Intra policy

The five LVM intra-allocation policies are: *inner edge*, *inner middle*, *center*, *outer middle*, *outer edge*. The corresponding intra disk positions allocation policies are illustrated in Figure 15 on page 121.

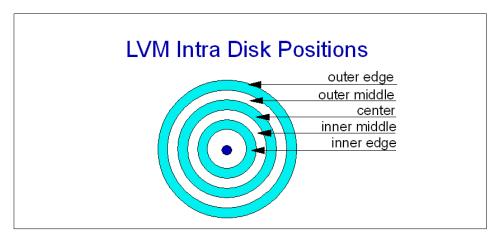


Figure 15. LVM intra-disk positions

In general, the performance of the intra-disk policies is as follows:

- The center allocation policy has the fastest average seek times on disks with < 4 GB of size. On larger disks, the outer edge has the fastest seek times.
- The outer middle and inner middle allocation policies provide reasonable average seek times. This is the default setting when creating a new logical volume.
- The outer edge (on disks < 4 GB) and inner edge policies have the slowest average seek times.

4.4.1.3 Inter policy

The possible inter-disk allocation policies are the MINIMUM and MAXIMUM. The MINIMUM inter disk policy assigns the physical partitions to the logical volume on the same disk or to as few disks as possible. The MINIMUM policy provides the best availability.

The MAXIMUM inter-disk allocation policy allocates the physical partitions of the logical volume on as many disks as possible. The MAXIMUM policy provides the best performance.

For non-mirrored LVs, the MINIMUM policy indicates one physical volume should contain all the physical partitions of this logical volume. If the allocation program must use two or more physical volumes, it uses the minimum number possible.

For mirrored LVs, the MINIMUM policy indicates that as many physical volumes as there are copies should be used. Otherwise, the minimum number of physical volumes possible are used to hold all the physical partitions.

4.4.1.4 Striping

Striping is designed to increase the read/write performance of frequently accessed, large sequential files. When a striped LV is created, as many disks as possible should be used. Since AIX Version 4.3.3, mirroring of striped LVs is supported; therefore, the old conclusion that striping does not provide availability due to the lack of mirroring is no longer valid. For more information on this issue, see the *AIX Version 4.3 Differences Guide*, SG24-2014 (second edition).

When a striped logical volume is defined, then two additional LV attributes are displayed by the lslv command:

STRIPE WIDTH The number of stripes.

STRIPE SIZE The fixed size of each stripe block. Stripe size can be any

power of 2 from 4 KB to 128 KB, but it is often set to 64 KB to get the highest levels of sequential I/O throughput.

4.4.2 Logical volume fragmentation

To check a logical volume for possible fragmentation, use the ${ t lslv}$ flag -I, as shown in the following example:

lslv -1 mirrlv
mirrlv:/u/mirrfs

 PV
 COPIES
 IN BAND
 DISTRIBUTION

 hdisk2
 120:000:000
 90%
 000:000:000:108:012

 hdisk1
 120:000:000
 69%
 000:000:000:083:037

This example uses the same LV mirrly as in the last section.

The PV column indicates that the physical volume uses two disks (hdisk1 and hdisk2).

The COPIES column indicates that the total number if logical partitions (LP) is 120, and since it is a mirrored LV, both disks have the same amount of physical partitions PPs allocated (240 in total).

The IN BAND column indicates the level of intra allocation policy as a percentage. If the LVM cannot meet the intra policy requirement, it chooses the best alternative. In the above example, the intra policy was *inner middle*,

but only 69 percent on hdisk1 and 90 percent on hdisk2 could follow this allocation request.

The DISTRIBUTION column shows how the physical partitions are allocated in each section of the intra policy, as shown in the following relationship:

```
(outer edge) : (outer middle) : (center) : (inner middle) : (inner edge)
```

In this example, hdisk1 has allocated 83 PPs on the requested inner middle and 37 on the outer edge. Disk hdisk2 allocates the intra policy request better, hence the higher IN BAND level.

4.4.3 Logical volume allocation

To see the logical volume allocation of placement on the physical volume, use the following command:

		_								
# lslv	# lslv -p hdisk1 mirrlv									
hdisk1	:mirrl	7:/u/mi:	rrfs							
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	1-10
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	11-20
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	21-30
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	31-40
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	41-50
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	51-60
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	61-70
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	71-80
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	81-90
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	91-100
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	USED		101-109
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	110-119
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	120-129
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	130-139
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	140-149
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	150-159
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	160-169
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	170-179
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	180-189
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	190-199
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	200-209
USED	USED	USED	USED	USED	USED	USED	USED			210-217
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	218-227
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	228-237
USED	USED	USED	USED	USED	USED	FREE	FREE	FREE	FREE	238-247
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	248-257
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	258-267
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	268-277
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	278-287
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	288-297
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	298-307
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	308-317
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE			318-325
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	326-335
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	336-345
USED	USED	USED	USED	USED	0001	0002	0003	0004	0005	346-355

0006	0007	8000	0009	0010	0011	0012	0013	0014	0015	356-365
0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	366-375
0026	0027	0028	0029	0030	0031	0032	0033	0034	0035	376-385
0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	386-395
0046	0047	0048	0049	0050	0051	0052	0053	0054	0055	396-405
0056	0057	0058	0059	0060	0061	0062	0063	0064	0065	406-415
0066	0067	0068	0069	0070	0071	0072	0073	0074	0075	416-425
0076	0077	0078	0079	0800	0081	0082	0083			426-433
0084	0085	0086	0087	8800	0089	0090	0091	0092	0093	434-443
0094	0095	0096	0097	0098	0099	0100	0101	0102	0103	444-453
0104	0105	0106	0107	0108	0109	0110	0111	0112	0113	454-463
0114	0115	0116	0117	0118	0119	0120	FREE	FREE	FREE	464-473
FREE	474-483									
FREE	484-493									
FREE	494-503									
FREE	504-513									
FREE	514-523									
FREE	524-533									
FREE		534-542								

The output displays five sections which represent: outer edge, outer middle, center, inner middle, and inner edge.

Each physical partition is marked with either a number or a keyword, which are described in the following:

Number	A number indicates the logical partition number of the LV.
USED	This keyword indicates that the physical partition at this location is used by another logical volume.
FREE	This keyword indicates that this physical partition is not used by any logical volume. Logical volume fragmentation occurs if logical partitions are not contiguous across the disk.
STALE	Although not present in the previous example, the STALE keyword indicates a physical partition that cannot be used.

This example shows that the one copy of mirrly located on hdisk1 is allocated contiguously. The logical partitions (LPs) from 01-83 are allocated in the inner middle section, while the LPs 84-120 are allocated in the inner edge section.

When logical volumes are deleted, the physical partitions are freed, and this enables the space for either new logical volumes or the possibility of reorganizing the logical volumes, so that the LV fragmentation is limited. The LVM command reorgyg can reorganize logical volumes so that they comply with the intra disk policies. By using reorgyg and providing both the volume group and the name of the logical volume, the highest priority is given to the listed volume group when performing the reorganization. During the reorganization, the volume group is locked and cannot be used.

4.4.4 Highest LVM performance

The following general recommendations can be used for creating logical volumes with high performance demands. However, keep in mind that when a logical volume is tuned for better performance, the availability may be impacted.

- No mirroring, which means the number of copies equals one (1).
- If mirroring is required then:
 - Write scheduling policy set to parallel.
 - Allocation policy set to strict, which means each copy on separate physical volumes.
- · Write verification set to no.
- Mirror write consistency (MWC) set to off.
- Intra policies:
 - Center: for hot logical volumes
 - Middle: for moderate logical volumes
 - Edge: for cold logical volumes
- Inter disk allocation policy set to maximum, which mean that read/write operations are spread among physical volumes.

Additional performance improvement can be gained by creating a striped logical volume.

4.5 LVM and file system monitoring

To provide a more complete analysis of file system performance, AIX Version 4.3 provides a monitoring command, filemon. This provides information about a specific application or system I/O activity, assisting the problem determination process for performance tuning.

4.5.1 The filemon command

The filemon command monitors and presents trace data on the following four levels of file system utilization:

Logical file system

The monitored operations include all read, write, open, and Iseek system calls, which may or may not result in actual physical I/O, depending on whether or not the files are already buffered in memory. I/O statistics are kept on a per-file basis.

Virtual memory system At this level, operations (that is, paging) between

segments and their images on disk are monitored. I/O statistics are kept on a per-segment basis.

Logical volumes I/O statistics are kept on a per-logical-volume

basis.

Physical volumes At this level, physical resource utilizations are

obtained. I/O statistics are kept on a

per-physical-volume basis.

4.5.1.1 Using the filemon command

The filemon command is based on the AIX trace facility to monitor I/O activity during a certain time interval. Because of this, filemon can be run only by root and filemon can not be executed in parallel with other trace-based commands, such as tprof and netpmon.

Tracing is started implicitly by the filemon command, but the trace can be controlled by the normal trace utilities: trostop, trooff, and troon.

When tracing is stopped with trostop, filemon writes a report either to stdout or to a specified file.

To specify the levels of data collected on all the layers, or on specific layers, use the -O layer option. The default is to collect data on the VM, LVM, and physical layers. Both summary and detailed reports are both generated.

- Note

The filemon command will only collect data for those files opened after filemon was started, unless you specify the -u flag.

The following command sequence provides a simple example of filemon in action:

```
# filemon -o /tmp/filemonLF.out -O lf
Enter the "trcstop" command to complete filemon processing
# dd count=2048 if=/dev/zero of=/u/mirrfs/testMirrorFile
2048+0 records in.
2048+0 records out.
# dd count=2048 of=/dev/null if=/u/mirrfs/testMirrorFile
2048+0 records in.
2048+0 records out.
# trcstop
```

```
[filemon: Reporting started]
[filemon: Reporting completed]

[filemon: 10.666 secs in measured interval]

# ls -l filemonLF.out
-rw-r--r-- 1 root system 2627 Jul 07 12:51 filemonLF.out
#
```

The filemon command is started with the flag -O, specifying that only the logical file system (If) data to be monitored. This example uses two dd commands to write to a file and read from a file. The special devices /dev/zero and /dev/null are used to get clean read/write figures and make the reports more transparent. The output report of the filemon command in this example is placed in a dedicated file using the -o flag. The default is to write the report to the standard output.

4.5.2 Report analysis

The reports generated by filemon are dependent on the output level flag -O. The possible values for the output levels are:

If Logical file level
Iv Logical volume level
pv Physical volume level
vm Virtual memory level

The default value of -O is *all*. However, if -O is specified without a level, then lv, pv, and vm are the default.

The following section explains the filemon output reports using the examples from Section 4.5.1, "The filemon command" on page 125.

4.5.2.1 Logical file-level report

The logical file level report, as shown in the following example, provides two sections, the *Most Active Files Report*, for information on the active files during the trace, and the *Detailed File Stats Report*, for detailed statistics on the individual files.

```
# cat /tmp/filemonLF.out
Fri Jul 7 12:51:38 2000
System: AIX server1 Node: 4 Machine: 000BC6FD4C00

Cpu utilization: 100.0%

Most Active Files

#MBs #opns #rds #wrs file volume:inode
```

```
2 2048 2048 testMirrorFile
2.0
                                           /dev/mirrlv:17
                  0 zero
1.0
           2048
1.0
       1
            0
                 2048 null
                                           /dev/hd2:23079
                 0 ksh.cat
0.0
       3
             6
0.0
       2.
             2.
                   0 dd.cat
                                            /dev/hd2:22970
0.0
       1
             2
                   0 cmdtrace.cat
                                            /dev/hd2:22947
```

Detailed File Stats FILE: /u/mirrfs/testMirrorFile volume: /dev/mirrlv inode: 17 opens: 2097152 total bytes xfrd: 2048 (0 errs) reads: 512 sdev read sizes (bytes): avg 512.0 min 512 max 0.0 avg 0.003 min read times (msec): 0.000 max 0.084 sdev 0.005 writes: 2048 (0 errs) avg 512.0 min write sizes (bytes): 512 max 512 sdev 0.0 write times (msec): avg 0.028 min 0.012 max 0.443 sdev 0.044 lseeks: 1 FILE: /dev/zero opens: 1 1048576 total bytes xfrd: 2048 (0 errs) avg 512.0 min 512 max 512 sdev avg 0.007 min 0.006 max 0.076 sdev read sizes (bytes): 0.0 read times (msec): 0.003 FILE: /dev/null opens: total bytes xfrd: 1048576 2048 (0 errs) writes:
 avg
 512.0 min
 512 max
 512 sdev

 avg
 0.001 min
 0.000 max
 0.023 sdev
 write sizes (bytes): 0 0 write times (msec): 0.002 FILE: /usr/lib/nls/msq/en US/ksh.cat volume: /dev/hd2 (/usr) inode: 23079

avg 4096.0 min read sizes (bytes): 4096 max 4096 sdev 0.0 avg 0.033 min 0.000 max 0.085 sdev 0.036 read times (msec): lseeks: 15 FILE: /usr/lib/nls/msg/en_US/dd.cat volume: /dev/hd2 (/usr) inode: 22970 opens: total bytes xfrd: 8192 reads: 2 (0 errs) read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0 read times (msec): avg 4.380 min 0.000 max 8.760 sdev 4.380 lseeks: 10 FILE: /usr/lib/nls/msg/en_US/cmdtrace.cat volume: /dev/hd2 (/usr) inode: 22947 opens: 1 8192 total bytes xfrd: reads: 2 (0 errs) read sizes (bytes): 4096 max 4096 sdev avg 4096.0 min 0.0

avg 0.000 min 0.000 max 0.000 sdev 0.000

(0 errs)

8

3

24576

6

opens:

reads:

lseeks:

total bytes xfrd:

read times (msec):

The *Most Active Files Report* contains summary information of the most frequently used files during the monitoring period, defined in the following list.

#MBS Total number of megabytes transferred to and from the

file. The rows are sorted by this field, in decreasing

order.

#opns Number of times the file was opened during the

measurement period.

#rds Number of read system calls made against the file.

#wrs Number of write system calls made against the file.

file Name of the file (full path name is in the detailed report).

volume:inode Name of volume that contains the file, and the file's

i-node number. This field can be used to associate a file with its corresponding persistent segment, shown in the virtual memory I/O reports. This field may be blank (for example, for temporary files created and deleted during

execution).

The filemon example shows that the file testMirrorFile is the most active, with the 1 MB read and 1 MB write operations. Notice the read and write operations are made in 512 bytes units. This shows that the dd command used a 512 byte block size. The zero and null files do not have inodes because they are not connected to any file system, but are special device files.

From the filemon file-level report, it is very evident to see which files are generating the most I/O demand.

The *Detailed File Stats Report* provides information about every active file with the following details:

FILE Name of the file. The full path name is given, if possible.

volume Name of the logical volume/file system containing the

file.

inode I-node number for the file within its file system.

opens Number of times the file was opened while monitored. total bytes xfrd Total number of bytes read/written to/from the file.

reads Number of read calls against the file.

read sizes (bytes) The read transfer-size statistics (avg, min, max, and

sdev), in bytes.

read times (msec) The read response-time statistics (avg, min, max, and

sdev), in milliseconds.

writes Number of write calls against the file.

write sizes (bytes) The write transfer-size statistics.
write times (msec) The write response-time statistics.
seeks Number of Iseek subroutine calls.

The detailed file level report, from the previous filemon example, is focusing on the file testMirrorFile. Here the read and write size of 512 bytes is even more evident. As it is the only read/write size used, the standard deviation (sdev) becomes 0. The read/write times is an interesting value in the detailed file statistics report. These can show, among other things, how the file system cache is performing.

4.5.2.2 Logical volume level report

The logical volume level report provides two sections: the *Most Active Logical Volumes* report and the *Detailed Logical Volume Stats* report.

The logical volume level report, provided by the following command, was generated from the same example in Section 4.5.1.1, "Using the filemon command" on page 126, except the output level -O lv flags are used:

```
# filemon -o /tmp/filemonLF.out -O lv
```

The following is an excerpt from the logical volume level report:

Most Active Logical Volumes

util	#rblk	#wblk	KB/s	volume	description					
0.07	0	2016	64.5	/dev/mirrlv	/u/mirrfs					
0.00	0	8	0.3	/dev/loglv00	jfslog					
0.00	8	0	0.3	/dev/hd2	/usr					
util				of the volume (fraction of the volume (fraction of by this field, in decreasing	• /					
#rblk		Nui	mber o	f 512-byte blocks read fro	m the volume.					
#wblk		Nui	mber o	f 512-byte blocks written	to the volume.					
KB/sec		Tota	al trans	transfer throughput, in Kilobytes per second.						
volume		Nai	me of v	of volume.						

description Contents of volume: either a file system name, or logical

volume type (paging, jfslog, boot, or sysdump). Also, indicates if the file system is fragmented or compressed.

This section of the logical volume level report shows clearly that the mirrly is the most utilized LV. The report shows the transfer throughput of 64.5 KB/s for the mirrly and its file system mirrfs. Notice also some activity on the loglv00 which is the ifslog for mirrfs.

4.5.2.3 Physical volume level report

The physical volume level report provides two sections: the *Most Active* Physical Volumes report and the Detailed Physical Volume Stats report.

The physical volume level report, provided by the following command, was generated with the same example as in Section 4.5.1.1, "Using the filemon command" on page 126, except the output level -O pv was used:

```
# filemon -o /tmp/filemonLF.out -O pv
```

The following is an extraction of the physical volume level report:

Most Active Physical	Volumes

	util	#rblk	#wblk	KB/s	volume	description					
	0.07	0	2096	66.4	/dev/hdisk1	N/A					
	0.07	0	2080	65.9	/dev/hdisk2	N/A					
	0.02	0	305	9.7	/dev/hdisk0	N/A					
	util				of the volume (fraction of by this field, in decreasing	• /					
	#rblk		Nu	mber o	f 512-byte blocks read fro	m the volume.					
	#wblk		Nu	mber o	f 512-byte blocks written t	to the volume.					
	KB/s		Total volume throughput, in Kilobytes per second.								
	volume		Na	Name of volume.							
description Type of vol SCSI.					olume, for example, 9.1 GB disk or CD-ROM						

The physical volume level report of the filemon example shows almost equal activity of the two PVs, hdisk1 and hdisk2, because they are the mirrored copies of mirrly.

Notice that hdisk1 has a slightly higher write block size than hdisk2 (and due to that, a slightly higher throughput). This is because the jfslog loglv00 is located on hdisk1.

4.5.2.4 Virtual memory level report

The virtual memory level report provides two sections: the *Most Active Segments* report and the *Detailed VM Segment Stats* report.

The virtual memory level report, provided by the following command, was generated with the same example as in Section 4.5.1.1, "Using the filemon command" on page 126, except the output level -O vm was used:

```
# filemon -o /tmp/filemonLF.out -O vm
```

The following is an excerpt of virtual memory level report:

Most Active Segments

		_									
#MBs	#rpgs	#wpgs	segid	segtype	volume:inode						
1.0 0 2			c473 fefe	page table							
				J							
#MBs		se			tes transferred to and from the sorted by this field, in decreasing						
#rpgs			Number of 4096-byte pages read into segment from disk (that is, page in).								
#wpgs			Number of 4096-byte pages written from segment to disk (page out).								
segid		Int	Internal ID of segment.								
segtype)	(lo se co	Type of segment: working segment, persistent segment (local file), client segment (remote file), page table segment, system segment, or special persistent segmen containing file system data (log, root directory, .inode, .inodemap, .inodex, .inodexmap, .indirect, .diskmap).								
volume:inode			For persistent segments, the name of the volume that contains the associated file, and the file's inode number This field can be used to associate a persistent segmen with its corresponding file, shown in the file I/O reports. This field is blank for non-persistent segments.								

In this filemon example, the virtual memory level report does not contain any important information; it is merely mentioned for the completeness of the filemon reporting capabilities.

4.5.3 Typical AIX system behavior

When using the filemon command for performance analysis, the following issues should be kept in mind. The items listed are recommendations extracted from the documentation *RS/6000 Performance Tools in Focus*, SG24-4989.

Frequently accessed files:

- The /etc/inittab file is always very active. Daemons specified in /etc/inittab are checked regularly to determine whether they are required to be respawned.
- The /etc/passwd file is also very active, because file and directory access permissions are checked.

Disk access:

- A long seek time increases I/O response time and decreases performance.
- If the majority of the reads and writes require seeks, you may have fragmented files or overly active file systems on the same physical disk.
- If the number of reads and writes approaches the number of sequences, physical disk access is more random than sequential. Sequences are strings of pages that are read (paged in) or written (paged out) consecutively. The sequence length is the length, in pages, of the sequences. A random file access can also involve many seeks. In this case, you cannot distinguish from the filemon output if the file access is random or if the file is fragmented. If you have to further investigate with the fileplace command, see Section 4.9.2, "The fileplace command" on page 142 for more information.

Solutions to disk bound problems:

- If large, I/O-intensive background jobs are interfering with interactive response time, you may want to activate I/O pacing.
- If it appears that a small number of files are being read over and over again, you should consider whether additional real memory would allow those files to be buffered more effectively.
- If the iostat command indicates that your workload I/O activity is not evenly distributed among the system disk drives, and the utilization of one

or more disk drives is often 40-50 percent or more, consider reorganizing your file systems.

- If the workloads access pattern is predominantly random, you may want to consider adding disks and distributing the randomly accessed files across more drives.
- If the workloads access pattern is predominantly sequential and involves multiple disk drives, you may want to consider adding one or more disk adapters. It may also be appropriate to consider building a striped logical volume to accommodate large, performance-critical sequential files.

4.6 File system performance

These are some factors that affect file system performance.

- Dynamic allocation of resources may cause:
 - Logically contiguous files to be fragmented
 - Logically contiguous LVs to be fragmented
 - File blocks to be scattered
- · Effects when files are accessed from disk:
 - Sequential access no longer sequential
 - Random access affected
 - Access time dominated by longer seek time

Once the file is in memory, these effects diminish.

Before going into analyzing the file system performance, an overview of how the AIX JFS is organized is in order.

4.6.1 AIX file system organization

In a journaled file system (JFS), files are stored in blocks of contiguous bytes. The default block size, also referred to as fragmentation size in AIX, is 4096 byte (4 KB). The JFS i-node contains an information structure of the file together with an array of 8 pointers to data blocks. A file which is less then 32 KB is referenced directly from the i-node.

A larger file uses a 4 KB block, referred to as an indirect block, for the addressing of up to 1024 data blocks. Using an indirect block, the file size of 4 MB (1024 x 4 KB) is possible.

For files larger than 4 MB, a second block, the double indirect block, is used. The double indirect block points to 512 indirect blocks, providing the possible addressing of 2 GB files (512 x 1024 x 4 KB). Figure 16 illustrates the addressing using double indirection.

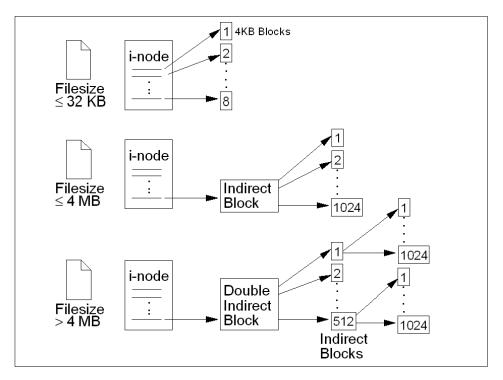


Figure 16. JFS organization

Since the introduction of AIX Version 4.2, support for even larger files was added, by defining a new type of JFS, the *bigfile* file system. In the bigfile file system, the double indirect are using references to 128 KB blocks rather than 4 KB blocks. However, the first indirect block still points to a 4 KB block, so that the large blocks are only used when the file size is above 4 MB. This provides a new maximum file size of just under 64 GB.

4.6.2 The fileplace command

The use of files and file systems, depending on the application, can be very dynamic and can, over time, result in fragmentations that have impact on the file system performance, which influences the application performance.

Access to fragmented files may yield a large number of seeks and longer I/O response time. At some point, the system administrator may decide to reorganize the placement of files within the logical volume to reduce fragmentation and gain a more even distribution.

The fileplace command can assist in this task by displaying the placement of blocks in a file within a logical volume or within one or more physical volumes.

The fileplace command expects an argument containing the name of the file to examine, as shown in the following example:

```
# fileplace -iv sixMB
File: sixMB Size: 6291456 bytes Vol: /dev/restlv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1536 Compress: no
Inode: 21 Mode: -rw-r--r- Owner: root Group: sys
DOUBLE INDIRECT BLOCK: 77000
INDIRECT BLOCKS: 75321 77001
 Logical Fragment
  -----
                                 8 frags 32768 Bytes, 0.5%
452 frags 1851392 Bytes, 29.4%
564 frags 2310144 Bytes, 36.7%
  0149576-0149583
  0075322-0075773
  0149584-0150147
  0077002-0077513
                                   512 frags 2097152 Bytes, 33.3%
 1536 frags over space of 74826 frags: space efficiency = 2.1%
  4 fragments out of 1536 possible: sequentiality = 99.8%
```

This example displays the logical fragmentation of a large file (sixMB). The general information displayed by fileplace is:

File Name of the file.
Size File size in bytes.

Vol Name of the logical volume of the file system.

Blk Size Physical block size 4 KB.

Frag Size Fragment size, typically also 4 KB, but can be

specified to values 512, 1 KB, 2 KB at file system

creation time.

Nfrags The total amount of fragments used by the file.

Compress Compression of file system; the default is no.

Inode The inode reference number.

Mode/Owner/Group General UNIX file system level i-node information.

This file has, due to its size, both indirect blocks (75321, 77001) and a double indirect block (7700). This information is listed using the fileplace -i flag.

The first column under Logical Fragment shows the logical block numbers, where the different parts of the file are. The next column shows the number of fragments that are contiguous and the amount of bytes in these contiguous fragments. The last number is the percentage of the block range compared to the total size.

Finally, the values for space efficiency and space sequentiality are calculated, when the ${\tt fileplace}$ -v flag is used. Higher space efficiency means files are less fragmented and will probably provide better sequential file access. Higher sequentiality indicates that the files are more contiguously allocated, and this will probably be better for sequential file access.

Using fileplace -p, the physical block numbers and physical volume or volumes are shown.

The following is an example using fileplace on a mirrored logical volume:

This example shows the physical addresses used for the file t5 on the logical volume mirrly. This file is physically located on both hdisk1 and hdisk2.

Note

The fileplace command will not display NFS remote files. If a remote file is specified, the fileplace command returns an error message.

The fileplace command reads the file's list of blocks directly from the logical volume on disk. If the file is newly created, extended, or truncated, the information may not be on disk yet. Use the ${\tt sync}$ command to flush the information to the logical volume.

4.6.3 File system de-fragmentation

During the lifetime of a file system, a large number of files are created and deleted. This leaves, over time, a large number of gaps of free blocks. This fragmentation has a negative impact on the file system performance, as the newly created files become highly fragmented.

There is a simple way of organizing the free gaps in the file system. The defragfs command increases a file system's contiguous free space by reorganizing allocations to be contiguous rather than scattered across the disk. The defragfs command is intended for fragmented and compressed file systems. However, you can also use the defragfs command to increase contiguous free space in non fragmented file systems.

Another simple way of reorganizing the file system is to re-create the file system using a backup of the file system.

4.7 General recommendations on I/O performance

By using lslv, fileplace, filemon, and iostat, you can identify I/O, volume group, and logical volume problems. The following are general recommendations on how to achieve good LVM and file system performance and when to use the tools described in this chapter.

Logical volume organization for highest performance:

- Allocate hot LVs to different PVs to reduce disk contention.
- Spread hot LVs across multiple PVs so that parallel access is possible.
- Place the hottest LVs in the center of PVs, the moderate LVs in the middle
 of PVs, and the coldest LVs on edges of PVs so that the hottest logical
 volumes have the fastest access time.

- Mirroring can improve performance for read-intensive applications but, as writes need to be performed several times, can impact the performance of other applications.
 - If mirroring is needed, set the scheduling policy to parallel and the allocation policy to strict. Parallel scheduling policy will enable reading from the closest disk, and strict allocation policy allocates each copy on separate PVs.
- Make the LV contiguous to reduce access time.
- Set inter-policy to maximum. This will spread each logical volume across as many physical volumes as possible, allowing reads and writes to be shared among several physical volumes.
- Place frequently used logical volumes close together to reduce the seek time.
- Set write verify to no so that there is no follow-up read (similar to a parity check) performed following a write.

Logical volume striping:

- Spread the logical volume across as many physical volumes as possible.
- Use as many adapters as possible for the physical volumes.
- Create a separate volume group for striped logical volumes.

Striping recommendations:

- The stripe unit size should be equal to the max_coalesce, which is by default 64 KB. The max_coalesce value is the largest request size (in terms of data transmitted) that the SCSI device driver will build.
- Use a minpghead value of 2: This will give the minimum number of pages where sequential read-ahead starts.
- Using a maxpgahead of 16 times, the number of disk drives causes the
 maximum pages to be read ahead to be done in units of the stripe size (64
 KB) times the number of disk drives, resulting in the reading of one stripe
 unit from each disk for each read ahead. If possible, modify applications
 that use striped logical volumes to perform I/O in units of 64 KB.
- Limitations of striping
 - Mirroring with striping prior to AIX Version 4.3.3 is not possible. On AIX 4.3.3, the mirroring of logical volume striping is possible using the superstrict physical allocation policy.
 - Disk striping is mostly effective for sequential disk I/Os. With randomly accessed files, it is not as effective.

File system related performance issues:

 Create an additional log logical volume to separate the log of the most active file system from the default log. This will increase parallel resource usage.

An lslv usage scenario:

• Determine if hot file systems are better located on a physical drive or spread across multiple physical drives.

Some filemon usage scenarios:

- · Determine if hot files are local or remote.
- Determine if paging space dominates disk utilization.
- Look for heavy physical volume utilization. Determine if the type of drive (SCSI-1, SCSI-2, tape, and so on) or SCSI adapter causing a bottleneck.

Some fileplace usage scenarios:

- Determine if the application performs a lot of synchronous (non-cached) file I/O.
- Look for file fragmentation. Determine if the hot files are heavily fragmented.

Paging space related disk performance issues:

- Never add more than one paging space on the same physical volume.
- Reorganize or add paging space to several physical volumes.

4.8 Overhead of using performance tools

As in any performance measurement on a system, each measurement consumes some resources which is referred to as the *overhead* of the performance tools. The following information is from the *AIX Performance Tuning Guide, Versions 3.2 and 4*, SC23-2365:

1slv This command uses mainly CPU time.

filemon This command can consume some CPU power, use this

tool with discretion, and analyze the system performance while taking into consideration the overhead involved in running the tool. In a CPU-saturated environment with a high disk-output rate, filemon slowed the writing program

by about five percent.

Most variations of fileplace use fewer than 0.3 seconds of CPU time.

iostat The iostat command adds little overhead to the system. It uses about 20 milliseconds of CPU time for each report

Note that the previous computing time measurements are from an RS/6000 Model 320.

4.9 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

4.9.1 The filemon command

The filemon command monitors the performance of the file system, and reports the I/O activity on behalf of logical files, virtual memory segments, logical volumes, and physical volumes. The command has the following syntax:

```
filemon [ -d ] [ -i File ] [ -o File] [ -O Levels ] [ -P ] [ -T n] [ -u ] [-v ]
```

The commonly used flags are provided in Table 10.

generated.

Table 10. Commonly used flags of the filemon command

Flag	Description
-O Levels	Monitors only the specified file system levels. Valid level identifiers are: If (Logical file level), vm (Virtual memory level), lv (Logical volume level), pv (Physical volume level), all
	all is a short for If, vm, Iv, pv
	If no -O flag is specified, the vm, lv, and pv levels are implied by default.
-o File	Name of the file where the output report is stored. If no flag is specified, the output is displayed on the standard output.
-u	Reports on files that were opened prior to the start of the trace daemon. The process ID (PID) and the file descriptor (FD) are substituted for the file name.

4.9.2 The fileplace command

The fileplace command displays the placement of file blocks within logical or physical volumes. The command has the following syntax and the flags are provided in Table 11:

fileplace [{ -l | -p } [-i] [-v]] File

Table 11. Commonly used flags of the fileplace command

Flag	Description
-1	Displays file placement in terms of logical volume fragments, for the logical volume containing the file. The -I and -p flags are mutually exclusive.
-р	Displays file placement in terms of underlying physical volume, for the physical volumes that contain the file. If the logical volume containing the file is mirrored, the physical placement is displayed for each mirror copy. The -I and -p flags are mutually exclusive.
-i	Displays the indirect blocks for the file, if any. The indirect blocks are displayed in terms of either their logical or physical volume block addresses, depending on whether the -I or -p flag is specified.
-v	Displays more information about the file and its placement, including statistics on how widely the file is spread across the volume and the degree of fragmentation in the volume. The statistics are expressed in terms of either the logical or physical volume fragment numbers, depending on whether the -I or -p flag is specified.

4.9.3 The Islv command

The lslv command displays information about a logical volume. The command has the following syntax and the flags are provided in Table 12 on page 143:

Display Logical Volume Information:

lslv [-L] [-l|-m] [-nPhysicalVolume] LogicalVolume

Display Logical Volume Allocation Map:

lslv [-L] [-nPhysicalVolume] -pPhysicalVolume [LogicalVolume]

Table 12. Commonly used flags of the filemon command

Flag	Description
-1	Lists the fields for each physical volume in the logical volume.
-p PhysicalVolume	Displays the logical volume allocation map for the PhysicalVolume variable. If you use the LogicalVolume parameter, any partition allocated to that logical volume is listed by logical partition number.

4.10 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. While a user is compiling a C program, vmstat 120 10 is run to determine the cause of a performance problem. Given the vmstat output as shown in the exhibit indicates an I/O bottleneck, which of the following commands should be run next to get more information about the problem?

/usr/bin/vmstat 120 10																	
kt.	hr	memory		pag	je					faults			сри	cpu			
r	b	avm	fre	re	рi	po	fr	sr	су	in	sy	CS	us	sy	id	wa	
0	1	59903	542	0	0	0	0	0	0	451	912	478	43	11	15	31	
0	2	59904	550	0	0	0	0	0	0	521	1436	650	23	19	4	50	
0	3	59950	538	0	0	0	0	0	0	344	649	249	7	7	6	80	
0	2	59899	578	0	0	0	0	0	0	467	1829	500	12	14	4	70	
0	2	59882	589	0	0	0	0	0	0	600	1292	705	6	8	3	61	
0	3	59882	420	0	0	0	0	0	0	452	952	372	11	8	1	80	
0	2	59954	420	0	0	0	0	0	0	537	1979	573	13	5	10	72	
0	2	59954	423	0	0	0	0	0	0	618	1413	686	15	9	6	70	
0	3	59954	420	0	0	0	0	0	0	551	938	634	4	2	2	92	
0	2	59954	422	0	0	0	0	0	0	460	1376	496	14	2	4	80	

- A. lsps
- $B.\ {\sf tprof}$
- C. iostat
- D. vmtune

2.	Which of the following commands should be used to show the percentage of time that the CPU(s) are idle waiting for pending system I/Os to complete?
	A. tprof
	B. pstat
	C. iostat
	D. filemon
3.	Which of the following commands should be used to monitor disk utilization during the time a system is experiencing an disk I/O performance problem?
	A. pstat
	B. iostat
	C. vmstat
	D. vmtune
4.	Which of the following utilities should be used to determine which disk or set of disks is experiencing contention on a SCSI bus?
	A -

- A. lspv
- B. iostat
- C. 1sdev
- D. vmstat
- 5. Which of the following metrics provided by the iostat report is used to initially determine if a system is I/O bound?
 - A. tin and tout
 - B. % user and % sys
 - C. % iowait and % tm_act
 - D. Kb_read and Kb_wrtn
- 6. If the filemon command is invoked, which of the following indicates how to stop the command so that the filemon reports can be generated?
 - A. Run trestop
 - B. Run filemon -u
 - C. Perform a kill -15 on the filemon PID.
 - D. Perform a kill -SIGSTOP on the filemon PID.

- 7. Which of the following tools should be used to examine the details of a file's indirect inode, assuming it uses indirect inodes?
 - A. df
 - B. istat
 - C. filemon
 - D. fileplace
- 8. Which of the following tools will report how much of a logical volume is following its intra-policy request?
 - A. df -k
 - B. lslv -1
 - C. 1svg -1
 - D. fileplace
- 9. Which of the following is TRUE of the fileplace command?
 - A. A file can be placed in a specific location.
 - B. The fragment distribution on a specified file is shown.
 - C. Fragmentation is removed by rearranging file fragments.
 - D. The distribution of all the files on a specified disk are shown.
- 10. Which of the following logical volume placement policies most likely provides the best performance for a logical volume which has Mirror Write Consistency Check turned on?
 - A. INTRA-POLICY set to 'edge'
 - B. INTRA-POLICY set to 'center'
 - C. INTRA-POLICY set to 'middle'
 - D. INTRA-POLICY set to 'inner middle'

- 11. There is a system where all rootvg logical volumes reside on the same disk (hdisk0), with the exception of the boot logical volume which resides on another disk (hdisk1).
 - # filemon -O lv -o filemon.out; sleep 60; trcstop; cat filemon.out

Most Active Logical Volumes

 util	#rblk	#wblk	KB/s	volume de	scription
	105792 0	149280 16800		/dev/hd9var /dev/hd8	•
0.01	4608	0	3.2	/dev/hd4	/
0.02	55296	0	5.9	/dev/hd2	/usr
0.01	2976	0	2.1	/dev/hd1	/home

Using the ${\tt filemon}$ output, as shown in the preceding exhibit, the workload across the disks should be balanced by:

- A. Moving the /var file system from hdisk0 to hdisk1.
- B. Moving the hd5 logical volume from hdisk1 to hdisk0.
- C. Creating a separate JFS log for the / (root) file system on hdisk1.
- D. Creating a separate JFS log for the /var file system on hdisk1.
- 12. If percentage of RAM occupied by file pages falls below minperm, page replacement algorithm steals:
 - A. Files pages only
 - B. Computational only
 - C. Both file and computational pages
 - D. Persistent memory

4.10.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. C
- 2. C
- 3. B
- 4. B
- 5. C
- 6. A
- 7. D
- 8. B
- 9. B
- 10. A
- 11. A
- 12.C

4.11 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

- On a test system, with preferably two spare disks, create a testvg volume group. Create test logical volumes with the different parameters discussed in this chapter: mirrored LV, intra disk policy, inter disk policy, strict policy, striping.
- 2. Use the ${ t lslv}$ command on the LVs created above and verify LV attributes, LV fragmentation and LV allocation.
- 3. Perform a filemon trace on your test system using the following command sequence:

```
# filemon -u -O lf,lv,pv -o /tmp/filemon.out ; sleep 30; tracestop Identify the most active files, logical volume, and disk drive.
```

4. On an existing file system, create a large file. Verify its fragmentation as well as space efficiency and sequence with the fileplace command.

Chapter 5. Network performance tools

The following topics are discussed in this chapter:

- Network performance problems overview
- · Network monitoring tools
- · Network tuning tools

This chapter looks at network performance problems. It describes network examination and problem solving procedures.

5.1 Overview

The recommended network performance tools to use first are the ping and the netstat commands. Usually, they provide you with enough information to discover your problems; if not, this chapter provides you with more insight into the network performance topic.

To understand the performance characteristics of the network subsystem in AIX, you must first understand some of the underlying architecture. Figure 17 on page 151 shows the path of data from an application on one system to another application on a remote system. The following discussion matches the diagram:

- As an application writes to a socket, the data is copied from the user space into the socket send buffer in the kernel space. Depending on the amount of data being copied into the socket send buffer, the socket puts the data into either mbufs or clusters. The size of the buffers in virtual memory that are used by the input is limited by the values:
 - udp_sendspace
 - tcp_sendspace
- Once the data is copied into the socket send buffer, the socket layer calls
 the transport layer (either TCP or UDP), passing it a pointer to the linked
 list of mbufs (an mbuf chain).
- If the size of the data is larger than the maximum transfer unit (MTU) of the LAN, one of the following conditions are generally taken:
 - TCP breaks the output into segments that comply with the MTU limit.
 - UDP leaves the breaking up of the output to the IP layer.

© Copyright IBM Corp. 2000

- If IP receives a packet larger than the MTU of the interface, it fragments the packet and sends the fragments to the receiving system, which reassembles them into the original packet.
- When the interface layer receives a packet from IP, it attaches the link-layer header information to the beginning of the packet and calls the device driver write routine.
- At the device-driver layer, the mbuf chain containing the packet is enqueued on the transmit queue. The maximum total number of output buffers that can be queued is controlled by the system parameter tx_que_size.
- Arriving packets are placed on the device driver's receive queue, and pass through the Interface layer to IP. The maximum total number of input buffers that can be queued is controlled by the system parameter rx_que_size.
- If IP in the receiving system determines that IP in the sending system had fragmented a block of data, it coalesces the fragments into their original form and passes the data to TCP or UDP. If one of the fragments is lost in transmission, the incomplete packet is ultimately discarded by the receiver. The length of time IP waits for a missing fragment is controlled by the ipfragttl parameter.
 - TCP reassembles the original segments and places the input in the socket receive buffer.
 - UDP simply passes the input on to the socket receive buffer.

The maximum size of IP's queue of packets received from the network interface is controlled by the ipqmaxlen parameter, which is set and displayed with the ${\rm no}$ command. If the size of the input queue reaches this number, subsequent packets are dropped.

 When the application makes a read request, the appropriate data is copied from the socket receive buffer in kernel memory into the buffer in the application's working segment.

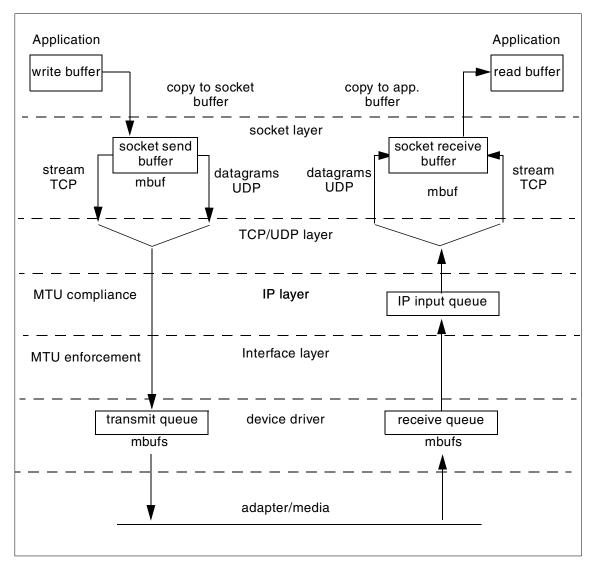


Figure 17. UDP/TCP/IP data flow

5.2 Adapter transmit and receive queue tuning

Most communication drivers provide a set of tunable parameters to control transmit and receive resources. These parameters typically control the transmit queue and receive queue limits, but may also control the number and

size of buffers or other resources. To check queue size for the ent0 adapter, use the lsattr command:

# lsattr -El e	ent0		
busio	0x1000100	Bus I/O address	False
busintr	15	Bus interrupt level	False
intr_priority	3	Interrupt priority	False
<pre>tx_que_size</pre>	64	TRANSMIT queue size	True
rx_que_size	32	RECEIVE queue size	True
full_duplex	no	Full duplex	True
use_alt_addr	no	Enable ALTERNATE ETHERNET address	True
alt_addr	0x00000000000	ALTERNATE ETHERNET address	True

To change queue size parameters, perform the following procedure.

Bring down the interface:

ifconfig en0 detach

Change the value of the appropriate parameter:

```
# chdev -l ent0 -a tx_que_size=128
ent0 changed
```

Bring the interface back to the up state:

```
# ifconfig en0 up
```

netstat -v

To check if the queues size should be changed, run the netstat command or adapter statistics utilities (entstat, tokstat or others):

```
ETHERNET STATISTICS (ent0) :
Device Type: IBM PCI Ethernet Adapter (22100020)
Hardware Address: 08:00:5a:fc:d2:e1
Elapsed Time: 0 days 0 hours 19 minutes 16 seconds
Transmit Statistics:
                                           Receive Statistics:
                                            _____
Packets: 19
                                            Packets: 0
Bytes: 1140
                                           Bytes: 0
Interrupts: 0
                                           Interrupts: 0
Transmit Errors: 0
                                          Receive Errors: 0
Packets Dropped: 0
                                           Packets Dropped: 0
                                           Bad Packets: 0
Max Packets on S/W Transmit Queue: 1
```

S/W Transmit Queue Overflow: 0

Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 19 Broadcast Packets: 0 Multicast Packets: 0 Multicast Packets: 0

. . . .

Two parameters should be checked:

- Max Packets on S/W Transmit Queue. This is the maximum number of outgoing packets ever queued to the software transmit queue. An indication of an inadequate queue size is if the maximal transmits queued equals the current queue size tx_que_size. This indicates that the queue was full at some point.
- S/W Transmit Queue Overflow. The number of outgoing packets that have overflowed the software transmit queue. A value other than zero indicates that the same actions needed if the Max Packets on S/W Transmit Queue reaches the tx_que_size should be taken. The transmit queue size has to be increased.

5.3 Protocols tuning

The main goal in network performance tuning is to balance demands of users against resource constraints to ensure acceptable network performance.

You can do this with the following steps:

- Characterize workload, configuration, and bandwidth.
- · Measure performance.
 - Run tools, identify bottlenecks.
 - Useful tools are: netstat, tcpdump, iptrace.
- Tune network parameters.
 - Make adjustments.
 - Useful tuning parameters are: no, nfso, chdev, ifconfig.

AIX allocates virtual memory for various TCP/IP networking tasks. The network subsystem uses a memory management facility called an mbuf. Mbufs are mostly used to store data for incoming and outbound network traffic. Having mbuf pools of the right size can have a very positive effect on network performance. Heavy network load can be a reason for low memory for the system, but too little virtual memory for network use can cause packet dropping. The dropped packet, on the other hand, can reduce the effective transmission throughput because of retransmissions or time outs.

The AIX operating system offers the capability for run-time mbuf pool configuration. There are a few system parameters that you can tune for this purpose:

thewall Kernel variable, controls the maximum amount of RAM (in

kilobytes) that the mbuf management facility can allocate

from the VMM.

tcp_sendspace Kernel variable, sets default socket send buffer. It keeps

an application from overflowing the socket send buffer and limits the number of mbufs used by an application. The

default value for tcp_sendspace is 16384.

tcp_recvspace Kernel variable, used as the default socket receive buffer

size when an application opens a TCP socket. The default

value for tcp_recvspace is 16384.

udp_sendspace Kernel variable, sets the limit for the amount of memory

that can be used by a single UDP socket for buffering out-going data. If a UDP application fills this buffer space, it must sleep until some of the data has passed on to the next layer of the protocol stack. The default value for

udp_sendspace is 9216.

udp_recvspace Kernel variable, sets the size limit of the receive space

buffer for any single UDP socket. The default value for

udp_recvspace is 41920.

rfc1323 If the value of this variable is non-zero, it allows the TCP

window size to be the maximum of 32 bits instead of 16 bits. What this means is that you can set tcp_recvspace

and tcp_sendspace to be greater than 64 KB.

sb_max Kernel variable, controls the upper limit for any buffers.

ipqmaxlen Kernel variable, controls length of the IP input queue. The

default is 100 packets long, which is sufficient for single-network device systems. You may increase this value for systems with multiple network devices. The penalty for insufficient queue length is dropped packets.

Note

The values of the tcp or udp_sendspace and tcp or udp_recvspace variables must be less than or equal to the sb_max, so if you have reduced sb_max from its default, or want to use buffers larger than that default, you must also change the sb_max variable.

A network application that sends data in large bursts, such as a backup over the network, can generate socket buffer overflows. Insufficient buffer space for TCP sockets will merely limit throughput, but not inhibit proper operation. The TCP window limits the amount of data pending to be acknowledged and effectively limits the throughput of the sockets. The tcp_recvspace controls the TCP window size, which can not be bigger than the socket buffer space. To increase performance of such an application, you have to remove the TCP window size limit by setting the parameter rfc1323 to 1 and increasing the tcp_sendspace and tcp_recvspace values.

5.4 Network performance monitoring tools

This section describes the most common monitoring tools used to isolate network performance problems.

5.4.1 The vmstat command

You should invoke network monitoring tools in order to get more statistics for isolating a network bottleneck. When the vmstat command shows significant amounts of idle time that does not fit the problem, the system may be network bound. The following is a typical vmstat command report:

-	# v	mst	at 120	10														
]	kthr memory					pag	ge				faults				cpu			
	r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa	
	0	1	19331	824	0	0	0	0	0	0	636	1955	674	0	0	99	0	
	0	1	19803	996	0	0	0	0	0	0	533	7466	591	0	0	99	0	
	0	1	19974	860	0	0	0	0	0	0	822	4055	892	0	0	99	0	
	0	1	19815	860	0	0	0	0	0	0	535	4096	509	0	0	99	0	
	0	1	19816	855	0	0	0	0	0	0	577	4582	598	0	0	99	0	
	0	1	19816	737	0	0	0	0	0	0	602	2720	672	0	0	99	0	
	0	1	19895	724	0	0	0	0	0	0	616	3842	698	0	0	99	0	
	0	1	17147	724	0	0	0	0	0	0	649	6427	626	0	0	99	0	
	0	1	17065	720	0	0	0	0	0	0	516	3629	543	0	0	99	0	
	0	1	17163	720	0	0	0	0	0	0	614	9030	688	0	0	99	0	
	0	1	17343	720	0	0	0	0	0	0	420	8777	487	0	0	99	0	
	0	1	17579	712	0	0	0	0	0	0	466	2182	473	0	0	99	0	
	0	1	17647	712	0	0	0	0	0	0	497	3298	310	0	0	99	0	

The disk I/O wait is in the wa column and the nondisk wait is in the id column. Nondisk wait includes network I/O wait or terminal I/O wait. If there is no terminal I/O wait, then the system is waiting for network I/O to complete. You should run one of the network monitoring tools to find out the reason for the network I/O wait.

5.4.2 The ping command

When you have connection problems, the first tool you should use is the ping command. It is used for investigating basic point-to-point network connectivity problems, answering questions about whether the remote host is attached to the network, and whether the network between the hosts is reliable. Additionally, ping can indicate whether a host name and IP address is consistent across several machines. To check if the host server3 is *alive*, enter the following command:

```
# ping server3
PING server3: (9.3.240.58): 56 data bytes
64 bytes from 9.3.240.58: icmp_seq=0 ttl=255 time=1 ms
64 bytes from 9.3.240.58: icmp_seq=1 ttl=255 time=0 ms
^C
----server3 PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0/0/1 ms
```

This test checks round-trip times and packet loss statistics, as shown in the previous example.

5.4.3 The traceroute command

If you can not reach a host which is in a different network, you can check the connection using the traceroute command. The traceroute output shows each gateway that the packet traverses on its way to find the target host, and the delay or network latency associated with that segment. If possible, examine the routing tables of the last machine shown in the traceroute output to check if a route exists to the destination from that host. The last machine shown is where the routing is going astray.

```
# traceroute 9.3.240.56
traceroute to 9.3.240.56 (9.3.240.56), 30 hops max, 40 byte packets
1 server4e (10.47.1.1) 1 ms 1 ms 0 ms
2 server1 (9.3.240.56) 1 ms 1 ms 1 ms
```

If the connections are performing poorly, packet fragmentation may be a problem. AIX Version 4.3 has a service that allows automatic path MTU discovery. A fixed MTU size can also be set with the no command.

5.4.4 The netstat command

The most common network monitoring tool is netstat. The netstat command is used to show the network status. It gives you an indication of the reliability of the local network interface. Traditionally, it is used more for problem determination than for performance measurement. It is useful in determining

the amount of traffic on the network, therefore ascertaining whether performance problems are due to congestion.

There are various options to display:

- · Active sockets
- Protocol statistics
- · Device driver information
- · Network data structures

To display statistics recorded by the memory management routines, use the netstat command with the -m flag. To enable more extensive statistics for network memory services (for AIX Version 4.3.2 and up), you should set kernel variable extendednetstats to 1 first, as shown in the following:

- # no -o extendednetstats=1
- # netstat -m
- 16 mbufs in use:
- 0 mbuf cluster pages in use
- 4 Kbytes allocated to mbufs
- 0 requests for mbufs denied
- 0 calls to protocol drain routines

Kernel malloc statistics:

***** CPU 0	*****					
By size	inuse	calls	failed	free	hiwat	freed
32	97	102	0	31	640	0
64	124	805	0	68	320	0
128	111	923	0	17	160	0
256	152	41806	0	24	384	0
512	32	231	0	16	40	0
1024	1	158	0	19	20	2
2048	1	716	0	1	10	0
4096	2	14	0	7	120	0
8192	2	133	0	2	10	0
16384	1	1	0	12	24	7
By type	inuse	calls	failed	memuse	memmax	mapb
mbuf	16	41218	0	4096	19712	0
mcluster	0	764	0	0	8192	0
socket	111	862	0	18048	18688	0
pcb	80	495	0	12480	12992	0
routetbl	8	15	0	1312	2080	0
ifaddr	7	7	0	832	832	0
mblk	66	435	0	15104	15488	0

mblkdata	2	294	0	16384	35840	0
strhead	11	48	0	3232	4256	0
strqueue	18	112	0	9216	11776	0
strmodsw	20	20	0	1280	1280	0
strosr	0	20	0	0	256	0
strsyncq	25	326	0	2688	3392	0
streams	137	245	0	14976	16256	0
devbuf	1	1	0	256	256	0
kernel table	14	15	0	45920	46432	0
temp	8	13	0	7424	15744	0

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

The first paragraph of data shows how much memory is allocated to mbufs. The total number of bytes allocated for mbufs is the first statistic you should review. In this example, 4 KB is allocated out of a possible limit 16 MB. This limit can be regulated by the thewall kernel variable. The second statistic is named requests for mbufs denied. The nonzero value indicates that you should increase the limit by setting the thewall value. To check the thewall value, enter:

```
# no -o thewall
thewall = 16384
```

For network protocols statistics, use the netstat command with the -p flag and the appropriate protocol name. To receive statistics for IP protocol, use the command as follows:

```
# netstat -p IP
ip:
::
     59821 total packets received
     0 bad header checksums
     0 with size smaller than minimum
     0 with data size < data length
     0 with header length < data size
     0 with data length < header length
     0 with bad options
     0 with incorrect version number
     7985 fragments received
     0 fragments dropped (dup or out of space)
     7 fragments dropped after timeout
     3989 packets reassembled ok
     55825 packets for this host</pre>
```

```
47289 packets sent from this host
8 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
11000 output datagrams fragmented
22000 fragments created
0 datagrams that can't be fragmented
....
0 ipintrq overflows
```

The when the ipintrq overflows counter has a nonzero value, you should change the length of the IP input queue using the no command:

```
# no -o ipqmaxlen=100
```

To check the amount of packets that pass through interfaces and the number of input/output errors, use the following command:

# netstat -i								
Name	Mtu	Network	Address	Ipkts Ierrs		Opkts Oerrs		Coll
100	16896	link#1		282515	0	283832	0	0
100	16896	127	localhost.austin.	282515	0	283832	0	0
100	16896	::1		282515	0	283832	0	0
en0	1500	link#2	8.0.5a.fc.d2.e1	49995	0	27187	3929	0
en0	1500	10.47	server4_	49995	0	27187	3929	0
tr0	1492	link#3	0.4.ac.61.73.f7	730283	0	317239	722	0
tr0	1492	9.3.240	server4f	730283	0	317239	722	0

5.4.5 The netpmon command

The netpmon command is the tool used for network I/O analysis. It uses trace as a means to collect statistics about events occurring in the network code in the kernel. Tracing must be stopped using a trestop command. The netpmon then generates all the specified reports and exits. In the client-server environment, netpmon gives an excellent picture of how networking affects the overall performance. The netpmon command can be run on both the client and server. The netpmon command focuses on the following physical and logical resources:

CPU usage	Monitors CPU usage by all threads and interrupt
	handlers. It estimates how much of this usage is
	due to network-related activities.

Network Device-Driver I/O Monitors I/O operations through network device drivers. In the case of transmission I/O, the command also monitors utilizations, queue lengths, and destination hosts.

Internet Socket Calls

Monitors all subroutines on IP sockets.

NFS I/O

Monitors read and write subroutines on client Network File System (NFS) files, client NFS remote procedure call (RPC) requests, and NFS server read or write requests.

The following example shows how network operation can impact the CPU performance. There was an NFS work load during this netpmon session.

netpmon -0 cpu; sleep 10 ; trcstop

on Jul 10 18:08:31 2000

System: AIX server1 Node: 4 Machine: 000BC6FD4C00

Process CPU Usage Statistics:

				Network
Process (top 20)	PID	CPU Time	CPU %	CPU %
kproc	774	1.4956	24.896	0.000
kproc	516	1.4940	24.870	0.000
kproc	1032	1.4929	24.852	0.000
kproc	1290	1.4854	24.727	0.000
kproc	2064	0.0089	0.148	0.000
topas	14798	0.0051	0.084	0.000
netpmon	19204	0.0035	0.059	0.000
nfsd	25054	0.0026	0.044	0.044
ksh	5872	0.0010	0.016	0.000
dtterm	17910	0.0009	0.014	0.000
netpmon	22732	0.0007	0.012	0.000
trace	28206	0.0006	0.010	0.000
swapper	0	0.0005	0.008	0.000
xterm	21984	0.0004	0.007	0.001
X	4212	0.0003	0.005	0.000
trestop	11070	0.0002	0.004	0.000
java	17448	0.0002	0.003	0.000
init	1	0.0001	0.002	0.000
dtwm	10160	0.0001	0.002	0.000
ot	27694	0.0001	0.001	0.000
Total (all processes)		5 9933	99.767	0.045
Idle time		0.0000	0.000	0.043
TATE CITIE		0.0000	0.000	

/the output was edited for brevity/

Note that only the nfsd daemon consumed the network CPU time. The network CPU time means percentage of total time that the interrupt handler executed on behalf of network-related events. For other statistics, use the netpmon command with the -O flag and the appropriate keyword. The possible keywords are: cpu, dd (network device-driver I/O), so (Internet socket call I/O), nfs (NFS I/O) and all.

5.4.6 The tcpdump and iptrace commands

The tools discussed previously allow you to obtain a various number of statistics and network-type events in the AIX kernel. However, you might get a problem where statistic counters are not enough to find the cause of the problem. You may need to see the real data *crossing the wire*. There are two commands that let you see every incoming and outgoing packet from your interface: tcpdump and iptrace.

The tcpdump command prints out the headers of packets captured on a specified network interface. The following example shows a telnet session between hosts 9.3.240.59 and 9.3.240.58:

```
# tcpdump -i tr0 -n -I -t dst host 9.3.240.58
9.3.240.59.44183 > 9.3.240.58.23: S 1589597023:1589597023(0) win 16384 <mss 1452> [tos 0x10]
9.3.240.58.23 > 9.3.240.59.44183: S 1272672076:1272672076(0) ack 1589597024 win 15972 <mss 1452>
9.3.240.59.44183 > 9.3.240.58.23: . ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 1:16(15) ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 1:16(15) ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 6 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 6 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 6 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.59.44183: P 6:27(21) ack 1 win 15972 [DF)
9.3.240.59.44183 > 9.3.240.58.23: P 1:27(26) ack 27 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 1:27(26) ack 27 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 27:30(3) ack 81 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 27:30(3) ack 81 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 27:30(3) ack 81 win 15972 [tos 0x10]
```

The first line indicates that TCP port 44183 on host 9.3.240.59 sent a packet to the telnet port (23) on host 9.3.240.58. The S indicates that the SYN flag was set. The packet sequence number was 1589597023 and it contained no data. There was no piggy-backed ack field, the available receive field win was 16384 bytes and there was a max-segment-size (mss) option requesting an mss of 1452 bytes. Host 9.3.240.58 replies with a similar packet, except it includes a piggy-backed ack field for host 9.3.240.59 SYN. Host 9.3.240.59 then acknowledges the host 9.3.240.58 SYN. The . (period) means no flags were set. The packet contains no data, so there is no data sequence number. On the eleventh line, host 9.3.240.59 sends host 9.3.240.58 26 bytes of data. The PUSH flag is set in the packet. On the twelfth line, host 9.3.240.58 says it received data sent by host 9.3.240.59 and sends 54 bytes of data; it also includes a piggy-backed ack for sequence number 27.

The <code>iptrace</code> daemon records IP packets received from configured interfaces. Command flags provide a filter so that the daemon traces only packets meeting specific criteria. Packets are traced only between the local host on which the iptrace daemon is invoked and the remote host. To format <code>iptrace</code> output, run the <code>ipreport</code> command. The following example shows the query from host 9.3.240.59 to DNS server 9.3.240.2. The output from the <code>nslookup</code> command is shown in the following:

```
# nslookup www.prokom.pl
Server: dhcp240.itsc.austin.ibm.com
Address: 9.3.240.2
Non-authoritative answer:
Name: mirror.prokom.pl
Address: 153.19.177.201
Aliases: www.prokom.pl
The data was captured by the iptrace command, similar to the following:
# iptrace -a -P UDP -s 9.3.240.59 -b -d 9.3.240.2 /tmp/dns.query
The output form the iptrace command was formatted by the ipreport
command, as follows:
TOK: ====( 81 bytes transmitted on interface tr0 )==== 17:14:26.406601066
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [ src = 00:04:ac:61:73:f7, dst = 00:20:35:29:0b:6d]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: < DST =
                9.3.240.2 > (dhcp240.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=59, ip_id=64417, ip_off=0
IP: ip_ttl=30, ip_sum=aecc, ip_p = 17 (UDP)
UDP: <source port=49572, <destination port=53(domain) >
UDP: [ udp length = 39 | udp checksum = 688d ]
DNS Packet breakdown:
   QUESTIONS:
  www.prokom.pl, type = A, class = IN
TOK: ==== ( 246 bytes received on interface tr0 ) ==== 17:14:26.407798799
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [ src = 80:20:35:29:0b:6d, dst = 00:04:ac:61:73:f7]
```

TOK: 802.2 LLC header:

TOK: routing control field = 02c0, 0 routing segments

```
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC =
                9.3.240.2 > (dhcp240.itsc.austin.ibm.com)
IP: < DST =
                 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: ip v=4, ip hl=20, ip tos=0, ip len=222, ip id=2824, ip off=0
IP: ip_ttl=64, ip_sum=7cc3, ip_p = 17 (UDP)
UDP: <source port=53 (domain), <destination port=49572 >
UDP: [ udp length = 202 | udp checksum = a7bf ]
DNS Packet breakdown:
   OUESTIONS:
   www.prokom.pl, type = A, class = IN
   ANSWERS:
    -> www.prokom.plcanonical name = mirror.prokom.pl
    -> mirror.prokom.plinternet address = 153.19.177.201
   AUTHORITY RECORDS:
    -> prokom.plnameserver = phobos.prokom.pl
    -> prokom.plnameserver = alfa.nask.gda.pl
    -> prokom.plnameserver = amber.prokom.pl
   ADDITIONAL RECORDS:
    -> phobos.prokom.plinternet address = 195.164.165.56
    -> alfa.nask.gda.plinternet address = 193.59.200.187
    -> amber.prokom.plinternet address = 153.19.177.200
```

There are two packets shown on the ipreport output above (the key data is shown in bold face text). Every packet is divided into a few parts. Each part describes different network protocol level. There are the token ring (TOK), IP, UDP, and the application (DNS) parts. The first packet is sent by host 9.3.240.59 and is a query about the IP address of the www.prokom.pl host. The second one is the answer.

5.5 Network performance management tools

Use the no command to configure network attributes. The no command sets or displays current network attributes in the kernel. This command only operates on the currently running kernel. The command must be run again after each startup or after the network has been configured. To make changes permanent, make changes to the appropriate /etc/rc. file. To list the current value of every parameter you can change, use the following command:

```
medthresh = 95
psecache = 1
subnetsarelocal = 1
maxttl = 255
ipfragttl = 60
ipsendredirects = 1
ipforwarding = 1
udp_ttl = 30
tcp_ttl = 60
arpt_killc = 20
tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41920
.....
```

To change the value of the thewall system parameter, shown as 18420, to 36840, use the no command, as shown in the following.

```
# no -o thewall=36840
```

The ifconfig command can be used to assign an address to a network interface or to configure or display the current configuration information. For tuning purposes, it is used to change the MTU size:

ifconfig en0 mtu 1024

Note -

The MTU parameters have to be the same on all nodes of the network.

The chdev command is also used to change the value of system attributes. The changes made by the chdev command are permanent, because they are stored in the ODM database. To display the current value of the parameters of the en0 interface, use the <code>lsattr</code> command, as follows.

# lsattr -El	en0		
mtu	1500	Maximum IP Packet Size for This Device	True
remmtu	576	${\tt Maximum\ IP\ Packet\ Size\ for\ REMOTE\ Networks}$	True
netaddr	10.47.1.6	Internet Address	True
state	up	Current Interface Status	True
arp	on	Address Resolution Protocol (ARP)	True
netmask	255.255.0.0	Subnet Mask	True
security	none	Security Level	True
authority		Authorized Users	True
broadcast		Broadcast Address	True
netaddr6		N/A	True
alias6		N/A	True

prefixlen	N/A	True
alias4	N/A	True
rfc1323	N/A	True
tcp_nodelay	N/A	True
tcp_sendspace	N/A	True
tcp_recvspace	N/A	True
tcp_mssdflt	N/A	True

To permanently change value of the MTU parameter, enter:

```
# chdev -1 en0 -a mtu=1024
en0 changed
```

5.6 Name resolution

If a network connection seems inexplicably slow at times but reasonable at other times, you should check the name resolution configuration for your system. To perform a basic diagnostic for name resolving, you can use either the host command or the nslookup command.

```
# host dhcp240.itsc.austin.ibm.com
dhcp240.itsc.austin.ibm.com is 9.3.240.2
```

The name resolution can be served through either the remote DNS server or the remote NIS server. If one of them is down, you have to wait until a TCP time-out occurs. The name can be resolved by an alternate source, which can be a secondary name server or the local /etc/hosts file.

First check the /etc/netsvc.conf file or NSORDER environment variable for your particular name resolution ordering. Then check the /etc/resolv.conf file for the IP address of the name server and try to ping it. If you can ping it, then it is up and reachable. If not, try a different name resolution ordering.

5.7 NFS performance tuning

This section discusses the NFS server and the NFS client performance issue.

5.7.1 NFS server-side performance

When narrowing down the performance discussion on servers to the NFS specifics, the issue is often related to dropped packages. NFS servers may drop packets due to overloads.

One common place where a server will drop packets is the UDP socket buffer. The default for AIX Version 4.3 is TCP for data transfer, but UDP is

still used for mounting. Dropped packets here are counted by the UDP layer, and the statistics can be seen by using the <code>netstat -p UDP</code> command. For example:

```
# netstat -p UDP
udp:
    89827 datagrams received
    0 incomplete headers
    0 bad data length fields
    0 bad checksums
    329 dropped due to no socket
    77515 broadcast/multicast datagrams dropped due to no socket
    0 socket buffer overflows
    11983 delivered
    11663 datagrams output

(At the test system the buffer size was sufficient)
```

NFS packets will usually be dropped at the socket buffer only when a server has a lot of NFS write traffic. The NFS server uses a UDP and TCP socket attached to the NFS port, and all incoming data is buffered on those ports. The default size of this buffer is 60000 bytes. Dividing that number by the size of the default NFS Version 3 write packet (32765), you find that it will take only two simultaneous write packets to overflow that buffer. That could be done by just one NFS client (with the default configurations). It is not as easy as it sounds to overflow the buffer in normal system operation. As soon as the first packet reaches the socket, an nfsd will be awakened to start taking the data off.

One of two things has to happen for packets to be dropped. There must be high volume or a high burst of traffic on the socket. If there is high volume, a mixture of many writes plus other possibly non-write NFS traffic, there may not be enough nfsd daemons to take the data off the socket fast enough to keep up with the volume (It takes a dedicated nfsd to service each NFS call of any type). In the high burst case, there may be enough nfsds, but the speed at which packets arrive on the socket is such that the nfsd daemons cannot wake up fast enough to keep it from overflowing.

Each of the two situations has a different resolution. In the case of high volume, it may be sufficient to just increase the number of nfsd daemons running on the system. Since there is no significant penalty for running with more nfsd daemons on an AIX machine, this should be tried first.

This can be done with the following command:

```
# chnfs -n 16
```

This will stop the currently running daemons, modify the SRC database code to reflect the new number, and restart the daemons indicated.

In the case of a high burst of traffic, the only solution is to make the socket bigger in the hope that some reasonable size will be sufficiently large enough to give the nfsd daemons time catch up with the burst. Memory dedicated to this socket will not be available for any other use so it must be understood that making the socket larger may result in memory that will be under utilized the vast majority of the time. The cautious administrator will watch the socket buffer overflows statistic and correlate it with performance problems and make a determination on how big to make the socket buffer. To check the NFS kernel options, use the nfso command:

```
# nfso -a
portcheck= 0
udpchecksum= 1
nfs socketsize= 60000
nfs_tcp_socketsize= 60000
nfs setattr error= 0
nfs gather threshold= 4096
nfs repeat messages= 0
nfs_udp_duplicate_cache size= 0
nfs tcp duplicate cache size= 5000
nfs server base priority= 0
nfs dynamic retrans= 1
nfs_iopace_pages= 0
nfs_max_connections= 0
nfs max threads= 8
nfs use reserved ports= 0
nfs device specific bufs= 1
nfs server clread= 1
nfs rfc1323= 0
nfs max write size= 0
nfs max read size= 0
nfs_allow_all_signals= 0
```

If you change the nfsbuffer sizes, you must verify that the kernel variable sb_max is greater then the NFS buffer values chosen. The default value of sb_max is 1048576 on AIX Version 4.3.3. If you need to increase the sb_max value, use the no command. Remember that everything changed with no or nfso is valid only until the next boot, unless these changes have been added to a boot script, for example, /etc/rc.nfs.

5.7.2 NFS client-side performance

The NFS client performance topic often concentrates on the number of biod daemons used. For biod daemons, there is a default number of biod daemons (six for a NFS V2 mount, four for a NFS V3 mount) that may operate on any one remote mounted file system concurrently. The idea behind this limitation is that allowing more than a set number of biod daemons to operate against the server at one time may overload the server. Since this is Config_Rules on a per-mount basis on the client, adjustments can be made to configure client mounts by the server capabilities.

When evaluating how many biod daemons to run, you should consider the server capabilities as well as the typical NFS usage on the client machine. If there are multiple users or multiple process on the client that will need to perform NFS operations to the same NFS mounted file systems, you have to be aware that contention for biod services can occur with just two simultaneous read or write operations.

Up to six biod daemons can be working on reading a file in one NFS file system. If another read starts in another NFS mounted file system, both reads will be attempting to use all six biod daemons. In this case, presuming that the server(s) are not already overloaded, performance will likely improve by increasing the biod number to 12. This can be done using the chnfs command:

chnfs -b 12

On the other hand, suppose both file systems are mounted from the same server and the server is already operating at peak capacity. Adding another six biod daemons could dramatically worsen the response due to the server dropping packets and resulting in time-outs and retransmits.

5.7.3 Mount options

The mount command has several NFS specific options that may affect performance.

The most useful options are used to set the read and write sizes to some value that changes the read/write packet size that is sent to the server.

For NFS Version 3 mounts, the read/write sizes can be both increased and decreased. The default read/write sizes are 32 KB. The maximum possible on AIX at the time of publication is 61440 bytes (60 x 1024). Using 60 KB, read/write sizes may provide slight performance improvement in specialized environments. To increase the read/write sizes when both server and client are AIX machines requires modifying settings on both machines. On the

client, the mount must be performed by setting up the read/write sizes with the -o option. For example, -o rsize=61440,wsize=61440. On the server, the advertised maximum read/write size is configured through use of the nfso command using the nfs_max_write_size and nfs_max_read_size parameters. For example:

```
# nfso -o nfs_max_write_size=61440
```

NFS V3 uses TCP by default while NFS Version 2 uses UDP only. This means the initial client mount request using TCP will fail. To provide backwards compatibility, the mount is retried using UDP, but this only occurs after a time-out of some minutes. To avoid this problem, NFS V3 provided the *proto* and *vers* parameters with the mount command. These parameters are used with the -o option to hardwire the protocol and version for a specific mount. The following example forces the use of UDP and NFS V2 for the mount request:

```
# mount -o proto=udp, vers=2, soft, retry=1 server4:/tmp /mnt
```

5.8 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

5.8.1 The netstat command

The syntax of the netstat command is:

To Display Active Sockets for Each Protocol or Routing Table Information:

```
/bin/netstat [ -n ] [ \{ -A -a \} | \{ -r -i -I Interface \} ] [ -f AddressFamily ] [ -p Protocol ] [ Interval ] [ System ]
```

To Display the Contents of a Network Data Structure:

```
/bin/netstat [ -m | -s | -ss | -u | -v ] [ -f AddressFamily ] [ -p Protocol ] [ Interval ] [ System ]
```

To Display the Packet Counts Throughout the Communications Subsystem:

```
/bin/netstat -D
```

To Display the Network Buffer Cache Statistics:

```
/bin/netstat -c
```

To Display the Data Link Provider Interface Statistics:

To Clear the Associated Statistics:

```
/bin/netstat [ -Zc | -Zi | -Zm | -Zs ]
```

Some useful netstat flags from a NFS perspective are provided in Table 13.

Table 13. Commonly used flags of the netstat command

Flags	Description
-P <pre>-P</pre>	Shows statistics about the value specified for the Protocol variable.
-S	Shows statistics for each protocol.
-D	Shows the number of packets received, transmitted, and dropped in the communications subsystem.

5.8.2 The tcpdump command

The syntax of the tcpdump command is:

```
tcpdump [ -I ] [ -n ] [ -N ] [ -t ] [ -v ] [ -c Count ] [ -i Interface ] [ -w File ] [ Expression ]
```

Some useful topdump flags are provided in Table 14.

Table 14. Commonly used flags of the tcpdump command

Flags	Description		
-c Count	Exits after receiving Count packets.		
-n	Omits conversion of addresses to names.		
-N	Omits printing domain name qualification of host names.		
-t	Omits the printing of a timestamp on each dump line.		
-i Interface	Listens on Interface.		

5.8.3 The iptrace command

The syntax of the iptrace command is:

```
iptrace [ -a ] [ -e ] [ -PProtocol ] [ -iInterface ] [ -pPort ] [ -sHost [
-b ] ] [ -dHost [ -b ] ] LogFile
```

Some useful iptrace flags are provided in Table 15.

Table 15. Commonly used flags of the iptrace command

Flags	Description			
-a	Suppresses ARP packets.			
-s <host></host>	Records packets coming from the source host specified by the host variable.			
-b	Changes the -d or -s flags to bidirectional mode.			

5.8.4 The ipreport command

The syntax of the ipreport command is:

```
ipreport [ -e ] [ -r ] [ -n ] [ -s ] LogFile
```

Some useful ipreport flags are provided in Table 16.

Table 16. Commonly used flags of the ipreport command

Flags	Description
-S	Prepends the protocol specification to every line in a packet.
-r	Decodes remote procedure call (RPC) packets.
-n	Includes a packet number to facilitate easy comparison of different output formats.

5.9 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

- 1. Which of the following commands is most useful in collecting data to determine a network performance problem?
 - A. iostat
 - B. lpstat
 - C. netstat
 - D. vmstat

- 2. Which of the following commands should be used to test name resolution response?
 - A. host
 - B. iostat
 - C. ifconfig
 - D. hostname
- 3. Which of the following commands should be used to identify the cause of packet sequence problems?
 - A. tprof and gprof
 - B. netstat and iostat
 - C. lsattr and ifconfig
 - D. iptrace and tcpdump
- 4. Which of the following commands should be used to make a difference when tuning NFS on a client system?
 - A. mount
 - B. vmtune
 - C. exportfs
 - D. schedtune
- 5. On an NFS server, netstat -m is run once and then again 15 minutes later.

```
# date
Mon Jun 12 20:05:54 CDT 1995
```

netstat -m
1385 mbufs in use:
96 mbuf cluster pages in use
2170 Kbytes allocated to mbufs
841 requests for mbufs denied
0 calls to protocol drain routines

Kernel malloc statistics:

By size	inuse	calls	failed	free	hiwat	freed
32	301	2787	0	211	640	0
64	41	318	0	23	320	0
128	117	1814	0	43	160	0
256	138	6391162	0	22	384	0
512	20	1112	0	20	40	0
1024	2	77	0	2	20	0
2048	0	33	0	2	10	0
4096	96	335617	841	11	120	0
16384	1	1	0	12	24	7

date

Mon Jun 12 20:20:04 CDT 1995

netstat -m

1389 mbufs in use:

97 mbuf cluster pages in use

2180 Kbytes allocated to mbufs

982 requests for mbufs denied

0 calls to protocol drain routines

Kernel malloc statistics:

By size	inuse	calls	failed	free	hiwat	freed
32	301	2787	0	211	640	0
64	41	318	0	23	320	0
128	117	1814	0	43	160	0
256	138	6391162	0	22	384	0
512	20	1112	0	20	40	0
1024	2	77	0	2	20	0
2048	0	33	0	2	10	0
4096	97	338610	982	11	120	0
16384	1	1	0	12	24	7

An extract of the output for both times is shown in the preceding exhibits.

Using the netstat outputs, which of the following conclusions is most appropriate to draw?

- A. The number of biod(s) should be increased.
- B. The number of nfsd(s) should be increased.
- C. The machine needs more physical memory.
- D. The machine needs more memory allocated for mbufs.

- 6. There is a TCP/IP application that receives files from a remote machine. The application reads 32 kilobytes of data at a time to the socket, but has not issued a system call to set the window size. Which of the following procedures should be performed on the local machine to increase the throughput of the application?
 - A. Increase the size of thewall.
 - B. Increase the size of sb max.
 - C. Increase the size of tcp_recvspace.
 - D. Increase the size of tcp_sendspace.
- 7. Which of the following tools should be used to determine network latency or delay?
 - A. arp
 - B. netstat
 - C. ifconfig
 - D. traceroute

5.9.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. C
- 2. A
- 3. D
- 4. A
- 5. D
- 6. C
- 7. D

5.10 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

- 1. Capture data from a telnet session using the topdump command.
- 2. Capture data from a telnet session using the iptrace command.
- 3. Compare outputs from previously captured sessions.

- 4. Using the ${\tt no}$ command, check current values of kernel variables.
- 5. Check protocol statistics using the netstat command using the -p flag.

Chapter 6. Performance management tools

In this chapter, the following topics are covered:

- The AIX scheduler
- The multiple run queue design of AIX Version 4.3.3
- The schedtune command
- The nice and renice commands
- Workload Manager introduction

The scope of this chapter concentrates on the thread scheduling and the possibilities to manipulate the process priorities with the schedtune, nice, and renice command. The ps, bindprocessor, emstat, and tprof commands are also reviewed.

6.1 The AIX scheduler

The need for a scheduler for operating system efficiency is paramount. There are more threads and processes running than there are CPUs on any system. This is why the operating system is using the scheduler to decide which thread is allowed to use the CPU at any moment. The scheduler selects the thread to run from a list of waiting ready-to-run threads on the *run queue*. The number of waiting threads on the run queue is provided in the highlighted left most column in the following vmstat output:

# v kth		at 2 5	ory			pa:	ge 			f	aults			cp	ou 	
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	16272	75548	0	0	0	0	0	0	102	21	10	1	0	99	0
2	1	16272	75547	0	0	0	0	0	0	407	1541	24	49	0	51	0
2	1	16272	75547	0	0	0	0	0	0	405	58	28	50	0	50	0
2	1	16272	75547	0	0	0	0	0	0	406	43	25	50	0	50	0
2	1	16272	75547	0	0	0	0	0	0	409	29	26	50	0	50	0

The threads in the run queue are sorted in priority order, and the thread that has the highest priority gets to use the CPU. For more information on the relationship between process and threads, see Chapter 2, "Performance tuning - getting started" on page 19.

© Copyright IBM Corp. 2000

In AIX Version 4, the five possible values for the thread scheduling policy are as follows:

SCHED_FIFO

This is a non-preemptive scheduling scheme. After a thread with this policy is scheduled, it runs to completion unless it is blocked, it voluntarily yields control of the CPU, or a higher-priority thread becomes dispatchable. Only fixed-priority threads can have a SCHED_FIFO scheduling policy.

SCHED_RR

The thread has a fixed priority. When a SCHED_RR thread has control at the end of the time slice, it moves to the tail of the queue of dispatchable threads of its priority. Only fixed-priority threads can have a SCHED_RR scheduling policy.

SCHED OTHER

This policy is defined by POSIX Standard 1003.4a as implementation-defined. In AIX Version 4, this policy is defined to be equivalent to SCHED_RR, except that it applies to threads with nonfixed priority. The recalculation of the running thread's priority at each clock interrupt means that a thread may lose control because its priority has risen above that of another dispatchable thread.

SCHED FIFO2

This policy is the same as for SCHED_OTHER, except that it allows a thread which has slept for only a short amount of time to be put at the head of its run queue when it is awakened. This policy is only available on AIX Version 4.3.3 or later.

SCHED_FIFO3

A thread whose scheduling policy is set to SCHED_FIFO3 is always put at the head of a run queue. To prevent a thread belonging to the SCHED_FIFO2 scheduling policy from being put ahead of SCHED_FIFO3, the run queue parameters are changed when a SCHED_FIFO3 thread is enqueued, so that no thread belonging to SCHED_FIFO2 will join the head of the run queue. This policy is only available on AIX Version 4.3.3 or later.

6.1.1 Priority calculation on AIX versions prior to 4.3.2

The priority values differ from AIX versions previous to 4.3.2 and AIX Version 4.3.2 and later. Generally speaking, the lower the value is, the higher is the priority, with 0 as the lowest value and the greatest priority. The other end is the value of 127, which is the worst priority a thread can get. This priority value is reserved for the wait process. While the thread is running (using the CPU), the priority is recalculated, the value goes up, and the priority goes down. The longer a thread has existed without using CPU, the lower the value gets and, accordingly, the higher the priority. At one point, a thread in the run queue will have a lower value (higher priority) than the current running thread, the thread running is released, and the thread from the run queue is given CPU time.

As shown in Figure 18, the global run queue used by AIX versions prior to 4.3.2 is symbolized. Threads A and B are forced to release control of the CPUs as soon as higher priority threads become runnable. In this case, threads C, D, and E are all available. Thread C is chosen first because it has the highest priority. Threads D and E have equal priority and occupy adjacent positions in the queue. Thread D is selected because of its position.

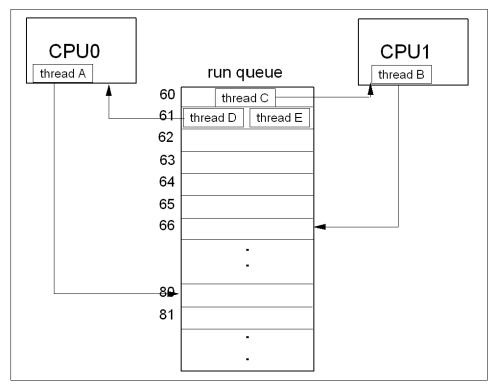


Figure 18. Run queue prior to AIX Version 4.3.3

Figure 18 is a simplification of the actual layout as shown in Figure 19 on page 181, with the following explaining text from the *Performance Management Guide*:

All the dispatchable threads of a given priority occupy consecutive positions in the run queue. AIX Version 4 maintains 128 run queues. These run queues relate directly to the range of possible values (0 through 127) for the priority field for each thread. This method makes it easier for the scheduler to determine which thread is most favored to run. Without having to search a single large run queue, the scheduler consults a 128-bit mask where a bit is on to indicate the presence of a ready-to-run thread in the corresponding run queue.

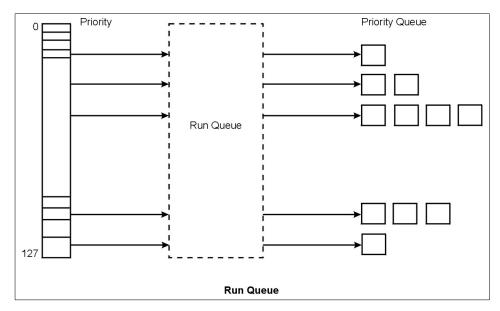


Figure 19. AIX Version 4, 128 run queues

A thread can be fixed priority or non-fixed priority. The priority value of a fixed-priority thread is constant, while the priority value of a non-fixed priority thread is the sum of the maximum priority level for user threads (a constant 40), the thread's nice value (the default is 20 for foreground processes and 24 for background processes) and its CPU penalty.

One of the factors in priority calculation is the *Recent CPU usage* value. One out of two calculations used in defining the Recent CPU usage is:

Recent CPU usage = Old Recent CPU usage + 1

This calculation is done 100 times a second (at every tick). The Recent CPU usage value increases by 1 each time the thread is in control of the CPU at the end of a tick. The maximum value is 120. In other words, running threads have their Recent CPU usage value recalculated (increased) 100 times a second until reaching the maximum limit of 120. This value is shown in the C column of the ps command output:

```
# ps -f
    UID PID PPID C STIME TTY TIME CMD
    root 12948 12796 0 14:27:07 pts/1 0:00 ksh
    root 13888 12948 111 10:08:34 pts/1 94:21 ./tctestprg
    root 15432 12948 4 11:42:56 pts/1 0:00 ps -f
    root 15752 12948 110 10:08:34 pts/1 94:21 ./tctestprg
```

Once every second, all threads, including those that are asleep, have their Recent CPU usage value recalculated as follows:

Recent CPU usage = Old Recent CPU usage x (SCHED_D / 2)

The default value for SCHED_D is 16, which means that the Old Recent CPU usage value is divided by 2 (16 / 32 = 0.5). This prevents the Recent CPU usage values of all processes from being set at a stable 120.

With this value, Recent CPU usage, the *CPU penalty*, value can be calculated:

CPU penalty = Recent CPU usage x (SCHED_R / 32)

The default value for SCHED_R is 16. With the CPU penalty value defined, the *Priority*, also calculated at every tick, can finally be calculated as follows:

Priority value = 40 + nice value + CPU penalty

In this calculation, the default nice value is 20 for foreground process and 24 for background processes.

With these definitions, you can see that three values can be manipulated for tuning performance: the nice value, SCHED_R, also called the weighting factor, and the SCHED_D, also called the decay factor.

6.1.2 Priority calculation on AIX Version 4.3.2 and later

AIX Version 4.3.2 and later added a couple of new definitions to be considered. First is the NICE factor, which is not the nice value manipulated with the nice command, but the sum of the maximum priority level for user threads and the value manipulated by the nice command.

Secondly, the DEFAULT_NICE factor is added to the algorithm. This factor is equal to the maximum priority level for a user, also named the base value (40), plus the default nice value for a foreground process (20). In other words, the sum is 60 for a foreground process (DEFAULT_NICE - NICE = 60).

The following calculation is used for calculating the priority:

Priority = (Recent CPU usage x SCHED_R x (xnice + 4)) / (32 x (DEFAULT_NICE + 4)) + xnice

where DEFAULT_NICE = 40 + 20 (base value plus default nice). The calculation for the xnice value is as follows:

```
xnice = (NICE > DEFAULT_NICE) ? (2 * nice) - 60 : NICE
```

This means that if nice is smaller or equal to DEFAULT_NICE, then:

```
xnice = NICE
```

But if NICE is greater than DEFAULT_NICE, in other words, if you have manipulated the thread with the nice command to lessen its priority, then:

```
xnice = (2 \times NICE) - 60
```

The nice value has a much greater impact on the priority of a thread. It is now included in the calculation as a multiple of the recent CPU usage, in addition to its use as a constant factor. To get greater granularity in the run queue(s), the DEFAULT_NICE is set to 60. Some artificial values will help show the calculation.

```
Recent CPU usage = 64
SCHED_R = 16
NICE = 64
```

Starting with the XNICE calculation:

```
xnice = (NICE > DEFAULT_NICE) ? (2 * NICE) - 60 : nice
```

Because NICE is greater then DEFAULT_NICE, then:

```
xnice = (2 \times 64) - 60 = 68
```

By entering the values given and the XNICE value in the calculation:

```
Priority = (Recent CPU usage x SCHED_R x (xnice + 4)) / (32 x (DEFAULT_NICE
+ 4)) + xnice
```

The calculation will look as follows:

```
P = (64 \times 16 \times (68 + 4)) / (32 \times 64) + \text{xnice}

P = (73728 / 2048) + 64

P = 100
```

You still have three values to manipulate. The nice value (as in the example), SCHED_R, and SCHED_D (for recent CPU usage). In the following sections, the multiple run queue layout and the commands that are used to change these values are discussed.

6.2 Multiple run queues with load balancing in AIX Version 4.3.3

The run queue is the same global queue on AIX Version 4.3.2 as on AIX Version 4.3.1, but on AIX Version 4.3.3 the run queue layout has changed. AIX Version 4.3.3 offers improved cache affinity through the use of multiple run queues. The new kernel scheduler implements a single global run queue along with a set of local run queues, where each processor has a dedicated local run queue.

Once a thread is placed on a local run queue, it generally stays there until an imbalance is detected. Thresholds are used to limit the amount of load balancing that takes place.

A diagram of the relationship of the local and global run queues is provided in Figure 20 on page 184.

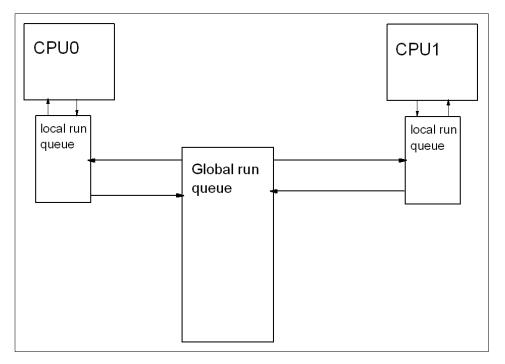


Figure 20. Run queue on AIX Version 4.3.3

The per-node local run queue competes with the local run queues of the node for CPUs to service its threads. The priority of the highest thread on a run queue (both local and global run queues) is maintained in the run queue. The dispatcher uses this data without holding the run queue locks to make a low

overhead decision of which run queue to search. This mechanism allows the priorities of the two run queues to be honored most of the time. When both run queues have threads waiting at the same priority, the local run queue is chosen.

Usually, when initiated, threads get on the global run queue by means of the load balancing mechanism implemented. Once a CPU dispatches a thread from the global run queue, it does not generally return to the global run queue, but rather to the queue served by the CPU dispatching it.

The load balancing is handled by a number of algorithms designed to keep the various run queues of a system approximately equally utilized. There are four balancing algorithms, which are discussed in the following sections.

6.2.1 Initial load balancing

Initial load balancing applies to newly created threads. When an unbound new thread is created as part of a new process (as well as a new thread for an existing process), it is placed on an idle CPU (if one exists). If an idle CPU cannot be found, the thread will be placed on the global queue.

6.2.2 Idle load balancing

Idle load balancing applies when a process would otherwise go idle, running the *waitproc* thread (for example PID 516). When the dispatcher reaches this point in its logic, it does not just scan other run queues in an attempt to find work at any cost. It is actually beneficial to allow what appears to be unnecessary idle cycles rather than moving a thread and losing cache affinity. The steps taken by the idle load balancing method are:

- Before dispatching the waitproc, search other queues for available work.
 This is a stronger statement than work being on another queue. The search routine will look for a queue that:
 - Contains the largest number of runnable threads.
 - Contains more runnable threads than the current steal threshold.
 - Contains at least one stealable (unbound) thread.
 - Has not had *steal_max* threads already stolen from it over the current clock tick interval.

The search is done without holding those run queues' locks

• To actually steal a thread, the chosen run queue's lock must be obtained. This is done by a special call written to avoid interfering with another instance of the dispatcher. If no lock can be obtained, run the waitproc.

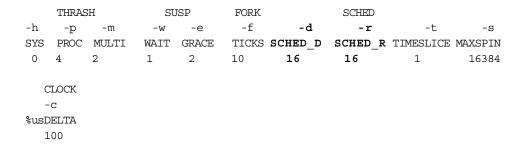
- After getting the lock, check that a stealable thread is still available. If there is no stealable thread, the waitproc is run.
- Change the threads run queue assignment and pointer.

6.2.3 Frequent periodic load balancing

This is performed every N clock ticks (at time of publication, 10). It attempts to balance the loads on the local queues of a node in much the same way that idle load balancing does. The idea is to move a thread from the most loaded to the least loaded run queue, but if the least loaded run queue has stolen a thread through idle load balancing in the last interval, nothing is done. The difference in load factors between the two run queues chosen for frequent periodic load balancing must be at least 1.5. Idle load balancing is less expensive, so the ideal situation is if frequent periodic load balancing does not have to interfere.

6.2.4 Infrequent periodic load balancing

If a thread has not received CPU time in the last N.5 (at time of publication 1.5) seconds, the thread is moved to the global run queue.


6.3 Scheduler performance management

AIX offers several ways to modify the default behavior of the scheduling system for threads and processes. This section describes the schedule, nice, and renice commands.

6.3.1 The schedtune command

The schedume command allows you to specify the SCHED_R with the -r flag and the SCHED_D with the -d flag. When executing the schedume command without flags, the current values will be shown:

/usr/samples/kernel/schedtune

Tuning is accomplished through two flags of the schedtune command: -r and -d. Each flag specifies a parameter that is an integer from 0 through 32. The parameters are applied by multiplying the recent CPU usage value by the parameter value and then dividing by 32. The default SCHED_R and SCHED_D values are 16, as seen in the previous output. The following sections discuss different uses of the schedtune command.

6.3.1.1 Schedtune example one

The following command will result in SCHED_R = 0 and SCHED_D = 0.5:

/usr/samples/kernel/schedtune -r 0

This would mean that the CPU penalty was always 0, making priority absolute. No background process would get any CPU time unless there were no dispatchable foreground processes at all, as background processes in ksh are started with adding 4 to the nice value of the parent shell. The priority values of the threads would effectively be constant, although they would not technically be fixed-priority threads.

6.3.1.2 Schedtune example two

The following command would result in an effective $SCHED_R = 1$ and $SCHED_D = 1$.

/usr/samples/kernel/schedtune -r 32 -d 32

This would mean that long-running threads would reach a C value of 120 and remain there, contending on the basis of their nice values. New threads would have priority, regardless of their nice value, until they had accumulated enough time slices to bring them within the priority value range of the existing threads.

6.3.1.3 Schedtune example three

The most likely reason to manipulate the values would be to make sure that background processes do not compete with foreground processes. By making SCHED_R smaller, you can restrict the range of possible priority values. For example:

/usr/samples/kernel/schedtune -r 5

(SCHED_R = 0.15625, SCHED_D = 0.5) would mean that a foreground process would never have to compete with a background process started with the command nice -n 20. The limit of 120 CPU time slices accumulated would mean that the maximum CPU penalty for the foreground process would be 18. In Figure 21 on page 188, this relationship is graphically shown. Because the CPU penalty will get a maximum value of 18, the foreground process with

a nice value of 20 will always, when it needs, get CPU. On the other hand, the background process, with a nice value of 40, will use CPU only when the foreground process does not need the CPU.

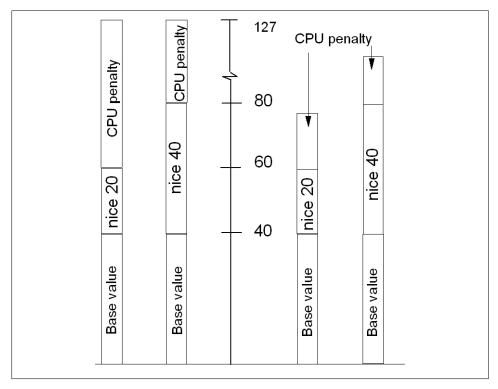


Figure 21. CPU penalty example

6.3.1.4 SCHED_R and SCHED_D guidelines

The following discusses guidelines for tuning performance using SCHED_R and SCHED_D.

- Smaller values of SCHED_R narrow the priority range and the nice value has more of an impact on the priority.
- Larger values of SCHED_R widen the priority range and the nice value has less of an impact on the priority.
- Smaller values of SCHED_D decay CPU usage at a faster rate and can cause CPU-intensive threads to be scheduled sooner.
- Larger values of SCHED_D decay CPU usage at a slower rate and penalize CPU-intensive threads more (thus favoring interactive-type threads).

If you conclude that one or both parameters need to be modified to accommodate your workload, you can enter the schedtune command while logged on as root user. The changed values will persist until the next schedtune command that modifies them, or until the next system boot. Values can be reset to their defaults with the command schedtune -D, but remember that all schedtune parameters are reset by that command, including VMM memory load control parameters. To make a change to the parameters that will persist across boots, add an appropriate line at the end of the /etc/inittab file.

6.3.1.5 The schedtune command summary

The schedtune command is used to manipulate the scheduler and the swapper. There are some major differences between in the commands between AIX Version 4.3.2 and AIX Version 4.3.3.

The syntax of the schedtune command is:

```
schedtune [ -D | \{ [-dn] [-en] [-fn] [-hn] [-mn] [-pn] [-rn] [-tn] [-wn] \} ]
```

In Table 17, from a CPU tuning perspective, are some useful schedtune flags. For a more information on the schedtune command, refer to *Performance Management Guide* (only available online at the time of publishing) and *Commands Reference - Volume 5*, SBOF-1877.

Table 17. Commonly used flags of the schedtune command

Flag	Description
-r	Manipulates the SCHED_R weighting factor.
-d	Manipulates the SCHED_D decay factor.
-D	Resets all schedtune values to default values.

6.3.2 The nice and renice commands

The nice value has been explained in Section "The nice and renice commands" on page 26. The nice value can be seen with the ps command in the NI column:

```
$ ps -lu thomasc
    F S UID PID PPID C PRI NI ADDR SZ TTY TIME CMD
200001 A 15610 5204 15476 3 61 20 a655 344 pts/1 0:00 ps
200001 A 15610 15476 12948 1 60 20 5029 488 pts/1 0:00 ksh
200001 A 15610 15818 15476 120 126 24 408b 44 pts/1 0:25 tctest
200001 A 15610 16792 15476 120 126 24 e89e 44 pts/1 0:18 tctest
```

Two programs have been started in the background, as shown by the nice value of 24, while the ps command running in the foreground has a nice value of 20. All outputs from the ps command have been edited in this

to fit the screen.

6.3.2.1 Running a command with nice

Any user can run a command to set a less-favorable-than-normal priority by using the nice command. Only the root user can use the nice command to run commands at a more-favorable-than-normal priority. From the root user, the nice command values range between -20 and 19.

With the nice command, the user specifies a value to be added to or subtracted from the default nice value. The modified nice value is used for the process that runs the specified command. The priority of the process is still non-fixed; that is, the priority value is still recalculated periodically based on the CPU usage, nice value, and minimum user-process-priority value.

The user thomasc, not being the root user, has the a range of nice values between 1 and 19 available. When applying a nice value to a background command, note that the maximum NI value is 39 even though the calculated value would be 43 (34 + 9), as shown in the following example:

```
# id
uid=15610(thomasc) gid=0(system)
# nice -19 ./tprof.tctestprg &
# ps -al|head -1 ; ps -al |grep tctestprg
        F S UID PID PPID C PRI NI ADDR SZ TTY TIME CMD
200001 A 15610 14740 15490 90 126 39 5888 44 pts/3 0:58 tctestprg
240001 A 15610 15818 1 90 118 24 408b 44 pts/1 51:02 tctestprg
240001 A 15610 16792 1 89 118 24 e89e 44 pts/1 50:55 tctestprg
```

The root user has the possibility to lessen the nice value. Notice the syntax; the first dash (-) is only an option marker, and the other dash tells the nice command to subtract 15 from the default value of 24 (the process is started in the background). For example:

```
# nice --15 ./tprof/tctestprg &
# ps -al |head -1 ; ps -al | grep tctestprg
        F S UID PID PPID C PRI NI ADDR SZ TTY TIME CMD
200001 A 15610 14740 15490 91 126 39 5888 44 pts/3 4:37 tctestprg
240001 A 15610 15818 1 92 119 24 408b 44 pts/1 54:41 tctestprg
200001A 0 16304 12948 85 84 9 c0bb 44 pts/1 0:03 tctestprg
240001 A 15610 16792 1 92 59 -- e89e 44 pts/1 54:34 tctestprg
```

Another way to execute the nice command, to get the same result as in the previous example, would be with the -n flag, as follows:

```
# nice -n -15 ./tprof/tctestprg &
```

It is actually only in this case, where root lessens the nice value, that a significant change is seen in the priority value. In the preceding output, the values nice=39 and nice=24 generate similar priority values (PRI column), but process 16304, started by root with nice=9, has a significant advantage with a priority value of 84.

The output also shows the scenario when a process is executed with a fixed priority (PID 16792). In the PRI column, the set priority is shown to be - 59, and the NI column shows no value. This can be done with the setpri subroutine. The setpri subroutine sets the scheduling priority of all threads in a process to be a constant.

6.3.2.2 Changing the nice value on a running thread

The renice command, which has a similar syntax as the nice command, allows you to modify the nice value on a running process. The example from the previous section is used. For example, subtract 5 from the actual value of 9, on the totestprg root is running:

The PID is used to identify which program (or more correctly which thread) is to be manipulated.

6.3.2.3 The nice and renice commands summary

The nice and renice commands are used to manipulate the nice value for the threads of a process.

The syntax of the nice command is:

```
nice [ - Increment | -n Increment ] Command [ Argument ... ]
```

Some commonly used nice flags are listed in Table 18.

Table 18. Commonly used flags of the nice command

Flags	Description			
- <increment></increment>	Increments a command's priority up or down, by specifying a positive or negative number.			
-n <increment></increment>	Same as previous flag.			

The syntax of the renice command is:

```
renice [ -n Increment ] [ -g | -p | -u ] ID ...
```

Some commonly used renice flags are listed in Table 18.

Table 19. Commonly used flags of the renice command

Flags	Description			
-n <increment< td=""><td>Specifies the number to add to the nice value of the process. The value of Increment can only be a decimal integer from -20 to 20.</td></increment<>	Specifies the number to add to the nice value of the process. The value of Increment can only be a decimal integer from -20 to 20.			
-u <username> <user numeric ID></user </username>	Changes nice values for user.			

For more information on the nice and renice commands, refer to *Performance Management Guide* and Commands Reference - Volume 4, SBOF-1877.

Summary

Do not manipulate the scheduler without a thorough understanding of the mechanisms controlling the scheduler.

6.4 The bindprocessor command

The bindprocessor command binds or unbinds the kernel threads of a process or it lists available processors. To bind or unbind threads, it requires two parameters, as follows:

bindprocessor Process ProcessorNum

The *Process* parameter is the process identifier of the process whose threads are to be bound or unbound, and the *ProcessorNum* parameter is the logical processor number of the processor to be used. If the ProcessorNum parameter is omitted, the process is bound to a randomly selected processor.

A process itself is not bound, but rather its kernel threads are bound. Once kernel threads are bound, they are always scheduled to run on the chosen processor, unless they are later unbound. When a new thread is created, it has the same bind properties as its creator. This applies to the initial thread in the new process created by the fork subroutine: the new thread inherits the bind properties of the thread which called the fork. When the exec subroutine is called, thread properties are left unchanged.

To check what processors are available, enter the following command:

```
# bindprocessor -q
The available processors are: 0 1 2 3
```

To bind process 16792 to processor 2, enter the following command:

```
# bindprocessor 16792 2
```

To check which process threads are bound to which processor, check the BND column in the ps command output:

```
# ps -mo THREAD

USER PID PPID TID ST CP PRI SC F TT BND COMMAND

root 12948 12796 - A 0 60 1 240001 pts/1 - ksh

- - - 7283 S 0 60 1 400 - - - -

root 13704 12948 - A 3 61 1 200001 pts/1 - ps -mo THREAD

- - - 19391 R 3 61 1 0 - - -

thomasc 15818 1 - A 79 112 0 240001 pts/1 - /tprof/tctestprg

- - - 16077 R 79 112 0 200001 pts/1 - /tprof/tctestprg

- - - 17843 R 77 72 0 200001 pts/1 - /tprof/tctestprg

thomasc 16792 1 - A 79 112 0 240001 pts/1 - /tprof/tctestprg

- - - 16357 R 79 112 0 240001 pts/1 - /tprof/tctestprg
```

6.5 The vmtune command

The vmtune command changes operational parameters of the Virtual Memory Manager (VMM) and other AIX components. The command and source for vmtune are found in the /usr/samples/kernel directory. It is installed with the bos.adt.samples fileset.

The vmtune command syntax is as follows:

```
vmtune [ -b numfsbuf ] [ -B numpbuf ] [ -c numclust ] [ -f minfree ] [ -F
maxfree ] [ -k npskill ] [ -l lrubucket ] [ -M maxpin ] [ -N pd_npages ] [
-p minperm ] [ -P maxperm ] [ -r minpgahead ] [ -R maxpgahead ] [-u
lvm_budcnt] [ -w npswarn ] [-W maxrandwrt]
```

An example of the vmtune command without any flags in shown in the following.

/usr/samples/kernel/vmtune

```
vmtune: current values:
                           -R
                                          - f
                                                   - F
          -P -r
                                                             - N
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
  26007
         104028
                  2 8 120 128
                -k -c -b
         - w
 -M
                                              -B
                                                           -11
                                                                     -1
                                                                           -d
\verb|maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps|
104851 4096 1024 1 93 80 9 131072
                                 -S
                                               -h
                       -n
sync_release_ilock nokillroot v_pinshm strict_maxperm
        Ω
                    0
                                   0
                                                 Ω
number of valid memory pages = 131063 maxperm=79.4% of real memory maximum pinable=80.0% of real memory minperm=19.8% of real memory number of file memory pages = 102029 numperm=77.8% of real memory
```

The Virtual Memory Manager (VMM) maintains a list of free real-memory page frames. These page frames are available to hold virtual-memory pages needed to satisfy a page fault. When the number of pages on the free list falls below that specified by the minfree parameter, the VMM begins to steal pages to add to the free list. The VMM continues to steal pages until the free list has at least the number of pages specified by the maxfree parameter.

If the number of file pages (permanent pages) in memory is less than the number specified by the minperm parameter, the VMM steals frames from either computational or file pages, regardless of re-page rates. If the number of file pages is greater than the number specified by the maxperm parameter, the VMM steals frames only from file pages. Between the two, the VMM normally steals only file pages, but if the repage rate for file pages is higher than the repage rate for computational pages, computational pages are stolen as well.

If a process appears to be reading sequentially from a file, the values specified by the minpgahead parameter determine the number of pages to be read ahead when the condition is first detected. The value specified by the maxpgahead parameter sets the maximum number of pages that will be read ahead, regardless of the number of preceding sequential reads.

The vmtune command can only be executed by root. Changes made by the vmtune command last until the next reboot of the system. If a permanent change in VMM parameters is needed, an appropriate vmtune command should be put in /etc/inittab.

Table 20 lists the flags and some of the limitations for the settings.

Table 20. Commonly used flags of the vmtune command

Flag	Description
-b numfsbuf	Specifies the number of file system bufstructs. The current default in AIX Version 4 is 93 because it is dependent on the size of the bufstruct. This value must be greater than 0. Increasing this value will help write performance for very large writes sizes (on devices that support very fast writes). In order to enable this value, you must unmount the file system, change the value, and then mount the system again.
-B numpbuf	Controls the number of pbufs available to the LVM device driver. pbufs are pinned memory buffers used to hold I/O requests related to a Journaled File System (JFS). On systems where large amounts of sequential I/O occurs, this can result in I/Os bottlenecks at the LVM layer waiting for pbufs to be freed. In AIX Version 4, a single pbuf is used for each sequential I/O request regardless of the number of pages in that I/O. The maximum value is 128.
-c numclust	Specifies the number of 16 KB clusters processed by write behind. The default value is 1. Values can be any integer above 0. Higher number of clusters may result in larger sequential write performance on devices that support very fast writes (RAID and so on). Setting the value to a very high number, such as 500000, will essentially defeat the write-behind algorithm. This can be beneficial in cases such as database index creations, where pages that were written to are read a short while later; write-behind could actually cause this process to take longer. One suggestion is to turn off write-behind before building indexes and then turn it back on after indexes have been built. For example, the mkpasswd command can run significantly faster when write-behind is disabled.
-f minfree	Specifies the minimum number of frames on the free list. This number can range from 8 to 204800. The default value depends on the amount of RAM on the system. minfree is by default the value of maxfree: 8. The value of maxfree is equal to minimum (the number of memory pages divided by 128). The delta between minfree and maxfree should always be equal to or greater than maxpgahead.
-F maxfree	Specifies the number of frames on the free list at which page stealing is to stop. This number can range from 16 to 204800, but must be greater than the number specified by the minfree parameter by at least the value of maxpgahead.

Flag	Description
-k npskill	Specifies the number of free paging-space pages at which AIX begins killing processes. The formula to determine default value of npskill in AIX Version 4 is:
	MAX(64, number_of_paging_space_pages/128)
	The npskill value must be greater than 0 and less than the total number of paging space pages on the system. The default value is 128.
-I Irubucket	This parameter specifies the size (in 4 KB pages) of the least recently used (Iru) page replacement bucket size. This is the number of page frames which will be examined at one time for possible pageouts when a free frame is needed. A lower number will result in lower latency when looking for a free frame but will also result in behavior that is not as similar to a true LRU algorithm. The default value is 512 MB and the minimum is 256 MB. Tuning this option is not recommended.
-M maxpin	Specifies the maximum percentage of real memory that can be pinned. The default value is 80 percent. If this value is changed, the new value should ensure that at least 4 MB of real memory will be left unpinned for use by the kernel. maxpin values must be greater than 1 and less than 100. The value under maxpin is converted to a percentage at the end of the output of vmtune.
-N pd_npages	Specifies the number of pages that should be deleted in one chunk from RAM when a file is deleted. Changing this value may only be beneficial to real-time applications that delete files. By reducing the value of pd_npages, a real-time application can get better response time since few number of pages will be deleted before a process or thread is dispatched. The default value is the largest possible file size divided by the page size (currently 4096); if the largest possible file size is 2 GB, then pd_npages is, by default, 524288.
-p minperm	Specifies the point below which file pages are protected from the repage algorithm. This value is a percentage of the total real-memory page frames in the system. The specified value must be greater than or equal to 5. The default value of the minperm percentage is always around 17-19 percent of memory.

Flag	Description
-P maxperm	Specifies the point above which the page stealing algorithm steals only file pages. This value is expressed as a percentage of the total real-memory page frames in the system. The specified value must be greater than or equal to 5. The default value of the maxperm percentage is always around 75-80 percent of memory. A pure Network File System (NFS) server may obtain better performance by increasing the maxperm value. A system that accesses large files (over 50-75 percent of the amount of RAM on the system; look at numperm to see how much memory is currently used for file mapping) may benefit by increasing the maxperm value. maxperm can be reduced on systems with large active working storage requirements (the AVM column from vmstat compared to total real page frames) to reduce or eliminate page space I/O.
-r minpgahead	Specifies the number of pages with which sequential read-ahead starts. This value can range from 0 through 4096. It should be a power of 2. The default value is 2.
-R maxpgahead	Specifies the maximum number of pages to be read ahead. This value can range from 0 through 4096. It should be a power of 2 and should be greater than or equal to minpgahead. The default value is 8. Increasing this number will help large sequential read performance. Because of other limitations in the kernel and the Logical Volume Manager (LVM), the maximum value should not be greater than 128. The delta between minfree and maxfree should always be equal to or greater than maxpgahead.
-u lvm_bufcnt	Specifies the number of LVM buffers for raw physical I/Os. The default value is 9. The possible values can range between 1 and 64. It may be beneficial to increase this value if you are doing large raw I/Os (that is, not going through the JFS).
-w npswarn	Specifies the number of free paging-space pages at which AIX begins sending the SIGDANGER signal to processes. The formula to determine the default value is: MAX(512, 4*npskill)
	The value of npswarn must be greater than 0 and less than the total number of paging space pages on the system. The default value is 512.

Flag	Description
-W maxrandwrt	Specifies a threshold (in 4 KB pages) for random writes to accumulate in RAM before these pages are syncd to disk using a write-behind algorithm. This threshold is on a per file basis. The -W maxrandwrt option is only available in AIX Version 4.1.3 and later. The default value of maxrandwrt is 0, which disables random write-behind. By enabling random write-behind (a typical value might be 128), applications that make heavy use of random writes can get better performance due to less dependence on the sync daemon to force writes out to disk. Some applications may degrade their performance due to write-behind (such as database index creations). In these cases, it may be beneficial to disable write-behind before creating database indexes and then re-enabling write-behind after the indexes are created.

6.6 Workload Manager

Workload management allows the system administrator to divide resources between jobs without having to partition the system. WLM provides isolation between user communities with very different system behaviors. This can prevent effective starvation of workloads with certain characteristics, such as interactive or low CPU usage jobs, by workloads with other characteristics, such as batch or high memory usage jobs.

The setup of WLM is much simpler than partitioning where reinstallation and reconfiguration are required. With WLM, a single operating system manages the entire system and all jobs; so, only one system is administered.

WLM manages percentages of CPU time rather than CPUs. This allows control over CPU resources at a finer granularity.

CPU time, memory, and I/O bandwidth are managed separately. Therefore, different styles of applications can be managed.

AIX Workload Manager (WLM) is an operating system feature introduced in AIX Version 4.3.3. It is part of the operating system kernel at no additional charge.

AIX WLM delivers the basic ability to give system administrators more control over how scheduler, Virtual Memory Manager (VMM), and device driver calls allocate CPU, physical memory, and I/O bandwidth to classes-based user, group, application path, process type, or application tag.

It allows a hierarchy of classes to be specified, processes to be automatically assigned to classes by the characteristics of a process, and manual assignment of processes to classes.

Classes can be superclasses or subclasses.

AIX WLM self-adjusts when there are no jobs in a class or when a class does not use all the resources that are allocated for it. The resources will automatically be distributed to other classes to match the policies of the system administrator.

Since the scheduling is done within a single AIX operating system, system management is less complex.

Unlike LPAR, workload management does not allow multiple operating systems that may be useful for testing and certification purposes on one hardware system.

For more information on Workload Manager, see AIX 5L AIX Workload Manager (WLM), SG24-5977.

6.7 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

- 1. Which of the following should be implemented to balance available CPU/Memory resources between applications?
 - A. Loadleveler
 - B. Nice/Renice
 - C. Resource Manager
 - D. Workload Manager
- 2. A nice value for a process is shown as 80 in a ps listing. Which command is used to change this to a value of 100?
 - A. renice 100 PID
 - B. renice -n 20 PID
 - C. renice -20 PID
 - D. renice -n -100 PID

- 3. Which command changes operational parameters of the Virtual Memory Manager (VMM)?
 - A. nice
 - B. renice
 - C. schedtune
 - D. vmtune

6.7.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. D
- 2. B
- 3. D

6.8 Exercise

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

- 1. Find a process with a recent high CPU usage value. Use the renice command to lessen its priority value. Follow the process CPU utilization. Restore the nice value.
- 2. On a test system, manipulate the SCHED_R value to prioritize foreground processes (for reference, see Figure 21 on page 188). Restore the default values.

Chapter 7. Performance scenario walkthroughs

This chapter provides a set of scenarios that allow you to better understand the relationship between the tools, their output, and a problem you may need to solve.

7.1 CPU performance scenario

In this section, a basic CPU bound performance problem scenario is shown, with conclusions made based on output from commands previously discussed in this publication.

7.1.1 Data collection

The environment consists of a 2-way F50 with 50 Netstation clients connected over Ethernet. Users are using an HTML application as interface to a database. Now the users are complaining about long response times. When starting a browser window on a Netstation, the start up seems slow. To verify this, the browser startup is executed with the time command:

time netscape
real 0m16.73s
user 0m0.83s
sys 0m0.63s

By running time netscape, you can verify that the start up was slow - the normal start up time of a browser in the example system would be under 10 seconds. From the output, it seems that the systems waits for more than 15 seconds (user + sys = 1.46 seconds out of 16.73 seconds total time). In most cases systems wait for I/O, so you run iostat:

tty:	tin 0.0	tout 328.5	avg-cpu:	% use 100.0	r % sys	% idle 0.0	% iowait 0.0
Disks:		% tm_act	Kbps	tps	Kb_read	Kb_wrtn	
hdisk0		0.0	0.0	0.0	0	0	
hdisk1		0.0	0.0	0.0	0	0	
hdisk2		0.0	0.0	0.0	0	0	
hdisk3		0.0	0.0	0.0	0	0	
cd0		0.0	0.0	0.0	0	0	
tty:	tin	tout	avg-cpu:	% use	r % sys	% idle	% iowait
	0.0	332.1		100.0	0.0	0.0	0.0

© Copyright IBM Corp. 2000

Disks:	% tm_act	Kbps	tps	Kb_read	Kb_wrtn
hdisk0	0.0	0.0	0.0	0	0
hdisk1	0.0	0.0	0.0	0	0
hdisk2	0.0	0.0	0.0	0	0
hdisk3	0.0	0.0	0.0	0	0
cd0	0.0	0.0	0.0	0	0

There is no activity against the disks, but the <code>%user</code> shows <code>100.0</code>. (This is an extreme manufactured, although not edited, example). The problem is probably CPU related. Next you would likely check the run queue with the <code>vmstat</code> command:

# VI	nst	at 2 5														
kth	r	mem	ory			pag	ge .			f	aults			cpi	u	
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	17354	15755	0	0	0	0	0	0	101	10	7	63	0	37	0
5	1	17354	15754	0	0	0	0	0	0	407	2228	101	99	0	0	0
5	1	17354	15752	0	0	0	0	0	0	413	43	93	99	0	0	0
5	1	17354	15752	0	0	0	0	0	0	405	43	92	99	0	0	0
5	1	17354	15752	Ο	Ο	0	Ο	0	Ο	407	42	90	99	Ω	Ο	Ο

7.1.2 Data analysis

Five jobs on the run queue is not a normal state for this system. The next step would be to find out what processes are causing the problems. This can be done with the ps command:

```
# ps -ef |sort +3 -r |head -15
   UID PID PPID C
                       STIME
                                TTY TIME CMD
thomasc 15860 12948 93 10:30:49 pts/1 17:41 ./tcprg5
thomasc 16312 12948 93 10:30:39 pts/1 20:30 ./tcprg3
thomasc 15234 12948 92 10:31:13 pts/1 15:21 ./tcprq1
thomasc 16844 12948 87 10:31:00 pts/1 13:15 ./tcprq2
thomasc 17420 12948 31 10:30:26 pts/1 14:53 ./tcprg4
   root 14778 3420 4 10:51:10 pts/3 0:00 ps -ef
   root 17154 3420 1 10:51:10 pts/3 0:00 sort +3 -r
   root 13676 15080 0 15:54:12 pts/5 0:00 ksh
   root 15080 1 0 15:54:11
                                  - 0:00 xterm
               1 0 15:37:42
   root 4980
                                 - 0:00 /usr/lib/errdemon -s 2000000
   root 16510 3420 0 10:51:10 pts/3 0:00 head -15
   root 16022 10872 0 Jun 29 lft0 7:05 topas n
   root 3420 5568 0 Jun 28 pts/3 0:00 ksh
   root 12948 12796 0 Jun 28 pts/1 0:02 ksh
# ps auxwww | head -14
        PID %CPU %MEM SZ RSS
                                  TTY STAT STIME TIME COMMAND
thomasc 16312 25.0 0.0 44 64 pts/1 A 10:30:39 26:28 ./tcprg3
      516 24.0 3.0 264 15396 - A Jun 28 9544:43 kproc
```

```
        thomasc
        15860
        20.7
        0.0
        44
        64
        pts/1 A
        10:30:49 21:49 ./tcprg5

        thomasc
        15234
        20.6
        0.0
        44
        60
        pts/1 A
        10:31:13 21:20 ./tcprg1

        thomasc
        16844
        18.4
        0.0
        44
        64
        pts/1 A
        10:31:00 19:13 ./tcprg2

        thomasc
        17420
        15.7
        0.0
        44
        64
        pts/1 A
        10:30:26 16:44 ./tcprg4

        root
        1032
        6.7
        3.0
        264 15396
        - A
        Jun 28 2679:27 kproc

        root
        1290
        3.2
        3.0
        264 15396
        - A
        Jun 28 1263:12 kproc

        root
        774
        3.2
        3.0
        264 15396
        - A
        Jun 28 1258:58 kproc

        root
        3158
        0.0
        0.0
        356 384
        - A Jun 28 8:27/usr/sbin/syncd 60

        root
        16022
        0.0
        0.0
        488 640
        1ft0 A
        Jun 29 7:05 topas n

        root
        0
        0.0
        3.0
        268 15400
        - A
        Jun 28 2:38 kproc
```

One user, thomasc, has started five programs with the prefix tcprg that has accumulated a lot of Recent CPU usage (C column). When looking at the -u flag output from the ps command the %CPU (reporting how much a process has used CPU since started), these test programs use abnormally high CPU.

7.1.3 Recommendation

There are several ways to reverse the overload (kill PID, for example), but the proper thing would be to check with the user thomasc and ask some questions, such as "What are these process?", "Why are they running - can they be stopped?", "Do they have to run now - can they be rescheduled?". Rescheduling these kind of CPU consuming processes to a less busy time will probably give the most significant advantage in performance.

If these processes can be rescheduled, this can be done with the <code>batch</code> command, the <code>at</code> command, or by starting them from the <code>crontab</code>. Remember to start such jobs at times when they are not in conflict with OLTPs.

If they have to run during a busy time, and to be running at times in the future, some changes need to be done to improve the balance the performance of the system. A recommendation is to move these test programs to a test system, excluded from the production environment.

Another solution is to buy more CPUs, which is a good step if the hardware can accommodate this, but may move the bottleneck to another resource of the system, for example, memory.

Resource capping could be a solution, and for that there is no better way than Workload Manager (WLM). For more information on WLM, see *AIX 5L AIX Workload Manager (WLM)*, SG24-5977.

7.2 I/O performance scenario

In this scenario, a user reports that the month end report is taking a long time to run and the user is unsure what is causing this. One possible reason for this report taking so long is that when AIX creates a print job the job is first written to the print spooler. This spool file is created on the disk in /var/adm/spool. If there is an I/O problem where the system is waiting for disk, then this file can take a long time to generate, especially if it is a large file.

7.2.1 Data collection

In this section, the outputs of the system are gathered by the ${\tt vmstat}$ and ${\tt iostat}$ commands.

Below is the output of the iostat command for this system.

# iostat	1 10						
						% idle 43.3	
hdisk0 hdisk1		19.4 49.0	350.9 616.6	tps 32.3 52.9 0.0	 870967 1267281	921096 1881244	
						% idle 0.0	
hdisk0 hdisk1		29.0 100.0	1616.0 2164.0	tps : 101.0 108.0 0.0	_ 0 1656	1616 508	
						% idle 0.0	
hdisk0		25.0 100.0	660.0 1108.0	tps 50.0 111.0 0.0	0 672	 660 436	
_					_	% idle 0.0	
Disks:		% tm_act	Kbps	tps	Kb_read	Kb_wrtn	

hdisk0 hdisk1 cd0	10	18.0 2 00.0 1	.552.0	114.0	4 316 0	204 1236 0	
tty:	tin 2.0	tout 94.0	avg-cpu	: % user	% sys 12.0	% idle 0.0	% iowait 88.0
hdisk0 hdisk1	1 9		32.0	tps K 28.0 111.0 0.0	0 312	232 496	
						% idle 0.0	
Disks: hdisk0 hdisk1 cd0	10	tm_act 12.0 00.0 8	80.0	105.0	b_read 4 188 0	Kb_wrtn 76 616 0	
_					_	% idle 0.0	
hdisk0	10	L7.0 2	16.0 16.0	tps K 21.0 103.0 0.0	0	216	
tty:	tin 2.0	tout 48.0	avg-cpu	: % user	% sys 13.0	% idle 0.0	% iowait 87.0
hdisk0	1	L8.0 1	.84.0 .728.0	tps K 19.0 120.0 0.0	0 244	184 1484	
		tout				% idle 0.0	
Disks: hdisk0 hdisk1 cd0		8.9	Kbps 67.3 655.4 0.0	tps K 13.9 127.7 0.0	b_read 4 136 0	Kb_wrtn 64 3556 0	
tty:	tin 11.0	tout 11.0	avg-cpu	: % user	% sys 6.0	% idle 0.0	% iowait 94.0

Disks:	% tm_act	Kbps	tps	Kb_read	Kb_wrtn
hdisk0	23.0	200.0	23.0	0	200
hdisk1	100.0	744.0	102.0	276	468
cd0	0 0	0 0	0 0	0	0

Below is the output of the system using the vmstat command:

# v	mst	tat 1 10)													
kth	r	memo	ory			pa	age			fa	aults			cpu		
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id v	<i>v</i> a
0	0	19776	121	0	1	82	225	594	0	208	658	160	3	20	43	34
0	2	19776	115	0	0	0	408	911	0	338	1160	327	0	9	0	91
0	3	19776	121	0	0	0	410	950	0	329	971	300	0	12	0	88
0	3	19776	121	0	0	0	337	724	0	335	950	360	0	9	0	91
0	3	19776	120	0	0	0	562	1136	0	341	1279	256	0	19	0	81
0	3	19776	119	0	0	0	632	1360	0	349	1230	247	1	11	0	88
0	2	19776	118	0	0	0	641	1366	0	359	1630	281	0	19	0	81
0	3	19776	121	0	0	0	1075	3353	0	362	2147	322	0	23	0	77
0	3	19776	123	0	0	0	761	1700	0	367	1225	376	3	11	0	86
0	3	19776	123	0	0	0	1170	1819	0	435	1374	390	0	21	0	79

7.2.2 Data analysis

In this section, the key indicators of the output will be looked at and an explanation given regarding the output.

7.2.2.1 The vmstat command output investigation

Although the vmstat command is a memory diagnostic tool, it does display one I/O column. Notice the cpu column with the wa output; the output is on average 85 percent (add the column, excluding the first line, and divide by nine). If the wa value is higher than 25 percent, it may indicate a problem with the disk subsystem.

The high wa value leads you to two additional columns. Under kthr, kernel threads, the b column indicates 2-3 threads per second are waiting. Under memory, the fre column, the number of buffer frames available on the free is very low.

7.2.2.2 The iostat command output investigation

The key values to check here are the % iowait and the % tm_act values. Remember that the first output is the current status since startup.

The %iowait value

The % iowait is the percentage of time the CPU is idle while waiting on local I/O.

In this example, the %iowait has an average of 89.9 percent (add the column, excluding the first line and divide by nine). If the systems % iowait is higher than 25 percent, it is advisable to investigate the problem and take corrective action.

The %tm_act value

The %tm_act is the percentage of time the disk is busy.

In this example, the % tm_act value had an average of 18.8 percent for hdisk0 and an average of 99.7 percent for hdisk1. If the percentage for the time a disk is busy is high on a smaller system there will be noticeable performance degradation on the system with less disks. In order to deliver good performance, a system should be recording an average disk busy of less than 40 percent. This is, however, not always possible with smaller systems with less disks.

7.2.3 Recommendation

The following are some recommendations to assist in improving disk I/O:

- Look for idle drives on the system; it may be possible to move some data from busy drives to idle drives, which will give improved performance.
- Check the paging activity, as this may also be a factor. Spread the paging over multiple drives if possible, thus sharing the paging space load across multiple drives.
- If this is an occasional occurrence during month end, check which other I/O intensive processes are running and if they can be run earlier or later; this way, the load is also spread across time.

7.3 Additional I/O scenarios

The following scenarios are examples of various command reports used as input for tuning a system which has an I/O performance problem.

7.3.1 CPU and kernel thread I/O wait bottleneck scenario

The following scenario provides the following $\ensuremath{\mathsf{vmstat}}$ command report as input:

\$ /	usı	c/bin/vm	nstat	120	10											
kth	r	memo	ory			pa	ge			1	faults	5		CÏ	pu	
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	1	59903	542	0	0	0	0	0	0	451	912	478	43	11	15	31
0	2	59904	550	0	0	0	0	0	0	521	1436	650	23	19	4	50

```
      0
      3
      59950
      538
      0
      0
      0
      0
      0
      344
      649
      249
      7
      7
      6
      80

      0
      2
      59899
      578
      0
      0
      0
      0
      0
      467
      1829
      500
      12
      14
      4
      70

      0
      2
      59882
      589
      0
      0
      0
      0
      0
      600
      1292
      705
      6
      8
      3
      61

      0
      3
      59882
      420
      0
      0
      0
      0
      452
      952
      372
      11
      8
      1
      80

      0
      2
      59954
      420
      0
      0
      0
      0
      537
      1979
      573
      13
      5
      10
      72

      0
      2
      59954
      423
      0
      0
      0
      0
      618
      1413
      686
      15
      9
      6
      70

      0
      2
      59954
      420
      0
      0
      0
      0
      551
      938
      634
      4
      2
      <td
```

The vmstat report is taken over a period of 20 minutes using a 120 second interval repeated 10 times. The first figures which are interesting in this report are the cpu values (us/sy/id/wa). Notice that the CPU does have some idle (id) time, but the largest value is the I/O wait (wa) time. Remember that the first measurement can be excluded, because it is the average on the system since startup.

The I/O wait time is increasing over the sample period from 50 percent and peaking at 92 percent on the ninth measurement. The average I/O wait time over the sample period is 72 percent, which indicates an I/O related bottleneck.

The wa column specifies the percentage of time the CPU was idle with pending local disk I/O. If there is at least one outstanding I/O to a local disk when wait is running, the time is classified as waiting for I/O.

Generally, a wa value over 25 percent indicates that the disk subsystem may not be balanced properly, or it may be the result of a disk-intensive workload.

Check the b value in the kernel thread column. The b column lists the average number of kernel threads placed on the wait queue per second and should stay near zero. These threads are waiting for resources or I/O.

Notice that the memory in relation to paging I/O can be ignored in this scenario, as the paging parameters are all zero and the list of free memory pages (fre) is still acceptable.

For more information on where the possible I/O bottleneck occurs, an iostat command should be run on this system. This will provide information about on how the disk I/O is distributed between the physical volumes and where the possible bottlenecks.

7.3.2 I/O distribution bottleneck scenario

This scenario returned the following lsps and iostat report:

hd6 # iostat	ce Ph hd	isk0			p Size 256MB		ctive yes		
tty:	tin 47.8	to 139		-cpu: % 5	user % s 0.3 19.	sys % i .6 25		% io 5.	
Disks: hdisk0 hdisk1 hdisk2		97.0 0.8 0.2	124.4 21.5 0.3	59.3 16.8 0.1	492 8	12240 0 12			
tty:	tin 47.1	104	out avg 6.3	-cpu: % 4	user % s 5.0 40.	sys % i .0 4	idle 4.0	% io 11.	
Disks: hdisk0 hdisk1 hdisk2		% tm_act 98.5 0.6 0.3	Kbps 186.1 23.8 0.6	tps 56.4 18.5 0.1		332			
tty:					user % s 0.0 40.			% io 20.	
Disks: hdisk0 hdisk1 hdisk2		% tm_act 98.3 0.2 1.2	Kbps 164.6 36.9 2.3	tps 55.2 26.6 0.5		904			
tty:	tin 32.9	to 146	out avg	-cpu: % 3	user % s 0.6 37.	sys % i .4 22	idle 2.0	% io 10.	wait O
Disks: hdisk0 hdisk1 hdisk2		% tm_act 99.8 0.6 0.5	Kbps 183.9 35.6 1.2	tps 22.6 16.8 0.3	672	20576 464			
tty:		to 87!		-cpu: %	user % s 8.4 41.	sys % i .1 10	idle 0.5	% io 30.	
Disks: hdisk0 hdisk1 hdisk2		% tm_act 98.9 0.2 0.3	Kbps 180.5 15.6 0.7	tps 7.5 2.9 0.2					

The ${\tt lsps}$ command shows that the paging space is allocated on the physical volume hdisk0.

The iostat report shown is collecting data over a 10 minute period in 120 seconds interval. The first report is not shown and should be ignored for real-time analysis, as it is the historical disk I/O report since startup. For details on the iostat command report, see Section 4.2, "The iostat command" on page 108.

Notice the high I/O wait time (% iowait), which is increasing from 5.1 percent to 30 percent. Generally, if an I/O wait time exceeds 25 percent, there is a problem related to disk I/O. There might be cases where I/O wait time is 0 percent and there still is an I/O bottleneck. This can happen when the system is performing extensive paging and the swap device is overloaded.

In the above iostat report, the activity on the hdisk0 is extremely high. The % tm_act, indicating the active time of the disk in percent, is between 97 percent and 99.8 percent, which is almost constantly active. This indicates that the I/O bottleneck is bound to the disk hdisk0. Notice the Kb_wrtn value, indicating the data written to the disk is fairly high compared to the amount of data read from the disk. This leads to the conclusion that the I/O limits of the hdisk0 have been reached. To improve the I/O performance, the other disks should be used more actively, by moving hot file, file system, and logical volumes to the less active disks. In general, a more insightful investigation may be required using other tools such as filemon and lslv.

7.3.3 Logical volume fragmentation scenario

The lslv command is used for displaying the attributes of logical volumes, such as the fragmentation of a logical volume on a physical volume.

Following is the 1spv command output of a fragmented logical volume:

lslv -	lslv -p hdisk0 lv00													
hdisk(0:1v00:1	N/A												
0001	0002	0003	0004	0005	0006	0007	8000	0009	0010	1-10				
0011	0012	0013	0014	0015	0016	0017	0018	0019	0020	11-20				
0021	0022	0023	0024	0025	0026	0027	0028	0029	0030	21-30				
0031	0032									31-32				
0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	33-42				
0043	0044	0045	0046	0047	0048	0049	0050	0051	0052	43-52				
0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	53-62				
0063	0064									63-64				
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	65-74				
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	75-84				
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	85-94				
USED										95-95				
USED	USED	USED	USED	USED	USED	USED	FREE	FREE	FREE	96-105				
FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	106-115				
FREE	FREE	FREE	FREE	FREE	FREE	FREE	0065	0066	0067	116-125				
0068	0069									126-127				
FREE	0070	0071	USED	128-137										
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	138-147				
USED	USED	USED	USED	USED	USED	USED	USED	USED	USED	148-157				
USED	USED									158-159				

The logical volume consisting of 71 logical partitions (LPs) is fragmented over four of the five possible intra disk allocation sections. The sections outer edge and outer middle are allocated from LP 01-32 and 33-64 respectively on similar contiguously physical partitions. The LP 65-69 are allocated in the inner middle section and the last two LPs are allocated in the inner edge section.

This obvious fragmentation of logical volume Iv00 can lead to a decrease in I/O performance due to longer seek and disk head changes for a sequential read/write operation in the last part of the logical volume. As there is free space left on the physical volume, reorganizing Iv00 is the action to take. Use the reorgyg command on this logical volume would help improve the performance of Iv00.

For more information on the lslv command refer to Section 4.4, "LVM performance analysis using Islv" on page 118.

7.3.4 Monitoring scenario using filemon

Consider a system with the following disks available:

lspv hdisk0 000bc6fdc3dc07a7 rootvg hdisk1 000bc6fdbff75ee2 none

The following output shows a section of a filemon report made for monitoring the logical volumes of a system.

The report was generated with the filemon command: filemon -0 lv -0 filemon.out:

Most Active Logical Volumes

 util
 #rblk
 #wblk
 KB/s
 volume
 description

 0.84
 105792
 149280
 177.1
 /dev/hd1
 /home

 0.32
 0
 16800
 11.9
 /dev/hd8
 jfslog

 0.03
 0
 4608
 3.2
 /dev/hd4
 /

 0.02
 864
 55296
 5.9
 /dev/hd2
 /usr

 0.02
 192
 4800
 3.5
 /dev/hd9var
 /var

 0.01
 0
 2976
 2.1
 /dev/hd8
 jfslog

The output shows that the logical volume hd1, containing the /home file system, has by far the highest utilization. As the second physical volume hdisk1 is not used, as seen in the <code>lspv</code> report above, it would be possible to

add this physical volume to the rootvg and distribute hd1 to use both hdisk0 and hdisk1. This can either be done by splitting the logical volume using an inter disk policy of maximum or by using the striping option.

7.3.5 Logical volume allocation scenario

The following scenario shows a series of status commands from a system with an allocation problem on a dedicated database volume group:

This shows that the paging space is defined in on the hdisk0 of the rootvg.

The following volume group information is provided:

```
# lsvg
rootvg
datavg
# lspv
hdisk0
            000038744c632197
                                rootvg
hdisk1
             00002199abf65a1a
                                datavq
hdisk2
             00000228b9c5d7da
                                datavg
hdisk3
             00002199b40b728c
                                datavg
```

This shows that two volume groups are defined, rootvg on hdisk1 and datavg on hdisk1, hdisk2, and hdisk3.

hdisk0 contains the following logical volumes:

```
# lspv -1 hdisk0
hdisk0:
LV NAME
                 LPs PPs DISTRIBUTION
                                              MOUNT POINT
hd5
                  2
                       2
                            02..00..00..00..00
                                              N/A
hd3
                 6
                       6
                            02..00..04..00..00
                                              /tmp
hd2
                 117 117 00..47..42..28..00
                                              /usr
hd8
                 1 1
                            00..00..01..00..00
                                              N/A
hd4
                 2
                      2
                            00..00..02..00..00
                                               /
                1 1
hd9var
                            00..00..01..00..00
                                               /var
                 128 128 29..50..49..00..00
hd6
                                              N/A
```

hd1	3	3	0000010200	/home
lv00	10	10	0000001000	/database

The rootvg on hdisk0 contains all the default logical volume and file systems and an additional lv00 containing the /database file system.

The other disk contains:

```
# lspv -l hdisk1
hdisk1:
loglv00
              LPs PPs DISTRIBUTION
                                        MOUNT POINT
              1 1
                       01..00..00..00..00
                                        N/A
lv01
              10 10 00..00..00..10 /db01
              10 10 00..00..00..10 /db02
lv02
lv03
              10 10 10..00..00..00 /db03
# lspv -l hdisk2
hdisk2:
        LPs PPs DISTRIBUTION
LV NAME
                                        MOUNT POINT
# lspv -1 hdisk3
hdisk3:
LV NAME
               LPs PPs DISTRIBUTION
                                        MOUNT POINT
```

The logical volumes of the datavg volume group are all allocated on the same physical volume hdisk1 including the jfs log loglv00. This shows that the physical volumes hdisk2 and hdisk3 are unused.

The details of the datavg LVs are as follows:

lslv lv02

```
# lslv lv01
LOGICAL VOLUME:
                   lv01
                                           VOLUME GROUP: datavg
LV IDENTIFIER: 0000881962b29b51.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
                                         PP SIZE: 8 megabyte(s)
MAX LPs:
                  512
                                         SCHED POLICY: parallel
                  1
COPIES:
COPIES: 1
LPs: 1
STALE PPs: 0
INTER-POLICY: minimum
                                          PPs:
                                                           1
                                         BB POLICY: relocatable
                                         RELOCATABLE: yes
                 middle
INTRA-POLICY:
                                         UPPER BOUND: 32
MOUNT POINT:
                   /db01
                                         LABEL:
                                                      /db01
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
```

LOGICAL VOLUME: 17/02 VOLUME GROUP: datavg LV IDENTIFIER: 0000881962b29b51.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd WRITE VERIFY: off TYPE: jfs

512 1 PP SIZE: 8 megabyte(s) MAX LPs: SCHED POLICY: parallel COPIES:

PPs: 1 BB POLICY: relocatable

RELOCATABLE: yes middle UPPER BOUND: 32 MOUNT POINT: LABEL: /db02 /db02

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

lslv lv03

LOGICAL VOLUME: 1v03 VOLUME GROUP: datavg LV IDENTIFIER: 0000881962b29b51.4 PERMISSION: read/write VG STATE: active/complete LV STATE: opened/syncd

jfs TYPE: WRITE VERIFY: off

512 PP SIZE: 8 megabyte(s) MAX LPs: SCHED POLICY: parallel COPIES: 1 1 PPs: LPs:

relocatable BB POLICY:

STALE PPs: 0
INTER-POLICY: minimum
INTRA-POLICY: middle RELOCATABLE: yes UPPER BOUND: 32 MOUNT POINT: /db03 LABEL: /db03

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

When generating the logical volumes Iv01, Iv02, and Iv03, the system administrator should have dedicated each of the LVs on a corresponding physical volume. Alternatively, the inter-disk allocation policy could have been set to maximum and limiting the upper bound to 1.

In this way, the lv01 and the corresponding /db01 would reside on hdisk1, lv02 and /db02 on hdisk2, and lv03 and /db03 on hdisk3.

A modification to this can be done using the migratepy command.

To distribute the load of the default ifslog on the hdisk1 to the other physical volume in the datavg, an additional jfslog for each file system could be created. Defining a dedicated JFS log for both /db02 and /db03 would improve the performance. In this way, the different file systems residing on their individual disks would not utilize the hdisk1 for the JFS logging, but rather their own physical volumes.

7.4 Paging performance scenario

In this section, paging performance will be investigated. The symptoms of high memory utilization will be described and possible corrective action will be explained.

7.4.1 Data collection

In the following section, the system outputs are gathered by the ${\tt symon}$ and ${\tt ymstat}$ commands.

Below is the output of an idle system using the vmstat command:

Below is the output of system with high memory utilization using the ${\tt vmstat}$ command:

# ∨	mst	tat 1 15														
kth	r	memo	ry			pag	ge			fa	aults		(cpu		
																-
r	b	avm	fre	re	pi	po	fr	sr	су	in	sy	CS	us	sy	id	wa
0	0	204340	72	0	0	5	8	25	0	108	249	29	0	1	98	1
3	4	204649	124	0	31	422	449	912	0	347	4796	350	5	95	0	0
1	3	204988	112	0	56	183	464	1379	0	339	14144	382	4	96	0	0
9	0	205292	122	0	24	251	369	988	0	352	598	403	4	94	0	2
3	1	205732	119	0	0	409	520	771	0	313	780	293	1	99	0	0
3	1	206078	123	0	0	445	496	602	0	336	706	298	2	98	0	0
3	1	206460	120	0	0	343	504	1210	0	305	719	271	1	99	0	0
2	1	206897	119	0	0	320	512	981	0	311	660	288	0	99	0	0
3	1	207186	126	0	1	369	504	929	0	331	718	292	1	99	0	0
3	1	207491	120	0	1	428	504	844	0	319	763	262	1	99	0	0
4	0	207964	119	0	0	275	520	791	0	296	632	283	0	99	0	0
4	0	208354	119	0	2	373	513	816	0	328	664	297	1	99	0	0
4	0	208715	87	0	4	383	464	753	0	330	1480	261	4	96	0	0
3	1	209006	4	0	12	282	504	630	0	350	1 385	286	2	98	0	0
3	2	209307	10	0	0	316	488	685	0	320	635	287	1	92	0	7

The following command outputs will be used for reference purposes or as comparisons. Each of these outputs were taken during the vmstat output above.

The output of the ${\tt ps}$ command appears as follows:

# ps g	v head	-n 1;	ps g	v eg	grep	-v "RS	SS"	sort	+6b	-7 -n -r
PID	TTY STAT	TIME F	GIN S	SIZE	RSS	LIM :	rsiz	TRS %	CPU %I	MEM COMMAND
12478	pts/4 A	2:05	91	742240	3625	52 3276	8	2	4 50.	8 69.0 ./tmp/me
1032	- A	0:56	0	64	6144	xx	0	6088	0.0	1.0 kproc
774	- A	0:01	0	16	6104	xx	0	6088	0.0	1.0 kproc
7484	- A	0:00	6	16	6104	32768	0	6088	0.0	1.0 kproc
10580	- A	0:00	1	16	6104	32768	0	6088	0.0	1.0 kproc
0	- A	0:20	7	12	6100	xx	0	6088	0.0	1.0 swapper
516	- A	3920:2	23	0	8 60		x		8 98.	
2076	- A	0:00	0	16	6096	xx	0	6088	0.0	1.0 kproc
3622	- A	0:00	0	16	6096	xx	0	6088	0.0	1.0 kproc
7740	- A	0:00	0	16	6096	32768	0	6088	0.0	1.0 kproc
4994	pts/5 A	0:00	24	440	708	32768	198	220	0.0	0.0 ksh /usr/
15434	pts/5 A	0:00	0	368	396	32768	198	220	0.0	0.0 ksh /usr/
4564	pts/0 A	0:00	0	308	392	32768	198	220	0.0	0.0 -ksh
15808	pts/2 A	0:00	292	304	388	32768	198	220	0.0	0.0 ksh
5686	pts/0 A	0:00	320	280		32768	198	220	0.0	0.0 -ksh
11402	pts/1 A	0:00	225	296	336	32768	198	220	0.0	0.0 -ksh
2622	- A	0:39	469	3208	324	xx	2170	112	0.0	0.0 /usr/lpp/
16114	pts/0 A	0:00	0	240		32768	52	60	0.0	0.0 ps gv
16236	pts/5 A	0:00	12	360		32768	198	220	0.0	0.0 ksh /usr/
11982	pts/4 A	0:00	160	304		32768	198	220	0.0	0.0 -ksh
13934	pts/2 A	0:00	234	304		32768	198	220	0.0	0.0 -ksh
14462	pts/3 A	0:00	231	308		32768	198	220	0.0	0.0 -ksh
16412	pts/5 A	0:00	129	304		32768	198	220	0.0	0.0 -ksh
1	- A	0:07	642	760		32768	25	36	0.0	0.0 /etc/init
6708	- A	0:02	394	728		32768	337	80	0.0	0.0 /usr/sbin
6212	- A	0:00	567	644		32768	327	64	0.0	0.0 sendmail:
3124	- A	5:22	340	1152	204	XX	40	0	0.1	0.0 dtgreet
17316	pts/0 A	0:00	71	88		32768	43	68	0.0	0.0 symon -i
17556	pts/0 A	0:00	1	148		32768	16	24	0.0	0.0 egrep -v
12886	pts/3 A	1:53	30625	228	19:	2 32768	10	12	9.8	0.0 cp -r /u/
16960	pts/0 A	0:00	40	132	184	32768	15	20	0.0	0.0 vmstat 1
13104	pts/1 A	0:00	63	132		32768	15	20	0.0	0.0 vmstat 1
13466	pts/5 A	0:00	0	104		32768	2	4	0.0	0.0 /usr/bin/
4774	- A	0:00	217	284		32768	30	28	0.0	0.0 /usr/sbin
13796	pts/5 A	0:00	4	80		32768	18	24	0.0	0.0 dd conv=s
14856	pts/5 A	0:01	0	72		32768	18	24	1.1	0.0 dd conv=s
5440	- A	0:00	228	292	60	32768	25	20	0.0	0.0 /usr/sbin
9292	- A	0:00	183	128		32768	53	20	0.0	0.0 /usr/sbin
1920	- A	0:50	16272	96	3	6 xx	2	4	0.0	0.0 /usr/sbin
14198	- A	0:00	274	740		32768	313	4	0.0	0.0 telnetd -
2516	- A	0:00	0	656	16	32768	313	4	0.0	0.0 telnetd -
8000	- A	0:00	51	656		32768	313	4	0.0	0.0 telnetd -
8780	- A	0:00	19	120	16	32768	3	0	0.0	0.0 /usr/sbin
11614	- A	0:00	9	180	16	32768	18	0	0.0	0.0 /usr/lpp/
12788	- A	0:00	102	740		32768	313	4	0.0	0.0 telnetd -
14710	- A	0:00	350	740		32768	313	4	0.0	0.0 telnetd -
15298	- A	0:00	0	740	16	32768	313	4	0.0	0.0 telnetd -
2874	- A	0:00	29	288	12	xx	100	0	0.0	0.0 /usr/dt/b
3402	0 A	0:00	5	180	12	xx	34	0	0.0	0.0 slattach
3900	- A	0:00	442	460	12	xx	56	0	0.0	0.0 /usr/lib/
4134	- A	0:00	26	400	12	xx	100	0	0.0	0.0 dtlogin <
5176	- A	0:00	44	456		32768	31	0	0.0	0.0 /usr/sbin
	-				_			-		, ,

5938	- A	0:00	37	280	12	32768	36	0	0.0	0.0 /usr/sbin
6450	- A	0:00	99	304	12	32768	25	0	0.0	0.0 /usr/sbin
6966	- A	0:00	52	428	12	32768	190	0	0.0	0.0 /usr/sbin
7224	- A	0:00	56	500	12	32768	191	0	0.0	0.0 /usr/sbin
8260	- A	0:00	1	96	12	32768	2	0	0.0	0.0 /usr/sbin
8522	- A	0:00	13	292	12	32768	21	0	0.0	0.0 /usr/sbin
9040	- A	0:00	3	36	12	32768	5	0	0.0	0.0 /usr/sbin
9554	- A	0:00	5	220	12	32768	12	0	0.0	0.0 /usr/sbin
9808	- A	0:00	12	312	12	32768	64	0	0.0	0.0 /usr/bin/
10838	lft0 A	0:00	17	372	12	32768	40	0	0.0	0.0 /usr/sbin
11094	- A	0:00	13	256	12	32768	22	0	0.0	0.0 /usr/IMNS

The output of the $\operatorname{{\tt symon}}$ command appears as follows:

•					
# svmon -	i 5 5				
size	inuse	free	pin virt	ual	
memory	131063	130936	127	6946	204676
pg space	131072	106986			
	work	pers	clnt		
pin	6955	0	0		
in use	104809	26127	0		
		inuse	free		virtual
memory		130942	121	6942	206567
pg space	131072	108647			
	work	-			
pin	6951		0		
in use	105067	25875	0		
			5		
		inuse		pin	virtual 208406
memory		130951	113	6942	208406
pg space	131072	110432			
work	pers	clnt			
pin	6955	0	0		
in use		26127	0		
			-		
	size	inuse	free	pin	virtual
memory		130942	121		206567
pg space		108647			
	work	pers	clnt		
pin	6951	0	0		
in use	105067	25875	0		

	size	inuse	free	pin	virtual
memory	131063	130951	113	6942	208406
pg space	131072	110432			
	work	pers	clnt		
pin	6951	0	0		
in use	105127	25824	0		

The output showing the top ten memory using processes using the ${\tt swmon}$ command appears as follows:

svmon -Pu -t 10

	Command	i	Inuse	Pin	Pgsp	Virtua		4-bit	Mthrd
12478	memory		92498	1259	95911	18970	07	N	N
Vsid	Esid	Туре	Description	1	Inuse	Pin	Pgsp	Virtual	Addr Range
7a80	5	work	shmat/mmap		52911	0	222	53058	065285
d18a			shmat/mmap		31670	0	33881	65535	065535
4358			shmat/mmap		4963	0	60572	65535	065535
0	0	work	kernel seg		1522	1258	1076	3897	032767 : 65475655
8811	d	work	shared libr	ary text	274	0	24	393	065535
c93	8	work	shmat/mmap		244	0	12	256	065288
e6ec	7	work	shmat/mmap		240	0	16	256	065287
5d79	6	work	shmat/mmap		234	0	22	256	065286
e28c	9	work	shmat/mmap		232	0	24	256	065289
735e	a	work	shmat/mmap		200	0	55	255	065034
767c	2	work	process pri	vate	4	1	3	5	65314655
3e76			shared libr		3	0	4	5	0709
634c	1	pers	code,/dev/h	nd3:21	1	0	-	-	02
Pid	Command	1	Inuse	Pin	Pgsp	Virtua	al 6	4-bit	Mthrd
3796 dd			2829 1	.260 1	1100	4303		N	N
Vsid	Esid	Туре	Description	1	Inuse	Pin	Pgsp	Virtual	Addr Range
0	0	work	kernel seg		1522	1258	1076	3897	032767 :
									65475655
dc53	-	pers	/dev/hd3:45	5	1011	0	-	-	01010
8811	d	work	shared libr	ary text	274	0	24	393	065535
edae	2	work	process pri	vate	8	1	0	8	020 :
									65310655
83b0	1	pers	code,/dev/h	nd2:4164	6	0	_	-	05
dbb3	f	work	shared libr	ary data	5	0	0	2	0797
949a	3	work	shmat/mmap	-	1	1	0	1	00
ac7d			shmat/mmap		1	0	0	1	00
ac5d			shmat/mmap		1	0	0	1	00
			,						
Pid	Command	 1	Inuse	Pin	Pgsp	Virtua	al 6	4-bit	Mthrd
14856	dd		2826	1260	1100	430)1	N	N
Vsid	Esid	Туре	Description	1	Inuse	Pin	Pgsp	Virtual	Addr Range
0	0	work	kernel seq		1522	1258	1076	3897	032767 :
U									

65175 61							
654756							
dc53	_	/dev/hd3:45	1011	0	-	-	01010
8811		shared library text	274	0	24	393	065535
83b0	1 pers	code,/dev/hd2:4164	6	0	-	-	05
6ce5	2 work	process private	6	1	0	6	019 :
							6531065535
5cc3	f work	shared library data	4	0	0	2	0797
949a	3 work	shmat/mmap	1	1	0	1	00
ac7d	4 work	shmat/mmap	1	0	0	1	00
ac5d	5 work	shmat/mmap	1	0	0	1	00
	Command	Inuse Pin		Virtua	al (64-bit	Mthrd
4994	ksh	1975 1259	1100	440	00	N	N
Vsid	Esid Type	Description	Inuse	Pin	Pgsp	Virtual	Addr Range
0	0 work	kernel seg	1522	1258	1076	3897	032767 :
							6547565535
8811	d work	shared library text	274	0	24	393	065535
7b7c	2 work	process private	98	1	0	96	0115 :
							6531065535
e03c	1 pers	code,/dev/hd2:4204	55	0	_	-	058
c72a	_	shared library data	24	0	0	14	0797
2865		dev/hd2:32343	2	0			1
4b89	-	/dev/hd2:10340	- 0	0	_	_ `	010
	F	, ,					
Pid	Command	Inuse Pin	Pgsp	Virtua	al (64-bit	Mthrd
15434	ksh	1897 1259	1100	432	28	N	N
Vsid	Esid Type	Description	Inuse	Pin	Pasp	Virtual	Addr Range
0		kernel seg	1522	1258		3897	032767:
		3					CE47E CEE2E
							654/565535
8811	d work	shared library text	274	0	24	393	6547565535 065535
8811 e03c		shared library text	274 55	0	24	393	065535
e03c	1 pers	code,/dev/hd2:4204	55	0	-	-	065535 058
	1 pers				24 - 0		065535 058 094 :
e03c 92c3	1 pers 2 work	code,/dev/hd2:4204 process private	55 29	0 1	0	- 28	065535 058 094 : 6531065535
e03c 92c3 30f7	1 pers 2 work f work	<pre>code,/dev/hd2:4204 process private shared library data</pre>	55 29 15	0 1 0	-	- 28 10	065535 058 094 : 6531065535 0797
e03c 92c3 30f7 2865	1 pers 2 work f work - pers	<pre>code,/dev/hd2:4204 process private shared library data /dev/hd2:32343</pre>	55 29 15 2	0 1 0 0	- 0 0	- 28 10 -	065535 058 094 : 6531065535 0797 01
e03c 92c3 30f7 2865 536a	1 pers 2 work f work - pers - pers	<pre>code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522</pre>	55 29 15 2 0	0 1 0 0	- 0 0	- 28 10	065535 058 094 : 6531065535 0797
e03c 92c3 30f7 2865	1 pers 2 work f work - pers - pers	<pre>code,/dev/hd2:4204 process private shared library data /dev/hd2:32343</pre>	55 29 15 2	0 1 0 0	- 0 0	- 28 10 -	065535 058 094 : 6531065535 0797 01
e03c 92c3 30f7 2865 536a	1 pers 2 work f work - pers - pers	<pre>code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522</pre>	55 29 15 2 0	0 1 0 0	- 0 0	- 28 10 -	065535 058 094 : 6531065535 0797 01
e03c 92c3 30f7 2865 536a c91	1 pers 2 work f work - pers - pers	<pre>code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522</pre>	55 29 15 2 0	0 1 0 0 0	- 0 0 - -	- 28 10 -	065535 058 094 : 6531065535 0797 01
e03c 92c3 30f7 2865 536a c91	1 pers 2 work f work - pers - pers - pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29	55 29 15 2 0	0 1 0 0	- 0 0 - - -	28 10 - -	065535 058 094 : 6531065535 0797 01
e03c 92c3 30f7 2865 536a c91	1 pers 2 work f work - pers - pers - pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin	55 29 15 2 0 0	0 0 0 0 0	- 0 0 - - -	- 28 10 - - - - 64-bit	065535 058 094 : 6531065535 0797 01 07
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers Command	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259	55 29 15 2 0 0	0 1 0 0 0 0 0 Virtua 432	- 0 0	- 28 10 - - - - 64-bit N	065535 058 094: 6531065535 0797 01 07
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers Command ksh	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description	55 29 15 2 0 0 1 Pgsp 1103	0 1 0 0 0 0 0 Virtua 432 Pin	- 0 0 - - - al (24	- 28 10 - - - - 64-bit N	065535 058 094 : 6531065535 0797 01 07
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers Command ksh	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259	55 29 15 2 0 0	0 1 0 0 0 0 0 Virtua 432	- 0 0 - - - al (24	- 28 10 - - - - 64-bit N	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767:
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers Command ksh Esid Type 0 work	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg	55 29 15 2 0 0 Pgsp 1103 Inuse 1522	0 1 0 0 0 0 0 Virtua 432 Pin 1258	0 0 - - - al (24 Pgsp 1076	- 28 10 - - - 64-bit N Virtual	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0	1 pers 2 work f work - pers - pers - pers Command -ksh Esid Type 0 work d work	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text	55 29 15 2 0 0 Pgsp 1103 Inuse 1522	0 1 0 0 0 0 0 Virtua 432 Pin 1258	0 0 - - - al (24 Pgsp 1076	- 28 10 - - - 64-bit N Virtual 3897 393	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0	1 pers 2 work f work pers pers pers Command ksh Esid Type 0 work d work 1 pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55	0 1 0 0 0 0 Virtua 432 Pin 1258	0 0 - - - 24 Pgsp 1076	- 28 10 - - - 64-bit N Virtual 3897 393	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0	1 pers 2 work f work pers pers pers Command ksh Esid Type 0 work d work 1 pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text	55 29 15 2 0 0 Pgsp 1103 Inuse 1522	0 1 0 0 0 0 0 Virtua 432 Pin 1258	0 0 - - - al (24 Pgsp 1076	- 28 10 - - - 64-bit N Virtual 3897 393	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24	0 1 0 0 0 0 0 Virtua 432 Pin 1258	- 0 0	-28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 065535 083: 6531065535
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data	55 29 15 2 0 0 Pgsp 1103 Inuse 1522 274 55 24	0 1 0 0 0 0 Virtua 432 Pin 1258 0 0	- 0 0 0	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers Command ksh Esid Type 0 work d work 1 pers 2 work f work pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343	55 29 15 2 0 0 Pgsp 1103 Inuse 1522 274 55 24	0 1 0 0 0 0 Virtua 432 Pin 1258 0 0	- 0 0 0 	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 065535 058 083: 6531065535 0382 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 1	- 0 0 0 	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01
e03c 92c3 30f7 2865 536a c91 	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343	55 29 15 2 0 0 Pgsp 1103 Inuse 1522 274 55 24	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 1	- 0 0 0 	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 065535 058 083: 6531065535 0382 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 1	- 0 0 0 	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4 f96d	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792 /dev/hd3:40	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2 1	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 0	- 0 0 0 	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 065535 083: 6531065535 0382 01 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4 f96d	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792 /dev/hd3:40 Inuse Pin	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2 1	0 1 0 0 0 0 Virtua 432 Pin 1258 0 0 1	-0000000000000000000000000000000000000	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4 f96d	1 pers 2 work f work pers pers pers command ksh Esid Type 0 work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792 /dev/hd3:40	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2 1	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 0	-0000000000000000000000000000000000000	- 28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 065535 083: 6531065535 0382 01 01
e03c 92c3 30f7 2865 536a c91 Pid 16728 Vsid 0 8811 e03c ef7a 8717 2865 a2f4 f96d	1 pers 2 work f work pers pers pers vers vers vers d work d work 1 pers 2 work f work pers pers	code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd2:4522 /dev/hd3:29 Inuse Pin 1897 1259 Description kernel seg shared library text code,/dev/hd2:4204 process private shared library data /dev/hd2:32343 /dev/hd4:792 /dev/hd3:40 Inuse Pin	55 29 15 2 0 0 0 Pgsp 1103 Inuse 1522 274 55 24 18 2 1	0 1 0 0 0 0 0 Virtua 432 Pin 1258 0 0 0 1	- 0 0 0 	-28 10	065535 058 094: 6531065535 0797 01 07 Mthrd N Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01 01

0	0 140	rk kernel se	7	1522	1258	1076	3897	032767 :
O	0 wo.	.k kerner be	3	1322	1230	1070	3037	6547565535
8811		k shared lil	-	274	0	24	393	065535
e03c	-	rs code,/dev		55	0		-	058
cec9	2 work	process pri	vate	25	1	54	62	091 :
1752	£ 1.10	rk shared lil	hwarr data	17	0	12	14	6531065535 0797
2865		rk shared iii rs /dev/hd2:	4	17 2		12	14	0797
e35c		s /dev/hd1:		1	0	_	_	00
0550	Po	, 400, 1141		_	Ü			00
	Command	Inuse	Pin				64-bit	Mthrd
2622	X	1888	1268	1889	513	32	N	N
Vaid	Eaid The	o Dogarinti	~n	Truido	Din	Deran	17: m+110	l Addr Dange
Vsid 0		oe Description Ok kernel se		Inuse 1522	1258			1 Addr Range 032767 :
O	0 wo.	v verner se	9	1322	1236	1076	3031	6547565535
8811	d wo	k shared lil	brarv text	274	0	24	393	065535
8971		k process p	-	52	8	712	763	0825 :
								6530965535
9172	_	s code,/dev	/hd2:18475	28	0	-	-	0706
fa9f	- wo			9	0	32	32	032783
3987		ck shmat/mmaj		2	2	2	4	
b176		ck shared lil		1	0	39	39	0310
e97d d97b	-	rs /dev/hd2: rs /dev/hd3:		0	0	-	-	07
3186	- work	s /uev/iius	23	0	0	2	2	032768
180		s /dev/hd2:	20485	0	0	-	_	00
4168		s /dev/hd9v		0	0	-	_	00
1963	- pe	s /dev/hd9v	ar:2078	0	0	-	-	00
90b2	- wo	rk		0	0	2	2	032768
9092	- pe	s /dev/hd4:	2	0	0	-	-	00
9092	- pe	rs /dev/hd4:	2		0	-	-	00
				0		- 	- 64-hit	
	Command	rs /dev/hd4:: Inuse 1882	2 Pin 1259	0	0 Virtua 430		- 64-bit N	00 Mthrd N
Pid	Command	Inuse	 Pin	0 Pgsp	Virtua			Mthrd
Pid	Command -ksh	Inuse	Pin 1259	0 Pgsp	Virtua 430	54	N	Mthrd
Pid 11402	Command -ksh Esid Typ	Inuse 1882	Pin 1259 on	Pgsp 1166	Virtua 430 Pin	54	N Virtua	Mthrd N 1 Addr Range 032767 :
Pid 11402 Vsid 0	Command -ksh Esid Typ 0 wo:	Inuse 1882 De Description	Pin 1259 on	Pgsp 1166 Inuse 1522	Virtua 436 Pin 1258	Pgsp 1076	N Virtua 3897	Mthrd N 1 Addr Range 032767 : 6547565535
Pid 11402 Vsid 0	Command -ksh Esid Typ 0 wo:	Inuse 1882 De Descriptick kkernel se	Pin 1259 on g	Pgsp 1166 Inuse 1522	Virtua 436 Pin 1258	Pgsp 1076 24	N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535
Pid 11402 Vsid 0 8811 e03c	Command -ksh Esid Typ 0 wo: d wo: 1 pe:	Inuse 1882 De Description Ck kernel seconds ck shared librates code,/dev	Pin 1259 On g brary text /hd2:4204	Pgsp 1166 Inuse 1522 274 55	Virtua 436 Pin 1258	Pgsp 1076 24	N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535
Pid 11402 Vsid 0 8811	Command -ksh Esid Typ 0 wo: d wo: 1 pe:	Inuse 1882 De Descriptick kkernel se	Pin 1259 On g brary text /hd2:4204	Pgsp 1166 Inuse 1522	Virtua 436 Pin 1258	Pgsp 1076 24	N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535 058
Pid 11402 Vsid 0 8811 e03c	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo:	Inuse 1882 De Description ck kernel second ck shared lile cs code,/dev ck process p	Pin 1259 on g brary text /hd2:4204 rivate	Pgsp 1166 Inuse 1522 274 55	Virtua 436 Pin 1258	Pgsp 1076 24	N Virtua 3897 393 - 59	Mthrd N 1 Addr Range 032767: 6547565535 065535
Pid 11402 Vsid 0 8811 e03c 6b0d	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo:	Inuse 1882 De Description Ck kernel seconds ck shared librates code,/dev	Pin 1259 On B brary text /hd2:4204 rivate brary data	Pgsp 1166 Inuse 1522 274 55 18	Virtua 430 Pin 1258 0 0	Pgsp 1076 24 - 52	N Virtua 3897 393 - 59	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535
Pid 11402 Vsid 0 8811 e03c 6b0d	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe:	Inuse 1882 De Description ck kernel sector ck shared lil cs code,/dev ck process prock shared lil	Pin 1259 on 9 orary text /hd2:4204 rivate brary data 32343	Pgsp 1166 Inuse 1522 274 55 18	Virtua 430 Pin 1258 0 0	Pgsp 1076 24 - 52 14	N Virtua 3897 393 - 59	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe:	Inuse 1882 De Description Rk kernel sector Rk shared lil rs code,/dev. Rk process process process Rk shared lil rs /dev/hd2::	Pin 1259 on 9 orary text /hd2:4204 rivate brary data 32343	Pgsp 1166 Inuse 1522 274 55 18	Virtua 436 Pin 1258 0 0 1	Pgsp 1076 24 - 52 14	N Virtua 3897 393 - 59	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo: - pe: - pe:	Inuse 1882 De Description Ck kernel see Ck shared lil Cs code,/dev, Ck process process process Ck shared lil Cs /dev/hd2: Cs /dev/hd4:	Pin 1259 on g brary text /hd2:4204 rivate brary data 32343 605	Pgsp 1166 Inuse 1522 274 55 18 11 2	Virtua 436 Pin 1258 0 0 1	Pgsp 1076 24 - 52 14 -	N Virtua 3897 393 - 59 15 - -	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command	Inuse 1882 De Description ck kernel sect ck shared lil cs code,/dev ck process pr ck shared lil cs /dev/hd2: cs /dev/hd4: Inuse	Pin 1259 on g brary text /hd2:4204 rivate brary data 32343 605	Pgsp 1166 Inuse 1522 274 555 18 11 2 0	Virtua 436 Pin 1258 0 0 1 0 0 0 0 Virtua	Pgsp 1076 24 - 52 14 -	N Virtua 3897 393 - 59 15 - - - 64-bit	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo: - pe: - pe:	Inuse 1882 De Description Ck kernel see Ck shared lil Cs code,/dev, Ck process process process Ck shared lil Cs /dev/hd2: Cs /dev/hd4:	Pin 1259 on g brary text /hd2:4204 rivate brary data 32343 605	Pgsp 1166 Inuse 1522 274 55 18 11 2	Virtua 436 Pin 1258 0 0 1	Pgsp 1076 24 - 52 14 -	N Virtua 3897 393 - 59 15 - -	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh	Inuse 1882 De Description ck kernel sect ck shared lil cs code,/dev ck process pr ck shared lil cs /dev/hd2: cs /dev/hd4: Inuse	Pin 1259 on g brary text /hd2:4204 rivate brary data 32343 605	Pgsp 1166 Inuse 1522 274 555 18 11 2 0	Virtua 436 Pin 1258 0 0 1 0 0 Virtua 430	Pgsp 1076 24 - 52 14 - -	N Virtua 3897 393 - 59 15 - - - 64-bit N	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Typ	Inuse 1882 De Description Ck kernel sector Ck shared lil Cs code,/dev. Ck process process process / dev/hd2: Cs / dev/hd4: Inuse 1872	Pin 1259 on 9 brary text /hd2:4204 rivate brary data 32343 605	Pgsp 1166 Inuse 1522 274 55 18 11 2 0	Virtua 436 Pin 1258 0 0 0 1 0 0 0 0 Virtua 436 Pin Pin	Pgsp 1076 24 - 52 14 - -	N Virtua 3897 393 - 59 15 - - - 64-bit N	Mthrd N 1 Addr Range 032767: 6547565535 065535 088: 6531065535 0382 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Typ 0 wo:	Inuse 1882 De Description Ck kernel sector Ck shared lilters code,/dev, Ck process process process // Ck shared lilters // Ck shared lilters // Inuse 1872 De Description Ck kernel sector Linuse 1872	Pin 1259 Dn g brary text /hd2:4204 rivate brary data 32343 605 Pin 1259 Dn g	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522	Virtua 436 Pin 1258 0 0 1 0 0 0 Virtua 436 Pin 1258	Pgsp 1076 24 52 14 - - - - - - - - - - - - - - - - - -	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897	Mthrd N 1 Addr Range 032767: 6547565535 065535 058 083: 6531065535 0382 01 01 Mthrd N 1 Addr Range 032767: 6547565535
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 Pid 5686 Vsid 0	Command -ksh Esid Typ 0 wor d wor 1 per 2 wor f wor - per - per Command -ksh Esid Typ 0 wor d wor d wor d wor	Inuse 1882 De Description Ck kernel seg Ck shared lil Cs code,/dev Ck process pr Ck shared lil Cs /dev/hd2: Inuse 1872 De Description Ck kernel seg Ck shared lil Ck kernel seg Ck shared lil	Pin 1259 on 9 brary text /hd2:4204 rivate brary data 32343 605 Pin 1259 on 9	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274	Virtua 436 Pin 1258 0 0 1 0 0 0 Virtua 430 Pin 1258	Pgsp 1076 24 - 52 14 1 1076 21 24 22 24 24 24 24	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01 Mthrd N 1 Addr Range 032767: 6547565535 065535
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 Pid 5686 Vsid 0	Command -ksh Esid Tyl 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Tyl 0 wo: d wo:	Inuse 1882 De Description Ck kernel see Ck shared lil Cs code,/dev Ck process pr Ck shared lil Cs /dev/hd2: Cs /dev/hd4: Inuse 1872 De Description Ck kernel see Ck shared lil Cs code,/dev Ck kernel see Ck shared lil Cs code,/dev	Pin 1259 Don G Dorary text /hd2:4204 rivate Dorary data 32343 605 Pin 1259 Don G Dorary text /hd2:4204	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274 55	Virtua 436 Pin 1258 0 0 1 0 0 0 Virtua 430 Pin 1258	Pgsp 1076 24	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01 Mthrd N 1 Addr Range 032767: 6547565535 065535 065535 058
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 Pid 5686 Vsid 0	Command -ksh Esid Tyl 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Tyl 0 wo: d wo:	Inuse 1882 De Description Ck kernel seg Ck shared lil Cs code,/dev Ck process pr Ck shared lil Cs /dev/hd2: Inuse 1872 De Description Ck kernel seg Ck shared lil Ck kernel seg Ck shared lil	Pin 1259 Don G Dorary text /hd2:4204 rivate Dorary data 32343 605 Pin 1259 Don G Dorary text /hd2:4204	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274	Virtua 436 Pin 1258 0 0 1 0 0 0 Virtua 430 Pin 1258	Pgsp 1076 24 - 52 14 1 1076 21 24 22 24 24 24 24	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01 Mthrd N 1 Addr Range 032767: 6547565535 065535 065535 0682:
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 	Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo:	Inuse 1882 De Description Rk kernel seg Rk shared lil Rs (dev/hd2: Rs /dev/hd4: Inuse 1872 De Description Rk kernel seg Rk shared lil Rs /dev/hd4: Inuse 1872 De Description Rk kernel seg Rk shared lil Rs code,/dev Rk shared lil Rs code,/dev Rk shared lil Rs code,/dev Rk process p	Pin 1259 Don g Dorary text /hd2:4204 rivate Dorary data 32343 605 Pin 1259 Don g Dorary text /hd2:4204 rivate	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274 555 12	Virtua 436 Pin 1258 0 0 0 1 0 0 Virtua 436 Pin 1258	Pgsp 1076 24 - 52 14	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393 - 12	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: - pe: Command -ksh Esid Typ 0 wo: d wo: 1 pe: 2 wo: f wo:	Inuse 1882 De Description Ck kernel see Ck shared lil Cs code,/dev, Ck process process Adev/hd2: Thuse 1872 De Description Ck kernel see Ck shared lil Cs code,/dev, Ck process process Ck shared lil Ck ck process process Ck shared lil Ck shared lil	Pin 1259 on g brary text /hd2:4204 rivate brary data 32343 605 Pin 1259 on g brary text /hd2:4204 rivate	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274 55 12 6	Virtua 436 Pin 1258 0 0 0 1 0 Virtua 430 Pin 1258 0 0	Pgsp 1076 24	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01
Pid 11402 Vsid 0 8811 e03c 6b0d 4328 2865 3326 	Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: Command -ksh Esid Typ 0 wo: 1 pe: 2 wo: f wo: - pe: -	Inuse 1882 De Description Rk kernel seg Rk shared lil Rs (dev/hd2: Rs /dev/hd4: Inuse 1872 De Description Rk kernel seg Rk shared lil Rs /dev/hd4: Inuse 1872 De Description Rk kernel seg Rk shared lil Rs code,/dev Rk shared lil Rs code,/dev Rk shared lil Rs code,/dev Rk process p	Pin 1259 Don 99 Dorary text /hd2:4204 rivate Dorary data 32343 605 Pin 1259 Don 99 Dorary text /hd2:4204 rivate Dorary text /hd2:4204 rivate Dorary data 32343	Pgsp 1166 Inuse 1522 274 55 18 11 2 0 Pgsp 1106 Inuse 1522 274 555 12	Virtua 436 Pin 1258 0 0 0 1 0 0 Virtua 436 Pin 1258	Pgsp 1076 24 - 52 14 52 147 1076 24 - 55 1	N Virtua 3897 393 - 59 15 - - 64-bit N Virtua 3897 393 - 12	Mthrd N 1 Addr Range 032767: 6547565535 065535 083: 6531065535 0382 01 01

A snapshot of the paging space at various intervals using the ${\tt lsps}\,$ -a command:

# lsps -a							
Page Space hd6 # lsps -a	Physical Volume hdisk0	Volume Group rootvg	Size 512MB	%Used 95	Active yes	Auto yes	Type lv
Page Space hd6 # lsps -a	Physical Volume hdisk0	Volume Group rootvg	Size 512MB	%Used 97	Active yes	Auto yes	Type lv
Page Space	Physical Volume hdisk0	Volume Group	Size 512MB		Active ves		Type lv

The output of the vmtune command:

```
# vmtune
vmtune: current values:
                                 -R
          -P -r
                                              -f
                                                        - F
                                                                  -N
  -p
\verb|minperm| maxperm| \verb|minpgahead| maxpgahead| \verb|minfree| maxfree| \verb|pd_npages| maxrandwrt|
  26007 104028
                   2 8 120 128
                                                                524288
                                                                              0
                  -k
                                     -b
                                                  -B
                          - C
                                                                -u
\verb|maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps|
104851
        4096 1024 1 93 80
                                                              9
                        -n
                                  -S
         -s
sync_release_ilock nokillroot v_pinshm strict_maxperm
        Ω
                      0
                                    0
number of valid memory pages = 131063 maxperm=79.4% of real memory maximum pinable=80.0% of real memory minperm=19.8% of real memory number of file memory pages = 13516 numperm=10.3% of real memory
```

Display the number of processors using the lsdev command:

```
# lsdev -Ccprocessor
proc0 Available 00-00 Processor
```

This is a single processor system.

7.4.2 Data analysis

From the output in the previous section, an investigation can be done on the various components within the system to determine the areas that are causing performance problems. For this investigation, the output will mostly be from the vmstat command output. The other output is for information and confirmation.

7.4.2.1 The kthr (kernel thread) column

The kthr column provides information about the average number of threads on various queues.

Both the r and b counts are low, indicating that the system is executing the runable threads in the kernel sufficiently. The contention for CPU resources is low.

7.4.2.2 The memory column

The memory column displays information about the use of real and virtual memory. A page size is 4096 bytes in size.

In the avm column it can be seen that the average number of pages allocated increased. The system will keep allocating pages until all paging space available is used (check with $l_{\rm SPS}$ -a command). When all the paging space has been utilized or reaches 100%, the system will start killing processes to make paging space available for use.

The fre column shows the average number of free memory pages. The MINFREE value for this system is 120, as shown with the vecture command. In the example, the free memory stayed around the MINFREE value until it dropped to below 100 and almost to 0. This is one of the indications that the system was thrashing.

7.4.2.3 The page column

The page column displays information about page faults and paging activity. These averages are given per second. Paging space is the part of virtual memory that resides on disk. It is used as an overflow when memory is overcommitted. Paging consists of paging logical volumes dedicated to the storage of working set pages that have been stolen from real memory. When a stolen page is referenced by the process, a page fault occurs and the page must be read into memory from paging space. Whenever a page of working storage is stolen, it is written to paging space. If not referenced again, it remains on the paging device until the process terminates or disclaims the space. Subsequent references to addresses contained within the faulted-out pages result in page faults, and the pages are paged in individually by the system. When a process terminates normally, any paging space allocated to that process is freed.

The re column, which is the number of reclaimed pages, remained at 0 throughout.

The pi column varied from 0 to the highest level of 56 pages paged in from paging space. Although a pi level of no more than 5 is considered acceptable, a level higher than 5 is not necessarily an indication of a performance problem, due to the fact that for every page paged in, there must have been a page that was paged out.

The po column, which reflected the number of pages paged out, was between 183 and 445 per second. With a high rate of paging, the system may see some performance degradation, as the paging space is kept on the hard disk and is accessed slower that RAM.

The fr column is the number of pages freed in a second.

The sr column is the number of pages scanned by the page placement algorithm. If the ratio between fr:sr is high, this can indicate a memory constraint, for example, if the ratio is 1:3, it will mean that for every page freed, three will need to be checked. In the example, the ratio is close to 1:2.

7.4.2.4 The faults column

The information under the faults heading displays the trap and interrupt rate averages per second.

The in column is the number of device interrupts per second and is always greater than 100.

The sy column is the number of system calls and it is extremely difficult to say what this figure should be.

The cs column is the number of context switches.

7.4.2.5 The cpu column

The information under the cpu heading provides a breakdown of CPU usage.

The us column indicates the amount of time spent in user mode. In the example, this is never above 5 percent.

The sy column indicates the amount of time spent in system mode. In this example, it is never below 92 percent.

The id column indicates the amount of idle time. In this example, the cpu is never idle.

The wa column indicates the amount of idle time with pending local disk I/O. In the example, it is never higher than 7 percent.

Note

In a single processor system, if us + sy is greater than 90 percent, the system can be considered CPU bound.

7.4.3 Recommendation

From the data, the following are some recommendations that can be implemented to ease the situation:

- If it is possible, an additional CPU might be added to try and get the CPU utilization below 80 percent.
- Add an additional paging space on another internal disk. The reason for adding this paging area to an internal disk is for speed and availability. It is advisable to always spread the paging space across multiple disks, as this will improve paging performance.
- If this is a situation that occurs only at certain times, it may be possible to reschedule large jobs and spread them out, so as not to conflict with one another.

Chapter 8. Scenario assessment quiz

In this chapter, you will be provided with two scenarios to examine and questions to answer based on those scenarios.

8.1 Scenario one

Robutz, Inc. is a small startup robot toy manufacturing company. They decided to purchase an RS/6000 F50 to keep track of their suppliers, inventory, production schedules as well as marketing support. The system they purchased consists of the following components:

- F50 running AIX Version 4.3.2
- Single 166 MHz PowerPC 604e
- RAM 128 MB
- 3 4.5 GB SCSI Disk Drives
- 1 8 mm Tape Drive
- Integrated 10 Mbps Ethernet will be used to connect to their network.
- They anticipate seven users to be using the system, connecting with their PCs over the network.
- They will be using an off the shelf program with Sybase as their database.
- They will have two network printers.
- They have decided to create three Volume Groups (each on separate disk): rootvg, sybasevg and dumpvg.
- 1. Using a customer's vmtune settings, which of the following parameters should be changed to help eliminate paging?

```
vmtune: current values:
         -P -r -R
                                        -f
                                                - F
 -p
                                                         - N
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
  6344 25376 2 8 120 128 524288
                                       -B
                              -b
                -k
                      -c
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps
26196 1024 256 1 93 64 9 131072
-s -n -S -h sync_release_ilock nokilluid v_pinshm strict_maxperm
                                  -S
                      0
                              0
number of valid memory pages = 32744 maxperm=77.5% of real memory maximum pinable=80.0% of real memory minperm=19.4% of real memory number of file memory pages = 24067 numperm=73.5% of real memory
```

© Copyright IBM Corp. 2000 225

- A. maxpin
- B. maxfree
- C. maxperm
- D. maxpgahead
- 2. Using the vmtune output, as shown in the exhibit, which of the following is the most probable cause for the high paging space allocation?

```
# vmtune
vmtune: current values:
            - P
                                      -R
                                                    -f
                                                              - F
                                                                         -N
                       -r
  -p
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
   6344 25376 2 8 120 128
                                                                       524288
                    -k -c -b
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps 26196 1024 256 1 93 64 9 131072 0
                                            -S
sync_release_ilock nokilluid v_pinshm strict_maxperm
0 0 0 0 0
                                           0
number of valid memory pages = 32744 maxperm=77.5% of real memory maximum pinable=80.0% of real memory minperm=19.4% of real memory number of file memory pages = 24067 numperm=73.5% of real memory
```

- A. defps is 0.
- B. minpgahead is 2.
- C. maxpgahead is 8.
- D. maxfree is 128.

8.1.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. C
- 2. A

8.2 Scenario two

MooCow Inc. has a single processor F50 with 512 MB of memory and four 4.5 GB SCSI drives. They have a flat IP network using the built-in 10 Mbps Ethernet adapter and are running AIX Version 4.3.3 with all the latest PTFs. The system administrator reboots the system every Sunday after their full-weekly backup. Throughout the week, the users notice degrading performance with the Application A response time.

- 1. Which of the following tools should be used to begin gathering historical performance data on the system for a performance analysis?
 - A. sar
 - B. iostat
 - C. netstat
 - D. vmstat
- MooCow Inc. has added a CPU, increased physical memory and installed another two SCSI drives in order to support application B. Since application B has been installed, users are complaining about application response times during peak business hours.

Use the information provided in Figure 22, Figure 23 on page 228, Figure 24 on page 228, and Figure 25 on page 229 to help you with your answer.

```
# ps -ef | sort +3 -r | head
                                   TTY TIME CMD
- 4:04 /usr/app/exp_report
    UID
         PID PPID C STIME
  userl 84964 85996 112 14:25:43
                1 38 14:10:16 pts/60 2:01 /opt/lotus/notes/la
   userl 101194
test/ibmpow/notes
   root 91686 90358 37 16:53:28
                                           0:02 /opt/lotus/notes/la
test/ibmpow/notes
   root 98544 99676 28 14:34:38 pts/59 0:00 ps -ef
  user2 61182 62462 18 18:41:19 - 105:12 /usr/netscape/commu
nicator/bidi/netscape_aix4
                  1 7 09:28:52 pts/44 4:18 /opt/lotus/notes/la
  user3 83414
test/ibmpow/notes
   root 73560 71826 6 06:56:43 pts/31 12:24 java com/ibm/retain
/client/ncr/NCRetain -pf austin_ibm_com
  user4 100330 1 5 14:07:50 pts/41 0:23 /opt/lotus/notes/la
test/ibmpow/notes
  user3 56514 1 4 17:15:41 - 42:03 SoftWindows95 root 91182 1 4 10:45:54 pts/21 3:10 /opt/lotus/notes/la
test/ibmpow/notes
```

Figure 22. The ps command output

kth	ır	memo	ry			ps	age			:	fault	5		cl	pu	
	ъ	avm	fre	re	pi	po	fr	sr	cy	in	sv	cs	us	sv	id	wa
5	1	19331	824	0	Ô	Ô	0	0	-		1955			_	0	0
4	1	19803	996	0	0	0	0	0	0	533	7466	591	76	24	0	0
5	1	19974	860	0	0	0	0	0	0	822	4055	892	81	19	0	0
5	1	19815	860	0	0	0	0	0	0	535	4096	509	71	29	0	0
2	1	19816	855	0	0	0	0	0	0	577	4582	598	83	17	0	0
3	1	19816	737	0	0	0	0	0	0	602	2720	672	66	34	0	0
2	1	19895	724	0	0	0	0	0	0	616	3842	698	82	18	0	0
5	1	17147	724	0	0	0	0	0	0	649	6427	626	75	25	0	0
3	1	17065	720	0	0	0	0	0	0	516	3629	543	78	22	0	0
5	1	17163	720	0	0	0	0	0	0	614	9030	688	64	35	0	0
3	1	17343	720	0	0	0	0	0	0	420	8777	487	71	29	0	0
5	1	17579	712	0	0	0	0	0	0	466	2182	473	62	38	0	0
2	1	17647	712	0	0	0	0	0	0	497	3298	310	62	37	0	0

Figure 23. The vmstat command output

# iosta			avg-cpu:	. 4	user	9	5775	% ic	41e	% i	oweit.
		523.5					19.3				0.4
Disks:		% tm	act H	ζbns		tns	Kb	read	Kb w	rtn	
hdisk0		0.		7.6		2.6				106	
hdiskl		0.	0 0	0.0		0.0		ō		0	
hdisk2		0.	0 (0.0		0.0		0		0	
hdisk3		0.	0 (0.0		0.0		0		0	
hdisk4		0.	0 (0.0		0.0		0		0	
hdisk5		0.	0 (0.0		0.0		0		0	
cd0		0.	0 0	0.0		0.0		0		0	
			avg-cpu:	. *	user	*	sys	% io	ile	% i	owait
	0.0	529.2			76.4		23.6	(0.0		0.0
Disks:		% tm_					Kb_	read	Kb_w	rtn	
hdisk0		0.		0.0		0.0		0		0	
hdiskl		0.	-	0.0		0.0		0		0	
hdisk2		0.		0.0		0.0		0		0	
hdisk3		0.		0.0		0.0		0		0	
hdisk4			-	0.0		0.0		0		0	
hdisk5				0.0		0.0		0		0	
cd0		0.	0 (0.0		0.0		0		0	
			avg-cpu:	. *						% i	
	0.0	523.4			80.6		19.4	(0.0		0.0
Disks:				-			Kb_	read	Kb_w	rtn	
hdisk0		0.	-	0.0		0.0		0		0	
hdiskl		0.		0.0		0.0		0		0	
hdisk2		0.		0.0		0.0		0		0	
hdisk3		0.		0.0		0.0		0		0	
hdisk4		0.		0.0		0.0		0		0	
hdisk5		0.	0 (0.0		0.0		0		0	

Figure 24. The iostat command output

49 mbufs in u	co.						
28 mbuf clust		s in use					
124 Kbytes al							
O requests fo							
O calls to pr			ines				
o carrs co pr	000001	drain road	ines				
Kernel malloc	statis	tics:					
***** CPU 0	*****	*					
By size	inuse	calls	failed	free	hiwat	freed	
32	111	2757	0	17	640	0	
64	93	79910	0	35	320	0	
128	65	605956	0	127	160	313	
256	89	84401838	0	151	384	0	
512	58	1122650	0	14	40	52	
1024	0	385298	0	20	20	0	
2048	1	771690	0	9	10	1	
4096	24	2356796	0	31	120	0	
8192	1	99962	0	9	10	0	
16384	0	32157	0	20	24	7	
***** CPU 1	****	**					
By size	inuse	calls	failed	free	hiwat	freed	
32	19	2602	0	109	640	0	
64	63	55968	0	65	320	0	
128	54	578108	0	138	160	328	
256	45	79776714	0	179	384	0	
512	27	954403	0	29	40	28	
1024	0	369263	0	20	20	0	
2048	0	752292	0	10	10	2	
4096	4	2203880	0	28	120	0	
8192	2	95150	0	6	10	0	
16384	1	29738	0	20	24	8	
By type	inuse	calls	failed	memuse	nennax	mapb	
mbuf	47	285532098	0	12032	59648	0	
mcluster	27	17060009	0	110592	301056	0	
socket	203	364802	0	33728	50176	0	
pcb	167	318578	0	27200	46400	0	
routetbl	8	20		1312	2080	0	
fragtbl	0	8848	0	0	96	0	
ifaddr	7	9	0	832	832	0	
mblk	24	2550913		3712	90368	0	
mblkdata	7	48967	0		126976	0	
strhead	46	1333		9152	15744	0	
strqueue	45	3261	0	23040	39424	0	
strmodsw	21	21	0	1344	1344	0	
strpoll	0	1	0	0	32	0	
strosr	0	3957	0	0	256	0	
strsyncq	53	10352	0	6208	10368	0	
streams	201	4044	0	24416	33376	0	
kernel table	43	143395	0	60768	86368	0	
temp	7	52	0	14528	15040	0	
Streams mblk O high priori			es:				

Figure 25. The netstat command output

Using information provided in the exhibits, which of the following conclusions is most appropriate to draw about the problem on the system?

- A. The system is CPU bound.
- B. The system is I/O bound.
- C. The system is memory bound.
- D. The system is network bound.
- 3. Based upon the statistics, which of the following reports helped to determine the problem?
 - A. The stime from the ps report
 - B. The % user and % sys metrics from the iostat report
 - C. The statistics from the b column in the vmstat report
 - D. The number of requests for mbufs denied from netstat report
- 4. Which of the following procedures should be performed to remedy the situation?
 - A. Stripe the logical volumes.
 - B. Increase the tcp_sendspace to 65536.
 - C. Use vmtune to change file system cache.
 - D. Move the /usr/app/exp_report process to off-peak hours.
- 5. The actions taken so far have only increased performance slightly. The service level agreement is still not being achieved. Which of the following procedures should be performed?
 - A. Install a PCI SCSI-RAID adapter.
 - B. Install another 512 MB of memory.
 - C. Upgrade to a four-way processor.
 - D. Upgrade to 10/100 Ethernet adapter.
- 6. Which of the following should be implemented to balance available CPU/Memory resources between applications?
 - A. Loadleveler
 - B. Nice/Renice
 - C. Resource Manager
 - D. Workload Manager

7. MooCow Inc. is still experiencing performance problems. Using the output shown in Figure 26 on page 231, which of the following conclusions is most appropriate to draw?

kthr	memo	-			pa					fault			•	ou		
 r b																
	avm 19331			_	_					sy 1955					wa O	
	19803					0				7466					0	
															0	
	19974														0	
	19815 19816														0	
	19816														0	
															0	
	19895 17147														0	
	17065														0	
															_	
	17163 17343															
	17579															
0 1	17647	712	U	U	U	U	١	, ,	497	3298	310	U	U	99	U	l
# ios	tat 120	5														
tty:	tin	tou	ıt	avg	-cpu	:										iowait
	0.0	0.	0					0.0		0.0		9	9.0			0.0
Disks										Kb			Kb_	_wr		
hdisk			0.0			.0			0.0		0				0	
hdisk			0.0			. 0			0.0)			0	
hdisk			0.0			. 0			0.0		0				0	
hdisk			0.0			. 0			0.0		0				0	
hdisk			0.0			. 0			0.0		0				0	
hdisk	5		0.0			. 0			0.0)			0	
cd0			0.0		0	. 0		0	0.0		0)			0	
tty:	tin	tou	ıt	avq	-cpu		* ı	ıser		t sys	8	i	dle		÷	iowait
-	0.0	0.		_	-			0.0		0.0		9	9.0			0.0
T-1	_				77	1				777-		,	771-			
Disks										Kb			KD_	_wr		
hdisk hdisk			0.0			.0).0).0)			0	
naisk			0.0			.0). U). O		(0	
naisk hdisk			0.0			.0). U). O		(0	
naisk	_		0.0			.0). U). O		(0	
naisk hdisk			0.0			.0). U). O						0	
ndisk cd0			0.0			.0).0						0	
edo			0.0		·	. 0			,.0		,	,			٥	
tty:	tin 0.0	tou	it	avg	-cpu	= :	ŧ 1	ıser	4	sys *	8	i	dle		*	iowait
	0.0	0.	0					0.0		0.0		9	9.0			0.0
Disks	:	% t	m a	ct	к	bps		t	ns	Kb	read	1	Kb	wrt	5n	
hdisk			0.0			.0).0)			0	
hdisk			0.0			. 0).0		Ò				ō	
hdisk			0.0			.0).0		Ò				0	
hdisk			0.0			.0).0		Ò				ō	
hdisk			0.0			.0).0		Ò				0	
	-		2.0												_	
hdisk	5		0.0		Π	. 0			0.0)			0	

Figure 26. The vmstat and iostat command outputs

- A. The system is CPU bound
- B. The system is I/O bound
- C. The system is memory bound
- D. The system is network bound
- 8. Given the details of the exhibit, which of the following procedures should be performed to fix the bottleneck?
 - A. Add CPU(s)
 - B. Add 512 MB memory
 - C. Stripe the logical volumes
 - D. Implement a switched Ethernet
- 9. The backups for a system are being taken over the network to an TSM server. Unfortunately, they are taking too long and the service level agreement is not being met with the customer. Based upon the current configuration and details shown in the exhibit, which of the following tuning procedures should be performed to improve the file system's backup performance?
 - A. Increase the maxfree value using vmtune.
 - B. Increase the mult value using schedtune.
 - C. Increase the queue length on the disk drives using chdev.
 - D. Increase the tcp_sendspace and tcp_recvspace on your system and the TSM server.

10. The backups are still not meeting the service level agreement. It has been suggested to re-examine the I/O performance.

lsps -s Total Paging Space Percent Used 100MB 37% # 1sps -a Page Space Physical Volume Volume Group Size %Used Active Auto Type hdisk0 100MB 38 yes yes lv rootvg # lsvg rootvg datavg # lspv hdisk0 000038744c632197 rootvg hdisk1 00002199abf65a1a datavg hdisk2 00000228b9c5d7da datavq hdisk3 00002199b40b728c datavg # lspv -l hdisk0 hdisk0: LV NAME LPs PPs MOUNT POINT DISTRIBUTION hd5 2 02..00..00..00..00 2 N/A hd3 6 6 02..00..04..00..00 /tmp hd2 117 117 00..47..42..28..00 /usr hd8 1 00..00..01..00..00 1 N/A 2 2 00..00..02..00..00 / hd4 hd9var 1 1 00..00..01..00..00 /var hd6 128 128 29..50..49..00..00 N/A hd1 3 3 00..00..01..02..00 /home lv00 10 10 00..00..00..10..00 /database # lspv -l hdisk1 hdisk1: LV NAME LPs PPs DISTRIBUTION MOUNT POINT loglv00 1 1 01..00..00..00..00 N/A lv01 00..00..00..00..10 /db01 10 10 10 lv02 /db02 10 00..00..00..00..10

10

lv03

/db03

10..00..00..00..00

lspv -1 hdisk2

hdisk2:

LV NAME LPS PPS DISTRIBUTION MOUNT POINT

lspv -1 hdisk3

hdisk3:

LV NAME LPS PPS DISTRIBUTION MOUNT POINT

lslv lv01

LOGICAL VOLUME: lv01 VOLUME GROUP: datavg LV IDENTIFIER: 0000881962b29b51.1 PERMISSION: read/write VG STATE: active/complete LV STATE: opened/syncd TYPE: jfs WRITE VERIFY: off

MAX LPs: 512 PP SIZE: 8 megabyte(s)

COPIES: 1 SCHED POLICY: parallel

LPs: 1 PPs: 1

STALE PPs: 0 BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /db01 LABEL: /db01

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

lslv lv02

LOGICAL VOLUME: VOLUME GROUP: lv02 datavq LV IDENTIFIER: 0000881962b29b51.3 PERMISSION: read/write VG STATE: active/complete LV STATE: opened/syncd TYPE: jfs WRITE VERIFY: off MAX LPs: 512 PP SIZE: 8 megabyte(s)

MAX LPS: 512 PP SIZE: 8 megabyte
COPIES: 1 SCHED POLICY: parallel

LPs: 1 PPs: 1
STALE PPs: 0 BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /db02 LABEL: /db02

 $\hbox{\tt MIRROR WRITE CONSISTENCY: on }$

EACH LP COPY ON A SEPARATE PV ?: yes

lslv lv03 LOGICAL VOLUME: 1v03 VOLUME GROUP:
LV IDENTIFIER: 0000881962b29b51.4 PERMISSION:
VG STATE: active/complete LV STATE:
TVDF. ifs WRITE VERIFY: VOLUME GROUP: datavg read/write opened/syncd WRITE VERIFY: TYPE: jfs off PP SIZE: SCHED POLICY: PPs: 512 8 megabyte(s) MAX LPs: 1 parallel COPIES: PPs: 1
BB POLICY: relocatable
RELOCATABLE: yes
UPPER BOUND: 32 1 LPs: STALE PPs: 0
INTER-POLICY: minimum
INTRA-POLICY INTRA-POLICY: middle
MOUNT POINT: /db03 /db03 /db03 LABEL: MOUNT POINT: MIRROR WRITE CONSISTENCY: on

Using information provided in the exhibits, which of the following procedures should be performed to improve the I/O performance?

- A. Change the stripe size to 32 KB.
- B. Adjust the value of maxrndwrt.

EACH LP COPY ON A SEPARATE PV ?: yes

- C. Upgrade your disk subsystem to RAID 5.
- D. Move each file system to separate disks.
- 11. The actions taken so far have helped, but more actions are necessary. Which of the following procedures should be performed to accelerate performance of the I/O?
 - A. Disable write consistency check.
 - B. Add a JFS log for each file system.
 - C. Increase the maxpin parameter with vmtune.
 - D. Increase the syncd frequency from 60 to 10.

8.2.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. A
- 2. A
- 3. B
- 4. D
- 5. C
- 6. D
- 7. D
- 8. D
- 9. D
- 10.D
- 11.B

Appendix A. The error log

The following topics are discussed in this appendix:

- A general discussion about the error logging subsystem
- · How to manage error logs
- · How to read error logs

The error log is the first place where an administrator will search for the cause of improper system performance.

A.1 Overview

The error logging process begins when an operating system module detects an error. The error-detecting segment of code then sends error information to either the errsave and errlast kernel services or the errlog application subroutine where the information is, in turn, written to the /dev/error special file. This process then adds a time stamp to the collected data. The errdemon daemon constantly checks the /dev/error file for new entries, and when new data is written, the daemon conducts a series of operations.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or application code to the contents of the *error record template repository*. If the label matches an item in the repository, the daemon collects additional data from other parts of the system.

The system administrator can look at the error log to determine what caused a failure, or to periodically check the health of the system when it is running.

The software components that allow the AIX kernel and commands to log errors to the error log are contained in the fileset bos.rte.serv_aid. This fileset is automatically installed as part of the AIX installation process.

The commands that allow you to view and manipulate the error log, such as the errpt and errclear commands, are contained in the fileset called bos.sysmgt.serv_aid. This fileset is not automatically installed by earlier releases of AIX Version 4. Use the following command to check whether the package is installed on your system:

© Copyright IBM Corp. 2000 237

```
Path: /etc/objrepos
```

bos.sysmgt.serv aid 4.3.3.0 COMMITTED Software Error Logging and Dump Service Aids

A.2 Managing the error log

Error logging is automatically started during system initialization by the /sbin/rc.boot script and is automatically stopped during system shutdown by the shutdown script. The part of /sbin/rc.boot that starts error logging looks such as:

```
if [ -x /usr/lib/errdemon ]
then
        echo "Starting the error daemon" | alog -t boot
        /usr/bin/rm -f /tmp/errdemon.$$
        /usr/lib/errdemon >/tmp/errdemon.$$ 2>&1
        if [ $? -ne 0 ]
        then
                cat /tmp/errdemon.$$ | alog -t boot
                echo "Starting the errdemon with the system default" \
                        "log file, /var/adm/ras/errlog." | alog -t boot
                /usr/lib/errdemon -i /var/adm/ras/errlog
        fi
        /usr/bin/rm -f /tmp/errdemon.$$
fi
```

As you can see the /usr/lib/errdemon command starts error logging and initializes /var/adm/ras/errlog as a default log file.

A.2.1 Configuring error log

You can customize the name and location of the error log file and the size of the internal error buffer to suit your needs.

To list the current settings, run /usr/lib/errdemon -1. The values for the error log file name, error log file size, and buffer size that are currently stored in the error log configuration database are displayed on your screen.

```
# /usr/lib/errdemon -1
Error Log Attributes
           /var/adm/ras/errlog
1048576 bytes
Log File
Log Size
Memory Buffer Size 8192 bytes
```

You can change all of values listed above:

• To change the name of the file used for error logging, run:

```
# /usr/lib/errdemon -i /var/adm/ras/errlog.new
```

The /var/adm/ras/errlog.new file name is saved in the error log configuration database and the error daemon is immediately restarted.

• To change the maximum size of the error log file to 2000000 bytes, type:

```
# /usr/lib/errdemon -s 2000000
```

The specified log file size limit is saved in the error log configuration database and the error daemon is immediately restarted.

• To change the size of the error log device driver's internal buffer to 16384 bytes, enter:

```
# /usr/lib/errdemon -B 16384
0315-175 The error log memory buffer size you supplied will be rounded
up to a multiple of 4096 bytes.
```

The specified buffer size is saved in the error log configuration database and, if it is larger than the buffer size currently in use, the in-memory buffer is immediately increased. The size you specify is rounded up to the next integral multiple of the memory page size (4 KBs).

Note

The memory used for the error log device driver's in-memory buffer is not available for use by other processes (the buffer is pinned).

Now verify what you did with the following command. Note the highlighted values reflect the changes you made:

A.2.2 Clearing the error log

Clearing of the error log implies deleting old or unnecessary entries from the error log. Clearing is normally done as part of the daily cron command execution. To check it, type:

```
# crontab -l | grep errclear
0 11 * * * /usr/bin/errclear -d S,O 30
```

```
0 12 * * * /usr/bin/errclear -d H 90
```

If it is not done automatically, you should probably clean the error log regularly.

To delete all the entries from the error log, use the following command:

```
# errclear 0
```

To selectively remove entries from the error log, for example, to delete all software errors entries, use the following command:

```
# errclear -d S 0
```

Alternatively, use the smitty errclear command.

A.3 Reading error logs in details

You can generate an error report from data collected in the error log. There are two main ways to view the error log:

• The easiest way to read the error log entries is the smitty errpt command. Output from this command is shown in the Figure 27.

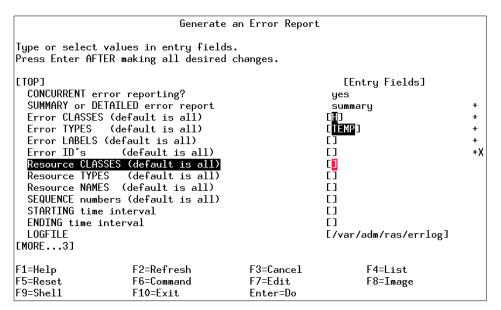


Figure 27. smitty errpt output

The second way to display error log entries is the errpt command. It
allows flags for selecting errors that match specific criteria. By using the
default condition, you can display error log entries in the reverse order
they occurred and were recorded.

A.3.1 The errpt command output

By using the -c flag, you can display errors as they occur. The default summary report contains one line of data for each error:

```
# errpt | pg

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

2BFA76F6 0627172400 T S SYSPROC SYSTEM SHUTDOWN BY USER

9DBCFDEE 0627172700 T O errdemon ERROR LOGGING TURNED ON

192AC071 0627172300 T O errdemon ERROR LOGGING TURNED OFF

1581762B 0627132600 T H cd0 DISK OPERATION ERROR

1581762B 0627132000 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

158181762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T S SRC SOFTWARE PROGRAM ERROR

E18E984F 0627095400 P S SRC SOFTWARE PROGRAM ERROR
```

The fields used in this report are discussed in the following sections.

A.3.1.1 Identifier

Numerical identifier for the event.

A.3.1.2 Timestamp

Time when the error occur in format mmddhhmmyy. The timestamp 0627172400 indicates that error occur June, 27th at 17:24 (5:24 PM) year 00 (year 2000).

A.3.1.3 Type

Severity of the error that has occurred. There are six possible values:

PEND The loss of availability of a device or component is imminent.

PERF The performance of the device or component has degraded to below an acceptable level.

PERM A condition has occurred that could not be recovered from. Error types with this value are usually the most severe errors and are more likely to mean that you have a defective hardware device or software module. Error types other than PERM usually do not indicate a defect, but they are recorded so that they can be analyzed by the diagnostics programs.

TEMP A condition occurred that was recovered from after a number of unsuccessful attempts.

UNKN It is not possible to determine the severity of the error.

INFO The error log entry is informational and was not the result of an error.

A.3.1.4 Class

General source of the error. The possible error classes are:

- H Hardware. When you receive a hardware error, refer to your system operator guide for information about performing diagnostics on the problem device or other piece of equipment.
- S Software.
- O Informational messages.
- U Undetermined (for example, network).

A.3.1.5 Resource name

For software errors, this is the name of a software component or an executable program. For hardware errors, this is the name of a device or system component. It is used to determine the appropriate diagnostic modules that are to be used to analyze the error.

A.3.1.6 Description

A brief summary of the error.

A.3.2 Formatted output from errpt command

The following list provides a series of format options for the errpt command.

• To list all hardware errors, enter:

# errpt -d H					
IDENTIFIER	TIMESTAMP	Т	С	RESOURCE_NAME	DESCRIPTION
1581762B	0627132600	Т	Н	cd0	DISK OPERATION ERROR
1581762B	0627132000	Т	H	cd0	DISK OPERATION ERROR
1581762B	0627131900	Т	H	cd0	DISK OPERATION ERROR
1581762B	0627131900	Т	H	cd0	DISK OPERATION ERROR
5BF9FD4D	0615173700	Т	H	tok0	PROBLEM RESOLVED
2A9F5252	0615161700	Р	Н	tok0	WIRE FAULT
2A9F5252	0615161600	Ρ	H	tok0	WIRE FAULT
2A9F5252	0615161600	Р	Н	tok0	WIRE FAULT
5BF9FD4D	0615155900	Т	н	tok0	PROBLEM RESOLVED
2A9F5252	0615151400	Р	Н	tok0	WIRE FAULT
2A9F5252	0615151300	Р	н	tok0	WIRE FAULT

2A9F5252 0615151300 P **H** tok0 WIRE FAULT 2A9F5252 0615151300 P **H** tok0 WIRE FAULT

• To get a detailed report of all software errors, enter:

```
# errpt -a -d S | pg
______
LABEL: REBOOT_ID
IDENTIFIER: 2BFA76F6
Date/Time: Tue Jun 27 17:24:55
Sequence Number: 33
Machine Id: 006151424C00
Node Id: server4
Class: S
Type:
            TEMP
Resource Name: SYSPROC
Description
SYSTEM SHUTDOWN BY USER
Probable Causes
SYSTEM SHUTDOWN
Detail Data
USER ID
0=SOFT IPL 1=HALT 2=TIME REBOOT
 0
TIME TO REBOOT (FOR TIMED REBOOT ONLY)
        0
```

• To display a report of all errors logged for the error identifier E18E984F, enter:

```
# errpt -j E18E984F

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

E18E984F 0627100000 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0627093000 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0626182100 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0626181400 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0626130400 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0626130400 P S SRC SOFTWARE PROGRAM ERROR
```

 To display a report of all errors that occur after June, 26, 2000 at 18:14 time, enter:

```
# errpt -s 0626181400

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

2BFA76F6 0627172400 T S SYSPROC SYSTEM SHUTDOWN BY USER

9DBCFDEE 0627172700 T O errdemon ERROR LOGGING TURNED ON

192AC071 0627172300 T O errdemon ERROR LOGGING TURNED OFF

1581762B 0627132600 T H cd0 DISK OPERATION ERROR

1581762B 0627132000 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581962B 0627131900 T H cd0 DISK OPERATION ERROR

E18E984F 062700000 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0627095400 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0627092700 T S SYSPROC SYSTEM SHUTDOWN BY USER

9DBCFDEE 0627092900 T O errdemon ERROR LOGGING TURNED ON

192AC071 0627092500 T O errdemon ERROR LOGGING TURNED OFF

369D049B 0626183400 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE

SYSTEM

E18E984F 0626182100 P S SRC SOFTWARE PROGRAM ERROR

E18E984F 0626181400 P S SRC SOFTWARE PROGRAM ERROR
```

• To obtain all the errors with resource name cd0 from the error log, enter:

```
# errpt -N cd0

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

1581762B 0627132600 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR

1581762B 0627131900 T H cd0 DISK OPERATION ERROR
```

A.4 Command summary

The following section provides a list of the key commands discussed in this appendix. For a complete reference of the following commands, consult the AIX product documentation.

A.4.1 The errpt command

The errpt command generates an error report from entries in an error log. The command has the following syntax:

```
errpt [ -a ] [ -c ] [ -d ErrorClassList ] [ -e EndDate ] [ -j ErrorID ] [ -s
StartDate ] [ -N ResourceNameList ] [ -S ResourceClassList ] [ -T
ErrorTypeList ]
```

The commonly used flags are listed in Figure 21.

Table 21. Commonly used flags of the errpt command

Flag	Description
-a	Displays information about errors in the error log file in detailed format.
-с	Formats and displays each of the error entries concurrently, that is, at the time they are logged. The existing entries in the log file are displayed in the order in which they were logged.
-d ErrorClassList	Limits the error report to certain types of error records specified by the valid ErrorClassList variables: H (hardware), S (software), θ (errlogger command messages), and θ (undetermined).
-e EndDate	Specifies all records posted prior to and including the EndDate variable.
-j ErrorlD	Includes only the error-log entries specified by the <i>ErrorID</i> (error identifier) variable.
-s StartDate	Specifies all records posted on and after the <i>StartDate</i> variable.
-N ResourceNameList	Generates a report of resource names specified by the ResourceNameList variable. The ResourceNameList variable is a list of names of resources that have detected errors.
-S ResourceClassList	Generates a report of resource classes specified by the ResourceClassList variable.
-T ErrorTypeList	Limits the error report to error types specified by the valid <i>ErrorTypeList</i> variables: INFO, PEND, PERF, PERM, TEMP, and UNKN.

A.5 Quiz

The following assessment question helps verify your understanding of the topics discussed in this appendix.

1. Which of the following commands should be used to list the system errors logged following February 29, 2000?

```
A. /usr/bin/errpt -s 0301000000
```

- B. /usr/bin/lssrc -s 0301000000
- C./usr/lib/errdemon -s 0301000000
- D. /usr/sbin/syslogd -m 0301000000

A.5.1 Answers

The following is the preferred answer to the question provided in this section.

1. A

A.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this appendix.

- 1. Change default error log attributes.
- 2. Using the errpt command, generate a report of errors caused by errdemon resource.
- 3. Using the errpt command, generate a report of software errors, but limit it to temporary errors.
- 4. Generate the same reports using smitty tool.
- 5. Delete all software logs.

Appendix B. Installing the performance tools

Anyone faced with the task of keeping a computer system well-tuned and capable of performing as expected recognizes the following areas as essential for success:

Load monitoring Resource load must be monitored so performance

problems can be detected as they occur or (preferably) predicted before they do.

Analysis and control Once a performance problem is encountered, the

proper tools must be selected and applied so that the

nature of the problem can be understood and

corrective action taken.

Capacity planning Long-term capacity requirements must be analyzed so

that sufficient resources can be acquired before they

are required.

AIX provides several tools which cover these areas. Not all of these tools come with the AIX Base Operating System. Some of them are part of the Performance Toolbox software, as listed in Table 22.

Table 22. Performance tools overview

Software product	Tool
Base Operating System	vmstat, iostat, sar, ps, netstat, nfsstat, no, nfso, trace, prof, gprof, perfpmr, schedtune, vmtune
perfagent.tools fileset (not part of BOS but part of Server bundle)	bf, bfrpt, fdpr, filemon, fileplace, genkex, genkld, genld, gennames, ipfilter, lockstat, netpmon, pprof, rmss, stem, stripnm, svmon, syscalls, topas, tprof
Performance Toolbox Manager	xmperf, 3dmon, 3dplay, azizo, exmon, chmon
Performance Toolbox Agent	xmservd, filtd

The bos.perf package, part of the base operating system, contains the bos.perf.diag_tool fileset with the Performance Diagnostic tool. Performance PMR Data Collection scripts were removed from this fileset in AIX Version 4.3.3. They are available from the IBM support down load Web site.

The Performance Toolbox is a Motif-based, AIX Licensed Program Product (LPP) that consolidates AIX performance tools in a toolbox framework. Users can easily access tools for system and network performance tuning,

© Copyright IBM Corp. 2000 247

monitoring, and analysis. It consists of two major components: Performance Toolbox Manager and Performance Toolbox Agent. The Performance Toolbox Manager has three packages:

perfmgr.local This package contains the commands and utilities that

allow monitoring of only the local system.

perfmgr.network This package contains the commands and utilities that

allow monitoring of remote systems as well as the local

system.

perfmgr.common This package contains the commands and utilities that are

common between the network support and the local

support.

The Performance Toolbox Agent has one package:

perfagent.server This package contains the performance agent component

required by Performance Toolbox as well as some local

AIX analysis and control tools.

The packaging of the older levels of the Performance Toolbox contained two system-level dependant filesets named perfagent.server and perfagent.tool, causing installation misunderstandings. To reduce confusion over operating system compatibility, the pieces that are required to be built with the AIX kernel have been moved into the perfagent.tools fileset. The agent is now, mainly, an interface routine to those pieces.

Starting with AIX Version 4.3.2, the perfagent tools fileset is shipped with the base. For AIX Version 4.3.2 and above, the Performance Toolbox Agent will prerequisite perfagent tools. Therefore, the tools fileset must be installed first.

Table 23 lists the various minimum fileset levels required with a particular AIX level.

Table 23. Performance toolbox releases

AIX version	Performance Agent	Performance Manager
AIX 4.1.5	perfagent 2.1.6.0	perfmgr 2.2.1.0 perfmgr.common 2.2.1.2 perfmgr.local 2.2.1.4 perfmgr.network 2.2.1.4
AIX 4.2.1	perfagent 2.2.1.0	perfmgr 2.2.1.0 perfmgr.common 2.2.1.2 perfmgr.local 2.2.1.4 perfmgr.network 2.2.1.4

AIX version	Performance Agent	Performance Manager
AIX 4.3.1	perfagent.tools 2.2.31.0	perfmgr 2.2.1.0 perfmgr.common 2.2.1.2 perfmgr.local 2.2.1.4 perfmgr.network 2.2.1.4
AIX 4.3.2	perfagent.tools 2.2.32.0 perfagent.server 2.2.32.0	perfmgr 2.2.1.0 perfmgr.common 2.2.1.2 perfmgr.local 2.2.1.4 perfmgr.network 2.2.1.4
AIX 4.3.3	perfagent.tools 2.2.33.0 perfagent.server 2.2.33.0	perfmgr 2.2.1.0 perfmgr.common 2.2.1.2 perfmgr.local 2.2.1.4 perfmgr.network 2.2.1.4

As listed, the Performance Manager releases remain the same throughout AIX Version 4.1.5 to 4.3.3. However, you should choose the correct version of the Agent component, because it will only work properly when installed on the correct level of AIX.

To obtain the Performance Toolbox Manager or the Performance Toolbox Agent, visit the Web at http://www.rs6000.ibm.com/.

Before you install Performance Toolbox software, you have to determine the AIX and the maintenance level of your system. To determine the AIX and maintenance level of the system, enter the following command:

```
# oslevel 4.3.3.0
```

The current maintenance level of the system shown in this example is 4.3.3.0. To list the names of known maintenance levels, use the following command:

```
# oslevel -q
Known Maintenance Levels
-----
4.3.3.0
4.3.2.0
4.3.1.0
```

To determine the filesets at levels later than the current AIX maintenance level, enter:

The output from this command shows that the system is at the 4.3.3.0 level. There are two filesets at the higher level, and one of them is the perfagent.tools fileset. To check if any of the Performance Toolbox packages are installed, using the following command:

```
# lslpp -l perf*
Fileset Level State Description

Path: /usr/lib/objrepos
perfagent.html.en_US.data 2.2.1.0 COMMITTED Performance User and .

Reference Guides - U.S. English
perfagent.html.en_US.usergd

4.3.3.0 COMMITTED Performance Toolbox Guides -
U. S. English
perfagent.tools 2.2.34.0 COMMITTED Local Performance Analysis&
Control Commands
```

You can receive similar information using the smitty list_software command. The output is shown in Figure 28 on page 251.

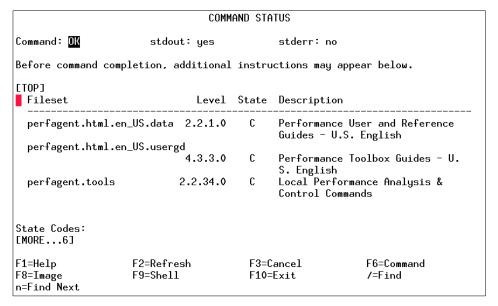


Figure 28. smitty list_software output

As shown, there is only the perfagent.tools fileset installed. If you have media containing the Performance Toolbox software, you can check what it contains. You can use either the <code>installp</code> command or <code>smitty</code>. The Web-based System Manager is an additional tool for system administration and is the strategic interface.

The output from the installp command appears as follows:

```
# installp -ld . -I
 Fileset Name
                          Level
                                                 I/U Q Content
 ______
                                          ______
 perfagent.html.en US.usergd 4.3.0.0
                                                  I Nusr
  Performance Toolbox Guides - U. S. English
 perfagent.server
                          2.2.32.0I N usr, root
  Performance Agent Daemons & Utilities
                                                  I N usr
 perfmgr.common
                          2.2.1.0
 Performance Toolbox Manager - Common Support
 perfmgr.local
                          2.2.1.0
                                                  I N usr
# Performance Toolbox Manager - Local Support
 perfmgr.network
                          2.2.0.0
                                                  I Nusr
# Performance Toolbox Manager - Network Support
```

This indicates the media contains both components: the Performance Toolbox Manager and the Performance Toolbox Agent.

The next step is to install the Performance Toolbox. The most direct way to install software is the smitty install all command, as shown in Figure 29.

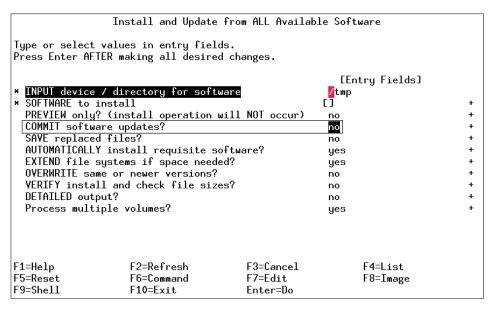


Figure 29. smitty install_all

Do not commit software until you are sure that the installation process does not impact the system. After installation, check the \$HOME/smit.log file for errors and run the <code>lppchk</code> command to verify a successful installation process. If everything is normal, you can commit your installation with the <code>installp -c</code> all command. If not, you should clean up a failed installation with <code>installp -c</code> command.

To check that you have the filesets installed for both the manager and agent part, perform the following steps:

For the agent, enter the following command:

<pre># lslpp -l perfagent.* Fileset</pre>	Level	. State	Description
Path: /usr/lib/objrepos			
perfagent.html.en_US.use	ergd		
	4.3.0.0	COMMITTED	Performance Toolbox Guides - U. S. English
perfagent.server	2.2.32.3	APPLIED	Performance Agent Daemons & Utilities
perfagent.tools	2.2.34.0	COMMITTED	Local Performance Analysis& Control Commands
Path: /etc/objrepos			
perfagent.server	2.2.30.0	COMMITTED	Performance Agent Daemons & Utilities

For the manager, enter the following command:

# lslpp -l perfmgr.* Fileset	Level State	Description
Path: /usr/lib/objrepos		
perfmgr.common	2.2.1.5 APPLIE	Performance Toolbox Manager
		Common Support
perfmgr.local	2.2.1.7 APPLIED	Performance Toolbox Manager
		Local Support
perfmgr.network	2.2.1.7 APPLIE	Performance Toolbox Manager
		Network Support

Examine what is inside the filesets that you installed. This complete the installation:

Appendix B. Installing the performance tools

B.1 Command summary

The following section provides a list of the key commands discussed in this appendix. For a complete reference of the following commands, consult the AIX product documentation.

B.1.1 The installp command

The intsallp command is a very useful and powerful software installation tool.

To install with apply only or with apply and commit:

```
installp [ -a | -ac [ -N ] ] [ -eLogFile ] [ -V Number ] [ -dDevice ] [ -b
] [ -S ] [ -B ] [ -D ] [ -I ] [ -p ] [ -Q ] [ -q ] [ -V ] [ -X ]
[-F | -g ] [ -O { [ r ] [ s ] [ u ] } ] [ -tSaveDirectory ] [ -w ] [
-zBlockSize ] { FilesetName [ Level ] ... | -f ListFile | all }
```

To commit applied updates:

```
installp -c [ -eLogFile ] [ -VNumber ] [ -b ] [ -g ] [ -p ] [ -V ] [ -X ] [ -O { [ r ] [ s ] [ u ] } ] [ -w ] { FilesetName [ Level ] ... | -f ListFile | all }
```

To reject applied updates:

```
installp -r [ -eLogFile ] [ -VNumber ] [ -b ] [ -g ] [ -v ] [ -X ]
[ -O { [ r ] [ s ] [ u ] } ] [ -w ] { FilesetName [ Level ]... |
-f ListFile }
```

To uninstall (remove) installed software:

```
installp -u [ -eLogFile ] [ -VNumber ] [ -b ] [ -g ] [ -v ] [ -X ] [ -O { [ r ] [ s ] [ u ] } ] [ -w ] { FilesetName [ Level ]... | -f ListFile }
```

To clean up a failed installation:

```
installp -C [ -b ] [ -eLogFile ]
```

To list all installable software on a selected media:

```
installp { -1 | -L } [ -eLogFile ] [ -dDevice ] [ -B ] [ -I ] [ -q ] [ -zBlockSize ] [ -O { [ s ] [ u ] } ]
```

To list all customer-reported problems fixed with software or display all supplemental information:

```
installp { -A | -i } [ -eLogFile ] [ -dDevice ] [ -B ] [ -I ] [ -q ] [ -z BlockSize ] [ -O { [ s ] [ u ] } ] { FilesetName [ Level ]... | -f ListFile | all }
```

To list installed updates that are applied but not committed:

```
installp -s [ -eLogFile ] [ -O \{ [r] [s] [u] \}  ] [ -w ] \{ FilesetName [ Level ] ... | -fListFile | all <math>\}
```

Table 24 provides a general summary of some useful installp flags.

Table 24. General installp summary

Flag	Description
-ac	Commit.
-g	Includes requisites.
-N	Overrides saving of existing files.
-q	Quiet mode.
-w	Does not place a wildcard at end of fileset name.
-X	Attempts to expand file system size if needed.
-d	Input device.
-1	List of installable filesets.
-c	Commit an applied fileset.
-C	Clean up after an failed installation.
-u	Uninstall.
-r	Reject an applied fileset.
-р	Preview of installation.
-е	Define an installation log.
-F	Forced overwrite of same or newer version.

B.1.2 The Islpp command

The lslpp command displays information about installed filesets or fileset updates. The command has the following syntax:

Table 25 provides a general summary of some useful 1slpp flags.

Table 25. Commonly used flags of the Islpp command

Flag	Description		
-a	Displays all the information about filesets specified when combined with other flags.		
-f	Displays all the information about filesets specified when combined with other flags.		
-h	Displays the installation and update history information for the specified fileset.		
-i	Displays the product information for the specified fileset.		
-L	Displays the name, most recent level, state, and description of the specified fileset. Part information (usr, root, and share) is consolidated into the same listing.		
-w	Lists fileset that owns this file.		

B.1.3 The lppchk command

The lppchk command verifies files of an installable software product. The command has the following syntax:

```
lppchk { -c | -f | -l | -v } [ -0 { [ r ] [ s ] [ u ] } ] [ ProductName [ FileList ... ] ]
```

Table 26 provides a general summary of some useful lppchk flags.

Table 26. Commonly used flags of the lppchk command

Flag	Description
-с	Performs a checksum operation on the FileList items and verifies that the checksum and the file size are consistent with the SWVPD database.
-f	Checks that the FileList items are present and the file size matches the SWVPD database.
-1	Verifies symbolic links for files as specified in the SWVPD database.
-O {[r] [s] [u]}	Verifies the specified parts of the program. The flags specify the following parts: root, share, usr.

B.2 Quiz

The following assessment questions help verify your understanding of the topics discussed in this appendix.

- 1. Which of the following commands should be used to obtain information about the level of the operating system and conformance with maintenance levels?
 - A. lslpp
 - B. uname
 - C. oslevel
 - D. rpcinfo
- 2. Which of the following commands should be used to obtain information about the installed software filesets?
 - A. lslpp
 - B. uname
 - C. oslevel
 - D. rpcinfo
- 3. Which of the following commands should be used to obtain information about the fixes available on some media?
 - A. installp -Ad . all
 - B. /usr/sbin/inutoc .
 - C. lsresource -dl rmt0
 - D. /usr/sbin/lsattr -Dl rmt0
- 4. Which of the following commands should be used to commit applied file sets?
 - A. /usr/sbin/lsattr
 - B. /usr/sbin/inutoc
 - C. /usr/sbin/installp
 - D. /usr/sbin/lsresource

- 5. An AIX Version 4.3 system must be evaluated and tuned. In order to use a set of performance tools (for example, filemon, symon, and tprof) which of the following packages should exist on the system in question?
 - A. Java.adt
 - B. bos.perf
 - C. bos.adt.utils
 - D. perfagent.tools
- 6. Which of the following packages once contained the Performance PMR Data Collection scripts was removed in AIX Version 4.3.3, although they are available for download from the perfpmr site?
 - A. bos.perf
 - B. Java.adt
 - C. bos.adt.utils
 - D. perfagent.tools
- 7. Which of the following resources will provide the latest available performance data capture tools?
 - A. The systems software depositories
 - B. The IBM support down load Web site
 - C. The standard documentation included with the system
 - D. The software distribution media included with the system
- 8. Which of the following filesets is used to install tprof?
 - A. bos.acct
 - B. bos.perf.pmr
 - C. bos.rte.control
 - D. perfagent.tools
- 9. The components xmperf, 3dmon, 3dplay are part of Performance Toolbox contained in which of the following packages?
 - A. perfmgr
 - B. perfagent.server
 - C. perfagent.tools
 - D. perfagent.client

B.2.1 Answers

The following are the preferred answers to the questions provided in this section.

- 1. C
- 2. A
- 3. A
- 4. C
- 5. D
- 6. A
- 7. B
- 8. D
- 9. A

B.3 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this appendix.

- 1. Use the lslpp command to list installed filesets.
- 2. Use the lslpp command to find out which fileset is used to package a given command.
- 3. Use the lslpp command to display state, description, and all updates of the different filesets.
- 4. Use the oslevel command to determine the filesets at levels later than the current AIX maintenance level.

Appendix C. Using the additional material

This redbook has an HTML version available as Web material. See the section below for instructions on using or downloading the material.

C.1 Locating the additional material on the Internet

The CD-ROM, diskette, or Web material associated with this redbook is also available in softcopy on the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246184

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the **Additional materials** and open the directory that corresponds with the redbook form number.

C.2 Using the Web material

The additional Web material that accompanies this redbook includes the following:

File name Description

SG246184.zip Zipped HTML source

C.2.1 System requirements for downloading the Web material

The following system configuration is recommended for downloading the additional Web material.

Hard disk space: 40 MB

Operating System: Windows or AIX with Netscape browser

Processor: Pentium 386 or PowerPC 604e

Memory: 128 MB

C.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of the Web material into this folder. Point your browser at the index.html file to launch the application. The Web content has been optimized for the Netscape browser.

© Copyright IBM Corp. 2000 261

Appendix D. Special notices

This publication is intended to help IBM Business Partners, technical professionals, and customers of IBM prepare for the AIX Performance and System Tuning exam as part of the IBM Certified Specialist program. The information in this publication is not intended as the specification of any programming interfaces that are provided by AIX Version 4.3. See the PUBLICATIONS section of the IBM Programming Announcement for AIX Version 4.3 for more information about what publications are considered to be product documentation. The use of this guide for certification is not a promise of passing the exam or obtaining the certification. It is intended to be used as a supplemental learning tool that, when used in combination with professional instructors, accelerates the learning process.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The information about non-IBM ("vendor") products in this manual has been supplied by the vendor and IBM

© Copyright IBM Corp. 2000 263

assumes no responsibility for its accuracy or completeness. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and therefore, the results that may be obtained in other operating environments may vary significantly. Users of this document should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal distribution process does not imply general availability. The purpose of including these reference numbers is to alert IBM customers to specific information relative to the implementation of the PTF when it becomes available to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

AS/400 AIX CT Current DB2 Domino IBM Lotus Lotus Notes Micro Channel Netfinity OS/390 PowerPC 601 PowerPC 604 QMF Redbooks Redbooks Logo (RS/6000 S/390 SP System/390 XΤ

The IBM Certified Specialist mark is a trademark of the International Business Machines Corporation.

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere., The Power To Manage., Anything. Anywhere., TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United States, other countries, or both. In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks

For information on ordering these publications see "How to get IBM Redbooks" on page 271.

- IBM Certification Study Guide AIX V4.3 System Administration, SG24-5129
- IBM Certification Study Guide AIX V4.3 System Support, SG24-5139
- IBM Certification Study Guide AIX Installation and System Recovery, SG24-6183 (December 2000)
- IBM Certification Study Guide AIX Problem Determination Tools and Techniques, SG24-6185 (December 2000)
- IBM Certification Study Guide AIX Communications, SG24-6186 (December 2000)
- IBM Certification Study Guide AIX HACMP, SG24-5131
- IBM Certification Study Guide RS/6000 SP, SG24-5348
- RS/6000 Performance Tools in Focus, SG24-4989
- AIX Logical Volume Manager, from A to Z: Introduction and Concepts, SG24-5432
- AIX Version 4.3 Differences Guide, SG24-2014
- AIX 5L AIX Workload Manager (WLM), SG24-5977

E.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at ibm.com/redbooks for information about all the CD-ROMs offered, updates and formats.

CD-ROM Title	Collection Kit Number
IBM System/390 Redbooks Collection	SK2T-2177
IBM Networking Collection	SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection	SK2T-8038
IBM Lotus Redbooks Collection	SK2T-8039

© Copyright IBM Corp. 2000 267

CD-ROM Title	Collection Kit Number
Tivoli Redbooks Collection	SK2T-8044
IBM AS/400 Redbooks Collection	SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection	SK2T-8046
IBM RS/6000 Redbooks Collection	SK2T-8043
IBM Application Development Redbooks Collection	SK2T-8037
IBM Enterprise Storage and Systems Management Solutions	SK3T-3694

E.3 Other resources

These publications are also relevant as further information sources:

- PCI Adapter Placement Reference, SA38-0538
- SSA Adapters: User's Guide and Maintenance Information, SA33-3272
- System Management Concepts: Operating System, SC23-4311
- You can access all of the AIX documentation through the Internet at the following URL: www.ibm.com/servers/aix/library

The following types of documentation are located on the documentation CD that ships with the AIX operating system:

- User guides
- System management guides
- Application programmer guides
- All commands reference volumes
- Files reference
- Technical reference volumes used by application programmers

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

- http://www.rs6000.ibm.com
- ibm.com/redbooks
- http://www.ibm.com/servers/aix/download
- http://www.opengroup.org/onlinepubs/9629799/toc.htm
- http://www.ibm.com/services/learning/aix/#order
- http://www.ibm.com/certify

- http://www.rs6000.ibm.com/resource/hardware_docs/
- http://www.hursley.ibm.com/~ssa/
- http://techsupport.services.ibm.com/support/rs6000.support/databases

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will be published this way. The intent is to get the information out much quicker than the formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

e-mail address
In United States or Canada pubscan@us.ibm.com

Outside North America Contact information is in the "How to Order" section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl

Telephone Orders

United States (toll free) 1-800-879-2755 Canada (toll free) 1-800-IBM-4YOU

Outside North America Country coordinator phone number is in the "How to Order"

section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl

Fax Orders

United States (toll free) 1-800-445-9269 Canada 1-403-267-4455

Outside North America Fax phone number is in the "How to Order" section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl

This information was current at the time of publication, but is continually subject to change. The latest information may be found at the Redbooks Web site.

- IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical professionals; click the Additional Materials button. Employees may access http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Redbooks fax order form Please send me the following:			
First name	Last name		
	<u> Laot namo</u>		
Company			
Address			
City	Postal code	Country	
Telephone number	Telefax number	VAT number	
☐ Invoice to customer number			
☐ Credit card number			
Credit card expiration date	Card issued to	Signature	

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.

Abbreviations and acronyms

ABI	Application Binary Interface	CD-ROM	Compact Disk-Read Only Memory
AC	Alternating Current	CE	Customer Engineer
ADSM	ADSTAR Distributed Storage Manager	CEC	Central Electronics Complex
ADSTAR	Advanced Storage and Retrieval	CHRP	Common Hardware Reference Platform
AIX	Advanced Interactive Executive	CLIO/S	Client Input/Output Sockets
ANSI	American National Standards Institute	CMOS	Complimentary Metal Oxide Semiconductor
APAR	Authorized Program Analysis Report	COLD	Computer Output to Laser Disk
ASCI	Accelerated Strategic	CPU	Central Processing Unit
ASCII	Computing Initiative American National	CRC	Cyclic Redundancy Check
Acon	Standards Code for Information	CSR	Customer Service Representative
ATM	Interchange Asynchronous Transfer	CSS	Communication Subsystems Support
	Mode	CSU	Customer Set-Up
BFF	Backup File Format	CSU	Channel Service Unit
BOS	Base Operating System	cws	Control Workstation
ВІ	Business Intelligence	DAS	Dual Attach Station
BIST BLAS	Built-In Self-Test Basic Linear Algebra	DASD	Direct Access Storage Device (Disk)
	Subprograms	DAT	Digital Audio Tape
BOS	Base Operating System	DC	Direct Current
CAE	Computer-Aided	DDC	Display Data Channel
	Engineering	DDS	Digital Data Storage
CAD	Computer-Aided Design	DE	Dual-Ended
CAM	Computer-Aided	DFS	Distributed File System
	Manufacturing	DIMM	Dual In-Line Memory
CATIA	Computer-Graphics Aided	DIP	Module Direct Insertion Probe
CD	Compact Disk	·	

DIVA	Digital Inquiry Voice Answer	FDDI	Fiber Distributed Data Interface
DLT	Digital Linear Tape	FDX	Full Duplex
DMA	Direct Memory Access	FRU	Field Replaceable Unit
DOS	Disk Operating System	FTP	File Transfer Protocol
DRAM	Dynamic Random	F/W	Fast and Wide
	Access Memory	GPFS	General Parallel File
DSU	Data Service Unit		System
DW	Data Warehouse	GUI	Graphical User Interface
EC	Engineering Change	НАСМР	High Availability Cluster
ECC	Error Checking and Correction	HACINIP	Multi Processing
EEPROM	Electrically Erasable Programmable Read	HACWS	High Availability Control Workstation
	Only Memory	HDX	Half Duplex
EIA	Electronics Industry Association	HIPPI	High Performance Parallel Interface
EISA	Extended Industry Standard Architecture	HiPS	High Performance Switch
ELA	Error Log Analysis	HiPS LC-8	Low-Cost Eight-Port
EMIF	ESCON Multiple Image Facility		High Performance Switch
EPOW	Environmental and	HP	Hewlett-Packard
ECCON	Power Warning	HPF	High Performance FORTRAN
ESCON	Enterprise Systems Connection (Architecture, IBM System/390)	HPSSDL	High Performance Supercomputer Systems Development Laboratory
ESSL	Engineering and Scientific Subroutine	HP-UX	Hewlett-Packard UNIX
ETML	Library Extract,	НТТР	Hypertext Transfer Protocol
	Transformation, Movement and Loading	Hz	Hertz
F/C	Feature Code	IA	Intel Architecture
FC-AL		ID	Identification
F(,=A/	Fibre		
FC-AL	Fibre Channel-Arbitrated Loop	IDE	Integrated Device Electronics

IEEE	Institute of Electrical and Electronics	LPP	Licensed Program Product
2 -	Engineers	LV	Logical Volume
r ² C	Inter Integrated-Circuit Communications	LVDD	Logical Volume Device Driver
1/0	Input/Output	LVM	Logical Volume
IP	Internetwork Protocol		Manager
IDI	(OSI)	MAP	Maintenance Analysis Procedure
IPL	Initial Program Load		
IrDA	Infrared Data Association (which sets	MAU	Multiple Access Unit
	standards for infrared	Mbps	Megabits Per Second
	support including protocols for data	MBps	Megabytes Per Second
	interchange)	MCA	Micro Channel Architecture
IRQ	Interrupt Request	MCAD	Mechanical
ISA	Industry Standard Architecture		Computer-Aided Design
ISB	Intermediate Switch Board	MES	Miscellaneous Equipment
ISDN	Integrated-Services		Specification
	Digital Network	MIP	Mixed-Integer Programming
ISV	Independent Software Vendor	MLR1	Multi-Channel Linear
	International Technical	MMF	Recording 1 Multi-Mode Fibre
IDOD	Support Organization	MP	
JBOD	Just a Bunch of Disks	MP	Multi Durage
JFS ITAO	Journaled File System	MPC-3	Multi-Purpose
JTAG	Joint Test Action Group		Multimedia PC-3
L1	Level 1	MPI	Message Passing Interface
L2	Level 2	MPP	Massively Parallel
LAN	Local Area Network		Processing
LANE	Local Area Network Emulation	MPS	Mathematical Programming System
LAPI	Low-Level Application Programming Interface	MTU	Maximum Transmission Unit
LED	Light Emitting Diode	MVS	Multiple Virtual Storage
LFT	Low Function Terminal	-	(IBM System 370 and
LP	Linear Programming		390)

MX	Mezzanine Bus	POSIX	Portable Operating Interface for Computing
NCP	Network Control Point		Environments
NFS	Network File System	POST	Power-On Self-test
NIM	Network Installation Manager	POWER	Performance Optimization with
NT-1	Network Terminator-1		Enhanced RISC
NTP	Network Time Protocol		(Architecture)
NUMA	Non-Uniform Memory Access	PPP PREP	Point-to-Point Protocol PowerPC Reference
NVRAM	Non-Volatile Random Access Memory	PSSP	Platform Parallel System
ocs	Online Customer		Support Program
	Support	PTF	Program Temporary Fix
ODM OLAP	Object Data Manager Online Analytical	PTPE	Performance Toolbox Parallel Extensions
	Processing	PTX	Performance Toolbox
OS/390	Operating System/390	PV	Physical Volume
OSL	Optimization Subroutine Library	PVC	Permanent Virtual Circuit
OSLp	Parallel Optimization Subroutine Library	QMF	Query Management Facility
P2SC	Power2 Super Chip	QP	Quadratic
PAP	Privileged Access Password	RAM	Programming Random Access
PBLAS	Parallel Basic Linear		Memory
	Algebra Subprograms	RAN	Remote Asynchronous
PCI	Peripheral Component Interconnect	RAS	Node Reliability, Availability,
PDU	Power Distribution Unit		and Serviceability
PE	Parallel Environment	RAID	Redundant Array of Independent Disks
PEDB	Parallel Environment Debugging	RDBMS	Relational Database Management System
PID	Program Identification	RIPL	Remote Initial Program
PIOFS	Parallel Input Output File System	<u>-</u>	Load
POE	Parallel Operating Environment	ROLTP	Relative Online Transaction Processing
POP	Power-On Password	RPA	RS/6000 Platform Architecture

RVSD	Recoverable Virtual Shared Disk	SPEC	Standard Performance Evaluation Corp.
RTC	Real-Time Clock	SPOT	Shared Product Object
SAN	Storage Area Network		Tree
SAS	Single Attach Station	SPS	SP Switch
SAR	Solutions Assurance	SPS-8	Eight-Port SP Switch
	Review	SRC	System Resource Controller
ScaLAPACK	Scalable Linear Algebra Package	SSC	System Support
sco	Santa Cruz Operations		Controller
SCSI	Small Computer System Interface	SSA	Serial Storage Architecture
SDR	System Data	STP	Shielded Twisted Pair
SDRAM	Repository Synchronous Dynamic	SUP	Software Update Protocol
ODTIANI	Random Access	svc	Switch Virtual Circuit
	Memory	Tcl	Tool Command
SDLC	Synchronous Data Link Control		Language
SE	Single-Ended	TCP/IP	Transmission Control Protocol/Internet
SEPBU	Scalable Electrical		Protocol
	Power Base Unit	TCQ	Tagged Command Queuing
SGI	Silicon Graphics Incorporated	TPC	Transaction Processing
SLIP	Serial Line Internet	UDB EEE	Council
SLR1	Protocol Single-Channel Linear	UDB EEE	Universal Database and Enterprise
OLITI	Recording 1		Extended Edition
SMIT	System Management	UP	Uniprocessor
	Interface Tool	USB	Universal Serial Bus
SMS	System Management Services	UTP	Unshielded Twisted Pair
SMP	Symmetric Multiprocessing	UUCP	UNIX-to-UNIX Communication
SOI	Silicon-on-Insulator	VECA	Protocol Video Floatronico
SP	Scalable POWERParallel	VESA	Video Electronics Standards Association
SP	Service Processor	VG	Volume Group

VM Virtual Machine (IBM

System 370 and 390)

VMM Virtual Memory

Manager

VPD Vital Product DataVSD Virtual Shared Disk

VSM Visual Systems

Management

VSS Versatile Storage

Server

VT Visualization Tool
 WAN Wide Area Network
 WTE Web Traffic Express
 XTF Extended Distance

Feature

Index

IIIucx	
	commands 153
Symbols	/etc/netsvc.conf 165
/etc/hosts 165	/etc/resolv.conf 165
/etc/netsvc.conf 165	at 203
/etc/rc.nfs 167	batch 203
	chdev 152, 153, 164
/etc/resolv.conf 165	chnfs 166, 168
prof.all 74	defragfs 138
	emstat 100
A	entstat 152
adapter	filemon 41, 125, 141
SCSI bottleneck 114	fileplace 41, 135, 142
allocation	host 165
logical volume 123	ifconfig 152, 153, 164
allocation policy	
intra disk 120	installp 252, 253
	iostat 40, 108, 201
application performance 135	iptrace 161
at 203	lockstat 115
attributes	Isattr 152, 164
logical volume 118	Isdev 221
availability	Islpp 100, 250, 253
logical volume manager 120	Islv 41, 118, 142
	lsps 34, 112, 221
В	migratepv 214
bad block policy 119	netpmon 159
base value 182	netstat 43, 97, 152, 156
batch 203	nfso 153
	nfsstat 44
BB policy 119 bigfile file system 135	nice 26, 189
	no 150, 157
bos.perf fileset 247	nslookup 165
bosboot 115	oslevel 249
bottleneck	ping 156
SCSI adapter 114	ps 25, 34, 68, 181, 202, 216
	renice 26, 189, 191
C	
center disk allocation 120	reorgvg 211 rmss 35
chdev 152, 153, 164	sa1 59
chnfs 166, 168	
collecting	sa2 59
disk I/O history 110	sadc 59
collecting data	sar 23, 47, 51, 97
sar command 47	schedtune 26, 186
symon 77	symon 34, 77, 80, 83, 85, 88, 90, 217
commads	tcpdump 153, 161
	time 24, 201
netpmon 45	tokstat 152
nice 191	topas 97

command output 98 tprof 26, 73	distribution column in Islv -I 123 DPSA 32
traceroute 156	
trostop 159	-
vmstat 25, 33, 60, 97, 101, 155, 202, 215	E
vmtune 35, 39, 66, 194, 221	early alloaction algorithm 32
wlm 198	emstat 100
computational memory 31	emulation routines 100
copies	entstat 152
logical volume 119	
CPU	F
bound problem 112	figures
iostat utilization report 111	128 run queues 181
statistics with iostat 111	code, data.private and shared segments 29
CPU bound 21	CPU penalty 188
process and thread table 23	Disk, LVM and file system levels 107
process state figure 22	global run queue 180
processes 22	JFS file system organization 135
threads 22	lvdd 36
CPU penalty 182	LVM figure 37
CPU testcase 201	LVM intra disk positions 121
at 203	memory registers 30
batch 203	muliple run queues 184
iostat 201	network parameters 43
ps 202	performance tuning flowchart 21
recent CPU usage 203	process state 22
rescheduling 203	VMM segments 27
time 201	file memory 31
vmstat 202	file system
crontab 203	bigfile file system 135
	de-fragmentation 138
n	fileplace command 135
D DEFAULT_NICE 182	fragmentation size 134
deferred page space allocation 32	i-node 134
defragfs command 138	journaled file system - JFS 134
de-fragmentation of file system 138	logical fragment 137
detailed file stats report in filemon 129	organization 134
disk	performance 134
I/O statistics with iostat 108	recommendations 140
I/O wait 155	filemon 41
iostat utilization report 113	command 125, 141
unbalanced load 112	detailed file stats report 129
disk bound 35	disk access 133
logical volume device driver 35	frequently accessed files 133
logical volume manager 35	logical file system 125
lvdd figure 36	logical volume monitoring 126
disk bound problem 112	monitoring scenario 211
disk bound problems 133	most active files report 129
aiot boaria probiotito 100	physical volume monitoring 126

report	instalip 252, 253
logical file level 127	inter disk policy 121
logical volume level report 130	for logical volume 119
physical volume level 131	maximum 121
virtual memory level 132	minimum 121
report analysis 127	intra disk
virtual memory system monitoring 126	allocation 120
fileplace 41	policy
fileplace command 135, 142	center 120
files	inner edge 120
/etc/hosts 165	inner middle 120
/etc/rc.nfs 167	outer edge 120
/usr/include/sys/lockname.h 117	outer middle 120
prof.all 74	policy for logical volume 119
filesets	iostat 40, 97, 201
bos.perf 247	enhancement to 4.3.3 40
fragmentation	iostat command 108
fileplace command 136	historical disk I/O 110
logical volume fragmentation scenario 210	SMP behaviour 113
fragmentation of logical volume 122	IP 150
fragmentation size 134	data flow 151
fragmented files 136	input queue 154, 159
free list 30	ipqmaxlen 154, 159
frequent periodic load balancing 186	iptrace 153, 161
	ipirace 155, 161
frequently accessed files 133	
	J
G	JFS 37
global run queue 179	bigfile file system 135
	file system organization 134
Н	fileplace command 135
	fragmentation 37
hash anchor table 31	fragmentation size 134
high-water mark 39	i-node 134
historical disk I/O 110	
host 165	performance tools 107
_	K
	
I/O bottlenecks	kernel locks
scenarios 207	display with lockstat 115
I/O pacing 39	
. •	1
idle load balancing 185	L
ifconfig 152, 153, 164	late allocation algorithm 31
in band column in Islv -l 122	limitations
infrequent periodic load balancing 186	striping 139
initial load balancing 185	load balancing 185
inner edge disk allocation 120	frequent periodic load balancing 186
inner middle disk allocation 120	idle load balancing 185
i-node 134	infrequent periodic load balancing 186

initial load balancing 185		LVDD 35
lock		LVM 35
display of lock contention with lockstat lock contention	115	dependecies figure 37 fragmentation 37
display with lockstat 115		high-water mark 39
lockstat command 115		I/O pacing 39
logical fragment 137		JFS 37
logical partition 36		
logical volume 36		logical partition 36 logical volume 36
allocation 123		low-water mark 39
allocation scenario 212		
attributes 118		maxpgahead 38
		minpgahead 38
bad block policy 119		physical partition 36
copies 119		physical volume 36
distribution 123		sequential-access read ahead 38
fragmentation 122		volume group 36 write-behind 39
fragmentation scenario 210		write-bening 39
highest performance 125		
inter disk policy 119, 121		M
intra disk policy 119		maximum transfer unit (MTU) 149
mirror write consistency 119	100	maxpgahead 38
organization for highest performance	136	mbufs 153, 158
relocateable 119		memory bound 27
scheduling policy 119		virtual memory 27
stripe size 122		migratepv command 214
stripe width 122		minpgahead 38
striping 122, 139		mirror write consistency 119
upper bound 119		Mirroring 120
write policy		monitoring
parallel 120		filemon command 125
sequential 120		logical volume 125
write verify 119 logical volume device dirver 35		scenario with filemon 211
•		most active files report 129
logical volume manager availability 120		MTU 164
		multiple run queues 184
monitoring 125 performance		multiprocessor
•		behaviour of iostat 113
analysis with Islv 118 tools 107		
logical volume manger 35		N
low-water mark 39		name resolution
lsattr 152, 164		performance 165
Isdev command 221		netpmon 45, 159
Islpp 100, 250, 253		netstat 43, 97, 152, 156
Islv 41		network
Islv command 118, 142		I/O wait 155
lsps 34		tuning tools 163
lsps -a command 112		network bound 42
lsps command 221		parameter figure 43

NFS 160	file system 134
client performance 168	file system recommendations 140
file system 168	highest logical volume performance 125
mount options 168	identify resources 20
server performance 165	identify workload 19
tuning 165	load monitoring 247
nfs_socketsize 167	logical volume manager
nfs_tcp_socketsize 167	analysis with Islv 118
nfso 153	lvdd 36
nfsstat 44	LVM and JFS performance tools 107
NICE 182	LVM dependencies figure 37
nice 26, 182, 189, 191	memory bound 27
changing value on running thread 191	memory register figure 30
flag table 192	minimize requirements 20
running program with nice 190	network bound 42
no 150, 157	network parameter figure 43
nslookup 165	process and thread table 23
NSORDER 165	process state figure 22
	processes 22
0	resource table 20
organization	threads 22
file system 134	tuning flowchart picture 21
oslevel 249	VMM segment figure 27
outer edge disk allocation 120	VMM segment picture 29
outer middle disk allocation 120	vmstat table 33
overhead	performance capacity planning 247
of performing tools 140	Performance PMR Data Collection 247
	performance tools 247
D	fileset
P	perfagent.server 248
packet	perfagent.tool 248
dropped 153, 159	perfagent.tools 250
page fault 30	perfmgr.common 248
page frame table 30	perfmgr.local 248
page stealing 30 paging performance problem 215	perfmgr.network 248
investigation 221	installing 247 overview 247
recommendations 224	Performance Toolbox 247
paging space	releases 248
disk performance 140	Performance Toolbox Agent 248
parallel write policy 120	Performance Toolbox Agent 248, 252
performace	physical partition 36
filemon 125	physical volume 36
performance	filemon report 131
analysis and control 247	unbalanced load 112
controlling resource allocation 21	physical volume utilization 114
CPU bound 21	ping 156
define and prioritizie 20	
e en e production de la	priority 182
disk bound 35	priority 182 priority calculation 4.3.2 179

priority calculation 4.3.3 182 problems disk bound 133 processes 22 processor 601 PowerPC 100 604 PowerPC 100 POWER 100 instructions 100 PowerPC 100	flag table 192 reorgvg command 211 report iostat 109 CPU utilization 111 disk utilization 113 TTY utilization 111 rescheduling 203 resent CPU usage 203 rfc1323 154
prof	rmss 35
total collumn 74	rx_que_size 150
protocol	
statistics 157	S
protocols	sa1 command 59
IP 150	sa2 command 59
TCP 149	sadc command 59
tuning 153	sar 23, 97
UDP 149	/usr/lib/sa/sa1 23
ps 25, 34, 68, 181, 202 %CPU column 70	usr/lib/sa/sa2 23
%MEM column 72	sar command 47, 51
C column 69	flags 52
PGIN column 73	saturated SCSI adapter 115
RSS column 72	sb_max 154
SIZE column 71	scenarios
TIME column 70	filemon monitoring 211
TRS column 73	I/O bottlenecks 207
TSIZ column 73	iostat 209
ps command 216	logical volume allocation 212
PSALLOC 31	logical volume fragmentation 210
Deferred Page Space Allocation 32	SCHED_D 182, 186
early allocation algorithm 32	SCHED_FIFO 178
late allocation algorithm 31	SCHED_FIFO2 178 SCHED_FIFO3 178
	SCHED_OTHER 178
Q	SCHED_R 182, 186
queue	SCHED_RR 178
receive 151	schedtune 26, 186
size 152	commands
transmit 151	schedtune 189
	example 1 187
R	example 2 187
	example 3 187
receive queue 150	flag table
recent CPU usage 181 registers 29	tables
relocatable	schedtune flags 189
attribute for logical volume 119	SCHED_D 186
renice 26, 189, 191	SCHED_R 186

SCHED_R and SCHED_D guidelines	188	buffer 165
scheduler		buffer overflows 167
128 run queue figure 181		receive buffer 150, 154
base value 182		send buffe 154
CPU penalty 182		send buffer 149
CPU penalty figure 188		statistics
DEFAULT_NICE 182		CPU 159
global run queue 179		queues 97
global run queue figure 180		utilization 98
load balancing 185		disk I/O 108
multiple run queue figure 184		file 97
multiple run queues 184		Internet socket calls 160
NICE 182		mbufs 158
nice value 182		memory 98
priority 182		network device-driver I/O 159
priority calculation 4.3.2 179		network interfaces 98
priority calculation 4.3.3 182		paging 98
recent CPU usage 181		physical disks 99
SCHED_D 182, 186		terminal I/O 108
SCHED_FIFO 178		statisticsprotocols 157
SCHED_FIFO 178		statistics
SCHED_FIFO3 178		Ethernet 152
_		steal threshold 185
SCHED_OTHER 178		
SCHED_R 182, 186	100	steal_max 185 stripe size logical volume attribute 122
SCHED_R and SCHED_D guidelines	100	
SCHED_RR 178		stripe width logical volume attribute 122
schedtune example 1 187		striping 122
schedtune example 2 187		limitations 139
schedtune example 3 187		logical volume striping 139
steal threshold 185		recommendations 139
steal_max 185		symon 34
waitproc 185		symon command 77, 80, 83, 85, 88, 90, 217
xnice 183		command report 90
scheduling policy for logial volume 119		output description 92
SCSI		syntax 90
adapter bottleneck 114		detailed segment report 88
segment registers 29		output description 89
sequential write policy 120		syntax 88
sequential-access read ahead 38		flags 94
slowest average seek 121		global report 77
SMIT fast path		output description 79
smit chgsys 110		syntax 77
smitty		process report 83
install_all 252		output description 85
list_software 250		syntax 83
SMP		report types 77
iostat behaviour 113		segment report 85
socket		output description 86
active 157		syntax 85

user report 80	using tprof on a program 76
output description 82	traceroute 156
syntax 80	traceroute command 156
workload class report 92	translation lookaside buffer 30
output description 94	transmit queue 150
syntax 92	trostop 159
system	TTY
typical AIX system behaviour 133	devices 111
	iostat utilization report 111
T	tx_que_size 150, 153
tables	
hardware and logical resources 20	U
nice flags 192	UDP 149, 165
processes and threads 23	data flow 151
renice flags 192	udp_recvspace 154
VMM related output from vmstat 33	udp_sendspace 149, 154
TCP 149, 165	unbalanced disk load 112
data flow 151	upper bound attribute for logical volume 119
tcp_recvspace 154	utilization
tcp_sendspace 149, 154	CPU with iostat 111
tcpdump 153, 161	disk with iostat 113
telnet	TTY with iostat 111
session 161	
terminal	V
I/O statistics with iostat 108	virtual memory
I/O wait 155	client segment 28
testcase	code segment 28
CPU 201	computational memory 31
thewall 154, 158, 164	data segment 28
threads 22	file memory 31
R state 22	filemon report 132
ready to run 22	free list 30
S state 23	HAT 31
sleeping 23	high-water mark 39
state 22	I/O pacing 39
suspended 23	low-water mark 39
T state 23	maxpgahead 38
throughput	memory register figure 30
SCSI adapters 115	minpgahead 38
time 24, 201	page fault 30
tokstat 152	page stealing 30
tools	persistent segment 27
LVM and JFS performance tools 107	private segment 28
topas 97	PSALLOC 31
command output 98	PTF 30
tprof 26, 73	segment figure 27
FREQ collumn 75	segment picture 29
general report 74	segment registers 29
	5 5 -

```
segments 27
   sequential-access read ahead 38
   shared segment 28
   TLB 30
   vmstat table 33
   working segment 28
   write-behind 39
Virtual Memory Manager (VMM) 194
virtual memory monitoring
   filemon command 125
vmstat 25, 33, 97, 101, 155, 202
vmstat command 60, 215
   cpu column description 223
   faults column description 223
   kthr column description 221
   memory column description 222
   output description 61
   output interpretation 67
   page column description 222
   sum structure 63
vmtune 35, 39
vmtune command 66, 194, 221
   flags 195
   syntax 193
volume group 36
W
waitproc 185
wirte-behind 39
wlm command 198
workload
   identify 19
Workload Manager 198
write policy
   parallel 120
   sequential 120
write verify for logical volume 119
```

xnice 183

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook "made the difference" in a task or problem you encountered. Using one of the following methods, please review the Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

- Use the online Contact us review redbook form found at ibm.com/redbooks
- Fax this form to: USA International Access Code + 1 845 432 8264
- Send your comments in an Internet note to redbook@us.ibm.com

Document Number Redbook Title	SG24-6184-00 IBM Certification Study Guide AIX Performance and System Tuning		
Review			
What other subjects would you like to see IBM Redbooks			
address?			
Please rate your overall satisfaction:	O Very Good O Good O Average O Poor		
Please identify yourself as belonging to one of the following groups:	O Customer O Business Partner O Solution Developer O IBM, Lotus or Tivoli Employee O None of the above		
Your email address:			
The data you provide here may be used to provide you with information from IBM or our business partners about our products, services or activities.	O Please do not use the information collected here for future marketing or promotional contacts or other communications beyond the scope of this transaction.		
Questions about IBM's privacy policy?	The following link explains how we protect your personal information. <pre>ibm.com/privacy/yourprivacy/</pre>		

IBM Certification Study Guide AIX Performance and System Tuning

IBM Certification Study Guide AIX Performance and System Tuning

Developed specifically for the purpose of preparing for AIX certification

Makes an excellent companion to classroom education

For experienced AIX professionals

The AIX and RS/6000 Certifications, offered through the Professional Certification Program from IBM, are designed to validate the skills required of technical professionals who work in the powerful, and often complex, environments of the AIX operating system and RS/6000 and pSeries servers. A complete set of professional certifications are available. They include:

IBM Certified AIX User

IBM Certified Specialist - AIX System Administration

IBM Certified Specialist - AIX System Support

IBM Certified Specialist - AIX HACMP

IBM Certified Specialist - Business Intelligence for RS/6000

IBM Certified Specialist - Domino for RS/6000

IBM Certified Specialist - RS/6000 Solution Sales

IBM Certified Specialist - RS/6000 SP and PSSP V3

IBM Certified Specialist - RS/6000 SP

RS/6000 SP - Sales Qualification

IBM Certified Specialist - Web Server for RS/6000

IBM Certified Advanced Technical Expert - RS/6000 AIX

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX Performance and System Tuning certification exam as a selected course of study in order to achieve: IBM Certified Advanced Technical Expert - RS/6000 AIX.

INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION

BUILDING TECHNICAL INFORMATION BASED ON PRACTICAL EXPERIENCE

IBM Redbooks are developed by IBM's International Technical Support Organization. Experts from IBM, Customers and Partners from around the world create timely technical information based on realistic scenarios. Specific recommendations are provided to help you implement IT solutions more effectively in your environment.

For more information: ibm.com/redbooks

SG24-6184-00

ISBN 0738418323