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Preface

Modern spectroscopic techniques such as laser-induced fluorescence, resonance-enhanced
multiphoton ionization (REMPI), cavity ringdown, and ZEKE are important tools in the
physical and chemical sciences. These, and other techniques in electronic and photoelec-
tron spectroscopy, can provide extraordinarily detailed information on the properties of
molecules in the gas phase and see widespread use in laboratories across the world. Applica-
tions extend beyond spectroscopy into important areas such as chemical dynamics, kinetics,
and analysis of complicated chemical systems such as plasmas and the Earth’s atmosphere.
This book aims to provide the reader with a firm grounding in the basic principles and
experimental techniques employed in modern electronic and photoelectron spectroscopy.
It is aimed particularly at advanced undergraduate and graduate level students studying
courses in spectroscopy. However, we hope it will also be more broadly useful for the many
graduate students in physical chemistry, theoretical chemistry, and chemical physics who
encounter electronic and/or photoelectron spectroscopy at some point during their research
and who wish to find out more.

There are already many books available describing the principles, experimental tech-
niques, and applications of spectroscopy. However, our aim has been to produce a book that
tackles the subject in a rather different way from predecessors. Students at the advanced
undergraduate and early graduate levels should be in a position to develop their knowledge
and understanding of spectroscopy through contact with the research literature. This has the
benefit of introducing the students to the cutting edge of modern spectroscopic work and
can provide insight into the thought processes involved in spectral assignment and interpre-
tation. However, the spectroscopic research literature can initially prove daunting even to
the most committed and able of students because of the range of prior knowledge assumed,
the brevity of explanations, and the extensive use of jargon.

We felt that there would be benefit in taking a number of focussed, and mostly mod-
ern, research studies and presenting them in a form that is palatable for the newcomer to
advanced spectroscopy. We have called these mini-chapters Case Studies and they form
the heart of this book. In essence we have taken original research findings, often di-
rectly from research papers, and describe selected aspects of them in a way which not
only shows the original data and conclusions, but also tries to guide the reader step-
by-step through the assignment and interpretation process. In other words, we have in
many cases tried to put the reader in the shoes of the research team that first recorded
the spectrum or spectra, and then tried to show them how the spectrum was assigned.

X1



Xii

Preface

Jargon cannot be avoided entirely — indeed it is an essential part of the language of modern
spectroscopy — but we have attempted to define any specialized jargon that does arise as we
encounter it.

Of course some basic background knowledge is essential before encountering more ad-
vanced concepts, and so the first two parts describe some of the principles and experimental
techniques employed in modern electronic and photoelectron spectroscopy. These two parts
are not intended to be exhaustive, but rather contain the basic tools necessary for delving
into the Case Studies. Some of the more advanced concepts met in spectroscopy, such as
vibronic coupling, nuclear spin statistics, and Hund’s coupling cases, are met only in certain
specific Case Studies and can be entirely avoided by the reader if desired.

As much as possible, we have tried to make the majority of the Case Studies independent.
This means that the reader can dip into only those that interest him/her. At the same time, this
approach inevitably leads to some repetition of material but we consider this an acceptable
price to pay for producing a book in this style.

We view the Case Studies as a useful bridge between traditional teaching and fully
independent learning through the research level literature. We do not in any way claim to
have covered all of the important topics in modern electronic spectroscopy, nor have we
attempted to treat any particular topic in great depth. However, we believe that most of
the material in electronic spectroscopy encountered in advanced undergraduate and early
graduate level spectroscopy courses is covered within this book. Furthermore, we hope
that the focus on research material will give the reader a flavour of the kind of work that
currently takes place in the spectroscopic community and will encourage him/her to explore
new avenues. Whether we have been successful or not is purely for the reader to judge.

Finally, the authors would like to take this opportunity to thank Cambridge University
Press for showing great patience on the numerous occasions when the finishing date for the
manuscript was postponed!
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1.1

Introduction

The basics

It is convenient to view electrons in atoms and molecules as being in orbitals. This idea is
ingrained in chemistry and physics students early on in their studies and it is a powerful
concept that provides explanations for a wide variety of phenomena. It is important to stress
from the very beginning that the concept of an orbital in any atom or molecule possessing
more than one electron is an approximation. In other words, orbitals do not actually exist,
although electrons in atoms and molecules often behave to a good approximation as if they
were in orbitals.

An orbital describes the spatial distribution of a particular electron. For example, we
expect that an electron in a ls orbital in an atom will, on average, be much closer to
the nucleus than an electron in a 2s orbital in the same atom. Qualitatively, we would picture
the electron as being represented by a charge cloud with a much greater density near the
nucleus for the Ls orbital than the 2s orbital. Similarly, we know that the electron in a 2p.
orbital does not have a spherically symmetric distribution, as does an s electron, but instead
is distributed in a cylindrically symmetric fashion about the z axis with the charge cloud
consisting of lobes pointing along both the +z and —z directions.

Within the constraints of the orbital approximation, electronic spectroscopy is the study
of transitions of electrons from one orbital to another, induced by the emission or absorption
of a quantum of electromagnetic radiation, i.e. a photon. Each orbital in an atom or molecule
has a specific energy, E,, and to induce a transition between these orbitals the photon must
satisfy the resonance condition

h
Es — E =hv=76 (1.1)

where v and A are the frequency and wavelength of the radiation, respectively, and 7% is
the Planck constant (see Appendix A). Under normal circumstances, only one electron is
involved in the promotion or demotion process, and therefore we say that we are dealing with
one-electron transitions. Thus all other electrons remain in their original orbitals, although
their energies may have changed as a result of the electronic transition.

In electronic emission spectroscopy, an electron drops to an orbital of lower energy with
the concomitant emission of a photon. Owing to the quantization of orbital energies, only
photons of certain discrete wavelengths are produced and an emission spectrum can therefore
be obtained by measuring the emitted radiation intensity as a function of wavelength. In
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absorption, the reverse process operates and an absorption spectrum can be obtained by
measuring the change in intensity of radiation, such as that produced by a continuum lamp,
as a function of wavelength after passing it through a sample.

Photoelectron spectroscopy is essentially a special case of electronic absorption spec-
troscopy' in which the electron is given enough energy to take it beyond any of the bound
orbitals: in other words, the electron is able to escape the binding forces of the atom or
molecule and is said to have exceeded the ionization limit. The minimum energy required
to do this is the ionization energy for an electron in that particular orbital. Photoionization
differs from an absorption transition involving two bound orbitals in that there is more than
one photon energy which can bring it about. In fact any photon with an energy high enough
to promote an electron above the ionization limit can, in principle, bring about photoion-
ization. Notice that this does not defy the resonance condition: the resonance condition
equivalent to the requirement that energy be conserved and is still satisfied because the
electron is able to take away any excess energy in the form of electron kinetic energy.

Since there are no discrete absorption wavelengths (only discrete absorption onsets),
photoelectron spectroscopy is carried out in a very different manner from conventional
electronic absorption spectroscopy. As the name implies, it is electron energies rather than
photon energies which are measured. For an atom, part of the energy (4v) provided by
the incoming photon is used to ionize the atom. The remainder is partitioned between the
atomic cation and the electron kinetic energy and so, from the conservation of energy,

hv = IE; + Tion + Tt (1.2)

where /E; is the ionization energy of an electron in orbital i and 7}, and 7, are the cation and
electron kinetic energies, respectively. Given that an electron is very much lighter than an
atomic nucleus, conservation of momentum dictates that the ion recoil velocity will be very
low and most of the kinetic energy will be taken away by the electron. As a result, Tj,, can
usually be neglected and a spectrum can therefore be obtained by fixing #v and measuring
the electron current as a function of electron kinetic energy. This is the basic idea of the
traditional photoelectron spectroscopy experiment. In the case of atoms, peaks will appear
at various electron energies in the spectrum corresponding to ionization of electrons from
the various occupied orbitals. A peak at a given 7, can be converted to an orbital ionization
energy using equation (1.2) provided the ionizing photon frequency v is known.
Photoelectron spectroscopy is a good example of the tremendous changes that have taken
place in spectroscopic techniques over the past two or three decades. Although conventional
photoelectron spectroscopy as outlined above is still important and widely used, a relatively
new method of electron spectroscopy, zero electron kinetic energy (ZEKE) spectroscopy, is
now capable of extracting the same type of information but at much higher resolution. ZEKE
spectroscopy is one of those techniques that has benefited from the introduction of the laser
as a spectroscopic light source. There are many other laser-based spectroscopic techniques,
some relatively simple and some which are very complicated. Most of the spectroscopic

To minimize verbosity the term electronic spectroscopy will often be used to encompass both ‘normal’ electronic
spectroscopy and photoelectron spectroscopy.
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data presented in this book have been obtained using laser spectroscopy of one form or
another, which should indicate its importance in the study of molecules in the gas phase.

However, it is not the aim of this book to describe the wide variety of methods that are
available for electronic spectroscopy, although some experimental details are given in Part [1.
Rather the focus is primarily on the spectra themselves and in particular how they can be
interpreted and what they reveal. The underlying principles needed to do this are common
to a variety of different spectroscopic techniques, and in this part we develop the basic
theoretical background.

Information obtained from electronic and photoelectron spectra

Before addressing some of the theoretical principles, we want to convince the reader that
electronic spectroscopy is worthwhile doing. In particular, what information can be extracted
from an electronic or photoelectron spectrum? This will be addressed in some detail when
specific examples are met in Part III, but let us outline at this early stage some of the
extraordinary range of information that can be deduced.

First and most obviously, information is obtained on orbital energies. In particular, the
spectroscopic transition energy can be equated with the difference in energy between the
two orbitals involved in an electronic transition (assuming that the orbital energies are
unchanged as a result of the electron changing orbitals, which is only approximately true).
Photoelectron spectroscopy is even more informative in this regard, since in the upper state
the electron has no binding energy and can therefore be regarded as being in an orbital
with zero potential energy. Consequently, ionization energies are a direct measure of orbital
energies in the neutral atom or molecule, and can therefore be used to construct a molecular
orbital diagram.

However, electronic spectroscopy is able to provide much more than just a measure of
absolute orbital energies or orbital energy differences. Very often, particularly for molecules
in the gas phase, vibrational and rotational structure can be resolved. Vibrational structure
leads directly to vibrational frequencies. As will be seen later, not all vibrations need be
active in electronic spectra. Excitation of some vibrations may be forbidden because of
their symmetries. This may seem unfortunate, but in fact the absence of certain vibrational
features can also have the benefit of providing qualitative, and sometimes even quantitative,
information on the structure of the molecule, as will be shown later.

Rotational structure tends to be difficult to resolve in electronic spectra, except for small
molecules, but when it is obtained it can be highly informative. Accurate equilibrium struc-
tures in both upper and lower states may be extracted from a rotational analysis. In addition,
the exact details of the rotational structure are not only dependent on molecular structure, but
also on the symmetries of the electronic states involved. Consequently, rotationally resolved
spectra provide a reliable means of establishing electronic state symmetries. When spectra
are of exceptionally high resolution there is even more information that can be extracted,
although such ultra-high resolution spectra will not be considered in any detail in this
book.
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Finally, one should note that some of the laser-based methods of electronic spectroscopy
are extremely sensitive, and are therefore able to detect very small quantities of a particular
sample. This has many different uses, particularly in analytical chemistry. Furthermore, it
is possible to detect and characterize molecules that are extremely unstable or reactive and
therefore inevitably have a fleeting presence and/or very low concentrations. Species in this
category would include free radicals and molecular ions, and we will show a number of
examples in Part I11.



2 Electronic structure

2.1

2.1.1

Orbitals: quantum mechanical background

In this and the subsequent chapter the reasoning behind the concept of orbitals in atoms and
molecules is outlined. An appreciation of what an orbital is, and what its limitations are, is
vital for an understanding of electronic spectroscopy. Some may find this section frustrating
in that little justification is given for many of the statements made. However, the theoretical
treatment of electronic structure is a complicated subject and is for the most part beyond
the scope of this book, although some effort is made to summarize some of the technical
issues in Appendix B. For a detailed account, including proof of the statements made
below, the reader should consult some of the more advanced texts listed at the end of this
chapter.

Wave-particle duality and the Schrédinger equation

An orbital defines the spatial distribution of an electron within an atom or molecule. It arises
from the application of quantum mechanical ideas to atomic and molecular structure. Central
to the wave mechanical view of quantum mechanics is the identification of a wavefunction,
Y, of a system, which is a solution of the Schrodinger equation

Hy = Ey (2.1)

This simple-looking and very famous equation is deceptive, for it is more complicated than
it first appears. H, the so-called Hamiltonian, is actually a mathematical operator composed
of, among other things, second-order differential operators such as d*/dx2. On its own it
is therefore an abstract mathematical quantity. The detailed form of the Hamiltonian appro-
priate for describing the electronic structure of atoms and molecules is given in Section
2.1.3. The Hamiltonian is an energy operator which, when it operates on the wavefunction
on the left-hand side of equation (2.1), generates an energy, £, multiplied by the wave-
function on the right-hand side. The energy is said to be an observable, i.e. it is a physical
property that can, in principle, be measured.

The Schrodinger equation provides the means for describing physical behaviour at the
atomic and molecular level. Underlying this description is the implication that all matter
possesses wave-like properties, and that this becomes particularly significant when dealing
with sub-atomic particles, such as electrons, protons, and neutrons, and collections of these
particles in atoms and molecules. The possession of both wave and particle properties is

7
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known as wave—particle duality. The wave characteristics are represented mathematically by
the wavefunction, 1/, and it is important to have some feel for what it is that the wavefunction
describes. Although oversimplified, it is useful to view the wavefunction as describing the
amplitude of a matter wave, such as that associated with an electron, throughout space.
If we persist in trying to think of the electron as a particle, then the alternative wave
description clearly muddies any effort to specify the precise location of the electron at any
instant in time. Instead, we can only specify the probability that the electron will be found
at a particular place at a particular instant in time in an experimental measurement. This
probabilistic interpretation was made quantitative by Born, who associated the square of
the wavefunction, v/, evaluated at some point in space, with the probability of the particle
being at that point in space at any instant in time.' Since v is a continuous function and the
particle must be located somewhere in space, we insist that

/ yrdy =1 (2.2)

where, although no integration limits have been shown, the implication is that integration is
over all accessible space (¥ is the volume). This is known as the normalization condition.

The Born-Oppenheimer approximation

The Schrdédinger equation for molecules is complicated, since it must describe not only the
motion of a collection of electrons, but also nuclear motion as well. However, there is an
important simplification that can be made, which follows from the large mass difference
between electrons and nuclei. Given that the mass of a proton is 1836 times larger than
that of an electron, electrons in a molecule will generally move at far greater speeds than
the nuclei. When the nuclei make small changes in their relative positions, such as during
a molecular vibration, the electron cloud almost instantaneously adjusts to the new set
of nuclear positions. This means that the electrons are almost completely unaffected by
the speed with which the nuclei move. This statement is one version of a very important
approximation known as the Born—Oppenheimer approximation.

The utility of the Born—Oppenheimer approximation is that it makes it possible to separate
the total energy of a molecule into two terms, namely,

Eiotal = Eelec + Enkin (23)

where E.. is the energy consisting of the potential energy due to all electrostatic interactions
(see next section) plus the electron kinetic energies, and Ey, is the kinetic energy due to
nuclear motions (vibrations and rotations). Since the electronic structure is affected by the
nuclear coordinates but not their rate of change, E i, can be ignored for the time being.

Solution of the Schrddinger equation can yield complex wavefunctions in some instances, i.e. ¥ may have both
real and imaginary parts. Since we only attach a physical interpretation to the square of the wavefunction, rather
than the wavefunction itself, this causes no practical problems. It is simply necessary to ensure that the square of
the wavefunction is a real quantity, and so for complex wavefunctions ¥*v must be used in place of y2, where
¥* is the complex conjugate of 1.
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The Schrédinger equation for many-electron atoms and molecules

If the Born—Oppenheimer approximation is invoked, the Hamiltonian in the Schrodinger
equation (2.1), for a molecule with fixed nuclear positions has the general form

h? 1 /9 92 92 Z 4
H=-——S" (2 42 42 )_§y_24°
2 —~m (3xi2 Tt 822) Z 4megRig

y; i i
@2 ZAZBE2
+ + R — 2.4
lZ ; dmeor;; ; 1;1 dmeoR 4B

In the above expression we make use of the general relationship from classical electrostatics
that the electrostatic potential energy between two particles with charges g; and g; separated
by distance r is given by g,q;/4meor, where g is the permittivity of free space. In this
specific case Z4 is used to designate the charge on nucleus 4 and e is the fundamental
charge (an electron has charge —e). The quantity /% is shorthand notation for //27.

Although it looks formidable, equation (2.4) has a simple interpretation. Four groups of
operators can be identified inside the summations in (2.4). The first group is the total electron
kinetic energy operator, which is the sum of kinetic energy operators for each electron. The
second summation represents the electron—nuclear electrostatic interactions, where R;4 is
the electron—nuclear distance, with the subscripts i and A4 labelling electrons and nuclei
respectively. The third term, the first of the double summations, is the operator for electron—
electron repulsion, while the fourth is for nuclear—nuclear repulsion. The Hamiltonian is
therefore logical in the sense that it is a total energy operator constructed from the summation
of kinetic energy operators for each individual electron and the operators describing all
electron—nuclear, electron—electron, and nuclear—nuclear electrostatic interactions in the
molecule. This is also illustrated in Figure 2.1 for a two-electron diatomic molecule. Had
we not invoked the Born—Oppenheimer approximation, the molecular Schrodinger equation
would also have to have included terms containing nuclear kinetic energy operators, which
would clearly be an added complication.

Despite the simplification brought about by the Born—Oppenheimer approximation, the
Schrodinger equation containing the Hamiltonian in (2.4) still cannot be solved exactly for
any molecule containing more than one electron. The problem lies with the third term in the
Hamiltonian, the electron—electron repulsions. If one were to imagine creating a molecule
containing several electrons but these electrons interacted only with the nuclei, i.e. there
were no electron—electron repulsions (clearly an imaginary situation!), then equation (2.4)
would be rather easy to solve. In this limit the electronic wavefunction is a product of
wavefunctions for each individual electron, i.e.

v =¢1(1)$2(2) ... pn(N) (2.5)

where N is the number of electrons and ¢;(i) is the wavefunction of electron i. The product
form of the wavefunction makes it possible to separate the full Schrédinger equation into a
series of individual and independent Schrodinger equations, one for each electron, each of
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Figure 2.1 A schematic illustration of the electrostatic potential energies in a two-electron diatomic
molecule at some particular instant in time.

which can then be solved exactly after some mathematical effort.” Each of the wavefunctions
for the individual electrons describes the spatial probability distribution of that electron:
in other words ¢; is a function of the coordinates only of electron 1 and ¢7 at any point
in space describes the probability that the electron is at that point in space. The individual
wavefunctions ¢; are referred to as orbitals.

The orbital approximation

Electron—electron repulsion destroys the orbital picture given above. This arises because
each electron—electron repulsion operator is a function of the coordinates of two electrons,
and therefore the position of one electron affects all of the others. Consequently, the true
electronic wavefunction in a molecule (or atom) containing two or more electrons is not a
product of independent one-electron wavefunctions (orbitals).

This would seem to be unfortunate, since the ability to be able to describe electrons
as being in separate orbitals offers a great simplification in the description of electronic
structure. Fortunately, all is not lost since it is possible to retain the orbital concept if
the following approach is adopted. We know that, strictly speaking, the total electronic
wavefunction cannot be expressed exactly as a product of orbital wavefunctions. However,
suppose that we in any case choose to express the total wavefunction as such an orbital
product. This constraint allows the many-electron Schrodinger equation to be converted

This process, known as separation of variables, is used in solving many quantum mechanical problems. For
example, it is employed for relatively simple problems such as the quantum mechanics of a single particle in a
two- or three-dimensional box, and at a more sophisticated level is used to obtain solutions of the Schrodinger
equation for the hydrogen atom. Examples of its use can be found in textbooks on quantum mechanics, such as
References [1] and [2].
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into a new set of equations, known as the Hartree—Fock equations, which allow orbitals and
their energies to be calculated. The way in which this is done is outlined in Appendix B.

The Hartree—Fock method allows for most of the electron—electron repulsion, but it
treats it in an averaged fashion, i.e. it effectively takes each electron in turn and calculates
the repulsive energy for this electron interacting with the time-averaged charge cloud of
all the other electrons. In reality, the instantaneous electron—electron interactions tend to
keep electrons further apart than is the case in the Hartree—Fock model. This inadequate
treatment of electron correlation is the weakness of the Hartree—Fock method, and it is the
price paid for clinging on to the concept of orbitals. Nevertheless, it can be used to make
rather good calculations of atomic and molecular properties from first principles. Further
details on these so-called ab initio calculations can be found in Appendix B.
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3 Angular momentum

In spectroscopy

The quantization of angular momentum is a recurring theme throughout spectroscopy.
According to quantum mechanics only certain specific angular momenta are allowed for a
rotating body. This applies to electrons orbiting nuclei (orbital angular momentum), elec-
trons or nuclei ‘spinning’ about their own axes (spin angular momentum), and to molecules
undergoing end-over-end rotation (rotational angular momentum). Furthermore, one type
of angular momentum may influence another, i.e. the angular motions may couple together
through electrical or magnetic interactions. In some cases this coupling may be very weak,
while in others it may be very strong.

This chapter is restricted to consideration of a single body undergoing angular motion,
such as an electron orbiting an atomic nucleus; the case of two coupled angular momenta
is covered in Appendix C. In classical mechanics, the orbital angular momentum is repre-
sented by a vector, /, pointing in a direction perpendicular to the plane of orbital motion
and located at the centre-of-mass. This is illustrated in Figure 3.1. If a cartesian coordinate
system of any arbitrary orientation and with the origin at the centre-of-mass is super-
imposed on this picture, then the angular momentum can be resolved into independent
components along the three axes (I, /,, I.). If the z axis is now chosen such that it co-
incides with the vector /, then clearly both /; and /, are zero and /. becomes the same as
1. If only I, is non-zero, then the rotation is solely in the xy plane, that is rotation is about
the z axis. The larger the angular momentum is, the larger will be the magnitude of the
vector / (or [,).

In classical mechanics an orbiting or rotating body may have any angular momentum (and
therefore any angular kinetic energy). However, quantum mechanics imposes restrictions.
In particular, the following are found:

(1) The magnitude of the angular momentum can only take on certain specific values, i.e.
it is quantized. The allowed values are %.//(/ + 1) where [ is an angular momentum
quantum number having the possible values 0, 1,2,3,4,...,and 7 = h/2m.

(ii) The angular momentum is also quantized along one particular axis, and the component
of the angular momentum along this axis has the magnitude m;4 where m; may have
any one of the possible values , [ — 1,/ —2, ..., =+ 2, =+ 1, —L
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Figure 3.1 Vector representation of orbital angular momentum. Mathematically, the orbital angular
momentum is given by the vector product / = r x p, where r is the position vector of the electron
relative to the centre-of-mass and p is the instantaneous linear momentum. Notice that the angular
momentum vector is perpendicular to the plane containing » and p, although the actual orbital motion
is in that plane.

Figure 3.2 Space quantization of angular momentum for / = 1. All three possible angular momentum
vectors have the same magnitude (+/2 %) and precess about the z axis. However, they have different
(constant) projections (m;) on this axis. From simple trigonometry the angle 6 is given by cos 6 =

my/+/I(l + 1), which is 45° for / = 1.
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These two points are illustrated in Figure 3.2. One finds that the angular momentum vec-
tor precesses' about the axis of quantization such that the projected value of the angular
momentum along this axis, m; i, remains constant. This is known as space quantization. In
the absence of external electric or magnetic fields, all of the possible values of m; for a given
[ correspond to the same kinetic energy, i.e. they are (2/ 4 1)-fold degenerate. Furthermore,
although there is nominally an axis of quantization, in a free atom there is no way of know-
ing in which direction it lies! In other words, the concept is somewhat academic, and only
becomes of practical consequence when an external perturbation specifically defines the
axis of space quantization. For example, if an electric field of sufficient strength is applied
in the laboratory, the field direction defines the axis of space quantization, and the angular
momentum vector will then precess around this axis.

As will be seen in a later chapter, the above comments also apply to the quantization
of molecular rotations, except for the fact that a different symbol, usually J, is employed
to designate the angular momentum quantum number. For electron or nuclear spin angular
momenta, the only twist in the tale is that half-integer values of the spin quantum number are
also possible. For the particular case of an electron, the spin quantum number is given the
symbol s, where s = %, and therefore the possible values of the corresponding projection
quantum number, given the symbol my, are + %

This idea of a precessing angular momentum vector may have been encountered elsewhere by readers, notably
in the description of the principles of magnetic resonance spectroscopy. Magnetic resonance is concerned with
spin angular momentum, either nuclear spin or electron spin. The earlier description of spin as arising from the
spinning of these charged particles about their own axis is not strictly correct. Nevertheless, it is a useful picture
to retain since it helps in envisaging the properties of the spin angular momentum vector. The precession that
this will undergo is entirely analogous to the orbital case, and in both cases it is often referred to as the Larmor
precession.
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4.1

The partitioning of electrons into molecular orbitals (MOs) provides a useful, albeit not
exact, model of the electronic structure in a molecule. The MO picture makes it possible
to understand what happens to the individual electrons in a molecule. Taking the electronic
structure as a whole, a molecule has a certain set of quantized electronic states available.
Electronic spectroscopy is the study of transitions between these electronic states induced
by the absorption or emission of radiation. Within the MO model an electronic transition
involves an electron moving from one MO to another, but the concept of quantized electronic
states applies even if the MO model breaks down.

Different electronic states are distinguished by labelling schemes which, at first sight,
can seem rather mysterious. However, understanding such labels is not a difficult task once
a few examples have been encountered. We begin by considering the more familiar case of
atoms, before moving on to molecules.

Atoms

If we accept the orbital approximation, then the starting point for establishing the electronic
state of an atom is the distribution of the electrons amongst the orbitals. In other words the
electronic configuration must be determined. Individual atomic orbitals are given quantum
numbers to distinguish one from another, leading to labels such as 1s, 3p, 4f, and so on. The
number in each of these labels specifies the principal quantum number, which can run from
1 to infinity. The principal quantum number, 7, defines the number of radial nodes in an
orbital, of which there are n — 1. As the number of radial nodes increases, the orbital energy
increases. The second label, the letter, specifies the orbital angular momentum quantum
number, /, of an electron in the orbital. For / = 0, 1, 2, . . . the corresponding orbital
symbols are s, p, d, . . . Most readers will be very familiar with this already and will also
be aware of the fact that we can use three further labels for electrons in atoms, all of which
were mentioned in the previous chapter, namely the orbital angular momentum projection
quantum number m;, the spin quantum number s(= %), and the spin projection quantum
number m; (= :I:%). Not all of these labels are necessarily meaningful in all circumstances,
as will be seen shortly, but if it is assumed for the moment that they are, then each electron
has a unique set of values of n, [, my, s, and my, and these quantum numbers are said to be
good quantum numbers.

15
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The 2/ + 1 possible values of m; for a given value of / represent different orbitals of the
same energy but with different orientations. It is this idea that gives rise to the concept of
directional orbitals such as p, or d,..

So far we have been considering quantum numbers associated with a single electron.
However, an electronic state of a many-electron atom is the result of the contributions of all
the electrons within it and therefore the composite system must be considered to generate
a suitable label. The key factor in this process is consideration of the way in which the
electronic orbital and spin angular momenta of individual electrons couple in a composite
system. The theory of angular momentum necessary to do this is very well-established and
is briefly covered in Appendix C. Here we concentrate on the results and, in particular,
those points that will also be relevant when dealing with molecules. The model that we will
employ, known as the Russell-Saunders approximation, tends to be a good one except for
atoms of large atomic number (so-called heavy atoms).

The essence is as follows. As an electron orbits a nucleus, the rotating electric field
it generates will interact with the rotating electric field generated by another electron. In
other words, there will be a tendency for these electrons to precess in sympathy about
a common axis and they will generate a total orbital angular momentum vector L. We
would like to know the total orbital angular momentum quantum number, L, which results
from the coupling of the two individual vectors /; and /. The rules for this coupling
dictate that for two electrons occupying orbitals with respective angular momentum quantum
numbers/; and /,, then L can have any one of the values/y + 5, I + L, — 1, 1 + 1, — 2, ...,
Il = b

Likewise, the electron spins can couple together in a manner entirely analogous to the
orbital angular momentum case. Here, the interaction is not electrostatic, as in the orbital
angular momentum case, but instead is magnetic, since spin is a magnetic effect. Since
s = %, the total spin quantum number S can only be 1 (= s; + s2) or 0 (= 51 — s) for the
two-electron case. This coupling procedure is explained in terms of a simple vector model
in Appendix C.

The final part of the Russell-Saunders approximation is to assume that the interactions
between the orbital and spin angular momenta will be relatively weak compared to the
orbital-orbital and spin—spin interactions. This does not mean that orbital—spin interactions,
referred to as spin—orbit coupling, can be ignored, as we will see in several examples later on.
However, it does require that they are modest in magnitude, otherwise the Russell-Saunders
approximation will fail.

We now have a recipe for determining the possible values of L and S given knowledge
of the electronic configuration of an atom, since the comments made above can be readily
extended to three or more electrons. At first sight it might seem a formidable task to calculate
all of the allowed values of L and S for an atom with many electrons. However, there is
an important simplification that greatly reduces the amount of work. This arises when sub-
shells are completely full, such as ns?, np®, or nd'°. In full sub-shells the individual electron
orbital and spin angular momenta completely cancel each other out yielding a zero net
contribution to the total orbital angular momentum and spin angular momentum of the
atom. The angular momenta of electrons in filled sub-shells can therefore be ignored in
determining the overall electronic state.
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Turning to the process of labelling an electronic state, in the Russell-Saunders scheme a
particular state is designated as 25! L where L and S have already been defined. The quantity
25 + 1 isreferred to as the spin multiplicity, since it specifies the degeneracy of the spin part
of the electronic state. The subscript J refers to the total electronic (orbital + spin) angular
momentum quantum number. This is important when dealing with atoms where both L and
S are non-zero. In such circumstances the orbital and spin angular momenta may couple
together. This spin—orbit coupling produces spin—orbit states, each with a different value
of J, which have different energies. The possible values of Jare L + S, L+ S—1,...,
|L — S|," andin electronic spectra these give rise to spin—orbit splittings of bands. It increases
in magnitude as the atomic number increases, and therefore, while it may be modest for
light atoms, it can become very large for heavy atoms.”

To bring this section to a close we consider an example, neon. A neon atom has the
electronic configuration 1s?25%2p°. All of the sub-shells are full and so both L and S (and
therefore J) are zero. Thus the electronic state arising from this configuration would be
labelled 'Sy in the Russell-Saunders scheme. Note that L = 0 but instead of using the
numerical value of L the letters S, P, D and F are used to label states with L =0, 1, 2 and
3 by direct analogy with the angular momentum labels used for individual atomic orbitals.
Since there is only one possible value of J for the ground state of neon, it is common to omit
this from the electronic state label. There are many other configurations of neon which will
give rise to other (higher energy) 'Sy states, e.g. 15°2p®3s2. Thus the 25*!L; label will not
uniquely specify a particular electronic state in an atom. There is no additional quantum
number that we can use to distinguish between states with the same Russell-Saunders label,
and consequently it is useful to specify the configuration from which a particular state arises
in order to distinguish it from another having the same Russell-Saunders label.

Now suppose that an electron is removed from the 2p sub-shell of neon; it is clear that
L must change by one unit (since / = 1 for a p orbital) and therefore L = 1 in the resulting
cation. Similarly, now S = % J can now have more than one value, specifically % or % Thus
two states arise which have similar but different energies, a >P, 2 anda 2P /2 state, with the
latter happening to have the lower energy (the 2Py, —>P3,, splitting is 782 cm™!). These
two spin—orbit states can be viewed as arising from antiparallel or parallel orientations of
the total orbital and spin angular momenta.

Molecules

The classification of electronic states of molecules builds on the methodology employed for
atoms. To appreciate this, one should note that the labels S, P, D, etc., for the total orbital

Note the similarity to the rules used for determining L and S from the orbital and spin angular momenta of the
individual electrons. This similarity is not accidental.

The Russell-Saunders coupling model is a poor approximation when spin—orbit coupling is large, as is often
the case for heavy atoms. In such circumstances, L and S are not good quantum numbers because the spin—orbit
coupling mixes the orbital and spin angular momenta in such a manner that they can no longer be independently
specified. In this event, alternative coupling schemes, such as jj-coupling, are an improvement. For further details
see Appendix C and/or References [1-3].
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angular momentum in an atom are actually symmetry labels for the electronic orbital angular
momentum wavefunctions. It is assumed that readers are already familiar with the idea of
symmetry through studies of point group symmetry in molecules, and that they have a
working knowledge of the use of character tables. If this is not the case then a summary
of key points can be found in Appendix D, along with a listing of the more commonly
used character tables. The label used to indicate the symmetry of some molecular property,
such as an orbital or a vibration, is given by a particular irreducible representation in
the character table of the appropriate point group. The ability to be able to identify the
symmetry of a particular property in a molecule is of great importance in spectroscopy.
For example, from knowledge of the symmetries of the initial and final states in a potential
spectroscopic transition, group theoretical arguments can quickly be used to determine
whether that transition is allowed or forbidden without having to do any lengthy calculations.
This will be employed on many occasions in this book.

The concept that the orbital angular momentum labels for electronic states in atoms might
also be symmetry labels may seem strange, since atoms do not have any interesting point
group symmetry. Nevertheless they are indeed symmetry labels arising from the so-called
full three-dimensional rotation group; more specificially they are irreducible representations
of'this group (which in fact has an infinite number of irreducible representations). The three-
dimensional rotation group is applicable to systems where unimpeded rotation in three
dimensions is possible, and this is clearly the case for the orbital motion of an electron (or
collection of electrons) around a single atomic nucleus. We will not dwell on the atomic case,
but instead will focus on molecules. Electrons in molecules have more restricted motion due
to the presence of more than one nucleus, and it is point group irreducible representations
that specify symmetries.

To see this, we first consider a simple example, molecular hydrogen, in some detail, and
then move on to consider the electronic structure of a more complicated molecule.

Low-lying molecular orbitals of H,

In the simplest molecular orbital picture the ground (lowest) electronic state of H; is formed
by bringing together two H 1s orbitals. If the two atomic orbitals have the same phase then
a bonding MO results, whereas opposite phases give rise to an antibonding MO. These
possibilities are indicated pictorially in Figure 4.1.

Our concern is with the overall electronic state. To identify this, the symmetries of the
occupied MOs must first be established. For H, this is a straightforward task. Initially, the
point group of the molecule must be determined, which for H, is Doop. Next we consult
the Doop character table, which is shown in Table 4.1, and determine how the sole occupied
MO is affected by the symmetry operations of the D, point group.

The symmetry operations of the point group, which are defined in Appendix D, are
shown along the top row of the character table. The table looks formidable, but in fact its
interpretation is for the most part straightforward. None of the symmetry operations have
any distinguishable effect on the lowest energy bonding MO of H,, as may be seen by
referring to Figure 4.1 and applying each of the symmetry operations in turn. Consequently,
this MO transforms as the totally symmetric irreducible representation, which is always
the uppermost one in the character table. It is conventional to use lower case symbols for
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Table 4.1 Character table for D, point group

Doy | E 2CY ... 000y 28% oo 000Gy

s 1 1 1 1 1 | x2 432, 22
z; 1 1 -1 1 1 oo =1 R,

I, 2 2cos¢p 0 2 —2cos¢p ... O (Re, R)) | (xz,y2)

A, 2 2c0s2¢ 0 2 2cos2¢ ... O (x? =y, xy)
sl IO TS DR

hoh 1 1 oo =1 -1 -1 o1

I, 2 2cos¢ .0 —2  2cos¢ ... 0 (x, y)

Ay 2 2cos2¢ ... O —2  —2co0s2¢ 0

0+

O O — & o
®®—’®® o

=+
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Figure 4.1 Formation of o and 7 bonding and antibonding MOs by overlap of s and p AOs, respec-
tively, in a homonuclear diatomic molecule. The + and — signs refer to the phases of the orbitals
or orbital lobes. Other orbital combinations are possible but not shown, e.g. o orbitals formed by
combination of an s orbital on one atom with a po or do orbital on the other.

labelling the symmetries of MOs, and so the lowest MO in H; is designated as 0g+ . In other
words, we would say that this MO has ‘7g+ symmetry.

The antibonding MO is different, however, owing to the change in orbital phase across
the nodal plane. Rotation of the molecule about the internuclear axis or reflection in a
plane passing through the internuclear axis has no distinguishable effect on the MO, i.e.
the characters for both the C fo and o, operations are unity. However, the effect of the Sfo
and C, operations is to change the sign of the orbital wavefunction, since the positive and
negative lobes exchange places. Consequently, the characters for these operations are —1.
Armed with these facts, inspection of the D, character table reveals that the antibonding
MO has o symmetry.
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Higher energy molecular orbitals of H,

The 6g+ and o} molecular orbitals mentioned above are not the only orbitals of H, possessing
these symmetries. Overlap of higher energy s atomic orbitals will also generate both ag+
and o molecular orbitals. Clearly symmetry alone is not a unique label for a molecular
orbital, in the same way that the s, p, d, and f orbital angular momentum labels are not
sufficient to label specific atomic orbitals. A numbering scheme is therefore added, akin
to the principal quantum numbering of atomic orbitals, to specify a particular MO. The
numbering for orbitals of a particular symmetry is 1, 2, 3, . . ., the 1 specifying that it is the
lowest energy orbital of this particular symmetry, 2 indicates it is the second lowest energy
orbital of this symmetry, and so on. Thus the two molecular orbitals arising primarily from
overlap of 1s orbitals in H, are designated 1o, and lo,", while the corresponding orbitals
arising primarily from 2s overlap are designated 20" and 20,

The focus so far has been on o molecular orbitals in H,, but other symmetries are possible.
For example overlap of 2p, or 2p, atomic orbitals can form either 7, or 7, MOs depending
on their relative phases, as shown in the bottom half of Figure 4.1. These molecular orbitals
are clearly doubly degenerate, since a rotation of 90° about the internuclear axis produces
equivalent but distinct orbitals. A character of 2 for the identity operation (£) in the Dy
character table confirms the double degeneracy.

The orbital degeneracy has an important consequence in that it makes it possible for an
electron in a molecule to have orbital angular momentum. In a v orbital, unlike a o orbital,
it is possible for an electron to undergo unimpeded rotation about the internuclear axis (but
not about an axis perpendicular to the internuclear axis). As in atoms, the orbital motion
in a diatomic molecule must give rise to quantized angular momentum. The orbital angular
momentum vector precesses about the internuclear axis, as illustrated in Figure 4.2. The
overall angular momentum is poorly defined in a molecule and cannot be specified by a
meaningful (good) quantum number. The only good quantum number is the orbital angular
momentum quantum number A, which specifies the magnitude of the angular momentum
along the internuclear axis (see Figure 4.2). The possible values of 1 are 0, 1, 2, etc. These
quantum numbers are linked to the molecular symmetry and one finds, for example, that
the o, 7, 8, and ¢ irreducible representations listed in the D, character table correspond
to molecular orbitals with A = 0, 1, 2, and 3, respectively.

Electronic states of H,

We now have sufficient information to establish the electronic states of H,. There are two
main steps in this task, determining (i) the spatial symmetry and (ii) the net spin.

For H,, the lowest energy electronic configuration is (lo'gf)z, that is both electrons are in
the most strongly bonding MO. To determine the symmetry of the electronic state arising

It is not only s atomic orbitals that can contribute to & MOs. For example p, orbitals, where z lies along the
internuclear axis, have o symmetries and, depending on their relative phases, can therefore contribute to both o
bonding and antibonding MOs. This is an example of a more general situation, namely that every MO should be
regarded as an admixture of various AOs of the correct symmetry. However, it is often the case that one type of
AO makes a dominant contribution.
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Figure 4.2 Diagram showing the orbital angular momentum vector, /, for an electron in a diatomic
molecule. This vector precesses about the internuclear axis maintaining a constant projection A. The
orbital angular momentum quantum number, /, will be poorly defined in such circumstances and is
not used, but A would be a useful (good) quantum number.

from this configuration, group theory is employed. According to the orbital approximation,
the total electronic wavefunction is a product of the orbital wavefunctions of each indi-
vidual electron. It must therefore be possible to obtain the spatial symmetry of the overall
electronic wavefunction by multiplying the irreducible representations for the individual
electrons. In general this gives a reducible representation that can be reduced by standard
group theoretical methods. This is rarely necessary, however, since most books containing
character tables also include so-called direct product tables that do virtually all of the work
for us. Selected direct product tables are provided in Appendix D. The direct product table
for the Do, point group gives

+ + _ _+
o ®O'g =0,

where ® is used instead of x to indicate that this is not multiplication in the normal sense of
multiplying numbers (see Appendix D for more details). The spatial symmetry of the elec-
tronic state is therefore X . Notice that upper case Greek characters are used when referring
to an electronic state, while lower case characters are used for MOs. To complete the task, the
spin multiplicity, 25 + 1, is required. Since the two electrons are paired in the 1o’ orbital,
S = 0 and therefore the electronic state is written as ! £, where the spin multiplicity appears
as a pre-superscript (cf. Russell-Saunders notation for atoms given earlier).

Now consider some possible excited states of H,. For example, the excited electronic
configuration (1o§)'(1o7)! can give rise to two excited states with the same spatial sym-
metry but different spin multiplicities. The spatial symmetry can be obtained from the
direct product 0§ ® o = o, while both singlet and triplet spin multiplicities are now
possible since the two electrons are in different orbitals. Thus both ! ©{ and 3 X7 states can
arise.

As a final example for H,, consider the states that would arise out of the excited config-
uration (log+ )!(17,)!. Once again, both singlet and triplet spin multiplicities are possible
and the direct product of spatial symmetries 0§ ® 7, = 7y; hence the two possible states
are 'T1, and *T1,. Note, however, that this is not quite the end of the story, since spin—orbit
coupling is possible in the 31, state. In the same way that an electron in a 7 MO has
an orbital angular momentum about the internuclear axis corresponding to A = 1, so a
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Figure 4.3 Valence MO diagram for the NH, free radical in its ground electronic state. The doubly
occupied 1a; MO is essentially a N 1s atomic orbital and is not shown. A pictorial indication of the
AO contributions to each MO is given to the right of the figure.

molecule in a IT electronic state has a net electronic orbital angular momentum quantum
number (A) of the same magnitude. This orbital motion of the electron generates a magnetic
field that can also couple the spin angular momentum to the internuclear axis. When this
spin—orbit coupling occurs, and it will only occur for states that are not singlets and for
A # 0, the projection of the spin angular momentum, given the symbol ¥ (not to be con-
fused with the ¥ used to label electronic states with A = 0), is also a good quantum number.
In general the possible values of ¥ are

x=585-1,8-2,...,=§

For the *T1, state, the possible values of ¥ are 0, +1. The combined effect of the cou-
pling of A and ¥ is denoted by the quantum number 2 (= |A + X|). The allowed values
of  are therefore 2, 1 or 0 and, just as was seen earlier for atoms, the resulting spin—
orbit states will have different energies. To label a specific spin—orbit component the value
of Q is added to the state label as a subscript. Consequently, the *TT, state will there-
fore split into the spin—orbit states 3Hu(2), 3Hu(1), and 3Hu(0), where the value of 2 is
given in parentheses. In practice the spin—orbit splitting is very small for H,, as would be
expected given the comments made in Section 4.1, but for molecules containing much heav-
ier atoms the spin—orbit splitting can be quite large (ranging from tens to even thousands
of em™1).
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The amidogen free radical, NH;

This molecule is a non-linear molecule with Cs, point group symmetry. We must therefore
use irreducible representations from the C,, character table to describe the symmetries of
the molecular orbitals. A molecular orbital diagram for NH; is shown in Figure 4.3. This
can be arrived at using qualitative bonding arguments and is confirmed by sophisticated ab
initio calculations (see Appendix B) and by experiment. The orbital occupancy shown in
Figure 4.3 corresponds to the electronic configuration

(1a1)*(2a1 )’ (162)*3ar)*(1b1)!

At first sight it may look like a complicated task to ascertain the spatial symmetry of the
electronic state(s) arising from the above configuration, since there are many electrons
to deal with. However, a quick inspection of the direct product table for the C,, point
group reveals that filled orbitals always contribute a totally symmetric spatial symmetry,
i.e. they have a; symmetry regardless of whether the orbital itself is totally symmetric or
not (this is analogous to the atomic case, where all filled sub-shells make no contribution
to the net angular momentum of an atom). Filled orbitals also make no contribution to
the spin multiplicity, since the spins of the paired electrons cancel each other out. These
conclusions apply to all point groups, and greatly simplify the process of determining the
spatial symmetries of electronic states in molecules. The only orbital in NH; that therefore
needs to be considered in order to determine the overall electronic state spatial symmetry
is the 1b; orbital, which contains a single unpaired electron. Since this electron is in an
orbital with b, symmetry, we can quickly conclude that there is only one state arising from
the above configuration, a 2B, state.

Consider what would happen if NH, was now ionized by removing an electron, say, from
the 15, orbital. There would now be two half-filled orbitals, and we need to consider both
of these (but only these two) when determing the spin multiplicity and spatial symmetry.
Since S = 0 or 1, the spin multiplicity is either 1 or 3, giving a singlet or triplet state. The
spatial symmetry is obtained by determining the direct product b; ® b, (the order of the
multiplication is immaterial), which gives a,. There are therefore two possible electronic
states, 34, and ' 4,, with different energies.
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Molecular vibrations

So far molecules have been treated as if they contained nuclei fixed in space. However,
molecules can of course move through space (translation), they can rotate, and internuclear
distances can be altered by vibrations. Translational motion is uninteresting from the point
of view of spectroscopy since it is essentially unquantized motion. Vibrations and rotations
are, however, very important to spectroscopists and so each will be considered in some
detail, beginning with molecular vibrations.

Diatomic molecules

The classical harmonic oscillator

There is an internuclear separation in a diatomic molecule for which the sum of the elec-
trostatic potential energies and the electron kinetic energies, the quantity labelled Eje in
Section 2.1.2, is a minimum. This internuclear separation corresponds to the equilibrium
bond length. If the internuclear separation is now altered from the equilibrium position,
whether by stretching or compressing the bond, there will now be an opposing force, known
as a restoring force, trying to pull the system back to equilibrium. The obvious analogy
here is with a spring.

Experiment has shown that the restoring force, F, for a spring is directly proportional to
the displacement, x, from equilibrium (x = 0), providing the displacement is small. In other
words,

F = —kx 5.1)

where the constant of proportionality, &, is known as the force constant. The force constant
is a measure of the stiffness of the spring to distortion, with much greater energy being
required to distort a spring a certain distance when k& is large compared with when £ is
small. The minus sign in equation (5.1) arises because the restoring force acts in a direction
opposite to that of the displacement. Equation (5.1) is a statement of Hooke’s law, and any
oscillating system satisfying Hooke’s law is said to be a harmonic oscillator.

The potential energy, V, stored in a distorted spring can be readily calculated by making
use of the following well-known relationship from classical mechanics:

dv
dx

F= (5.2)
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Figure 5.1 Plot showing the parabolic potential energy curve of a diatomic simple harmonic oscillator.
Superimposed on the curve are the first few energy levels expected for a quantized harmonic oscillator,
each being labelled by a unique value of the vibrational quantum number v. Also shown (dashed lines)
are the corresponding vibrational wavefunctions.

Substituting for F in equation (5.1) using the expression in (5.2) followed by integration
gives

V= Lk (53)

If it is assumed that a diatomic molecule is also subject to Hooke’s law, then the potential
energy due to distortion will be given by equation (5.3) where x = r — re, r is the inter-
nuclear separation, and . is the equilibrium bond length. A plot of V' versus r is shown in
Figure 5.1. The potential energy curve is parabolic, being symmetrical about equilibrium
(where r = r.). If one imagines the bond being stretched to a certain displacement and
then released, the stored potential energy is progressively converted to kinetic energy as
the bond shortens until at 7. all of the energy is kinetic. The system then passes through
the equilibrium position and gradually converts the kinetic energy back to potential energy
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as the bond is compressed. Once the kinetic energy has all been converted into potential
energy, the molecule is at its inner turning point and then reverses its motion by progressively
stretching the bond again. The total amount of energy in this vibrational motion, potential +
kinetic, is constant and is referred to as the vibrational energy.

The quantum mechanical harmonic oscillator: vibrational energy levels

The above discussion is a classical view of vibrational motion. In the classical world a vibrat-
ing diatomic molecule may have any vibrational energy. However, once quantum mechanics
is taken into account this is no longer the case. To determine the quantum mechanical
energies in the harmonic oscillator limit, the potential energy expression in (5.3) is substi-
tuted into the Schrodinger equation to obtain the following:

2 2
(_h—md— + 1ka> v =Ey (54)

Equation (5.4) is only valid when one of the atoms is essentially of infinite mass, in which
case it is only the lighter atom, of mass m, which moves in a vibration. In reality no atom
is infinitely heavy and therefore to describe vibrational motion about the centre-of-mass,’'
m is replaced in (5.4) with the reduced mass . where

mgmp
w=—— (5.5
my+mp
and m, and mp are the masses of the two atoms. Equation (5.4) can be solved, although it
is a rather involved process; we focus here solely on the results.
It is found, not surprisingly, that the energy is now quantized. The allowed vibrational

energies are given by the expression
E, = ho(v + 1) (5.6)

where w, is the harmonic vibrational frequency (in Hz),” and v is the vibrational quantum
number, which can have the values 0, 1, 2, 3, . . . The vibrational frequency depends on
both the bond force constant and the reduced mass in the following fashion:

1 |k

We

Equation (5.6) shows that the quantized harmonic oscillator consists of a series of equally
spaced energy levels, the separation between adjacent levels being sw.. This is illustrated
in Figure 5.1. According to equation (5.7), w. will increase as the bond force constant

By specifying atomic displacements relative to the centre-of-mass, no overall translational energy of the molecule
is included in a calculation of the vibrational energy. In a centre-of-mass system, if the two atoms have different
masses, a displacement x involves the lighter atom moving further than the heavier atom (which moves in the
opposite direction) such that the centre-of-mass remains stationary.

The subscript on w, indicates that vibration is, rather obviously, about the equilibrium position. It is customary to
retain it when referring to diatomic molecules but for polyatomic molecules the e subscript will be omitted and
instead the subscript will be a number designating a particular vibrational mode (see Section 5.2.1).
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increases. Stronger bonds tend to be stiffer bonds and therefore vibrational frequencies
normally increase with increasing bond strength. The reduced mass acts in the opposite
direction, with an increase in u leading to a decrease in swe. It should also be noted that
even in the lowest energy level, corresponding to v = 0, the vibrational energy is non-
zero. This residual energy is known as the zero point energy, and plays a celebrated role in
quantum mechanics [1].

It is more usual to employ wavenumber units than energies when dealing with vibrational
transitions in spectroscopy. Equation (5.6) can be re-written as a vibrational term value,
G(v), given by

G(v)=we(v+1) (5.8)

where w,. is now interpreted as the harmonic vibrational wavenumber, usually expressed in
cm™!, and therefore G(v) has the same units. Term values will be used extensively throughout
this book.

The quantum mechanical harmonic oscillator: vibrational
wavefunctions

Full solution of the Schrédinger equation (5.4) also yields the vibrational wavefunctions in
addition to energies. These have the mathematical form

¥y = N, H,(n) exp(=n"/2) (5.9)

where V, is a normalization constant and n = 27 (ucwe/ h)l/Z(r — re). Note that n is directly
proportional to the displacement (» — r.). The quantity H,(n) is a Hermite polynomial in
the coordinate 7, and the first few Hermite polynomials are

Ho(n) =1

Hy(n) =2n

Hy(n) = 4n* =2

H;(1) = 87° — 121

Hi(n) = 16n* — 48> + 12 (5.10)

We can therefore write down the wavefunctions for the first few vibrational levels of a
diatomic molecule as follows:

Yo = Noexp(—1°/2)

Y1 = 2Ninexp(—1°/2)

V2 = Na(dn® = 2) exp(—n*/2)

w3 = N3(8n® — 12n) exp(—1*/2)

Ys = Na(16n* — 48n* + 12) exp(—7°/2) (5.11)
Although the above functions may look quite cumbersome, they have a simple form when

plotted, as shown in Figure 5.1. A number of important conclusions arise. First, the prob-
ability of the molecule being at any particular internuclear separation is given by 2 at



28

5.1.4

Foundations

the particular value of » — r.. Thus for v = 0 quantum mechanics predicts that the most
probable internuclear separation is 7.. This is counterintuitive when one thinks of a spring,
since a vibrating spring will spend most of its time in the region of the two turning points
and is moving at its fastest at the equilibrium position! Note also that there is some ‘leakage’
of the wavefunction outside of the harmonic oscillator potential well, a phenomenon that
is impossible in the classical case. This ‘leakage’ grows in importance as the vibrational
energy is increased.

For levels v = 1 and higher, nodes appear in the wavefunction and indeed the number
of nodes is equal to the vibrational quantum number. As v increases, the wavefunction
progressively heads towards behaviour that is anticipated classically, i.e. the most probable
internuclear separations shift towards the turning points, with the probability of finding the
molecule at the equilibrium separation becoming rather small.

The anharmonic oscillator

The justification for treating a vibrating diatomic molecule like a quantized vibrating
spring is that the harmonic oscillator model works rather well. Spectroscopic measurements
demonstrate that the separation between adjacent pairs of vibrational levels is indeed approx-
imately constant, as equation (5.6) predicts. However, if we look more closely at experi-
mental data, and if we think more clearly about the implications of the potential well shown
in Figure 5.1 we conclude that the harmonic oscillator model is only an approximation and
there are circumstances where its failure can be very serious.

The most obvious deficiency is that no allowance is made for the fact that any bond, or
for that matter any spring, will eventually break when sufficiently stretched. The harmonic
oscillator potential energy curve is infinitely deep, which would lead to the nonsensical
conclusion that a chemical bond is infinitely strong.

Qualitatively, the potential energy curve of a real diatomic molecule would be expected
to have the same shape as that shown in Figure 5.2. To determine the pattern of vibrational
energy levels for such an oscillator, which is now referred to as anharmonic because of
the asymmetry of the potential energy curve, a mathematical form for the potential energy
is needed, which can be substituted into the Schrodinger equation (5.4) in place of the
harmonic potential (5.3). A number of different mathematical functions give rise to a curve
of similar shape to that shown in Figure 5.2 but the most widely used is the Morse potential
function, which has the form

V = Dl — exp[—a(r — ro)]} (5.12)
where D, is the dissociation energy of the molecule, measured from the bottom of the
potential well. The quantity « is a constant that varies from one molecule to another (and

one electronic state to another), as does D..
Solution of the Schrodinger equation with the potential in equation (5.12) gives

E, = hoo(v + 1) = hoexe(v + 1)’ (5.13)
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Figure 5.2 Morse potential energy curve for a diatomic molecule AB with quantized vibrational
energy levels superimposed. Two different definitions of dissociation energies are shown, dissociation
energy D, measured from the bottom of the potential well, and Dy, measured from the zero point
level. Since all molecules must have at least the zero point vibrational energy, Dy is the more useful
quantity.

where w, is in Hz or, expressed as a term value,
G) = we(v + 1) — wexe(v + 1) (5.14)

with w, in wavenumbers. Notice that the first term on the right-hand side of (5.13) is identical
to the harmonic oscillator energy expression (5.6). The second term differs in two ways.
First, it depends on the square of v + %, and second it contains the dimensionless quantity x.,
which is known as the anharmonicity constant. For almost all diatomics the anharmonicity
constant is small, typically <0.01, and therefore if v is small the second term in (5.13) and
(5.14), the anharmonic correction, is also small. The harmonic oscillator approximation is
therefore a good one for vibrational energy levels near the bottom of the potential well.
However, the anharmonic correction quickly grows in importance as v increases, due to
the quadratic dependence on v + % Furthermore, the fact that the anharmonic correction is
subtracted from the harmonic term means that adjacent vibrational levels get closer together
as the vibrational ladder is climbed, and in the limit that dissociation is reached the energy
levels form a continuum. This convergence of energy levels is illustrated in Figure 5.2.

Vibrations in different electronic states

A Morse potential of the type shown in Figure 5.2 and equation (5.12) is normally a good
approximation to the vibrational potential energy of a real diatomic molecule. However,
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Table 5.1 Spectroscopic constants for the ground
and first excited electronic states of CO

Parameter X2x+ A*TI
ro/A 1.1281 1.2351
e /cm™! 2170.21 1515.61
WX /cm™! 13.46 17.25
De/cm_1 90230 25160

let us think more closely about the factors that determine the precise form of the Morse
potential for a particular electronic state of a molecule.

As an example consider CO, which has the ground electronic configuration
16%220%30%40%50%1* and therefore has a ! =F ground electronic state.” The first four
o orbitals are bonding/antibonding pairs, and so have the effect of cancelling each other out
in a bonding sense. However, the 5o and 1 orbitals are bonding orbitals and since both
are full the molecule is held together by a triple bond in very much the same way as N,
(which is isoelectronic with CO). The carbon and oxygen atoms will therefore be strongly
bound together in the ' ©F ground electronic state, and indeed the dissociation energy D, is
1074 kJ mol~! (90230 cm™"), which is very large. In addition, a strong bond would be
expected to yield a relatively short equilibrium bond length and a relatively high vibrational
frequency (since the bond force constant will be large).

Now suppose that an electron is excited from the 5o MO to the vacant 27 MO. Providing
the spin of this electron maintains the same orientation, the excited state will be a ' T state.
The 2t MO is strongly antibonding, so the dissociation energy should decrease significantly.
Concomittantly, the vibrational frequency should also decrease and the equilibrium bond
length should increase. This is precisely what is found experimentally, as illustrated by the
data for CO collected in Table 5.1.

In the general case, different shaped potential energy curves are expected for different
electronic states. The minimum of each of these curves represents the pure electronic energy
of the state. A diagram showing the potential energy curves for the two states of CO that
we have just considered is shown in Figure 5.3. This figure is rather simple, but if every
potential energy curve of the known electronic states of CO were shown on this diagram
it would look very complicated, particularly at high energies. This point is illustrated by
Figure 5.4, which shows some of the potential energy curves of PbH, a free radical. Figure 5.4
clearly shows that a molecule in some particular electronic state need not dissociate to the
ground state atoms. If this were not true, then it would be impossible to have a bound
state with an electronic energy above that of the two ground state atoms, which would be
contrary to experimental observations. The factors that determine which electronic states of
the atoms correlate with which molecular electronic state is beyond the scope of this book

(see [2]).

Strictly speaking the o MOs of CO should be labelled ot to distinguish them from o~ symmetry. However, since
all of the ¢ MOs have o™ symmetry it is common to drop the superscript.
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Figure 5.3 Potential energy curves for the X' X+ and the 4 'IT states of CO. Clearly the former is
far more strongly bound than the latter. Both of these states correlate with the lowest dissociation
asymptote, formation of ground state C and O atoms.

Polyatomic molecules

Normal vibrations

The vibrating diatomic molecule is relatively easy to describe since it has only one bond,
and therefore only one vibrational mode. The situation is clearly more complicated for
polyatomic molecules, since there is more than one bond that may be stretched/compressed,*
and there are also bond angles that can be changed by vibrations. At first sight a pessimist
might conclude that it would be difficult, if not impossible, to solve the quantum mechanics
of polyatomic vibrations. However, this is not the case, although there are indeed additional
complications.

It is helpful to focus on small molecules to bring out the key features applicable to more
complicated molecules. In fact we will consider three triatomic molecules, CO,, OCS, and
H,O, as an illustration.

Itis obvious that a vibrating bond will undergo both stretching and compression as it oscillates about the equilibrium
position. However, it is pedantic to keep referring to it as a stretching/compressing motion, and from now on it
will just be called a stretch.
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Figure 5.4 Potential energy curves for PbH obtained from sophisticated ab initio calculations. This
figure is adapted from work reported by A. B. Alekseyev and co-workers (Mol. Phys. 88 (1996) 591).
Notice that not all potential curves are Morse-like. In this figure several repulsive curves can be seen
which are unbound at all internuclear separations; an example is the 14IT state, which dissociates to
ground state atoms. In addition, some curves have double wells caused by mixing of character with
other potential energy curves of the same symmetry.

CO,

CO; is a linear molecule. When it vibrates, both carbon—oxygen bonds will stretch and
compress, and in addition the molecule may undergo bending vibrational motion in which
the bond angle oscillates about the equilibrium angle, 6. = 180°. To keep things as simple as
possible, the bending motion will be ignored to begin with and the focus will be solely on the
bond stretches. We have seen that for diatomic molecules the vibrational potential energy
is approximately quadratic in the distortion coordinate, » — r.. It is therefore reasonable
to suppose that the same type of potential energy relationship holds for each bond in a
polyatomic molecule. The vibrational potential energy would therefore be

V = %kcorlz + %kcorzz (515)



5 Molecular vibrations 33

where r; and 7, are the displacements of the two CO bonds from their equilibrium positions
and kco is the force constant for a C=0 bond. This potential energy function could be
inserted into the Schrodinger equation (5.4), but it would be incomplete because the kinetic
energy part would also need modifying. The kinetic energy term can also be written in terms
of the displacements r; and r,, and one obtains the slightly lengthy expression

2
= 7'”0('”20]\; ") (7 4 2) + Oy (5.16)
where M = mc + 2mg and 7jand ; are the first derivatives of 7| and r, with respect to time.

The key point to note is that the final term on the right-hand side of (5.16) is a cross-term in
the coordinates | and r,. If this cross-term was absent the vibrational Schrodinger equation
could be solved by the method of separating variables, which would involve transforming the
Schrdédinger equation into two separate equations, one involving only 7| and the other only
ry. These equations would each be equivalent to the Schrodinger equation for a diatomic
harmonic oscillator, and so the solutions would possess the same general form. However, the
presence of the cross-term in the kinetic energy operator (5.16) prevents such a separation,
in much the same way that the interelectronic repulsion terms in the electronic Schrédinger
equation prevent a separation in that case (see Section 2.1.4).

Fortunately, there is a way to remove the cross-term. This involves switching to a dif-
ferent coordinate system, the normal coordinate system. It is possible to show that for
all molecules, providing we make the assumption of simple harmonic oscillation in each
internal coordinate (a bond length or bond angle), a set of coordinates can be chosen which
give no cross-terms in either the kinetic or potential energy operators; these are the normal
coordinates for the molecule. Methods are available for working out the form of these co-
ordinates (see References [3, 4]), but here we concentrate on the results. For CO, there are
two stretching normal coordinates, designated Q; and Qs, which are as follows:

01 = v/ %(xl - x3)

1
03 =,/ W(moxl — 2mcXxy + mox3) (5.17)

The quantities x1, x5, and x3 are the displacements of the individual atoms (1, O; 2, C; 3, O),
and M is the total mass of the molecule (= m¢ + 2mg). If the kinetic and potential energy
operators are recast as functions of the two normal coordinates, no cross-terms arise and a
diatomic-like vibrational Hamiltonian is obtained for each normal coordinate Q;, i.e.
n? 32 1
H=————+-k0? 5.18

=3 T30 (5.18)
Solution of the Schrédinger equation for each normal coordinate is achieved in exactly the
same manner as for diatomics. However, it is important to recognize that the vibrational
coordinate may involve displacements of more than two atoms. We now have, therefore,
a rather simple picture of a vibrating CO, molecule. Providing we restrict it to linear
geometries, it has two normal modes of vibration, each having a vibrational term value
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Figure 5.5 Schematic illustration of the vibrational normal modes of CO,. Also included in the figure
are the symmetries and the harmonic frequencies of each mode. Lower case labels are commonly
used to show the symmetries of individual vibrations.

given by the diatomic-like harmonic oscillator expression
G(v;) = i (vi + 1) (5.19)

where i identifies the particular normal mode, v; is the vibrational quantum number and
w; is the corresponding harmonic vibrational wavenumber of this mode. Each mode has a
diatomic-like wavefunction of the form

| Cw; ]TZC(,()Z' 2
1piv - NvHv <27T T Ql> exp(— h Qz) (520)

and the overall vibrational wavefunction is a product of the wavefunctions of the individual
modes. It is important to recognize that the vibrational quantum numbers for each mode are
independent quantities and so any combination of values is possible.

Let us now try to visualize what is happening for CO, in the light of the above results,
and then extend this picture to other molecules. Two independent normal vibrational modes
have been identified. One of these, designated v, and having a normal coordinate Qj,
involves in-phase stretching and compressing of the two C=0 bonds, as can be seen from
the form of the normal coordinate in (5.17), which is also shown pictorially in Figure 5.5.
The centre-of-mass must be stationary during a vibration, otherwise the motion will be a
mixture of vibration and overall molecular translation and we are not interested in the latter.
The centre-of-mass does not move during vibration vy, since any displacement of one O
atom is exactly compensated for by motion of the other O atom in the opposite direction
(the C atom is at the centre-of-mass and it therefore does not move during this vibration).
This mode is called the symmetric stretch because it maintains the equilibrium point group
symmetry of the molecule at all stages of the vibrational motion.
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In contrast, the normal mode v3 corresponds to stretching of one C=0 bond and com-
pression of the other, and is therefore referred to as the antisymmetric stretch.” The actual
nuclear motion involves displacement of both O atoms in the same direction, and therefore
the C atom must move by a sufficient amount in the opposite direction to keep the centre-of-
mass unmoved. Inspection of the mathematical form of O3 in (5.17) shows that the C atom
does indeed move in the opposite direction to the O atoms. If C were replaced by a heavier
atom, a smaller displacement, x;, would be needed to maintain a stationary centre-of-mass.
Once again, this behaviour is reflected in the mathematical form of Qs since the mass of
the central atom is the multiplier of displacement x,.

If CO; is no longer restricted to being linear, the possibility of bending motion now
arises. In fact there are two bending vibrations in two mutually perpendicular planes, as
shown in Figure 5.5. We can extend the arguments given above for the stretching modes to
the bending vibrations, and it is possible to define normal coordinates and therefore to obtain
relationships identical to those shown in equations (5.19) and (5.20). Note however that,
apart from a 90° rotation of the molecule about the central axis, the two bending vibrations
are equivalent. Consequently, they are degenerate and the pair form the degenerate bending
mode, v,, of CO,.

Finally, it is worth emphasizing the simplicity that the normal coordinate picture provides.
If it were possible to view the overall vibrational motion of a polyatomic molecule, even
one as simple as a triatomic, it would appear very complicated. By using normal modes,
this complicated motion can be treated as a superposition of normal vibrations, in each
of which the atoms are displaced at the same frequency and phase. The normal vibrations
are much simpler to visualize, as well as providing the mathematical simplifications in the
quantum mechanics mentioned earlier.

oCS

Like CO,, OCS s linear at equilibrium. Its vibrations have much in common with CO, in that
three normal modes can be identified, two of them stretches and one a doubly degenerate
bend. An important difference, however, is that the two bonds are no longer equivalent,
and so the two stretching vibrations cannot be described respectively as symmetric and
antisymmetric stretches. In fact the two stretching vibrations now have identical symmetries.
Owing to the different strengths of the two bonds and, more importantly in this case, the
substantial difference in masses of the O and S atoms, the stretching vibrations show a
degree of bond localization and can be thought of as separate C=0 and C=S stretches.
This is only an approximation, but a comparison of the harmonic vibrational frequencies of

There is a convention for labelling vibrational modes. For triatomic molecules, these are labelled vy, v;, and v3
(not to be confused with the vibrational quantum numbers). For historical reasons, the two stretching modes are
always designated by v; and v3 and the bending mode by v,. The convention for all other polyatomics requires
the vibrations to be grouped according to their symmetries, starting from the highest symmetry and descending
to progressively lower symmetries. If there are two or more vibrations of the highest possible symmetry, these are
labelled vy, vy, ..., v, in order of descending harmonic frequency. One then moves to the next highest symmetry
and again the mode labels are ordered in terms of descending frequency, and so on.
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Figure 5.6 Schematic illustration of the normal modes of OCS.
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Figure 5.7 Schematic illustration of the normal modes of H,O.

OCS, shown in Figure 5.6, with those of CO, shown in Figure 5.5, is consistent with this
idea.

H,O

Unlike the previous two examples, H,O is bent at equilibrium. The two O—H bonds are
equivalent, so by analogy with CO, the two stretching normal modes can be divided into a
symmetric stretch (in-phase stretch of the two O—H bonds) and an antisymmetric stretch
(antiphase stretching of the two O—H bonds). As for the bending motion, there is now only
one way in which we can alter the bond angle and so the bending vibration is non-degenerate.
All three normal coordinates of H,O are shown in Figure 5.7.

H,O illustrates the fact that non-linear molecules possess 3N — 6 degrees of vibrational
freedom, whereas linear molecules have 3N — 5. The loss of one vibrational degree of
freedom for a non-linear molecule is compensated by the gain of an additional rotational
degree of freedom.
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Symmetries of vibrational coordinates and wavefunctions

Just as the MOs of a molecule must transform as one of the irreducible representations of the
molecular point group, so must the normal vibrations. This turns out to be extremely useful
for not only does it make it possible to classify the modes according to their symmetries, but
more importantly it provides vital information when it comes to establishing selection rules
for transitions between vibrational levels in spectroscopy.® It is assumed that most readers
will already be familiar with the use of symmetry for describing molecular vibrations; those
who are not should consult an appropriate textbook (see, for example, Reference [5]). The
symmetries of the normal modes of the three triatomics considered in the previous section
are shown in Figures 5.5-5.7.

This section is concerned with establishing the groundwork necessary for the discussion
of selection rules later on in this chapter, in which symmetry plays a central part. In particu-
lar we will need to consider the symmetries of the vibrational wavefunctions. This is a topic
that often causes considerable difficulty because the symmetries of the normal coordinates
and the vibrational wavefunctions are often confused with each other. The symmetry of
the normal coordinate is determined by the motion of the atoms during a vibration. For
example, if we consider the pictorial representation of the vibrations of H,O in Figure 5.7
it is obvious, even without employing formal group theory, that the symmetric stretch and
the bending mode are totally symmetric vibrations. In other words, the molecule main-
tains the same point group symmetry throughout both of these vibrations (even though the
structure necessarily changes). However, the antisymmetric stretch involves the compres-
sion of one O—H bond and the stretching of another, and so at all stages of this vibration
(except when it passes through equilibrium) the molecule is distorted to a lower symmetry
(in fact Cs point group symmetry). The antisymmetric stretch should therefore more cor-
rectly be referred to as a non-totally symmetric vibration. The distinction between totally
symmetric and non-totally symmetric vibrations is one that will be made use of frequently
in this book. Of course, if one knows the irreducible representations for the vibrations,
then finding out which are totally symmetric is trivial, since the totally symmetric irre-
ducible representation is always the uppermost one listed in the corresponding character
table.

A vital point to recognize is that the symmetry of the vibrational wavefunction is not
necessarily the same as the symmetry of the normal coordinate. To see this, look at the
general form of the vibrational wavefunction in equation (5.20). The normal coordinate
for the ith vibrational mode is given the symbol Q; in this equation, and it appears twice.
Considering the exponential part first, this contains Q7. If Q; is a non-totally symmetric
normal coordinate, then there will be at least one symmetry operation of the point group
that will change the sign of Q;. However, this will not change the sign of Q;? and so the
exponential term will be invariant to any symmetry operation of the point group whether
or not Q; is totally symmetric, i.e. the exponential term is always totally symmetric.

Our concern in this book is with vibrational changes accompanying electronic transitions, but the use of symmetry
in establishing vibrational selection rules is also extremely important in infrared and Raman spectroscopies.
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Consequently, if the vibrational wavefunction is to be anything other than totally sym-
metric, it is the Hermite polynomial in equation (5.20) that brings this about. Look back at
the form of the first few Hermite polynomials given in (5.10), where you should substitute
Q; for the diatomic normal coordinate . When the vibrational quantum number v; is even
(including zero), then only even powers of O; appear in the Hermite polynomial. However,
when v; is odd, only odd powers of Q; appear in the Hermite polynomial. Thus for the very
same reason that we concluded that the exponential term was totally symmetric, the Hermite
polynomial is also totally symmetric with respect to all symmetry operations of the point
group if v; is even. However, if v; is odd, then the symmetry of the wavefunction is the same
as the symmetry of the normal coordinate Q;.

We may therefore conclude the following. If the normal coordinate is totally symmetric,
then the corresponding vibrational wavefunction is totally symmetric for all values of v;.
However, if the normal coordinate is non-totally symmetric, then the vibrational wavefunc-
tion will be totally symmetric when v; is even and non-totally symmetric when v; is odd.
We will make considerable use of these important results throughout the remainder of this
book.

Anharmonicity in polyatomic vibrations

The expression of polyatomic vibrational motion in terms of a set of independent normal
modes is only exact if harmonic motion is assumed for each vibration. In practice, anhar-
monicity occurs in vibrations of polyatomics just as it does for diatomics. This means that
the energy level formula given in equation (5.19) must be modified to include the effects
of anharmonicity, but the modification is somewhat more complicated than the diatomic
case since there is more than one anharmonicity constant associated with each vibration.
Specifically, one finds that the vibrational term value is given by’

G = wi(vi+5) + 2 wi(vi+3) (v + 3) (5:21)
i i

where the x;; are anharmonicity constants. The so-called diagonal anharmonicity constant,
Xii, has a similar interpretation to the anharmonicity constant used for diatomics. Usually the
x;; are small and negative, thus causing the vibrational levels to get closer together as the
vibrational ladder is climbed. However, it is worth noting that unlike the diatomic case,
the diagonal anharmonicity constants can also sometimes be positive. The so-called off-
diagonal anharmonicity constants, x;; where i # j, arise from the mixing of normal modes.
This mixing, caused by a breakdown of the harmonic oscillator approximation, is normally
small for the lowest vibrational levels and can often be ignored. It is also limited to vibrations
possessing the same symmetry. However, there are certain special cases where the mixing
can be very large, even for low vibrational quantum numbers. Fermi resonance is such a

For those molecules with degenerate vibrations, (v; + %) should be replaced with (v; + d;/2) where d; is the
degeneracy of mode i. There is an additional complication with degenerate modes in that they can possess
vibrational angular momentum. This results in further modification to equation (5.21); readers who wish to find
out more should consult References [3] and [4].
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case, which occurs when two vibrational levels of the same symmetry are accidentally very
close together in energy (perhaps just a few cm™! apart in the harmonic oscillator limit);
extensive coupling caused by anharmonicity is then possible and the normal coordinate
picture is not valid.
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Molecular rotations

The observation of rotational fine structure in electronic spectra has proven to be an invalu-
able source of information on molecular properties, particularly in quantifying molecular
structures. We will take the same approach as for molecular vibrations, describing the
quantized rotational motion of diatomic molecules before moving on to consider the more
complicated case of polyatomic molecules.

Diatomic molecules

The rigid rotor

The energy levels of a rotating diatomic are particularly simple to describe if there is no
other form of angular momentum in the molecule (e.g. electronic orbital or spin) with which
the rotational angular momentum can interact. A rotating diatomic molecule can have two
independent components of rotational angular momentum, which are shown in Figure 6.1
as rotation about two mutually perpendicular axes, designated x and y. The origin of these
axes is at the centre-of-mass of the molecule. The corresponding angular momenta are
represented by the vectors R, and R,. Note that R. is zero since the z axis contains the
nuclei.! In classical mechanics the rotational energy would be
2 2
E = kS + & (6.1)
2 21,
where I, and /, are the moments of inertia about the x and y axes. Put somewhat crudely,
if we imagine that the molecule was initially not rotating, then the moment of inertia is
related to the force that would need to be applied to make the molecule rotate at a certain
speed. Everyday experience with much larger objects is sufficient to deduce that this force
will be smaller if the atoms are lighter and/or if they are closer together. For a diatomic the
moments of inertia about the x and y axes are the same and are given by

I = ur? (6.2)
This neglects the mass of the off-axis electrons, but this is a good approximation since the nuclei contain virtually

all of the molecule’s mass and can be viewed as point masses (i.e. have no significant size) located along the
internuclear axis.
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Centre-of-mass

B

Figure 6.1 Diagram showing the two rotational degrees of freedom of a diatomic molecule.

where o is the reduced mass (see equation (5.5)), r is the internuclear separation, and
I=1=1I,

In quantum mechanics the possible values of the angular momentum are restricted, as
already seen for the case of an orbiting electron in an atom (Chapter 3). Mathematically,
quantization can be introduced by recognizing that the square of the total rotational angular
momentum, R?, has the allowed values (1/27)>J(J + 1) where J is the rotational quantum
number (J=0, 1, 2, 3, etc.).” Since (6.1) can be written as

RZ
= — 6.3
7 (6.3)
the quantum mechanical result is obtained by substituting in the eigenvalue of R, i.e.
h2
E=_—J(J+1)=BJ(J+1) (6.4)
82l

The quantity B is referred to as the rotational constant. The pattern of energy levels that
results is shown in Figure 6.2. Since the energies of rotational levels are a quadratic function
of the rotational quantum number they are not equally spaced, in contrast to the vibrational
energy levels of the harmonic oscillator. Equation (6.4) assumes that the molecule is a rigid
rotor, i.e. the bond length is unaffected by the speed of rotation. This turns out to be a good
approximation in most cases, although centrifugal distortion does become significant at
high J.

Finally, note the link between the rotational constant and the equilibrium bond length,

re, specifically
h2
= 6.5
82 ur? (©6-5)

This very important result shows that the measurement of the rotational constant allows the
bond length of a diatomic molecule to be calculated.

Actually J is reserved for labelling the total angular momentum quantum number excluding nuclear spin. Thus
the comments made in this section, and the rotational energy formula (6.4), must be modified when dealing with
anything other than ! & states of molecules. Such molecules will be encountered in some of the Case Studies.
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Energy
A
J=4, E=20B
J=3, E=12B
J=2, E=6B
J=1, E=2B
J=0, E=0

Figure 6.2 Rotational energy levels of a rigid diatomic molecule.

Space quantization

It is instructive to explore further the analogy between molecular rotation and the orbital
motion of a single electron. We know that the orbital angular momentum of a single electron
is characterized by the quantum number /, which is analogous to J in the case of molecular
rotation. However, we also know that there is a second quantum number arising in the case of
orbital motion, the projection quantum number m;, which defines the possible orientations
of the orbital angular momentum vector relative to some arbitrary axis; this is known as
space quantization. The 2/ + 1 possible values of m; give rise to a 2/ 4+ 1 degeneracy for
each value of /.

By analogy, space quantization would also be expected for molecular rotation. The
projection quantum number in this case is denoted by the symbol M,, and can have 2J + 1
values ranging from —J to +J. The projection quantum number is significant in two respects.
First, the degree of degeneracy of a rotational level is J-dependent and increases with J.
For a sample composed of diatomic molecules, this can therefore give rise to the situation
where there are more molecules in excited rotational levels than in the lowest (J = 0), since
the number of molecules in level J, Ny, is given by the Boltzmann distribution

Ny o 2J + 1)exp[—BJ(J + 1)/ kT] (6.6)

at thermal equilibrium. The degeneracy increases with J while the exponential term decr-
eases with J; consequently, a maximum in N, at some non-zero value of J is possible.
Although the direction of space quantization is arbitrary for a freely rotating molecule,
this is no longer the case if the molecule is placed in an electric or magnetic field. If the
molecule has a permanent electric dipole moment, the rotational angular momentum vector
will be forced to precess about an axis parallel to the field direction providing the field
is sufficiently strong, thus defining the direction of space quantization. Furthermore, the
2M; + 1 degeneracy is removed, a phenomenon known as the Stark effect. The degeneracy
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will also be removed in a magnetic field if the molecule has a magnetic moment, e.g. if it
possesses unpaired electrons. This is known as the Zeeman effect. For both the Zeeman and
Stark effects the splitting will increase as the field strength increases and may therefore not
be noticeable if only weak fields are present.

Polyatomic molecules

Classical limit

It turns out to be very useful to classify polyatomic molecules into various groups according
to their moments of inertia. As will be seen shortly, this makes it possible to ascertain whether
standard formulae will apply for their rotational energy levels, or whether a more in-depth
analysis is required.

By analogy with the diatomic case considered earlier, let us treat a rotating polyatomic
molecule classically as a rigid rotating body. We will also retain the good approximation
that all of the mass of a molecule is contained within the nuclei and that each nucleus is
a point mass. In the general case the moments of inertia can be defined about any three
mutually perpendicular axes passing through the centre-of-mass of the molecule. If we make
an arbitrary choice of axes, then the rotational kinetic energy about any one of these axes
contains three terms. For example, for the x axis

E, = %]xxw)zc + Ix}’wxwy + Loy, 6.7)

The quantity / represents the moment of inertia, which has already been met for diatomic
molecules, but notice the addition of double subscripts in equation (6.7). The double sub-
script indicates that the moment of inertia is not a vector with three components along the x,
», and z axes, but in fact has cross-terms yielding a total of nine components altogether. The
moment of inertia is an example of a second-rank tensor quantity.’ This was not an impor-
tant issue to consider for diatomic molecules, but it is important for non-linear polyatomic
molecules. The diagonal moment, /,, is given by

L= mir}, (6.8)

where m; is the mass of nucleus i and r;, is the distance of the ith nucleus from the x axis
(measured along a line perpendicular to the x axis, as shown in Figure 6.3). The off-diagonal
moments of inertia are given by
[xy = - Zmirixriy
i

L. =— Z mirixtiz (69)

A vector is a first-rank tensor, and it can be represented in a neat fashion by a column matrix with three rows. A
second-rank tensor is most clearly expressed when written as a 3 x 3 matrix. It turns out that this matrix is always
symmetrical, e.g. Iy, = I}, and so there are actually only six independent components at most. There are other
physical properties that are also represented by second-rank tensors, e.g. polarizability.
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Figure 6.3 Moments of inertia for the square planar molecule Ni(CO),. The inertial axes x, y, and
z have their origin at the centre-of-mass of the molecule, which is the Ni nucleus. Notice that the
off-diagonal contributions to the moments of inertia are zero for the chosen axis system, which can
be seen by careful application of equations (6.9). According to the classification given later, Ni(CO),
is an oblate symmetric top.

The appearance of off-diagonal moments of inertia is a complication we would like to
avoid. Fortunately, it turns out that it is always possible to find a set of inertial axes where
the off-diagonal moments of inertia are zero. These axes are called the principal axes, and
they are conventionally labelled as a, b, and ¢ to distinguish them from any arbitrary set of
cartesian axes x, ¥, and z. In the principal axis system, the overall rotational kinetic energy
is given by

E =110} + 10} + 1107} (6.10)

in the classical limit.

There is an important convention used in labelling the principal axes. This convention
stipulates that, once the axes have been identified (see next section), they are labelled
according to the requirement that /, < I < I,.

Classification of polyatomic rotors

It was stated in the previous section that a set of principal axes always exists for any molecule,
but how are they identified? Symmetry, should the molecule possess any, is of great help
here.



6 Molecular rotations 45

(0]

a

Figure 6.4 Diagram showing the principal inertial axes for the linear OCS molecule. Notice that the
centre-of-mass lies between the C and S atoms because of the larger mass of S compared with O. The
moments of inertia are /, = 0 and I, = I, for a linear molecule.

Consider as an initial example a linear polyatomic molecule. Since all the nuclei in such
a molecule lie along a single axis it is fairly obvious that this axis coincides with one of
the principal axes. Confirmation is provided by inspection of the form of the off-diagonal
elements of the inertial tensor of the type shown in (6.9). The other two principal axes must
be perpendicular to the internuclear axis, but beyond that the choice is arbitrary because of
the cylindrical symmetry of the molecule.

The principal axes of a linear polyatomic are illustrated in Figure 6.4. The allocation of
a, b, and c to the axes shown in Figure 6.4 is made on the basis of the rule that [, < [, < I..
1, is in fact zero, whereas [}, = /..

There are other classifications based on the relative magnitudes of the principal moments
of inertia. If all three moments of inertia are equal then the molecule is said to be a spherical
top. This occurs for molecules with very high point group symmetries, such as 74 and Oy,
Thus molecules such as CH4 and SF¢ belong in this category (see Figure 6.5(a)). Because
of their high symmetry, any choice of mutually perpendicular axes passing through the
centre-of-mass will be principal axes.

If only two principal moments of inertia are equal, then the molecule is classified as a
symmetric top. A linear polyatomic (or diatomic) molecule is a special case of a symmetric
top where one moment of inertia (/,) is zero. For non-linear molecules symmetric tops
can only occur when the molecule has a Cs or higher axis of rotational symmetry. Some
examples of symmetric top molecules are shown in Figure 6.5 (b and c). There are two sub-
divisions of the symmetric top: those for which /, < I, = I, which are referred to as prolate
symmetric tops, and those for which I, = I, < I., which are known as oblate symmetric
tops. It is usually straightforward to ascertain if a molecule is a symmetric top by inspection.
Distinguishing between prolate and oblate symmetric tops is also often straightforward, but
there are exceptions to this statement. For example, if ammonia were to adopt a planar
equilibrium geometry, as in fact it does in at least one of its excited electronic states, then it
is clearly an oblate symmetric top. At the other extreme, if the ammonia molecule became
non-planar with an extremely small H—N—H bond angle in some electronic state, then it
would be a prolate symmetric top. Clearly at some intermediate H—N—H bond angle there
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Figure 6.5 Examples of spherical tops, prolate and oblate symmetric tops, and asymmetric tops
molecules. In each case the approximate position of the centre-of-mass is shown by the location of
the origin of the inertial axes.

will be a transition from a prolate to an oblate symmetric top, and at angles close to this
point of transition it is not obvious, without performing calculations, which case applies.

Last, but by no means least, we come to the class to which most molecules belong,
namely the asymmetric tops. For these molecules, the three principal moments of inertia
are all different. Some examples are shown in Figure 6.5(d). For those molecules with a
reasonable amount of symmetry, such as H,O, the principal axes are easy to locate; for
H,O one of the axes (the a axis) must coincide with the C; symmetry axis. However, for
molecules with less symmetry the principal axes can only be established by calculation
using either a known or assumed geometry.
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Table 6.1 Convention for labelling principal
inertial axes in polyatomic molecules

Rotor Inertial relationship
Spherical top L=I=1

Linear molecule 1,=0,1,=1.
Prolate symmetric top I, <I,=1.

Oblate symmetric top I,=1, <1
Asymmetric top I, <I,<I

Table 6.1 summarizes the inertial classification system for polyatomic molecules.
Figure 6.3 illustrates how moments of inertia are related to structural parameters for an
example of an oblate symmetric top, Ni(CO)j.

Rotational energy levels of linear polyatomic molecules

Given that there are only two non-zero and equal principal moments of inertia for a linear
polyatomic molecule, just as for a diatomic, the rotational energy level formula (6.4) applies.

However, an important difference lies in the relationship between the rotational constant
B and the atomic masses and bond lengths. For a diatomic molecule B is dependent on only
one bond length, whereas in a linear polyatomic molecule B depends on all of the bond
lengths. Formulae can be derived to link B to the bond lengths (and the atomic masses) but
we omit them here. It suffices to say that, unlike a diatomic molecule, the precise structure of
a linear polyatomic molecule cannot be established from measurement of a single rotational
constant,* except in those cases where all bond lengths are assumed (or are known) to be
equal.

Rotational energy levels of symmetric tops

Formulae for the rotational energy levels of symmetric tops can be derived using an extension
of the approach employed for diatomics in Section 6.1.1. In a non-linear molecule the
rotational kinetic energy has three independent components and is given by

R?2 R} R?
E=_—%4 b4 ¢ (6.11)
21, 21, ' 21,

in a principal axis system. Consider a prolate symmetric top, for which 7, = /.. In this case
equation (6.11) becomes

PR -Luﬁ+R6 (6.12)
21, ' 21, ¢

There are two ways around this difficulty. For a linear triatomic, one way would be to assume a reasonable value
for one of the bond lengths and then use the rotational constant to determine the other. An alternative and better
approach is to measure the rotational constant for more than one isotopomer, i.e. use isotopic substitution of one
atom and measure a new rotational constant. The two rotational constants this provides are sufficient to determine
the two equilibrium bond lengths.
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The total angular momentum is the sum of the squares of the individual components, so
therefore

R} 4+ R?> = R* - R? (6.13)

Substituting (6.13) into (6.12) gives

E—R2+R2 ! ! (6.14)
20 a\21, 2I, '

To get the quantum mechanical result, we must now treat the total rotational angular momen-
tum, R, and its component, R, as operators and replace them with their eigenvalues. Indeed,
equation (6.11) has been converted into the form shown in (6.14) to make this possible.
Recall that the total angular momentum is characterized by a quantum number, J, such that
the total rotational angular momentum is (4 /27 )[J(J + 1)]'/? . The operator R? can there-
fore be replaced by the square of the total rotational angular momentum, (2 /4 2)[J(J + 1)].
There is also a quantized component of angular momentum along some arbitrary axis in the
general case. However, in a symmetric top this axis of quantization is no longer arbitrary,
but rather corresponds to the axis of highest rotational symmetry. For a prolate symmetric
top the axis of highest symmetry is the a axis, and therefore the component of rotational
angular momentum along this axis is quantized. The corresponding quantum number is
given the symbol K and the angular momentum along this axis is K /2. Thus the operator
R? can therefore be replaced by K2h?/4m>.

The final step in replacing equation (6.14) with something more useful is to recognize
that 42/87%1, and h*/8x21, are rotational constants, which we label as 4 and B. Thus the
final result for the rotational energy levels of a rigid prolate symmetric top is

E=BJ(J+1)+(4 - B)K? (6.15)

The rotational energy level arrangement obtained from application of this formula is shown
in Figure 6.6(a). Note that because K//2m is the projection of the total rotational angular
momentum along the a axis, then K < J. For each value of J there is a stack of levels
corresponding to the possible values of K, which range from 0 to J in integer steps. In fact
each of the K levels (except K = 0) is doubly degenerate, a consequence of the equivalence
of clockwise or anticlockwise rotation about the top axis. Clearly the rotational structure
for symmetric tops is more complicated than for linear molecules given that there are now
two quantum numbers and two different rotational constants.

Oblate symmetric tops can be dealt with in a similar manner to prolate symmetric tops.
The main difference is that now the ¢ axis is the highest symmetry axis and so this is the
axis of quantization. After several steps we obtain

E=BJ(J+1)+(C - B)K? (6.16)

This looks similar to the prolate formula (6.15), but an important difference is that C — B is
negative while 4 — B is positive (since 4 > B > C). Consequently, whereas the gap between
adjacent rotational levels increases as K increases for a given J in a prolate symmetric top, it
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Figure 6.6 Rotational energy level diagrams for (a) prolate and (b) oblate symmetric tops.

decreases for oblate tops. This can be seen by comparison of the two energy level diagrams
in Figure 6.6.

Rotational energy levels of spherical tops

In a spherical top 1, = I, = I, and therefore the rotational operator is just

R2
Hiot = — 6.17
ot 2[b ( )

Clearly a rotational energy level formula identical in appearance to the linear molecule case
is obtained, i.e.

E=BJ(J+1) (6.18)

Rotational energy levels of asymmetric tops

Asymmetric tops are characterized by the fact that all three principal moments of inertia,
and therefore all three rotational constants, are unequal. As a result, no factorization of
the rotational Hamiltonian (6.11) is possible and the mathematical problem is far more
challenging to solve. It is possible to derive formulae for specific rotational energy levels
of asymmetric tops but a general formula cannot be obtained. The more usual way of pre-
dicting rotational energies of asymmetric tops is to use numerical solution of the rotational
problem on a computer, a topic beyond the scope of this book but touched upon briefly in
Appendix H.

It is worth bearing in mind, however, that many molecules quite closely approximate
the prolate or oblate symmetric top limits. For example, both water and formaldehyde
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are asymmetric tops but in both cases the B and C constants are quite similar. Thus the
prolate symmetric top formula (6.15) should be a reasonably good approximation of their
rotational energy levels, and this is indeed found to be the case from experiment. However,
as one would also expect, there are differences; in particular the K degeneracy observed in
symmetric tops is removed in asymmetric tops, giving rise to the phenomenon of K-type
doubling. In strongly asymmetric tops the K-type doubling is so severe that a comparison
with symmetric tops is meaningless.
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Depending on the resolution, a spectrum may consist of well-resolved discrete peaks, each
of which is attributable to a single specific transition, or it may consist of broader bands that
are actually composed of several unresolved transitions. In either case, the intensities will
depend on a number of factors. The sensitivity of the spectrometer is crucial. So too is the
concentration of the absorbing or emitting species. However, our interest in the remainder of
this chapter is with the intrinsic transition probability, i.e. the part that is determined solely
by the specific properties of the molecule. The key to understanding this is the concept of
the transition moment.

Transition moments

Consider two pairs of energy levels, one pair in molecule 4 and one pair in a completely
different molecule B. Assume for the sake of simplicity that the energy separation between
the pair of levels is exactly (and fortuitously) the same for both molecules. Suppose that a
sample of 4 is illuminated by a stream of monochromatic photons with the correct energy
to excite 4 from its lower to its upper energy level. There will be a certain probability that
a molecule is excited per unit time. Now suppose sample 4 is replaced with B, keeping the
concentration and all other experimental conditions unchanged. In general the probability
of photon absorption per unit time for B would be different from 4, perhaps by a very large
amount. The conclusion we must draw is that there is some factor dependent on the specific
details of the energy levels which determines whether 4 or B has the higher transition
probability. This factor is known as the fransition moment.

For radiation to be absorbed, there must be an interaction between the radiation and
the molecule. This is not the only condition,' but it is clearly of fundamental importance.
Both the electric and magnetic fields of electromagnetic radiation may interact with any
electric or magnetic fields present in a molecule. For the types of spectroscopy that we
will consider it is the electrical rather than magnetic interaction that is normally important,
although an exception to this will be met in the Case Studies. Molecules may have non-zero

A photon also possesses quantized angular momentum, a strange thought given that photons have zero rest mass
as, but one which has nevertheless been proven by experiment. Since angular momentum must be conserved in
all processes, there is also a momentum restriction that limits the possible spectroscopic transitions [1].

51
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electric fields for a number of reasons, such as the presence of a permanent electric dipole
moment, or because a particular vibration induces an oscillating dipole moment, or because
the instantaneous motion of one or more electrons produces a transient electric field.

It is possible to go beyond this simple picture and perform a quantum mechanical analysis
of the probability that absorption will take place due to the coupling of the electric fields
from the radiation and the molecule. The derivation is complex, but the result is simple and
of great significance. The intrinsic transition probability is given by |My|?, where M is
the transition dipole moment for a transition from energy level 1 up to level 2. The transition
moment, which is labelled in bold typescript to indicate that it is a vector quantity, is

M21 = f\llzullll dr (71)

where W, and W, are the wavefunctions of the lower and upper states, respectively, and dt
includes all relevant coordinates (i.e. spatial and spin). The vector quantity g is the electric
dipole moment operator. For a system of n particles, each of charge Q,,, the dipole moment
operator is given by

p=> 0.x, (7.2)

where X, is the position vector of the nth charged particle. It is useful, as will be seen later,
to split the summation in (7.2) into two terms, one involving the electrons and the other the
nuclei, such that g = pe + p,.”

There are two important points to note at this stage. The first is that the electric dipole
moment operator is not the same as the electric dipole moment of a molecule. In quantum
mechanics the electric dipole moment of a molecule in some state with wavefunction W; is
given by

Hedm = / W pW; dt (7.3)

The wavefunction of only one state appears in (7.3), as opposed to two in the transition
dipole moment expression in (7.1). The difference is a crucial one, for we can interpret
the transition dipole moment as quantifying an instantaneous change in dipole moment
brought about by the movement of electrical charge during the transition from the state with
wavefunction W, to the state with wavefunction W,. Consequently, a permanent electric
dipole moment is not required for electronic transitions to take place. The transition from
W, to W, normally involves only a single electron moving from one MO to another.

It is important to recognize that equation (7.1) is only an approximation, albeit usually
a very good one, known as the electric dipole approximation. Transitions governed by the
transition moment in (7.1) are said to be electric dipole transitions and they are by far the
most important for the topics covered in this book. However, the reader should be aware

In a cartesian coordinate system M>; and g will have components in the x, y, and z directions. The transition
probability is a scalar quantity and is given by |M>;|* = (le(,c))2 + (M21(y))2 + (M21(z))2.
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that transitions may also be induced by the magnetic part of the radiation, giving rise to
magnetic dipole transitions (responsible for NMR and ESR spectroscopy),’ or can arise
from higher order electrical effects, notably electric quadrupole transitions.

Absorption and emission

The discussion in the previous section referred specifically to the absorption of radiation,
but much of what was said could also be applied to emission. The absorption of radiation
is a stimulated process, with the incident photon stimulating the molecule into action. This
may seem obvious, but it is a point of great significance given that emission can occur in
two ways, stimulated and spontaneous emission.

Stimulated emission is the reverse of absorption. If a molecule is in some upper energy
level, E5, it can be induced to fall to a lower level, £}, by emission of a photon if another
photon of energy E, — E is incident upon it. The new photon produced will share the same
frequency, phase and direction as the stimulating photon. In other words, the process is a
coherent one. The transition moment for stimulated emission is equal to that of stimulated
absorption, i.e. My} = M;.

Although their transition moments are the same, the probabilities of stimulated emission
and absorption will not normally be the same in practice because of differences in popula-
tions of the upper and lower energy levels. The rate of absorption or stimulated emission
can be treated quantitatively by using a rate equation approach directly analogous to that
employed in chemical kinetics. The rate of absorption will be directly proportional to both
the number of molecules in the lower state, N, and to the density of incident radiation,
p(v), at the resonance frequency v, and so can be expressed as

dN;  dN,

T A = BNip(v) (7.4)

The proportionality constant, B (not to be confused with rotational constants), which is
analogous to a second-order rate constant in kinetics, is known as the Einstein B coefficient
and is dependent on the transition moment in the following manner:

82
= M, |? 7.5
e | M| (7.5)
The rate of stimulated emission is
dn, dnN,
—_—_— < _ BN 7.6
= =2 = BNap(v) (7.6)
and so combining (7.4) and (7.6) gives
dn,
o B(Ny — Ni)p(v) (1.7)

Electric dipole transitions dominate in electronic spectroscopy, as well as in IR and microwave spectroscopy. How-
ever, because they involve the ‘flipping” of magnetic spins, it is magnetic dipole transitions which are responsible
for ESR and NMR spectra.



54

Foundations

For a system at thermal equilibrium, the population ratio N, /N is given by the Boltzmann

distribution,

N; E, — E

Mo 8 g - E2 ED (7.8)
N1 &1 kT

where g; and g, are the degeneracies of the two levels. If £, and E are electronic energy
levels then in general E; — E; > kT and so N, <« Nj. Thus the right-hand side of (7.7)
will be negative and so a net depletion of the population of level 1 occurs; in other words
absorption, rather than stimulated emission, will dominate. If, on the other hand, N, > Ny,
then stimulated emission will dominate. This unusual situation is termed a population
inversion and is an essential requirement for the operation of lasers [2, 3].

Emission of a photon can also occur spontaneously, i.e. in the absence of a stimulating
photon. In view of earlier comments this might be thought to be impossible because there
is nothing obvious to ‘kick-start’ (stimulate) the emission process. The explanation for
this apparent discrepancy can be extracted from a branch of quantum physics known as
quantum electrodynamics. The full story is very involved but a brief explanation is as
follows. Suppose a near-perfect vacuum was maintained inside a container such that only
one molecule remained within it. Existence would seem to be dull for this molecule as
it would encounter nothing but the walls as it bounced around in the chamber. However,
according to quantum electrodynamics nothing could be further from the truth. Inside (and
outside) the chamber there are rapid zero-point fluctuations in which photons burst into
existence and then quickly disappear. This strange process is capable of providing the
necessary stimulation and so spontaneous emission can be viewed as stimulated emission
brought about by the momentary presence of photons produced by zero-point fluctuations.

Spontaneous emission is easily incorporated into the rate equation model. It results only
in the depopulation of the upper state, and unlike absorption or emission is unaffected by
the applied radiation density. Consequently, it is akin to a first-order chemical reaction with
rate given by AN,. The quantity 4, which is analogous to a first-order rate constant, is known
as the Einstein A coefficient and is given by

8 hv3
A:(n;)B (1.9)
¢
Modification of the rate equation (7.7) to include spontaneous emission yields
dnN,
P AN + B(N, — Ni)p(v) (7.10)

and so spontaneous emission competes with stimulated emission in depopulating the upper
state. In fact in most circumstances one finds that spontaneous emission is far more important
than stimulated emission.

Since A4 is directly proportional to B, the spontaneous emission probability depends
on the magnitude of the transition moment. However, notice also that the spontaneous
emission probability depends on v3. As a result, spontaneous emission rapidly increases in
importance as the emitted radiation frequency increases. Drawing on the analogy with first-
order chemical kinetics, or for that matter the first-order spontaneous decay of radioactive
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Figure 7.1 Typical radiative decay curve for an ensemble of molecules excited to some specific upper
state by a short pulse of light. The radiative lifetime 7 is defined as the time taken for the emission
intensity to fall to 1/e (=1/2.718) of its original value. In this particular example the radiative lifetime
is ~180 ns, a fairly typical value for an excited electronic state connected to a lower electronic state
by an allowed transition.

nuclei, the decay of an ensemble of excited molecules by spontaneous emission is an
exponential process given by the decay curve shown in Figure 7.1. This figure assumes that
all molecules are excited simultaneously, e.g. by a pulse from a laser. The decay curve has
the functional form e=4 ~t/* where t is the time. The quantity T, known
as the spontanecous emission lifetime, or radiative lifetime, of the excited state, is the time
taken for the spontaneous emission intensity to fall to a factor of 1/e of its original value.
Since t = 1/4, the radiative lifetime will be short when 4 is large.

The frequency dependence of 4 is crucial in determining values of t. In the visible and
ultraviolet regions of the spectrum, excited state lifetimes in the range 10-1000 ns are the
norm. In the infrared, lifetimes may be tens of microseconds or even milliseconds, while in
the microwave and millimetre wave regions the lifetimes can run into seconds. With such
long radiative lifetimes in long wavelength regions, the probability of spontaneous emission
is very low and indeed other means of depopulating excited states, such as collisional pro-
cesses, may become dominant. This is the reason why infrared, and particularly microwave,
spectra are normally obtained as absorption rather than emission spectra.

or alternatively e

Concept of selection rules

If all three components of the transition dipole moment are zero then the absorption and
emission probabilities are zero. When this occurs the transition is said to be forbidden. To
prove that a particular transition is forbidden, the absolute value of the transition moment
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could be determined by substituting the upper and lower state wavefunctions into (7.1) and
evaluating the integral. However, it is rare that accurate wavefunctions are known, and in
any case it is normally quite unnecessary to go to such trouble to determine whether or not
the transition moment vanishes. Instead, a knowledge of the symmetries of the upper and
lower state wavefunctions will suffice.

The importance of symmetry in establishing spectroscopic selection rules cannot be
overstated. We have already seen in Chapters 4 and 5 that the symmetry of electronic and
vibrational wavefunctions can be conveniently classified in terms of point group symmetry.
Furthermore, we have seen that the symmetry of the product of two wavefunctions can be
determined by taking the direct product of the irreducible representations of the individual
wavefunctions. The integrand in (7.1) will transform as the reducible representation obtained
by taking the direct triple product I'(V;) ® I'(e) ® I'(W), where I" is shorthand notation for
the symmetry of the quantity following in brackets. This triple product is easily evaluated and
reduced using direct product tables. Notice that each of the cartesian components of p must
be considered in turn, so this procedure must be carried out three times. Each triple direct
product can be evaluated by first taking the direct product of any pair, and then taking the
direct product of this with the remaining component. If the final result does not include the
totally symmetric irreducible representation of the point group, then the transition moment
must be zero. The reason for this conclusion is that a non-totally symmetric integrand will
have two regions of space, one in which the integrand has a certain phase, and another of
equal volume where the phase is reversed, because of its antisymmetry with respect to at
least one of the point group symmetry operations. When integration is performed along the
relevant coordinate the opposite phases of these two regions will cancel and so the integral
vanishes.

Arguments along these lines can be used to establish transition selection rules. The Born—
Oppenheimer approximation conveniently allows the selection rules to be sub-divided into
electronic, vibrational, and rotational selection rules. The remainder of this chapter deals
mainly with electronic and vibrational selection rules. Rotational selection rules can also
be deduced by using symmetry arguments, but in general their derivations are difficult and
are not included here. Rotational selection rules are briefly returned to in the final section
of this chapter.

Factorization of the transition moment

When a molecule undergoes an electronic transition, its vibrational and rotational state may
also change. In any one overall state the Born—Oppenheimer approximation allows the total
wavefunction to be factorized into electronic, vibrational, and rotational parts, namely

W (r, R) = Ye(r, Re)-Yy(R).Ye(R) (7.1D)

where r and R are generic symbols representing all electronic and nuclear coordinates,
respectively. It is assumed in the above that the electronic wavefunction, v, is well approx-
imated at all points during a vibration by the wavefunction at the equilibrium nuclear
coordinates (R.), an approximation justified by the small amplitude of most vibrations in
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low-lying vibrational levels. The rotational wavefunction, v, is a function only of nuclear
coordinates, since electron masses are very small by comparison. In fact for a fixed nuclear
configuration the rotational wavefunction depends only on the orientation of the molecule
relative to some arbitrarily defined set of laboratory axes. This is important information for
determining rotational selection rules but we will not consider the matter any further here
(see, for example, Reference [4] for further information).

If (7.11), with the rotational part removed, is substituted into (7.1), and the dipole
moment operator is expressed as the sum of nuclear and electronic parts, then the tran-
sition moment becomes

M= / / VL R)WLRY e + pia)- 0. (v R0 (R dr AR (7.12)

The subscripts 1 and 2 have been omitted to avoid clashing with the wavefunction subscripts,
and instead we use ' and ” to designate upper and lower states, respectively. Equation (7.12)
can be separated into the sum of two parts, one involving p,, and the other p,. The former
turns out to be zero* leaving

M= f YUr. Re) e (. Re) dr f VIR (R) dR (7.13)

The above expression is extremely important because the first integral on the right-hand side
is the basis for electronic selection rules, while the second determines the accompanying
vibrational selection rules. We now consider each in turn.

Electronic selection rules

The application of group theory to the first integral in equation (7.13) allows the electronic
selection rules to be predicted for any molecule. An example will serve to illustrate this,
with more being found later in some of the Case Studies.

For linear molecules one of the electronic selection rules is AA =0, &1, where A is the
quantum number for the projection of the total electronic orbital angular momentum onto
the internuclear axis. We will not prove this per se, but instead will show that it is consistent
with (7.13) using simple group theoretical arguments. According to the A A selection rule
a 1 < TI transition in a molecule with C,., symmetry is allowed. To show that this is
true, we take the direct product ¥+ ® TI1, which from direct product tables gives the IT
irreducible representation. According to the C,, character table, the x and y components
of the dipole operator also collectively have IT symmetry. The transition must therefore be
allowed since the direct product of any irreducible representation with itself must always
include the totally symmetric representation (and hence the electronic transition moment
can be non-zero). Using the same sort of arguments it is easily shown that, for example, a
%1 < A transition is forbidden.

The term involving g, is zero because, on separating the variables, a product of two integrals is obtained, one
of which is [¥.(r, Rc).¥! (r, Rc)dr. Different electronic state wavefunctions must be orthogonal to each other,
hence this overlap integral is zero.
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There are other selection rules that are just as easy to deduce using group theory. For
example, we can establish that ©* <> ¥+ and £~ <> X~ transitions are allowed, whereas
¥ < X~ transitions are forbidden. Similarly, for electronic states in molecules having a
centre of symmetry, a g or u subscript is added to indicate the symmetry with respect to
the inversion operation, i (the g and u derive from the German words gerade and ungerade,
meaning even and odd, respectively). All three components of the transition dipole moment
operator in any molecule with a centre of symmetry have u inversion symmetry (in point
groups where this symmetry operation is meaningful) and therefore only g <> u transitions
are allowed.

The arguments above refer to the spatial requirements for an allowed transition but the
electron spin must also be considered when deciding whether a transition is allowed or
not. The electronic transition moment as written in (7.13) does not explicitly include spin
as a coordinate in the electronic wavefunctions, although it ought to be there. However,
provided spin—orbit coupling is not large, the electron spins will be unaltered by electric
dipole transitions since spin is a purely magnetic effect. Consequently, no change in spin
multiplicity should occur for an electric dipole transition, i.e. the selection rule is AS = 0.
This is a good selection rule for molecules that contain relatively light atoms, but begins
to weaken as spin—orbit coupling increases, as is often the case for molecules containing
heavy atoms. A classic example of this breakdown is I,, with strong singlet—triplet bands
being well known in its electronic spectrum [5].

Vibrational propensities for diatomic molecules

The second integral in (7.13) is an overlap integral for the vibrational wavefunctions in
the upper and lower electronic states. This determines the vibrational contribution to the
transition probability. More precisely, the square of the overlap integral, which is known
as the Franck—Condon factor (FCF), i.e.

2
FCF = < / o dR> (7.14)

determines the vibrational contribution to the transition probability. For a diatomic molecule,
there is only one internal coordinate, the internuclear separation R, and so the general nuclear
position coordinates symbolized by R in (7.13) are replaced by R in (7.14).

Equation (7.13) is a mathematical statement of the Franck—Condon principle. According
to the Franck—Condon principle, an electron in an electronic transition moves from one
orbital to another so rapidly that the nuclear positions are virtually the same immediately
before and after the transition. In other words, the time taken for the electron promotion (or
demotion) is very short compared with a vibrational period. This is consistent with the idea
of separating the electronic and vibrational degrees of freedom as in the Born—Oppenheimer
approximation.

Suppose that a diatomic molecule has very similar potential energy curves in two different
electronic states, as illustrated by the lowest two curves in Figure 7.2. By similar we mean
that not only do these two curves have the same depth and similar slopes at all points along
the curves, but that they also have nearly identical equilibrium bond lengths. If a transition
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Figure 7.2 Diagram illustrating the source of vibrational structure in electronic absorption spectra.
Two scenarios are illustrated. For the two lowest potential energy curves a spectrum (see stick diagram
on right) dominated by the v/ = 0 — v = 0 transition is observed. This is the case I scenario described
in the text. In contrast a transition from the ground electronic state to the second excited state yields
a long vibrational progression (case II scenario). Notice that the intervals between vibrational bands
are a direct measure of the separations between vibrational levels in the upper electronic state if all
transitions take place from the ground vibrational level in the ground electronic state.
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takes place between these two electronic states, the Franck—Condon factors (FCFs) could
be used to determine the relative probabilities of transitions to different vibrational levels.
To do this quantitatively the vibrational wavefunctions in the two electronic states
must be known so that the FCF in (7.14) can be calculated. Although this can be
done, we will focus on qualitative arguments that lead to some very important general
conclusions.

The similarity of the potential energy curves means that the vibrational wavefunctions
(and vibrational energies) will be very similar in the two electronic states. The vibrational
contribution to the transition moment can then be assessed by considering the degree of
overlap between the vibrational wavefunctions in the upper and lower electronic states.
Consider absorption from v = 0. As can be seen by consulting Figure 7.2, the overlap of
the v/ = 0 vibrational wavefunction with that of v/ = 0 for the middle potential energy
curve is excellent. To see this, imagine sliding the lower curve vertically upwards until
the v/ = 0 vibrational level lies directly on top of the v/ = 0 level. If the same process
is followed for transitions to higher v/, such as v/ = 1 or 2, then one finds once again
that the overlap is good. However, there are now both positive and negative contributions
to the overlap and when integration is performed these approximately cancel, yielding a
very small FCF. The FCF get rapidly smaller as v' increases and so the Av = 0 transition
dominates. If higher vibrational levels in the ground electronic state were populated, as
might be the case at high temperatures, we would find a similar situation, namely that the
overlap for Av = 0 transitions will be very much larger than for Av # 0. Thus one would
expect the absorption (or emission) spectrum to be dominated by Av = 0 transitions if
the upper and lower electronic states have similar potential energy curves. We will call
this case I behaviour, and the stick diagram in Figure 7.2 illustrates its consequences for
the vibrational structure in a spectrum. Case I behaviour is typically observed when the
electronic transition involves movement of an electron whose character changes little from
one orbital to another, as would be the situation if the transition was from one non-bonding
molecular orbital to another non-bonding orbital.

It is worth emphasizing, before we continue further along this track, that no selection rule
has been established here; in fact on the contrary we have found that there is no vibrational
selection rule! However, the arguments just used do reveal the propensity for a change of
vibrational quantum numbers.

Consider now two potential energy curves that are very different, as would be obtained
when an electron jumps between two orbitals of very different bonding character. The
uppermost curve in Figure 7.2 represents a molecule in an excited electronic state having
a longer equilibrium bond length and smaller dissociation energy than the same molecule
in the ground electronic state. Typical vibrational wavefunctions are shown superimposed
on each of the potential curves. In contrast to the case I behaviour above, the overlap of the
v/ =0andV = 0 vibrational wavefunctions is now poor and the maximum overlap shifts to a
transition involving a substantial change in v. However, notice also, as made especially clear
in the accompanying stick diagram of an absorption spectrum in Figure 7.2, that several
different Av transitions have comparable Franck—Condon factors and so the absorption (or
emission) spectrum now consists of a long vibrational progression. This is typical of what
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we will call case II behaviour. Indeed if the potential curves are sufficiently dissimilar it
may not be possible to observe the so-called electronic origin transition, v/ = 0 <— v’ =0,
because the corresponding FCF is too small. Case II behaviour will occur when the electron
involved in the transition shows a major change in bonding character, e.g. a non-bonding
— antibonding transition.

Vibrational selection rules and propensities for polyatomic molecules

In the harmonic oscillator limit we have seen that the vibrational motion of polyatomic
molecules can be reduced to a superposition of vibrations in 3N — 6 normal modes
(or 3N — 5 for a linear molecule), as described in Section 5.2.1. The total vibrational
wavefunction is then a product of the individual normal mode wavefunctions, i.e.

Wi = 1_[ Y1 ws ... Y3n_e (7.15)

3N—-6

where the wavefunction ; of each normal mode is given in equation (5.20) (be careful
not to confuse the subscripts in (7.15), which label the particular normal mode, with the
vibrational quantum number of a specific mode).

If we substitute equation (7.15) into (7.11), and carry out the same factorization process
as employed in Section 7.2, a similar result to that shown in equation (7.14) is obtained.
The only difference is that, instead of a single vibrational overlap integral, a product of
overlap integrals, one for each normal mode, results. This remarkable outcome, which
is brought about by the independence of the various normal coordinates, greatly sim-
plifies the interpretation of vibrational structure in the electronic spectra of polyatomic
molecules.

However, while useful analogies with diatomic Franck—Condon factors can be made,
there are also some important and quite subtle differences. To bring these to the fore, we
must focus on the symmetries of the vibrational wavefunctions. For a diatomic molecule,
the vibrational wavefunction is always totally symmetric with respect to all symmetry oper-
ations of the point group regardless of electronic state or vibrational quantum number. It is
for this reason that the integrand in the Franck—Condon factor is always totally symmetric
for a diatomic and there are therefore no vibrational selection rules in its electronic spec-
troscopy. However, as explained in Section 4.2.2, polyatomic vibrational wavefunctions can
be totally symmetric or non-totally symmetric depending on the symmetry of the normal
coordinate and the vibrational quantum number. For a normal mode with a totally symmetric
normal coordinate, the vibrational wavefunction is totally symmetric for all v. However, a
vibration with a non-totally symmetric normal coordinate has a vibrational wavefunction
that alternates from being totally symmetric to non-totally symmetric as v changes from
even to odd.

Group theory makes it possible to quickly assess the impact this has on vibrational struc-
ture. Suppose that the vibrational wavefunction for a particular mode is totally symmetric in
both upper and lower electronic states. In this case, the corresponding Franck—Condon factor
will have a totally symmetric integrand since the direct product of something that is totally
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symmetric with something else that is totally symmetric must give a result that is totally
symmetric. On the other hand, if either the upper or lower state vibrational wavefunction is
non-totally symmetric, then the integrand will be non-totally symmetric.”

At this point it will be helpful to consider a specific example, CO,. This has the three
normal modes shown schematically in Figure 5.5. The symmetric C—O stretch vy, has
a totally symmetric vibrational wavefunction for all values of the vibrational quantum
number. However, the two non-totally symmetric modes, the degenerate bend, v, and the
antisymmetric stretch, vs, are different. For these modes, the vibrational wavefunction has a
totally symmetric component for v even (0, 2, 4, . . .) but must be non-totally symmetric for
vodd(1,3,5,...). We can now work out the symmetries of the integrands in the Franck—
Condon factors and hence selection rules for all possible upper and lower state vibrational
quantum numbers in an electronic transition.

For v, any value of Av; is possible, although as for diatomic molecules there will be a
propensity for certain values. Suppose the equilibrium C—O bond lengths are substantially
larger or smaller in the upper electronic state than in the lower. This will be the equivalent
of the case II scenario in diatomics, and a long vibrational progression in v; would be
expected for this electronic transition. On the other hand, if the equilibrium bond lengths
are virtually the same in the two electronic states, then this corresponds to the case I limit
and Av; = 0 transitions will dominate, i.e. no significant vibrational progression will be
observed.

For modes v, and v3, because they involve non-totally symmetric normal coordinates,
only even quantum number changes Av = 0, 2, 44, etc., are allowed. In fact a little more
thought will show that Av = 0 transitions will dominate for these modes. For example,
unless one bond becomes longer than the other in the excited electronic state, then there is
no change in equilibrium structure in the direction of normal coordinate v3. This is equivalent
to a case I Franck—Condon situation applying for this mode. Similarly, if the molecule is
linear in both electronic states then there is no propensity for Av, # 0 transitions.

This illustrates a general and important point that will be met in many examples later,
namely that the vibrational structure in electronic spectra is normally dominated by modes
with totally symmetric normal coordinates. Furthermore, the propensity for formation of a
progression in a particular mode will depend on whether there is a change in equilibrium
structure in the direction of that coordinate. If there is a substantial structural change in the
direction of only one coordinate, then only this mode will show any significant activity in
the spectrum. Thus one may have, and often finds, very simple vibrational structure arising
in the spectrum of a relatively complicated molecule.

A useful analogy is to liken the direct product of representations with products of the numbers +1 and —1, where
+1 represents totally symmetric and —1 represents a non-totally symmetric representation. We can therefore
instantly see that the direct product of two totally symmetric representations will give a totally symmetric result
since (1) x (+1) = +1. The direct product of two (identical) non-totally symmetric representations will also give
a totally symmetric result, since (—1) x (—1) = 41. On the other hand, the direct product of a totally symmetric
and non-totally symmetric representation (or vice versa) will give a non-totally symmetric representation, since
HD x(-)=-1.
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Rotational selection rules

When viewed from a classical perspective, photons possess some strange properties. They
have no mass but an advanced theoretical treatment shows that they possess angular
momentum.® This is an important conclusion because it impacts on the selection rules
for spectroscopic transitions. In particular, one of the fundamental tenets of mechanics is
that angular momentum must be conserved. Consequently, whenever a photon is absorbed
or emitted the overall angular momentum of the system must be maintained. Many of
the key rotational selection rules can be justified on these grounds [1]. The basic premise
is that each photon possesses one unit of quantized angular momentum. As a result, the
quantized angular momentum of a molecule cannot change by more than one unit during
photon absorption or emission. A more sophisticated analysis bringing together the transi-
tion moment and the symmetry properties of the rotational wavefunctions leads to additional
selection rules. Proof of these selection rules for the various types of electronic transitions
and various molecular symmetries is beyond the scope of this book. However, the results
for a few simple cases are summarized below.

Consider a single-photon electronic transition in a diatomic molecule. If the upper and
lower electronic states are both !X states, the rotational selection rule turns out to be
AJ = %1, which is easily justified on the basis of the comments above. Transitions where
AJ = +1 are said to be R branch transitions, while those for which AJ = —1 are known as
P branch transitions. The convention in labelling specific transitions is to follow the P or R
designation with the rotational quantum of the lower state in parentheses, e.g. R(3) refers
to the transition from J = 3 in the lower electronic state to J = 4 in the upper electronic
state. Transition energies can easily be determined by combining the rotational selection
rule with equation (6.4). Designating the energy of the electronic + vibrational transition
as AE.,, the general R branch transition R(J) should appear at

AE = AEo+ B J'(J +1)=B"J'(J +1)
= AEe 4+ (B — B")J* + (3B — B")J + 2B’ (7.16)

using the notation J” = J, J' = J + 1. If the rotational constants in the upper and lower
electronic states are approximately the same, which will be the case if the bond length is
largely unchanged by the electronic transition, then (7.16) approximates to AE = AE.,+
2B(J + 1), i.e. a series of lines in the R branch with adjacent members approximately 28
apart is obtained. Similarly, it is easy to derive an analogous formula for P branch transitions
and one finds once again that adjacent members in the P branch are approximately 2B apart
when B’ &~ B = B. In practice, substantial differences between B’ and B” are common in
electronic transitions (but not in infrared transitions). The effect that this has on rotational
structure is encountered in several examples in Case Studies later on in this book.

When one of the electronic states possesses net orbital angular momentum, AJ = 0
transitions are possible. These transitions are called Q branch transitions, a transition from

Strictly speaking photons only have no mass when at rest, which they never are. According to special relativity
mass and energy are interconvertible so from a practical point of view photons do possess mass.
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a specific J level being referred to as O(J). Q branches are impossible for ' X—'X elec-
tronic transitions because the absorption or emission of a photon must change the angular
momentum of the molecule. If one of the electronic states has angular momentum there is
now a mechanism by which the angular momentum of the photon can be compensated for
within the molecule without changing the rotational state.

Observation of rotational structure in spectra is useful because it provides structural
information on the molecule via the rotational constant(s). However, notice also that the
type of rotational structure depends on the symmetries of the electronic states. In electronic
spectroscopy the assignment of electronic states is frequently made through analysis of
the rotational structure. An inverse approach is adopted whereby the observed rotational
structure is first analysed and used to determine the rotational selection rules in operation.
A comparison with the selection rules expected for certain specific types of electronic
transitions then leads to the assignment.

The rotational selection rules for closed-shell non-linear polyatomic molecules are more
involved than for the diatomic case. The quantum number J in the general case is reserved for
the total angular momentum’ of a molecule and for a single photon transition the change in J
is still limited to a maximum of +1 (because of conservation of angular momentum). How-
ever, O branch transitions are now possible regardless of the symmetries of the electronic
states. For symmetric tops, the rotational quantum number K must also be considered. If the
electronic transition moment is polarized along the inertial axis on which K is quantized,
then the selection rule is AK = 0. Otherwise, the selection rule is AK = +£1. Further infor-
mation on the rotational selection rules for electronic transitions in closed-shell molecules,
including asymmetric tops, can be found in Reference [6].

Finally, we note that when a molecule possesses a non-zero net electron spin, as would
be the case for free radicals, there are additional factors to be considered when analysing
the rotational structure. Case Studies 22, 24, and 28 provide specific examples of this
behaviour.
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Part Il
Experimental techniques

Modern electronic spectroscopy is a broad and constantly expanding field. A detailed
description of the experimental techniques available for this one area of spectroscopy could
fill several books of this size. This part is therefore restricted to giving an introduction to
some of the underlying principles of experimental spectroscopy, together with brief descrip-
tions of some of the more widely used and easily understood methods employed in electronic
spectroscopy.






8 The sample

8.1

This book is concerned with the spectroscopy of molecules, primarily in the gas phase.
Broadly speaking, there are two types of gas source that are commonly used in labo-
ratory spectroscopy. One is a thermal source, by which we mean that the ensemble of
molecules is close to or at thermal equilibrium with the surroundings. An alternative,
and non-equilibrium, source is the supersonic jet. Both are discussed below. Individual
molecules can also be investigated in the condensed phase by trapping them in rigid, unre-
active solids. This matrix isolation technique will also be briefly described.

Thermal sources

A simple gas cell may suffice for many spectroscopic measurements. This is a leak-tight
container that retains the gas sample and allows light to enter and leave. It may be little more
than a glass or fused silica container, with windows at either end and one or more valves for
gas filling and evacuation. The cell can be filled on a vacuum line after first pumping it free
of air (if necessary). If the sample under investigation is a stable and relatively unreactive
gas at room temperature, this is a trivial matter.

If the sample is a liquid or solid with a low vapour pressure at room temperature, then
the cell may need to be warmed with a heating jacket to achieve a sufficiently high vapour
pressure. Residual air, together with volatile impurities that may be trapped in the condensed
sample, can be removed using one or more freeze—pump—thaw cycles. This relies on the
desired species being less volatile than impurities. As the name implies, a freeze—pump—
thaw cycle begins with the cell being cooled to a temperature at which the sample is frozen
and hence has a negligible vapour pressure, perhaps using a dry ice or liquid nitrogen bath. It
is then pumped on for a short time to remove undesirable volatile species (but not the frozen
sample) before closing the vacuum tap and warming the cell up to the desired operating
temperature. A repeat of this process will help to improve the sample purity.

If the aim is to study highly reactive molecules, such as free radicals or molecular ions,
some means of generating these molecules from a suitable precursor will be required. For
these more exacting experiments it is frequently necessary to replenish the sample by using
a constant flow of gas through the cell. Free radicals can be made by a number of methods,
the most common being ultraviolet photolysis or electrical discharge. Electrical discharges
through gases are also excellent sources of molecular ions. High temperature pyrolysis or
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vaporization may also be used to generate reactive or unusual molecules, and this can be
done inside a gas cell with careful design.
The production of highly reactive molecules is encountered again in Section 8.2.3.

Supersonic jets

General principles

For a typical molecular gas at room temperature, many rotational energy levels will have
significant populations. Furthermore, while the population of vibrational levels other than
the zero point level is likely to be small, this may not be true as the temperature is raised
significantly above room temperature. Thus the spectrum of a molecule at room or higher
temperatures may consist of transitions out of many different energy levels. If the spectral
resolution is relatively low, this will result in broadened bands consisting of unresolved
rotational structure and perhaps even unresolved vibrational structure. If, on the other hand,
the resolution is high, the large number of transitions may give rise to an overwhelmingly
high density of individual rovibronic lines in the spectrum and make assignment difficult,
if not impossible.

Clearly it is sometimes desirable to cool the sample. Cooling the walls of a gas cell
by submerging it in a cold bath may be an acceptable solution in some cases. However, an
obvious problem with this type of cooling is that, if taken too far, it will lead to condensation
of the gas. Most gases will condense at liquid nitrogen temperatures (77 K) and many will
condense at far higher temperatures. Thus cell cooling is of limited utility for gas phase
studies.

Supersonic jets offer a way of dramatically cooling the internal degrees of freedom of
molecules without excessive condensation. To see how they work, consider the scenario in
Figure 8.1, which shows a gas reservoir located inside a vacuum chamber. A small hole of
diameter D links the gas reservoir to the vacuum chamber. Suppose the reservoir is filled
with an inert gas such as argon or helium. Furthermore, assume that the vacuum chamber
is evacuated by a high speed pump capable of maintaining a low pressure regardless of the
amount of gas escaping into the chamber. There are two extreme pressure limits that we
will now consider.

If the pressure in the gas container is relatively low then the escaping atoms are unlikely
to undergo any collisions with other atoms as they pass through the orifice. Quantitatively,
this limit corresponds to A >> D, where A is the mean fiee path of the gas.! If the reservoir
contains gas at thermal equilibrium with its surroundings, i.e. there is a Maxwell-Boltzmann
distribution of speeds, then the distribution of speeds in the escaping gas will also have the
same form. The departing atoms are said to form an effusive gas jet.

At the other extreme, if the gas pressure in the reservoir is sufficiently high such that
A K D, then the departing atoms will undergo many collisions as they pass through the

The mean free path of a gas is the average distance a gas particle travels between collisions. It is inversely related
to the gas pressure.
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Supersonically expanding gas
Gas reservoir

Figure 8.1 Formation of a supersonic jet. Gas in the reservoir is pressurized, usually to a pressure
exceeding 1 bar. The supersonic jet expands into a vacuum chamber evacuated by a high speed pump
(not shown).

orifice. This is the regime of the supersonic jet. An atom initially moving rapidly towards the
orifice will be slowed down by collisions with slower atoms heading in the same direction,
while an atom initially moving slowly towards the orifice will be hurried along by collisions
with more energetic partners. These collisions will tend to order the departing velocities
of the atoms into a narrow range as the atoms ‘squeeze’ through the orifice and out into
vacuum. If one tries to imagine the view from one of the atoms as it moves along in the jet
downstream of the orifice, the atoms in the immediate vicinity would appear to be virtually
stationary compared with their speeds in the gas reservoir. The translational temperature, as
described by the distribution of speeds, will therefore be very low and can in fact be lower
than 1 K. The thermal energy of the reservoir has been converted into directed gas flow
with near uniform gas atom speeds, as illustrated in Figure 8.2.

The average speed of the gas atoms will have increased compared with that in the
container. The ratio of the average speed of the gas particles to the local speed of sound
is called the Mach number. If one took the ratio of the average speed of the atoms in the
jet to the speed of sound at room temperature, the Mach number would be modest (on
the order of 1.3). However, the local speed of sound in the jet is much lower because the
speed of sound decreases as the temperature of the gas falls (it is proportional to 7"?).
Consequently, since the gas is cooled dramatically by the expansion, the Mach number can
be very high, with values >50 not being unusual. This is the origin of the term supersonic
jet. The orifice separating the gas reservoir from the vacuum is frequently referred to as a
nozzle.

Cooling of the translational degrees of freedom is not, in itself, particularly interesting
for the spectroscopist. However, the cooling of internal degrees of freedom in molecules is
also possible. In the region immediately downstream of the orifice each atom or molecule
will undergo a moderate number of collisions, typically 10>~10°, before the collision rate
drops rapidly towards zero because of the low translational temperature and because of the
divergence of the jet. Prior to this point energy can be transferred from internal degrees of
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Figure 8.2 Comparison of the speed distributions in the gas reservoir (Maxwell-Boltzmann distri-
bution) and in the supersonic jet far downstream of the orifice.

freedom to the cold (and cooling) translational bath through collisions. Suppose a small
proportion of some molecular gas is mixed in with the inert carrier gas.” As the gas expands
into vacuum, the molecules can undergo collisions with the inert gas atoms in which vibra-
tional and rotational energy is converted into translational energy. The translational motion
is then cooled rapidly by the mechanism described above.

The cooling efficiency is different for the rotational and vibrational degrees of freedom,
with the former tending to be far more efficient than the latter. The source of this differential
cooling is the difference in energies between adjacent quantum states for rotational versus
vibrational motion. The more energy that has to be transferred, the lower the chance of
success. In fact, to a reasonable approximation, the probability of energy transfer on collision
falls off exponentially as the size of the energy mismatch increases between the ‘giving’
and ‘receiving’ degrees of freedom. This differential cooling effect can be quantified in
terms of the different ‘temperatures’ of the various degrees of freedom. The rotational
temperature, as determined by the relative populations of the rotational levels assuming a
Boltzmann distribution, can approach the translational temperature: values as low as 1 K
are attainable. The lower efficiency of intermolecular vibrational — translational energy
transfer means that the vibrational populations may not alter significantly from their reservoir
values. However, since most molecules are normally in the zero point vibrational level before
expansion, this is rarely a problem. Thus the dominant cooling of internal degrees of freedom
is of the rotational levels, and this has proved to be highly beneficial in spectroscopy, as will
be illustrated in several Case Studies later.

The molecular species is said to be seeded into the inert carrier gas. Typical proportions would lie within the range
0.1-10% by volume of molecular gas, the balance being inert carrier gas. Higher proportions are likely to lead to
substantial condensation of the molecular gas in the expansion.
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As a final general point about supersonic jets, we return to the issue of condensation at
low temperatures. It should be clear from the above that a supersonic jet is a non-equilibrium
gas source. As the cooling proceeds, the collision rate drops dramatically until, at a relatively
small distance from the nozzle, there are virtually no further collisions at all between gas
particles. Condensation is avoided for kinetic rather than thermodynamic reasons.

Pulsed supersonic jets

An ideal supersonic jet requires a very low pressure in the vacuum chamber. If this is not
attained, then collisions of the expanding gas with background gas molecules in the chamber
degrade the jet properties.” Continuous supersonic jets have a very high gas throughput
and therefore a satisfactory vacuum can only be achieved by using large vacuum pumps
coupled to large vacuum chambers. This is an expensive option and quite unnecessary for
many spectroscopic applications.

If the gas is introduced into the chamber in short bursts, the total gas throughput per unit
time can be dramatically reduced. As well as reducing consumption of potentially expensive
gases, much smaller (and cheaper) vacuum pumps can be employed without any major loss
in the performance of the supersonic jet. This is particularly significant for experiments
that use pulsed lasers as light sources (see later). A typical pulsed laser used in electronic
spectroscopy may output 20 pulses per second, each pulse having a duration of 10 ns. Since
the total on-time of the laser is only 200 ns in every second, it would clearly be very wasteful
to use a continuous supersonic jet in this situation. Pulsed jets can be obtained by inserting
a pulsed gas valve between the gas reservoir and the vacuum chamber. Some research
groups have employed modified pulsed injection valves from cars, but nowadays there are
relatively cheap commercial pulsed valves designed specifically for use in spectroscopic and
related experiments. These can have opening times as short as a few microseconds, although
they are more commonly used with opening times of several hundred microseconds in
spectroscopy experiments. The opening time of the valve needs to be synchronized with the
firing time of the pulsed laser, and this can be done straightforwardly with electronic timing
devices.

Production of free radicals, clusters, and ions in supersonic jets

Collisions in a gas can be classified as either two-body or three-body (chemists may be more
familiar with the alternative names, bimolecular or termolecular). The collision rate for two-
body collisions will necessarily be far higher than that for three-body collisions, since the
latter require the simultaneous collision of three distinct entities. Two-body collisions are
responsible for cooling in a supersonic jet. On the other hand, it is three-body collisions
that lead to the formation of molecular or van der Waals complexes, since the third body

The ‘ideal” properties of the supersonic expansion will be maintained for a finite distance before collisions with
the background gas cause a shock front. The position of this shock front, which is called the Mach disk, is given
by Xm = 0.67D(P;/P.)"/?, where P; and P, are the reservoir and chamber pressures, respectively. If the chamber
pressure is very low then the hypothetical Mach disk may exceed the vacuum chamber dimensions, the ideal
scenario.
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can collisionally stabilize the complex before it falls apart (cf. the need for a third body in
the recombination reactions of free radicals, such as CH; + CH; + M — C,Hg + M).*

The number of two-body collisions downstream of the nozzle is proportional to P.D,
where P; is the pressure in the gas reservoir behind the nozzle and D is the diameter of the
orifice. The three-body collision rate depends on P D, and so complex formation is favoured
by high reservoir pressures. This idea has been widely exploited by gas phase spectroscopists
to study van der Waals complexes. For example, the addition of noble gas atoms to simple
species, such as metal atoms or small molecules, or onto larger molecules such as benzene,
tetrazine, and azulene, has been achieved. The study of complexes involving inert gas atoms
is important because it provides detailed information on van der Waals forces, and the low
temperature environment in a supersonic jet is excellent for studying these very weakly
bound species. Other types of complexes, such as hydrogen-bonded dimers and trimers,
have also been prepared in the gas phase by this means [1].

Many other fascinating species can be formed in supersonic jets. For example, free
radicals may be produced by photolysis. The usual method is to cross the jet with an
ultraviolet laser beam close to the nozzle so that subsequent cooling in the expanding gas
is possible. Many different free radicals have been investigated by this route, ranging from
simple diatomic and triatomic species, such as CH, CH,, HCO, OH, to larger radicals such as
cyclopentadienyl (CsHs) [2]. The simplification of the spectra of these molecules brought
about by supersonic expansion has led to remarkable advances in our knowledge of the
structures and properties of these important chemical intermediates.

Molecular ions can also be studied in supersonic jets. One way to make these is by
use of an electrical discharge (which can also be used to make free radicals). A possible
arrangement for a discharge/supersonic jet experiment is shown in Figure 8.3.

Finally, it is also possible to make highly reactive molecules in the region just upstream
of the nozzle, i.e. just prior to expansion, and then entrain these molecules in a supersonic
jet. This idea has been widely exploited, most notably in the production of metal-containing
molecules. Metal atoms can be ablated from metal surfaces using high intensity pulsed
lasers, such as Nd:YAG or excimer lasers (see Chapter 10), and can then be carried to the
point of expansion by a suitable carrier gas. If a reagent is seeded into the inert carrier gas,
other species can be made by chemical reactions, such as metal hydrides, metal carbides,
metal halides, and organometallics.

Matrix isolation

Inert solid hosts provide an alternative environment for investigating individual molecules.
The noble gas solids are the best examples since they are virtually chemically inert and have
no absorption bands in the infrared, visible, and near-UV regions. The basic idea is to mix
the molecules of interest with an excess of noble gas and this mixture is then condensed on

Examples of cluster formation through two-body collisions are known. In these cases, it is thought that the initial
two-body collision leads to the formation of a reasonably long-lived orbiting complex. Providing the lifetime of
this complex is sufficiently long, it can be stabilized by another two-body collision leading to the formation of a
stable cluster.
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Figure 8.3 A pulsed discharge nozzle for the production of highly reactive molecules in a supersonic
jet. A high voltage ring electrode is separated from the main nozzle assembly (which is at earth
potential) by a small distance. When the valve opens the presence of gas in the region immediately
downstream of the nozzle orifice leads to electrical breakdown and the formation of a discharge.

to a cooled window (see Figure 8.4). Extremely low temperatures are required to solidify the
gas, as can be seen from Table 8.1. In the ideal scenario, isolated molecules will be trapped
at a specific lattice site within the host matrix and will be distant from any other molecule in
the solid. To guarantee this separation a large excess of inert gas is used, typical guest:host
ratios being 1:103 to 1:10*. Diffusion must also be minimized to prevent reaction, and this
is achieved by using temperatures well below the freezing point of the noble gas host. Any
spectra recorded will then be due almost entirely to isolated guest molecules held rigidly
within the host matrix.

There are several attractive features of the matrix isolation technique. Providing the
matrix is at a sufficiently low temperature it can be maintained almost indefinitely. Con-
sequently, a wide variety of spectroscopic techniques, including some that are relatively
insensitive, can be employed. Highly reactive species such as free radicals and molecular
ions can be trapped and investigated, as can weakly bound complexes such as hydrogen-
bonded or van der Waals bonded species.

However, there are also many disadvantages to the matrix isolation approach. With the
exception of some diatomics, the trapping sites are too small to allow molecules to rotate.
Consequently, it is impossible to observe rotational structure. Furthermore, the host matrix is
never truly inert. Interactions between the noble gas atoms and guest molecules tend to have
a very modest impact on the vibrational motion of molecules. However, excited electronic
states are often severely perturbed by the noble gas host, especially for the heavier noble
gases. This manifests itself in substantial shifts of electronic absorption bands compared
with the gas phase. Furthermore, these bands tend to be much broader than in the gas phase.
There are two reasons for the broadening. One is that the molecules may occupy several
different types of sites within the solid, both substitutional and interstitial. In addition, the
guest—host interaction leads to excitation of lattice vibrations (so-called phonon modes) in
the solid when the guest molecule is electronically excited. In many instances this makes it
impossible even to resolve vibrational structure in the electronic spectra.
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Table 8.1 Maximum operating temperatures

(Timax) Of inert solid matrices

Substance Thax /K
Ne 7.3
Ar 25
Kr 35
Xe 48
N, 19

Tnax> Which is one-third of the freezing point, defines the
upper limit at which the solid should be relatively rigid
and diffusion slow. However, even lower temperatures
are required if no diffusion is to be guaranteed.

Cold
head

Temperature
sensor

Window

to spectrometer

Figure 8.4 Schematic of a matrix isolation experiment. A gas mixture composed of the target
molecules (o) diluted in noble gas (o) is sprayed onto the surface of an ultracold window. The cold
head is cooled either by a closed cycle helium cryostat or by a static liquid helium cryostat. Various
spectroscopic techniques can be applied. In an absorption experiment the transmission of the light
beam through the window is measured using standard instrumentation.

Neon is the preferred host for electronic spectroscopy because it produces the smallest
perturbations. However, neon is expensive and therefore argon is more commonly used.
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9.1

lines

It is common to refer to each transition as giving rise to a /ine in a spectrum. No line is
infinitesimally sharp, and indeed some lines in spectra may be very broad. Before consid-
ering the sources of this broadening, it is important to be able to agree on a definition of the
width of a transition. The most commonly used is the full-width at half~-maximum (FWHM),
the definition of which is illustrated in Figure 9.1.

The spectrometer itself will always make a contribution to the linewidth, and in many
cases this may be the major factor limiting the spectral resolution. Discussion of instrumental
resolution will be encountered in appropriate chapters later in this part. However, it is
important to realise that the width of a spectral line is not only a function of the quality of
the spectrometer. Indeed, with appropriate equipment, the instrumental resolution could be
orders of magnitude higher than the observed resolution in an experiment. It is therefore
important to be aware of non-instrumental sources of line broadening, and some of the more
important ones are briefly considered below.

Natural broadening

Natural (or lifetime) broadening is a consequence of an uncertainty relationship similar to
the well-known Heisenberg uncertainty principle. It arises because of the finite lifetimes
() of quantum states. In particular, the following inequality holds,

t-AE > h)2 (9.1)

where AE is the uncertainty in the energy of the state. Thus a state with a short lifetime will
give rise to a large energy uncertainty, while a state with a long lifetime may have a very
precisely defined energy. For spectroscopic purposes it is useful to convert from energy to
frequency in order to calculate the frequency spread caused by the lifetime:

T-Av>1/4m 9.2)

In almost all cases the lifetime of the upper state in a spectroscopic transition is much shorter
than that for the lower state, and so the former makes the dominant contribution to any nat-
ural broadening. All excited states are unstable with respect to spontaneous emission, one
source of the finite lifetimes. Non-radiative routes may also be available for depopulating an
excited state. In the absence of non-radiative pathways, excited electronic states have typical
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Figure 9.1 Definition of the full-width at half-maximum (FWHM) of a spectral line. The position
of the line is normally quoted as vy, which is the mid-point of the FWHM region. In this picture vg
coincides with the peak maximum but in ‘noisy’ spectra this need not be the case.

lifetimes in the 10-1000 ns region if the spontaneous emission corresponds to an allowed
transition. From (9.2) the corresponding range of natural linewidths is 0.08-8.0 MHz,
which is very narrow (~107°-10"*cm™!). Consequently, natural broadening can be
neglected in most spectroscopic measurements. The exception to this statement is when
there are rapid non-radiative decay processes available. It is not unusual for these to produce
lifetimes of <1 ps, thus producing natural broadening in excess of 8 GHz (>0.25cm™").
A commonly encountered example of this is predissociation (see Section 11.2).

Doppler broadening

Doppler broadening is often the most important non-instrumental source of line broadening.
Its origin is relatively straightforward to grasp. If a molecule has a velocity component in
the direction of a light source, then there will be a shift in the absorbed frequency compared
with that of the stationary molecule. Consider first a stationary atom or molecule with
absorption frequency vy and imagine a light source which is producing light of this precise
frequency. If the molecule now moves towards the light source, it will experience an apparent
light frequency higher than that when at rest. In order for the radiation to be absorbed, the
frequency of the light source must be lowered so that the apparent frequency seen by the
moving molecule is vy. The opposite situation will pertain if the atom or molecule is moving
away from the light source.

If the gas is at thermal equilibrium, the gas particles will possess a Maxwell-Boltzmann
distribution of velocities. The one-dimensional Maxwell-Boltzmann distribution, in con-
trast to the three-dimensional distribution of speeds (see Figure 8.2), is symmetrical about
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the rest position. Thus the linewidth of the spectroscopic transition, if dominated by Doppler
broadening, will have the same profile as the one-dimensional Maxwell-Boltzmann distri-
bution. It can be shown that the linewidth (FWHM in MHz) is then given by

[T
Av =715 x 10"y, i 9.3)

where M is the molar mass of the molecule (in g mol~') and T'is the temperature. According
to equation (9.3), Doppler broadening is smaller for heavier molecules at a given temperature
(because they have narrower velocity distributions), is reduced by lowering the temperature,
and is directly proportional to the frequency of the incident radiation. The last factor is
important in electronic spectroscopy because of the high frequency of visible and ultraviolet
radiation. For example, in the near-ultraviolet the Doppler width will be in the region of
several gigahertz (where 30 GHz &~ 1 cm™!) for a room temperature sample and could be
the major factor limiting the resolution.

Pressure broadening

Pressure (or collisional) broadening is caused by the depopulation of molecules in excited
states brought about through collisions. Since the lifetime of an excited state is reduced
by collisional relaxation, this effect is an extension of lifetime broadening. Clearly it will
depend strongly on the gas pressure. For pressures <1073 mbar, which are common in many
branches of electronic spectroscopy, pressure broadening can be neglected. Wall collisions
can also cause a similar effect and can be minimized by increasing the size of the cell.
Pressure broadening is relatively unimportant in electronic spectroscopy.
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Crucial to any spectroscopic technique is the source of radiation. It is therefore pertinent to
begin the discussion of experimental techniques by reviewing available radiation sources.
Although there are many different types of light sources, of which some specific examples
will be given later, in many spectroscopic techniques /asers are the preferred choice. Indeed
some types of spectroscopy are impossible without lasers, and so it is important to be
familiar with the properties of these devices. Consequently, before describing some specific
spectroscopic methods, a brief account of the underlying principles and capabilities of some
of the more important types of lasers is given.

Properties

Since their discovery in 1960, lasers have become widespread in science and technology.
Laser light possesses some or all of the following properties:

(1) high intensity,
(i) low divergence,
(iii) high monochromaticity,
(iv) spatial and temporal coherence.

Each of these properties is not unique to lasers, but their combination is most easily realized
in a laser. For example, a beam of light of low divergence can be obtained from a lamp by
collimation via a series of small apertures, but in the process the intensity of light passing
through the final aperture will be very low. On the other hand, lasers naturally produce
beams of light with a low divergence and so the original intensity is not compromised.
Likewise, highly monochromatic radiation can be obtained from a continuum lamp by
suitable filtering of unwanted wavelengths, e.g. by a high resolution grating monochromator,
but in the process most of the light from the lamp is rejected and the final intensity will be
very low. With lasers, very narrow linewidths, in some cases better than <10~ cm™!, can
be obtained with all of the light intensity concentrated into this narrow wavenumber range.

Although several different types of lasers have been used as light sources in electronic
spectroscopy, by far the most important have been dye lasers. The significance of the dye
laser is that it can produce tunable radiation across the whole of the visible region and
extending into the near-ultraviolet and near-infrared. This is, of course, precisely the region
of interest in much of electronic spectroscopy. Consequently, our discussion of specific types
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Figure 10.1 A simple laser cavity.

of lasers, which follows a description of the underlying principles in the next section, is
deliberately biased towards providing a framework for understanding dye lasers. However,
brief mention will also be made of other tunable lasers and several important fixed-frequency
lasers.

For a detailed description of the properties of lasers the reader is referred to the books
by Svelto [1], Siegman [2] or Silvast [3].

Basic principles

The name laser is an acronym derived from /ight amplification by the stimulated emission
of radiation. As the acronym implies, laser action is based on stimulated rather than sponta-
neous emission. The basic idea follows from the discussion given in Section 7.1.1. Consider
a material of some sort, which might be solid, liquid, or gas, in which spectroscopic transi-
tions can occur. We will call this material the laser medium. If the laser medium is at thermal
equilibrium, then for any pair of energy levels in a particular type of atom or molecule, the
population of the lower level (1) is greater than that of the upper level (2), i.e. Ny > N,. Thus
if the system is bathed in radiation of the correct wavelength to excite the transition 1 <> 2,
then net absorption will occur. However, if Ny < N, could be obtained, a situation known
as a population inversion, then stimulated emission would dominate over absorption, i.e.
the sample could act as a radiation amplifier, at least for a time. A population inversion is
essential for laser operation and it will be shown later how this non-equilibrium population
distribution can be produced.

However, a population inversion by itself is not enough to make a laser. Uncontrolled
stimulated emission would yield light travelling in all directions, as in a light source based
solely on spontaneous emission. However, stimulated emission can become strongly direc-
tional if the laser medium is placed in a highly reflecting cavity, such as the plane mirror
cavity illustrated in Figure 10.1. Any radiation with normal, or very close to normal, inci-
dence on the mirrors will be subjected to many passes along the cavity. For all other angles
of incidence the radiation will quickly disappear from the cavity. This geometric constraint
ensures that stimulated emission is favoured along the optical axis of the cavity.
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Figure 10.2 Longitudinal cavity modes superimposed onto the line profile of the spectroscopic
transition responsible for laser action. Various losses in the cavity create a finite threshold that must
be exceeded in order for lasing to occur. In this particular figure two cavity modes exceed the threshold,
so lasing is limited to these two modes only.

Laser action works as follows. First a population inversion is produced by some means
(see below). Spontaneous emission follows, and one of the photons produced may go on to
cause stimulated emission from an atom or molecule to produce two photons, namely the
original plus that from the stimulated emission. Owing to the coherent nature of stimulated
emission, the two photons will be in phase. This is the beginning of a cascade process in
which the number of photons increases exponentially as the stimulation process spreads
throughout the cavity. However, high stimulated emission intensities are normally obtained
only after many passes of the light backwards and forwards along the cavity, stimulating the
same volume, and as mentioned earlier this is only achieved for photons reflecting backwards
and forwards along the cavity axis. This is known as positive feedback and automatically
limits the amplification to light paths along the cavity optical axis and it is this that produces
the low beam divergence. In practice of course, most applications of lasers require the laser
light to be directed out of the cavity and this is achieved by making one of the end mirors
partially transmitting.

The monochromaticity of lasers derives from a combination of two factors. One is the
existence of longitudinal cavity modes, which only allow feedback at frequencies satisfying
the relationship

nc

v=o7 (10.1)
where 7 is an integer, ¢ is the speed of light, and L is the length of the cavity. Cavity modes
are the result of interference along the cavity axis, which requires that standing waves
must form. Cavity modes alone do not produce monochromatic radiation since the number
of modes is, potentially, infinite. However, in practice the number of modes is severely
limited by the width of the spectroscopic transition(s) of the laser medium, as illustrated in

Figure 10.2. If there is only a modest population inversion, and if the broadening is small,
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then only a single mode may be supported. Clearly this will produce highly monochromatic
radiation. Even multimode laser operation may yield radiation with fairly narrow linewidths,

and certainly <1 cm™!.

lon lasers

Noble gas ion lasers have found widespread use as visible laser sources. The most common is
the argon ion laser, which is based on electronic transitions in Ar*. Details of the operating
mechanism can be found elsewhere (for example see Reference [1]). For our purposes,
it is only necessary to recognize that both the argon ions, and the population inversion
between electronic energy levels in these ions, are produced by an electrical discharge in
a sealed argon-containing tube. Mirrors are placed at both ends of the tube, one being
partially transmitting to allow a small proportion of the radiation to exit as the output laser
beam.

Population inversions can be obtained between several different energy levels, and as
a consequence the argon ion laser can produce radiation at a number of wavelengths in
the blue and green, the most prominent lines being at 488.0 and 514.5 nm. Although they
are sometimes used on their own as spectroscopic light sources, most notably in Raman
spectroscopy, the principal use of argon ion lasers in electronic spectroscopy is as pump
lasers to drive continuous tunable dye lasers (see below). In this application typical output
powers of the argon ion laser in the 1-10 W range are employed.

Nd:YAG laser

Another laser which is used by spectroscopists mainly as a pump laser is the Nd: YAG laser.
Both continuous and pulsed Nd:YAG lasers are commercially available, but the principal
use of Nd:YAG lasers in spectroscopy is to pump pulsed dye lasers. The laser medium is
composed of Nd** ions trapped in a rod of yttrium aluminium garnet, or YAG for short.
YAG is a glass-like material that has good mechanical and thermal stability, and is transpar-
ent to visible and near-infrared light. Population inversion in the Nd** ions is achieved by
optical pumping from a flashlamp, as illustrated in Figure 10.3. The output laser wavelength,
1.06 m, is in the near-infrared.

To achieve the highest possible output intensity, a pulsed Nd: YAG laser is equipped with a
Q-switch. This is an electro-optical device that acts as a very fast shutter in the cavity. When
the flashlamp is fired, the Q-switch is initially set to block feedback in the cavity. The pulse
of light from the flashlamp lasts for several milliseconds, allowing a build-up of population
in the upper laser level. In fact the upper laser level has an average (spontaneous emission)
lifetime of about 0.23 ms, and so if the Q-switch is allowed to block feedback for about the
first 0.2 ms of the flashlamp firing period, the population inversion reaches a maximum. If
the Q-switch is then opened to allow feedback, the maximum possible intensity is obtained
and the resulting laser pulse is often referred to as a giant pulse. Typical durations for
these giant pulses are 5-10 ns, and pulse energies of up to several joules can be extracted
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Figure 10.3 Schematic layout for a pulsed Nd: YAG laser. The Q-switch is a Pockels cell, an electro-
optical switch that is normally closed but opens a short time into the flashlamp pulse to release a
‘giant’ pulse of laser light. See text for further details.

at 1.06 pm with quite modest-sized lasers. A pulse of 1 J for 5 ns corresponds to a peak
power (the power when the laser is emitting light) of 200 MW!

As will be seen shortly, dye lasers must be pumped by laser light with a shorter wavelength
than the dye laser output wavelength. Thus in order to generate visible dye laser radiation the
pump laser must have either a visible or ultraviolet output. The 1.06 wm output wavelength
of the Nd:YAG laser is clearly inappropriate. It may seem, therefore, that Nd:YAG lasers
would be useless for pumping dye lasers. However, this is not the case, since the high inten-
sity at 1.06 pm makes it possible to generate higher harmonics efficiently (A = (1.06 pm)/n
where n = 2, 3, 4, . . .) through non-linear optical methods. This entails passing the
1.06 wm radiation, the laser fundamental, through crystals with the correct non-linear
optical properties for generating higher harmonics. In the case of the Nd: YAG laser, a crys-
tal of potassium dihydrogen phosphate, or KDP for short, is commonly used. It is possible
to generate high intensities of the second (532 nm), third (355 nm), and fourth (266 nm)
harmonics by this means. The second and third harmonics are employed to pump dye lasers
while the fourth harmonic is quite often used as a photolysis light source.

Excimer laser

Excimer lasers are gas lasers based on transitions in molecules which are bound only
in excited electronic states. Important examples are ArF, KrF, and XeCl. In their ground
electronic states, the noble gas atoms show no tendency to form chemical bonds with free
halogen atoms. However, excited states can be quite strongly bound. This can be understood
by considering what would happen if one of the electrons in the outer p orbital of the noble
gas atom is excited up to a vacant p orbital. If this is done, the atom now has unpaired
electrons with which it can form a covalent bond to the halogen atom (which of course
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also has an unpaired p electron).' Strictly speaking, a heteronuclear diatomic molecule of
this type is known as an exciplex, the term excimer being reserved for the homonuclear
analogue. However, the name excimer has captured the imagination of laser manufacturers
and the resulting laser systems are now universally called excimer lasers.

The important point about excimers is that, when they are formed, a population inversion
between the upper electronic state and the ground state is automatically obtained since the
ground state is unbound (and therefore has zero population). Thus, providing the transition to
the ground state is optically allowed, a laser can be constructed based on excimer formation.
Actual excimer lasers utilize a high voltage gas discharge through a noble gas/halogen
mixture to generate excimers. By changing the gas mixture, the laser wavelength can be
altered. The output wavelengths of the most commonly used excimers are 193 nm (ArF),
248 nm (KrF), and 308 nm (XeCl). The output is pulsed, with durations in the 10-15 ns
range. XeCl excimer lasers are frequently used alternatives to Nd:YAG lasers for pumping
dye lasers, although they are usually more costly to operate due to the requirement for
expensive gases.

Dye lasers

Dye lasers are by far the most important type of laser used in electronic spectroscopy. Their
key feature is wavelength tunability, which covers the whole of the visible and parts of the
near-infrared and near-ultraviolet, i.e. 330-900 nm. A brief overview is given here.

The laser medium is a solution of an organic dye in a solvent such as methanol. Organic
dyes tend to be quite large molecules containing conjugated 7 systems. The important
properties of dyes for laser operation are:

(i) strong absorption and emission bands in the visible or UV;
(i1) broad absorption and emission bands, extending over perhaps 30 or 40 nm.

The importance of these properties can be appreciated by consulting Figure 10.4. The ground
electronic state of all organic dyes is a spin singlet, designated S,. The first excited singlet
electronic state is denoted S; and it is S; < Sy transitions that give the dye its colour. The
rovibrational levels in each of these states are so close together that, in effect, they form a
continuum, as illustrated schematically in Figure 10.4. The continuous nature is caused by
two factors. First, organic dye molecules, being relatively large, have a very high density of
rovibrational energy levels. Furthermore, each level is collisionally broadened by the very
rapid collision rate in solution such that the small gaps between them effectively disappear.

When optically excited into the S; state, collisional quenching is rapid and almost com-
plete relaxation to the zero point level in the S; state normally occurs before emission gets
underway. Optical pumping, using a flashlamp or another laser, is used to produce this
excitation of the dye solution. The population inversion is between the zero point level of S|
and any of the rovibrational levels in Sy lying above the populated levels. Franck—Condon

An alternative viewpoint is that electronic excitation of the noble gas lowers its ionization energy, thus facilitating
formation of an ionic bond to the electronegative halogen atom.
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Figure 10.4 Schematic illustration of low-lying singlet and triplet electronic states in a typical
dye molecule. The non-radiative processes in the singlet manifolds, shown by the curly arrows, are
predominantly collison-induced and are very rapid. The proportion of molecules transferred into the
first triplet state (T;), by intersystem crossing, is small. However, this is detrimental for dye laser
operation, especially for continuous dye lasers.

factors favour emission to a wide range of levels in Sy, i.e. the emission band, like the
absorption band, will be broad but the former will be shifted to longer wavelengths than the
latter. To obtain laser action at a specific wavelength, it is necessary to employ an optical
filter or selector so that feedback can be limited to the chosen wavelength rather than be
spread over the whole of the broadened emission band.

In pulsed dye lasers, control of the feedback wavelength is achieved by employing a
diffraction grating as the rear mirror. A typical arrangement using optical pumping from
another laser is shown in Figure 10.5. The wavelength of the reflected light is controlled
by rotating the diffraction grating relative to the optical axis of the laser cavity: only light
at a specific wavelength is reflected for a given angle (6). The dye solution is placed in
a transparent cell within the cavity and is either stirred (low pump pulse energies) or is
flowing (high pump pulse energies). Notice that a beam expander is used to enlarge the
laser spot size so that most of the grating surface is exposed: this helps both to narrow
the linewidth and to prevent damage to the grating. With this arrangement laser linewidths
in the region of 0.2 cm™! can be achieved. An order of magnitude improvement is pos-
sible if an additional optical element, an etalon, is inserted into the cavity, as shown in
Figure 10.5.

Continuous dye lasers are of a different design to pulsed lasers. One important difference
concerns the delivery of the dye solution, which is sprayed as a jet through the pump laser
beam. This is necessary to minimize competition from triplet-triplet transitions. The other
significant difference is the wavelength selection process, which is not controlled by a
diffraction grating. Instead, tuning is obtained by using one or more intracavity filters.
Coarse tuning can be achieved with a Lyot (birefringent) filter, while for finer tuning one or
more etalons may be inserted.
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Figure 10.5 Optical arrangement of a tunable pulsed dye laser. The dye laser is pumped by pulsed
radiation from another laser. Abbreviations are as follows: BS, beamsplitter; M, mirror; CL, cylindrical
lens; OC, output coupler (end mirror); ODC, oscillator dye cell; PDC, preamplifier dye cell; ADC,
amplifier dye cell; BE, beam expander; E, intracavity etalon (optional); DG, diffraction grating. The
preamplifier and amplifier dye cells are used to increase the intensity of the dye laser beam produced
in the laser cavity. This amplification process can increase the intensity by more than two orders of
magnitude.

The output wavelength can be extended outside of the traditional dye operating ranges
using non-linear optical techniques. The most commonly used is frequency doubling, in
which the dye laser fundamental is passed through a suitable crystal to generate the second
harmonic (Vour = 2vin). This crystal must possess the correct non-linear optical properties,
as well as being able to withstand very high laser intensities. 3-barium borate is one of the
best materials currently available, with KDP as a cheaper alternative for some wavelength
ranges. Efficient harmonic generation requires correct phase matching of the fundamental
and higher harmonic beams. Phase matching is the process by which the refractive indices
of the input and output beams are equalized, and this requires a specific orientation of
the crystal relative to the incoming laser beam. Frequency doubling allows coverage of
the whole of the near-ultraviolet (205400 nm), and more advanced techniques can extend
the wavelength into the vacuum ultraviolet region (<200 nm). At the long wavelength end,
tunable radiation beyond 1 wm can be generated using difference frequency generation [5].

Titanium:sapphire laser

The Ti:sapphire laser is a tunable solid state laser based on transitions of Ti* ions doped in
a sapphire host. The crystalline lattice broadens the electronic energy levels of Tit to such
an extent that tunability far exceeding that of a single laser dye is achieved. However, the
Ti:sapphire laser is not really a competitor to the dye laser since their tunability ranges only
partially overlap. One of the strengths of the Ti:sapphire laser is that much of its tunability
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range, 660—1180 nm, is in a difficult region for dye lasers. It also possesses better frequency
stability and a narrower linewidth than dye lasers. Output in the near-ultraviolet and blue
regions is possible by frequency doubling the fundamental output.

Optical parametric oscillators

These are tunable laser sources that offer the promise of eventually superseding dye lasers.
Tunability in optical parametric oscillators (OPOs) is achieved by non-linear optical pro-
cessing of a single input (pump) beam. It is useful to think of this as the opposite of frequency
doubling in a non-linear crystal. In essence, a single high intensity laser beam is passed
through the non-linear crystal. The input beam can ‘split” into two output beams, one known
as the signal and the other the idler, such that vi, = Vgnal + Vigier- The exact reverse of fre-
quency doubling would correspond to equal idler and signal frequencies. However, any
combination of Vgna and vigier 1, in principle, achievable providing the sum equals v;,, and
a particular combination can be amplified if the mixing process is carried out in a tunable
laser cavity. By combining the tunability of a diffraction grating in the laser cavity, and the
orientation of the crystal for optimum phase matching, efficient generation of tunable radi-
ation over a wide spectral range is possible. Commercial OPOs are available which operate
over the whole of the visible region and these can be extended into the near-ultraviolet by
frequency doubling.
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Optical spectroscopy

Consider a beam of light of intensity / incident on some absorbing sample. Providing only
a small fraction of the light is absorbed,' and assuming that losses caused by light scattering
are negligible, the transmitted light intensity, /, is governed by the familiar Beer—Lambert
law,

A= loglo(?> =eg(v)cl (1L.1)

where 4 is known as the absorbance. The absorbance is dependent upon the concentration
of absorbing species, ¢, the optical path length, / (distance travelled by the light through
the sample), and the molar absorption coefficient, €. The molar absorption coefficient is a
measure of the intrinsic absorbing power of the sample and is frequency dependent, which
is why it has been written as &(v). It is customary to give c in units of mol dm~3 and / in
cm, and so ¢ is often quoted in the rather strange mixture of units dm® mol~! cm~!. As one
might expect, ¢ is related to the Einstein B coefficient introduced in Chapter 7.

The absorbance is an important quantity because it is directly proportional to the con-
centration. If monochromatic radiation is passed through a material of known thickness
and known molar absorption coefficient, the concentration of the absorbing species can
be determined from a measurement of the absorbance. This is a widely used feature of
absorption spectroscopy.

Conventional absorption/emission spectroscopy

A schematic of an absorption spectrometer is shown in Figure 11.1. Ideally, the light source is
continuous over the wavelength region of interest and shows no major variations in intensity.
Resistively heated filaments are good sources of near-continuum light. One example is a
white-hot tungsten filament, which will cover the whole of the visible and parts of the
near-ultraviolet and near-infrared. A wavelength selector is central to the spectrometer and
is usually a monochromator built around a diffraction grating, thus allowing tunability.
In order to obtain a spectrum, light intensity transmitted through the monochromator is

If the fraction of light absorbed is large, then the light intensity varies strongly as the sample is traversed and the
Beer—Lambert law no longer holds.

87



88

Experimental techniques

Monochromator

Lenses
Entrance Light
slit Sample source
NI/
-5
/N

Diffraction
grating

PC

Figure 11.1 Schematic of a conventional grating-based absorption spectrometer. The monochromator
is of the Czerny—Turner type in which the entrance and exit slits are placed at the focal points of curved
mirrors.
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Figure 11.2 Block diagram of a standard emission spectrometer.

measured as a function of wavelength. The light intensity is measured by a photomultiplier
tube (PMT), a photodiode, or some other light-detecting device.

In an emission spectrometer, the sample must be driven up to excited quantum states in
order for emission to occur. This is normally achieved by an electrical discharge, although
broadband optical excitation is also possible. As indicated in Figure 11.2, the monochroma-
tor is now used to select a specific emission wavelength from the sample and the intensity at
this wavelength is measured by imaging the light onto a detector such asa PMT. An emission
spectrum is obtained by recording the PMT signal as a function of emission wavelength.

Monochromators such as that shown in Figure 11.1 have both entrance and exit slits.
These are crucial to the wavelength selection process. Narrowing the entrance and exit slits
can improve the spectral resolution, but it does so at the expense of sensitivity because of
the reduced light throughput. Improvements can be made that make more efficient use of the
available light. For example, the exit slits in an emission spectrometer can be dispensed with
if a multichannel detector is available. Examples are photodiode arrays and charge-coupled
devices (CCDs). These measure the light intensity as a function of position on the detector
surface and so are able to record a large portion of the spectrum simultaneously. Another
alternative is Fourier transform spectroscopy, which does away with both the entrance and
exits slits as well as the diffraction grating. Fourier transform spectroscopy is described
later in this chapter.
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Figure 11.3 Experimental arrangement for laser-induced fluorescence spectroscopy. Fluorescence
radiates in all directions, a portion of which is collected by the lens and transmitted to the detector, a
photomultiplier tube. The filter, which is used to reduce the amount of scattered laser light reaching
the detector, is optional. The arrangement shown is for laser excitation spectroscopy. For dispersed
fluorescence spectroscopy the filter is replaced with a scanning monochromator.

11.2 Laser-induced fluorescence (LIF) spectroscopy

This is one of the principal techniques for studying electronic transitions of both neutral
molecules and molecular ions at high sensitivity and at high resolution. In LIF spectroscopy
an electronic transition of the molecule is excited using a tunable laser and any fluorescence
generated is monitored. There are two complementary methods that parallel, respectively,
conventional absorption and emission spectroscopy.

Suppose the wavelength of a tunable laser is scanned through the electronic absorption
band of a molecule. Absorption will occur at resonant wavelengths and could be monitored
by measuring the intensity of the transmitted laser beam. The high intensity of a laser
can greatly increase the probability of absorption compared with low intensity non-laser
light sources and thus it might be thought that laser absorption spectroscopy would be
very sensitive. Unfortunately, this is not the case because the fractional absorption by a
sample will still normally be very low. Thus a small change in intensity is superimposed
on a large background signal. When fluctuations in intensity of the laser beam and noise
from the light detector are factored in, this approach turns out to have a very limited
sensitivity.

However, instead of measuring absorption directly it can be monitored indirectly by
detecting fluorescence from the excited electronic state. The experimental arrangement is
remarkably simple, and is outlined in Figure 11.3. A tunable laser is passed through the
sample and any fluorescence produced is collected off-axis, usually at right angles to the
laser beam, by a collection lens. The light is then detected by a photosensitive device, most
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usually a PMT. PMTs have phenomenal sensitivities and are even capable of detecting single
photons in some cases. When the laser is off-resonance, no fluorescence will be produced,
and therefore the PMT registers no signal. However, at resonant wavelengths fluorescence
is possible and so absorption can be registered by detecting emission from the excited state.
This is the basic idea of laser excitation spectroscopy, in which a spectrum is obtained by
measuring the fluorescence intensity as a function of laser wavelength.

There are several important points to note about laser excitation spectroscopy. First, while
there is a clear similarity between laser excitation spectroscopy and absorption spectroscopy,
there is also an important difference. The intensity of peaks in a laser excitation spectrum
depends on both the absorbance of the sample and the fluorescence quantum yield of the
excited state. The fluorescence quantum yield is defined as

__ rate of photon emission by excited state

Dy = 11.2
f rate of photon absorption (1.2

A fluorescence quantum yield of unity implies that all molecules excited to the upper
electronic state relax via photon emission. However, competition from other decay routes
(see below) may not only lower ®¢, but may also cause it to change from one excited state
level to another. As a result absorption and fluorescence excitation spectra may look very
different.

The high sensitivity of LIF spectroscopy arises from the low background signal received
by the PMT at off-resonance laser wavelengths. Even though any fluorescence produced
may be very small, it is easily detected by the PMT and therefore if the off-resonance
signal is much smaller still then an extremely high signal-to-noise ratio can be achieved. In
practice the off-resonance signal is never zero. The principal cause is scattered light from
the laser. This can be minimized by keeping potential scattering sites out of the path of the
laser. Furthermore, scattered laser light can be virtually eliminated if at least a portion of
the fluorescence is at longer wavelengths than the laser. If this condition is satisfied, and
it often is for many molecules, then an optical filter, which will only transmit wavelengths
longer than that of the laser, can be inserted in front of the PMT.

In laser excitation spectroscopy the fluorescence serves only as a means of detecting the
absorption process. However, the fluorescence itself clearly contains spectroscopic infor-
mation since it arises from emission to lower energy levels. If the emission is dispersed in
a monochromator, the spectrum obtained will be the emission spectrum originating from
a specific (laser-excited) upper state. This type of spectroscopy goes by several names,
including dispersed fluorescence spectroscopy, laser-excited emission spectroscopy, and
single vibronic level fluorescence spectroscopy; we will use the first of these throughout
this text.

In laser excitation spectroscopy the resolution is often limited by the linewidth of the laser.
For pulsed dye lasers, linewidths of ~0.03 cm™! can be obtained relatively straightforwardly.
If narrower linewidth lasers are used, such as CW dye lasers or specialized pulsed dye lasers,
other factors may begin to limit the resolution, such as Doppler broadening. If steps are taken
to minimize Doppler broadening, a resolution of better than 0.001 cm™! can be attained.
With such a high resolution, rotationally resolved electronic spectra of quite large molecules
can be tackled.
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Figure 11.4 Predissociation caused by the crossing of two potential energy curves. Notice that only
those energy levels above the crossing point can undergo predissociation.

In dispersed fluorescence spectroscopy, the use of a scanning monochromator is normally
the principal factor limiting the resolution. Even a large monochromator may only have a
resolution of about 1 cm~'. Thus dispersed fluorescence spectroscopy is normally concerned
with vibrationally resolved emission spectra.

The principal disadvantage of LIF is the need for a fluorescent excited state. Fast non-
radiative decay routes may reduce the fluorescence quantum yield to zero and in these cases
LIF cannot be used. An example of a non-radiative decay process is predissociation, which is
illustrated in Figure 1 1.4. Predissociation results from a crossing of potential energy surfaces
of two excited electronic states, one of which is repulsive (dissociative). If the molecule
is excited to the bound potential energy curve, it may hop over onto the repulsive curve at
the crossing point and will then undergo dissociation. If the probability of predissociation
is not too high, there may still be sufficient fluorescence for LIF detection. In such cases,
the occurrence of predissociation manifests itself by a broadening of spectral lines, since
the effect of predissociation is to decrease the lifetime of the level and hence increase the
lifetime broadening.

Depopulation mechanisms such as predissociation are particularly troublesome for large
molecules because of their high density of rovibrational energy levels. Usually the coupling
mechanism, the process which actually brings about the interaction between the electronic
states, will be restricted by symmetry in the same way that symmetry restricts electric dipole
transitions. However, the importance of symmetry restrictions decreases as the overall point
group symmetry of a molecule is lowered, and large molecules tend to have low symmetry.
It is for these reasons that LIF is a particularly powerful technique for investigating small
molecules, but is more limited in scope for large molecules.
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Cavity ringdown (CRD) laser absorption spectroscopy

Direct laser absorption electronic spectroscopy is appealing for several reasons. First, the
narrow linewidths of lasers can be exploited. Second, it does not rely on the occurrence
of a secondary process for detection, as in LIF spectroscopy. Third, the absorbance can
be directly related to the concentration of the absorbing species, thus allowing absolute
concentration measurements to be made.” However, as discussed in the previous section,
when done in the conventional manner laser absorption spectroscopy is a low-sensitivity
technique.

Cavity ringdown spectroscopy is a form of laser absorption spectroscopy in which the
absorbance is determined but in a rather ingenious manner. It is a relatively new technique,
first appearing in 1988, but is based on a simple idea.

Suppose a gas is placed between two highly reflecting mirrors which act as an optical
cavity. If a pulse of laser light is injected into the cavity, as shown in Figure 11.5, then
laser light will reflect backwards and forwards and, if the spacing between the mirrors is
relatively small, interference will occur as a consequence of the coherence of the laser
beam. However, the coherence of a laser beam is restricted to a finite distance known as
the coherence length.’ The finite coherence length is brought about by uncertainty in the
frequency of the light, which in turn is a result of the non-zero linewidth. The coherence
length, /.on, is given by

¢

leoh = — 11.3
= (113)

where Av is the linewidth (FWHM) of the laser. For typical pulsed dye lasers without

intracavity etalons, the linewidth is 0.2 cm~! and so equation (11.3) yields /o = 5cm.
Consequently, if the mirror separation is significantly larger than 5 cm, interference is not
an issue; this is the starting point for cavity ringdown spectroscopy.

If the mirrors are able to transmit a small proportion of the incident light, then each time
the laser light pulse impinges on a mirror some is lost from the cavity. Gradually, at a rate
determined by the mirror reflectivities, the intensity of the light trapped within the cavity
will decay to zero. In fact the decay is exponential, and the time taken for the intensity
to decay to 1/e of its initial value is known as the ringdown time. It can be measured by
placing a sensitive light detector, usually a photomultiplier tube, behind one of the mirrors,
as shown in Figure 11.5.

Now suppose that an absorbing sample is placed inside the cavity. Absorption of the
laser light by the sample will accelerate the ringdown process, resulting in a faster ringdown
time. The larger the absorbance, the shorter the ringdown time. Hence it is possible to record
something akin to an absorption spectrum by measuring the change in ringdown time as
a function of laser wavelength. In fact there is a simple and exact relationship linking

It is difficult to deduce absolute concentrations of an absorbing species from LIF spectroscopy, although changes
in relative concentrations can easily be measured.
The coherence length is a measure of the distance over which the phase relationships between the constituent waves
in a light source are maintained. For optical path differences exceeding this difference, the phase relationships are
lost and so interference effects become negligible.
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Figure 11.5 Experimental arrangement for pulsed cavity ringdown laser absorption spectroscopy.
The cavity is defined by the two plano-concave mirrors. Concave mirrors are preferred over plane
mirrors because the former can produce a so-called stable optical cavity, making it easier to ‘trap’ the
radiation within the cavity.

ringdown time to the sample absorbance, 4, which takes the form

L{1 1
A= —(— - —> (11.4)

C\T 70

where L is the cavity length, c is the speed of light, and 7 and t are the ringdown times in
the absence and presence of an absorber, respectively. Thus the cavity ringdown spectrum
can easily be converted into a conventional absorption spectrum.

To achieve high absorption sensitivity, high mirror reflectivities are required since these
lengthen the ringdown times and therefore make it easier to observe small changes. Mirrors
with reflectivities better than 99.995% are available in the visible and near-ultraviolet. Of
course, one problem with such high mirror reflectivities is that only a tiny proportion of the
light from the laser is injected into the cavity in the first place since the laser beam enters
through one of the end mirrors! However, with sensitive detectors such as PMTs this does
not cause a significant problem.

The discussion so far has focussed on cavity ringdown using pulsed lasers. However, it is
also possible to record CRD spectra with continuous lasers (CW-CRD). Typically, a narrow
linewidth tunable diode laser is employed as the light source. It is still necessary to inject a
pulse of light into the cavity. One way this can be achieved is to scan the cavity length by
mounting one of the end mirrors on a piezoelectric transducer. If the cavity length does not
match one of the longitudinal modes of the cavity, no significant light can be injected. This
restriction is normally unimportant in pulsed laser CRD because the relatively broad laser
linewidths mean that there is always some radiation that matches longitudinal modes of the
cavity. As the mirror is moved in CW-CRD, at some stage the standing wave condition will
be met and light will be injected into the cavity. An electro-optical switch, known as an
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acousto-optical modulator, is then used to block the laser beam so that a pulse of laser light
remains in the cavity. A ringdown profile is then measured in the normal manner.

CW-CRD is growing in importance. One reason for this is that it is capable of much
higher spectral resolution than pulsed laser CRD. Much higher pulse repetition rates can
also be employed giving improved detection sensitivity [1].

Resonance-enhanced multiphoton ionization (REMPI) spectroscopy

Highly excited electronic states can be studied by vacuum ultraviolet (VUV) absorption
spectroscopy. One of the problems in working with VUV light sources is the low resolution
achieved in this region. Although tunable laser radiation can be obtained in parts of the
VUYV, this is not as routine to generate, nor is it as cheap, as visible and near-ultraviolet
laser sources. Fortunately, many VUV transitions can be accessed by multiphoton transitions
using visible or near-ultraviolet laser light. Resonance-enhanced multiphoton ionization
(REMPI) spectroscopy is a particularly powerful and widely used example of a multiphoton
spectroscopic technique.

REMPI is a two-stage process. In the first step, molecules are promoted to an excited
electronic state by the absorption of one or more photons. It may at first sight seem strange
to suggest that more than one photon can be absorbed in a spectroscopic transition, since
we normally regard them as single-photon resonant processes. However, there is nothing
intrinsically impossible in using two or more photons of lower energy to achieve the same
task, providing (i) their combined energy satisfies the resonance condition, e.g. for two
photons having the same frequency, £, — E; = 2hv, and (ii) all selection rules are satisfied
(see later).

The principal reason why multiphoton transitions are not normally considered is that such
processes are extremely improbable at normal light intensities. The photons must arrive at
the molecule at virtually the same instant in time in order to be simultaneously absorbed.
With ordinary light sources, such as lamps or low intensity lasers, this hardly ever happens.
However, if extremely high light intensities are employed, as is the case with powerful
pulsed lasers, then multiphoton transition probabilities need no longer be negligible. Even
S0, it is easy to appreciate that the probability will rapidly decrease as the number of photons
to be absorbed increases.

Once the molecule has reached the excited electronic state by absorption of one or more
photons, it may absorb one or more further photons to climb above the ionization limit. This is
a REMPI process. Compare this with direct (non-resonant) multiphoton ionization. Clearly
REMPI and direct (non-resonant) multiphoton ionization have the same overall photon
order, i.e. the same total number of photons is absorbed. However, in REMPI the ionization
is achieved by two steps of lower photon order, each with a much higher probability (many
orders of magnitude) than the non-resonant multiphoton ionization process. In other words,
the ionization probability is dramatically increased by breaking the ionization process down
into two separate, sequential steps.

This suggests a means of detecting electronic transitions. If the laser is tuned to a wave-
length that is not resonant with an energy level in the excited electronic state manifold
of the neutral molecule, then ionization is only possible by the non-resonant route, and
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Figure 11.6 (a) One- and (b) two-colour resonance-enhanced multiphoton ionization processes.

therefore has a very low probability. As the wavelength is scanned, when resonance with an
intermediate rovibronic level occurs the ionization probability dramatically increases and
this can be observed by detecting ions. This is the essence of REMPI spectroscopy, namely
the ion current is measured as a function of laser wavelength.

Various experimental arrangements can be used. In the simplest, a single laser is used
to excite both the first and second steps, as shown in Figure 11.6(a). This is known as
single-colour REMPI. However, two pulsed lasers operating at different wavelengths could
be used in a so-called two-colour experiment, one to excite the molecule to the intermediate
electronic state, and the second to produce ionization. The two-colour method is important
when the wavelength required for exciting the resonant transition is unsuitable for the
subsequent ionization step. An example is illustrated in Figure 11.6(b), where the first
photon accesses a relatively low-lying electronic state. Absorption of a second photon from
this laser will not exceed the ionization limit, but a second laser with a much shorter
wavelength can be used to ionize the molecule.

The examples shown in Figure 11.6 use a single photon to access the intermediate state.
The single colour process in this case is sometimes said to be a (1 4 1) process, meaning
one photon of the same wavelength is used in both the first and second excitation steps.
Similarly, the two-colour process is sometimes written as (1 + 1’), the prime indicating
a different colour is being used for the one-photon ionization step. However, it should be
recognized that more than one photon could be used in the initial and ionization steps if
sufficiently intense light sources are employed. For example, (2 4+ 1), (2 4+ 1'), (2 + 2), and
(3 + 1) processes are not uncommon in REMPI experiments.

Ion formation can be detected by measuring the ion current between two conducting
parallel plates of opposite polarity. Although adequate for many purposes, this approach
is less than ideal for the study of mixtures since REMPI signals from more than one
type of molecule are possible, thus causing potential confusion. A solution to this prob-
lem is to employ a mass spectrometer for detecting the ions, since this allows the mass
of the ion, and therefore the carrier of the spectrum, to be identified. Indeed, this is an
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extremely important advantage REMPI has over LIF spectroscopy. The mass spectrometer
may be a time-of-flight device or a quadrupole mass filter. Further details may be found in
Reference [2].

We have seen that visible or near-ultraviolet photons from powerful pulsed lasers may be
used to access high-lying electronic states by multiphoton transitions. Of course, this is only
possible providing the appropriate selection rules are satisfied. A detailed discussion of the
selection rules, and in particular their derivation, is beyond the scope of this text. However, in
general the selection rules are the result of a sequential application of single-photon selection
rules.* For example, for linear molecules, for cases where the electronic orbital angular
momentum quantum number, A, is a good quantum number, the one-photon selection rule
is AA = 0, 1. However, for a two-photon transition the selection rule becomes AA = 0,
+1, +2. Consequently, whereas transitions from a X electronic state to a A state are
forbidden in single-photon spectroscopy, they are allowed in a two-photon transition. This
often means that new electronic states can be observed by REMPI spectroscopy, and this is
another interesting aspect of this technique.

Double-resonance spectroscopy

Double-resonance spectroscopy is the study of any spectroscopic transition using two
sequential resonant steps. REMPI could be regarded as an example of double-resonance
spectroscopy. However, whereas the second resonant step in REMPI involves excitation
into the ionization continuum, one could equally well excite an atom or molecule into a
bound state below the ionization continuum. Why would anyone wish to carry out such
an experiment, and how would it actually be done? To some extent the answer to the first
question has already been stated in the previous section describing REMPI spectroscopy.
Any double-resonance absorption transition that uses, for example, two visible photons
induces the same energy change in a molecule as a single photon transition in the ultra-
violet. Ultraviolet light may be difficult to obtain at the desired wavelengths, or it may
be that the linewidth of the ultraviolet source is much higher than that of the visible light
sources used in the optical-optical double-resonance experiment. Another facet of a double-
resonance experiment is the modified selection rules already discussed in the REMPI case.

How would an optical-optical double-resonance experiment be carried out? In general
two lasers are required, both being independently tunable. Care must be taken to ensure
that they overlap spatially and, if they are pulsed lasers, that they also overlap temporally.
Detection of transitions is usually achieved by observing fluorescence (either from the
intermediate state or from the final state), or ions after absorption of a further photon.

The two resonance transitions need not both be ‘upwards’. An important example where
one of the transitions is ‘downwards’ is the technique known as stimulated emission pumping
(SEP). This form of spectroscopy is illustrated in the energy level diagram in Figure 11.7. A
photon from one laser, termed the PUMP laser, is used to drive a molecule to a fluorescent

We concern ourselves solely with the n-photon resonant step. Selection rules for the ionization step are different
(in fact less stringent) because the departing electron may take away angular momentum.
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Figure 11.7 Stimulated emission pumping (SEP) spectroscopy. Two lasers are employed. The PUMP
laser excites the molecule to a particular rovibrational level in an excited electronic state and fluores-
cence from that upper level is monitored. The DUMP laser drives molecules back down to a specific
rovibrational level in the ground electronic state by stimulated emission. A spectrum is obtained
by monitoring the fluorescence intensity as a function of the DUMP laser wavelength; successful
stimulated emission is registered as a dip in the fluorescence intensity.

excited electronic state, and the fluorescence is monitored by a photomultiplier tube. If
a second laser, known as the DUMP laser, is added with the correct frequency to excite
transitions resonantly back down to the lower electronic state, then stimulated emission
can occur. This will necessarily reduce the fluorescence (which is, of course, spontaneous
emission) seen by the PMT since the stimulated emission will follow the path of the DUMP
laser. Thus an SEP spectrum can be recorded by fixing the PUMP laser wavelength, scanning
the DUMP laser wavelength, and recording the dip in fluorescence intensity as a function
of the DUMP laser wavelength.

SEP spectroscopy can be compared with dispersed fluorescence spectroscopy (see
Section 11.2). In the latter, the resolution is limited primarily by the monochromator, and is
often poor. In SEP no monochromator is required and the resolution is limited primarily by
the laser linewidth. The much higher resolution of SEP makes it possible to obtain rotation-
ally resolved emission spectra, and also allows the investigation of very dense vibrational
manifolds in low-lying electronic states such as those seen near to dissociation limits.

Fourier transform (FT) spectroscopy

The spectroscopic techniques considered so far all work in the frequency domain. In other
words, the exciting radiation and/or the emitted radiation is selected according to its fre-
quency. A spectrum is then recorded by controlled variation of this frequency.

Fourier transform (FT) spectroscopy adopts a very different approach. It is based on
interference effects produced by radiation of different frequencies. In NMR and microwave
spectroscopy the interference phenomena are observed in the time domain. However, this
is not possible for infrared, visible, and ultraviolet radiation because the frequencies are
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Figure 11.8 Schematic of an FT absorption spectrometer, showing the Michelson interferometer at
its heart. The helium—neon laser beam, represented by the dashed line, takes a parallel path to the
light from the continuum source and is used to measure the distance moved by mirror M,.

too high. In these regions of the electromagnetic spectrum the length domain is employed
and an interferogram is generated. The interferogram contains information on the complete
spectrum (or at least a large part of it) in an ‘encoded’ form, which can then be converted
into a normal frequency domain spectrum.

The heart of an FT spectrometer is the Michelson interferometer. This is the device that
generates an interferogram. To see how it works, consider the apparatus in Figure 11.8.
Light from a continuum source is passed into the Michelson interferometer and through
a sample cell. However, let us simplify the situation to begin with by imagining that the
light source is monochromatic and that the sample cell is absent. The first part of the inter-
ferometer that the light encounters is the beamsplitter, B, which sends a portion of the
beam towards mirror M; and the remainder towards mirror M,. After reflection by the
mirrors the two beams return to the beamsplitter and interference takes place. Whether this
interference is constructive or destructive depends on the optical path difference for the
beams in the two arms of the interferometer, i.e. 2BM; — 2BM, =§. The quantity § is
referred to as the retardation. If the retardation is an integer multiple of complete wave-
lengths, i.e. § = nA, then constructive interference occurs and the light intensity reaching the
detector will be relatively high. If, on the other hand, § =nA /2, then complete destructive
interference occurs and no light reaches the detector. At retardations between these two
extremes, the detector signal level depends on the degree of constructive versus destructive
interference.’

Newcomers to FT spectroscopy and the Michelson interferometer are often troubled by two points. (i) How can
an incoherent light source, such as a lamp, give rise to the phase coherence necessary for observable interference
effects? (ii) Where does the light go when destructive interference occurs if it does not go to the detector? The
answer to question (i) is straightforward. An incoherent light source can be thought of as being composed of
numerous independent waves, or wavelets. Although there is no phase relationship between the wavelets, each
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Figure 11.9 (a) Hypothetical stick spectrum and (b) corresponding interferogram showing the beat
pattern formed by interference of several cosine waves of different frequencies and relative intensities.
The quantity § is the retardation — see text for further details.

An interferogram is obtained by varying the retardation. This is achieved by moving
one of the mirrors and recording the detector signal as a function of mirror position. For
a monochromatic light source, the interferogram will consist of a single cosine wave and
the wavelength of the light can be measured directly from the interferogram, providing
the retardation is known to sufficient precision at all points in the moving mirror motion.
In order to be able to distinguish peaks from troughs in the waveform, which is clearly
essential for the measurement of the wavelength, the uncertainty in mirror position must be
<X /2. When dealing with visible or ultraviolet light this is quite a technical challenge but
is feasible and has been achieved.

Figure 11.9 simulates a more complicated situation, where five different radiation fre-
quencies of differing intensities interfere to produce an interferogram. A pattern is still
discernible in this more complicated case but, in the limit of a continuum light source, fully
constructive interference occurs only at § = 0 and the signal rapidly decays either side of
this position. The strong interferogram at and near § = 0 shows what is known as a centre
burst.

When an absorbing sample is placed in the spectrometer, a situation somewhat inter-
mediate between the two extreme cases of monochromatic and complete polychromatic
(continuum) radiation sources occurs. The intensity of light entering the interferometer at
certain wavelengths is reduced when the sample is present due to absorption. The result is an
interferogram which is dominated by a centre burst but which also shows interference fringes
extending out from § = 0 (see Figure 11.10). These interference fringes contain, potentially,
all of the information about the absorption by the sample. In other words, it is possible to
extract the complete frequency domain absorption spectrum from the interferogram.

individual wavelet acts as a ‘mini’ coherent light source. Thus the interference effects seen after splitting and
recombining the beam arise from interference of light originating within these individual wavelets. The answer
to (ii) is also straightforward: when there is a drop in intensity at the detector due to interference, this is because
destructive interference redirects the light back towards the source.
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Figure 11.10 Interferogram showing a dominant centre burst and the formation of interference fringes
away from the centre burst due to absorption of infrared radiation by the sample. The retardation,
8, is actually monitored at a series of discrete moving mirror positions given by the ‘point number’ on
the horizontal axis. Zero retardation corresponds to a point number just below 400 in this example.

How might this be done? One route would be a trial and error process, in which we
guessed at the reduction of light intensity at certain wavelengths caused by absorption,
and simulated the interferogram by superimposing the electromagnetic waves at various
values of the retardation. This simulated interferogram would then be compared with the
actual interferogram and, if agreement was not obtained, a new guess would be made at
the absorption spectrum and a new simulation would be attempted. With the help of a
computer this approach is just about conceivable to deduce the frequency domain spectrum
in Figure 11.9(a) from the interferogram in Figure 11.9(b). However, for more complicated
cases, as would be found in real laboratory work, this would be a hopelessly long-winded
process even for a computer.

In practice, the length — frequency domain conversion is achieved by the mathematical
transformation process known as Fourier transformation. Fourier transformation allows
information in one domain to be converted to that in an inverse domain. In the case of
the Michelson interferometer, the interferogram is measured in the length domain, i.e. as a
function of the retardation. The inverse of length is the wavenumber (v), and so wavenumber
and length are complementary Fourier variables. In other words, if the light intensity at the
detector is measured as a function of retardation, Fourier transformation can convert this
into intensity versus wavenumber, i.e. into a spectrum.

Fourier transformation is an integral transformation given by

(V) =2 / 1(8) cos(27v8) ds (11.5)
0
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where /(8) is the interferogram signal and /(v) is the spectrum. This compact expression
may mislead the reader into thinking it is easy to evaluate. However, /(6) is not an analytical
function and so the integral must be evaluated numerically. Furthermore, the integral must
be calculated at each value of v in order to construct a spectrum. Thus Fourier transformation
is a major computational task and, in the early days of FT spectroscopy, it was a severely
limiting factor. Nowadays, with much higher computer speeds coupled with development
of the fast Fourier transform algorithm in the mid 1960s [3], Fourier transformation rarely
takes more than a few seconds on a high performance PC.

FT spectrometers have a much greater light-gathering power than grating instruments
because both entrance and exit slits are eliminated. Consequently, a spectrum of signal-to-
noise ratio comparable to that of a grating spectrometer can be obtained in a much shorter
measurement time with an FT spectrometer.

Another important advantage of FT spectroscopy is the high accuracy of wavenumber
measurements. The accuracy of the wavenumber measurement is determined, in principle,
by the accuracy with which the moving mirror position is known at all points in its motion.
In real FT spectrometers, the relative position of mirror M; relative to M, is also measured
interferometrically. This is achieved by sending a reference laser beam, usually from a low
power helium—neon laser (A = 632.8 nm) along the same path as the signal beam (see
Figure 11.8). The moving mirror generates interference fringes from the laser beam beyond
the beamsplitter and, if the wavenumber of the laser is accurately known, then the relative
position of the mirror is easily deduced by fringe counting (this is done electronically).
Absolute wavenumber accuracies of better than 0.001 cm~! are possible.

The final point to note about FT spectroscopy is the resolution. It turns out that the
wavenumber resolution is the inverse of the maximum retardation, &, . Thus for amaximum
mirror displacement of 10 cm, which corresponds to a maximum retardation of 20 cm, a
resolution of 0.05 cm™! is obtained The highest resolution commercial instruments currently
on the market have a maximum mirror displacement of about 1 m, giving a best resolution
0f 0.005 cm 1.

Fourier transform spectroscopy is commonplace in the infrared region. Its extension into
the visible and ultraviolet came later but there are now several commercial manufacturers
of UV/Vis FT spectrometers.
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Conventional ultraviolet photoelectron spectroscopy

The basic principles of conventional photoelectron spectroscopy were described in
Section 1.1. To recap, the molecules of interest are illuminated by ultraviolet photons with
sufficient energy to ionize them.

M+hv — Mt +e”

The photon energy must equal or exceed the ionization energy of molecule M in order for
the above process to take place. Ignoring the kinetic energy of the recoiling ion, which is
negligible owing to the large mass disparity between the ion and the electron, the excess
energy from photoionization can appear either as electron kinetic energy, ion internal energy
(vibrational and rotational), or a combination of the two.

From conservation of energy, as summarized in equation (1.2), measurement of the
electron kinetic energy spectrum for a fixed ultraviolet wavelength provides spectroscopic
information on the ion. The ionization energy depends on which electron is being removed,
and thus the most weakly bound will give rise to electrons with the highest kinetic energy
while those more tightly bound will yield lower energy electrons. This gives rise to coarse
band structure, with each band representing a different ionization process. However, each
band contains structure arising from the population of different vibrational and rotational
levels within the particular electronic state of the ion, and this additional structure provides
a great deal of important information. This structure can only be observed if the resolution
of the electron spectrometer is sufficiently high and, as will be seen shortly, the resolution
in conventional ultraviolet photoelectron spectroscopy is relatively poor.

Most readers will know that highly electropositive elements, such as the alkali and
alkaline earth atoms, have relatively small first ionization energies. Their first ionization
energies mostly fall in the range 4—7 eV because the s electrons in the outer shell are quite
weakly bound to the nucleus. The first ionization energies of the majority of molecules, and
indeed other elements, tend to be higher, usually exceeding 9 eV. Consequently, just to reach
the first ionization limit requires ultraviolet light of wavelengths <140 nm, and to access
higher ionic states much shorter wavelengths may be required. These wavelengths fall in
the vacuum ultraviolet, and this is a difficult region in which to generate monochromatic
light with usable intensities. Indeed, this difficulty was not resolved until the early 1960s
through the introduction of noble gas resonance lamp sources.
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In VUV noble gas resonance lamps, a high voltage DC discharge along a capillary tube' is
employed to drive noble gas atoms up to excited electronic states. The electronic transition
back to the ground state is then responsible for the radiation. For helium, the principal
emission line is at 21.218 eV (A = 58.4 nm) and arises from the transition 'P(1s'2p') —
'S(15%). This line is referred to as the Hela line, the I signifying emission from neutral
helium and the « designating that this is the first of a series of possible np — 1s transitions.
Other transitions do occur, not only from neutral helium but also He™ (these are labelled
Hell transitions), but they are normally much weaker than the Helx line. Other gases can
be used. For example, neon gives two Nel lines, one at 16.671 and the other at 16.848 eV.
However, helium is the most commonly used both because it is cheaper than neon and
because the higher photon energy means that the valence orbitals of most molecules can be
photoionized with the Helw line.

The electron kinetic energy spectrum is obtained by passing the ejected electrons through
an energy analyser. This analyser is based on an electric or magnetic field, usually the former,
to distinguish the electrons according to their kinetic energies. There are two main analyser
types, retarding field and deflection analysers.

Retarding field devices transmit only those electrons that have energies higher than the
retarding potential, and to obtain a spectrum the retarding potential is scanned. This type
of analyser is rarely used nowadays and we shall discuss it no further.

Deflection analysers, as the name implies, separate electrons by forcing them to follow
different paths according to their velocities. There are a number of different types, including
the parallel plate analyser (this uses an electric field applied between two parallel plates)
and the cylindrical mirror analyser (containing two charged coaxial cylinders). However,
the only one that we will discuss in any detail is the hemispherical analyser, since it is simple
to understand and is widely used.

The basic geometry of the hemispherical analyser is illustrated in the overall schematic of
aphotoelectron spectrometer in Figure 12.1. The name derives from the use of two concentric
hemispherical electrodes, both charged to a potential with the same magnitude but opposite
signs; the inner one is positive and the outer negative. The entrance and exit to the analyser
are restricted by slits that define the range of acceptable entrance and exit trajectories of the
electrons. Electrons that pass through the entrance slits after photoionization may traverse
the analyser and out through the exit slits only by following a specific curved path, but
they will do so only if they have the correct energy (determined by the selected voltages
on the hemispheres). The fate of electrons with higher or lower kinetic energies is clear
from the figure; the electric field is either too weak or too strong, respectively, to allow them
to follow the correct trajectory and they are lost in collisions with the walls. An electron
kinetic energy spectrum is obtained by measuring the electron current at the detector as a
function of the voltage applied to the hemispheres. The voltage can be used to calculate the
electron kinetic energy.”

The capillary serves two purposes. First it helps to collimate the radiation. Second, it helps to minimize the amount
of sample gas passing into the discharge region, since there are no suitable window materials for wavelengths
shorter than 100 nm.

In practice one cannot extract a particularly accurate electron kinetic energy by calculations based solely on the
applied voltage. This is because the electron energy also depends on the local charges on any surfaces it passes,
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Figure 12.1 Schematic of a photoelectron spectrometer with a hemispherical electrostatic electron
energy analyser. Electrons of the correct energy traverse the path shown between the charged hemi-
spherical plates. Electrons at higher or lower energies will either strike the walls of the plates or the
exit slits and are not detected. A spectrum is recorded by varying the potential difference between the
plates.

The electrons from the analyser are usually detected by electron multipliers. These are
devices coated with a material which, when hit by an electron, produce secondary electron
emission (typically two or three electrons per incident electron). They thus serve as electron
amplifiers and, when placed in series so that the secondary electrons from one are accelerated
into the next, can produce amplifications in excess of 107. The actual electron current
produced after amplification may still be small but it can be measured with picoammeters
or other sensitive current-measuring devices.

A photoelectron spectrometer must be kept under vacuum and indeed the quality of the
vacuum is crucial. A typical spectrometer will have at least three separate pumping regions,
the resonance lamp, the sample chamber, and the analyser chamber (see Figure 12.1). The
pressure of the sample must be sufficiently high for it to be detectable, but at the same time
it must be low enough to allow the great majority of electrons to escape unimpeded into the
analyser. The usual compromise is a pressure of 107#~10~° mbar. The analyser chamber
must be kept at a considerably lower pressure since the electrons must travel much further
in this chamber than in the ionization chamber. Thus pressures of <10~> mbar are typically
required there.

and any contamination on the inner walls of the spectrometer always has some effect of this type. Consequently,
the energy scale is established by mixing the desired sample with one or more calibrants of known ionization
energy.
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The two most important properties of a photoelectron spectrometer are its resolution
and sensitivity. Although intrinsic factors do play a role, especially Doppler broadening, the
major factor affecting resolution is instrumental in origin. The main limitations on instru-
mental resolution are the dimensions of the analyser, the widths of both the entrance and
exit slits, as well as other factors, such as the presence of outside electric or magnetic fields
and local charges inside the spectrometer (e.g. from surface contamination). The resolution
can be improved by decreasing the entrance and exit slit widths, but this necessarily impairs
the sensitivity. Thus a trade-off between good sensitivity and acceptable resolution is nec-
essary, and the compromise that is normally taken yields a resolution in the 10-30 meV
range (~80-240 cm™!). This is clearly much worse than that routinely obtained in optical
spectroscopy, and is such that it may even be a struggle to achieve full vibrational resolu-
tion for small molecules. Rotationally resolved spectra are not practical with conventional
photoelectron spectroscopy.

Synchrotron radiation in photoelectron spectroscopy

There have been a number of important experimental developments in photoelectron spec-
troscopy over the years. One of the most significant has been the widespread use of syn-
chrotron radiation. In fact synchrotron radiation has many other applications in science and
technology. Synchrotron radiation is produced from electron storage rings. In outline, a
burst of electrons is injected into a storage ring and confined to a near-circular path by a
series of magnets. The electrons, travelling at speeds close to that of light, generate intense
radiation as they accelerate around the ring and this radiation can be extracted for various
experiments. The construction of synchrotrons requires major financial investment. They
are essentially large particle accelerators and it is therefore only feasible to operate them as
central facilities. Experimental stations, known as beamlines, are located at various points
around the storage ring, as illustrated in Figure 12.2. The investigator travels to the syn-
chrotron to carry out experiments and will use the radiation output, together with any other
imported or permanent equipment, at one of the beamline stations.

The key properties of synchrotron radiation for photoelectron spectroscopy are: (i) it
is continuous over a wide wavelength range (107'°~10~° m); (ii) it is highly intense;
(iii) the radiation is plane-polarized. A specific wavelength is necessary for photoelectron
spectroscopy and so a suitable monochromator is placed in front of the spectrometer. The
plane-polarized nature of synchrotron radiation is important in angle-resolved work, i.e. in
studies where the intensity of electrons is measured at various angles relative to the plane
of polarization. Photoelectron angular distributions can provide important information on
photoionization dynamics.

Negative ion photoelectron spectroscopy

The most weakly bound electron in a singly charged anion has a binding energy equal to the
negative of the electron affinity of the atom or molecule. The electron affinity of an anion
is analogous to the ionization energy of a neutral species, but the former is normally much
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Figure 12.2 Schematic illustration of a synchrotron radiation source. Electrons, produced by ther-
mionic emission from a heated cathode, are injected into the storage ring after acceleration up to very
high speeds by a linear accelerator (linac). A series of bending magnets situated at various positions
along the ring force the electrons to adopt a roughly circular path. As the electrons traverse the bending
magnets their acceleration produces light emission that can be exploited in a beamline. Experimental
stations are located at the end of each beamline.

smaller than the latter. For example, the highly electronegative CI atom has a first electron
affinity of only 3.7 eV, and this is large by the standards of most atoms and molecules. One
can immediately see that if photoelectron spectroscopy is attempted on anions, relatively
low photon energies can be used to remove an electron. Indeed, visible lasers, such as a
selected single line from an argon ion laser, are often used as the light source.

Apart from the light source, the essential components in negative ion photoelectron
spectroscopy are similar to those in conventional photoelectron spectroscopy. The only
other experimental difference concerns the production of anions, which can be achieved
in a number of ways. The most common source is a gas electrical discharge, which will
make a variety of species including neutrals, cations, and anions. The low photon energy
will only remove electrons from anions, and so the presence of neutrals and cations will not
cause any complications in the spectroscopy. Other sources have used dissociative electron
attachment (an electron attaching to a neutral molecule followed by rapid dissociation to
form a neutral fragment and an anionic fragment) or sputtering of anions off solid surfaces
by energetic particle bombardment.

Negative ion photoelectron spectroscopy provides similar information to conventional
photoelectron spectroscopy with one important difference. While traditional photoelec-
tron spectroscopy is performed on neutral atoms or molecules and yields their ionization
energies together with spectroscopic constants of the corresponding cations, negative ion
photoelectron spectroscopy provides electron affinities and spectroscopic constants of the
neutral species. Case Study 15 considers a specific example in some detail. There are many
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examples of neutral molecules that were first studied by negative ion photoelectron spec-
troscopy. In some cases the spectroscopic constants obtained were subsequently used to
guide the search for higher resolution optical spectra of these molecules.

Penning ionization electron spectroscopy

Penning ionization electron spectroscopy is somewhat similar to photoelectron spectroscopy.
The principal difference is that instead of using ultraviolet photons to ionize a sample,
ionization is brought about by collisions with metastable excited atoms. Metastable species
are atoms or molecules in excited states that have long lifetimes, sometimes as long as
several seconds, because the transition back to the ground state is forbidden by one or
more optical selection rules. For spectroscopic purposes, metastable noble gas atoms are
used, especially Ne (*P,), which has an energy 16.62 eV above ground state Ne. Metastable
noble gas atoms can be produced in a carefully controlled electrical discharge or by using
electron impact with a high energy (80-100 eV) electron beam. In both cases, care must be
exercised to remove charged particles from the metastable atom beam and to prevent light
from the discharge reaching the ionization region. On collision with the sample molecules
their excess energy is used for ionization:

M 4+ Ne* - Mt 4+ Ne+e

The electrons are then analysed according to their kinetic energies as in photoelectron
spectroscopy. The similarity in experimental conditions is such that it is possible to perform
Penning and photoelectron spectroscopy in the same apparatus under identical conditions.

Zero electron kinetic energy (ZEKE) spectroscopy

ZEKE spectroscopy was introduced in 1984 and has developed into an important spec-
troscopic technique. It is an example of threshold photoelectron spectroscopy, so-called
because the aim is to photoexcite molecules to a specific energy level of the ion (an ioniza-
tion threshold), which will produce electrons with very low (or, in principle, zero) kinetic
energy. A tunable light source is necessary for threshold photoelectron spectroscopy.

The basic idea is shown in Figure 12.3. When the photon energy exactly matches the
energy difference between a specific level of the neutral and a specific level of the ion,
excitation to that energy level of the ion must produce electrons with zero kinetic energy by
conservation of energy. However, the ion may also end up in lower energy levels of the ion (if
any are available), and the emitted electron will therefore take up the excess energy. Conse-
quently, some electrons will be produced with zero kinetic energy and others with non-zero
kinetic energies. We will call the former ZEKE (pronounced ‘zee-kee’) electrons. At other
wavelengths, where the photon energy does not precisely match a neutral-ion energy level

The probability of populating the various vibrational levels in the ion is, to a good approximation, governed by
the Franck—Condon principle.
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Figure 12.3 Basic principles of threshold ionization. In the process shown on the left, electrons can
be produced with both zero and non-zero kinetic energies. However, on the right the energy mismatch
between the photon energy and the separation between ion and neutral molecule energy levels means
that only electrons with non-zero kinetic energies are produced.

separation, photoionization will still take place but electrons with zero kinetic energy cannot
be produced. Consequently, if it were possible to preferentially detect ZEKE electrons as
a function of the wavelength of the tunable light source, then an ion<—neutral excitation
spectrum could be obtained. This is the basic idea of threshold photoelectron spectroscopy.
Threshold photoelectron spectroscopy was around for some years before what is now
known as ZEKE spectroscopy was introduced. Many clever schemes for discriminating
between zero and non-zero Kinetic energy electrons were developed, and some of these ideas
were subsequently employed in ZEKE spectroscopy. However, while much important work
was carried out with the pre-ZEKE forms of threshold photoelectron spectroscopy, there
were a number of problems, a notable one being complications caused by autoionization.*
The introduction of ZEKE spectroscopy in 1984 combined the use of pulsed lasers
for ionization together with a delayed pulsed electrical field method for detecting ZEKE
electrons. The basic idea is simple and is illustrated in Figure 12.4. Suppose a tunable pulsed
laser is capable of ionizing a molecule. As its wavelength is scanned it will move in and out
of resonance with ion<—neutral transitions. Any ZEKE electrons produced will be stationary
whereas non-ZEKE electrons (i.e. moving) will drift rapidly out of the original ionization
volume. It is possible to discriminate between ZEKE and non-ZEKE electrons by applying
a pulsed electric field across the ionization volume. This is achieved by sandwiching the
ionization volume between two conducting plates. If the electric field is initially zero, and is
then pulsed on shortly affer the laser pulse, then electrons will be attracted towards the more
positively charged plate. Furthermore, if there is a small hole in this positive plate then the
accelerated electrons can pass out of this region and go on to reach the detector. However,

Autoionization is a spontaneous ionization process that can occur for neutral molecules in excited electronic states
lying above the lowest ionization limit.
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Figure 12.4 Basic arrangement for a ZEKE experiment. This assembly is mounted inside a high
vacuum chamber. Non-ZEKE electrons are emitted in all possible directions and drift away from the
initial ionization volume. The voltage pulse, applied after a predetermined delay of c. 1 s, sends
both ZEKE and non-ZEKE electrons into the flight tube. The non-ZEKE electrons that are detected
are those moving towards or away from the flight tube along the central axis prior to application of the
voltage pulse: all non-ZEKE electrons with an off-axis velocity component drift too far away from the
ionization volume and when the voltage pulse is switched on are unable to pass through the aperture
in the middle plate. The non-ZEKE electrons that do reach the detector are easily distinguished from
the ZEKE electrons by their different flight times, as shown in the inset.

the movement of the non-ZEKE electrons means that these will start from different positions
in the inter-plate region when the electric field is pulsed on compared with ZEKE electrons.
Consequently, their arrival times will differ, as illustrated in the inset of Figure 12.4.

Most early ZEKE experiments used resonance-enhanced multiphoton ionization with
pulsed tunable dye lasers rather than single-photon ionization. However, there have now
been many single-photon ionization ZEKE experiments with VUV laser radiation generated
from specialized harmonic generation processes or from synchrotron radiation. In both cases
the time delay between pulsed laser ionization and application of the pulsed electric field is
normally in the region of 1 ws. Although both ZEKE and non-ZEKE electrons are registered
by the electron detector, all non-ZEKE signals are subsequently discarded.

The great advantage of ZEKE spectroscopy is that electron energy analysis is not
required. Consequently, the primary cause of the low resolution in conventional photo-
electron spectroscopy disappears. In some of the most favourable cases a resolution as good
as 0.2 cm~! has been achieved, allowing rotationally resolved structure to be obtained.

This technique may be used for neutrals or anions, but for the former a much more robust
variant is possible and is described in the following section.
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ZEKE-PFI spectroscopy

ZEKE-PFIis a variant of ZEKE spectroscopy and nowadays the distinction between the two
is often ignored. The role of the pulsed electric field in ZEKE spectroscopy is to accelerate
the electrons towards the detector once the ZEKE and non-ZEKE electrons have separated
in space. In ZEKE—PF], the electric field actually causes ionization, hence the abbreviation
PFT for pulsed field ionization.

Molecules contain a large number of energy levels, known as Rydberg levels, close to their
ionization limit. A molecule in a Rydberg state has an electron in an orbital that is so diffuse
that it ‘sees’ the ionic core as virtually a point charge. Thus a Rydberg orbital is similar to
an orbital of atomic hydrogen. Just below the ionization threshold, within approximately
5 cm™!, the lifetimes of molecular Rydberg states become quite long, sometimes tens of
microseconds, owing to interactions with small electric and magnetic fields present in the
apparatus. These Rydberg states can be ionized by application of a small electric field,
which pulls the Rydberg electron free from the ion core. This is the underlying principle of
ZEKE-PFI spectroscopy. Instead of using threshold ionization, the molecules are excited up
to Rydberg levels close to threshold by the pulsed laser(s). After a short delay, a microsecond
or so, a small electric field is pulsed on and the Rydberg states are field-ionized to produce
zero kinetic energy electrons. Of course direct ZEKE electron production is also possible,
but the ZEKE and ZEKE—PFI electrons can be distinguished by their arrival times at the
detector by application of a very small dc electric field across the ionization region prior to
the field ionizing pulse.

ZEKE and ZEKE-PFI spectra contain essentially the same information. There is also
another variant of the ZEKE method that has recently been introduced, mass analysed
threshold ionization (MATI), in which ions rather than electrons are detected. As the name
implies, this allows one to record a mass-selected ZEKE spectrum.

A detailed account of ZEKE and related spectroscopic techniques has been given by
Miiller-Dethlefs and Schlag [1].

Reference

K. Miiller-Dethlefs and E. W. Schlag, Angew. Chemie Int. Ed. 37 (1998) 1346.

Further reading

Further information on spectroscopic techniques can be found in the following books.

Laser Spectroscopy, 3rd edn., W. Demtroder, Berlin, Springer-Verlag, 2002.

Photoelectron Spectroscopy, J. H. D. Eland, London, Butterworths, 1984.

Principles of Ultraviolet Photoelectron Spectroscopy, J. W. Rabalais, New York, Wiley,
1977.
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13.1

Ultraviolet photoelectron
spectrum of CO

Concepts illustrated: vibrational structure and Franck—Condon principle; adiabatic and
vertical ionization energies;, Koopmans's theorem, link between photoelectron spectra
and molecular orbital diagrams; Morse potentials.

Carbon monoxide was one of the first molecules studied by ultraviolet photoelectron spec-
troscopy [1]. A typical Hel spectrum is shown in Figure 13.1." The spectrum appears to
be clustered into three band systems. The starting point for interpreting this spectrum is to
consider the molecular orbitals of CO and the possible electronic states of the cation formed
when an electron is removed.

Electronic structures of CO and CO™*

Any student familiar with chemical bonding will almost certainly be able to construct a
qualitative molecular orbital diagram for a diatomic molecule composed of first row atoms.
Such a diagram is shown for CO in Figure 13.2. The orbital occupancy corresponds to
the ground electronic configuration 16>20>30240>17*55%. The ¢ MOs actually have o+
symmetry but it is not uncommon to see the superscript omitted. Since all occupied orbitals
are fully occupied, the ground state is therefore a 'X* state and, since it is the lowest
electronic state of CO, it is given the prefix X, i.e. X' X%, to distinguish it from higher
energy 'X+ states of CO.

Consider the electronic states of the cation formed by removing an electron. Ifthe electron
is removed from the highest occupied molecular orbital (HOMO), the 5o orbital, then the
cation will be in a >X 7 state. Since this is expected to be the lowest energy state of the cation,
it is therefore labelled XX *. Removing an electron from the 177 or 40 MOs gives IT and
2y * states, respectively. From the orbital ordering in the MO diagram, our expectation is
that these two states are the lowest energy excifed electronic states of CO* and so will be
labelled as the A°IT and B2 ™ states.

Hel radiation has a wavelength of 58.4 nm (= 21.2 eV) — further details can be found in Section 12.1.
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Figure 13.2 Qualitative molecular orbital diagram for CO. Only the valence orbitals are shown, i.e

the 1o and 20 orbitals formed by overlap of the 1s orbitals of C and O have been omitted since they
are core orbitals and cannot be photoionized by Hel radiation
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First photoelectron band system

From the discussion above, the first photoelectron band envelope is expected to arise from
the ionization process

COT(X2=T)+e” « COX'sH)

A strong peak is observed at 14.01 eV and is followed by much weaker peaks at higher
ionization energies. The resolution is far too low (c. 50meV = 400 cm™!) to resolve
rotational structure, so any structure within this band must be vibrational in origin. The lack
of prominent vibrational structure is indicative of little change in the C—O bond length on
ionization: this follows from the Franck—Condon principle (see Section 7.2.2) and suggests
that ionization is from a non-bonding orbital. In such a case the potential energy curves
for the neutral molecule and the cation will look very similar. Consequently, the strongest
feature must arise from the 0 <— 0 transition, where the two numbers refer to the vibrational
quantum number in the ion and neutral molecule, respectively.

The weak peak at 14.28 eV is due to the 1 <« 0 transition. The difference in energy
between the first and second peaks corresponds to the energy difference between the v =0
and v = 1 vibrational levels in the cation in its X> % state. Converting to wavenumbers
(1eV =8066 cm™') gives a separation of 2180 cm™~!. By feeding the quantum numbers into
equation (5.14), this separation is found to be equivalent to w. — 2wex. for the ion. Without
observing further members of the progression, it is impossible to deduce both w, and w,x..
However, wex. is normally much smaller than w, and so it is a reasonable approximation to
associate w. with the observed vibrational interval.

For the ground state of CO, infrared spectroscopy has yielded w, = 2170 cm™". This is
similar to the interval in the first photoelectron band and implies very similar force constants.
This in turn is consistent with the suggestion made earlier that the potential energy curves
in the ground electronic states of the neutral molecule and the cation are very similar. The
conclusion is therefore that the 5o orbital is mainly non-bonding.

Second photoelectron band system

The second band system has a very different intensity profile from that of the first. A
regular vibrational progression is formed in which the first member, at 16.53 eV, is not the
most intense. This immediately indicates a substantial change in the C—O bond length on
ionization, and consequently the neutral and cationic potential energy curves are displaced
with respect to each other.

The separation between adjacent members of the progression is measured to be
~1530 cm~! which, employing the argument made above, approximates to the harmonic
vibrational frequency. There is clearly a large decrease in vibrational frequency upon ioniza-
tion to the first excited state of the ion, demonstrating that the electron removed is strongly
bonding. Assuming the validity of our earlier MO model, the ionization is from the 17 MO
and the resulting state of the ion is the A>T state. The conclusion is that the 17 orbital is
strongly bonding.
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In principle, further information can be extracted from the vibrational progression. Due
to anharmonicity, the vibrational interval should decrease as the ionization energy increases.
If the peak positions are measured to sufficient precision, it should be possible to determine
both @, and wex.. Using the term value expression given in equation (5.14), a vibrational
term interval can be derived as

AGyi1 =G+ 1) = Gv) = e — 2wxe(v + 1) (13.1)

where v is the vibrational quantum number in the cation for the lower of the two adjacent
peaks. Consequently, if AG, 1, is plotted against (v + 1), then w. and wx. can be obtained
from the intercept and slope, respectively. Unfortunately, the resolution is so poor that there
is insufficient precision to obtain any more than a rough value of w.x.. Consequently, we
will not pursue this any further.

Third photoelectron band system

The third band in Figure 13.2 bears qualitative resemblance to the first band. There is
clearly no major change in C—O bonding on ionization to the second excited state of CO™,
although the Franck—Condon activity is greater than in the first photoelectron band system.
The vibrational frequency of the B>X™ state of the ion is found to be 1690 cm™! from the
short progression in the third band. This is not as low as the 4°IT state, but it is substantially
below that of the neutral molecule. Assuming that (40)~! ionization is responsible, the
conclusion reached is that the 40 orbital possesses some bonding character but not as much
as the 17 orbital.

Adiabatic and vertical ionization energies

In the first member of a vibrational progression, the ion is formed in the zero point vibrational
level, v = 0. The corresponding ionization process is said to be the adiabatic ionization
transition, so-called because the ion has no excess vibrational energy. The most intense
vibrational component is said to be due to a vertical ionization, because it most closely
corresponds to the vertical transition in a classical picture of the Franck—Condon principle.

In the first and third band systems in the photoelectron spectrum of CO, the adiabatic
and vertical ionization energies are one and the same. However, the vertical and adiabatic
ionization energies do not coincide for the second band system because of the substantial
change in C—O bond length on ionization.

According to Koopmans’s theorem, the negative of the ith vertical ionization energy
(IE;) can be equated with the energy (¢;) of the ionizing orbital. This result, which can be
derived from Hartree—Fock theory (see Appendix B), is exceedingly useful since it provides
a means of quantifying the energy scale on an MO diagram.

However, it is important to recognize the limitations of Koopmans’s theorem. First, it
applies only to closed-shell molecules. One of the complications with open-shell molecules
is that more than one ionic state may result from removal of an electron from a specific
orbital. In such circumstances more than one vertical ionization energy is associated with
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the orbital, making Koopmans’s theorem meaningless. Even for closed-shell molecules
there are problems with Koopmans’s theorem. It assumes that orbital energies are the same
in the ion and the neutral molecule. However, this is not the case in practice, and nor would
one expect it to be since the loss of an electron will usually reduce the e—e repulsion and
lead to more tightly bound orbitals. In a more realistic model the link between ionization
energy and orbital energy must be modified to

IE; = —&; + A; (13.2)

where A; is an orbital relaxation energy to account for the change in orbital energy from
neutral molecule to the ion. Since the relaxation energy may differ from one orbital to
another, the HOMO in the neutral molecule may no longer be the HOMO in the ion. In
other words the ordering of orbitals in terms of energy may switch on ionization, especially
if there are two or more orbitals that have quite similar energies. This does not occur for
CO but it is known to occur for N,, which is isoelectronic with CO. In fact for N, accurate
Hartree—Fock calculations show that the 7 orbital is the HOMO, but in the cation this
switches and the 7 orbital lies below the highest occupied o orbital.

The comments made in this section are intended to provide a sense of perspective. It is
convenient to invoke a simple MO model to explain photoelectron (and electronic) spectra,
as was done above. However, one must also be prepared to recognize its limitations.

Intensities of photoelectron band systems

If the relative intensities of the band systems depended solely on the populations of the
orbitals from which photoionization occurs, then the second system of CO would be twice
as strong as the first and third systems because of the twofold degeneracy of & orbitals. To
compare intensities, it is necessary to sum over all vibrational components. In general, areas
under each vibrational band should be summed but, if the all the bands have approximately
the same widths,” then it is sufficient to sum peak heights.

It is found that the first band system is marginally more intense than the second, and both
are far more intense than the third. Clearly there are factors influencing the intensities other
than just orbital populations. One factor is the transmission of the electron energy analyser,
which may be a strong function of electron kinetic energy. For electrostatic dispersion
analysers, as used to record the spectrum in Figure 13.1, the ability to transmit electrons to
the detector falls markedly as the electron kinetic energy approaches low values.

In addition, there are quantum mechanical effects that influence photoionization proba-
bilities. The transition moment expression (7.13) applies but the upper state wavefunction
is more complicated than in electronic spectroscopy because it involves both the molecular
ion and the free electron. Factors such as the energy and angular momentum of the free
electron can have a major effect on the photoionization probability and it is often found that
this is a strong function of the photon energy. For a detailed discussion of photoelectron
band intensities the interested reader should consult the book by Rabalais [2].

By widths we mean full-widths at half-maximum. See Figure 9.1 for more details.
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Figure 13.3 Calculated Franck—Condon factors for the first and second photoelectron bands of CO
using different values of the equilibrium bond length in CO™. Literature values for r, and w, in the
neutral molecule were assumed. Best agreement with experiment (Figure 13.1) is obtained for the
middle spectrum, for which r, = 1.115 A in the X state of the ion and 1.244 A for the 4 state.

13.7 Determining bond lengths from Franck-Condon factor calculations

Although rotational structure cannot be resolved in ordinary photoelectron spectroscopy, it
is still possible to deduce the bond length of the ion, albeit with modest precision. This can
be achieved by comparing calculated Franck—Condon factors with those determined from
experiments.
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Suppose that the equilibrium bond length (r.), the harmonic vibrational frequency (w.),
and the anharmonicity constant (x.) are known for electronic states of both the neutral
molecule and the ion. This is sufficient information to be able to calculate vibrational
wavefunctions for these states, providing the potential energy in each state can be adequately
represented by Morse potentials.> A Morse potential (equation (5.12)) is completely defined
by three parameters, D, r., and a. It can be shown that D, and a are linked to w, and x. by
the expressions

We
T dx

2
a= 2n,/% (13.4)

The vibrational Schrodinger equation can be solved using a Morse potential to determine
the vibrational energies and wavefunctions. Although this can be done analytically, it is also
trivial to do using a numerical procedure on a computer. The advantage of the numerical
approach is that the overlap integral in the Franck—Condon factor (7.14) is also easy to
evaluate numerically, e.g. using Simpson’s rule.

The quantities 7, w, and x, are normally known to high precision for the ground state of
aneutral molecule from techniques such as microwave spectroscopy or rotationally resolved
infrared spectroscopy. For the ion, the photoelectron spectrum will yield a reasonable esti-
mate of we, as seen for CO™. The anharmonicity constant may be more difficult to determine,
but a precise value for this is not particularly important unless transitions to relatively high
vibrational levels in the ion have significant probability (since the anharmonicity determines
the slope of the curve on the approach to dissociation). Consequently, since w, is known and
X can be estimated, the only unknown is .. This can therefore be used as a trial parameter
from which Franck—Condon factors are calculated and compared with the actual relative
intensities of the vibrational components in a given photoelectron band. When the best
possible agreement is found, a good estimate of the bond length of the ion can be obtained.
This approach to estimating ion bond lengths is illustrated in Figure 13.3, where calculated
Franck—Condon factors are shown for selected values of the bond lengths of the ground and
first excited electronic states of CO™.

D, (13.3)

References

Molecular Photoelectron Spectroscopy, D. W. Turner, C. Baker, A. D. Baker and C. R.
Brundle, London, Wiley, 1970.

Principles of Ultraviolet Photoelectron Spectroscopy, J. W. Rabalais, New York, Wiley,
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The potential energy curves of many electronic states are quite good approximations to Morse potentials, except
in the region very close to dissociation. However, it is also worth bearing in mind that there are some states where
a Morse potential is known to be a poor approximation even in the region near the potential minimum.
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of CO,, OCS, and CS, in a
molecular beam

Concepts illustrated: supersonic expansion cooling; adiabatic and vertical ionization
energies, vibrational structure in the spectra of triatomic molecules,; Franck—Condon
principle; link between photoelectron spectra and molecular orbital diagrams.

A severe restriction of conventional photoelectron spectroscopy is its low resolution. The
main limitation is instrumental resolution, particularly that caused by the electron energy
analyser, as was discussed in Chapter 12. Resolving rotational structure is not a realistic
prospect for conventional photoelectron spectroscopy but even vibrational structure may be
difficult to resolve. In addition to the instrumental resolution must be added other factors
such as rotational and Doppler broadening which, if they could be dramatically reduced,
might make a sufficient difference to improve many photoelectron spectra. A potential
solution is to combine conventional photoelectron spectroscopy with supersonic molecu-
lar beams. Supersonic expansions can produce dramatic cooling of rotational degrees of
freedom and, if part of the expansion is skimmed into a second vacuum chamber, can be
converted to a beam with a very narrow range of velocities. This is precisely the approach
adopted by Wang ef al. [1], the molecular beam being crossed at right angles by Hel VUV
radiation (58.4 nm) to produce a near Doppler-free photoelectron spectrum. The resolution
achieved is in the region of 12 meV (100 cm™!).

The ultraviolet photoelectron spectra of CO,, OCS, and CS; in molecular beams are
discussed here. These illustrate some of the important concepts involved in the interpretation
of the photoelectron spectra of polyatomic molecules. They are clearly related molecules
and therefore some similarities in their photoelectron spectra are to be expected. Figure 14.1
shows the overall Hel spectrum for each molecule. It would be inappropriate to discuss every
aspect of the spectrum of each molecule. Instead the focus is on the main bands and we shall
try to discover what each reveals about both the neutral molecule and the corresponding
molecular ion.
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Figure 14.1 Overall view of the Hel photoelectron spectra of CO,, OCS, and CS,. Justification for the
orbital ionization assignments above the CO, spectrum is given in the text. Similar assignments apply
to OCS and CS,, although for the former molecule the g and u subscripts on the orbital symmetries
are no longer applicable because OCS lacks a centre of symmetry. (Reproduced from L.-S. Wang,
J.E. Reutt, Y. T. Lee, and D. A. Shirley, J. Elec. Spec. Rel. Phen. 47 (1988) 167, with permission from
Elsevier.)
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Figure 14.2 Expanded views of the first photoelectron bands of CO,, OCS, and CS,. The labels
Imn above the peaks refer to the vibrational quantum numbers in the ion, where / is the vibrational
quantum number for mode v;, m for v,, and n for v5. All peaks originate from the zero-point vibrational
levels in the respective neutral molecules, i.e. hot band contributions are negligible in these spectra.
(Reproduced from L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, J. Elec. Spec. Rel. Phen. 47
(1988) 167, with permission from Elsevier.)
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First photoelectron band system

Figure 14.2 shows expanded views of the first photoelectron band system of each molecule.
Consider, initially, the spectrum of CO;. There is little vibrational structure associated with
the first band system, indicating that the electron removed on photoionization possessed
mainly non-bonding character in the neutral molecule. The adiabatic peak, which is also the
vertical peak,' shows a clear doublet splitting, as do all of the weak vibrational components
to higher ionization energy, indicating spin—orbit coupling in the ion (0.02 eV ~ 160 cm™").
The ground electronic state of the neutral CO, molecule, which is discussed in more detail
later, is a spin singlet and in fact has 12; symmetry. In order for spin—orbit coupling to
occur the molecule must have electronic orbital angular momentum and so it is reasonable
to conclude that a *IT cationic state has been formed upon ionization, i.e. an electron has
been removed from a 7 orbital (but note we cannot deduce whether it has g or u symmetry
on the basis of this information alone).

The most prominent vibrational feature in the first photoelectron band systemis 0.157 eV
(~1270 cm~") above the adiabatic ionization energy, as measured from the mid-points of
the corresponding spin—orbit doublets. Following the arguments presented in Section 7.2.3,
the dominant vibrational features in the electronic and photoelectron spectra of polyatomic
molecules are usually from excitation of totally symmetric vibrational modes. Linear CO,
has only one totally symmetric vibrational mode, the symmetric stretch (see Section 5.2.1),
which is normally designated by the shorthand notation v;. Other spectroscopic studies
have shown that this mode has a harmonic frequency of 1388 cm™! for the ground state of
the neutral molecule. This is similar to the main observed vibrational interval in the first
photoelectron band, and it is therefore logical to assign that progression to v;. The fact that
the frequency change is modest is consistent with the lack of extensive vibrational structure,
and leads to the conclusion that there is no significant change in bonding, and therefore
molecular structure, on photoionization.

There are other very weak peaks in the first photoelectron band system of CO,. The next
member in the progression in vy, labelled 200 in Figure 14.2,% is observed. Near to the 200
doublet is a weak doublet assigned as double quantum excitation in v3, a transition which
is Franck—Condon allowed but which we would predict to be very weak, as indeed it is.
The combination feature 102, which also has double quantum excitation of v3, can also be
seen. In addition, notice that there is some evidence of single quantum excitation of v, and
v3, namely the 010 and 011 transitions, which are formally forbidden. If these assignments
are correct, and there is copious evidence from several studies that they are, then they
must gain their intensities through vibronic coupling, which represents a breakdown of the
Born—Oppenheimer approximation (and therefore the Franck—Condon principle). Vibronic
coupling is discussed in more detail later in several Case Studies, e.g. Chapter 25.

For definitions of adiabatic and vertical ionization energies, see the previous Case Study.

An alternative way of labelling this peak would be as 12, which indicates that mode v{ has zero quanta in the
lower state and two quanta in the upper state. The absence of any reference to other modes is taken as implying
that there are zero quanta in all other modes in both upper and lower electronic states. The combination feature
102 would be labelled 1}32 in this scheme.
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Figure 14.3 Expanded views of the second photoelectron bands of CO,, OCS, and CS,. As in Figure
14.2, the labels /mn above the peaks refer to the vibrational quantum numbers in the ion, where
[ is the vibrational quantum number for mode v;, m for v,, and n for v5. For CO, and OCS the
third photoelectron band system (forming the B2+ state of the cation) overlaps with the second
photoelectron band system. (Reproduced from L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley,
J. Elec. Spec. Rel. Phen., 47 (1988) 167, with permission from Elsevier.)
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The first photoelectron band system of CS; is simpler than that of CO;. There is a
doubling of peaks attributable to spin—orbit coupling in the ion, but the splitting (440 cm™")
is considerably larger than for CO,. This is not surprising given the substitution of sulfur
for oxygen: atomic spin—orbit coupling increases rapidly as the atomic number increases,
and therefore if the unpaired electron density on the sulfur atoms in CS; is quite high then
the molecular spin—orbit splitting will be larger than in COJ . Put in reverse, the increase in
spin—orbit splitting from CO, to CS; reveals that the unpaired electron in the ground state
of the ion spends much of its time on the sulfur atoms. The vibrational structure in the first
band of CS; can be interpreted in much the same way as for CO,, and this is left as an
exercise for the reader.

Turning to OCS, linearity is maintained, and so spin—orbit coupling still occurs in the
excited state, with the splitting, 370 cm™ !, being somewhat intermediate between CO, and
CS,. However, an important difference between OCS and the other two molecules is the
effect its lower symmetry (Cwoy ) has on the vibrational structure. In particular both stretching
modes, v; and vs, are now totally symmetric (see Figure 5.6). Consequently, single quantum
excitation in these modes is possible and substantial Franck—Condon activity might occur
in both. In fact progressions in both stretching modes are seen in Figure 14.2. The main
vibrational features are formed from the strong spin—orbit doublet at 11.273 and 11.319 ¢V,
and the weaker but still prominent doublet at 11.443 and 11.489 eV. If these are due to single
quantum excitation of different modes, as indicated in the label above the figure, then one
must represent the C=O stretch and the other the C=S stretch given the vibrational selection
rules.’ Assuming the force constants for the two bonds are similar, then the C=S stretch
will have the lower frequency on account of its larger reduced mass. Thus fundamental
frequencies of 710 and 2080 cm™! are deduced for the C=S and C=O0 stretches in the
ground electronic state of OCS™. There are several other very weak vibrational peaks of
OCS in Figure 14.2, and these are relatively straightforward to assign.

Second photoelectron band system

The second photoelectron band systems are shown in Figure 14.3. For all three molecules far
more extensive vibrational structure is seen than in the first photoelectron band systems, and
this time the adiabatic and vertical ionization energies no longer coincide. An immediate
conclusion is that a substantial change in equilibrium structure occurs on ionization to the
first excited electronic states of the cations. All three bands also show evidence of spin—orbit
coupling, although the splitting is not fully resolved for any of the molecules and is only
clear for CS;. Nevertheless, this shows that the cation is, as in the first photoelectron band
system, formed in a *IT state. Furthermore, the occurrence of spin—orbit structure is only
possible if the cation, like the neutral molecule, is linear at equilibrium. Any significant

The description of the two stretching modes of OCS as being C=S and C=0 is only approximate (see Section
5.2.1). Notice also that the labelling of the C=S stretch as v; rather than the C=O stretch is illogical: the normal
labelling procedure is to assign the v; label to the mode of highest frequency and highest symmetry. However,
this notation for OCS has persisted in the literature and is employed in Figure 14.2.
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deviation from linearity would quench the orbital angular momentum due to the loss of 7
orbital degeneracy.

The vibrational structure for CO, and CS; is particularly simple, being dominated by a
fairly long progression in a single mode. The only totally symmetric mode is the symmetric
stretch, v, and so the progression is assigned to this mode. The separations between adjacent
peaks in CO, and CS, spectra are c. 1130 and 590 cm™!, respectively, considerably smaller
than for the ground state of the ion, which indicates a substantial weakening of the C=0
and C=S bonds.

As in the first photoelectron band, both C=0 and C=S stretching vibrations are Franck—
Condon allowed in OCS and we might expect, and actually see (Figure 14.3), substantial
progressions in both modes.

Third and fourth photoelectron band systems

These systems are characterized by a lack of extensive vibrational structure (see Figure 14.1)
and therefore must, like the first band system, be the result of removing an electron from
a molecular orbital with little bonding or antibonding character. There is no evidence of
spin—orbit splitting in the bands, and therefore we can tentatively conclude that they arise
from removal of electrons from o orbitals, leading to 2% states in the cation. Detailed
discussions of the structure can be found in the original research papers [1, 2].

Electronic structures: constructing an MO diagram from
photoelectron spectra

The photoelectron data can be used to construct a quantitative molecular orbital diagram
for each molecule. The basis for this is Koopmans’s theorem, which states that the orbital
energy is equal to the negative of the vertical ionization energy for a closed-shell molecule.
The formation of double bonds in the ground state of each neutral molecule means that all
occupied orbitals are full. These molecules are therefore closed-shell and so Koopmans’s
theorem will apply. The ground electronic states are 12; for CO, and CS; and '=7 for
OCS.

The photoelectron spectra show that Hel radiation is capable of photoionizing four MOs
in each molecule. According to Koopmans’s theorem, there are therefore four MOs with
orbital energies > —21.22 eV. The first ionization energy corresponds to removal of an
electron from a largely non-bonding orbital, which we deduced earlier to be of 7 symmetry
because of the observation of spin—orbit splitting in the corresponding photoelectron band
system. For similar reasons, the next ionization process also involves removal of a 7z electron,
although the extensive vibrational structure, and in particular the substantial decrease in
stretching vibrational frequencies upon ionization, suggests that this orbital is strongly
bonding. The third and fourth bands correspond to removal of electrons from largely non-
bonding o MOs, as mentioned earlier.
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Figure 14.4 Partial MO diagram for CO, based on the ultraviolet photoelectron spectrum. The energy
scale is the negative of the vertical ionization energies (Koopmans’s theorem). The ionization energies
for the atoms have been taken from the tables compiled by Moore [3]. Notice that the 2s orbital has
an ionization energy far beyond the Hela limit (21.22 eV) and is therefore not shown.

These findings, taken together, provide important clues in the construction of an MO
diagram. Such a diagram for CO, is shown in Figure 14.4, concentrating on those occupied
orbitals that are photoionized by Hel radiation. To include the atomic orbitals on the same
energy scale, use has been made of atomic energy level data for carbon and oxygen [3]. The
HOMO is a largely non-bonding 7 orbital formed by combining 2p7 orbitals on the two
oxygen atoms with opposite phases. This gives a HOMO of 7, symmetry, the 17, orbital,
which can be thought of as the lone pairs on each oxygen atom. If the two oxygen atoms
have 2pr orbitals with the same phases then a bonding interaction with C 2pm orbitals is
possible giving rise to the 1, MO.

The next two MOs are both o orbitals. According to the diagram in Figure 14.4, the
highest occupied o orbital (30) looks to be bonding in character. However, the absence
of significant vibrational structure in the photoelectron spectrum indicates mainly non-
bonding character. The same arguments hold for the 30, MO. The explanation for this
apparent failing in the MO picture is the neglect of the O 2s atomic orbitals. Although far
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more tightly bound than the C 25 orbital, and therefore not shown in Figure 14.4, the o'y and
oy combinations formed from the two O 2s orbitals do make a significant contribution to the
30, and 30, MOs. In particular they add antibonding character, approximately cancelling
out the bonding character that would result in the absence of O 2s contributions.

Of course we have only obtained information on part of the MO diagram, and it would
be interesting to probe the more tightly bound orbitals, which could be done using Hell or
X-ray radiation. However, the important orbitals in chemical bonding, the valence orbitals,
will nearly always fall in the Hel region.

Analogous MO diagrams for OCS and CS, can be constructed, although for the former
care must be taken to distinguish the different contributions from oxygen and sulfur to
specific MOs. One should also be aware that OCS has no centre of symmetry so the g/u
notation is inapplicable when labelling orbitals and states of this molecule.
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Concepts illustrated: anion photoelectron spectroscopy; electron affinity; vibrational
structure and the Franck—Condon principle; link to thermodynamic parameters;
molecular orbital information and Walsh diagrams.

The photoelectron spectroscopy of anions is, in many respects, directly analogous to the
photoelectron spectroscopy of neutral molecules. However, an important difference is that
an electron in the valence shell of an anion is much more weakly bound than in a neutral
molecule. In fact there are some molecules, such as N», that are unable to bind an additional
electron at all. The binding energy of an electron in an anion, which is known as the
electron affinity (EA), is the energy difference between the neutral molecule and the anion.
The electron affinity is defined as a positive quantity if the anion possesses a lower energy
than the neutral molecule, i.e. the electron is bound to the molecule and energy must be
added to remove it.

The photoelectron spectrum of an anion, also known as the photodetachment spectrum,
can provide information on both the anion and the neutral molecule. A good example of
this is the photoelectron spectrum of NO,, which was first recorded by Ervin, Ho, and
Lineberger [1].

The experiment

The most common method for generating anions in the gas phase is an electrical discharge.
Ervin et al. produced NO; by a microwave (ac) discharge through a helium/air mixture. A
variety of neutral and charged species would be expected under such conditions, including
several possible anions and cations. However, unlike neutral molecules, specific ions can
be readily separated from a mixture using a mass spectrometer. Ervin ef al. used this idea
to obtain the photoelectron spectrum of NO; .

As will be seen later, NO; has a relatively large electron affinity. Consequently, while
it is usually possible to employ visible light to remove an electron from an anion, shorter
wavelength light proved necessary for NO, . The actual wavelength used was 351.1 nm,
which is in the near-ultraviolet, from a frequency doubled continuous dye laser.

Asinall types of photoelectron spectroscopy where the electron kinetic energy is scanned,
the resolution is limited primarily by the electron kinetic energy measurements. In the
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Figure 15.1 The photoelectron spectrum of NO; obtained with 351.1 nm laser photodetachment.
Two different scans are shown, the upper one with the laser polarized parallel to the path of electrons
entering the analyser, and the lower one oriented perpendicular to this direction. The arrow marks
the adiabatic electron detachment process. For an explanation of the vibrational structure labelling
shown above the spectrum see text. (Reproduced from K. M. Ervin, J. Ho, and W. C. Lineberger,
J. Phys. Chem. 92 (1988) 5405, with permission from the American Chemical Society.)

instrument used by Ervin ef al., the electron energy analyser was of the hemispherical type
(see Section 12.1) with a resolution of approximately 9 meV (~70 cm™"). The observed
resolution in the spectrum (FWHM) was 16 meV (130 cm™'), a convolution of instrumental
and substantial broadening due to (unresolved) rotational structure. The difference between
the photon energy (3.532 eV) and the electron kinetic energy gives the binding energy of
the electron to the anion.

Vibrational structure

Photoelectron spectra of NO, obtained using polarized laser light are shown in Figure 15.1.
The more prominent spectrum was obtained with the laser polarization parallel to the path
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of electrons entering the energy analyser, while the weaker spectrum was obtained with per-
pendicular polarization. Although the absolute intensities are very different in the two cases,
the relative intensities of all observed features are roughly the same. Different responses of
parts of the spectrum to a change in laser polarization are likely if more than one photode-
tachment process contributes to the spectrum. It is therefore reasonable to conclude that a
single photodetachment process is responsible for the structure in Figure 15.1, presumably
leading to the formation of NO, in its ground electronic state (see later).

Extensive vibrational structure is evident in Figure 15.1. If NO; is present in only its
zero-point vibrational level, then all the structure will be due to excitation of vibrations
in neutral NO,. Several regular progressions are easily identified and can be explained in
terms of two active vibrational modes with intervals of ~1320 and ~750 cm™!, respectively.
A lengthy progression in the lower frequency mode is built upon successive quanta in the
higher frequency mode, giving rise to three prominent vibrational progressions. Symbols
have been added to Figure 15.1 to distinguish these three progressions.

NO; and NO; possess three normal vibrational modes, two stretches and one bend. In
determining selection rules for these modes, by application of the Franck—Condon principle
(see Section 7.2.3), it is necessary to establish whether a particular vibration is totally or
non-totally symmetric with respect to the full set of symmetry operations of the molecular
point group. Microwave spectra of NO, show that it is bent at equilibrium in its electronic
ground state with an O—N—O bond angle of 134° and an N—O bond length of 1.194 A [2];
NO, therefore possesses C,, equilibrium symmetry. There will be two totally symmetric
(a;) normal modes, the totally symmetric N—O stretch, v{, and the O—N—O bend, v,.
The remaining mode, the antisymmetric N—O stretch, is designated as mode v and has b,
symmetry.

Assuming that NO, does not possess a lower equilibrium symmetry than NO,, a
reasonable assumption, then we can concentrate on the two totally symmetric modes of
NO; to explain the vibrational structure. The harmonic wavenumbers of v; and v, have
been measured previously with very high precision from IR spectra and are known to be
1325.33 + 0.06 and 750.14 & 0.02 cm ™!, respectively [3]. These values are, within exper-
imental error, identical to those determined from the photoelectron spectrum of NO; and
confirm the assignment. The vibrational structure in the photoelectron spectrum can there-
fore be interpreted in terms of various combinations of quanta in modes v, and v;,. The
standard notation for labelling the individual vibrational peaks is 172], where 1 and 2 refer
to modes v and v, and the superscripts and subscripts reveal the number of quanta in these
modes in the upper and lower electronic states (neutral molecule and anion), respectively.

Three bending progressions have been assigned in Figure 15.1 built upon different
degrees of excitation of vy, the 1828, 1(1)2’3, and 1(2)2’6 progressions. The limited resolution
and signal-to-noise ratio prevents other, less prominent, progressions being identified. The
1929 band, more commonly written as 0)), corresponds to the adiabatic photodetachment
process, i.e. NO; is formed in its zero-point level from NO; in its zero-point level. This
transition is marked with an arrow in Figure 15.1. The adiabatic electron affinity is obtained
as the difference between the photon energy and the electron kinetic energy. The assign-
ment of the adiabatic transition in any band in which there is extensive vibrational structure
should always be viewed with some suspicion since it is possible that this transition will
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not be observed if its Franck—Condon factor (FCF) is small. However, the assignment made
in Figure 15.1 is supported by other data, notably a photodetachment threshold experiment
in which an intense tunable laser was used to accurately determine the onset wavelength
for electron photodetachment from NO; . The spectrum in Figure 15.1 yields an adiabatic
electron affinity of 2.273 + 0.005 eV [1].

Vibrational constants

With all the vibrational structure assigned, the next step is to determine the vibrational
constants of NO; and NO,. For NO,, there is ample vibrational information and adequate
resolution in the anion photoelectron spectrum to allow the determination of anharmonicity
constants as well as harmonic vibrational frequencies. The transition wavenumbers can be
fitted to the vibrational term value expression

Gvi,v) = (vi+ 1) +o(va+ 1) +x(vi + %)2 +x2(v2 + %)2
P+ )

where w| and w; are the harmonic frequencies of modes v, and v, and x;;, x5, and x5,
are anharmonicity constants (see also Section 5.2.3). Linear regression yields the constants
presented in Table 15.1. These values can be checked against the results from high resolution
infrared spectroscopy and show good agreement.

Vibrational constants for NO; are rather more difficult to obtain because, as mentioned
earlier, all the main vibrational components in Figure 15.1 arise from transitions out of the
zero-point level of the anion. However, a magnified view (see Figure 15.2) of the region
beyond the origin transition, i.e. at lower electron binding energies, shows additional peaks
arising from hot band transitions. They are transitions out of excited vibrational levels
in NO; (hence the name ‘hot band’, since these grow in significance as the temperature
increases) and they therefore provide vibrational information on NO; . The number of peaks
is insufficient to determine meaningful anharmonicity constants but approximate harmonic
frequencies for the two totally symmetric modes can be extracted. These are listed in
Table 15.1.

Structure determination

The observation of substantial Franck—Condon activity in both v, and v, shows that the
equilibrium N—O bond length and the O—N—O bond angle of NO, must both differ sig-
nificantly from their values in NO,. It is possible to quantify these changes by calculating
Franck—Condon factors (FCFs) for each possible vibrational component and comparing
with experiment. In order to calculate FCFs, vibrational wavefunctions are required. These
in turn require knowledge of the structures of the anion and the neutral molecule. As men-
tioned earlier, the structure of the neutral molecule is known to high precision and so the
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Table 15.1 Vibrational and structural constants for

NO; and NO;
Quantity NO, NO;
w/cm™! 1316.4 £9.2 1284 + 30
wy/em™! 748.0 + 4.2 776 + 30
xll/Cl’l’lil 3126
xpp/cm™! —0.59 £ 0.44
xlz/Cl’l’lil —-2.1+1.3
r(N—O)/A 1.194 1.25+0.02
Bond angle/® 133.9 117.5£2

0,2

1020

Adiabatic
1%)28 electron detachment

1.1 1.2 1.3 1.4 1.5

Electron kinetic energy/eV

Figure 15.2 Expanded view of photoelectron spectra of NO; near the adiabatic threshold at two
different temperatures. The dashed line spectrum corresponds to a warmer NO, sample than that
shown by the solid line. The population of excited vibrational levels in NO; is enhanced in the
warmer spectrum, giving more prominent ot bands. (Reproduced from K. M. Ervin, J. Ho, and W. C.
Lineberger, J. Phys. Chem. 92 (1988) 5405, with permission from the American Chemical Society.)

N—O bond length and the ONO bond angle of the anion can be used as trial parameters to
bring theory and experiment into agreement.

Full details of the FCF calculations are quite involved; the interested reader should consult
Reference [1] for further information. It is important to recognize that FCF simulations on
their own yield only the magnitude of changes in internal coordinates, not their signs.
However, as will be seen later, it is usually possible to draw on other information, perhaps
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from ab initio quantum chemical calculations or even just qualitative bonding arguments,
which allow the signs to be deduced as well. Ervin et al. found that (N—0) = 1.25 +0.02 A
and §(O—N—0) = 117.5 £ 2.0° in NO; . The precision is nowhere near as good as would
typically be achieved from high resolution (rotationally resolved) spectra, but so far these
have proved elusive.

Electron affinity and thermodynamic parameters

The photoelectron spectrum allows thermochemical parameters to be determined for NO;
that would be difficult to obtain by other means. Among the most important is the enthalpy
of formation of NO, , AtH°(NO; ), which from a simple Hess’s law cycle can be expressed
as

A¢H°(NO;) = A;H°(NO,) — EANO,)

The enthalpy of formation of NO, has been measured previously and is 35.93 4 0.8 kJ mol ™!
[4]. Combining the adiabatic electron affinity from the photoelectron spectrum (2.273 +
0.005 eV =219.3 & 0.05 kI mol~!) with A¢H°(NO,) leads to AtH°(NO; ) = —183.4 £+ 0.9
kJ mol~!.

Similarly, the dissociation energy (Dy) of NO; to give O~ and NO, as well as the gas-
phase acidity, A, H°, of nitrous acid (i.e. the enthalpy for the reaction HONO — H* +
NO;), can also be determined using the Hess’s law cycles

Dy(0~—NO) = EA(NO,) — EA(O) + Dy(NO—0)
A,H°(HONO) = Dy(H—ONO) + IE(H) — EA(NO;)

where IE(H) represents the ionization energy of the H atom (1312.05 & 0.04 kJ mol~! [5]).
The electron affinity of the O atom has been determined from photoelectron spectroscopy
[6]. Values are available from the literature for the other quantities on the right-hand side of
the above equations: Dy(NO—0) = 300.64 + 0.8 k] mol~! and Dy(H—ONO) = 324.6 +
1.6 kJ mol~". These lead to Dy(O~—NO) = 379.4 + 0.9 kJ mol~" and A,H°(HONO) =
1417.4 4+ 1.7 kJ mol ™!

Electronic structure

Qualitative molecular orbital arguments can be employed to explain the change in structure
between NO; and NO,. The key is to understand how the energies of the occupied molecular
orbitals change as the structure is altered, in particular as the bond angle changes.

The 1s orbitals on both N and O can be ignored since they make no significant contribution
to the bonding. The valence molecular orbitals, derived from the 2s and 2p orbitals on each
atom, will give rise to a total of twelve MOs. For NO; and NO, there are 18 and 17 electrons,
respectively, to be distributed amongst the valence MOs.
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Figure 15.3 Walsh diagram for the valence molecular orbitals of an XY, molecule such as NO,.
Approximate atomic orbital contributions to the MOs are shown. Notice that for the 7 MOs on the
right-hand side only the in-plane component is shown. Also, all o, orbitals should actually be labelled
og/u but the + superscript has been omitted for clarity.

Although we know NO; is bent, it is simpler to start by considering a linear geometry.
The valence MOs can be divided into two groups, o and 7 orbitals. It is easy to envisage
that the energies of the o MOs, in which the electron density points primarily along bonds,
will not be strongly altered if the molecule bends. Consequently, while the 0 MOs will play
a major role in the N—O bonding, they do not have a strong influence on the equilibrium
bond angle.

The 7 orbitals in the linear molecule are doubly degenerate MOs. There are three sep-
arate 7t orbitals resulting from 2p orbital overlap, one bonding, one non-bonding, and one
antibonding. The right-hand side of Figure 15.3 shows the phases of the atomic orbitals for
the three 7 orbitals. As expected, in the bonding MO (17,) all three atoms have 2p orbitals
with the same phase. In the antibonding MO (27,,) the 2p orbitals on the O atoms have the
same phase but opposite to that on the central N atom. In the non-bonding MO (17,) the



136

Case Studies

O atoms have opposite phases and are therefore unable to interact with a 2pm orbital on
nitrogen.'

As the molecule bends, each 7 orbital loses its degeneracy and two distinct MOs are
formed with different symmetries. As shown in Figure 15.3, the 177, bonding MO is resolved
into a; and by MOs.” The energies of these orbitals are not very sensitive to the bond angle
because the bonding interactions are largely unaltered by the bending process.

The 7, non-bonding MO is resolved into a, and b, MOs when the molecule is bent. The
energies of both of these orbitals rise as the molecule bends due to increased antibonding
interactions between the O 2p orbitals. This is more pronounced for the b, component
because of the in-plane orientation of the O 2p orbitals, as can be seen from the AO
contributions shown on the left-hand side of Figure 15.3.

The antibonding 2, MO of linear NO, is resolved into a; and b; orbitals when the
molecule is bent. The energy of the b; orbital is relatively insensitive to the bond angle.
However, the energy of the a; orbital is lowered dramatically as the molecule is bent. At first
sight this might seem implausible; after all, the antibonding interactions between adjacent 2p
orbitals would not appear to be removed by bending the molecule. However, there is another
factor that needs to be taken into account, and which is not shown in Figure 15.3, namely
the mixing-in of nitrogen 2s character. Such mixing is strictly forbidden by symmetry at the
linear geometry (the 2s orbital on N has o, symmetry and so cannot interact with the
combination of 2p orbitals) but when the molecule bends mixing becomes possible (since
the 2s orbital on N now has @; symmetry and can interact with the @; component correlating
with the m, orbital). This mixing, or hybridization of the 2s and 2p orbitals on N, reduces
the antibonding interactions.

The above considerations are distilled into the diagram in Figure 15.3, which shows the
effect of the bond angle on molecular orbital energies. Such a diagram is known as a Walsh
diagram. Walsh diagrams are often used to provide a qualitative explanation of bond angles
in small molecules [7].

Seventeen electrons must be distributed amongst the twelve valence molecular orbitals
of NO,. If the molecule is linear in its ground electronic state then these electrons will fill
all orbitals up to and including 1. The remaining electron will be in the 27, orbital, the
HOMO, which is the 7 antibonding orbital discussed earlier. Evidently, there will be some
energetic gain by bending the molecule so that the unpaired electron is now in the 6a; MO
(which correlates with 27, in the linear molecule limit). However, the energies of the 45,
and la, orbitals, both of which are doubly occupied, rise as the molecule is bent. Clearly
there will be a compromise and the equilibrium bond angle will adopt an intermediate value
between the linear and fully bent (90°) limits. The known bond angle is 134°, consistent
with this proposition.

This follows also from formal symmetry arguments. The combination of 2p7 orbitals on the O atoms with opposite
phases gives a symmetry orbital having 7, symmetry. This cannot interact with a 2p7 orbital on the N atom since
all 2p orbitals on the central atom have u symmetry (because the phases on their two lobes have opposite signs). The
N 2p orbitals therefore make no contribution to the 4 antibonding MO.

When NO; is bent the symmetry is lowered from Dsop to Cay. The resulting symmetry of each orbital can be
deduced by consulting the Cyy, character table and noting how the orbital is transformed under each symmetry
operation of the point group.
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The additional electron in the ground electronic state of NO, will reside in the 6a,
MO. Since this orbital will now be doubly occupied, the Walsh diagram leads us to expect
a smaller bond angle for NO, than NO,. These arguments confirm the sign of the bond
angle change deduced by Erwin ef al., namely that the bond angle increases by c. 16° on
photodetaching an electron from NO; .
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spectroscopy of C3: rotational
structure in the 300 nm system

Concepts illustrated: laser-induced fluorescence spectroscopy,; symmetries of electronic
states; assignment of rotational structure in spectra of linear molecules; combination
differences; band heads, nuclear spin statistics.

As described in Chapter 11, laser-induced fluorescence (LIF) spectroscopy is one of the
simplest and yet most powerful tools for obtaining high resolution spectra. Its high sensitivity
is particularly convenient for the investigation of extremely reactive molecules, such as free
radicals and ions. In this Case Study we illustrate how LIF spectroscopy can be used to obtain
important information on a small carbon cluster, the C3 molecule. The spectra presented
were originally obtained by Rohlfing [1], who produced C; by pulsed laser ablation of
graphite. This is a violent method for vaporizing a solid and the plasma formed above the
graphite surface will undoubtedly contain carbon atoms, clusters such as C,, Cs3, and various
cations and anions. To reduce spectral congestion, the laser ablation source was combined
with a supersonic nozzle to produce a cooled sample for spectroscopic probing.

The LIF spectrum was obtained by crossing the supersonic jet with a tunable pulsed
laser beam and measuring the intensity of fluorescence as a function of laser wavelength.
As discussed in Section 11.2, an LIF excitation spectrum is similar to an absorption spec-
trum but the signal intensity depends not only on the absorption probability, but also the
fluorescence quantum yield of the upper state. C; has LIF spectra in several regions of the
ultraviolet, and one such system, in the 298-311 nm region, is shown in Figure 16.1. Given
that this spectrum spans several hundred cm~!, most if not all of the coarse structure must
be vibrational in origin. Rotationally resolved scans of individual vibrational components
would greatly facilitate the spectral assignment, as well as providing structural information
on the molecule. Figure 16.2 shows a higher resolution scan of the strongest band in Figure
16.1, and this will now be considered in some detail.

Electronic structure and selection rules

Spectra of Cs in the region shown in Figure 16.1 are very strong. Consequently, the transi-
tions presumably originate from the ground electronic state. 4b initio electronic structure
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Figure 16.1 Survey LIF excitation spectrum of jet cooled C; in the 32 145-33 500 cm™~! region. The
band marked with an asterisk is rotationally resolved in Figure 16.2. (Reproduced with permission
from E. A. Rohlfing, J. Chem. Phys. 91 (1989) 4531, American Institute of Physics.)
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Figure 16.2 Rotationally resolved LIF excitation spectrum of the vibronic band of jet-cooled C; at
33147 cm~!. (Reproduced with permission from E. A. Rohlfing, J. Chem. Phys. 91 (1989) 4531,

American Institute of Physics.)
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calculations on Cj provide a useful starting point for understanding the electronic spectra.
Cjs is a linear molecule with an outer electronic configuration . . . 4ag23(7u2 17}, which gives
rise to a 12; ground electronic state. The highest occupied molecular orbital (HOMO),
the 1, orbital, is a strongly bonding molecular orbital produced by the in-phase overlap
of C 2pm atomic orbitals. The lowest unoccupied molecular orbital (LUMO) is the 1w,
non-bonding MO formed by the 2pm orbitals on the two carbon atoms at the ends of the
molecule having opposite phases. Since this orbital is vacant, electron promotion into this
orbital is possible. Only singlet states need be considered given the AS = 0 spin selection
rule in electronic transitions. One-electron transitions from the 40, and 30, orbitals to the
LUMO yield l1'[g and 'T1, states, respectively, while the one-electron transition 17« 17,
gives three possible excited states, 'A,, 'S}, and lZg_ states.' Can the spectra be used to
distinguish between these possible transitions?

Rotational structure can provide important information on the symmetries of the upper
and lower states in a transition. In fact C; represents a relatively simple example where this
is true. Even without any detailed analysis it is clear from the spectrum in Figure 16.2 that
there are two distinct branches, which are easily identified as P(AJ = —1) and R(AJ = +1)
branches. There is no trace of any O branch (AJ = 0), which shows that the transition must
be X —X in character, since any other possibility would give rise to a Q branch. Since ab
initio calculations show that the ground state is a 12; state, then the excited state must be
a !'ZF state. This follows from the application of symmetry arguments, which show that
electric dipole allowed transitions must satisfy g <> u, + <> 4, and — <> — selection rules
(see Section 7.2.1). It would seem therefore that the symmetry of the excited electronic state
has been established. However, there is a problem with this assignment because high quality
ab initio calculations predict that the lowest ! £ electronic state is ~8 eV (64 500 cm™')
above the ground electronic state, whereas the lowest 11'[g and ' A, states are calculated to
be at about the right energy, 4.13 eV (33 313 cm~!) and 4.17 eV (33 635 cm™!), above the
ground state [2]. Although accurate prediction of the energies of electronic excited states is
sometimes difficult to achieve through ab initio calculations, an error of several eV can be
ruled out for a high-level calculation. Consequently, the assignment based on the rotational
structure seems to be at odds with the findings of the ab initio calculations.

The explanation for this discrepancy lies in a breakdown of the Born—-Oppenheimer
approximation. So far the selection rules have been stated for pure electronic transitions,
i.e. it has been assumed that the electronic and vibrational motions can be fully separated.
However, this separation is never exact, and in some cases the mixing is sufficiently large
that it is more appropriate to think in terms of a combined vibronic state, i.e. a mixed
vibrational—electronic state. In these circumstances the selection rules are determined by
the symmetries of the vibronic state(s), each of which is a combination of the symmetries
of the component vibrational and electronic symmetries. This breakdown of the Born—
Oppenheimer approximation is possible in polyatomic molecules by a mechanism known

These excited states can be established from direct products of the symmetries of the MOs, as described in Section
4.2.3. For example, the vacancy introduced into the 17y MO as a result of the transition 1y < 1y yields
electronic states with spatial symmetries derived from 7y ® 7wy = of + o5 + 8. In contrast to MOs, the
convention with electronic states is to employ upper case symmetry labels.
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as Herzberg—Teller coupling, sometimes also known as vibronic coupling (for more details
about Herzberg—Teller coupling see Case Study 25). In Cs, there are three vibrational
normal modes, the symmetric stretch, the antisymmetric stretch, and the bending mode, with
O’ng , 0., and 7, symmetries, respectively.” The symmetries of the resulting vibronic states
can be determined from the direct product of the symmetries of the pure electronic and
pure vibrational states. If only the stretches are excited, then mixing of either the ' T1, or the
'A, electronic state with any stretching vibrational state can never yield the required ! =
vibronic state symmetry.

On the other hand, if there is one quantum in the bending mode when the molecule
is in the 'TI, electronic state, then three vibronic states, ' =, 'EF, and 'A, states, are
possible (as seen by taking the direct product 'TT, x 7). If the symmetries of vibronic
states for higher excitation of the bend are calculated it is readily shown that a ' " state is
produced on exciting odd quanta of the bending mode. Similarly even quantum excitation
of the bending mode within the ' A, electronic state can also produce a ! £ vibronic state.
Unfortunately, the data are insufficient to be able to determine whether it is a transition to
the 'A, or ! I, electronic state that is being vibronically induced. However, we can at least
show that there is no inconsistency between the ab initio predictions and the spectroscopic
findings.

Assignment and analysis of the rotational structure

The rotational structure in Figure 16.2 appears to be very simple and indeed it is. The P
and R branches have already been pointed out, and clearly lines in the P branch diverge
away from the band centre whereas lines in the R branch converge. Our first concern is to
extract the rotational constants for the upper and lower states from the spectrum. However,
before this is done it is beneficial to derive an estimate of the rotational constant. Assuming
C; is linear and symmetrical (Do, point group), the moment of inertia is 7 = 2mcr?,
where 7 is the C—C separation. Since we are not after an exact value at this stage, a
typical C=C bond length (1.3 A) can be used to estimate the rotational constant, yielding
B~04cm™!

The interesting thing about the spectrum in Figure 16.2 is that all the lines have been
assigned to transitions out of levels with even J. The estimate of the rotational constant
allows us to show that this is correct. Accepting the assignment for the moment, the rota-
tional constants in the upper and lower electronic states can be assigned by the method of
combination differences, in which lines are identified that originate from, or terminate in,
a common rotational level. For example, both the R(J — 1) and P(J + 1) lines transitions
terminate at the Jth rotational level in the upper electronic state and hence the difference
R(J — 1) — P(J + 1) gives the energy difference between the (J 4 1) and (J — 1) levels in
the lower electronic state. In a similar way, R(J) — P(J) gives the energy difference between

It is customary to employ lower case symbols to represent the normal coordinates of individual vibrations, as it is
to represent individual molecular orbitals. Upper case symbols are used for symmetries of overall electronic and
vibrational states.
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Table 16.1 Approximate line positions and combination differences in
the LIF spectrum of the C3 molecule

R(J —1)— P(J+1) R(J)— P(J)

4 P R J+1/2 J+1/2

0 331478
1.7333

2 331452  33149.1 1.5600
1.7429

4 331430  33150.1 1.5778
1.7636

6 331404 331509 1.6154
1.7733

8 331376

10 331346

the (J 4 1) and (J — 1) levels in the upper state, because both transitions originate from the
same lower state level. Consequently, these two combination differences are given by

MF'(J))=RUJ-1)—PUJ+1)=B"(J+1)(J+2)—B"(J—1)J
=4B"(J + 1)

AyF'(J) = R(J)— P(J)=B'(J+ 1)(J +2)— B'(J — 1)J
=4B'(J + 1)

in the rigid rotor limit, where the’ and ” labels refer to quantities in the upper and lower states,
respectively. The observed lines and the combination differences are given in Table 16.1.
As can be seen, the combination differences, when divided by J + %, give a nearly constant
value, as expected from the relationships above; the slow increase is due to the neglect of
centrifugal distortion, which is normally very small at low J.

The rotational constants in the lower and upper states can be derived from the intercept
of a line fitted through these points by linear regression. As the intercepts equal 4B” and
4B, the rotational constants are B” = 0.438 % 0.005 and B’ = 0.396 & 0.007 cm~!. The
corresponding C—C bond lengths are therefore 1.263 & 0.007 A and 1.328 + 0.012 A,
respectively. The increase in bond length on electronic excitation is consistent with the idea
of an electron moving from a bonding MO to a non-bonding MO.

The rotational constants extracted from the spectral analysis are reasonably close to
our earlier estimate. If the assignments in Figure 16.2 were wrong, and instead the P
and R branch lines with odd rotational quantum numbers were not missing, then rotational
constants roughly twice as large as the above values would be obtained. This would clearly be
physically unreasonable, and we would have to conclude that the assignment was incorrect.

The absence of lines from odd J levels is the result of nuclear spin statistics, which is
important in molecules where two or more atoms are in equivalent locations. Cj is a good
example since the terminal carbon atoms are equivalent; other examples would include C,,
0,, H,0, and NHj3. Interested readers can find a brief discussion on the origin of nuclear
spin statistics and its impact on the rotational levels of molecules in Appendix F. The effect
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for Cs is that, because the nuclear spin of the most abundant isotope, '>C, is I = 0, only
even J levels exist in the 12; ground state and odd J levels in the excited vibronic ' X
state. As a result every second line is missing from the spectrum.

Band head formation

The convergence of the R branch and divergence of the P branch is a consequence of the
difference in rotational constants between the upper and lower states. To see how this arises,
consider the expression for the position of R branch transitions:

VR(J) = F'(J+1)—F'(J)=v+B(J+1)J+2)—B"JJ+1)
=vy+2B + (3B — B")J + (B — B")J?

In the above expression v, represents the transition frequency in the absence of rotational
structure. If B” and B” differ then the quadratic term in J may be significant, particularly
at high J. If B” > B’ then v(R(J)) will reach a maximum at some value of J and begin to
decrease as.J continues to increase, i.e. the branch forms a so-called band head. Beyond the
band head the branch reverses direction and diverges as J continues to increase. In contrast,
the P branch will simply diverge as J increases. This is clearly the behaviour observed for
the spectrum of C; in Figure 16.2. If B > B” it is the P branch that has a band head and the
R branch that diverges.

Band heads are not always observed if |B'—B"| is very small, since the turning point
occurs for transitions out of a high rotational level and this may have an insignificant
population at the given temperature. Clearly band head formation is an indicator of the sign
and magnitude of the difference B’ — B”.? The band head in the C3 spectrum occurs at R(6);
higher R branch transitions are hidden under the stronger (low J) R branch transitions.
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Even if the rotational structure is not fully or even partially resolved, the shape, or contour, of the band still
provides information on the rotational constants. Even if no individual peaks were resolved in a low resolution
version of Figure 17.2, the overall band would clearly be asymmetric with a tail on the long wavelength side. Such
a band is referred to as being red-shaded, and this red-shading immediately reveals that B’ < B”.
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of diphenylamine: an unusual
illustration of the
Franck-Condon principle

Concepts illustrated: MATI spectroscopy, vibrational wavefunctions; Franck—Condon
principle and Franck—Condon factors.

The photoionization spectrum of diphenylamine provides an unusual and interesting illus-
tration of the Franck—Condon principle. Diphenylamine (DPA), illustrated in Figure 17.1, is
a relatively large molecule to study by gas phase spectroscopy and it might be thought that
the vibrational structure in its electronic spectra would be highly congested and difficult to
interpret. After all, this is a molecule with 66 vibrational modes! However, it was shown in
Section 7.2.3 that only totally symmetric modes generally need to be considered in inter-
preting electronic spectra. Also, there is the further simplification that not all of the totally
symmetric modes need be Franck—Condon active, i.e. will give a significant progression.
DPA is an excellent example of this, with the main structure arising from a single vibrational
mode.

Before spectra are considered, the experimental procedure, carried out by Boogaarts and
co-workers [1], will be outlined. Mass-analysed threshold ionization (MATI) spectroscopy
was employed. This technique, which was briefly described in Section 12.6, is essentially
the same as ZEKE spectroscopy but employs ion rather than electron detection. It has
the advantage over ZEKE spectroscopy in that ions can be separated according to their
mass, which in most cases enables the spectral carrier to be determined with confidence.
By analogy with ZEKE spectroscopy, a cation <— neutral molecule electronic absorption
spectrum is effectively obtained.

In the experiments on DPA this molecule was promoted from its ground electronic state,
which is a spin singlet (Sy), to its first excited singlet state (S;), using the output from a
pulsed dye laser. Different vibrational levels of the S, state can be accessed by appropriate
choice of the dye laser wavelength, A;. A pulse from a second dye laser was then employed
to ionize DPA from its S; state, with the ion signal being detected as a function of the
wavelength, A,, of this dye laser. Actually the experiment is a little more complicated in
that only threshold ions are detected, i.e. those ions for which the corresponding electron
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Figure 17.1 The structure of diphenylamine (DPA). The angle ¢ is the torsional coordinate and
corresponds to twisting (in opposite senses) of the two phenyl rings about the C—N bonds. ¢ = 0°
corresponds to a planar arrangement of the two phenyl rings. When planar, DPA has C,, point group
symmetry, as in the ground electronic state, but when ¢ # 0 the symmetry is lowered to C,. It is the
torsional vibration that is responsible for the bulk of the vibrational structure in Figure 17.3.

3
2 A DPA*
Vion = 0
hv,
2
DPA*
V=0 ——
hv,
V=0 ——— DPA

Figure 17.2 Laser excitation process employed in the MATI spectroscopy of DPA. The first laser
pulse, of wavelength A;, excites the DPA from the zero-point level in Sy to a specific vibrational
level in S;. A very short time later (~1 ns) a second dye pulse, of wavelength X, produces resonant
excitation to a specific vibrational level of the DPA cation in its ground electronic state. A single
active vibrational mode is assumed in this simple diagram.

kinetic energy is zero (see Sections 12.5 and 12.6 for more details). The excitation process
is summarized in Figure 17.2. It is important to recognize that the delay between the light
pulses from the two dye lasers must be carefully controlled and kept very short, on the
order of nanoseconds, otherwise the S; state will depopulate by mechanisms other than
photoionization, e.g. by fluorescence back down to the ground electronic state.

Since the ionization process is channelled through a resonant intermediate state, S,
the photoionization spectrum can be treated as if originating from that state. As mentioned
above, it is possible to vary the specific vibrational level of the S; state from which ionization
takes place by appropriate choice of A;. Figure 17.3 shows spectra originating out ofv =0, 1,
and 2 of Sy, where V' refers to the vibrational quantum number of the torsional mode of DPA
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Figure 17.3 Photoionization spectra of DPA recorded by resonance-enhanced photoionization via the
(a)v' =0,(b)v =1,and (c) v =2 torsional levels of the S; state. The total energy needed for adiabatic
ionization of DPA is indicated by the dashed vertical line and is 58 600 & 5 cm™'. (Reproduced from
M. G. H. Boogaarts, P. C. Hinnen, and G. Meijer, Chem. Phys. Lett. 223 (1994) 537, with permission
from Elsevier.)

in S;. The torsional mode involves twisting of the two phenyl rings relative to each other,
and corresponds to the motion in the angle ¢ in Figure 17.1. If DPA were planar in both
the Sy and S; states then Franck—Condon arguments would preclude significant torsion
vibrational structure in the S; <— Sy spectrum. The fact that such structure is observed
indicates a change in geometry in the direction of the phenyl torsion normal coordinate, i.e.
a change in equilibrium value of angle ¢. In fact DPA is known to be planar in the S; state
but in the S, state the two phenyl rings twist relative to each other by about 35° in opposite
directions relative to the C-N—C plane to produce a non-planar equilibrium geometry [2].
Thus in the state with lowest symmetry, the S; state with C, point group symmetry, the
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phenyl torsion is a totally symmetric normal mode and so there is no vibrational selection
rule, i.e. Av can take any value in the S|—S transition.

A number of conclusions can be drawn from inspection of Figure 17.3. First, the vibra-
tional structure is dominated by a progression in a single mode, as is especially evident for
photoionization from v/ = 0. The vibrational interval is rather small, about 53 cm!, and
therefore a low frequency vibration in the cation is responsible. The phenyl torsion would
be expected to be a low-frequency mode, since it involves the twisting of two relatively
heavy phenyl groups, and is therefore the likely candidate for the progressions. In fact it
is possible to discern a small contribution from another active mode, with a frequency of
~400 cm~!, which is most noticeable in the spectrum for photoionization from v/ = 2.
However, this additional active mode will be ignored since it gives only very weak features.

The vibrational numbering for the torsional mode in the ion is given at the top of
Figure 17.3 and applies to all three spectra. How was this numbering arrived at? It is
not always easy to establish the vibrational numbering in an electronic spectrum by simple
inspection, since it is not unusual to find that the early members of a progression are too
weak to observe. Consider the bottom trace in Figure 17.3, which is the spectrum for pho-
toionization viav'= 0 in the S; state. The most intense band clearly corresponds to vio, >> 0,
which reveals that there is a substantial change in the torsion angle in moving from S; to
the ground electronic state of the cation. It is not obvious that the very weak peak attributed
to vien = 0, which is barely perceptible above the background noise, is correctly assigned.
However, confirmation is provided by the middle and top spectra in Figure 17.3, where the
observed band at lowest wavenumber is the same for these spectra. The first band becomes
much stronger for excitation through v = 1 and v/ = 2 and yet no additional band appears
at lower wavenumber, proving conclusively that the first band corresponds to vjo, = 0.

The different intensity distributions in the three spectra are rather interesting and can
be explained by employing the quantum mechanical form of the Franck—Condon principle.
This states that the transition probability for a particular member of a vibrational progression
is proportional to the square of the vibrational overlap integral for the two electronic states
involved in the electronic transition (see Section 7.2.2). Key to interpreting the intensity
distributions is to recognize that the long progression in the torsional mode indicates a
substantial change in the torsional angle ¢ on excitation from S; to the ground electronic
state of the ion. This is represented in Figure 17.4 by a displacement of potential energy
curves for these two states. Consequently, to explain the intensity profiles it is only necessary
to consider those parts of the vibrational wavefunctions where significant overlap is possible.
This region is marked on Figure 17.4 by the dashed vertical lines for the specific case
of transitions out of v = 1, and corresponds to the full spatial extent of the lower state
vibrational wavefunction, y,/—;.

Projecting ¥ ,,—; vertically upwards, overlap with the ion vibrational wavefunction
improves from vi,, = 0 — 2. Thereafter the overlap decreases because of cancellation
of regions of positive and negative overlap. This is specifically illustrated in the inset of
Figure 17.4 in the lower right corner, which brings together the wavefunctions for v/ = 1
and vjo, = 5. The peak of the wavefunction for vj,, = 5 lies almost directly above the node
for v/ = 1. As usual in integration, a definite integral evaluated between the limits a and ¢
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Figure 17.4 This diagram (not to scale) provides the basis for understanding the relative band inten-
sities in the torsional progressions in Figure 17.3. The upper potential energy curve is for the DPA
cation, while the lower curve is for the S; excited electronic state of neutral DPA. The horizontal
coordinate corresponds to a change in torsional angle, ¢. Vibrational wavefunctions in the ion up
to vien = 5 are shown, while only that for v/ = 1 in the S, state is explicitly shown. On the upper
right-hand side a stick drawing of the MATT spectrum is shown with the lines coinciding with the
specific ion vibrational levels accessed. The inset in the bottom right corner shows an expanded view
of the v/ = 1 and v;,, = 5 wavefunctions (see text for more details).

can be rewritten as
c b c
[ rmac= [ reacs [ rwa
a a b

where f(x) is the function being integrated, and b lies between a and c. In other words, the
overlap integral between v/ = 1 and v;,, = 5 can be expressed as the sum of the overlap
integrals originating either side of the node in v/ = 1. These overlap integrals will have
similar magnitudes but opposite signs, since the phase of vr,—; changes as the node is
crossed whereas the vibrational wavefunction in the ion has the same sign over most of this
region. Consequently, a small overlap integral will result and this explains why the transition
Vien = 5 <V = 1 is relatively weak.

A particularly interesting feature of the MATI spectrum via v = 1 is that the intensity
of the progression begins to rise again above vj,, = 6. This is because the ion torsional
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wavefunction becomes increasingly peaked near the inner turning point of the potential
energy curve, and this turning point shifts increasingly to the left as the vibrational ladder
is climbed. The overlap is now concentrated on the left-hand lobe of v,/_;, reducing the
effect of overlap cancellation due to the change in phase of v,,—;. Eventually, above v = 13
according to the spectrum in Figure 17.3, the main lobe of the ion wavefunction moves
beyond the inner turning point of the potential curve for S;, and so the Franck—Condon
factor decays towards zero as vj,, increases further.

What is clear for the MATI transitions via v’ = 1 is that the spectrum reflects the shape of
the v/ = 1 vibrational wavefunction. This fascinating result is mirrored for MATI transitions
viav' =0 and V' = 2, where zero and two ‘nodes’ are seen, respectively. (One of the nodes for
the v/ = 2 case is partly obscured by activity in an additional vibrational mode mentioned
earlier.) The observation of intensity ‘nodes’ in long vibrational progressions is a well-
known phenomenon that has been used in some cases as a means of assigning vibrational
quantum numbers. Notice that in this case the original assignment of torsional vibrational
quantum numbers in S; is confirmed by the intensity distributions.

Finally, notice that the onset of the photoionization spectra in Figure 17.3 provides a
rather precise value for the adiabatic ionization energy of DPA.
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electronic spectrum of
1,4-benzodioxan: assignment
of low frequency modes

Concepts illustrated: low frequency vibrations in complex molecules; ab initio
calculation of vibrational frequencies, laser-induced fluorescence (excitation and
dispersed) spectroscopy; vibrational assignments and Franck—Condon principle.

This Case Study demonstrates some of the subtle arguments that can be employed in assign-
ing vibrational features in electronic spectra. It also provides an illustration of how impor-
tant structural information on a fairly complex molecule can be extracted. The original
work was carried out by Gordon and Hollas using both direct absorption spectroscopy of
1,4-benzodioxan vapour and laser-induced fluorescence (LIF) spectroscopy in a supersonic
jet[1]. The direct absorption spectra were of a room temperature sample and were therefore
more congested than the jet-cooled LIF spectra. Nevertheless, the direct absorption data
provided important information, as will be seen shortly. For the LIF experiments, both exci-
tation and dispersed fluorescence methods were employed (see Section 1 1.2 for experimental
details). Only a few selected aspects of the work by Gordon and Hollas are discussed here;
the interested reader should consult the original papers for a more comprehensive account
[1,2].

Possible structures of 1,4-benzodioxan are shown in Figure 18.1. Assuming planarity of
the benzene ring, there are three feasible structures that differ in the conformation of the
dioxan ring. One possibility is that both C—O bonds are displaced above (or equivalently
below) the plane of the benzene ring yielding a folded structure with only a plane of
symmetry (Cs point group symmetry). Alternatively, the dioxan ring could be in the same
plane as the benzene ring (C,y), or a twisted structure might occur in which the C2—C3
bond bisects the plane defined by the benzene ring by some non-zero angle (C5). It should
occur to the reader that it might be possible to distinguish between these possibilities on
the basis of vibrational structure in the electronic spectrum, since the vibrational selection
rules will be altered by a change of point group symmetry.

On further reflection the potential complexity of the vibrational structure might seem
discouraging given that 1,4-benzodioxan has 3N — 6 = 48 normal modes! However, three
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O~cy, O~cp, Oy,
o ACH, 0-CH o~CH,

Folded (C,) structure Planar (C,,) structure Twisted (C,) structure

Figure 18.1 Possible structures for 1,4-benzodioxan which differ in the conformation of the dioxan
ring. The point group symmetries for each particular structure are in parentheses. Although not shown,
the convention for numbering the framework atoms is to number them 1 through 10, starting from the
upper O atom and continuing clockwise around the entire two-ring system.
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Figure 18.2 Illustration of the four low frequency skeletal vibrations v,4, V55, V47, and v4g for a planar
(Cyy) structure of 1,4-benzodioxan. These vibrations take on a similar appearance for the Cs and C,
structures, although their symmetries differ. The + and — symbols refer to out-of-plane displacements
of the atoms, the — displacement being in the opposite sense to the + displacement.

factors offer some hope. First, whichever of the three conformations is the actual global
equilibrium geometry, the fact that there is some symmetry in each case will limit the number
of'totally symmetric modes, and it is these which nearly always dominate in electronic spectra
for reasons explained in Section 7.2.3 (and seen also in the previous Case Study). Second,
many of the totally symmetric vibrational modes will not give rise to any detectable spectral
features if there is no significant geometry change in the direction of the respective normal
coordinates on electronic excitation. In other words, not all totally symmetric modes need
be significantly Franck—Condon active. Finally, there are many vibrations but only the out-
of-plane skeletal modes in the dioxan portion of the molecule will be significantly affected
by any changes in the conformation of the dioxan ring. By comparison with similar modes
in other molecules, the twisting and bending motions of the O1-C2—-C3—04 group would be
expected to have relatively low frequencies, typically <300 cm~'. Consequently, the focus
can be restricted to the region where higher frequency modes, such as skeletal stretching
vibrations, cannot be observed.

The four vibrations considered by Gordon and Hollas are shown schematically in
Figure 18.2. They are: the O1-C2—-C3-04 twist, designated v,5; the O1-C10—-C5-04 twist,
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va4; the puckering of the dioxan ring about O1-04, v4g; and the ‘butterfly’ bending of the
two rings about C5—C10, v47. If Cy symmetry pertains, then only v47 and v4g will be totally
symmetric, while if a twisted (C5) structure occurs then v,4 and v,5 will be totally symmetric
and v47 and v4g will be non-totally symmetric. All four of these modes will be non-totally
symmetric if the molecule has C,, symmetry.

Ab initio calculations

To help assign the spectrum, we will make use of the results from ab initio calculations. In
turning to ab initio calculations for help the question of structure is in one sense immediately
answered. However, it is always important to obtain experimental verification since the
calculations may involve approximations that give misleading predictions. It is also worth
noting that in the original spectroscopic work by Gordon and Hollas they did not have the
luxury of being supported by ab initio calculations.

The ab initio calculations we turn to were reported by Choo and co-workers [3] several
years after the studies by Gordon and Hollas. They made use of both Hartree—Fock (HF)
and density functional theory (DFT), both of which are described in Appendix B. The
DFT method, and especially a particular variant known as B3LYP, tends to be a significant
improvement on the Hartree—Fock method for predicting both structures and harmonic
vibrational frequencies without incurring much extra computational cost. The calculations
by Choo et al. predicted that the twisted structure (C5) is the equilibrium structure. We now
use the spectra to confirm this prediction.

Assigning the spectra

Figure 18.3 shows a portion of the LIF excitation spectrum of jet-cooled benzodioxan. Two
main bands are seen, the strongest at 35 563 cm ™! and another at 35703 cm~!. All bands in
the spectrum, weak and strong, are due to transitions from the ground electronic state, which
is a spin singlet and will therefore be designated Sy, to the first excited singlet electronic
state, designated S;. The strongest band corresponds to the origin transition of the S;—S,
system, i.e. it is due to excitation from the zero-point vibrational level in Sy to the zero-
point level in S;. By convention, this is labelled 09. The 140 cm~! separation between the
origin and the other strong band, labelled A in Figure 18.3, is consistent with a vibrational
progression involving excitation of a low frequency mode in the S; electronic state. The
vibrational mode responsible will, for the moment, be left unassigned. Presumably the
transition is from v4 = 0 in the lower electronic state (Sy) and va = 1 in the upper electronic
state (S1) and can therefore be labelled A}

Confirmation that band A is due to vibrational excitation in S; comes from dispersed
fluorescence spectra. Dispersed fluorescence spectra obtained by laser pumping of the origin
(05) and A} transitions are shown in Figures 18.4(a) and 18.4(b), respectively. A progres-
sion with an interval of ~164 cm™! is obvious in the low frequency part of the spectrum in
Figure 18.4(a). There are also other strong vibrational features in Figure 18.4(a) but they



18 Vibrational structure in spectrum of 1,4-benzodioxan 153

0
0p
A
N
T T T
0 200 400

Relative wavenumber/cm™!

Figure 18.3 Laser-induced fluorescence excitation spectrum of 1,4-benzodioxan cooled in a super-
sonic jet. The wavenumber scale is relative to the position of the electronic origin band (03), which
has an absolute wavenumber of 35562.48 cm™'. The assignment of bands A and B is discussed in
detail in the text. (Reproduced with permission from R. D. Gordon and J. M. Hollas, J. Chem. Phys.
99 (1993) 3380, American Institute of Physics.)

involve modes above 400 cm™! and are therefore not of interest here. The 164 cm™! interval
is not dissimilar to the 0J-A/ separation in the excitation spectrum and it is therefore
tempting to suggest that mode A is also responsible for the low frequency structure in
Figure 18.4(a). Proofthat this is indeed the case comes from the dispersed fluorescence spec-
trum in Figure 18.4(b). Laser excitation of a particular mode in the excited electronic state
should lead to an enhanced progression in that mode in the dispersed fluorescence spectrum.
The same low frequency progression as seen in Figure 18.4(a) is clearly more prominent in
Figure 18.4(b) and therefore mode A must be responsible. This use of dispersed fluores-
cence spectra to confirm vibrational assignments in an excitation spectrum is frequently
employed by spectroscopists studying electronic spectra and is a powerful tool. The dis-
persed fluorescence spectrum also provides specific information on the vibrational levels
in the ground electronic state, whereas the excitation spectrum provides complementary
information for the excited electronic state.

Table 18.1 shows the predicted frequencies from the ab initio calculations by Choo and
co-workers for the low frequency vibrations [3]. Comparing the measured frequency for
mode A in the ground electronic state with the ab initio values, the only feasible assignment
is to the ring twist (v5). The agreement between theory and experiment is good, the differ-
ence being only 7 cm™! for the DFT calculation. Some differences would be expected due to
approximations inherent in the DFT method. Furthermore, the calculations give harmonic
vibrational frequencies whereas the experimental values are fundamental frequencies.'

A transition between v = 0 and v = 1 levels for a given vibrational mode is known as the vibrational fundamental
transition. The separation between these levels is approximately equal to the harmonic vibrational wavenumber, but
an exact value would take into account the small but non-negligible contributions from vibrational anharmonicity.
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Figure 18.4 Dispersed fluorescence spectra obtained by laser excitation of the (a) 09, (b) A, and (c) B
transitions shown in Figure 18.3. (Reproduced with permission from R. D. Gordon and J. M. Hollas,
J. Chem. Phys. 99 (1993) 3380, American Institute of Physics.)
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Table 18.1 Ab initio frequencies® for out-of-plane skeletal vibrations
in 1,4-benzodioxan

Mode Approximate description” Symmetry¢ HF/6-31G" DFT-B3LYP/6-31G"

Vayg Ring twist A 316 334
Vos Ring deformation A 171 171
Va7 Ring flapping (butterfly) B 295 305
Vg Ring puckering B 91 107

¢ The HF (Hartree—Fock) values have been scaled by multiplying the original values by
0.9. This was applied by Choo and co-workers [3] because HF vibrational frequencies
tend to overestimate experimental values by approximately 10%.

b The ring referred to in the mode descriptions is the dioxan ring.

¢ These symmetries assume a twisted (C, point group) equilibrium structure for the
molecule.

Nevertheless, the level of agreement is such that we can have reasonable confidence in
assigning other vibrational bands using the ab initio results.

We shall also consider one additional band, band B in Figure 18.3. This is only one
of several very weak bands in the excitation spectrum but it takes on special significance
when establishing the structure of 1,4-benzodioxan, as was realized by Gordon and Hollas.
Band B is 159 cm™! above the 08 band, and when the laser is tuned to this transition it
gives the dispersed fluorescence spectrum shown in Figure 18.4(c). The resulting spectrum
is similar to that obtained by laser exciting 25} (formerly designated A}), but the interval
between bands is larger, being ~208 cm ™. It looks as if the assignment of band B is to some
transition B(l), where B is another of the low frequency skeletal modes. However, inspection
of Table 18.1 shows that there is no out-of-plane skeletal mode with a frequency close to
this value. An alternative assignment must therefore be sought.

A possibility that must be considered is that the vibrational mode responsible for band B
is non-totally symmetric. In the Franck—Condon limit, this would mean that only transitions
with Av = even are allowed but only Av = +2 transitions are likely to have any significant
probability. Such transitions would be expected to be very weak for reasons described in
Section 7.2.3. According to Table 18.1, the ring puckering mode (v4g) has just about the
right frequency. Neglecting anharmonicity, the DFT calculations predict 2v4g at 214 cm™!,
compared to the observed value of 208 cm~! for the first member of the progression, B1, in
the dispersed fluorescence spectrum. The agreement is excellent given the approximations
involved and leaves little doubt that this assignment to the 483 transition is correct. Similarly,
band B2 in the dispersed fluorescence spectrum in Figure 18.4(c) is assigned to the 483
transition.

The assignment of band B in the excitation spectrum to the 483 transition is strong
experimental support for the theoretical prediction that 1,4-benzodioxan adopts a twisted
(C,) structure at equilibrium. As mentioned earlier, the C, structure is the only one of
the three shown in Figure 18.1 for which vyg is non-totally symmetric. Gordon and Hollas
arrived at the same assignment and the same overall conclusion about the molecular structure
without the benefit of ab initio calculations. Their assignment of the 487 transition was
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derived from a careful analysis of sequence bands near the origin transitions in the absorption
spectrum. Further details can be found in References [1] and [2].
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19 Vibrationally resolved
ultraviolet spectroscopy
of propynal

Concepts illustrated: electronic structure, symmetries of electronic states, absorption
versus laser-induced fluorescence spectra; jet cooling; ab initio calculation of structures
and vibrational frequencies; vibrational assignments and the Franck—Condon principle.

Aldehydes and ketones have well-known electronic transitions in the ultraviolet associated
with the carbonyl group. The longest wavelength (lowest energy) system is a 7% < n
transition in which an electron from a lone pair on the oxygen atom is promoted to a C=0
antibonding molecular orbital. As noted in several of the earlier Case Studies, it is common
to denote the ground state singlet as Sy, and the first excited singlet state as S;, and we talk
of the S| <« Sy transition. The exact wavelength at which absorption takes place depends
on the degree of substitution and the type of substituent.

Propynal is a relatively simple aldehyde but its room temperature electronic absorption
spectrum, shown in Figure 19.1, is rich in vibrational structure [ 1]. The presence of extensive
vibrational structure is predictable if the effect of the excitation of the non-bonding electron
to the 7r * orbital is considered. Conjugation of the C=C and C=0 bonds is likely to result
in planar (Cs point group) equilibrium geometries for both the S; and Sy states:

/H
H-—C=C-C
\

O

However, electronic excitation should lead to a weakening of the C=0 bond, since a non-
bonding electron in the Sy state now occupies an antibonding 7 * orbital in the S, state: thus
the S state should have a longer C=0 bond and a lower vibrational frequency.

Ab initio calculations would be useful to interpret the spectra, and so we have carried out
calculations at the HF/6-31G* and the CIS/6-31G* levels' (the former for the S, state, the

A CIS calculation on an excited electronic state is equivalent in quality to a Hartree—Fock (HF) calculation on the
ground electronic state.
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Figure 19.1 Low resolution (0.1 nm) electronic absorption spectra of room-temperature propynal
(lower) and d;-propynal (upper) vapours. (Reproduced from U. Brithlmann and J. R. Huber, Chem.
Phys. 68 (1982) 405, with permission from Elsevier.)

latter for the S; state — see Appendix B for more details about these methods). Table 19.1
shows the calculated equilibrium structural parameters.

As may be seen, the major bond length change is a lengthening of the C=0 bond,
as expected, upon excitation. There are also other small structural changes, which result
from changes in conjugation and electron repulsion brought about by electronic excitation.
Application of the Franck—Condon principle suggests that the vibrationally resolved elec-
tronic spectrum will be dominated by the C=O stretch, which is a totally symmetric (a’)
vibration.

Propynal has twelve normal modes, and a group theoretical analysis reveals that if the
molecule is planar nine vibrations have ¢’ symmetry and three are a” modes. It is normally
safe to ignore non-totally symmetric vibrations when interpreting major vibrational features
in electronic spectra. However, this statement is conditional on there being no change in equi-
librium symmetry during the electronic transition. In the case of propynal, if the molecule
is planar in the ground electronic state and non-planar in the excited state, then significant
Franck—Condon activity in one or more out-of-plane bending modes would be expected.
These bending modes would be totally symmetric in the excited state because the molecule
would have only C; symmetry. Fortunately, this complication does not appear to arise for
propynal since the ab initio results suggest planarity is maintained on electronic excitation.
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Table 19.1 Structural parameters (at equilibrium) for the Sy and
S, states of propynal from ab initio calculations

Structural parameter®” So(HF/6-31G*) S1(CIS/6-31G¥*)
Cl—Hl1 1.06 1.06

c1—C2 1.19 1.19

C2—C3 1.46 1.42

C3—H2 1.09 1.08

C3—0 1.19 1.27
/C2—C3—H2 114.7 116.7
/H2—C3—0 121.7 118.6

¢ The numbering of the carbon framework begins from the acetylenic
end of the molecule.
® Bond lengths are in A and bond angles are in degrees.

From the comments earlier, we therefore expect extensive Franck—Condon activity in the
C=0 stretch with some, but likely lesser, activity being possible in other @’ vibrations.

Electronic states

The ab initio calculations predict a ground electronic state in which all occupied orbitals
are full. This is as expected given that propynal is a relatively stable compound that can
be synthesized and handled using standard laboratory techniques. The ground state will
therefore be a spin singlet, as implied by the Sy designation used earlier. However, since all
orbitals are full, the overall spatial symmetry of the electronic state must be 4. It is therefore
possible to dispense with the Sy label and refer to the ground state by its full symmetry,
X'4’. The additional label X specifies that this state is the lowest (ground) electronic state
possessing !4’ symmetry (there are higher energy states with this symmetry).

Excitation of an electron from an in-plane non-bonding orbital on oxygen to the carbonyl
sr* orbital, which has &” symmetry, will produce an excited electronic state of overall
symmetry of A”. Singlet or triplet spin multiplicity is possible, but by far the strongest
transition will be the spin-allowed 4'4” — X' 4’ system.

Assigning the vibrational structure

Faced with the spectrum of propynal for the first time, there are a number of pieces of
information that could be employed to assist the assignment process. Some of the structure
could be assigned by a combination of chemical intuition and knowledge of the spectra of
related carbonyl compounds. Since the three largest peaks are equally spaced, this structure
appears to be part of a vibrational progression, and our first guess would be that it is
due to the C=O0 stretch. The vibrational assignment process is often greatly assisted by
obtaining spectra of isotopically substituted molecules, and this was done for propynal by
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Table 19.2 Harmonic vibrational frequencies of propynal obtained from
ab initio calculations

Harmonic frequency/cm™!

Mode Approximate description Symmetry So Sy

Vi C—H stretch (C=C—H) a 3661 3659
V2 C—H stretch (HCO) a 3237 3335
V3 C=C stretch a 2403 2261
V4 C=0 stretch a 2003 1685
Vs HCO bend (in-plane) a 1551 1327
Ve C—C stretch a 1029 1067
vy CCH bend (in-plane) a 811 857
Vg CCO bend a 686 551
Vo CCC bend a 255 188
V1o C—H wag (HCO) a’ 1125 626
Vi CCH bend (out-of-plane) a’ 872 476
V1o CCC bend (out-of-plane) a’ 327 371

recording the absorption spectrum for d;-propynal (see Figure 19.1). Another useful source
of information, which was not used in the original studies on propynal but which is easy to
generate for this molecule using modern computers, is the ab initio vibrational frequencies.
Table 19.2 summarizes the results of a HF/6-31G* calculation on the Sy state of propynal,
together with the corresponding values for the S; state calculated using the CIS/6-31G*
method.

We can now begin to rationalize the assignment of the absorption spectrum. The elec-
tronic origin transition, designated 00, is centred at 26 171 cm~' (382.1 nm). Establishing
that this band is the true electronic origin rather than a vibrationally excited feature is
straightforward since it is strong, and scans to lower energy than shown in Figure 19.1
reveal no convincing alternative.

The most prominent bands in Figure 19.1 have been attributed to a progression in mode
vy, the C=0 stretch. These bands have been labelled 4;; where the subscript indicates the
vibrational quantum number in the ground electronic state and » is the vibrational quan-
tum number in the excited electronic state. There is very strong evidence for this assign-
ment. First, note that adjacent members of the progression are separated by approximately
1300 cm~!. Infrared spectra of aldehydes in their ground electronic states with an acetylenic
CC bond between C2 and C3 show a C=0 stretching band in the range 16801705 cm™'.
The much lower frequency deduced from Figure 19.1 is for the excited electronic state, and
is in line both with our expectations from consideration of the bonding changes, and the
results of the ab initio calculations in Table 19.2. Since electronic excitation weakens the
carbon—oxygen bond by moving a non-bonding electron into the carbonyl 7 * antibonding
molecular orbital, the sharp fall in vibrational frequency is to be expected. Indeed it would
be wrong to regard the carbon—oxygen bond as a double bond in the excited electronic state,
but we will continue to retain the C=0 notation for convenience.

Notice also that the spectrum of deuterated propynal is consistent with the C=0 stretch
assignment. Replacement of the H atom in the formyl group with a D atom should have
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Figure 19.2 Vibrationally resolved laser excitation spectra of propynal (upper) and d;-propynal
(lower) cooled in a supersonic jet. The region shown extends to just beyond the 4} transition. (Repro-
duced with permission from H. Stafast, H. Bitto, and J. R. Huber, J. Chem. Phys. 79 (1983) 3660,
American Institute of Physics.)

only a small effect on the C=O stretching frequency, and this is borne out by the similarity
of the vy structure in the two spectra in Figure 19.1.

Assignment of the vibrational stucture due to the C=0 stretch is straightforward. It
is more challenging, but possible, to assign virtually all of the remaining structure in the
spectrum. However, rather than describe how the full assignment could be achieved, we
will focus on some of the structure on the low wavenumber side of 4.

LIF spectroscopy of jet-cooled propynal

Cleaner spectra of propynal and d,-propynal, obtained from supersonic jet expansions in
argon carrier gas [2], are shown in Figure 19.2. Laser-induced fluorescence (LIF) excita-
tion spectroscopy was used to record these spectra. Jet-cooling has lowered the rotational
temperature dramatically, thereby narrowing rotational contours and thus sharpening each
vibrational component. Also, although vibrational cooling is less efficient than rotational
cooling, contributions from vibrational hot and sequence bands” are substantially reduced.

Sequence bands are hot bands (transitions out of excited vibrational levels) in which the vibrational quantum does
not change, e.g. 4%.
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Figure 19.3 Dispersed fluorescence spectrum obtained by laser exciting the 4'4” —X'4’ electronic
origin (09) transition at 382.1 nm (26 171 cm™!). The wavenumber scale is relative to the origin posi-
tion. Note that this is a non-linear scale, so although it appears that the members of the v4 progression
diverge, in fact the progression slightly converges, as one would normally expect. (Reproduced with
permission from C. A. Rogaski and A. M. Wodtke, J. Chem. Phys. 100 (1994) 78, American Institute
of Physics.)

Equally noticeable in comparing the room temperature absorption and jet-cooled laser
excitation spectra are substantial differences in the relative intensities of some bands. This
is not unusual, and arises because relative band intensities in LIF excitation spectra are
affected not only by the absorbance of the molecule at a specific wavelength, but also by
the fluorescence quantum yield for the excited energy level.” In fact the rates of fluorescence
decay and non-radiative relaxation (via internal conversion) in propynal are known to be
comparable. Furthermore, the rate of internal conversion depends on the vibrational mode
excited, further complicating matters. Detailed studies of non-radiative decay in electroni-
cally excited propynal have been published [1, 2].

As in the absorption spectrum, the C=O stretch is active in the excitation spectrum.
Dispersed fluorescence spectra show the activity in v4 even more clearly [3]. In Figure 19.3,
which was obtained by laser excitation of the 0 transition, the dispersed fluorescence
spectrum is dominated by structure in a single vibrational mode. Since this spectrum arises
from emission from a single excited level, non-radiative relaxation does not affect the
relative band intensities. The structure is due to emission to different vibrational levels in

Other factors might also affect relative band intensities. Variation in output power of the tunable laser as a function
of wavelength is one possibility, and indeed the spectra in Figure 19.2 have not been corrected for this variation.
Similarly, the efficiency of the light detector, usually a photomultiplier tube, may also vary over the scanned
wavelength range.
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the Sy state, and the separation between peaks is exactly as expected for the C=O stretch
in the ground electronic state of propynal.

The first two bands above the origin in the excitation spectrum of jet-cooled propynal are
medium intensity bands at +189 cm~! and 4346 cm™! from the origin. To help assign these
bands, we can draw on the ab initio predictions in Table 19.1. In doing so, the reader should
be aware that Hartree—Fock calculations, owing to their neglect of electron correlation,
are renowned for overestimating vibrational frequencies, typically by 10%. However, this
overestimation is only a frend and it is not unusual to find some predictions outside of this
range. Thus one must use the data in Table 19.1 with caution. Nevertheless, Table 19.1
reveals that only two modes have the low frequencies required, modes 9 and 12, the CCC
in-plane and CCC out-of-plane bends, respectively. Assuming the predicted frequency order
is correct, and for Hartree—Fock calculations this is normally far more reliable than absolute
frequency predictions, then the 4189 cm™! band can be assigned to the 9| transition and
the 4346 cm™' band to the 12 transition. Both of these assignments are consistent with
the spectrum of d, -propynal, which shows negligible shift of these bands relative to the 0
band.*

There is little doubt about the assignments of the two low-frequency bands but both
show, in different ways, the limitations of the arguments we have employed to explain the
presence or absence of vibrational structure. The C=C—C framework remains linear in
both ground and excited electronic states, and therefore there is no structural change in the
direction of the CCC bending normal coordinate. In light of this the intensity of the 9(1) band
is surprising.

The observation of substantial intensity in the 12 transition may seem an even bigger
problem, since vy, is a non-totally symmetric (a”) vibration and therefore single quantum
excitation in this mode is strictly forbidden by the Franck—Condon principle. Clearly there
must be a breakdown of the Franck—Condon principle, and in fact the 12/ transition gains
its intensity from a form of vibronic coupling known as Herzberg—Teller coupling. This is
discussed in several other Case Studies and in some detail in particular in Case Study 25.
Vibronic coupling amounts to a breakdown of the Born—Oppenheimer separation of elec-
tronic and vibrational motions. Its effects often manifest themselves in electronic spectra,
although it is more usual for it to give rise to weak bands rather than prominent features
such as the12{ band of propynal.

The limitations in using ab initio calculations on the ground electronic state to assign
vibrational frequencies in an excited state are very clearly illustrated by the one remaining
assigned band in Figure 19.2, the 10§ band in the HCCCHO spectrum. Mode vy is the
HCO wag, another out-of-plane vibration (¢” symmetry) whose single quantum excitation
requires invoking vibronic coupling. However, what is particularly noticeable in this case
is the enormous difference in the observed frequency (462 cm™! for the fundamental) and
that estimated from the ab initio calculations on the ground electronic state (see Table 19.2).

Notice however that the absolute positions of all bands are shifted on deuteration. This is due to the fact that the
zero-point energy contains contributions from modes for which deuteration at the carbonyl end of the molecule
has a large effect on the vibrational frequency (v3, vs, and vig). The sum of the zero-point energies differs for the
X and 4 states, giving rise to the overall shift of the d;-propynal to higher wavenumber relative to propynal.
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Fortunately, the v} frequency obtained from the CIS calculations on the S; state is in far
better agreement with experiment, showing the value of attempting ab initio calculations
on excited electronic states when assigning electronic spectra.

Our comments on the vibrational structure have been far from exhaustive. There is more
vibrational information contained in Figures 19.1 and 19.2 than has been discussed here,
and the interested reader is encouraged to consult the original references for more detailed
accounts [1-4].
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20 Rotationally resolved laser

20.1

excitation spectrum of propynal

Concepts illustrated: near-symmetric rotor approximation, asymmetric rotors and
asymmetry splitting; parallel and perpendicular bands.

Vibrationally resolved LIF excitation spectra of propynal were met in the previous Case
Study. In the present Case Study the focus is on the rotationally resolved laser excitation
spectrum of propynal. This molecule is nominally an asymmetric rotor, since the only
symmetry it possesses is a reflection plane (Cs point group). However, as we will see, it is
a near-prolate symmetric rotor and therefore its rotationally resolved electronic spectrum
can be largely understood in terms of the properties of a prolate symmetric top.

Figure 20.1 shows the excitation spectrum for the 6, band, where mode v¢ is dominated
by C=C stretching character. This was taken from original work by Stafast and co-workers
[1] in which propynal was seeded into a pulsed supersonic jet. The origin (08) band has
very similar rotational structure.

Assigning the rotational structure

The rotational structure is relatively simple to assign, although it might look quite com-
plicated at first sight. We will attempt to interpret this spectrum by treating propynal as a
prolate symmetric top, and will subsequently consider what happens when this constraint
is removed.

P, O, and R branches are readily identified in the central portion of the spectrum in
Figure 20.1. The intense Q branches are the most obvious features, and once identified
then it is relatively straightforward to see that each is flanked by fully resolved P and R
branches. On both sides of the central, and most intense, P/Q/R system there are additional,
weaker P/Q/R systems. With some experience, this structure suggests to the spectroscopist
that transitions out of different K levels are being observed. For a prolate symmetric top
the rotational energy levels are described by equation (6.15) and the transition selection
rules are

Parallel transitions AK =0, AJ=0,=*1
Perpendicular transitions AK ==+1, AJ =0, 1
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Figure 20.1 Rotationally resolved laser excitation spectrum of the 4'4”—X'4’ 03 band of jet-cooled
propynal. (Reproduced with permission from H. Stafast, H. Bitto, and J. R. Huber, J. Chem. Phys. 79
(1983) 3660, American Institute of Physics.)

A parallel transition is one in which the transition dipole moment is oriented along the
a inertial axis. If the A rotational constants are similar in the upper and lower electronic
states, then the second term on the right-hand side of (6.15) is irrelevant and we find that
the rotational structure should consist of single P, O, and R branches. This is not what is
observed in Figure 20.1, so the transition must be dominated by perpendicular character.
Using equation (6.15) transitions are expected at

V=74 [(4 — BYK*+ B'J(J +1)]
_ [(A// _ B//)K//Z _|_ B//J//(J// + 1)] (201)

where V) is the transition wavenumber for the pure 6} transition, i.e. in the absence of rota-
tional structure. For simplification, assume that A" = 4” and B’ = B” so that the superscripts
can be dropped. The above equation then simplifies to

V=7g+ (A4 —B)YK*—K"™)+ B[J'(J +1)=J'"(J +1)] (20.2)

For Q branch transitions J' = J” and therefore the second term on the right of (20.2)
disappears. Consequently, for a perpendicular transition, O branches are expected at the
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following positions:

K=1«<K'=2 V=7, —3(4 — B)
K =0<K'"=1 V="7y—(4— B)
K'=1«<K'=0 V="7y+(4— B)
K =2<«K'=1 V =7y +3(4 — B)
K'=3«K'=2 V=T +5(4 — B)

Thus a series of Q branches are expected separated by 2(4 — B). The most intense Q branch
in a spectrum is expected to be that corresponding to K’ =1 «<— K” = 0, since K” = 0 will be
the most populated K level in the ground electronic state. Transitions from other K” levels
are possible but will be progressively weaker as K” increases.

The features in Figure 20.1 can now be readily explained. The strong Q branch in
the centre of the spectrum must be due to K’ = 1 <— K” = 0 transitions, with the high
intensity deriving from unresolved contributions from various Q(J) transitions. The weaker
O branches to higher and lower wavenumbers are, respectively, due to K’ =2 <« K’ =1
and K’ = 0 < K” = 1 transitions. We shall refer to these transitions with different values
of K” and K’ as K sub-bands.

A specific labelling system is used for rotational transitions in electronic spectra of
symmetric tops, which is an extension of that employed for linear molecules. P, Q and R
branch transitions are labelled in the usual manner by specifying the rotational quantum
number J in the lower state, i.e. P(J) or R(J). However, superscripts and subscripts are added
to specify a particular sub-band. For example, in the "Py(J) transition the pre-superscript
‘r’ reveals that AK = +1, while the ‘0’ subscript refers to the value of K in the lower state.
In this way we can uniquely identify the upper and lower state rotational quantum numbers
and this compact notation has been employed in Figure 20.1.

The P and R branches in each K sub-band are simple to interpret. From the second term on
the right-hand side of equation (20.2), we expect P and R branch structure exactly analogous
to that for linear molecules, i.e. a spacing of approximately 2B between adjacent members in
a specific branch. However, certain members of a specific branch may be missing. For exam-
ple, the first members of the R branches inboththe K’ =0 <~ K" =1land K =2 <« K’ =1
sub-bands are absent whereas that in the K’ = 1 < K” = 0 sub-band is clearly seen.
This is due to the fact that for K"= 0 any value of J” is possible but for K” = 1 the
lowest allowed value of J” is 1, since K is the projection of J and therefore J > K.
Although less obvious from the spectrum because of overlap with the stronger K' =
1 < K’ = 0 sub-band, the first member of the P branch in the K’ =2 « K’ =1
sub-band is "P(3) since J* > 2 for K’ = 2. Missing lines such as these make it possi-
ble to confirm the K quantum numbers in the upper and lower states, and this type of
argument is commonly used to assign quantum numbers in rotationally resolved spectra.

Perpendicular versus parallel character

Why is the electronic transition perpendicular rather than parallel? In Case Study 19 it was
suggested that the electronic transition involved is a w* <— n transition on the carbonyl
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group. In other words, an electron is moved from a non-bonding orbital on the C=0 group
to a 7 antibonding molecular orbital. In the non-bonding orbital the electron density is
oriented in the plane of the molecule, whereas in the 7 * orbital it is perpendicular to
the plane. In electronic transitions the transition dipole moment reveals the direction in
which the instantaneous shift in charge takes place. Since the charge shifts from an in-
plane to out-of-plane orientation, the transition dipole moment must be perpendicular to the
molecular plane. In other words, it is approximately perpendicular to the « inertial axis (see
below), and explains why perpendicular character dominates in the rotationally resolved

spectrum.

Rotational constants

In the prolate rotor limit the rotational constants can easily be determined from the spectrum
in Figure 20.1. We will no longer assume that 4" = A” but we will continue to assume that
B’ = B” because the Q(J) transitions in a specific sub-band are unresolved (which is only
possible if B’ is very similar to B”). The separation between the observed Q branches can
then be expressed as follows:

"01(J)—"00(J)=34'"— A" —2B =3.27cm™! (20.3)
"Q0(J) —PO1(J) = A + A" —2B =3.78cm™! (20.4)

The wavenumbers are estimates taken from the spectrum. Similarly, 2B can be estimated
from the average spacing between members of a particular branch, giving B~ 0.15 cm™ .
Simultaneous equations (20.3) and (20.4) can then be solved to yield 4" = 1.91 and
A" =217cm™".

Clearly these are only estimates of the rotational constants. In reality propynal is an
asymmetric top so there is little point in pushing the analysis in terms of a symmetric rotor
too far. Instead, it is better to consider the effect that asymmetry has on the rotational energy
levels.

Effects of asymmetry

The impact of asymmetry is difficult to discern in Figure 20.1. This is partly because
propynal is a good approximation to a prolate symmetric rotor, but also because of the
modest resolution in the spectrum. Nevertheless, the keen-eyed reader may have noticed
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Figure 20.2 Variation of rotational energies of an asymmetric top as a function of the degree of
asymmetry. This diagram was calculated for 4 = 10 and C = 1, the energy units being arbitrary.
The asymmetry is expressed as an asymmetry parameter, «, such that « = —1 corresponds to a
prolate symmetric top (for further details see, for example, Reference [4]). Propynal is a very good
approximation to a prolate symmetric top — in its ground electronic state it has k = —0.99.

that some of the lines in the "R; branch are resolved into doublets. This splitting is caused
by the breakdown of symmetric rotor behaviour.

In an asymmetric top the three rotational constants 4, B, and C are all different. As a
result K is no longer a good quantum number. In order to specify a particular rotational
level a new labelling system must be introduced. The accepted notation is Jx, x,, where J
has its usual definition. The quantities K, and K}, are integers referring to the value of K
with which a particular rotational level correlates in the prolate and oblate symmetric rotor
limits, respectively.

Figure 20.2 shows how the energies of rotational levels change in moving from a sym-
metric rotor to an increasingly asymmetric top. At the extreme left the energies are those of a
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prolate symmetric top. The rotational energy is unaffected by the sense of rotation about the
a axis, which contributes a two-fold degeneracy to each level with K # 0.' In an asymmetric
top this degeneracy is removed, and the extent of the splitting increases as the molecule
becomes more asymmetric. It is noticeable that the splitting, often referred to as asymmetry
doubling, is largest for levels correlating with K, = 1 (compare the splitting of the 21, /2,
levels with the 2;0/2,; pair). This can be attributed to the higher speed of rotation about
the a axis as K, increases, which increases the prolate symmetric rotor character. Also, for
a given K,, the asymmetry doubling has an approximately quadratic dependence on J.

The effect of asymmetry should be most noticeable in transitions involving K, = 1 in
the upper or lower electronic state. In fact, for reasons beyond the scope of this book (see
Reference [3] for more details), selection rules prevent the direct observation of asymmetry
doubling inthe K’ =1 <« K" =0 and K’ = 0 <~ K” = 1 sub-bands. It is, however, visible in
the R branch of K’ = 2 < K” = 1. Although asymmetry doubling in both upper and lower
rotational levels contribute, the splitting will be dominated by the much larger asymmetry
splitting in K” = 1. A detailed analysis of this asymmetry structure is possible and has
yielded the following rotational constants (in cm™") for propynal [2]:

A =22694
Ground electronic state B =0.1610
C =0.1501
A =1.8893
Excited electronic state B =0.1630
C =0.1498

These can be compared with the estimates for 4 and B shown earlier from the symmetric
rotor model and the agreement is seen to be quite reasonable given the approximation
involved.
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There is also 2 J + 1 degeneracy for each rotational level so the overall degeneracy is 2(2 J + 1) for K # 0 levels.
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ZEKE spectroscopy of Al(H,0)
and Al(D,0O)

Concepts illustrated: atom—molecule complexes; ZEKE—PFI spectroscopy; vibrational
structure and the Franck—Condon principle; dissociation energies; rotational structure of
an asymmetric top; nuclear spin statistics.

The study of molecular complexes in the gas phase provides important information on
intermolecular forces and spectroscopy has played a vital role in this field. As an illustra-
tion, the complex formed between an aluminium atom and a water molecule is described
here.

To obtain Al(H,0), it is necessary to bring together aluminium atoms and water
molecules. Getting water into the gas phase is easy, but aluminium poses more of a problem
since at ordinary temperatures the solid has a very low vapour pressure. An obvious solu-
tion is to heat the aluminium in an oven. However, the high temperature has a concomitant
downside; if water is passed through (or near) the oven the high temperature will almost
certainly prevent the formation of a weakly bound complex such as Al(H,0). Instead, the
heat may allow the activation barriers to be exceeded for other reactions, leading to products
such as the insertion species HAIOH.

A solution to this apparent quandary is to make Al(H,O) by the laser ablation—supersonic
jet method, which was mentioned briefly in Chapter 8 (see Section 8.2.3). Any involatile
solid, including metals, can be vaporized by focussing a high intensity pulsed laser beam
onto the surface of the solid. The resulting plume of gaseous material above the surface,
which includes metal atoms, can then be rapidly cooled by mixing with an excess of inert
carrier gas, such as helium or argon. If a small amount of water vapour is seeded into the
flowing carrier gas, formation of AI(H,O) complexes can occur. These are then rapidly
cooled further by expanding the gas mixture into vacuum to form a supersonic jet (see
Section 8.2.2).

In a recent study, Agreiter et al. formed Al(H,O) and Al(D,0O) by the above procedure
and obtained spectra of this complex for the first time using ZEKE spectroscopy [1]. This
provided new information on both the neutral complexes and the corresponding cations, as
described below.
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Experimental details

Al(H;0) is unlikely to be the sole product when laser ablating solid aluminium in the
presence of H, O vapour. Despite the effort to cool the gas mixture, other reactions are almost
certainly unavoidable. Furthermore, a variety of clusters and complexes might be formed
involving multiple metal atoms and/or multiple water molecules. Experimental conditions
can be optimized to favour production of Al(H,0), e.g. by adjusting the partial pressure
of water vapour, but there will always be other species in the supersonic jet. Consequently,
some means of selectively detecting the spectrum of Al(H,0O) is beneficial.

Agreiter and co-workers recorded spectra using the PFI version of ZEKE, in which the
laser wavelength is tuned to just below the ionization threshold and the complex is then
ionized by application of a delayed pulsed electric field (see Section 12.6 for more details).
The apparatus employed by Agreiter ef al. was also equipped with a time-of-flight mass
spectrometer, and so it proved possible to estimate the ionization energies of Al(H,0),
complexes with different » by tuning the laser wavelength and looking for the onset of
photoionization in a given mass channel. In this way, Agreiter et al. were able to confirm
earlier work by Misaizu and co-workers in which the ionization energies of Al(H,0),
complexes were found to decrease rapidly as a function of # [2]. Since pulsed field ionization
is only observed close to the threshold for ionization, this information provides the means
of distinguishing between the spectra of the various possible Al(H,O), complexes. The
ionization energy of Al(H,O) is approximately 5.1 eV, much lower than that expected for
chemical products such as HAIOH. It is therefore possible to be confident that the ZEKE
spectra recorded in the region close to 5.1 eV (=243 nm) originate from Al(H,0).

Assignment of the vibrationally resolved spectrum

ZEKE spectra of Al(H,0) and Al(D,0) are shown in Figure 21.1. Both spectra show an
obvious vibrational progression. In addition, there is finer structure, which is particularly
noticeable in the case of Al(D,0). This additional structure will be discussed later.

It is worth briefly reviewing what ZEKE spectroscopy reveals. In essence, resonant
transitions between energy levels of the neutral molecule and the ion are recorded. Conse-
quently, assuming most of the Al(H,O) and Al(D,0O) complexes are initially in the zero-
point vibrational level, as is reasonable given that they are entrained in a supersonic jet,
then the observed vibrational structure is representative of the corresponding cations.

The fact that a single vibrational progression dominates the spectrum makes the assign-
ment relatively easy. The active mode has a frequency of approximately 328 cm™! for
Al (H,0), as deduced from the spacing between adjacent peaks in the progression. The
only challenge is to identify the specific vibrational mode responsible. AI(H,O) and its
cation each have six degrees of vibrational freedom, which are illustrated in Figure 21.2."

The form of the six vibrations can be readily deduced. H,O will contribute the same three vibrational modes as the
free HyO molecule, although the mode frequencies will differ from those of the free molecule. The formation of
an Al—O bond will then add three further vibrations, an intermolecular (Al—O) stretching mode and two bending
modes, one an in-plane and the other an out-of-plane (umbrella-like) deformation.
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Figure 21.1 ZEKE-PFI spectra of Al(H,0) and Al(D,0). Single vibrational progressions dominate
both spectra and the vibrational quantum number in the ion formed is shown above the Al(H,O)
spectrum. (Reproduced from J. K. Agreiter, A. M. Knight, and M. A. Duncan, Chem. Phys. Lett. 313
(1999) 162, with permission from Elsevier.)

It will be assumed for the moment that the molecule has the C,, structure shown in
Figure 21.2, with the Al coordinated to the O atom. However, it is worth emphasizing
that as yet we have presented no evidence to support this assumption.

The six vibrational modes can be divided into two groups, vibrations localized primarily
on the water molecule and vibrations that are intermolecular in character. The former are
essentially the same vibrations as found in a free water molecule, although with somewhat
different frequencies because of the binding to an aluminium atom. We can be sure that
these vibrations are not responsible for the progression in Figure 21.1 since all three water
vibrations will possess far higher frequencies than 328 cm~".
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Figure21.2 Schematic illustration of the six vibrational modes of AI(H,0). C,, point group symmetry
has been assumed for the complex.

The formation of a bond between Al and H,O introduces three additional vibrational
modes, the intermolecular modes. One of these vibrations is the AI—O stretch, which is a
totally symmetric motion (a¢; symmetry in the C,, point group). The other two intermolec-
ular vibrations are bending modes, one involving in-plane twisting of the water molecule
relative to the Al atom, while the other is an out-of-plane deformation. These two bending
modes will be non-totally symmetric in Cy, symmetry. If the complex has C,, symmetry
in both neutral and ionic states, then the Al—O stretch is the obvious assignment for the
observed vibrational progression.

However, it is possible that a lower symmetry complex may be formed in either the
ion or the neutral system, and in this case one or both of the bending modes may become
Franck—Condon active. For example, if the complex is non-planar but the Al atom remains
equidistant from the two H atoms, then the molecule will have a single plane of symmetry
and will belong to the Cs point group. In this case the out-of-plane deformation would be
totally symmetric and significant vibrational structure might result if there is a change in
the equilibrium deformation angle on photoionization.

A comparison of the spectra for the deuterated and non-deuterated complexes establishes
the assignment. The vibrational motion in the deformation mode is dominated by motion
of the two hydrogen atoms. A large change in vibrational frequency would therefore be
expected in switching from AI(H,O) to AI(D,0). The separations between adjacent peaks
in the vibrational progressions show no such change, the decline in frequency being only
12 em~!. The main vibrational structure in Figure 21.1 can therefore be assigned to the
Al—O stretching vibration.
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Figure 21.3 Schematic potential energy curves for Al(H,O). The potential energy is assumed to be a
function of only the A1—O distance, i.e. the O—H bonds and the H—O—H angle are fixed. The quantit-
ies shown are as follows: Dy = dissociation energy of neutral complex; D = dissociation energy of
the cation; vy is the energy of the 0 transition; IE(Al) = ionization energy of the aluminium atom.

Dissociation energies

An energy cycle, summarized in Figure 21.3, can be used to link the dissociation energies
of the neutral and cationic complexes. The dissociation energy of the neutral complex, Dy,
to give an Al atom and a free H,O molecule, is related to that of the cation (Dy) by the
expression

Dy = voo + D — IE(Al) 21.1)

where v is the energy of the 08 (electronic origin) transition and IE(Al) is the ionization
energy of the aluminium atom. Notice that the 0 transition energy in this case is identical
to the adiabatic ionization energy of the Al-H,O complex.

The electronic origin transition is readily identified from the ZEKE spectrum. The
main vibrational progression is short, with the first member being relatively intense. There
are no further members to lower energy and so the 08 transition is undoubtedly the first
observed member of the progressions for AI(H,O) and Al(D,0O) shown in Figure 21.1.
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Agreiter et al. identified the positions of these transitions as 41 018 £ 5 cm™! for Al(H,0)
and 40994 4 5 cm~! for Al(D,0). The ionization energy of Al is known rather precisely,
48 278 cm~!. This leaves the two dissociation energies as unknowns.

In principle, a Birge—Sponer extrapolation (see Case Study 23 for details) of the vibra-
tional progression in the ZEKE spectrum could be attempted to estimate the dissociation
energy of the cation. However, because the progression is relatively short this is likely to
give a poor approximation to the true D . Fortunately, D has been determined elsewhere
in a mass spectrometry experiment in which the Al(H,O)™ ions were subjected to collisions
with noble gas atoms [3]. The value obtained was 8700 & 1260 cm™!.

Substituting the above values into equation (21.1), we find that the dissociation energy
of the neutral complex is 1440 & 1260 cm™'. The precision on this value is poor and so it
is difficult to draw firm conclusions. However, as pointed out by Agreiter ef al., if the mean
value of 1440 cm™! is taken as representative, this indicates that the neutral complex might
be rather strongly bound for this type of complex. A possible explanation for this is given
in the next section.

Rotational structure

At higher resolution some coarse rotational structure is resolved in the ZEKE spectra of
Al(H,0) and Al(D,0) (see Figure 21.4). At the relatively low resolution of the ZEKE data,
the fine detail of the rotational structure is not revealed. Nevertheless, it is still possible to
extract some useful information on the molecular structures.

If G,y symmetry applies to both states, then although the neutral and ionic complexes
will be asymmetric rotors, they will approximate prolate symmetric tops. In this limit the a
inertial axis lies along the Al—0O bond and therefore the 4 rotational constant is determined
solely by the distance of the two H atoms from this axis. In a free water molecule the
corresponding rotational constant is approximately equal to 14.5 cm™~!.

In a prolate symmetric top, the observed rotational structure depends on whether the
transition moment is parallel or perpendicular to the @ axis. In the parallel case, the selection
rules are

AK =0 and AJ =0, +£l1
whereas for a perpendicular transition
AK =41 and AJ =0,=£l

At the relatively low resolution in the ZEKE experiments, the only structure that could
possibly be resolved is the coarse structure due to AK = +£1 transitions. It can therefore
be concluded that the transition moment is perpendicular to the a axis.” Combining the
AK = =1 selection rule with the formula for the energies of prolate symmetric rotors

In near-prolate asymmetric rotors there are two ‘perpendicular’ inertial axes, b and c. The rotational structure for
transition moments directed along these axes will differ, noticeably so if the corresponding rotational constants B
and C differ substantially. It turns out that for AI(H,O) a b-type transition gives the best agreement with experiment.
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(equation (6.15)), a set of K sub-bands is expected in the perpendicular case with adjacent
pairs separated by ~24 (since 4 > B in Al(H,0)). The structure resolved in Figure 21.4
is consistent with this prediction. A strong central band is observed corresponding to the
Kt=1 < K =0 sub-band. The P, O, and R branch structure expected for this sub-band is
unresolved in the ZEKE experiments. Either side of the central band are two weaker transi-
tions originating out of the first excited K level,i.e. K =0« K=1land K+ =2 < K= 1.
These weaker bands are separated from the strongest band by ~28 cm™! for Al(H,0), i.e.
~24. In Al(D,0) the 4 constant will be a factor of two smaller and the actual band sep-
arations reflect this. In both isotopomers the populations of K > 1 levels are too small to
register observable structure.

The comments above are consistent with the assumed C,, symmetries for both neutral
and cationic complexes. However, there is a further test that can be applied to the rotational
structure to establish whether this symmetry really is applicable. In a C,, geometry the
two H atoms are equivalent and can be interchanged by a C, rotation about the a axis. It
is therefore necessary to consider the effect of nuclear spin statistics (see Appendix F) in
analysing the rotational structure. We will not attempt to derive the nuclear spin statistics for
this particular case, but merely note the result. If the complex has C,, symmetry then nuclear
spin statistics introduces a 3:1 degeneracy ratio for odd:even levels of K.* The population
of odd K levels is therefore boosted by a factor of three compared with even K levels. The
effect of this is to increase the intensities of the KT =0« K=land Kt =2 <« K =1
sub-bands relative to Kt =1 < K = 0.

Simulations of the rotational structure by Agreiter et al. show that these nuclear spin
statistics do not hold. In particular, the Kt =0 <— K =1 and K+ =2 <« K = 1 sub-bands
are far weaker than expected for a C, geometry. The simulated spectra shown beneath the
actual ZEKE spectra in Figure 21.4 were generated assuming a non-planar (Cs) structure for
the neutral complex. Ab initio calculations on Al(H,O) and Al(H,O)" had been attempted
by several groups prior to the ZEKE studies [3—5]. All agree that the cation is planar, but
there is disagreement on whether the neutral complex is planar or not. The evidence from
the ZEKE work suggests that the neutral complex is non-planar.

Bonding in Al(H,0)

The simulated rotational structure in Figure 21.4 was obtained with a value of 11.75 cm™!
for the A4 rotational constant in the neutral complex. This is significantly smaller than the
value in Al*(H,0), which is similar to that expected for a free water molecule. A smaller
value in the neutral complex could be obtained by a substantial lengthening of the O—H
bonds and/or an opening out of the H—O—H bond angle; however, the changes required in
these structural parameters are unreasonably large for such a weakly bound complex. The
more likely explanation, already hinted at in the previous section, is that the complex is
non-planar. Agreiter ef al. were unable to suggest a unique equilibrium structure based on

The deuterium nuclei are bosons and therefore a different nuclear spin degeneracy ratio of K = odd:even = 2:1
applies for Al(D,0) in Cyy symmetry.
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the limited rotational structure in their ZEKE spectra, but they estimate a distortion from
planarity of 30—40°.

This non-planarity is taken as evidence for some covalent bonding. The best estimates for
the Al—O binding energy from ab initio calculations fall in the range 30-40 kJ mol~! [6],
which corresponds to 2500-3300 cm ™. This is still a weak bond compared to typical cova-
lent bond energies, but it is larger than expected on the basis of van der Waals forces alone.
The ab initio estimates suggest that the mean value for the binding energy derived earlier,
from a combination of the cation dissociation energy and the ZEKE data, underestimates
the true bond energy in AI(H,O).
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spectroscopy of the NO free
radical

Concepts illustrated: REMPI spectroscopy, cooling in molecular beams, rotationally
resolved spectroscopy of an open-shell molecule; Hund's coupling cases.

A rotationally resolved electronic spectrum of NO is shown in Figure 22.1. This was obtained
for NO seeded into a very cold argon molecular beam. The electronic transition excited is
the lowest energy allowed transition of the molecule and the spectrum was obtained using
one-colour REMPI spectroscopy.

A molecular orbital diagram can easily be constructed for NO and it is readily seen
that one unpaired electron resides in a 2pz* orbital, making the ground electronic state a
21 state. The lowest energy transition that is observed turns out to be due to excitation of
the 2pmr* electron up into a previously vacant o orbital, leading to an excited electronic
state of ¥ symmetry which is ‘Rydberg’ in character. A Rydberg state is essentially one
where the electron resides in an orbital that is large compared to the remaining core (NO™
in this case), and the Rydberg energy levels take on a pattern rather similar to orbitals of
atomic hydrogen. In the case of NO, the lowest X state has the electron in a 3s-like orbital,
and is denoted the 42X+ state. The A4 refers to the fact that this is the lowest optically
accessible excited electronic state. The electronic transition therefore labelled as 4> X <
XTI electronic transition.

The first thing to note is that the spectrum consists of more than one line; attempts to cool
the molecular beam further lead to a slightly simpler spectrum consisting of three lines, but
further cooling does not significantly change the spectrum. We generally expect a single
rotational line for a closed-shell molecule in the limit of zero absolute temperature, with
this line corresponding to a transition from the lowest rotational level (J” = 0) in the ground
electronic state to the /' = 1 level in the upper electronic state.' The additional lines for NO

A closed-shell diatomic molecule will always have a ! £+ electronic ground state. If the excited state is alsoa ! £+
state then the rotational selection rule is AJ = %1, i.e. the O branch is absent. If the transition is to a ' TT excited
state then the selection rule is modified to AJ = 0, ==1. However, the lowest possible value of Jin a I stateisJ =1
and so the first member of the Q branch is Q(1). In the limit of 7= 0 K the /= 1 level ina ! £+ state will not be
populated and therefore, despite the possibility of O branch transitions, only the R(0) transition can be observed.
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Figure 22.1 One-colour (1 + 1) REMPI spectrum of the NO 42X+ <« XIT electronic transition
recorded under molecular beam conditions.

must be the result of its open outer electronic shell, and in order to explain these lines it is
necessary to consider how the rotational energy levels of open-shell molecules differ from
closed-shell molecules.

The key thing to note is that open-shell molecules have spin and orbital angular momenta
associated with the unpaired electron(s), and these angular momenta can couple with the
rotational angular momentum of the molecule. This coupling can occur in several ways, but
the two most common are outlined in Appendix G and are known as Hund’s cases (a) and
(b) — a fuller account of Hund’s coupling cases may be found in References [1] and [2]. It
is known that the X ?IT state of NO closely matches Hund’s case (a) behaviour, the reason
being the large magnitude of the spin—orbit coupling (the splitting between the %I}, and
2T13/, spin—orbit sub-states is >120 cm™') relative to the rotational constant (<2 cm™').
The A2 state has no orbital angular momentum and therefore exhibits Hund’s case
(b) behaviour.

In the XIT state the spin and orbital angular momenta couple together to give a total
electronic angular momentum along the internuclear axis, which is represented by the quan-
tum number €2, where Q2 = % or % A formal definition of €2 is given in Appendix G. It
turns out that the Q = % spin—orbit component is the lower in energy. Both spin—orbit
components will have associated with them a series of rotational energy levels formed
by coupling © with R, where R is the rotational angular momentum of the molecule.
The coupling together of Q2 and R gives a total angular momentum denoted by quantum

-1

number J. Since the Q = % manifold lies more than 120 cm™" above the Q = % mani-

fold, then under efficient jet-cooling conditions only transitions from the lower spin—orbit
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Figure 22.2 Rotational energy level scheme in the 4>%* and X 211 states of NO. The diagram is not
to scale. The transitions responsible for the main lines seen in Figure 22.1 are also shown.
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component should be observed. The energy level pattern is described by equation (G.2) in
Appendix G.

As already mentioned, the 4 >2+ state follows Hund’s case (b) coupling, and in this case
the spin angular momentum of the unpaired electron cannot couple to the orbital angular
momentum, since the latter is absent. However, to be consistent with other Hund’s case
(b) molecules, cases where the orbital angular momentum might not be zero, the quantum
number N is used to represent the total angular momentum (orbital + rotational) minus
spin. Here, the spin angular momentum couples to N to give the total angular momentum
J. This has the effect of splitting each N level into two sub-levels, the splitting being known
as spin—rotation splitting. One level in the spin—rotation pair has J = N + % and the other
J=N— % The former levels are referred to as the F; manifold, and the latter as the F,
manifold, with the energies being given by

Fi(N)=BN(N + 1)+ iyN
F(N)=BN(N+1)—iy(N+1)

where the quantity y is known as the spin—rotation constant (which can be positive or
negative, but is usually >0).

The arrangements of the rotational levels in the upper and lower electronic states of NO
are illustrated in Figure 22.2. Note that for the lowest level in the 2X+ state there is no
spin—rotation splitting since the molecule is not rotating (N = 0) in this level, and so there
is no rotational angular momentum to which § can couple.

At the very lowest temperatures, we expect that only the lowest level in the X 2IT state, the
J= % level of the 2 = % manifold, will be populated. Since the transition involves AA # 0,
the selection rule for Jis AJ =0, & 1. Consequently, the J = % and % levels in the >X* state

1

can be accessed from the J = 5 level in the X 21 state. Because of spin—rotation splitting

there are actually four accessible levels, which we denote as (N, .J), as follows:

0.5). (1.3). (1.5). and (2,3)
The possible transitions can be labelled P, O, and R in the usual manner where these denote
AJ=—1,0and +1, respectively. The full labels used are O, 1(%), le(%), R, 1(%), andez(%),
where the first subscript labels the initial /' manifold and the second labels the terminating
manifold. The number in parentheses is the value of J in the lower state, J”.

Figure 22.3 shows simulations of the 42X % < X2IT spectrum of NO at temperatures
of 1, 3, and 10 K. The procedure employed to generate simulations like these is outlined
in Appendix H. At the lowest temperature only three lines appear, which is consistent with
the conclusion earlier based on experimental studies but which apparently contradicts the
prediction above of a minimum of four rotational lines even at a temperature of abso-
lute zero. However, the astute reader might attach significance to the fact that the middle
line in the 1 K simulation is considerably more intense than the other two. Referring to the
energy level diagram, and considering the transitions described above, we see that two of the
transitions terminate at N = 1 in the 42X 7 state, but with different J values. The splitting
between these two levels is determined by the spin—rotation constant, y, which is normally
very small compared to the rotational constant. The resolution used in the simulation is too
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Figure 22.3 Simulations of the 4> %+ <~ X?IT spectrum of NO at 1, 3, and 10 K.
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Figure 22.4 Simulation of the 42X% <« X 2II spectrum of NO at 100 K.

low to resolve the spin—rotation splitting and so the middle line is actually a convolution of
two transitions.” We can therefore assign the first spectral line as Q) (%), the middle line to
the unresolved Ry, (%) and le(%) transitions, and the highest wavenumber line as Rlz(%).

If the NO sample is warmed, then additional rotational levels in the Q2 = % manifold will
become populated leading to a more complex spectrum. The simulations in Figure 22.3 at
3 K and 10 K begin to show these additional transitions from J” = %, %, and %

At even higher temperatures, the spectrum becomes rather congested and, at sufficiently
high temperatures, the upper spin—orbit component (2 = %) in the XIT state starts to
contribute to the spectrum, as shown in the 100 K simulation in Figure 22.4. The features
to the left of the spectrum are similar to (but not identical with) those on the right but are
clearly much weaker.

One might initially think, given the above, that the aim of most spectroscopic experiments
would be to record spectra under the coldest possible conditions. However, while it is true
that this can help reduce congestion and therefore make spectral assignment simpler, it is not
always an advantage. For example in the case of NO, information on the lower state could
not be obtained from the spectrum recorded under the coldest conditions, and even for the
upper state only the barest information can be gleaned from just three rotational features.
In contrast, for a spectrum at 100 K (see Figure 22.4) a wealth of information on both the
upper and lower states could be extracted because of the many rotational lines observed. This
information includes bond lengths for both states (derived from the respective rotational
constants), the spin—orbit splitting in the X IT state, and spectroscopic constants beyond

Note that the spacing between spin—rotation levels increases as a function of NV, and so for high N it may be possible
to resolve the two components even at modest spectral resolution.
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the rigid rotor approximation. The spin-rotation parameter could also be obtained from the
high-N regions of the spectrum.

Finally, we note that a comparison of the simulations in Figures 22.3 and 22.4 and
the experimental spectrum in Figure 22.1 allows the temperature of the NO sample to be
estimated — a temperature of ~3 K gives the best agreement.
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23 Vibrationally resolved
spectroscopy of Mg*-rare
gas complexes

Concepts illustrated: ion—molecule complexes, photodissociation spectroscopy;,
symmetries of electronic states; spin—orbit coupling; vibrational isotope shifts;
Birge—Sponer extrapolation.

Laser-induced fluorescence, resonance-enhanced multiphoton ionization, and cavity ring-
down spectroscopic techniques offer ways of detecting electronic transitions without directly
measuring light absorption. An alternative approach is possible if the excitation process
leads to fragmentation of the original molecule. By monitoring one of the photofragments
as a function of laser wavelength, a spectrum can be recorded. This is the basic idea behind
photodissociation spectroscopy.

There are limitations to this approach. If photodissociation is slow, then the absorbed
energy may be dissipated by other mechanisms, making photodissociation spectroscopy
ineffective. It is also possible that some rovibrational energy levels in the excited electronic
state will lead to fast photofragmentation whereas others will not. In this case there will be
missing or very weak lines in the spectrum which, in a conventional absorption spectrum,
may have been strong. Fast photofragmentation is clearly desirable on the one hand, but
it can also be a severe disadvantage if it is too fast, since it may lead to serious lifetime
broadening in the spectrum (see Section 9.1).

Despite the above limitations, photodissociation spectroscopy can provide important
information. This is particularly true for relatively weakly bound molecules and complexes,
since these have a greater propensity for dissociating. In this and the subsequent example the
capabilities of photodissociation spectroscopy are illustrated by considering weakly bound
complexes formed between a metal cation, Mg™, and rare (noble) gas (group 18) atoms.
These will be referred to as Mg™Rg complexes.

One would expect the interaction between an Mg™ ion and a rare gas atom to be weak,
since the high ionization energies and closed electronic shells of the latter preclude the
formation of ionic or covalent chemical bonds. The principal contribution to the van der
Waals binding in Mg*"—Rg will be the charge-induced dipole interaction. As the name
implies, the positive charge on the Mg™ cation induces a dipole moment in the rare gas
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atom, and the interaction of this induced dipole moment with the charge on the cation results
in a net attractive force.

In this particular Case Study some of the findings from vibrationally resolved photodis-
sociation spectra of Mg™—Rg complexes, obtained by M. A. Duncan’s research group at the
University of Georgia, will be explored. In the subsequent Case Study rotationally resolved
spectra of the same complexes will be considered.

Experimental details

Duncan’s group produced Mg* ions by pulsed laser ablation of a solid magnesium target
located inside a specially designed pulsed nozzle. This technique was also briefly described
in Section 8.2.3. The highly energetic ablation process leads to the formation of metal ions
in the gas phase as well as neutral species. High pressure rare gas flows over the metal target
and carries the mixture along to the exit aperture of the nozzle, where it expands into a
vacuum chamber to form a supersonic jet. The subsequent cooling of the mixture allows
the formation of weakly bound Mg*—Rg complexes. Downstream of the nozzle the jet is
skimmed to form a highly directional molecular beam,' and then enters a second vacuum
chamber housing a time-of-flight mass spectrometer.

A tunable pulsed laser beam is directed into the second chamber to excite electronic
transitions in Mg*t—Rg. Mg™ fragment ions are then detected as a function of the laser
wavelength using the mass spectrometer. In the lowest lying excited electronic states the ion
complexes do not undergo dissociation when excited to bound rovibrational levels within
each electronic state. This potentially renders photodissociation inoperable for these elec-
tronic transitions. However, a photodissociation spectrum was still observed, and this was
found to be due to the absorption of a second photon from the same laser, which accesses a
high lying, dissociative electronic state. This resonance-enhanced photodissociation tech-
nique, which only occurs with any significant probability when the first photon is resonant
with a specific rovibronic transition, is directly analogous to the one-colour REMPI tech-
nique described in Section 11.4. The only difference is that in this case a photofragment ion
was detected rather than a parent ion.

A potentially severe obstacle to the success of this experiment is the large background
signal from those Mg ions that do not form complexes with rare gas atoms in the supersonic
expansion — these Mg™ ions would clearly have the same mass as the Mg™ arising from
the photodissociation process. If not tackled, this would dramatically reduce the signal-to-
noise ratio in the spectrum and, in all likelihood, make it impossible to record a satisfactory
spectrum. Duncan and co-workers solved this problem by using a two-stage (tandem) time-
of-flight mass spectrometer known as a reflectron. Ions in the molecular beam are extracted
into the first stage before laser excitation and the instrument is set to transmit only Mg™—Rg
complexes of a specific mass. At the end of the first stage the tunable laser beam is admitted

A skimmer is a cone-shaped object with the tip removed to form a small aperture. The supersonic jet flows towards
the sharp end of the cone and only the central portion passes through the aperture and into the second vacuum
chamber.
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and interrogates the selected ion beam. The ions then enter the second stage of the mass
spectrometer and the Mg* ion signal reaching the detector is distinguished from the
Mgt-Rg by virtue of the different flight times of these ions.

Preliminaries: electronic states

Since there is no chemical bonding between the Mg™ and rare gas atoms, the electronic
structures of these entities remain largely the same in Mg™—Rg complexes. Rare gas atoms
have full electronic shells and the energy required to excite an electron to a vacant orbital
is high, requiring wavelengths far into the vacuum ultraviolet. On the other hand, Mg™ has
an unpaired electron in the 3s orbital in its electronic ground state and this can be excited
to higher lying vacant atomic orbitals using near-ultraviolet radiation. Such transitions are
therefore readily accessible with laser radiation. Consequently, the spectroscopy of Mg™—Rg
complexes in the near-ultraviolet is essentially the spectroscopy of the Mg™ ion perturbed
by the nearby rare gas atom.

The presence of a nearby rare gas atom will shift the orbital energies of the Mg" ion.
The extent of the shift will depend on the orbital and the identity of the rare gas atom,
as discussed later. At the same time the loss of spherical symmetry around the cation will
change the symmetries of the orbitals and will remove some orbital degeneracies previously
present in the free Mg™ ion.

Figure 23.1 shows the basic idea. In the lowest electronic state of Mg* the unpaired
electron resides in the 3s atomic orbital. Since all other occupied orbitals are full, this
results in a S electronic ground state. When a rare gas atom approaches, the unpaired
electron remains localized almost entirely on the magnesium ion and the resulting orbital
may still be viewed as a Mg 3s orbital. However, it is only an approximation, albeit a good
one, and the use of the s label is only strictly applicable in an environment with spherical
symmetry. In the complex, which has Co.y point group symmetry, an s orbital becomes a
o orbital. Similarly, the %S state of the free Mg* ion becomes a 2X* state in the Mg™—Rg
complex. This correlation is shown in Figure 23.1.%

Analogous correlations can be established for higher energy electronic states. The lowest
unoccupied orbital in Mg™ is the 3p orbital. Excitation of the unpaired electron from the
3s to the 3p orbital gives a 2P excited state. This is a triply degenerate state, since there
are three possible orientations of the p orbital which are energetically equivalent. However,
when the rare gas atom approaches this three-fold degeneracy is removed, since the p orbital
can either be oriented along the internuclear axis or perpendicular to it. This is illustrated
in the orbital sketches on the right-hand side of Figure 23.1.

The energies of all the orbitals are lowered relative to free Mg by the charge-induced
dipole interaction. However, the lowering is greatest for the 3p, and 3p, orbitals. These

The transformation properties of atomic orbitals in lower symmetry environments are readily deduced from
inspection of the appropriate character tables. Individual s orbitals always transform as the totally symmetric
irreducible representation, which for the Cooy point group is o+. The symmetries of individual p and d orbitals
can be deduced from the transformation properties of the corresponding cartesian coordinates, e.g. the np, and
np), orbitals form a degenerate pair with 7 symmetry.
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Figure 23.1 Electronic structures of the low-lying electronic states of Mg™Rg complexes.

form a degenerate pair of 7 symmetry in which there is a node along the internuclear axis.
This exposes a far larger local positive charge on the metal than is the case when the 3p,
orbital is occupied. As a result, the charge-induced dipole interaction is particularly large
for the 3pr orbitals.

Photodissociation spectra

The photodissociation spectra of Mg™—Ne, Mgt—Ar, Mgt —Kr, and Mg+ —Xe in the region of
the Mg™ 3p < 3s transition are compared in Figure 23.2. All four spectra are characterized
by sharp bands, with the exception of Mgt—Ne, which also has a broad, structureless feature
at high wavenumber (see later). A vibrational progression can be readily identified in each
spectrum. In addition, each vibrational component actually consists of a doublet due to
spin—orbit coupling. Each of these points is considered in some detail below.

Spin—orbit coupling

Two electronic transitions of Mgt—Rg in the Mg" 3p < 3s region are expected, namely
the A2TT—X2X+ and B>X+—X2X " transitions. Only the 4 state can give rise to spin—orbit
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Figure 23.2 Photodissociation spectra of Mg+—Ne, Mg™—Ar, Mg™Kr, and Mg™—Xe. The tick marks
above the spectra identify vibrational structure and are aligned with the bands due to A2TT;,, v «
X?%* "= 0 transitions. The corresponding spin—orbit partners from 4213, < X> 7 transitions are
easily identified for Mg*—Ne, Mg™—Ar, and Mg*—Kr. For Mg™—Xe the vibrational frequencies and
spin—orbit splittings in the excited state are very similar and hence the spin—orbit structure is hidden
underneath the vibrational structure. (Adapted with permission from J. S. Pilgrim, C. S. Yeh, K. R.
Berry, and M. A. Duncan, J. Chem. Phys. 100 (1994) 7945, and J. E. Reddic and M. A. Duncan, J.

Chem. Phys. 110 (1999) 9948, American Institute of Physics.)
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Table 23.1 Spin—orbit coupling constants in
the A’ IT states of Mg*—Rg complexes

[1.2]

Spin—orbit coupling
Complex constant/cm™!
Mgt—Ne 63
Mg*t-Ar 77
Mgt—Kr 143
Mgt—Xe 270

coupling, and so the sharp structure in the spectra in Figure 23.2 can be assigned to the
A’TI—X?%7 electronic transition.

As discussed for atoms in Section 4.1 and diatomic molecules in Section 4.2.3, spin—
orbit coupling arises when an atom or molecule possesses non-zero electronic orbital and
spin angular momenta. The Mg* ion clearly possesses an unpaired electron, but electrons
only have non-zero orbital angular momentum in orbitally degenerate electronic states. The
2P excited state of Mg™ is one example, and the orbital and spin angular momenta can
couple to give 2p, 2 and 2p, /2 spin—orbit sub-states. The subscripts in these labels refer
to the possible values of the net orbital + spin angular momenta, which for atoms are
J=L+S,L+S-1,...,|L -S| For an orbital less than or equal to half full, the
spin—orbit component with lowest J has the lowest energy.

In the complexes only the A%IT state has orbital angular momentum, and coupling with
the net spin yields two spin—orbit components, 42I1; /, and A*T13,,.° These will be separated
in energy by the spin—orbit coupling constant, 4 (not to be confused with the same symbol
used to designate the first excited electronic state, 42IT). If there is little charge transfer to
the rare gas atom then the magnitude of the spin—orbit splitting will depend on the properties
of Mg" only and should therefore be independent of the identity of the rare gas atom. The
experimental values are summarized in Table 23.1.

The spin—orbit coupling constants are actually found to be dependent on the identity of the
rare gas atom, and in particular the values for Mg™Kr and Mgt —Xe are much larger than
those of the two lighter complexes. This clearly demonstrates that the assumption that the
rare gas atom is largely a spectator is incorrect, especially for the heavier complexes.
The strength of the charge-induced dipole interaction is dependent on the polarizability of
the rare gas atom. The larger this atom, the easier it is for a nearby charge to distort the
electron density, i.e. the polarizability increases as the group is descended. This increased
interaction results in some mixing of orbital characteristics, and it is this that is responsible
for the differences in spin—orbit coupling constants. In essence, a small amount of cationic
character is introduced to the rare gas atoms, and since the spin—orbit coupling constants
of the heavier rare gas atoms are large, this has a major impact on the spin—orbit coupling
constant of the complex.

285+1

In molecules the labels used for electronic states possessing spin—orbit coupling take the form Aq where

Q = |A + X|. See Section 4.2.3 for more details.
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Vibrational assignment

It is reasonable to suppose that under supersonic beam conditions most complexes will
initially be in their zero-point vibrational levels in the ground electronic state. Consequently,
the dominant vibrational features will be due to excitation to different vibrational levels in
the AI1 state. It is therefore a simple matter to estimate the vibrational frequency in the
excited state from the separation of adjacent members of the vibrational progression.

However, to obtain an accurate value of the harmonic vibrational frequency, w., and the
anharmonicity constant, x., it is necessary to establish the correct vibrational numbering in
the excited state. The vibrational progressions are quite long and it is clear that a substantial
change in bond length must occur on electronic excitation. This makes it difficult to establish
the position of the electronic origin transition, v/ = 0 <— v = 0, because the Franck—Condon
factor for this transition may be very small and therefore this transition may be too weak to
observe.

A solution to this problem is to make use of isofope shifts to establish vibrational num-
berings. A particular vibrational component will occur at wavenumber

v=vetaw, (v +3)—wx, (v + %)2
et 07+ ) = olxl (7 + 4)°] (23.1)

where " and ” refer to the upper and lower electronic states, respectively, and v, is the pure
electronic transition wavenumber. Magnesium has three isotopes, 2Mg (79%), 2 Mg (10%),
and Mg (11%). Assuming that equation (23.1) applies to the **Mg—Rg isotopomer, then
for the heavier magnesium isotopes we can replace w, by pw. (see equation (5.7)) and x,
by px., where

o= | K (23.2)
i
In the above expression u is the reduced mass of the 2*Mg-Rg isotopomer and y; is the
reduced mass of the heavier isotopomer (>*Mg—Rg or 2Mg-Rg). Combining (23.1) and
(23.2), and assuming that all transitions take place out of the v/ = 0 level, leads to the
expression below for the isotope shift AGig,:

AGiso(V/)Z(l_p)[ (V + )—%
— (1= p)? [l (v + 4

This expression is the key to determining the correct vibrational quantum numbers. It can
be used to calculate isotope shifts and these are then compared with experiment. This is a
trial and error process in which a particular vibrational quantum numbering is first assumed,
and then approximate values of @] and w/x/ are determined from the spectrum. An estimate
of w! is also required (x/ can be neglected), which may come from observation of hot
bands or must be deduced in some other manner, e.g. from ab initio calculations. Finally,
the predictions from equation (23.3) are compared with experiment and used to determine
the correct vibrational numbering. This is most easily seen graphically and an example is

@ ]
) — Lal'x ] (23.3)



194

23.6

Case Studies

Table 23.2 Vibrational parameters for Mg*—Rg in

the A°IT state

Complex o, /em™! w.x,/em™!
Mg*—Ne 219.4 6.7
Mg*t—Ar 271.8 3.3
Mg*—Kr 2577 23
Mg*t—Xe 258.0 1.5

These are averages over the two spin—orbit components.

V=2
V=1
80+ V=0
T ] e Expt
g
S 60
&
<
w2
Q. 401
28 ]
o)
=201
0 T T T T T T

T
0 2 4 6 8 10 12 14
Arbitrary v/

Figure 23.3 Isotope shift measurements for vibrational bands in the Mg*t—Kr spectrum. The trial
assignments are for the first observable band having a vibrational quantum number of 0, 1 or 2 in the
upper state. The curve for v/ = 1 best fits the data, leading to the assignment given above the Mg™—Kr
spectrum in Figure 23.2. (Reproduced with permission from J. S. Pilgrim, C. S. Yeh, K. R. Berry, and
M. A. Duncan, J. Chem. Phys. 100 (1994) 7945, American Institute of Physics.)

shown in Figure 23.3. This approach was used by Duncan and co-workers to firmly establish
all the vibrational assignments shown in Figure 23.3.

Vibrational frequencies

The harmonic vibrational wavenumbers and anharmonicities are shown in Table 23.2 for
the 2Mg*-Rg isotopomers. The vibrational wavenumber is a function of both the bond
force constant (and by implication the bond strength — see Section 5.1.2) and the reduced
mass. Mg"—Ne is the most weakly bound complex, which explains why it has the smallest
vibrational frequency despite having the smallest reduced mass. For Mgt —Kr and Mg*™—Xe
the effect of the reduced mass outweighs the bond force constant contribution and therefore
these complexes possess lower vibrational frequencies than Mg™—Ar despite being more
strongly bound.
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Table 23.3 Dissociation energies (Dy in cm™")
Jor Mgt—Rg complexes

Complex Xyt AT

Mg*—Ne 110 1700
Mg*—Ar 1280 5550
Mgt—Kr 1920 7130
Mg*—Xe 4180 11030

The anharmonicities progressively decrease as the rare gas group is descended. This
is because, as the bond strengthens, the potential well becomes more harmonic-like
(i.e. parabolic) for the vibrational energies sampled in the photodissociation experiment.

Dissociation energies

The extensive vibrational progressions can be used to estimate the dissociation energies of
the Mg™Rg in their A>T1 electronic states. The dissociation energy, D}, is simply the sum
of the separations between all the vibrational energy levels, starting from v/ = 0, i.e.

Dy=> AG,.y, (23.4)

where
AG, 4y, = GOV +1)— GO (23.5)

are vibrational term values (see Section 5.1.2). If the positions of most of the bound energy
levels have been measured from the spectrum, then the area under a plot of AG .y, versus
v+ % extrapolated to AG, .y, = 0 will give an accurate dissociation energy.

In practice the vibrational structure observed in an electronic spectrum represents only
a modest subset of the total set of vibrational energy levels. In this case the Birge—Sponer
extrapolation can be employed. This extrapolation is based on the assumption that the
potential energy curve is adequately described by a Morse potential, i.e. the anharmonicity
constant x. is sufficient to account for all of the anharmonicity and the vibrational term
value G(v) is accurately described by equation (5.14). With this approximation it is easy to
show that

AG, 4y, = w, = 20x,(v' + 1) (23.6)

and therefore a plot of AG, .y, versus v’ should be linear and can readily be extrapolated
to AG,,y, = 0, allowing D to be estimated.

Table 23.3 shows the dissociation energies obtained. Notice that dissociation energies
for the ground electronic states are also included in the table. These can be determined from
the expression

Dy = Djy + voo — AE(*P-28) (23.7)
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which follows from the conservation of energy. The quantity vgy is the A%IT vV =
0 < X?X* v = 0 electronic transition energy and AE(*P—2S) is the energy required
to excite the unpaired electron in the free Mg™ ion from the 3s to the 3p orbital.

The dissociation energies show the trends expected from the earlier discussion about
electronic structures. Each complex is much more strongly bound in its 42T state than
in the X2X+ state due to the reduced shielding of the positive charge when the unpaired
electron density has a 7 orientation. Furthermore, there is a dramatic increase in binding
energy for both electronic states in moving progressively from Ne to Xe due to the increasing
polarizability of the rare gas atom.

B-X system

In the Mg™—Ne photodissociation spectrum in Figure 23.2 there is a prominent broad
feature in addition to the sharp bands discussed above. Duncan et al. attribute this to the
B?’Y+—X2%+ electronic transition. The binding energy of the B2X* state is likely to be
even less than that of the X? X state because of the increased electron—electron repulsion
between Mgt and the Ne atom, a result of the orientation of the 3p, orbital along the
internuclear axis. There will therefore be very few if any bound vibrational levels and
the separation between them will be exceedingly small, explaining why there is no evidence
of any resolvable vibrational structure. In fact most of the band envelope is likely to arise
from excitation to the continuum of states above the dissociation limit of the B> X *state.
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Concepts illustrated: ion—molecule complexes, photodissociation spectroscopy, Hund's
coupling cases; rotational structure in open-shell molecules, least-squares fitting of
spectra.

This Case Study follows on from the previous one. However, rotationally resolved pho-
todissociation spectra are the focus here, specifically for Mg*—Ne and Mg™—Ar. Although
these ions are diatomic species, their rotationally resolved spectra are not trivial to
analyse. The reason for this is the presence of an unpaired electron, which gives rise to
a net spin angular momentum which can interact with the overall rotation of the complex
(spin—rotation coupling). In addition, in some electronic states there may also be a net orbital
angular momentum, and this can interact both directly with the molecular rotation (giving
rise to the phenomenon known as A doubling) and with the electron spin. The latter is much
the strongest of these angular momentum interactions and its effect can be readily seen in
the rotationally resolved spectra, as will be discussed below.

Duncan and co-workers have recorded partly rotationally resolved electronic spectra
for the A?TTI=X2X " transitions of Mg*—Ne and Mg*—Ar, and these form the basis of the
Case Study described here [1, 2]. A photodissociation technique was employed as detailed
in Chapter 23. Before describing the spectra and their analysis, the expected rotational
energy level structure for the X2 X+ and 42I1 electronic states is considered. Much of this
description is similar to that met for NO in Chapter 22.

X2Xt state

Figure 23.1 in the previous Case Study provides a simple and extremely useful representation
of the electronic structure of Mg™—Rg cations in their two lowest electronic states. The
electrons on the rare gas atom are in tightly bound orbitals and require very high energies to
excite to vacant orbitals. The remaining electrons are strongly localized on Mg™, and all but
one occupy core orbitals. Consequently, the lowest-lying electronic states in Mgt—Rg are
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Figure 24.1 Rotational energy levels of a diatomic molecule in a %7 electronic state satisfying
Hund’s case (b) coupling. The total angular momentum quantum number J is given by J = N + %,
where N is the rotational quantum number. The + or — beside each energy level refers to the parity
(see text).

differentiated by the orbital occupied by the unpaired electron, and in the ground electronic
state this can be described approximately as the Mg™ 3s orbital. The resulting electronic
state in the complex is a 2= 7 state.

The unpaired electron in this state has a non-zero spin angular momentum, which can
interact with the angular momentum generated by overall rotation of the molecule. Inter-
action must proceed via magnetic coupling, since electron spin is a purely magnetic effect.
The rotation of Mg™—Rg will generate oscillating electric and magnetic fields and the latter
can directly couple with the electron spin. However, it is important to note that indirect
magnetic coupling is also possible via orbital motion of the electrons and so even in open-
shell homonuclear diatomic molecules a spin—rotation interaction can occur. Regardless of
the mechanism, in almost all cases spin—rotation coupling is very weak.

The coupling between spin and rotational motion in Mg™—Rg is an example of Hund’s
case (b) coupling. The basic principles of Hund’s coupling cases are outlined in Appendix
G and were also met in Chapter 22. The total angular momentum quantum number for
the molecule, J, is given by J = N £ Y, where N is the rotational quantum number
(=0, 1,2, 3, etc.). The two possible values of J, which arise for all rotational levels except
for N = 0, are due to the two possible orientations of the electron spin (up or down). Con-
sequently, each rotational level is actually split into two levels when spin—rotation coupling
occurs, as shown in Figure 24.1. The magnitude of the splitting increases with the speed
of rotation, and is given by y(N + ') where y is a quantity known as the spin—rotation
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coupling constant. In most molecules the effect of spin—rotation coupling is very small and
can only be resolved using high resolution spectroscopy.

AZTT state

The first excited electronic state in Mgt —Rg corresponds to an electron excited to the 3pm
orbitals. These orbitals form a degenerate pair and as a result the unpaired electron can
orbit unimpeded around the internuclear axis with an orbital angular momentum given
by the quantum number A = 1. In the resulting *IT electronic state, the strongest angular
momentum interaction occurs between the orbital and spin angular momenta of the unpaired
electron. This spin—orbit coupling in Mg+ —Rg was discussed in some detail in the previous
Case Study. If the spin—orbit coupling constant, A, has a magnitude such that 4 > BJ, then
Hund’s case (a) coupling applies.! In the Hund’s case (a) limit the torque provided by the
electrostatic field of the nuclei locks the orbital angular momentum into precessional motion
about the internuclear axis. This precession generates a concomitant magnetic field, which
in turn forces the spin angular momentum to precess sympathetically about the internuclear
axis. The quantum numbers describing this coupled electronic motion are A, S, ¥, and Q.
A and ¥ are the quantum numbers describing the projection of orbital and spin angular
momenta along the internuclear axis.” For MgT—Rg the values are A = 1 and ¥ = % Qis
the vector sum of |A + X| and may take on the values of % and % in this specific example.
S'is a good quantum number in both Hund’s cases (a) and (b).

Spin—orbit coupling splits the *IT electronic state into two spin—orbit components, 21} >
and 2113 /2, where the subscript refers to the value of Q. Each of these sub-states has its
own set of rotational levels, as shown in Figure 24.2. The rotational levels are distinguished
by their total angular momentum quantum number, J, and the identity of the particular
spin—orbit sub-state. One can identify a rotational quantum number with values R = 0,
1, 2, 3, etc., such that / = R + . Thus in the I, /2 state the smallest possible value
of Jis % whereas in the 2I13, state it is % This has consequences for the spectra, which
will be seen later.

Additional labels, + and —, are included for the rotational levels in both Figures 24.1
and 24.2. These refer to the parity of the energy level. Parity is a symmetry label, but one
that results from the operation in which the coordinates of all particles in the molecule
(nuclei and electrons) are inverted with respect to a space-fixed coordinate system. This is
an involved concept and will not be developed in any detail here; sophisticated treatments
can be found in many books (see for example References [3] and [4]). Parity is a useful
description of symmetry that aids in establishing transition selection rules, as detailed below.

In fact, when the spin—orbit coupling is strong there are two possible coupling cases, Hund’s cases (a) and (c). See
Appendix G for more details.

Note the potential for confusion here. As well as its use to designate electronic states in linear molecules with
orbital angular momentum A = 0, the symbol ¥ is unfortunately also used to designate the quantum number for
projection of the electronic spin angular momentum on the internuclear axis.
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Figure 24.2 Rotational energy levels of a diatomic molecule in a 2IT electronic state satisfying Hund’s
case (a) coupling. Two sets of levels are shown corresponding to the spin—orbit components I1; , and
2[1;. The overall angular momentum quantum number is given by the half integer quantum number
J. The + or — beside each energy level refers to the parity (see text).

Transition energies and selection rules

The transitions must satisfy the usual single-photon selection rule for the overall angular
momentum, AJ = 0, & 1. In addition, there is a selection rule based on parity, which derives
from the fact that the dipole moment operator, u, is a linear function of the positions of
all the particles in the molecule (see equation (7.2)). Application of the parity operation
switches the coordinates of the particles to their negative values and since this makes g
change sign the dipole moment operator must possess negative parity. For an electric dipole
driven transition the transition moment is given by the integral expression in equation (7.1),
and this will be zero if the integrand has negative parity. If the parity in upper and lower
states is the same, for example both are positive, then the parity of the integrand is
(+) ® (=) ® (+) = (—). Consequently, in an electric-dipole allowed transition the par-
ity must change between the upper and lower states.

Armed with the above selection rules, it is possible to identify the allowed transitions, and
these are shown in Figure 24.3. The rotational structure is more complicated than a simple
three-branch P/Q/R structure. Focussing on the 211, /2—2E+ sub-band, six branches can be
identified. These can be divided into P, Q, and R branches but additional subscripts are
added to the labels to designate the specific upper and lower levels. Such ideas were met in
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Figure 24.3 Allowed transitions in a >IT;,—* " electronic absorption band. Six branches occur, as
shown at the bottom of the diagram. If the spin—rotation coupling in the 2%+ state is too small to
be resolved then the R}, and O, transitions are indistinguishable, as are the Q;, and Py, transitions,
reducing the number of observable branches to four.

Case Study in Chapter 22, and the interested reader can also find out more by consulting the
textbook by Herzberg [5]. The important thing to note is that if the spin—rotation splitting is
too small to be resolved then the number of distinguishable branches is reduced to four. In
those cases where the rotational constant is similar in the upper and lower electronic states,
the branches have a structure where the spacing between adjacent transitions is roughly 35,
B, B, and 3B (moving from low energy to high energy). These spacings correspond to the
P13, P11 + QO12, O11 + Rz, and Ry branches, respectively.

Photodissociation spectra of Mg™—Ne and Mg*+-Ar

Figures 24.4 and 24.5 show rotationally resolved photodissociation spectra of Mg*—Ne and
Mg*—Ar. In neither spectrum is the zero-point vibrational level accessed in the 4?11 state.
This is because the Franck—Condon factors for 0—0 transitions are small for these ions, and
adequate signal-to-noise ratios were only obtained for rotational structure in transitions to
higher vibrational levels.

The spectrum for Mg*t—Ne looks to be quite simple, but its appearance is deceptive;
the limited spectral resolution means that many peaks are actually superpositions of two
or more transitions. From Chapter 23 we know that the complex will be far more strongly
bound in the excited electronic state than in the ground state. The rotational constant in the
ATI state should therefore be substantially larger than that in the X> X state. The marked
change in rotational constants will give rise to band head formation (see also Chapter 16)
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Figure 24.4 Rotationally resolved photodissociation spectrum of Mg+—Ne. The features shown have
been assigned to the A*T1y,—X2EF 9-0 band by Reddic and Duncan [1]. The upper trace shows
the experimental spectrum while the lower trace is a simulation based on an assumed rotational
temperature of 4 K. (Reproduced with permission from J. E. Reddic and M. A. Duncan, J. Chem.
Phys. 110 (1999) 9948, American Institute of Physics.)

in some branches and rapidly divergent rotational structure in other branches. This is exactly
the structure seen in Figure 24.4. It turns out that the spectrum in Figure 24.4 is due to the
A*T1y,—X?E7 transition rather than the 4%I15,—X>E ™ electronic transition, as justified
later. The lowest energy feature in the spectrum is the P;, branch, which is relatively weak.
The remaining, and much stronger features are due to the P;; + Q12, Q11 + Ri2, and Ry
branches and all of the strong peaks contain unresolved contributions from at least two of
these branches.

With so much unresolved structure it would be impossible to extract precise rotational
constants from the spectrum in Figure 24.4. It is even a rather difficult task to assign the peaks
to specific rotational transitions without the aid of computer simulation, but with simulations
important information can be extracted readily from the spectrum. Reddic and Duncan used
a program known as SpecSim to simulate the rotational structure in a 2IT—2X* spectrum.
An outline of how this and similar programs work is given in Appendix H. Most of these
programs are equipped with the option of varying spectroscopic constants in a systematic
(least-squares) fashion such that the best possible agreement (the best fit) between theory
and experiment is obtained.

Rotational constants of 0.343 + 0.013 and 0.238 4 0.008 cm~! were extracted for the
upper and lower states of Mg™—Ne. These can be used to estimate bond lengths of 2.59 +
0.05 A and 3.17 £ 0.05 A, respectively. The spectrum in Figure 24.4 involves the v = 9
vibrational level in the 42TT state, and the larger amplitude of the vibrations in this highly
excited level will yield a larger effective bond length than would be the case in the v =0
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Figure 24.5 Rotationally resolved photodissociation spectrum of Mg*—Ar. The features shown have
been assigned to the 4%I1;,,—X>%+ 5-0 band by Scurlock and co-workers [2]. The upper trace
shows the experimental spectrum while the lower trace is a simulation based on an assumed rotational
temperature of 4 K. (Reproduced with permission from C. T. Scurlock, J. S. Pilgrim, and M. A.
Duncan, J. Chem. Phys. 103 (1995) 3293, American Institute of Physics.)

level. Nevertheless, it is clear that much shorter bond lengths are obtained in the 4%TT state
and this is consistent with the expected stronger binding in this state compared with the
X2%+ state.

The findings are similar for the Mg*—Ar spectrum in Figure 24.5. Note that here the
simulations show that the band is due to the 4*I15,—X X" transition. The best way to
distinguish between the 2I15,,—2E" and *I1;,—2X ™ transitions is by noting that certain
transitions present in the latter are missing in the former because the lowest possible value
of J in the 2115 2 component is J = % Simulations, or if the resolution is sufficient even
simple inspection, should allow an assignment to 21, /2—22+ or 211, /2—2E+ transitions.

A least-squares fit of the rotational structure allowed bond lengths of 2.882 4 0.017 A
and 2.524 4 0.014 A to be deduced for the X2+ and 4°IT states of Mg™—Ar. As with
Mg*—Ne, there is a marked shortening in bond length upon electronic excitation due to the
much stronger binding in the excited electronic state.
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25 Vibronic coupling in benzene

Concepts illustrated: Hiickel molecular orbital theory; vibrational structure; vibronic
coupling.

The electronic spectroscopy of the benzene molecule has been the target of much research
over the years owing to its central role in the development of the concept of aromaticity, the
ubiquity of six-membered ring structures throughout organic chemistry, and the importance
of these as chromophores in photochemistry.

Benzene is, of course, the prototypical aromatic molecule, and is also one of the molecules
to which Hiickel molecular orbital theory may be simply applied. The details of Hiickel
theory are not covered here and the reader is referred elsewhere for details [1] but we note
that it is applicable mainly to conjugated hydrocarbons and provides a description of the &
molecular orbitals formed from the overlap of carbon 2p atomic orbitals. This interaction
causes a delocalization of the w-electron density and in cases where this leads to a lowering
of energy we talk of the molecule being resonance stabilized.

Hiickel theory is a simple model which ignores any interaction between the o and 7
framework, and which makes other simplifications regarding the various integrals that arise
in molecular orbital theory (see Appendix B). Since each carbon atom in benzene is sp?
hybridized, and combinations of these hybrids give rise to the o framework, then there
is one p orbital on each carbon atom remaining for = bonding: the one perpendicular
to the molecular plane. The simplifications of Hiickel theory lead to the concepts of the
Coulomb integral, o, and the resonance integral, 8, and the energy levels in Hiickel theory are
expressed in terms of these two quantities. The Coulomb integral represents the energy of a
C 2pr atomic orbital in the absence of any overlap with other 2p orbitals, whereas 8 can be
regarded as an interaction energy caused by the overlap of 2p7r orbitals on adjacent atoms.

For benzene, the six carbon 2p orbitals give rise to six 7 molecular orbitals, as shown in
Figure 25.1.

Each carbon atom contributes only a single electron to the 7 system, since the remaining
electrons are employed in the o bonding framework. If the six electrons are located in the
lowest three 7 orbitals, all of these electrons are lower in energy in the resonance structure
than they were before delocalization occurred (when they were at energy = o). These orbitals
are clearly bonding molecular orbitals, whereas those lying above « are antibonding. In the
ground electronic state there is a net bonding effect from the 7 orbitals, which helps to
stabilize the molecule.
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Figure 25.1 Hiickel & molecular orbital energy level diagram for benzene. The quantities & and 8
are defined in the text. Point group symmetries of the orbitals are shown on the right-hand side of the
diagram.

Hiickel theory can also be used to determine the contribution of each carbon 2pz orbital
to a given 7 molecular orbital. This is important because it reveals the symmetries of the
7 molecular orbitals. We note without proof that the symmetries of the bonding 7 orbitals
are ap, and e;,, whereas the antibonding orbitals have e, and b,, symmetries. For more
details the interested reader is directed to Reference [2].

Since all molecular orbitals are full, the ground electronic state of benzene is a spin
singlet and has a totally symmetric spatial symmetry in the D¢y, point group: it is therefore
a '4;, state. The highest occupied molecular orbital (HOMO) has e, symmetry and the
lowest unoccupied molecular orbital (LUMO) has e,, symmetry. If an electron is excited
from the HOMO to the LUMO, the possible excited states can be determined from the
direct product e;y ® ez, The result is By, ¥By,, and 'JE},, but only the singlet
states are of interest here because of the spin selection rule AS = 0 in electric-dipole
transitions.

It turns out that the lowest energy singlet excited electronic state is the ' B,, state. The
lowest energy electronic transition, which can be written as 4 !By, < X'A4; ¢ Is symmetry
forbidden, since 41, ® B>y = By, and none of the x, y, or z vectors transform as this sym-
metry in the Dg}, point group. Nevertheless, this nominally forbidden transition is observed
in the electronic spectrum of benzene and so some explanation is required.

The relevant region of the ultraviolet absorption spectrum of benzene is shown in
Figure 25.2, and was reported by Callomon et al. [3]. The spectrum in Figure 25.2 is
an absorption spectrum recorded for the vapour above cooled liquid benzene. The spectrum
was recorded at low resolution, and in fact a number of higher resolution spectra are shown
in Reference [3], where some partially resolved rotational structure was obtained.

Considerable vibrational structure is seen in Figure 25.2, but all of the strong bands are
built upon the single quantum excitation of the v4 vibrational mode in combination with
quanta of the v; vibration. The v¢ vibration is actually a pair of degenerate vibrations,
which cause distortions of the benzene ring, and have e;, symmetry; the vy vibration in
benzene is the totally symmetric (a;,) C—C ring breathing vibration. Approximate forms
of the vibrations are shown in Figure 25.3.
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Figure 25.2 Absorption spectrum of benzene vapour. The notation N above each band refers to a
transition from the v = p level for vibration N in the ground electronic state to level v = ¢ in the
excited electronic state.
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Figure 25.3 Illustration of the atomic motions for the v, and v¢ (doubly degenerate) vibrations of
benzene.

Notice that the electronic origin transition (09 ) is not observed in the absorption spectrum.
One might question how it is known that the first band is the 6(1) rather than the 08 trans-
ition. In fact the evidence comes from several sources, including the study of rotational
structure. Also, notice the band assigned as 6! in Figure 25.2. This is a hot band transition,
as shown by varying the temperature of the benzene sample. If the band assigned as 6, was
really the origin transition 0 then the separation between the 0) and 6} bands would be too
large to be feasible. We can therefore be certain that the 03 band is absent.

The fact that all strong bands are built upon the 6} rather than the 0) transition is an
important clue as to why a nominally forbidden electronic transition is seen. The explanation
is due to Herzberg and Teller [4], and is an example of a vibronic interaction.
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The Herzberg-Teller effect

In the Born—Oppenheimer approximation, the electronic and vibrational motion is separated
on the grounds that electrons move much faster than nuclei. Consequently, as discussed in
Section 7.2, the transition moment, M., , may be expressed as follows:

M., = / W ! dre, = / W dr, f W dr,
- M, / W/ dr,

where the” and ” refer to wavefunctions in the upper and lower electronic states, respectively.
All other quantities are as described in Section 7.2. The transition probability is directly
proportional to the square of the above expression. The transition probability may therefore
be separated into a product of a purely electronic term, M., and a vibrational overlap integral,
the square of which is known as the Franck—Condon factor (see Sections 7.2.2 and 7.2.3).
It is the symmetry of the integrand in the electronic transition moment that is the basis for
deducing that the A' By, < X4, transition is forbidden.

However, this conclusion is dependent on the assumption that the electronic and vibra-
tional motions can be fully separated. Herzberg and Teller recognized that M, is not strictly
constant, but rather may vary somewhat during vibration. Assuming that this effect is small,
then a satisfactory description can be obtained by expanding M. about the equilibrium struc-
ture to yield'

3N=6
oM,
Me:(Me)eq+ Z ( e) Qi
900; b
where the ‘eq’ subscript denotes the equilibrium structure and the Q; are the individual
vibrational normal coordinates. Inserting the above expression into the earlier equation for
the overall transition moment gives

N6 oM
My, = (My)eq / o dr, 4+ Y (aQe> / W QW dr,

i=1 L /eq
The first term makes no contribution to the observed transition because we have already
established that (M.)eq is zero for a 'B,, < '4,, transition. However, the second term
may be non-zero for non-totally symmetric vibrations. This new term accounts for the
weak coupling between electronic and vibrational motions, a coupling that is referred to as
vibronic coupling. Although the separation of electronic and vibrational motions is still a
reasonable description, it is no longer perfect and it is sometimes useful to think in terms
of a vibronic state with a symmetry that is the direct product of the symmetries of the
constituent electronic and vibrational states.

Herzberg and Teller proposed that nominally forbidden electronic transitions could

gain considerable intensity by ‘stealing’ intensity from a nearby fully allowed electronic

i=l

This expansion is known as a Taylor expansion and is a well-known method in mathematics for expanding functions
about a fixed point as a convergent power series.
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transition. This can be achieved if there exists a vibration in the excited state of the forbidden
transition which yields a vibronic symmetry (the direct product of the vibrational and the
electronic symmetries) that is the same as the symmetry of the upper state in the allowed
transition. These states can then mix to some extent, and the result is that the forbidden tran-
sition acquires intensity from the fully allowed transition; this is believed to be the source of
the spectrum in Figure 25.2. Notice that the molecule must be vibrationally excited in order
for vibronic interaction to occur, and this explains why the 0J transition is not observed.

For benzene, theC'E,, state is close in energy to the A'B,, state and is therefore the
likely candidate for vibronic coupling and intensity stealing. In the v = 1 vibrational level
the vibronic symmetry becomes By, ® e>, = E1y, and this is the same symmetry as the C
electronic state and therefore suitable for vibronic coupling.

From the Hiickel MO diagram shown earlier, the LUMO <— HOMO transition will result
in a significant weakening of the = bonding and therefore a change in the C—C bond lengths.
Consequently, the appearance of a substantial progression in mode v; would be expected
and indeed is observed (in combination with the v¢ vibration). The excitation of totally
symmetric vibrations such as mode v in combination with the non-totally symmetric vg
vibration does not change the excited state vibronic symmetry.
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chlorobenzene

Concepts illustrated: REMPI spectroscopy; vibrational structure and assignments;
Franck—Condon principle; vibronic coupling, Fermi resonance.

There has been much work performed on the electronic spectroscopy of the benzene
molecule, and some of this was included in the previous Case Study. As was noted in
that earlier Case Study, benzene is an interesting molecule because:

(1) it has high symmetry, and this has implications for selection rules and therefore the
appearance of the spectra;
(ii) vibronic coupling occurs;
(iii) it is a prototypical aromatic molecule, and the observed spectroscopy can be compared
with predictions from quantum chemical calculations, ranging from simple Hiickel
theory through to state-of-the-art ab initio methods.

Substituted benzenes are also interesting molecules to spectroscopists. The simplest substi-
tution is to replace one of the hydrogen atoms with a different atom. This can directly affect
the electronic structure of the ring through donation or withdrawal of electron density by
the substituent through inductive and mesomeric effects — an interesting phenomenon in its
own right, although not of direct interest here.

Chlorobenzene is chosen for investigation here. Figure 26.1 shows the chlorobenzene
molecule, indicating the axis system employed.

The outermost occupied orbital of benzene is a 7 molecular orbital with e;, symmetry.
In the lower symmetry (C,y) environment of chlorobenzene this splits into two orbitals with
b, and a; symmetries, with the HOMO being the b, orbital. Below these two orbitals lie two
others which arise from the lone pairs on the Cl atom. These are non-bonding orbitals with b,
and b, symmetries, the b; orbital lying lower in energy. The LUMO of benzene is a v * orbital
with e, symmetry, which splits into a, + b; symmetry, with the a, being the lower. Conse-
quently, the lowest energy electronic transition (LUMO <« HOMO) in chlorobenzene is an
a, < b transition. The first excited electronic state therefore has the outer electronic config-
uration (b1)'(a»)!, giving a symmetry b; ® a, = by, and so the first excited state is a ' B,
state.
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Figure 26.1 Schematic of the chlorobenzene molecule, indicating the axis system used in this work.
The choice of axis system affects the symmetry labels used to specify the symmetries of the electronic
and vibrational states.

By analogy with benzene, all occupied orbitals in the ground electronic state of chloro-
benzene will be full and so the ground state is a ' 4; state. The lowest energy singlet—singlet
transition (often denoted S; <— Sy as a shorthand and general notation for closed-shell
molecules) therefore corresponds to the A' B, «<— X ' 4; transition. This is an allowed transi-
tion, but note that it corresponds to the electric dipole-forbidden A' B, < X'A4 1 transition
of benzene (Chapter 25), where the symmetry labels have changed owing to the change in
point group, particularly the loss of the centre of inversion. This transition has been studied
by several research groups using various forms of electronic spectroscopy, with one of the
earliest studies being reported in 1905 [1]: we shall concentrate on much more recent studies
here [2-4].

Experimental details and spectrum

Electronic spectra of the 4 <— X transition for chlorobenzene are shown in Figure 26.2 and
have been taken from Reference [4]. A molecular beam of chlorobenzene seeded in argon
was obtained by co-expanding the vapour from a room temperature sample of chlorobenzene
with argon gas at a pressure of ~5 bar. The supersonic expansion was then skimmed to
form a molecular beam. One-colour REMPI spectroscopy was employed to record spectra.
This was achieved by crossing the molecular beam with the beam from a tuneable dye laser.
Ions produced were detected in a time-of-flight mass spectrometer and REMPI spectra were
obtained by scanning the laser wavelength across the region of interest and recording the
chlorobenzene cation current as a function of the laser wavelength.
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Figure 26.2 REMPI spectrum of the S; <— S, transition in chlorobenzene. An expanded view of the
feature at 520-525 cm~! above the origin band (0°) is also shown. (Reproduced with permission from
T. G. Wright, S. I. Panov, and T. A. Miller, J. Chem. Phys. 102 (1995) 4793, American Institute of
Physics.)

Assignment

Before the assignment of specific peaks is attempted, it is necessary to establish that
chlorobenzene is the molecule responsible for the spectrum. REMPI is normally excel-
lent for this purpose, since the combination with mass spectrometry allows the mass of
the spectral carrier to be determined. This is in contrast to methods such as LIF and cavity
ringdown spectroscopies, where other arguments must be presented to prove that a spectrum
does indeed arise from a particular molecule. However, it is worth noting that identifica-
tion of the spectral carrier is not always straightforward in REMPI work, particularly when
dealing with molecular complexes. This is because excess energy can be deposited into the
ion in the ionization step and this can lead to fragmentation. A two-colour REMPI scheme
can help to minimize fragmentation, since the wavelength of the laser used in the ionization
step can be specifically chosen such that the ionization limit is only just exceeded.

The identification of the transition between the zero-point vibrational levels of each
electronic state (termed the electronic origin transition and usually labelled as 03) is not
always straightforward. Spectral features at energies below the origin can occur when
the lower state is vibrationally excited — these are termed Aot bands. Significant popu-
lation of excited vibrational levels in the lower electronic state can persist even under
fairly stringent supersonic cooling conditions. This is the result of the low efficiency of
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vibrational — translational energy transfer during the finite number of collisions that take
place in the early stages of the supersonic expansion. Thus care must always be taken to
identify contributions from hot bands before the origin transition is firmly assigned.

In Figure 26.2 a range of 2000 cm ™' is covered showing the origin (denoted 0° rather
than the more usual 0)) and a large number of additional bands. The various bands must be
due to vibrational structure, and the resolution is too low to pick up the underlying rotational
structure in each band.

Now consider what vibrational structure might be expected. In the cold conditions
expected in a supersonic molecular beam, most of the chlorobenzene molecules will occupy
their zero-point vibrational energy level. Application of the Franck—Condon principle (see
Section 7.2.3) shows that the dominant vibrational structure should be due to excita-
tion of totally symmetric (a;) vibrations in the excited electronic state. Inspection of the
known vibrational frequencies of chlorobenzene in the electronic ground state (obtained,
for example, from infrared or Raman spectroscopy) quickly establishes that some of the
low-frequency bands shown in Figure 26.2 cannot be due to modes with a; symmetry.
Consequently, there must be vibrational structure that defies the Franck—Condon principle.
Again, comparison with known vibrational frequencies indicates that these ‘forbidden’ fea-
tures correspond to vibrational levels with b, symmetry, and so we need to explain how
they gain their unexpectedly high intensities. Also of interest is the fairly strong band at
approximately 37 560 cm™!, which has been expanded in Figure 26.2 and is seen to consist
of a closely spaced pair of peaks. Specific assignments will be proposed for these low-
energy features, and then some briefer comments will be made regarding the remaining
bands shown in Figure 26.2.

In Reference [4], vibrational frequencies calculated at the RHF/6-31G* level of ab initio
theory were presented. This is a relatively low level of theory, but there is a well-established
scaling factor for such calculations, which normally leads to fairly reliable predicted vibra-
tional frequencies. We have performed additional calculations here. In particular we have
obtained vibrational frequencies for the S; state, which are more appropriate for compar-
ison with the REMPI spectra since the observed vibrational intervals are those exhibited
by the S, state. Table 26.1 shows a list of calculated, scaled vibrational frequencies for the
So and S; states of chlorobenzene, together with the symmetry of each normal coordinate.
Note that the labelling in Table 26.1 has been given in terms of both the Mulliken and
the Wilson notations. The Mulliken notation lists the vibrations in order of symmetry,
and within each symmetry block in order of descending frequency. This is the more usual
and systematic way of numbering vibrational modes in polyatomic molecules. However,
the Wilson nomenclature is based upon the mode numbering employed for benzene and
makes the comparison with that molecule somewhat easier; we will use it in the discussion
below. However, note that the comparison of vibrations in benzene with those in substituted
benzenes can be misleading because the form of some vibrational modes can change sig-
nificantly on substitution. The level of complexity is perhaps indicated by the fact that there
is an entire book devoted to the vibrational spectroscopy of substituted benzenes [5].

The vibrational frequencies predicted by the ab initio calculations greatly aid the assign-
ment of vibrational structure in Figure 26.2. The band at 378 cm™! above the origin transition
may be straightforwardly assigned to single quantum excitation of vibration v¢,, which has
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Table 26.1 Calculated vibrational frequencies for the Sy and S,
states of chlorobenzene

Vibrational frequency/cm™

Mode (Mulliken) Mode (Wilson) ~ Symmetry So? S/®
1 2 a; 3030 3038
2 20a a 3016 3024
3 13 a; 2994 3006
4 8a a 1594 1525
5 19a a; 1473 1410
6 9a a 1154 1128
7 Ta a; 1071 1047
8 18a a 999 959
9 1 a; 970 934
10 12 a 681 652
11 6a a; 361 366
12 17a a; 980 736
13 10a a, 970 618
14 16a a; 407 143
15 5 by 1002 818
16 17b by 922 726
17 10b by 748 603
18 4 by 679 397
19 16b by 470 303
20 11 by 187 129
21 20b b, 3027 3035
22 7b b, 3004 3015
23 8b b, 1590 1637
24 19b b, 1435 1461
25 3 b, 1303 1376
26 14 b, 1184 1265
27 9b b, 1077 1125
28 15 b, 1049 994
29 6b b, 601 513
30 18b b, 286 282

¢ Harmonic vibrational frequencies obtained using DFT calculations (B3LYP/6—
314++4G** level of theory).

b Obtained using CIS calculations with a 6-314+G** basis set. CIS calculations
on excited electronic states are roughly equivalent to Hartree—Fock calculations on
ground electronic states. Since vibrational frequencies in the latter are normally
scaled by 0.89 to bring them into agreement with observed vibrational fundamental
frequencies, the same scaling factor has been used here.

a; symmetry, while the lower energy feature at 288 cm™' is assigned to the vg, mode,
which has b, symmetry.

Of additional interest is the feature between 520 and 525 cm™!, which in the expanded
view can be seen to be a doublet. This is in the correct region for single quantum excitation
of the vgp, vibration (b, symmetry), but Table 26.1 reveals no other obvious candidate for
the second peak. Two assignments have been put forward in the research literature for
the second peak, between which it is difficult to differentiate, and both are based upon a
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combination band: vy, + Vigh OF V1| + V16,. Both of these have b, symmetry, since each
consists of single quantum (v = 1) excitation of both an a; and a b, vibration, and the
combined symmetry is obtained from the direct product a; ® b, = b,. We employ the
former assignment here, but note that it is not definitive. The proximity of vibrational levels
ofthe same symmetry can lead to interaction, a process known as Fermi resonance. Briefly, if
¥, and Yy, are vibrational wavefunctions in close energetic proximity, then mixing becomes
possible through a mechanism derived from the anharmonicity of vibrations providing the
vibrational wavefunctions have the same symmetry. New perturbed vibrational states are
generated with wavefunctions ay, + byry, and ayry, — byr,, where a and b are coefficients
describing the extent of mixing. The term ‘resonance’ is indicative of the fact that this
interaction is only significant if the unperturbed energy levels are close together, and Fermi
resonance then results in the levels being pushed apart. Thus the current favoured assignment
for the 520-525 cm~! doublet in Figure 26.2 is a Fermi doublet involving the vg, and
Viea + Vieb Vibrational levels.

For the remainder of the spectrum in Figure 26.2, the majority of the features are
assignable to totally symmetric (a;) vibrations, but there are other bands attributable to
b, vibrations. It is not, at the present time, possible to assign reliably all of the features in
the spectrum because of the number of combination and overtone bands possible, the effects
of anharmonicity, and the possibility of coupling between modes of the same symmetry.

Finally, we need to address the issue of how the b, vibrations appear with such high
intensities in the spectra. Referring back to the earlier example of benzene (see Chapter 25),
the observation of structure due to an e, vibration was attributed to a vibronic interaction
that led to intensity borrowing by the S; state. In C,, symmetry, a (doubly degenerate) e,
vibration in benzene will transform into two distinct vibrations of ¢; and b, symmetry in
the lower symmetry environment of chlorobenzene. In chlorobenzene the a; and b, vibra-
tions may have very different frequencies (see Table 26.1) and should therefore be regarded
as distinct vibrations. (Vibrations with the same number but additional labels a and b for
doubly degenerate vibrations in benzene.) The substantial structure due to b, modes in the
REMPI spectrum suggests that, even though the S; <— S electronic transition is allowed
in chlorobenzene, whereas it was forbidden in benzene, there is still some ‘memory’ of the
higher symmetry in the parent benzene molecule and a vibronic effect gives rise to the b,
activity in the spectrum.

In conclusion, the majority of the features in the REMPI spectrum of chlorobenzene
can be assigned once it is appreciated that both totally symmetric and certain non-totally
symmetric vibrations are active.
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Concepts illustrated: ZEKE spectroscopy, MATI spectroscopy; vibrational structure and
the Franck—Condon principle; ab initio calculations; vibronic coupling, Fermi resonance.

The lowering of symmetry in moving from benzene (D) to chlorobenzene (C,y) results in
the removal of molecular orbital degeneracies. A convenient way of investigating this effect
is through conventional photoelectron spectroscopy, and indeed Rusci¢ et al. studied this
degeneracy breaking in 1981 using both Hel and Hell photoelectron spectroscopy [1]. The
spectra obtained are shown in Figure 27.1, with the upper trace being that recorded using
Hel radiation and the lower trace using Hell radiation.

The first two bands have similar ionization energies (maxima at 9.07 and 9.54 eV) and
almost identical intensities. These bands correlate with the two components of the e;,
HOMO in benzene, which is a pair of 7 bonding orbitals (see Chapter 25) but which have
split into two distinct orbitals in chlorobenzene owing to the lowering of the symmetry.
Note that these two bands, and indeed most other bands in the spectra, are relatively broad.
The next highest bands again form a pair, but these have considerably sharper profiles and
correspond to ionization from lone pairs on the CI atom.

The low resolution in conventional photoelectron spectroscopy restricts the amount of
information that can be extracted. In this Case Study we consider alternative techniques
that provide additional information about the chlorobenzene cation. This builds upon the
material encountered in the previous two Case Studies.

The X2B, state

The REMPI spectrum of chlorobenzene was described in the preceding Case Study. Once
the REMPI spectrum of chlorobenzene is known, it is possible to use the vibrational levels
of the intermediate S; state as a stepping stone to ionization, enabling two-colour ZEKE
spectra to be recorded. A two-colour ZEKE spectrum is obtained by fixing the wavelength
of one laser at the position of the appropriate S; < S, transition, and the wavelength of the
second laser is then scanned to access the cationic states (see Section 12.5 for additional
experimental details). The primary advantage ZEKE spectroscopy has over photoelectron
spectroscopy is its much higher resolution. In addition, in ZEKE spectroscopy, ionization
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Figure 27.1 Hel (upper trace) and Hell (lower trace) photoelectron spectra of chlorobenzene. (Repro-
duced from B. Rusci¢, L. Klasinc, A. Wolf, and J. V. Knop, J. Phys. Chem. 85 (1981) 1486, with
permission from the American Chemical Society.)

can take place from selected vibrational levels in the intermediate electronic state by tun-
ing the appropriate laser wavelength. Of course, it would be exceedingly time consuming
simply to scan the other laser in an arbitrary search for the onset of ionization, and so some
prior knowledge of the adiabatic ionization energy is very useful. Very often, a good esti-
mate can come from conventional photoelectron studies such as that carried out by Ruscic¢
et al., and generally these are used as a first approximation of where to look for a ZEKE
spectrum.

Figure 27.2 shows a two-colour ZEKE spectrum for excitation via one quantum in the
totally symmetric v vibration in S;, while Figure 27.3 shows the ZEKE spectra obtained
by exciting via the vg,/ (V162 + V16b) Fermi resonance duet (see previous Case Study); these
spectra were originally reported in Reference [2]. The ionization laser was tuned over a
region that accesses the lowest electronic state of the cation, which corresponds to the lowest
energy band in the photoelectron spectrum in Figure 27.1. The e;, HOMO in benzene splits
into a; and b; orbitals in chlorobenzene and it turns out that the b; orbital has the higher
energy. Removal of an electron from this orbital therefore leads to the ground electronic
state of the cation, which is a 2B, state.

The assignment of the vibrational structure in each spectrum was achieved in part by
comparison with the results from ab initio calculations. Vibrational frequencies obtained
with density functional theory (B3LYP/6-31+4G**) are summarized in Table 27.1.
It is also possible to excite other assigned vibrational levels in the S; state, and then
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Figure 27.2 Two-colour (1 + 1’) ZEKE spectrum of chlorobenzene recorded by using the v; = 1
vibrational level in the S, state as the intermediate level. The vibrational numbering uses the Wilson
scheme (see Table 27.1). The band labelled AIE refers to the adiabatic ionization process in which the
cation is formed in its zero-point vibrational level. (Reproduced with permission from T. G. Wright,
S. L. Panov, and T. A. Miller, J. Chem. Phys. 102 (1995) 4793, American Institute of Physics.)
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Figure 27.3 Two-colour (1 4 1’) ZEKE spectrum of chlorobenzene recorded by exciting via the vg,
level (upper trace) and vyg, V16, (lower trace) vibrational levels in the S state. Note that these two
vibrational levels are believed to be the two components of a Fermi resonance doublet. The ZEKE
spectrum is dominated by structure in vibrations with b, symmetry, which is consistent with the
vibrational symmetry of the intermediate state. (Reproduced with permission from T. G. Wright, S. I.
Panov, and T. A. Miller, J. Chem. Phys. 102 (1995) 4793, American Institute of Physics.)
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Table 27.1 Calculated vibrational frequencies of the chlorobenzene cation

Mode (Mulliken) ~ Mode (Wilson) ~ Symmetry  Vibrational frequency/cm™'

1 2 a 3238

2 20a a; 3228

3 13 a 3216

4 8a a; 1646

5 19a a 1463

6 9a a; 1218

7 7a a 1120

8 18a a; 1001

9 1 a 989
10 12 a; 721
11 6a a 427
12 17a a, 1006
13 10a a, 801
14 16a a, 358
15 5 by 1001
16 17b b, 959
17 10b by 773
18 4 b, 595
19 16b by 397
20 11 b, 147
21 20b b, 3236
22 7b b, 3225
23 8b b, 1529
24 19b b, 1419
25 3 b, 1389
26 14 b, 1289
27 9b b, 1157
28 15 b, 1103
29 6b b, 536
30 18b b, 306

¢ From DFT calculations using the B3LYP functional together with a 6-31+4-G**
basis set.

use Franck—Condon arguments to deduce vibrational assignments in the ZEKE spectra, as
has been done in Reference [2].

Notice that in the spectrum in Figure 27.2, since ionization takes place from an energy
level of a totally symmetric (a;) vibration in the S; state, the Franck—Condon principle leads
us to expect that the main vibrational features in the ZEKE spectrum will also be due to
totally symmetric vibrations in the cation. For the spectra in Figure 27.3, the S; vibrational
levels excited have b, symmetry, and consequently b, vibrational structure should dominate
in the ZEKE spectra. The Franck—Condon predictions are borne out in the spectra. Note
that in Figure 27.3 the origin transition is not observed, as expected, since the wavefunction
for the zero-point vibrational level of the cation has a; symmetry and so is not accessible
from a b, vibrational level in the intermediate electronic state.

It is interesting to note that both Lembach and Brutschy [3] and Kwon et al. [4] have
recorded mass analysed threshold ionization (MATI) spectra of chlorobenzene. MATT is
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Figure 27.4 Single-photon MATI spectrum for the X2B, < X' A4, ionization process for the 3*Cl
isotopomer of chlorobenzene. (Reproduced with permission from C. H. Kwon, H. L. Kim, and M. S.
Kim, J. Chem. Phys. 116 (2002) 10361, American Institute of Physics.)

similar to the ZEKE technique (see Section 12.6) but in the former it is cations rather than
electrons that are detected. The advantage of the MATI technique is its mass selectivity,
which makes it possible to record separate spectra for the 3*Cl and 3’Cl isotopomers of
chlorobenzene. Lembach and Brutschy used two-colour, two-photon ionization, whereas
Kwon and co-workers employed single-photon ionization using VUV radiation. A single-
photon MATT spectrum, with the excitation occurring out of the zero-point level of the S
state, is shown for the most prevalent isotopomer (containing *>C1) in Figure 27.4. This can
be compared with the two-colour ZEKE spectrum in Figure 27.5 obtained via the zero-point
level of the S; state.

As may be seen, the signal-to-noise (S/N) ratio is far better in the one-photon MATI
spectrum, and has allowed the observation of a number of weaker features not seen in the
two-colour ZEKE spectrum. The reason for the increased S/N ratio is not clear, but there
is always the problem in two-colour spectroscopy of obtaining good spatial overlap of the
laser beams and balancing the relative intensities of the two lasers to obtain the best signal.
As noted above, Lembach and Brutschy also recorded MATI spectra of chlorobenzene,
obtaining information on both isotopomers, but this time using a two-colour scheme: the
spectra obtained are more similar to the two-colour ZEKE spectra than the one-colour
MATI.

It is worth noting that the longer region scanned in the one-colour MATI spectrum
(Figure 27.4) allows the observation of a progression in the v¢, mode: this is a ring defor-
mation mode, leading to an elongation of the ring in the direction of the C—Cl bond.
Interestingly, ab initio calculations reported in Reference [2] revealed that the major dif-
ference in structure between the ground state of neutral chlorobenzene and the cation is a
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Figure 27.5 Two-colour (1 + 1) ZEKE spectrum of chlorobenzene recorded by using the S; 0° level
as the intermediate state. (Reproduced with permission from T. G. Wright, S. 1. Panov, and T. A.
Miller, J. Chem. Phys. 102 (1995) 4793, American Institute of Physics.)

distortion of the latter along the vg, vibrational coordinate. The Franck—Condon principle
would therefore lead us to expect the MATI and ZEKE spectra to be dominated by a vibra-
tional progression in vg,, and this ties in nicely with the actual vibrational assignment. Note
also that in the MATI spectrum there are weak features assigned that do not correspond to
totally symmetric vibrations so the Franck—Condon principle is not entirely adhered to.

Returning briefly to the photoelectron spectrum, recall that the lowest energy photoelec-
tron band is rather broad. As we have just seen from the ZEKE and MATTI spectra, there
is a substantial progression in the vg, vibration. This, coupled with the low resolution of
conventional photoelectron spectroscopy, which is insufficient to resolve the vibrational
structure, accounts for the width of the first photoelectron band in Figure 27.1.

The B state

Since Kwon et al. [4] employed VUV radiation, they were also able to study excited elec-
tronic states of the cation. In particular, they concentrated on the cationic state corresponding
to the photoelectron band at 11.31 eV in Figure 27.1. This corresponds to the second excited,
or B state, of the cation. The MATI spectrum obtained is shown in Figure 27.6.

As noted above, it is known from a combination of previous conventional photoelectron
studies and ab initio calculations that this spectrum arises from removal of an electron
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Figure 27.6 Single-photon MATI spectrum of the BB, state of chlorobenzene. (Reproduced with
permission from C. H. Kwon, H. L. Kim, and M. S. Kim, J. Chem. Phys. 116 (2002) 10361, American
Institute of Physics.)

from one of the lone pairs of the Cl atom; the lowest state of the cation that can arise
from ionization of one of these electrons is the 2B, state. Since little change in molecular
structure is expected for this ionization process, the dominant feature should be the origin
transition in which no vibrational excitation in the ion occurs (corresponding to the adiabatic
ionization energy (AIE) for the third photoelectron band). Of course, in the conventional
photoelectron spectrum there was no chance to confirm this prediction, except to note
that the corresponding photoelectron band was much sharper. In the MATI spectrum in
Figure 27.6 it can clearly be seen that there is little vibrational structure, neatly confirming
our expectations based upon prior knowledge of the ionization process.
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of the a'A < X3%4 transition
N Oz

Concepts illustrated: cavity ringdown spectroscopy,; Pauli principle and electronic
states; Hund's coupling cases, rotational structure of an open-shell molecule; nuclear
spin statistics.

The oxygen molecule is, of course, of fundamental importance to our atmosphere and the
reactions that occur in it. Oxygen is a precursor of ozone in the atmosphere, and in turn
is produced when ozone is destroyed in the atmosphere. Atmospheric models of ozone
concentrations depend critically upon knowing absorption coefficients for oxygen.

In this Case Study, the absorption spectrum corresponding to the a' A, < X3% ¢ tran-
sition is considered. This is formally a spin-forbidden electronic transition, since AS # 0.
It is also spatially forbidden as an electric dipole transition since the direct product
Ag ® X, = Ay, whereas the dipole moment operator has components with X and I1,
symmetries. Consequently, both AA (=0, £1) and u <> g selection rules are violated,
and yet remarkably the a' A, < X3 ¥, transition can still be experimentally observed. As
one would imagine, it is an extremely weak transition and a highly sensitive spectroscopic
technique is required in order to observe it.

Experimental

This Case Study is based on work by Newman ef al. [ 1] using the highly sensitive absorption
technique known as cavity ringdown (CRD) spectroscopy. Newman et al. set out to measure
the spectrum and absorption coefficient data for the a'! A, < X3 % o transition in order to be
able to obtain accurate information for describing the absorption and emission of radiation
from these electronic states.

The principles of the CRD technique have already been described in Section 11.3. Recall
that this is an absorption method and therefore reliance on a second step for detecting a
transition is not required (cf. LIF or REMPI). In CRD spectroscopy the decay of the intensity
of a pulse of light is monitored as it bounces to and fro between two highly reflective
mirrors. The rate of leakage of the light pulse out of the cavity depends on the cavity itself
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Figure 28.1 A typical cavity ringdown trace: note the exponential decay of the intensity of the light
with time. (Reproduced with permission from S. M. Newman, I. C. Lane, A. Orr-Ewing, D. A.
Newnham, and J. Ballard, J. Chem. Phys. 110 (1999) 10749, American Institute of Physics.)
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Figure 28.2 CRD spectrum ofthe a! A, < X3 %, transition of O,. The lower trace is the experimental
spectrum, and the upper trace is a simulation: the good agreement between experiment and theory
suggests that the assignment shown is correct. The notation used for labelling the lines is discussed
in the text. (Reproduced with permission from S. M. Newman, I. C. Lane, A. Orr-Ewing, D. A.
Newnham, and J. Ballard, J. Chem. Phys. 110 (1999) 10749, American Institute of Physics.)

(specifically the reflectivity of the mirrors) and the absorption of light by molecules within
the cavity. Since the separation of the a and X states of O; is ~8000 cm ™', a near-infrared
light source was used by Newman and co-workers. This light source was the idler output
of an optical parametric oscillator (see Section 10.8), which was pumped by the frequency-
tripled output (355 nm) of a Nd: YAG laser. The wavelength of the light was varied over the
range 1.25-1.29 pm. A typical ringdown trace is shown in Figure 28.1.
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By accounting for the losses that are associated with the empty cavity, it is possible to
deconvolute the ringdown signal so that the losses attributable only to sample absorption can
be obtained. By scanning the laser wavelength, the ringdown data can be transformed into
an absorption spectrum, and the one reported in Reference [1] is shown in Figure 28.2. This
spectrum was obtained for a room temperature O, sample at a pressure of 1 atmosphere.

It is important to emphasize that the transition being observed is exceedingly weak by the
standards of normal electronic transitions (see below) and yet a remarkably good signal-to-
noise ratio is obtained because of the high sensitivity of CRD spectroscopy. The assignment
of this spectrum will be discussed later after considering the low-lying electronic states of
O, and the rotational energy levels of these states.

Electronic states of O,

Molecular orbital theory shows that O, has the valence electronic configuration
(250,)* (250 )*(2pog)*(2pma)*(2pm)*. This configuration can actually give rise to three
electronic states and their symmetries can be determined by application of group theoretical
considerations. O, is an example where it is necessary to take care over the Pauli princi-
ple, since there are two electrons to be distributed amongst two degenerate orbitals (see
Appendix E). The spatial symmetries of the electronic states can be deduced by consid-
ering only the outer configuration (2 png)z, since all other occupied orbitals are full and
therefore make only a totally symmetric contribution to the overall electronic state spatial
symmetry. The direct product 7, ® 7, may be evaluated as 2; +[2;]1 + A, where upper
case symbols have been used to indicate the symmetries of electronic states. The square
brackets around the X" label indicate that an electronic state with this symmetry is antisym-
metric with respect to electron exchange, whereas Zg and A, are totally symmetric. The
Pauli principle requires that the overall product of the spatial and spin symmetries must be
antisymmetric, since we are allowing for the exchange of equivalent fermions (electrons).
The possible spin states for a two-electron case are singlet (S = 0) and triplet (S = 1).
The corresponding spin wavefunctions are summarized in equations (E.1)—(E.4) in
Appendix E. The triplet wavefunctions are totally symmetric with respect to electron
exchange, and so can only be combined with X, spatial symmetry to give a 3Eg elec-
tronic state. In contrast the singlet spin wavefunction is antisymmetric leading to IE; and
'A, electronic states.

The order of these electronic states can be deduced using Hund's rules." These predict
that the lowest electronic state from a given electronic configuration will be the one with
the highest spin. For states with the same spin, the one with the highest orbital angular
momentum is normally the lowest in energy. These rules suggest that the energies of the
electronic states lie in the order * % g < TA, < 12;, and this is confirmed by both theory and
experiment. Figure 28.3 shows potential energy curves derived from ab initio calculations
for some of the low-lying electronic states.

Hund’s rules are based on sound physical principles but should be used with caution. The proximity of electronic
states can sometimes lead to interactions between these states that yield a different energy ordering from that
predicted by Hund’s rules.
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Figure 28.3 Potential energy curves for the lowest states of O, obtained from ab initio calculations.
(Reproduced with permission from S. M. Newman, 1. C. Lane, A. Orr-Ewing, D. A. Newnham, and
J. Ballard, J. Chem. Phys. 110 (1999) 10749, American Institute of Physics.)

Rotational energy levels

The spectrum shown in Figure 28.2 is a rotationally resolved spectrum in the region of the
electronic origin (v = 0 <—v” =0) transition. In order to be able to assign the various lines
in the spectrum, it is first necessary to understand the relevant rotational energy levels. If
O, was a closed-shell molecule, then the simple expressions for the rotational energy levels
of closed-shell diatomic molecules could be employed and the rotational analysis would
be relatively simple. However, O, is an open-shell molecule possessing electronic angular
momentum as well as rotational angular momentum, and therefore a more sophisticated
approach is required. In particular, the coupling of the electronic and rotational angular
momenta must be accounted for.

Considering the lAg state first, the angular momenta present are the electronic orbital
angular momentum, L, and the rotational angular momentum, R. This state follows Hund’s
case (b) coupling (see Appendix G), and so the vector L will precess rapidly about the
internuclear axis to give a projection described by the quantum number A, where A = 2
for a A state. The total angular momentum J is formed by the vector sum of A and R.
Strictly speaking, a more detailed model is required. All electronic states for which
A # 0 are doubly degenerate, and coupling with the rotational angular momentum removes
this degeneracy to give a pair of energy levels corresponding to each rotational level [2].
However, this so-called A-doubling normally gives rise to a very small splitting, particularly
for low rotational levels, and unless working with high resolution spectra it can be safely
ignored. The rotational energy levels for a ' A, electronic state can therefore be satisfacto-
rily described by the standard closed-shell expression BJ(J + 1), except that in this case
the lowest possible value of J is 2 since the minimum angular momentum possessed by the
molecule corresponds to A = 2.

Turning now to the 32; state, this can be described satisfactorily by Hund’s case (b).
The spin S will couple with the rotational angular momentum resulting in a splitting of each
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Figure 28.4 Lowest rotational energy levels of the X3 X, and a' A, electronic states of O,. Note that
the rotational levels in the X3 X, state are split due to interaction with the spin angular momentum
(see text). Note also that for '°0O, the even N levels will be absent owing to nuclear spin statistics
(see text) — they are marked here as dashed lines. In addition, the two transitions expected from the
lowest J” level are indicated.

rotational level into three components corresponding to quantum numbers J = N + 1,
J = N,and J = N — 1.7 In fact the observed spin splitting is produced by two effects, (i)
a spin—rotation interaction (see also Chapter 22) and (ii) a spin—spin interaction from the
two unpaired electrons. This somewhat more complicated coupling gives rise to the energy
level pattern for a X3 ¥, state shown in Figure 28.4. Note that each value of N gives rise to
three values of J, except for N = 0.

28.4 Nuclear spin statistics

There is one further factor that must be recognized before attempting to assign the spectrum.
The two atomic nuclei in O, are equivalent and so, as for the case of equivalent electrons,

N is the quantum number conventionally employed for the combined rotational + orbital angular momentum (see
Appendix G), and since there is no orbital angular momentum for a 3£~ state, then N in this case can be regarded
as the rotational quantum number.
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Case Studies

the effect of the Pauli principle must be taken into account. '°O has a nuclear spin of
I = 0 and is therefore a boson. The Pauli principle states that the overall wavefunction
must be totally symmetric with respect to the exchange of two identical bosons. The total
wavefunction, Wy, is the product of the individual electronic, vibrational, rotational, and
nuclear spin wavefunctions for a particular state, i.e. Wit = Wejee Wyib Wrot Wns. Exchange
of the two nuclei can be achieved by a 180° rotation but this also rotates the electronic
wavefunction. Movement of the electronic wavefunction back to its original position while
keeping the nuclei fixed is equivalent to an inversion of the electron coordinates (symmetry
operation i) followed by a reflection in a plane perpendicular to the axis of 180° rotation.
The point of choosing such an apparently long-winded set of symmetry operations is that
the symmetry of the electronic wavefunction can then easily be established from the g/u
and =+ labels on the electronic state label.

For the X3 ¥, state, inversion leaves the electronic state wavefunction unchanged but
reflection changes the sign, so W is antisymmetric with respect to exchange of the nuclei.
The ground state vibrational wavefunction for a diatomic molecule is unaffected by nuclear
exchange and hence W, W, must be antisymmetric in order for Wy, to be symmetric. It
turns out that rotation of the molecule by 180° changes the symmetry of W, by (—1)V,
while the fact that / = 0 for 'O means that only a totally symmetric nuclear spin state is
possible. We can therefore conclude that N must be odd to satisfy the Pauli principle, which
means that the even J rotational levels do not exist for this molecule in the ground electronic
state. Note that for '°0'¥0 both odd and even N rotational levels do exist since in that case
the nuclei are not equivalent.

For O(a' A,), symmetry arguments lead to the conclusion that there are no missing
rotational energy levels. However, only the A = 42 component of each A-doublet occurs,
and this leads to a small alternating shift in the energy of the rotational states [2]. This effect
may only be observed under very high resolution.

Spectrum assignment

Owing to the nuclear spin statistics, the N = 0 rotational level in the 3 X, electronic state
does not exist and so the lowest occupied level corresponds to N = 1. Spin—rotation will
split this rotational level into closely spaced J = 0, 1, and 2 sub-levels — note that the energy
ordering of the J levels is complicated by spin—spin and spin—rotation interactions. Recall
also that for the ' A, electronic state the lowest rotational level corresponds to J = N = 2.
Assuming the electric dipole selection rule AJ = 0, &1, the possible transitions from the
lowest J level in the ground electronic state are

2« (1,2)
3« (1,2)

where the two quantum numbers in the lower state refer to (I, J). These two transitions
belong to O and R branches, respectively. However, an explicit designation of the transitions
also requires an indication of AN and so the notation employed is “VAJ(N"), where ”
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and ’ are used to distinguish quantum numbers in the lower and upper electronic states,
respectively. Consequently, the above transitions become *Q(1) and SR(1) in this notation —
these transitions are shown in Figure 28.4. Clearly there are more than two rotational
branches and so assignment of all of the transitions requires some careful consideration.

A good starting point is to recognize that the highest energy branch will be the SR branch,
since both AN and AJ have their maximum values (which for AN is +2). A regular series
of rotational lines can be seen in the highest wavenumber region, which can be extrapolated
back to the first member, SR(1). A similar process at the opposite end of the spectrum can
be carried out for the ?P branch, and a combination of the SR and ?P branch data will allow
approximate rotational constants in the two states to be estimated. In fact the rotational
constants (including centrifugal distortion constants) of the X? X, state are already well
known from earlier studies (see, for example [3]) and so the focus can be restricted to
the excited state rotational constant. Assignment of lines in the other branches is more
challenging because of the increased congestion but with patience the full assignment
shown in Figure 28.2 can be achieved. Use of computational simulation and least-squares
fitting procedures (see Appendix H) saves considerably on labour and would be the usual
route to analysing a relatively complicated spectrum such as that shown here. A simulation
of the spectrum is shown in the upper trace of Figure 28.2. Note that intensities as well
as energies of the transitions are important for a complete understanding of a spectrum —
especially in the work described in Reference [1] where the intensities were being used to
derive absolute absorption coefficients.

Why is this strongly forbidden transition observed?

It was stated earlier that the a <— X transition in O, is strongly forbidden on the basis of
electric dipole selection rules. The transition intensity must therefore be carried by some
other means and both electric quadrupole and magnetic dipole transitions are possibilities
(these mechanisms were briefly mentioned in Section 7.1). In fact it turns out that the
magnetic dipole mechanism alone is sufficient to account for the observed structure. If an
electric quadrupole mechanism was also significant, the spectrum should exhibit AJ = £2
transitions with appreciable intensity, which it does not. Further details can be found in
Reference [1].
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Appendix A
Units in spectroscopy

People working in different branches of spectroscopy tend to express spectroscopic quanti-
ties in their own preferred flavour of units. The wide variety of units in use can confuse the
beginner. There is also a tendency for many practising spectroscopists to use terminology
which is, strictly speaking, incorrect but which does slip by. The authors of this book have
probably been guilty of this very charge on several occasions in this book.

Spectroscopic transitions involve the input or removal of energy from a molecule. The SI
unit of energy is the joule (symbol J), and so the energy of a photon should be expressed in
joules. If, for example, we have a blue light source with a wavelength of 450 nm, the energy
of a photon (= hc/A = hv) is 4.4143 x 10~ J to five significant figures. Although correct,
it is difficult to gauge the significance of such a small number. Of course, the photon energy
could be expressed as 0.441 43 aJ, where the prefix a stands for atto (10~'%). However, this is
rarely done in practice. Part of the problem is historical, but also the usable range of photon
energies in spectroscopy varies over so many orders of magnitude that different types of
spectroscopists have their own favourite units.

In visible and ultraviolet electronic spectroscopy, the positions of transitions are com-
monly expressed in terms of the photon wavelength in nanometres (nm). However, it is also
quite common to employ wavenumber units, where

1
Wavenumber v = 7= (A.1)

c
Although wavenumbers could be quoted in m~!, they are more commonly given as cm™'.
For example, a wavelength of 450 nm corresponds to a wavenumber of 22222 cm™! to
five significant figures. The use of frequency units is uncommon in electronic spectroscopy
because the numbers obtained are so large, e.g. 450 nm corresponds to 6.6620 x 10'* Hz.
Occasionally the widths of lines in high resolution electronic spectroscopy are quoted in
frequency units, although in that case it normally falls in the MHz range.

In photoelectron spectroscopy, the photon energies are much larger, and therefore the
transition wavenumber is also much larger and cumbersome. Consequently, in quoting ion-
ization energies the favoured unit of photoelectron spectroscopists is the electronvolt, given
the symbol eV. This is the energy required to move an electron through a potential difference
of 1 V. For example, at the Hel wavelength, 58.4 nm, the photon energy is 3.40 x 10713 J,
but in electronvolts this corresponds to 21.2 eV. The conversion is easily obtained by dividing
the photon energy by the elementary charge, e (1.602 x 10~ C).
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As if the above was not enough, there are other complications. It is common for energies
obtained from ab initio and other quantum chemical calculations to be output in atomic units,
known as hartrees (symbol Ey). Also, calories are also still widely used in the chemistry
literature as a unit for energy despite being superseded by joules, but calories are rarely used
by spectroscopists for the same reason that joules are also little used in quoting spectroscopic
quantities.

Some fundamental constants and useful unit conversions

Speed of light (in a vacuum) ¢ = 2.997 924 59 x 108 ms~!
Planck constant & = 6.626 0755 (40) x 1073* J s
Elementary charge e = 1.602 17733 (49) x 1071 C
Electron rest mass m, = 9.109 3897 (54) x 1073 kg
Proton rest mass m, = 1.672 6231 (54) x 107" kg
Avogadro constant Ny = 6.022 1367 (36) x 10%} mol~!
Boltzmann constant k = 1.380 658 (12) x 10723 JK~!

The numbers in parentheses represent an uncertainty of one standard deviation in the last
two figures of each quantity.

1 hartree = 4.35975 x 1078 ]
=2.6259 x 10° kI mol™!
= 627.510kcal mol~!
=2721161eV
=2.194746 x 10° cm™!
= 6.579684 x 10° MHz

leV =1.602177 x 107"
= 96.485 3 kJmol !
= 23.061 kcal mol ™!
=3.674931 x 1072 Ey
= 8065.54cm™!
=2.417988 x 10* MHz

More details on the recommended units used in physical chemistry and spectroscopy can

be found in the following book: Quantities, Units and Symbols in Physical Chemistry,
published by Blackwell Scientific Publications (Oxford, 1993).
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Appendix B
Electronic structure calculations

As was mentioned in Chapter 2, analytical solutions of the many-electron Schrodinger equa-
tion are not possible. To be able to predict properties of molecular systems, approximations
are introduced and the resulting equations are solved numerically. As is usually the case
with approximations, they represent a trade-off between ease of calculation and quality of
prediction. It is therefore always important to bear in mind what approximations are implied
because this affects both the validity and the reliability of the results.

A brief summary of some of the different kinds of calculational methods available is
given in this appendix. Broadly speaking they can be divided into three groups, ab initio,
semiempirical, and density functional methods. Semiempirical methods are particularly
important for tackling large molecules but, because of the tremendous increase in computer
power over the past two decades, they have now been largely superseded by the more
sophisticated ab initio methods for calculations on small and medium-sized molecules.
Density functional calculations are now also becoming commonplace and these would seem
to yield good quality results at modest computational cost. Our emphasis here is primarily
on the ab initio approach, although we will briefly return to consider semiempirical and
density functional methods later.

Preliminaries

Inherent to virtually all electronic structure calculations are two approximations, the neglect
of relativistic effects and the use of the Born—Oppenheimer approximation. Neglecting the
energy terms that describe relativistic effects is a rather safe thing to do if we are only
interested in molecules containing first-row elements (H-Ne). For heavier atoms, especially
those in the third and higher rows, relativistic effects can be highly significant and there are
methods available, which will not be considered here, to deal with these [1].

The Born—Oppenheimer approximation, whose origins were briefly discussed in
Section 2.12, is also satisfactory in most situations. A consequence of this approxima-
tion is that the full molecular time-independent Schrodinger equation can be divided into
two separate equations

HV, = E. ¥, (B.1)
(Th + Ec)Wn ~ EV, (B.2)
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where H. is the electronic Hamiltonian operator given in full in equation (2.4) and E. is
the corresponding energy (it includes the nuclear—nuclear repulsion). Equation (B.1) is the
Schrodinger equation for a fixed set of nuclear positions. Equation (B.2) describes the effect
of nuclear motion, with 7}, being the nuclear kinetic energy operator and E being the total
energy of the molecule. Notice that the potential energy ‘operator’ in (B.2) is the energy
from solution of (B.1), so equation (B.1) must be solved before tackling (B.2).

In the case of a diatomic molecule, solution of (B.1) at various internuclear separations
gives the potential energy curve for that molecule. In polyatomic molecules consisting of
N atoms the energy E. is a function of 3N — 6 or 3N — 5 internal nuclear coordinates,
depending on whether the molecule is non-linear or linear, and it constitutes the potential
energy surface. The potential energy curve or surface defines the vibrational motion of a
molecule and therefore in order to predict vibrational frequencies equation (B.1) can be
solved at a variety of nuclear configurations to generate the potential energy surface, and
then (B.2) is subsequently solved. In fact in the majority of calculations equation (B.2)
is rarely solved explicitly to extract vibrational frequencies: a quicker route, based on the
evaluation of first and second derivatives of the total electronic energy with respect to the
internal nuclear coordinates, is usually employed [2].

An important point is that the wavefunction must satisfy the Pauli principle. In its simplest
form, this says that each electron in an atom or molecule has a unique set of quantum
numbers. In formal quantum mechanics, this corresponds to the insistence that the total
electronic wavefunction, W, must be antisymmetric with respect to the exchange of any
two electrons. A simple product wavefunction, one for each electron, of the type shown in
equation (2.5), will not satisfy the Pauli principle.

Take, as an example, the case of H; in its ground electronic state, where the two electrons
are paired up in the 1<7g+ orbital. The wavefunctions for each electron are different, the
difference being not the spatial distributions of the two electrons, which are the same, but
the spins, which are opposite. We could therefore factor the wavefunction for each electron
into a common spatial part, which will be written as org+ , and a spin part, which is designated
as either o or B depending on whether the spin is ‘up’ or ‘down’. Notice that the spatial
wavefunction represents what is commonly referred to as an orbital, in this case a molecular
orbital. The total electronic wavefunction can therefore be written as

Ve = o (Da(oy (2)B2) (B3)

Unfortunately, this doesn’t satisfy the Pauli principle since an exchange of electrons 1 and 2
(equivalent to just switching the ‘1’ and 2’ labels in (B.3)) does not change the sign of the
wavefunction. However, the following function is antisymmetric with respect to electron
exchange:

Y. = 0, (Do, ()[e(1)B(2) — a(2)B(1)] (B.4)

This is an acceptable form of the wavefunction for a spin singlet since it satisfies the
Pauli principle and it retains, albeit in a slightly more complicated manner, the concept of
molecular orbitals.

Can similar antisymmetrized electronic wavefunctions be constructed for more compli-
cated molecules? The answer is yes, but written out in full algebraic form the expressions are
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extremely long even when relatively few electrons are involved. A concise and general way
of writing the antisymmetrized wavefunctions is in the form of a determinant, the so-called
Slater determinant

pi(D) @) ... @a(D)
1 912 @2) ... @.(2)
oi(n)  @an) ... @u(n)

where 7 is the number of electrons and ¢; represents the ith spin-orbital, which is a product
of the spatial and spin wavefunctions. The electronic wavefunctions employed in all ab
initio calculations are either single Slater determinants, or are linear combinations of Slater
determinants. '

Hartree-Fock method

The Hartree—Fock (HF) method is the most common ab initio technique for calculating
electronic structure. It is also the starting point for many of the more sophisticated methods
and it is therefore worthwhile outlining the underlying philosophy. The HF method is
derived from application of a well-known theorem in quantum mechanics, the variation
theorem. We start from the proposition that (B.1) cannot be solved analytically and so we
must seek approximate solutions. Suppose we make a guess at the mathematical form of
the true electronic wavefunction, W, our guess being represented by the symbol €2 (in all
probability of course an arbitrary guess is likely to be a very poor one indeed!). According
to the variation theorem, if the energy is calculated using this guessed, or so-called trial
wavefunction, which can be done using the expression’

[ H.Qdr

= e (B.6)

then £ > E., where E. is the true energy of the system. This is an extraordinarily pow-
erful and remarkable result, for it reveals that no matter how good, or bad, our guess at
the wavefunction actually is, the energy calculated will always be above the true energy.
Consequently, if a wavefunction is chosen containing adjustable parameters, then values
for these parameters could be varied to give the minimum possible value of E. If the trial
wavefunction is sufficiently flexible, this minimization of £ may give an energy very close
to the true value, E..

A single Slater determinant always suffices for closed-shell molecules, but for open-shell molecules more than
one Slater determinant is often required for a correct representation of the electronic state within the Hartree—Fock
model.

Equation (B.6) is obtained by replacing the wavefunction in the Schrédinger equation (B. 1) with the trial wavefunc-
tion 2. Multiplication of both sides of (B.1) by ©*, which is the complex conjugate of €2, followed by integration
and rearrangement, then leads to (B.6). The quantity calculated in (B.6) is known as the expectation value of the
energy for the given trial wavefunction.
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In the HF method, a trial wavefunction consisting of a product of molecular orbitals,
one for each electron, is assumed. Specifically, the product wavefunction is in the form of
the Slater determinant (B.5). The point was made in Section 2.1.4 that the true overall elec-
tronic wavefunction cannot be factored exactly into individual one-electron wavefunctions.
Thus the imposition of molecular orbitals is only an approximation made for convenience
and this should always be borne in mind when interpreting the results from Hartree—Fock
calculations. Let us assume that the molecular orbitals contain variational parameters (these
will be identified later). If the total electronic wavefunction and the Hamiltonian (2.4) are
then inserted into (B.6) it is possible to derive, by minimizing £ using differential calculus,
a so-called Hartree—Fock equation for each molecular orbital:

:Hi +) - K»} Vi = & (B.7)
J

where i and j label the molecular orbitals, v; and ; are spatial wavefunctions, i.e. the spin
parts have been removed, and ¢; is the energy of the ith orbital. H; is a one-electron operator
that represents, in effect, the hypothetical energy of an electron in molecular orbital 7 in the
absence of any other electrons. J; and K ; are operators, called the Coulomb and exchange
operators, respectively, which account for electron—electron interactions. They are given by

1
Jn(1) = ( / w}@)Ede) e (B3)

1
Kjpi(1) = (/ I/fj(2)1/fi(2)Ede) ¥;(1) (B.9)

The Coulomb operator accounts for the repulsion between electron 1 in the ith orbital
with the averaged charge cloud of electron 2 in the jth orbital. This treatment of electron—
electron repulsion as being the interaction of one electron with the averaged charge cloud
of another overestimates the electron—electron repulsion since it does not allow for the
correlated motion of electrons, which serves to minimize the distance of closest approach.
The exchange term does not have such a simple explanation, but in effect it partially allows
for the correlated motions of electrons with identical spin, hence the minus sign preceding
it in equation (B.7).

It might seem at first sight that equation (B.7) is of the same form as the Schrodinger
equation (B.1), i.e. we could write a Schrodinger-like equation for each electron of the form

Fir =& (B.10)

It is indeed possible to write the HF equations in this abbreviated form, but it can be
misleading because there is an important and vital difference between (B.1) and (B.10). The
Hamiltonian in (B.1) is a mathematical operator which can be written down independently
of the actual solutions of (B.1), whereas the exact form of the so-called Fock operator, F,
in (B.10) is dependent on the solutions of the HF equations. This can be seen by looking
at equations (B.8) and (B.9); the Coulomb and exchange operators contain the molecular
orbitals that we wish to determine!

The way around this apparent impasse is to solve the set of equations (B.10) by using
an iterative procedure referred to as the self-consistent field (SCF) method. In essence a
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guess is made of the mathematical form for the molecular orbitals, the HF equations are
then solved using this guess to generate new orbitals and their energies, and then the new
orbitals are used to solve the HF equations again. This process is continued until there is
negligible change in the solutions from one cycle to the next: the calculation is then said to
be converged and the solutions are self-consistent.

LCAO expansions of molecular orbitals

It is possible to solve the HF equations using a fully numerical approach on a computer. In
practice this is easy to do for atoms, because of their spherical symmetry, but is very difficult
for molecules. Consequently, for molecular calculations it is usual to adopt a different
approach in which the molecular orbitals are expanded as linear combinations of atomic
orbitals. This is the LCAO approximation and it will be familiar to any chemist who has
sketched a molecular orbital diagram. Each molecular orbital, v; is expanded as

Vi =Y cipdy (B.11)
P

where the ¢, are atomic orbitals and the ¢;, are the expansion coefficients for the ith
molecular orbital. Substituting (B.11) into the HF equations (B.10) gives the Hartree—
Fock—Roothaan equations

D cip(Fpg — €Spg) =0 (B.12)

where p
Fpy = / ¢pFo, dV (B.13)
Spy = / bpy AV (B.14)

Equations (B.13) and (B.14) are definite integrals evaluated over all space. An equation of
the type (B.12) occurs for each atomic orbital. This set of equations is particularly amenable
to solution by matrix methods, and this is a great advantage over direct numerical solution of
the HF equations. In effect, the SCF approach is reduced to an iterative determination of the
expansion coefficients, ¢;,, which act as the variational parameters. However, it should be
noted that many integrals of the form shown in equations (B.13) and (B.14), often millions,
need to be evaluated. This is clearly a massive computational task, hence the requirement
for powerful computers.

Unfortunately, while the LCAO expansion is fine in principle, precise mathematical
forms for the atomic orbitals are not available! The HF equations for an atom can be solved
numerically, but this merely provides specific values for the amplitude of each atomic orbital
at various points in space rather than an explicit mathematical function. Consequently, we
make do with second best and employ one or more mathematical functions which resemble
the actual atomic orbitals of the individual atoms. The functions most commonly chosen
are Gaussian-type functions (GTFs):

¢, = Nx'y"z" exp(—ar?) (B.15)
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The quantity r is the distance of the electron from the atomic nucleus (the origin), while x,
¥, and z are the cartesian coordinates of the electron. The exponents of x, y, and z determine
the type of orbital, e.g. if / = m = n = 0, then we have an s-type function; if / = 1 and
m = n = 0 then it represents a p, orbital, and so on. The exponential part of (B.12) confers
the behaviour expected at large r, namely as 7 — oo then ¢, — 0. The parameter « is the
so-called orbital exponent, which determines the ‘size’ of the atomic orbital (if « is small
then the orbital is large and vice versa).

Since GTFs are not the actual atomic orbitals, it should come as no surprise that they are
imperfect. A better approximation is to use linear combinations of several different GTFs
to represent each occupied atomic orbital on an atom, e.g. three GTFs could be chosen,
each with different orbital exponents, to represent a particular atomic orbital. In fact it is
also quite common to include functions representing unoccupied orbitals in atoms, e.g.
for molecules formed from first row atoms it is common to include d-type GTFs. These
higher angular momentum functions are called polarization functions and they allow for
the angular distortion of occupied AOs as bonds are formed. The final choice of functions
employed in (B.11) is said to be the basis set for the calculation.

Large basis sets will generally produce more reliable results, but they will also be more
costly in terms of computer time. To carry out a HF calculation on a molecule a specific
basis set must be selected for each atom. In all commercial programs a list of standard
basis sets is provided and in most cases one of these will suffice. These basis sets go under
well-known abbreviations such as STO-3G, 6-31G, cc-pVTZ, and many others. Further
information on these and other basis sets can be found elsewhere [3].

To close this section, we are now in position to see why the Hartree—Fock method is
described as an ab initio method. Ab initio is Latin for ‘from the beginning’ and implies that
an ab initio calculation is one carried out from first principles. This of course does not neces-
sarily mean that there are no approximations. We have seen that the Born—Oppenheimer and
orbital approximations are fundamental to the Hartree—Fock method. Furthermore, compu-
tational constraints mean that finite basis sets must be used in practice when only infinite
basis sets will actually yield the ‘correct’ result. Neverthless the Hartree—Fock method
can reasonably be described as ab initio because it does not make any use of empirical
(experimentally determined) parameters.

Semiempirical methods

A few words on semiempirical calculations are in order here as these have been, and to some
extent still continue to be, popular alternatives to ab initio calculations for large molecules.
These lie in the middle ground between the familiar but extremely simple Hiickel theory,
which is based entirely on the use of empirically determined parameters, and Hartree—
Fock calculations. The semiempirical methods are all based on the Hartree—Fock—Roothaan
approach but many integrals are ignored and many of those not ignored are treated as
empirical parameters.

An example is the so-called neglect of differential diatomic overlap (NDDO) method,
in which the integrals (B.13) and (B.14) involving basis functions on different atoms
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are set equal to zero. The justification is that the neglected terms are relatively small
and mostly compensate each other. Furthermore, the calculations are usually empirically
parameterized so that good agreement with experiments is achieved for a number of
test molecules before general usage. Hence the calculated results are acceptable for many
purposes and the requirement in computational resources is reduced by about two orders
of magnitude or more compared with HF calculations. The most commonly encountered
NDDO-type semiempirical models are the MNDO, AM1, and PM3 methods. There are,
in addition, many other levels of approximation, which go under abbreviations such as
CNDO and INDO. Further details can be found in the books listed at the end of this
appendix.

Beyond the Hartree-Fock method: allowing for electron correlation

Hartree—Fock calculations are unsuitable for the prediction of a number of physical phenom-
ena. These include the dissociation of molecules, the non-crossing of potential energy curves
of identical symmetry, and accurate predictions for excited electronic states, or open-shell
states in general. Furthermore, HF calculations may in some instances yield insufficiently
accurate predictions of other properties, such as bond lengths and vibrational frequencies,
even for molecules in their electronic ground states. To obtain reliable information on prop-
erties such as these, one must therefore go beyond the HF method and allow for some,
or ideally all, of the electron correlation (see Section 2.1.4). In other words we must go
beyond the orbital approximation. In fact most of the more advanced theoretical methods
begin with a HF calculation, and then subsequently apply more sophisticated procedures to
recover electron correlation energy.

The post-HF method that is the easiest to understand is the configuration interaction (CI)
method. It is really a ‘sledgehammer’ extension of the variational idea underlying the HF
method. Suppose, instead of using just a single Slater determinant, the total electronic state
wavefunction is expanded as a linear combination of Slater determinants

P :aO\IJO—i—Za,»\IJ,- (B.16)

where W is the original Hartree—Fock wavefunction. The way to construct different deter-
minantal wavefunctions is by moving electrons from occupied orbitals into unoccupied, or
so-called virtual orbitals, which are also generated in HF calculations. These substitutions
can involve a single electron, or they might involve double, triple, or quadruple excitations.
The unknown coefficients, a;, are determined by the variational method using a matrix
approach entirely analogous to that employed in the LCAO-HF method. The lowest root of
the obtained equations gives the ground state energy of the system, whereas the higher roots
yield the different excited state energies. If all possible excitations are taken into account a
full CI calculation is performed: the solution obtained, assuming an infinitely large LCAO
basis set had been used in the initial HF calculation, would give the exact non-relativistic
electronic energy. Of course this ideal situation cannot be reached, but one can get close
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to it for very small molecules using a large but finite LCAO basis set. Even then, how-
ever, an enormous number of Slater determinants are needed, maybe 108, and therefore the
calculation becomes extremely expensive.

To reduce the computational requirements, practical applications of CI methods usually
restrict the number of excitations performed. The configuration interaction singles (CIS)
method takes only the single substitutions into account: it leads to no improvement for the
ground state, but it provides excited state energies in a simple way. More sophisticated are
the CID, CISD, CISDQ, and CISDTQ methods with their single (S), double (D), triple (T),
and quadruple (Q) substitutions.

In the multiconfiguration SCF (MCSCF) procedure, a linear combination of a finite,
and carefully selected, set of Slater determinants is employed. A special case of selec-
tion is the so-called complete active space SCF (CASSCF) selection in which all possible
excitations within a limited set of occupied and virtual orbitals are considered. In contrast
to CI, however, the aim is to optimize both the CI and the LCAO expansion coefficients
simultaneously. The result is an energy that incorporates a large part of the correlation
energy (how large depends on the configuration selection) without needing as many Slater
determinants as the CI method. The principal drawback of the method is that it is still very
costly in terms of computer time, which restricts the number of excited state configurations
that can be handled in practice. Furthermore, the choice of the active space is somewhat
arbitrary.

Perhaps the most accurate practical method to calculate the correlation energy in both
ground and excited electronic states is the multireference CI (MRCI) method. In this method
all important configurations that contribute in the given state (this selection can be done,
for example, by performing an MCSCF calculation) are treated as reference configurations
in a CI procedure, whereby singly, doubly, etc., excited configurations are produced from
each of the reference ones.

Finally, it should be borne in mind that there are other widely used post-HF methods
available for electronic structure calculations. These include Moller—Plesset perturbation
theory and coupled cluster methods. The former is particularly widely used for calculations
on the ground states of molecules because at its lowest level, MP2, it is a relatively quick
way of recovering much of the correlation energy. Coupled cluster methods are more com-
putationally intensive but are becoming increasingly the method of choice for high quality
calculations on molecules in their ground electronic states.

Density functional theory (DFT)

DFT is not a true ab initio method but it is a closely related technique. It has become very
popular in the last few years because of the combination of modest computational cost
and the good quality of prediction of many molecular properties. Its basic philosophy is
slightly different from the ab initio approaches in that the calculations work with electron
density rather than explicitly dealing with the electronic wavefunction. The basis of DFT is
the Hohenberg—Kohn theorem, which states that the ground state energy, the wavefunction,
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and all other electronic properties of a many-electron system are completely and uniquely
determined by the electron density distribution of the system [3].

The derivation of this theorem is beyond the scope of this book. The bottom line is that it is,
in a sense, a post-HF method in that it does contain some allowance for electron correlation,
and yet it is also very quick computationally, taking perhaps little more time than a standard
HF calculation. The disadvantage is that it does not allow for electron correlation in any
systematic fashion, unlike CI for example, and so it can be difficult to assess how ‘good’
a particular DFT calculation is likely to be. Traditional ab initio methods are generally
preferable to the DFT method for small molecules composed of light atoms, as well as
when high accuracy is required. For example, using the MRCI method mentioned above, in
principle any level of accuracy can be achieved given sufficiently powerful computational
resources. In contrast the accuracy of DFT depends on the form of the relationship chosen
to link energy to electron density, the so-called finctional. Although many forms for this
functional have been proposed and tested, there is no known systematic way to achieve an
arbitrarily high level of accuracy.

Comparison with experimental data continues to be the way forward and there have
been many research studies in recent years devoted to testing the performance of DFT
methods. The results obtained so far appear very promising, at least for certain molecular
properties. However, dealing with excited electronic states is, like the HF method, very
difficult and currently unreliable with DFT, although a number of research groups are
actively investigating this aspect of DFT.

Software packages

There are many software packages available for ab initio, semiempirical and DFT calcu-
lations. Most offer a range of ab initio, semiempirical and DFT methods within a single
program suite and so the user is free to choose the method that is most appropriate to their
particular application. Also available within these packages are a wide variety of standard
basis sets. A basis set will need to be chosen (for ab initio and DFT calculations only) that
will describe the system under investigation while not exceeding the available computing
resource. Reliable use of these software packages is only achieved through experience. In
particular, it is important to recognize that no calculation is perfect, and some idea of the
likely error range for predictions from a particular level of theory is always a useful skill.

Some software packages can be downloaded free from the web (e.g. GAMESS) but
others, such as GAUSSIAN, MOLPRO, and SPARTAN, must be purchased from a registered
supplier.

Calculation of molecular properties

Finally, we summarize some of the molecular properties, especially those pertinent to elec-
tronic spectroscopy, that can be obtained from electronic structure calculations.
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*  Total electronic energy of a given state. Although this value has no direct experimental
relevance, it is crucial in the calculation of several of the properties listed below. Note
that a comparison of total energies is only meaningful if they were obtained by the
same method using identical parameters (e.g. the same basis sets).

*  Potential energy surfaces. These define the total electronic energy (including the
nuclear—nuclear repulsion) as a function of nuclear positions. They are obtained by
calculating the total energy at a variety of nuclear positions and this grid of points is
then usually fitted to some suitably flexible analytical function to enable the potential
energy to be determined at any point in space.

e Equilibrium geometries. These are determined by searching for the global minimum
in the potential energy surface. This can be done from an explicit calculation of the
potential energy surface, as indicated above. If only the minimum is required a quicker
route involves calculating and minimizing the gradient of the total electronic energy
using an analytical procedure [2].

e Vibrational frequencies. The calculation of harmonic vibrational frequencies first
requires determination of the force constants of the molecule. These are the second
derivatives of the total energy with respect to the nuclear coordinates and the various
components can be collected together to form the so-called Hessian matrix. Harmonic
frequencies are readily determined from the Hessian using standard procedures. This
method is also applicable for the calculation of vibrational frequencies in excited elec-
tronic states or for ions. By calculating higher derivatives of the energy, it is also possible
to determine anharmonicity constants, although this is rarely used.

*  Jonization energies. These can be obtained from a HF calculation on the ground elec-
tronic state of a closed-shell molecule using Koopmans’ theorem, which states that the
negative of the orbital energy is equal to the ionization energy of that orbital. Koopmans’
theorem is an approximation, although it often yields quite accurate ionization ener-
gies. It does not apply to open-shell molecules. A computationally more expensive, but
more general, way to obtain ionization energies is by calculating the difference in the
total energy between the ion and the neutral molecule.

e Electron affinities. These are calculated as the difference in total energy between the
neutral molecule and the corresponding negative ion. The quality of the calculation
must be high because the outermost electron in the anion is usually very weakly bound.

e Electronic excitation energy. This can, in principle, be obtained as the difference in
the total energies between the two electronic states in question. However, the Hartree—
Fock approach is usually inappropriate for the calculation of excited state energies.
The simplest (but least accurate) ab initio procedure to calculate excited state energies
is the CIS method, providing results for excited states of similar quality to the HF
method in the ground state. More sophisticated methods, notably MRCI, can predict
electronic transition energies to an accuracy of better than 6 kJ mol~' (500 cm™") for
small molecules.

e Franck—Condon factors. These are important for estimating intensities of vibrational
components in electronic or photoelectron spectra and require evaluation of the overlap
integrals of the vibrational wavefunctions in the upper and lower electronic states. To
obtain the vibrational wavefunctions, the vibrational Schrodinger equation (B.2) is
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solved for both states. This can be achieved once the potential energy surfaces have
been calculated.

*  Dissociation energy. The HF method is unsuitable for deducing dissociation energies.
It is essential to use methods which incorporate electron correlation in order to make
reasonable predictions of dissociation energies.

o [Intermolecular forces. Weak intermolecular forces such as hydrogen bonding, and even
very weak forces such as dispersion, can be determined. Generally, this requires a fully
ab initio method and allowance for much of the electron correlation is essential for
meaningful results.

e Other properties. Properties such as dipole and quadrupole moments are easy to cal-
culate from the electronic wavefunction. Polarizabilities and hyperpolarizabilities can
also be calculated without too much difficulty.
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Appendix C
Coupling of angular momenta:
electronic states

Molecules can possess several types of angular momentum. Electrons possess orbital and
spin angular momenta, rotation of the molecule generates angular momentum, degenerate
vibrations may give rise to vibrational angular momentum, and nuclei may also have spin
angular momentum. Interactions (coupling) between these various types of angular momen-
tum can have important implications for interpreting spectra, particularly high resolution
spectra, and so it is important to be familiar with some basic results from the quantum
theory of angular momentum.

As discussed briefly in Chapter 3, angular momentum is a vector quantity and a simple
vector model provides a useful visual recipe for assessing how different angular momenta
interact. There are more powerful and rigorous mathematical approaches to angular momen-
tum coupling than that described here. These more comprehensive treatments deal explictly
with the angular momenta as mathematical operators, and the coupling behaviour then
follows from the properties of these operators when added vectorially. Further details can
be found in the books listed under Further Reading at the end of this appendix. Here we
restrict ourselves to the simple vector picture and use it to emphasize the physical principles
underlying the coupling of angular momenta, focussing on electronic angular momentum.
In Appendix G we consider the interaction of electronic and rotational angular momenta.

We will start by focussing on the coupling between angular momenta of electrons in
atoms, but attention later will shift to molecules. The magnitude of the orbital angular
momentum for a single electron in an atom is given by the expression #.//(/ + 1), where
[ is the orbital angular momentum quantum number with allowed values O, 1, 2, . . .,
(n — 1) and n is the principal quantum number (see Section 4.1). Similarly, the magnitude
of the spin angular momentum vector is given by %./s(s + 1), where s is the spin quantum
number which, for a single electron, can only take the value 1/2. For an electron with both
orbital and spin angular momenta, the total angular momentum vector j will be the sum of
the two constituent vectors j = I + s, where bold is used to specify vector quantities. The
magnitude of this vector is #./j(j + 1), where j is the corresponding quantum number,
and according to the quantum theory of angular momentum this can only take on the values
j=1l4+s,1+s—1, ..., |l —s|. Series such as this are called Clebsch—Gordan series
and arise when the total angular momentum results from a system composed of any two
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Figure C.1 Vector coupling model of two angular momenta j; and j.

sources of quantized angular momentum. In the general case, if two angular momenta,
say ji and j,, can interact then the allowed values for the angular momentum quantum
number for the resultant total angular momentum will be given by the Clebsch—Gordan
series j = ji + jo, i +j2—1,..., lj1 = Jl.

Coupling in the general case: the basics

The orientation of a single angular momentum vector in free space is arbitrary. However,
if an electric or magnetic field that interacts with the particle is applied, then a torque is
exerted, which forces the angular momentum vector to precess around the applied field, as
shown in Figure 3.2. If we define the field direction as axis z, then the angular momentum
along this axis is constant whereas the angular momenta along the x and y directions are
not. The applied field therefore creates an axis of quantization and the projection of angular
momentum along the axis takes on the values m#, where m is an integer or half integer
quantum number. In atoms the projection quantum numbers are the familiar m; and m;
quantum numbers assigned to electrons.

When there are two angular momenta present, any interaction between them creates a
torque that forces the individual angular momenta, represented by the vectors j; and j,, to
precess around a common axis. This common axis is the direction of the resultant angular
momentum j (= j; + j»). The precession of j; and j, about j means that the projection
of j; and j, along j is no longer well defined. In other words, m; and m; are no longer
meaningful quantum numbers. However, the quantum numbers j; and j, are still good
(meaningful) quantum numbers, as are the total angular momentum quantum number j and
its projection m. This coupled model is illustrated in Figure C.1. As in the weak coupling
case, the possible values of the total angular momentum quantum number ; are given by the
Clebsch—Gordan series shown earlier.

Coupling of angular momenta in atoms

In an atom, the spin of an electron can interact with its own orbital angular momentum, with
the orbital angular momenta of other electrons, or with the spins of other electrons. The
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second interaction is very weak and is normally neglected. The first interaction is called
spin—orbit coupling. This and the third interaction are invoked to describe the two extreme
cases of coupling in atoms, the Russell-Saunders (also called LS) and the jj schemes.

Russell-Saunders coupling limit

In the Russell-Saunders limit the coupling between the orbital angular momenta is strong.
The source of the coupling is the electrostatic interaction between two electrons. Electron
spins can also couple together, although spin is a magnetic phenomenon and therefore the
coupling is via magnetic fields, which tends to be a weaker effect than electric field coupling.
In Russell-Saunders coupling the interaction between the orbital and spin angular momenta
of a given electron is assumed to be small compared with the coupling between orbital
angular momenta. In this limit the principal torque causes the orbital angular momenta to
precess about a common direction, the axis of the total orbital angular momentum of all
electrons. The spin angular momenta also couple together through the magnetic interaction
of electron spins.

Armed with these assumptions, the vector model described above can be employed to
see the effect of coupling on atoms. For illustration, consider an atom with two electrons
outside its closed shell. The orbital angular momenta of these electrons are represented by
I, and I, and the corresponding spin momenta by s; and s,. The coupling of orbital angular
momenta dominates and they form a resultant total orbital angular momentum L = I, + [,.
In the same way, the spin momenta also couple to form S = §; + s,. When this coupling
case is valid, the individual orbital angular momenta /; and /, precess rapidly around L, and
s1 and s; precess rapidly around . L and S can themselves couple with each other, but this
coupling, known as spin—orbit coupling, is assumed to be relatively weak. As a result, L
and S precess slowly around the resultant total angular momentum J (= L + §).

The significance of Russell-Saunders coupling is that a particular electronic state in an
atom is well defined by the quantum numbers L and S. The effect of the weak spin—orbit
coupling results in closely spaced spin—orbit sub-states, designated by the quantum number
J. As detailed in Section 4.1, this gives rise to the familiar >5*!L; label for electronic states
1n atoms.

Jj coupling

The Russell-Saunders scheme describes the electronic states of light atoms rather well but
breaks down for heavier atoms, particularly for the lanthanides and actinides. This is due to
increasing coupling between the orbital and spin angular momenta of individual electrons to
the point where it is no longer negligible, as was assumed in the Russell-Saunders case. In
the limit of very strong coupling between orbital and spin angular momenta, the appropriate
coupling scheme is known as jj coupling. A dominant spin—orbit torque will first couple
the spin and orbital momenta of each electron to form resultants, j; =/, + s, and j, =
I, + s,. The vectors j; and j, interact more weakly, forming the total angular momentum
J = j1 + j2. Injj coupling, /; (l») and s; (s;) precess rapidly around j; (), while j; and
J» precess slowly around their resultant J. As a result, only jj, j», J and the projection of
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Figure C.2 Illustration of the behaviour of the electronic orbital (L) and spin (§) angular momenta in
a diatomic molecule.

J (M) are good quantum numbers, i.e. the quantum numbers L and S in the Russell-Saunders
scheme have no significance in jj coupling.

Of course it is also possible that the spin—orbit coupling is neither weak enough for
Russell-Saunders to be applicable, nor strong enough for true jj coupling. Description of
this intermediate coupling requires a more mathematical treatment and is not considered
here.

Coupling of electronic angular momenta in linear molecules

The extension of the above ideas to molecules is not difficult. Consider, for example, a linear
molecule. As in atoms, electrons in this molecule can also possess angular momenta due to
their orbital motion and spin. There is, however, a fundamental difference between atoms and
linear molecules in terms of the environment experienced by electrons. If electron—electron
interactions are neglected, electrons in atoms are subjected to a spherically symmetric field,
whereas in a linear molecule a strong axial electric field exists between the nuclei and the
interaction with this field determines the behaviour of the electrons. This field provides a
torque on the orbital motion of the electrons and therefore analogous arguments to those
employed earlier can also be used to construct a vector model of coupled angular momenta
in molecules.

In many-electron molecules, there may be additional torques from the interaction between
angular momenta. In the most common case, the strongest torque couples the orbital angular
momenta of individual electrons to form a resultant L. Similarly, the spin angular momenta
couple together to form a resultant S. If the spin—orbit coupling is relatively weak, then this
is clearly the molecular analogue of Russell-Saunders coupling in atoms.

The torque exerted by the electrostatic field along the molecule is important because
it causes the orbital angular momentum vector to precess around the internuclear axis,
as shown in Figure C.2. This precession is rapid and therefore the corresponding quan-
tum number, L, is not a good quantum number in this limit. However, the projection of
L along the internuclear axis, denoted by the symbol A, is a constant of motion and is
therefore a good quantum number. To determine the possible values of A, the contribu-
tions from individual electrons must be considered. With only one unpaired electron, the
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total orbital angular momentum is the orbital angular momentum of that sole electron, and
we can identify a corresponding one-electron orbital angular momentum quantum num-
ber A = 0, 1, 2, 3, etc., which corresponds to o, w, §, and ¢ orbitals, respectively (see
Section 4.2.2). Note that the orbitals with non-zero A are doubly degenerate, which may
be viewed as being due to the two possible directions for rotation of the electrons around
the internuclear axis, clockwise or anticlockwise. In this sense the projection of orbital
angular momentum on the internuclear axis is a signed quantity, but the convention is that
A is always quoted as a positive number. The reader should recognize however that if,
for example, A = 1 then the actual orbital angular momentum along the internuclear axis
is+# or —h.

If there is more than one electron, each electron will contribute A7 to the orbital
angular momentum along the internuclear axis. All filled orbitals will therefore make a
zero contribution to A since the orbital angular momenta of the electrons in these orbitals
cancel. If there are two unpaired electrons, say one in a 7 orbital and one in a § orbital, the
possible angular momenta are =%, £2 4, or 3 7. These correspond to A = 1, 2, or 3 and
the resulting electronic states are labelled as IT, A, and ® electronic states, respectively. A
better and more general way of deriving the possible orbital angular momentum states is
by recognizing that the o, 7, 8, etc., labels are actually symmetry labels for the molecular
orbitals, i.e. they are irreducible representations of the appropriate linear molecule point
group, Dy or Coy. The overall angular momentum must therefore also correspond to one
of the irreducible representations of the point group and can be obtained by taking the
direct product of the symmetries for each occupied orbital, and taking appropriate care in
the application of the Pauli principle (see below). This was the recommended procedure
covered in Part .

The axial electric field in linear molecules does not have a direct effect on the spin angular
momenta, since spin is a magnetic phenomenon. However, when A # 0 the orbiting motion
of the electron(s) generates a magnetic field,! which can also cause the total spin angular
momentum, S, to precess around the internuclear axis. This is none other than spin—orbit
coupling, but if the spin—orbit coupling is not as strong as the spin—spin coupling then S
remains a good quantum number. As in the case of orbital angular momenta, the projection
of § onto the internuclear axis is quantized. The projection quantum number is given the
symbol X, which is unfortunately the same as the label used to designate electronic states
with A = 0. The allowed values of ¥ are —S, —S + 1, ..., +S, where S may be integer or
half integer depending on the number of unpaired electrons.

As in the case of atoms, spin—orbit coupling leads to spin—orbit sub-states with different
energies. In this case the total electronic (orbital 4+ spin) angular momentum is given by
the quantum number 2 (= A + X). Although 2 is, like A, ostensibly a signed quantum
number, the accepted convention is to quote the positive value, i.e. @ = |[A + X|. The
complete label for electronic states in linear molecules is then 257! Aq.

As an example, consider the case of two electrons in two different 7 molecular orbitals
(the choice of different v orbitals avoids difficulties with the Pauli exclusion principle — see

Current flowing in a circular conductor generates a magnetic field perpendicular to the plane of the conductor.
We can use the same analogy for an orbiting electron around the internuclear axis to explain how it generates a
magnetic field due to its orbital motion.
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Appendix E). As A = 1 for a w-electron, A can be 2 or 0, i.e. ¥ or A electronic states are
possible. The A state is doubly degenerate but there are two different X states, a ¥+ and
a X~ due to the finer interactions of the electrons (a finding that is best seen by evaluating
the direct product w ® ). The net spin S for the two electrons is 0 or 1, giving rise to
the multiplicities 1 and 3. The possible electronic states that may result from the 7'7'!
configuration are therefore '+, 3%+, 12~ 3%~ A and 3A.

Non-linear molecules

The presence of off-axis nuclei in non-linear molecules usually results in all electronic
orbital angular momentum being quenched. The only exceptions to this are high symmetry
molecules in spatially degenerate electronic states. A good example is benzene, which in
its ground electronic state has the outer electronic configuration . . . (lazu)z(lelg)“. The
resulting electronic state is a lAlg state, in which there is no net orbital or spin angular
momentum. If, however, an electron is removed from the HOMO, the resulting ground state
of the cation is a 2E 1g State. £y, is a doubly degenerate representation and so the ground
electronic state of the cation does possess orbital angular momentum. The source of this
orbital angular momentum is the unimpeded circulation of the unpaired electron in the
system above and below the nuclei in the benzene ring. In the ground state of benzene the net
orbital angular momentum is zero because all orbitals are full and therefore the clockwise
and counterclockwise contributions cancel. However, in the benzene cation this is no longer
the case and spin—orbit coupling splits the resulting 2 £, state into two spin—orbit sub-states,
which are labelled 2E1g(1/2) and 2E1g(3/2).

Although orbital angular momentum can exist in non-linear molecules with degenerate
electronic states, it is important to recognize that it will still be quenched to a greater or lesser
extent. For example in the benzene cation the Jahn—Teller effect, which couples electronic
orbital and vibrational motions, acts to quench some of the pure orbital angular momentum.

Further reading

Molecular Quantum Mechanics, 3rd edn., P. W. Atkins and R. S. Friedman, Oxford, Oxford
University Press, 1999.

Angular Momentum, R. N. Zare, New York, Wiley, 1988.

Angular Momentum in Quantum Mechanics, A. R. Edmonds, Princeton, Princeton
University Press, 1996.
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The principles of point group
symmetry and group theory

Molecular symmetry is of great importance in the discussion of spectroscopy. It helps
to simplify the explanation of complex phenomena, such as molecular vibrations, and
is an important aid in the derivation of electronic states and transition selection rules.
It also simplifies the application of molecular orbital theory, which is often applied to
assign or predict electronic spectra. In many cases, it provides strikingly simple answers to
complicated questions.

In its original form, group theory is a rigorous mathematical subject. No attempt will
be made here to be rigorous — the aim is simply to summarize the basics as they apply
to symmetry, in light of which the spectroscopic applications of the theory can become
clearer. Although the concepts introduced here might be valid for any object with symmetry
elements, we will apply these only to molecules. This appendix is not intended to be a
comprehensive account of point group symmetry and group theory. Instead the intention is
to review some of the key principles required for applications in electronic spectroscopy.
A newcomer to the subject of symmetry and group theory is first advised to consult an
appropriate textbook on this topic, such as one of those listed in the Further Reading at the
end of this appendix.

Symmetry elements and operations

We begin with two fundamental concepts, symmetry operations and symmetry elements.
Symmetry operations are transformations that move the molecule such that it is indistin-
guishable from its initial position and orientation. For example, the water molecule has
mirror image symmetry. An imaginary mirror perpendicular to the molecular plane and
passing through the oxygen atom will interchange the two hydrogen atoms, leaving the
molecule unchanged in its appearance. This reflection operation is an example of a sym-
metry operation and is denoted by the symbol o.

Symmetry elements are geometric objects, such as points, lines or planes. For water, the
symmetry element considered so far is a plane of reflection. The water molecule has another
mirror plane, this second one being in the plane of the molecule. The two corresponding
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Table D.1 Symmetry elements and symmetry operations

Symmetry element Symmetry operation Symbol
Identity operation (does nothing) E

Plane Reflection through a plane o
Axis Rotation 360°/n around an n-fold axis C,
Centre of symmetry (or Inversion through a point i

inversion)
Improper axis (rotation axis ~ Rotation 360°/n about an axis followed S,

and a perpendicular by reflection through a plane

plane) perpendicular to the axis

Gx/(0V)

4
g M

GVZ(GV)

/
4 L
4 C, y

Figure D.1 Symmetry elements of the water molecule.

symmetry operations are distinguished by their subscripts, referring to the chosen coordinate
system, as shown in Figure D.1. In addition to mirror planes, the water molecule has a two-
fold axis of rotational symmetry that bisects the HOH angle: rotation of the molecule around
this axis by 180° leaves the molecule unchanged.

There are five types of symmetry operations that are used for molecules and the corre-
sponding symmetry elements are summarized in Table D.1.

As can be seen from the final column of Table D.1, the symbols used to denote symmetry
operations are often accompanied by a subscript. For example, to express that the rotation
of the object by 360°/n leaves it indistinguishable, the applied operation is denoted as
C,,e.g. the 180° rotational symmetry of H,O is denoted as C5. Another symmetry operation
in which rotation plays a part is improper rotation. For example, S expresses a six-fold
improper rotation that consists of a 60° rotation (360°/6) about an axis followed by reflection
in the plane perpendicular to the axis.
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Planes of reflection are labelled to indicate their relative orientation in the coordinate
system. The reflection in the plane that includes the principal axis of rotation (the axis
of highest rotational symmetry) is said to be vertical and is labelled as oy. Mirror planes
perpendicular to this are referred to as horizontal and are denoted by oy. In some cases
when there is more than one symmetry plane of the same kind (such as the two o, planes of
water shown in Figure D.1), they are distinguished by subscripts showing which plane they
include (e.g. 0. and o). If an operation is to be performed several times, this is shown as
a superscript, e.g. C3 signifies that the C; operation is to be carried out twice such that a
rotation of 240° takes place.

The identity operation, E, is rather odd in that it corresponds to no net movement of any
atom in the molecule. However, this operation is always included because it is important in
the mathematics of group theory, as will be seen later. Some operations are equivalent to
E. Examples of this are C;’ (indicating a 360° rotation), i> and o'. Improper rotations are
less straightforward: .S} implies 7 rotations and # reflections in the plane and this can lead
to identity only if # is even.

Point groups

The collection of symmetry operations applying to molecules of a particular symmetry is
called a point group. There are a number of different point groups and the properties of these
are collected in character tables. Determining which point group the molecule belongs to
is the first step in utilizing molecular symmetry.

The diagram below helps in the identification of the most commonly occurring point
groups. The classification is achieved by answering a series of simple questions. The first
question relates to special groups. These include the two groups for linear molecules,
Do and Cooy. These point groups are distinguished by whether or not they have a centre of
symmetry (operation i in the above table). Thus, for example, CO; has a centre of symmetry
(positioned at the carbon atom) and therefore belongs to the Do, point group. In contrast,
CO does not possess a centre of symmetry and so has Cooy, point group symmetry. Other
special groups include tetrahedral (7§, e.g. the CH4 molecule), octahedral (Oy, e.g. SF),
and icosohedral (/}, e.g. Cq).

If a molecule does not belong to any of these special groups, then a series of rules can
be used to establish its point group. The starting point is to determine the principal axis
of rotation. In the flow chart below, the letter n in the name of the point groups indicates
the order of the principal axis. If there is no such axis (other than C;, which is equivalent
to £), there might only be a symmetry plane (this is the case in the Cs group), or an inversion
centre (in the C; group). Molecules with no symmetry other than identity belong to the
Cy group.

If the molecule has an n-fold principal axis, further classification depends on whether
or not this is only the consequence of a 2n-fold improper axis (if the answer is yes
the point group is designated as S,,). Molecules belonging to the S,, point groups are
rare.



252  Appendix

D

The remaining groups are denoted with the letters C or D. The former have no C, axis
perpendicular to the principal axis, whereas the latter have such axes. If a o, plane exists
(i.e. aplane perpendicular to the principal axis), the group is labelled C,;, or D,,. Molecules
in the C,y and D,q4 groups have no oy, plane, only one or more oy planes, i.e. containing
the principal axis. Here the d subscript arises because the axes of rotational symmetry
perpendicular to the principal one do not contain the o, planes; these planes dissect the
angle between the axes. Such planes are referred to as dihedral and marked as o 4. If there
is no oy plane, the point group is called C,, or D,,.

Is it a special

group?

no

Is there a rotation (C,) axis
of order n > 2?

yes

Is there more
axis with n >

than one C,
2?

D.3 Classes and multiplication tables

yes

yes

Octahedral, Oy

Tetrahedral, Ty
< C.., (if i symmetry element is missing)

D, (if i symmetry element exists)

Linear

C (if no other symmetry element exists)
C; (if only one reflection plane exists)

C; (if only a centre of inversion exists)

C, (if no other symmetry element exists)
C,p, (if it also has one oy, plane)
C,, (if it has n o, planes)

S,, (if it has an S, axis coaxial with the principal axis)

D, (if no further symmetry elements exist)
D,q (if it has n oy planes bisecting the C, axes)

D,;, (if it also has one oy, plane)

A few properties of point groups are described below, which can be derived from the general

properties of mathematical groups.

* Point groups can be characterized by the different applicable symmetry operations
possible within the group.

e Multiplication is the subsequent execution of two symmetry operations. The multipli-
cation of symmetry operations is associative (e.g. (4B)C = A(BC)) but not necessarily
commutative (e.g. AB # BA is possible).

e Each symmetry operation has an inverse, such that the operation multiplied with its

inverse gives the identity operation.
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Table D.2 Multiplication table for symmetry
operations of the Cs, point group

Csy E C! C? o, o) o)
E E ¢ a6 a9 o
Ci Cl c? E ol o, ol
Cc? Cc? E Cl o) o) o,
o, o, o) o) E C, Cc?
o) o) o) o, c? E Cl
o) o) o, o) Cl C? E

Similarity transformation Cl c? o, o) o)
EXE™! E Ci Cc? o) o) ol
(CH'xcl E Cl Cc? o) o, o)
2\—1 2 1 2 ” " ’
(C3)7'XCs E C; C; o) o o,
1\—1 1 2 1 ’ " ”
(0,) ' Xo, E (5 G o, o, o,
2\—1 2 2 1 " " ’
(o) Xo; E (6 G o, o, o,
3y-1 3 2 1 ” ’ "
(Gv) XJV E C3 C3 oy gy oy

e Point groups must contain the products of all pairs of elements, the squares of all
elements and the reciprocals of all elements.
*  The total number of elements is called the order of the group.

These concepts will be demonstrated for the Cs, point group. A molecule with this point
group symmetry is NHj;. It has the following symmetry elements: £ (identity operation),
C31 (120° rotation about a three-fold axis), C32 (240° rotation about a three-fold axis), o/,
o), and o," (reflection through one of the three equivalent mirror planes, each containing
an N—H bond in the case of NH3). The multiplication table for the point group is shown
in Table D.2 (where the column and row heading show the symmetry operations that are
multiplied).

The symmetry operations of the point group can be subdivided into classes. If 4, B, and
X are elements of a group, then the operation X4X~! is called a similarity transformation.
If the relationship X4X~! = B holds, 4 and B are said to be conjugates. A class consists of
a complete set of elements that are conjugates of each other.

Looking at the multiplication table of the Cs, group, it can be established that the three
o, operations belong to the same class, as do C1 and C2, because they are connected by
similarity transformations (see Table D.3). The identity operation is in a class of its own.

In general the E, i and o}, operations are always in a class of their own. In contrast, all o,
operations of a group form a class together, as do the o4 operations.
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The matrix representation of symmetry operations

All symmetry operations correspond to geometrical transformations and can be repre-
sented by matrices. Each such matrix represents a single operation. These matrices obey
the same multiplication rules as the symmetry operations. The effect of different sym-
metry operations on an arbitrary point, represented by its coordinates (x, y, z), will be
shown for the water molecule. This will be done by using the matrix representation of the
operations.

In the C,, point group for the water molecule, the identity operation can be represented
by a unit matrix:

(D.1)

S O =
S = O
—_— 0 O
N x
Il
N e R

Notice that the coordinates of the arbitrary point are expressed as a column matrix.
According to the axis scheme shown in Figure D.1, the C, operation reverses the sign of
the x and y coordinates and so is equivalent to the 3 x3 matrix shown below:

-1 0 0 X —X
0 -1 0 v]=|—-y (D.2)
0 0 1 z z

Reflection through the xz plane reverses the sign of the y coordinate and in matrix notation
is equivalent to

1 0 O X X
0o -1 0 v]=|—-y (D.3)
0 0 1 z z

The matrix representations are often complicated to deduce. Luckily, as will be seen later,
for practical purposes it is unnecessary to derive these representations. It should be noted
that these matrices are 3 x 3 because they were derived for a triatomic molecule. The dimen-
sionality of these transformation matrices depends on the number of atoms in the system.
The actual composition of the matrices is also determined by the choice of coordinate
system. Hence in any point group, it is possible to devise an infinite number of matrix
representations of the symmetry operations.

If a similarity transformation exists that transforms all matrices of the representation
into block diagonal form, the initial representation is said to be reducible. A block-diagonal
matrix has the appearance of a matrix constructed from smaller matrices located along
the diagonal. Such a matrix can be illustrated by the following 9x9 matrix that has been
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block-diagonalized into a 2x2, a 5x5, and another 2 x2 matrix:

-an ap © 0 0 0 0 0 :0 0 |
a1 axn 0O 0 0 0 0 0 0
0 0 azy; azq azs Az Ay 0 0
0 0 43 Q44 Q45 da6 Q47 0 0
0 0 asy as4 ass dase dsy 0 0
0 0 as3 Qg4 Qg5 des de7 0 0
0 0 azy azy ars A Ay 0 0
0 0 © 0 0 0 0 0 : ag ap
000 5 0 0 0 0 0 oax am

If no transformation exists that brings the representation to a block-diagonal form, it is said
to be irreducible.

Unlike the arbitrary matrix representations above, irreducible representations are unique:
they are the simplest representations of the symmetry group. It is, however, often rather
difficult to find the appropriate similarity transformation to bring the matrix representation
to an irreducible form. Luckily, as will be shown later, it is usually sufficient to use the
characters of the representation, where the character is defined as the trace of the corre-
sponding matrix (i.e. the sum of its diagonal elements). Dealing with characters is much
simpler than dealing with matrix representations, and these can be collected together into
tables for general use.

There are five important rules that form the basis of the derivation of character tables.
The reader who is only interested in the use of character tables can simply skip these.

(i) The number of irreducible representations of a group equals the number of classes in
the group.

(i1) The order of the group, 4, is determined by the dimension of its irreducible represen-
tations, 1.€.

h=Y1 (D.4)

where /; is the dimension of the ith irreducible representation.
(iii) The sum of the squares of the characters in any irreducible representation is equal to
the order of the group,

h=) LuRY (D.5)
R
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where x;(R) is the character (trace of the matrix) representing the Rth symmetry oper-
ation in the ith irreducible representation.

(iv) In any irreducible representation the characters that belong to symmetry operations in
the same class are identical.

(v) The following expression holds for the characters of two different irreducible repre-
sentations (orthogonality relation):

> xi(R)x;(R) =0, where i # j (D.6)
R

Character tables

The properties of point groups can be summarized using character tables. Character tables
list the possible symmetry operations for a given point group along with the irreducible
representations and their characters. The character tables for the most important point
groups can be found at the end of this appendix.

The way character tables are arranged is illustrated below for the C5, point group.

C3v E 2C3 3(7v

A 1 1 1 z X2 432, 22
4, 1 1 —1 R,
E 2 —1 0 (xa J/), (Rxa Ry) (x2 _)/2, xy)a (XZ, yz)

This character table consists of four sections, separated above by double lines (optional). In
the leftmost column, beneath the point group symbol, are the irreducible representations.
These are sometimes also called symmetry species, or simply the symmetry. The uppermost
irreducible representation is always the totally symmetric one, for which all characters are
equal to 1. These characters can be seen to the right of the 4, label.

Conventionally, the symbols for irreducible representations are determined in the fol-
lowing way. One-dimensional representations are marked with the letters 4 or B, two-
dimensional representations by E, three-dimensional ones usually with the letter 7.! For
one-dimensional representations, the letter 4 is used when the character for the rotation
around the principal axis is +1 (i.e. when it is symmetric for this transformation) and B
when this character is —1. The symmetry with respect to the rotation around the axis per-
pendicular to the principal axis (or in its absence reflection in the oy plane) is shown as a
subscript, 1 for the symmetric and 2 for the antisymmetric representation. Reflections in
the oy, plane are designated with a prime (symmetric) or double prime (antisymmetric). The
subscripts g and u denote the symmetric or antisymmetric nature of the representation with
respect to inversion.

Exceptions to this are the linear molecule point groups Do and Cooy, Where labels such as o and 7 are preferred
over 4 and E. This is discussed again later in the appendix.
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The second section of the Cs, character table gives the character for each irreducible rep-
resentation and for each class of symmetry operations. It is useful to note that the character
for the identity operation is equal to the dimension of the irreducible representation.

The final two columns provide information about the symmetries of cartesian vectors
(x, , ), products of these vectors, and rotations about the cartesian axes (Ry, Ry, and R.).
This information is useful for determining spectroscopic selection rules. For example, the z
coordinate axis in the Cs, point group transforms like the totally symmetric (4 ) irreducible
representation, because it is unaffected by the operations of the group. R, also appears on
its own and transforms as the A, irreducible representation. In contrast to these, x and y
(and similarly R, and R,) jointly form a representation. This arises because, after the C3
operation is performed, the resulting vector will contain both x and y components. As a
result, x and y are inseparable in this respect, and so they jointly form a representation and
transform as the E irreducible representation.

Reducible representations, direct products, and direct product tables

There are many occasions in spectroscopy when it is necessary to multiply irreducible
representations, or in the language of group theory, calculate their direct products. The
direct product is obtained by multiplying the characters for each symmetry element. The
resulting representations are often reducible. It can be proved that the number of times (a;)
an irreducible representation occurs within a reducible one can be determined using the
following formula:

1
ai =3 ) Xrea(R)Xi(R) (D.7)
R

where xeq(R) is the character of the reducible representation corresponding to operation
R, and x;(R) is the character of the irreducible representation. The summation is over all
symmetry operations and / is the order of the group.

This rule can be illustrated by determining the direct product of the £ species with itself
within the C3, point group, i.e. £ ® E. As the characters for the £ species are 2, —1, and 0,
the characters of the direct product will be I' = 4, 1 and 0. This is a reducible representation
that can be decomposed to irreducible representations using the formula above, yielding

as, = M@ +2(1)(1) +3(1)0)] = 1
as, = L[1(1@) +2(1)(1) +3(=1)(0)] = 1
ap = H1Q2)4) +2(=1)(1) + 3(0)(0)] = 1

The symmetry of a cartesian vector is the same as the symmetry of the corresponding cartesian axis. For example,
the x axis has both positive and negative regions and any rotation about this axis will leave these unmoved. On the
other hand, a C;, rotation about an axis perpendicular to the x axis and passing through the origin will transform x
into —x, and vice versa. In other words, the x axis in this instance will be antisymmetric with respect to Cy. Thus
symmetry operations can be applied to cartesian vectors in a manner identical to their application to molecules.
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Table D.4 Direct product table for point groups Cy, Cyy, Cop, C3, Csy,
Csn, D3, D3n, D34, Co, Cov, Con, Ds, So5 Den

Ay A, B, B, E; E,
Ay Ay Ay B B, E; E,
A A, B, B, E, E,
B, Ay Az E, E;
B, Ay E, E,
E, Ay + [42] + B> B+ B, + E;
E, Ay + [42] + B,

Table D.5 Direct product table for point groups T, Ty, T4, O, Oy

Ay A, E T, T,
A | 4 4 E T, 7,
A, Ay E T, T,
E Ay + [4]+E T, + 1, T+ T,
Ty A+ E+[T]+T AH+E+T+1,
T, A+ E+[T]+ T

Table D.6 Direct product table for point groups Cooy and Doy

>+ 3~ II A
>+ o+ o I1 A
3 ot IT A
I TTH[ET]+A o+ o
A St 4+ [Z7]1+T

Note that the number of symmetry operations in each class needs to be considered, and
these are the first numbers in each term inside the square brackets. The result is that the
direct product £ ® E can be reduced to 4; + 4, + E. That this finding is correct can be
confirmed by adding up the characters of the three irreducible representations, which will
yield the original reducible representation.

Fortunately, it is not necessary to use (D.7) every time direct products of irreducible
representations are required. Instead, direct product tables are available, which allow the
task to be carried out quickly and easily. Direct product tables often prove themselves to be
just as useful in spectroscopy as character tables, and it is important to be comfortable with
their use. Three direct product tables are, D.1, D.2, and D.3, are shown above, covering a
wide range of point groups.

Interpretation and use of the direct product tables requires a little care. First, notice that
each table applies to a number of different point groups. In some cases the irreducible
representations in the table do not correspond exactly to those of one of the listed point
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groups. For example, the four irreducible representations of the C,, point group are Ag,
By, Ay, and B,. None of these appears in Table D.4, and yet this is the direct product table
that is supposed to apply to the Cy; point group. To find the direct products we do the
following. First, if the irreducible representations of the point group have no numerical
subscripts, the corresponding subscripts in the direct product table are ignored. Second, if
the irreducible representations have u or g subscripts, or they have a’ or ” superscript, the
following additional product rules apply:

* For g and u subscripts: I'y @ I'y = 'y, 'y @ 'y =T, 'y ® I'y = T'y, and
rer,=r,

e For’ and 7 superscripts: ' I =T, I I =T", I @ I
1—*// ® 1—*// — F/

I'”, and

Thus, for example, if the direct product By ® A, is required for the Cyj, point group, the
above rules show that B, ® 4, = By. As another example, the £; ® E; direct product in
the Cg point group is found to be 4| + [4,] + E,. The significance of the square bracket
around 4, will be seen later.

It is sometimes necessary to extend the concept of direct products to a higher number of
terms. As an example, a triple direct product can be calculated by taking the direct product
of any pair of representations, and then using the result to calculate its direct product with
the third. This operation is commutative, so the order of multiplication does not matter.
Triple direct products are particularly useful in the discussion of spectroscopic selection
rules (see Section 7.1.2).

There are certain simple rules regarding direct products that are helpful to remember
and which can readily be checked by consulting the direct product tables.

*  The direct product of the totally symmetric irreducible representation with a non-
totally symmetric representation gives the non-totally symmetric representation (as all
characters of the totally symmetric species are 1).

¢ The direct product of any one-dimensional irreducible representation with itself gives
the totally symmetric representation.

e The direct product of a higher-dimensional species with itself will be reducible and
always includes the totally symmetric irreducible representation.

Cyclic and linear groups

The discussion above shows how to interpret, and use, the character tables for most point
groups. However, there are two types of groups that are a little more complicated. One of
these falls into the category of the so-called cyclic groups. They are called cyclic because all
their symmetry elements can be generated from different powers of one of their elements.
Cyclic groups can easily be recognized from their character tables, as the characters of
two-dimensional species contain a function and its complex conjugate. Examples include
the groups Cs3, Cs, Csp, and many others. The other category that presents difficulties at
first sight is the linear molecule point groups Cooy and Degp.
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Consider the C5 point group as an example of a cyclic group. The character table for this
group is as follows:

G | E G Cc? & = exp(2mi/3)
A 1 1 1 z, R, x4 372, 2

1 & 2 (x’y)(Rsty) (Xz—yzva’)

1 e* e* (yz,xz)

In this table, the symbol & stands for the quantity exp(27i/3), where i = /—1, and &* is
the complex conjugate of ¢, i.e. exp(—2mi/3). It can be shown that, for the purposes of
many physical applications, the two rows belonging to the E representation can be added,
so that the resulting row only contains real numbers. When this is done the following table
is obtained:

G |E G c?

A 1 1 1 z, R, x4 2, 2
E 2 2cos2m /3 2cos2m /3| (x,¥), (R, R)) o2 =2, xv), (xz, yz)

which can be used like any other character table. As an example, we can try to reduce
the direct product £ ® E. As the characters for the £ representation are 2, 2 cos 277 /3, and
2 cos 27t /3, the characters of the direct product will be I" = 4, 4 cos 2277 /3, and 4 cos 227 /3.
It can be shown by applying well-known trigonometric relationships, namely sin?x + cos?x
= 1 and cos 2x = cos’x — sin’x, that the characters of the direct product are equal to
'=4,2+2cos2m/3,and 2 4+ 2 cos 27w /3. It is easy to see that this is simply the sum of
three species, i.e. E® E =24 + E.

The character tables for linear molecules, Cooy and Doy, are also somewhat peculiar at
first sight. These two groups differ in the existence of the centre of symmetry as a symmetry
element. As an example, the character table for the point group Cooy is shown below.

Cooy E 2C¢, . 000,

A, =%t 1 1 1 z X2+ %, 2
A, =% 1 1 .. -1 R.

E =11 2 2cos¢ 0 (x,»), (R, R)) (xz, yz)
E,=A 2 2cos2¢ 0 (2 =2, xy)
Ei=® 2 2 cos 3¢ 0

First, there is an infinite number of classes because rotation about any angle ¢ about the Co
axis is a symmetry operation and each of these CZ, elements belongs to a different class.
Similarly, there is an infinite number of o, planes. The consequence of an infinite number
of symmetry elements is that there is also an infinite number of irreducible representations.
The labelling of these is often slightly confusing. On the one hand, they are sometimes
named according to the conventions described above, i.e. 41, 4>, E1, E>, etc. More usually
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they are labelled according to the convention introduced in electronic structure theory to
describe electronic states of linear molecules, namely X, I1, A, ®, etc. As described in
Sections 4.2.2 and 4.2.3, in electronic states these labels correspond to different values of
the angular momentum quantum number A.

The direct products of irreducible representations in linear groups can be calculated in a
similar manner to other point groups. Taking ¥~ ® IT as an example, the characters of the
direct product are I' =2, 2cos¢, . .., 0, i.e. ¥~ ® I1 = I1. Trigonometric relationships
need to be invoked for the direct products of two- or higher-dimensional representations.
For example, the characters of the direct product I1 ® ITare I' =4, 4cos?¢ . . ., 0. Using
the above relationships it can be shown that 4 cos >¢p = 2 + 2 cos 2¢, and hence I1 ® I1 =
A 4+ 1 + 7. In practice such manipulations are not necessary and direct products can
be obtained simply by inspecting Table D.6.

Symmetrized and antisymmetrized products

In the description of spectroscopic states it is sometimes necessary to invoke the sym-
metrized and antisymmetrized product of two functions, instead of simply taking their
product. For functions f; and f;, the symmetrized product is '(fif; + fif;), whereas the anti-
symmetrized product s '(f; /; — fif;). It can be proved that both of these products are reducible
representations of the point group. In many examples, the antisymmetrized product simply
vanishes.

Symmetrized and antisymmetrized products have special importance when the electronic
state is derived for two electrons. The resulting electronic state can be obtained from the
direct product of the symmetry species of the molecular orbitals. Careful consideration of
the Pauli principle is required if the electrons reside in degenerate orbitals and this is a topic
considered in more detail in the next appendix. In direct product tables antisymmetrized
direct products are displayed in square brackets.

Further reading

Good introductory accounts of symmetry and point group theory in chemical and spectro-
scopic applications can be found in the following books:

Group Theory and Chemistry, D. M. Bishop, New York, Dover, 1993.

Molecular Symmetry and Group Theory, R. L. Carter, New York, Wiley, 1998.

Chemical Applications of Group Theory, F. A. Cotton, New York, Wiley, 1990.

Molecular Symmetry and Group Theory: A Programmed Introduction to Chemical Appli-
cations, A. Vincent, Chichester, Wiley, 2001.

More advanced aspects, most notably consideration of flexible molecules, which cannot be
treated adequately by point group theory, can be found in the following books:

Molecular Symmetry and Spectroscopy, P. R. Bunker and P. Jensen, Ottawa, NRC Press,
1998.

Symmetry, Structure and Spectroscopy of Atoms and Molecules, W. J. Harter, New York,
Wiley, 1993.
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Selected character tables

G| FE
A 1
Cs E Op
4 11 x“y, R | X2 xp
A’ - z,R\, R, | yz,xz
G E i
Ay 1 R, Ry, R. X2, 32, 22, xy, xz, yz
A, 1 — X, 0,z
G | E G
4 |1 ZR, 2% 2 xy
B 1 -1 Xy, R, R, | yz,xz
Gy E Cs Cc? & =exp(2mi/3)
A 1 1 1 z, R, X2+ yz, z2

1 € € (x2 - yz’ xXy)
Cy E Cy C, c3
A 1 1 1 1 z, R, x* 42, 2
B 1 —1 1 -1 x> — %, xy

1 1 - 1 _i (X, y)7

E {1 _1 -1 i[ | (R.R) (yz, xz)
Cs E Cs C; C, Cc? c: & = exp(2mi/6)
A 1 1 1 1 1 z, R. x4 372, 2
B 1 -1 1 -1 1 -

1 & —&* —1 —& e* (x, ),
E, 1 " —¢ —1 —e* P (R., R,) (xz,yz)

1 —&* —& 1 —&* —& 2 2
E, 1 —& —g* 1 — —g* * yoxy
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Dz E Cz(Z) Cz(y) Cz(x)

4 |1 1 1 )77

B, 1 1 -1 — Z, R, Xy

B, 1 —1 1 — »R | xz

B; 1 -1 —1 xR | yz

Gy E Gl o) o.02)

A, 1 1 1 z X2, %, 22

Ay 1 1 —1 — R. Xy

B 1 —1 1 — xR, | xz

B, 1 —1 —1 YR | yz

C3v E ZCS(Z) 3Uv

A, 1 1 1 z X2 4372, 2

A, 1 1 —1 R.

E |2 - 0 | ()),(R.R) | (& —=y?xp),(xzy2)

C4V E 2C4 C2 ZO’V 20‘d

A, 1 1 1 1 1 z x4 2, 2

A, 1 1 1 —1 -1 R.

B 1 —1 1 1 -1 xr— )2

B, 1 —1 1 -1 1 Xy

E 2 0 =2 0 (xa y)’ (Rxa Ry) (xz, yZ)

CZh E C2 i Op

Ay 1 1 1 1| R, X2, 2, 2%, xy

B, 1 -1 1 -1 R, R, | xz,yz

Ay 1 1 —1 -1 z

B, 1 -1 -1 X,y

Dy | E Gz G Gx) i oxy) o(xz) o(z2)

Ay 1 1 1 1 1 1 1 1 X2,y 22
By, 1 1 -1 -1 1 1 -1 -1 R. | xy
By 1 —1 1 —1 1 —1 1 —1 R, | xz
Bs, 1 -1 -1 1 1 -1 -1 1 R, | yz
Ay 1 1 1 1 —1 —1 —1 —1

By 1 1 -1 -1 -1 -1 1 1 z

By, 1 —1 1 —1 —1 1 —1 1 y

B3y 1 -1 -1 1 -1 1 1 -1 X

263
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D3h E 2C3 3C2 Op 2S3 3UV

A 1 1 1 1 x? 42,2

A4, 1 1 - 1 1 -1 R., (x,y) > =12, xy)

E’ 2 — 2 -1 0

A 1 -1 -1 -1 z,(Re, R))|  (xz,)2)

A 1 -1 —1 —1 1

E” 2 — -2 1 0

Dﬁh E 2C6 2C3 Cz 3Cé Cé/ i 2S3 2S5 (o 3(7d 30’V

Ay |1 1 1 1 1 1 1 1 1 1 1 x> 432,22
Ary |1 1 1 I -1 -1 1 1 1 1 -1 —1|R,
B, |1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

By, |1 ~—1 1 -1 -1 1 1 -1 1 -1 -1 1

E, |2 1 -1 =2 0 0 2 1 -1 =2 0 0| (R, Ry) | (xz,y2)
Ey |2 -1 ~—1 2 0 0o 2 -1 -1 2 0 0 (2=12, xp)
Ay | 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

Ay |1 1 1 1 -1 -1 -1 -1 -1 -1 1 1]z

B, |1 -1 1 -1 1 -1 -1 1 -1 1 -1

By |1 —1 1 -1 -1 1 -1 1 -1 1 1 -1

E, |2 1 -1 =2 0 0 -2 -1 1 2 0 01 (x,»)
Ew |2 -1 -1 2 0 0 -2 1 1 =2 0 0

DZd E 2S4 C2 2C£ 20’d

Ay 1 1 1 1 1 x> 432,22
A, 1 1 1 -1 -1 R.

B 1 —1 1 1 —1 x> —y?

B, 1 —1 1 -1 1 z Xy
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More on electronic
configurations and electronic
states: degenerate orbitals
and the Pauli principle

The Pauli exclusion principle states that no two electrons in an atom or molecule can share
entirely the same set of quantum numbers. This requirement follows from the nature of
electronic wavefunctions, which must be antisymmetric with respect to the exchange of any
identical electrons. This has an impact in the determination of the electronic states possible
from a given electronic configuration.

Atoms

Consider, for example, the carbon atom, which has a ground electronic configuration
15%2s22p*. Suppose that one of the 2p electrons is excited to a 3p orbital. To determine
the electronic states that are possible from this configuration, the process described in
Section 4.1 can be followed. The 1s and 2s orbitals are full and so we can focus on the p
electrons only. The possible values of the total orbital angular momentum quantum number
L are 2, 1 or 0. Similarly, the total spin quantum number must be 1 or 0 and so the possible
electronic states that result from the 15s?25%2p'3p! configuration are °D, 'D, 3P, 'P, 3S, and
IS. It is therefore initially tempting to propose that electronic states of the same spatial and
spin symmetry arise from the ground electronic configuration. Such an assumption would
be wrong because it ignores the Pauli principle.

In contrast to the excited configuration considered above, in the ground configuration of
the carbon atom the two p electrons have the same principal quantum numbers. To satisfy the
Pauli principle, we must therefore avoid those electronic states of the carbon atom in which
the two p electrons possess exactly the same values for the remaining quantum numbers.
This means that the electrons cannot be in a 2p orbital with the same m; and m; quantum
numbers. The acceptable arrangements of the electrons within the three 2p orbitals are
summarized in Table E.1. Notice that in contrast to the excited configuration 1s*2s%2p'3p!,
only three electronic states (*P, 'D, and 'S) are possible from the configuration 1s%2s%2p?.
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Table E.1 Possible arrangement of electrons for
a 2p’ configuration

m=—1 m =0 m = +1 Electronic state
T T
{ )
! |
) )
! 1 P
\ \
T T
) )
! |
N
T {
1 ! 'D
) |
i
1 's

Constructing a table of electron arrangements amongst orbitals such as that shown in
Table E.1 is clearly a cumbersome process. A neater way of arriving at the same con-
clusions follows from the symmetries of the orbital and spin wavefunctions with respect
to the exchange of identical particles. Taking spin first, the spin wavefunction for a singlet
state is

1
W = E[a(l)ﬂ@ —a(2)(1)] (E.D)

Triplet states have three possible wavefunctions due to the three-fold degeneracy of unit
angular momentum states (cf. p orbitals in atoms), which are given by

v = o(Da(2) (E.2)
1

(0)
U = —[a(1)BQR) + B(1)a(2 E.3
¢ ﬁ[()ﬁ() B(Da(2)] (E.3)
v = BBR) (E4)
In the above expressions the labels 1 and 2 refer to the two electrons and « and S refer,
respectively, to spinup (m, = + %) and spin down (m; = — %) wavefunctions for the individual

electrons. The superscripts on the wavefunctions on the left-hand side of each equation refer
to the spin projection quantum number, My, which can have the values 1, 0 or —1 for the
case where S = 1.

Interchange of the two electrons corresponds to switching the locations of the 1 and 2
labels in parentheses. For the singlet state, this changes the sign of the wavefunction so the
spin singlet wavefunction is antisymmetric with respect to exchange of identical electrons.



268

E.2

Appendix E

In contrast, all three triplet wavefunctions remain unchanged on switching the electron
indices and so triplet wavefunctions are symmetric with respect to electron exchange.

The symmetry of the spatial (orbital angular momentum) part of the electronic wave-
function with respect to electron exchange can also be determined straightforwardly, but
we shall avoid the details. In effect, the desired wavefunction is a linear combination of
the wavefunctions for the individual 2p orbitals in much the same way as the spin wave-
functions can be expressed as linear combinations of the individual spin up and spin down
wavefunctions, « and 8. The key result is that electronic states with L even are symmetric
with respect to electron exchange, whereas those with L odd are antisymmetric. Thus L even
states can only combine with the singlet spin function in order to satisfy the Pauli principle,
and so we deduce that the only possible singlet states are 'D and 'S. Similarly, only one
triplet state can be formed, 3P.

Molecules

Exactly the same ideas apply to molecules. In molecules, as in atoms, equivalent orbitals
are degenerate orbitals and these only arise for molecules that possess relatively high sym-
metries. Consider, for example, a molecule with Cg, symmetry and all orbitals filled except
the outer pair, which have e; symmetry. Now suppose that there are two electrons in the
ey orbitals. This is clearly a case where the Pauli principle needs to be taken into account.
As we have seen elsewhere (Section 4.2), the possible spatial symmetries of the overall
electronic state can be obtained by taking the direct product of the symmetries of the indi-
vidual orbitals, e; ® e;. The result can be obtained from Table D.4 in Appendix D, and is
Ay + [A2] + Es.

The square brackets around the 4, representation are employed to show that this corre-
sponds to an antisymmetrized product (see Section D.8), which means that the 4, spatial
wavefunction arising from the orbital configuration (e;)? is antisymmetric with respect to
electron exchange. Consequently, only a triplet spin state is possible for this spatial symme-
try. In contrast the 4; and E; spatial wavefunctions are symmetric with respect to electron
exchange and can only combine with a singlet spin state. Thus we deduce that the possible
electronic states arising from the (el)2 configuration are 34,,'E,, and '4,.
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Nuclear spin statistics

Some atomic nuclei possess spin angular momentum, and this can couple with other angular
momenta in a molecule, notably the overall rotational angular momentum, and with the net
electron spin (if any), to cause additional structure in a spectrum. This additional structure
is known as hyperfine structure. Hyperfine splittings are normally very small and are only
resolved in very high resolution spectroscopy. However, the effect of nuclei on molecular
spectra can also be observed in lower resolution experiments through the phenomenon
known as nuclear spin statistics. This manifests itself as an alternation of intensities in the
rotational structure for molecules with a rotational symmetry C, or higher. Examples were
met in the Case Studies described in Chapters 16, 21, and 28.

A general expression for the total wavefunction of the molecule was given by equa-
tion (7.11). In reality, the total wavefunction also includes one more term, the wavefunction
due to nuclear spin, ¥ps:

‘IJ(I‘, R) = We("’ Re)-wV(R)Jpr(R)-WHS (Fl)

For purposes of this discussion, nuclei with half-integer spins (such nuclei are called
fermions because they obey Fermi—Dirac statistics) must be differentiated from those with
integer spins (called bosons because they can be described using Bose—FEinstein statistics).
The generalized Pauli principle states that the total wavefunction of the system must be
antisymmetric with respect to the exchange of two identical fermions but symmetric for the
exchange of identical bosons.

To establish the symmetry of the overall molecular wavefunction with respect to exchange
of identical nuclei, it is necessary to consider the effect of nuclear exchange on each term
in equation (F.1). We will simplify things somewhat by focussing on homonuclear diatomic
molecules (this discussion would be irrelevant for heteronuclear diatomics since they do not
possess identical nuclei). Dealing with the electronic wavefunction first, the symmetry with
respect to nuclear exchange depends on the symmetry of the electronic wavefunction. For
a totally symmetric (! Eg' ) electronic state, the electronic wavefunction is totally symmetric
with respect to nuclear exchange. However, for other electronic states the wavefunction may
be antisymmetric, e.g. ! ZF or3 % ¢ - We will concentrate on the totally symmetric case but the
arguments below will differ for the antisymmetric electronic states. In a diatomic molecule
the vibrational wavefunction is always totally symmetric with respect to the exchange of
nuclei since the wavefunction depends only on the separation of the nuclei, and this is
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unchanged by a permutation of the nuclei. Note that in polyatomic molecules the vibrational
wavefunction is not always totally symmetric with respect to the exchange of identical
nuclei.

Fermionic nuclei

If the identical nuclei are fermions, the overall molecular wavefunction must be antisym-
metric with respect to nuclear exchange. In a diatomic molecule in a totally symmetric
electronic state only the rotational and nuclear spin states need to be considered to deter-
mine the symmetry of the overall wavefunction. In this book we have not discussed the
explicit form of the rotational wavefunctions of molecules. However, it can be shown that
for diatomic molecules the symmetry of v, for the interchange of identical nuclei is (—1)’
where J is the rotational quantum number. Thus rotational levels with even J are sym-
metric and those with odd J are antisymmetric. Consequently, for the product ;s to
be antisymmetric, a symmetric ¥, must be associated with a rotational level having odd
J, whereas an antisymmetric ¥, combines with even J levels. It can be shown that, for
different nuclear spins, the number of symmetric and antisymmetric nuclear spin states is
given by the following formulae:

gy = (21 + 1) + 1) (F2)
gaimm — (2] 4 1)I (F3)

The nuclear spins 7 of selected nuclei are given in Table F.1. For a nuclear spin of I = ', as
found for example in each nucleus in Hj, there are four possible nuclear spin wavefunctions,
three of which are symmetric and one which is antisymmetric, i.e. there are three times as
many symmetric as antisymmetric states (cf. the spin wavefunctions for two electrons shown
in the previous appendix). These are known as ortho and para states, respectively. The ortho
states are associated with odd J values, whereas the para states are associated with even
J. Transitions originating from these states will have corresponding differences in their
intensities due to the 3:1 alternation in statistical weights.

Bosonic nuclei

For nuclei with integer spins, the total wavefunction must be symmetric with respect to
exchange of identical nuclei. If for example / = 1, there are six symmetric and three anti-
symmetric nuclear spin wavefunctions. The symmetric nuclear spin wavefunctions combine
with even J states and will have approximately twice the population of odd J states. As
above, these differences in population will be reflected in the intensities of transitions orig-
inating in these states.

If we consider a molecule with two identical nuclei possessing zero spin, such as in the
12C, molecule, antisymmetric nuclear spin states will be missing. The ground electronic
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Table F.1 Nuclear spin quantum
numbers for some selected nuclei

Nucleus 1
'H %
2H (D) 1
*H (T) h
12C 0
13C 1/
14C 02
14N 1
1SN Y
160 02
F %
p Y
3ZS 02
3501 3/2
el ¥
79Br 3/2
81Br 3/2
1271 5/2

state of C, is 12; and so is symmetric with respect to nuclear exchange. Since '>C nuclei
are bosons, we have the seemingly bizarre but true situation that the molecule can only exist
in rotational energy levels with even J. In terms of spectroscopy, this will mean that every
other rotational line in the spectrum will be missing. The linear triatomic molecule Cs also
behaves in this manner and the role of nuclear spin statistics in interpreting the rotational
structure of this molecule was discussed in Chapter 16.
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Appendix G
Coupling of angular momenta:
Hund’s coupling cases

The discussion of angular momentum coupling in Appendix C focussed on electronic
(orbital and spin) angular momenta. Other types of angular momenta may be present in
molecules and their coupling to electronic angular momenta can have an important impact
in spectroscopy. In this appendix rotational angular momentum is added to the pot and its
interaction with electronic angular momenta is considered. The discussion is restricted to
linear molecules, and several limiting cases, known as Hund’s coupling cases, are briefly
described.

Hund’s case (a)

Hund’s case (a) coupling builds upon the orbital + spin coupling already described in
Appendix C. The orbital angular momenta in a molecule are assumed to be coupled to the
internuclear axis by an electrostatic interaction and spin—orbit coupling leads to the spin
angular momenta also precessing around the same axis. However, the spin—orbit coupling
is not too strong to blur the distinction between orbital and spin angular momenta. Rotation
in a linear molecule leads to rotational angular momentum and yields a vector R that is
oriented perpendicular to the internuclear axis, as shown in Figure G.1.

In Hund’s case (a) it is assumed that the interaction between the electronic and rotational
angular momenta is weak, and hence the former (the orbital angular momentum L and the
spin angular momentum ) continue to precess rapidly around the internuclear axis with
projections whose sum is equal to 2 (= A + X). The total angular momentum J, electronic
+ rotational, is the vector sum of R and 2. The vectors R and €2 precess about vector J.

In Hund’s case (a) the quantum numbers J, 2, A, S, and X are all well defined. We could
also add a quantum number to define the rotational angular momentum but this would be
redundant if we already know J and the electronic angular momentum quantum numbers.
Since €2 is the quantum number representing the projection of J on the internuclear axis,
the minimum possible value of J is 2. The allowed values of J are therefore 2, 2 + 1,
Q + 2, Q + 3, etc. If the number of unpaired electrons is odd then 2 will be a half-integer
quantum number and therefore J also has half-integer values only.
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Figure G.1 Illustration of Hund’s case (a) coupling. The strong axial electric field along the internu-
clear axis causes the total electron orbital (L) and spin (S) angular momenta to precess rapidly about
the internuclear axis. The components of these angular momenta along the internuclear axis are well
defined, giving quantum number €2, and this couples with the rotational angular momentum of the
molecule (R) to form a resultant, J.

The rotational energy levels of Hund’s case (a) molecules can be derived by analogy
with symmetric top rotational energy level formulae. The angular momentum about the
internuclear axis, denoted by quantum number €2, is equivalent to the projection of rotational
angular momentum, K, in a prolate symmetric top (see equation 6.15), and so we can write

Ejo=BJ(J+ 1)+ (4 — B)Q? (G.1)

A is inversely related to the moment of inertia of the electrons and by definition is therefore
very large. The AQ? term can in fact be ignored since it is a purely electronic term that
contributes equally to all rotational energy levels, leaving the expression

Ejq=B[J(J+1)- Q% (G.2)

Molecules showing Hund’s case (a) behaviour possess orbital angular momentum. The
rotational energy levels of a molecule in a *T1 state are shown in Figure G.2 as an illustration.
In this example three spin—orbit sub-states arise whose separation depends on the magnitude
of the spin—orbit coupling. Notice that the lowest rotational level in each sub-state has the
value Q2 for that sub-state.

The basis of Hund’s case (a) coupling is that the orbital and spin angular momenta
remain firmly coupled to the internuclear axis even when the molecule rotates. This is
a good approximation but in practice the rotation does induce some uncoupling and this
grows in magnitude as the speed of rotation increases, i.e. as J increases. This uncoupling
removes the two-fold degeneracy in A and is therefore known as A-doubling. This splitting
of each rotational level is shown in Figure G.2, but is exaggerated and in practice the
effect of A-doubling can only be resolved in high resolution experiments. Notice that
the two components for a given J can be distinguished by an additional symmetry label,
the parity of the energy level (£). This refers to the symmetry with respect to inversion
(switching coordinates (x, y, z) to (—x,—y,—z)) of all particles in a laboratory-fixed axis
system, i.e. one not attached to the molecule. We shall not consider this any further except
to say that it is helpful in the determination of transition selection rules (for example see
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Figure G.2 Rotational energy levels of a molecule in a 3T electronic state satisfying Hund’s case
(a) coupling. Spin—orbit coupling splits the 3T state into the spin—orbit components *ITy, *I1;, and
3I1,, where the subscript refers to the quantum number Q. Each rotational level within a particular
spin—orbit component is split into a doublet due to A-doubling, but the size of this effect is much
exaggerated in this diagram.

Chapter 24). More details can be found in the books listed in the Further Reading section
at the end of this appendix.

Hund’s case (b)

The premise of Hund’s case (b) is that the spin—orbit coupling is no longer strong enough
to tie the precession of S to the internuclear axis. This most commonly occurs when A = 0,
but it is also known in molecules with A # 0 under certain conditions (see below). Assuming
A =0, only the spin and rotational angular momenta remain and these couple together and
precess around the resultant J. More generally, we have the situation shown in Figure G.3,
where the possibility of anon-zero A has been included. The precession of the orbital angular
momentum around the internuclear axis remains rapid and the total angular momentum
excluding electron spin, designated as vector V, is then given by R 4+ A. A weak interaction
then occurs between NV and § and these vectors precess slowly about the total angular
momentum vector J.

The quantum numbers used to define Hund’s case (b) states are J, N, A, and S. Notice
that €2 is no longer a good quantum number in the Hund’s case (b) limit, since precession
of the electron spin is no longer tied to the internuclear axis. If A = 0 then the lowest value
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Figure G.3 Illustration of Hund’s case (b) coupling. In Hund’s case (b) spin—orbit coupling is no
longer strong enough to couple S to the internuclear axis. However, L (if non-zero) is still coupled to
the internuclear axis and together with the rotational angular momentum R this forms a resultant V.
The total angular momentum J is obtained from the vector addition N + S.

Energy
A J N
9/2 +
72 v 4
72~ -
52— -3
5/2~ +
32~ + 2
32~ —
127 =1
1/2 + 0

Figure G.4 Rotational energy levels for a >% electronic state. The interaction between the spin and
rotational angular momenta gives rise to a spin—rotation splitting for each rotational energy level
(except the lowest level). The labels + or — for each level refer to the parity (see text for more details).

of N is zero and therefore the allowed values of N are the same as for the rotational energy
levels of a closed-shell linear molecule, i.e. 0, 1, 2, 3, etc. J has allowed values N + S, N +
S—1,N+S—-2,...,|N—S5|, and therefore J will be an integer if there is an even number
of unpaired electrons and half-integer for an odd number of unpaired electrons.

The rotational energy levels for Hund’s case (b) are similar to those of closed-shell
molecules. However, the effect of interaction between the rotational motion and spin cannot
be entirely neglected. This spin—rotation coupling is small but observable in high resolution
experiments because it gives rise to a splitting of each rotational level except for the lowest.
For example, the rotational energy levels of a molecule in a > X state are shown in Figure G.4.
Each rotational energy level is split into a doublet and the splitting increases as the rotational
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energy increases. In fact the splitting can be shown to be (N + 1/2) where y is a quantity
known as the spin—rotation coupling constant. Notice that the two components of a spin—
rotation doublet have the same parity, in contrast to the opposite parities for the components
of a A-doublet.

Finally, we note that a molecule may switch from satisfying Hund’s case (a) to Hund’s
case (b) behaviour if it is sufficiently rotationally excited. This can occur when rotation is
fast enough to uncouple S from precession around the internuclear axis. In general, Hund’s
case (a) coupling applies when A >> BJ, where 4 is the spin—orbit coupling constant for the
electronic state. Transition towards case (b) behaviour occurs when A ~ BJ.

Other Hund'’s coupling cases

Hund’s cases (a) and (b) are satisfactory for describing the rotational energy levels of the
great majority of linear molecules. However, three other coupling cases have been proposed.
The most commonly encountered is probably Hund’s case (c), where the spin—orbit coupling
is now sufficiently large that A and S are no longer defined, but 2 is still a good quantum
number. The resulting rotational energy levels are still given by the energy level expression
(G.1).

Further details of Hund’s coupling cases, including the less well-known cases (d) and
(e), can be found in the books listed below.

Further reading

Molecular Spectra and Molecular Structure. 1. Spectra of Diatomic Molecules, G. Herzberg,
Malabar, Florida, Krieger Publishing, 1989.

The Spectra and Dynamics of Diatomic Molecules, 2nd edn., H. Lefebvre-Brion and R. W.
Field, Academic Press, 2004.

Rotational Spectroscopy of Diatomic Molecules, J. M. Brown and A. Carrington,
Cambridge, Cambridge University Press, 2003.



H.1

Appendix H
Computational simulation and
analysis of rotational structure

Except for the very simplest cases, the analysis of rotational structure in the spectra of
molecules is nowadays carried out using computer simulation. The essence of this approach
can be divided into three parts: (i) the calculation of the rotational energy levels of a
molecule using known or estimated spectroscopic constants; (ii) the calculation of the
relative intensities of rotational lines; (iii) the adjustment of the spectroscopic constants
to give a simulated spectrum that matches experiment. Each of these is briefly considered
below.

Calculating rotational energy levels

The starting point for simulating any spectrum is to calculate the energies of the levels
involved in the spectroscopic transitions. Once these have been obtained, transition energies
are then simply the difference in energy between the appropriate pairs of levels involved in
the transitions.

For closed-shell linear molecules the calculation of rotational energy levels is trivial,
since the energies are given by equation (6.4) in the rigid rotor limit, while in the more
realistic non-rigid case the expression

E;=BJ(J+1)—D,;J*J + 1) (H.1)

usually suffices. In equation (H.1) B and J have their usual meaning and D, is known as
the centrifugal distortion constant, which allows for the fact that bonds tend to lengthen as
the molecule rotates faster and faster. The values of B and D; will be different for different
electronic and/or vibrational states but once their values are known, or are estimated, then
the energies for specific rotational transitions can be calculated. For rotational structure in
electronic transitions the contribution from electronic and vibrational changes is a constant
quantity that can simply be added to all transitions within the rotational envelope.

In more complicated examples it may no longer be possible to write down the rotational
energies in a closed form such as that shown in equation (H.1). This is found to be the
case for open-shell molecules (free radicals) and also for asymmetric tops. To illustrate
why this happens and how it can be tackled, we choose the asymmetric top as an example.
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The general form for the classical kinetic energy of a rotating molecule was given in
equation (6.11), which can be recast in the following form:

E = AR+ BR; + CR? (H.2)

R., Ry, and R, represent the rotational angular momentum about principal axes a, b, and ¢
and A4, B, and C are the rotational constants of the molecule. As described in Section 6.2.4,
in quantum mechanics the classical angular momenta are replaced by operators whose
properties can be used to predict the resulting quantized energy levels. The operator form
of (H.2) looks exactly the same, but instead of the energy on the left-hand side we now have
the so-called Hamiltonian, H,., which is a mathematical operator, i.e.

Ho = AR. + BR} + CR? (H.3)

In symmetric and spherical tops the Hamiltonian in equation (H.3) can be simplified
through the use of symmetry and used to calculate very simple expressions for the rotational
energy levels, as was seen in Sections 6.2.4 and 6.2.5. Unfortunately, the lower symmetry
in asymmetric tops makes it impossible to derive a simple and general formula for their
energy levels.

The alternative approach for determining the rotational energies of asymmetric tops is a
numerical procedure that involves three key steps.

(1) Itisassumed thatthe wavefunction for rotational motion can treated as a superposition
of symmetric top-like wavefunctions. The technical way of describing this is to say
that the asymmetric rotor wavefunction is expanded in a basis of symmetric rotor
wavefunctions, and this expansion is exact if sufficient symmetric top wavefunctions
(the so-called basis functions) are employed. To grasp this idea, you may find it
helpful to draw an analogy with the expansion of molecular orbitals in terms of
atomic orbitals. This is the LCAO expansion of MOs and the atomic orbitals form a
basis set for describing the MOs.

(il) The next step is to express the Hamiltonian in a form such that it can be used to operate
on the chosen basis functions to deliver useful results. In the case of an asymmetric
rotor the Hamiltonian in (H.3) can be rewritten as

H=aR*+ BR*+y(R> + R?) (H.4)

where «, 8, and y are simple functions of the rotational constants 4, B, and C but
whose detailed forms we do not need to consider here. R is the total rotational angular
momentum operator and the operators Ry and R_ are functions of R, and R, with
useful properties specified below.

(ii1) In the limit that the asymmetric rotor behaves like a symmetric top the third term in
(H.4) is zero and the rotational energy levels can be obtained immediately from the
resulting Hamiltonian. However, in a real asymmetric top the final term cannot be
ignored and as a result the energy cannot be obtained directly from (H.4). Instead a
Hamiltonian matrix is constructed where the elements of this matrix are obtained by
letting the Hamiltonian operate on the basis functions chosen in step 1. R, and R_ are
key here because they connect basis functions (equivalent to symmetric rotor states)
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which differ in K by = 2, where K is the projection quantum number in the symmetric
rotor limit. In other words R and R_ are raising and lowering operators which mix
together character from different K levels in the pure symmetric rotor. The energy
levels of the asymmetric rotor can then be obtained from the Hamiltonian matrix by
a process known as matrix diagonalization. This is a laborious procedure for all but
the simplest of matrices but which is well suited for computer calculations.

It is important to recognize that values for the rotational constants 4, B, and C must be
chosen beforehand in order for the above procedure to work, i.e. we do not obtain general
expressions for the rotational energies but specific values given the chosen spectroscopic
constants.

Matrix diagonalization is also used to calculate the rotational energy levels in other
systems, e.g. open-shell linear molecules. It is a common procedure and lies at the heart of
most rotational structure analysis programs. Further details about the basis functions and
rotational Hamiltonians used can be found in the Further Reading section at the end of this
appendix.

Calculating transition intensities

For absorption transitions the relative transition intensities' are the products of two factors,
the transition line strength and a Boltzmann term that describes the relative population of
the lower level involved in the transition at a given temperature. The transition line strength
is a quantity that depends on the rotational wavefunctions in the upper and lower states and is
obtained from the transition dipole moment (see Section 7.2) evaluated over the rotational
basis functions. Once the rotational energy levels have been determined, evaluation of
transition intensities is a relatively rapid process. Forbidden transitions will obviously give
a zero relative intensity.

The processes described in this section and H.1 can be used to simulate the rotational
structure in a spectrum. Rather than generate a stick spectrum, it is more useful to associate
a linewidth with each transition in the simulation to match that seen in the experiment. This
generates a more realistic looking spectrum which is easier to compare with experiment.
Examples are shown in Chapters 22, 24, and 28.

Determining spectroscopic constants

So far we have considered in outline how a spectrum can be generated assuming values for
the relevant spectroscopic constants. However, more usually the aim is the reverse process in
which spectroscopic constants of a molecule are to be determined from a spectrum. Clearly
one could make a guess at the constants, simulate the spectrum, and then visually compare it

We are not interested here in the absolute transition intensities. These depend on the experimental arrangement as
well as the properties of the molecules under investigation.
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with the experimental spectrum. If the agreement is good, then one could reasonably assume
that the constants employed are fairly close to the true values. However, if the agreement
between the simulation and experiment is poor, it may take an awfully long time to determine
the rotational and other constants by arbitrary adjustments followed by visual comparison
with experiment. What is required is a more systematic and faster procedure for carrying out
essentially the same process. The approach that is employed involves least-squares fitting.

The reader will be familiar with the least-squares fitting of straight lines in graphs. This
is the process (also known as linear regression) that finds the best straight line through
experimental data by minimizing the sum of the squares of the differences y;ine) — Viexpt)
for each value of x. Unfortunately, this simple least-squares procedure is not applicable to
rotational analyses because the energy levels, and therefore the transition energies, depend
non-linearly on the spectroscopic constants. This makes the fitting procedure more com-
plicated and solutions can only be found by an iterative process. Nevertheless, standard
computational procedures are well known for carrying out non-linear least-squares fits and
can be incorporated into computer programs for spectral analysis [1]. The fitting process
involves minimizing, in a least-squares sense, the difference between the rotational line
positions in the simulation versus experiment by adjusting the spectroscopic constants.

Many programs have been written for simulating and fitting rotationally resolved spectra.
Three examples that are widely used can be followed up from References [2]-[4]. It is
important to recognize that many programs are written with specific situations in mind. An
example is the AsyrotWin program (Reference [4]), which is designed for simulating closed-
shell asymmetric rotors, i.e. it will not deal with open-shell asymmetric tops. Obviously
anyone wishing to make use of such a program must first establish that it can deal with
their particular problem. These programs should not be thought of as ‘black boxes’ since
they usually require substantial user input. The user must decide on the model to be used,
the starting estimates for spectroscopic constants, and the specific lines in the experimental
spectrum that will be used in the fit. Furthermore, each line chosen in the experimental
data must be associated with a particular transition in the simulated spectrum. If the initial
estimates of the spectroscopic constants are poor, then the fitting process may converge
on a solution that is not the true best fit. The usual way of proceeding is to first try out a
few approximate simulations to see if the starting spectroscopic constants yield a simulated
spectrum somewhat similar to that observed experimentally. Only when this first stage is
satisfactorily achieved is it sensible to attempt a least-squares fit.

Transition intensities are not used in the fitting but comparison of the simulated relative
intensities with those observed experimentally can be a useful way of checking whether the
fit is realistic or not. The simulated intensities are also the means by which the temperature
of the sample can be determined.

References

Numerical Recipes in C++: the Art of Scientific Computing, 2nd edn., W. H. Press, S. A.
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2002. A version of this book is also available for FORTRAN and Basic programmers.



Computational simulation and analysis of rotational structure 281
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of diatomic molecules. Details can be found at the website http://scienide.uwaterloo.ca/~
leroy/dsparfit/.

SpecView, a program for simulating rotational structure in electronic spectra. This is able
to deal with many different types of rotors with closed or open shells. Further details can
be found at the following website: http://molspect.mps.ohio-state.edu/goes/specview.html.
AsyrotWin, a program for the analysis of band spectra in closed-shell asymmetric
tops. This program is described in the following article: R. H. Judge and D. J. Clouthier,
Comput. Phys. Commun. 135 (2001) 293.

Further reading

Molecular Rotation Spectra, H. W. Kroto, New York, Dover Publications, 1992.
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282

Index

ab initio calculations 11, 23, 152
absorbance 87, 92-93
absorption coefficient 87
absorption spectrometer, conventional
87
absorption spectroscopy 4
Al(H,0)
ab initio calculations 178
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formation 171
ionization energy 172
nuclear spin statistics 178
origin (08) transition in ZEKE spectrum
175
rotational structure in ZEKE spectrum 177
vibrational modes 173
vibrational structure in ZEKE spectrum 172
ZEKE spectroscopy 172
allowed transition 18
adiabatic ionization energy 116, 123
angular momentum 12—14, 248
Clebsch—Gordan series 244
coupling 12
in atoms 244-246
in linear molecules (electronic) 246-248
in non-linear molecules (electronic)
248
orbital, see orbital angular momentum
precession 244
quantum numbers 12, 15-17
spin, see spin angular momentum
vibrational 38
anharmonic oscillator 28-29, 38
anharmonicity constant 29, 38, 119
anion photoelectron spectroscopy, see negative ion
photoelectron spectroscopy
asymmetric top 46, 277
asymmetry doubling 170
rotational energy levels 49, 277-279
AsyrotWin program 280, 281
autoionization 108

band head 143, 201
basis set 237
Beer—Lambert law 87
benzene
electronic states 206
Hiickel MO theory 205

ultraviolet absorption spectrum 206
vibrational modes 206
vibronic coupling 209
1, 4-benzodioxan
absorption spectrum 150
DEFT calculations 152, 153
dispersed fluorescence spectrum 150, 152
Hartree—Fock calculations 152
LIF excitation spectroscopy 150, 152
S1—Sy transition 08 transition 152
vibrational frequencies 153
vibrational modes 150
Birge—Sponer extrapolation 177, 195
Boltzmann distribution 42, 54, 70
Born—Oppenheimer approximation 8, 56,
232
bosons 269
broadening
natural (lifetime) 75
doppler 76
pressure 77
broadening of spectral lines 7577

Cs
ab initio calculations 140
electronic structure 140
electronic transition selection rules 140
laser-induced fluorescence spectroscopy 138
nuclear spin statistics 142
rotational constants 142
rotational structure in LIF spectrum 140,
141-143
vibrational normal modes 141
cavity ringdown spectroscopy 92-94
ringdown time 92
centre-of-mass 26, 34, 40
centrifugal distortion 41, 277
character tables 18, 251, 256-257, 262-265
charge-coupled device (CCD) 88
charge-induced dipole interaction 187
chlorobenzene
ab initio calculations 213
MATT spectra 219
molecular orbitals 210
photoelectron spectrum 216
REMPI spectroscopy 211
vibrational frequencies 213
ZEKE spectra 217



Index

chlorobenzene cation, vibrational frequencies 217
CO
Hel photoelectron spectrum 113—119
molecular orbitals 113
cot
electronic states 113
vibrational frequencies 115
CO,
molecular orbital diagram 127
photoelectron spectrum 120—128
CO,*, spin—orbit coupling 123
coherence length 92
collisions
three-body 71
two-body 71
combination differences 141
configuration interaction (CI) 238
CIS method 239
Coulomb operator 235
coupled cluster methods 239
CS;, photoelectron spectrum 120-128
CS, ™, spin-orbit coupling 125

degeneracy, rotational energy levels 42, 48
density functional theory (DFT) 239
diphenylamine

MATI spectrum 144

S1-Sy transition 146

structure 144

torsion vibration 146
direct product 21, 56, 257-259

direct product tables (selected) 258
dispersed fluorescence spectroscopy 90
dissociation energy 28
Doppler broadening, see broadening
DSParFit program 281

effusive gas jet 68

Einstein coefficients 53, 54
electric dipole moment operator 52
electric dipole transitions 52
electric quadrupole transitions 53
electrical discharge 72, 106, 129
electron affinity 106, 129

electron correlation 11, 238
electron—electron repulsion 9, 10
electron energy analyser 103
electron multiplier 104

electronic configuration 15, 23
electronic states 15, 20-23
electronic wavefunction 56
electronvolt (eV) 230

emission spectrometer, conventional 88
emission spectroscopy 3
equilibrium bond length 24
exchange operator 235

Fermi resonance 38, 215

fermions 269

field ionization 110

fluorescence quantum yield 90
forbidden transitions 5, 18, 55, 223
force constant 24, 26
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Fourier transform spectroscopy 97—101
centre burst 99
frequency domain 97
interferogram 98
Michelson interferometer 98
retardation 98
time domain 97
Fourier transformation 100
Franck—Condon factor (FCF) 58-62, 118, 131, 132,
149
Franck—Condon principle 58, 115, 131, 147
free radicals, production 71, 73
freeze—pump—thaw cycle 67
full-width at half-maximum (FWHM) 75
fundamental constants 231

GAMESS program 240
GAUSSIAN program 240
Gaussian-type functions 236
good quantum number 15, 20, 244

Hamiltonian 7, 9
harmonic oscillator (diatomic) 24-28
hartree (atomic unit of energy) 231
Hartree—Fock method 11, 234-237
Hartree—Fock—Roothaan equations 236
Hel radiation 103
Hell radiation 103
hermite polynomials 27
Herzberg—Teller coupling (see also vibronic coupling)
141, 163, 208
hot bands 132, 212
Hiickel molecular orbital theory 205
Hund’s coupling cases 181, 272-276
case (a) 272-274
case (b) 274-276
case (c) 276
case (d) 276
case (e) 276
Hund’s rules 225
hyperfine structure 269

intensity ‘stealing’, by vibronic coupling 208
interferogram, see Fourier transform spectroscopy
ionization energy 4, 102

irreducible representation 18, 20, 56, 255

Jahn—Teller effect 248
Jj coupling 17, 245

Koopmans’s theorem 116, 126

A-doubling 273
Larmor precession 14
laser 78—86
argon ion §1
cavity 79
difference frequency generation 85
dye 83-85
excimer 82
feedback 80
harmonic generation 82, 85
longitudinal cavity modes 80
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laser (cont.)
Nd:YAG 81
optical parametric oscillator (OPO) 86
properties 78
Q-switch 81
Ti:sapphire 85
laser ablation 72, 138, 171, 188
laser excitation spectroscopy 90
laser-excited emission spectroscopy, see dispersed
fluorescence spectroscopy
laser-induced fluorescence (LIF) spectroscopy 89-91,
138
least-squares fitting of rotational structure in spectra
202, 280
linear combination of atomic orbitals (LCAO)
approximation 236

Mach disk, see supersonic expansion
Mach number, see supersonic expansion
magnetic dipole transitions 53
mass-analysed threshold ionization (MATT)
spectroscopy 110, 144
mass spectrometer 96
matrix diagonalization 279
matrix isolation 72—74
Maxwell-Boltzmann distribution of speeds 68, 76,
77
mean free path 68
metastable excited electronic states, of
noble gases 107
Mg " —rare gas complexes
anharmonicity 193, 195
bonding mechanism 187
dissociation energies 195
electronic states 189
electronic transitions 188
Hund’s coupling case (a) 199
Hund’s coupling case (b) 198
isotope substitution 193
orbital energies 189
photodissociation spectroscopy 188, 190
rotational constants 202
rotational energy levels 199
spin—orbit coupling 190, 199
spin—orbit coupling constants 192
spin—rotation coupling 198
vibrational frequencies 193—194
Michelson interferometer, see Fourier transform
spectroscopy
molecular beam 120, 211
molecular ions, production of 71, 73
molecular orbital diagram 5
molecular orbitals 15, 17-23
Moller—Plesset perturbation theory 239
MOLPRO program 240
moment of inertia 40, 43
Morse potential energy function 28, 119
multiconfiguration SCF method 239
multiphoton transitions 94
multireference CI method 239

natural (lifetime) broadening, see broadening
negative ion photoelectron spectroscopy 105, 129

NO
A?>5+-X211 transition 180
Hund’s coupling cases 181
molecular orbitals 180
REMPI spectrum 180
rotational energy levels 183
Rydberg states 180
spin—orbit coupling in X>IT state 181
spin—rotation coupling 183
NO,
anharmonicity constants 132
harmonic vibrational frequencies 131, 132
molecular orbitals 134—137
normal vibrational modes 131, 132
NO;
dissociation energy 134
enthalpy of formation 134
photoelectron spectrum 129—132
noble gas resonance lamp 103
non-radiative relaxation 91
non-rigid rotor, linear molecules 277
normal coordinates, see vibrational normal
coordinates
normal modes of vibration 33
normalization 8, 27
nuclear spin quantum numbers 271
nuclear spin statistics 142, 178, 269-271

0,
cavity ringdown spectroscopy 223-225
electronic states 225
forbidden transition 223
Hund’s coupling cases 226
A-doubling 226
magnetic dipole transition 229
molecular orbitals 225
nuclear spin statistics 227
potential energy curves 225
rotational energy levels 226
spin-rotation interaction 228
OCS, photoelectron spectrum 120—128
OCS™, spin—orbit coupling 125
one-electron transitions 3
optical-optical double resonance spectroscopy
96
orbital 3, 7, 23, 233
angular momentum 12
quantum number L 16, 246
quantum number A 20, 247
quantum number A 22, 246
quantum numbers /, m; 15
approximation 10—11
degeneracy 20
energy 3, 5
ortho/para states 270

P-branch transitions 63
parallel transition 167
parity (+/—) 199, 273
transition selection rules 200
Pauli principle 233, 266268
Penning ionization electron spectroscopy 107
perpendicular transition 165, 167
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photodetachment spectroscopy, see negative ion
photoelectron spectroscopy
photodiode 88
photodiode array 88
photodissociation spectroscopy 187
photoelectron spectroscopy 4, 102—107
photoionization 4, 102
photolysis 72
photomultiplier tube (PMT) 88, 90, 92
photon, angular momentum 63
point group symmetry 18, 251-252
polarization functions 237
population inversion 54, 79
potential energy curve 25, 58, 233
potential energy surface 233
predissociation 76, 91
pressure broadening, see broadening
principal axes 44
principal quantum number 15
propynal
ab initio calculations 157
asymmetric rotor 168
dispersed fluorescence spectroscopy 162
electronic origin (08) transition 160
electronic states 159
equilibrium structure 159
isotope substitution 159
non-radiative relaxation 162
perpendicular versus parallel character
167
¥ < n transition 157
rotational constants 168
rotational structure in LIF excitation spectrum
165-167
supersonic (jet) cooling 161
vibrational frequencies 163
vibrational modes 158
vibrational progressions 159
vibronic coupling 163
pulsed lasers 71
pulsed valve 71

Q-branch transitions 63
Q-switch, see laser

R-branch transitions 63
radiative lifetime 55
reduced mass, 26
reducible representation 21, 254
relativistic effects 232
resonance condition 3, 4
resonance-enhanced multiphoton ionization (REMPI)
spectroscopy 94-96
rigid rotor, diatomic 4043
rotational angular momentum 40, 48
rotational constant, diatomic 41
rotational constant, linear polyatomic molecules 47
rotational constant, symmetric top 48
rotational contour 143
rotational energy levels
asymmetric top 49, 277-279
diatomics 41
linear polyatomic molecules 47
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spherical top 49

symmetric tops 47-49
rotational quantum number, diatomic 41
rotational structure 5
rotational wavefunction 57
rotations, of molecules 40-50
Russell-Saunders (LS) coupling 16, 17, 245
Rydberg state 110, 180

Schrédinger equation 7, 9
vibrating diatomic 26
vibrating polyatomic 33
selection rules 55
electronic transitions 57-58
rotational 63—-64
self-consistent field (SCF) method 235
semiempirical calculations 237
sequence bands 161
simulation, of rotational structure 178, 183, 202,
277-280
single vibronic level fluorescence spectroscopy, see
dispersed fluorescence spectroscopy
skimmer 188
Slater determinant 234
space quantization 14, 42
SPARTAN program 240
spatial symmetry 20
SpecView program 281
spherical top 45
spin angular momentum 14
electron spin quantum numbers s, m; 15
nuclear spin quantum numbers 271
total spin quantum number S 16
spin multiplicity 17, 21
spin—orbit coupling 17, 21, 190
spin—rotation interaction 183, 199, 275
spin wavefunctions, singlet and triplet cases 267
spontaneous emission 53, 54, 80
Stark effect 42
stimulated emission 53, 79
stimulated emission pumping (SEP) spectroscopy
96
supersonic expansion (jet) 68-72, 120, 138
Mach disk 71
Mach number 69
pulsed 71
symmetric top, oblate 45
symmetric top, prolate 45
symmetries, of molecular vibrations 34, 37
symmetries, of vibrational wavefunctions 37-38
symmetry, see point group symmetry
symmetry element 249
axis of improper rotation (S,) 250
axis of rotational symmetry (C,) 250
centre of symmetry 250
plane of symmetry (mirror plane) 249
symmetry operation 18, 249
identity operation (£) 251
symmetry orbital 136
synchrotron radiation 105

time-of-flight mass spectrometer 188
transition energy 5
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transition line strength 279

transition moment 51-53, 57
and symmetry 56
photoionization 117

units 230

van der Waals complexes, production of 71
variation theorem 234
vertical ionization energy 116
vibrational
angular momentum, see angular momentum
energy levels 26
frequency 26
normal coordinates 33, 34-36
progression 115, 126, 131
quantum number 26, 34

structure 5

wavefunction 27, 34, 61
vibrations 24-39
vibronic coupling 123, 141, 163, 208
vibronic state 140

Walsh diagram 136
wavefunction 7
wavenumber 230
wave—particle duality 8

Zeeman effect 43
zero electron kinetic energy (ZEKE) spectroscopy 4,
107-109, 171
ZEKE-PFI spectroscopy 110
zero-point energy 27
zero-point fluctuations 54
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