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In this article, we study the technology mapping problem for a novel field-programmable gate array
(FPGA) architecture that is based on k-input single-output programmable logic array- (PLA-) like
cells, or, k/m-macrocells. Each cell in this architecture can implement a single output function of up
to k inputs and up to m product terms. We develop a very efficient technology mapping algorithm,
k m flow, for this new type of architecture. The experimental results show that our algorithm can
achieve depth-optimality on almost all the testcases in a set of 16 Microelectronics Center of North
Carolina (MCNC) benchmarks. Furthermore it is shown that on this set of benchmarks, with only a
relatively small number of product terms (m ≤ k +3), the k/m-macrocell-based FPGAs can achieve
the same or similar mapping depth compared with the traditional k-input single-output lookup
table- (k-LUT-) based FPGAs. We also investigate the total area and delay of k/m-macrocell-based
FPGAs and compare them with those of the commonly used 4-LUT-based FPGAs. The experimental
results show that k/m-macrocell-based FPGAs can outperform 4-LUT-based FPGAs in terms of
both delay and area after placement and routing by VPR on this set of benchmarks.
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cuits]: Types and Design Styles—Gate arrays
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1. INTRODUCTION

The programmable logic devices (PLDs) have been widely used to imple-
ment small to medium sized digital circuits. There are two major types of
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PLDs—field programmable gate arrays (FPGAs), which usually consist of small
programmable logic cells, such as k-input single-output lookup tables (k-LUTs),
and complex programmable logic devices (CPLDs), which are based on multiple-
input and multiple-output programmable logic array- (PLA-) like logic cells.
Both FPGAs and CPLDs have been widely used.

Most commonly used FPGAs are based on k-LUTs. Every k-LUT can im-
plement any function with no more than k inputs. In practice, k is usually
small, as the area of a k-LUT grows exponentially with large k. For example,
LUTs of four to six inputs are widely used in commercial FPGAs [Altera Corp.
2001; Xilinx Inc. 2001]. On the other hand, CPLDs usually have large basic
cells. Each PLA cell can have a large number of inputs (typically between 30
and 40), product terms (typically between 50 to 100), and multiple outputs (16,
for example) [Altera Corp. 2000; Cypress Semiconductor Corp. 2000; Lattice
Semiconductor Corp. 2000]. As a result, a single PLA cell is able to implement
multiple functions with wide inputs.

Rose et al. [1990] showed that among k-LUT cells, the four-input single-
output LUT cell yields the smallest FPGA area for a wide range of program-
ming technologies and routing pitches. Most commercially available FPGAs
indeed use LUTs with an input size of four or five. Kouloheris and El Gamal
[1992] investigated the best granularity for PLA-based CPLDs and found that
the total CPLD area is smallest if each basic cell has 8 to 10 inputs, 3 to 4
outputs, and 12 to 13 product terms. The number of product terms is restricted
to grow linearly as input size increases [Kouloheris 1993]. In practice, however,
most commercially available CPLDs use much larger PLA-like logic cells. Since
FPGAs use small programmable cells, they can often offer higher density and
capacity, at a price of possibly larger and somewhat unpredictable delay, as the
critical path often needs to go through multiple levels of programmable cells
connected by the programmable interconnect. On the other hand, CPLDs are
usually faster as the programmable cells are much larger, which results in fewer
levels of the logic. (The worst-case delay in CPLD also tends to be more pre-
dictable as the level of the logic is usually determined by the architecture and
can be estimated by the designer.) However, CPLDs usually offer considerably
lower logic density. We believe that this is due to two reasons: (a) it is inherently
difficult to map logic into multioutput PLA-like programmable cells, as most
technology mapping techniques have been developed for single-output logic
cells; and (b) the difficulty associated with synthesis/mapping for PLA-based
CPLD devices in turn resulted in very limited studies on this topic—the only
related works we can find were the DDMap [Kouloheris 1993], a fast heuristic
partition method for PLA-based architecture proposed in Hasan et al. [1992],
TEMPLA [Anderson and Brown 1998], and PLAmap [Cong et al. 2001]. In the
later 1990s, with the introduction of hybrid FPGA families [Kaviani and Brown
1999], a few of mapping algorithms for a hybrid architecture of LUTs and PLAs
have been reported [Kaviani 1999; Krishnamoorthy and Tessier 2003]. (In com-
parison, there have been much more extensive studies on LUT-based FPGAs.
A comprehensive survey up to 1997 was reported in Cong and Ding [1996].)

The need to reduce the logic levels (and associated interconnects!) to im-
prove circuit performance, the intention to avoid the mapping problem for
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multioutput functions, and the hope to leverage a large amount of research
results on synthesis and mapping for LUT-based FPGAs, seem to suggest that
we should consider FPGAs with LUTs of much larger numbers of inputs. How-
ever, the area of a k-LUT grows expontentially with respect to k. Using k-LUTs
with large k may considerably lower chip density. Therefore, we have to ex-
plore other alternatives. It has been reported that the functions mapped into
large LUTs usually use considerably fewer product terms than the capacity of
the lookup table [Kouloheris and Gamal 1992; Kouloheris 1993]. For instance,
the utilization of a lookup table cell with K -inputs and N -outputs, which is
defined as the ratio of the number of product terms used per cell to the cell
capacity, N · 2K −1, is less than 0.1 for K = 7, N = 1. This leads us to consider
an FPGA architecture based on k-input single-output PLA-like logic cells. Each
cell can implement a single output function of up to m product terms and up
to k inputs. Such a cell is called a k/m-macrocell throughout this article. A
k/m-macrocell differs from a k-LUT in that each macrocell can implement only
a subset of all possible k-input functions. A k/m-macrocell is different from a
general PLA-like block used in most CPLDs, as each k/m-macrocell has a sin-
gle output. If we choose m to be small, k/m-macrocells are much smaller than
k-LUTs. Therefore, it is possible to use k/m-macrocells with larger input size
in order to get a smaller logic depth and less interconnect without considerably
lowering the logic density.

In this article, we develop a very efficient technology mapping algorithm,
named k m flow, for this new type of architecture. The experimental results
show that our algorithm can achieve depth-optimality on almost all the test-
cases in a set of 16 Microelectronics Center of North Carolina (MCNC) bench-
marks. Furthermore it is shown that on this set of benchmarks, with only a
relatively small number of product terms (m ≤ k +3), the k/m-macrocell-based
FPGAs can achieve the same or a similar mapping depth compared with the
traditional k-LUT based FPGAs. We also investigate the total area and delay
of k/m-macrocell-based FPGAs and compare them with those of the commonly
used 4-LUT-based FPGAs. The experimental results show that k/m-macrocell-
based FPGAs can outperform 4-LUT-based FPGAs in terms of both delay and
area after placement and routing by versatile place route (VPR) on this set of
benchmarks.

The rest of this article is organized as follows. Section 2 formulates the prob-
lem. Section 3 introduces a technology mapping algorithm for k/m-macrocell-
based FPGAs. Section 4 further investigates the area and delay of k/m-
macrocell-based architecture. We draw our conclusions based on experimental
results in Section 5. An extended abstract of this work was presented at the
FPGA Symposium in 2000 [Cong et al. 2000].

2. DEFINITIONS AND PROBLEM FORMULATION

We first review some terminologies defined in Cong and Ding [1994]. A Boolean
network can be represented as a directed acyclic graph (DAG) where each node
represents a logic gate and a directed edge (i, j ) exists if the output of gate i
is an input of gate j . A primary input (PI) node has no incoming edge and a
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primary output (PO) node has no outgoing edge. We use input(v) to denote the
set of nodes which are fanins of gate v. We assume the network is k-bounded,
that is, for each node v in the network, |input(v)| ≤ k.1 A cone at node v,
denoted as Cv, is a subgraph consisting of v and its predecessors such that
any path connecting a node in Cv and v lies entirely in Cv. The notation of
input(Cv) is also used to represent the set of distinct nodes outside Cv which
supply inputs to the gates in Cv. A maximum cone at v, also the fanin net-
work of v, denoted as Nv, is a cone consisting of v and all of its predecessors.
The level of a node v is the length of the longest path from any PI node to v.
The level of a PI is zero. The depth of a network is the largest node level in the
network.

A cone Cv is said to be k-feasible if and only if |input(Cv)| ≤ k. Similarly, Cv
is said to be m-packable if and only if its function has a sum-of-product repre-
sentation with no more than m product terms. Cv is said to be k/m-feasible if
it is both k-feasible and m-packable. Please note that the word feasible usually
refers to the number of inputs of a macrocell, and packable refers to the number
of product terms. The only exception is k/m-feasible, which is a shortened ver-
sion of k-feasible and m-packable. It is obvious that a k/m-feasible cone can be
implemented by a k/m-macrocell. A network is called m-packable if the func-
tion of any node in the network has a sum-of-product representation with no
more than m product terms.

Several concepts about cuts in a network will be used in our discussion. Given
a network N with a source s and a sink t, a cut (X , X ′) is a partition of the nodes
in the network such that s ∈ X , t ∈ X ′, and no nodes in X ′ provide input to
any node in X . Clearly X ′ may be considered a cone at t inside network N .
Therefore we can apply the previous definitions on k/m-feasibility to cuts. A
cut (X , X ′) is said to be k-feasible if and only if X ′ is a k-feasible cone. The cut
is said to be m-packable if and only if X ′ is an m-packable cone. A k/m-feasible
cut is one that is both k-feasible and m-packable. For every node v and its fanin
network Nv, a cut (X , X ′) in Nv is a partition of the nodes such that all the PI
nodes belong to X and v belong to X ′. It is clear that every cone rooted at v
corresponds to a cut in Nv.

The technology mapping problem for k/m-macrocell-based FPGAs is to cover
a given k-bounded m-packable Boolean network with a set of k/m-feasible cones.
Note that we allow these cones to overlap, that is, nodes may be duplicated in
the mapping solutions. This problem is NP-Hard as the two level minimization
problem is NP-Hard.

Throughout the discussion on the technology mapping algorithm (Section 3),
unit delay and unit area models are used. That is, variation of interconnection
delay and routing area is not directly considered during technology mapping
of the original network. Each k/m-macrocell contributes a constant delay in-
dependent of the function it implements. Each cell is counted as a unit when
we evaluate the area; hence the total area of the mapping solution equals to

1Any network can be fully decomposed into a two-bounded network without deteriorating the
mapping quality [Cong and Hwang 1996].
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the total number of macrocells. Such simplification is reasonable because the
layout information is not available yet. For architecture evaluation in Section 4,
however, we will use more accurate delay and area models with consideration
of the interconnect. We use a well-known FPGA placement and routing tool
(VPR [Betz et al. 1999]) to get the total area and critical path delay after layout
for comparison. To avoid confusion, we use depth and number of macrocells in
Section 3 to refer to the delay and area under the unit delay and the unit area
model.

3. TECHNOLOGY MAPPING FOR k/m-MACROCELLS

3.1 Overview

A k/m-macrocell can be regarded as a k-LUT with an additional restriction
that it can only implement logic functions with no more than m product terms.
Therefore, it is natural to start with the k-LUT mapping problem since it has
been intensively studied in the past decade.

Currently, there are three major approaches to LUT-based FPGA mapping:
tree-based mapping (e.g., Chortle-crf [Francis et al. 1991a], Chortle-d [Francis
et al. 1991b]), flow-based mapping (e.g., FlowMap [Cong and Ding 1994]), and
cut-enumeration-based mapping (e.g., PREATOR [Cong et al. 1999]). A more
comprehensive survey is available in Cong and Ding [1996]. Tree-based map-
ping algorithms partition the network into trees and handle each tree sepa-
rately. Each individual tree can be mapped optimally but a prior tree parti-
tioning often compromises the mapping quality. Usually they are fast heuristic
algorithms. Flow-based mapping algorithms are based on the theorem of max-
flow-min-cut and the computation of network flow. It can generate a depth opti-
mal mapping solution in polynomial time. However, flow-based algorithms lack
flexibility as they find only one or two depth-optimal min-cuts for every node.
On the other hand, cut-enumeration-based approaches can find out many, if not
all, possible cuts for every node. They offer high flexibility and can achieve opti-
mality with more constraints, but they are considerably slower than tree-based
or flow-based methods.

The approach we present here, called k m flow, is a hybrid of flow-based and
cut enumeration-based methods. We try to find a k/m-feasible cut for every
node first by flow computation. If that fails, we turn to cut enumeration.

The k m flow algorithm consists of two phases—(i) labeling the network and
(ii) mapping the network into macrocells. The labeling phase is trying to find
a k/m-feasible cut for each node for depth minimization. The mapping phase
generates k/m-macrocells in the mapping solution according to the labels and
cuts computed in the labeling phase.

3.2 Nonmonotone Properties

For every node v, let Nv be the fanin network consisting of node v and all its
predecessors. We assume that there is a given label label(v) associated with
each node v. We also define label∗(v), the optimal mapping depth of v, to be the
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minimum depth of the k/m-macrocell mapping solution for Nv. The labeling
phase for k/m-macrocell mapping is similar to that in the FlowMap algorithm
[Cong and Ding 1994]. It finds a k/m-feasible cut for every node v and computes
a label for v to minimize the depth of the k/m-macrocell implementing node v
in the mapping solution. Ideally, we would like the computed label to be equal
to the optimal mapping depth, that is, label(v) = label∗(v) for every node v in
the network, as is in the case with the FlowMap algorithm for k-LUT mapping.
However, it is more difficult to do so for the k/m-macrocell-based mapping due to
the nonmonotone property of the clustering constraints and the non-monotone
property of the optimal depths.

3.2.1 Nonmonotone Property of Clustering Constraints. The fundamental
difficulty of k/m-macrocell-based FPGA mapping is that the constraints on the
number of inputs and the number of product terms of a k/m-macrocell are
not monotone clustering constraints. That is, if a cone Cv is k-infeasible (or
m-unpackable), it does not guarantee that all its supercones (i.e., those cones
including Cv) are k-infeasible (or m-unpackable). As a result, a k-infeasible (or
m-unpackable) cone Cv could become k-feasible (or m-packable) by including
more nodes into it. Note that the LUT mapping problem also has this non-
monotone property.

3.2.2 Nonmonotone Property of Optimal Mapping Depths. In addition,
the optimal k/m-macrocell mapping depth is not monotone either. The op-
timal mapping depth is monotone if label∗(v) ≥ label∗(u) as long as u is an
input to v.

An example of the nonmonotone properties is shown in Figure 1. It is a
portion of a two-bounded network and we do not show the complete network
(for example, output f 1, f 2 can be drivers to other gates that are not shown in
Figure 1). Assuming k = 4 and m = 4, cone C f 1 is not 4-packable while a larger
cone C f is both 4-feasible and 4-packable. The optimal depth to implement C f 1
is 2 with 3 4/4-macrocells (as shown in the shaded regions). However, C f can
be implemented with only 1 4/4-macrocell and therefore the optimal mapping
depth for C f is 1, that is, for node f and its input node f1, label∗( f ) = 1 < 2 =
label∗( f1). Note that for the LUT mapping problem, it was shown in Cong and
Ding [1994] that the optimal mapping depth is monotone.

3.3 Depth-Optimal Mapping Algorithm for k/m-macrocell

Nevertheless, we can have a depth-optimal mapping algorithm for k/m-
macrocell. Given a cut (X , X ′) in Nv, the height of the cut, denoted as h(X , X ′),
is the maximum label in input(X ′), that is,

h(X , X ′) = max{label(v)|v ∈ input(X ′)}
It is assumed that every node in input(X ′) already has a label. A min-height
k/m-feasible cut (X , X ′) in a network is a k/m-feasible cut such that h(X , X ′) ≤
h(Y , Y ′), where (Y , Y ′) is any other k/m-feasible cut. Based on the definition of
optimal mapping depth of v label∗(v), we have label∗(v) = h(X , X ′)+1, if (X , X ′)
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Fig. 1. An example showing the nonmonotone properties of the k/m-macrocell mapping problem.

is the min-height k/m-feasible cut in Cv and label(u) = label∗(u) for any node
u other than v in cone Cv. Therefore, following a similar argument as in Cong
and Ding [1994], we can conclude that (i) a mapping algorithm can label every
node v such that label(v) = label∗(v) if it can find the min-height k/m-feasible
cut for every node. And (ii) a mapping algorithm can find the depth optimal
mapping solution for k/m-macrocell-based FPGAs if it can find the min-height
k/m-feasible cut for every node.

Based on the above observation, a depth optimal mapping algorithm works
as follows. It finds the min-height k/m-feasible cut for each node in the
topological order from PIs to POs. It then can label each node v such that
label(v) = h(X , X ′) + 1 = label∗(v), where (X , X ′) is the min-height k/m-
feasible cut for v. After labeling the whole network, it can use the min-height
k/m-feasible cuts to generate the k/m-macrocells in the mapping solution. The
mapping result has the optimal depth.

In order to find the min-height k/m-feasible cut for every node, we can
exhaustively enumerate all k-feasible cuts and test if they are m-packable.
The enumeration algorithm can then pick the k/m-feasible cut with minimum
height for every node. However, such an algorithm is impractical to use due to
the high complexity of exhaustive cut enumeration for a large k. In theory, the
number of k-cuts of a node in a cone with n nodes can be as large as O(nk).
Since we are interested in large k with values k = 6 to 10, we move to develop
a more efficient heuristic algorithm.
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3.4 The k m flow Algorithm—a Heuristic Approach

3.4.1 Labeling Phase. The k m flow algorithm also computes a label for
each node from PIs to POs in topological order. At the beginning, every PI node
will receive a label of 0. Then for every node v, suppose mlevel is the largest
label among v’s fanins, it is assumed that label(v) ≥ mlevel. In order to test if we
can set label(v) to mlevel, we collapse each node u in Nv with label(u) = mlevel
into node v to form an induced network N ′

v and test if we can find a k/m-feasible
cut in N ′

v. Obviously we assume that node labels will increase monotonically.
Based on the max-flow-min-cut theorem, we can easily find two min-cuts

in N ′
v: the max-volume-min-cut (X , X ′), which is a min-cut with the largest

|X ′|, and the min-volume-min-cut (Y , Y ′), which is a min-cut with the small-
est |Y ′|. Please note both (X , X ′) and (Y , Y ′) are min-cuts, which implies that
|input(X ′)| = |input(Y ′)| ≤ |input(Z ′)| where (Z , Z ′) is any other cut in N ′

v.
Also, note that max-volume-min-cut and min-volume-min-cut are unique and
Y ′ ⊆ X ′. The max-volume-min-cut and min-volume-min-cut can be found in
O(ke) time, where e is the number of edges and k is the value of the maximum
flow. There are three cases on whether the max-volume and min-volume min-
cuts are k/m-feasible. m-packable is checked after calling Espresso [Brayton
et al. 1984] on the functions in X ′ and Y ′ collapsed at v.

Case 1. Neither max-volume nor min-volume min-cut is k-feasible.

Because any k/m-feasible cut must be k-feasible too, this condition implies
that no k/m-feasible cut exists in N ′

v. In this case, node v can be simply labeled
as mlevel + 1.

Case 2. Either max-volume or min-volume min-cut is k/m-feasible.

Suppose (X , X ′) is the k/m-feasible min-cut (either the max-volume or min-
volume one). We can create a k/m-macrocell for node v, denoted as map node(v),
to implement the function of X ′. The depth of map node(v) in the mapping
solution cannot be larger than mlevel. Therefore, we assign label(v) = mlevel.

Case 3. Both max-volume and min-volume min-cut are k-feasible but not
m-packable.

Note that this condition does not guarantee that there is no k/m-feasible cut
existing in N ′

v. Therefore, we try to do a local cut enumeration in hope of finding
a k/m-feasible cut.

To search for a k/m-feasible cut, perhaps the most natural way is to do a lo-
cal cut enumeration within the cone defined by the max-volume-k-feasible-cut.
However, unlike a max-volume-min-cut, the max-volume-k-feasible-cut may
not be unique. Moreover, there is no good algorithm to find the max-volume-
k-feasible-cut. Furthermore, it is intuitive to think that if the max-volume-
min-cut (X , X ′) is not m-packable, a cut outside or across it may not likely be
k/m-feasible, since it will have more fanins, tending to require more product
terms in its sum-of-product representation. Therefore, in order to search for a
k/m-feasible cut under Case 3, we only enumerate cuts inside X ′ to see if they
are k/m-feasible.
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To do a local cut enumeration in a cone Cv, first we mark all inputs to Cv as
pseudo-PIs and then go through all nodes inside Cv in topological order from
pseudo-PIs and enumerate all k-feasible cuts for every node v by the following
equation, where x and y are the fanins of v2:

Cut(v) = ({(Cx − x, x)} ∪ Cut(x))
⊗

k({(Cy − y , y)} ∪ Cut( y)) [Cong et al. 1999].

Cut(x) is the set of k-feasible cuts for node x. The notation (Cx − x, x) refers to
the cut that cuts off the single node x.

⊗
k is a merging operator defined on two

cut sets; S1
⊗

k S2 means merge every cut cut1 in S1 with every cut cut2 in S2
and only keep the k-feasible cuts in the result.

After the enumeration process, we check Cut(v) to see if there is an m-
packable cut. If there exists a k/m-feasible cut, node v can be labeled as mlevel;
otherwise, it will be labeled as mlevel + 1.

The pseudocode for the labeling phase is shown in Figure 2. For all the nodes,
we record the k/m-feasible cuts which correspond to their labels.

3.4.2 Mapping Phase. The second phase of our algorithm is to generate the
k/m-macrocells in the mapping solution. For every node v, basd on the k/m-
feasible cut (X , X ′) found in labeling phase, we can create a k/m-macrocell
map node(v) for v to implement the function of X ′ and input(map node(v)) =
input(X ′). The mapping phase is very similar to the mapping phase in
FlowMap [Cong and Ding 1994]. The detailed description is shown in
Figure 2.

3.4.3 Properties of the k m flow Algorithm. We can prove the following
properties for the algorithm discussed above:

(1) If a node v is labeled as label(v), it can then be implemented with a depth
no more than label(v). That is, label(v) is the upper bound estimation of the
depth of v in the mapping solution.

(2) If Case 3 never happens when mapping a specific circuit, then the mapping
solution is delay optimal. Indeed, it is just the same as k-LUT mapping.

(3) For any certain circuit, if the optimal depth for k-LUT-based mapping is d1,
the optimal depth for k/m-macrocell-based mapping is d2 and the depth of
k m flow mapping result is d3, then d1 ≤ d2 ≤ d3.

3.5 Area Enhancement

After obtaining a k/m-macrocell mapping solution, we want to further reduce
the number of k/m-macrocells in the mapping solution without increasing its
depth.

2Although in problem formulation the given network is k-bounded, our algorithm is imple-
mented for a two-bounded given network as it is proved in Cong and Hwang [1996] that any
network can be fully decomposed into a two-bounded network without deteriorating the map-
ping quality. Therefore the cut enumeration equation provided here is for a two-bounded net-
work. Of course it can be generalized to a k-bounded network at the cost of higher computation
complexity.
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Fig. 2. Pseudocode of k m flow algorithm.

For every k/m-macrocell v, we try to pack as many of its predecessors with
it as possible into a single k/m-macrocell. Clearly we need to guarantee the
condition that the new k/m-macrocell is still k/m-feasible. In order to do so, we
try to combine v with any of its fanins and then check if they can be packed into
one k/m-macrocell. After v and one of its fanins have been successfully packed
together, a new node v′ will be formed to replace v in the mapping solution. It
could be that some of the fanins of v′ (input(v′) = input(v) ∪ input(fanin)) can
still be packed together with v′. Therefore, the above greedy packing process will
be repeated until no more nodes can be packed. The detailed packing algorithm,
k m pack, is shown in Figure 3. On average, the total number of macrocells in
the mapping solution may be reduced by a factor of 6% after the above packing
process.
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Fig. 3. Pseudocode of k m pack algorithm.

Table I. Description of 16 Benchmark Circuits

Circuit duke2 C499 frg2 rot ex4p apex6 x3 apex5
#node 382 398 695 696 699 714 768 827
#PI 22 41 143 135 128 135 135 117
#PO 29 32 139 107 28 99 99 88
level 10 19 12 22 11 16 12 11
Circuit i8 C2670 s5378 mm30a pair C3540 alu4 des
#node 917 1299 1317 1500 1556 2097 2347 3026
#PI 133 233 196 124 173 50 14 256
#PO 81 64 210 121 137 22 8 245
level 12 26 24 108 18 42 14 15

3.6 Experiment Result

Our algorithm, k m flow, has been implemented in C language within the
Berkeley SIS and UCLA RASP [Cong et al. 1996] framework. We chose a set
of 16 MCNC benchmarks to test k m flow on a Sun Ultra II workstation with
512M memory. Table I shows the size of the 16 benchmark circuits before map-
ping (all are two-bounded networks).

In order to find out the optimal mapping depth for each benchmark and
compare it with the k m flow mapping solution, we implemented an algo-
rithm called k m enumerate. The k m enumerate algorithm can find the depth-
optimal mapping solution by performing an exhaustive cut enumeration in the
entire network, as proposed in Section 3.3. We would like to point out that
k m enumerate is impractical to use for a large k. We use it only to collect data
to analyze the optimality of k m flow algorithm.

In Table II, we list the mapping depth generated by k m flow and
k m enumerate under a different k and m. The data is in the form of x/ y ,
where x is the depth of mapping solution generated by k m flow and y is the
optimal mapping depth obtained by k m enumerate under the specified k and
m. A question mark ? means the optimal depth is still unknown because of the
extremely long runtime and large memory requirement of k m enumerate for
a large k. From Table II, we can see that although k m flow cannot guarantee
delay optimality in theory, in practice it is almost always able to find out the
depth-optimal mapping solution.
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Table II. Experimental Results Show that the k m flow Algorithm Can Achieve Depth-Optimal
Mapping in Practice

k = 6 k = 8 k = 10
Circuit m = 6 m = 7 m = 8 m = 9 m = 8 m = 9 m = 10 m = 11 m = 10 m = 11 m = 12 m = 13
duke2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
C499 5/5 5/5 4/4 4/4 4/? 4/? 4/? 4/? 3/3 3/3 3/3 3/3
frg2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
rot 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4
ex4p 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
apex6 4/4 4/4 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3
x3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/2 2/2 2/2 2/2
apex5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
i8 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
C2670 7/7 7/7 6/6 6/6 6/6 6/6 6/6 6/6 4/4 4/4 4/4 4/4
s5378 7/7 7/7 7/7 7/7 6/6 5/5 5/5 5/5 5/? 5/? 4/4 4/4
mm30a 21/21 21/21 21/21 21/21 20/20 20/20 20/20 17/? 19/? 15/? 15/? 15/?
pair 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3
C3540 11/11 11/11 10/10 10/10 9/? 9/? 8/8 8/8 8/? 8/? 7/? 7/?
alu4 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4
des 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/? 3/? 3/? 3/?

Table III. Total Mapping Depth of k/m-Macrocell Versus k-LUT on 16 MCNC Benchmarks

Total depth for k/m-macrocell
by k m flow Total depth for k-LUT

m = k m = k + 1 m = k + 2 m = k + 3 by FlowMap
k = 6 99 99 96 96 95
k = 7 90 88 87 87 81
k = 8 84 83 82 78 75
k = 9 74 73 71 68 65
k = 10 73 70 67 67 62

Table IV. Total Number of k/m-Macrocells Versus Total Number of k-LUTs on 16 MCNC
Benchmarks

Total # of k/m-macrocells
by k m flow Total # of k-LUTs

m = k m = k + 1 m = k + 2 m = k + 3 by FlowMap
k = 6 7872 7728 7607 7554 7419
k = 7 6742 6574 6528 6496 6349
k = 8 6045 5971 5908 5909 5646
k = 9 5628 5526 5535 5513 5275
k = 10 5148 5128 5105 5075 4789

We also compare the k/m-macrocell mapping solution generated by k m flow
with k-LUT mapping solution generated by FlowMap. Table III shows the total
mapping depth of k/m-macrocell vs. k-LUT on the 16 benchmarks. Table IV
shows the total number of macrocells vs. the total number of k-LUTs on
16 benchmarks. FlowMap is a depth-optimal k-LUT mapping algorithm based
on flow computation. Since k/m-macrocells can be regarded as k-LUTs with
additional m-product-term constraints, the optimal depth of a k-LUT mapping
solution is the lower bound of the optimal depth of a k/m-macrocell mapping
solution.
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Table V. Quick Success Rate of Flow Computation in
k m flow on 16 Benchmarks

m = k m = k + 1 m = k + 2 m = k + 3
k = 6 99% 99% 99.6% 99.8%
k = 7 97% 98% 99% 99%
k = 8 97% 98% 98% 99%
k = 9 96% 96% 97% 97%
k = 10 96% 96% 97% 97%

We can see that the mapping results of k m flow (both depth and number of
macrocells) are close to the k-LUT mapping results when m = k + 3. It implies
that the k/m-macrocell is almost equivalent to a k-LUT if m is slightly larger
than k. This observation is consistent with the results reported by Kouloheris
[1993 (p. 75)] where the author claimed the number of product terms needed to
implement the function of a k-LUT grows almost linearly with k. Increasing the
flexibility of the macrocell by allowing more product terms to be implemented
will not significantly improve the performance.

The k m flow algorithm is a hybrid of flow computation and cut enumera-
tion. The complexity of flow computation is O(n2) [Cong and Ding 1994]. The
complexity of cut enumeration can be estimated as O(npq2),3 where n is the
number of nodes in the network, and p is max{size of max-volume-k-feasible
cone}, and q is the max number of k-feasible cuts inside any cone. The equation
assumes we will do a cut enumeration for every node in a cone of size p. The
conservative estimation on the complexity to enumerate all k-feasible cuts for
a single node is O(q2) because the input network is two-bounded. In order to
get a polynomial complexity, we can bound the number of cuts enumerated by
a constant number. Therefore, the complexity of k m flow is bounded by the
complexity of flow computation O(n2).

The percentage of nodes where the max-volume or min-volume k-feasible
cut returned by flow computation is m-packable is called quick success rate.
Quick success rate is a characteristic of individual network and may differ from
network to network. Fortunately, the quick success rate is on average 98% for
k = 6, 7, . . . , 10 and m = k, k +1, . . . , k +3 of the 16 benchmarks. Detailed data
is shown in Table V. It implies that k m flow has a complexity close to O(n2) in
practice. It is understandable that due to this high success rate, k m flow will
use almost the same cuts as FlowMap finds to create macrocells, resulting in
the similar mapping depth.

From our observations on the range k = 6 to 10, the cones in which cut
enumeration is performed are usually small, with less than 50 nodes inside. An
exhaustive cut enumeration on a small network with no more than 50 nodes
usually runs very fast. Therefore, the k m flow algorithm shall be an efficient
algorithm to generate the k/m-macrocell mapping solution for medium k. For
a large k, the cone may be large and even the local cut enumeration may take
a long time to finish. Table VI shows the total CPU time (in seconds) needed to
generate all the mapping solutions for 16 benchmarks. Since the quick success

3Assume cut enumertation is done on a two-bounded network.
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Table VI. Total CPU Runtime of k m flow Algorithm on
16 Benchmarks

m = k m = k + 1 m = k + 2 m = k + 3
k = 6 105.9 101.7 96.8 96.1
k = 7 149.1 106.0 106.4 105.3
k = 8 119.0 119.0 118.7 119.3
k = 9 140.0 137.8 138.4 138.7
k = 10 210.5 207.8 206.3 207.6

Fig. 4. k/m logic block.

Fig. 5. 4-LUT logic block.

rate is usually very high, in practice, skipping local enumeration may cause
little impact on the mapping quality and may save the runtime.

4. INVESTIGATION OF k/m-MACROCELL-BASED ARCHITECTURES

In Section 3 we used the unit area and the unit delay model to evaluate the qual-
ity of our k/m-macrocell mapping algorithm. In order to collect more accurate
delay and area information to draw an architectural study conclusion, we use
VPR [Betz et al. 1999], an FPGA placement and routing tool developed at the
University of Toronto, to do placement and routing for our k/m-macrocell-based
architecture and compare this architecture with the traditional 4-LUT-based
architecture in terms of total area and critical path delay.

4.1 Area and Delay Models

Figure 4 shows the schematic diagram of the logic block used in our k/m-
macrocell-based architecture (we call it the k/m the logic block). Figure 5 shows
the logic block used in 4-LUT-based architecture [Betz et al. 1999] (we call it
the 4-LUT logic block). Since the area of a logic block is greatly affected by the
number of transistors in the basic cell, we use the ratio between the number
of transistors in k/m-macrocell and that in 4-LUT to estimate the ratio of the
area of the two logic blocks (i.e., k/m logic block vs. 4-LUT logic block). For the
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Fig. 6. Schematic diagram of k/m-macrocell.

logic block delay, we assume that it is proportional to the number of transistors
on the longest path of the basic cell.

4.1.1 Detailed Description of k/m-Macrocell Implementation. Our k/m-
macrocell consists of k inverters, km 3:1 MUXs, km 2-bit-SRAMs, m 1-bit-
SRAM, km 2:1 MUXs, m k-input AND blocks, and one m-input OR block shown
in Figure 6. The 3:1 MUX in the product-term block is used to choose x, x ′, and
1 for each input, so its logic function is f = xab + yab′ + a′ = yb′ + xb + a′ =
p′ + a′ = (pa)′, p = yb + xb′. Therefore it can be implemented by the circuit
shown in Figure 7(a), costing eight transistors. (We assume that SRAM can
provide both data and its complementary, i.e., b′ is provided.) There are three
transistors on the longest path a signal would pass (one pass transistor and
two n-transistors). The 2:1 MUX can be implemented by the circuit shown in
Figure 7(b). It costs four transistors and there is one pass transistor in the
longest path. The 1-bit-SRAM needs six transistors (see Betz et al. [1999], pp.
208, for the schematic diagram) and 2-bit-SRAM needs 12 transistors. The x-
input AND block and y-input OR block can be implemented by multiple-level
NAND gates and NOR gates. Here we adopt two-level gates to implement them
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Fig. 7. 3:1 MUX and 2:1 MUX.

Fig. 8. x-input AND blocks.

as shown in Figures 8 and 9. The number of transistors used in the block is listed
in the figures. For a z-input NAND (NOR) gate, there are z n-transistors (p-
transistors) on the longest path; thus the number of transistors on the longest
path of each x-input AND block and y-input OR block are listed as follows:

7-input AND block: 3 + 3 = 6; 10-input OR block: 3 + 3 = 6;
8-input AND block: 3 + 3 = 6; 11-input OR block: 4 + 3 = 7;
9-input AND block: 3 + 3 = 6; 12-input OR block: 4 + 3 = 7;
10-input AND block: 3 + 4 = 7; 13-input OR block: 4 + 4 = 8.

4.1.2 Transistor Count for k/m-Macrocell Area Estimation. The total tran-
sistor number of a k/m-macrocell is the sum of following items: k invert-
ers (2k transistors), km 2-bit-SRAM (12km transistors), km 3:1 MUX (8km
transistors), m 2:1 MUX (4m transistors), m 1-bit-SRAM (6m transistors), m
k-input AND block (m× (#transistors per k-input AND)), and 1 m-input OR
block (#transistors per m-input OR), that is, 2k + 20km+ 10m+ m× (#transis-
tors per k-input AND)+#transistors per m-input OR.
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Fig. 9. x-input OR blocks.

Fig. 10. Schematic diagram of 4-LUT-cell.

4.1.3 Transistor Count for k/m-Macrocell Delay Estimation. The longest
path a signal would pass in the k/m-macrocell consists of an inverter, a 3:1
MUX, a k-input NAND block, a 2:1 MUX, and an m-input NAND block. There-
fore the number of transistors in the longest path of k/m-macrocell is

k = 7, m = 10: 1 + 3 + 6 + 1 + 6 = 17;
k = 8, m = 11: 1 + 3 + 6 + 1 + 7 = 18;
k = 9, m = 12: 1 + 3 + 6 + 1 + 7 = 18;
k = 10, m = 13: 1 + 3 + 7 + 1 + 8 = 20.

4.1.4 Transistor Count for 4-LUT Area and Delay Estimation. The 4-LUT
cell we compare to is shown in Figure 10. Because we use four transistors to
implement the 2:1 MUX, there should be extra four inverters for four inputs to
provide their complementaries which are not drawn in this figure. This 4-LUT
actually consists of 16 1-bit SRAMs, 4 inverters, and 15 2:1 MUXs. Therefore the
total number of transistors used in this 4-LUT cell is 16×6+15×4+4×2 = 164.
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Table VII. k/m Logic Block Area Estimation

k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13
#Trans. of k/m-macrocell 1742 2156 2616 3148
#Trans. of k/m-macrocell vs.
#Trans. of 4-LUT cell 10.6 13.2 16.0 19.2
Assumed delay ratio of
k/m-macrocell vs. 4-LUT cell 3.4 3.6 3.6 4.0

The longest path a signal would pass is from an inverter to each level of 2:1
MUX; thus there are five transistors in the longest path.

Therefore, based on the above transistor counting and the estimation model
for the logic block, we have the area and delay ratio of k/m-macrocell versus
4-LUT cell listed in the Table VII.

4.2 Experimental Setting of VPR

We used VPR version 4.22 to do placement and routing for the mapping solution
of the k/m-macrocell-based architecture and that of the 4-LUT-based architec-
ture. The authors of VPR extensively studied area/delay tradeoff for 4-LUT-
based architecture. They proposed a detailed 4-LUT-based FPGA architecture
under TSMC’s 0.35-µm, 3.3-V process [Betz et al. 1999]. The 4-LUT logic block
they proposed is identical to what Figure 5 shows. Two corresponding routing
architecture files are attached with VPR package. In terms of interconnect con-
figuration, one is simple and thus offers less area but a larger delay (we call
it RA1), and the other is more complicated and offers a smaller delay but at
a cost of larger area (we call it RA2). RA1 uses only buffer switched wires of
length 1, while RA2 uses 50% buffer switched wires of length 4 and 50% pass
transistor switched wires of length 4. As we only wanted to compare two archi-
tectures rather than getting an absolute result, it was reasonable to scale the
area and delay parameters in the architecture file of 4-LUT-based architecture
according to the area and delay estimation ratio between k/m logic block and
4-LUT logic block as discussed in Section 4.1 in order to derive the routing ar-
chitecture file for k/m-macrocell-based architecture, that is, we compared our
k/m-macrocell-based architecture with their 4-LUT-based architecture by only
changing the parameters related to the area and delay of the logic block in the
routing architecture files.

VPR reports routing area in the number of min-width transistors and the
delay of critical path in seconds. We added up the logic block area to the routing
area and got the total area of each mapping solution.

4.3 Experimental Results

We compared k/m-macrocell-based architecture with 4-LUT-based architecture
by running VPR on their mapping solutions for the 16 MCNC benchmarks
under the experimental settings mentioned above. The k/m-macrocell mapping
solutions were obtained by running k m flow algorithm and then performing
k m pack to further reduce the number of macrocells. The 4-LUT mapping
solutions were obtained by running FlowMap followed by greedy-pack.
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Table VIII. Normalized Area and Delay of k/m-Macrocell-Based Architecture on the
16 Benchmarks

Results under routing architecture RA1
k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13

Ak/m tile/A4−LUT tile 1.56 1.70 2.16 2.15
Total area 1.15 1.20 1.16 1.27
Crit. path delay 0.79 0.75 0.68 0.67
Routing area percentage 59% 56% 52% 48%

Results under routing architecture RA2
k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13

Ak/m tile/A4−LUT tile 1.46 1.59 1.47 2.03
Total area 0.85 0.86 0.81 0.83
Crit. path delay 0.86 0.81 0.74 0.73
Routing area percentage 71% 67% 63% 58%

Based on the estimation ratio discussed in Section 4.1, the average to-
tal area and critical path delay comparison between these two architectures
are shown in Table VIII. Ak/m tile refers to the area of the max-basic tile in
k/m-macrocell-based architecture, which is the sum of the area of k/m logic
block and the max-routing area per tile among the 16 benchmarks. A4−LUT tile
refers to the area of the max-basic tile in 4-LUT-based architecture, which is
the sum of the area of 4-LUT logic block and the max-routing area per tile
among the 16 benchmarks. The area and delay of k/m-macrocell-based archi-
tecture were normalized with 4-LUT’s =1. We compared the total area and
critical path delay of the two architectures under the two routing architectures
RA1 and RA2 mentioned in Section 4.2. We also reported the routing area
percentage in k/m-macrocell-based architecture on the 16 benchmarks after
routing.

For LUT-based FPGA, when k is small, most of the area is devoted to routing.
With the increase of k, routing area decreases, but the area increase of logic
blocks could be more than the decrease of routing area. Because the area of
k/m-macrocell blocks does not grow exponentially as k-LUT does, the logic
block area is much less than k-LUT-based architecture’s; thus the total area
decreases. Since the logic depth and routing area decrease, the total critical
path delay decreases.

From the results, we can see that k/m-macrocell-based architecture can have
14–31% delay reduction with more area in RA1 and less area in RA2 when
compared to 4–LUT-based architecture.

5. CONCLUSIONS AND FUTURE WORKS

We have studied a novel FPGA architecture based on k/m-macrocells through
this article and proposed a k/m-macrocell technology mapping algorithm,
named k m flow. In a set of 16 MCNC benchmarks, it produces optimal map-
ping depths in most test cases. Using this algorithm and this set of benchmarks,
we have shown that k/m-macrocell-based FPGAs are similar to k-LUT-based
FPGAs in terms of the mapping depths and the number of macrocells being
used. The high quick success rate (Table V) suggests that k/m-macrocell can
provide similar flexibility to a lookup table while each k/m-macrocell is much
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smaller than a k-LUT. We have analyzed the delays and areas of k/m-macrocell-
based FPGAs using VPR on this set of benchmarks. We compared the results
with those of traditional 4-LUT-based FPGAs. Our comparison has shown that
k/m-macrocell-based FPGAs can significantly outperform 4-LUT-based FPGAs
in terms of delay.

Future works includes two directions. (i) We can use a packing process to pack
mapped k/m-macrocells into multiple-output macrocells in order to support
CPLDs mapping. (ii) As the area and delay models we used for k/m-macrocells
in Section 4 are primitive, a more accurate and detailed model needs to be
studied.

ACKNOWLEDGMENTS

The authors would like to thank Professor David Lewis and Dr. Vaughn Betz
for their helpful comments and discussion.

REFERENCES

ALTERA CORP. 2000. MAX 700B, Programmable Logic Device Family. San Jose, CA. Web site: www.
altera.com.

ALTERA CORP. 2001. APEX II, Programmable Logic Device Family. San Jose, CA. Web site: www.
altera.com.

ANDERSON, J. H. AND BROWN, S. D. 1998. Technology mapping for large complex PLDs. In Proceed-
ings of the Design Automation Conference. 698–703.

BETZ, V., ROSE, J., AND MARQUARDT, A. 1999. Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic, Norwell, MA.

BRAYTON, R., SANGIOVANNI-VINCENTELLI, A., HACHTEL, G., AND MCMULLIN, C. 1984. Logic Minimiza-
tion Algorithms for Digital Circuits. Kluwer, Norwell, MA.

CONG, J., CHEN, D., ERCEGOVAC, M., AND HUANG, Z. 2001. Performance-driven mapping for CPLA
architecture. In Proceedings of the ACM International Symposium on FPGA. 39–47.

CONG, J. AND DING, Y. 1994. An optimal technology mapping algorithm for delay optimization in
lookup-table based FPGA designs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 13, 1, 1–
12.

CONG, J. AND DING, Y. 1996. Combinational logic synthesis for LUT based field programmable
gate arrays. ACM Trans. Des. Automat. Electron. Syst. 1, 2, 145–204.

CONG, J., HUANG, H., AND YUAN, X. 2000. Technology mapping for k/m-macrocell based FPGAs. In
Proceedings of the ACM International Symposium on FPGA. 51–59.

CONG, J. AND HWANG, Y. 1996. Structural gate decomposition for depth-optimal technology map-
ping in LUT-based FPGA. In Proceedings of the Design Automation Conf. 726–729.

CONG, J., PECK, J., AND DING, Y. 1996. RASP: A general logic synthesis system for SRAM-based
FPGAs. In Proceedings of the ACM International Symposium on FPGA. 137–143.

CONG, J., WU, C., AND DING, Y. 1999. Cut ranking and pruning: Enabling a general and efficient
FPGA mapping solution. In Proceedings of the ACM International Symposium on FPGA. 29–35.

CYPRESS SEMICONDUCTOR CORP. 2000. The Cypress Data Book. San Jose, CA. Web site: www.

cypress.com.

FRANCIS, R. J., ROSE, J., AND VRANESIC, Z. G. 1991a. Chortle-CRF: Fast technology mapping for
lookup table-based FPGAs. In Proceedings of the Design Automation Conference. 227–233.

FRANCIS, R. J., ROSE, J., AND VRANESIC, Z. G. 1991b. Technology mapping of lookup table-based
FPGAs for performance. In Proceedings of the International Conference on Computer Aided De-
sign. 568–571.

HASAN, Z., HARRISON, D., AND CIESIELSKI, M. 1992. A fast partition method for PLA-based FPGAs.
IEEE Des. Test Comput. 9, 4, 34–39.

KAVIANI, A. AND BROWN, S. 1999. The hybrid field-programmable architecture. IEEE Des. Test
Comput. 16, 74–83.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Technology Mapping and Architecture Evaluation • 23

KAVIANI, A. S. 1999. Novel architecture and synthesis methods for high capacity field pro-
grammable devices. Ph.D. dissertation. University of Toronto, Toronto, Ont., Canada.

KOULOHERIS, J. L. 1993. Empirical study of the effect of cell granularity on FPGA density and
performance. Ph.D. dissertation. Stanford University, Stanford, CA.

KOULOHERIS, J. L. AND GAMAL, A. E. 1992. PLA-based FPGA area versus cell granularity. In Pro-
ceedings of the IEEE Custom Integrated Circuits Conference. 4.3/1–4.

KRISHNAMOORTHY, S. AND TESSIER, R. May 2003. Technology mapping algorithms for hybrid FPGAs
containing lookup tables and PLAs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 22, 5, 545–
559.

LATTICE SEMICONDUCTOR CORP. 2000. The Lattice Data Book. Hillsboro, OR. Web site: www.

latticesemi.com.
ROSE, J., FRANCIS, R. J., LEWIS, D., AND CHOW, P. Ct. 1990. Architecture of field programmable gate

arrays: The effect of logic block functionality on area efficiency. IEEE J. Solid State Circ. 25, 5,
1217–1225.

XILINX INC. 2001. Virtex-II Field-Programmable Gate Arrays. San Jose, CA. Web site: www.xilinx.
com.

Received April 2003; revised August 2003; accepted January 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Editorial

Welcome to a new issue of ACM TODAES, and a very Happy New Year to all
readers!

I started as the new Editor-In-Chief (EIC) of TODAES in August 2004, hav-
ing taken over from the previous EIC, Prof. Mary Jane Irwin. Prof. Irwin pro-
vided outstanding leadership and worked tirelessly for the journal during her
tenure: she handled the difficult (and thankless!) task of transitioning from the
manual submission process to the current electronic scheme (ACM Manuscript
Central) in January 2003; she diligently monitored the growing backlog of ac-
cepted articles; she sought additional funds from SIGDA to publish oversized
“phonebook” issues to accommodate and eliminate the backlog of additional
accepted articles when we were constrained by ACM’s annual page limit bud-
get; she solicited tutorial articles from top researchers to cover state-of-the-art
in new CAD topics. . . . I could go on and fill this whole page, but it suffices to
say that I am stepping into some pretty big shoes! We owe Prof. Irwin a big
thank you for her dedicated service as the EIC of TODAES from 1998 through
2004. We also thank Susan Benner for her help as the Editorial Assistant un-
der EIC Irwin. Melanie Sanders has taken over as Editorial Assistant for ACM
TODAES.

With this issue, our roster of Associate Editors (AEs) has also undergone
some changes. AEs Steve Levitan and Irith Pomeranz have retired and we
thank them for their efforts in handling articles related to system design and
testing/reliability. I am pleased to announce the addition of four new AEs: Prof.
Tim Cheng (University of California, Santa Barbara), Prof. Sharon Hu (Uni-
versity of Notre Dame), Prof. Sharad Malik (Princeton University), and Pro-
fessor Hans-Joachim Wunderlich (University of Stuttgart). Together, they both
broaden and strengthen the technical reach of ACM TODAES in the areas of
testing, real-time CAD, platform-based design, and formal methods. Please join
me in welcoming them aboard ACM TODAES!

I have also appointed Prof. Prabhat Mishra (University of Florida) to serve
as Information Director for ACM TODAES. He has updated the TODAES Web
page and you can see the results at http://www.acm.org/todaes/.

Several changes and clarifications in the policies for ACM TODAES are being
developed, including policies for submission of manuscripts that are extended
versions of archival conference/workshop articles, recommended lengths for
manuscripts, goals for improving turnaround time, invitation of tutorial/survey
articles, special issues of the journal, etc. These changes and updates will be
reflected on the TODAES Web site, so please visit the Web site and famil-
iarize yourself with the updated policies before submitting a manuscript for
review.

I welcome feedback on any issues you’ve encountered with ACM TODAES,
and, of course, suggestions for how we might improve ACM TODAES. I look
forward to starting my term as EIC of TODAES and solicit technical contri-
butions that will expand the quality, reach, and visibility of ACM TODAES to
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make the journal a valuable archival resource for the entire electronic design
automation community.

NIKIL DUTT

Editor-In-Chief
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1. INTRODUCTION

In modern processor designs, pipelining is the most popular fashion to increase
overall performance. Since Alidina et al. [1994] first applied precomputation
on sequential logic to achieve low power, much work has been published on
synthesis for low-power pipelined CMOS circuits. We categorize this previous
work into three groups.

The first group covers approaches where pipeline registers are immovable.
Techniques like precomputation [Alidina et al. 1994], gated pipeline registers
[Ye and Irwin 1999; Kapadia et al. 1999], and guarded evaluation [Tiwari et al.
1998; Munch et al. 2000] belong to this category. Unfortunately, as for these ap-
proaches registers are immovable, further improvements are limited. Another
limitation is that they require additional control logic.

In the second category, pipeline registers are movable. Approaches like retim-
ing [Moterio et al. 1993] and repositioning of registers in datapaths [Schimpfle
et al. 1997] belong to this category. However, no effort is made to modify the
combinational logic blocks.

Approaches of the third category reduce the size of active registers and logic
blocks using partition techniques [Choi and Hwang 1999]. Choi and Hwang
[1999] partitioned the combinational logic block of a pipelined circuit into mul-
tiple subcircuits by recursively applying Shannon expansion with respect to the
selected input variables. Furthermore, Ruan et al. [1999, 2001] showed that
partitioning circuits into more than two sections does not always save power
due to the overhead of duplicated input registers and output multiplexors.

Some preliminary work on combining techniques of bipartitioning and re-
timing has been done in Ruan et al. [1999] and Chen et al. [2001] , but the
inability to extract the most active portion may make this approach inappli-
cable in the real world. In this article, we take advantage of bipartitioning
and encoding techniques toward optimizing power consumption of pipelined
circuits. As in Ruan et al. [1999] and Chen et al. [2001], we consider a pipeline
architecture where combinational logic blocks are separated by edge-triggered
registers that are driven by a single clock signal. We propose a bipartition
dual-encoding architecture to decrease power consumption of pipelined CMOS
designs. Our approach is based on the observation that the pipeline registers
take a large fraction of total power dissipation for most of the circuits. Table I
shows that in our experiments pipeline register account for 64.6% of the total
power budget on average. In order to address this issue, we first bipartition a
given circuit by using Shannon expansion to minimize the number of different
outputs of both subcircuits [Micheli 1994]. Second, we encode both partitions
to reduce the switching activities of the pipeline registers and logic blocks. To
validate the results, we employ the accurate transistor-level power estimator
EPIC PowerMill1 to estimate power dissipation.

The rest of the article is organized as follows. In Section 2, we present
bipartition and bipartition single-encoding architectures and discuss their
characteristics. Further, our new bipartition dual-encoding architecture is

1EPIC PowerMill was developed by EPIC Design Technology, Inc.
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Table I. Power Dissipation of Registers for Several MCNC Benchmarks

Circuits sao2 9sym con1 misex1 rd53 rd73 rd84 sqrt8 xor5 t481 Ave.

Reg.% 59.2 42.2 87.4 74.7 68.5 62.1 49.9 64.6 81.4 91.0 64.6

Fig. 1. First bipartition architecture (a) and bipartition architecture based on output extraction (b).

presented. The synthesis algorithms for the proposed architecture are pre-
sented in Section 3. The experimental results and conclusions are given in
Sections 4 and 5.

2. BIPARTITIONING AND ENCODING ARCHITECTURES

In Figure 1(a), a bipartition architecture based on Shannon expansion [Choi
and Hwang 1999] is shown. Depending on the value of SEL, only one of the
subcircuits is active while the other is disabled. Power saving is achieved if each
of the two subcircuits consumes less power than a direct implementation. The
disadvantage of this architecture is that duplicated registers always increase
the area overhead and limit power saving.

Figure 1(b) shows the second bipartition architecture. Compared to Fig-
ure 1(a), the SEL signal is generated by GCB (global control block). The basic
concept of this approach is to assign a few but frequently occurring outputs
to form a (small) module Subcircuit1 while the remaining (less frequently oc-
curring) outputs are moved to Subcircuit2 (see Figure 1(b)). Depending on the
activity of the outputs, the architecture can have significant power reduction,
even though the duplicated registers and the selection logic (GCB) may incur
area and power overheads.

Starting from Figure 1(b), we now replace the highly active Subcircuit1 with
an encoder-decoder (codec) architecture to reduce the internal switching activity
of R1 and logic block (Figure 2(a)). Notice that Encoder not only encodes the k
frequently occurring output pattern with minimal Hamming distance but also
generates the selection signal (SEL). The interested reader may refer to Ruan
et al. [1999] for a further analysis on this topic.

Based on the previous architectures, we propose a new bipartition dual-
encoding approach for lowpower pipelined circuits. The main idea of this ap-
proach is to partition circuits using Shannon expansion for simplifying selec-
tion logic. Then we encode both subcircuits to reduce size as well as switching
activity of registers. In Figure 2(b), the bipartition dual-encoding architecture
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Fig. 2. A bipartition single-encoding (a) and dual-encoding (b) architecture.

is shown. Only one of the input signals is selected as partition variable SEL
but all input signals feed into the Encoder, which encodes the output with min-
imal register size and Hamming distance. Depending on SEL, either R1 and
Decoder1 or R2 and Decoder2 are activated.

3. SYNTHESIS OF THE BIPARTITION DUAL-ENCODING ARCHITECTURE

3.1 Bipartition Algorithm

The choice of partition variable SEL is critical in the bipartition dual-encoding
architecture. To find a suitable solution, we use a brute force approach to test
and rate all (i.e., n, where n is the number of input pins) possible configurations.
This approach is acceptable as n is usually small (less than 100).

In detail, each variable is selected as partition variable and the PLA is parti-
tioned accordingly. Based on the partitioned PLA table, the number of different
output pattern are determined for partition1 and partition2. These numbers
are denoted as OP1 and OP2, respectively, in the following. Next, the configura-
tion is rated according to w = max(�log2(OP1)�, �log2(OP2)�). Finally, the con-
figuration which gives a minimal rating w is selected as the final bipartitioning
result.

3.2 Encoding Algorithm

As total power dissipation mainly depends on the switching activity of the
pipeline registers, we try to encode the output pattern so that the hamming
distance between pattern with a high transition probability is minimal. Usually
this will also have a positive effect on the power consumed by the combinational
logic blocks Decoder1 and Decoder2.

The encoding problem consists of choosing codes for the outputs of both sub-
PLAs that minimize the switching probability. As described in Section 3.1, two
sub-PLAs, PLA1 and PLA2, are obtained after bipartitioning. The number of
output patterns of PLA1 and PLA2 are denoted as OP1 and OP2, respectively.
Therefore, the output bit width of the encoder is max(�log2 OP1�, �log2 OP2�).
The PLA with the maximum number of different outputs is denoted as PLAx in
the following. Next, we adopt the heuristic algorithm introduced in Benini and
Micheli [1995] to encode PLAx . The other PLA (denoted as PLAy ) is encoded
using the output pattern of PLAx as follows: the (not encoded) output pat-
terns of both PLAs are sorted in decreasing order of their occurrence frequency.
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The sorted patterns are denoted as sort(PLAx) and sort(PLAy ). Further, the en-
coded values are also sorted according to sort(PLAx). Finally, encoding of PLAy
is determined by assigning the first pattern of sort(PLAy ) to the first pattern
from the sorted encoding list, and so on.

Example. Consider an original combinational block with the following truth
table:

input x0x1x2 000 001 010 011 100 101 110 111
output y0 y1 y2 000 000 001 001 111 111 111 010

If we choose x0 as partition variable SEL, PLA1 and PLA2 become:

PLA1 PLA2
SEL (= x0) x1x2 y0 y1 y2 SEL (= x0) x1x2 y0 y1 y2

0 00 000 1 00 111
0 01 000 1 01 111
0 10 001 1 10 111
0 11 001 1 11 010

From the truth tables we determine the encoder output width to be 1 bit
(each sub-PLA uses only two different output patterns). From PLA1 and PLA2
we determine the output frequency of each pattern:

PLA1 PLA2
y0 y1 y2 frequency y0 y1 y2 frequency

000 2 111 3
001 2 010 1

As both PLAs are having the same number of different outputs (2) we ran-
domly choose PLA1 to be encoded first. Assume that pattern output 000 is en-
coded as 0 and 001 is encoded as 1. As a result, we get the following assignments:

PLA1 PLA2
y0 y1 y2 frequency encoding y0 y1 y2 frequency encoding

000 2 0 111 3 0
001 2 1 010 1 1

Note that the encoding column for PLA2 is obtained by simply copying the
encoding column of PLA1. Hence, the truth table for the encoder is

x0x1x2 000 001 010 011 100 101 110 111
encoded outp. 0 0 1 1 0 0 0 1

As a result, the truth tables for Decoder1 and Decoder2 are

Decoder1 Decoder2
encoded input y0 y1 y2 encoded input y0 y1 y2

0 000 0 111
1 001 1 010

Compared to an optimal output (state) assignment approach, the biparti-
tioning technique may deliver additional switching reduction. For example,
assume that there are four outputs a, b, c, and d with probability pa = 0.7,
pb = pc = pd = 0.1 (output transitions takes place randomly and independent
from the current output value). Optimal assignment requires 2 output bits, for
example, with assignments a = 00, b = 01, c = 10, and d = 11. As a result,
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on average 0.64 state bits will flip from clock cycle to clock cycle (note that a
“transition” from d to d is also permitted).

Now assume that we bipartition the output space so that a and b are assigned
to partition P1 and c and d are assigned to partition P2. P1 as well as P2 now
can be encoded with 1 bit. We assume that a and c are assigned value 0, b
and d are assigned 1. Note that we need a register bit to store which of the
partitions is active. Hence, we actually have three register bits: one for P1, one
for P2, and one to identify the active partition. As a result, the total number of
bits flipping for all three registers will sum up to 0.595 on average. Compared
to the previous result (0.64) the difference is due to the fact, that P1 stores
value a (probability 0.7) most of the time (i.e., the register stores 0). If there is a
transition from state c or d (belongs to P2) to a (belongs to P1), then there will be
a good chance that the register of P1 already stores 0 (= a) and, hence, does not
flip.

4. EXPERIMENTAL RESULTS

We implemented the algorithm and applied it to some MCNC benchmark cir-
cuits. We used the SIS2 standard script script.rugged to obtain a multilevel
implementation of Encoder, Decoder1, and Decoder2 for TSMC3 0.25-µm tech-
nology. The modules were then integrated by adding control elements latches,
registers, AND gates, and multiplexers. The integrated implementations were
simulated at transistor level (EPIC PowerMill) applying equally distributed
random patterns to the inputs. Supply voltage and clock frequency were set
to 2.5 V and 20 MHz. The area unit and power unit were µm2 and µW, re-
spectively, throughout the section. The power reduction rate and area increase
rate were computed as 100(Porig − Pproposed)/Porig and 100(Aproposed − Aorig)/Aorig,
respectively, throughout the experiments.

Power dissipation of pipeline registers for original, bipartition architecture
and bipartition dual-encoding architecture are named as Orig, Bipart, Bi dual
in Table II. The columns PF B% and PF Dual represent the power reduction
of bipartition (based on Shannon expansion; Figure 1(a)) and bipartition dual-
encoding architectures, respectively. Experiments showed that our bipartition
algorithm dissipated 23.9% fewer power compared to the original architecture
in pipeline registers. Further, we obtained a significant power reduction of
72.7% by using the bipartition dual-encoding architecture.

Table III presents the performance of our bipartition algorithm (Figure 1(a)).
The “Original” columns show the power dissipation of combinational block
“Pblock” and total area “Area.” In the “Bipartition architecture” columns, the
power dissipation of modules subcircuit1, subcircuit2, and multiplexors (see Fig-
ure 1(a)) are denoted as “Subc1,” “Subc2,” and “Mux,” respectively. The power
dissipation of Clock covers both AND gates and latches. Finally, power im-
provement and area increase are labeled as “PR%” and “AI%,” respectively. The

2SIS: A system for sequential circuit synthesis implemented by the Electronic Research Laboratory
in the Department of EE and CS, University of California, Berkeley, on May 4, 1992.
3TSMC stands for Taiwan Semiconductor Manufacturing Company.
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Table II. Register Power Dissipations of the Original Circuit
and the Bipartition Dual-Encoding Architecture

Circuits Orig Bipart Bi dual PF B% PF Dual%
sao2 548.7 207.9 81.7 62.1 85.1
9sym 489.5 424.6 51.6 13.3 89.5
con1 348.8 276.0 115.4 20.9 66.9
misex1 407.3 254.4 152.2 37.6 62.6
rd53 263.9 200.5 134.5 24.0 49.0
rd73 368.0 247.4 152.4 32.8 58.6
rd84 408.6 350.1 171.4 14.3 58.0
sqrt8 407.9 355.1 182.9 12.9 55.1
xor5 248.5 192.7 64.2 22.5 74.2
t481 767.9 733.8 56.3 4.44 92.7

Average 452.9 324.2 116.3 23.9 72.7

Table III. Simulation Result of Original Circuit and Bipartition Architectures Based on
Shannon Expansion

Original Bipartition Architecture
Design Pblock Area Subc1 Subc2 Clock Mux Total Area PR% AI%
sao2 406.0 2954.9 178.1 0.0 124.2 24.6 534.8 2995.2 44.0 1.4
9sym 694.3 3553.9 166.6 167.2 129.6 9.4 897.3 4389.1 24.2 23.5
con1 58.4 929.3 28.2 14.9 119.7 19.5 458.2 1799.0 −12.5 93.6
mixex1 153.7 1509.1 33.7 49.0 125.6 68.5 531.2 2580.5 5.3 71.0
rd53 135.9 956.2 43.4 56.0 114.8 34.0 448.7 1877.8 −12.2 96.4
rd73 246.9 1658.9 114.8 113.3 128.1 46.8 650.4 3162.2 −5.8 90.6
rd84 447.3 2494.1 242.4 122.4 131.8 56.5 903.2 4026.2 −5.5 61.4
sqrt8 254.7 1687.7 42.9 68.2 126.9 39.8 632.8 2603.5 4.9 54.3
xor5 70.6 691.2 27.7 14.7 109.6 16.2 360.9 1336.3 −13.1 93.3
t481 97.1 1791.4 36.2 58.1 166.0 11.0 1005.1 4039.7 −16.2 125.5

Average 256.8 1822.7 91.4 66.4 127.6 32.6 642.3 2881.0 5.9 58.1

results show that the bipartition architecture suffers from the power dissipated
by Clock and Mux.

Table IV shows power and area numbers for the original circuits as well as for
the bipartition dual-encoding architecture. The columns in this table have the
same meaning as in Table III, except for the second column which shows total
power dissipation of the original circuit. The columns “Enc,” “Dec1,” and “Dec2”
stand for the power dissipated by the corresponding blocks Encoder, Decoder1,
and Decoder2, respectively, from Figure 2(b). The results show that the power
saving effects could be increased from 5.9% to 27.1% while the area overhead
was reduced from 58.1% to 3.4% compared to the plain bipartition technique
indicated in Table III.

Table V shows the average area increase and power reduction of bipartition
based on Shannon expansion (Bipart-c [Ruan et al. 2001]), bipartition based on
output clustering (Bipart-s), bipartition single-encoding (Bipart-single [Ruan
et al. 2001]), and bipartition dual-encoding architecture (Bipart-dual) for com-
parison. The data of the first and third columns are cited from Ruan et al.
[2001]. The columns “AI%,” “PF%”, and “PR%” represent the area increase,
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Table IV. Simulation Result of Original Circuit and Bipartition Dual-Encoding Architectures

Original Bipartition dual-encoding architecture
Total

Design Power Area Enc Dec1 Dec2 Clock Mux Power Area PR% AI%
sao2 954.7 2954.9 422.4 13.8 0.0 113.0 22.9 653.8 2849.3 31.5 −3.6
9sym 1183.8 3553.9 474.4 0.0 0.0 64.9 37.9 628.8 2327.0 46.9 −34.5
con1 407.2 929.3 105.0 5.3 5.6 108.3 23.3 362.9 1146.2 10.9 23.3
mixex1 561.0 1509.1 117.7 13.1 36.4 118.1 65.6 503.1 2016.0 10.3 33.6
rd53 399.8 956.2 72.7 15.8 9.8 106.5 29.6 369.0 1561.0 7.7 63.3
rd73 614.9 1659.0 230.9 17.5 13.7 111.3 34.1 559.9 2181.1 9.0 31.5
rd84 855.9 2494.1 400.7 8.4 14.2 114.6 36.0 745.3 2663.0 12.9 6.8
sqrt8 665.3 1687.7 253.7 19.7 40.8 77.6 79.3 654.2 2488.3 1.7 47.4
xor5 319.1 691.2 53.9 1.0 0.8 95.3 9.9 225.1 616.3 29.5 −10.8
t481 865.0 1791.4 113.2 0.0 0.0 98.3 10.1 278.0 996.4 67.9 −44.4

Average 682.7 1822.7 224.5 9.5 12.1 100.8 34.9 498.0 1884.5 27.1 3.4

Table V. Average Area and Power Comparison Between
Single and Dual Encoding

Bipart-c Bipart-s Bipart-single Bipart-dual
AI% 44.4 58.1 29.6 3.4
PF% 26.0 23.9 63.0 72.7
PR% 9.7 5.9 31.6 27.1

power reduction of pipeline registers, and total power reduction, respectively.
As shown in this table, bipartition dual-encoding architecture obtains the sig-
nificant power saving in pipeline registers (PF%); however, the overall power
saving is a little less than that of the single-encoding architecture. This is due to
the fact that the Encoder of dual-encoding architecture consumes more power
than the corresponding module of a single-encoding architecture. Nevertheless,
the dual-encoding architecture obtains almost the same power saving as the
single-encoding architecture while introducing significant less area overhead.

5. CONCLUSION AND DISCUSSION

In this article, we proposed a new bipartition dual-encoding architecture for low-
power pipelined circuits. The proposed scheme exploits a bipartition approach
as well as encoding techniques in a pipeline stage to reduce power dissipation
not only of combinational logic blocks but also of the pipeline registers. We
bipartition a given circuit described by PLA into two sub-PLAs such that the
number of different outputs of both PLAs are minimal. We then encode the
outputs of both sub-PLAs to minimize the Hamming distance of register values
with high transition probability.

The differences between precomputation and bipartition, bipartition single-
encoding and bipartition dual-encoding architectures can be summarized as fol-
lows: compared to precomputation architecture, the precomputation approach
only disables some of the input pins to reduce the switching activity of the
combinational logic. However, the remainder input signals may also incur re-
dundant switching activity in the entire combinational logic. Furthermore,
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precomputation does not account for the power dissipation of pipeline regis-
ters. Conversely, bipartition and bipartition single/dual-encoding architectures
separate the combinational logic to ensure they will not influence each other.
In addition, bipartition signal/dual-encoding architectures also take the power
dissipation of pipeline registers into account by applying a codec structure,
which significantly reduces power dissipation.

Our accurate transistor-level simulations demonstrate the practical impact
of the partition and encoding approaches in lowering the power of pipelined cir-
cuits. Up to 92.7% and 67.9%, for register and overall power reduction, respec-
tively, and 72.7% and 27.1% on average for pipeline registers and total power
consumption, respectively, can be obtained by the bipartition dual-encoding
architecture.
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Complexities of applications implemented on embedded and programmable systems grow with the
advances in capacities and capabilities of these systems. Mapping applications onto them manually
is becoming a very tedious task. This draws attention to using high-level synthesis within design
flows. Meanwhile, it is essential to provide a flexible formulation of optimization objectives as well
as to perform efficient planning for various design objectives early on in the design flow. In this work,
we address these issues in the context of data flow graph (DFG) scheduling, which is an essential
element within the high-level synthesis flow. We present an algorithm that schedules a chain of op-
erations with data dependencies among consecutive operations at a single step. This local problem
is repeated to generate the schedule for the whole DFG. The local problem is formulated as a maxi-
mum weight noncrossing bipartite matching. We use a technique from the computational geometry
domain to solve the matching problem. This technique provides a theoretical guarantee on the so-
lution quality for scheduling a single chain of operations. Although still being local, this provides a
relatively wider perspective on the global scheduling objectives. In our experiments we compared
the latencies obtained using our algorithm with the optimal latencies given by the exact solution to
the integer linear programming (ILP) formulation of the problem. In 9 out of 14 DFGs tested, our
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algorithm found the optimal solution, while generating latencies comparable to the optimal solu-
tion in the remaining five benchmarks. The formulation of the objective function in our algorithm
provides flexibility to incorporate different optimization goals. We present examples of how to ex-
ploit the versatility of our algorithm with specific examples of objective functions and experimental
results on the ability of our algorithm to capture these objectives efficiently in the final schedules.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
AIDS—Automatic synthesis; J.6 [Computer-Aided Engineering]: Computer-aided design

General Terms: Design, Algorithms

Additional Key Words and Phrases: Scheduling, high-level synthesis, data flow graph, bipartite
matching

1. INTRODUCTION

Traditionally, translation of application descriptions into a synthesizable hard-
ware description language (HDL) was a manual process. Then, designs speci-
fied with an HDL were mapped onto embedded or programmable systems by
logic and physical synthesis tools. Due to the increasing complexity of the ap-
plications, mapping applications manually is becoming harder. Therefore, in-
creasing the level of abstraction for designers and automating the mapping
process is becoming more attractive. This alternative paradigm involves au-
tomatic compilation from high-level descriptions of applications, such as from
a high-level programming language (e.g., C, C++). This approach offers de-
signers a very convenient and familiar computational model. There are sev-
eral proposed compilation flows from a high-level of abstraction to hardware
[Wazlowski et al. 1993; Hammes et al. 1999; Gokhale et al. 2000; So et al. 2002;
Haldar et al. 2001; Schreiber et al. 2002].

Figure 1 depicts an example flow for automatic mapping of applications onto
various hardware platforms. The application described in a high-level program-
ming language is processed by the compiler stage. The compiler generates an
intermediate representation (IR) and performs several optimizations such as
constant propagation, loop unrolling, and function inlining on this IR. While
internal representations in different compilers take different forms and names,
essentially they capture two basic pieces of information about an application:
control flow and data dependency. A high-level synthesis stage follows the com-
piler stage and takes the optimized IR as input and generates the register trans-
fer level (RTL) description of the design. Back-end tools perform logic synthesis
and physical synthesis on this RTL description and create the bit-stream data
to program the target system. In the most general form of this flow, feedback
paths between major steps may exist to incorporate physical level informa-
tion into high-level synthesis or hardware/synthesis-related information into
compiler stage (denoted by dotted arcs in Figure 1). Feedback is employed in
such flows to improve the interaction between different design phases and re-
fine the quality of the solution generated at each stage. However, feedback can
also cause problems in convergence and design closure. In order to create a
more coherent design flow, planning early on can be a better alternative. This
can be achieved by planning of design objectives or through use of correct by
construction methodology.
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Fig. 1. A representative flow for automatic mapping of applications from high-level descriptions
to a programmable system.

In this work, we present a scheduling algorithm for data flow graphs (DFGs),
which is an integral element within the high-level synthesis stage of this au-
tomated flow. Our method “simultaneously” assigns a set of operations within
the input DFG to control steps. (Note that scheduling several operations si-
multaneously does not refer to assigning them to the same control step. By
scheduling them simultaneously we mean to generate a scheduling decision
for a collection of nodes at once.) Each set of nodes selected to be considered
together constitutes an ordered set. There exists a direct data dependency be-
tween every pair of consecutive nodes in each ordered collection of operations.
We refer to these sets of operations as paths, since they constitute a topolog-
ical path in the DFG. In the proposed algorithm, the scheduling problem for
each individual set of nodes is formulated as maximum-weight noncrossing
bipartite matching. This local problem in turn is solved optimally by convert-
ing it to the max-weighted k-chain problem [Atallah and Kosaraju 1989]. The
bipartite matching basically provides the assignment of operations to control
steps. DFGs impose a data dependency constraint on the scheduling problem.
This is reflected in our algorithm by the noncrossing property of the matching
solution. Furthermore, the matching is weighted and the objective is to pro-
duce a matching with maximum edge weight total. The particular objective
function of the actual scheduling problem is embodied within the maximum-
weight objective of the matching. We will elaborate on the specifics as we dis-
cuss our algorithm in detail. At this point, however, it is appropriate to com-
ment on the impact of these properties on the global behavior of our scheduling
algorithm.

First, our algorithm assigns several nodes along a path to control steps
at once. This local assignment is realized by solving the matching between
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operations and control steps optimally. Each operation-control step matching
within this solution is associated with a corresponding weight/gain. The local
solution is optimal for the given set of operations in the sense that the summa-
tion of the weights of the matching generated for those operations is maximum.
This distinguishes our algorithm from other heuristics such as list scheduling
[Parker et al. 1986; McFarland et al. 1988; Pangrle and Gajski 1987], force-
directed scheduling [Paulin and Knight 1987; Cloutier and Thomas 1990], etc.,
which generally make a scheduling decision about a single operation at a time.
In our algorithm we generate a solution for a collection of operations while
maximizing the scheduling objective for this set of operations. While the qual-
ity guarantee remains local, this helps to provide a good solution at each step
for the operations along each path at hand. Furthermore, by manipulating the
weight function associated with the matching between operations and control
steps, a wide variety of objectives can be combined within a solution. Hence,
our algorithm provides a flexible way of defining and changing our scheduling
objective function. In this article, we discuss two specific cases in more detail:
efficient utilization of optimized cores embedded in the target architecture and
early planning and distribution of time slack within a DFG during scheduling.

The rest of the article is organized as follows. Section 2 states the scheduling
problem and defines the objective and the constraints. We give a brief overview
of existing scheduling heuristics in Section 2.2. Our algorithm is described in
Section 2.3. In Section 3 we present how our algorithm can be applied to target
two particular objective functions for schedules. First, we discuss using our
scheduler for hybrid target architectures, aiming to optimize the utilization
of embedded cores within the target architecture. Next, we present how our
flexible scheduling cost function can be used to target efficient distribution and
management of time slack within a schedule. We present experimental results
for these two problem instances. We discuss our conclusions and future work
in Section 4.

2. SCHEDULING OF DATA FLOW GRAPHS

In this section we formulate our problem and state the constraints on the prob-
lem. We also define our objective function. Next, we present our scheduling
algorithm.

2.1 Problem Formulation

Given a data flow graph (DFG),1 the scheduling problem is to assign each oper-
ation in the DFG to a control step under certain constraints. Any assignment
that is feasible under these constraints is a valid schedule. Out of possible
valid schedules the goal is to find one that optimizes a given objective function.
An immediate objective function for any scheduling algorithm is the length of
the schedule or the latency. In addition, depending on the specific context in
which the scheduler is used, other components are incorporated into the objec-
tive function. Objectives such as power [Musoll and Cortadella 1995; Monteiro

1A data flow graph is basically a directed acyclic graph (DAG).
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et al. 1996; Shiue and Chakrabarti 2000] and register usage [Wong et al. 2002]
have been incorporated into scheduling algorithms in the past. In this work we
will introduce two other objective functions and show how the cost function of
our algorithm can be easily adjusted to include either of those. We will discuss
these objective functions in Section 3. The objective function is maximized un-
der a set of constraints. For our scheduling problem the following constraints
are given:

—For each operation a start time must be defined.
—Data dependencies imposed by the DFG must be obeyed. Let, opi and opj

be two operations in the DFG. In addition, let opi be the parent of opj. This
means that opj has a data dependency on opi. Then, the control step in which
opj starts must be later than the finish time of opi.

—At any control step, the number of active operations of any type must be less
than or equal to the number of available resources of that type.

2.2 Scheduling Algorithms Overview

Most of the practical formulations of the scheduling problem are NP-complete.
These instances contain combinations of dependency, timing, and resource con-
straints. Several efficient heuristics have been proposed in the literature for
these problem instances. Two of the most widely used approaches are list
scheduling and force-directed scheduling. List scheduling maintains an ordered
list of operations that can potentially be scheduled at a control step with no vio-
lation of data dependency. Considering one control step at a time, operations are
selected from this ordered list one by one according to some priority function and
scheduled at the control step under consideration. There exist a variety of real-
izations of this approach [McFarland et al. 1988; Thomas et al. 1990; McFarland
1986; Parker et al. 1986; Pangrle and Gajski 1987; Kramer and Rosenstiel
1990]. In force-directed scheduling [Paulin and Knight 1989] the goal is to create
a balanced distribution of operations among control steps. Using the mobility of
each operation to define possible intervals of execution, the potential demand
for each control step is determined. The operation-to-control step assignment,
which will contribute toward the most homogeneous distribution is accepted at
each step. This approach has been incorporated into high-level synthesis sys-
tems as well [Paulin and Knight 1987; Cloutier and Thomas 1990]. Another type
of scheduling method is referred to as path-based scheduling in the literature
[Camposano 1991]. This method has been proposed for scheduling control flow
graphs. Paths of execution within the control/data flow are handled individu-
ally. Each such possible path is scheduled independently in an optimal fashion.
Then the final schedule is constructed by imposing the resource constraints
and overlapping the path’s schedules accordingly. Other popular techniques for
scheduling with control flow are trace scheduling from microcode compaction
[Fisher 1981] and percolation scheduling [Potasman et al. 1990]. While most
of the above-mentioned scheduling heuristics produce a scheduling decision for
one operation at a time, our algorithm generates an assignment between mul-
tiple operations and control steps at once. The particular set of operations to be
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scheduled at each step constitute a chain of data dependency. This may be also
called a path spanning through the DFG. In path-based scheduling algorithms
mentioned earlier such as [Camposano 1991], any sequence of operations that
can possibly be executed conforming to the control flow is a path. Those opera-
tions do not need to create a chain with direct data dependencies. Therefore the
path-based scheduling algorithms consider an exponential number of possible
execution paths and combine their schedules eventually. In our scheme the def-
inition of a path is restricted to chains of operations with data dependencies
among them. The number of such paths extracted from an input DFG is kept
small, just enough to have considered all operations within the DFG. In fact,
we can find such a set of paths for a DFG in polynomial time.

Our technique to perform the actual assignment of operations to control
steps is based on weighted noncrossing bipartite matching. This approach is
fundamentally different from list scheduling and force-directed scheduling, and
path-based scheduling in nature. Moreover, at the local level, we can provide
theoretical guarantees on the quality of the operation-control step assignment
for individual operation chains. An algorithm proposed by Timmer and Jess
[1995] uses bipartite graph matching for scheduling DFGs. In their work, a
bipartite matching was performed between operations in the DFG and con-
trol steps without considering dependencies and the result was pruned with a
heuristic in order to comply with precedence constraints. In our approach we
show how to optimally solve the matching problem between a set of operations
along a path and control steps while satisfying precedence constraints within
the path. Hence, we have integrated the two problems handled separately by
Timmer and Jess [1995]. Also, the method proposed by Timmer and Jess does
not incorporate any objective function into the bipartite matching stage. In our
method, we are additionally maximizing an objective function by generating a
maximum weight matching. We will present a detailed analysis of our algorithm
in the next section.

2.3 Our Scheduling Algorithm

Our scheduling algorithm consists of two main tasks. First, selecting a chain
of operations to schedule together. Next, scheduling this set of operations by
generating a noncrossing maximum-weight bipartite matching. The input to
our algorithm is a data flow graph, and resource constraints for each resource
type. In the following we will present details of the two main tasks within our
algorithm.

2.3.1 Selection of Operation Chains. At each step we extract a chain of
operations from the input DFG. We start with extracting the longest path from
the DFG. After one set of operations are scheduled those operations are removed
from the DFG and the next longest path within the remaining graph is found. In
this manner paths are selected in decreasing order of path delays. While doing
that we retain information regarding the latencies of the scheduled operations.
In other words, for nodes already scheduled in the DFGs their delay is added
on top of the expected delays of remaining paths to preserve the ordering of
criticality among different paths. Finding the longest path in a directed acyclic
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Fig. 2. (a) Example data flow graph. (b) A sample path extracted from the data flow graph.

graph (DAG)—as a graph type, a DFG is basically a DAG—can be done in
polynomial time, in O(V + E) time (V is number of nodes and E is number of
edges in the DAG). The first chain of operations we process are those along the
critical path of the DFG.

As the algorithm progresses the schedule of each new set of operations is
constrained by the existing partial schedule of the DFG so far. The task of
scheduling a given chain of operations at each scheduling step is tackled with
a geometric approach.

2.3.2 Scheduling Using Maximum-Weight Noncrossing Bipartite Matching.
The input to the local problem, that is, scheduling of a path, is a chain of opera-
tions. Consider the example DFG shown in Figure 2(a). Figure 2(b) illustrates
a chain extracted from this DFG.

We visualize the problem of scheduling the operations along this chain as
a bipartite matching between operations and control steps. A bipartite graph
depicting this formulation for the chain in our example is shown in Figure 3(a).
This bipartite graph consists of nodes corresponding to operations and control
steps. An edge between an operation-node and a control step-node represents
the possibility of assigning that operation to that control step. Constraints of
the scheduling problem decide whether it is feasible to have an edge between
a certain operation and a control step. For instance, at some point during the
execution of our algorithm, at a certain control step the number of operations
scheduled might have reached the number of available resources of some type.
As we build the bipartite graph for the next set of operations to match to con-
trol steps, there cannot be an edge between any operation demanding that
resource type and this control step. For any two consecutive operations along
the path, the earliest possible matching between the child any control step must
be later than the earliest possible matching between the parent and any con-
trol step. The latencies of individual operations may be single cycle or multiple
cycles. When deciding the latest cycle at which a predecessor can finish we take
this into account for multicycle operations. For instance, consider the operations
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Fig. 3. (a) Bipartite graph representing the matching between operations in a path and control
steps. (b) A noncrossing bipartite matching between operations and control steps.

Op6 and Op9. The earliest possible matching for the parent operation is to con-
trol step 2. Therefore, there cannot be any edge between the child operation,
Op9, and any control step earlier or equal to control step 2. Also, as operations
from extracted paths are scheduled, their start and finish times restrict the in-
tervals of control steps within which their predecessors and successors need to
be scheduled. Our matching is also weighted, that is, each edge in the bipartite
formulation is assigned a weight. In fact, for each path under consideration our
goal is to find a matching such that the sum of the edge weights in the matching
is maximum. The edge weights are used to formulate the objective function of
the schedule; hence maximizing the sum of the weights in turn maximizes our
objective function.

A mathematical function F needs to be defined to compute the weights. F is
constructed according to what we want to achieve in our schedule. In different
cases and applications different objectives can be more relevant or important. A
traditional objective for scheduling is minimizing latency. However, a versatile
and flexible scheduling algorithm should be able to consider other objectives de-
pending on the particular context. Our approach in constructing F is to combine
different optimization objectives in a weighted sum. User-defined coefficients
for each term of F maintains the balance between different objectives. In the
next section we will provide specific examples of objectives that can be incorpo-
rated into our cost functions.

A valid schedule for a path is a noncrossing matching between operations and
control steps. This is a different problem than the general bipartite matching.
Techniques, such as max-flow [Cormen et al. 1990], to find a bipartite match-
ing do not guarantee yielding a noncrossing matching. A noncrossing bipartite
matching means that in the matching solution no edges are allowed to cross.
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Fig. 4. (a) Weighted bipartite formulation for scheduling a path. (b) The geometric formulation of
scheduling.

This actually corresponds to the data dependency constraint. Since along each
path consecutive operations have data dependency, their matching to control
steps must be noncrossing. A possible noncrossing matching for the example
path from Figure 2(b) is shown in Figure 3(b).

Now the question is how to find a noncrossing matching with maximum
weight total out of all possible noncrossing matchings. The bipartite match-
ing formulation is a conceptual aide to visualize our problem. To find the ac-
tual solution, we will transform our problem into geometric domain and use
the dominance concept in computational geometry [Lee 1996; Atallah and
Kosaraju 1989] to solve our scheduling problem. To do this we first create a
point in the x- y plane for each possible matching between operations and con-
trol steps. Figure 4 shows the original bipartite graph and the corresponding set
of points in the x- y plane for our example path. Operations are placed along the
x-axis and the control steps are placed along the y-axis. A possible matching
between an operation Opi and control step c is represented by a point in the
plane with coordinates (x, y). To create the point set for a path of length k
(k is equal to 5 for our example, since there are 5 operations along the path),
we enumerate the operations with indices starting from 1 to k, following the
topological order of the operations along the path. Then, the coordinates of
each point representing the edge between Opi and control step c are defined as
follows:

x(Opi) = index(Opi) and
y(Opi) = c.
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In our example index(Op1) = 1, index(Op6) = 2, and so on. The weights
associated with edges in the bipartite graph are attached to the points on the
plane as weights.

The following definitions will provide the background and the necessary ter-
minology for understanding our method to perform the scheduling.

Definition 1. On the two-dimensional plane, point P dominates point Q iff
x(P ) > x(Q) AND y(P ) > y(Q).

Definition 2. A set of k points (P1, P2, . . . , Pk) in the x- y plane, where Pi
dominates Pi−1 is called a k-chain.

Definition 3. Given a set of points in the x- y plane, among all chains of
length k that exist within this set, the k-chain with the maximum total of
weights is called the maximum weighted k-chain. The weights are those at-
tached to each point in our formulation.

Having created a set of points in the plane as explained above, the sched-
ule for the path is generated by finding the maximum weighted k-chain within
this point set. k is equal to the number of operations on the path that is being
scheduled. By finding a chain of length k, that is, selecting k points from the
plane, we will have found a matching between each operation and a control
step. The property described in Definition 1 ensures that the matching found
complies with dependencies among operations. Also we will ensure that our
method finds a chain of length k and does not return any chain of shorter length,
which would leave some operations unscheduled. Once we guarantee finding
a chain of length k, combined with the dominance property from Definition 1,
each point in the resulting k-chain must correspond to a matching for a dis-
tinct operation. Therefore, this k-chain corresponds to the schedule of the path.
Assuming that we find a chain of length k, no two points can have the same
x-coordinate, since the k-chain would not possess the dominance property from
Definition 1 in that case. Hence we guarantee that each operation is included in
the solution with a valid matching. We will explain how we guarantee finding
a chain of length k every time after we introduce the method of finding the
maximum-weighted chain. For illustrative purposes, a possible k-chain from
the point set of our example and the corresponding partial schedule is shown in
Figure 5.

Atallah and Kosaraju [1989] proposed an optimal O(n log n) (n is the number
of points in the plane) algorithm for finding the maximum-weight k-chain. We
refer the readers to Atallah and Kosaraju [1989] for the proof of optimality. If
for each point P in the plane the weight w(P ) = 1, then this algorithm returns
the longest possible chain, which naturally corresponds to the maximum sum
of weights. However, when arbitrary weights are assigned to the points in the
plane, this algorithm yields the maximum weighted chain, but not necessarily
of length k. As explained earlier, we need to guarantee a chain of length k and
depending on our weight function F the weights can take arbitrary values. We
propose an adjustment to the weights, such that the algorithm proposed by
Atallah and Kosaraju [1989] can be adapted to our problem.
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Fig. 5. (a) A hypothetical matching found using a maximum-weighted k-chain. (b) Corresponding
partial schedule.

THEOREM 2.1. Let the weight w(Pi) of each point Pi in the plane have arbi-
trary values. If each weight w(Pi) is replaced with

w(Pi)′ = 1 + w(Pi)
( ∑n

i=1 w(Pi)
) + 1

then the maximum weighted chain will be of length k, if any chain of length k
exists in the point set.

PROOF. Given a set of n points at k different x-coordinates (because we have
k operations along the path to be scheduled), assume there exists a maximum
weighted chain of length k −1. Then, the sum of weights on this chain would be

(k − 1) · 1 +
k−1∑

i=1

w(Pi)
(∑n

i=1 w(Pi)
) + 1

.

The second term in the above sum is the sum of weights for k −1 points divided
by the total sum of weights plus 1. This term is always less than 1. Therefore,

k − 1 +
k−1∑

i=1

w(Pi)
(∑n

i=1 w(Pi)
) + 1

< k.

On the other hand, if we take any k points (strictly one from each x-coordinate
obeying dominance condition; assuming at least one chain of length k exists,
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we should be able to do that) the sum of the weights of these k, points will be

k · 1 +
k∑

i=1

w(Pi)
(∑n

i=1 w(Pi)
) + 1

,

which is definitely larger than the sum of k−1 points. This contradicts the initial
assumption of having a (k − 1)-chain with a maximum-weight sum. Hence, the
weight sum of any chain of length k will be larger than any chain of shorter
length with this weight assignment. (The case for chains shorter than k − 1
follows same arguments.)

COROLLARY 2.1. For any two weights w1 and w2, if w1 > w2, then w1′ >

w2′. This property ensures that if a k-chain found with adjusted weights is a
maximum-weighted chain, then by converting back to the original weights we
can show that the original weights would yield the same maximum-weight k-
chain.

So far we have explained how to guarantee finding a maximum-weighted
k-chain if at least one chain of length k exists in the point set. To guarantee
the latter, that is, that there is at least one k-chain in the point set, for each
operation along the current path there needs to be at least one feasible matching
control step. In other words, there must be at least one point with each x-
coordinate from 1 to k. At each scheduling step, we check the point set generated
for each path of operations to verify that this is true. If not, we perform a
correction pass. This actually corresponds to situations when the schedules of
different paths need to be combined. Note that in our algorithm once a path
is selected all operations along the path are scheduled regardless of whether
any of their predecessors are scheduled. Sometimes, the parent of an already
scheduled operation is included in a path that is extracted from the DFG later
in the execution of the algorithm. It can be the case that at some point due
to resource and/or dependency constraints we cannot find any possible feasible
matching between control steps and the parent operation that appeared later in
the scheduling process. In these cases we restore the feasibility of the matching,
that is, we ensure finding at least one chain of length k in the point set by
inserting extra control steps into the schedule. We do this according to the
following rules. Assume at some point we are about to schedule a path that
contains an operation which has some already scheduled successor(s). If the
earliest possible start for the predecessor operation is later than the earliest
scheduled successor, then we insert extra control steps right before the earliest
scheduled successor and push all operations starting at or later than this step
by the delay of the predecessor operation. If the earliest possible start of the
predecessor operation is earlier or at the same time as the earliest scheduled
successor operations (probably the predecessor operation has large delay, such
that its result is not ready for the earliest scheduled successor although it can
start before the earliest scheduled successor), then we need to determine the
number of extra control steps to be inserted as follows. If the earliest possible
start time of the predecessor operation is equal to the start of successor, then
we insert as many control steps as the delay of the predecessor operation. If the
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Fig. 6. A sample DFG where O(V ) correction passes will be required.

predecessor operation can start earlier than the earliest scheduled successor
but cannot finish on time, then we push the schedule by the overlapping amount
of control steps by inserting extra control steps.

In the following we will make a quick analysis of the worst-case behavior
expected from our algorithm in terms of number of correction passes that have
to be performed. Consider a DFG as shown in Figure 6. Assume that all opera-
tions are of same type and also assume that there is only one resource available.
Finally, assume that all operations take a single control step. Given these con-
ditions, our algorithm would first schedule a path such as (Op1−Op5) in the first
and second control steps. Then, the algorithm encounters Op2 (plus the delay
of Op5) as the second path. At that point we will need the correction pass and
push operation Op5 by one control step to accomodate time for Op2. Similarly, in
the consequent steps of the algorithm, a correction pass will be required before
scheduling Op3 and Op4. This shows that we might need corrections propor-
tional to V , which is the number of operations in the DFG. Note that, in each
step, the scheduling decision of at least one node (the node with no parent) will
be finalized. Therefore, we will not need more than V correction passes. Con-
sequently, in the worst case our algorithm will require O(V ) correction steps
passes.

The need for correction passes is correlated with three factors. First, it is re-
lated to the DFG topology. For DFGs with low connectivity and with more inde-
pendent paths spanning throughout the DFG, possibly there will be fewer con-
flicts. Second, the resource constraint will impact the frequency of occurence of
conflicts. Consider the earlier example of Figure 6. If there were four resources
available, there would be no need for correction passes. If there were three re-
sources, there would be a single correction pass. For more stringent resource
constraints, the conflicts during scheduling will increase. Finally, the selection
of paths is important. We try to minimize possible conflicts by scheduling the
longest paths first. By doing this, operations on long paths would be more likely
to be scheduled much later than their yet unscheduled predecessors in shorter
paths.

Although our algorithm is locally optimal, it might not yield a globally op-
timal schedule. This lack of optimality is related to the correction passes. Al-
though we schedule a given path optimally under the given conditions, it does
not mean that the final global schedule will require this path to be scheduled
within the shortest time. In fact, correction passes try to merge optimally sched-
uled paths into nonoptimal paths that will be required by the optimal global
schedule. However, due to the selection order of the paths and our local decision-
making mechanism, we might not be able to merge into the globally optimal
schedule.
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Fig. 7. The overall scheduling algorithm.

Fig. 8. Illustration of the algorithm with a sample DFG.

Combining all the steps explained above, the overall scheduling algorithm
is summarized in Figure 7.

In Figure 8 we illustrate the execution of the algorithm on a sample DFG.
We assume that one ALU to execute additions and subtrations and two mul-
tipliers is available. In addition, the latency of the ALU is a single cycle and
the latencies of the multipliers are two cycles. In this case the scheduling al-
gorithm executes in three steps. In the first step, the chain consisting of M1,
M4, S6, S7, M8, A9 is scheduled. For this example we assume that weights
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of matchings are adjusted such that the earliest schedule step is preferred for
each operation. In the second step, the operation M2 is scheduled. M2 is chosen
next considering that M2 combined with the path following M2, which consists
of already scheduled operations, has the next longest delay. In the third and
last step, the chain consisting of operations M3, M5 is scheduled. However, at
this step the initial bipartite graph created for this chain is infeasible. This is
due to the fact that the earliest possible matching between operation M5 and
a clock step with a free multiplier is later than the step at which the successor
of M5, which is S7, is scheduled. Therefore, at this point a correction step is
applied. S7 and all transitive successors of S7 are shifted by a cycle. After this
correction, step M3 and M5 can be successfully scheduled. The final schedule
is shown in Figure 8(d).

3. TUNING THE MAXIMUM WEIGHTED MATCHING FOR
SCHEDULING OBJECTIVES

We can use the maximum-weighted matching procedure to optimize different
objectives within the schedule. Any possible matching between an operation
and a control step would contribute to the quality of the certain feature(s) that
we aim to embody in the final schedule. Different assignments of operations to
control steps can result in different amounts of resource requirements, inter-
connect structure, switching activity, operation slack, etc., in the final synthe-
sized design. In this article we present how we can utilize the flexibility of the
weight assignment to pursue two specific objectives: utilization of embedded
fixed cores within an embedded system or within the programmable fabric of
a reconfigurable device, and early planning and distribution of slack within a
schedule.

An immediate objective for our scheduling algorithm is to minimize latency.
In order to optimize for this objective only, we need a function that assigns mono-
tonically decreasing values to weights. We need such a distribution among the
weights assigned to all feasible matchings between an operation and all can-
didate control steps. In other words, for each operation the weight of matching
it with a certain feasible control step c must be larger than matching the same
operation with any later feasible control step. A possible function to create these
weights could be as follows:

F = κ − c.

Here, κ is some constant and c is the index of the control step. As we go further
in time axis, the value of F will be monotonically decreasing.

3.1 Embedded Core Utilization Objective

A possible objective in high-level synthesis can arise due to the specific architec-
tural features of the target system. For instance, looking back at the evolution of
programmable systems, configurability was first available in standalone chips.
These devices possess 100 % programmability. Currently, reconfigurable fab-
ric is not only considered to be confined to standalone chips, but also is part
of hybrid systems such as system-on-chip (SoC) solutions. While one trend is
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toward embedding reconfigurable cores into SoCs with processors, DSPs, etc.
[Hauck et al. 1997; Actel ; Altera Corp. ; Chameleon Systems], another direction
of new architectures considers integration of optimized cores and hardwired
blocks with reconfigurable fabric. The main goal here is to utilize the optimized
blocks to improve the system performance. Such programmable devices are tar-
geted for a class of applications, such as DSP [Xilinx, Inc. ] networking, or data
communications [Lucent Technologies]. Embedded fixed blocks are tailored for
the critical operations common to the application class. In essence, the flexi-
ble programmable logic is supported with the high-density, high-performance
cores. This can be applied at various levels, such as the functional block level
[Lucent Technologies] or the level of basic arithmetic operations, for example,
multipliers [Xilinx, Inc.].

In the context of reconfigurable systems, there have been efforts to create
compilation frameworks where templates for frequently occurring operations
or operation clusters are extracted and mapped onto specialized cores. Such a
framework is described by Kastner et al. [2001]. In a synthesis environment,
where such templates are recognized for a given application during compilation,
it is crucial to utilize these optimized modules during the actual synthesis of
the datapath at the high-level synthesis stage.

For mapping designs on such special architectures, there is a need for synthe-
sis tools that are aware of the features of the underlying hardware resources.
The customized cores certainly improve the application’s running time since
they are superior in delay to their counterparts implemented with reconfig-
urable logic. A similar argument is valid for the power consumption. Finally,
those blocks will lessen the reconfiguration overhead for the overall design.
The power of the context-based reconfigurable architectures lies in the efficient
utilization of the fixed cores within the system. By customizing our weight func-
tion F accordingly, we can make our scheduler aware of the customization of
the target architecture. As a result, as we schedule DFGs we can exploit the
optimized embedded cores without causing their limited availability become
a bottleneck. Functional units for any desired operation type can be instanti-
ated using reconfigurable logic. For operations that cannot be performed by the
embedded cores, this is a necessity. For other operations, this can be done in
order to exploit parallelism in the schedule. However, as mentioned earlier, the
available blocks are highly preferred for those operations. It is the task of the
scheduler to do the tradeoff in such situations.

When considering two different feasible control steps for a matching with an
operation, the control step with a free customized block would be preferred over
the other control step at which no customized embedded block is free. There still
can be a feasible matching between the operation and the later step, assuming
a reconfigurable module is available or can be instantiated. Nevertheless, the
weight assigned to the first feasible matching should be made larger in order
to make the algorithm aware of the resource preferences. Also, the value of
the weight for the matching of the latter step can reflect the willingness of the
synthesis to instantiate new reconfigurable modules. If this matching is asso-
ciated with a very small value, the tendency would be to avoid instantiation of
further reconfigurable modules, possibly in order to control the reconfiguration

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



A Scheduling Algorithm for Optimization and Early Planning • 49

Table I. Origins of DFGs from MediaBench

Benchmark C File Description

adpcm adpcm.c ADPCM to/from 16-bit PCM
epic convolve.c 2D image convolution
rasta fft.c Fast Fourier Transform
mpeg2 getblk.c DCT Block Decoding
jpeg jdmerge.c Color Conversion

overhead. We can introduce these objectives as additional terms within the
weight function F . In this case F can take the following form:

F = κ − α × c + β × customized block preference − γ

× reconfiguration overhead preference.

We can formulate architecture-related preferences as Boolean variables taking
two values, 0 or 1. α, β, and γ are user-defined constants. We have adjusted
their values for our algorithm experimentally.

3.1.1 Results for Embedded Core Utilization Objective. We have used
DFGs extracted from representative functions of C programs within Media-
Bench multimedia benchmark suite [Lee et al. 1997] and also some additional
representative DSP functions such as EWF, FIR, and ARF. Table I shows the
files from MediaBench suite, from which input DFGs were generated. The cor-
responding applications containing these files are given as well. Two or more
DFGs were extracted from different procedures within these C Files. Those
are indicated as DFG0, DFG1, and DFG2 within each application. These DFGs
were mainly selected due to the fact that they were representative of the corre-
sponding applications in terms of size, topology, and operation variety. We tried
to select the largest possible DFGs out of those extracted from the Mediabench
applications. Each of these DFGs correspond to a basic block2 in the applica-
tion codes. Many of those basic blocks tend to be small in size. We tried to avoid
such small basic blocks. In order to increase the input DFG sizes and the par-
allelism, entities containing multiple basic blocks (e.g., hyperblocks [Mahlke
et al. 1992], superblocks [Hwu et al. 1993], and traces [Fisher 1981]) can be
equivalently given to our scheduler as input. We have not attempted to create
such formations at this point, since it is beyond the scope of this work.

Individual DFGs are scheduled with two different methods, as shown in
Table III. For each application, a set of hardware resources are specified as
given in Table II. Within the available set of resources, there can be multiple
components with same functionality, but different delays. This represents the
existence of optimized cores for certain operations. In Table III scheduling
results for a number of selected DFGs are given. We compare the results of our
algorithm against the results obtained from the linear programming solver,
CPLEX. The scheduling problem has been described as a linear integer program
for our problem instance. The objective function of the integer linear model tries

2A basic block is the same entity as in the compiler terminology, which refers to a straight line code
segment with a single entry and a single exit point.
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Table II. Resource Sets of Benchmark DFGs

Benchmark Resource set

adpcm DFG20:(ior, add, comp, mult-fast, mult)
DFG36:(comp-fast, comp, add, mult-fast, mult)

convolve DFG0: (comp, add/sub, mult-fast,
mult, div-fast, div)
DFG19:(add, mult-fast, mult)
DFG98:(comp, add/sub, mult-fast,
mult, div-fast, div)

fft DFG18:(add, mult-fast, mult)
DFG27:(add, mult-fast, mult, div-fast, div)

getblk DFG42:(add, comp, AshiftR, mult-fast, mult)
DFG91:(add, comp, AshiftR,
LshiftL, mult-fast, mult)
DFG165:(add, comp, AshiftR, mult-fast, mult)

jdmerge DFG2: (add, AshiftR, mult-fast, mult)
DFG21:(add, AshiftR, mult-fast, mult)
DFG165:(add, comp, AshiftR, mult-fast, mult)

ewf (add, mult-fast, mult)
arf (add, add, mult-fast, mult, mult)
fir (add, mult-fast, mult)

Table III. Scheduling Results in Terms of DFG Latencies,
in Cycles

Benchmark (DFG) ASAP CPLEX Our algorithm

adpcm
DFG1 6 7 7
DFG2 6 6 6
convolve
DFG1 12 16 20
DFG2 6 12 12
DFG3 17 18 19
fft
DFG1 12 26 27
DFG2 19 22 24
getblk
DFG1 14 14 14
DFG2 18 18 18
jdmerge
DFG1 7 28 31
DFG2 8 28 28
ewf 17 28 28
arf 8 12 12
fir 7 12 12

to minimize the latency and the number of slow blocks used. A higher priority
is given to latency minimization. Similarly in our algorithm, we try to minimize
the latency, while trying to utilize the optimized blocks as well as possible.
We actually perform binding of operation to resources simultaneously with
scheduling. This enables us to handle resources of same type but with different
delay characteristics. Through simultaneous binding we obtain operation delay
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Table IV. Number of Operations Performed on the
Optimized Block Versus Total Number of

Operations of Matching Type

Benchmark (DFG) CPLEX Our algorithm

adpcm
DFG1 1/1 1/1
DFG2 1/1 1/1
convolve
DFG1 4/6 3/6
DFG2 2/3 2/3
DFG3 5/6 5/6
fft
DFG1 6/9 6/9
DFG2 5/6 6/6
getblk
DFG1 3/4 3/4
DFG2 4/4 3/4
jdmerge
DFG1 5/8 5/8
DFG3 4/5 3/5
ewf 3/8 3/8
arf 10/16 8/16
fir 7/11 7/11

information based on the particular resource executing the operation. CPLEX
provides us an optimal solution for the given objective function. Therefore, we
are comparing our results to those generated by the exact solver. For compari-
son, the ASAP scheduling latencies are also provided. In Table IV the utilization
of high-performance components are presented. For each DFG the total number
of operations assigned to optimized blocks is given versus the total number of
operations of suitable type that can be performed by any available optimized
block.

As depicted in Table III, our algorithm was able to produce latencies compat-
ible with CPLEX results for most cases. In 9 out of 14 cases our algorithm was
able to produce the optimal latency. Out of the remaining five cases, four were
within 12% of the optimal value. In two of the suboptimal cases, convolve-DFG3
and fft-DFG1, our algorithm was able to utilize the optimized blocks as good as
CPLEX results. In the case of fft-DFG2, the increase in latency resulted from a
tradeoff aiming to increase usage of optimized blocks. Table IV shows that, for
this particular DFG, our algorithm was able to outperform the optimized block
utilization obtained from the CPLEX solution.

For 9 out of the 13 remaining cases our algorithm reached the same core
utilization as the CPLEX solution. For six of those cases the latency produced
by our scheduler was optimal. For the remaining three cases our scheduling
solution was within 10% of the optimal value. In four cases our algorithm
yielded lower core utilization. We observe that in three out of those four cases
the latency produced by our scheduling algorithm was equal to the optimal la-
tency. Hence, the core utilization, although lower than the solution produced by
CPLEX, seems to have been sufficient to reach an optimal schedule. We report
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Table V. Number of Nodes and Edges in Each Benchmark
DFG and the Runtimes of Two Scheduling Methods

DFG Size (nodes/edges) CPLEX Our algorithm

adpcm
DFG1 17/19 26 s 4 ms
DFG2 21/18 20 s 9 ms
convolve
DFG0 49/41 121 s 14 ms
DFG1 25/19 30 s 9 ms
DFG2 18/10 24 s 4 ms
fft
DFG1 17/12 30 s 3 ms
DFG2 11/9 4.8 s 2 ms
getblk
DFG1 33/29 34 s 12 ms
DFG2 40/30 42 s 13 ms
jdmerge
DFG1 79/66 985 s 23 ms
DFG2 54/46 436 s 14 ms
ewf 34/47 13.67 s 25 ms
arf 28/30 700 s 14 ms
fir 21/20 8.8 s 4 ms

the sizes of the benchmark DFGs in terms of number of nodes and edges, and
the compare the runtimes of the two schedulers in Table V.

3.2 Early Planning and Distribution of Slack

Another possible use of our flexible objective function is distribution of opera-
tion slack within a schedule. We define slack as the amount of extra delay an
operation can tolerate without violating any dependency constraints. There can
be various uses of this extra amount of allowed time per operation.

Depending on the available slack for an operation, resource selection, IP
utilization, power management, clock tree construction, etc., can be different.
To give a more specific example: from a single operation’s point of view, slack on
this operation can be exploited for slowing the module executing this operation
or performing power shutdown for this module. Hence, early planning for this
objective can have various uses and an impact on the later optimization stages.

We can incorporate this new objective into our weight function F in the
following manner. Given a latency constraint λ, we evaluate the weight of a
feasible matching for each operation considering the amount of slack that the
operation can attain after this matching. Specifically, we aimed to distribute
slack along paths homogenously at each step. For this purpose, we first deter-
mine the average slack each operation can have along a path. This is found by
dividing the total slack along a path to the number of operations on the path.
Then, while computing the weight for a certain assignment of an operation to
a clock step, we determine the difference between the average slack the opera-
tion could attain and the amount it can attain if the current assignment were to
take place. The latency constraint is necessary in this case, since the flexibility
in finish times of operations needs to be bounded.
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Table VI. Summary of DFG Properties, Latency, and
Runtime Results

DFG Optimal latency Our latency Runtime

ewf 28 28 10 ms
arf 18 20 7 ms
fir 16 16 6 ms

Table VII. Incorporating Operation Slack into Scheduling Objective

ewf arf fir

W/O slack With slack W/O slack With slack W/O slack With slack
objective objective objective objective objective objective

Num. of ALU operations 4 5 4 2 3 4
with nonzero slack
Total slack on 14 16 9 8 7 9
ALU operations
Num. of MUL operations 2 2 7 9 4 5
with nonzero slack
Total slack on 3 3 23 26 6 8
MUL operations

3.2.1 Results on Planning for Slack. First, we have used a weight function
that only considers to minimize latency. This corresponds to the Without (W/O)
Slack Objective case. Alternatively, we have added the slack component to our
weight function and used the latencies obtained in the first case as our λ. By
doing this, we are able to compare two schedules fairly. Table VI presents the
DFGs, the optimal latencies, the latencies obtained with our algorithm, and the
runtimes of our algorithm. Table VII shows our results. For this experiment
we present results for a subset of our original DFG collection. The particular
DFGs selected were those with suitable topologies to reflect improvement in
slack. Availability of slack in a schedule depends on the topology of the input
DFG as much as on the scheduling method. Therefore, in some DFGs it was
not possible to see any effect of slack planning due to their structure. For the
selected DFGs, we have used two ALU resources and two multipliers. Each
ALU has a delay of one clock cycle, and each multiplier has a delay of two
clock cycles. The slack of operations is calculated as the difference between the
control step when the result of an operation is ready and the control step at
which the earliest scheduled successor of this operation demands the result. We
report the number of operations that have nonzero slack values, that is, the rest
of the operations in the scheduled DFG had slack values equal to zero or they
were I/O operations for which we do not report slack. We only report the slack
values of arithmetic operations (MUL and ADD). We also give the total sum of
the slack values on each operation type. We present a breakdown of these two
measurements for the two types of arithmetic operations in the DFG, that is,
the ALU operations and multiplications (abbreviated as MUL in Table VII).

The results in TableVII show that with proper planning to distribute slack on
arithmetic operations our algorithm could indeed transform available flexibil-
ity in a schedule into additional slack for a spefically targeted set of operations,
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arithmetic operations in this case. For the arf benchmark we observe a degra-
dation in slack value for ALU operations. The reason is due to the assignment
of priorities for the two operations types ALU and MUL. The sensitivity toward
increase the slack for MUL operations was set higher for these experiments.
Therefore, the gain of increasing the slack for MUL operations is evaluated to
be larger than for ALU operations, leading to a greater tendency to allocate
slack for MUL operations than for ALU operations. In the case of ewf, due to
the DFG topology and the order in which operations were scheduled, MUL op-
erations could not attain any slack whereas ALU operations could gain larger
slack-using the slack objective. For the fir benchmark, slack objective affected
the slack distribution for both operation types positively.

By allowing a larger number of operations to possess nonzero slack, further
optimizations can be possible. For instance, by ensuring slack on an increased
number of operations, we would have increased the tolerance of the sched-
ule toward future uncertainties in operation delays. Those uncertainties can
arise due to a mismatch between high-level delay estimations and actual op-
eration delays after synthesis of functional modules and interconnect in the
datapath.

Additional optimization steps can be incorporated into the synthesis flow
following the scheduling in order to exploit the available slack. For instance, a
slack-oriented binding methodology can take advantage of this planning by as-
signing operations with nonzero slack to the same resource. If operations that
possess various amounts of slack were assigned to the same resource, then the
minimum out of those slack values would determine the extra amount of time
by which that resource could be made slower. Using this information, some re-
sources can be replaced by their slower and more power- and/or area-efficient
versions. We have investigated possible benefits of exploiting slack distribution
in a schedule during binding where we used our scheduling algorithm inte-
grated with a slack-driven binding technique. After distributing time slack to
arithmetic operations, as described earlier, we performed binding while trying
to group operations with large slack values to the same resource. By doing this,
the delay constraint on that resource could be relaxed by the minimum amount
of extra slack available on the operations assigned to the resource. Then this
information was passed onto the logic synthesis tool as a delay constraint re-
laxation of the corresponding module. We have observed significant benefits
through this relaxation in terms of final design quality. Results to this end are
reported in Srivastava et al. [2003] in detail.

Similarly, even if some operations assigned to one resource posses nonzero
slack while others have no extra slack, some power optimizations are still pos-
sible. In such cases, techniques such as dynamic voltage scaling and dynamic
power shutdown can be used if the schedule has been planned for slack distri-
bution early on.

Optimization for slack as described in this section can also be helpful for tasks
preceding scheduling. By creating a feedback loop between high-level synthesis
and the compilation stage, different compiler optimizations can be leveraged.
One such optimization is template extraction and template matching during
compilation. At early stages it can be beneficial to extract frequently occuring
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subgraphs as templates from the DFGs and replace them with optimized cores.
Usage of such cores was discussed in Section 3.1. Especially for reconfigurable
platforms, usage of preoptimized precharacterized modules can speed up the
synthesis process and improve performance. However, information regarding
scheduling and binding is not available at the compiler stage. Therefore, the
decisions of the compiler to lump subgraphs into larger nodes corresponding
to optimized cores might not be accurate enough. This is due to the fact that
scheduling of nodes internal to such subgraphs can affect the latency of the
overall DFG schedule. Therefore, scheduling and also distribution of time slack
among nodes needs to be aware of any clustering of nodes. In turn, after schedul-
ing, a more accurate assessment of the benefits of clustering can be done. Espe-
cially, it would not be desirable to leave time slack within a group of nodes which
are going to be assigned as a subgraph onto a specialized core. Based on the
slack distribution and the schedule information, the compiler can be informed
about the quality of clustering decisions made earlier during compilation. If
a certain template is not yieling any gain or if it is hurting the performance
of the overall DFG schedule, the compiler can be advised to undo that tem-
plate clustering or redo it in a different way based on the current schedule
information.

4. CONCLUSIONS

In this article we presented an algorithm for scheduling data flow graphs. Our
algorithm uses a geometric representation of the problem. We applied the max-
imum weight k-chain technique to generate schedules for paths extracted from
the input DFG. This technique is essentially a realization of maximum-weight
noncrossing bipartite matching in the geomteric domain. The maximum-weight
k-chain method enables us to provide a theoretical guarantee on the quality of
each local matching problem. By exploiting the weighted matching feature in-
herent in our technique, we are able to provide a flexible objective function
for the scheduling problem. We manipulate the function that generates the
weights for the matching in order to create suitable objective functions for dif-
ferent scheduling problems. Our experiments indicate good results in terms of
the combined effort of minimizing latency and utilizing optimized cores avail-
able in a given system. We also demonstrated the use of the flexible objective
function in managing operation slack within a schedule.
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Combinatorial Techniques for Mixed-Size
Placement

S. N. ADYA and I. L. MARKOV
University of Michigan, Ann Arbor

While recent literature on circuit layout addresses large-scale standard-cell placement, the authors
typically assume that all macros are fixed. Floorplanning techniques are very good at handling
macros, but do not scale to hundreds of thousands of placeable objects. Therefore we combine
floorplanning techniques with placement techniques to solve the more general placement problem.
Our work shows how to place macros consistently with large numbers of small standard cells.
Proposed techniques can also be used to guide circuit designers who prefer to place macros by hand.

We address the computational difficulty of layout problems involving large macros and numer-
ous small logic cells at the same time. Proposed algorithms are evaluated in the context of wire-
length minimization because a computational method that is not scalable in optimizing wirelength
is unlikely to be successful for more complex objectives (congestion, delay, power, etc.)

We propose several different design flows to place mixed-size placement instances. The first
flow relies on an arbitrary black-box standard-cell placer to obtain an initial placement and then
removes possible overlaps using a fixed-outline floorplanner. This results in valid placements for
macros, which are considered fixed. Remaining standard cells are then placed by another call to
the standard-cell placer. In the second flow a standard-cell placer generates an initial placement
and a force-directed placer is used in the engineering change order (ECO) mode to generate an
overlap-free placement. Empirical evaluation on ibm benchmarks shows that in most cases our
proposed flows compare favorably with previously published mixed-size placers, Kraftwerk, and
the mixed-size floor-placer proposed at the 2003 Conference on Design, Automation, and Test in
Europe (DATE 2003), and are competitive with mPG-MS.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: VLSI, placement, floorplanning

1. INTRODUCTION

During the last few decades, academia and industry have invested consider-
able effort in research on physical design for very large-scale integration (VLSI)
[Sherwani 1999]. Through the integration of multiple optimization techniques,
design methods and high-performance computer-aided design (CAD) software
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for integrated circuits (ICs) were developed. However, the growing size of ICs
lead to frequent changes to common design flows. Recently, design reuse was in-
troduced as a way to (i) tame the complexity of circuit design for deep submicron
technologies, and (ii) improve time-to-market. This trend is further accelerated
with the use of hardware description languages and high-level synthesis. In-
deed, several current industrial initiatives provide infrastructure and training
for the reuse of intellectual property (IP), and also facilitate business models
based on IP reuse.

Reuse of design IP is important for multi-million-gate application-specific
integrated circuits (ASICs) and considered an integral part of the system-on-
chip (SoC) design style, that is critical for graphics cards, communication chips,
etc. Design IP blocks may implement algorithms or signal transforms, and may
contain “canned” table lookups or embedded RAM.

During physical design, IP design blocks appear as black-box macros, that
is, blocks of logic with known function and known geometric and electrical
properties, but no structural description of their inner workings. Such macros
may or may not have flexible geometries, but in any case are considered parts
of design. In classical physical design flows a circuit is first partitioned, then
floorplanned, and finally standard-cell placement is performed in each parti-
tion. This was necessary primarily because older placers, for example, those
based on simulated annealing, did not scale very well. However the scalabil-
ity of min-cut placers dramatically improved after the multilevel partitioning
breakthrough in 1997 [Alpert et al. 1997; Karypis et al. 1997; Caldwell et al.
2000a]. In addition to having near-linear runtime, placers based on recursive
bisection perform circuit partitioning and, if the cut-lines are allowed to move,
also perform floorplanning. Yet macro-placement is not supported in these plac-
ers, mainly because large macros that contain more than several percent of
layout area introduce considerable discreteness in the solution space and may
be difficult to handle within standard recursive min-cut bisection.

Reusing black-box macros in physical design still remains a challenge and
existing commercial tools often require help from human designers. For exam-
ple, the Cadence QPlace manual [Cadence 2000] mentions that the addition of
macros may slow down otherwise fairly efficient placement of standard cells and
the results may be inferior to what human designers can achieve. Cadence Sili-
con Ensemble (SEDSM) recommends the following flow for circuits with macros:

—Locations of macros are found by invoking block placement. Macros may have
overlaps and may not fit in layout area.

—Human designer manually removes any overlaps between macros.
—Macros are now considered fixed.
—QPlace is called to place standard cells.

Figure 1(a) shows the placement of the ibm02 design (see Section 5), pro-
duced with the Cadence SEDSM flow recommended for circuits with a large
number of macros. As seen in the figure, there is a large amount of over-
laps between macros and the designer is expected to remove these overlaps
manually. If the design is given directly to the SEDSM placer, QPlace, a legal
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Fig. 1. Figure 1(a) shows a design with 19601 cells (ibm02) design placed by Cadence SEDSM
recommended flow for designs with a large number of macros. There are overlaps between macros
which the designer is expected to remove manually. Figure 1(b) shows the Kraftwerk placement for
the same design. Again, there are significant overlaps, which have to be removed. Figure 1(c) shows
the Kraftwerk placement for a design with 23136 cells (ibm03). The overlaps between macros is
much smaller than those shown in 1(b) and can probably be removed by simple techniques.

placement is produced, but the runtimes and solution quality suffer. However, a
new version of SEDSM is currently in beta-testing and implements a different
macro-placement flow, achieving better results [Varadrajan and DeLendonck
2002]. Recently acquired by Cadence, Silicon Perspective developed the First
Encounter tool which performs system-on-chip physical-prototyping and hi-
erarchical physical design. First Encounter allows full-chip physical proto-
typing and emphasizes early floorplanning. Figure 1(b) shows the placement
of the same ibm02 design produced by the force-directed placer Kraftwerk
[Eisenmann and Johannes 1998]. This placement also has a large amount of
overlap between macros. Figure 1(c) shows a Kraftwerk placement for design
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ibm03. As seen in the figure, there are no significant overlaps between macros in
this placement and relatively simple techniques should be able to legalize such
a placement. However, Kraftwerk does not always produce such nonoverlapping
placements and more sophisticated legalization techniques are required.

In addition to physical design with IP blocks, mixed-size placement tech-
niques are relevant in the context of physical synthesis, where layout starts
before the netlist is fully synthesized. While our work does not address syn-
thesis, the proposed techniques may be useful in physical synthesis tools that
operate at the chip level.

Previous published work on mixed-size placement can be broadly classified
into two approaches: continuous optimization techniques and combinatorial op-
timization techniques. Continuous optimization techniques like force-directed
approaches work well with less constrained designs having relatively large
amount of white-space [Eisenmann and Johannes 1998; Mo et al. 2000]. On
the other hand, combinatorial techniques are particularly promising on con-
strained designs with less white-space [Nag and Chaudhary 1999]. Published
works [Nag and Chaudhary 1999; Vijayan 1991] have focused on overlap re-
moval for macros only and did not consider mixed-size placement. An entirely
different approach was pursued in Chang et al. [2003]. Their placer mPG-MS
was based on an earlier tool mPG, which recursively clusters the netlist to build
a hierarchy. The top-level netlist of approximately 500 clusters is placed using
simulated annealing (SA), and then the placement is gradually refined by un-
clustering the netlist and improving the placement of smaller clusters by SA.
mPG-MS contributes a structure of bins, in which large and small blocks are
placed during course placement. The coarse placement is necessarily overlap-
free for big objects, but small objects must be further re-placed by a detail placer.
A significant effort is expended to check for overlap during refinement and le-
galize possible violations. A recent work [Choi and Bazargan 2003] also dealt
with the mixed-size placement problem. The authors proposed a mixed-size
placement flow which combines a hierarchical simulated annealing-based floor-
planner with partitioning-based placement techniques to handle the mixed-size
placement problem. Their method starts with a netlist and a fixed-floorplan
area. At each level of partitioning, “large” hard macros are extracted from the
netlist and the rest of the standard-cells and small macros are partitioned into a
number of “soft” modules using a min-cut partitioner. The mixed hard/soft mod-
ules are floorplanned using a slicing floorplanner. This is performed recursively
until the modules contain fewer than 30 gates. The method employs area migra-
tion techniques to satisfy the fixed-outline constraints. However, this method
does not produce completely legal placements, with large overlaps remaining
between macros. The reader is referred to the book by Sarrafzadeh et al. [2002]
for a detailed background discussion of mixed-size placement.

The main contribution of our work is a methodology to place designs with
numerous macros by combining floorplanning and standard-cell techniques.
The proposed design flow is as follows:

—An arbitrary black-box (no access to source code required) standard-cell
placer generates an initial placement.
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—To remove overlaps between macros, a physical clustering algorithm con-
structs a fixed-outline floorplanning instance.

—A fixed-outline floorplanner [Adya and Markov 2001] generates valid loca-
tions of macros.

—With macros considered fixed, the black-box standard-cell placer is called
again to place small cells.

This design flow provides a somewhat new “killer-application” for the many
floorplanning techniques developed in the last 5 years (e.g., Lin and Chang
[2001]). Indeed, we do not insist on using a particular floorplan representation,
but rather emphasize floorplanning as a step in large-scale placement with
macros.

We also propose a second design flow combining a black box standard-cell
placer and a force-directed placer. The proposed design flow is as follows:

—An arbitrary black-box (no access to source code required) standard-cell
placer generates an initial placement.

—A force-directed placer [Eisenmann and Johannes 1998] is used in engineer-
ing change order (ECO) mode to remove the overlaps while changing the
initial placement minimally.

Depending upon the design requirements and characteristics of the design,
either of our flows can be used to produce high-quality placements of mixed-
size designs.

We notice that existing academic placers Capo [Caldwell et al. 2000a],
Dragon 2000 [Wang and Sarrafzadeh 2000], Feng Shui [Yildiz and Madden
2001], and Spade [Dutt 2000] cannot process movable macros. In fact, all macros
are removed in the placement benchmarks described in Wang and Sarrafzadeh
[2000] (produced from the ISPD 98 circuit benchmarks), and all cells are artifi-
cially made one by one. Therefore, we derived new placement benchmarks from
the original ISPD 98 circuits, preserving macros and the areas of all cells. Hav-
ing converted the benchmarks into Cadence LEF/DEF format, we compared
the performance of our methods to the Cadence commercial placer, QPlace,
Kraftwerk, mPG-MS, and the mixed-size placement flow proposed in Choi and
Bazargan [2003].

The remaining part of the article is organized as follows. Section 2 covers pre-
vious work relevant to force-directed placement and fixed-outline floorplanning.
Two new design flows for macro placement are proposed in Sections 3 and 4.
Section 5 presents empirical validation of our work, and future directions are
discussed in Section 6. Section 7 concludes our work.

2. PREVIOUS WORK

In this section we outline the relevant background for our study. We briefly de-
scribe the top-down recursive bisection-based placement framework, a generic
force-directed placement and floorplanning algorithm, and a fixed-outline
floorplanning algorithm. All these algorithms are used in our proposed mixed-
size placement flows.
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2.1 Top-Down, Recursive Bisection-Based Placement

Top-down placement algorithms seek to decompose a given placement instance
into smaller instances by subdividing the placement region, assigning modules
to subregions, reformulating constraints, and cutting the netlist hypergraph
[Caldwell et al. 2000a]. Such a netlist decomposition is typically done with the
min-cut objective. Each hypergraph partitioning instance is induced from a
rectangular region, or block in the layout. A block corresponds to (i) placement
region with allowed locations, (ii) a collection of cells to be placed in this region,
(iii) all nets incident to the modules in the region, and (iv) fixed-terminals which
are cells outside the region. The top-down placement process can be viewed as
a sequence of passes where each pass examines all blocks and, if required,
divides them into two smaller blocks using min-cut partitioning. In our work
we used the top-down recursive bisection-based placer Capo [Caldwell et al.
2000a]. Capo uniformly distributes the available whitespace [Caldwell et al.
2003] around the core. However, if nonuniform distribution is required, fake
unconnected filler cells [Adya et al. 2003a] can be used.

2.2 Kraftwerk: Generic Global Placement and Floorplanning

A force-directed method for global placement was introduced in Eisenmann
and Johannes [1998]. Their global placer is called Kraftwerk. In addition to
the well-known wirelength-dependent forces, Kraftwerk uses additional forces
to reduce cell-overlaps and to consider the placement area. The wirelength-
dependent quadratic objective function to minimize is described as follows. Let
n be the number of movable cells in the circuit and (xi, yi), the coordinates of
cell i. A placement of the circuit can be described by the 2n-dimensional vector
�p = (x1, . . , xi, . . . , xn, y1, . . , yi, . . , yn)T . The circuit connectivity is modeled as a
graph. Cells are modeled as vertices and nets are modeled as edges. Hyperedges
are modeled as cliques. The cost of an edge is modeled as the squared Euclidean
distance between its adjacent vertices multiplied with the weights of the edges.
The squared Euclidean distance between cells i and j is (xi − x j )2 + ( yi − y j )2.
The objective function sums up the cost of all edges and can be written in matrix
notation as

1
2

�pT C �p + �d T �p + const.

This objective function is minimized by solving the linear equation system

C �p + �d = 0.

Additional constant forces were introduced in Eisenmann and Johannes [1998]
to distribute the cells more evenly in the layout region:

C �p + �d + �e = 0.

The force vector �e contains additional forces working on each cell in the x and
y directions. These additional forces try to move the cells from high-density
regions to low-density regions in the layout, thus attempting to reduce the
overlaps. The algorithm described in Eisenmann and Johannes [1998] is itera-
tive, which determines the additional forces according to the current placement.
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In each iteration, the forces acting on the cells are assumed constant and are
used to calculate a new placement. The new placement is the basis for the
next iteration step and so on. Each step of the algorithm is called a placement
transformation. The transformation step can be applied to fully overlapping
placements as well as nearly legal placements. Thus, the algorithm renders
itself very elegantly to ECO-style placement requirements.

It was argued in Eisenmann and Johannes [1998] that their algorithm is
able to handle large mixed-size placement problems without treating macros
and standard cells differently. However, from our experiments, we conclude that
if applied from scratch on constrained mixed-size designs with less white-space,
this algorithm frequently produces placements with large overlaps.

2.3 Fixed-Outline Floorplanning

A fixed-outline floorplanner was proposed in Adya and Markov [2001, 2003].
We describe the work briefly here.

A typical floorplanning formulation includes a set of blocks, which may rep-
resent circuit partitions in applications. Each block is characterized by area
(typically fixed) and shape-type, for example, fixed rectangle, rectangle with
varying aspect ratio, etc. Multiple aspect ratios can be implied by an IP block
available in several shapes as well as by a hierarchical partitioning-driven de-
sign flow for ASICs [Sherwani 1999; Kahng 2000] where only the number of
standard cells in a block (and thus the total area) is known in advance. A solu-
tion to such a problem, that is, a floorplan, specifies a selection of block shapes
and overlap-free placements of blocks. Classical floorplanning minimizes a lin-
ear combination of area and wirelength. Among measures of circuit wirelength,
the popularity of the half-perimeter wirelength (HPWL) function is due to its
simplicity and relative accuracy before routing is performed. The HPWL objec-
tive gained relevance with the advent of multilayer over-the-cell routing, where
more nets are routed with shortest paths [Kahng 2000]. In floorplanners based
on simulated annealing (e.g., with the sequence-pair representation [Murata
et al. 1996]), the typical choice of moves is straightforward.

As pointed out in Kahng [2000], and Caldwell et al. [2000a], modern hier-
archical ASIC design flows based on multilayer over-the-cell routing naturally
imply fixed-die placement and floorplanning, rather than the older variable-die
style [Sherwani 1999], associated with channel routing, two layers of metal,
and feedthroughs. In such a flow, each top-down step may start with a floor-
plan of prescribed aspect ratio and with blocks of bounded (but not fixed) aspect
ratios. The modern floorplanning formulation proposed in Kahng [2000] is an
inside-out version of the classical outline-free floorplanning formulation—the
aspect ratio of the floorplan is fixed, but the aspect ratios of the blocks may vary.

2.3.1 Sequence-Pair Floorplan Representation. An overwhelming majority
of floorplanners rely on the simulated annealing framework [Sherwani 1999]
but differ by internal floorplan representations.

The sequence-pair representation for classical floorplans consists of two per-
mutations (orderings) of the N blocks [Murata et al. 1996]. The two permuta-
tions capture geometric relations between each pair of blocks. Recall that since
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Fig. 2. Two sequence-pairs with edges of the horizontal (dashed) and vertical (solid) constraint
graphs.

blocks cannot overlap, one of them must be to the left of or below the other, or
both. In sequence-pair

(< . . . , a, . . . , b, . . . >, < . . . , a, . . . , b, . . . >) ⇒ a is to the left of b, (1)

(< . . . , a, . . . , b, . . . >, < . . . , b, . . . , a, . . . >) ⇒ a is above b. (2)
In other words, every two blocks constrain each other in either the vertical or
horizontal direction. The sequence-pair representation is shift-invariant since
it only encodes pairwise relative placements. Therefore, placements produced
from sequence-pairs must be aligned to given horizontal and vertical axes, for
example, x = 0 and y = 0.

The original work on sequence-pair [Murata et al. 1996] proposed an algo-
rithm to compute placements from a sequence-pair by constructing horizontal
(H) and vertical (V) constraint graphs. The H and V graphs have N +2 vertices
each—one for each of N block, plus two additional vertices: “the source” and
“the sink.” For every pair of blocks a and b there is a directed edge a → b in
the H graph if a is to the left of b according to the sequence-pair (Formula 1).
Similarly there is a directed edge a → b in the V graph if a is above b accord-
ing to the sequence-pair (Formula 2)—and exactly one of the two cases must
take place. Vertices that do not have outgoing edges are connected to the sink,
and vertices that do not have incoming edges are connected to the source. Both
graphs are considered vertex-weighted; the weights in the H graph represent
horizontal sizes of blocks, and the weights in the V graph represent vertical
sizes of blocks. Sources and sinks have zero weights.

Block locations are the locations of block’s lower left corners. The x locations
are computed from the H graph, and y locations are computed from the V
graph independently. Therefore, we will only discuss the computation of the x
locations. One starts by assigning location x = 0 to the source. Then, the H
graph is traversed in a topological order. To find the location of a vertex, one
iterates over all incoming edges and maximizes the sum of the source location
and source width. Figure 2 illustrates the algorithm on two examples. The
worst-case and average-case complexity of this algorithm is �(n2), since the two
graphs, together, have a fixed �(n2) number of edges, and topological traversals
take linear time in the number of edges.

Sequence-pairs can be used to floorplan hard rectangular blocks by simulated
annealing [Murata et al. 1996; Murata and Kuh 1998; Tang et al. 2000; Tang
and Wong 2001]. The moves are (i) random swaps of blocks in one of the two
sequence-pairs, and (ii) rotations of single blocks. Sequence-pairs are modified
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in constant time, but need to be reevaluated after each move. No incremental
evaluation algorithms have been reported; therefore, the annealer spends most
of the time evaluating sequence-pairs.

The sequence-pair representation and necessary algorithms have been ex-
tended to handle fixed blocks [Murata and Kuh 1998] as well as arbitrary convex
and concave rectilinear blocks [Fujuyoshi and Murata 1999]. Recently, the orig-
inal O(n2)-time evaluation algorithm Murata et al. [1996] has been simplified
and sped up to O(n log(n)) by Tang et al. [2000], and then to O(n log(log(n)))
[Tang and Wong 2001]. Importantly, those algorithms do not change the se-
mantics of evaluation—they only improve runtime, and lead to better solution
quality by enabling a larger number of iterations during the same period of
time. While O-trees [Pang et al. 2000] and corner block lists [Hong et al. 2000]
can be evaluated in linear time, the difference in complexity is dwarfed by im-
plementation variations and tuning, for example, the annealing schedule. The
implementation reported by Tang et al. [Tang and Wong 2001] seems to out-
perform most known implementations, suggesting that the sequence-pair is a
competitive floorplan representation.

All three sequence-pair evaluation algorithms are based on the following
theorem [Tang et al. 2000]: the x-span of the floorplan to which sequence pair
(S1, S2) evaluates is equal to the length of the longest common weighted subse-
quence of S1 and S2, where weights are copied from block widths. An analogous
statement about the y-span deals with the longest common subsequence of SR

1
and S2 , where R denotes the “reversed” sequence and weights are copied from
block heights. Moreover, the computations of x and y locations of all blocks can
be integrated into the longest common subsequence computations.

2.3.2 Floorplan Slacks. The notion of slack can be used with any of above
mentioned sequence pair evaluation algorithms and potentially other floorplan
representations [Adya and Markov 2003]. Each block in a floorplan has two
types of slacks: horizontal slack and vertical slack. Slack of a block in a floor-
planning instance represents the distance (in a particular dimension) at which
this block can be moved without changing the outline of the current floorplan.
Blocks with zero slacks in a particular dimension must lie on critical paths in
the relevant constraint graph.

We will base our discussion on the horizontal slack. The discussion on vertical
slack is analogous. As shown in Figure 3, horizontal slacks can be computed with
any floorplan representation that can be evaluated left-to-right and right-to-
left. Once the x-size of the floorplan is computed by packing left-to-right, one can
repack it right-to-left. The horizontal slack of a block is the difference between
the block’s locations produced by those two packings. The floorplanner Parquet
[Adya and Markov 2001] uses the sequence-pair representation because of the
simplicity of the representation.

Once slacks for each block are known, they can be used in move selection. The
rationale here is to reduce the floorplan size in a given dimension (x or y) with-
out impairing the hill-climbing abilities of simulated annealing. The new mech-
anism is combined with pairwise swaps and block rotations that are typically
used in sequence-pair-based annealers. If a move (such as pairwise swap) does
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Fig. 3. Slack computation. In (a) the floorplan is evaluated left-to-right and bottom-to-top. In (b)
the floorplan is evaluated right-to-left and top-to-bottom. The slack for each block is the difference
between its positions in the two evaluations.

not involve at least one block with zero slack in a given dimension, then the
floorplan size in that dimension cannot decrease after the move. This is because
such a move cannot improve critical paths or, equivalently, longest common sub-
sequences [Tang et al. 2000; Tang and Wong 2001]. Therefore move selection
is biased toward blocks having zero slack in at least one dimension. Of those
blocks, the ones with large slack in the other dimension are often good candi-
dates for single-block moves, such as rotations and gradual (discrete or con-
tinuous) changes of aspect ratio. Blocks with zero slack in both the directions,
especially small blocks, are good candidates for a new type of move, in which a
block is moved simultaneously in both sequence pairs to become a neighbor of
another block (in both sequences, and, thus in placement). One possible heuris-
tic is to move a critical block C next to a block L with as large a slack as possible,
since large slacks imply that white-space can be created around L.

2.3.3 Handling Soft Blocks. We can also use slack-based move types to
change aspect ratios of soft blocks [Adya and Markov 2003]. During annealing,
at regular intervals, a block with low (preferably zero) slack in one dimension
and large slack in the other dimension is chosen. The height and the width of
such a block are changed within allowable limits so that its size in the dimension
of smaller slack is reduced (to increase the slack). Such moves are greedily
applied to all soft blocks in the design.

2.3.4 Wirelength Minimization. In classical floorplanning, the global ob-
jective is to minimize wirelength and total area of the design. This implies
multiobjective minimization. Typically, most simulated annealing-based floor-
planners use a linear combination of area and wirelength as an objective for
the annealer.

Additional moves can be designed to improve the wirelength [Adya and
Markov 2003]. For a given block a, we calculate, using analytical techniques,
its “ideal” location that would minimize quadratic wirelength of its incident
wires N . We determine the ideal location (xa, ya) of block a which minimizes
the following function:

∑

N∈a

∑

v∈N

(xv − xa)2 + ( yv − ya)2.
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The ideal location (xa, ya) of block a is simply the average of the position of all
modules connected to block a. We then identify the block b closest to the ideal
location. This is done by expanding a circle centered at the ideal location and
identifying the closest block b. We then attempt to move block a in the sequence
pair so that in both sequences it is located next to b. As explained earlier, we
evaluate the four possible ways to do that, and choose the best. Thus an attempt
is made to move a close to its ideal location to minimize quadratic wirelength.

2.3.5 Fixed-Outline Floorplanning. Fixed-outline floorplanning can be
performed using simulated annealing, taking advantage of new types of moves
that are based on the notion of floorplan slack [Adya and Markov 2001]. The
following notation will be used in the floorplanning formulations. For a given
collection of blocks with total area A and given maximum percent of white-space
γ , we construct a fixed outline with aspect ratio α ≥ 11:

H∗ =
√

(1 + γ )Aα W∗ =
√

(1 + γ )A/α.

Aside from driving the annealer by area minimization, we can consider the
following objective functions: (i) the sum of the excessive length and width of
the floorplan, (ii) the greater of the two. Denoting the current height and width
of the floorplan by H and W , respectively, we define these functions as

(i) max{H − H∗, 0} + max{W − W∗, 0}, (ii) max{H − H∗, W − W∗}.
The choice of these functions is explained by the fact that the fixed-outline
constraint is satisfied when each of those functions takes value zero or less. For
this reason we cannot consider the product of fixed outline violations.

Figure 4 shows the evolution of the fixed-outline floorplan during simulated
annealing with slack-based moves. The scheme works as follows. At regular
time intervals (during area-minimizing simulated annealing) the current as-
pect ratio is compared to the aspect ratio of the desired outline. If the two are
sufficiently different, then the slack-based moves described earlier are applied
to bias the current aspect ratio in the needed direction. For example, if the
width needs to be reduced, then choose the blocks in the floorplan with small-
est slack in the x dimension and insert them above or below the blocks with
largest slack in the y dimension. These moves have better chances of reducing
the area and improving the aspect ratio of the current floorplan at the same
time. Using such repeated corrections, the structure of the floorplan is biased
toward the aspect ratio of the fixed outline.

While a number of works on floorplanning have discussed floorplan con-
straints, the results in Adya and Markov [2003] and Adya and Markov [2001]
empirically demonstrated high ratios of successes to failures in the flow from
Figure 4.

3. MIXED-SIZE PLACEMENT FLOW 1

Our first proposed flow for mixed-size placement requires a black-box standard-
cell placer that can place cells of equal height in rows that consist of cell sites,

1The restriction of α ≥ 1 is imposed without loss of generality since our floorplanner can change
orientations of individual blocks.
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Fig. 4. Snapshots from fixed-outline floorplanning. The number of annealing moves is fixed, but
if the evolving floorplan fits within the required fixed-outline, annealing is stopped earlier. If at
the end of annealing the fixed-outline constraints are not satisfied, it is considered a failure and a
fresh attempt is made.

Fig. 5. Map of cell sites for the ibm02 design with all the macros marked as fixed. Sites under the
macros are removed.

along the lines of the data-model implied by Cadence LEF/DEF. We also require
that the placer be able to handle fixed cells/pins and be able to handle rows
consisting of contiguous subrows. By removing cell sites from a subrow and
splitting the subrow into two subrows, one can model the effect of fixed macros
(because pins of fixed macros are fixed as well). For example, the site map in
Figure 5 corresponds to the placement in Figure 10(c). Our flow also uses a
fixed-outline floorplanner described in Section 2.3. While our floorplanner uses
the sequence-pair representation, a variety of other floorplan representations
can be used.

3.1 Shredding Macro Cells

A hierarchical recursive bisection-based placer has trouble handling mixed-
size netlists [Sarrafzadeh et al. 2002] because of the large variations in the cell
sizes. We get around this inherent problem by shredding all the macros to make
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Fig. 6. (a) A macro is shredded into cells of minimal height, connected by fake wires. To find the
orientation of the macro from locations of subcells, the relative locations of subcells ai, j , ai+1, j , and
ai, j+1 are analyzed for every eligible (i, j ). (b) The case analysis in terms of vectors Va and Vr in
final placement. “N,” “S,” “W,” “E” stand for “North,” “South,” “West,” and “East,” respectively. “F”
stands for “Flipped.” Any net connected to a macro pin is propagated to the respective subcell as
shown.

the netlist more homogeneous in terms of cell sizes. The DOMINO detailed
placer introduced the idea of shredding large cells to simplify placement [Doll
et al. 1994]. To apply this technique in global placement, one must additionally
handle cell orientations and remove cell overlaps (other than by left-to-right
packing).

Our flow starts with a preprocessing step during which all macros are shred-
ded into a number of smaller cells of minimal height. The number of these cells
is determined by the area of the macro and the width of subcells. A macro shred-
ded into subcells is shown in Figure 6. A subcell with row index i and column
index j may be identified as ai, j , and its immediate neighbors are ai−1, j , ai+1, j ,
ai, j−1, and ai, j+1. Fake two-pin nets are added between neighboring subcells to
ensure that subcells are placed close to each other when wirelength is mini-
mized. The number of fake nets added between each pair of subcells determine
how strongly the subcells are tied to each other. We add three fake nets between
each connected, neighboring subcells. The total number of faked wires depends
on the width of the subcells. A cleverly implemented placer could handle the
faked wires implicitly, for example, using net weights. In any case, a large-
scale global placer with near-linear runtime (e.g., a fast min-cut placer) should
be able to handle the increased number of wires. The Capo placer [Caldwell
et al. 2000a] we use is scalable enough. The shredding procedure can be viewed
as the equivalent of descending one level of hierarchy in a hierarchical design
by flattening the macro. If the subcells of the macro are not placed close to each
other in the placement of the flattened design then it implies that the macro
was not formed properly, that is, the clustering technique employed to form
the macro did not work very well. Artificially shredding the macro makes the
new placement problem more homogeneous and thus a finely tuned min-cut-
based placer can handle the shredded design better than handling the original
placement problem with macros.
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Fig. 7. A design with only one macro and four terminals. (a) The macro shredded into subcells. The
subcells are placed at ideal locations. The fake nets connecting them form a regular grid structure.
(b) The shredded design placed by Capo followed by detailed placement. The subcells are placed
close to each other and also maintain the initial grid structure (in (a)) on average.

The shredded design with the fake nets is placed using the global placer
Capo. The resulting placement does not immediately imply the locations of
the original macros, because the macros are shredded. The center-location of
a given macro is determined by averaging the locations of all subcells of that
macro. Since the subcells of a macro are connected in a regular grid structure,
a good placer will ensure that the subcells are placed close to each other and
in the original grid-like structure. Determining the orientation of the macros
which is globally consistent with the placement is very important. A top-down
global placement methodology that handles large macros by fixing macros in
partitions as soon as the macros become too large for the partition has problems
determining the orientation of individual macros. We developed a heuristic to
determine the orientation of the macro using the initial placement information.
The heuristic is based on the relative placement of each subcell with respect
to its immediate neighbors. Namely, the placement of subcell ai, j is compared
with the placements of ai+1, j and ai, j+1. This is illustrated in Figure 6, where
two vectors are computed for a given cell and then analyzed to produce one of
eight possible orientation types. For each macro, a score table is maintained
which records the number of subcells placed in a particular orientation. The
orientation of the macro is chosen according to the highest score (if several ori-
entations have comparably high scores, then we cannot conclude the orientation
with certainty). The rationale is that the extra nets added while shredding will,
in many cases, help the macro to approximately maintain its shape. Figure 7
shows an example design with only one macro and four terminals. Figure 7(a)
shows the macro shredded into subcells and connected in a regular grid-like
fashion by fake wires. The subcells are placed at ideal locations. Figure 7(b) is
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Fig. 8. Five out of eight orientations of a macro whose corners are tied to the corners of the layout
region; the orientation is N in (a) and (b). The (linear) length of faked wires depends only on the
orientation and not on the location of the macro, as long as the macro is placed entirely within the
layout region. The desired orientation (N in this example) is found by wirelength minimization.

the shredded design placed by Capo followed by detailed placement. The sub-
cells are placed close to each other and maintain the initial grid structure on
average. From the placement of the shredded design, we deduce that the macro
is placed in the north orientation.

Thus, a crude placement (with orientations) is obtained by placing the
shredded design. Since the standard cells were placed by using wirelength-
minimization, highly connected cells will be close to each other, but macros
may overlap with each other and may not be placed entirely inside the lay-
out region. Figure 10(a) shows the placement of the ibm02 circuit produced as
explained above.

While our technique allows one to deduce the prevailing orientation of a
macro or observe that there is no prevailing orientation, some macros may only
be placeable in one orientation. Such a constraint can be ensured by tying the
corners of the macro (i.e., the respective subcells after shredding) to the corners
of the layout by strong (heavy) faked wires, as shown in Figures 8(a) and 8(b).
During the minimization of HPWL, for example, by recursive min-cut bisection,
the orientation of the macro will be preserved, and the quality of placement will
not be affected. A formalization follows.

LEMMA. Placements that minimize HPWL in the original design subject to
orientation constraints are in a one-to-one correspondence with unconstrained
placements that minimize HPWL, including the fake wires that tie the corners
of macros to the corners of the layout region (assuming sufficiently strong
wires).

The lemma can be proven along the lines of Figure 8, where five out of eight
possible orientations of a macro tied to the four corners of the layout region are
shown. Note that this result does not apply to quadratic placement, and in that
case all tied macros will be attracted to the center of the layout.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Combinatorial Techniques for Mixed-Size Placement • 73

Fig. 9. Capo placements for designs with regular grid connectivity. Capo 8.5 produces suboptimal
placements. Capo 8.6 produces the optimal placement for this design. There are four terminals
connected to the four corner cells to anchor the design.

3.1.1 Better Placement of Regular Netlists. Observe that placement of the
shredded netlists calls for placement of grid-graphs embedded into random-
logic netlists. However, we discovered that the Capo 8.5 placer used in Adya
and Markov [2002] performs poorly on grid-graphs, as shown in Figure 9 which
illustrates an optimal and a suboptimal placement of a 10 × 10 grid with four
fixed cells in the corners. This is hardly a surprise because generic standard-
cell placers are known to perform badly on regular, data-path style designs
[Dally and Chang 2000]. Our improvements to Capo allow it to better handle
regular netlists without the loss of performance on random-logic netlists. These
improvements are described below, and their implementation was contributed
to Capo 8.6.

During each partitioning step with a vertical cut line, Capo 8.5 with default
parameters uses a fairly large tolerance (of the order of 10–20%) in order to find
better cuts. After a good cut is found, the geometric cut line is adjusted according
to the sizes of partitions, with an equal distribution of white-space among the
partitions. However, if no white-space is available in the block, this technique
can cause cell overlaps. Namely, since cut-lines cannot cut through cell sites and
since no “jagged” cut-lines are allowed, the set of partition balances that can
be realized with a straight vertical cut-line and zero white-space is fairly dis-
crete. Capo 8.5 simply rounds the current balance to the closest realizable and
sets the geometric cut-line accordingly. When white-space is scarce, one of the
resulting partitions may be overfull and the other may have artificially-created
white-space. Only a relatively small number of cell overlaps can be created
this way, but they can be spread through the whole core area. When used in the
MetaPlacer shell, Capo 8.5 removes overlaps after global placement by a simple
and very fast greedy heuristic. However, this heuristic increases wirelength.

In an attempt to reduce the number of overlaps, we revised the partitioning
process in Capo. When a placement block is partitioned with a vertical cut-line,
at first the tolerance is fairly large. As described previously, this allows Capo to
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Table I. Wirelength Achieved by Several Placers on Regular Grids of Varying Size and with
Varying White-Space (While Kraftwerk produces small wirelength on n × n grids, it often fails to

converge to a solution on random-logic netlists with embedded grids.)

Optimal Dragon Kraftwerk Capo default Capo + repart
Circuit #Nodes #Nets WS % HPWL HPWL HPWL HPWL HPWL

10×10 100 184 0 184 293 202 267 184
95×95 9025 17864 5 17884 39687 18302 21828 22764

100×100 10000 19804 0 19804 46066 20519 38352 21314
190×190 36100 71824 5 71864 175623 75384 90665 89814
200×200 40000 79604 0 79604 198182 82335 193167 100041

determine the location of the geometric cut-line by rounding to the nearest site.
Furthermore, if the block has very little white-space, we then repartition it with
a small tolerance in an attempt to rebalance the current partitions according
to the newly defined geometric cut-line.

Another modification we implemented is related to terminal propagation.
Normally, if a projection of a terminal’s location is too close to the expected cut-
line, the terminal is ignored by Capo in an attempt to avoid excessively specula-
tive decisions. The proximity threshold is defined in percent of the current block
size, and this parameter is called “partition fuzziness.” For example, suppose
that the y location of a terminal is within 9% of the tentative location of the
horizontal cut-line. Then, with partition fuzziness of 10%, this terminal will be
ignored during partitioning. Our studies of Capo performance on grids suggest
that partition fuzziness should be tuned up, particularly for small blocks. For
example, if a placement block has only three cell rows, then possible tentative
locations of horizontal cut-lines are relatively far from the center. In a neighbor-
ing block that has not been partitioned yet, all cells are “located” at the center
of the block, causing all connected terminals to propagate into one partition in
the current block. To avoid this, we increased partition fuzziness to 33%.

The two changes described above improve the performance of Capo on the
grid designs with 0% white-space by a factor of 2. The results for the perfor-
mance of various placers on grid graphs [Adya et al. 2003b, 2004b] are reported
in Table I.

3.2 Physical Clustering

The crude placement obtained from the above step may have overlapping
macros as well as macros placed outside the layout region (Figure 10(a)). Such
violations must be corrected without affecting the placement quality consider-
ably. This can, in principle, be done by fixed-outline floorplanning, but the num-
ber of movable objects is unrealistically large (every standard cell is movable).
We therefore construct a fixed-outline floorplanning instance through physical
clustering based on locations of standard cells. Cells that are placed together
are merged into soft clusters (i.e., the aspect ratio may vary). This is done by
gridding the layout region and putting all the standard cells that physically fall
within a grid region into a cluster. We recommend computing the dimensions
of the grid based on the number of standard cells and macros in the design.
However, in our experiments we used a grid of size 6 × 6 in order to speed up
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Fig. 10. Mixed-size placement Flow 1 explained in Section 3. (a) The placement (illegal) obtained
after running Capo on ibm02 design with macros shredded into small cells. The locations of macros
are determined by averaging the locations of subcells. Note that macro Z is not placed entirely
within the layout region. Also, macro B overlaps with macro Y and standard cells. (b) A possible
final fixed-outline floorplan of the same design. The floorplanning is done from scratch and no
attempt is made to preserve the original locations of macros. Macros are marked with M and
clusters of standard cells with C. Aspect ratios of macros are fixed and those of cell clusters vary
between 1/2 and 2. Observe that the vertical coordinates of three (A, X, and Y) out of five large
macros are similar to those in part (a). (c) The final placement of ibm02. The locations of all macros
are taken from the floorplan in part (b).

floorplanning. This grid worked well for smaller benchmarks, but appeared too
coarse for larger benchmarks. The original macros are not clustered to anything,
and their aspect ratio is allowed to change just as in the original placement for-
mulation. For each cluster, the nets connecting only blocks within the cluster
are discarded.

Since the design has been initially placed with small wirelength, the gen-
erated clusters contain strongly connected cells. Alternatively, one could use
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Table II. Two Different Clustering Schemes to Form Floorplanning Instances
(Connectivity-based greedy scheme groups highly connected objects together. Physical

clustering groups objects, placed close to each other. In the clustered design, nets which
connect only objects within a certain group are collapsed. The metric used to compare is
the number of nets in the final clustered design. Physical clustering is more successful in

reducing the number of nets crossing the groups compared to connectivity-based
clustering.)

Connectivity-based Physical
Original netlist clustering clustering

Circuit #Nodes #Nets #Nodes #Nets Time #Nodes #Nets Time

ibm01 12752 14111 196 8732 15.79s 282 4689 0.24s
ibm02 19601 19584 168 14017 42.26s 297 6478 0.39s
ibm03 23136 27401 272 17069 63.83s 332 8723 0.54s
ibm04 27507 31970 216 20886 84.05s 327 9519 0.58s
ibm05 29347 28446 28 17280 89.23s 37 11630 0.57s

connectivity-based clustering algorithms [Alpert et al. 1997; Karypis et al.
1997]. We compared the physical clustering scheme with one such simple greedy
clustering scheme that consists of a series of passes. Each pass identifies pairs
of connected vertices (the more connections between a pair of vertices, the more
likely it is to be selected). Each pair is substituted with a cluster. The clustered
vertices are removed, and all incident nets are connected to the new cluster.
All nets whose pins are inside a single cluster are removed. Every such pass
results in the reduction of the nodes in the netlist approximately by a factor of
2. The next pass is applied to the clustered netlist, and passes are continued
until the desired reduction in size is achieved.

We compare this greedy connectivity-based clustering with physical cluster-
ing by the number of nets assuming approximately equal number of clusters
(which is somewhat more rigorous than comparing the nets-to-clusters ratio).
The results in Table II suggest that the physical clustering scheme is more
successful in reducing the number of nets because even for larger numbers of
clustered nodes it has lower numbers of nets. Of course, one could use more
involved clustering schemes based on connectivity such as those using multi-
way min-cut partitioning. On the other hand, our physical clustering implicitly
includes those algorithms. Another advantage is that our physical clustering
based on the initial placement accounts for both netlist connectivity and the
shapes of macros. Moreover, the initial placement can give the exact pin loca-
tions of the pins in the clustered cell. The initial placement is additionally used
to construct an initial floorplan for simulated annealing. The blocks in this
floorplan do not overlap, but may not fit into the desired outline. The initial
placement run thus gives us information about macro locations, desired macro
orientations, and highly connected cells to be clustered.

3.3 Fixed-Outline Floorplanning with Macros

The placement of macros obtained by placing the shredded netlist may have
some overlaps and is in general not legal. We need to remove the overlaps
between macros and ensure that they are all placed within the layout bound-
ary. There are several possible options like using the approach in Nag and
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Chaudhary [1999] for postplacement residual-overlap removal or force-directed
approaches [Eisenmann and Johannes 1998]. However such approaches work
well in less constrained designs with relatively large white-space.

As explained in Section 2.3.5, we use the fixed-outline floorplanner Parquet
[Adya and Markov 2001] to satisfy the fixed-outline constraints imposed by
fixed-die paradigm. This new version of Parquet is used to floorplan hard macros
together with soft clusters of standard cells. The outline of the required floorplan
is derived from the layout region and is used as a constraint, with wirelength as
the objective function. We configure the floorplanner to make multiple tries until
it satisfies the fixed-outline constraint. In our experiments, the floorplanner
typically succeeded on the first try, but the ratio of successes to failures may
depend on the amount of white-space in the design.

In our experiments the annealer found good floorplans where some macros
were moved from their locations in the initial floorplan (see Figure 10(b)). We
therefore believe that closely following the initial floorplan is not necessary for
wirelength minimization and that the necessary information from the initial
placement is captured by the physical clustering. However, if other design con-
cerns encourage the preservation of macro placements, one could use more in-
cremental force-directed macro placers [Mo et al. 2000]. Alternatively, one could
tie those macros with faked wires to faked pins placed in strategic locations.
We tried a variant of our flow in which we employed low-temperature anneal-
ing in the floorplanning stage in an attempt to preserve the initial locations
of macros. The initial sequence pair for floorplanning is constructed from the
placed shredded design. Low-temperature annealing is employed with slack-
based moves to satisfy the fixed-outline constraints. Snapshots of different
stages of the flow with low temperature annealing are illustrated in Figure 11.
Note that the relative and absolute positions of macros in Figure 11(c) are close
to the initial macro positions in Figure 11(a).

There are a number of factors and choices at the floorplanning stage that
can affect the final placement. We list them below:

—White-space available in the design. Fixed-outline constraints can be easily
satisfied for designs with large amount of white-space. However, for con-
strained designs the floorplanner can take a large amount of time in trying
to satisfy the fixed-outline constraints.

—Area assigned to the soft clustered blocks of standard cells. The area assigned
to the clustered block is the sum of the areas of the standard cells form-
ing the cluster. However, for constrained designs with limited white-space,
one can try to reduce the areas of these clustered macros to make it eas-
ier for the floorplanner to find a solution satisfying the outline constraints.
However, floorplanning using sequence-pairs compacts blocks down and left-
ward. Therefore, if you have a large amount of white-space in the design,
area-minimization will ensure that no macro is placed in the top-right cor-
ner. This may harm the solution quality if achieving minimum wirelength
requires placing a particular macro in the top-right corner. Therefore, for
large white-space designs reducing the area of the clustered block can hurt
wirelength optimization.
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Fig. 11. Same mixed-size placement flow as that described in Figure 10. However, during the
floorplanning stage (b), low-temperature annealing is used in an attempt to preserve the initial
locations of macros obtained by placing the shredded netlist. The initial sequence-pair for floor-
planning is constructed from the existing placement (a). As seen from (a), (b), and (c) positions of
macros A, B, X, Y, Z are close to their original locations. However, runtimes for the floorplanning
stage increase because of larger number of tries required to satisfy the fixed-outline constraints
when using low-temperature annealing.

—Trying to preserve the original locations of macros. One might want to pre-
serve the initial locations of the macros provided by the placement of the
shredded netlist. In this case, the purpose of floorplanner is to only remove
the overlaps.

We study the effect of these choices on the final placements in Section 5.2.1.

3.4 Final Standard-Cell Placement with Fixed Macros

The final locations of the macros are taken from successful fixed-outline floor-
plans, and the macros are fixed in the original layout. All cell sites below the
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macros are removed, and cell rows may need to be split into subrows. This en-
ables the standard-cell placer to place the remaining movable standard cells
without overlaps with the macros. In our experiments, we used the Capo min-
cut placer [Caldwell et al. 2000a], followed by two passes of window-based
branch-and-bound placement.2 Figure 10(c) shows the final placement gener-
ated by our proposed flow for the ibm02 design.

Min-cut placers that uniformly distribute white-space [Caldwell et al. 2000a,
2003] tend to produce excessive wirelength when large amounts of white-space
are present [Alpert et al. 2002]. In our flow, during the final placement of stan-
dard cells around the macros, the white-space available in the designs (20% for
ibm benchmarks) is distributed uniformly around the design with routability
in mind. However, if the placement objective is only to minimize wirelength (as
in this study), one can use more intelligent white-space allocation techniques
[Alpert et al. 2002]. As a variant of our original flow, in the final stage of our
flow we add unconnected filler cells to the design to represent the excessive
white-space and reduce the white-space available to the placer to 10%. Thus
the standard cells are placed more compactly, with the filler cells occupying va-
cant areas of the chip. The effect of filler cells on the final placement is studied
in Section 5.2.1. However, we also point out that reducing HPWL may result in
worsening the routability of a design.

4. MIXED-SIZE PLACEMENT FLOW 2

Our second proposed flow for mixed-size placement combines a black-box stan-
dard cell placer and a force-directed placer [Eisenmann and Johannes 1998].
The flow is described as follows.

4.1 Shredding Macro Cells

This step is identical to that in Section 3.1. The netlist is first preprocessed
and all the macros in the design are decomposed into tightly connected smaller
subcells of minimal height. For each macro the subcells are connected in a grid-
like fashion. The shredded design with fake subcells and nets is placed using the
Capo placer. The locations and orientation of the macros are determined from
the placement of the shredded netlist. This initial placement can have overlaps
between macros. The second step attempts to make the placement overlap-free.
The first step entails placing a random logic netlist with embedded grid graphs.
Standard cell placers Capo, Dragon, and Cadence QPlace have no difficulties in
placing these netlists. However the force-directed placer Kraftwerk often fails
to converge to a solution on such netlists.

4.2 Overlap Removal Using Force-Directed Techniques

We employ the ECO capabilities of the force-directed placer Kraftwerk
[Eisenmann and Johannes 1998] to remove the overlaps from the initial place-
ment while disturbing the initial placement as little as possible. As explained in

2As the detailed placement step, we apply branch-and-bound end-case placers [Caldwell et al.
2000b] using sliding windows.
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Fig. 12. Mixed-size placement Flow 2 as that described in Section 4. (a) The placement obtained
after placing the shredded netlist. This is the same as in the first flow. (b) The overlap free placement
obtained after running Kraftwerk in ECO mode on the placement in (a). Sometimes Kraftwerk is
not successful in removing all the overlaps.

Section 2.2, Kraftwerk can take an initial placement and work in an ECO mode.
In the ECO mode, Kraftwerk starts from the given placement and introduces
additional forces according to density deviations arising because of the exist-
ing overlaps. The additional forces move the surroundings slightly in order to
remove the overlaps. The algorithm tries to preserve the relative placement of
cells. If the overlaps in the initial placements are small the additional forces are
small resulting in small changes for the placement. However, if the overlaps
in the initial placement are large this procedure can result in large changes
to the initial placement and in some cases may also produce placement with
large overlaps. Kraftwerk stops its placement iterations once the placement
density in each region is below a certain threshold. However, this may result
in small overlaps between the macros. From our experiments we conclude that
the percentage of these overlaps with respect to the total layout area is fairly
small. Alternatively one could employ other techniques [Mo et al. 2000; Nag and
Chaudhary 1999; Vijayan 1991] to attempt and remove the overlaps. Figure 12
shows the placement obtained after running this flow on design ibm02. As
seen, the final placement corresponds very accurately to the initial seed
placement.

5. RESULTS

Our proposed flow is implemented in C++ and compiled by g++ 2.95.4 -O3.
Runtimes are measured on a 2-GHz PC/Intel system running Linux. We
compare our results against QPlace v.5.1.67 from Cadence, whose runtimes
are measured on a 500-MHz Sun Blade-100 system running Solaris. We also
compare our results against force-directed placer, Kraftwerk [Eisenmann and
Johannes 1998], and mPG-MS [Chang et al. 2003]. Runtimes for Kraftwerk
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Table III. Benchmark Characteristics (Column Ab
m shows the area of the largest macro

in the design as % of the total cell area. Column �Am shows the total area of the macros
as % of the total cell area. Column Ab

m : As
m : As

c shows the ratios of areas of the biggest
macro to the smallest macro to the smallest standard-cell in the design.)

Circuit #Nodes #Nets #Macros Ab
m �Am Ab

m : As
m : As

c

ibm01 12752 14111 246 6.37% 67.13% 8416:252:1
ibm02 19601 19584 280 11.36% 76.89% 30042:240:1
ibm03 23136 27401 290 10.75% 70.75% 33088:240:1
ibm04 27507 31970 608 9.15% 59.82% 26593:240:1
ibm05 29347 28446 0 N/A N/A N/A
ibm06 32498 34826 178 3.95% 72.90% 36347:175:1
ibm07 45926 48117 507 4.75% 52.56% 17578:240:1
ibm08 51309 50513 309 12.10% 67.35% 50880:240:1
ibm09 53395 60902 253 5.42% 52.42% 29707:240:1
ibm10 69429 75196 786 4.79% 81.37% 71299:252:1
ibm11 70558 81454 373 4.47% 49.76% 29707:240:1
ibm12 71076 77240 651 6.42% 73.00% 74256:152:1
ibm13 84199 99666 424 4.22% 47.64% 33088:240:1
ibm14 147605 152772 614 1.98% 26.72% 17860:144:1
ibm15 161570 186608 393 10.99% 43.34% 125562:240:1
ibm16 183484 190048 458 1.89% 48.71% 31093:252:1
ibm17 185495 189581 760 0.94% 23.78% 12441:252:1
ibm18 210613 201920 285 0.96% 11.96% 10152:243:1

are measured on a 2-GHz PC/Intel system and for mPG-MS are observed on a
750-MHz Sun Blade-1000 system running Solaris.

5.1 Benchmarks

The benchmarks used in our experiments are derived from the ISPD-98 (IBM)
circuit benchmarks [Alpert 1998]. We converted the netlists into the Bookshelf
placement format [Caldwell et al.], added placement-related information, and
made the new benchmarks available on the Web.3 The original descriptions
specify cell areas, but not their dimensions. Since, in the ibm benchmarks, all
areas are divisible by 16, we define rows of height 16. Cell sites in all rows have
width 1. Cell widths were computed by dividing cell areas by row height (16).
When the width of a cell exceeded a threshold number of sites (100 in our case),
we upgraded such a cell to the status of a multirow macro with aspect ratio 1.
The height of such a macro is computed by rounding the square-root of the area
to the closest integer multiple of row height (16). The width is computed by
dividing cell area by cell height and rounding the result to the closest integer
number of cell sites. All designs have a white-space of 20% and their pads
(marked in the original IBM netlists) were randomly placed near the perimeter
of the core area. We converted the newly created benchmarks to the Cadence
LEF/DEF format and applied Cadence’s standard-cell placer QPlace to them.

5.2 Flow 1

Statistics for the new benchmarks are given in Table III, together with perfor-
mance results of our Flow 1 with the Capo placer [Caldwell et al. 2000a] and

3at http://vlsicad.eecs.umich.edu/BK/ISPD02bench/.
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Parquet fixed-outline floorplanner [Adya and Markov 2001].4 We detail run-
times of each step in our proposed design flow. The performance of the industry
placer QPlace is given in the same table for comparison. Our flow improves
wirelength by 10–50% on most benchmarks.

The complexity of the problem increases with the number of macros and
their relative size. According to Table IV, the benchmarks with relatively large
macros (ibm02, ibm03, ibm04, ibm08, and ibm15) are difficult for QPlace.5

In our Flow 1 the bottleneck is the fixed-outline floorplanning stage, namely,
in the wirelength computation that is performed independently for every move
within the simulated annealing framework. While the number of nets in large
netlists is typically proportional to the number of cells, many of those nets are
not internal to physical clusters which serve as blocks during fixed-outline floor-
planning. In other words, physical clustering reduces the number of movable
objects much more than the number of nets. Since the relative white-space in
the designs that we created was fairly small (20%), the fixed-outline floorplan-
ner take more time to satisfy the fixed-outline constraints. For less constrained
designs with more white-space, the run-times for the floorplanning stage can
be significantly improved.

For benchmarks ibm01, ibm17, and ibm18, QPlace results are superior to our
flow in terms of runtime. We believe that this is because the macros in these
benchmarks are relatively small, and a standard-cell placer may handle them
well enough. On the other hand, ibm17 and ibm18 are big enough to expose the
coarseness of the 6 × 6 grid used in our experiments. Aside from increasing the
grid size, it is possible to extend Capo to handle small macros, and thus entirely
avoid running a floorplanner on those benchmarks.

5.2.1 Sensitivities in Flow 1. We study the various sensitivities in our
flows. In our original Flow 1 the information about the initial locations of macros
is not useful and placing the clustered netlist serves as a means to generate
high-quality clusters. Also, fixed-outline floorplanning stage is a bottleneck in
terms of runtime. The results in Table IV(B) are for the flow in which the floor-
planning is done from scratch with a random initial solution and no attempt
is made to preserve the initial positions of macros. We tried a variant of this
flow in an attempt to maintain the initial macro locations obtained by plac-
ing the shredded netlist. We do this by forming a sequence-pair from the illegal
placement obtained from step 1 of the flow and then employing low-temperature
annealing. The results for this flow is presented in Table IV(C). For some bench-
marks (ibm02, ibm09, and ibm10), the floorplanner requires more tries to satisfy
the fixed-outline constraints because in the low-temperature annealing mode
it is trying to massage an existing solution and the hill-climbing capabilities of
simulated annealing do not work as efficiently. As a result the total runtimes
for these designs increase. The final HPWL for most designs improve, but not
significantly. We conclude that it is useful to preserve the initial positions of
macros, especially in less area-constrained designs.

4The C++ source code of Parquet is available on the Web at http://vlsicad.eecs.umich.

edu/BK/parquet/.
5We hope that extending QPlace with our proposed techniques can improve results for some circuits.
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We try another variant of the low-temperature annealing flow in an attempt
to reduce the floorplanning overhead. When forming soft clusters of standard
cells using physical clustering, we reduce the area of the clustered soft block by
10%. Thus the area of the clustered block is 0.9 * (sum of areas of subcells). This
helps the fixed-outline floorplanner to find a solution that satisfies fixed-outline
constraints faster. However, reducing the area of the clustered cells might affect
the optimization in some cases. Step 4 of the flow fixes the macro locations to
the ones provided by the floorplanner and replaces standardcells around the
macros. The standard cells are placed around the macros and the white-space
in the design is allocated uniformly around the chip. However, we can improve
the wirelength of the design by improved white-space allocation. We introduce
unconnected filler cells in the design to represent the excessive white-space
and reduce the white-space available to the placer to 10%. The design is then
replaced with the macros being fixed. Thus the standard cells are placed more
compactly, resulting in improved wirelength. The results for this variant of the
flow are presented in Table IV(D). As seen, wirelength and runtimes improve
for most designs.

5.3 Flow 2

Table V shows the results for our Flow 2 which places the shredded netlist
using Capo to create an initial placement and then uses Kraftwerk in ECO
mode to remove the overlaps while changing the initial seed placement as lit-
tle as possible. For these results we also report the overlap remaining in the
placement as a percent of the layout area. This is because the Flow 2 does not
produce completely overlap-free placements. The results for this flow are on av-
erage better than our Flow 1, but Flow 1 is guaranteed to produce completely
overlap-free placements. We also compare our results with placements gener-
ated by Kraftwerk [Eisenmann and Johannes 1998] from scratch. As seen in
Table V, Kraftwerk frequently produces placements with large overlaps. Our
proposed Flow 2 produces much better placements in terms of wirelength and
overlaps than Kraftwerk run from scratch. We also compare our results to mPG
[Chang et al. 2003] and the mixed-size placement flow [Choi and Bazargan
2003]. Note that the flow in Choi and Bazargan [2003] produces placements
with large overlaps.

The problem with Flow 1 is that some of its steps ignore information pro-
duced by previous steps. The macro locations generated by placing the shred-
ded netlist of step 1 are discarded. Also the soft macro locations obtained by the
floorplanning stage are discarded in the final placement. Flow 2, which uses
force-directed techniques to legalize placements obtained from step 1 overcomes
this problem. A recent work [Khatkhate et al. 2004] studies legalization of such
mixed-size placements with minimal movement from the original locations.
However, the methods proposed in Khatkhate et al. [2004] produce a place-
ment that is packed to the left side.

6. ONGOING WORK

We are currently working on tight integration of floorplanning and placement
techniques [Adya et al. 2004a] to handle mixed-size designs. We have integrated
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Fig. 13. ibm02 placement by our integrated placement and floorplanning flow. The macros are
marked by double lines.

the fixed-outline floorplanner Parquet [Adya and Markov 2001, 2003] with the
top-down placer Capo [Caldwell et al. 2000a] based on recursive bisection, seek-
ing to improve scalability when handling mixed-size designs. Capo’s framework
is briefly described in Section 2.1. We modify this framework to handle mixed-
size designs as follows. The large macros are initially treated as normal place-
able cells and the placement block is processed in the regular fashion. Fixed-
outline floor planning is employed to place the macros at legal locations inside
the placement block if at least one of the following conditions is satisfied:

—The placement block has at least one large macro whose height/width is
greater than a certain fraction (in our case 1/4) of the block’s height/width.

—The total area of the macros in the placement block is greater than a certain
threshold (80% in our case) of the total cell area and the number of macros
in the placement block is less than 100.

In order to use the floorplanner, a floorplanning instance is formed by clus-
tering the standard cells with highest connectivity in a bottom-up fashion as
explained in Section 3.2. The macros identified before are not clustered. The
fixed-outline constraints are derived from the placement block’s dimensions. If
the fixed-outline floorplanning is successful, the macros are fixed at legal loca-
tions provided by the floorplanner, the sites are removed below the fixed macros,
and the macros are removed from the block. From now on the placement block
is processed as a normal placement block which has only standard cells. In the-
ory, this proposed flow is a correct-by-construction approach and will produce a
legal placement assuming that fixed-outline floorplanning succeeds in all cases.
However, in our current implementation the fixed-outline floorplanning some-
times fails to find a legal solution satisfying the fixed-outline constraints. We
believe that this is due to the difficulties in integrating recursive bisection and
fixed-outline floorplanning. Figure 13 shows the placement of the ibm02 design
obtained using this strategy. We present preliminary results for this flow in
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Table VI. Results for Integrated Placement and Floorplanning
Flow (We report HPWL, runtimes, and the final overlap
between macros as a percentage of the total layout area.

Runtimes are observed on a 2-GHz Linux/Pentium machine.
Designs ibm08 and ibm10 take relatively longer times because

of multiple floorplanning attempts to satisfy fixed-outline
constraints during the placement flow.)

Flow 3(Capo)

Ckt WL(e6) Time

ibm01 2.96 1.8m
ibm02 5.93 4.6m
ibm03 9.74 6.8m
ibm04 10.6 8.0m
ibm05 11.0 4.6m
ibm06 7.35 7.1m
ibm07 12.5 17.4m
ibm08 15.6 2hr26m
ibm09 17.1 12m
ibm10 37.4 2hr13m
ibm11 23.6 16m
ibm12 44.5 58.8m
ibm13 31.0 22m
ibm14 44.5 38.5m
ibm15 61.1 56.9m
ibm16 70.5 60.2m
ibm17 80.6 45.9m
ibm18 50.9 44.6m

Table VI. Comparing with Tables IV and V, we see that, in most cases, this flow
produces better HPWL placements and requires less runtime. In some cases fi-
nal placements have overlaps. Since these overlaps tend to be extremely small,
they can be removed by techniques from Khatkhate et al. [2004]. However, the
Khatkhate et al. [2004] techniques require left-packing of the placement, which
we would like to avoid [Adya et al. 2003a], because from our experience it is
likely to cause routability problems. On the IBM mixed-size benchmarks, our
proposed placement approach reliably produces overlap-free placements. The
fact that Khatkhate et al. [2004] also uses the recursive partitioning approach
and achieves lower wirelength than reported in this article suggests that more
work is needed on mixed-size placement.

7. CONCLUSIONS

Modern SoC designs entail placement instances with numerous design IP
blocks. Handling such layout problems has become important, and our work
addresses this problem. Floorplanning techniques handle designs with macros,
but do not scale to a hundred thousand standard cells. On the other hand,
standard-cell placers handle large numbers of small, fixed-height cells, but do
not handle macros very well. Therefore, we attempt to combine the strengths
of both techniques.

We propose two design flows to place macro cells consistently with large
numbers of standard cells. The first flow uses a combination of techniques from
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standard-cell placement and fixed-outline floorplanning. In particular, a num-
ber of existing placers can be used without source code modifications. Our pro-
posed Flow 1 can be summarized as follows:

—Shred the original netlist. Use a standard-cell placer to generate an initial
placement.

—Construct a floorplanning instance using a physical clustering algorithm.
—Generate valid locations of macros with an improved fixed-outline

floorplanner.
—Fix the macros and place the remaining standard cells.

This flow can be modified to include a human designer who uses the initial
placement as a hint when manually placing macros. Alternatively, variants of
this flow can better preserve the initial placement.

Our proposed Flow 2 combines a standard cell placer with force-directed
techniques and can be summarized as follows:

—Shred the original netlist. Use a standard-cell placer to generate an initial
placement.

—Use a force-directed placer in ECO mode to remove the overlaps while trying
to minimize the change in existing placement.

Our Flow 1 produces completely overlap-free placements with reasonably
good wirelengths. Our Flow 2 produces high-quality wirelength placements
with potentially some overlaps. However, these overlaps are generally very
small and can be removed by simple techniques. Either of our flows can be
applied for mixed-size design placement depending upon the requirements and
characteristics of the design. Our empirical results for mixed-size placement
are significantly better than those produced by the Cadence placer QPlace. Our
results also compare favorably to those in Chang et al. [2003] and Choi and
Bazargan [2003]. It should be noted, however, that the multilevel techniques in
Chang et al. [2003] are very different from those used by other researchers and
can, in principle, be combined with ours or even applied to placements produced
by our methods.

Our experiments show that the proposed flows scale up to at least a thou-
sand macros in addition to hundreds of thousands of standard cells. However, in
Flow 1, floorplanning instances with a thousand blocks is a bottleneck and may
be improved further. Our ongoing work focuses on techniques for incremental
wirelength computation as well as multilevel techniques for floorplanning that
can handle greater numbers of macros. We have not explicitly considered tim-
ing and congestion, but the significant improvements in wirelength obtained
suggest that those metrics can also improve. Moreover, if an objective function
can be quickly computed (e.g., circuit delay without false paths can be computed
by static timing analysis in linear time), its optimization can be quickly added
to simulated annealing that we use for floorplanning. Alternatively, one could
use a previously reported force-directed macro block placer [Mo et al. 2000] that
handles congestion. Congestion and timing can also be addressed at the second
call to a black-box placer, assuming that the placer has relevant functionalities
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[Wang and Sarrafzadeh 2000; Kahng et al. 2002]. Our focus on half-perimeter
wirelength is also due to our belief that any large-scale layout tool that can-
not successfully optimize wirelength is not going to successfully optimize more
complex objectives. Our work can be considered a first step in this direction.
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RL-Huffman Encoding for Test Compression
and Power Reduction in Scan Applications
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This article mixes two encoding techniques to reduce test data volume, test pattern delivery time,
and power dissipation in scan test applications. This is achieved by using run-length encoding
followed by Huffman encoding. This combination is especially effective when the percentage of
don’t cares in a test set is high, which is a common case in today’s large systems-on-chips (SoCs).
Our analysis and experimental results confirm that achieving up to an 89% compression ratio and
a 93% scan-in power reduction is possible for scan-testable circuits such as ISCAS89 benchmarks.

Categories and Subject Descriptors: B.7.3 [Integrated Circuits]: Reliability and Testing—Test
generation; B.7.m [Integrated Circuits]: Miscellaneous; B.6.2 [Logic Design]: Reliability and
Testing—Test generation

General Terms: Design, Algorithms

Additional Key Words and Phrases: Compression ratio, decompression, Huffman encoding, run-
length encoding, scan-in test power, switching activities, test pattern compression, test compres-
sion, power reduction, scan applications

1. INTRODUCTION

Design for testability (DFT) based on scan and automatic test pattern gener-
ation (ATPG) is a reliable technique to achieve high fault coverage. Unfortu-
nately, for large circuits the number of scan cells and test patterns becomes
huge. This growth can be especially seen in today’s systems-on-chips (SoCs).
For large SoCs, test data volume increases, which in turn increases test cost
due to the rise in test time and increased memory requirement.

Power dissipation is an important factor in today’s chip design. Power dissi-
pation in CMOS circuits is proportional to the switching activity in the circuit
[Rabaey 2002]. During normal operation of a circuit, often a small number of
flip flops change values in each clock cycle. However, during test operation,
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large numbers of flip flops switch, especially when test patterns are scanned
into the scan chain. Compacting the test set often requires replacing (mapping)
don’t cares with specified bits “0” or “1” [Sankaralingam et al. 2000]. This pro-
cess may increase switching activity of scan flip flops and eventually the scan-
in power dissipation. There are usually plenty of don’t cares in test patterns
generated for scan, which provides an opportunity for compression and power
reduction.

1.1 Prior Work

1.1.1 Test Data Volume Reduction. There are several techniques to ad-
dress ATE-SoC interaction problems in terms of test data volume and applica-
tion time. Built-in self-test (BIST) methodology reduces the need for expensive
automatic test equipment (ATE) [Zorian et al. 1999]. In BIST, on-chip pseudo-
random pattern generators and signature compressors are used. In practice,
pseudorandom BIST cannot replace other test methods, because, especially for
large chips, the existence of random pattern-resistant faults may lead to un-
acceptably long test times. To overcome these difficulties, deterministic test
patterns need to be transferred from the ATE to the SoC under test. Several
methods have been reported to reduce test volumes stored in the tester’s mem-
ory [Iyengar et al. 1998; Das and Touba 2000; Hamzaoglu and Patel 2000;
Hellebrand et al. 1995].

Compression techniques are used to speed up the ATE-SoC interaction dur-
ing test. A data compression and decompression architecture for testing em-
bedded cores in SoCs using Golomb coding [Golomb 1966] was presented in
Chandra and Chakrabarty [2000]. A variable-length compression coding was
presented in Chandra and Chakrabarty [2001] which carefully considers distri-
butions of 0’s in a test sequence. Chandra and Chakrabarty [2002b] addressed
alternating run-length codes followed by frequency-directed run-length (FDR)
coding for test data compression. A simultaneous reduction in volume of test
data and power dissipation to generate minimum transition count (MTC) was
presented in Rosinger et al. [2001, 2002]. The variable-length input Huffman
compression (VIHC) method Gonciari et al. [2002] uses a maximum acceptable
length to improve compression ratio, area overhead, and test application time.
Jas et al. [1999] showed a compression/decompression based on Huffman coding
of fixed-length blocks to reduce test data. The Illinois scan architecture provides
a mechanism to reduce test application time and data storage requirements
[Hsu et al. 2001]. An embedded deterministic test technology for a low-cost test
that reduces scan test data volume and scan test time was presented in Rajski
et al. [2002].

Reducing the number of scan chain input pins fed by the ATE using an on-
chip decoder was proposed in Bayraktaroglu and Orailoglu [2001]. Reseeding
the Linear Feedback Shift Register (LFSR) [Krishna et al. 2001] is another
method that finds one or multiple seeds for an on-chip LFSR for every test vec-
tor. The generated bit sequence for LFSR matches the test vector at specified bit
positions. The size of LFSR is significantly smaller than the scan chain. Reduc-
tion of scan test data in designs with multiple scan chains using a combinational
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decoder was presented in Reddy et al. [2002]. The basic approach proposed in
[Khoche et al. 2002] is a fixed packet-based compression in which don’t cares
are filled appropriately in the test vectors such that they need not be stored
in the ATE memory. Reordering test patterns is used to reduce the overall test
application time [Wang and Chiou 2001; Tehranipour et al. 2003]. The LZ77
[Wolff and Papachristou 2002] and LZW [Knieser et al. 2003] methods use
dictionary-based algorithms to compress the input test set with a large num-
ber of don’t cares. A hybrid coding strategy, using a combination of run-length
and dictionary-based methods, was proposed in Wurtenberger et al. [2003] to
improve compression ratio.

1.1.2 Scan Power Reduction. The excessive switching activity during scan
tests may cause larger peak and average power dissipation than those during
normal operation. Therefore, the power constraint of the circuit needs to be
considered in test mode. Applying scan test vectors generated by an ATPG is
very time-consuming and thus compacting test vectors is unavoidable. Being
a feature of the test set, overall power dissipation of cores remains the same.
However, the compression/decompression procedure may intensively increase
the power dissipation of scan elements in the chain. This is often called the
scan-in and scan-out power consumption of the chain.

Several techniques have been proposed to reduce power consumption during
test application. Test vector ordering [Girard et al. 1998], gated clock scheme
[Bonhomme et al. 2001], scan latch partitioning [Nicolici and Al-Hashemi
2000], test generation for low-power scan testing [Wang and Gupta 1997],
static compression to reduce power [Sankaralingam et al. 2000], mixed com-
pression/decompression and low-power test application techniques based on
Golomb codes [Chandra and Chakrabarty 2002a], FDR codes [Chandra and
Chakrabarty 2002b], and MTC [Rosinger et al. 2001, 2002] are among the pro-
posed techniques.

1.2 Main Contribution and Article Organization

In this article we present a compression/decompression technique to reduce
test data volumes, test application times, and switching activities in scan cells.
The proposed technique combines two well-known methods, run-length (RL)
and Huffman encodings [Cover and Thomas 1991]. Essentially, RL encoding
performs variable-length grouping to utilize the don’t cares for (1) minimiz-
ing bit-transition and (2) compressing data by sending the length of running
(similar) bits. Huffman encoding further enhances compression. While scan
power reduction is not the main focus of this article, creating the minimum bit-
transition by RL has a positive effect in reducing scan-in power consumption of
the scan components. The compressed test data is scanned in and decompressed
by an inexpensive on-chip decoder to generate the exact test pattern which is
finally scanned into the scan chain.

Our work is similar to that of Chandra and Chakrabarty [2002b] and
Rosinger et al. [2001] in using run-length encoding and to that of Gonciari
et al. [2002] in using Huffman encoding. However, our technique is more flexi-
ble by (1) dealing with large runs of 0s or 1s effectively, (2) filling don’t cares to
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maximize occurrence frequency and thus compression ratio and (3) being able
to trade off between compression ratio and decoder cost.

This article is organized as follows. Section 2 describes the proposed com-
pression technique. In Section 3, we explain the analytical foundation of our
compression technique. The decompression method and architecture are dis-
cussed in Section 4. Power analysis is presented in Section 5. The experimental
results are shown in Section 6. Finally, Section 7 concludes the article.

2. RL-HUFFMAN COMPRESSION TECHNIQUE

Typically, an ATPG generates test patterns in several steps [Synopsys, Inc.
2002]. First, it generates test patterns by pseudorandom pattern generation.
When the fault coverage does not increase by generating more random patterns,
it stops. The second step is to generate deterministic test patterns to detect
all leftover random pattern-resistant faults to achieve higher fault coverage.
There are often large numbers of don’t cares in each test pattern. The ATPG
may use don’t care bits to compact (collapse) test vectors. Random bits are
sometimes assigned to don’t cares in test patterns to detect nonmodeled faults.
In most computer-aided design (CAD) tools, the user has options for filling
the don’t cares. For example, in Synopsys’s Tetramax [Synopsys, Inc. 2002],
the “norandomfill” option can be used to leave don’t cares unchanged in the
generation phase.

2.1 Step 1: Run-Length Encoding

In today’s SoCs, the percentage of don’t cares can be quite high, sometimes
more than 80% for large circuits [Wolff and Papachristou 2002]. IBM reported
98% of bits in test patterns for some of their designs were filled with don’t cares
[Koenmann 2000]. In our compression technique we take advantage of the pres-
ence of don’t cares in test vectors. Our technique uses a variable encoding of
test vectors. The basic idea in RL encoding is a careful replacement of don’t
cares with “0” or “1” to find the minimum number of 0 → 1 and 1 → 0 tran-
sitions. Minimizing such transitions also has a significant impact in reducing
the dynamic switching activities of test components (i.e., scan cells) to which
the vectors are sent.

Figure 1 shows an example of filling don’t care bits with “0” or “1” based
on RL strategy. As shown, the filling process starts from the most significant
bit of the vector sequence (e.g., T1). The don’t cares are filled with 1s until we
reach a “0”. In the next step, don’t cares are filled with 0s until the next “1”.
This process continues until it replaces all don’t care bits with “0” or “1”. In this
example, the number of transitions is 10 and the test set is partitioned into 11
blocks (Nb = 11), each of which is filled with only 1s or 0s. Li shows the length of
blocks in the test set. The corresponding block lengths are shown in Figure 1(b).
Block lengths are shown using Li[v] notation, where Li is block length and [v]
is the bit value “0” or “1” that is filled in that block. The characters are stored
in the lookup table for decoding purpose. As shown, the number of characters
(Nl ) stored in the lookup table is seven. Figure 1(c) summarizes the occurrence
frequency ( fi) of these characters. In this example, no limit on the block size is
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Fig. 1. Applying the run-length algorithm to a small example.

Fig. 2. RL encoding algorithm.

defined and we simply replace don’t cares with 0/1 values to maximally enlarge
a block. More sophisticated approaches can be devised for other objectives such
as minimizing Nl or increasing fi values. Some techniques are discussed in
Section 3.4.

Figure 2 shows RL encoding algorithm, where n and m are the number of
test patterns and the scan chain size, respectively. Again, we did not define
any limit on the block size. In the next section we will elaborate further on the
role of maximum block size. In the RL algorithm, Tj refers to the j th bit in
a test sequence (combined patterns) when it is checked to form the blocks.
In our method, within each block we have only 0s or 1s. If RL is the only
compression step, instead of scanning actual data we can scan the length of
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Fig. 3. Huffman code for the example in Figure 1.

that block showing how many bits in the block are “0” or “1.” Most of the other
techniques focus on probability of the occurrence of fixed-length blocks which
may include “0,” “1,” or “x” (don’t care) [Jas et al. 1999; Khoche et al. 2002]. In
our case, the length of blocks (Li values in Figure 1) are encoded in the first
step of compression. Note carefully that, as lines 9–12 in Figure 2 indicate,
the algorithm always generates alternating 0-blocks and 1-blocks. Lines 15–16
store the final block size and frequency in a test set. Therefore, a single bit T0
to start the alternation is sufficient and the values of each block (e.g., [v] in
Figure 1(b)) are not explicitly sent.

2.2 Step 2: Huffman Encoding

To get the best compression rate in the second step, we also apply Huffman
coding (a variable-length encoding by nature) [Huffman 1952] to encode block
length values (characters). The idea is to assign a smaller number of bits to
codewords that occur most frequently and a larger number of bits to those that
occur less frequently. Huffman codes are obtained by constructing a Huffman
tree. Figure 3(a) shows the Huffman tree for the example of Figure 1(c) with
the occurrence frequency annotated. The generated Huffman code is shown in
Figure 3(b). Clearly, blocks with higher-occurrence frequencies will get shorter
codewords. For this example, instead of sending 64 bits of original data, the
ATE sends only 64 − 34 = 30 bits. This is a 53.12% overall saving in test data
volume. The saving in transfer time depends on working frequencies of the ATE
and SoC under test. In Section 4 we will express the upper bound of transfer
time saving based on compression saving. The last column in Figure 3(b) shows
saving of data sent into the chip. Instead of sending L bit 0s or 1s, the l bit
codeword is sent. Saving for the ith codeword is Li − li, where li is the length
of the ith codeword (Ci). Saving for sending the ith codeword with frequency fi
is Si = fi(Li − li). Total saving for all codewords is S = ∑Nl

i=1 fi(Li − li). Then,
the compression ratio (percentage of data reduction) for n vectors sent to a scan
chain of m cells (overall n · m bits) will be

CR = S
n · m

=
∑Nl

i=1 fi(Li − li)
∑Nb

i=1 Li
.
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Fig. 4. Comparison between several techniques.

Eventually, the RL-Huffman code is scanned into the chip. An on-chip decoder
decompresses the encoded bits to recognize how many 0s or 1s need to be shifted
into the scan chain. In general, the Huffman tree is needed not only for encoding
but also for decoding. To make the decoder independent of the test set, the
information of this tree can be transmitted with the compressed test data.
However, this approach may result in higher cost and lower compression ratio.

Our decompression technique is quite straightforward and will be discussed
in detail in Section 4. Also, in Section 5 we will show the positive impact of RL
encoding on minimizing the bit transitions, and, hence, power consumptions of
the scan cells. Note that Huffman encoding provides a further reduction and
does not deteriorate the minimum transition property achieved by RL encoding.

2.3 Comparison to Other Techniques

To clarify why RL-Huffman encoding is so efficient, we compare our technique
with techniques using FDR codes [Chandra and Chakrabarty 2002b], statistical
coding [Jas et al. 1999] and VIHC [Gonciari et al. 2002]. Figure 4 shows a
comparison between these techniques for one 20-bit test pattern.
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In FDR codes, don’t care bits are replaced with 0s and 1s. The blocks may
have different lengths but they use a fixed code to make the decoder inde-
pendent of test set. Such replacement and code reduce the cost of a decoder
[Chandra and Chakrabarty 2002b] but the highest compression ratio may not
be achieved (see Figure 4(a)). The statistical coding method proposed in Jas
et al. [1999] uses a fixed-length coding combined with Huffman coding based
on the occurrence frequency of codewords. Figure 4(b) shows the result of this
method for 4-bit lengths. But the chance of having identical fixed-length blocks
(and thus occurrence frequency) will be decreased when the size of blocks in-
creases. In the VIHC method [Gonciari et al. 2002], a maximum acceptable
length of runs of 0s is defined (mh = 4 in Figure 4(c)). The test vector is divided
into runs of 0s of lengths smaller or equal to mh and then coded using Huffman
encoding.

The final compressed data in our technique is shorter than other techniques,
as shown in Figure 4(d). Note carefully that in the conventional RL coding we
need to send both the characters and their lengths, which means 9[1]5[0]6[1]
(i.e., nine 1s, five 0s, and six 1s) should be sent for the pattern in Figure 4(d).
However, in our method we guarantee alternating transitions between a 0-
block and a 1-block and therefore the values of “0” and “1” do not explicitly
need to be sent along with the code. In Section 4 we will explain how a decoder
takes this property into account and easily generates this alternation. Our
method is similar to the method presented in Gonciari et al. [2002] in using a
combination of RL and Huffman encoding. However, the application techniques
are different. Specifically, in dealing with large block sizes, being able to target
the occurrence frequency to maximize compression and tradeoff between the
compression ratio and the decoder cost differentiates our method from similar
techniques.

We acknowledge that comparing methods with only one pattern may not be
fair as the average compression ratio for large test sets matters. This example
is presented to differentiate our approach from others. In Section 6 we will
show that the compression ratio of our method is also quite good for large test
sets.

3. ANALYSIS OF RL-HUFFMAN COMPRESSION TECHNIQUE

RL encoding takes advantage of don’t cares by creating blocks of identical
data values. The Huffman code is a variable-length code that can do much
better than a fixed-length code in terms of compression Cover and Thomas
[1991]. Huffman coding can be done in O(nlogn) and therefore is not very
time-consuming [Cormen et al. 2001]. Additionally, no codeword is prefix to
the others, a property that makes decoding easy and inexpensive. Huffman
coding gives frequent and infrequent characters short and long codewords,
respectively.

3.1 Compression Efficiency

The lower bound of the average length of a codeword, used for encoding an
information source, can be expressed by its entropy [Cover and Thomas 1991].
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The entropy of a test set with Nl unique characters is given by

H = −
Nl∑

i=1

(pi · log2 pi),

where pi is the occurrence probability of character Li. As the above formula
shows, entropy is independent of character lengths. The average length of a
codeword is given by

lavg =
Nl∑

i=1

pi · li,

where li is the codeword length for the character Li. For a general compression
technique we have lavg ≥ H, and efficiency of the compression technique is
expressed as

E = lavg/H.

The closer E is to 1, the more efficient is the compression technique. The average
length of an Huffman codeword is the closest to the entropy of a test set [Cover
and Thomas 1991]. In the example of Figure 1, H = 2.663, lavg = 2.727, and
E = 1.023.

3.2 Compression Ratio

The overall compression ratio depends on the saving that RL (SRL) and Huffman
(SH ) encodings achieve in the first and second step, respectively. Briefly, we use
this formula in computing the overall compression ratio (CR):

CR = SRL + SH
∑Nb

j=1 L j
.

More specifically, the compression ratio achieved in the first step (RL) will be
CRRL = SRL/

∑Nb
j=1 L j . The compression ratio in the second step (Huffman) with

respect to the result of the first step can be computed as CRH = SH/(
∑Nb

j=1 L j −
SRL). SRL metric depends on the number and distribution of x ’s and also on
the maximum block size (K ). Briefly, in the RL step, instead of K -bit data,
we send only �log2K � bits. Therefore, if the maximum block size (maximum
Run-Length) is K and there are Nb characters to transmit:

SRL =
Nb∑

j=1

L j − (�log2K � × Nb),

where
∑Nb

j=1 L j = n·m. In the above formula Nb bits need to be added to �log2K �
if “1” and “0” (values for each block) need to be sent. In our method we don’t
include these values because alternating 0-blocks and 1-blocks are guaranteed.
For the example of Figure 1(b) we have SRL = 64 − 4 × 11 = 20.

Since we use Huffman coding in the second step, the compression ratio
of this step depends on the occurrence frequency of characters. The charac-
ters in our method are Li values. Total length (bits) of data will be B =∑Nl

i=1( fi × li), where Nl is the number of distinct characters (different Li
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values), fi and li are the occurrence frequency and length of codeword Ci,
respectively.

Using fixed-length binary coding, we have li = �log2Nl� ∀i. Therefore, for a
total number of characters in the data set Nb = ∑Nl

i=1 fi we have

Bfixed-length = �log2Nl� ×
Nl∑

i=1

fi = �log2Nl� × Nb.

It has been shown that, for Huffman coding, the average length of codewords
(lavg) satisfies this inequality: H ≤ lavg ≤ H + 1, where H = − ∑Nl

i=1[( fi/Nb) ×
log2( fi/Nb)] [Cover and Thomas 1991]. Note that fi/Nb shows the occurrence
probability of codeword Ci in the data set. Therefore:

BHuffman ≤
{

1 −
Nl∑

i=1

[( fi/Nb) × log2( fi/Nb)]

}

× Nb.

The upper bound of the Huffman compression ratio, compared to the fixed-
length coding, will be

CRH ≤ Bfixed-length − BHuffman

Bfixed-length

≤ �log2Nl� − {1 − ∑Nl
i=1[( fi/Nb) × log2( fi/Nb)]}
�log2Nl� .

Researchers have shown that CRH is in the range of 20% to 90% depending on
the occurrence frequencies [Cormen et al. 2001]. In our example of Figure 3:
SH = 4 × 11 − 30 = 14 and overall CR = SRL+SH

∑Nb
j=1 L j

= 20+14
64 = 53.12%.

3.3 Maximum Run-Length (K)

The overall compression ratio depends on distribution of don’t cares and occur-
rence frequencies of characters to be transmitted. Additionally, the maximum
block size (K ) affects number of characters (Nl ), number of blocks (Nb), and in-
directly occurrence frequencies ( fi). More specifically, in our approach we need
to choose K such that a reasonable probability of having a block of that size
exists in a test data set. Very small and very large values for K both hurt the
compression ratio. Intuitively, if we choose a very large K , the probability of
having that many 0s or x ’s (or that many 1s and x ’s) running through K con-
secutive bits may be very small and thus we will not get high frequencies. On
the other hand, if we choose K to be very small, the distribution of frequencies
will be close to uniform and we will not get that much compression.

Note that there is no magic number for K . K can be chosen more efficiently
based on the amount of don’t cares in test data set. Suppose, p(0), p(1), and
p(x) show the probability of being “0,” “1,” and “x” when one bit is chosen from
the data set, respectively. Obviously, these probabilities depend on the total
number of 0s, 1s, and x’s in a set and can be computed a priori. Let’s assume
p(x) = D and p(0) = p(1) = (1 − D)/2, where D is the ratio of don’t care bits to
the total bits in a test set. The probability that a K -bit block is formed can be
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Fig. 5. Probability of having K -bit block (pK ) as a function of D%.

computed [Tehranipour and Nourani 2002]:

pK (D) = p(K bits ∈ {0, x}) + p(K bits ∈ {1, x})
−p(K bits ∈ {x})

= [p(0) + p(x)]k + [p(1) + p(x)]k − [p(x)]k

= 21−K (1 + D)K − DK .

In Figure 5, pK (D) is drawn for various D% (don’t care percentage) values
between 60% to 90%. As K increases, the probability of having such block will
be smaller. Due to the complicated relationship of factors and unavailability
of frequencies, no magical K can work for all data sets. However, for a given
data set, the ratio of don’t care D values can be computed and an appropriate
K can be chosen such that the probability remains reasonable. A large value of
K hurts RL encoding because, for a fixed D, pK (D) becomes small. But it helps
Huffman encoding as a large K implies larger saving. Similarly, a small value
of K makes Huffman encoding ineffective because the block size distribution
becomes almost uniform. But it helps RL encoding as pK (D) will be higher.
Optimizing K is beyond the scope of this article. Empirically, we observed that
choosing K such that the probability of having a block size of K (or very close
to K ) remains in the range of 0.4 to 0.6 produces a good compromise between
the compression ratio and the decoder cost. In such a situation, CR% is often
upper-bounded by D%. Some experimental evidence will be shown in Section 6.

3.4 Techniques to Trade Off Compression Ratio and Decoder Cost

When RL encoding is applied, the length of blocks may vary from 1 to n · m.
Therefore, the decoder needs to decode all codewords between 1 and n · m. For
large circuits, the scan chain is too long, and may even be around a couple of
hundreds. In such cases, the occurrence frequencies of fi may not be too high
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because it is distributed from 1 to n · m and all block lengths between 1 to n · m
may happen. The advantage of a long block is that a large amount of data is
sent by a very small codeword. The disadvantage is that it needs a more costly
decoder. In our technique, we use the maximum run length (K ) to trade off
complexity of the decoder and compression ratio.

We have investigated three techniques of which the first two limit block sizes
to a predefined number K and the third technique has no limit on block size.
The compression algorithm, shown in Figure 2, needs to be slightly revised
to limit block sizes to a predefined value K . Our experimentation on tradeoff
between K , compression ratio, and decoder cost will be reported in Section 6.

3.4.1 Technique 1. We have the following:

∀Li : Li > K ⇒ L∗
i1 + L∗

i2 = Li �
{

L∗
i1 = K ,

L∗
i2 = Li − K .

In Technique 1 if the size of a block (Li) is greater than K , it is divided into
two new blocks (with the size of K and Li − K ) and the process continues until
no block size is greater than K . A 0 (blank) character is inserted between the
new blocks. Obviously, zero length never happens for actual data blocks in our
technique. The 0 character is used to guarantee alternation between 0s and 1s
for consecutive blocks. This feature reduces the decoder cost with little sacrifice
of the compression ratio.

3.4.2 Technique 2. We have the following:

∀Li : Li > K ⇒ L∗
i1 + L∗

i2 = Li �

S∗
i1 + S∗

i2 = max
L∗

i1+L∗
i2=Li

{Si1 + Si2}.

Technique 2 revisits the blocks and, if a block size is larger than a given K ,
decomposes it such that the break increases the occurrence frequencies of other
characters to achieve maximum saving. Blank character (0) is still required to
be added between each two blocks to ensure alternating 0-blocks and 1-blocks.
This technique keeps the size of the decoder proportional to K , but may enhance
the compression ratio.

3.4.3 Technique 3. We have the following:

∀Li : Li > K ⇒ L∗
i−1 + L∗

i + L∗
i+1 = Li−1 + Li + Li+1 �

S∗
i−1 + S∗

i + S∗
i+1 = max

L∗
i−1+L∗

i +L∗
i+1=Li−1+Li+Li+1

{Si−1 + Si + Si+1}.

In Technique 3, blocks generated by the RL encoding algorithm are revisited
to find the minimum number of blocks. Reducing the number of blocks reduces
the entropy of a test set, which eventually increases saving and the compression
ratio. Moreover, the cost of a decoder is reduced since a fewer number of states
need to be handled by the decoder. No blank character needs to be added to
the final sequence. This technique uses a graph-based heuristic for entropy
optimization and is more complicated than Techniques 1 and 2. Details of these

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



RL-Huffman Encoding • 103

Fig. 6. Techniques to trade off compression ratio and decoder cost.

techniques are beyond the scope of this article and can be found in Tehranipour
and Nourani [2002].

Figure 6 shows these three techniques applied to a small example. Figure 6(a)
is the original RL-Huffman with no limit on K and no block size adjustment.
Figure 6(b) shows the length of blocks computed with K = n · m = 48 using
the original RL technique. In this case, the lookup table size, which indicates
decoder cost, is proportional to 6 entries and the compression ratio is 62.50%.
Assuming K = 9, Figure 6(c) shows the first technique. Length 11[0] is decom-
posed to 9[0]0[1]2[0] and length 10[1] is decomposed to 9[1]0[0]1[1]. The lookup
table size is 7 and the compression ratio is 37.50%.

Figure 6(d) shows the second technique for K = 9. The length 11[0] is decom-
posed to 7[0]0[1]4[0] and 10[1] is decomposed to 7[1]0[0]3[1]. The lookup table
size is 5 and the compression ratio is 47.91%. Overall, Technique 2 produces
better results due to the increasing of occurrence frequencies of leftover char-
acters while reducing the lookup table size. Figure 6(e) shows the best results
based on Technique 3. In this case, 11[0]3[1] changes to 10[0]4[1], making the
frequencies of blocks 10 and 4 increase. The final sequence is shorter than with
the other techniques, the compression ratio is CR = 72.92%, and the lookup
table size is 4.

4. DECOMPRESSION

Huffman codes are prefix-free [Cormen et al. 2001]. This is an important prop-
erty compared to other coding techniques used for compression and it signif-
icantly simplifies the decoding process. In Huffman code, the decoder easily
recognizes the end of each codeword. An on-chip decoder at the serial input
of the SoC under test is used to decompress test vectors. The decoder decodes
input codes to recognize how many 1s or 0s need to be shifted into the scan
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Fig. 7. RL-Huffman decoder architecture.

chain. The test vectors can be shifted into the scan chain with a higher rate,
for example, at the SoC clock speed. The ATE sends the compressed data and
clock for synchronization to the decoder. In our method the compressed data
is a stream of variable-length (Huffman) codewords corresponding to the block
lengths.

4.1 FSM-Based Decoder

Several Huffman decoders have been proposed in recent years which are in-
dependent of the circuit and data set [Chia-Hsing and Chein-Wei 1998; Benes
et al. 1998; Rudberg and Wanhammar 1997]. The drawback, however, is that
these decoders are expensive. To make decoder independent of the test set, the
information of the Huffman tree can be transmitted with the compressed test
data. However, such overhead has an adverse effect on the compression ratio.
Moreover, such generic implementation is still expensive. In this article, we
propose using an inexpensive decoder that is test set-dependent. Dependency
of the decoder on the test data is not desirable in general but can be well jus-
tified by its low cost and generic architecture. Empirical results are shown in
Section 6.

The block diagram of one possible implementation of a decoder is shown
in Figure 7. The compressed data (input codeword) comes from the ATE to
the Huffman FSM, where the input codewords are decoded. The decoded code
addresses a small lookup table to find the block length Li that indicates the
number of 1s or 0s required to be shifted into the scan chain. The other outputs
of the FSM are sel (to shift appropriate 0 or 1 into the scan chain), load (to
enable of the counter), and stop (to stop the ATE when the counter has not
finished its job while the FSM has generated a new address).

When the FSM generates an address pointer (AP), it enables load and the
counter starts counting. At the same time sel (“0” or “1”) is shifted into the
scan chain through an open buffer. The FSM receives the new codeword for
decoding. When the value of the counter and the output of the lookup table Li
become equal, the output of the counter (ripple carry-out (rco)) becomes 1 and
the shifting sel value is stopped. It also signals the FSM to put the next address
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pointer on the input line of lookup table. If the FSM generates the address
before receiving rco from the counter, it stops the ATE with stop signal and
waits for rco. When it receives rco = 1 signal, it puts the new address on the
output and deactivates the stop signal (stop = 0). Every time that a new AP is
provided, a T flip-flop inside the FSM toggles to generate alternating blocks of
0s and 1s on the sel line.

4.2 CAM-Based Decoder

The decoder architecture of Figure 7 is one of many ways to implement the de-
coder. We would like to comment that other architectural styles are also efficient
because the size of the decoder is quite small. In particular, content addressable
memory (CAM) architecture can be used instead of the FSM-table pair to trans-
late the codeword li to the block length Li. Various efficient implementations of
CAM have been proposed so far [McAuley and Francis 1993]. For large CAMs,
the cost and power consumption of the large priority encoder inside the unit
are matters of concern [McAuley and Francis 1993]. However, for applications
such as ours that use small CAMs (up to a few hundred entries), these issues
will not be problematic. In Section 6 we show the results of FSM-based imple-
mentation only. The CAM implementation of a few RL-Huffman decoders that
we tried were only 7% to 12% more costly than their FSM-based counterparts
[Tehranipour and Nourani 2002].

4.3 Test Time Reduction

Reducing the overall test application time is the ultimate goal of test pattern
compression. In general, the amount of time reduction depends on the compres-
sion ratio and decompression method. In this section we estimate the overall
time reduction ratio (TR).

Suppose the ATE and SoC under test work with frequencies fATE and fSoC,
respectively. When there is no compression, the test time is the same as the
transfer time. That is:

Tno comp =
(

Nb∑

i=1

Li

)

·
(

1
fATE

)

.

When we compress the test data, such as in our method, the overall time is
made of three portions:

Tcomp = Ttransfer + Tdecode + Tidle.

In our method, the transfer and decode part is quite straightforward. Essen-
tially, codewords (Ci) are transferred with a speed of fATE and counting toward
Li is done with a speed of fSoC. In other words:

Ttransfer =
(

Nb∑

i=1

li

)

·
(

1
fATE

)

,

Tdecode =
(

Nb∑

i=1

Li

)

·
(

1
fSoC

)

.
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Based on the decoder architecture shown in Figure 7, when the counter has
not finished its counting for a block length Li, the FSM cannot function on a
new codeword Ci. The FSM receives li bit in li

fATE
cycles and the counter counts

up to Li in Li
fSoC

cycles. We may have Tidle = 0 only if the following inequality is
satisfied:

(

max
1≤i≤Nb

{Li}
)

·
(

1
fSoC

)

≤
(

min
1≤i≤Nb

{li}
)

·
(

1
fATE

)

.

When this relation is not satisfied for the (li,Li) pair, the idle time will be
Li

fSoC
− li

fATE
and therefore

Tidle =
Nb∑

i=1

(
Li

fSoC
− li

fATE

)

, ∀i � Li

fSoC
>

li

fATE
.

Although the above relation can be approximated as Tidle � Nb · ( Lavg

fSoC
− lavg

fATE
), we

prefer to use the upper bound to combine Tidle with Ttransfer and Tdecode. According
to the above equation for Tidle, the upper bound will be Tidle ≤ ∑Nb

i=1
Li

fSoC
and

therefore

Tcomp ≤
Nb∑

i=1

(
li

fATE
+ 2 · Li

fSoC

)

.

Finally, the time-reduction ration can be computed as

TR = Tno comp − Tcomp

Tno comp

≥
∑Nb

i=1
Li

fATE
− ∑Nb

i=1
li

fATE
− 2

∑Nb
i=1

Li
fSoC

∑Nb
i=1

Li
fATE

≥
∑Nb

i=1(Li − li)
∑Nb

i=1 Li
− 2

1
fSoC

1
fATE

≥ CR − 2
fATE

fSoC
.

The above formula shows a lower bound for the TR metric. For the example,
in Figure 1, if fATE = 100 MHz, fSoC = 1 GHz, and CR = 53.12%, we estimate
33.12% ≤ TR ≤ 53.12%. In Section 6 we will show empirical evidence indicating
that this lower bound of TR is not tight and, in practice, the relation CR −
1.5 fATE

fSoC
≤ TR ≤ CR − 1.3 fATE

fSoC
holds for large test sets.

5. POWER SAVING

The main goal of compression is to reduce the volume of test data. Each com-
pression method decides on filling don’t cares in the test set. Such a decision
(sometimes called test set mapping) affects the power consumption of those
components that finally receive uncompressed data from the decoder unit. In
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other words, the decoder simply performs the reverse job and creates the same
data (including those that replaced don’t cares) as decided in the compression
process.

Reducing the number of transitions in test vectors reduces the switching
activity and eventually power during the scan-in operation. Several techniques
have been reported to reduce test application power. Test vector reordering
[Girard et al. 1998] reorders scan cells such that the test sequence shifted in
has the minimum switching activity during test application. The gated clock
scheme [Bonhomme et al. 2001] reduces the clock rate on scan cells during
shift operations to reduce scan power consumption. Scan latch partitioning in
multiscan chains [Nicolici and Al-Hashemi 2000] reduces power dissipation by
eliminating the spurious transitions which occur in the combinational part of
the circuit via sending an extra test vector.

While scan power reduction is not the main focus of this article, our com-
pression technique also reduces the scan-in power. This refers to the power
consumption of elements in the scan chain during the scan-in operation. This
desirable side effect (i.e., the reduced scan-in power) exists due to the inher-
ent feature of our RL encoding technique that generates the minimum number
of transitions. We have not pursued scan-out power (due to the core’s output
responses) in this article. Reducing scan-out power requires scan cell reorder-
ing [Dabholkar et al. 1998] or scan latch partitioning [Nicolici and Al-Hashemi
2000], which is beyond the scope of this article.

To analyze scan-in power, we have used the power estimation relation pro-
posed in Sankaralingam et al. [2000] and Chandra and Chakrabarty [2002a].
These analytical relations only estimate bit transitions (proportional to power
consumption) due to input test patterns traveling through the chain. Suppose
n and m are the number of test patterns and scan chain length, respectively.
Assume Ti = (bi1, bi2 · · · bim) is the ith test pattern (1 ≤ i ≤ n), where bi1 is
the first bit scanned into the chain. Power dissipated in the scan cell elements
(due to input test patterns) is estimated by counting the number of weighted
transitions (WT) in the pattern, as presented in Sankaralingam et al. [2000].
The transition weight for a bit indicates how many times this bit is replaced
with its complemented value when it is scanned into the scan chain.

In Chandra and Chakrabarty [2002a], the authors showed an analytical for-
mula for scanning in pattern Ti, WTi:

WTi =
m−1∑

j=1

(m − j )
(
bij ⊕ bi( j+1)

)
.

The total, average, and peak weighted transitions, due to input patterns, are





WT = ∑n
i=1 WTi,

WTavg = WT/n,
WTpeak = MAX1≤i≤n{WTi}.

As mentioned earlier, the RL encoding step in our technique builds minimum
transitions in each test vector. The minimum bit transition for a test vector does
not necessarily mean the minimum WTi (as each bit enters the chain) in that
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Table I. Comparing WT for an Example with
Different Fillings of Don’t Cares

i T1 = 0xx11x0x Bit transition WT

1 0xx11x01 ≥2 ≥ 8
2 00011000 2 8
3 00111000 2 9
4 00111100 2 8
5 01011x00 ≥4 ≥15
6 01111000 2 10
7 01111100 2 9
8 00011100 2 7

test vector. WTi depends on the position of the transitions. Note that in the WTi
formula m− j is the weight for the j th transition position in Ti. To reduce WTi,
we need to minimize m − j . If we push the transition position toward the least
significant bit, the weighted transitions of a test vector (WTi) and eventually
the overall weighted transitions (WT) are reduced.

As an example, assume that T1 = (b11, b12, . . . , b18) = (0xx11x0x) when m = 8
and obviously the minimum number of transitions is two. Suppose that b11 is
the first bit scanned into the scan chain. As shown in Section 2, after filling
don’t cares, RL encoding produces T1 = (00011100). This filling method gives
the minimum weighted transition in each test vector. Fortunately, it is an inher-
ent property of the RL encoding process to push minimum transitions toward
the least significant bit. Any other different fillings with the same number of
transitions cause larger WT. Table I shows the comparison between all possible
fillings of don’t cares while keeping the minimum number of transitions for test
vector T1. The last row in the table shows our filling process, which has the min-
imum WT. The other rows either show more WT or indicate more transitions,
which eventually result in more WT. In Section 6 we compare average and peak
scan-in power estimates with the random-fill technique.

6. EXPERIMENTAL RESULTS

The proposed technique is used to compress test data for ISCAS89 and PMC-
Sierra’s [PMC-Sierra 2002] benchmarks. Test patterns for PMC-Sierra’s bench-
marks are generated using FastScan [Mentor Graphics Corporation 2002] with
static compaction. Test patterns for ISCAS89 benchmarks are identical to those
used by other researchers [Chandra and Chakrabarty 2002b; Gonciari et al.
2002; Wolff and Papachristou 2002].

Figure 8 shows the results of our compression technique applied to 50 ran-
domly generated test sets when we tuned the random filling to have 90%, 80%,
and 70% don’t cares. CRavg shows the average compression ratios among 50 ex-
amples in each case and is close to D% especially when D% is high. This experi-
ment confirms our conjecture that CR% is generally upper-bounded by D% (see
Section 3.3).

Table II shows the compression results of five PMC-Sierra’s SoCs and 12
ISCAS89 benchmarks assuming a K = n · m that implies unlimited block size.
The total number of bits before (Nbits before) and after (Nbits after) compression
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Fig. 8. CR for 50 random test sets.

Table II. Test Pattern Compression Analysis and Compression (K = n · m)

Compression ratio (CR %)
Circuit Nbits before D% Nbits after RL-Huffman(+Tech.3) FDR MTC(+SLR) VIHC

PMC1 164800 90 24209 85.31 — — —
PMC2 4557 88 712 84.36 — — —
PMC3 16830 83 3519 79.09 — — —
PMC4 89154 82 17295 80.60 — — —
PMC5 13311 81 2678 79.89 — — —
s420 1785 51 1026 42.52 — — —
s838 5762 59 2215 61.55 — — —
s1196 4448 56 3016 32.19 — — —
s1238 4864 56 3263 32.90 — — —
s1423 3276 46 2225 32.08 — — —
s5378 23754 71 10986 53.75 (58.23) 50.77 38.49 (46.01) 51.52
s9234 39273 72 20582 47.59 (52.46) 44.96 39.06 (47.20) 54.84
s13207 165200 92 28893 82.51 (86.31) 80.23 77.00 (81.07) 83.21
s15850 76986 83 25143 67.34 (69.89) 65.83 59.32 (64.59) 60.68
s38417 164736 68 59024 64.17 (66.25) 60.55 55.42 (58.56) 54.51
s38584 199104 82 74863 62.40 (68.97) 61.13 56.63 (63.41) 56.97
s35932 28208 35 3029 89.26 (92.07) — 83.77 (95.75) 66.47

Note: FDR [Chandra and Chakrabarty 2002b]; MTC (+SLR) [Rosinger et al. 2001]; VIHC [Gonciari et al. 2002].

and don’t care percentage (D%) are also provided. This table also compares our
results with the best results presented in Chandra and Chakrabarty [2002b],
Rosinger et al. [2001], and Gonciari et al. [2002]. Specifically, for the last seven
ISCAS89 benchmarks, we report our RL-Huffman method with and without
using Technique 3. Recall that Technique 3 requires revisiting blocks to find
higher-occurrence frequencies (equivalent to minimum number of blocks). The
numbers in boldface indicate the highest compression ratio among those re-
ported in the table. In most cases, Technique 3 improves the result of the orig-
inal RL-Huffman by 2% to 7%.
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Table III. Entropy Analysis

RL-Huffman Entropy analysis
Circuit CR% lavg H E

s420 42.52 3.800 3.774 1.006
s838 61.55 4.343 4.321 1.005
s1196 32.19 3.081 3.011 1.023
s1238 32.90 3.160 3.098 1.020
s1423 32.08 3.387 3.319 1.020
s5378 53.75 3.599 3.556 1.012
s9234 47.59 4.223 4.180 1.010
s13207 82.51 5.328 5.299 1.005
s15850 67.34 4.466 4.429 1.008
s38417 64.17 4.121 4.104 1.004
s38584 62.40 4.271 4.249 1.005
s35932 89.26 3.908 3.873 1.009

Table IV. Test Time Analysis

RL-Huffman Time reduction ratio (TR%)

Circuit CR% fATE
fSoC

= 1
20

fATE
fSoC

= 1
10

fATE
fSoC

= 1
5

s420 42.52 35.62 28.72 14.92
s838 61.55 54.55 47.55 33.55
s1196 32.19 25.54 18.89 5.59
s1238 32.90 25.75 18.60 4.30
s1423 32.08 25.18 18.28 4.48
s5378 53.75 46.95 40.15 26.55
s9234 47.59 41.09 34.59 21.59
s13207 82.51 75.26 68.01 53.51
s15850 67.34 60.34 53.34 39.34
s38417 64.17 57.46 50.88 37.05
s38584 62.40 55.90 49.40 36.40
s35932 89.26 82.61 75.96 62.66

The FDR, MTC, and VIHC methods in Table II were chosen for compar-
ison due to their similarities in using run-length encoding. We acknowledge
that other compression methods, such as the dictionary-based LZ77 [Wolff and
Papachristou 2002] or LZW [Knieser et al. 2003] approaches, have reported
higher compression ratios for some of these benchmarks. However, their results
in terms of consistency to achieve a high compression ratio, cost of memory-
demanding decoder, and scan-in power due to high bit transitions are still
inconclusive.

Table III shows the entropy analysis of ISCAS89 benchmarks. As shown in
the last three columns, using our technique lavg, H, and E are very close to
their corresponding lower bound.

Table IV shows the test time analysis of ISCAS89 benchmarks for differ-
ent frequencies of the system. It shows that, when fSoC � fATE, the test ap-
plication time reduction ratio (TR) is close to CR, confirming our analysis in
Section 4.3.

As Figure 7 shows, the decoder consists of mainly three components: one
FSM, a lookup table, and a counter. The counter size is �log2Lmax� bit, where
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Table V. Decoder (FSM-Table) Cost
Analysis

Circuit Lmax Cost [NAND]

PMC2 217 481
PMC3 165 373
s420 47 173
s1196 32 161
s1423 214 432
s5378 281 551
s9234 296 589
s15850 611 769

Table VI. Tradeoff Between Compression Ratio and Decoder Cost Using Different
Maximum Block Size (K )

Maximum run length (K)
Circuit Techniques Factors 4 8 12 16 32 K = n · m

1 RL-Huffman CR% 52.5 65.4 68.0 75.7 78.2 84.3
PMC2 FSM-table Cost 48 91 147 251 379 481

2 RL-Huffman CR% 59.0 76.5 80.2 79.6 79.1 84.3
FSM-table Cost 51 70 82 121 239 481

1 RL-Huffman CR% 31.2 39.5 45.9 49.2 51.1 53.7
s5378 FSM-table Cost 43 93 167 301 412 551

2 RL-Huffman CR% 37.1 41.8 47.1 50.2 52.4 53.7
FSM-table Cost 49 89 148 277 385 551

1 RL-Huffman CR% 22.8 29.1 34.7 42.7 42.4 47.6
s9234 FSM-table Cost 44 101 158 337 431 589

2 RL-Huffman CR% 28.5 34.2 38.9 40.6 43.2 47.6
FSM-table Cost 51 103 155 301 417 589a

Lmax = max1≤i≤Nl {Li}. The counter size/cost is not sensitive to compression
factors. Therefore, we report only the cost of the main part of the decoder, that
is, the FSM with the lookup table. This cost (FSM-table pair) is summarized in
Table V for some of ISCAS89 and PMC-Sierra’s benchmarks based on the num-
ber of equivalent NAND gates reported by the Synopsys synthesizer [Synopsys,
Inc. 2002].

Table VI shows the effect of maximum run-length K on the compression ratio
and the cost of FSM-table pair. To limit the maximum run-length we explored
two techniques (Techniques 1 and 2) discussed in Section 3. As shown, the sec-
ond technique achieves an overall higher compression rate and smaller decoder
size than the first technique. This is because the second technique decomposes
blocks intelligently to increase the occurrence frequency of characters. The com-
pression ratio in the case of K = n · m for each circuit is more than the case
when K is limited. When K = n · m, the longer block lengths will be sent by
much smaller codewords. This results in more compression, but the cost of the
decoder slightly increases.

Table VI clearly shows the tradeoff possibility between CR and the FSM-table
cost for Techniques 1 and 2 by choosing various K ’s. By choosing a smaller K , we
significantly reduce the cost of a decoder with a slight sacrifice of compression
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Fig. 9. �WTpeak and �WTavg for 50 random test sets.

Table VII. Comparing Switching Activities (Estimate of Scan-In Power Dissipation)

Randomly Filled RL-Huffman Scan-in Power Reduction
Circuit Npatterns WTavg WTpeak WTavg WTpeak �WTavg% �WTpeak%

s420 1785 200 314 95 238 52.36 24.20
s838 5762 700 1310 219 1022 68.72 21.98
s1196 4448 244 393 52 234 78.69 40.45
s1238 4864 241 356 49 177 79.47 50.28
s1423 3276 1860 2551 831 2098 55.28 17.75
s5378 23754 11409 13370 3433 11519 69.90 13.84
s9234 39273 15085 18416 3957 14092 73.76 23.47
s13207 165200 122034 137455 7734 94879 93.66 30.97
s15850 76986 92212 102816 13513 70875 85.34 31.06
s38417 164736 581505 65560 116301 411718 80.51 37.26
s38584 199104 527871 572499 85655 481158 83.77 15.95
s35932 28208 316548 787718 39874 107226 87.40 86.38

ratio. For example, consider the statistics in boldface obtained for the PMC2
benchmark. We can trade off the 4.1% compression ratio by reducing the size
of decoder by a factor of 6.

Figure 9 shows the reduction of average (�WTavg) and peak (�WTpeak)
switching activities for various random test sets. Statistics are reported based
on the results of 50 randomly generated test sets for average and peak values.
Each test set includes 100 test vectors and each vector is 32 bit for different
don’t care percentages (70%, 80%, and 90%). When D% increases, our method
is more efficient in reducing the average and peak power.

Table VII shows the comparison between scan-in power dissipated (due to
the input test patterns) in two cases. First, we replace the don’t care bits ran-
domly for each ISCAS89 benchmark. This process is performed 50 times and
results shown in the table are the average of the 50 times compilations. Sec-
ond, the don’t cares are replaced according to our technique. The average and
peak switching activities are shown in the table. The reduction percentage for
weighted transition average and peak (�WTavg and �WTpeak) are shown in the

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



RL-Huffman Encoding • 113

last two columns with respect to random filling. The average and peak power
reductions reported in Table VII are very close to those reported in Chandra
and Chakrabarty [2002b] and Rosinger et al. [2001]. This is expected, as in all
three methods the run-length encoding produces the minimum bit transition.

7. CONCLUSION

We presented a new compression and decompression technique based on run-
length and Huffman codings for scan testing to reduce test data volume, test
application time, and scan-in power. The proposed technique takes advantage
of don’t cares generated by the ATPG. The method can be tuned by limiting the
maximum run-length to tradeoff compression ratio and decoder cost. Experi-
mental results show that up to a 89% compression ratio and 93% scan-in power
reduction is achievable for the benchmarks that we have tried so far.

ACKNOWLEDGMENTS

The authors wish to thank Karim Arabi (PMC Sierra), Christos Papachristou
and Francis Wolff (Case Western Reserve University) and Michael Knieser
(Purdue University Indianapolis) for generously sharing their test pattern sets
with us. We also thank Krishnendu Chakrabarty (Duke University) for his
fruitful discussion on scan power analysis.

REFERENCES

BAYRAKTAROGLU, I. AND ORAILOGLU, A. 2001. Test volume and application time reduction through
scan chain concealment. In Proceedings of the Design Automation Conference (DAC’01). 151–155.

BENES, R., NOWICK, S., AND WOLF, A. 1998. A fast asynchronous Huffman decoder for compressed-
code embedded processors. In proceedings of the Fourth International Symposium on Advanced
Research in Asynchronous Circuits and Systems, 43–56.

BONHOMME, Y., GIRARD, P., GUILLER, L., LANDRAULT, C., AND PRAVOSSOUDOVTCH, S. 2001. A gated clock
scheme for low power scan testing of logic ICs or embedded cores. In Proceedings of the VLSI Test
Symposium (VTS’01). 253–258.

CHANDRA, A. AND CHAKRABARTY, K. 2000. Test data compression and decompression for system-
on-a-chip using Golomb codes. In Proceedings of the VLSI Test Symposium (VTS’00). 113–120.

CHANDRA, A. AND CHAKRABARTY, K. 2001. Frequency-directed run-length (FDR) codes with appli-
cations to system-on-a-chip test data compression. In Proceedings of the VLSI Test Symposium
(VTS’01). 42–47.

CHANDRA, A. AND CHAKRABARTY, K. 2002a. Low-power scan testing and test data compression for
system-on-a-chip. IEEE Trans. Comput.-Aided Des., 21, 5, 597–604.

CHANDRA, A. AND CHAKRABARTY, K. 2002b. Reduction of SOC test data volume, scan power and test-
ing time using alternating run-length codes. In Proceedings of the Design Automation Conference
(DAC’02). 673–678.

CHIA-HSING, L. AND CHEIN-WEI, J. 1998. Low power parallel Huffman decoding. Electron. Lett. 34,
3, 240–241.

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001. Introduction to Algorithms. McGraw-Hill,
New York, NY.

COVER, T. AND THOMAS, J. 1991. Elements of Information Theory, Wiley, New York, NY.
DAS, D. AND TOUBA, N. 2000. Reducing test data volume using external/LBIST hybrid test pat-

terns. In Proceedings of the International Test Conference (ITC’00). 115–122.
DABHOLKAR, V., CAKRAVARTY, S., POMERANZ, I., AND REDDY, S. 1998. Techniques for minimizing power

dissipation in scan and combinational circuits during test application. IEEE Trans. Comput.-
Aided Des. 17, 12, 1325–1333.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



114 • M. Nourani and M. H. Tehranipour

GIRARD, P., LANDRAULT, C., PRAVOSSOUDOVTCH, S., AND SEVERAC, D. 1998. Reducing power consump-
tion during test application by test vector ordering. In Proceedings of the International Sympo-
sium on Circuits and Systems (ISCAS’98). vol. 2. 296–299.

GOLOMB, S. 1966. Run-length encoding. IEEE Trans. Inform. Theory IT-12, 399–401.
GONCIARI, P., AL-HASHIMI, B., AND NICOLICI, N. 2002. Improving compression ratio, area overhead,

and test application time for system-on-a-chip test data compression/decompression. Proceedings
of the Design, Automation and Test in Europe (DATE’02). 604–611.

HAMZAOGLU, I. AND PATEL, J. 2000. Reducing test application time for built-in self-test patterns.
In Proceedings of the VLSI Test Symposium (VTS’00). 369–376.

HELLEBRAND, S., RAJSKI, J., TARNICK, S., VENKATARAMAN, S., AND COURTOIS, B. 1995. Built-in test for
circuit with scan based on reseeding of multiple-polynomial linear feedback shift registers. IEEE
Trans. Comput. 44, 223–233.

HSU, F., BUTLER, K., AND PATEL, J. 2001. A case study on the implementation of the illinois scan
architecture. In Proceedings of the International Test Conference (ITC’01). 538–547.

HUFFMAN, D. 1952. A method for the construction of minimum redundancy codes. In Proc. IRE.
40, 9, 1098–1101.

IYENGAR, V., CHAKRABARTY, K., AND MURRAY, B. 1998. Built-in self testing of sequential circuits
using precomputed test sets. In Proceedings of the VLSI Test Symposium (VTS’98). 418–423.

JAS, A., GHOSH-DASTIDAR, J., AND TOUBA, N. 1999. Scan vector compression/decompression using
statistical coding. In Proceedings of the VLSI Test Symposium (VTS’99). 114–120.

KHOCHE, A., VOLKERINK, E., RIVOIR, J., AND MITRA, S. 2002. Test vector compression using EDA-ATE
synergies. In Proceedings of the VLSI Test Symposium (VTS’02). 97–102.

KNIESER, M., WOLFF, F., PAPACHRISTOU, C., WEYER, D., AND MCINTYRE, D. 2003. A technique for high
ratio LZW compression. In Proceedings of the Design, Automation and Test in Europe (DATE’03).
116–121.

KOENMANN, B. 2000. “SMARTBIST,” Presentation by IBM in ITC.
KRISHNA, C., JAS, A., AND TOUBA, N. 2001. Test vector encoding using partial LFSR reseeding. In

Proceedings of the International Test Conference (ITC’01). 885–893.
MCAULEY, A. AND FRANCIS, P. 1993. Fast routing table lookup using CAMs. In Proceedings of the

INFOCOM’93.
MENTOR GRAPHICS CORPORATION 2002. User manuals for fastScan. Mentor Graphics Corporation.
NICOLICI, N. AND AL-HASHEMI, B. 2000. Scan latch partitioning into multiple scan chains for power

minimization in full scan sequential circits. In Design, Automation and Test in Europe (DATE’00).
715–722.

PMC-SIERRA 2002. www.PMC-Sierra.com.
RABAEY, J. 2002. Digital Integrated Circuits, Prentice-Hall, Englewood Cliffs, NJ.
RAJSKI, J. ET. AL. 2002. Embedded deterministic test for low cost manufacturing test. In Proceed-

ings of the International Test Conference (ITC’02). 301–310.
REDDY, S., MIYASE, K., KAJIHARA, S., AND POMERANZ, I. 2002. On test data volume reduction for

multiple scan chain designs. In Proceedings of the VLSI Test Symposium (VTS’02). 103–108.
ROSINGER, P., GONCIARI, P., AL-HASHIMI, B., AND NICOLICI, N. 2001. Simultaneous reduction in vol-

ume of test data power dissipation for systems-on-a-chip. Electron. Lett., 37, 24, 1434–1436.
ROSINGER, P., GONCIARI, P., AL-HASHIMI, B., AND NICOLICI, N. 2002. Analysing trade-offs in scan

power and test data compression for system-on-a-chip. IEE Proc. Comput. Dig. Techniq. 149, 4
(July), 188–196.

RUDBERG, M. AND WANHAMMAR, L. 1997. High speed pipelined parallel Huffman decoding. In Pro-
ceedings of the International Symposium on Circuits and Systems (ISCAS’97), vol. 3. 2080–
2083.

SANKARALINGAM, R., ORUGANTI, R., AND TOUBA, N. A. 2000. Static compaction techniques to control
scan vector power dissipation. In Proceedings of the VLSI Test Symposium (VTS’00). 35–40.

SYNOPSYS, INC. 2002. User Manuals for SYNOPSYS Toolset, Version.05. Synopsys, Inc.
TEHRANIPOUR, M. H., AHMED, N., AND NOURANI, M. 2003. Testing SoC interconnects for signal

integrity using boundary scan. In Proceedings of the VLSI Test Symposium (VTS’03). 4A.13–
4A.18.

TEHRANIPOUR, M. H. AND NOURANI, M. 2002. Compression techniques for scan. Tech. rep. UTD-10-
05-2002, Dept. of EE, University of Texas at Dallas, Richardson, TX.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



RL-Huffman Encoding • 115

WANG, S. AND CHIOU, S. 2001. Generating efficient tests for continuous scan. In Proceedings of the
Design Automation Conference (DAC’01). 162–165.

WANG, S. AND GUPTA, S. 1997. ATPG for heat dissipation minimization during scan testing. In
Proceedings of the Design Automation Conference (DAC’97). 614–619.

WOLFF, F. AND PAPACHRISTOU, C. 2002. Multiscan-based test compression and hardware decom-
pression using LZ77. In Proceedings of the International Test Conference (ITC’02). 331–339.

WURTENBERGER, A., TAUTERMANN, C., AND HELLEBRAND, S. 2003. A hybrid coding strategy for opti-
mized test data compression. In Proceedings of the International Test Conference (ITC’03). 451–
459.

ZORIAN, Y., MARINISSEN, E., AND DEY, S. 1999. Testing embedded-core-based system chips. Com-
puter, 32, 6, 52–60.

Received March 2003; revised July 2003, January 2004; accepted January 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



A 4-Geometry Maze Router and Its
Application on Multiterminal Nets

GENE EU JAN
National Taipei University
KI-YIN CHANG
National Taiwan Ocean University
and
SU GAO and IAN PARBERRY
University of North Texas

The maze routing problem is to find an optimal path between a given pair of cells on a grid plane.
Lee’s algorithm and its variants, probably the most widely used maze routing method, fails to
work in the 4-geometry of the grid plane. Our algorithm solves this problem by using a suit-
able data structure for uniform wave propagation in the 4-geometry, 8-geometry, etc. The algo-
rithm guarantees finding an optimal path if it exists and has linear time and space complexities.
Next, to solve the obstacle-avoiding rectilinear and 4-geometry Steiner tree problems, a heuris-
tic algorithm is presented. The algorithm utilizes a cost accumulation scheme based on the maze
router to determine the Torricelli vertices (points) for improving the quality of multiterminal nets.
Our experimental results show that the algorithm works well in practice. Furthermore, using the
4-geometry router, path lengths can be significantly reduced up to 12% compared to those in the
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1. INTRODUCTION

The original objective of maze routing problems is to find a shortest path be-
tween two terminal cells on a rectangular grid of cells without crossing any
obstacles. The first maze routing algorithm was presented by Lee [1961]. To
this date, Lee’s algorithm and its variations are still widely used in VLSI and
PCB designs, in maze games, and in road map routing problems [Rubin 1974;
Hoel 1976; Lin et al. 1990; Fawcett and Robinson 2000]. The popularity of Lee’s
algorithm lies in its simplicity and the guarantee it offers of finding a short-
est path if one exists. However, Lee’s algorithm is intrinsically based on the
2-geometry (also known as the Manhattan geometry, rectilinear geometry, etc.)
of the grid plane. Each cell is considered to have only four neighbors, corre-
sponding to at most four directions (left, right, up, and down) to move along an
admissible path. This restriction is natural for some of the applications of the
algorithm (e.g. VLSI designs), but unnecessary for most of the other situations.

To get around this restriction, many researchers took a graph-based ap-
proach to the problems arising in fields such as robot motion planning [Dı́-az
de León S. and Sossa A. 1998; Barraquand and Latombe 1991], computer-
aided design [Xing and Kao 2002], and pattern recognition [Kimmel et al.
1995; Ogniewicz and Kubler 1995]. These graph-based approaches with suit-
able search structures solve the problems in substantially different ways. Some
efficient implementations of Dijkstra’s single-source shortest-path algorithm
[Dijkstra 1959] have been proposed using Fibonacci heaps (F-heaps) to find the
shortest path in the graph model [Ahuja et al. 1990; Henzinger et al. 1997].
For a grid with N cells, the implementation of Fibonacci heaps uses up to
N F-heaps and the total complexity, including preprocessing, has not been
improved to O(N ). Some other complicated data structures such as priority
queues, hierarchical buckets, or multilevel buckets are required to avoid the
sorting bottleneck even when the edge weights are bounded in most of these
articles [Dinic 1978; Goldberg 2001; Thorup 1999]. In a computer-game appli-
cation, the situation is naturally presented in a raster plane and the grid-based
approach is easier to implement. Also, two advantages are obtained: indepen-
dence from obstacles in the search process and freedom of preprocessing to
construct a suitable search structure. In this article, we present a maze routing
algorithm on the grid plane based on the 4-geometry. Our proposed algorithm
provides simple and easy implementation when compared with other graph
models, since it takes advantages of the nature of grid planes or raster planes
and limited weights in λ-geometry (1 only in 2-geometry; 1 and

√
2 only in

4-geometry, 1;
√

2,
√

5 only in 8-geometry, and so on so forth). The algorithm
is a directional improvement of Lee’s algorithm, and therefore enjoys the two
main advantages of Lee’s algorithm: it is obstacle-independent and it guaran-
tees finding the shortest path if one exists. Lee’s algorithm fails for 4-geometry
if different distances occur. An example will be given in Section 2 below. A
straightforward attempt to improve Lee’s algorithm by using equal cost wave-
fronts causes a substantial increase in time complexity [Fawcett and Robinson
2000]. Our algorithm works in a general context and uses a different data
structure than that of Lee’s algorithm. But in the case of 2-geometry, the two
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algorithms are the same. Also, our algorithm has the same time and space com-
plexities of O(N ) as Lee’s algorithm, where N is the number of cells in the grid
plane. In fact, our algorithm uses at most twice the time as Lee’s algorithm.
Empirical data has shown that the overhead in running time is easily absorbed
by the enhanced computing capabilities of modern computers.

It is worth mentioning that although we focus on the 4-geometry in this
article because VLSI designers have no concern for the geometry value that is
greater than 4, the algorithm works in more general situations. It can be easily
adapted to handle general λ-geometry for λ > 4, and it can be used without
substantial modification for higher dimensions. Thus considering 4-geometry
is not an intrinsic restriction for us, although considering 2-geometry is an
intrinsic restriction to applying Lee’s algorithm.

Once the 4-geometry maze router has been introduced, the heuristic algo-
rithm based on the maze router for the obstacle-avoiding Steiner tree problem
will be presented. The main objective of this part of the article will be to imple-
ment both the 2-geometry and the 4-geometry maze routers in the multitermi-
nal nets. The problem of optimally routing a multiterminal net in the presence
of obstacles has received less attention. As a result, VLSI designers typically
use a multiterminal variant of a maze routing algorithm and usually produce
solutions that are far from optimal [Ganley and Cohoon, 1994]. Thus, one of the
objectives of this study is to improve the quality of the multiterminal nets in
the maze router. Ganley and Cohoon [1994] first presented an efficient model
that allows computation of optimal obstacle-avoiding rectilinear (2-geometry)
Steiner trees with three or four terminals. For nets with five or more termi-
nals, they presented heuristic algorithms that work well in both theory and
practice. Also, several researchers have successfully worked on the 1-Steiner
tree problem [Georgakopolulos and Papadimitrious, 1987; Cieslik, 1991] and
the heuristic 1-SMT (Steiner Minimal Trees) problem with a minimum span-
ning tree [Kahng and Robins, 1992; Cieslik, 1998]. Based on the concept of the
1-Steiner vertex (point) approach and the characteristics of the maze router,
this article introduces a new cost accumulation scheme in the grid plane to ob-
tain the Torricelli vertex, the minimum sum of the costs from all the terminals,
for improving the quality of the multiterminal nets in global and local routings.
The experimental data shows that the results are near optimal. Furthermore,
experimental data has also shown that, by using the 4-geometry, path lengths
can be reduced around 10–12% compared to those in the 2-geometry. This is
a great improvement in many realistic applications by using the maze router.
Finally, the need to design high-performance circuits has also called for the
consideration of non-2-geometries (also known as nonrectilinear geometries)
[Sherwani 1999; Teig 2002] in the field of VLSI design. This shows that there is
a high potential in the applications of our 4-geometry router. An interesting ob-
servation is that the length reduction is quite marginal for higher geometries.
Therefore it is effective enough to apply the 4-geometry for global routing prob-
lems. But the higher geometry is very useful for the other fields where more
selective directions are needed to emulate the real routing situation.

The article is organized as follows. In Section 2 we give a description of our
problem and formulate it in rigorous terms. In Section 3 the data structure is
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first described and defined. Then, the 4-geometry maze router is presented and
the correctness and performance of the algorithm is proved and analyzed. The
modification of the algorithm for the higher-geometry maze router is described
as well. Some experimental results for the 4-geometry and 8-geometry routers
are demonstrated. In Section 4 a heuristic algorithm based on the maze router
is proposed for the multiterminal nets. Starting from a Torricelli vertex, the
algorithm will search and connect a near optimal Steiner tree. After that, a cost
accumulation scheme for subsets of three or four terminals among all terminals
is included to refine the quality of the routing result. The experimental results
show good solutions for obstacle-avoiding multi-terminal nets. The conclusions
are summarized in Section 5.

2. PROBLEM FORMULATION AND DESCRIPTION

Given an m×n rectangular grid E of N cells, a cell map is a function with domain
E and a finite set of values that will be described in Section 3.1. The cell map
indicates which cells constitute obstacles at the very least. As the algorithm
unfolds, the cell map can also be used to indicate the intermediate status of the
cells. A path on E is simply a sequence of cells on E. A path p = (c1, c2, . . . , cn)
is admissible if for each i = 1, . . . , n − 1, ci and ci+1 are neighboring cells and
neither of them is an obstacle cell. It should also be given a monotone path cost
function f , defined on the set of all paths in E. According to Lee, a function is
monotone if for any path p and subpath q, f (q) ≤ f (p). For a given source cell
S and a destination cell D, the single-source routing problem involves finding
an admissible path p from S to D with the smallest possible value f (p).

Note that the formulation of our problem is not in its most general form. This
is done for the convenience of the reader and for simplicity in our presentation.
In fact, the path cost function can in general be a vector function F = ( f1, . . . , fr )
with its values ordered lexicographically. Also our algorithm will generalize to
three-dimensional grids without any difficulty.

In his original article [Lee 1961], Lee claimed to have solved the routing
problem completely. But in fact Lee’s algorithm does not work for the most
general case [Rubin 1974]. In the rest of this section we give an example of a
cell map for which Lee’s algorithm does not yield the correct answer.

For an integer λ ≥ 2, the λ-geometry allows edges with the angles of iπ/λ, for
all i, λ = 2, 4, 8, 16 and ∞ corresponding to rectilinear (90◦), 45◦, 22.5◦, 11.25◦,
and Euclidean geometries, respectively. For a 2-geometry neighborhood, de-
picted in Figure 1(a), we are only interested in the cells above, below, to the
left, and to the right of a cell, that is, all of the cells that are distance 1 unit
from the center cell. The neighboring cells thus share an edge. If the four cells
on the diagonal are included, we are working in a 4-geometry neighborhood, as
depicted in Figure 1(b). In the 4-geometry, each cell has eight neighbors, and
thus movements along the diagonal directions are possible. Note that Lee’s al-
gorithm can also be applied to the situation where each cell has eight neighbors.
But, in order for Lee’s algorithm to work, all eight neighboring cells must be
equidistant from the center cell. In the 8-geometry neighborhood, each cell has
24 related neighbors. The distance of the 24-cell connected neighborhoods to the
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Fig. 1. Cell connection styles.

center cell is shown in Figure 1(c). There are 16 solid-line reachable neighbors
that must be computed for each move. However, the eight dashed-line reachable
neighbors do not need to be calculated since they can be extended by the next
computation and will be computed in the next move. Note that each angle in
the 8-geometry is not exactly 22.5◦, half of 45◦, because the angle is divided in
the grid plane, not in a circular plane.

For the 16-geometry neighborhood, the running time for computation and
condition statements is about twice that for the 8-geometry. However, the 16-
geometry routing has twice the selective directions for searching a shortest
path than that of the 8-geometry.

Lee’s algorithm can be visualized as a wave propagation process. Putting
the source cell in list L initializes the search. Two lists L and L1 are defined
to keep track of the cells on the wavefront (also called frontier cells) and their
neighboring cells, respectively. After all the neighboring cells in L are included
in L1, the list L1 is processed so that an expanded wavefront is found. Then
any cell in L is deleted if all of its neighboring cells have been processed (up-
dated) and L is updated by this new wavefront. The search is terminated if the
destination cell is reached. This causes incorrect searching results if any single
step is not equidistant. A simple example with a polygonal obstacle is shown in
Figure 2. The result shows that the path p reaches the destination D first with
the distance of 128.1 if Lee’s algorithm is applied to the 4-geometry. The path p′

only reaches point A when path p reaches destination D. In fact, the shortest
path from S to D is an extension of the path p′ and has a shorter distance of
115. Thus Lee’s algorithm no longer works for the 4-geometry.

In previous work, the radiation scheme was used for the conventional maze
routing with diagonal connections to obtain the distances from the eight direc-
tional neighboring cells. The algorithm wasn’t terminated until the AT values
of the entire cells were the same in two consecutive steps if the obstacles of
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Fig. 2. Implementation of Lee’s algorithm in the 4-geometry.

U-shape existed. Thus, the worse-case complexity was O(N 2) [Jan et al. 1997].
Furthermore, a variant of Lee’s router uses a time-ordered (cost-ordered) list
to store the wavefront, rather than a simple list L. But the time complexity of
their algorithm was described as polynomial in the number of edges [Fawcett
and Robinson 2000]. In the next section, we solve the problem by introduc-
ing the concept of buckets. This data structure enables us to perform uniform
propagation for arbitrary cost functions.

3. REQUIRED DATA STRUCTURE AND THE MAZE ROUTING ALGORITHM

The required data structure for this algorithm is mainly a cell map, and some
linked lists and buckets. In the cell map, the cost function is represented by a
so-called AT, or time of arrival, value. This follows a standard practice since
the algorithm is first implemented for searching shortest path on the raster
electronic map. The data structure and detail of the 4-geometry maze routing
algorithm are introduced since it is of concern to most VLSI designers. The
8-geometry, 16-geometry, etc, have received less attention, but are beneficial
for the other areas of application that will be discussed in the last subsection.

3.1 The Cell Map

The number of data fields in the cell map is flexible and depends on the require-
ments of individual applications. There are at least three parameters for cell
storage in the 4-geometry, that is, F/O, AT, and Vis. The F/O (Free space or
Obstacle) parameter distinguishes whether a cell is an obstacle, in which case
the value is infinity, or a passable area, in which case the value is 1. The AT
parameter stores the time (or other types of cost; in this article the AT value
equals the distance divided by the velocity) needed to travel from the source
cell to the current cell, and its initial value is infinity. The third parameter,
Vis (Visited), distinguishes whether the cell has visited all its neighbors and
update their AT values, and its initial Boolean value is false. For the initial
cell condition, the black cells represent obstacles and the white cells represent
passable areas. If the F/O parameter of any area has a finite value between
1 and infinity, we are working on the optimal path of various terrains. In an
m × n grid plane, any cell Ci, j has three parameters, F/Oi, j , ATi, j , and Visi, j ,
where 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1.
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3.2 The Algorithm for 4-Geometry Maze Router

For an m × n grid of cells, the first step in the algorithm is to input a source
cell (expressed by S) and a destination cell (expressed by D). According to the
algorithm, the AT value of the source cell is zero and the indices of the source
cell S will be moved into the first bucket, LL0. The remaining cells that spread
from S will be moved into their corresponding buckets according to their AT
values. The AT value of any cell would be increased at most by

√
2 from its

neighboring cell. The number of decimal digits in the irrational number,
√

2,
is determined by the total number of cells on the grid plane. Therefore, the
number of buckets can be reduced to three (LL0, LL1, LL2) for the purpose
of recycling since the updated cells would be moved into one of the next two
buckets. In addition, a temporary list TL is applied to the algorithm to store the
indices (i, j ) of visited cells until all of the cells in the current bucket have been
processed.

Since we have replaced the buckets β with three circular buckets, the three
buckets are marked as LLindex, where the index is an integer variable and 0
≤ index ≤ 2. We also define a function Update AT to support the structured
program. The purpose of the function Update AT is to update the ATi, j value
of Ci, j . There are two input parameters in this function named (i, j ) and new
ATi, j , the updated ATi, j .

Function Update AT ((i, j ), new ATi, j ):
Step 1: Update its ATi, j value of Ci, j for an m × n grid plane.
If new ATi, j is less than ATi, j , then ATi, j = new ATi, j .
END {Function of Update AT}

The 4-geometry routing algorithm:

Initialization:
For each cell Ci, j (F/Oi, j , ATi, j , Visi, j ) in an m × n grid plane, the initial F/Oi, j
value is 1 if cell Ci, j is in the free space or ∞ if it is in the obstacle. ATi, j = ∞
and Visi, j = false for all cells, where 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. The initial
value of index is 0.

Step 1: Input the coordinates of the source cell S and the destination cell D. If F/Oi, j
of the source cell is not equal to ∞, then update ATi, j = 0, else return the
error message “The source cell is in the obstacle” and terminate. If F/Oi, j of the
destination cell is equal to ∞, then return the error message “The destination
cell is in the obstacle” and terminate.

Step 2: Compute the time of arrival between the source cell and the remaining cells.
Step 2.1: Move the source cell S into the temporary list TL.
Step 2.2: Move the source cell S into the bucket LL0.
Step 2.3: For each cell in the LLindex, update the AT values of its neighboring

cells. Meanwhile, if the destination cell is in the current bucket, then
break step 2.
Step 2.3.1: Remove the indices of the first cell Ci, j from the front end

of the LLindex and update this cell’s Visi, j to true.
Step 2.3.2: Update the time of arrival (ATi, j ) of the 4-geometry neigh-

bors of cell Ci, j .
For each Ci, j ’s neighbor Ci′, j ′ , if the neighbor’s F/O = 1
then call Update AT ((i′, j ′), ATi, j +1) for the 2-geometry
neighbors or call Update AT ((i′, j ′), ATi, j + √

2) for the
four diagonal neighbors.
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Step 2.3.3: Iterations
If LLindex is not empty, then go back to step 2.3.

Step 2.4: Move the cells’ indices in the TL into their corresponding buckets.
Step 2.4.1: For all the indices in the TL, move (i, j ) from TL into

LL�ATi, j 	mod3.
Step 2.4.2: If the TL is empty, then update the index value,

index = (index+1) mod 3.
Step 2.5: Iterations

If two consecutive buckets are not empty, then go back to step 2.3.
Step 3: Backtracking

If the ATi, j value of the destination cell is infinity, return the error message:
“There is not any path between this given pair”. Otherwise backtrack the short-
est path from the destination cell by selecting one of the 4-geometry neighbors
with the smallest time of arrival value and repeating the selection step by step
until the source cell is reached.

Step 4: Reversing the path
Reverse the path derived from step 3 to obtain the desired shortest path.

END {Algorithm of 4-geometry routing}

In the 4-geometry router, the wave propagation cannot stop right away when
the destination is reached because another path from the same bucket or the
next bucket may be a little bit shorter (by less than 1.0). However, if the des-
tination cell is in the current executing bucket, then the algorithm stops since
the AT value of the destination cell has been updated to a minimum value that
will be proven in theorem 1. Figure 3 explains the detailed computation of the
routing algorithm for a single pair. In this illustration, some diagonal paths
that cross the tip of the obstacles should be considered as impassable to avoid
the ambiguous situation. Figure 3(a) shows the initial grid plane with obstacles
that have a source cell S and a destination cell D. After the execution of steps 1
and 2, the AT values of all the cells are obtained as shown in Figure 3(b). Then
backtracking and reversing are implemented to obtain the shortest path, as
shown in Figure 3(c).

If the 4-geometry routing algorithm is confined to 2-geometry, then it behaves
the same as a Lee’s algorithm. By comparing the result of Lee’s algorithm shown
in Figure 4 with that of the 4-geometry router shown in Figure 3(c), the distance
from the source to the destination of latter is about 15% shorter.

3.3 Performance Analysis of the 4-Geometry Maze Router

The following lemma is applied to prove the correctness of this algorithm, that
is, the path obtained from this algorithm is indeed the shortest.

Observation 1. Once all the cells in the LLindex have updated the AT values of
its neighboring cells and the LLindex is empty, all cells in the TL should be moved
into either LL(index+1)mod3 or LL(index+2)mod3 according to their ATi, j values.

According to steps 2.3.2 and 2.3.3, the minimum ATi, j value of cells in the
TL would be no less than

(minimum ATi, j value in the LLindex) + 1
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Fig. 3. Illustration of the 4-geometry routing algorithm on an 8 × 8 grid of cells.

Fig. 4. Illustration of Lee’s algorithm on the 8 × 8 grid of cells.

and the maximum ATi, j value of cells in the TL would be no greater than

(maximum ATi, j value in the LLindex) +
√

2.

The LLindex is empty when step 2.3 is completed. After the computation of step
2.4.1, all of the cells in the temporary list TL should be moved into either
LL(index+1)mod 3 or LL(index+2)mod 3 according to their ATi, j values.
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Observation 2. All of the previous buckets should be empty in step 2.3.

LEMMA 1. The ATi, j values of cells in the LLindex are minimal in step 2.3.

PROOF. This lemma is proven by contradiction. For the ATi, j value of any
cell Ci, j in the current bucket LLc, where 0 < c ≤ ATmax, we assume that there
exists a smaller AT ’i, j value updated by another cell Ci′, j ′ that has ATi′, j ′ value.
According to step 2.3.2, the minimum ATi, j value of the cell Ci, j , should be
replaced by AT ’i, j if the cell Ci′, j ′ is in one of the previous buckets LLl where
0 ≤ l ≤ c − 1 and LLc is the current bucket. If the cell Ci′, j ′ is in the current or
one of the higher buckets LLl , where c ≤ l ≤ ATmax, we know that c ≤ ATi′, j ′ and
c ≤ ATi, j < c + 1. Also AT ’i, j = ATi′, j ′ + dist, where the distance between two
neighboring cells, dist, is either 1 or

√
2, from the definition of the ATi, j value

of a cell Ci, j in the bucket LLl . Thus, it can be concluded that ATi, j < c + 1 ≤
AT ’i, j , which is in contradiction to the assumption.

We then conclude that the ATi, j values of cells in the LLindex in step 2.3 are
minimal.

THEOREM 1. The shortest path between any two different cells on a grid plane
can be obtained from the algorithm if it exists.

PROOF. If a source cell is determined, all of the cells surrounding the source
cell, except the obstacles, will be moved into, and later removed from, the corre-
sponding bucket exactly once during the computation. According to Lemma 1,
all of the ATi, j values of these cells are minimal after the computation. Thus,
we can obtain the shortest path from the algorithm.

LEMMA 2. Each cell in the grid plane, except the obstacle cell, will not be
moved back to the bucket once it is removed.

PROOF. In this searching algorithm, the indices of cell Ci, j are moved into the
bucket again if and only if the ATi, j value of the cell is updated to a smaller value.
According to Lemma 1, each cell removed from the bucket has the minimum
value. Therefore, the ATi, j value of the cell cannot be updated to a smaller value
once the indices of cell Ci, j are removed from the bucket. They will not be moved
back into the bucket again.

In the following theorem, we prove the time complexity of this algorithm.

THEOREM 2. The shortest path algorithm has a time complexity of O(N ).

PROOF. Steps 1, 3, and 4 of this searching algorithm have a time complexity
of O(N ). According to Lemma 2, once the indices of cell Ci, j are removed from
the bucket, it will not be moved into the bucket again. This means that the
number of cells removed from the bucket are no greater than N during the
process. Each cell has the time complexity of O(1) to update the AT values of its
eight neighboring cells. We therefore know that the time complexity for step 2
is O(N ). It is concluded that the shortest path has the time complexity of O(N )
from steps 1 to 4.
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The complexity of this algorithm would increase by O(U/L) only if U/L can
be normalized, where U and L are the upper and lower bounds for edge weights,
since we would need at least (U/L)N number of buckets in that case.

3.4 The Higher-Geometry Maze Router

For the 8-geometry maze router, the 4-geometry router can be modified by sim-
ply increasing the number of circular buckets to four and some conditional
statements, for the

√
5 step move. Meanwhile, a Dir parameter in the cell map

is required to keep track of which predecessor causes the minimum AT value.
The 8-geometry uses at most twice the time as the 4-geometry. Thus, for the
16-geometry, 32-geometry, and other higher-geometry maze routers, it is merely
required to increase the number of circular buckets and conditional statements.
The running time is O(λN ) for the λ-geometry algorithm. The performance
analysis of the higher geometry routers is neglected since it is similar to the
4-geometry case.

Furthermore, the F/O parameter is introduced for various terrains in which
the velocity of the object for those cells in the specific terrains is divided by
the value of its F/O parameter. The uniform wave propagation for various
terrains can be achieved by increasing a certain number of buckets. As a whole,
the algorithm is capable of finding the optimal path in the grid plane among
various terrains. If there is only one terrain in the grid plane, the optimal path
is also called the shortest path.

3.5 Experimental Results

An example of the maze routing on a raster electronic map is illustrated in
Figure 5. The source cell S and destination cell D are marked in Figure 5(a). In
a 400 × 300 pixel (considered as cells) raster electronic map, finding the shortest
path by the 4-geometry maze router between a source cell and a destination cell
takes only a fraction of a second for the Pentium III PC. Figure 5(b) indicates
the shortest path presented by a curve. Figures 5(c) and 5(d) are two examples
depicted by implementing the 8-geometry router, in which each 45◦ angle in the
4-geometry has been divided into angles of 26.4◦ and 18.6◦. It is interesting to
compare our algorithm with the popular A* algorithm [Hart et al. 1968] used in
computer games, but note that the A* algorithm can be trapped in some mazes,
whereas our algorithms guarantee finding the shortest path if one exists.

4. ROUTING OF MULTITERMINAL NETS

The problem of finding the minimal-length wire routing for multiterminal nets
belongs to the class of Steiner tree problems. The Steiner tree problem is a mini-
mum interconnection problem. The problem can also be applied in the geometric
realm; the most common variants are the Euclidean Steiner tree and the recti-
linear Steiner tree problems. In additional to the Euclidean and rectilinear met-
rics, octagonal metrics (4-geometry) has been considered. Here, the input is a
set of vertices in the plane that are the terminals, and the goal is to obtain a tree
of minimum length (in the appropriate metric) that connects all the terminals.
Up to now, many exact, heuristic, and genetic algorithms have been proposed
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Fig. 5. Illustrations of the maze routing on the raster electronic map.

for constructing these trees [Lee et al. 1976; Hwang 1979; Smith et al. 1981;
Dreyer and Overton 1998]. However, only some of these algorithms solve the
Steiner tree in a plane with obstacles [Winter, 1993; Ganley and Cohoon, 1994].
The problem of constructing Steiner minimal trees in the Euclidean plane with-
out obstacles is NP-hard. When obstacles are included, the obstacle-avoiding
Steiner minimal-trees problem is at least NP-hard as well [Cieslik, 1998]. The
main objective of this section is to develop a heuristic algorithm based on the
maze routers to construct Steiner trees in 2-geometry and 4-geometry. The algo-
rithm introduces a (global) Torricelli vertex to construct the obstacle-avoiding
Steiner trees based on the cost accumulation of the cells. After that, a cost
accumulation scheme is also used to improve the Steiner tree locally. The algo-
rithm is presented for the rectilinear case since the exact solution of rectilinear
Steiner trees for small instances can be obtained without any difficulty.

4.1 Definition of the Torricelli Vertex

For multiterminal nets problems, the maze routing approach is one of the basic
algorithms. The traditional maze router connects the first two terminals, and
then the entire connected path is the target for the wave propagation from the
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third terminal, etc. Thus, all the r terminals of Z = (Z1, . . . , Zr ) are considered
as the sources for the wave propagation to the other terminals at least once.
The quality of its result strongly depends on the ordering of the terminals since
it is difficult to determine the optimal terminal ordering. In order to improve
the routing quality of multiterminal nets, a Torricelli vertex (point), a vertex
that has the minimum total cost to all terminals, is introduced for further rout-
ing. The definition of this vertex can be considered as the following geometric
problem:

Given Z , where terminal i is at location (xi, yi), find a vertex (xc, yc) such
that Dc = ∑

1≤i≤r di is minimum, where, di is the distance from the ith vertex
(xi, yi) to (xc, yc), and r is the total number of vertices. The vertex (xc, yc) has
the minimum total cost connecting to those r terminals including superposition
connection. The cost (length) of the near optimal Steiner tree is no more than
the value of the Torricelli vertex since the superposition (overlap) path will be
removed after the routing process. If the maze router uniformly propagates from
each source vertex to the remaining vertices, then the cost (time of arrival) of all
vertices in the cell map is specified. The cells with equal cost in the grid plane
can be considered as a level curve, which is similar to the sea-level curve in a
geographical map. A solution of this problem is to obtain a vertex that minimizes
the sum of the cost from all of the r terminals. Thus, the minimization of the
above problem can be formulated as the following algebraic program:

Minimize
∑

1≤i≤r di

subject to (xc − xi)2 + ( yc − yi)2 ≤ d2
i , i = 1, . . . , r,

where di ≥ 0 and r is the total number of terminals.

This is Fermat’s problem in a Euclidean plane [Brimberg 1995], which is
the local version of Steiner’s problem. If the r terminals are not collinear in a
Banach-Minkowski space Md (B) and if B is a strictly convex unit ball, then
the Torricelli vertex (Steiner vertex) is a single vertex. A Banach-Minkowski
space is uniquely defined by a d -dimensional affined space Ad and convex and
compact body B. Usually, a (finitely or infinitely dimensional) linear space,
which is complete with regard to its given norm, is called Banach space. This
is a natural idea to construct a 1-Steiner (Torricelli) as an approximation of an
SMT (Steiner minimal tree). Instead of using the iterative Weiszfeld’s algorithm
[Kuhn 1973] in the above algebraic program, our algorithm introduces a cost
accumulation scheme to obtain the Torricelli vertex.

4.2 An Algorithm for Near Optimal Rectilinear Steiner Trees

For rectilinear Steiner trees (RSTs), Fermat’s problem can be described as
follows:

Minimize
∑

1≤i≤r |xc − xi| + | yc − yi|, where (xc, yc) has the minimum total
rectilinear cost to all terminals.

The goal of our algorithm is to find a near optimal Steiner tree starting
from (xc, yc) to connect all the terminals. The minimum rectilinear Steiner tree
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Fig. 6. Example of the cost accumulation by using the maze routing algorithm.

problem in the plane is defined as follows: given a set of r terminals in an m×n
grid plane of N vertices, a set St of Steiner vertices such that the spanning tree
over Z ∪ St has minimum cost is found.

The cost accumulation scheme presented in this article is to obtain the
Torricelli vertex for further routing and local refinement of multiterminal nets.
The way to find the set of Torricelli vertices is still unknown, but a single global
Torricelli vertex can be obtained by the cost accumulation of the r terminals
in this algorithm. For instance, there are five terminals that are designed to
connect to an RST, as shown in Figure 6(a). Thus, the five cost tables from Z1 to
Z5 are generated individually. The cost accumulation table is the sum of costs
in the five tables, as shown in Figure 6(b), where the Torricelli vertex is the ver-
tex with the minimum value in the cost accumulation table. Note that the cost
accumulation scheme uses extra memory space to reduce the time complexity.

Once the cost accumulation scheme is applied in the grid plane, the algorithm
starts from the Torricelli vertex to approximate a near optimal Steiner tree.
First of all, we can obtain the nearest terminal Zi from the Torricelli vertex, and
then the first critical path is connected from Zi to its nearest terminal Z j , where
Zi and Z j belong to Z . After that, the entire connected paths are considered
as the targets to the remaining terminals. Based on the sum of costs in the
remaining terminal tables, the next critical path is a shortest path between a
nearest terminal and the existing (entire) connected paths, and the new entire
connected paths are then the combination of this new critical path and the
previous entire connected paths. Continue these steps until all terminals are
connected. Also, a critical vertex is defined as the connection vertex between
the shortest path and the entire connected paths.

For the local refinement, the same cost accumulation scheme is applied lo-
cally if the localized subset is determined. The local refinement selects subsets
of three or four connected vertices by using the method of the Steiner visibility
region [Winter 1993]. In order to search and locate which vertices are most likely
to appear near each other in the tree, the beam of light originating from the
global Torricelli’s vertex is rotated all the way around in the grid plane. The local
Torricelli (Steiner) vertex connects these three or four vertices and the Steiner
tree replaces the original path if the rerouted Steiner tree has a smaller length
(cost) than the original one. Also, it should be noted that the cost accumulation
scheme starts from a Torricelli vertex and may induce several Steiner vertices
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by using the maze router to connect the multiterminal nets. The algorithm can
be summarized in the following steps:

Heuristic algorithm:

Step 1: Individual costs
For each terminal in Z , a wave propagates to the remaining vertices in the
cell map and stores its costs in the corresponding cost table. (These r cost ta-
bles generated by the r terminals are stored and used for the rest steps of our
algorithm.)

Step 2: Cost accumulation
A cost accumulation table is generated based on the sum of the r cost tables. The
vertex with minimum total cost in the cost accumulation table is considered as
a Torricelli vertex for further constructing the SMT.

Step 3: Initial critical path
Obtain the nearest terminal Zi from the Torricelli vertex by an index search
in the r tables to find the minimum cost between all the r terminals and the
Torricelli vertex. The first critical path of multiterminal nets is obtained from
the Zi that backtracks to its nearest terminal Z j , where Zi and Z j belong to Z .

Step 4: Iterations
The entire connected paths are considered as the target vertices to the remain-
ing terminals. Once the critical vertex is determined, backtrack to the nearest
terminal to obtain the shortest path and then insert it into the entire connected
paths. For the purpose of shortening the sum of the lengths in the remaining
critical paths, choose the optimal one according to the minimum sum of costs in
the remaining terminal tables whenever two or more shortest paths exist. Both
the critical vertex and its nearest terminal can be found by an index search
in the r − 1 tables with sentinel data structure. Repeat this step until all of
the terminals are connected. The final obtained connected paths are the near
optimal Steiner tree for the given r terminals.

Step 5: Local refinement
Identify subsets of three or four terminals of Z , which are most likely to appear
near each other in the tree by the method of the Steiner visibility region. The
local Torricelli vertices are obtained by the cost accumulation scheme of these
subsets. From these vertices, the cost accumulation scheme, as in steps 3 and 4,
is applied to obtain the local minimal Steiner tree as shown in Figure 7, in which
the particular local Steiner tree has four terminals. Compare the rerouted path
with the local tree (connected paths) in this subset and replace the local tree
if the new tree has a smaller length. Repeat this process for the whole Steiner
tree.

The space and time complexities of the proposed heuristic algorithm are
easily analyzed and can be obtained as O(rN) and O(r2N ), respectively.

4.3 Exact Algorithm of Minimum Rectilinear Steiner Trees

Corresponding to multiterminal routing, the rectilinear Steiner minimum tree
problem cannot be solved exactly by any polynomial time algorithms. Nonethe-
less, exponential time algorithms have been devised to solve the SMT problem
exactly for small instances in a reasonable time. Here, an exact algorithm is
computed to compare the heuristic result. The exact algorithm for the SMT
problem is an exhausted searching method. Once the numbers and locations
of the terminals and obstacles are given, the algorithm runs all the possible
combination for free vertices if all of the terminals can be connected. To reduce
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Fig. 7. An example of the cost accumulation scheme in step 5.

the overall computation, an upper bound is defined as the length obtained from
the heuristic algorithm and the number of terminals minus 1 is defined as a
lower bound.

4.4 Experimental Results

We have analyzed the performance of this algorithm for the examples of multi-
terminal nets. The given parameters within a square region (e.g., 10 × 10, and
some of 20 × 20) are the samples that include obstacles and specified r termi-
nals. The locations of terminals and obstacles are randomly generated. For the
given numbers of terminals and obstacles (also called a set of samples), if the set
of samples runs all of its combination in the grid plane for more than 5 h then it
is discarded. According to the density of the terminals (nodes) and obstacles, we
have 42,890 effective samples, as shown in Figure 8(a), that run both heuristic
and exact algorithms. The distribution of length differences between the heuris-
tic and exact solutions is shown in Figure 8(b). From the statistical criteria, we
first calculate the difference of each sample byX i = lengthheuristic − lengthexact,
where 0 ≤ i < n and n is the number of the samples. After that, we obtain the
mean, X = ∑n−1

i=0 X i/n, and calculate the confidence interval CI by the formu-
lation of the statistical criteria CI = ±1.96(X /

√
n). Next, we calculate 95% of
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Fig. 8. Distribution of the samples and their differences with exact solutions.

CI/X = 0.0195 ≤ 0.025 to determine whether the sample is reliable. The stan-
dard deviation is 1.34, and that means the standard deviation value between
the heuristic and exact algorithms is between 0–1.34 units of length. Note that
the heuristic solutions have a larger difference if the number of the terminals
is large, since it is more like a k-Steiner tree problem. We present the empiri-
cal evidence that this algorithm implies a good solution for multiterminal nets
in the obstacle-avoiding Steiner tree problem. For example, the worst case is
bounded by 2.52 units of length for a 10 × 10 grid plane.

4.5 4-Geometry Steiner Trees

Recently, nonrectilinear geometry has gained ground because of enhanced com-
puting capabilities and the need for the design of high-performance circuits. Our
heuristic algorithm can be extended to 4-geometry since it was designed to find
near optimal Steiner trees in the grid plane. The procedures of constructing
the 4-geometry Steiner tree are similar to those for the rectilinear Steiner tree
except that the diagonal direction is included in the backtracking step.

After the Torricelli point is determined from the cost accumulation table, as
shown in Figure 9, we can obtain its nearest terminal, Z1. The constructing of
critical path 1 backtracks from Z1 to its nearest terminal, Z2. The constructing
of critical path 2 backtracks from the vertices in path 1 to Z3, etc. An exam-
ple in a 20 × 20 grid plane that has 12 connecting terminals with components
(obstacles) is presented in Figure 10 to demonstrate the difference between the
rectilinear and 4-geometry Steiner trees. Figure 10(a) is the experimental re-
sult, showing the length of the rectilinear tree to be 66 units, where the squares
filled with black represent the circuit components considered as the obstacles
and the circles represent the connecting terminals. Also, this experimental re-
sult has the same length as the exact solution, taking 0.12 s on a Pentium III PC
with 256 MB of memory. If the 4-geometry maze router is applied to this sample,
the length is 58.87 units, as shown in Figure 10(b), and is nearly reduced by
11% compared to the rectilinear case. It is time-consuming for the 4-geometry
to get the exact solution; only some small nets (10 × 10) were tested, and the
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Fig. 9. Example of constructing a 4-geometry Steiner tree.

Fig. 10. Illustration of rectilinear and 4-geometry Steiner trees.

results showed the length difference between the heuristic and exact solutions
to be around 0.67% in the 1000 test samples. The worst case had 2.8 units of
length difference in one sample.

However, the difference in length reduction was quite marginal for the
4-geometry and the 8-geometry routings. Also, the terminal ordering problem
may increase the length slightly in the higher-geometry routings compared
to the 4-geometry routing. Thus, it is effective enough to run the 4-geometry
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routing for most of the SMT problems with obstacles. The main difference be-
tween our router and other 4-geometry routers is that our algorithm can work
on various terrains and also work on a geometry value higher than 4 (i.e.,
8-geometry, 16-geometry, etc.), which is useful for other research areas.

5. CONCLUSIONS

This article presents a 4-geometry maze routing algorithm and its application
to Steiner tree problems. In this study, we improved the traditional maze router
by properly using the data structure of buckets, a simple temporary liked-list,
TL, cell matrices and indices (i, j ) (sequentially allocated the memory in con-
stant time) with linear space to avoid any sorting or presorting. In regard to
4-geometry, we were able to significantly shorten the optimal path between
a source cell and a destination cell. Our new algorithm has both O(N ) time
and space complexities since we did not sort or presort the edge weights at all.
Without any difficulty, the algorithm is capable of being extended to 8-geometry,
16-geometry, etc., for use in other research areas such as the path planning of
robot motion, raster charts, or nondistorted digital maps, etc. For the various
terrains problem, the algorithm is able to find an optimal path between a given
pair of cells by modifying the number of required buckets.

For the multiterminals net, the cost accumulation scheme was applied to the
grid-based Steiner tree problems, in which the Torricelli vertices are located,
to improve the routing. The experimental results showed that the algorithm
works well in the RST problems. In addition, using the 4-geometry routing, path
lengths can be reduced around 10–12% compared to those in the 2-geometry
routing. But if the geometry value is higher than 4, the gain for the obstacle-
avoiding Steiner tree is quite marginal.

The proposed method can be extended from two-dimensional grid planes to
three-dimensional volumes and from static systems to dynamic (time-varying)
systems by adding spatial and time parameters, respectively. It also can be
applied to multilayer global routing problems.
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Algorithmic Aspects of Hardware/Software
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One of the most crucial steps in the design of embedded systems is hardware/software partitioning,
that is, deciding which components of the system should be implemented in hardware and which
ones in software. Most formulations of the hardware/software partitioning problem are NP-hard,
so the majority of research efforts on hardware/software partitioning has focused on developing
efficient heuristics.

This article considers the combinatorial structure behind hardware/software partitioning. Two
similar versions of the partitioning problem are defined, one of which turns out to be NP-hard,
whereas the other one can be solved in polynomial time. This helps in understanding the real cause
of complexity in hardware/software partitioning. Moreover, the polynomial-time algorithm serves
as the basis for a highly efficient novel heuristic for the NP-hard version of the problem. Unlike
general-purpose heuristics such as genetic algorithms or simulated annealing, this heuristic makes
use of problem-specific knowledge, and can thus find high-quality solutions rapidly. Moreover, it
has the unique characteristic that it also calculates lower bounds on the optimum solution. It is
demonstrated on several benchmarks and also large random examples that the new algorithm
clearly outperforms other heuristics that are generally applied to hardware/software partitioning.

Categories and Subject Descriptors: J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD); F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems; G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial algorithms

General Terms: Algorithms, Design

Additional Key Words and Phrases: Hardware/software partitioning, hardware/software codesign,
graph bipartitioning, graph algorithms, optimization

1. INTRODUCTION

Today’s computer systems typically consist of both hardware and software
components. For instance, in an embedded signal processing application it
is common to use both application-specific hardware accelerator circuits and
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general-purpose, programmable units with the appropriate software [Arató
et al. 2003b].

This is beneficial since application-specific hardware is usually much faster
than software, and also more power-efficient, but it is also significantly more
expensive. Software, on the other hand, is cheaper to create and to main-
tain, but slow, and general-purpose processors consume much power. Hence,
performance- or power-critical components of the system should be realized in
hardware, and noncritical components in software. This way, an optimal trade-
off between cost, power, and performance can be achieved.

One of the most crucial steps in the design of such systems is partition-
ing, that is, deciding which components of the system should be realized in
hardware and which ones in software. Clearly, this is the step in which the
above-mentioned optimal tradeoff should be found. Therefore, partitioning has
dramatic impact on the cost and performance of the whole system [Mann
and Orbán 2003]. The complexity of partitioning arises because conflicting re-
quirements on performance, power, cost, chip size, etc., have to be taken into
account.

Traditionally, partitioning was carried out manually. However, as the sys-
tems to design have become more and more complex, this method has become
infeasible, and many research efforts have been undertaken to automate par-
titioning as much as possible.

1.1 Previous Work

Based on the partitioning algorithm, exact and heuristic solutions can be differ-
entiated. The proposed exact algorithms include branch-and-bound [Binh et al.
1996], dynamic programming [Madsen et al. 1997; O’Nils et al. 1995], and inte-
ger linear programming [Mann and Orbán 2003; Niemann 1998; Niemann and
Marwedel 1997].

The majority of the proposed partitioning algorithms are heuristic. This is
due to the fact that partitioning is a hard problem, and, therefore, exact al-
gorithms tend to be quite slow for bigger inputs. More specifically, most for-
mulations of the partitioning problem are NP-hard, and the exact algorithms
for them have exponential runtimes. The NP-hardness of hardware/software
partitioning was claimed by several researchers [Binh et al. 1996; Eles et al.
1996; Kalavade 1995; Vahid and Gajski 1995], but we know only about one
proof [Kalavade 1995] for a particular formulation of the hardware/software
partitioning problem.

Many researchers have applied general-purpose heuristics to hard-
ware/software partitioning. In particular, genetic algorithms have been exten-
sively used [Arató et al. 2003a; Dick and Jha 1998; Mei et al. 2000; Quan et al.
1999; Srinivasan et al. 1998], as well as simulated annealing [Eles et al. 1997;
Ernst et al. 1993; Henkel and Ernst 2001; Lopez-Vallejo et al. 2000]. Other, less
popular heuristics in this group are tabu search [Eles et al. 1997] and greedy
algorithms [Chatha and Vemuri 2001; Grode et al. 1998].

Some researchers used custom heuristics to solve hardware/software parti-
tioning. This includes the GCLP algorithm [Kalavade and Lee 1997; Kalavade
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and Subrahmanyam 1998] and the expert system of Lopez-Vallejo and Lopez
[1998, 2003], as well as the heuristics by Gupta and de Micheli [1993] and Wolf
[1997].

There are also some families of well-known heuristics that are usually ap-
plied to partitioning problems. The first such family of heuristics is hierar-
chical clustering [Abdelzaher and Shin 2000; Barros et al. 1993; Vahid 2002;
Vahid and Gajski 1995]. The other group of partitioning-related heuristics is
the Kernighan-Lin heuristic [Kernighan and Lin 1970], which was substan-
tially improved by Fiduccia and Mattheyses [1982], and later by many oth-
ers [Dasdan and Aykanat 1997; Saab 1995]. These heuristics have been found
to be appropriate for hardware/software partitioning as well [Lopez-Vallejo and
Lopez 2003; Vahid 1997; Vahid and Le 1997].

Concerning the system model, further distinctions can be made. In particu-
lar, many researchers consider scheduling as part of partitioning [Chatha and
Vemuri 2001; Dick and Jha 1998; Kalavade and Lee 1997; Lopez-Vallejo and
Lopez 2003; Mei et al. 2000; Niemann and Marwedel 1997], whereas others do
not [Eles et al. 1996; Grode et al. 1998; Madsen et al. 1997; O’Nils et al. 1995;
Vahid and Le 1997; Vahid 2002]. Some even include the problem of assigning
communication events to links between hardware and/or software units [Dick
and Jha 1998; Mei et al. 2000].

In a number of related articles, the target architecture was supposed to con-
sist of a single software and a single hardware unit [Eles et al. 1996; Grode
et al. 1998; Gupta and de Micheli 1993; Henkel and Ernst 2001; Lopez-Vallejo
and Lopez 2003; Madsen et al. 1997; Mei et al. 2000; O’Nils et al. 1995; Qin and
He 2000; Srinivasan et al. 1998; Stitt et al. 2003; Vahid and Le 1997], whereas
others do not impose this limitation. Some limit parallelism inside hardware
or software [Srinivasan et al. 1998; Vahid and Le 1997] or between hardware
and software [Henkel and Ernst 2001; Madsen et al. 1997]. The system to be
partitioned is generally given in the form of a task graph, or a set of task
graphs, which are usually assumed to be directed acyclic graphs describing the
dependencies between the components of the system.

1.2 Our Approach

In this article, we take a more theoretical approach than most previous works
by focusing only on the algorithmic properties of hardware/software partition-
ing. In particular, we do not aim at partitioning for a given architecture, nor
do we present a complete codesign environment. Rather, we restrict ourselves
to the problem of deciding—based on given cost values—which components of
the system to implement in hardware and which ones in software. This problem
will be formalized as a graph bipartitioning problem. Using the graph-theoretic
properties of the problem, we can develop more powerful algorithms—as will be
shown later. Furthermore, the underlying problem definition is general enough
so that the algorithms we propose can be used in many practical cases.

Our aims are the following:

—Clarifying complexity issues, such as: Is partitioning really NP-hard? When
is it NP-hard? Why is it NP-hard?
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—Developing more powerful partitioning algorithms by capturing the combina-
torial structure behind the partitioning problem. That is, instead of applying
general-purpose heuristics to hardware/software partitioning, we develop al-
gorithms based on the graph-theoretic properties of partitioning. This way,
we hope to obtain more scalable algorithms.

Scalability is a major concern when applying general-purpose heuristics.
Namely, in order to be fast, such heuristics evaluate only a small fraction of
the search space. As the size of the problem increases, the search space grows
exponentially (there are 2n different ways to partition n components), which
means that the ratio of evaluated points of the search space must decrease
rapidly, leading to worse results. This effect can be overcome only if the small
evaluated region contains high-quality solutions. This is exactly what we in-
tend to achieve by making use of the combinatorial properties of the problem.

Specifically, we define two slightly different versions of the hardware/
software partitioning problem. One of them is proven to be NP-hard, whereas
a polynomial-time exact algorithm is provided for the other one. We believe
that this difference sheds some light on the origins of complexity of hardware/
software partitioning.

Our main contribution is a novel heuristic algorithm for theNP-hard version
of the partitioning problem which is based on the polynomial-time algorithm
for the other version of the problem. This heuristic has the property mentioned
above that it only evaluates points of the search space that have a high quality in
some sense. Consequently, this heuristic outperforms conventional heuristics,
which is demonstrated with empirical tests on several benchmarks. Moreover,
the new heuristic has the unique property that it can determine a lower bound
on the cost of the optimum solution, and therefore it can estimate how far the
result it found so far lies from the optimum. This is a feature that no previous
partitioning algorithm possessed.

The rest of the article is organized as follows. Section 2 provides formal
definitions for the hardware/software partitioning problem. This is followed by
the analysis of the defined problems in Section 3 and the description of our
algorithms in Section 4. Empirical results are given in Section 5, and Section 6
concludes the article. Finally, the proof of our theorems are presented in the
Appendix.

2. PROBLEM DEFINITION

2.1 Basic Model

In the basic model the system to be partitioned is described by a communica-
tion graph, the nodes of which are the components of the system that have to
be mapped to either hardware or software, and the edges of which represent
communication between the components. Unlike in most previous works, it is
not assumed that this graph is acyclic in the directed sense. The edges are not
even directed, because they do not represent data flow or dependency. Rather,
their role is the following: if two communicating components are mapped to dif-
ferent contexts (i.e., one to hardware and the other to software, or vice versa),
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then their communication incurs a communication penalty, the value of which
is given for each edge as an edge cost. This is assumed to be independent of
the direction of the communication (whether from hardware to software or vice
versa). If the communication does not cross the hardware/software boundary,
it is neglected.

Similarly to the edge costs mentioned above, each vertex is assigned two cost
values called hardware cost and software cost. If a given vertex is decided to be
in hardware, then its hardware cost is considered; otherwise its software cost
is considered. We do not impose any explicit restrictions on the semantics of
hardware costs and software costs; they can represent any cost metrics, like
execution time, size, or power consumption. Likewise, no explicit restriction is
imposed on the semantics of communication costs. Nor do we impose explicit
restrictions on the granularity of partitioning (i.e., whether nodes represent
instructions, basic blocks, procedures, or memory blocks). However, we assume
that the total hardware cost with respect to a partition can be calculated as the
sum of the hardware costs of the nodes that are in hardware, and, similarly,
the software cost with respect to a partition can be calculated as the sum of
the software costs of the nodes that are in software, just as the communication
cost with respect to a partition can be calculated as the sum of the edge costs
of those edges that cross the boundary between hardware and software.

While this assumption of additivity of costs is not always appropriate, many
important cost factors do satisfy it. For example, power consumption is usually
assumed to be additive, implementation effort is additive, execution time is ad-
ditive for a single processor (and a multiprocessor system can also be approxi-
mated by an appropriately faster single-processor system), and even hardware
size is additive under suitable conditions [Madsen et al. 1997]. Furthermore,
although it is a challenging problem how the cost values can be obtained, it is
beyond the scope of this article. Rather, we focus only on algorithmic issues in
partitioning.

We now formalize the problem as follows. An undirected graph G = (V , E),
V = {v1, . . . , vn}, s, h : V → IR+, and c : E → IR+ are given. s(vi) (or simply si)
and h(vi) (or hi) denote the software and hardware cost of node vi, respectively,
while c(vi, vj ) (or ci j ) denotes the communication cost between vi and vj if they
are in different contexts. P is called a hardware-software partition if it is a
bipartition of V : P = (VH , VS), where VH ∪ VS = V and VH ∩ VS = ∅. (VH = ∅
or VS = ∅ is also possible.) The set of crossing edges of partition P is defined as
EP = {(vi, vj ) : vi ∈ VS , vj ∈ VH or vi ∈ VH , vj ∈ VS}. The hardware cost of P
is HP = ∑

vi∈VH
hi; the software cost of P is SP = ∑

vi∈VS
si; the communication

cost of P is CP = ∑
(vi ,vj )∈EP

c(vi, vj ).
Thus, a partition is characterized by three metrics: its hardware cost, its soft-

ware cost, and its communication cost. These are rather abstract and possibly
conflicting cost metrics that should be optimized together. The most common ap-
proach is to assemble a single objective function f (cost1, . . . , costl ) containing
all the metrics. We consider two versions of f that can be regarded as the two
extremes—yielding two rather different versions of the partitioning problem.

In the first version, the aim of partitioning is to minimize the weighted sum
of these three metrics, that is, f is linear in all of its arguments. The weights
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are specified by the designer, and define the relative importance of the three
metrics. More formally, we define the total cost of P as TP = αHP +βSP +γ CP ,
where α, β, and γ are given nonnegative constants, and the aim is to minimize
TP .

In the second version, one of the cost metrics is constrained by a hard upper
limit. This case can also be modeled with an f function which adds an infinite
penalty if the constraint is hurt. A possible interpretation can be the following:
if software cost captures execution time, and communication cost captures the
extra delay generated by communication, then it makes sense to add them.
That is, we define the running time of the system with respect to partition
P as RP = SP + CP . We suppose that there is a real-time constraint, that
is, a constraint on RP , and the aim is to minimize HP while satisfying this
constraint.

To sum up, the partitioning problems we are dealing with can be formulated
as follows:

P1: Given the graph G with the cost functions h, s, and c, and the constants
α, β, γ ≥ 0, find a hardware/software partition P with minimum TP .
P2: Given the graph G with the cost functions h, s, and c, and R0 ≥ 0, find
a hardware/software partition P with RP ≤ R0 that minimizes HP among
all such partitions.

2.2 Extensions to the Basic Model

The basic model of hardware-software partitioning captures many important
characteristics of the problem. Its compactness allows us to develop efficient
algorithms and helps us better understand the nature of the partitioning prob-
lem. However, the basic model can be extended in several ways to incorporate
more details.

The problem graph can be extended with dependency information. In this
case the communication graph should be rather directed and acyclic. Most au-
thors (see Section 1.1 about previous work) follow this approach.

To respect dependency, the nodes ordered to a context should be scheduled
properly; thus the additivity of execution times is not valid anymore. Scheduling
requires the execution time of each node; this can be the software/hardware cost
or an additional parameter of each node. Whether scheduling is regarded as part
of the partitioning or done afterwards is still a question under discussion in the
community (recall the different approaches from Section 1.1).

These extensions might be beneficial, but there is a risk that a too complex
model can hide the true nature of the problem and only very small instances
can be solved. First we show our algorithms for the basic model and then, in
Section 4.4, we explain how they can be adapted to these extensions.

3. COMPLEXITY RESULTS

THEOREM 3.1. The P1 problem can be solved optimally in polynomial time.

PROOF. We can assume α = β = γ = 1 because otherwise we multiply
each hi by α, each si by β, and each ci j by γ . With this modification the problem
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Fig. 1. The auxiliary graph.

becomes similar to the one solved by Stone [1977]. Although Stone handled only
one cost metric (time) instead of the linear combination of several cost metrics,
the proof of this theorem is identical to the proof by Stone [1977]. The details
are omitted; only the main idea of the construction is given to help understand
our later algorithms.

We construct an auxiliary graph (see Figure 1) G ′ = (V ′, E ′) based on G as
follows: V ′ = V ∪ {vs, vh}, E ′ = E ∪ Es ∪ Eh, where Es = {(v, vs) : v ∈ V } and
Eh = {(v, vh) : v ∈ V }. G ′ is also a simple, undirected graph, but in G ′ only the
edges are assigned costs; the cost of edge e ∈ E ′ is denoted by b(e), and defined
as follows:

b(e) =






c(e), if e ∈ E,
hi, if e = (vi, vs) ∈ Es,
si, if e = (vi, vh) ∈ Eh.

Note that the edges in Es (i.e., those that connect the vertices to vs) are assigned
the h values, and the edges in Eh are assigned the s values, and not vice versa.

LEMMA 3.2 (STONE 1977). The value of the minimum cut in G ′ between vs
and vh is equal to the optimum of the original graph bipartitioning problem.

By Lemma 3.2, we have reduced the hardware/software partitioning problem
to finding a minimum cut between two vertices in a simple undirected graph,
for which polynomial-time algorithms are known [Ahuja et al. 1993]. Note that
the size of G ′ is not significantly larger than that of G: if G has n vertices and m
edges, then G ′ has n+2 vertices and m+2n edges. This proves the theorem.

THEOREM 3.3. The P2 problem is NP-hard in the strong sense.

PROOF. The proof can be found in Appendix A.

These two theorems show that—supposed that P 
= NP—the P2 problem is
significantly harder than the P1 problem. This sheds some light on the origin
of complexity in hardware/software partitioning: under the assumption of ad-
ditivity of costs, the problem is easy if the different cost factors are combined
using weighted sum to form a single objective function, whereas it becomes
hard if they are bounded or optimized separately.
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The other lesson learned from the above two theorems is that not all for-
mulations of the partitioning problem are necessarily NP-hard. The P1 prob-
lem, which is apparently easy, is also a meaningful formulation of the hard-
ware/software partitioning problem that can capture a number of real-world
variants of the problem. Hence, care has to be taken when claiming that parti-
tioning is NP-hard.

4. ALGORITHMS

4.1 Algorithm for the P1 Problem

The proof of Theorem 3.1 suggests a polynomial-time algorithm for the P1 prob-
lem, as summarized in Algorithm 1.

Clearly, the first step of the algorithm can be performed in linear time. For the
second step, many algorithms are known. We used the algorithm of Goldberg
and Tarjan for finding maximum flow and minimum cut [Goldberg and Tarjan
1988; Cherkassky and Goldberg 1997], which works in O(n3) time, where n
denotes the number of vertices in the graph. Therefore, the whole process can
be performed in O(n3) time.1 Note that O(n3) is just a theoretic upper bound
for the runtime of Algorithm 1. As will be shown in Section 5, the algorithm is
extremely fast in practice.

Note that the condition that α, β, and γ are nonnegative is important be-
cause no polynomial-time algorithm is known for finding the minimum cut in
a graph with arbitrary edge costs (i.e., where the edge costs are not necessarily
nonnegative). In fact, this problem is NP-hard.

It is important to mention that it is not essential that there be exactly three
cost metrics to optimize. The same approach works for an arbitrary number of
cost metrics as far as the linear combination of them should be minimized. (See
Section 4.4 for more details.)

Finally, we note that the algorithm can easily accommodate the following
extension to the partitioning model: some components can be fixed to software,
while others can be fixed to hardware (e.g., because the other implementation
would not make sense or because of some existing components that should be
integrated into the system). In this case, the components that are fixed to soft-
ware are coalesced to form the single vertex vs, and, similarly, the components
that are fixed to hardware are coalesced to form the single vertex vh. If parallel
edges arise, they can be unified to a single edge whose cost is the sum of the
costs of the parallel edges. If a loop (i.e., an edge connecting a vertex to itself)

Algorithm 1 Polynomial-time algorithm for the P1 problem
1. Create the auxiliary graph.
2. Find a minimum cut in the auxiliary graph.

1When Stone [1977] published his similar approach, the algorithms for finding a minimum cut in
a graph were much slower. In fact, Stone claimed his partitioning algorithm to have O(n5) running
time; thus it was rather impractical.
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arises, it can be simply discarded because it does not participate in any cut of
the graph.

4.2 Heuristic Algorithm for the P2 Problem

We now show a heuristic for the P2 problem based on Algorithm 1. The idea
is to run Algorithm 1 with several different α, β, and γ values. This way, a set
of candidate partitions is generated, with the property that each partition is
optimal for the P1 problem with some α, β, and γ parameters. Then we select
the best partition from this set that fulfills the given limit on RP .

As already mentioned, the scalability of a heuristic depends on whether the
evaluated small fraction of the search space contains high-quality points. We
believe that we can achieve this with the above choice of candidate partitions.

Obviously, the result of the run of Algorithm 1 is determined by the ratio
of the three weights, and not by their absolute values. Therefore, we can fix
one of the three, for example, β, and vary only the other two. Thus, we have
a two-dimensional search problem, in which the evaluation of a point involves
running Algorithm 1 with the appropriate weights.

In order to keep our algorithm fast, we use two phases: in the first phase,
we use coarse-grained steps in the two-dimensional plane to find the best valid
partitioning approximately, and in the second phase we use a more fine-grained
search in the neighborhood of the point found in the first phase (see Algorithm 2
for more details).

In both phases, possible α and γ values are scanned with increments dα and
dγ . Choosing the values for dα and dγ constitutes a tradeoff between quality
and performance: if small increments are used, then the search is very thorough
but slow, if the increments are high, the search becomes fast but superficial.
As can be seen in Algorithm 2, we apply a searching scheme that adjusts the
increments dynamically. More specifically, dα and dγ are multiplied with 1 + ε

Algorithm 2 Heuristic algorithm for the P2 problem.
Phase 1: //Scan the whole search space
FOR(α = αmin; α < αmax; α = α + dα)

FOR(γ = γmin; γ < γmax; γ = γ + dγ ) {
run Algorithm 1 with parameters α, β, and γ to obtain optimal partition P ;
IF(RP ≤ R0 AND HP < best so far) {

save current solution;
save previous and next α value (αprev, αnext);
save previous and next γ value (γprev, γnext);
reset dα and dγ ;

}
ELSE

dα = (1 + ε)dα, dγ = (1 + ε)dγ ;
}

Phase 2: //Scan the region around the best point found in Phase 1
reset dα and dγ ;
perform same method as in Phase 1, with α going between αprev and αnext and γ going
between γprev and γnext and using ε′ < ε instead of ε.
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Fig. 2. The region to be scanned.

(where ε is a fixed small positive number) in each step when no better solution is
found. This way, the algorithm accelerates exponentially in low-quality regions
of the search space. On the other hand, dα and dγ are reset whenever a better
solution is found; thus the search slows down as soon as it finds a better solution.
After our initial tests, we fixed ε = 0.02 and ε′ = 0.01, which seemed to offer a
good tradeoff between speed and quality.

This way, the first phase can find the approximately best values for α and γ ,
but it is possible that the algorithm jumps over the best values. This is corrected
in the second phase. Clearly, this approach works fine if the cost functions are
smooth enough and have a relatively simple structure. We will come back to
this issue in Section 5.

Finally, it should be mentioned how αmin, γmin, αmax, and γmax are chosen. The
following theorem, the proof of which is omitted for brevity, is useful for this
purpose:

THEOREM 4.1. (i) If α ≤ β · minv∈V
s(v)
h(v) , then the all-hardware partition is

optimal with respect to α, β, and γ (regardless of the value of γ ).
(ii) If α ≥ β ·maxv∈V

s(v)
h(v) , then the all-software partition is optimal with respect

to α, β, and γ (regardless of the value of γ ).
(iii) Suppose that G is connected, and let cmin denote the smallest edge cost. If

min
(
α · h(V ), β · s(V )

) ≤ γ ·cmin, then either the all-hardware or the all-software
partition is optimal with respect to α, β, and γ .

Therefore, the region that has to be scanned looks as depicted in Figure 2.

4.3 Determining Lower Bounds

As mentioned earlier, Algorithm 2 can also incorporate the feature of determin-
ing lower bounds on the cost of the optimal solution of the given P2 problem
instance. This is a unique feature of this algorithm, which is offered by no other
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competing heuristic. With the help of this feature, Algorithm 2 can maintain
an estimate of how far the best solution it found so far is from the optimum.
This is very advantageous because it helps evaluate the performance of the
algorithm. Moreover, if the lower bound and the found best solution are not
far from each other, this may indicate that there is no point in continuing the
search. For instance, if the cost values assigned to the nodes and edges of the
graph are measured values with a precision of 10%, then there is no point in
continuing the search if the gap between the lower bound and the found best
solution is under 10% of the lower bound. This way, we can reduce the run-
time of the algorithm without any practical loss in the quality of the found
solution.

Informally, Algorithm 2 is able to determine the lower bounds because every
candidate partition that it evaluates is optimal for the P1 problem with some α,
β, and γ values. Hence, each evaluated candidate partition tells us something
about the costs of all partitions. This is formalized by the following theorem,
the proof of which can be found in Appendix B.

THEOREM 4.2. Suppose that P is an optimal solution of the P1 problem with
the weights α, β, and γ . Let Q be any solution of the P2 problem (i.e., a partition
that satisfies the bound RQ ≤ R0). Then

HQ ≥ HP + βSP + γ CP − max(β, γ )R0

α
. (1)

Note that the right-hand side of (1) contains only known numbers. Therefore,
the algorithm can compute a lower bound based on each evaluated candidate
partition, and use the best one of these lower bounds. Unfortunately, there is
no guarantee that the lower bound will not be far off the optimum. However,
as shown in Section 5, the gap between the found best partition and the lower
bound was not big for practical benchmarks.

4.4 Adaptation of the Algorithms to Other Partitioning Models

Recall some possible extensions to our basic model from Section 2.2. These
extensions can be easily handled by our algorithms without any change in our
main idea: try to use the good candidates found by the first algorithm to guide
the search of the second algorithm.

The algorithm for P1 can handle any number of cost metrics assigned to
software/hardware side, provided their weighted sum should be minimized;
for example, every vertex vi might have a software execution time sti, a soft-
ware implementation effort sei, a hardware execution time hti, a hardware chip
area hai, and further on every cut edge e implies a communication penalty of
c(e). If our aim is to minimize αSTP + βSEP + γ HTP + δH AP + εCP with
STP , SEP , HTP , H AP defined obviously, then a similar auxiliary graph can be
built as in the construction of Theorem 3.1, but the new edge weights b(e) are
as follows:

b(e) =






εc(e), if e ∈ E,
γ hti + δhai, if e = (vi, vs) ∈ Es,
αsti + βsei, if e = (vi, vh) ∈ Eh.
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Lemma 3.2 will remain true for this graph; hence this extended P1 problem can
be similarly solved.

Moreover, scheduling of the tasks can also be incorporated into Algorithm 2.
The subroutine of Algorithm 1 returns with a possible solution candidate. One
can use any scheduling algorithm available in the literature to evaluate this
candidate. The scheduling should be inserted just after the call to Algorithm 1
in line 4 of Algorithm 2. It makes the algorithm more complicated, but it does
not change our approach. Therefore, in the test phase we were focusing on the
evaluation of the basic algorithms to validate our concept.

5. EMPIRICAL RESULTS

We have implemented the above algorithms using the minimum cut algorithm
of Goldberg and Tarjan [Goldberg and Tarjan 1988; Cherkassky and Goldberg
1997]. We had to modify the construction in the proof of Theorem 3.1 slightly
because the used minimum cut algorithm works on directed graphs.

Generally, if we want to find the minimum cut in an undirected graph using
an algorithm for directed graphs,2 then we have to change every undirected
edge to two directed edges going in opposite directions. However, edges directed
to the source or from the sink can be removed, because this does not change
the value of the maximum flow, and hence it does not change the value of the
minimum cut. In our case, this means that the edges in the original graph
are introduced in two copies in the new graph, in opposite directions, but in
the case of the additional edges (i.e., edges in Es and Eh), only one copy is
needed, directed to vh, or from vs, respectively.

The algorithms have been implemented in C, and tested on a Pentium II
400-MHz PC running SuSE Linux. We conducted two sets of experiments: one
for evaluating the performance of Algorithm 1, and one for evaluating the per-
formance and effectiveness of Algorithm 2.

5.1 Experience with Algorithm 1

Since Algorithm 1 finds the optimal solution for the partitioning problem at
hand, we only had to test its speed on practical problem instances. (Recall from
Section 4.1 that it is an O(n3) algorithm, but this is only an asymptotic upper
bound on its running time.)

For testing Algorithm 1, several random graphs of different sizes and with
random costs have been used. In order to reduce the number of test runs and
the amount of test data to process, we fixed the ratio of edges and vertices in the
test graphs to 2, which means that, on average, each vertex has four neighbors.
Previous experience with real-world task graphs [Arató et al. 2003a] has shown
that this average is typical.

Table I shows measurement results concerning the running time of Algo-
rithm 1 on graphs of different sizes. As can be seen, the algorithm is extremely
fast: it finds the optimum in the case of a graph with 10,000 vertices and 20,000

2There are also algorithms for finding the minimum cut in an undirected graph, which are even
faster than the ones for directed graphs. However, we need a cut that separates two given vertices
(a so-called st-cut), and, for this problem, no faster algorithms are known for the undirected case.
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Table I. Running Time of Algorithm 1

n Running time of Algorithm 1 (s)
100 0.0007
1000 0.0198
3000 0.0666
5000 0.1264
7000 0.1965
10000 0.2896

edges in less than 0.3 s. Moreover, the practical running time of the algorithm
seems to be roughly linear.

5.2 Experience with Algorithm 2

Since Algorithm 2 is a heuristic rather than an exact algorithm, we had to deter-
mine both its performance and the quality of the solutions it finds, empirically.
For this purpose, we compared it with two other heuristics that are widely used
for hardware/software partitioning: a genetic algorithm (GA) and an improved
Kernighan/Lin–type heuristic (KL). In the case of the GA it is important to tune
its parameters to match the characteristics of the problem domain. Details on
this can be found in Arató et al. [2003a].

In the case of the KL algorithm, we built on the improvements suggested
by Vahid and Le [1997]. Specifically, Vahid and Le [1997] defined the following
changes: (i) they redefined a move as a single node move, rather than a swap;
(ii) they described an efficient data structure; (iii) they replaced the cut metric
of the original KL heuristic by a more complex metric. We made use of these
changes, the only difference being that our cost function was slightly different
from theirs:

cost(P ) =
{

∞, if RP > R0,
HP , otherwise.

Note that Vahid and Le [1997] used the DAG property of their graph repre-
sentation to show that a move has only local effect, which is important for the
performance of the algorithm. This was also true in our case: by moving a node
from hardware to software or vice versa, only the gain value of its neighbors
can change.

For testing, we used benchmarks from MiBench [Guthaus et al. 1997] and
our own designs, as well as bigger, random graphs. The characteristics of the
test cases are summarized in Table II. n and m denote the number of nodes
and edges, respectively, in the communication graph. Size denotes the length
of the description of the graph (the performance of an algorithm is usually
evaluated as a function of the length of the input). We calculated the size as
2n + 3m because each node is assigned two values—its hardware and software
costs—and each edge is assigned three numbers—the IDs of its endpoints and
its communication cost.

Where software costs were not available, they were generated as uniform
random numbers from the interval [1, 100]. Where hardware costs were not
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Table II. Summary of the Used Benchmarks

Name n m Size Description
crc32 25 34 152 32-bit cyclic redundancy check. From the Telecommuni-

cations category of MiBench.
patricia 21 50 192 Routine to insert values into Patricia tries, which are

used to store routing tables. From the Network category
of MiBench.

dijkstra 26 71 265 Computes shortest paths in a graph. From the Network
category of MiBench.

clustering 150 333 1299 Image segmentation algorithm in a medical application.
rc6 329 448 2002 RC6 cryptographic algorithm.
random1 1000 1000 5000 Random graph.
random2 1000 2000 8000 Random graph.
random3 1000 3000 11000 Random graph.
random4 1500 1500 7500 Random graph.
random5 1500 3000 12000 Random graph.
random6 1500 4500 16500 Random graph.
random7 2000 2000 10000 Random graph.
random8 2000 4000 16000 Random graph.
random9 2000 6000 22000 Random graph.

available, they were generated as random numbers from a normal distribution
with expected value κ · si and standard deviation λ · κ · si, where si is the soft-
ware cost of the given node. That is, there is a correlation, as defined by the
value of λ, between a node’s hardware and software costs. This corresponds
to the fact that more complicated components tend to have both higher soft-
ware and higher hardware costs. We tested two different values for λ: 0.1 (high
correlation) and 0.6 (low correlation). The value of κ only corresponds to the
choice of units for software and hardware costs, and thus it has no algorith-
mic implications. The communication costs were generated as uniform random
numbers from the interval [0, 2 · µ · smax], where smax is the highest software
cost. Thus, communication costs have an expected value of µ · smax, and µ is the
so-called communication to computation ratio (CCR). We tested two different
values for µ: 1 (computation-intensive case) and 10 (communication-intensive
case). Finally, the limit R0 was taken from the interval [0,

∑
si]. Note that

R0 = 0 means that all components have to be mapped to hardware, whereas
R0 = ∑

si means that all components can be mapped to software. All sensi-
ble values of R0 lie between these two extremes. We tested two values for R0:
one generated as a uniform random number from the interval [0, 1

2

∑
si] (strict

real-time constraint) and one taken randomly from [ 1
2

∑
si,

∑
si] (loose real-time

constraint).
So we tested the three algorithms on the above set of problems, using two

values for each of the three parameters (correlation between hardware and
software costs, CCR, R0). However, we found that the correlation between
hardware and software costs did not have any significant impact on the per-
formance of the algorithms. Therefore we include four plots, according to the
combinations of the two remaining parameters, on the quality of the solutions
found by the algorithms (see Figure 3). Since the objective was to minimize
costs, smaller values are better. The lower bounds produced by Algorithm 2
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Fig. 3. Algorithm 2 versus GA and KL: quality of found solution.

are also shown. Based on the diagrams, the following observations can be
made:

—For relatively small graphs, all three heuristics yield equal or very similar
results, regardless of the parameter settings. Moreover, these results are very
close to the lower bound computed by Algorithm 2, meaning that they are at
least near-optimal.

—For bigger graphs, Algorithm 2 consistently outperforms the other two
heuristics. This is especially true in the low-CCR cases. In the high-CCR
cases, the difference between the algorithms is not so striking. This is proba-
bly due to the easier nature of these problem instances (note that with grow-
ing CCR, the partitioning problem becomes essentially a simple minimum
cut problem with polynomial complexity). Moreover, the difference between
the results of Algorithm 2 and the other two heuristics is clearly growing.

—The results found by GA and KL are very similar, but in most cases the GA
is slightly better.

—The results found by Algorithm 2 are in most cases not very far from the lower
bounds it produced—the difference was 31% on average. Of course the differ-
ence keeps growing with bigger graphs, but quite slowly. This proves the high
quality of both the solutions and the lower bounds found by our algorithm.
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Fig. 4. Algorithm 2 versus GA and KL: running time.

—The choice of the R0 parameter does not seem to significantly impact the
relative performance of the algorithms. However, the lower bounds produced
by Algorithm 2 do seem to be sensitive to this parameter: they are clearly
better for low R0 values.

An even bigger difference between the three algorithms is their running time,
which is shown in Figure 4 (here, only one plot is shown because the explained
parameter settings do not have a significant impact on the running times). We
can observe the following:

—Again, for relatively small graphs, the speed of the algorithms was com-
parable. However, for bigger graphs, KL and Algorithm 2 were much
faster than GA, and again, the difference kept growing with bigger
graphs. For the biggest graphs, GA was about 20 times slower than
Algorithm 2.

—The running time of GA oscillated wildly. In some cases, it took over an hour
for the GA to terminate. However, even the shortest GA runs were much
slower than the other two algorithms.

—The fastest of the three was clearly the KL algorithm: for small graphs,
it was about five times faster than Algorithm 2, but for bigger graphs the
difference decreased. For the biggest graphs, KL was about 2.5 times faster
than Algorithm 2.

—The speed of both KL and Algorithm 2 is acceptable because both could solve
even the biggest problems in 2–3 min, and the smaller ones in a couple of
seconds.

Another question that we addressed empirically was whether or not the two-
dimensional search approach of Algorithm 2 is adequate.
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Fig. 5. Hardware cost of the optimal partition in the P1 problem as the function of the weights α

and γ .

The above results show that the algorithm performed very well on large
benchmarks. This can be attributed to the smoothness of the costs as functions
of the weights α, β, and γ . An example can be seen in Figure 5 showing the
hardware cost of the optimal partition in the P1 problem for different values
of the hardware weight α and communication weight γ (the software weight β

was fixed to 100). Notice the smoothness and the simple structure of this func-
tion. Actually, it can be proven that this function is monotonously decreasing
in α.

In some test cases, we also ran a modified version of Algorithm 2 in which the
two-dimensional search space was searched uniformly in small steps, without
augmenting dα and dγ . The test results showed no improvement in the results;
however, the speed of the algorithm worsened significantly. This justifies the
search strategy of Algorithm 2.

To sum up: Algorithm 2 offers a clear advantage over the other two heuristics
concerning the quality of the found solution. It is at the same time significantly
faster than GA, and somewhat slower than KL, but still fast enough to be
applicable in practice. Moreover, it produces high-quality lower bounds.

6. CONCLUSION

In this article, we defined two slightly different versions of the hard-
ware/software partitioning problem (P1 and P2). We proved that the P1 prob-
lem can be solved in polynomial time, but the P2 problem is NP-hard. The
polynomial-time algorithm for the P1 problem (Algorithm 1) makes use of the
graph-theoretic properties of the hardware/software partitioning problem. It
has a worst-case running time of O(n3) steps, but our empirical experiments
showed that on practical examples it is very fast.

Based on this algorithm, we also proposed a new heuristic for the P2 prob-
lem (Algorithm 2) which works by running Algorithm 1 with several different
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weights to obtain high-quality candidate partitions, from which it chooses the
best one satisfying the given constraint.

Algorithm 2 possesses the unique feature that it can calculate lower bounds
for the optimal solution and hence it can evaluate how far its currently found
best solution lies from the optimum.

In our empirical tests on several benchmarks we compared Algorithm 2
with two established partitioners: a genetic algorithm and an improved
Kernighan/Lin–type algorithm. We found that our algorithm consistently out-
performed the other two heuristics, while being slightly slower than KL and
significantly faster than GA. We attribute the good scalability of our algorithm
to the fact that it only evaluates high-quality points of the search space (only
those that are optimal solutions of the P1 problem for some weights) and hence
it makes better use of the combinatorial properties of the search problem.

Generalization of our algorithms for multiway partitioning and proving or
disproving approximation bounds for Algorithm 2 remain interesting future
research directions.

APPENDIX

A. NP–Hardness Results

THEOREM A.1. The P2 problem is NP-hard.

PROOF. The proof can be found in the paper of Mann and Orbán [2003].

However, the P2 problem is NP–hard in the strong sense as well, that is,
even if the vertex and edge costs have to be polynomial in n. In the following
we show a reduction of the minimum bisection problem to P2.

THEOREM A.2. The P2 problem is NP-hard in the strong sense.

PROOF. We reduce the decision version of the minimum bisection problem,
which is known to be NP-complete [Garey and Johnson 1979], to P2.

Given an instance of the minimum bisection problem on G(V , E) with n
vertices, where n is even, m edges, and a limit K , our goal is to find a cut (A, B),
for which |A| = |B| = n

2 and the cutsize is at most K (K ≤ m).
Now associate the following instance of the P2 problem to it. Let h(vi) =

s(vi) = 1 for each vi ∈ V and let c(vi, vj ) = 1
m+1 for each (i, j ) ∈ E. Define

R0 := n
2 + K

m+1 . Clearly this instance has polynomial costs in n.
For X , Y ⊆ V we denote by m(X , Y ) the number of edges between X and Y

and by c(X , Y ) the total cost of edges between X and Y .
We claim that there exists a feasible bisection iff the optimum for the P2

problem is at most n
2 . Indeed, if (A, B) is a solution for the bisection problem

(|A| = |B| = n
2 and m(A, B) ≤ K ), then (A, B) is also a feasible solution for P2,

since s(B) + c(A, B) = |B| + 1
m+1 m(A, B) ≤ n

2 + K
m+1 = R0. The hardware cost of

(A, B) in P2 is h(A) = |A| = n
2 , and thus the optimum is at most n

2 .
Vice versa, if in the optimal partition (VH , VS) of P2 the hardware cost is at

most n
2 , then h(VH ) = |VH | ≤ n

2 and s(VS) + c(VH , VS) ≤ n
2 + K

m+1 < n
2 + 1; thus

s(VS) = |VS| ≤ n
2 , as it is an integer and c is nonnegative. As both sides of the
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partition (VH , VS) are not larger than n
2 , |VH | = |VS| = n

2 must hold. This also
implies—using again the condition for the running time—that c(VH , VS) ≤ K

m+1 ,
and hence m(VH , VS) ≤ K . So (VH , VS) is indeed a solution for the bisection
problem as well.

B. Lower Bound

THEOREM B.1. Suppose that P is an optimal solution of the P1 problem with
the weights α, β, and γ . Let Q be any solution of the P2 problem (i.e., a partition
that satisfies the bound RQ ≤ R0). Then

HQ ≥ HP + βSP + γ CP − max(β, γ )R0

α
. (2)

PROOF. Since P is optimal with respect to the weights α, β, and γ , it follows
that

αHP + βSP + γ CP ≤ αHQ + βSQ + γ CQ

and hence

HQ ≥ HP + βSP + γ CP − βSQ − γ CQ

α
. (3)

Of course, this is also a lower bound on HQ , but the right-hand side cannot
be computed because SQ and CQ are not known. However, since Q is a valid
partition, it follows that

SQ + CQ = RQ ≤ R0

and therefore

βSQ + γ CQ ≤ max(β, γ )SQ + max(β, γ )CQ = max(β, γ )RQ ≤ max(β, γ )R0.

Substituting this into (3) proves the theorem.
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A Unified Method for Phase Shifter
Computation
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Phase shifters are used to shift the bit sequences produced by the successive stages of a built-in
test pattern generator (TPG) based on a linear finite state machine (LFSM) by a specified amount
(phase shift) relative to the characteristic sequence. An upper bound on the number of taps to
be used for each phase shifter and a lower bound on the phase-shift value between successive
stages of the TPG mechanism are the general parameters of the problem. Methods to design such
phase shifters have been given in the past separately for Type-1 LFSRs, Type-2 LFSRs, and three-
neighborhood cellular automata. In this article, we show how phase shifters can be synthesized
uniformly and efficiently for any LFSM, including the aforementioned ones. We demonstrate the
method by showing how to obtain phase shifters for two-dimensional cellular automata and for
ring generators.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing,
and Fault Tolerance

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Test pattern generation (TPG), built-in self-test (BIST), phase
shifters, linear finite state machines, linear feedback shift registers, cellular automata

1. INTRODUCTION

The bit sequences generated by successive cells of built-in test pattern gener-
ators (TPGs) suffer in general from correlations and/or linear dependencies.
This is problematic for pseudorandom and/or pseudoexhaustive generation of
test patterns [Bardell et al. 1987]. Of the three popular built-in TPGs, namely,
Type-1 (external XOR) linear feedback shift registers (LFSRs), Type-2 (internal
XOR) LFSRs, and three-neighborhood cellular automata (CA), the problem is
more apparent for Type-1 LFSRs since the bit sequences produced by successive
LFSR stages are simply shifted versions by 1 bit of each other. Nevertheless, as
experimental study has shown [Mrugalski et al. 1999], the problem persists in
the other classes as well. To rectify this behavior, and, more generally, to offer
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the designer freedom in choosing the relative phase shifts of the stages and not
be bound by the inherent phase shifts of the stages of the TPG mechanism in
use, networks of XOR gates, known as phase shifters, have been proposed in
the literature [Bardell et al. 1987; Mrugalski et al. 2000; Rajski et al. 1998] to
be inserted between the LFSR or CA cells and the test inputs (primary inputs,
test-phase inputs, and/or scan chain inputs) of the circuit under test. A phase
shifter is basically a multi-input XOR gate driven by an appropriate subset of
stages of the TPG mechanism in use. It is known that the bit sequence produced
by any stage of a linear finite state machine- (LFSM-) based TPG is a shifted
version of the characteristic sequence of that TPG. Following the shift-and-add
property, the bit sequence produced at the output of a phase shifter is again a
shifted version of the characteristic sequence. The interest is that the number
of shift positions (phase shifts) by which the bit sequence of one stage differs
from that of another is fully controllable and can be made to be any number k,
2 ≤ k ≤ p, where p is the length of the characteristic sequence (or equivalently,
the period of the characteristic polynomial). This can be done by determining
an appropriate subset of TPG mechanism stages (taps) to serve as inputs to the
phase shifter XOR gate. The usual requirements in the phase shifter design
are an upper bound B on the number of taps per phase shifter (to control the
hardware overhead) and a lower bound L on the attained phase shift between
successive TPG stages. Methods to obtain the appropriate subset of stages for
this purpose have been given in Mrugalski et al. [2000] and Rajski et al. [1998],
provided that the TPG in use is a Type-1 LFSR, a Type-2 LFSR, or a CA (a
different algorithm is given separately for each case). In this article, we show
a new, unified method that applies to any kind of LFSM. The method is as
efficient and straightforward to implement as the special case methods.

The rest of the article is organized as follows: Section 2 gives a short overview
of the existing methods for the cases of Type-1 LFSR, Type-2 LFSR, and CA.
Section 3 describes the new unified method. Section 4 presents two case stud-
ies on the application of the method to the computation of phase shifters for
two nontraditional TPG mechanisms, namely, two-dimensional CA and ring
generators. Section 5 concludes the article.

2. OVERVIEW OF EXISTING METHODS

Assume that the TPG mechanism in use is a three-neighborhood CA. An ex-
ample is given in Figure 1. Given a requested phase shift k for a particular
stage with respect to a reference sequence, an effective technique to find which
cells of the CA should be connected into an XOR gate (phase shifter) so that
the resulting bit sequence is a shifted version by k positions of the reference
sequence was given in Mrugalski et al. [2000] based on a previous result by
Ireland and Marshall [1968]. If the reference sequence is cell j of the CA, and
one wants a sequence that has a phase shift of k with respect to that, then do
the following: (i) initialize the CA with a vector that contains only one 1 at po-
sition j ; (ii) simulate the CA for k cycles; (iii) read off the produced vector: the
positions of the 1s in it indicate the cells that should be XORed together to yield
the requested sequence. Given an upper bound B on the number of taps per
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Fig. 1. Obtaining phase shifts for L = 3 and B = 2 for a CA with rule vector [1011] (characteristic
polynomial P (x) = x4 + x3 + 1). (a) Original CA and state sequence starting with [1000]. (b) CA
with the required phase shifters and resulting output sequence.

phase shifter and a lower bound L on the phase shift between successive stages,
the above simulation procedure is used as follows: simulate the CA for at least
L more cycles after the last satisfying vector found. If the current vector has
at most B 1s in it, then use it as the next satisfying vector; otherwise continue
simulating the CA. Techniques to better organize this basic search framework
have also been given in Mrugalski et al. [2000]. For example, vectors containing
at most B 1s can be generated lexicographically and used as initial states in
simulations of L cycles, checking each time if there is a conflict with the ranges
of previously discovered phase-shift vectors satisfying the requirements.

As an illustration, assume that for the CA of Figure 1(a) we want to obtain
successive phase shifts that are at least L = 3 apart and can be attained with
at most B = 2 taps per phase shifter. Assuming that the sequence of stage 0 is
the reference sequence, we see that we can use the vectors at cycles 4, 7, and
10, that is, vectors [0101], [0010], and [0001]. These vectors along with [1000],
which serves to indicate the reference sequence, are shown as rows of phase-
shift matrix H. The specific values of the phase shifts attained are indicated
by the notation [0, 4, 7, 10]. The corresponding CA and the phase shift logic
is shown in Figure 1(b), along with the resulting output sequence. As can be
verified, the bit sequence at each output stage i, 0 ≤ i ≤ 3, has the appropriate
phase shift with respect to the sequence of stage 0, and is the XOR of the bit
sequences of those stages in Figure 1(a) that correspond to the 1s in the ith
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Fig. 2. Obtaining phase shifts for L = 4 and B = 2 for a Type-1 LFSR (characteristic polynomial
x4 +x3 +1). (a) Original Type-1 LFSR and state sequence. (b) Dual Type-2 LFSR and state sequence
ending with vector [1000]. (c) Type-1 LFSR with the required phase shifters and resulting output
sequence.

row of H. (In this article, we use the convention that the rows of a matrix are
indexed starting with 0.)

For the case of a Type-1 or Type-2 LFSRs, the procedure is as follows [Rajski
et al. 1998]: (i) for a Type-1 (Type-2) LFSR with characteristic polynomial P (x),
consider the “dual” Type-2 (Type-1) LFSR with characteristic polynomial the
reciprocal of P (x), that is, P̃ (x) = xd P ( 1

x ); (ii) initialize the dual LFSR with a
vector that contains only one 1 at position j ; (iii) simulate the dual LFSR for
k cycles, going in the reverse direction; (iii) read off the produced vector: the
positions of the 1s in it indicate the stages of the original LFSR that should be
XORed together to yield the requested sequence. Similarly as before, this sim-
ulation procedure provides the basis for the search procedure for the bounded
tap case.

As an illustration, assume that for the Type-1 LFSR of Figure 2(a) we want to
obtain successive phase shifts that are at least L = 4 apart and can be attained
with at most B = 2 taps per phase shifter. Then, following the technique of
Rajski et al. [1998], we consider the “dual” Type-2 LFSR with the reciprocal
characteristic polynomial (Figure 2(b)) and we start from vector 1000, going in
the reverse direction. The vectors at cycles 10, 5, and 1, that is, [1001], [1010],
and [0110], satisfy the requirements. The corresponding phase-shift matrix H
and the original Type-1 LFSR with its phase-shift logic is shown in Figure 2(c),
along with the resulting output values. As can be verified, the bit sequence at
each output stage has the appropriate phase shift with respect to the sequence
of stage 0.
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3. THE UNIFIED METHOD

The next state and output in a linear finite state machines (LFSM) (see, e.g.,
Gill [1966]) with n cells, l inputs, and m outputs are given by the relations

st+1 = Ast + Bxt , yt = Cst + Dxt ,

where st , xt , yt are column vectors representing respectively the state, input,
and output at time t, and A, B, C, D are matrices of dimensions n×n, n×l , m×n,
and m×l , respectively, known as characterizing matrices. Matrix A in particular
is known as the characteristic or transition matrix of the LFSM. LFSMs used as
TPG mechanisms have no external input (they are “autonomous”) and therefore
matrices B and D above are considered to be 0. (In the remaining we consider
only autonomous LFSMs.) In traditional TPGs, that is, TPGs without phase
shifters, the output is just the current state, that is, matrix C above is just the
identity matrix I . The use of phase shifters results in effect in the replacement of
the n× n identity matrix I with another m × n phase-shift matrix H. (Initially,
we will assume that m = n.) For the examples in the previous section, the
phase-shift matrix H is shown in Figure 1(b) and 2(c).

It is known that in order to obtain a sequence with phase shift p with respect
to the sequence of stage k, 0 ≤ k ≤ d − 1, for an LFSM with transition matrix
A = M , the required XOR tap positions are indicated by the positions of the 1s
in the kth row of M p, that is, assuming that the XOR tap (row) vector is x and
rk is a (row) vector with a single 1 at position k, then

x = rk M p (1)

(We make note of the fact that Equation (1), where rk is a row vector, assumes
that the next state equation of the LFSM is written—as in the definitions
above—in the form st+1 = Mst , where st+1 and st are column vectors.)

Assuming (without loss of generality) that the reference stage is stage 0, and
indicating by Ri(A) the ith row of matrix A and by |v| the number of 1s in vector
v, relation (1) is presented in a more appropriate form in the lemma below:

LEMMA 3.1. Given an LFSM F of d stages with transition matrix M and
bounds B and L, the corresponding phase-shift matrix H is obtained by putting
as its ith row, the first (0th) row of each matrix M pi−1 , 1 ≤ i ≤ d, where pi− pi−1 ≥
L, p0 = 0, and |R0(M pi )| ≤ B.

THEOREM 3.1. Given an LFSM F of d cells with transition matrix M and
bounds B and L, the corresponding phase-shift matrix H is equal to

H =








ŝ0

ŝp1

· · ·
ŝpd−1








,

where (ŝpi )
T, 0 ≤ i ≤ d, are states of an LFSM with transition matrix M T,

starting with state (ŝ0)T = [100 · · · 0]T, and pi − pi−1 ≥ L, p0 = 0, |ŝpi | ≤ B.
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PROOF. From Lemma 3.1 we have that the ith row of matrix H is equal to
the 0th row of each matrix M pi . But for each satisfying pi,

R0(M pi ) = R0(M pi−1 · M ) = Rk+1(M pi−1) · M , 1 ≤ i ≤ d − 1,

where R0(M 0) = [100 · · · 0]. Considering each R0(M pi ) as a 1 × d vector ŝi we
have that

ŝpi = R0(M pi ) = R0(M pi−1) · M = ŝpi−1 · M ⇒

(ŝpi )
T = M T · (ŝpi−1)T,

(AT mean the transpose of matrix A), that is, the 1 × d R1(M pi ) vectors can be
seen as states (d × 1 vectors) of an LFSM with transition matrix M T, starting
with state (ŝ0)T = [100 · · · 0]T.

Theorem 3.1 provides the uniform basis to compute phase shifts for any
LFSM with transition matrix M : simply simulate the LFSM with transition
matrix M T starting from state [100 · · · 0]T. The actual runtime of this simu-
lation depends on the phase-shift values requested and the size of the simu-
lated LFSM. We observe that in the previous work of Ireland and Marshall
[1968], matrix M p in Equation (1) was proposed to be computed as the product
of matrices �p and �−1

0 , where �0 is the matrix having as columns the states
s0, s1, . . . , sd−1, where s0 has a single 1 at position k, and �p is the matrix having
as columns the states sp, sp+1, . . . , sp+d−1. This is evidently much less efficient
than the new procedure since matrix inversion for the computation of �−1

0 is
required in the former. We also note that in the previous work of Mrugalski
et al. [2000] for the special case of cellular automata, the computation of the
product �p and �−1

0 was avoided by substituting in Equation (1) M T for M ,
since for cellular automata (but not, in general, for other LFSMs), M = M T.

An illustration of the approach is given in Figure 3. An arbitrary LFSM
(neither an LFSR or a CA) is shown in Figure 3(a) along with its transition ma-
trix M and its state sequence. (The characteristic polynomial for this LFSM is
P (x) = x4 + x3 + 1.) Assume that we want to obtain successive phase shifts that
are at least L = 4 apart and can be attained with at most B = 2 taps per phase
shifter. Then we consider the LFSM with transition matrix M T (Figure 3(b))
and we simulate it starting with state [1000]. The vectors at cycles 0, 4, 10,
14 give the desired XOR tap positions (matrix H). The original LFSM plus the
corresponding phase-shift logic is shown in Figure 3(c). As can be verified, the
bit sequence of each output stage has the appropriate phase shift with respect
to that of stage 0.

Theorem 3.1 generalizes the techniques previously proposed for the special
cases of cellular automata and LFSRs.

(i) For cellular automata, matrix M is symmetric and so M T is the same as
M . So the simulation of the LFSM with transition matrix M T is actually
the simulation of the original CA, as the existing technique for CA only
[Mrugalski et al. 2000] specified.

(ii) For LFSRs, if the characteristic polynomial is P (x) = cd xd + cd−1xd−1 +
· · · + c1x + c0, where coefficient cd is 1 as the LFSR has d cells and

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Unified Method for Phase Shifter Computation • 163

Fig. 3. Obtaining phase shifts for L = 4 and B = 2 for an arbitrary LFSM (characteristic polyno-
mial x4 + x3 + 1). (a) Original LFSM with transition matrix M and state sequence. (b) LFSM with
transition matrix M T and state sequence starting with vector [1000]. (c) Original LFSM with the
required phase shifters and resulting output sequence.

coefficient c0 is 1 to make the LFSR nonsingular, then for 0 ≤ i ≤ d−1, entry
Md−1,i = ci for a Type-1 LFSR (Figure 4(a)), whereas entry Md−1−i,0 = ci for
a Type-2 LFSR (Figure 4(b)). All other entries of M in both cases are 0 ex-
cept for entries Mi,i+1, 0 ≤ i ≤ d −2, which are 1. Consider a Type-1 LFSR.
The transpose LT

1 of its transition matrix L1 is as shown in Figure 4(c).
The transition matrix L2, P̃ of a Type-2 LFSR with the reciprocal character-
istic polynomial P̃ (x) = xd P ( 1

x ) = cd + cd−1x + · · · + c1xd−1 + c0xd = 1+
cd−1x + · · · + c1xd−1 + xd is shown in Figure 4(d). As can be verified,
LT

1 · L2, P̃ = I , that is, LT
1 is the inverse of L2, P̃ , and so the simulation

of the LFSM with transition matrix LT
1 starting with state [1000], as the

new algorithm specifies, is equivalent to the simulation of the dual LFSR
L2, P̃ starting with state [1000] and going in the reverse direction, as the
existing technique for LFSRs only [Rajski et al. 1998] specified.

In applications such as avoiding linear dependencies in pseudorandom and
pseudoexhaustive TPG [Bardell et al. 1987], or in test set embedding [Bellos
et al. 2002], the stages of an LFSM mechanism are required to have exact phase
shifts among them (see also Kagaris [2003]). We denote such phase shifts with
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Fig. 4. Relations among LFSR transition matrices (charcteristic polynomial P (x) = xd +
cd−1xd−1 + · · · + c1x + 1). (a) Matrix of Type-1 LFSR. (b) Matrix of Type-2 LFSR. (c) Transpose of
(a). (d) Matrix of Type-2 LFSR with reciprocal characteristic polynomial.

[p0, p1, . . . , pd−1]. Finding exact phase shifts for an LFSM with transition ma-
trix M would require simulating the LFSM with transition matrix M T for
max{pi} cycles. However, this can be done very efficiently without the need of
any LFSM simulation. Since ŝpi = ŝ0 · M pi , each of the powers M pi can be com-
puted fast by repeated squaring and summing of smaller powers. Moreover,
since we are interested only in the first row of M pi (Lemma 3.1), the appropri-
ate set of tap positions S can be found very fast by doing the following: given a
requested phase shift with binary representation p = bd−1 . . . b1b0, do repeat-
edly the following for all bi �= 0, 0 ≤ i < d : (i) set S to the XOR sum of all Ri,k ,
where k ∈ F (F is initialized to F = {0}); and (ii) set F to the set of the positions
of 1 in S.

Finally, we note that the stages of a TPG mechanism usually feed multiple
scan chains in parallel (cf. STUMPS architecture [Bardell et al. 1987]). If the
number m of scan chains that need to be driven is greater than the number
d of the cells of the TPG, then extra phase shifters can be added to drive the
remaining parallel scan chains. In this case the phase-shift matrix H is of
dimension m × d and nothing else changes in its computation.

4. EXPERIMENTAL RESULTS-CASE STUDIES

We demonstrate the application of the proposed methods to compute phase
shifters for two nontraditional classes of LFSMs used as TPG mechanisms.
Such mechanisms can offer reduced propagation delay, short feedback wire
length, and small gate fan-in and fan-out. The classes examined here are two-
dimensional cellular automata (see, e.g., Cattell et al. [1999]) and ring genera-
tors [Rajski et al. 2002].

4.1 Two-Dimensional Cellular Automata

An example of a 2-by-16 cellular automaton is given in Figure 5(a). Each box
in Figure 5(a) represents a flip-flop storing the result of an XOR gate whose
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Fig. 5. (a) 2 × 16 CA. (b) Transition matrix. (c) Phase-shift matrix.

inputs are shown by the arrows. The corresponding transition matrix is given
in Figure 5(b). (Black (white) squares indicate entries with 1 (0), respectively.)
The general form of the transition matrix of a 2-by-n CA is a 2n × 2n matrix
whose upper right and lower left n × n submatrices are the identity matrix,
the first lower and first upper subdiagonals of the upper left and lower right
n × n submatrices are all 1s, and the main diagonal of the whole matrix co-
incides with the rule vector determining the operation of the 2-by-n CA. For
the example we used the rule vector that has a 1 at positions 31 and 18 (taken
from the list in Cattell et al. [1999] after aligning index i with 2n − i). This re-
sults in a maximum length sequence with (primitive) characteristic polynomial
p(x) = x32 + x30 + x29 + x26 + x24 + x21 + x20 + x18 + x17 + x13 + x12 + x6 + x5 +
x4 + x3 + x + 1.

As can be observed, the transition matrix of Two-dimensional CA is symmet-
ric, so the simulation is actually done on the original machine, as was the case
for one-dimensional CA. Assume that we want to obtain successive phase shifts
that are at least L = 5000 and can be attained with at most B = 4 taps per phase
shifter. Then by applying the method in Section 3 we find the phase-shift ma-
trix shown in Figure 5(c). The corresponding actual phase shifts attained, given
here as differences between successive stages rather than cumulative values
with respect to stage 0, are 161300, 16202, 165974, 81719, 40926, 36944, 13003,
52745, 77226, 22707, 26522, 215151, 254904, 30018, 90915, 131904, 150865,
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Fig. 6. (a) 32-bit ring generator. (b) Transition matrix. (c) Phase-shift matrix.

144616, 12612, 89195, 111158, 280637, 199848, 73328, 286842, 296954, 31052,
5413, 167602, 15121, 11934. The time to obtain these phase shifts on a SUN
Blade 1500 was 34.88 s.

4.2 Ring Generators

An example of a 32-bit ring generator along with its transition matrix are
shown in Figures 6(a) and 6(b), respectively. The characteristic polynomial is
p(x) = x32 + x23 + x18 + x14 + 1. This example is the same as in Rajski et al.
[2002], but with the reciprocal characteristic polynomial. Assume that we want
to obtain successive phase shifts that are again at least L = 5000 and can be at-
tained with at most B = 4 taps per phase shifter. Then by applying the method
in Section 3 we find the phase shift matrix shown in Figure 6(c). The correspond-
ing actual phase shifts attained, given here again as differences between succes-
sive stages, are: 290686, 57635, 9455, 408742, 684521, 892995, 159529, 815372,
312894, 344026, 239408, 501746, 112685, 177406, 357799, 146916, 967607,
160863, 870413, 864915, 405443, 55536, 81402, 163621, 932622, 1009405,
171816, 348967, 163779, 124078, 68344. The time to obtain these phase shifts
on a SUN Blade 1500 was 85.7 s.

5. CONCLUSIONS

We presented a unified method to find phase shifters for any LFSM. The method
carries out efficiently the fundamental step of simulation-based search strate-
gies to find phase-shift vectors satisying a given tap bound. As a demonstration,
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we showed how phase shifters can be computed for two-dimensional CA and
ring generators.
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Minimum area is one of the important objectives in technology mapping for lookup table-based
field-progrmmable gate arrays (FPGAs). Although there is an algorithm that can find an optimal
solution in polynomial time for the minimal-area FPGA technology mapping problem without gate
duplication, its time complexity can grow exponentially with the number of inputs of the lookup-
tables. This article proposes an algorithm with approximate to the area-optimal solution and lower
time complexity. The time complexity of this algorithm is proven theoretically to be bounded by
O(n3), where n is the total number of gates in the given circuit. It is shown that except for some
cases the proposed algorithm can find an optimal solution of a given problem. We have combined the
proposed algorithm with the existing postprocessing procedures which are used to find the gates
that can be duplicated on a set of benchmark examples. The experimental results demonstrate the
effectiveness of our algorithm.
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1. INTRODUCTION

The merits of low cost and short turnaround time have made field-
programmable gate arrays (FPGAs) an important technology in very-large-
scale integration (VLSI) designs. In an FPGA device, a configurable logic block
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(CLB) contains a k-input lookup table (LUT) and can implement any Boolean
function whose input number does not exceed k, kbeing a function of the CLB
hardware constraints on the number of inputs.

The technology mapping problem for LUT-based FPGAs is to produce an
equivalent circuit for a given circuit using gates that can be implemented with
LUTs. Given a circuit, if the number of distinct inputs of a gate is more than k,
then no LUTs can include this gate. Therefore, such a gate must be decomposed
into two or more gates, which are functionally equivalent to the original gate,
so as to reduce the number of inputs of a gate before the technology mapping
step is performed. Some previously developed decomposition techniques find
important applications in LUT-based FPGAs [Huang et al. 1994, 1995; Karp
and Roth 1962; Lai et al. 1993; Murgai et al. 1991; Sawada et al. 1995; Shen
et al. 1995; Wurth et al. 1995].

The optimization objectives of the technology mapping tasks include area
minimization, delay optimization, routability maximization, or a combination
of these. For the area minimization objective, if duplication of gates is allowed,
the existing algorithms can be classified into three categories: (1) those us-
ing enumeration methods including Chortle [Francis et al. 1990], Chortle-crf
[Francis et al. 1991], MIS-pga [Murgai et al. 1990], MIS-pga (new) [Murgai
et al. 1991], Vismap [Woo 1991], and MILP [Chowdhary and Hayes 1995] algo-
rithms; (2) those using heuristic algorithms, for example, the Level-Map algo-
rithm [Farrahi and Sarrafzadeh 1994], and the CutMap algorithm [Cong and
Hwang 1995] etc.; and (3) those combining decomposition with mapping algo-
rithms including the Xmap algorithm [Karplus 1991], the FGSyn algorithm [Lai
et al. 1994], the TechMap algorithm [Sawkar and Thomas 1992], the method
developed by Lehman et al. [1997], and the SLDMap algorithm [Chen and
Kong 2001]. Proper duplication of gates can be beneficial to area minimization.
However, excessive duplication of gates adds to the number of gates such that
the total number of LUTs can be increased. The problem, which is to find the
minimal-area FPGA technology mapping with gate duplication, is NP-complete
[Farrahi and Sarrafzadeh 1994; Zhang et al. 1996]. Using a two-stage design
process, it is possible to first find a solution without gate duplication and then
find the part that can be duplicated to reduce the total number of LUTs.

By using the dynamic programming approach to generate cuts, the DFmap
[Cong and Ding 1994b] found an optimal solution in polynomial time for the
minimal-area FPGA technology mapping problem without gate duplication.
However, the cut generation step is bounded by O(nk), where n is the total
number of gates and k is the inputs number of LUTs in the given circuit [Cong
et al. 1999]. The DFmap can take a large amount of run time for some homo-
geneous FPGAs consisting of LUTs with large input size.

In this article, we develop an efficient area-minimum mapping algorithm
without gate duplication for LUT-based FPGAs. This proposed algorithm first
uses a partitioning algorithm that divides the given circuit system into sub-
systems such that one subsystem has only one output and the union of the
solutions for these subsystems is the solution of the whole system. Then a
greedy approach is proposed to find the mapping solution for each subsystem.
Two kinds of subgraphs of the graph representing a subsystem are selected,
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one at a time, in the procedure of the greedy method. It is shown that except
for a few circuits this method can find the optimal mapping of the subsystem.
The time complexity of this algorithm is proven theoretically to be bounded
by O(n3), where n is the total number of gates in the given circuit. Accord-
ing to the experimental results on a number of MCNC benchmarks as shown
in Section 6, it can be seen that the proposed algorithm takes much less CPU
time than the DFmap, and that the number of LUTs is very close to the optimal-
area mapping solution found by the DFmap. The proposed algorithm can also
be used to find the area-minimum mapping solution for a heterogeneous FPGA
because the number of inputs of the LUTs does not affect the time complexity of
the algorithm. Moreover, we carry out the existing postprocessing procedures
[Cong and Ding 1994a] which are used to find the gates that can be duplicated
to reduce further the total number of LUTs. Compared with the existing algo-
rithm [Cong and Ding 1994a; Francis et al. 1991; Cong and Hwang 1995] with
gate duplication, the experimental results demonstrate the efficiency of this
proposed algorithm.

The remainder of this paper is organized as follows. Section 2 describes the
terminology and problem formulation. The outline of the area-minimal algo-
rithm for duplication-free mapping is presented in Section 3, and the algorithm
is described in Sections 4 and 5. Experimental results are shown in Section 6.
Finally, in Section 7 we present concluding remarks.

2. TERMINOLOGY AND PROBLEM FORMULATION

A combinational logic circuit can be represented by a directed acyclic graph
(DAG), G = (V , E). A vertex in V represents a logic gate or a primary in-
put/output, and a directed edge 〈i, j 〉 exists in E if the output of gate i is the
input of gate j . A primary input (PI) vertex has no incoming edge and a primary
output (PO) vertex has no outgoing edge. Let v and u be two vertices of V . If
there is a directed path from v to u, v is said to be a predecessor of u and u is a
successor of v. It is defined that input(v) represents the set of vertices which are
the fan-ins of v. Similarly, output(v) represents the set of vertices which are the
fan-outs of v. The output signals from a vertex which has more than one out-
edge propagate through distinct paths and end at (1) more than one PO vertex
or (2) one vertex. The vertices are called multiple-fan-out sources in the first case
and reconvergent sources in the second case. For example, Figure 1(b) shows the
corresponding DAG of the combinational circuit illustrated in Figure 1(a). In
Figure 1(b), u and x are multiple-fan-out sources; s is a reconvergent source.
Notice that a reconvergent source is not a multiple-fan-out source.

Assume Cv is the subgraph induced by the set of non-PI vertices, Vv. The
subgraph Cv is said to be a cone if there exists a vertex v ∈ Vv such that, for
every vertex u ∈ Cv there is a directed path from u to v in Cv. The vertex v is
called the root of the cone. Since Cv is the induced subgraph of Vv, the set of
fan-in signals of Cv is exactly equal to |input(Vv)|. For convenience, input(Vv)
and input(Cv) are used simultaneously and interchangeably in the rest of this
article. A fan-out-free cone (FFC) is a cone in which the fan-outs of every vertex
other than the root are in the cone. A cone, Cv, is said to be k-feasible if it is a
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Fig. 1. (a) A combinational circuit; (b) the DAG corresponding to the circuit in (a).

FFC and |input(Cv)|.k. A FFC rooted at v, Cv, is called a primary block if it covers
all FFCs rooted at v and v is either a PO vertex or a multiple-fan-out source.

Assume Cv is the subgraph induced by the set of non-PI vertices, Vv. The
subgraphCv is said to be a cone if there exists a vertex v ∈ Vv such that for
every vertex u ∈ Cv there is a directed path from u to v in Cv. The vertex v is
called the root of the cone. Since Cv is the induced subgraph of Vv, the set of
fan-in signals of Cv is exactly equal to |input(Vv)|. For convenience, input(Vv)
and input(Cv) are used simultaneously and interchangeably in the rest of this
article. A fan-out-free cone (FFC) is a cone in which the fan-outs of every vertex
other than the root are in the cone. A cone, Cv, is said to be k-feasible if it is a
FFC and |input(Cv)|.k. A FFC rooted at v, Cv, is called a primary block if it covers
all FFCs rooted at v and v is either a PO vertex or a multiple-fan-out source.

A network is said to be k-bounded if the in-degree of every vertex is less
than or equal to k in the network. In the rest of this article, the given DAG
is transformed into a two-input simple gate network to ensure that every gate
can be realized by a LUT [Cong et al. 1992]. The reason is that gates with a
smaller number of inputs can easily be included in a LUT and may increase
the possibility of obtaining a better mapping solution. Let Cu = (Vu, Eu) and
Cv = (Vv, Ev) be two cones. Cu is said to be covered with Cv if Vu ⊆ Vv. Formally,
a collection of k-feasible cones is said to be a mapping solution of G = (V , E) if
each vertex in V is covered in one and only one cone. Therefore, the technology
mapping problem for LUT-based FPGA designs can be formulated as a graph-
covering problem as follows:

Given a k-bounded network, find a mapping solution with the minimum
number of cones.

3. OUTLINE OF THE MAPPING ALGORITHM

In this article, we present an efficient algorithm in which gates are implemented
by one and only one LUT for finding the area-minimum solution. The proposed

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



172 • C.-C. Kao and Y.-T. Lai

algorithm is divided into two steps: (1) partitioning the graph representing the
given circuit system into primary blocks, and (2) using the greedy method to
find the solution for each primary block.

The divide-and-conquer approach is usually used to reduce the complexity
of computation. To use this approach, we must be able to partition the given
problem into subproblems such that each subproblem can be solved indepen-
dently and the solutions for the subproblems can be combined to be the solution
of the whole problem. An algorithm for partitioning the given graph is shown
in Section 6. It traverses in the breadth-first order and labels the vertices in
the graph such that the vertices in each primary block have the same label.

To use the greedy method to find the optimal mapping for a primary block,
GB, we must find a k-feasible cone Ct such that the optimal solution of GB is the
union of {Ct} and the optimal solution of GB −Ct . Subgraphs are selected in the
iterations of the greedy procedure. It is shown that in an iteration the selection
of a subgraph of a special kind can always lead to an optimal solution. However,
a subgraph of this special kind may not exist in the selection procedure. In such
a case, a subgraph of the second kind is selected. It is shown that except for
some particular cases the selection of the second kind can also lead to finding the
optimal solution. Algorithms for finding the subgraphs by the greedy method
are described in Section 5.

4. PARTITIONING THE GIVEN DAG INTO PRIMARY BLOCKS

It is shown in this section that the union of the mappings of the primary blocks is
the mapping of the given DAG. We must prove three aspects: (1) primary blocks
are mutually exclusive, (2) the union of all primary blocks includes every vertex
in the given DAG, and (3) every feasible cone is covered with exactly one primary
block. An algorithm for partitioning the given graph into primary blocks is then
presented.

LEMMA 1. Primary blocks of a given DAG must be mutually exclusive.

PROOF. Assume Cs = (Vs, Es) and Ct = (Vt , Et) are two primary blocks and
Cs and Ct are not mutually exclusive. Let Vr = Vs ∩ Vt and u be a vertex in
Vr . We denote s and t as the roots of Cs and Ct , respectively. A path from u
to a PO vertex must pass through both s and t. Assume all these paths pass
through s first and then t. Since every path starting from s must pass through
t, every output signal from s ends at t. Equivalently, s is a reconvergent source
but it is not a multiple-fan-out source. Therefore, Cs is not a primary block. This
conflicts with the assumption that Cs is a primary block.

LEMMA 2. The union of all primary blocks includes all non-PI vertices in V .

PROOF. Let u be a non-PI vertex in V . We consider two cases with u: (1) the
paths starting from u end at more than one PO vertex and (2) all the paths
starting from the vertex u end at one and only one PO vertex v. In the first
case, there are two subcases: (1) u is a multiple-fan-out source, and (2) there is
a multiple-fan-out source w such that all paths starting from u pass through w.
In the first subcase, the subgraph induced by {u} is an FFC and it is included in
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the primary block rooted at u. In the second subcase, the subgraph induced by
the vertices on the paths from u to w is an FFC included in the primary block
rooted at w.

Next, consider the second case, the subgraph defined by the vertices on these
paths is an FFC rooted at v. According to the definition of a primary block, this
cone is included in the primary block rooted at v.

THEOREM 3. For an FFC, Ck, there is one and only one primary block, Cw,
such that Ck ⊆ Cw.

PROOF. To prove this theorem, based on Lemmas 1 and 2, it remains to
be proven that an FFC, Ck = (Vk , Ek), is included in a single primary block,
Cw = (Vw, Ew). This proof is presented as follows:

If Ck is a primary block, Ck = Cw, then the theorem is proved. Otherwise,
according to Lemma 2, Ck must be included in some primary blocks. Assume
that the number of the primary blocks including Ck is more than one and Cw
is one of those primary blocks. In other words, the vertices in Ck are not all
included in Cw. Let Vh = Vk ∩ Vw and k and w be the roots of Ck and Cw,
respectively. There are four cases with k and w: (1) k ∈ Vh and w ∈ Vh, (2) k /∈ Vh
and w ∈ Vh, (3) k ∈ Vh and w /∈ Vh, and (4) k /∈ Vh and w /∈ Vh, as shown in
Figure 2.

In the first case, since Cw is an FFC, the subgraph induced by Vh must be
an FFC rooted at w. Hence, k = w. However, since Cw includes all FFCs rooted
at w,Vk ⊂ Vw. It is a contradiction to the hypothesis that the vertices in Vk
are not all included in Vw. Consider the second case. Recall that w is either a
PO vertex or a multiple-fan-out source. Since w ∈ Vk and w �= k, w must be a
multiple-fan-out source. There is a path passing through a vertex other than
k. Hence, Ck is not an FFC, which is in contradiction to the assumption. In the
third case, the cone including all the vertices in Vk∪ Vw is an FFC rooted at
w. This is a contradiction to the hypothesis that Cw is a primary block, which
includes all FFCs rooted at w. In the last case, neither Cw nor Ck is an FFC.
The theorem is therefore proven.

According to Theorem 3, we can partition the given DAG into primary blocks
and find a mapping solution for each primary block. The union of the mapping
solutions of all primary blocks is the mapping solution of the given DAG.

To partition the given DAG into primary blocks, we label the vertices in
the given DAG such that the vertices in a primary block have the same label.
Starting from the PO vertices, a traversal of the graph in topological order can
label the vertices. A vertex is labeled with the same tag as its fan-out vertex, if
all its fan-out vertices have the same label; it is labeled with new tag otherwise.
Since a reconvergent source has more one fan-out vertex, the timesVisited(u)
is used to count the number of times that u has been visited such that every
reconvergent source is labeled correctly. Figure 3 shows the result of labeling
vertices of the graph in Figure 1(b). It is seen that in Figure 3 the fan-out
vertices of vertex u have different labels and therefore vertex u is labeled with
a new tag.
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Fig. 2. All cases in which an FFC is not totally included in a primary block.

Fig. 3. Partitioning a given DAG into primary blocks.
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The procedure to partition the given DAG into primary blocks is as
follows:

Algorithm Primary Block Partitioning:
PrimaryBlock Partitioning (G)
Comment: G is a DAG
begin

for every vertex v do
if v is a PO vertex begin

label v with a new tag;
enqueue(v, Q);

end
while Q �= 
 begin
v ← dequeue (Q);

for every fan-in vertex of v, u, do begin
if u has not been labeled begin

label u with the same tag as v;
increment timesVisited(u);

end
else if u and v have the same tag // can be a reconvergent source

increment timesVisited(u);
else if u is not in the queue Q begin

//fan-out vertices have different tags,
//u is a new found multiple vertex
label u with a new tag;

enqueue(u, Q);
end
if (timesVisited(u) is equal to the outdegree of u) and

(u is not in the queue Q)
enqueue(u, Q);

end of for loop
end of while loop

end of PrimaryBlock Partitioning

According the labeling rule, a vertex that is labeled with a new tag must
be a PO vertex or a multiple-fan-out source. Hence, the subgraph induced by
the vertices with the same label must be an FFC rooted at a PO vertex or a
multiple-fan-out source. Therefore, the subgraph induced by the vertices with
the same label is a primary block. In this procedure, every edge is traversed
once. The time complexity is bounded by O(e).

5. THE MAPPING SOLUTION FOR A PRIMARY BLOCK

In this subsection, we will use the greedy method to find the mapping solution
for a primary block, GB = (VB, EB). It is discussed whether the selection of a
k-feasible cone in each iteration of the greedy method will lead to finding the
optimal mapping solution or not.

A cone is called a floor cone if all its fan-in vertices are PI vertices. In
Figure 4(a), the cone including the vertex r and all its non-PI predecessors
is a floor cone.

THEOREM 4. There exists an optimal mapping solution, MB, in GB such that
every feasible floor cone is covered with a cone in MB.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



176 • C.-C. Kao and Y.-T. Lai

Fig. 4. (a) A given DAG ; (b) a new DAG derived from (a) by selecting a critical floor cone as a cone
in the optimal mapping solution (k = 5).

PROOF. Assume that Cw is a feasible floor cone tipped at w and that it is
not covered with a single cone in an optimal mapping solution M ′

B. Let Cv be
the cone in M ′

B that covers w. There are two cases with v and w: (1) v = w
and (2) v �= w. Consider the first case. Assume Cv �= Cw. Because Cw includes
all non-PI predecessors of w, Cv ⊂ Cw. Let Gv = Cw − Cv and Sv be the set of
cones covering Gv in M ′

B. It is obvious that ∪C∈Sv C = Gv. If we replace Cv and
all the cones in Sv with Cw, the number of cones in the new mapping solution
decreases. This is a contradiction to the assumption that M ′

B is an optimal
mapping solution. Therefore, if v = w, then Cv = Cw. The second case is shown
in Figure 5. Let C′

w = Cw ∩ Cv, Gu = Cw − C′
w, and C′

v = Cv − C′
w. Since w

is the only vertex in Cw that has fan-out signal to C′
v and |Output(Gu)| ≥ 1,

|Input(C′
v)| = |Input(Cv)| − |Output(Gu)| + 1 ≤ |Input(Cv)|. Therefore, C′

v is a k-
feasible cone. Let SC be the set of cones covering Gu in M ′

B. Since |Output(Gu)| ≥
1, |SC| ≥ 1. Accordingly, if we replace Cv and the cone in SC with C′

v and Cw,
the total number of cones in M ′

B does not increase. According to the above
discussions, we can replace M ′

B with another optimal mapping solution, MB,
in GB such that every feasible floor cone is covered with a cone in MB.

Let Cv be a k-feasible floor cone tipped at v. If the floor cone tipped at every
successor of v is not k-feasible, Cv is called a saturated floor cone. In Figure 4(a),
the floor cone including the set of the vertices {x, m, n, o, p} is an example of a
saturated floor cone. The floor cone including the set of the vertices {n, o, p} is
a floor cone but not a saturated floor cone because x is a successor of n and the
floor tipped at x is a k-feasible floor cone. A saturated floor cone Cv is said to be
a critical floor cone if it cannot be covered with any other k-feasible cones. For
example, in Figure 4(a), Cv including the vertex v is a critical floor cone. On the
other hand, the floor cone including the vertices {x, m, n, o, p} is a saturated
floor cone but not a critical floor cone in Figure 4(a).

THEOREM 5. If there exists a critical floor cone in GB, it can be selected to be
in the optimal mapping solution.
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Fig. 5. A feasible floor cone is not covered with a cone in an optimal mapping solution in GB.

Fig. 6. Every floor cone tipped at a vertex in Ui is feasible.

PROOF. This is a corollary of Theorem 4. Assume Cr is a critical floor cone.
According to Theorem 4, there exists an optimal mapping solution that has a
cone, Cs, covering Cr . Since no feasible floor cone is larger than the critical floor
cone, Cs = Cr .

According to Theorem 5, the critical floor cone Cv in Figure 4(a) can be se-
lected to be in the optimal mapping solution. On the other hand, if there are no
critical floor cones, we must find another kind of cone that can be selected to
be in the mapping solution. A vertex is called a leading vertex if (1) each fan-in
vertex is either the tip of a saturated floor cone or a PI vertex, and (2) at least
one fan-in vertex is the tip of a saturated floor cone. For example, in Figure 4(b)
the vertex c is a leading vertex.

LEMMA 6. There must exist a leading vertex in GB.

PROOF. We use induction on |VB| to prove the claim for all |VB| ∈ N. Obvi-
ously, there must exist a leading vertex for |VB| = 2.

Suppose that there exists a leading vertex with |VB| = 2, 3, . . . , k. Given a
DAG, G ′

B = (V ′
B, E ′

B), where |V ′
B| = k + 1. As shown in Figure 6, let u be a
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fan-out vertex of a saturated floor cone Cw and Ui be the set of fan-in vertices
of u. It is to be shown that if every floor cone tipped at a vertex in Ui is feasible,
u is a leading vertex. Otherwise, there must exist a leading vertex that is a
predecessor of u.

We consider two cases with Ui: (1) every floor cone tipped at a vertex in Ui
is feasible and (2) at least one floor cone tipped at a vertex in Ui is infeasible.
Consider the first case. Let v ∈ Ui, v �= w, and Cv be a feasible floor cone tipped
at v. If v is not a multiple-fan-out source, the successor of w is also the successor
of v. Since Cw is a saturated floor cone, the floor cone tipped at a successor of
v is not feasible. Hence, Cv is a saturated floor cone. On the other hand, v can
be a multiple-fan-out source. Assume Cv is not a saturated floor cone and that
there exists a saturated floor cone, Cx , tipped at a successor of v. Obviously, Cx
must cover u and Cw. However, it is a contradiction to the hypothesis that Cw is
a saturated floor cone and that it cannot be covered with any other saturated
floor cones. Therefore, Cv is a saturated floor cone and u is a leading vertex.

Next we consider the second case. Let v ∈ Ui and Cv be an infeasible floor
cone covering v and all its non-PI predecessors. If u is not a leading vertex,
there must in GB exist an infeasible floor cone Cv. Clearly, the total number of
vertices in Cv must be less than k + 1. According to the hypothesis that there
exists a leading vertex with |VB| = 3, 4, . . . , k, there is a leading vertex in Cv.
By the principle of induction, the claim holds for every |VB| ∈ N.

Let Sv be the set of saturated floor cones whose fan-out vertex is a leading
vertex v. A cone Ci ∈ Sv is called the prime cone if |Input(Ci)| is the largest
in Sv. A leading vertex is said to be critical if there exists no feasible cone
covering the prime cone and any other saturated floor cones in Sv. For example,
in Figure 4(b), the vertex c is a critical leading vertex.

THEOREM 7. If there are no critical floor cones, then a prime cone whose fan-
out vertex is a critical leading vertex can be selected to be in the optimal mapping
solution.

PROOF. By Lemma 6, there must exist a leading vertex. Let Cw be a prime
cone tipped at w and its fan-out vertex be a critical leading vertex, x. Since Cw is
a feasible floor cone, according to Theorem 4, there exists an optimal mapping
solution MC which has a cone Cv covering Cw. Let v be the tip of Cv. Since no
critical floor cones exist, v �= w. Hence, there is a path from w to v. Equivalently,
v is a successor of w. As in Figure 7, assume that x has a fan-in signal from a
feasible floor cone Cu and |Input(Cu)| ≤ |Input(Cw)|. Since x is a critical leading
vertex, there exist no feasible cones covering both Cu and Cw. In other words,
Cu must be a cone in MC. Let C′

v = Cu ∪ (Cv −Cw).|Input(C′
v)| = |Input(Cu)|+1 ≤

|Input(Cw)|+1 = |Input(Cv)| ≤ k. Hence, we can obtain a new mapping solution
by replacing Cv and Cu with Cw and C′

v. The new mapping solution will have
the same number of cones. Equivalently, the new mapping solution is also an
optimal one.

According to Theorems 5 and 7, the greedy method can be used to find the
optimal solution. Figure 8 illustrates the procedure of finding an area-optimal
mapping solution. We first find the leading vertex c and the prime cone Cx
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Fig. 7. The prime cone whose fan-out vertex is a critical leading vertex in the optimal mapping
solution.

Fig. 8. An example of finding an optimal mapping solution by the greedy method (k = 4).

including the set of the vertices {x, m, n, o, p}. The cone Cx is selected to be
in the mapping solution. A new DAG GB = GB − Cx is obtained. In the new
iteration of recursive process, GB is set to be GB −Cx . The tip of Cx is considered
as a PI vertex of the new GB. The vertex d is the leading vertex in the new
GB. The saturated floor cone Cc including the set of the vertices {c, a, y} is a
prime cone and is selected to be in the mapping solution. Again set GB to be
GB − Cc. The subgraph induced by the set of vertices {b, d } is selected to be in
the mapping solution. It is seen that the mapping solution is an optimal one
including three cones.

If the leading vertex of a prime cone is not critical, the selection of the prime
cone may lead to a nonoptimal solution. For example, in Figure 9 the cone Cy
including the vertex y is a prime cone but its leading vertex is not critical. If
we select Cy to be in the mapping solution, eventually three cones, { y}, {c, a,m,
n, o, p, x}, and {d , b}, will be selected in the mapping solution. However, the
cones {a, b, c, d , y} and {m, n, o, p, x} can be selected in the mapping solution
which is the optimal solution. Hence, the selection of a prime cone whose fan-
out vertex is not a critical leading vertex can lead to a nonoptimal solution.
Nevertheless, it is difficult to determine whether a prime cone whose fan-out
vertex is not a critical leading vertex is selected or not. Its time complexity can
be exponential. In practice, mostly, the leading vertex of a prime cone is critical
in our experience. Even more, good mapping solutions can be obtained in the
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Fig. 9. A feasible cone covers the leading vertex and its all non-PI predecessors (k = 5).

experimental results shown in Section 7 if there exist no critical cones and we
select a prime cone to be in the mapping solution.

Based on the above discussion, we need an algorithm to find the critical floor
cones and the prime cone. To find those cones, we must find the saturated floor
cones that can be generated by inspecting all k-feasible floor cones.

It is easy to find all k-feasible floor cones. Let Pre(v) denote the non-
PI predecessors of v and Fin(v) denote the set of fan-in vertices of v. Let
SP(v) = ∪u∈Fin(v)Pre(u). Clearly, Pre(v) = {v}∪SP(v). Accordingly, starting from
the tip of a primary block GB, all k-feasible floor cones can be found by travers-
ing GB in postorder. Assume that Cv is a floor cone induced by Pre(v). Recall
that Cv is k-feasible if and only if

∣
∣Input(Cv)

∣
∣ ≤ k and

∣
∣Output(Cv)

∣
∣ = 1. The

procedure to find the k-feasible floor cones in GB is as follows:

Algorithm Generating Floor Cones:
GenerateFloorCones (GB)
Comment: GB = (V , E) is a DAG
begin
stack ← 
;
for every vertex v in V do begin

timesVisited(v) ←0
if (v is a PI vertex) then push v onto stack

end of for-loop
while stack �= 
 do begin

vx ← pop(stack);
Pre(v) = {v}∪ SP(v);
Construct Cvx which is the induced subgraph by Pre(v);
if ( |Input(Cvx)| ≤ k and |Output(Cvx)| = 1) then

add Cvx to the list of all k-feasible floor cones
for every fan-out vertex of vx, vs, do begin
timesVisited(vs) ← timesVisited(vs) +1;
if (timesVisited(vs) = indegree of vs) do

push vs onto stack;
end of for-loop

end of while-loop
end of GenerateAllFloorCones
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In conclusion, the area-mapping algorithm can be described as follows:

Area-minimum Mapping (G)
Comment: G is a DAG
begin

PrimaryBlock Partitioning(G);
for every primary block GB do begin

PrimaryBlock Mapping (G ′
B);

end of for-loop
return the union of the mapping solution of primary blocks;

end of Area-minimum Mapping

PrimaryBlock Mapping(G ′
B)

Comment: G ′
B is a primary block

begin
GenerateFloorCones (G ′

B);
Identify the critical floor cones;
if (there is a critical floor cone, Ck) then begin

add Ck to the Mapping Solution;
if (G ′

B − Ck �= 
) then PrimaryBlock Mapping (G ′
B − Ck);

end
else bigin

find the prime cone Cp;
add Cp to the Mapping Solution;
if (G ′

B − Cp �= 
) then PrimaryBlock Mapping(G ′
B − Cp);

end
end of PrimaryBlock Mapping

THEOREM 8. The complexity of generating all k-feasible floor cones in GB is
O(n2), where n is the total number of vertices.

PROOF. In the procedure, every edge is traversed once. For every vertex v,
we must check whether the union of {v} and SP(v) is a feasible cone or not.
Therefore the complexity of generating all k-feasible floor cones is bounded by
O(n2).

THEOREM 9. Given a k-bounded network, the time complexity of the proposed
mapping algorithm is O(n3), where n is the number of vertices.

PROOF. The PrimaryBlock Mapping algorithm must be executed recursively
to find the cone of a mapping solution in a given primary block. Every iteration
in the recursion finds one cone. The maximum depth of recursion is less than
or equal to n. The time complexity of finding a cone is O(n2). Therefore, for
a primary block, the upper bound of the complexity of the greedy method is
O(n × n2). The time complexity of partitioning the graph into primary blocks
is O(e), where e is the total number of edges. The total number of edges is
less than n2. Hence, the total time complexity of the area-optimal mapping
algorithm is O(n3).

6. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C language on an Ultra 30 work-
station. Testing was accomplished by having the algorithm experimentally
design several circuits from the Microelectronics Center of North Carolina
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Table I. Comparison of the CPU Runtimes (T, seconds), Number of LUTs (A), and Depths (D)
with the DFmap (k = 5)

Circuit Size
Proposed algorithm DFmap
T A D T A D

9symml 151 0.19 73 9 12.2 69 7
C3540 956 0.20 425 18 5.5 399 21
alu2 275 0.05 125 14 1.2 120 16
alu4 540 0.08 230 14 1.8 220 18
apex6 699 0.06 229 14 2.0 220 18
C880 302 0.03 117 9 0.5 117 12
rot 436 0.03 202 9 0.6 201 12
i7 340 0.03 146 4 0.6 146 4
C499 370 0.02 66 5 1.0 66 5
duke2 181 0.03 131 8 0.3 129 9
rd84 108 0.02 46 7 0.3 44 7
C5315 1454 16.89 473 12 26.0 448 11
C6288 2353 0.3 1425 90 0.3 1425 90
C7552 2118 57.45 676 11 71.7 645 10
s1196 481 0.03 204 12 0.8 200 12
s1494 558 0.09 230 7 3.4 219 6
s38417 8623 2.85 2869 13 33.2 2708 12
s5378 1074 0.19 483 8 5.2 473 8
des 2244 0.22 1081 10 4.2 1068 10
Total 78.76 9231 274 170.8 9111 288
Comparison 1 1 1 +117% −1% +5%

(MCNC) logic synthesis benchmark set. Prior to use of these algorithms, a
SIS [Sentovich et al. 1992] environment was used to reduce the complexity
of the given network and produce a 2-bounded general Boolean network.
Table I presents the comparison of runtimes, the number of LUTs, and
depths with the DFmap algorithm [Cong and Ding 1994b]. It is seen that the
proposed algorithm tools 117% less CPU time than the DFmap on average.
The number of LUTs generated by the proposed algorithm was close to the
optimal area-mapping solution found by the DFmap and reduced by 5% the
depth compared with the DFmap. Furthermore, for special circuits such as
C880, i7, and C499, the number of LUTs generated by the proposed algorithm
was the same as the DFmap but took 16–50 less time than the DFmap. In this
experiment, k was set to be 5. If k is larger than 5, the DFmap can take much
more time than the proposed algorithm.

We carried out the existing postprocessing procedures [Cong and Ding 1994a]
to find the gates which can be duplicated such that the total number of LUTs
is further reduced. Compared to the existing algorithm [Cong and Ding 1994a;
Francis et al. 1991; Cong and Hwang 1995] with gate duplication, the proposed
algorithm reduced by 55%, 0.2%, and 21% the number of LUTs compared with
the Chortle-crf, the CutMap, and the FlowMap, respectively, as shown in Ta-
ble II. Therefore, it is possible to generate a solution without duplication first,
and then find the part that can be duplicated to reduce the total number of
LUTs.

Among the algorithms in Table II, our algorithm and the Chortle-crf are
aimed primarily at a minimum number of LUTs, while CutMap and FlowMap
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Table II. Comparison of the Number of LUTs (A) and Depths (D) with Chortle-crf,
CutMap, and FlowMap (k = 5)

Proposed algorithm Chortle-crf CutMap FlowMap

Circuit

Mapper

A D A D A D A D
9symml 59 7 60 9 70 5 77 5
C3540 311 17 319 16 460 10 549 10
alu2 110 20 111 19 137 9 171 9
alu4 197 21 196 21 254 10 300 10
apex6 196 14 193 18 255 10 300 10
C880 84 11 94 14 143 7 161 7
rot 191 12 203 14 230 7 266 7
i7 103 2 107 2 107 2 139 2
C499 66 5 70 6 66 4 74 4
duke2 126 8 116 8 159 4 190 4
rd84 35 5 40 7 36 4 44 4
C5315 428 9 439 12 571 8 690 8
C6288 524 29 494 29 646 22 760 22
C7552 624 8 644 10 653 7 741 7
s1196 161 11 166 10 184 5 211 5
s1494 198 6 188 8 229 4 260 4
s38417 2504 11 2555 9 2917 8 4134 8
s5378 421 9 420 9 463 5 527 5
des 1010 10 950 11 1096 5 1552 5
Total 7348 215 7365 232 8886 155 11,398 155
Comparison 1 1 +0.2% +8% +21% −28% +55% −28%

focus on minimizing the depth of the mapping solution. The experimental re-
sults show that CutMap and FlowMap generate better solutions than our algo-
rithm and Chortle-crf in depth. These comparisons show that a good mapping
algorithm should first consider the primary objective and then preferably allow
controllable tradeoff among all objectives. Otherwise, the mapping results will
be of low quality for the primary objective.

The effect of the divide-and-conquer algorithm used to partition the given
graph into primary blocks is shown in Table III. It is seen that after executing
the partitioning algorithm, the area-optimal duplication-free mapping solution
was found in circuit C6288, which is an array multiplier. Hence, the percentage
of the C6288 was 100%. This is the reason that the CPU runtime of the C6288
was much faster than the other approximate circuits such as C7552. For circuit
9symml, this divide-and-conquer step generated zero feasible blocks such that
the DFmap had to use the dynamic programming method to find the solution.
It needed a large amount of CPU runtime, as shown in Table I. Obviously,
the primary block partitioning algorithm can speed up the performance of the
proposed algorithm.

To demonstrate the effectiveness of our algorithm, Table IV presents the
number of critical floor cones and prime cones of every benchmark. According
to the discussions in Section 5, a selection of a prime cone whose fan-out vertex
is not a critical leading vertex can lead to a nonoptimal solution. In Table IV, we
find that the number of the prime cones whose leading vertex is noncritical did
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Table III. Results of the Primary Block Partitioning Algorithm (k = 5)

# Feasible blocks # Feasible blocks
found by the proposed which are also feasible

Circuit

Item

# Primary blocks algorithm (LN ) blocks (BN ) Ratio ( BN
LN

)
9symml 1 73 0 0%
C3540 235 425 190 45%
alu2 54 125 44 35%
alu4 104 230 84 37%
apex6 104 229 84 37%
C880 65 117 43 37%
rot 144 202 119 59%
i7 80 146 14 10%
C499 58 66 50 76%
duke2 94 131 79 60%
rd84 22 46 18 39%
C5315 263 473 176 37%
C6288 1425 1425 1425 100%
C7552 383 676 326 48%
s1196 123 204 98 48%
s1494 56 230 31 13%
s38417 2014 2869 1612 56%
s5378 318 483 263 54%
des 587 1081 399 37%

not exceed 6% of the total LUTs number. Even more, circuits C880, i7, and C499
generated optimal solutions. Therefore, we believe that good mapping solutions
can be obtained by using our algorithm.

7. CONCLUSIONS

The increasing popularity of LUT-based FPGAs technology and the unique fea-
tures of the architecture have led to intensive studies on design automation
techniques for LUT-based FPGAs. This article proposed an area-minimum al-
gorithm without gate duplication for the technology mapping problem of LUT-
based FPGAs. By combining the proposed algorithm with the two existing post-
processing procedures [Cong and Ding 1994a] which are used to find that the
gates can be duplicated, the total number of LUTs is reduced.

The main contribution of this article has focused on finding an algorithm
which approximates to the optimal solution and has lower time complexity.
The time complexity of this algorithm was proven theoretically to be bounded
by O(n3), where n is the total number of gates in the given circuit. Although
DFmap [Cong and Ding 1994b] found an optimal solution in polynomial time for
the minimal-area FPGA technology mapping problem without gate duplication,
a major shortcoming in the approach is that its time complexity can grow ex-
ponentially with the number of inputs of the LUTs. Our experis mental results
showed that DFmap can take a large amount of runtime for some homogeneous
FPGAs consisting of LUTs with a very large input size. The proposed algorithm
can not only greatly reduce the runtime for homogeneous FPGAs but it can also
be used for heterogeneous FPGA because the time complexity of the algorithm
is irrelevant to the number of inputs of the LUTs. Our future research will
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Table IV. Circuit Optimization Using the Greedy Method (k = 5)

Prime cones whose Prime cones whose leading
Critical floor cones leading vertex is critical vertex is non-critical

# Total feasible
Circuit blocks (LN ) A (CN ) Ratio ( CN

LN
) A (PCN ) Ratio ( PCN

LN
) A (PNCN ) Ratio ( PNCN

LN
)

9symml 73 60 82% 9 12% 4 5%
C3540 425 182 43% 27 6% 26 6%
alu2 125 65 52% 11 9% 5 4%
alu4 230 114 50% 22 10% 10 4%
apex6 229 112 49% 24 10% 9 4%
C880 117 57 49% 17 15% 0 0%
rot 202 61 30% 21 10% 1 0%
i7 146 102 70% 30 21% 0 0%
C499 66 8 12% 8 12% 0 0%
duke2 131 42 32% 8 6% 2 2%
rd84 46 24 52% 2 4% 2 4%
C5315 473 257 54% 15 3% 25 5%
C6288 1425 0 0% 0 0% 0 0%
C7552 676 315 47% 4 1% 31 5%
s1196 204 90 44% 12 v6% 4 2%
s1494 230 153 67% 35 15% 11 5%
s38417 2869 873 30% 223 8% 161 6%
s5378 483 178 37% 32 7% 10 2%
des 1081 497 46% 172 16% 13 1%

include two parts: (1) finding more efficient algorithms than the existing meth-
ods which are used to find that the gates can be duplicated to further minimize
the number of LUTs and (2) finding an area-minimum mapping solution for the
heterogeneous FPGA by using the proposed algorithm.
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