
TEAMFL
Y

Team-Fly®

Wiley Publishing, Inc.

Mastering Apache Velocity

Joseph D. Gradecki
Jim Cole

Wiley Publishing, Inc.

Mastering Apache Velocity

Joseph D. Gradecki
Jim Cole

Publisher: Joe Wikert Copyeditor: Elizabeth Welch
Executive Editor: Robert Elliott Compositors: Gina Rexrode and Amy Hassos
Editorial Manager: Kathryn Malm
Managing Editor: Vincent Kunkemueller
Book Producer: Ryan Publishing Group, Inc.

Copyright © 2003 by Joseph D. Gradecki and Jim Cole. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447,
fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of mer-
chantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suit-
able for your situation. You should consult with a professional where appropriate. Neither the pub-
lisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Java is a trademark of Sun Microsystems, Inc. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

ISBN: 0-471-45794-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

About the Authors xi

Introduction xiii
What’s in This Book xiv
Who Should Read This Book xiv
Book Organization xv

Part I Introduction to Velocity and MVC

Chapter 1 Web Development Basics 1
Static Web Pages 1
Introducing CGI 2
Scripting: JSP/ASP/PHP 3
Future Development 4
What's Next 5

Chapter 2 MVC Fundamentals 7
Mixing Presentation and Logic 7
Smalltalk-80 MVC Triad 10

The Model 11
The View 12
The Controller 12
The MVC Architecture 12

Sun Models 1 and 2 13
Extending MVC to Web Applications 13
A Practical MVC 14
What's Next 16

Chapter 3 Introduction to Velocity 17
What Is Velocity? 17
How It Works 18

Designing the Page 18
Requesting the Right Information 19
Coding the Information 19
Displaying the Information 20

Velocity Features 21
What's Next 22

iii

C O N T E N TS

Part II Velocity Basics

Chapter 4 Installing Velocity 23
Prerequisites 23
Obtaining Velocity 24
Velocity Versions 27

Compiling Velocity 27
Testing the Velocity Installation 30
Running the Examples 31

examples/appexample1 31
examples/appexample2 31
examples/servletexample1 31
examples/servletexample2 32
examples/context_example 33
examples/logger_example 34
examples/xmlapp_example 34
examples/event_example 35

What's Next 35

Chapter 5 Building a Hello World Example 37
Hello World! 37

A Velocity Template without Context 38
The Velocity Template with Context 41
Velocity and the Web 42

What's Next 44

Chapter 6 Understanding Templates and Context 45
Using Templates 45
The Context 49
Putting the Pieces Together 50
What's Next 55

Chapter 7 Exploring References 57
Reference Types 57

Variables 58
Methods 63
Properties 66

Formal Reference Notation 70
Quiet Notation 71
Escaping References 72
What's Next 76

Chapter 8 Using Directives 77
#stop 77
#include 80
#parse 83

C o n t e n t siv

#set 85
#end 93
#if 94
#else 96
#elseif 97
#foreach 100
#macro 105
Escaping Directives 105
What's Next 107

Chapter 9 Introducing Velocimacros 109
Argument Passing 109
Inline vs. Library Macros 114
Velocimacro Properties 115

velocimacro.library 115
velocimacro.permissions.allow.inline 115
velocimacro.permissions.allow.inline.to.replace.global 116
velocimacro.permissions.allow.inline.local.scope 116
velocimacro.context.localscope 116
velocimacro.library.autoreload 116
velocimacro.messages.on 117

Nesting and Recursion 117
What's Next 118

Chapter 10 Taking Control of Velocity 119
Initializing the Runtime Configuration 119
More Velocity Properties 123

Directive Properties 123
Encoding 124
Logging 125
Resource Management 126
Miscellaneous 128

Resource Loaders 129
Events 130
Context Chaining 133
Managing Whitespace 134
Singleton vs. Non-Singleton 137
What's Next 137

Part III Developing with Velocity

Chapter 11 Velocity, XML, and Anakia 139
Accessing XML in Velocity Templates 139
Velocity and Anakia 142

The Ant Build Task 142
Source Documents 144

Contents v

C o n t e n t svi

Anakia Velocity Stylesheets 145
Context References 149

Outputting XML Using Velocity 150
The Artist Query XML 150
The Full CD Report XML 152

What's Next 154

Chapter 12 Using Velocity with Servlets 155
Using Servlets 155

A Common Format for Servlets 156
Extending Servlets with VelocityServlet 157
Basic Velocity Servlet Code 157

Creating an MVC Application 160
The Database Structure 161
Database Access 162
The Model Code 163
The View Code 166
The Controller Code 170

Advanced Servlet Functionality 175
Adding Reports 178
What's Next 183

Chapter 13 Velocity and Internationalization 185
Java Internationalization Components 185

The Java Locale Class 186
Resource Bundles 186

An International CD Web Application 187
What's Next 193

Chapter 14 Using Velocity and Turbine 195
What Is Turbine? 195

The Turbine Architecture 196
The Action Module 197
The Navigation Module 198
The Screen Module 198
The Layout Module 198
The Page Module 198

Module Object Encapsulation 199
How Does It Work? 200
Obtaining and Installing TDK 201

Testing the TDK Installation 202
Your First Turbine Application 203
Dissecting the Application 206

Adding a User with testApplication 215
Rebuilding and Deployment 220

Advanced Velocity in Turbine 220
What's Next 222

Chapter 15 Using Velocity and Maverick 223
How Maverick Works 224

The Load Process 225
The Execution Process 225

Downloading and Installing Maverick 226
Requirements 227
Installing Maverick 227
Testing the Installation with the FriendBook Application 228
Installing the Optional Velocity Module 228

The Maverick Hello World 229
Writing the web.xml File 229
Writing the maverick.xml File 231
Building Controller Classes 232
Building View Files 233

Velocity and Maverick 234
Commands 235
Controllers 237
Velocity Templates 240

What's Next 246

Chapter 16 Velocity IDEs 247
IntelliJ's IDEA 247
UltraEdit 250
JEdit 251
TextPad 252
Emacs 252
What's Next 253

Chapter 17 Using Velocity and Struts 255
Introducing Struts 255
Installing Struts 256

A Sample Application 257
Building the ActionForm 257
Creating an Action 258
Configuring Struts 259
The web.xml File 260
The Success Page 262
The Register Page 263
Setup 265

What's Next 266

Chapter 18 The Hotel Reservation Velocity Application 269
The Hotel Specifications 269
The Hotel Architecture 270
The Hotel Database Schema 271
Configuring the Maverick XML 272

Contents vii

The Look and Feel Frame 274
Building the Welcome Pages 277
Searching for a Room 280
Booking a Room 290
Looking Up a Room 293
What's Next 298

Chapter 19 Using JSP and Velocity 299
The Velocity Taglib 299

Installing the Velocity Taglib 300
Adding the Velocity Taglib to JSP 301
Beans and Tags 303

What's Next 303

Chapter 20 DVSL and Velocity 305
Obtaining and Installing DVSL 305
Creating a Simple Transformation 306

Compiling the DVSL/XML 307
Using Nodes 309
The DVSL Toolbox 310
Using the Command Line 313

Part IV References

Appendix A The Velocity Specification 315
org.apache.velocity.Template 315

Class Summary 315
org.apache.velocity.VelocityContext 316

Class Summary 316
org.apache.velocity.anakia.AnakiaElement 316

Class Summary 316
org.apache.velocity.anakia.AnakiaJDOMFactory 317

Class Summary 317
org.apache.velocity.anakia.AnakiaTask 317

Class Summary 317
org.apache.velocity.anakia.Escape 318

Class Summary 318
org.apache.velocity.anakia.NodeList 318

Class Summary 318
org.apache.velocity.anakia.OutputWrapper 320

Class Summary 320
org.apache.velocity.anakia.TreeWalker 320

Class Summary 320
org.apache.velocity.app.FieldMethodizer 320

Class Summary 320
org.apache.velocity.app.Velocity 321

Class Summary 321
org.apache.velocity.app.VelocityEngine 322

C o n t e n t sviii

TEAMFL
Y

Team-Fly®

Class Summary 322
org.apache.velocity.app.event.EventCartridge 323

Class Summary 324
org.apache.velocity.app.event.EventHandler 324
org.apache.velocity.app.event.MethodExceptionEventHandler 324

Class Summary 324
org.apache.velocity.app.event.NullSetEventHandler 324

Class Summary 325
org.apache.velocity.app.event.ReferenceInsertionEventHandler 325

Class Summary 325
org.apache.velocity.app.tools.VelocityFormatter 325

Class Summary 325
org.apache.velocity.app.tools.VelocityFormatter.VelocityAlternator 326

Class Summary 326
org.apache.velocity.app.tools.VelocityFormatter.VelocityAutoAlternator 326

Class Summary 327
org.apache.velocity.context.AbstractContext 327

Class Summary 327
org.apache.velocity.context.Context 327

Class Summary 328
org.apache.velocity.context.InternalContextAdapterImpl 328

Class Summary 328
org.apache.velocity.context.InternalEventContext 329

Class Summary 329
org.apache.velocity.context.VMContext 329

Class Summary 329
org.apache.velocity.convert.WebMacro 330

Class Summary 330
org.apache.velocity.exception.MethodInvocationException 331

Class Summary 331
org.apache.velocity.exception.ParseErrorException 331

Class Summary 331
org.apache.velocity.exception.VelocityException 331

Class Summary 332
org.apache.velocity.io.VelocityWriter 332

Class Summary 332
org.apache.velocity.servlet.VelocityServlet 333

Class Summary 333
org.apache.velocity.texen.ant.Texen 334

Class Summary 334
org.apache.velocity.runtime.RuntimeInstance 335

Class Summary 335
org.apache.velocity.runtime.RuntimeServices 336

Class Summary 337
org.apache.velocity.runtime.RuntimeSingleton 338

Class Summary 338

Contents ix

org.apache.velocity.runtime.VelocimacroFactory 340
Class Summary 340

org.apache.velocity.runtime.VelocimacroManager 340
Class Summary 340

org.apache.velocity.runtime.VelocimacroManager.MacroEntry 341
Class Summary 341

Appendix B Velocity Sites 343
Jakarta Velocity Sites 343

The Jakarta Velocity Site 343
Velocity Tools 343
WebMacro 343
DVSL 344
Velocity Generator 344
Velocity UI for Eclipse 344

Tutorials 344
Template-Based Wizards in JBuilder 344
Start Up the Velocity Template Engine 344
Getting Up to Speed with Velocity 344
Take the Fast Track to Text Generation 344
What Is Velocity? 344
Template for Going Fast 344

Applications 345
Roller Web Logger 345
Maverick 345
vDoclet 345
Turbine 345
WebWork 345
JPublish 345
JeeWiz! 345
Luxor 346
Melati 346
Velocity Support in OpenCms 346
JetSpeed and Portlets 346
JNLP to HTML Converter 346
Velocity and Web Album 346

Index 347

C o n t e n t sx

xi

Joseph D. Gradecki is a software engineer at Comprehensive Software Solu-
tions, where he works on their SABIL product, a enterprise-level securities pro-
cessing system used by traders. He has built numerous dynamic, enterprise
applications using Java, Velocity, AspectJ, servlets, JSPs, MySQL, XML, and
more. He has also built P2P distributed computing systems in a variety of lan-
guages including Java/JXTA, C/C++, and Linda.

Joe is also an associate professor of computer science at Colorado Technical
University, where he teaches Java, C++, and Software Engineering. He is also
an accomplished writer with John Wiley & Sons, Inc. where he has published
several programming books on Java and MySQL, AspectJ, and JXTA.

Jim Cole is a senior software engineer specializing in Internet and knowledge
management systems. He is an active J2EE developer who regularly uses open
source tools such as Struts and Velocity, and also has experience with Perl and
PHP. Jim serves as a system administrator for several Web-based projects,
where his duties include custom software development, database management,
and security maintenance.

A B O U T T H E A U T H O R S

In the beginning, a Web page was a static entity that provided the same infor
mation to all visitors. Developers soon wanted the ability to provide unique
data for their users. A large assortment of technologies came along to

address this desire--technologies like PHP, ASP, and JSP. While these languages
do solve the problem, they all lead to a much bigger issue.

Adding personalization to a Web site used to entail using one of those languages
and embedding it directly into the HTML tags for the site presentation.
Although this intermixing of code worked, it resulted in maintainability issues.
If developers wanted to alter the look and feel of a site, they had to reapply all
of the personalization code to the new HTML templates, or designers had to be
given access to the code to make changes directly.

Fortunately, the Model-View-Controller (MVC) paradigm completely separates
the personalization from the presentation and the data. With MVC, Web design-
ers create the presentation and Web developers handle the code. Velocity is a
technology that allows the separation of Java Web code from the presentation
code using MVC. Through the use of Java-based templates, Web designers ref-
erence personalization code written in Java.

With the help of extensive examples, this book provides a comprehensive
approach for using Velocity 1.3.x to create maintainable sites.

Introduction

xiii

What's in This Book

Because Velocity is designed to be used by both Web designers and developers,
this book contains a comprehensive overview of the Velocity Templating Lan-
guage. We show you how to apply the language to your data in the form of
Velocity templates, and how to develop applications that use those templates.

We don't assume you know Velocity and therefore provide examples so that
you can understand how the system works before coding your first applica-
tion. For instance, we show you how to build a CD collection application that
utilizes the MySQL database for storing information. Through this applica-
tion, you learn how to write code that follows the MVC paradigm. You also
learn to use Velocity templates for Web output as well as text reporting and
XML generation.

A second example in this book, a hotel reservation system, demonstrates how
to build a complete Web application that uses both Maverick and Velocity tem-
plates. The application enables users to search for a room using certain criteria,
book the desired room, and then display the confirmed reservation. A dozen or
so Velocity templates and three controller classes are used for the complete
application, and a Velocity template provides a common look and feel.

Who Should Read This Book

This book has been written for the Web developers and designers who are
responsible for maintaining or developing Web sites and applications. Many
organizations separate these two roles and hire graphics designers for the Web
designer role and software developers for the Web developer role. Both roles
are critical; the Web developer is responsible for providing back-end support
for Velocity in the servlets, and the Web designer takes advantage of that sup-
port.

We assume that Web developers have a good knowledge of and working expe-
rience with Java. They should be comfortable using servlets and have a basic
understanding of how they interact with EJBs. We assume that Web designers
have a good knowledge of and working experience with HTML. If they have
exposure to JSP, ASP, or other server-side languages, Velocity will be an easy
transition (although we don't assume knowledge of these languages).

I n t r o d u c t i o nxiv

Book Organization

This book consists of three parts. The first is an introduction to MVC and Veloc-
ity. Once you have this introductory information under your belt, we move into
a discussion on the Velocity language and its features. Finally, the third part
provides many examples and a comprehensive sample application that illus-
trates how to use Velocity.

Part I: Introduction to Velocity and MVC

Chapter 1: Web Development Basics

The development of the Internet was just a small part of a revolution that con-
tinues today. The interconnectivity produced by the Internet has allowed indi-
viduals and companies alike to present information to millions of customers
and friends around the world. Initially, the development process for Web pages
involved using HTML to produce a static page.

As the sophistication of Internet languages evolved and the needs of sites
increased, development moved to the use of dynamic pages, utilizing databases
for data management and applications for complex processing. The new com-
plexity, however, often resulted in view and processing code mixed into the
same files. Velocity utilized under the Model-View-Controller (MVC) paradigm
presents a solution for both designers and developers. This chapter provides a
comprehensive overview of the development history of the Internet and what
Velocity brings to the table.

Chapter 2: MVC Fundamentals

When Smalltalk-80 was designed, an architecture called Model-View-Controller
was created to allow the separation of the view from the data and controlling
logic. Over the years, MVC has been molded into a paradigm that can be used in
all modern languages. MVC has been brought into the Web arena and can be
fully utilized with Velocity.

This chapter gives you a comprehensive overview of MVC and explains its role
in the Internet development process. We present code examples and describe
how each of the MVC components works to resolve the problems created with
combined code.

B o o k O r g a n i z a t i o n xv

Chapter 3: Introduction to Velocity

In this chapter, we introduce Velocity. We show you how Velocity works and
examine code we'll use throughout the rest of the book. You should have a good
understanding of the system as you move to the remaining chapters in this
book.

Part II: Velocity Basics

Chapter 4: Installing Velocity

Before you start looking at the specifics of Velocity, you have to install it. This
chapter provides a comprehensive guide to installing Velocity. All of the neces-
sary development tools and prerequisite packages are covered, for both Win-
dows and Unix. We discuss the full Velocity test suite and provide a guide to
executing the example applications and servlets supplied with the package.
Some of the support packages include a Java SDK and an application server
(such as Tomcat or Resin).

Chapter 5: Building a Hello World Example

As you might expect, a new development paradigm has to start with the Hello
World application. In this chapter, you write your first Velocity application--but
with a twist. You write the application in both stand-alone and Web formats,
thus demonstrating how Velocity can be used for just about any type of appli-
cation that has to generate output.

Of course, writing the code is only part of the battle--you must be able to deploy
and execute your applications. This chapter also details the steps involved.

Chapter 6: Understanding Templates and Context

The two primary components of Velocity are templates and the context. The
template provides an area for the Web designer to build the look and feel of the
application. The look and feel can be a Web page or a report produced by a
stand-alone application. The context provides an area for the Web developer to
place all of the information needed by the designer and the Velocity template.
This chapter introduces both of these components. We examine a complete
example to show how the components work together, and we discuss general
usage patterns.

Introductionxvi

Chapter 7: Exploring References

Within Velocity, a reference provides an interface between the template and
context as well as a place to hold data. In this chapter, we describe the three
types of references: syntax, formal, and informal. We also discuss escaping and
quiet and property notation, and provide examples to illustrate those concepts.

Chapter 8: Using Directives

Velocity is like many other Internet languages in that it provides control and
decision structures called directives. These directives--like #foreach and #if--
provide the Web designer with powerful tools for manipulating the data pro-
vided in the context. This chapter covers the directives and includes examples.
It also contains a reference section for quick lookups.

Chapter 9: Introducing Velocimacros

When you find yourself repeating the same Velocity code over and over, it's
time to lean on the velocimacros. These macros allow you to build modularity
into your templates in order to produce clean-looking code, and they help with
maintenance down the road. This chapter covers velocimacros and offers
extensive examples.

Chapter 10: Taking Control of Velocity

The developers of Velocity have included several constructs--such as events,
resource loads, and other system properties--designed to help you customize
Velocity's behavior. This chapter uses examples to illustrate how to change
Velocity in a manner that suits your application.

Part III: Developing with Velocity

Chapter 11: Velocity, XML, and Anakia

XML is one of the most-hyped technologies to be introduced in quite some time.
Building on the ease of use of HTML, XML allows user-defined tags to be used
for the identification of data within a text file. To help facilitate the use of XML,
XSLT was designed to allow for the easy manipulation and transformation of
the XML data.

Book Organization xvii

The designers of Anakia use the power found within XSLT and XML to build
outputs using Ant tasks. This chapter explains how to set up the necessary files
and begin using Anakia with Velocity.

Chapter 12: Using Velocity with Servlets

When you're developing applications with Velocity, the Model-View-Controller
paradigm should always be the guiding force behind your application. One of
the first controllers developed was the servlet. In this chapter, we show you
how to write a CD collection application using servlets and Velocity. Numerous
templates are illustrated, and we discuss using Velocity to output text in the
form of downloadable files. The application also uses EJBs for the model com-
ponent of the MVC paradigm. From the EJBs, data is passed to the template
through the context in the form of a Collection object. VTL directives are used
to pull the database row data from the Collection for display to the user.

Chapter 13: Velocity and Internationalization

When you're designing a Web application, it's far too easy to just consider writ-
ing all of the text in your native language and forget that users in other coun-
tries might want to use its functionality. Although Velocity doesn't change the
way internationalization is performed on a Java-based Web application, it does
provide a framework for building a comprehensive site that can be understood
in many languages. This chapter shows how to add the German language text to
your CD collection Velocity application built in Chapter 12. Using the tech-
niques shown in this chapter, you can easily add languages to your Velocity
application.

Chapter 14: Using Velocity and Turbine

Under the Jakarta umbrella, Turbine is an application framework designed to
give developers the tools they need to build enterprise-level applications. The
goal is to provide a comprehensive framework that has all of the components
developers would typically build themselves either before starting an applica-
tion or during its development.

In this chapter, we discuss how to obtain, install, and develop an application
using Turbine and Velocity. Using Velocity lets you take advantage of Turbine's
support of the MVC paradigm.

I n t r o d u c t i o nxviii

TEAMFL
Y

Team-Fly®

Chapter 15: Using Velocity and Maverick

If you are building applications using J2EE and MVC, consider using the Mav-
erick framework. This framework combines Velocity along with DVSL to
enable you to build enterprise-level XML applications. You can incorporate
JDBC or EJBs for a complete application.

Chapter 16: Velocity IDEs

Although many developers and designers use text editors to manipulate their
Web pages, some prefer integrated development environments (IDEs). This
chapter provides an overview of the various third-party add-ons and plug-ins
available for a host of IDE and text editors. We cover plug-ins for such tools as
IntelliJ's IDEA, UltraEdit, JEdit, TextPad, and Emacs.

Chapter 17: Using Struts and Velocity

Struts is probably the most popular MVC framework available today. The Veloc-
ity team anticipated developers' desire to use Velocity as the view component
within the framework and made available an interface package that handles the
integration. This chapter provides complete instructions for building an appli-
cation using Struts and Velocity.

Chapter 18: The Hotel Reservation Velocity Application System

In this chapter, we document the building of a full-blown Web application using
Velocity and the Maverick MVC framework. We use many templates to provide
input and display pages for the Web user. The controllers work with a MySQL
database to keep track of the rooms in the hotel as well as all pending reserva-
tions.

Chapter 19: Using JSP and Velocity

Many Web designers and developers are comfortable with JSP and either don't
want to make a complete switch to Velocity or don't have the ability to abandon
JSP pages and thus need to mix JSP and Velocity. This chapter shows how to
use the Velocity tag library to allow Velocity commands to be embedded within
JSP pages.

Book Organization xix

Chapter 20: DVSL and Velocity

The Declarative Velocity Style Language (DVSL) is designed to be a stylesheet
with many of the features found in XSLT. What makes DVSL so powerful is that
you can transform XML using many of the same methods found in XSLT but
with access to Java objects. This chapter provides extensive examples using
DVSL.

Appendix A: The Velocity Specification

The Velocity system consists of many classes and interfaces. This appendix
provides an overview of them.

Appendix B: Velocity Sites

This appendix provides both the new Velocity and the experienced user with a
comprehensive list of Internet sites containing information on Velocity or tools
available for the Velocity developer.

I n t r o d u c t i o nxx

If you remember back almost 10 years ago, you might be able to visualize
how the World Wide Web got its start. Telnet and FTP were among the first
examples of this profound way of communicating. These technologies

weren’t directly associated with the Web, but they were certainly a precursor.
Gopher, on the other hand, was a technology that demonstrated how machines
connected on the Internet could be used to share information with people all
across the world.

Soon after gopher was being used to pull information from various places and
sites, the World Wide Web was developed—and the rest is history. This book
explores a part of Web development that has flourished in recent years: the pre-
sentation of dynamic data to the client. Our focus is on a new technology called
Velocity. In this chapter, we provide an overview of the history of Web develop-
ment and bring us into the present.

Static Web Pages

It all started with static Web pages; individuals posted photographs of their fam-
ily and students posted their lasted research findings. As you would expect, this
was in the early ‘90s. Amazon was still a concept in budding entrepreneurs’
heads, and the trading of pictures was basically nonexistent. A page was writ-
ten in HTML and had no content produced from a database or other applica-
tion. The closest thing to a WYSIWYG GUI for HTML was a yellow legal pad.

Web Development Basics

C H A P T E R 1

1

The information provided on a static Web page consisted of the content the
page creator wanted to put on it—and nothing more. If users didn’t need that
particular information, they had no way to interact with the Web page in order
to bring forward the desired content. The page creator could provide links that
led the user to other pages of information, but the content was still that of the
page creator.

Introducing CGI

CGI (Common Gateway Interface) was one of the more profound technologies
to invade the development of Web pages. Developed in 1993, CGI is a way of
interfacing the Web page with the back-end server responsible for serving
pages to the user. You can see an example of the interface in a search site. If you
go to Yahoo! or Google, you type a topic that you want to learn about into an
edit line typically positioned next to a Submit button. This edit line and button
are part of an HTML form. When you click the Submit button, an action takes
place that is typically a call to another Web page or possibly an application.

When you’re using CGI, the action is an application written in a variety of lan-
guages, such as C, Perl, or C++. CGI is not the application itself but serves as
the interface between the form action and the application. When a user clicks
the Submit button, the CGI is responsible for transferring any information from
the HTML form to the server and activating the application on the HTTP server.
The application on the server executes a set of instructions and returns to the
interface a Web page that is displayed to the client browser. Listing 1.1 shows
an example of a simple C CGI application.

We b D e v e l o p m e n t B a s i c s2

int main(int argc, char* argv[]) {

printf("content-type: text/html\r\n");

printf("\r\n");

printf("<html><body>");

printf("<h1>Hello World!</h1>");

printf("</body></html>\n");

return(0);

}

Listing 1.1 A simple CGI application in C.

Because CGI applications execute on the Web server, the issue of security is
important. Most servers require that the CGI applications be placed in a direc-
tory called /cgi-bin. The server typically won’t allow a CGI application to exe-
cute anywhere than on the server. It is important to note that CGI applications

are built using high-level languages, and were in the beginning quite frustrating
to write until proper libraries came along. At first, these languages weren’t typ-
ically used by graphic designers or those who just wanted to put up an interac-
tive page. As the Web industry started to grow, another option was needed.

Scripting: JSP/ASP/PHP

As you might expect, using CGI and Perl, C, or C++ wasn’t something the new
crop of Web designers were going to be able to do. This meant that Web devel-
opment companies had to hire both Web designer and software development
talent in order to produce the results the new demanding clients expected. In
addition to this fact, the major players in the software development community,
like Sun and Microsoft, wanted in on the dynamic Web development world. So
they each created a server-side language that could handle getting information
from a back-end system to the client.

Unlike high-level languages that typically have to be compiled into a binary that
will execute on a specific machine, scripting languages are designed to make it
easy to write applications and execute them within an interpreter. The inter-
preter is written in a high-level language and executes on the machine where
the HTTP server is located, thus eliminating the need for the Common Gateway
Interface.

To use the scripting languages, you create a Web page in which the statements
and keywords of the scripting language are embedded in the same file as the
HTML that will be displayed to the user. Listing 1.2 shows an example of such a
page.

Scripting: JSP/ASP/PHP 3

<HTML>

<HEAD>

<TITLE>Time Example</TITLE>

</HEAD>

<BODY>

The time is <?php time() ?>

</BODY>

</HTML>

Listing 1.2 A scripting language page.

In Listing 1.2, we added some scripting code that displays the current time.
When users browse to this page, they see the current time as supplied by the
HTTP server. So, how does this all occur?

The scripted Web page is placed on the Web server just like any other HTML
page. However, the extension applied to the scripted file is not .html or .htm; it
has an extension like .asp, .jsp, .php, or something else. These extensions are
important because they tell the Web server how the file should be handled
when accessed by a client. If the requested file has an extension other than
.htm, the server sends the file to an interpreter. The system administrator will
have already told the Web server about all possible extensions it might have to
handle and the associated interpreter for the file type.

The interpreter then processes the scripted file and interprets only the scripted
code, leaving all of the HTML intact. During the processing of the file, the
scripted code might place additional HTML into the file as needed. The addi-
tional HTML probably relates to information requested by the user.

At this point, the interpreter returns the final HTMl file to the HTTP server,
which in turn provides the page to the client’s browser. By using a scripting lan-
guage, the Web designer doesn’t have to be familiar with high-level program-
ming languages. Unfortunately, the scripting languages can become complex
and using them may be no more efficient than using CGI and a C++ program.

Future Development

While we are on the subject of scripting languages, it should be noted that there
are some available—like JavaScript, Java, and ActiveX—which can be used and
subsequently compiled by the server for better performance compared to the
interpreted languages. Listing 1.3 shows an example of using Java in an HTML
page.

We b D e v e l o p m e n t B a s i c s4

<%@ page language='java' import='java.sql.*' %>

<HTML>

<HEAD>

<TITLE>Test</TITLE>

</HEAD>

<%

ResultSet rs;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/products");

statement = connection.createStatement();

%>

Listing 1.3 Using Java in an HTML page. (continues)

What’s Next 5

<BODY>

</BODY

</HTML>

Listing 1.3 Using Java in an HTML page. (continued)

Embedding Java into an HTML page is probably the ultimate in adding dynamic
capabilities to a Web site. Not only do you have to know Java, but an additional
piece of server software is needed to execute the embedded code. An applica-
tion server like Resin or Tomcat compiles the Java into a servlet, which is then
executed by the application server when a user browses the HTML page.

In all of the different types of dynamic pages we’ve discussed so far, the code
for the view and the business logic is intermixed. As you learn in the next chap-
ter, this intermixing can produce headaches for an organization.

What’s Next

In this chapter, we examined the history of Web page development. While many
readers will already be aware of this history, this material is a good background
for those just getting into the Web arena. In the next chapter, we dive into the
methodologies commonly used in the development of Web applications and
focus specifically on the MVC (Model-View-Controller) paradigm.

If you had the privilege to be part of the early Internet revolution, you might
have been like me, coming from a traditional software development role. As
a leader tasked with guiding a newly formed team toward the release of an

innovative site, the most common thought running through my head was doing
what I could to move my team toward the technologies and methodologies that
would provide success for the individuals, team, and clients.

Unfortunately, several forces came into play that caused this lofty goal to evap-
orate. The client, “time-to-market,” and “underdeveloped skill sets” are just
three of the forces that caused our team to revert from using all the ideal
methodologies to just trying to meet our client’s deadlines. This doesn’t mean
we had to let everything go; in fact, we delivered three successful iterations of
the site using three different teams. However, the one area that clearly caused
us the most grief was separating the code from the presentation.

In this chapter, we take a fairly in-depth look at the initial problem of mixing
presentation and logic presents, introduce the MVC (Model-View-Controller)
methodology, and explain how MVC attempts to solve the mixing problem.

Mixing Presentation and Logic

So what’s the big deal? We’ve all created Web pages or applications in which we
embed calls to the database directly into the (typically) HTML tags. For exam-
ple, consider the code in Listing 2.1.

MVC Fundamentals

C H A P T E R 2

7

M VC Fu n d a m e n t a l s8

<%@ page language='java' import='java.sql.*' %>

<HTML>

<HEAD>

<TITLE>Test</TITLE>

</HEAD>

<%

ResultSet rs;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/products");

statement = connection.createStatement();

%>

<BODY>

<%

if (request.getParameter("submit") = "submit") {

rs = statement.executeQuery("SELECT username, password,

city, state FROM product where username = " +

request.getParameter("username"));

if (rs.next()) {

%>

<form action="test.jsp" method="post">

<input type="text" name="username"

value="<%= rs.getString("username") %>">

<input type="text" name="password"

value="<%= rs.getString("password") %>">

<input type="text" name="city"

value="<%= rs.getString("city") %>">

<input type="text" name="state"

value="<%= rs.getString("state") %>">

<input type="submit" name="submit" value="Update">

</form>

<% } else { %>

No Information

<% }

}

%>

else if (request.getParameter("submit") = "update") {

statement.executeUpdate("UPDATE product set password= '"

+ request.getParameter("password") + "'" +

", city = '" + request.getParameter("city") + "'" +

", state = '" + request.getParameter("state") + "'" +

"where username = '" +

request.getParameter("username"));

}

} catch(ClassNotFoundException e) {

out.println("Driver Error");

Listing 2.1 A mixed presentation logic page. (continues)

TEAMFL
Y

Team-Fly®

} catch(SQLException e) {

out.println("SQLException: " + e.getMessage());

}

%>

<form action="test.jsp" method="post">

<input type="text" name="username">

<input type="text" name="password">

<input type="text" name="city">

<input type="text" name="state">

<input type="submit" name="submit" value="Submit">

</form>

</BODY>

</HTML>

Mixing Presentation and Logic 9

Listing 2.1 A mixed presentation logic page. (continued)

The code in Listing 2.1 is a good example of a JavaServer Pages (JSP) page that
mixes both the logic of the application and the HTML. Let’s consider several
problems an organization would face when using just this simple page.

As a developer in your company, suppose you are asked to create a simple
HTML form that will allow information for a particular username to be dis-
played and updated as needed. The requirements of the page include its use
only within the organization, so there isn’t much need for security (right or
wrong, but for illustration purposes we don’t want our example to be too com-
plex). The result of your efforts is the code in Listing 2.1. Using a combination
of JSP and HTML, you bang out the code in 15 minutes and push it to the per-
son who made the request.

Of course, nothing is this simple, and some sort of graphics have to be added so
that the new page will blend into the corporate intranet site. “I’m a developer,
not a graphics designer,” says the original developer, pushing the assignment to
the “other side of the company.” The graphics designer pulls up the page’s code
and begins working her graphics magic on the page. After several hours of
work, the designer sends the page to the IT department to be placed on a server.
The person who requested the work attempts to use the page, only to see a
browser filled with error information instead of the date for “jsmith”. The user
calls the developer, who calls the designer, and an unpleasant exchange occurs.
The developer wants to know what the designer did to break the code, and the
designer wants to know if the code even worked in the first place. The “client”
just wants some code that works so he can do his job.

After several minutes, the developer gets the code working and posted to the
intranet. Some days or weeks later, a decision is made to move the primary
database off the Web server to its own server. Somebody has to go through all
of the pages and be sure they don’t try to access the database on the old

machine. Of course, your code will attempt the connection and has to be
changed. Who does the work? The developer will get into the page code and
make the change.

Six months have passed, and the marketing department wants to change the
look and feel of the intranet to match the company’s Internet site. Who makes
that change to the code? The graphics or Web designer is responsible for open-
ing the same file the developer had accessed previously to make the needed
modifications.

I hope this story isn’t too familiar to you, but it is reality in many software
shops. Maybe things didn’t start out this way, but with time-to-market issues
and a client’s ever-changing requirements list, it is bound to happen without the
proper tools and time investment. What makes this story all the more interest-
ing is that even though it occurs in the late ‘90s or early 2000s, a solution was
formulated back in the ‘80s way before the Web was popular.

Smalltalk-80 MVC Triad

When Smalltalk-80 was being formulated, there was a need to develop a
methodology in which the presentation of information for the user could be
separated from the logic required to both obtain and format the data. Once the
data was obtained and formatted based on some business rules, it could be pre-
sented to the user. That was the easy part of the entire process. Figure 2.1
shows an example of the original MVC triad developed for Smalltalk-80.

M VC Fu n d a m e n t a l s10

Model View

Controller

notifications

Display

Keyboard
Mouse

Figure 2.1 The Smalltalk-80 MVC triad.

Smalltalk-80 MVC Triad 11

In Figure 2.1, we find three primary components: the model, the view, and the
controller. Let’s explore each of these components, their functionality, and
their relationship to each other, the client, and the system.

The Model
The model part of the MVC methodology usually consists of two parts:

■■ Classes or other data structures that represent the state of the system or
application

■■ Actions/methods that can be executed to change the state of the system

In most cases, the model represents the data contained in a database or other
data storage system. If you are using MVC in Java, the model will typically be
created using JavaBeans with appropriate methods for accessing or updating
the system data.

One of the core ideas behind the model concept is complete separation of the
data from the user presentation. This means the model is independent of all
input or output. Access to the model comes from both the view and the con-
troller. The controller receives input from the user in the form of information
that needs to be processed. When information must be processed, the con-
troller updates the model with the appropriate data.

In order to display the information from the model, view components register
themselves with the model. When information has been changed, the model
informs all registered views about the change and allows them to present the
new information to the user. The model isn’t restricted to a single view, but
instead allows any number of views to be registered and works to keep them
informed of the current state of the system.

Figure 2.2 shows an example of the inputs and outputs associated with the
model.

Data Sources

View Registrations

Data Update Notifications

Model

Figure 2.2 Model inputs and outputs.

As you can see in Figure 2.2, the model’s primary connection is to the data
sources, which can be databases, flat files, or some external interface. The
model is responsible for maintaining the integrity and potentially the availabil-
ity of the data. Other inputs to the model include view components registering
for updates and the actual update notifications coming from the model and
going to the registered views.

The View
We’ve touched on the view in our discussion of the model. The view component
is a visual component that the user employs to analyze the information found in
the model. In many cases, the view is designed in several formats, such as a
chart, a simple listing, or a combination of many styles.

When a user needs to use information from the model, the application instanti-
ates a new view component, which shows the data in some specific format. The
view automatically registers itself with the model so it can be notified when the
state of the model changes. How the view actually gets the data is an imple-
mentation issue. The view might call a specific method of the model, or it might
expect to receive serialized objects with the data. In other implementations, the
data could come from the controller, which we discuss next.

The Controller
The controller component is responsible for handling all interactions between
the application and the user. All inputs from the keyboard, mouse, and other
external interfaces are routed to the controller component. Using predefined
logic, the controller determines if the data needs to be updated in the model or
whether new view components should to be created based on the desire of the
user.

As you might expect, some level of business logic is probably contained in the
controller as well as in the model. There shouldn’t be any business logic in the
view components.

The MVC Architecture
The MVC architecture is so powerful that it is mentioned in the Gang of Four
book, Design Patterns: Elements of Reusable Object-Oriented Software. The
design pattern, Observer, describes the subscribe/notify process that occurs
between the view components and the model. There has been quite a bit of
work to incorporate the concepts found in MVC into modern languages. For
example, Java includes two utility interfaces, called java.util.Observable and
java.util.Observer, which allow classes to be created that can be observed and

M VC Fu n d a m e n t a l s12

informed of state changes. In the remainder of this chapter, we look at the pro-
gression the MVC paradigm has gone through to make it relevant to Web devel-
opment.

Sun Models 1 and 2

We have just described the typical MVC architecture as defined for Smalltalk-80
and further refined into an architectural paradigm. During the initial days of
Web development, new technologies were created to handle the rapid develop-
ment needs and creativity of Web developers. JSP, one such technology, allows
Web pages to move from static content using just HTML to dynamic pages using
the statements from within JSP. Using JSP is considered to be Model 1 of the
MVC paradigm. Unfortunately, unless you are very careful, a dynamic Web page
will look like the one in Listing 2.1 and have so much view and controller code
mixed in it that it isn’t productive.

With the development of the servlet, developers are allowed to remove the con-
troller code found in the dynamic page and put it in its own components. This
is considered Model 2 because two components of the MVC paradigm are used.
Many will consider the possible association between Model 2 and MVC to be
very distinct and thus they won’t allow the connection. The most typical reason
for this is the inability of Web applications to take advantage of the Observer
pattern.

Extending MVC to Web Applications

The HTTP protocol used for Web sites is designed as a pull protocol. When a
user accesses a Web site, a click on a button or link results in a GET or POST
HTTP protocol request being sent to a Web server. The Web server then
processes the request and returns an HTML page to the user’s browser. Figure
2.3 shows an example of the process a Web page goes through.

Extending MVC to Web Applications 13

��� ���� ��� ���	��

Figure 2.3 Web page processing.

Figure 2.4 Three-tier Web page processing.

As Figure 2.3 shows, the processing of a Web page is fairly linear, with all infor-
mation transferred to the user upon request. In fact, the process in Figure 2.3
shows the Web page directly accessing data; thus a query is being made from
the view to the data without any intermediary process or layer. As you might
expect, this isn’t a good process. To solve this dilemma, other layers are added
to the process and functionality is separated appropriately. Figure 2.4 shows
how a three-tier Web application might appear.

In Figure 2.4, we’ve attempted to bring the Model-View-Controller paradigm
into the Web development process by separating the functionality each layer or
tier of the process is responsible for handling. Even though the HTTP protocol
isn’t push based, we can still take advantage of the underlying spirit of the par-
adigm.

A Practical MVC

With all of your newly gained knowledge, let’s look at how the code in Listing
2.1 could be changed to support MVC and make the jobs of the Web designer
and developer a little easier. First, we need to build the view containing all of
the information we want to display to the user. Listing 2.2 shows a possible
solution.

M VC Fu n d a m e n t a l s14

��� ����
��	�
�

��� ����
������� �
���������

�� ������
�������

<HTML>

<HEAD>

<TITLE>Test</TITLE>

</HEAD>

<BODY>

<form action="ControllerServlet.jsp" method="post">

<input type="text" name="username"

value="$$username">

<input type="text" name="password"

value="$$password">

<input type="text" name="city"

value="$$city">

<input type="text" name="state"

Listing 2.2 Example view code. (continues)

value="$$state">

$if ($$first) {

<input type="submit" name="submit" value="Submit">

$else

<input type="submit" name="submit" value="Update">

</form>

</BODY>

</HTML>

A Practical MVC 15

Listing 2.2 Example view code. (continued)

As you can see in Listing 2.2, we still require the Web designer to have some
ability to manipulate the information provided from the model through the con-
troller. Based on personal experience, giving the Web designer knowledge of
loops and conditionals at the view layer relieves the Web application developer
of quite a bit of work. The code won’t be directly accessed by the user but
instead is a template processed by the Web server before being displayed to the
user.

To handle the requests from the view, let’s build a servlet (using Java) as shown
in Listing 2.3.

public class ControllerServet extends HttpServlet {

private AccountLocalHome home = null;

public void init() throws ServletException {

try {

Context cmp = (Context) new

InitialContext().lookup("java:comp/env/cmp");

home = (AccountLocalHome) cmp.lookup("AccountBean");

} catch (NamingException e) {

e.printStackTrace();

}

}

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException {

if (home == null) {

out.println("home is null");

} else {

AccountLocal account = home.create();

Listing 2.3 Example servlet code. (continues)

Listing 2.3 Example servlet code. (continued)

The servlet will possibly use Enterprise JavaBeans as the model component to
access the data for the application. In many cases, the controller servlet will
delegate processing to other servlets or objects for specific business function-
ality. Our servlet will obtain an Account object and associate parts of the object
with the current context of the Web application. The process is passed to the
template code in Listing 2.2, where the information saved to the context is used
to display information to the user.

What’s Next

In this chapter, we explored the Model-View-Controller paradigm, which goes a
long way in separating functionality between system components as well as
business roles. One of the outstanding questions is what language should be
used for the view component. Our solution is to use Velocity—a language
designed specifically for Web designers to handle the presentation of informa-
tion to the user. In the next chapter, we introduce Velocity, examine its archi-
tecture, and explain how it integrates into the MVC paradigm.

M VC Fu n d a m e n t a l s16

ServletContext app = getServletContext();

app.setAttribute("username", account.username);

app.setAttribute("passowrd", account.password);

app.setAttribute("city", account.city);

app.setAttribute("state", account.state);

RequestDispatcher disp;

disp = app.getRequestDispatcher("/ViewAccount.tmp");

disp.forward(request, response);

}

}

}

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException {

doGet(req, res);

}

}

In Chapter 2, you saw how a Web developer and a designer can work
together on the presentation and logic of an application. You’ve seen how
languages like ASP, JSP, and PHP can be used to manipulate the information

provided by the back end. In this chapter, we begin our exploration of Velocity,
describe how it works, and explain the underlying architecture of the system.

What Is Velocity?

Velocity is a template language designed to give Web designers an easy way to
present dynamic information to users of a Web site or application. To support
the language, a collection of Java-based classes is used to create a bridge
between the model and view components of the Model-View-Controller (MVC)
model. One of the profound features of Velocity is the clear separation between
the view and the rest of the paradigm by providing only a simple syntax set,
which the Web designer uses to display content. At the same time, the Java pro-
grammers concentrate on the logic behind the application.

Velocity isn’t a language to be used only by developers of Web pages, but also
by those who create standalone applications. The output generated from Veloc-
ity templates can yield HTML as well as other content, such as source code,
SQL, or XML. Some of the major components of Velocity are:

■■ A complete language for manipulating content including loops and condi-
tionals

Introduction to Velocity

C H A P T E R 3

17

■■ Access to Java object methods

■■ Direct support for the Turbine Web application framework

■■ Transformation from XML to other content using Anakia

■■ Texan

■■ Direct support for servlets

How It Works

To get a feel for how Velocity works, let’s consider an organization that needs to
create a Web application that will allow users to view their account informa-
tion. Let’s assume for this example that the user has already logged into the sys-
tem. The page we need to create displays information about the user’s account.

Designing the Page
Because we are working in an organization where the MVC paradigm is used
extensively, a designer and a developer share responsibility for the new page.
The designer builds the look and feel of the page, and the developer makes sure
the information is available to display. One of the first steps is to lay out the
visual design. The designer uses HTML tags to create the new page, including
all of the graphics and text needed. For the dynamic information, such as the
user’s account number and address, the designer includes placeholders like
<**user account name**>. Listing 3.1 shows how this might look.

I n t r o d u c t i o n t o Ve l o c i t y18

<HTML>

<HEAD>

</HEAD>

<BODY>

Hello, <**user account name**>

</BODY>

</HTML>

Listing 3.1 The designer page example.

Once the page has been completed visually and the appropriate signoff
obtained, the designer sets up a meeting with the developer to discuss the
dynamic context that must be available so that the page can be accurately dis-
played to the user.

TEAMFL
Y

Team-Fly®

Requesting the Right Information
The meeting between the designer and developer will probably be fairly short
because the designer has already indicated the information needed for the new
page. The most important result of the meeting will be the variables that will
store the information for the page. This is a good time to stop and look at how
Velocity gets information to be displayed on the Web page.

Because we are using the MVC paradigm, we know that putting Java code into
the new Web page isn’t the right way to get content for the page. Velocity works
by giving the Web designer scripting elements that can be placed in the HTML
code to produce a template. The scripting elements consist of logic statements,
like loops and conditionals, but also a syntax for accessing Java objects. We
wouldn’t want the view component to directly access the model component, so
Velocity has a collection called the Context, which is passed between the MVC
layers. The Context object is filled by either the controller or model compo-
nents and provided to the Web page template.

Code that implements Velocity parses the template and replaces all of the
Velocity scripting elements with text obtained from the objects in the context.
Since the Web designer is using objects from the context, there has to be an
understanding between the designer and developer as to the names of the
objects in the context. This agreement is just as strong as the agreement formed
between developers when they create an application programming interface
(API). Any changes to the API result in an error when the Velocity parser comes
across an object reference in the Web page template that cannot be resolved
against an object in the context.

Coding the Information
After the meeting takes place between the designer and developer, both parties
return to work on the final pieces of the Web page. The true power of MVC is
evident at this step because the designer adds in the scripting elements and the
developer focuses on coding the information needed in the context.

For the developer, there is a little work to do, such as integrating the new page
into the current framework, making sure all of the information about the cur-
rent user (such as the account number) is available, and pulling the data needed
by the designer and placing it in the context. We won’t look at the first two tasks
but instead jump to the third one.

In many Java-based MVC applications, the user browses to a Web page based
on a servlet. The servlet (or multiple ones for that matter) acts as the controller
in the MVC paradigm. The servlets will have already created, or will create on
their first instantiation, Enterprise JavaBeans representing sessions and enti-

How It Works 19

ties. The entities make up the model part of the paradigm, and the session might
also be considered part of the controller. The controller or the servlet will be
responsible for adding information from the model to the context.

Once the context is populated with the necessary dynamic information for the
current user, the developer needs to determine the template to use for the cur-
rent request by the user, and then merge or apply the template to the context
and produce HTML output. Listing 3.2 shows a short example of what the devel-
oper must create.

I n t r o d u c t i o n t o Ve l o c i t y20

Velocity.init();

VelocityContext context = new VelocityContext();

context.put("name", new String("Jane Doe"));

Template template = Velocity.getTemplate("account.vm");

StringWriter sw = new StringWriter();

template.merge(context, sw);

Listing 3.2 Developer code for Velocity.

In Listing 3.2, the developer begins by initializing the Velocity engine and creat-
ing a new context. With the put() method, a String object is assigned to the key
“name” and attached to the context. (It would have been previously agreed
upon that the key “name” would relate to the name of an account.) Next, the
template created by the designer is obtained using the getTemplate() method,
as well as a StringWriter that handles the HTML output. Finally, the template
and the context are merged together with the merge() method.

A few details are missing from this example, which we cover in the next chap-
ter, but it serves to illustrate what the developer must do in order to provide the
dynamic information needed by the designer’s template. In this example, we
assigned a simple String object to the context, but we could have also intro-
duced more complex objects and used Velocity to access both the attributes
and methods of the objects.

Displaying the Information
The designer might have the easiest part of the process once the API for the
page and context has been set. Using the Velocity Templating Language (dis-
cussed extensively starting in Chapter 6), all of the dynamic information place-
holders are replaced with code like that shown in Listing 3.3.

Velocity Features 21

<HTML>

<HEAD>

</HEAD>

<BODY>

Hello, $name

</BODY>

</HTML>

Listing 3.3 Example Velocity Web page.

Here the username placeholder is replaced with the $name Velocity statement.
When the template is merged with the context, $name is used as a call to the
$name object found in the context.

Velocity Features

In the short example we’ve presented, you saw how to use a simple scripting
element defined in Velocity along with the context to produce a dynamic Web
page, all defined within the MVC paradigm. Velocity includes many other fea-
tures that we have outlined here so you can become familiar with the terms
before we start looking at them in detail:

References—Velocity includes three different types of references: vari-
ables, properties, and methods: Variables start with the $ character and are
followed by an identifier. The value for the variable comes from the Java
code via the context or the Set directive. Properties start with the $ charac-
ter, followed by an identifier, then a dot, and finally another identifier. The
property reference is used either to obtain the attribute of a Java object in
the context or to call a method of the object and use its return value. The
method must have the format of get<identifier>. Methods start with the $
character, followed by an identifier, then a dot, followed by an identifier and
method body, such as (<parameter>). A call is made to the exact method
identifier specified.

Directives—Velocity directives allow the Web designer to have control
over the references. Scripting elements include set (assigning a variable and
value), looping constructs, conditionals, and includes, among others.

Velocimacros—A Velocimacro allows the designer to build macros of com-
monly used HTML and Velocity scripting elements that are to be repeated
when the macro is used.

Logging—Velocity makes use of the log4J system for easy logging.

Resource loaders—The resource loaders give you control over the tem-
plates used in the production of Web pages.

Anakia—This is an example application that allows XML to be processed
using Velocity instead of Extensible Stylesheet Language (XSL).

Application servers—Velocity supports all major application servers and
servlets like Resin, Tomcat, and BEA WebLogic.

What’s Next

In this chapter, we provided a quick overview of the Velocity system and
explained how it is used by both the Web designer and developer. In the next
chapter, we begin the process of using Velocity by learning to install it as well
as any ancillary software needed for execution.

I n t r o d u c t i o n t o Ve l o c i t y22

A fter reading the previous introductory chapters, you are no doubt anx
ious to get started using Velocity in your Web pages and applications.
Before you can dive into the language and example applications, you

must have properly set up and configured a development environment. In this
chapter, we cover the prerequisites for Velocity, and we describe how you can
obtain, install, and test Velocity. We also cover the installation of an application
server for those examples in the book that rely on servlets. If you aren’t a devel-
oper, don’t worry—we plan to go slowly through the installation to make sure
you have everything installed correctly. And if you are a developer, it’s good
practice.

Prerequisites

Velocity requires that you install the following packages:

■■ A Java Virtual Machine (JVM) is required to execute Velocity. At a mini-
mum, you should install a Java Runtime Environment (JRE) package. If
you want to compile Velocity itself, you need the Java 2 SDK, Standard Edi-
tion (J2SDK); if you are using servlets or want to work through the servlet
examples in this book, install J2SDK. You can find both packages at
http://sun.java.com. We created and executed the examples in this book
using the 1.4.1 version of Java.

Installing Velocity

C H A P T E R 4

23

■■ Velocity relies on the build utility called Ant, which is part of the Jakarta
project. Ant can be downloaded from http://jakarta.apache.org/ant; use ver-
sion 1.3 or greater. Once it’s installed, be sure to set up your environment
so that the Ant application can be accessed from any path.

Obtaining Velocity

You can download the most current version of Velocity at http://jakarta.apache.
org/velocity, as shown in Figure 4.1. Under the release directory, there are
numerous versions, as Figure 4.2 shows. For this book, we used version 1.3.1.
Click on the v1.3.1 directory to see the files displayed in Figure 4.3.

I n s t a l l i n g Ve l o c i t y24

Figure 4.1 The primary download page for Velocity.

Figure 4.2 Available Velocity versions.

Obtaining Velocity 25

Figure 4.3 Velocity v1.3.1 files.

If you are on a Unix/Linux system, the GZ file is the best choice; Windows users
should pull the zip file. In either case, save the file on your local system and
uncompress using either the gunzip command or an unzip utility.

For UNIX/Linux, the gunzip command is:

gunzip –xvf velocity-1.3.1.tar.gz

In both cases, a directory structure is produced under a root directory (like
/velocity-1.3.1) The full directory structure as shown in a Windows system
appears in Figure 4.4.

I n s t a l l i n g Ve l o c i t y26

Figure 4.4 The Velocity directory structure.

As Figure 4.4 shows, the Velocity distribution includes several directories:

/build—All of the Ant build scripts

/convert—WebMacro conversion templates

/docs—Documentation for Velocity in HTML format

/examples—Demonstration source code

/src—Source code for Velocity, Anakia, and Texen

/test—All smoke test applications and templates

/xdocs—The documentation source, which can be compiled into various
output formats

When you use any of the build targets explained in the next section to create a
Velocity JAR, a /bin directory will appear.

Velocity Versions

If you’ve pulled Velocity out of a version directory from the release download
area, Velocity will be provided in three different flavors:

■■ Precompiled with all dependencies

■■ Precompiled with no dependencies included

■■ Source code

With the first and second flavors, the issue of dependencies arises. In the root
Velocity directory, you find two JAR files, like the following:

■■ velocity-1.3.1.jar

■■ velocity-dep-1.3.1.jar

Obviously, the filename velocity-dep has the dependencies compiled into it.
The dependencies are:

Jakarta Commons Collections—A collection solution is required by
Velocity.

Jakarta Avalon Logkit—If your solution will be logging to a file, this JAR
dependency is required; otherwise, it is not.

Jakarta ORO—This is required for the WebMacro template conversion
utility. If you aren’t going to be converting any WebMacro templates (or
don’t even know what WebMacro is!), these dependencies aren’t needed.

The developers of Velocity have included the dependencies as separate JARs in
order to allow the end developer the option of using the Jakarta solutions or
some other third-party components. All of the dependencies are included in the
/build/lib directory and will be added to a compile of the system shortly. If you
are going to use one of the precompiled JARs, simply copy the appropriate one
into your classpath and skip the rest of this section.

Compiling Velocity
With the third flavor of the Velocity download, the system is supplied as source
files that need to be compiled. As we mentioned earlier, Velocity is designed to
use the build tool called Ant, which allows for the organization, compiling, and
deploying of Java applications. Ant will build all of the source code for Velocity
based on a build target. Build targets tell Ant to perform some specific task and
are currently defined as:

Velocity Versions 27

jar-dep—This builds a full Velocity JAR, including all of the dependencies
listed earlier. The command line is:

ant jar-dep

The result of the build is a file in the path:

C:\velocity-1.3.1\bin\velocity-dep-1.3.1.jar

jar—This build target also builds a full Velocity JAR but without the depen-
dencies. However, since the Jakarta Commons Collection is required, you
need to have the path to this JAR in your classpath. If you have to use the
WebMacro utility or require logging, the JARs for handling that specific
functionality also must be in your classpath. If you are including all of the
supplied dependencies, just use the jar-def build target listed first. The com-
mand line is:

ant jar

The result of the build is a single JAR in the path:

C:\velocity-1.3.1\bin\velocity-1.3.1.jar

jar-core—This build target compiles Velocity in the same manner as the jar
build target but does not include any examples, utilities, or servlet support.
The command line is:

ant jar-core

The result of the build is a single JAR in the path:

C:\velocity-1.3.1\bin\velocity-core-1.3.1.jar

jar-util—This builds only the Velocity utilities, Anakia, Texan, and Web-
Macro. The command line is:

ant jar-util

The result of the build is a single JAR in the path:

C:\velocity-1.3.1\bin\velocity-util-1.3.1.jar

jar-servlet—This build target compiles the VelocityServlet class to provide
servlet support with Velocity. The command line is:

ant jar-servlet

The result of the build is a single JAR in the path:

C:\velocity-1.3.1\bin\velocity-servlet-1.3.1.jar

jar-J2EE—This build target compiles a complete Velocity JAR just as in the
case of the jar build target, but it also includes the J2EE JAR file. The build
target requires a copy of j2ee.jar in the /build/lib directory or a link. The
command line is:

ant jar-J2EE

I n s t a l l i n g Ve l o c i t y28

TEAMFL
Y

Team-Fly®

The result of the build is a file called

C:\velocity-1.3.1\bin\velocity-J2EEdep-1.3.1.jar

jar-J2EE-dep—This build target compiles a complete Velocity JAR with
J2EE support, including all dependencies listed earlier. The command line is:

ant jar-J2EE-dep

The result of the build is a single JAR file:

C:\velocity-1.3.1\bin\velocity-J2EE-1.3.1.jar

examples—This build target compiles all of the examples included with
Velocity that are located in the /examples directory. Use this target if you
used one of the other targets that didn’t include the examples. The com-
mand line is:

ant examples

The result of the build is a series of examples:

C:\velocity-1.3.1\bin\forumdemo.war

C:\velocity-1.3.1\examples/appexample1

C:\velocity-1.3.1\examples/appexample2

C:\velocity-1.3.\examples/servletexample1

C:\velocity-1.3.\examples/servletexample2

C:\velocity-1.3.\examples/context_example

C:\velocity-1.3.\examples/logger_example

C:\velocity-1.3.\examples/xmlapp_example

C:\velocity-1.3.\examples/event_example

forumdemo—This build target only builds the Forum Demo located in the
examples/forumdemo directory. The command line is:

ant forumdemo

The result of the build is a single Web archive (WAR) file:

C:\velocity-1.3.1\bin\forumdemo.war

docs—This builds the Velocity docs using the Anakia tool. There are addi-
tional dependencies for this build target. The Jarkata Site2 project must be
installed on the build machine. The Site2 project’s installation directory
must be at the same hierarchy level as the Velocity installation directory.
You can find information about the Site2 module at
http://jakarta.apache.org/site/jakarta-site2.html. Either pull the jakarta-site2
project from apache.org CVS or create a directory called /jakarta-site on the
same directory hierarchy as the Velocity distribution directory. Then, copy
the entire directory called /examples/anakia/xdocs to the jakarta-site2 direc-
tory. The command line is:

ant docs

Velocity Versions 29

The result of the build consists of HTML files in the /docs directory under the
Velocity distribution directory.

docs_print—This build target produced the documents for Velocity in
HTML format appropriate for printing. The command line is:

ant docs_print

The result of the build consists of HTML files in the docs directory that you
can print.

jar-src—This build target bundles all of the source code and places it into a
single JAR. The command line is:

ant jar-src

The result of the build is a single JAR file in the path:

C:\velocity-1.3.1\bin\velocity-1.3.1.src.jar

javadocs—This build target builds the Velocity JavaDoc. The command
line is:

ant javadocs

The result of the build consists of appropriate JavaDoc files in the
/examples/api directory.

test—This build target tests a subsequent JAR build to be sure it was cre-
ated successfully. The JAR will be used with a number of smoke tests. The
command line is:

ant test

For the examples in this book, the Velocity JAR used is velocity-dep-1.3.1.jar (as
found precompiled in the distribution). This JAR is equivalent to executing Ant
with a build target of jar-dep with all of the dependencies combined. Add the
appropriate Velocity JAR to your classpath.

Testing the Velocity Installation

After compiling a particular version of Velocity using Ant and the appropriate
build target, you should test the compile to be certain it was successful. The
developers of Velocity included a test suite in the distribution that you can exe-
cute using Ant and the test build target. The Ant task associated with the test
suite uses the Velocity JARs found in the /bin directory of the installation when
compiling the examples. When you execute the command ant test, the system
utilizes JUnit to run through a couple dozen tests.

I n s t a l l i n g Ve l o c i t y30

Running the Examples

After you have built the Velocity JAR (with or without the dependencies
included), tested the JAR, and built the examples, you should execute the
examples to see some of the power behind Velocity. We have a total of eight
example applications.

examples/appexample1
This example demonstrates using Velocity in a Java application. You run the
example by executing the file ./example.bat (on a Windows machine) or ./exam-
ple.sh (on Unix). The result of the example should be:

Velocity is great!

ArrayList element 1 is great!

ArrayList element 2 is great!

ArrayList element 3 is great!

ArrayList element 4 is great!

The condition is true!

examples/appexample2
This example uses Velocity convenience utilities to output text. You run the
example by executing the file ./example2.bat (on a Windows machine) or
./example2.sh (on Unix). The result of the example should be:

template : Hello from Velocity in the Jakarta project.

string : We are using Jakarta Velocity to render this.

examples/servletexample1
This example shows how to use a servlet with Velocity. You must have a servlet
engine installed on your system in order to execute this example, as well as the
next one. Let’s run through the steps that you must perform to execute this
example:

Install a servlet engine like Resin (www.caucho.com) or Tomcat

(http://jakarta.apache.org/tomcat/).

1. Add the following directory structure to the /docs (Resin) or /webapps
(Tomcat) directory:

/velocity1/

/velocity1/WEB-INF

Running the Examples 31

/velocity1/WEB-INF/classes

/velocity1/WEB-INF/lib

2. Under Resin add a <web-app> tag, such as <web-app id=’velocity1’/>.

3. Copy the Velocity JAR built earlier to the /lib directory.

4. Copy the SampleServlet.class file to the /classes directory.

5. Copy the sample.vm file to the /velocity1 directory.

6. Create an appropriate web.xml file for your server. Here’s an example
using Resin:

<web-app>

<servlet-mapping>

<url-pattern id="/servlet/*"/>

<servlet-name id="invoker"/>

</servlet-mapping>

</web-app>

7. Restart Tomcat—Resin will detect the new application.

8. Browse to the server using this URL:

http://localhost:8080/velocity1/servlet/SampleServlet

Figure 4.5 shows an example of the expected output from the servlet example.

I n s t a l l i n g Ve l o c i t y32

Figure 4.5 Servlet Example1 output.

examples/servletexample2
This second servlet example is more complex than the previous one because it
uses a properties file and shows how to load a template from an external file. The
steps are similar but more detailed since there are two ways to load the template.
You can check out the readme.txt file found in the /examples/servlet_example2
directory of the distribution.

examples/context_example
This example shows how to use the context in a couple of implementations.
The example uses a file in a database to store serialized information. The appli-
cation assumes a MySQL database driver is in the classpath, a database called
test, and a table defined as:

create table contextstore(id int not null auto_increment primary key, k

varchar(128), val blob);

To execute the example, use this command:

C:\velocity-1.3.1\examples\context_example>java -cp

"./;../../bin/velocity-dep-1.3.1.jar;"

DBContextTest dbtest.vm

The output will look something like that shown in Figure 4.6. depending on the
data in your database table.

Running the Examples 33

Figure 4.6 Context example output.

examples/logger_example
This example looks at using the logging ability of Velocity. The example can be
executed using logger_example.bat (on Windows) or logger_example.sh (on
Unix). The output generated from the example is shown in Figure 4.7.

I n s t a l l i n g Ve l o c i t y34

Figure 4.7 Logger example output.

examples/xmlapp_example
This example shows how to import XML data from a file format using Velocity
and a template. The example requires that the JDom JAR be in your classpath
as well as Apache’s Xerces package. Execute the example using xmlapp_exam-
ple.bat (on Windows) or xmlapp_example.sh (on Unix).

examples/event_example
This example shows how to use the event-handling features of Velocity. To exe-
cute the example, use this command:

java -cp "./;../../bin/velocity-dep-1.3.1.jar;" EventExample

Figure 4.8 shows the result.

Running the Examples 35

Figure 4.8 Event example output.

What’s Next

In this chapter, we offered a comprehensive look at obtaining and installing the
Velocity distribution. We also explained how to test the compile. In addition, we
looked at the examples included with Velocity that you can use along with this
book as a teaching aid.

In the next chapter, we look at building our first Velocity application.

Now that you have a good understanding of Velocity and how it works in
the arena of the Model-View-Controller paradigm, and you’ve created a
working installation, it’s time to begin learning how to use Velocity. As

you might expect, the first application we build is a version of the Hello World
example.

Hello World!

One of the first issues you must tackle is determining the type of information
that you want to appear on the HTML page returned to the browser from the
Hello World template. Since we are only talking about a Hello World example,
we could simply output “Hello World”--but this wouldn’t illustrate how to use
Velocity references. Instead, let’s produce a template that will output the text
“Hello World, Sam is Here”, where “Sam” is a reference.

Now that you know the information that will be produced from the template,
you have to discuss with your Java developer the object name you want to use
for your reference. I would suspect that “name” could be agreed upon without
too much trouble. As you build your Hello World example, you are actually
going to produce three versions:

■■ A Velocity template without the context from an application

■■ A Velocity template with the context from an application

■■ A Velocity template from the Web

Building a Hello World Example

C H A P T E R 5

37

If you are familiar with server-side languages such as PHP, you’re probably
wondering why we have not discussed the interpreter a Web server launches
when a Velocity template is browsed. This is because no such piece of software
is available in Velocity. All of the substitutions between the template and the
context are performed within the scope of some Java code. This Java code
could exist in the middle of a servlet, embedded within a JSP or as part of an
application. In situations where you are using Velocity in the Web arena, you
will most often use a servlet to handle the transformation of the template into a
response for the user.

A Velocity Template without Context
Our first Hello World example, shown in Listing 5.1, uses a Velocity directive
statement called #set that can be used in a template to assign a value to a refer-
ence. What makes the listing a Velocity template is the use of #set and the
$name reference embedded in the Hello World text line.

This example isn’t hard to understand. When the template is supplied to the
Velocity parser, it encounters the normal text, ignores it, and sends it directly to
the output. When the parser hits the #set directive, it creates a variable internal
to the parser that handles the new variable called $name. The value “Sam” is
assigned to the new variable. Next, the “Hello World” text is found and directed
straight to the output stream. When the $name reference is located in the code,
the system attempts to find an object called $name in the context. If a match
isn’t found in the context, previously created references are matched and their
content used as appropriate.

B u i l d i n g a H e l l o Wo r l d E x a m p l e 38

#set($name = "Sam")

Hello World, $name is Here

Listing 5.1 The Velocity Hello World template.

Of course, just having the template itself doesn’t do you much good--you need a
way to merge the template with a context to produce output for your client.
Listing 5.2 shows the code you can use for a stand-alone Velocity application.

import org.apache.velocity.app.Velocity;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.Template;

import org.apache.velocity.exception.ParseErrorException;

import org.apache.velocity.exception.ResourceNotFoundException;

Listing 5.2 The Velocity application without context. (continues)

TEAMFL
Y

Team-Fly®

Hello World! 39

import java.io.*;

import java.util.ArrayList;

public class Example {

public Example(String templateFile) {

try {

Velocity.init();

VelocityContext context = new VelocityContext();

Template template = null;

try {

template = Velocity.getTemplate(templateFile);

} catch(ResourceNotFoundException e2) {

System.out.println(

"cannot find template " + templateFile);

} catch(ParseErrorException e) {

System.out.println(

"Syntax error in template : " + e);

}

BufferedWriter writer = new BufferedWriter(

new OutputStreamWriter(System.out));

if (template != null)

template.merge(context, writer);

writer.flush();

writer.close();

} catch(Exception e) {

System.out.println(e);

}

}

public static void main(String[] args) {

Example t = new Example(args[0]);

}

}

Listing 5.2 The Velocity application without context. (continued)

As with most Java applications, this example needs a few imports to do its job
effectively. The first five imports in the example code pull in the various Veloc-
ity specific classes referenced in the code. When the example code is first exe-
cuted, the name of the template is given as the first command-line parameter.
For example:

java Example example.vm

Refer back to Listing 5.1 for the template example. The name of the template
placed on the command line is passed to the newly created Example object.
The first operation performed in the example code is to initialize the Velocity
engine. This example uses a Singleton pattern for the relationship between your
application and the Velocity engine. This means only one static engine is avail-
able for all the application objects. It is important to remember this fact
because you won’t see any code in this example to instantiate the engine.

Once the engine has been initialized, it’s time to load the template from the local
hard drive. The template is loaded using the getTemplate(String) method of the
Velocity engine object. The result of the method call is a Template object; other-
wise, an exception is thrown. One of the important exceptions that can be
thrown is ResourceNotFoundException (when either the template file speci-
fied on the command line cannot be found or an error occurs when the tem-
plate file is parsed from its flat-file representation into the Template object). A
parse error during the reading of the template throws a ParseErrorException
exception.

After the template has been read into the system, you can begin the process of
producing the intended output. Because you are using a Java application, you
output the text from the Velocity template to the console. Note the output could
be generated to a file, a socket, or other output mechanism as long as a Writer
object can be created for it.

At this point, you have several different objects active in your application:

■■ Velocity—a static object representing the Velocity engine

■■ Context—a Context object

■■ Template-—a Template object created when the Velocity template is read
from the local drive

■■ Writer-—a BufferedWriter object that will be used to direct output to the
console through the System.out stream

Back in your application code, the BufferedWriter object is checked against
null to be sure the object was instantiated successfully. The actual work of the
Velocity engine is accomplished using the merge() method of the Template
object. The merge() method takes two parameters: a Context object and a
BufferedWriter object. When the merge() method is executed against a tem-
plate, the context is merged with the associated template and its scripting ele-
ments to create the desired output.

Finally, the output stream is flushed and closed. Figure 5.1 shows the output
generated by the template.

B u i l d i n g a H e l l o Wo r l d E x a m p l e 40

Hello World! 41

Figure 5.1 Output from the Hello World example.

For this example, we saved the template in Listing 5.1 into a file called hel-
loworld.vm. The extension applied to the template file isn’t limited to VM; it
could be anything that will distinguish the file from others, like HTML or JSP.
For instance, we saved the code in Listing 5.2 in a file called Example.java and
compiled the application with the command

javac Example.java

We executed the example with the command

java Example helloworld.vm

If the Velocity engine is unable to locate the template file specified or an error
occurs in the template, an error is produced.

The Velocity Template with Context
In the previous example, you relied on the #set directive to assign a value to the
$name reference. While this might be a good illustration tool, it doesn’t provide
you with much in the way of dynamic behavior. To give your template the abil-
ity to change the name of the user, you need to take advantage of the Context
object that is merged with the template. For our second example, let’s use the
same template shown in Listing 5.1 but delete the #set directive line, leaving
just the

Hello World, $name is Here

line. After the line of code

VelocityContext context = new VelocityContext();

place the following line:

context.put("name", "New Sam");

Save the files, and then compile and execute. You should see the output “Hello
World, New Sam is Here.” Now let’s try something else. Open up the application
code and change the context.put line to read

context.put("names", "New Sam");

Now compile and execute the code again. The result is the text “Hello World,
$name is here”. Why did you get this output? Well, let’s consider what the con-
text.put() statement did.

As you learned in the previous chapters, the Velocity engine does its magic by
merging a template with the context. All references in the template, such as
$name, are matched against object key value pairs in the Context object. Thus,
Velocity attempts to match the $name reference with a key in the context of
“name”. If it locates the key, the value associated with it is returned--”New Sam”
in our case. If the key isn’t found in the context, the engine assumes that the
“$name” string is literal and just copies it to the output without any type of sub-
stitution.

When you changed the context.put() statement to place a “names” key in the
context, the Velocity engine wasn’t able to find $name and simply passed the
$names reference to the output stream without any substitution.

Velocity and the Web
In both of the examples thus far, we have used Velocity in a stand-alone Java
application. However, since Velocity is billed as a possible replacement for JSP,
you’d expect that you could use it with a Web application as well. In this sec-
tion, we provide a small glimpse at using Velocity with a servlet. For more infor-
mation on this topic, see Chapter 12, “Using Velocity with Servlets.” Listing 5.3
shows a new template that you can use to display an XML document in a user’s
browser. As you can see, the template has a little more functionality to it.

In future chapters, we examine the statements in the template more closely. For
now, the first statement you should notice is the #foreach directive paired with
#next. These directives allow a loop to be created based on some supplied ref-
erence. In this case, the reference is called $list and is actually a Java vector
object supplied in the context. The code loops through the vector and displays
the associated $value.

B u i l d i n g a H e l l o Wo r l d E x a m p l e 42

<?xml version="1.0" encoding="ISO-8859-1" ?>

<list>

#foreach($value in $list)

<number>$value</number>

#end

</list>

Listing 5.3 The servlet example template.

Listing 5.4 shows the servlet code you can use on the server to produce the
XML. As we mentioned, we discuss the functionality of servlets in Chapter 12;
however, for now notice that a Vector object is created in the code and three
values are added to it. The entire Vector object is attached to the context with
the context.put("list", v); statement.

Hello World! 43

import java.util.Vector;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.velocity.Template;

import org.apache.velocity.context.Context;

import org.apache.velocity.servlet.VelocityServlet;

import org.apache.velocity.exception.ResourceNotFoundException;

import org.apache.velocity.exception.ParseErrorException;

public class VelocityServletExample extends VelocityServlet {

public Template handleRequest(HttpServletRequest request,

HttpServletResponse response,

Context context) {

Vector v = new Vector();

v.add("one");

v.add("two");

v.add("three");

context.put("list", v);

Template template = null;

try {

template = getTemplate("displaylist.vm");

} catch(Exception e) {

System.out.println("Error " + e);

}

return template;

}

}

Listing 5.4 The servlet code for our example.

Once the vector is placed in the Context object, the template used to display the
context information is obtained from the local server hard drive. Now instead
of using the merge() method of the Template object, you simply return the tem-
plate. The template doesn’t actually get returned directly to the user; instead,
there is a process in the background that merges the “returned” template and

the context. In Figure 5.2, you can see the XML output created from the servlet
and the template. You could have used Velocity to output HTML to the user’s
browser if you wanted.

B u i l d i n g a H e l l o Wo r l d E x a m p l e 44

Figure 5.2 The servlet and template example output.

What’s Next

In this chapter, we showed you how to write Hello World applications using
Velocity. You used Velocity in a stand-alone Java application as well as with a
Web application. In the next chapter, we begin exploring the details of Velocity
and learn about its various language features.

In the previous chapter, we introduced Velocity with the requisite Hello
World example (or examples in this case). Now that you have seen some
simple cases of Velocity in action, it's time to take a step back and examine

the core components responsible for powering Velocity. This chapter begins
with a discussion of templates and the context. Subsequent chapters build on
this introduction, discussing in detail Velocity's references, directives, and
macros.

Using Templates

Given that Velocity is a template engine, it is not surprising that templates play
a critical role in any use of Velocity. But what constitutes a Velocity template?
As it turns out, Velocity's definition of a template is quite similar to that used in
a number of other areas. Many word processor packages provide predefined
starting points for common documents, such as office memos and fax cover
sheets; these are good examples of electronic templates that correspond
closely to the notion of a Velocity template. The Club Velocity application form
shown in Figure 6.1 is another example of a general template.

Understanding Templates and
Context

C H A P T E R 6

45

Figure 6.1 An example of a general template.

The content of the Club Velocity application includes two general content
types: static and dynamic. The static content consists of the title, the labels
(e.g., First Name:, Last Name:, etc.), the questions, and the overall layout. This
is the portion of the document that is to be reused as-is for any application for
membership. The dynamic content loosely corresponds to the blanks (under-
lined sections), which are to be filled in on a case-by-case basis, with each
applicant providing his or her own personal information.

The primary difference between the general template defined by the Club
Velocity application and a true Velocity template is the manner in which the
dynamic content is specified. While the application form relies on blank sec-
tions to specify where the dynamic content should be inserted, Velocity uses
the concept of references. For now, you can think of a Velocity reference sim-
ply as some sort of entity that refers to a value stored elsewhere. As an exam-
ple, using the basic syntax for Velocity references, a template might include an
entity named $name to refer to the string "John Doe", where the string itself is
stored somewhere outside the template (e.g., in a database). We discuss refer-
ences in detail in the next chapter, so don't be concerned if you are somewhat
confused by this rather vague definition. The important thing to keep in mind
for now is that a Velocity reference is essentially a placeholder for some piece
of dynamic data.

If you want to transform the club application form into a true Velocity template,
all that you have to do is replace the blank sections with appropriate Velocity
references. What constitutes an appropriate reference is specified by Velocity
reference syntax and the contract negotiated between the designer and the pro-
grammer. One possible template implementation is shown in Listing 6.1.

U n d e r s t a n d i n g Te m p l a t e s a n d C o n t e x t46

���� ������	
 �������	��

����� ����

���� ����

��������

����� ������ ����

����� �!���

����" ��������

�## �������

����� ����������

�� ���� � ��$ ����!������ ��% ��� �� � ����$�"&

'�$ "��(��)� �� !��� ���(��"�#���&

*� �� �� ��"�#��� +�� $��, �� �"��&

*� �� $��� �� ��#��)� � � ��$�"�����&

Listing 6.1 The club application form after conversion to a Velocity template.

As you can see, the Velocity template is essentially identical to the original
application form, except that the blanks have been replaced by Velocity refer-
ences. Assuming the following mapping for the references, the processed tem-
plate would result in the output shown in Listing 6.2:

$firstName => "John"

$lastName => "Doe"

$streetAddress => "123 Jane Ave. "

$city => "Azusa"

$state => "CA"

$zip => "91702"

$phoneNumber => "626-555-1234"

$emailAddress => "john@nodom.com"

$occupation => "Web Developer"

$otherInterests => "Hiking,Biking"

$appType => "New"

$useTime => "6 months"

$useType => "Work"

$wantNewsletter => "Yes"

Using Templates 47

CLUB VELOCITY APPLICATION

First Name: $firstName

Last Name: $lastName

Address: $streetAddress

City: $city State: $state Zip: $zip

Phone Number: $phoneNumber

Email Address: $emailAddress

Occupation: $occupation

Other Interests: $otherInterests

Is this a new membership request or a renewal? $appType

How long have you been using Velocity? $useTime

Do you use Velocity for work or play? $useType

Do you want to receive our newsletter? $wantNewsletter

Listing 6.2 Sample output for the Velocity template version of the club application form.

Now that you have an idea of how content is output from a template, let's con-
clude this section with a quick look at how you can prevent content in a tem-
plate from being processed. Often it is useful to leave yourself, or perhaps your
colleagues, a note or two explaining the purpose of a bit of template code. Also,
the ability to selectively disable sections of a template is frequently useful dur-
ing debugging sessions. Finally, it is sometimes necessary to explicitly override
Velocity's default behavior with regard to the handling of whitespace. Velocity
supports such needs with a template commenting mechanism. Support is pro-
vided for both block and single-line comments. A block comment is started
with the character sequence #* and terminated with the sequence *#; everything
in between is discarded by the template engine. A single-line comment is initi-
ated with the sequence ## and continues through the end of the line. Listing 6.3
provides a few examples of template comments.

In providing this initial description of a Velocity template, we have neglected
several important topics. First, there is significantly more to Velocity references
than we have so far let on. Furthermore, Velocity provides support for direc-
tives and macros, which allow more sophisticated content control directly from
the template. Directives provide for flow control, file inclusion, and reference
manipulation, while macros provide a powerful reuse mechanism for template
code. We discuss these topics in detail in the next few chapters.

U n d e r s t a n d i n g Te m p l a t e s a n d C o n t e x t48

CLUB VELOCITY APPLICATION

First Name: John

Last Name: Doe

Address: 123 Jane Ave.

City: Azusa State: CA Zip: 91702

Phone Number: 626-555-1234

Email Address: john@nodom.com

Occupation: Web Developer

Other Interests: Hiking,Biking

Is this a new membership request or a renewal? New

How long have you been using Velocity? 6 months

Do you use Velocity for work or play? Work

Do you want to receive our newsletter? Yes

TEAMFL
Y

Team-Fly®

Listing 6.3 Velocity comment examples.

The Context

In the previous section, we specified a reference to string mapping for our
application template. However, we made no mention of the mechanism through
which the Velocity references were tied to the string values. This is where
Velocity's notion of a context comes into play. The context, represented on the
application side by the Context interface defined in org.apache.velocity.con-
text, serves as the go-between for application and template. The context is most
easily viewed as a simple map that stores objects by key. More specifically, the
context stores objects of type java.lang.Object, keyed by objects of type
java.lang.String.

The value of the String used as the key is the same value that is used for the
name of the reference, except that the reference is prefixed with a $. For exam-
ple, a Java Object representing the string "John" might be keyed in the context
with the Java String firstName, in which case the template could access the
string "John" through the reference $firstName. In essence, the dynamic portion
of a template's content is specified through the keys used to look up that con-
tent in the context. The $ prefix simply lets the template engine know that the
following text potentially corresponds to a context key that requires special
processing.

There are three ways in which a Velocity context can be populated with objects.
First, Velocity itself may insert useful values into the context. For example, the
current iteration count associated with the #foreach directive is made available
by Velocity. Second, the #set directive allows a template to insert values directly
into the context. Finally, and most important, Velocity's Context interface
allows a programmer to populate the context with data needed by the view
designer, using key names agreed upon by the programmer and the designer.

The Context 49

#*

This is a block comment. It is being used to point out

that this listing is intended to demonstrate the use of

comments in Velocity templates.

*#

##This line is not rendered.

This part is rendered,## but this part is not.

If only the #*middle*# bit needs to be commented out, a

block comment will do the job.

We address only the final case in this section.

In a typical application, the context is represented by an instance of
org.apache.velocity.VelocityContext, which implements the Context interface.
Creation of a context that stores the objects "John" and "Doe" keyed by "first-
Name" and "lastName", respectively, is achieved with the following code:

VelocityContext context = new VelocityContext();

context.put("firstName", "John");

context.put("lastName", "Doe");

Once created, a template would access the objects "John" and "Doe" using the
references $firstName and $lastName, respectively. Although the objects in the
context are already Java Strings in this case, it is quite acceptable that they be
of some other type, such as Integer or Float. In such cases, Velocity uses the
object's toString() method in order to generate a String representation for out-
put. It is also possible for an object in a context to represent more than a sim-
ple value. This often occurs in cases where a template's requirements include
advanced functionality available only through the methods of an object stored
in the context. This last case is covered in detail when we discuss Velocity ref-
erences in Chapter 7.

In addition to populating a context, the Context interface allows the program-
mer to query and further manipulate the context. The interface provides the fol-
lowing four additional methods:

boolean containsKey(java.lang.Object key)

java.lang.Object[] getKeys()

java.lang.Object remove(java.lang.Object key)

java.lang.Object get(java.lang.String key)

The containsKey() method allows the context to be checked for a specified key,
returning true if the context contains an object associated with that key. The
getKeys() method returns a list of all keys currently present in the context; note
that the keys are returned as an Object array, rather than a String array. The
remove() method removes the entry associated with the specified key from the
context; the removed value is returned by the method. The get() method allows
the programmer to access the object associated with the specified key.

Putting the Pieces Together

Now that you have a general understanding of the roles played in Velocity by
the template and the context, let's put the pieces together in the form of a com-
plete application for processing the Velocity template representing our Club
Velocity membership application form. Since the real purpose of the applica-

U n d e r s t a n d i n g Te m p l a t e s a n d C o n t e x t50

tion is to illustrate the basic structure of a Velocity application, let's try to keep
application logic simple. In particular, the dynamic component of the final con-
tent is derived from hardcoded strings, where in a more realistic application
that content would more likely be obtained from a database or otherwise gen-
erated on the fly.

Before taking a look at the application code, a summary of our goals seems in
order. Using the template defined in Listing 6.1 as a starting point, let's develop
an application that processes the template, replacing all of the references with
appropriate text taken from a Velocity context. The final content--including the
static content taken directly from the template and the dynamic content
obtained from the context--is to be output by the application, resulting in a
completed membership application form like that shown in Listing 6.2.

The source code for an application that meets these goals is shown in Listing 6.4.
The code is representative of a general pattern common to most Velocity appli-
cations, and the comments placed sparsely throughout the code highlight this
pattern. The pattern may be loosely viewed as a sequence consisting of six steps:
template engine initialization, template inclusion, context creation, context pop-
ulation, template and context merging, and content rendering. Note that this is
only a general pattern, and there is some flexibility. For example, it might be per-
fectly reasonable to read in the template after populating the context. Nonethe-
less, you shouldn't go too far wrong if you keep this pattern in mind.

Putting the Pieces Together 51

import java.io.StringWriter;

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

import org.apache.velocity.exception.*;

public class ClubApp

{

public static void main(String[] args)

{

// Initialize template engine

try

{

Velocity.init();

}

catch(Exception x)

{

System.err.println("Failed to initialize Velocity: " + x);

System.exit(1);

}

Listing 6.4 An application for processing the club membership form. (continues)

// Obtain a template

Template clubTemplate = null;

try

{

clubTemplate = Velocity.getTemplate("ClubApp.vm");

}

catch(ResourceNotFoundException rnfX)

{

System.err.println("Template not found: " + rnfX);

System.exit(1);

}

catch(ParseErrorException peX)

{

System.err.println("Failed to parse template: " + peX);

System.exit(1);

}

catch(Exception x)

{

System.err.println("Failed to initialize template: " + x);

System.exit(1);

}

// Create context

VelocityContext context = new VelocityContext();

// Populate context

context.put("firstName", "John");

context.put("lastName", "Doe");

context.put("streetAddress", "123 Jane Ave.");

context.put("city", "Azusa");

context.put("state", "CA");

context.put("zip", "91702");

context.put("phoneNumber", "626-555-1234");

context.put("emailAddress", "john@nodom.com");

context.put("occupation", "Web Developer");

context.put("otherInterests", "Hiking,Biking");

context.put("appType", "New");

context.put("useTime", "6 months");

context.put("useType", "Work");

context.put("wantNewsletter", "Yes");

// Merge template and context

StringWriter writer = new StringWriter();

try

{

U n d e r s t a n d i n g Te m p l a t e s a n d C o n t e x t52

Listing 6.4 An application for processing the club membership form. (continues)

Listing 6.4 An application for processing the club membership form. (continued)

Now let's dissect this example and put the pieces under the microscope, so to
speak. Starting with the imports, you see that java.io.StringWriter is pulled into
the application. While the StringWriter class is not specifically required in the
general case, the process of merging template and context does typically
require an object of a class derived from java.io.Writer. For the purposes of the
application under discussion, a StringWriter is appropriate. The first import
from a Velocity package is org.apache.velocity.Template. The corresponding
Template class provides an in-memory representation a template used by the
application. Next, org.apache.velocity.VelocityContext is imported, providing a
representation of the Velocity context via the corresponding VelocityContext
class. The application then imports org.apache.velocity.app.Velocity, which
provides the Singleton representation of the Velocity template engine. A non-
Singleton implementation is also available through org.apache.velocity
.app.VelocityEngine and will be discussed in Chapter 10. Finally, you import
org.apache.velocity.exception.*, providing access to various Velocity exception
classes.

Putting the Pieces Together 53

clubTemplate.merge(context, writer);

}

catch(ResourceNotFoundException rnfX)

{

System.err.println("Template not found on merge: " + rnfX);

System.exit(1);

}

catch(ParseErrorException peX)

{

System.err.println("Failed to parse template on merge: " + peX);

System.exit(1);

}

catch(MethodInvocationException miX)

{

System.err.println("Application method exception: " + miX);

System.exit(1);

}

catch(Exception x)

{

System.err.println("Failed to merge template: " + x);

System.exit(1);

}

// Render merged content

System.out.println(writer.toString());

}

}

With the imports out of the way, you next move to the code implementing the
template processing. As mentioned earlier, this code follows a general pattern
common to Velocity applications. The first element of that pattern is the initial-
ization of the template engine. Using the Singleton model, this is as easy as
invoking the static method Velocity.init(). If for any reason this method fails, a
generic exception of type java.lang.Exception is thrown. If the non-Singleton
model were to be used instead, you would create an instance of VelocityEngine
and invoke its init() method.

After initializing the template engine, the application next obtains an in-mem-
ory representation of the template to be processed. As with template engine ini-
tialization, the manner in which this step is accomplished depends on whether
a Singleton or non-Singleton model is being used. With the Singleton model, our
template representation is obtained by invoking the static getTemplate()
method from the Velocity class, which returns an instance of Template. This
method takes as a parameter the name of the template file to be loaded, which
in this case is ClubApp.vm. Note that while vm is the commonly accepted stan-
dard suffix for Velocity template files, you are not required to follow this
convention.

If a non-Singleton model is instead used for template acquisition, the process
remains much the same. The key difference is that getTemplate() would be
invoked on an instance of VelocityEngine created and initialized in the first
step. Regardless of the model used, it is necessary to address the same set of
possible exceptions. This set includes ResourceNotFoundException, ParseEr-
rorException, and Exception. The first two are Velocity exceptions specified in
the org.apache.velocity.exception package. The last is the standard java.lang.
Exception. The ResourceNotFoundException is thrown when Velocity is
unable to locate the specified template. The ParseErrorException is thrown
when Velocity is unable to parse the template. Finally, a generic Exception is
thrown if any other problem occurs during template acquisition.

With a copy of the template in place, you can proceed to create and populate a
context. You begin by constructing an instance of VelocityContext. Population
of the context consists of calls to VelocityContext's put method, each of which
provides a key and an associated Java Object. For a typical Velocity application,
most of the processing will be centered on context population. It is here that
the data and tools required for generation of dynamic content are made avail-
able to the template designer.

Now that you have template and context in hand, the next step is to merge
these items. This causes the references in the template to be replaced with data
obtained from the context. The merge is accomplished by calling the merge()
method on the Template instance obtained earlier. Template's merge() method
requires two arguments. The first is a context, which can be any object imple-

U n d e r s t a n d i n g Te m p l a t e s a n d C o n t e x t54

menting the Context interface; in this case, you pass the instance of Velocity-
Context created and populated earlier in the application. The second required
argument is an object of type java.io.Writer, or more specifically of a type
derived from Writer. The Writer object is used as the destination of the
processed template.

Finally, you render the output. Since you used a StringWriter for the merge
operation, rendering involves no more than calling toString() on the Writer and
sending its output to an appropriate location. The output looks like that shown
in Listing 6.2.

What's Next

This chapter covered the basics of Velocity templates and contexts. We pre-
sented a sample application demonstrating the use of templates and contexts
and discussed it in detail. Armed with this information, you should be ready to
design basic templates and/or develop simple template-processing applica-
tions. However, a couple stumbling blocks remain in the path to utilizing Veloc-
ity for more advanced template-processing tasks. To clear the obstacles, we
first need to take our discussion of Velocity references beyond the arm-waving
explanations employed so far. That is the goal of our next chapter.

What's Next 55

In the previous chapter, we provided a brief introduction to Velocity refer-
ences and even made use of such references in our club membership appli-
cation template. However, we repeatedly deferred a detailed discussion of

references in an attempt to ease the initial learning curve. Now that you have
handle on what Velocity is about and how a basic application works, it is time
to talk about references in detail. Until you have a reasonably good grasp of
Velocity references, much of the power of Velocity remains beyond reach.

Reference Types

As we hinted in the previous chapter, there is much more to Velocity references
than the ability to reference a simple string value stored in the context. A refer-
ence can in fact refer to any Java Object placed in the context. It is important to
note that our use of Object refers to a true Java Object—that is, an instantiated
object that satisfies the condition of being an instance of java.lang.Object. Nei-
ther primitive types nor purely static classes satisfy this condition and thus can-
not be placed in the context.

We mentioned previously that the name of a Velocity reference is, minus the
prefix, the same as the key used to store the referenced object in the context.
However, this is not entirely true—or perhaps it would be more appropriate to
say that this is not the whole truth. While all valid Velocity reference names do
in fact include the name used for the context key, some correspond to more
than a stringified version of the Context object and thus require more in the

Exploring References

C H A P T E R 7

57

way of a name. In all, three distinct types of Velocity references exist, each with
its own naming convention. We discuss the types—which include variables,
methods, and properties—in the following sections.

Variables
All of the Velocity references we have so far encountered are of the variable

variety. A reference of this type corresponds to a Java Object that implicitly pro-
vides a stringified representation of its value through the use of its toString()
method. Given that the root of the Java class hierarchy, Java’s Object class, pro-
vides a toString() implementation, any object in a Velocity context is fair game
for a variable reference. Of course, the toString() implementation provided by
the Object class returns only a string containing the name of the associated
class and the hex representation of the object’s hash code, which is unlikely to
be of much use for anything other than debugging. A more practical example of
a Velocity variable reference is one that refers to an instance of one of Java’s
numeric wrapper classes, such as Integer or Float.

While Java’s wrapper classes are likely to be targets for Velocity variable refer-
ences, such references are certainly not limited to instances of built-in Java
classes. Just as Java classes like Integer and Float override toString() in order
to provide a more appropriate and meaningful string representation, a devel-
oper may overload a custom class’s toString() implementation to the same end.
To get a better feeling for how this all works, let’s take a look at an example that
involves several variable references.

We’ll start by defining a couple of custom classes that will highlight the rele-
vance of the toString() method. Listings 7.1 and 7.2 define two trivial classes,
each representing a single string value stored as a public data member; while
using public member data is typically a bad idea, we do so here to underscore
the fact that Velocity obtains its stringified representation through toString()
rather than through direct member data access. As you can see from the two
listings, the only significant difference in functionality is that the Override class
overrides toString(), while the NoOverride class relies on the default toString()
inherited from Object.

E x p l o r i n g R e f e r e n c e s58

public class NoOverride

{

public final String value = "toString() not overridden";

}

Listing 7.1 The NoOverride class definition.

TEAMFL
Y

Team-Fly®

Reference Types 59

public class Override

{

public final String value = “toString() overridden”;

public String toString()

{

return (value);

}

}

Listing 7.2 The Override class definition.

The template implemented for this example is shown in Listing 7.3. In addition
to demonstrating variable references for our user-defined classes, the template
includes variable references intended to map to a generic Java Object, a Java
Integer object, and a Java Float object. When this template is processed using
the code in Listing 7.4, the generated output looks like that shown in Listing 7.5.
Note that aside from context population, the source in Listing 7.4 is nearly iden-
tical to that in Listing 6.4; the only other differences are in class and template
(file and variable) naming. Except where there is an overriding need to do
otherwise, we will limit the driver source for further examples to that demon-
strating the manner in which the context is populated.

A variable reference for a generic Java Object

Value of generic Object is $genericObject

A variable reference for an Integer object

Value of Integer object is $integerObject

A variable reference for a Float object

Value of Float object is $floatObject

A variable reference for a custom object with no toString() override

Value of user object with default toString() is $userNoOverride

A variable reference for a custom object with a toString() override

Value of user object with overridden toString() is $userOverride

Listing 7.3 The template for the variable reference example.

import java.io.StringWriter;

import org.apache.velocity.Template;

Listing 7.4 The driver code for the variable reference example. (continues)

E x p l o r i n g R e f e r e n c e s60

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

import org.apache.velocity.exception.*;

public class VarRef

{

public static void main(String[] args)

{

// Initialize template engine

try

{

Velocity.init();

}

catch(Exception x)

{

System.err.println("Failed to initialize Velocity: " + x);

System.exit(1);

}

// Obtain a template

Template varTemplate = null;

try

{

varTemplate = Velocity.getTemplate("VarRef.vm");

}

catch(ResourceNotFoundException rnfX)

{

System.err.println("Template not found: " + rnfX);

System.exit(1);

}

catch(ParseErrorException peX)

{

System.err.println("Failed to parse template: " + peX);

System.exit(1);

}

catch(Exception x)

{

System.err.println("Failed to initialize template: " + x);

System.exit(1);

}

// Create context

VelocityContext context = new VelocityContext();

// Populate context

context.put("genericObject", new Object());

Listing 7.4 The driver code for the variable reference example. (continues)

Reference Types 61

context.put("integerObject", new Integer(10));

context.put("floatObject", new Float(3.1415));

context.put("userNoOverride", new NoOverride());

context.put("userOverride", new Override());

// Merge template and context

StringWriter writer = new StringWriter();

try

{

varTemplate.merge(context, writer);

}

catch(ResourceNotFoundException rnfX)

{

System.err.println("Template not found on merge: " + rnfX);

System.exit(1);

}

catch(ParseErrorException peX)

{

System.err.println("Failed to parse template on merge: " +

peX);

System.exit(1);

}

catch(MethodInvocationException miX)

{

System.err.println("Application method exception: " + miX);

System.exit(1);

}

catch(Exception x)

{

System.err.println("Failed to merge template: " + x);

System.exit(1);

}

// Render merged content

System.out.println(writer.toString());

}

}

Listing 7.4 The driver code for the variable reference example. (continued)

Value of generic Object is java.lang.Object@cdedfd

Value of Integer object is 10

Listing 7.5 Output from the variable reference example application. (continues)

E x p l o r i n g R e f e r e n c e s62

Value of Float object is 3.1415

Value of user object with default toString() is NoOverride@bf2d5e

Value of user object with overridden toString() is toString()

overridden

Listing 7.5 Output from the variable reference example application. (continued)

As you can see in Listing 7.5, the Velocity references corresponding to our
NoOverride class, which lacks an overridden toString() method, result in out-
put similar to that of the generic Java Object. This is because Velocity uses
toString() to obtain the stringified value and pays no attention to the underlying
member data itself. Since the toString() method used by our NoOverride class
is in fact borrowed from the Java Object class, the similarity of the output is not
surprising. In the case of our Override object, the variable reference results in
precisely the value provided by Override’s toString() method. Since the Java In-
teger and Float classes implement their own toString() methods in a manner
appropriate for their respective types, the corresponding references generate
equally appropriate output.

Getting back to reference names, a quick comparison of the keys used in the
context population code (Listing 7.4) and the reference names used in the tem-
plate (Listing 7.3) yields the following relationship:

genericObject => $genericObject

integerObject => $integerObject

floatObject => $floatObject

userNoOverride => $userNoOverride

userOverride => $userOverride

It is clear that except for the $ prefix, the key and reference names are identi-
cal. This relationship is not a coincidence. In the case of variable references,
our previous assertions regarding the relationship between key and reference
names are entirely accurate. That is, a variable reference name is the context
key prefixed with a $ (or a $! in the case of quiet notation, which we discuss
later in this chapter).

More precisely, using Velocity’s lingo, the name of a valid context key accessi-
ble via a variable reference must conform to VTL Identifier syntax. A VTL iden-

tifier is a string that begins with an alphabetic character and thereafter consists
only of alphabetic characters, numeric characters, hyphens (-), and under-
scores (_). Characters are defined as alphabetic or numeric relative to the stan-
dard ASCII character set (i.e., alphabetic characters consist of upper and lower
case A through Z, and numeric characters consists of 0 through 9). A Velocity

variable reference, then, is just the corresponding key’s VTL Identifier prefixed
with a $ (or $!).

Methods
As with variable references, Velocity method reference names include a VTL
Identifier prefixed with a $. However, in the case of method references, the
name is further qualified by a VTL Method Body. The VTL Method Body consists
of a VTL Identifier, an opening parenthesis, an optional comma-delimited argu-
ment list, and a closing parenthesis. A dot (.) separates the initial VTL Identifier
from the VTL Method Body. Examples of method references include the fol-
lowing:

$date.changeTo(2003, "March", 2)

$car.newColor("Blue")

$document.print()

The syntax and semantics of the portion of the reference name that precedes
the initial dot are identical to those described for variable references. That is,
this portion of the reference name contains the VTL Identifier that serves as the
context key for the desired Context object. The remaining portion of the Veloc-
ity method reference provides the name of and arguments for a Java method
implemented by the referenced Java object. In order for Velocity to access the
referenced method, the method must be declared as public and further must be
a member of a public class.

Velocity’s method references are used in much the same way as its variable ref-
erences. A method reference is placed at that point in the template where its ac-
tion should be invoked. As intuition probably suggests, any given Velocity
reference is processed after those references that occur earlier in the template
and before those that occur later in the template. As such, evaluation of Veloc-
ity references should be considered a sequential process, with actions invoked
by earlier references potentially affecting the behavior of later references.

When a method reference corresponds to a Java method that returns a value,
the template processing proceeds in a manner similar to that employed for vari-
able reference processing. After the Java method is executed, Velocity stringi-
fies the return value by invoking that object’s toString() method. Should the
return value be a primitive type rather than a Java Object, Velocity first con-
verts the value to the appropriate Java wrapper type (e.g., int is converted to In-
teger, boolean is converted to Boolean, and so forth). In either case, the
resulting string replaces the method reference in the final template output.

In order to get a better feel for how Velocity’s method references are used, let’s
put them to work in a simple example. Listing 7.6 provides a Java class repre-

Reference Types 63

E x p l o r i n g R e f e r e n c e s64

public class Auto

{

public void defineType(String make, String model)

{

this.make = make;

this.model = model;

}

public void defineColor(String color)

{

this.color = color;

}

public void defineYear(Integer year)

{

this.year = year;

}

public String printSpecs()

{

return (color + " " + year + " " + make + " " + model);

}

private String make;

private String model;

private String color;

private Integer year;

}

Listing 7.6 An automobile specification class.

The code necessary for populating a context with an instance of our Auto class
looks like this:

context.put("car", new Auto());

The instance of Auto might then be accessed and manipulated by the template
shown in Listing 7.7. This template uses Velocity method references to define
the automobile specifications by way of the object’s defineType(), define-
Color(), and defineYear() methods. Then, the object’s printSpecs() method is
invoked, again by way of a method reference, in order to obtain a string con-

senting some basic automobile specifications. The specifications include
make, model, color, and year. Methods are provided for defining the value of
each of these specifications. Additionally, a method is provided for displaying
the defined values.

Reference Types 65

Define the make and model of the automobile

Defining automobile type...$car.defineType("Chevrolet", "Cavalier")

Define the color of the automobile

Defining automobile color...$car.defineColor("Blue")

Define the year of the automobile

Defining automobile year...$car.defineYear(1997)

Display the automobile specifications

$car.printSpecs()

Listing 7.7 The automobile specification template.

Defining automobile type...

Defining automobile color...

Defining automobile year...

Blue 1997 Chevrolet Cavalier

Listing 7.8 Results from processing the automobile specifications template.

One important aspect of Velocity method references that we have so far deftly
sidestepped is that of parameter type. Any value inserted into, or extracted
from, a Velocity template is handled as if it were a string. As we mentioned pre-
viously, any non-string value inserted into a template, via a variable reference or
method reference return value, is implicitly stringified using the corresponding
object’s toString() method. However, things are not quite so straightforward
when it comes to extracting values from the template—as happens when Ve-
locity processes the arguments provided by method references.

Being only a template language, as opposed to a high-level programming lan-
guage, the Velocity template syntax does not provide a sophisticated typing
mechanism. As such, the Velocity template engine expects all method reference
parameters to be strings. String values are specified explicitly in templates by
quoting the string value with either single quotes (e.g., ‘stringValue’) or double
quotes (e.g., “stringValue”). Velocity also supports implicit string specification

taining the defined automobile specifications. The string is added to the tem-
plate output, as seen in Listing 7.8.

for the case of integer values in the range supported by Java’s Integer type; it is
not necessary to quote such values. This support does not extend either to in-
teger types outside the range of Integer (e.g., long) or to other numeric types
(e.g., float, double); proper handling of such parameter values requires meth-
ods on the Java side that accept String values and provide their own user-de-
fined type conversions. Enhanced support for numeric types is likely to find its
way into future versions of Velocity.

Properties
Velocity property references are essentially an extension to Velocity method
references that address a particular class of methods. Using introspection, Ve-
locity offers an alternate interface for public Java methods that have names
starting with either set or get. This alternate interface allows the template to ac-
cess such methods as if they were instead ordinary object properties, resulting
in template code that is cleaner and more readable. Where a Velocity method
reference might require that a template designer access a piece of data using
something like $obj.getValue(), a property reference allows the same piece of
data to be accessed with $obj.Value.

The functionality of the Velocity property mechanism goes a bit further than
that implied by our brief example. In addition to providing an alternate inter-
face, it does so in a case-insensitive manner. Upon encountering $obj.Value in a
template, Velocity would first look for a method named getValue() and, if that
were not found, it would look for a method named getvalue(). In other words,
the property reference would initially be treated in a manner equivalent to that
of the method reference $obj.getValue(). If Velocity were unable to match the
reference to an appropriate Java method, it would next consider the property
reference as equivalent to the method reference $obj.getvalue() and once again
try to find a corresponding Java method. Likewise, the property reference
$obj.value would first be treated as equivalent to $obj.getvalue() and then, if
necessary, $obj.getValue().

In addition to eliminating issues of case, the property mechanism supports the
alternate interface for objects implementing get() methods, such as those spec-
ified by the following prototypes:

Object get(Object key);

String get(String key);

The first prototype is identical to that specified by Java’s Map class, correctly
indicating that Velocity’s property references are applicable to objects of any
class that implements the Map interface, assuming those objects do in fact key
their entries with strings. The second prototype likely provides what is a more
appropriate prototype for a user-defined implementation, given that everything

E x p l o r i n g R e f e r e n c e s66

taken from the template and returned to the template is either explicitly or im-
plicitly handled as a string.

As we did for Velocity’s variable and method references, we now present a sim-
ple example demonstrating the use of property references. We again use the
Auto class introduced in the last section; however, the printSpecs() method is
now replaced with three new methods, each of which returns one piece of what
printSpecs() previously provided. The new methods are named getType(), get-
Color(), and getYear(), and they return the automobile make and model, color,
and year, respectively. The getYear() method returns an object of type Integer,
which as previously discussed is implicitly converted to a string by way of its
toString() method.

Reference Types 67

public class Auto

{

public void defineType(String make, String model)

{

this.make = make;

this.model = model;

}

public void defineColor(String color)

{

this.color = color;

}

public void defineYear(Integer year)

{

this.year = year;

}

public String getType()

{

return (make + " " + model);

}

public String getColor()

{

return (color);

}

public Integer getYear()

{

return (year);

}

Listing 7.9 Our revised Auto class with support for the property reference interface. (continues)

E x p l o r i n g R e f e r e n c e s68

private String make;

private String model;

private String color;

private Integer year;

}

Listing 7.9 Our revised Auto class with support for the property reference interface. (continued)

The template implemented for our property reference example is shown in List-
ing 7.10. The first half of the template, in which the values for the automobile
specifications are defined, is identical to that used for the method reference ex-
ample (Listing 7.7). The latter half of the template demonstrates three tech-
niques for accessing the Auto object’s properties. With the first, the property
names begin with uppercase letters, matching the case used for the corre-
sponding Java methods. With the second, the property names begin with low-
ercase letters. With the last, the property values are obtained through the
equivalent method references. As shown in Listing 7.11, the output is the same
regardless of the technique used. Velocity’s property references simply provide
an alternate interface to the template designer; behind the scenes, the same
Java methods are invoked in the same manner.

Define the make and model of the automobile

Defining automobile type...$car.defineType("Chevrolet", "Cavalier")

Define the color of the automobile

Defining automobile color...$car.defineColor("Blue")

Define the year of the automobile

Defining automobile year...$car.defineYear(1997)

Display the automobile specifications (upper case properties)

$car.Color $car.Year $car.Type

Display the automobile specifications (lower case properties)

$car.color $car.year $car.type

Display the automobile specifications (method references)

$car.getColor() $car.getYear() $car.getType()

Listing 7.10 A template demonstrating the use of property references.

TEAMFL
Y

Team-Fly®

Reference Types 69

Defining automobile type...

Defining automobile color...

Defining automobile year...

Blue 1997 Chevrolet Cavalier

Blue 1997 Chevrolet Cavalier

Blue 1997 Chevrolet Cavalier

Listing 7.11 Results from processing the automobile specification template.

Instead of providing separate property access methods, suppose our Auto class
implemented a key-based approach to property access. If implemented in a
manner similar to that shown in Listing 7.12, Velocity’s introspection would pro-
vide continued support for the property references defined in the previous ex-
ample. In processing an occurrence of $car.Type, Velocity would check for a
Java method capable of handling a call to get(“Type”). Such a method, if found,
would be invoked only if Velocity’s introspection failed to find both getType()
and gettype(). The same resolution would be carried out for $car.Color and
$car.Year. Given that the string comparisons in our get() implementation are
carried out with equalsIgnoreCase(), the property references $car.type,
$car.color, and $car.year would also remain valid.

public String get(String item)
{

if (item.equalsIgnoreCase("type"))
{

return (make + " " + model);
}
else
if (item.equalsIgnoreCase("color"))
{

return (color);
}
else
if (item.equalsIgnoreCase("year"))
{

return (year.toString());
}
else
{

return ("");
}

}

Listing 7.12 A key-based implementation of property access for the Auto class.

Formal Reference Notation

So far in our examples and discussion, we have limited ourselves to the use of
Velocity’s shorthand, or informal, reference notation. Velocity also provides a
formal notation, which some people argue improves template readability.
Regardless of your preference, it is important to understand the formal nota-
tion, because it is sometimes required in order to avoid ambiguity in your tem-
plates. For example, suppose you have a need to produce a series of URLs of
the form http://www.my.site/pageN.html, where the N in pageN.html corre-
sponds to a page number that is to be generated dynamically (e.g., page2.html,
page99.html). An attempt to provide the page number through a Velocity vari-
able reference, using the shorthand notation, would result in template code
similar to http://www.my.site/page$number.html. This template code is prob-
lematic in that $number.html looks just like a Velocity property reference for an
html property associated with the $number object. Having no way to determine
your intent, Velocity just assumes a reference. If a reference is incorrectly as-
sumed, chance are that the reference either will fail to resolve or will resolve to
an unintended property. In either case, the final result is likely to be undesirable
output.

If we instead use a Velocity method reference to generate the page numbers for
our URLs, we run into a similar problem. The template code now looks some-
thing like http://www.my.site/page$number.getNext().html. From Velocity’s
perspective, this is a request for the html property associated with the object re-
turned by the $number.getNext() method reference. Again, this almost cer-
tainly results in undesirable output. If a Velocity property reference is used in
place of the method reference, the template code becomes http://www.my.site
/page$number.next.html. Since $number.next is equivalent to $number.get-
Next(), the template processing would fail in the same manner as that de-
scribed for the method reference.

The easiest way to avoid the template-processing issues associated with the
ambiguity introduced by Velocity’s shorthand notation is to apply Velocity’s for-
mal reference notation. The formal notation clearly delimits the reference, pro-
viding Velocity with sufficient information to determine your intent in cases
where it might otherwise be ambiguous. The reference is delimited with curly
braces ({}) and the $ prefix remains outside the braces. Otherwise, the refer-
ence syntax remains the same. The URL template code we have been discuss-
ing in this section may be rewritten using formal notation as follows:

http://www.my.site/page${number}.html

http://www.my.site/page${number.getNext()}.html

http://www.my.site/page${number.next}.html

E x p l o r i n g R e f e r e n c e s70

Quiet Notation

We mentioned earlier in this chapter that Velocity references may be prefixed
with a $!, in addition to the standard $ prefix that we have so far adhered to in
our examples. The $! provides what Velocity refers to as quiet notation. Quiet
notation affects the manner in which the template engine processes references
that it is unable to resolve. In most cases, Velocity treats a standard reference—
one prefixed with $—as static content if it is unable to locate an appropriate ob-
ject or method through the provided context. This is illustrated by the first
three lines of text in Listing 7.14, which is the result of processing the template
in Listing 7.13 using an empty context. In contrast, the final three lines of text in
Listing 7.14, which correspond to the template lines incorporating quiet nota-
tion, show no evidence of associated references. Velocity’s quiet notation in ef-
fect replaces unresolved references with empty strings (i.e., “”) where they
would otherwise be treated as ordinary static content.

Quiet Notation 71

Standard variable reference notation
This variable reference is loud...$object.

Standard method reference notation
This method reference is loud...$object.getValue().

Standard property reference notation
This property reference is loud...$object.Value.

Quiet variable reference notation
This variable reference is quiet...$!object.

Quiet method reference notation
This method reference is quiet...$!object.getValue().

Quiet property reference notation
This property reference is quiet...$!object.Value.

Listing 7.13 A template illustrating the use of both standard and quiet reference notation.

This variable reference is loud...$object.

This method reference is loud...$object.getValue().

This property reference is loud...$object.Value.

Listing 7.14 The template output demonstrating the difference between standard and quiet
reference notation. (continues)

E x p l o r i n g R e f e r e n c e s72

This variable reference is quiet....

This method reference is quiet....

This property reference is quiet....

Listing 7.14 The template output demonstrating the difference between standard and quiet
reference notation. (continued)

Although our example used the shorthand reference notation, quiet notation is
equally valid when combined with Velocity’s formal reference notation. Imple-
mented using formal reference notation, the template in Listing 7.13 would look
like that shown in Listing 7.15. The output generated by the two templates is
identical, assuming the absence of a valid context entry. The important thing to
note when combining quiet and formal notation is that the ! character is placed
outside the curly braces.

Standard variable reference notation

This variable reference is loud...${object}.

Standard method reference notation

This method reference is loud...${object.getValue()}.

Standard property reference notation

This property reference is loud...${object.Value}.

Quiet variable reference notation

This variable reference is quiet...$!{object}.

Quiet method reference notation

This method reference is quiet...$!{object.getValue()}.

Quiet property reference notation

This property reference is quiet...$!{object.Value}.

Listing 7.15 The template from Listing 7.13 implemented using formal reference notation.

Escaping References

While discussing quiet notation in the previous section, we demonstrated that
template content that looks like a Velocity reference but does not resolve to a
Context object or method is treated as static context where quiet notation is
not employed. This behavior is often useful where the nature of a template re-
quires static content that, by coincidence, looks like a Velocity reference. For

example, many scripting languages prefix their variables with a $. If tasked to
write code generation templates for such a language, knowing that the lan-
guage’s variables will typically be passed through as-is is likely to eliminate a
significant amount of tedious work. However, note that this technique is not
guaranteed to work. In some cases Velocity will force an entity prefixed with a
$ to be treated as a reference, regardless of the contents of the context. An ex-
ample is ${foo:bar}, which Velocity attempts to treat as a reference, resulting in
a parse error since the colon is not allowed by the VTL Identifier syntax.

So how might a special case such as ${foo:bar} be handled? Or more generally,
how do you explicitly prevent Velocity from interpreting as a reference some-
thing that looks like a reference? Typically, the simplest solution is to escape the
reference. This is accomplished by inserting a backslash (\) before the refer-
ence’s $ prefix.

To further illustrate the nature of the problem, consider the template shown in
Listing 7.16. The first section of the template provides a brief description of
naming for Velocity’s variable reference. The static content includes $email and
$name, which should appear as-is in the final output. If the context lacked ob-
jects corresponding to these reference-like strings, Velocity would produce the
desired output, and all would be well. However, the second part of the template
provides contact information, which is generated dynamically. As it turns out,
the dynamic portion of the template also makes use of $name and $email, but
in this case they are intended as true Velocity references rather than as static
content.

Escaping References 73

Description of names used for standard, shorthand variable

references

Velocity variable references are built upon the VTL identifiers

used to key the associated objects in the context. For example,

an object keyed with the string 'email' would be referenced from

the template with $email. Likewise, an object keyed with the

string ‘name’ would be referenced with $name.

Contact information

For more on this topic, contact $name at $email.

Listing 7.16 A template that illustrates the need to escape references.

If the context contains objects keyed with name and email, then Velocity re-
places all occurrences of $name and $email with the corresponding object val-
ues. If on the other hand the context does not contain objects keyed with either
name or email, then Velocity doesn’t replace any of the occurrences of $name
and $email. Clearly, neither action provides the desired result. The solution is to
escape the occurrences of $name and $email wherever Velocity should treat
them as simple static content. This is illustrated in Listing 7.17. Assuming that

the context included the string “John” keyed with “name” and doe@my.site
keyed with “email”, the processed template would produce the output shown in
Listing 7.18.

E x p l o r i n g R e f e r e n c e s74

Description of names used for standard, shorthand variable references

Velocity variable references are built upon the VTL identifiers

used to key the associated objects in the context. For example,

an object keyed with the string 'email' would be referenced from

the template with \$email. Likewise, an object keyed with the

string 'name' would be referenced with \$name.

Contact information

For more on this topic, contact $name at $email.

Listing 7.17 A template using escaped references.

Velocity variable references are built upon the VTL identifiers

used to key the associated objects in the context. For example,

an object keyed with the string ‘email’ would be referenced from

the template with $email. Likewise, an object keyed with the

string 'name' would be referenced with $name.

For more on this topic, contact John at doe@my.site.

Listing 7.18 Output produced by the template in Listing 7.17.

The fact that a backslash serves to escape a Velocity reference raises the ques-
tion of what to do when you actually want a literal backslash to precede a ref-
erence. In other words, how do you escape an escape? The answer is to add yet
more backslashes. The number of backslashes required depends both on how
many literal backslashes are required and whether the reference itself is to be
escaped. Velocity processes the backslashes from left to right, with each pair of
backslashes being reduced to a single backslash. If after processing the leading
backslashes, one pair at a time, a single backslash remains, the reference is es-
caped; otherwise, the reference is processed as usual. That is, an odd number
of backslashes results in the reference being escaped, while an even number re-
sults in the reference being replaced by the value of its underlying Context ob-
ject. Illustrating this behavior, Listing 7.19 provides a template that prefixes a
given reference with varying numbers of backslashes, and Listing 7.20 shows
the final output generated by this template.

Escaping References 75

Escaping a reference for which a corresponding context object exists

$object.getValue()

\$object.getValue()

\\$object.getValue()

\\\$object.getValue()

\\\\$object.getValue()

\\\\\$object.getValue()

\\\\\\$object.getValue()

Listing 7.19 A template showing the use of varying numbers of backslash reference escapes.

formal

$object.getValue()

\formal

\$object.getValue()

\\formal

\\$object.getValue()

\\\formal

Listing 7.20 Output produced by the template in Listing 7.19.

Should your template make use of a reference that is not guaranteed to have a
corresponding Context object—or something that just looks like a reference
but is intended as a literal—you need to be aware that Velocity complicates
matters with regard to leading backslashes. The current behavior of 1.3.1 de-
pends on whether there are an even or odd number of backslashes. When the
number of backslashes is even, all of the backslashes are treated as literals,
with nothing escaped. In contrast, when the number of backslashes is odd, each
pair starting from the left is treated as an escaped backslash, resulting in one
backslash in the output. The final backslash is treated as a literal. This is illus-
trated in Listings 7.21 and 7.22.

Escaping a reference for which no corresponding context object exists

$noobject.getValue()

\$noobject.getValue()

\\$noobject.getValue()

\\\$noobject.getValue()

\\\\$noobject.getValue()

\\\\\$noobject.getValue()

\\\\\\$noobject.getValue()

Listing 7.21 A template showing the use of varying numbers of backslashes preceding refer-
ences with no associated Context objects.

E x p l o r i n g R e f e r e n c e s76

$noobject.getValue()

\$noobject.getValue()

\\$noobject.getValue()

\\$noobject.getValue()

\\\\$noobject.getValue()

\\\$noobject.getValue()

\\\\\\$noobject.getValue()

Listing 7.22 Output produced by the template in Listing 7.21.

What’s Next

In this chapter, we provided an in-depth treatment of Velocity references, in-
cluding variable, method, and property references. We also examined Velocity’s
formal and quiet notations and reference escaping. At this point, you should
have most of the information that you need in order to work with Velocity ref-
erences. In the next chapter, we build on our knowledge of references and ex-
tend the power and functionality of templates by introducing directives.
Velocity’s directives take template design to the next level, allowing the tem-
plate designer access to a minimal set of constructs similar to those found in
many programming languages.

In the previous chapter, we nailed down the role of references in Velocity
templates. In addition to discussing the ability to obtain values directly
through variable and property references, we also covered method refer-

ences, which allow template designers to manipulate and access data through
custom Java methods that operate on referenced Context objects. Method ref-
erences provide a great deal of power and a range of functionality limited only
by the Java language itself and what it is capable of returning in the form of a
string. Although this functionality is likely sufficient to support anything that
might reasonably be expected in terms of template processing, Velocity takes
its template language a step further and provides shortcuts for many common
tasks. This is where Velocity directives come into play.

Directives provide support for controlling template processing flow, insertion
and manipulation of context values, inclusion of parsed and unparsed text, and
template code reuse through macros. As with references, Velocity directives
are identified by a special prefix character that causes the subsequent text to be
interpreted in a special manner. In the case of directives, the prefix character is
the pound sign (#). Velocity currently supports a total of 10 directives, some of
which are meaningful only when used in combination with others. In this chap-
ter, we cover each of the Velocity directives.

#stop

The first directive that we present, #stop, is intended primarily for debugging.
When the template engine encounters this directive, it terminates execution

Using Directives

C H A P T E R 8

77

and returns control to the calling program. More specifically, the process of
merging context and template terminates at the point of the #stop directive.
This process corresponds to the call to stopTemplate’s merge method in Listing
8.1. With the exception of some changes in naming and a couple of additional
print statements, the driver code in Listing 8.1 is identical to that used in the
previous chapter. Also as in the previous chapter, you should assume that the
code, except where noted, is used with only trivial modifications for all other
examples in this chapter.

U s i n g D i r e c t i v e s78

import java.io.StringWriter;

import org.apache.velocity.Template;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.exception.*;

public class Stop
{

public static void main(String[] args)
{

// Initialize template engine
try
{

Velocity.init();
}
catch(Exception x)
{

System.err.println("Failed to initialize Velocity: " + x);
System.exit(1);

}

// Obtain a template
Template stopTemplate = null;

try
{

stopTemplate = Velocity.getTemplate("Stop.vm");
}
catch(ResourceNotFoundException rnfX)
{

System.err.println("Template not found: " + rnfX);
System.exit(1);

}
catch(ParseErrorException peX)
{

System.err.println("Failed to parse template: " + peX);
System.exit(1);

Listing 8.1 The driver program used for the #stop directive example. (continues)

TEAMFL
Y

Team-Fly®

#stop 79

}
catch(Exception x)
{

System.err.println("Failed to initialize template: " + x);
System.exit(1);

}

// Create context
VelocityContext context = new VelocityContext();

// Populate context
context.put("before", "before the stop directive");
context.put("after", "after the stop directive");

// Merge template and context
StringWriter writer = new StringWriter();

try
{

System.out.println("***** Starting merge *****");
stopTemplate.merge(context, writer);
System.out.println("***** Returning from merge *****");

}
catch(ResourceNotFoundException rnfX)
{

System.err.println("Template not found on merge: " + rnfX);
System.exit(1);

}
catch(ParseErrorException peX)
{

System.err.println("Failed to parse template on merge: " +
peX);

System.exit(1);
}
catch(MethodInvocationException miX)
{

System.err.println("Application method exception: " + miX);
System.exit(1);

}
catch(Exception x)
{

System.err.println("Failed to merge template: " + x);
System.exit(1);

}

// Render merged content
System.out.println(writer.toString());

}
}

Listing 8.1 The driver program used for the #stop directive example. (continued)

Applying the code shown in Listing 8.1 to the template shown in Listing 8.2
demonstrates the effect of Velocity’s #stop directive. This is illustrated in Listing
8.3, where you can see from the program’s output that the #stop directive caused
the call to merge to return before the template was fully processed. Template
content prior to the #stop directive was processed normally, including proper
reference handling, while template content subsequent to the #stop directive
was not processed at all. The program’s non-template related output (i.e., the
messages noting the start and stop of the merge) demonstrates that #stop does
not introduce any sort of error condition, but instead simply causes the merge
process to terminate early and the associated method to return normally.

U s i n g D i r e c t i v e s80

Start processing

=== Start of template ===

The portion of the template preceding the stop directive is

processed normally.

This is $before.

Stop processing

#stop

The portion of the template following the stop directive is

not processed.

This is $after.

Listing 8.2 A template using the #stop directive.

***** Starting merge *****

***** Returning from merge *****

=== Start of template ===

The portion of the template preceding the stop directive is

processed normally.

This is before the stop directive.

Listing 8.3 Results from processing the template in Listing 8.2.

#include

The #include directive performs precisely the task that its name implies. It al-
lows the template designer to include content external to the template file.

More specifically, it allows for the inclusion of static content from one or more
external sources. The content is included at the point where the #include di-
rective occurs, effectively replacing the directive in the output. As an example,
consider the template shown in Listing 8.4. Except for the three daily specials,
the template consists of only static content. Supposing that the specials are
likely to change daily based only on the whim of the chef, we plan for the spe-
cials to be recorded in simple text files and implement #include directives to re-
trieve the contents of those files. If the files were defined as shown in Listing
8.5, the output resulting from the processed template would look like that
shown in Listing 8.6.

#stop 81

Generic welcome

Welcome to Gem's Bar and Grill!

We are conveniently located at the corner of 5th and Ives

in beautiful lower downtown.

Our three specials of the day are as follows:

Present today's specials

#include("special-1.txt")

#include("special-2.txt")

#include("special-3.txt")

Generic info

We are open from 4:00 P.M. to 2:00 A.M. daily.

Call 555-1234 for more information.

Listing 8.4 A template using #include directives.

special-1.txt: Quesadilla Pie — $7.95

special-2.txt: Gem's Famous Cheeseburger — $5.95

special-3.txt: Soup and Salad — $4.95

Listing 8.5 File definitions used for the #include examples.

Welcome to Gem's Bar and Grill!

We are conveniently located at the corner of 5th and Ives
in beautiful lower downtown.

Listing 8.6 Results from processing the template in Listing 8.4. (continues)

U s i n g D i r e c t i v e s82

Our three specials of the day are as follows:
Quesadilla Pie — $7.95
Gem's Famous Cheeseburger — $5.95
Soup and Salad — $4.95

We are open from 4:00 P.M. to 2:00 A.M. daily.

Call 555-1234 for more information.

Listing 8.6 Results from processing the template in Listing 8.4. (continued)

While there is not much more to be said about the services provided by Veloc-
ity’s #include directive, the directive’s syntax warrants further discussion. In
our daily special example, each include directive specifies a single file by way
of a string literal representation of the corresponding file’s name. The #include
directive allows you to expand on this approach in two ways. First, you can use
a Velocity reference in place of a string literal to specify the file you want to in-
clude. If for example the context was populated using the code shown in List-
ing 8.7, the template in Listing 8.4 could be rewritten as shown in Listing 8.8
without any change in the output generated during template processing.

// Populate context with file names used by #include
context.put("special-1", "special-1.txt");
context.put("special-2", "special-2.txt");
context.put("special-3", "special-3.txt");

Listing 8.7 Java code that populates the context with filenames used by the #include directive.

Generic welcome
Welcome to Gem's Bar and Grill!

We are conveniently located at the corner of 5th and Ives
in beautiful lower downtown.

Our three specials of the day are as follows:
Present today's specials
#include($special-1)
#include($special-2)
#include($special-3)

Generic info
We are open from 4:00 P.M. to 2:00 A.M. daily.

Call 555-1234 for more information.

Listing 8.8 A template demonstrating the use of Velocity references with the #include directive.

The second manner in which the #include directive allows you to extend the
syntax demonstrated in our first example involves the number of files provided
to the directive. Instead of repeating the directive for each included file,
whether using a string literal or a reference, you can specify multiple files with
a single #include directive. The three #include directives in each of Listings 8.4
and 8.8 could, respectively, be rewritten equivalently as follows:

#include(“special-1.txt” “special-2.txt” “special-3.txt”)

#include($special-1 $special-2 $special-3)

We have so far neglected one important piece of information regarding the use
of Velocity’s #include directive, namely the manner in which it finds the speci-
fied files. Although the name of the file is provided to the directive directly, no
mention is made of the file’s location relative to the overall directory structure.
Velocity handles this ambiguity by assuming that all filenames are specified rel-
ative to a template root, which by default is the directory from which the appli-
cation is being run. This default template root location may be overridden
through Velocity’s runtime configuration properties, as we discuss in Chapter
10, “Taking Control of Velocity.”

#parse

Velocity’s #parse directive is quite similar to its #include directive in that both
provide for the inclusion of content taken from an external file located in the
template root. The primary distinguishing feature between the two directives is
that while #include treats its content as static, #parse treats its content as yet
another template to be processed relative to the current context. In other
words, the #parse directive allows you to nest templates within templates. To
get a feel for how the #parse directive might be used, let’s consider an en-
hancement to the daily special example presented in the previous section. Sup-
pose that management wants all of the prices to be pulled from the store’s
database rather than being hardcoded into the included files.

The first step is to modify the context population code so that the current
prices are obtained and inserted into the context. This is shown in Listing 8.9,
where the variables qPiePrice, cBurgerPrice, and sSaladPrice represent prices
obtained from the store’s database; each value is keyed by a string that matches
the respective variable name.

#parse 83

// Populate context

context.put("qPiePrice", qPiePrice);

context.put("cBurgerPrice", cBurgerPrice);

context.put("sSaladPrice", sSaladPrice);

Listing 8.9 Our modified application code that inserts the daily special prices into the context.

Next, we create new files representing the daily specials. These files are really
just modifications of those defined in Listing 8.5. The new files have been re-
named to reflect that they now contain template content, and the prices have
been replaced with Velocity variable references. The resulting files are defined
in Listing 8.10.

U s i n g D i r e c t i v e s84

special-1.vm: Quesadilla Pie — $qPiePrice

special-2.vm: Gem's Famous Cheeseburger — $cBurgerPrice

special-3.vm: Soup and Salad — $sSaladPrice

Listing 8.10 Files definitions used for #parse examples.

Finally, we update the template shown in Listing 8.4, replacing the #include di-
rectives with #parse directives and changing the filenames as appropriate. The
new template is shown in Listing 8.11, and the resulting output is identical to
that shown in Listing 8.6.

Generic welcome

Welcome to Gem's Bar and Grill!

We are conveniently located at the corner of 5th and Ives

in beautiful lower downtown.

Our three specials of the day are as follows:

Present today's specials

#parse("special-1.vm")

#parse("special-2.vm")

#parse("special-3.vm")

Generic info

We are open from 4:00 P.M. to 2:00 A.M. daily.

Call 555-1234 for more information.

Listing 8.11 A template using #parse directives.

As with the #include directive, filenames may be provided via Velocity refer-
ences. However, unlike the #include directive, the #parse directive does not
support multiple arguments. So while we might legitimately replace the #parse
lines in Listing 8.11 with something like

#parse($special-1)

#parse($special-2)

#parse($special-3)

using a single #parse such as

#parse($special-1 $special-2 $special-3)

would not generate the desired results.

The #parse directive also differs from the #include directive in terms of nesting
and recursion, neither of which makes sense in the context of an #include.
Nesting refers to placing a #parse directive inside a file that is itself included by
way of a #parse directive. Recursion refers to a special case of nesting in which
a #parse directive references its own file. By default,Velocity limits the #parse
directive to at most 10 levels of nesting; however, this default may be overrid-
den through Velocity’s runtime configuration properties, as you’ll learn in Chap-
ter 10.

As an example of #parse nesting and recursion, consider the following tem-
plate, which is named Myself.vm:

Before parse directive.

#parse(“Myself.vm”)

After parse directive.

Assuming that the maximum parse depth is overridden and set to a value of 3,
this template would generate the following output:

Before parse directive.

Before parse directive.

Before parse directive.

After parse directive.

After parse directive.

After parse directive.

Each time the file is processed, the first line is output and then #parse causes
the template engine to in effect start processing a new copy of the file. This re-
peats until the last #parse directive is processed or the maximum parse depth is
reached; it is always the latter in the case of recursion. Then, as the template en-
gine returns from each #parse directive, it resumes processing where it left off,
generating the last line in our simple template.

#set

Unlike Velocity’s other directives, which act upon a template directly, the #set
directive affects the context associated with a template. You can use the #set di-
rective either to update an existing context entry or to create a new entry. The
entries, whether new or updated, are immediately available to the template;
however, they become available to the underlying application only after the
template and context are merged. To illustrate the fundamentals of the #set di-
rective, let’s dive right into a simple example. Assume that we have an existing

#set 85

context entry that holds the string value “oldValue” keyed with the string “ex-
isting”. Suppose that, from a template, we want to change the value of this entry
from “oldValue” to “newValue” and add a new context entry with a key of “new”
and a value of “newEntry”. The template in Listing 8.12 satisfies these require-
ments, as you can see in the resulting output (Listing 8.13).

U s i n g D i r e c t i v e s86

Before set directives

The initial value keyed by "existing" is $existing.

The initial value keyed by "new" is $!new.

#set($existing = "newValue")

#set($new = "newEntry")

After set directives

The final value keyed by "existing" is $existing.

The final value keyed by "new" is $!new.

Listing 8.12 A template that uses the #set directive to update one entry and add another.

The initial value keyed by "existing" is oldValue.

The initial value keyed by "new" is .

The final value keyed by "existing" is newValue.

The final value keyed by "new" is newEntry.

Listing 8.13 Results from processing the template in Listing 8.12.

Note that while the template seemingly has immediate access to the updated
and new values, this is not the case for the underlying application. In reality, all
template-initiated changes to the context occur during the merge phase. Since
during the merge context changes are carried out in the same order as they are
encountered in the template, references in the template receive the appropri-
ately updated values. However, the underlying application doesn’t know any-
thing about these changes until after the fact. Consider, for example, the Java
code shown in Listing 8.14. This code prints the values of the “existing” and
“new” context entries before and after the call to merge. When the underlying
application is run, this code generates the following output:

Before merge: oldValue/null

After merge: newValue/newEntry

#set 87

System.out.println("Before merge: " + context.get("existing")

+ "/" + context.get("new"));

setTemplate.merge(context, writer);

System.out.println("After merge: " + context.get("existing")

+ "/" + context.get("new"));

Listing 8.14 Code querying the context before and after the merge of a template using #set
directives.

In introducing the #set directive in the previous example, we limited ourselves
to its simplest usage, namely that of assigning a string literal to a variable refer-
ence. While all forms of the #set directive adhere to the general #set(reference
= value) syntax introduced in the first example, the diversity of the reference
and value types allowed by the #set directive greatly enhances its power and
usefulness. Starting with the left-hand side of the equal sign, the reference pro-
vided to the #set directive can be either a variable reference or a property ref-
erence. We have already seen an example #set with a variable reference, so let’s
take a look at one using a property reference.

As we discussed in Chapter 7, property references are tied to introspection. In
that chapter, we provided examples where introspection uncovered get meth-
ods that allowed object property values to be read through property references.
In a similar manner, Velocity also allows the use of property references for
modification of object property values through set methods of the form set-
Value(value). As an example, consider the SetObj class in Listing 8.15, which
provides setValue() and getValue() methods for access to its value property. As-
suming an instance of this class is stored in the context with the key setObj, the
property reference setObj.value can be combined with the #set directive to up-
date the value property. The template code would look like this:

#set($setObj.value = “some value”)

U s i n g D i r e c t i v e s88

public class SetObj

{

public void setValue(String value)

{

this.value = value;

}

public String getValue()

{

return (value);

}

private String value;

}

Listing 8.15 A simple class providing a set and get method for access to its single property.

Moving on to the right side of the #set directive’s equal sign, we find that the
value may be provided using a variety of types and operations. The types in-
clude string literals, integer literals, references, range operators, array lists, and
Boolean values. Note that the #set directive does not allow you to assign a null,
regardless of value type; if an attempt is made to assign from something that re-
turns a null (e.g., a method reference), the value of the reference on the left-
hand side remains unchanged. The operations supported by the #set directive
include simple arithmetic and Boolean evaluation. We have already seen exam-
ples involving string literal values, so let’s start with references.

The #set directive supports values of all three types of Velocity references: vari-
able, property, and method. This is demonstrated in the template shown in List-
ing 8.16, where it is assumed that the context contains two instances of the
SetObj class from Listing 8.15. The template starts out by creating a variable ref-
erence holding the value “A value”. It then uses this variable reference to set the
value property associated with the setObjA context object. The setObjA con-
text object is then used to set the value property of the setObjB context object,
first with a property reference and then with a method reference. At each step,
the template outputs the value “A value”.

Create a variable reference

#set($varRef = "A value"")

Listing 8.16 A template demonstrating the use of variable, property, and method references as
values for the #set directive. (continues)

TEAMFL
Y

Team-Fly®

#set 89

Use a variable reference as the value

#set($setObjA.value = $varRef)

$setObjA.value

Use a property reference to set the value

#set($setObjB.value = $setObjA.value)

$setObjB.value

Use a method reference to set the value

#set($setObjB.value = $setObjA.getValue())

$setObjB.value

Listing 8.16 A template demonstrating the use of variable, property, and method references as
values for the #set directive. (continued)

Separately, we have looked at the use of string literals and references within the
#set directive, but what if you would like to combine the two in a single direc-
tive? This is not a problem. Simply include the reference inside the double
quotes (“”) enclosing the string literal. Velocity will automatically interpolate
the contents of a double-quoted value; the string literal portion will be passed
on as is and the reference will be processed in the usual manner. If on the other
hand you need to include a string literal that only looks like a reference, use sin-
gle quotes (‘’) to enclose the value. Velocity will interpret the single quotes as a
request to skip interpolation of the value.

Next, let’s consider #set directive values built from range operators and array
lists. The range operator takes the form [m..n], where m and n are either literal
integers or references that correspond to integer values. Like the range opera-
tor, an array list is defined with square brackets; however, its contents are
comma-delimited and allowed to take on values of any type supported by the
#set directive, including ranges and even other array lists. A template imple-
menting both range and array lists is shown in Listing 8.17, and its correspond-
ing output appears in Listing 8.18.

This template first uses the #set directive to create a range using integer literals
and then creates a second range using variable references holding integer val-
ues. It then proceeds to use the #set directive to create an array list using a
string literal, an integer literal, a range, a Boolean value, and variable reference.
At various points in the template, the newly created references are queried for
information regarding their content and properties. The referenced objects be-
have as instances of Java’s ArrayList class, and thus we adhere to the ArrayList
interface when working with the new range and list references.

U s i n g D i r e c t i v e s90

Set range with literals

#set($range1 = [0..9])

#set($m = 1)

#set($n = 10)

Set range with references

#set($range2 = [$m..$n])

Use ArrayList interface to access first and last

First value of range2: $range2.get(0)

Last value of range2 : $range2.get(9)

Build list with a string literal, numeric literal,

boolean value, and variable reference

#set($list = ["string", 2, [2..-5], false, $m])

Use ArrayList interface to access index of some value

Index of $m : $list.indexOf(1)

Index of false : $list.indexOf(false)

Index of 2 : $list.indexOf(2)

Index of string: $list.indexOf("string")

Get the size and fourth element of the nested range

Size of nested range: $list.get(2).size()

Fourth element of nested range: $list.get(2).get(3)

Listing 8.17 A template that uses range operators and array lists with the #set directive.

First value of range2: 1

Last value of range2 : 10

Index of 1 : 4

Index of false : 3

Index of 2 : 1

Index of string: 0

Size of nested range: 8

Fourth element of nested range: -1

Listing 8.18 Results from processing the template in Listing 8.17.

Next on the list of supported #set directive value types is the Boolean type. As
you might expect, the acceptable values are limited to true and false. If the val-

ues were all that Velocity provided, the type wouldn’t buy much for the tem-
plate designer since it is easy enough to store a Boolean value with a string or
number. However, Velocity also provides support for the Boolean operations
AND, OR, and NOT. As with many programming languages, Velocity uses short-
circuit evaluation for its Boolean operations, meaning that it evaluates only as
much of an expression as is necessary to determine the result. For example, if
the first element a Boolean AND is false, then there is no need to evaluate fur-
ther since the result of the AND must be false. Likewise, a Boolean OR where
the first element is true must evaluate to true, so there is no need to consider
the second element.

In Velocity templates, the Boolean AND, OR, and NOT operations are repre-
sented by the symbols &&, ||, and !, respectively, and Boolean values are repre-
sented by the literals true and false. Parentheses are allowed in Boolean
expressions for the purpose of grouping, and references representing Boolean
values are allowed anywhere that a Boolean literal is allowed. We’ve shown a
template demonstrating various Boolean operations in Listing 8.19 and the cor-
responding output in Listing 8.20.

#set 91

Initialize some references with boolean values

#set($bValA = true)

#set($bValB = false)

#set($bValC = false)

Perform some boolean operations

#set($taf = $bValA && $bValB)

true AND false = $taf

#set($tanf = $bValA && !$bValB)

true AND NOT false = $tanf

#set($tof = $bValA || $bValC)

true OR false = $tof

#set($ntof = !$bValA || $bValC)

NOT true OR false = $ntof

#set($paoa = ($bValA && $bValB) || (!$bValC && !$bValB))

(true AND false) OR (NOT false AND NOT false) = $paoa

Listing 8.19 A template demonstrating the use of Boolean values and operations in #set
directives.

U s i n g D i r e c t i v e s92

true AND false = false

true AND NOT false = true

true OR false = true

NOT true OR false = false

(true AND false) OR (NOT false AND NOT false) = true

Listing 8.20 Results from processing the template in Listing 8.19.

Finally we come to the last value type supported by Velocity’s #set directive: in-
teger literals. The range of integers supported is the same as that represented
by Java’s Integer class, which includes –2147483648 through 2147483647. Val-
ues outside this range result in integer overflow. Only standard base-10 integer
notation is allowed for integer values; attempts to provide values making use of
decimal points, scientific notation, or other bases result in template parse er-
rors.

In addition to allowing the template designer to store integer values, the #set di-
rective provides for simple arithmetic operations. The operations include addi-
tion, subtraction, multiplication, integer division, and modulus. Velocity
template code represents these operations with the symbols +, -, *, /, and %, re-
spectively. Standard operator precedence applies, and parentheses are allowed
for expressing precedence explicitly. References representing integer values
that meet the criteria for Velocity’s numeric literals may be used interchange-
ably with numeric literals in arithmetic expressions. The template in Listing
8.21 demonstrates the use of integer literals and integer operations with the
#set directive, including cases of integer overflow. Listing 8.22 shows the output
generated by this template.

Set maximum and minimum Integer values

#set($max = 2147483647)

#set($min = -2147483648)

Demonstrate overflow

#set($maxo = $max + 1)

$max + 1 = $maxo

#set($mino = $min - 1)

$min - 1 = $mino

Listing 8.21 A template demonstrating the use of integer literals and operations in #set
directives. (continues)

#end 93

Addition

#set($add = 1 + 1)

1 + 1 = $add

Subtraciton

#set($sub = 1 - 2)

1 - 2 = $sub

Multiplication

#set($mult = 2 * 2)

2 * 2 = $mult

Integer division

#set($div = 10 / 6)

10 / 6 = $div

Modulus

#set($mod = 10 % 6)

10 % 6 = $mod

Compound expression

#set($comp = ((7 / 3) * 3) + (7 % 3))

((7 / 3) * 3) + (7 % 3) = $comp

Listing 8.21 A template demonstrating the use of integer literals and operations in #set
directives. (continued)

2147483647 + 1 = -2147483648

-2147483648 - 1 = 2147483647

1 + 1 = 2

1 - 2 = -1

2 * 2 = 4

10 / 6 = 1

10 % 6 = 4

((7 / 3) * 3) + (7 % 3) = 7

Listing 8.22 Results from processing the template in Listing 8.21.

#end

The #end directive is used to signal the end of a block of template code. It is
meaningful only when combined with certain other Velocity directives, includ-
ing #if, #foreach, and #macro. When the template engine encounters an #end di-
rective, it considers the preceding #if, #foreach, or #macro directive to be
complete. You’ll see examples of the #end directive at work when we discuss
those directives that rely on #end.

#if

As its name implies, Velocity’s #if directive provides support for conditional
template code processing. In its simplest incarnation, the #if directive begins a
block of conditional template code and the #end directive terminates that
block. If the associated condition evaluates to true, the block is processed and
the results are inserted into the output. In contrast, if the condition evaluates to
false, the block is ignored with regard to the output. A condition is considered
to be true if it either evaluates to a Boolean value of true or is a reference that
corresponds to a non-null value; otherwise, it evaluates to false. A template that
demonstrates some simple uses of the #if directive is shown in Listing 8.23; the
corresponding output appears in Listing 8.24.

U s i n g D i r e c t i v e s94

Trivial example with boolean literal

#if (true)

The condition literal is true!

#end

Examples using boolean conditions

#set($condition = true)

#if($condition)

The condition reference is true!

#end

#set($condition = false)

#if($condition)

This test is never output! The condition reference is false.

#end

Example using non-boolean condition

#set($refValue = "A string")

#if($refValue)

A string is true!

#end

Example using non-existent (null) condition

#if ($nullValue)

This text is never output! Reference is null.

#end

Listing 8.23 A template demonstrating simple uses of the #if directive.

#if 95

The condition literal is true!

The condition reference is true!

A string is true!

Listing 8.24 Results from processing the template in Listing 8.23.

In the previous example, we limited ourselves to conditions consisting of sim-
ple references and Boolean literals. However, the #if directive also supports ex-
pressions that evaluate to a Boolean value. Such expressions include those
built upon Boolean and relational operators. We discussed the Boolean opera-
tors earlier; they include AND (&&), OR (||), and NOT (!). The relational opera-
tors include less-than, greater-than, less-than-equal, greater-than-equal,
not-equal, and equal, represented in Velocity templates by <, >, <=, >=, !=, and
==, respectively. The relational operators operate only on integer literals and
references corresponding to integer values that meet the criteria of Velocity’s
integer literals. As usual, you may use parentheses in expressions to explicitly
state evaluation precedence. The template in Listing 8.25 demonstrates the use
of Boolean, relational, and mixed expressions in #if directives.

Example using boolean operators

#if (($bValA && !$bValB) || $bValB)

Boolean expression evaluates to true.

#end

Examples using relational operators

#if ($iVal < 1) less-than #end

#if ($iVal > 1) greater-than #end

#if ($iVal <= 1) less-than-equal #end

#if ($iVal >= 1) greater-than-equal #end

#if ($iVal != 1) not-equal #end

#if ($iVal == 1) equal #end

Example mixing boolean and relational operators

#if (($iVal >= 1) && (!($iVal == 1) || $bValB))

The expression evaluates to true.

#end

Listing 8.25 A template demonstrating Boolean and relational expressions used for
#if directive conditions.

While relational and Boolean operators provide the power to express quite
complex conditions, such conditions often come at the expense of readability
and maintainability. In many cases, the complexity of a condition can be more
clearly and easily expressed by taking advantage of the fact that Velocity sup-
ports the nesting of #if directives. Consider, for example, the template in Listing
8.26. The first #if directive represents the conjunction of four individual condi-
tions. While the compound condition is perfectly valid, understanding its over-
all meaning requires a bit of effort. Also, by the nature of its complexity, it is
more susceptible to the introduction of errors during code maintenance. The
second #if directive—or more accurately the nested block of #if directives—de-
fines exactly the same overall condition, but it does so with four simplified con-
ditions that are easier to both read and maintain. For any given set of values for
$x, $y, $allow, and $sleeping, both approaches behave in the same manner.

U s i n g D i r e c t i v e s96

Single complex condition

#if (($x < 5) && ($y < 3 || $y >= 9) && $allow && !$sleeping)

Take action

#end

Complex condition rewritten as four simple nested conditions

#if ($x < 5)

#if ($y < 3 || $y >= 9)

#if ($allow)

#if (!$sleeping)

Take action

#end

#end

#end

#end

Listing 8.26 A template demonstrating nested #if directives.

#else

The #else directive is valid only when used in conjunction with Velocity’s #if di-
rective. It serves a dual role, terminating one block of template code and initi-
ating another. In its first role, it behaves in a manner similar to a simple #if
directive’s associated #end directive, providing the closing delimiter for the
block of template code processed when the #if directive’s condition evaluates
to true. In its second role, it serves as the opening delimiter for a block of tem-
plate code processed when the #if directive’s condition evaluates to false. In
short, the #else directive’s purpose is to specify an alternate template code
block for cases where an #if condition is not satisfied. The alternate block is ter-

minated by an #end directive. The template in Listing 8.27 provides an example
of the #else directive in action. Its output is shown in Listing 8.28.

#elseif 97

An if/else with a true condition

#set($condition = true)

#if ($condition)

With a condition of $condition, we get the 'if' block.

#else

With a condition of $condition, we get the 'else' block.

#end

Try one with a false condition

#set($condition = false)

#if ($condition)

With a condition of $condition, we get the 'if' block.

#else

With a condition of $condition, we get the 'else' block.

#end

Listing 8.27 A template demonstrating the use of #else directives.

With a condition of true, we get the 'if' block.

With a condition of false, we get the 'else' block.

Listing 8.28 Results from processing the template in Listing 8.27.

#elseif

Not surprisingly, Velocity’s #elseif directive serves as a combination of the #else
and #if directives. Where the #else directive provides what amounts to an un-
conditional alternative to an #if directive’s template code block, the #elseif di-
rective allows for conditional alternatives. As with the #else directive, the
#elseif directive serves two roles, namely a closing delimiter on a previous tem-
plate code block and an opening delimiter for an alternate block. The alternate
block is processed only if the condition associated with the #elseif directive
evaluates to true. In the simplest cases, the #end directive is used to terminate
the block associated with an #elseif directive. Listing 8.29 shows a template im-
plemented with #elseif directives. This template is essentially the same as that
shown in Listing 8.27, but the #else directives are replaced with #elseif direc-
tives specifying conditions that are the complement of the conditions of their

associated #if directives. As illustrated by Listing 8.30, this template behaves in
the same manner as that of Listing 8.27.

U s i n g D i r e c t i v e s98

An if/elseif with a true condition

#set($condition = true)

#if ($condition)

With a condition of $condition, we get the 'if' block.

#elseif (!$condition)

With a condition of $condition, we get the 'elseif' block.

#end

Try one with a false condition

#set($condition = false)

#if ($condition)

With a condition of $condition, we get the 'if' block.

#elseif (!$condition)

With a condition of $condition, we get the 'elseif' block.

#end

Listing 8.29 A template demonstrating the use of #elseif directives.

With a condition of true, we get the 'if' block.

With a condition of false, we get the 'elseif' block.

Listing 8.30 Results from processing the template in Listing 8.29.

While the template in Listing 8.29 clearly demonstrates the use of Velocity’s #el-
seif directive, it doesn’t necessarily show what advantages the directive pro-
vides over the simpler #else directive. The first advantage is that the condition
associated with #elseif is not by definition tied to the condition of the corre-
sponding #if. In contrast, the condition implicitly associated with the #else di-
rective is by definition the complement of its corresponding #if’s condition,
assuming that there are no associated #elseif’s. The second advantage is that
multiple #elseif directives may be associated with a single #if directive. In this
case, the conditions of the #elseif’s are evaluated in order with the first that
evaluates to true determining which alternate block of template code is
processed. All other blocks associated with the overall #if construct are ig-
nored.

When multiple #elseif directives occur in a single #if construct, each #elseif
serves to terminate the code block of the previous #elseif, or the previous #if in

TEAMFL
Y

Team-Fly®

the case of the first #elseif. If explicit conditions are to be associated with each
alternative, then the end of the block of the last #elseif is delimited with an #end
directive. If on the other hand an unconditional alternative is necessary for
cases where all of the explicit conditions evaluate to false, then an #else direc-
tive may be used to delimit the block of the last #elseif and introduce the default
alternative. As usual, the code block introduced by the #else directive is termi-
nated with an #end directive. An example demonstrating multiple #elseif direc-
tives, with and without final #else directives, is shown in Listing 8.31.

#elseif 99

#set($isDawn = false)

#set($isNoon = false)

#set($isDusk = false)

Multiple #elseif directives

#if ($isDawn)

The sun is rising.

#elseif ($isNoon)

The sun is overhead.

#elseif ($isDusk)

The sun is setting.

#end

Multiple #elseif directives with closing #else directive

#if ($isDawn)

The sun is rising.

#elseif ($isNoon)

The sun is overhead.

#elseif ($isDusk)

The sun is setting.

#else

What time is it?

#end

Listing 8.31 A template demonstrating the use of multiple #elseif directives, without and with a
closing #else directive.

As with simple #if directives, nesting is allowed. In general, any #if construct,
consisting of all the code from the initial #if to its matching #end—including
any #elseif and #else directives—may be nested inside any other #if, #elseif, or
#else directive code block. The template in Listing 8.32 demonstrates the nest-
ing of #if constructs within #if, #elseif, and #else directives. The outer construct
first checks to see whether $red is true. If not, it moves on to a test of $blue. If
neither is true, it defaults to the block associated with its #else directive. The
outer construct selected determines which inner construct is to be processed.
For example, if it turned out that $red was true, the template engine would then
process the first #if’s inner block, evaluating $blue, and if necessary $yellow, in

order to determine the template’s output. All other inner constructs would be
ignored. Similar processing would occur for the other outer-block alternatives,
were they to be selected instead. Velocity does support multiple levels of nest-
ing, though this is not shown in the listing.

U s i n g D i r e c t i v e s100

#if ($red) ## outer

#if ($blue) ## inner

Purple

#elseif ($yellow) ## inner

Orange

#else ## inner

Red and What?

#end ## inner

#elseif ($blue) ##outer

#if ($yellow) ## inner

Green

#else ## inner

Blue and What?

#end ## inner

#else ## outer

#if ($yellow) ## inner

We only mix yellow with red or blue

#end ## inner

#end ## outer

Listing 8.32 A template demonstrating the use of nested #if, #elseif, and #else directives.

#foreach

Velocity’s #foreach directive provides the template designer with the ability to
process the same block of template code multiple times. More accurately, it
provides the ability to iterate over a list of items, processing the associated
block of code once for each item in the list. The #foreach directive itself begins
the block, and as with the #if related directives, an #end directive terminates
the code block. The #foreach directive takes the form #foreach (REF in LIST),
where LIST corresponds to the list of items iterated over and REF corresponds
to a Velocity variable reference that refers to the current list item. The number
of times the #foreach directive’s associated code block is processed by the tem-
plate engine is equal to the size of LIST. The item to which REF refers changes
on each iteration, moving sequentially from the first to the last item.

There is some flexibility in the manner in which the #foreach directive’s LIST is
specified. The template in Listing 8.33 demonstrates two of the simpler cases.

In the first, LIST is provided via the range operator, resulting in #foreach iterat-
ing over the list 1, 2, 3, 4, 5. In the second, LIST is provided by way of an array
list, resulting in iteration over the list “one”, “two”, “three”, “four”, “five”. The
output generated when this template is processed is shown in Listing 8.34.

#foreach 101

Iterating over a range...

#foreach ($item in [1..5])

On this iteration, \$item refers to the value $item.

#end

Iterating over an array list...

#foreach ($item in ["one", "two", "three", "four", "five"])

On this iteration, \$item refers to the value $item.

#end

Listing 8.33 A template demonstrating the use of #foreach directives.

Iterating over a range...

On this iteration, $item refers to the value 1.

On this iteration, $item refers to the value 2.

On this iteration, $item refers to the value 3.

On this iteration, $item refers to the value 4.

On this iteration, $item refers to the value 5.

Iterating over an array list...

On this iteration, $item refers to the value one.

On this iteration, $item refers to the value two.

On this iteration, $item refers to the value three.

On this iteration, $item refers to the value four.

On this iteration, $item refers to the value five.

Listing 8.34 Results from processing the template in Listing 8.33.

In addition to specifying fixed lists for the #foreach directive using range oper-
ators and array lists, Velocity allows you to provide the list by way of the con-
text associated with the template. To use a context object as the #foreach list,
the object must either correspond to a Java Object array (i.e., Object[]) or an
object that implements one of a number of Java interfaces. The allowable in-
terfaces include Collection, Map, Iterator, and Enumeration. The template
shown in Listing 8.35 includes an example of each option. With a context popu-
lated as shown in Listing 8.36, the output generated by the template appears as
shown in Listing 8.37.

U s i n g D i r e c t i v e s102

Object Array

Iterating over Object array...

#foreach ($elem in $objectArray)

The element is $elem on this iteration.

#end

Map Interface

Iterating over Hashtable values...

#foreach ($value in $hashtable)

The value is $value on this iteration.

#end

Collection Interface

Iterating over Hashtable keys...

#foreach ($key in $hashtable.keySet())

The key is $key on this iteration.

#end

Enumeration Interface

Iterating over Vector elements...

#foreach ($elem in $vector.elements())

The element is $elem on this iteration.

#end

Iterator Interface

Iterating over LinkedList elements...

#foreach ($elem in $linkedList.listIterator())

The element is $elem on this iteration.

#end

Listing 8.35 A template demonstrating the use of the #foreach directive with lists taken from
the context.

// Create and initialize context objects

Object[] objAr = new Object [3];

objAr[0] = "0";

objAr[1] = new Integer(1);

objAr[2] = "2";

Hashtable hash = new Hashtable();

hash.put("A", new Integer(65));

hash.put("B", new Integer(66));

hash.put("C", new Integer(67));

Listing 8.36 Context population code used with the template in Listing 8.35 to generate the out-
put shown in Listing 8.37. (continues)

#foreach 103

Vector vec = new Vector();

vec.add("Hickory");

vec.add("Dickory");

vec.add("Dock");

LinkedList list = new LinkedList();

list.add("Red");

list.add("Green");

list.add("Blue");

// Populate context

context.put("objectArray", objAr);

context.put("hashtable", hash);

context.put("vector", vec);

context.put("linkedList", list);

Listing 8.36 Context population code used with the template in Listing 8.35 to generate the out-
put shown in Listing 8.37. (continued)

Iterating over Object array...

The element is 0 on this iteration.

The element is 1 on this iteration.

The element is 2 on this iteration.

Iterating over Hashtable values...

The value is 65 on this iteration.

The value is 67 on this iteration.

The value is 66 on this iteration.

Iterating over Hashtable keys...

The key is A on this iteration.

The key is C on this iteration.

The key is B on this iteration.

Iterating over Vector elements...

The element is Hickory on this iteration.

The element is Dickory on this iteration.

The element is Dock on this iteration.

Iterating over LinkedList elements...

The element is Red on this iteration.

The element is Green on this iteration.

The element is Blue on this iteration.

Listing 8.37 Output generated by the template in Listing 8.35 when using the context defined in
Listing 8.36.

As you can see in the Hashtable list output in Listing 8.37, the order in which list
items are iterated over is not necessarily the same order in which they were in-
serted into the list. The #foreach directive will step through the list in order,
moving from the first to the last list element; however, the order itself is deter-
mined by the container, just as it is when the same type of iteration is per-
formed directly in Java code.

In the previous examples, we made no attempt to explicitly distinguish between
iterations. We just let the current list item reference speak for itself. However,
it is frequently useful to know which iteration—such as when it is necessary to
label output or take special actions on certain iterations. Although you could
use the #set directive to initialize and increment a loop counter, this approach
is rather tedious. Velocity addresses this issue by providing a special variable
reference that serves as a loop counter for the #foreach directive. By default,
this variable is named $velocityCount, but the name may be overridden via Ve-
locity’s runtime configuration. The template in Listing 8.38 provides an example
of using Velocity’s built-in loop counter. Listing 8.39 shows the corresponding
output.

U s i n g D i r e c t i v e s104

Track the iteration with Velocity's loop counter

#foreach ($outer in [-1..1])

Iteration $velocityCount of outer loop: $outer

#foreach ($inner in ["one", "two"])

Iteration $velocityCount of inner loop: $inner

#end

#end

Listing 8.38 A template demonstrating the use of Velocity’s loop counter reference.

Iteration 1 of outer loop: -1

Iteration 1 of inner loop: one

Iteration 2 of inner loop: two

Iteration 2 of outer loop: 0

Iteration 1 of inner loop: one

Iteration 2 of inner loop: two

Iteration 3 of outer loop: 1

Iteration 1 of inner loop: one

Iteration 2 of inner loop: two

Listing 8.39 Results from processing the template in Listing 8.38.

Besides simply demonstrating Velocity’s loop counter, Listings 8.38 and 8.39
highlight two other important aspects of the #foreach directive. The first is that
Velocity supports nested #foreach directives; it also supports nesting of other

directives, though that is now shown in this example. The second is that the
loop counter is scoped to the current #foreach directive. In effect, when the
template engine moves from an outer #foreach to an inner #foreach, the loop
count for the outer directive is saved and a new counter is initialized for the
inner directive. When control returns to the outer directive, its saved value is re-
stored to the counter.

#macro

Velocity’s #macro directive provides a mechanism for template code reuse. It
serves much the same purpose as the #parse directive but provides significantly
more flexibility and control. Instead of importing and processing all of the tem-
plate code contained by an arbitrary file, the #macro directive provides a syn-
tax for specifying and naming a block of template code, including support for
input parameters. The block may be specified either in a macro library or inline
in a regular template file. Once defined, the code block is accessed using nor-
mal Velocity directive syntax. Since Chapter 9, “Introducing Velocimacros,” is
dedicated to the #macro directive, we provide only a quick taste here. Listing
8.40 illustrates a simple example of an inline #macro directive. A macro named
sayHi is defined inline in the template file and invoked as #sayHi(). The gener-
ated output is, of course, none other than the ubiquitous Hello world.

Escaping Directives 105

Define inline macro for this template

#macro(sayHi)

Hello world

#end

Invoke the macro using normal directive syntax

#sayHi()

Listing 8.40 A template demonstrating the use of the #macro directive.

Escaping Directives

Sometimes there is a need to prevent the template engine from processing a di-
rective. An obvious example is the case of dynamic content that discusses Ve-
locity template syntax. In such a case, it is frequently necessary to treat as
literals entities that look like Velocity directives. As with Velocity’s references,
this is accomplished with the use of a backslash (\) escape character. In fact,
the process of escaping directives is essentially identical to that we already dis-
cussed for references in Chapter 7, including escaping the escape character and

differences in behavior between cases where the reference/directive is and isn’t
defined. Recall that binding is from left to right, with each pair of escape char-
acters collapsing to a single backslash, though the behavior is somewhat more
erratic in the case where the directive (or macro) is not defined. Listings 8.41
and 8.42 provide a template and its corresponding output, respectively, that
summarize the behavior of directive escaping.

U s i n g D i r e c t i v e s106

Valid directive

Output for valid directive with varying numbers of escapes.

#include("info.txt")

\#include("info.txt")

\\#include("info.txt")

\\\#include("info.txt")

\\\\#include("info.txt")

\\\\\#include("info.txt")

Undefined directive/macro

Output for undefined directive/macro with varying numbers of escapes.

#xinclude("info.txt")

\#xinclude("info.txt")

\\#xinclude("info.txt")

\\\#xinclude("info.txt")

\\\\#xinclude("info.txt")

\\\\\#xinclude("info.txt")

Listing 8.41 A template demonstrating the use of directive escapes.

Output for valid directive with varying numbers of escapes.

Included information.

#include("info.txt")

\Included information.

\#include("info.txt")

\\Included information.

\\#include("info.txt")

Output for undefined directive/macro with varying numbers of escapes.

#xinclude("info.txt")

\#xinclude("info.txt")

\\#xinclude("info.txt")

\\\#xinclude("info.txt")

\\#xinclude("info.txt")

\\\\\#xinclude("info.txt")

Listing 8.42 Results from processing the template in Listing 8.41.

What’s Next

In this chapter, we provided a detailed discussion of Velocity directives, which
greatly extend the template-processing power available to template designers.
We offered numerous examples to demonstrate how you can use these direc-
tives to control processing flow, insert content, manipulate the context, and
reuse blocks of template code. The last directive, #macro, was only briefly in-
troduced. It is this directive to which we devote the next chapter.

What’s Next 107

TEAMFL
Y

Team-Fly®

In the previous chapter, we discussed all of Velocity’s directives, including
the #macro directive. However, we provided only a brief introduction to the
#macro directive since it is interesting enough to warrant its own chapter.

Here, we resume our discussion of #macro directives, or Velocimacros as they
are more affectionately known. We discuss argument passing, macro libraries,
runtime configuration, and other topics associated with Velocimacros.

Argument Passing

When we introduced the #macro directive in Chapter 8, we presented a simple
Hello World example. The template used for that example defines an inline Ve-
locimacro that outputs Hello world each time it is invoked. This macro is de-
fined so that no arguments are allowed in the macro invocation. Note that the
#macro directive itself always requires at least one argument, the first of which
specifies the name used to invoke the macro. However, the invocation of a
macro takes zero or more arguments, depending on its specification.

In order to allow the passing of arguments to a Velocimacro, you need only pro-
vide the #macro directive with a reference name for each argument to be
passed. The names are provided as arguments to the #macro directive, follow-
ing the macro name and separated by whitespace. Each reference name can
then be used in the macro’s code block in the same manner as any other Veloc-
ity variable reference. As with #foreach and the #if related directives, the code
block is terminated with an #end directive. As an example, let’s improve on the
Velocimacro in Listing 8.40 by providing the ability to say hello to a particular

Introducing Velocimacros

C H A P T E R 9

109

person, rather than the world in general. The new and improved macro is
shown in Listing 9.1. When processed, the template generates the string “Hello
Arthur!” followed by the string “Hello Zaphod!”.

I n t r o d u c i n g Ve l o c i m a c r o s110

Define inline macro for this template

#macro(sayHiTo $who)

Hello $who!

#end

Invoke the macro using normal directive syntax

#sayHiTo("Arthur")

#sayHiTo("Zaphod")

Listing 9.1 A template demonstrating the #macro directive with support for argument passing.

For a Velocimacro to be successfully invoked, the number of arguments in the
invocation must match exactly the number specified by the macro definition.
For example, if the macro in Listing 9.1 were called as #sayHiTo() or #say-
HiTo(“Zaphod” “Beeblebrox”), the invocation would be ignored. It follows that
Velocimacros do not provide support for default arguments; neither do Veloci-
macros support overloading. As such, there is no particularly clean way to han-
dle cases where a Velocimacro is intended to carry out a specific action that
only varies subtly based on argument number. In most such cases, multiple,
uniquely named macro definitions are required.

Although our examples have so far only demonstrated the use of string literals
as input parameters, Velocimacros also support integer literals, Booleans,
range operators, array lists, and Velocity references. Listing 9.2 shows a tem-
plate demonstrating macro definitions and invocations involving all of these
types. The first Velocimacro expects a string literal, an integer literal, and a
Boolean. The second expects a range and an array list. The last expects a Ve-
locity reference. Note that the argument lists for both the macro definitions and
invocations are space delimited, rather than comma delimited as is the case
with many common programming languages. The macros simply output the val-
ues of the provided arguments, as seen in Listing 9.3.

Define Velocimacros

(string literal - integer literal - boolean)

#macro(sib $string $int $bool)

The string is $string.

The integer is $int.

Listing 9.2 A template demonstrating the #macro directive used with various argument types.
(continues)

Argument Passing 111

The boolean is $bool.

#end

(range - array list)

#macro(ra $range $arrayList)

#foreach ($val in $range) $val #end

#foreach ($val in $arrayList) $val #end

#end

(Velocity reference)

#macro(r $vref)

The reference correspond to $vref

#end

Invoke Velocimacros

#sib("Hello" 42 true)

#ra([-9..-1] ["favorite", "color"])

#set($color = "Blue. No! Yellow!")

#r($color)

Listing 9.2 A template demonstrating the #macro directive used with various argument types.
(continued)

The string is Hello.

The integer is 42.

The boolean is true.

-9 -8 -7 -6 -5 -4 -3 -2 -1

favorite color

The reference correspond to Blue. No! Yellow!

Listing 9.3 Results from processing the template in Listing 9.2.

While argument handling for most of the types supported by Velocimacros is
straightforward and clearly illustrated by the previous example, the use of Ve-
locity references as input arguments requires further discussion. References
used for macro input are not limited to variable references, but may also in-
clude Velocity method and property references. Although this is certainly a
handy feature, some care is required to obtain the desired results. The trick to
using these references correctly is in understanding that they are passed by

name. That is, the reference is not evaluated until after it is received by the Ve-
locimacro. In order to clarify this notion, start by considering the FromFive
class shown in Listing 9.4. This class simply initializes an int property to the
value of 5 and decrements that value each time it is requested through the
class’s getNext() method.

I n t r o d u c i n g Ve l o c i m a c r o s112

public class FromFive

{

public FromFive()

{

nextValue = 5;

}

public Integer getNext()

{

return (new Integer(nextValue--));

}

public String toString()

{

return (String.valueOf(nextValue));

}

private int nextValue;

}

Listing 9.4 The FromFive class, which generates a sequence of decreasing integer values.

Next, assume that our application maintains a Velocity context populated with
three instances of the FromFive class that are keyed with the strings method-
Ref, propRef, and varRef. If this application then processes the template shown
in Listing 9.5, the output will appear as that shown in Listing 9.6. As the output
demonstrates, the value associated with the $ref reference in the countDown
Velocimacro changes each time it is evaluated for the cases of method and
property reference input. This is due to the fact that in these two cases $ref
stores the names $methodRef.getNext() and $propRef.next, respectively,
rather than the values those references evaluate to. In effect, $ref simply be-
comes an alias for the provided method or property reference. Although not as
obvious, the same is in fact true for the variable reference $varRef; the associ-
ated output differs only due to the fact that FromFive’s toString() method does
not decrement the value of an object’s nextValue property. If toString() were
modified to behave in the same manner as getNext(), then passing $varRef to
the countDown Velocimacro would also result in decrementing output.

Argument Passing 113

Evaluate provided reference six times.

#macro(countDown $ref)

$ref.. $ref.. $ref.. $ref.. $ref.. $ref

#end

Call countDown with a method reference

#countDown($methodRef.getNext())

Call countDown with a property reference

#countDown($propRef.next)

Call countDown with a variable reference

#countDown($varRef)

Listing 9.5 A template demonstrating the use of all three types of Velocity references with the
#macro directive.

5.. 4.. 3.. 2.. 1.. 0

5.. 4.. 3.. 2.. 1.. 0

5.. 5.. 5.. 5.. 5.. 5

Listing 9.6 Results from processing the template in Listing 9.5.

If it is necessary to pass by value the result of evaluating a Velocity reference,
the easiest solution is generally to use the #set directive to capture the value in
an independent variable reference and then pass that reference. As an example
of this approach, consider the template in Listing 9.7. This template’s inline
macro definitions are unchanged from those in Listing 9.5; however, we
changed the invocations to emulate pass-by-value behavior. Note that the new
template only emulates pass-by-value by way of the #set directive. Underneath
the wrappers, the call is still pass-by-name.

Evaluate provided reference six times.

#macro(countDown $ref)

$ref.. $ref.. $ref.. $ref.. $ref.. $ref

#end

Call countDown with the value of a method reference

#set($methodValue = $methodRef.getNext())

#countDown($methodValue)

Listing 9.7 A template demonstrating emulated pass-by-value behavior with a #macro directive.
(continues)

I n t r o d u c i n g Ve l o c i m a c r o s114

Call countDown with the value of a property reference

#set($propValue = $propRef.next)

#countDown($propValue)

Call countDown with the value of a variable reference

#set($varValue = $varRef)

#countDown($varValue)

Listing 9.7 A template demonstrating emulated pass-by-value behavior with a #macro directive.
(continued)

Inline vs. Library Macros

So far all of our Velocimacro examples have focused on inline definitions, since
this approach is most convenient for simple examples. While inline definitions
are perfectly appropriate in many cases, the fact that they are inline inherently
limits their power in terms of code reuse. The scope of an inline Velocimacro is
limited to the template file in which it is defined; more specifically, it is limited
to that part of the template file that follows the macro definition. Therefore,
other template files may not access such a macro. Attempts to pull a Veloci-
macro definition from one template into the scope of another by way of either
the #include or #parse directive will fail. The #include directive imports only
static content, so #macro directives would lose any special meaning. The
#parse directive does process the included text as normal template code, but it
does so at runtime. In contrast, Velocimacro calls are determined when the
template is first parsed by the template engine, well before any #parse direc-
tives have a chance to import external Velocimacro definitions.

So how do you share Velocimacros across multiple templates while avoiding a
lot of tedious copy and paste? The answer lies with Velocity’s support for macro
libraries. This feature allows you to create multiple macro libraries that appli-
cations may register through one of the available Velocimacro properties. Once
such a library is registered, any template processed by the application may in-
voke the Velocimacros from that library. We discuss the Velocimacro properties
later in this chapter and Velocity’s property system in general in Chapter 10,
“Taking Control of Velocity.” For now, suffice it to say that through the property
system, files containing #macro directives can serve as Velocimacro libraries
accessible to any and all templates.

If your Velocimacro library needs are modest, there is probably no reason to
bother with the Velocity property system at all. By default, the template engine
assumes that any file with the name VM_global_library.vm that is located in an

application’s directory is to be interpreted as a macro library for that applica-
tion. For example, if our template from Listing 9.5 is broken up into two files, as
shown in Listings 9.8 and 9.9, the output generated will remain the same (see
Listing 9.6). The only requirement is that the Velocimacro library be named
VM_global_library.vm.

Velocimacro Properties 115

Evaluate provided reference six times.

#macro(countDown $ref)

$ref.. $ref.. $ref.. $ref.. $ref.. $ref

#end

Listing 9.8 A macro library containing the Velocimacro originally defined in Listing 9.5. If Velocity
defaults are assumed, this file must be named VM_global_library.vm.

Call countDown with the value of a method reference

#countDown($methodRef.getNext())

Call countDown with the value of a property reference

#countDown($propRef.next)

Call countDown with the value of a variable reference

#countDown($varRef)

Listing 9.9 The template from Listing 9.5 after moving its Velocimacro to a macro library.

Velocimacro Properties

Velocity provides a number of configurable properties that affect the behavior
of Velocimacros. We discuss how these properties are set in Chapter 10, but for
now let’s examine the relevant names, descriptions, and default settings.

velocimacro.library
The library property is the one that we referred to in the previous section. This
property defines the names of the files that are to comprise an application’s Ve-
locimacro library. The names are taken relative to the currently configured tem-
plate path. If multiple files are to be included in the library, then they are
provided as a comma-separated list. The default value of the library property is
VM_global_library.vm.

velocimacro.permissions.allow.inline
The permissions.allow.inline property specifies whether inline Velocimacro de-
finitions are allowed--that is, whether a Velocimacro macro may be defined in a

non-library template file. If this property is set to false, inline Velocimacro defi-
nitions result in logged warning messages and are ignored by the template en-
gine. The default value for permissions.allow.inline is true.

velocimacro.permissions.allow.inline.to.replace.global
The permissions.allow.inline.to.replace.global property specifies whether an
inline Velocimacro is allowed to override a library Velocimacro with the same
name. This is, of course, meaningful only if the permissions.allow.inline prop-
erty is true; otherwise, inline definitions aren’t even permitted. If the permis-
sions.allow.inline.to.replace.global property is set to true, library Velocimacros
with the same names as inline Velocimacros are hidden by the inline versions.
If the property is set to false, library Velocimacros are protected from both ac-
cidental and intentional replacement by inline Velocimacros. The default value
for this property is false.

velocimacro.permissions.allow.inline.local.scope
The permissions.allow.inline.local.scope property specifies whether templates
should provide private namespaces with regard to Velocimacros. When this
property is set to true, private namespaces are enabled, and inline Velocimacro
definitions are visible only to the defining template. Private namespace support
also results in a template’s namespace being searched first whenever a Veloci-
macro definition is required. This latter feature allows a local Velocimacro def-
inition to override any other definition defined outside of the template. The
default value for the permissions.allow.inline.local.scope property is false.

velocimacro.context.localscope
The context.localscope property specifies the manner in which the #set direc-
tive affects the Velocity context when used within a Velocimacro. When this
property is set to true, the Velocimacro in effect receives its own local context.
Objects keyed into the context of the caller are not visible to the Velocimacro,
and changes made to the context from within the Velocimacro do not propagate
back to the caller. In contrast, a value of false places the caller’s context in a
scope that is both accessible to and modifiable from a Velocimacro. The default
value for the context.localscope property is false.

velocimacro.library.autoreload
The library.autoreload property specifies whether a modified Velocimacro li-
brary is automatically reloaded when one of its macros is invoked. If the prop-
erty is set to true, each call to a library Velocimacro will result in the

I n t r o d u c i n g Ve l o c i m a c r o s116

corresponding library being checked for modifications. If it is discovered that
such a library has been modified since last being loaded, Velocity will automat-
ically reload the library. If the property is set to false, Velocimacro libraries are
not checked for modifications once loaded. The default value for the library.au-
toreload property is false. The reload functionality provided by this property is
primarily intended for testing and debugging. If you find that you need to enable
this property, it is likely that you also need to disable the resource loader cache;
we discuss the property controlling this cache in the next chapter.

velocimacro.messages.on
The messages.on property specifies whether the template engine should gener-
ate additional informational log messages regarding inline Velocimacros. When
this property is set to true, additional messages are generated. When set to
false, the messages are suppressed. The default value for the messages.on prop-
erty is true.

Nesting and Recursion

So far, all of our Velocimacro examples have been limited to cases not requiring
nesting or recursion. Nesting, which is simply a case of calling one Velocimacro
from within another, is frequently useful in terms of code reuse. Without the
ability to nest macros, template code would need to be duplicated each time a
common task is performed by a Velocimacro. Recursion, which is a special case
of nesting where a Velocimacro calls itself, is less frequently needed; however,
there are certain types of problems for which recursion provides a very elegant
solution. Fortunately, Velocimacros support both nesting and recursion. An ex-
ample of both is illustrated in Listing 9.10. The recurs Velocimacro calls itself
the number of time specified by its $depth argument. The writeABC macro
demonstrates Velocimacro nesting by calling the getA and getBC Velocimacros,
the second of which in turn calls the getB and getC Velocimacros. Listing 9.11
shows the output generated by these macros.

Nesting and Recursion 117

A recursive Velocimacro
#macro(recurs $depth)

Entering at level $depth
#set($depth = $depth - 1)

#if ($depth > 0)
#recurs($depth)

Listing 9.10 A template demonstrating the use of nesting and recursion of Velocimacros.
(continues)

I n t r o d u c i n g Ve l o c i m a c r o s118

#end
#set($depth = $depth + 1)
Leaving from level $depth

#end

Nesting of Velocimacros
#macro(getA) A #end
#macro(getB) B #end
#macro(getC) C #end
#macro(getBC)

#getB()#getC()
#end
#macro(writeABC)

#getA()#getBC()
#end

#recurs(3)

#writeABC()

Listing 9.10 A template demonstrating the use of nesting and recursion of Velocimacros.
(continued)

Entering at level 3
Entering at level 2
Entering at level 1
Leaving from level 1
Leaving from level 2
Leaving from level 3

A B C

Listing 9.11 Results from processing the template in Listing 9.10.

What’s Next

In this chapter, we extended our discussion of Velocity directives with a more
in-depth treatment of the #macro directive, or Velocimacro. We covered argu-
ment passing, macro libraries, nesting and recursion, and Velocimacro proper-
ties. At this point, you should have a reasonably good understanding of
Velocity’s contexts and template language, including references and directives.
You should now have the tools needed to develop reasonably sophisticated
templates. However, there remain a few more aspects of Velocity’s functional-
ity that you will want to know about in order to get the most out of what Veloc-
ity offers. That is the subject of our next chapter.

TEAMFL
Y

Team-Fly®

In previous chapters, we discussed the core components of the Velocity
Template Language and the role played by the Velocity context in template
processing. While these chapters provide the information necessary to de-

sign and implement sophisticated template-based applications, they omit, or at
best only hint at, a number of additional Velocity features that really let you
take control of template processing. In this chapter, we introduce those fea-
tures, which include runtime configuration, events, whitespace management,
and context chaining.

Initializing the Runtime Configuration

While discussing Velocimacros in Chapter 9, we introduced a number of Veloc-
ity properties that affect the manner in which Velocimacros are handled by the
template engine. Later in this chapter, we introduce yet more Velocity proper-
ties that affect other aspects of the runtime system, but first let’s discuss how
such properties are specified and passed to the Velocity runtime.

In previous examples, we initialized the runtime by simply calling the static
method Velocity.init(). This results in the Velocity runtime engine being initial-
ized with default Velocity properties specified in the org/apache/ velocity/run-
time/defaults/velocity.properties distribution file. These default properties
provide a reasonable configuration that is adequate for many, if not most, ap-
plications. However, for cases where you need to exert more control over the
manner in which the template engine behaves, Velocity offers three techniques
for customizing the runtime configuration. Regardless of the technique used,

Taking Control of Velocity

C H A P T E R10

119

the runtime always starts with the base configuration specified by the veloc-
ity.properties file. Therefore, you only have to concern yourself with those
properties you need to change or add to the base configuration.

The first technique that we discuss for custom configuration of the Velocity
runtime is one that mirrors the technique used for the default configuration.
This approach involves creating a runtime configuration file that uses the same
syntax as the velocity.properties file. Using this syntax, you set a Velocity prop-
erty by providing its name and value, separated by an equal sign. Where multi-
ple values are provided for a property that supports them, you use commas to
delimit the values. As for all customization techniques, the properties in this file
may either override or add to the default configuration. The file is passed to the
runtime by invoking an overloaded version of the Velocity engine’s init()
method that takes a filename as an argument. For example, suppose that you
are testing some new Velocimacros that are defined in files named tags.vm and
labels.vm. You would like to make these libraries visible to the runtime, elimi-
nate the possibility of the macros being overridden in a template file, and en-
able Velocimacro library auto-reloading to facilitate debugging. To this end, you
create a file named custom.properties, shown in Listing 10.1. The properties
specified by this file are then passed to the runtime by providing the name of
the file to the Velocity engine’s initialization method, as shown in Listing 10.2.

Ta k i n g C o n t r o l o f Ve l o c i t y120

Specify the names of our custom libraries

velocimacro.library = tags.vm, labels.vm

Disable inline Velocimacro definitions

velocimacro.permissions.allow.inline = false

Enable Velocimacro library auto-reloading

velocimacro.library.autoreload = true

Listing 10.1 A custom Velocity runtime configuration file.

// Initialize template engine

try

{

Velocity.init("custom.properties");

}

catch(Exception x)

{

System.err.println("Failed to initialize Velocity: " + x);

System.exit(1);

}

Listing 10.2 An example of runtime initialization using a custom configuration file.

If it is important to provide an application with more control over the specifi-
cation of Velocity properties, or if the ability to easily read and write the prop-
erties is desirable, the technique we discuss next might be preferable. This
technique involves the use of a java.util.Properties object. If building up the
Properties object at runtime, the object’s setProperty() method is used to add
entries for Velocity properties. This method expects two parameters of type
String: the property key and the property value. The Velocity property name is
used as the key, and the value of the Velocity property--in the form of a string lit-
eral--is used for the value argument. Note that we use the term property here to
describe two distinct entities. Relative to the Java Properties object, it refers to
a generic property with no inherent relationship to Velocity. In all other cases,
we are referring to properties that define the runtime configuration of the Ve-
locity template engine.

If we were to modify the template engine initialization shown in Listing 10.2 so
that it used a Java Properties object to configure the runtime identically to that
specified by the file in Listing 10.1, the code would look something like that
shown in Listing 10.3. Notice that the Properties object is passed to the Velocity
engine using yet another overloaded version of the init() method. If the ability
to simply and efficiently read and write configuration files is also of impor-
tance, you can take advantage of the load() and store() methods provided by
the Java Properties class. This approach offers advantages over Velocity’s file-
based configuration in that modifications and additions to the read properties
are straightforward, writing out the properties requires little effort, and the files
use a native Java format.

Initializing the Runtime Configuration 121

Properties customProps = new Properties();

// Specify the names of our custom libraries

customProps.setProperty("velocimacro.library", "tags.vm, labels.vm");

// Disable inline Velocimacro definitions

customProps.setProperty("velocimacro.permissions.allow.inline", "false");

// Enable Velocimacro library auto-reloading

customProps.setProperty("velocimacro.library.autoreload", "true");

// Initialize template engine

try

{

Velocity.init(customProps);

}

catch(Exception x)

{

Listing 10.3 An example of runtime initialization using a Java Properties object. (continues)

Ta k i n g C o n t r o l o f Ve l o c i t y122

System.err.println("Failed to initialize Velocity: " + x);

System.exit(1);

}

Listing 10.3 An example of runtime initialization using a Java Properties object. (continued)

Finally, if the primary goal of runtime configuration customization is fine-grain
control over Velocity properties based on application runtime conditions, then
this last technique might be the best choice. This technique is based around the
Velocity engine’s own setProperty() method; this method has nothing to do with
the Properties class setProperty() method discussed for the last technique,
though it is used in a similar manner. The template engine’s setProperty()
method takes two parameters: a String specifying the property name and an Ob-
ject representing the corresponding value. A getProperty() method is also avail-
able for querying current property settings. There is even a clearProperty()
method for cases where it is necessary to remove a Velocity property alto-
gether. Once all relevant Velocity properties are set, the runtime is configured
by invoking the Velocity engine’s no-argument init() method. Continuing with
the example used for the first two techniques, Listing 10.4 contains a version
using Velocity’s setProperty(). As with the other techniques, this setProperty()
approach builds on a default configuration specified by the velocity.properties
file.

// Specify the names of our custom libraries

Velocity.setProperty("velocimacro.library", "tags.vm, labels.vm");

// Disable inline Velocimacro definitions

Velocity.setProperty("velocimacro.permissions.allow.inline", "false");

// Enable Velocimacro library auto-reloading

Velocity.setProperty("velocimacro.library.autoreload", "true");

// Initialize template engine

try

{

Velocity.init();

}

catch(Exception x)

{

System.err.println("Failed to initialize Velocity: " + x);

System.exit(1);

}

Listing 10.4 An example of runtime initialization using the Velocity engine's setProperty()
method.

Whatever technique you use, ensure that you have specified all of your Velocity
property modifications and additions before invoking the engine’s init()
method in any of its forms. While invoking init() more than once does no harm,
further calls have no effect on the runtime configuration. After the first call, you
are stuck with the resulting configuration.

More Velocity Properties

Now that we have covered the various ways in which Velocity’s runtime config-
uration properties may be specified, let’s take a closer look at more of those
properties. We group the Velocity properties discussed here into five general
categories: directives, encoding, logging, resource management, and miscella-
neous. We discussed a sixth category, Velocimacros, in Chapter 9.

Directive Properties
The following properties affect the behavior of certain Velocity directives.

directive.foreach.counter.name

The directive.foreach.counter.name property specifies the VTL Identifier used
to name the #foreach directive’s loop counter. When prefixed with a $, this iden-
tifier serves as the Velocity variable reference that allows the template designer
access to a #foreach directive’s current iteration count. By default, this count
starts at 1 and is incremented once with each iteration. The value of the direc-
tive.foreach.counter.name property defaults to velocityCount, with the corre-
sponding variable reference specified as $velocityCount. If the template
designer instead wants to access the count through a reference named $my-
Count, a value of myCount can be assigned to the property.

directive.foreach.counter.initial.value

The directive.foreach.counter.initial.value property specifies the initial value
used for the #foreach directive’s loop counter. This is the value that is provided
by a loop counter reference (see the directive.foreach.counter.name property)
accessed from within a #foreach block during the first iteration over that block.
At the beginning of each subsequent iteration, the value is incremented by one.
The default value for the directive.foreach.counter.initial.value property is 1.
Template designers familiar with C++ and Java for loops might prefer zero-
based counters, which can be achieved by setting the value of the property to 0.

More Velocity Properties 123

directive.include.output.errormsg.start

The directive.include.output.errormsg.start property specifies the text that pre-
cedes the error message resulting from an invalid input parameter being passed
to the #include directive. An undefined Velocity reference is an example of the
type of parameter that will trigger this sort of error message. The error message
prefix specified by this property is output only if the directive.include. out-
put.errormsg.end property is also defined. The default value for the directive.in-
clude.output.errormsg.start property is the string “<!-- include error :”.

directive.include.output.errormsg.end

The directive.include.output.errormsg.end property specifies the text that fol-
lows the error message resulting from an invalid input parameter being passed
to the #include directive. An undefined Velocity reference is an example of the
type of parameter that will trigger this sort of error message. The error message
suffix specified by this property is output only if the directive.include.output.er-
rormsg.start property is also defined. The default value for the directive.in-
clude.output.errormsg.end property is the string “see error log -->”.

directive.parse.max.depth

The directive.parse.max.depth property specifies the maximum depth to which
#parse directives may be nested. A value of 1 essentially disables the #parse di-
rective since a template containing a #parse directive is already at a depth of at
least 1. Each increment of this property beyond 1 allows one additional level of
nesting for #parse directives. Although the primary purpose of this property is
to prevent runaway recursion, the depth limit applies equally to general #parse
nesting that involves no recursion. The default value for the directive.
parse.max.depth is 10.

Encoding
The following properties specify encodings to be associated with templates and
data used by certain tools associated with the Velocity template engine.

input.encoding

The input.encoding property is used to specify the encoding of templates
processed by the template engine. Once set, all template input is assumed to ad-
here to the specified encoding. The default value for the input.encoding prop-
erty is ISO-8859-1. The supported encodings depend on the underlying Java
character set support. See the documentation for the Java Charset class for
more information.

Ta k i n g C o n t r o l o f Ve l o c i t y124

output.encoding

The output.encoding property is used to specify an encoding that should be as-
sociated with the output stream. This is not a general-purpose Velocity property
and is currently intended only for use with the VelocityServlet class and the
Anakia project. For the general case, encoding may be specified directly by ini-
tializing the output Writer appropriately before using it in the merge process.
The default value for the output.encoding property is ISO-8859-1.

Logging
The following properties affect the behavior of the logging system used by
Velocity.

runtime.log

The runtime.log property specifies the path to Velocity’s log file. By default, this
path is specified relative to the location of the application; this can be overrid-
den with the file.resource.loader.path property, which we discuss later. The de-
fault value for the runtime.log property is velocity.log. If you have been working
through the examples, you are probably already familiar with this file, which is
generated each time you run a Velocity application.

runtime.log.logsystem

The runtime.log.logsystem property specifies an object to which Velocity
should hand off logging tasks. In order to use an object in this manner, it is nec-
essary that the corresponding class implement the org.apache.velocity.run-
time.log.LogSystem interface. This property is intended primarily for cases
where Velocity’s logging needs to be integrated with a custom application log-
ging class. There is no default for this property. Also, note that since the prop-
erty’s value is an object rather than a string, it cannot be specified directly using
either a configuration file or a Java Properties object.

runtime.log.logsystem.class

The runtime.log.logsystem.class property specifies the class that the runtime is
to instantiate for handling Velocity’s logging services. The value of this property
may consist of a comma-delimited list of classnames. The runtime engine steps
through the list of names in the order provided and tries to find a matching
class. The first match determines the class instantiated for Velocity logging. The
default value for the runtime.log.logsystem.class property is org.apache.veloc-
ity.runtime.log.AvalonLogSystem,org.apache.velocity.runtime.log.SimpleLog4J
logSystem. Logging may be disabled by providing a value of org.apache.veloc-
ity.runtime.log.NullLogSystem.

More Velocity Properties 125

runtime.log.error.stacktrace

The runtime.log.error.stacktrace property specifies whether a stack trace
should be generated and logged when the Velocity runtime engine logs an error.
Although support for the property itself exists, the associated functionality is
not yet implemented. The default value for the runtime.log.error.stacktrace
property is false.

runtime.log.warn.stacktrace

The runtime.log.warn.stacktrace property specifies whether a stack trace
should be generated and logged when the Velocity runtime engine logs a warn-
ing. Although support for the property itself exists, the associated functionality
is not yet implemented. The default value for the runtime.log.warn.stacktrace
property is false.

runtime.log.info.stacktrace

The runtime.log.info.stacktrace property specifies whether a stack trace
should be generated and logged when the Velocity runtime engine logs an in-
formational message. Although support for the property itself exists, the asso-
ciated functionality is not yet implemented. The default value for the
runtime.log.info.stacktrace property is false.

runtime.log.invalid.references

The runtime.log.invalid.references property specifies whether invalid Velocity
references found in a template should be logged. If this property is set to true,
invalid references result in the generation of warning messages. If false, invalid
references are ignored with regard to the log file. The default value for the run-
time.log.invalid.references property is true.

Resource Management
The following properties affect the behavior of Velocity’s resource management
system.

resource.manager.class

The resource.manager.class property specifies the class instantiated to handle
Velocity’s resource management tasks. This class must implement the
org.apache.velocity.runtime.resource.ResourceManager interface. The default

Ta k i n g C o n t r o l o f Ve l o c i t y126

value for this property is org.apache.velocity.runtime.resource.ResourceMan-
agerImpl.

resource.manager.cache.class

The resource.manager.cache.class property specifies the class instantiated to
handle resource-caching requests on behalf of the resource manager. This class
must implement the org.apache.velocity.runtime.resource.ResourceCache in-
terface. The default value for this property is org.apache.velocity.runtime.re-
source.ResourceCacheImpl.

resource.manager.logwhenfound

The resource.manager.logwhenfound property specifies whether or not the re-
source manager should log an information message each time it locates a given
resource for the first time. The default value for this property is true, which en-
ables the logging of such messages.

resource.loader

The resource.loader property associates a name with a particular resource
loader. This name is used only as a label to further define the resource loader’s
behavior via Velocity properties. In the following subsections, we use the string
<loader> when referring to this name. The velocity.properties file defines only
one resource loader, which it names file, and the corresponding property
names are those listed in the following subsections with <loader> replaced by
file. We discuss resource loaders in a bit more detail later in this chapter.

<loader>.resource.loader.description

The resource.loader.description property specifies a textual description of the
resource loader. This property is informational in nature and does not actually
affect the functionality of the resource loader. The velocity.properties file pro-
vides a value of Velocity File Resource Loader for the file.resource.loader.de-
scription property.

<loader>.resource.loader.class

The resource.loader.class property specifies the class instantiated for loading
the associated resource type. This class extends Velocity’s org.apache.veloc-
ity.runtime.resource.loader.ResourceLoader class, and provides the resource
type specific functionality. The velocity.properties file provides a value

More Velocity Properties 127

of org.apache.velocity.runtime.resource.loader.FileResourceLoader for the
file.resource.loader.class property.

<loader>.resource.loader.path

The resource.loader.path property specifies a root directory for resources of
the associated type. Any locations provided for these resources are considered
to be relative to this root. The velocity.properties file provides a value of . for
the file.resource.loader.path property; this establishes an application’s direc-
tory as the root relative to which file resources such as templates and log files
are located.

<loader>.resource.loader.cache

The resource.loader.cache property specifies whether or not the loader should
cache certain resources. The velocity.properties file provides a value of false
for the file.resource.loader.cache property. This prevents the file resource
loader from caching templates, which is often preferred for development and
debugging. For production, a value of true is generally a better choice.

<loader>.resource.loader.modificationCheckInterval

The resource.loader.modificationCheckInterval property specifies the interval,
in seconds, between checks for modifications to cached resources. This prop-
erty is meaningful only if the corresponding resource.loader.cache property is
set to true. A negative value for the resource.loader.modificationCheckInterval
property disables checks altogether. The velocity.properties file provides a
value of 2 for the file.resource.loader.modificationCheckInterval property.

Miscellaneous
The following properties affect miscellaneous aspects of Velocity’s runtime be-
havior.

runtime.interpolate.string.literals

The runtime.interpolate.string.literals property specifies whether or not the
template engine should interpolate string literals. Affected literals include dou-
ble-quoted strings occurring on the right side of the equal sign in #set directives,
as parameters to reference methods, as Velocimacro parameters, and as gen-
eral parameters to other Velocity directives. If the property is set to false, such
strings are not interpolated. They are instead treated equivalently to single-
quoted strings, which are never interpolated. The default value for the run-
time.interpolate.string.literals property is true.

Ta k i n g C o n t r o l o f Ve l o c i t y128

TEAMFL
Y

Team-Fly®

parser.pool.size

The parser.pool.size property specifies the size of the parser pool created by
the runtime at startup. This is the minimum number of parsers that are made
available to the Velocity engine. If additional parsers are required, they are cre-
ated as needed, but never added to the pool. The default value of the
parser.pool.size property is 20.

Resource Loaders

While discussing Velocity properties, we introduced a number of properties
that affect resource loaders without really defining the notion of a resource
loader. Here we rectify that omission. A Velocity resource is simply an input to
the template engine. Such inputs include regular templates, Velocimacro li-
braries, and plain text requested through #include directives. A resource loader

is simply an entity that knows how to obtain such resources from a particular
source. All of the examples so far presented in this book have depended on Ve-
locity’s file resource loader, which is implemented by its FileResourceLoader
class. Likewise, the default properties we presented while discussing Velocity’s
resource management focused on configuration of the file resource loader.
However, in addition to the hooks required for creating custom resource load-
ers, Velocity provides complete support for three other resource loader types:
JAR, Classpath, and DataSource.

The JAR resource loader, implemented by Velocity’s JarResourceLoader class,
obtains its resources from JAR files. The resource loader properties we de-
scribed for the file resource loader are all applicable to the JAR resource
loader, with the exception that the resource.loader.path property for the JAR
resource loader is expressed using JAR URL syntax; see the documentation for
Java’s JarURLConnection class for more information regarding this syntax.

The Classpath resource loader, implemented by Velocity’s ClasspathResource-
Loader class, obtains its resources through the ClassLoader from sources in the
CLASSPATH. The sources may be zip files, JAR files, or directories. This re-
source loader is especially useful when working with servlets. The only re-
source loader properties relevant to this loader are resource.loader.description
and resource.loader.class. Only resource.loader.class is required.

The DataSource resource loader, implemented by Velocity’s DataSourceRe-
sourceLoader class, obtains its resources via physical data source connections
obtained through a Java DataSource object. An obvious example is a case
where Velocity templates and related resources are obtained from a relational
database. This resource loader uses all of the resource loader properties, ex-
cept for resource.loader.path. It also supports several other properties that are
unique to this type of loader. For more information regarding these properties,

Resource Loaders 129

see the Velocity’s API documentation for its DataSourceResourceLoader class.
This resource loader requires J2EE and is not included in the standard Velocity
build.

Events

To provide finer control over template processing, Velocity supports limited
user intervention at the event-handling level. There are three types of events for
which Velocity allows the user to intervene in the processing. The first results
when an attempt is made to assign a null to a Velocity reference via the #set di-
rective. The second results when a Java method invoked through a Velocity
method or property reference throws an exception. The third results each time
the value corresponding to a Velocity reference is inserted into the output
stream. Velocity provides event-handler interfaces for each of these cases,
named NullSetEventHandler, MethodExceptionEventHandler, and Referen-
ceInsertionEventHandler, respectively.

The handler method specified by the NullSetEventHandler interface is passed
strings representing the left- and right-hand sides of the #set directive’s equal
sign and is expected to return a boolean value indicating whether or not the
event should be logged. The handler method specified by the MethodExcep-
tionEventHandler interface is passed a Class object representing the class of
the throwing method, a String representing the name of the throwing method,
and the exception thrown. The method returns an object that replaces the value
that would have been returned had the Velocity method or reference not
thrown an exception. The handler method specified by the ReferenceInsertion-
EventHandler interface is passed a String representing the name of the refer-
ence being processed and an Object representing its value. The Object returned
by the method is inserted into the output stream using its toString() method.

As an example of Velocity event handling, consider the Java class definition
shown in Listing 10.5. This class defines three methods that help demonstrate
Velocity’s event-handling features. The first purposely returns a null that will be
used in a #set directive, the second throws a generic exception, and the third
provides a default value for output stream insertion.

Ta k i n g C o n t r o l o f Ve l o c i t y130

public class EventGen

{

public String getNull()

{

Listing 10.5 A Java class that assists in the creation of Velocity events. (continues)

Events 131

return (null);

}

public void throwException() throws Exception

{

throw new Exception();

}

public String toString()

{

return "toString() handled by EventGen";

}

}

Listing 10.5 A Java class that assists in the creation of Velocity events. (continued)

Next consider the template in Listing 10.6 and the event-handling class in List-
ing 10.7. The template triggers all three events for which user intervention is
supported by assigning a null in a #set directive, invoking a method that throws
an exception, and inserting the value of a reference into the output stream. The
event-handling class defines methods that allow user intervention for each of
the three events. The null assignment results in an informational message and
no log entry. The exception results in an informational message being inserted
into the output stream, and the reference insertion event results in the value of
the $eventGen reference being overridden.

Trigger a NullSetEventHandler response

#set($ref = $eventGen.getNull())

Trigger a MethodExceptionEventHandler response

$eventGen.throwException()

Trigger a ReferenceInsertionEventHandler response

$eventGen

Listing 10.6 A template that generates all three of the Velocity events that allow user
intervention.

import org.apache.velocity.app.event.NullSetEventHandler;

import org.apache.velocity.app.event.MethodExceptionEventHandler;

import org.apache.velocity.app.event.ReferenceInsertionEventHandler;

Listing 10.7 A Velocity event-handling class that handles all three of the Velocity events that
allow user intervention. (continues)

Ta k i n g C o n t r o l o f Ve l o c i t y132

public class EventHan implements NullSetEventHandler,

MethodExceptionEventHandler,

ReferenceInsertionEventHandler

{

// NullSetEventHandler method

public boolean shouldLogOnNullSet(String lhs, String rhs)

{

System.out.println("From app: choosing not to log "

+ lhs + " = " + rhs);

return (false);

}

// MethodExceptionEventHandler method

public Object methodException(Class claz,

String method, Exception e)

{

String msg = e + " thrown by " + claz + ":" + method;

return (msg);

}

// ReferenceInsertionEventHandler method

public Object referenceInsert(String reference, Object value)

{

Object insertValue = value;

if (reference.equals("$eventGen"))

{

insertValue = "toString() handled by EventHan";

}

return (insertValue);

}

}

Listing 10.7 A Velocity event-handling class that handles all three of the Velocity events that
allow user intervention. (continued)

All that remains is to inform the Velocity runtime of your intent to intervene in
the event handling. This is accomplished through the use of Velocity’s Event-
Cartridge class. This class allows you to register your event handlers and attach
the EventCartridge to a Velocity context. The code for accomplishing this last
step is shown in Listing 10.8, and Listing 10.9 shows the result of executing the
application.

Context Chaining 133

// Create context

VelocityContext context = new VelocityContext();

// Populate context

context.put("eventGen", new EventGen());

// Setup event handler

EventCartridge eventCart = new EventCartridge();

eventCart.addEventHandler(new EventHan());

eventCart.attachToContext(context);

// Merge template and context

Listing 10.8 Java code demonstrating event-handler registration and context attachment using
Velocity's EventCartridge class.

From app: choosing not to log $ref = $eventGen.getNull()

java.lang.Exception thrown by class EventGen:throwException

toString() handled by EventHan

Listing 10.9 Results from processing the template in Listing 10.6.

Context Chaining

All of the examples that we have thus far explored have made use of only a sin-
gle Velocity context. For many tasks this is sufficient, but there is nothing pre-
venting the use of multiple contexts in a single application. If multiple contexts
are to be used independently in an application, nothing new is required. Each is
created and used in the same manner as the first. However, there are cases
where it is convenient to combine multiple contexts so that an aggregate Ve-
locity context is available to the merge process. Velocity supports such aggre-
gation through what it refers to as context chaining.

Context chaining is in effect a technique for wrapping one context with an-
other. All objects in the original context whose keys are not duplicated by en-
tries inserted into the wrapping context remain available in the aggregate. If on
the other hand entries with keys that duplicate those in the original context are

inserted into the wrapped context, then the original entries are hidden. While
these entries become inaccessible from the aggregate context, they remain in-
tact and fully accessible from the original context.

Context chaining is accomplished through an overloaded VelocityContext con-
structor. The overloaded constructor takes another VelocityContext object as
an input parameter, and it is this object that is wrapped by the newly created
context. Such chaining is most frequently used for sharing tools and layering
data. In the first case, a single context is populated with a number of tools, or
general helper classes. This context is then used with the overloaded Velocity-
Context constructor to create additional contexts. The result is that each new
context contains the tool set without the need to manually insert tools one by
one into each new context.

In the case of data layering, an initial context is created and populated with
core data. Then this context is used with the overloaded VelocityContext con-
structor to create a new context. The new context is populated with additional
data and, if appropriate, used to create yet another context. This process is re-
peated as many times as is necessary. This technique is useful for cases where
an aggregate data set is built from individual sets, where data in a later set may
need to override data in an earlier set. It is also useful for cases where a core
data set will remain the same across multiple templates but minor enhance-
ments may be required for each individual template processed.

Managing Whitespace

When it comes to template design, the goals of template readability and desired
output format are often at odds. Many people have a tendency to use white-
space, such as indentation and blank lines, to improve the readability of source
code. There is a natural tendency to do the same with template code, especially
where directives come into play. Unfortunately, whitespace plays a critical role
in templates, as opposed to general source code where whitespace is largely ig-
nored. Expecting a template engine to make its own decisions regarding which
whitespace is important and which is not is questionable at best.

To get a better feeling for the nature of the problem, consider the template
shown in Listing 10.10. This template prints out the names of a number of col-
ors using various Velocity directives. The desired output is shown in Listing
10.11, but the actual output looks like that shown in Listing 10.12. The discrep-
ancy comes about from the attempt to improve the readability of the template.
Whitespace resulting from indentation and extra carriage returns slips into the
template output.

Ta k i n g C o n t r o l o f Ve l o c i t y134

Managing Whitespace 135

#macro(write $list)

#foreach($color in $list)

$color

#end

#end

red

green

#set($favorite = "blue")

$favorite

#if ($likeViolet)

violet

#else

purple

#end

#write(["orange","yellow","brown"])

Listing 10.10 A template that demonstrates the effects of whitespace formatting for readability.

red

green

blue

purple

orange

yellow

brown

Listing 10.11 The desired output for the template that lists color names.

red

green

blue

purple

orange

yellow

brown

Listing 10.12 The output generated for the template in Listing 10.10.

Unfortunately, there is currently no good solution to this problem. The options
are to abandon readability altogether, as demonstrated by the modified tem-
plate in Listing 10.13, make heavy use of VTL comments to filter out whitespace
(as shown in Listing 10.14), or to settle on some compromise between these
two approaches. Because whitespace handling is a frequently discussed topic
on the Velocity lists, the future may bring better solutions.

Ta k i n g C o n t r o l o f Ve l o c i t y136

#macro(write $list)
#foreach($color in $list)
$color
#end
#end
red
green
#set($favorite = "blue")
$favorite
#if ($likeViolet)
violet
#else
purple
#end
#write(["orange","yellow","brown"])

Listing 10.13 A modified version of the Listing 10.10 template that does away with attempts to
improve readability.

#macro(write $list)
#**##foreach($color in $list)
#* *#$color
#**##end
#end
##
red
green
##
#set($favorite = "blue")
$favorite
##
#if ($likeViolet)
#**#violet
#else
#**#purple
#end
##
#write(["orange","yellow","brown"])

Listing 10.14 A modified version of the Listing 10.10 template that uses VTL comments to filter
whitespace.

Singleton vs. Non-Singleton

Velocity provides two approaches to obtaining instances of the Velocity engine.
The legacy model, which we have used for all of our examples so far, is based
on the Singleton pattern. Using this model, there is only one shared instance of
the Velocity engine in the JVM. This is sufficient for most cases and provides
certain advantages in terms of resource sharing. However, Velocity also sup-
ports a non-Singleton model that is sometimes more appropriate. The non-Sin-
gleton model allows for multiple Velocity engines to exist simultaneously in the
JVM. This approach is especially useful for cases where multiple runtime con-
figurations are required. The only difference between the two models in terms
of instantiation and initialization is the manner in which the Velocity engine is
obtained. With the Singleton model, the Velocity engine is obtained implicitly by
invoking static methods on the Velocity class. With the non-Singleton model,
the Velocity engine is obtained explicitly by instantiating a VelocityEngine ob-
ject.

What’s Next

In this chapter, we explained how to get the most out of your Velocity pro-
gramming. In the next chapter, we explore the interaction of Velocity and XML
as well as a tool called Anakia to make the marriage easy to manage.

What’s Next 137

TEAMFL
Y

Team-Fly®

Extensible Markup Language (XML) has been one of the most talked
about technologies in the past few years. The potential of this technol-
ogy might have been overstated in the beginning, but no doubt exists

about its power to fully characterize data in a text-based format. In this chapter,
we look at two XML topics and how they relate to Velocity: accessing XML data
from a DOM object within a Velocity template and using Anakia to handle XML
data translations.

Accessing XML in Velocity Templates

As you probably know, Sun has taken great pains to provide Java developers
with the tools they need to deal with XML data. At first, XML had little support,
and products like JDOM (an open source API) and Xerces (from the Apache
Software Foundation) were developed so that developers could work with
XML data. Soon afterward, Sun offered additional packages that could be used
with Java 1.3. With the release of Java 1.4, Sun built the XML support directly
into the language.

If you want to use XML in your Velocity templates, you need to process the XML
file within the controller Java class and attach the necessary information to the
Context object. Let’s look at an example. First, take a look at the XML file in
Listing 11.1. The goal is to have the Velocity controller read in this XML file and
parse it into an object that can be supplied with a Velocity template. Listing 11.2
shows an example controller for handling the XML.

Velocity, XML, and Anakia

C H A P T E R11

139

Ve l o c i t y, X M L , a n d A n a k i a140

<?xml version="1.0"?>

<cds>

<cd>

<title>2112</title>

<artist>Rush</artist>

</cd>

</cds>

Listing 11.1 An XML document.

import java.util.Vector;

import javax.servlet.http.*;

import org.apache.velocity.Template;

import org.apache.velocity.context.Context;

import org.apache.velocity.servlet.VelocityServlet;

import org.apache.velocity.exception.*;

import org.apache.xerces.parsers.*;

public class VelocityServletExample extends VelocityServlet {

public Template handleRequest(HttpServletRequest request,

HttpServletResponse response,

Context context) {

try {

SAXBuilder builder = new SAXBuilder(

"org.apache.xerces.parsers.SAXParser");

Document root = builder.build("cds.xml");

VelocityContext context = new VelocityContext();

context.put("root", root);

} catch(Exception e){

e.printStackTrace();

}

Template template = null;

try {

template = getTemplate("displayxml.vm");

} catch(Exception e) {

System.out.println("Error " + e);

}

return template;

}

}

Listing 11.2 The Velocity controller.

At this point, the servlet in Listing 11.2 resembles any of the controller servlets
you’ve seen in previous chapters. The only change relates to the XML file. We
assume that the XML in Listing 11.1 is stored in a file called cds.xml and is
located in the same directory as the servlet.

The first task is to pull the actual document into the application and parse it
into a format that you can easily manipulate. If you are familiar with XML pro-
cessing, you know that there are two primary ways to parse a text-based XML
document and turn it into a data structure that can be used in an application:
SAX and DOM. Ultimately, it doesn’t matter which method you use; however,
SAX is better for large documents.

For this controller, we chose to use the SAXParser class found in Xerces.
Xerces is a XML parser package under the Apache umbrella of products; you
can find it at http://xml.apache.org/xerces2-j/index.html. Using Xerces is quite
easy. First, instantiate a new SAXBuilder object and specify that you want to
use one of the parsers in the Xerces family. As you can see in Listing 11.2, we’re
using the SAXParser class. The SAXBuilder class allows you to pass raw XML
and produce a Document object in return. The Document object is a data struc-
ture representation of the XML. This is important because you know that any
type of object can be added to the Velocity context and passed to a template.

In the code, you attach the XML data structure to the context under the refer-
ence name of “root”. Next, the controller loads the template called dis-
playxml.vm and returns the template to the VelocityServlet process. The
displayxml.vm template (Listing 11.3) does all of the output work.

Accessing XML in Velocity Templates 141

<html>

<body>

CD title is $root.getChild("cds").getChild("cd").getChild("title").get-

Text()

CD artist is $root.getChild("cds").getChild("cd").getChild("artist").get-

Text()

</body>

</html>

Listing 11.3 The displayxml.vm template file.

The template in Listing 11.3 is designed to pull the artist and title values from
the XML processed by the controller. As you can see, you’re using normal XML
methods to access the data within the data structure. Because Velocity gives
you complete access to the objects in the context, you can use any methods
defined on the Document class type as well as its parent type, Node.

For example, you can use the getChildNodes() method to return a NodeList
object with all of the <cd> elements--that is, NodeList list = $root.getChild
(“cds”).getChildNodes();. You can use the #foreach directive to walk through
the nodes and display information about each one.

Velocity and Anakia

The process we just described is the foundation for the Anakia project (sup-
plied as part of the Velocity download). Anakia is an Ant task designed to con-
vert XML into an output medium of your choosing using Velocity templates
instead of Extensible Stylesheet Language (XSL). The code for the Ant task can
be found in the class org.apache.velocity.anakia.AnakiaTask, and you can find
a full example in the /examples/anakia directory of the distribution.

The Ant Build Task
Let’s look at the example before you attempt your own. As we mentioned ear-
lier, Anakia is basically an Ant task that merges an XML document with Veloc-
ity templates. The Ant task is shown in Listing 11.4.

Ve l o c i t y, X M L , a n d A n a k i a142

<project name="build-site" default="docs" basedir=".">

<property name="docs.src" value="../xdocs"/>

<property name="docs.dest" value="../docs"/>

<target name="prepare">

<available classname="org.apache.velocity.anakia.AnakiaTask"

property="AnakiaTask.present"/>

</target>

<target depends="prepare" name="prepare-error"

unless="AnakiaTask.present">

<echo>

AnakiaTask is not present! Please check to make sure that

velocity.jar is in your classpath.

</echo>

</target>

<target name="docs" depends="prepare-error" if="AnakiaTask.present">

<taskdef name="anakia" classname="org.apache.velocity.anakia.Anaki-

aTask"/>

<anakia basedir="${docs.src}" destdir="${docs.dest}/"

extension=".html" style="./site.vsl"

projectFile="./stylesheets/project.xml"

Listing 11.4 The Anakia Ant task. (continues)

Velocity and Anakia 143

excludes="**/stylesheets/**"

includes="**/*.xml"

lastModifiedCheck="false"

velocityPropertiesFile="velocity.properties">

</anakia>

<copy todir="${docs.dest}/images" filtering="no">

<fileset dir="${docs.src}/images">

<include name="**/*.gif"/>

<include name="**/*.jpeg"/>

<include name="**/*.jpg"/>

</fileset>

</copy>

</target>

</project>

Listing 11.4 The Anakia Ant task. (continued)

The Ant task attempts to locate the AnakiaTask class as well as set up the direc-
tories for the source and the destination files. In the example cases, the /xdocs
directory contains the source and /docs contains the destination files. Table
11.1 explains the elements within the Ant task.

Table 11.1 Anakia Ant Task Definitions

TASK NAME DEFINITION

<basedir> The path to the XML files to be processed.

<destdir> The path where the output from the templates and XML files will be
placed.

<extension> The extension that will be applied to the output file. The file will take
the filename of the input XML file along with this extension.

<style> The path to XSL stylesheets files.

<projectFile> The path to the project file for the conversion (if one is used). You
can use the projectFile to provide navigation.

<excludes> An element that describes file or directories that are not to be
processed.

<includes> An element that describes files or directories that are to be
processed.

<lastModifiedCheck> An element that determines whether last-modified dates are
processed. Set to true by default.

<templatePath> The path to your VXL template file.

<velocityPropertiesFile> The path to the velocity.properties file.

Source Documents
The example program contains two source documents. The first, called
index.xml, is found in the /xdocs directory, and it appears in Listing 11.5. The
second document, called index.xml, is found in the /xdocs/about directory and
is used as a link within the root-level index document.

Ve l o c i t y, X M L , a n d A n a k i a144

<?xml version="1.0" encoding="UTF-8"?>

<document>

<properties>

<author email="jon@latchkey.com">Jon S. Stevens</author>

<title>The Jakarta Project</title>

</properties>

<body>

<section name="Section 1">

<p>This is an example template that gets processed.</p>

<table border="1">

<tr>

<td>It even has a table in it!</td>

</tr>

</table>

<h3>And an h3 tag</h3>

</section>

<section name="Section 2">

<p> here is another section </p>

</section>

<section name="section 3">

<p>

A link to a sub page

</p>

</section>

</body>

</document>

Listing 11.5 The index.xml source document.

The XML document shown in Listing 11.5 provides the information that you
want applied to a Velocity template. As you can see, it includes traditional
HTML tags as well as user-defined tags. The user-defined tags are the ones that
will be matched against the Velocity template when the Anakia Ant task com-
bines the two documents. Note that there is even a link on the page to another
file called index.html.

In some cases, you might want to have a project file that describes the naviga-
tion to place on the output. For the example provided with Velocity, the pro-
jectFile looks like the following. When the projectFile is processed, the

<menu> elements are used as entries in a navigation menu on the left part of
the HTML page.

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name="Jakarta Site"

href="http://jakarta.apache.org/">

<title>Jakarta Site</title>

<body>

<menu name="Home">

<item name="Front Page" href="/index.html"/>

</menu>

<menu name="About">

<item name="About" href="/about/index.html"/>

</menu>

</body>

</project>

Now let’s take a look at the Velocity template to see what the various tags will
produce.

Anakia Velocity Stylesheets
Listing 11.6 is the example template designed to process the index.xml file in
Listing 11.5. The template takes advantage of many Velocity features we’ve cov-
ered, including directives and macros. Let’s walk through the processing that
takes place within the template. First, note that Anakia provides various con-
text references to the template automatically. We discuss these variables in the
next section. In order to understand the template, you must familiarize yourself
with a few of them:

■■ $xpath--A list of all nodes in the supplied XML

■■ $root--The root of the parsed XML

■■ $project--The root of the project file

The template begins with local definitions that will be used in the template
itself. Next, a call is made to the macro called document(). The template is basi-
cally made up of many different macros, each designed to output a specific part
of the XML document to its HTML representation. The Anakia Ant task doesn’t
know about the macros in the template file, so things have to be started with a
call to one of them. In this case, the document() macro defines the main part of
the HTML output.

As you start to look at the code for the document() macro, you will find that it
consists of all the primary HTML tags you might expect to see in a Web page.
The first difference is found in the <title> elements. The value for the title is
obtained with the following code:

$root.getChild("properties").getChild("title").getText()

Velocity and Anakia 145

This code uses the $root reference found in the Velocity context that relates to
the XML document you are using as input to the template to find the properties
element with its child title. It gets the text associated with the title element and
outputs it in the new page being created. Look back at the XML data and you’ll
see that the output from the getText() call will be “The Jakarta Project”. Next,
the macro begins to build a table on the page. The left part of the table is a nav-
igation menu, and the right part displays the information found in the input
XML. (As you’ll recall, the navigation menu is built from the projectFile we dis-
cussed earlier.)

To build the navigation menu, the document() macro calls the makeProject()
macro. The makeProject() macro finds all of the menu items in the project XML
and outputs a list of them in order. When the makeProject() macro is finished,
control returns to the document() macro.

The left part of the table created by the document() macro consists of all the
section elements found in the input XML. The various parts of the element are
extracted, as well as information from the subelements, to produce the infor-
mation for the table. Finally, all of the closing HTML tags are sent to the output,
and the result is a complete Web page, as shown in Listing 11.7. Figure 11.1
shows how the final Web page looks when used in a browser.

Ve l o c i t y, X M L , a n d A n a k i a146

Defined variables

#set ($bodybg = "#ffffff")

#set ($bodyfg = "#000000")

#set ($bodylink = "#525D76")

#set ($bannerbg = "#525D76")

#set ($bannerfg = "#ffffff")

#set ($tablethbg = "#039acc")

#set ($tabletdbg = "#a0ddf0")

<!-- start the processing -->

#document()

<!-- end the processing -->

This is where the macros live

#macro (makeProject)

#set ($menus = $xpath.applyTo("body/menu", $project))

#foreach ($menu in $menus)

$menu.getAttributeValue("name")

#foreach ($item in $menu.getChildren())

#set ($name = $item.getAttributeValue("name"))

Listing 11.6 The example stylesheet. (continues)

Velocity and Anakia 147

#projectanchor($name $item.getAttributeValue("href"))

#end

#end

#end

#macro (image $value)

#if ($value.getAttributeValue("width"))

#set ($width=$value.getAttributeValue("width"))

#end

#if ($value.getAttributeValue("height"))

#set ($height=$value.getAttributeValue("height"))

#end

#if ($value.getAttributeValue("align"))

#set ($align=$value.getAttributeValue("align"))

#end

<img src="$relativePath$value.getAttributeValue("src")"

width="$!width" height="$!height" align="$!align">

#end

#macro (projectanchor $name $value)

$name

#end

#macro (metaauthor $author $email)

<meta name="author" value="$author">

<meta name="email" value="$email">

#end

#macro (document)

<html>

<head>

<title>

$root.getChild("properties").getChild("title").getText()

</title>

</head>

<body bgcolor="$bodybg" text="$bodyfg" link="$bodylink">

<table border="1">

<tr>

<td>#makeProject()</td>

<td>

#set ($allSections = $xpath.applyTo("body/section",

$root))

#foreach ($section in $allSections)

#foreach ($item in $section.getChildren())

#if ($item.getName().equals("img"))

Listing 11.6 The example stylesheet. (continues)

Ve l o c i t y, X M L , a n d A n a k i a148

#image ($item)

#else

$xmlout.outputString($item)

#end

#end

#end

</td>

</tr>

</table>

</body>

</html>

#end

Listing 11.6 The example stylesheet. (continued)

<!-- Content Stylesheet for Site -->

<!-- start the processing -->

<!--================== -->

<!-- Main Page Section -->

<!--================== -->

<html>

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1"/>

<meta name="author" value="Jon S. Stevens">

<meta name="email" value="jon@latchkey.com">

<title>The Jakarta Project</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#525D76">

<table border="1">

<tr>

<td>

Home

 Front Page

About

 About

</td>

<td>

<p>

This is an example template that gets processed.

</p>

<img src="./images/velocity.gif" width="329"

Listing 11.7 The completed Web page. (continues)

TEAMFL
Y

Team-Fly®

Velocity and Anakia 149

height="105" align="">

<table border="1">

<tr>

<td>

It even has a table in it!

</td>

</tr>

</table>

<h3>And an h3 tag</h3>

<p> here is another section </p>

<p>A link to a sub page</p>

</td>

</tr>

</table>

</body>

</html>

<!-- end the processing -->

Listing 11.7 The completed Web page. (continued)

Figure 11.1 The Web page output.

Context References
When the Anakia Ant task combines the template with the XML, it adds a few
references to the context so that the Velocity template has data to work with.

You’ve already seen a few of the objects that will be in the context. Table 11.2
describes all of the possible objects.

Table 11.2 Anakia Context References

OBJECT NAME DESCRIPTION

$root This reference's value is the root element of your XML
document.

$project This is the root element of your project.xml file.

#escape.getText($string) This object can be used to convert text into escaped HTML text.
Thus, quote, < , >, and & will be converted to the ", <,
>, and & strings.

$relativePath This represents the path to your input XML file based on the
baseDir within the Ant task.

$xpath.applyTo(" ", $root) This represents the ability to apply the first element to all of the
nodes supplied in the second parameter tree.

$data This represents a java.util.Date object.

Note that you can use the XPath expressions with any of the element refer-
ences. For example, you can use $root.selectNodes(“cds/cd”) to get a list of
nodes matching the <cd> element type.

Outputting XML Using Velocity

If you have data in a database or produced by a servlet application, you might
encounter a situation where you want to output XML to the user either in a Web
browser or as a file. Consider the CD application you developed earlier in this
chapter. This application provides the ability to add CDs and query against the
records in a database. For the most part, you either query against a single artist
or display the tracks of a specific CD. It’s quite possible that you will want to
produce the output in an XML format, and since we are discussing XML in this
chapter, let’s show you how to do that.

For this section, we consider two different situations: XML for our artist query
and a full report of all CDs in the database.

The Artist Query XML
If you recall, our CD application utilizes a control servlet to interpret the vari-
ous submit buttons on the main screen. For the artist query form, the submit

Ve l o c i t y, X M L , a n d A n a k i a150

button calls the control servlet, passing a value of obtain. The servlet executes
the code shown in Listing 11.8.

Outputting XML Using Velocity 151

else if (req.getParameter("submit").equals("obtain")) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds = cdHome.findByArtist(req.getParameter("artist"));

context.put ("cds", cds);

try {

template = getTemplate("displaycds.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

Listing 11.8 The artist query code.

Very simply, the code calls a query associated with the CD Bean, and a collec-
tion is returned and displayed by the displaycds.vm Velocity template. Let’s
change the code a little to accommodate an additional submit value of
obtainxml, which has the effect of pulling the same information from the data-
base; however, instead of using the displaycds.vm template, it uses the pro-
ducecdxml.vm Velocity template. The new code appears in Listing 11.9.

else if ((req.getParameter("submit").equals("obtain")) ||

(req.getParameter("submit").equals("obtainxml"))) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds = cdHome.findByArtist(req.getParameter("artist"));

context.put ("cds", cds);

try {

if (req.getParameter("submit").equals("obtainxml")) {

template = getTemplate("producecdxml.vm");

} else {

template = getTemplate("displaycds.vm");

} catch(Exception e) {

Listing 11.9 The artist query code with XML output. (continues)

Ve l o c i t y, X M L , a n d A n a k i a152

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

Listing 11.9 The artist query code with XML output. (continued)

As you can see, you want to enter the block of code as either the obtain or the
obtainxml submit button values are passed to the servlet. All of the same CDs
are returned from the query, but depending on the submit value, either the pro-
ducecdxml.vm or displaycds.vm Velocity template is used.

To use the code, you first have to define producecdxml.vm. Listing 11.10 shows
the template.

<?xml version="1.0" ?>

<cds>

#foreach($value in $cds)

<cd id="$value.id">

<title>$value.title</title>

</cd>

#end

</cds>

Listing 11.10 The producecdxml.vm Velocity template.

The Velocity template shown in Listing 11.10 produces an XML file for the artist
query. Notice how the ID of the CD and the title are captured as an attribute and
element, respectively.

The Full CD Report XML
In the previous example, all of the output was generated on the user’s browser-
-but what if you want to download an XML file with all of the CDs in the data-
base? You can do this by making a few changes to the code. Let’s add a button
on the main CD screen that will call the control servlet requesting a full report
of the CD database. Use the following code:

<form action="http://localhost:8080/cd/cdVelocityHandler" method="post">

<input type="submit" name="submit" value="fullreport"> -

download 'report.txt' to your local system

</form>

When the user clicks on the FullReport button, control is passed to the servlet,
where the fullreport value is recognized. The code in Listing 11.11 is then exe-
cuted.

Outputting XML Using Velocity 153

else if (req.getParameter("submit").equals("fullreport")) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds = cdHome.findAllCDs();

context.put ("cds", cds);

try {

res.setContentType("APPLICATION/OCTET-STREAM");

res.setHeader("Content-Disposition","attachment;

filename=report.txt");

template = getTemplate("fullreport.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

Listing 11.1 The fullreport code.

Note two changes from Listing 11.11. The first is a new query called findAll-
CDs(), added to the CDRecordBean class. The query is shown in Listing 11.12.

<query>

<query-method>

<method-name>findAllCDs</method-name>

</query-method>

<ejb-ql>SELECT o FROM CDTable o</ejb-ql>

</query>

Listing 11.12 The CDRecordBean All CD query.

The second change consists of these two lines of code:

Res.setContentType("APPLICATION/OCTET-STREAM");

res.setHeader("Content-Disposition","attachment;filename=report.txt");

This code is designed to tell the user’s browser that the information that will be
provided is in the form of a file called report.txt and that it is an attachment, so
the Save As dialog box should be presented to the user. This is important
because our Velocity template will be used to produce a downloadable file. List-
ing 11.13 shows the actual Velocity template.

Ve l o c i t y, X M L , a n d A n a k i a154

<cds>

#foreach($value in $cds)

<cd id="$value.id">

<artist>$value.artist</artist>

<title>$value.title</title>

</cd>

#end

</cds>

Listing 11.13 The Velocity template for the XML output.

Now the user can browse the CD application index page and click on the Full-
Report button. The code pulls all of the CDs from the database and formats
them using the fullreport.vm Velocity file, as shown in Figure 11.2.

Figure 11.2 The XML output.

What’s Next

In this chapter, we explored ways that you can use Velocity to process and use
XML data. Developers can provide designers with a standard format for all data
passed to the template, and designers can use a comprehensive set of methods
to access the data. In the next chapter, we discuss how you can mix Velocity
and servlets.

A s you’ve learned in previous chapters, Velocity is primarily used as a
scripting language for the view component of a Model-View-Controller
(MVC) paradigm. Servlets are one of the most common programming

mechanisms for MVC under Java. By using servlets as the controller, Velocity as
the view, and either servlets or JavaBeans as the model, you create an ideal
environment for the development of comprehensive Web solutions. In this
chapter, we show you how to use Velocity with servlets.

Using Servlets

Before you can start using Velocity with servlets, you must understand what
servlets are and how they are used. If you are already familiar with them, you
can move directly to the section “Extending Servlets with VelocityServlet.”

In the early days of dynamic Web page development, server-side languages such
as Active Server Pages (ASP) and JavaServer Pages (JSP) became available that
you could embed in the HTML code. When a browser requested the Web page,
the server parsed through the ASP/JSP page, executed the statements it found,
and returned a pure HTML page to the user (barring any client-side JavaScript
or VBScript). Mixing code and HTML is not easy, however, and the ASP and JSP
server-side languages also have certain limitations, such as limited support
across platforms and server support.

Servlets are a way to pull the code out of the HTML and place it at the server
where it belongs. That way, you can write the logic using the full power of the

Using Velocity with Servlets

C H A P T E R12

155

Java language. The servlets can be distributed across a farm of servers, and you
can use templates to display information to the user.

A Common Format for Servlets
It is important that you know what a traditional servlet looks like before you go
any further. Listing 12.1 shows a simple servlet.

U s i n g Ve l o c i t y w i t h S e r v l e t s156

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

public class ViewAccount extends HttpServlet {

public void init() throws ServletException {

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("</HTML>");

} catch (SQLException e) {

e.printStackTrace();

}

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

}

}

Listing 12.1 Traditional servlet code.

When a request comes from a Web browser, it will be either a POST or a GET.
As you can see in the servlet code, there are methods for handling both the
requests (although the doPost() method simply delegates to the doGet()
method). Within the doGet() method are two important variables: request and
response. The request object is responsible for transferring information from
the user to the servlet. Typically, the information will be text that a user enters

into input controls in an HTML form. The response object is responsible for
configuring the HTML page that will be sent back to the user’s Web browser.
Information in the response object includes the type of page being returned
(such as HMTL, XML, or an image). The response object also has a PrintWriter
object associated with it, which is used to write information to the page
returned to the user.

Servlets aren’t hosted on ordinary Web servers but instead are hosted on appli-

cation servers. Examples of these pieces of software include Tomcat, BOSS,
and Resin. In most cases, the application server is used in conjunction with a
Web server, like IIS or Apache. When the Web server gets a request for a servlet,
the request is forwarded to the application server and executed. The applica-
tion server uses the Java compiler to create an executable image of the servlet,
which is executed within a Java Virtual Machine (JVM). We see an example of
this in the next section.

Extending Servlets with VelocityServlet
You can use the Velocity engine with servlets in a way that makes outputting
information to the user using the Velocity Templating Language a simple task.
To facilitate the use of servlets, you use a base class called VelocityServlet and
a method called handleRequest()--instead of directly extending HttpServlet and
the doGet()/doPost() methods as in the traditional servlet.

The handleRequest() method passes three parameters--HttpServletRequest,
HttpServletResponse, and Context--to the code responding to a GET/POST
request. The HttpServletRequest and HttpServletResponse objects are the same
objects received in the doGet() and doPost() methods found in the traditional
servlet code shown in Listing 12.1. The Context object is a context for the Veloc-
ity engine designed to be used with the servlet. We will place information in this
Context object for the Velocity templates used to display a response to the user.

The handleRequest() method returns a Template object, which the method
automatically merges with the passed-in Context object. Thus, the code within
the handleRequest() method should do everything necessary to set up the Con-
text object and return a Velocity object for the merge. If the Template object
returned equates to null, the code won’t perform a merge. In this situation, the
code returns to the user’s browser anything placed in the PrintWriter object of
the response object, just like the traditional servlet code.

Basic Velocity Servlet Code
With the introduction of the handleRequest() method, let’s look at an example
(Listing 12.2) that produces simple output to a browser.

Using Servlets 157

U s i n g Ve l o c i t y w i t h S e r v l e t s158

import java.util.Vector;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.velocity.Template;

import org.apache.velocity.context.Context;

import org.apache.velocity.servlet.VelocityServlet;

import org.apache.velocity.exception.*;

public class VelocityServletExample extends VelocityServlet {

public Template handleRequest(HttpServletRequest request,

HttpServletResponse response,

Context context) {

Vector v = new Vector();

v.add("one");

v.add("two");

v.add("three");

context.put("list", v);

Template template = null;

try {

template = getTemplate("displaylist.vm");

} catch(Exception e) {

PrintWriter out = response.getWriter();

out.println("Error getting template");

}

return template;

}

}

Listing 12.2 A Velocity servlet example.

The code in Listing 12.2, when called by a browser, instantiates a Vector object
and places three String objects into it. The Vector object is placed in the context
with the statement

context.put("list", v);

Notice that we have placed the entire Vector object into the context. Next, a
Template object is declared and a call is made to the getTemplate(String)
method to locate and load a template from the server’s hard drive. If there is a
problem obtaining the template file from the hard drive, the PrintWriter from
the response object is obtained and an error message is written to it. The last
operation performed by the code is to return the Template object. If the object
is null because of an error, the system won’t perform a merge; otherwise, the
template read from the server is merged with the context. Listing 12.3 shows
the Velocity template used in this example.

TEAMFL
Y

Team-Fly®

Using Servlets 159

<?xml version="1.0" encoding="ISO-8859-1" ?>

<list>
#foreach($value in $list)

<number>$value</number>
#end
</list>

Listing 12.3 The displaylist.vm Velocity code.

The template in Listing 12.3 isn’t HTML; we used XML to show that Velocity isn’t
limited to output in HTML format only. Important work is being performed in
this example. Remember that the “list” key relates to a Vector object. The Veloc-
ity Templating Language code in the template uses the Vector in a #foreach
loop. Recall from our definition of the #foreach directive that with List objects
such as Vector the iterator is automatically extracted and used to obtain all of
the individual objects in the List (or Vector, in this case).

Each of the objects from the Vector are extracted and placed in the reference
$value. Since the String isn’t a compound object, we can simply use it to output
its value within the <number> element tags. Figure 12.1 shows an example of
the output from our first Velocity servlet and its corresponding template.

Figure 12.1 Output from the Velocity template.

Although the HttpServletRequest and HttpServletResponse objects are passed
to the servlet code, they are also placed in the Context object as two constants:

■■ VelocityServlet.REQUEST—Stored as req

■■ VelocityServlet.RESPONSE—Stored as res

Each of the objects can be used in a Velocity template with code like the fol-
lowing, which extracts the value in a <form> input variable called username:

#set($username = $req.getParameter('username'))

Creating an MVC application

Our first servlet example for Velocity is quite simple, so let’s make things a little
more complex. In this section, you build an MVC application using servlets for
the controller, Velocity templates for the view, and JavaBeans for the model.
The application is a CD database where you have four possible operations:

■■ Adding a CD and returning a thank-you response

■■ Adding tracks for specific CDs and returning a thank-you response

■■ Obtaining all CDs by a specific artist

■■ Obtaining all tracks on a specific CD

Figure 12.2 shows the output produced when you add a new CD; Figure 12.3
shows the output produced when you search for all CDs by a specific artist. Fig-
ure 12.4 shows the output produced when you list all of the tracks on a specific
CD.

U s i n g Ve l o c i t y w i t h S e r v l e t s160

Figure 12.2 Adding a new CD.

Figure 12.3 Listing all CDs for an artist.

The Database Structure
The application uses a database to hold the information about the CDs as well
as the tracks. In the test environment, we chose MySQL but you could select
another database vendor if you prefer. The following SQL create table com-
mands show the schema for the CD and tracks tables that are placed in a data-
base called products.

create table cd (

id int not null primary key auto_increment,

title varchar(128),

artist varchar(64),

tracks int);

create table tracks(

id int not null primary key auto_increment,

Creating an MVC Application 161

U s i n g Ve l o c i t y w i t h S e r v l e t s162

Figure 12.4 Listing all tracks on a CD.

Database Access
Our model components for the CD example are using entity EJBs to access the
data within both the CD and tracks tables. The beans as well as the servlets are
served to the user using an application server. For the test environment, we’re
using the Resin application server. The EJBs access the database through a
Java Naming and Directory Interface (JNDI) resource reference. Listing 12.4
shows the <resource-ref> element that you add to the application server’s con-
figuration file. The element is fairly standard, except for the driver and URL for
the database. If you are using another database vendor, you have to change
both of these <init-param> elements.

cd_id int,

name varchar(64),

length varchar(16));

Creating an MVC Application 163

<resource-ref>

<res-ref-name>jdbc/ProductsDB</res-ref-name>

<res-type>javax.sql.ConnectionPoolDataSource</res-type>

<init-param driver-name="org.gjt.mm.mysql.Driver"/>

<init-param url="jdbc:mysql://localhost:3306/products"/>

<init-param user=""/>

<init-param password=""/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

<init-param max-active-time="1"/>

<init-param max-pool-time="1"/>

<init-param connection-wait-time="1"/>

</resource-ref>

Listing 12.4 The resin.config resource text.

The Model Code
At this point, you’ve created the database and included a JNDI reference that
can be used by any of the code executing on the application server to access the
database. It is now time to consider the entity beans that will be used to access
the data in your tables. Since you have two tables, you need to build two entity
EJBs. For our purposes, let’s take advantage of Resin’s container-managed

persistence (CMP) model for beans, which focuses on the local instantiation of
EJBs versus a remote invocation. What this means is that you will build entity
EJBs that have to deal only with local interfaces, not remote ones, thus involv-
ing considerably less coding. Because this book is about Velocity, we show only
the bean classes for the two entity EJBs; you can download all of the other files
from the software Web site at www.wiley.com/compbooks/gradecki. First, let’s
look at the EJB file containing the bean definitions (Listing 12.5).

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>CDRecordBean</ejb-name>
<local-home>cd.CDRecordHome</local-home>
<local>cd.CDRecord</local>
<ejb-class>cd.CDRecordBean</ejb-class>

<prim-key-class>int</prim-key-class>
<primkey-field>id</primkey-field>

<persistence-type>Container</persistence-type>

Listing 12.5 The CDRecordBean EJB file. (continues)

U s i n g Ve l o c i t y w i t h S e r v l e t s164

<reentrant>True</reentrant>

<abstract-schema-name>CDTable</abstract-schema-name>
<sql-table>cd</sql-table>

<cmp-field><field-name>id</field-name></cmp-field>
<cmp-field><field-name>title</field-name></cmp-field>
<cmp-field><field-name>artist</field-name></cmp-field>
<cmp-field><field-name>tracks</field-name></cmp-field>

<query>
<query-method>

<method-name>findByArtist</method-name>
</query-method>
<ejb-ql>SELECT o FROM CDTable o WHERE o.artist like

?1</ejb-ql>
</query>

</entity>

<entity>
<ejb-name>TracksRecordBean</ejb-name>
<local-home>cd.TracksRecordHome</local-home>
<local>cd.TracksRecord</local>
<ejb-class>cd.TracksRecordBean</ejb-class>

<prim-key-class>int</prim-key-class>
<primkey-field>id</primkey-field>

<persistence-type>Container</persistence-type>
<reentrant>True</reentrant>

<abstract-schema-name>TrackTable</abstract-schema-name>
<sql-table>tracks</sql-table>

<cmp-field><field-name>id</field-name></cmp-field>
<cmp-field><field-name>cd_id</field-name></cmp-field>
<cmp-field><field-name>name</field-name></cmp-field>
<cmp-field><field-name>length</field-name></cmp-field>

<query>
<query-method>

<method-name>findByCdID</method-name>
</query-method>
<ejb-ql>SELECT o FROM TrackTable o WHERE o.cd_id=?1</ejb-ql>

</query>
</entity>

</enterprise-beans>
</ejb-jar>

Listing 12.5 The CDRecordBean EJB file. (continued)

The EJB file in Listing 12.5 shows how the two entity beans are defined, along
with the primary key and all of the fields of each table. Both of the entity beans
include a <query> element that allows data to be pulled from the tables using a
field other than the primary key. To give you an idea of how entity beans are
written using the Resin application server, consider the CDRecordBean class in
Listing 12.6.

Creating an MVC Application 165

package cd;

import javax.ejb.*;

public abstract class CDRecordBean

extends com.caucho.ejb.AbstractEntityBean {

public abstract String getTitle();

public abstract String getArtist();

public abstract int getTracks();

public abstract int getId();

public abstract void setTitle(String title);

public abstract void setArtist(String artist);

public abstract void setTracks(int tracks);

public abstract void setId(int id);

public int ejbCreate(String title, String artist, int tracks)

throws CreateException {

setId(0);

setTitle(title);

setArtist(artist);

setTracks(tracks);

return 1;

}

public void ejbPostCreate(String title, String artist, int

tracks) {

// since there are no relations, this is empty.

}

}

Listing 12.6 The CDRecordBean class.

The CDRecordBean class in Listing 12.6 inherits from the class AbstractEntity-
Bean, which is defined as a helper class from the makers of Resin. This helper
class provides all the normal methods that an entity bean needs to implement
with empty bodies. You only need to provide the methods actually used in your
bean, thus cutting down on code clutter. Otherwise, the remaining code in the

bean is used to define the fields of the table to which this bean relates. Listing
12.7 shows the bean class for TracksRecordBean.

U s i n g Ve l o c i t y w i t h S e r v l e t s166

package cd;

import javax.ejb.*;

import java.sql.*;

public abstract class TracksRecordBean

extends com.caucho.ejb.AbstractEntityBean {

public abstract int getId();

public abstract int getCd_id();

public abstract String getName();

public abstract String getLength();

public abstract void setId(int id);

public abstract void setCd_id(int cd_id);

public abstract void setName(String name);

public abstract void setLength(String tracks);

public int ejbCreate(int cd_id, String name, String length)

throws CreateException {

setCd_id(cd_id);

setName(name);

setLength(length);

return 1;

}

public void ejbPostCreate(int cd_id, String name, String length) {

// since there are no relations, this is empty.

}

}

Listing 12.7 The TracksRecordBean class.

As we mentioned earlier, you can download the remaining files for the entity
beans. All of the entity files are placed in the /classes directory of an application
hosted by Resin.

The View Code
Now you need to consider how the output will look to the user using Velocity as
your scripting language. This is where all of the magic takes place to provide
your users with a pleasing experience. For this application, you have three
Velocity templates:

■■ thanks.vm—A generic page for displaying thank-you messages to the user

■■ displaycd.vm—A page that displays a list of CDs for the user

■■ displaytracks.vm—A page that displays a list of tracks on a specific CD

First, let’s look at the thanks.vm template, shown in Listing 12.8.

Creating an MVC Application 167

<HTML>

<HEAD>

<TITLE></TITLE>

<link rel="stylesheet" type="text/css" href="defaultpage.css">

</HEAD>

<BODY BGCOLOR="#F79C19" link="ffffff" alink="999999"

vlink="ffffff" topmargin="0" leftmargin="0" marginheight="0"

marginwidth="0">

#if ($message)

$message

#end

$thanks

</td></tr>

</table>

</BODY>

</HTML>

Listing 12.8 The thanks.vm template.

The thanks.vm template is actually part of a frameset that provides all the bor-
ders’ look and feel. The template is placed in the main, or body, part of the
frameset. Even with this, you still need to provide appropriate background col-
ors and graphics to improve the appearance of the output. At the top of the tem-
plate is the information for the background of the page, followed by the actual
Velocity elements.

The first element is an #if directive surrounding the $message reference. The
$message reference is designed to display a message in those cases where an
error has occurred and you need to let the user know about it. The message is
written only to the context when an error occurs, so there will be times when
the reference won’t be found in the context. If you didn’t wrap the reference in
an #if directive, the text string “$message” would be displayed instead. This
wouldn’t look very good, so the $if directive tests whether the $reference con-
tains a value. If the $reference contains a value—meaning it was found in the
context—you display the value in $message.

In case of an error, you still thank the user for attempting to enter a new CD or
track. This output is generated using the $thanks reference.

Displaying CDs

Our application allows the user to search for all CDs in the database by a spec-
ified artist and get back a list of those CDs. A button appears next to each of the
listed CDs that the user can click to list all of the tracks on that particular CD.
The displaycd.vm template in Listing 12.9 handles these display tasks.

U s i n g Ve l o c i t y w i t h S e r v l e t s168

<HTML>
<HEAD>

<TITLE></TITLE>
<link rel="stylesheet" type="text/css" href="defaultpage.css">

</HEAD>
<BODY BGCOLOR="#F79C19" link="ffffff" alink="999999"
vlink="ffffff" topmargin="0" leftmargin="0" marginheight="0"
marginwidth="0">

#foreach($value in $cds)
<form action="http://localhost:8080/cd/cdVelocityHandler"
method="post">

 Title: $value.title
<input type="hidden" name="id" value="$value.id">
<input type="submit" name="submit" value="tracks">

</form>
#end

</BODY>
</HTML>

Listing 12.9 The displaycd.vm template.

Just as with the thanks.vm template, you include some display HTML at the
beginning of the template. All of the output for the CDs is displayed in the body
of a frameset. After the HTML comes the Velocity code. Recall that there are
two things you want the listing to do: include the title of all the CDs for that
artist and display a button that the user can click to list the tracks on each CD.

Suppose that while working with your Web developers, you decide that the
code pulling the CDs from the database will place a Collection object called
$cds into the context. This Collection object will contain a number of
CDRecordBean objects based on all of the CD rows pulled for a specific artist.

As you’ve already seen, the #foreach directive is designed to extract an iterator
from objects that have them available. The Collection class is one such object,

TEAMFL
Y

Team-Fly®

so each time through the loop, the $value reference will be a CDRecordBean
entity object. Using the getter methods of the bean, the appropriate values are
then extracted.

Most of the work occurs within the loop where the title of the CD pulled from
the database is displayed. Notice that a <form> HTML tag surrounds the title.
The <form> tag is used to display a button that the user can click to see the
tracks on the CD.

After discussing the requirements for your application, you and the Web devel-
opers decide you want to have the ID from the CD table as the link to the tracks
table. To do this, you create a hidden <input> element in the <form> element.
Notice the hidden input uses a value of $value.id, which means you will be pass-
ing into the controller a different ID for each of the listed CDs.

Displaying Tracks

When a user clicks the Tracks button displayed by the displaycd.vm template,
you want to display both the name of the track and the length of the song. List-
ing 12.10 shows the displaytracks.vm template, which handles these tasks.
Again, this template contains the HTML tags necessary to display the look and
feel of the template. After the HTML, you have another #foreach loop.

Creating an MVC Application 169

<HTML>
<HEAD>

<TITLE></TITLE>
<link rel="stylesheet" type="text/css" href="defaultpage.css">

</HEAD>
<BODY BGCOLOR="#F79C19" link="ffffff" alink="999999"
vlink="ffffff" topmargin="0" leftmargin="0" marginheight="0"
marginwidth="0">
#if ($message)

$message
#end

#foreach($value in $tracks)
 Track: $value.name - Length: $value.length

#end

</td></tr>

</table>
</BODY>

</HTML>

Listing 12.10 The displaytracks.vm template.

At this point, your Web developer has indicated that you need another Collec-
tion object for all of the tracks on a CD. The Collection object, called $tracks, is
placed in the context by the controller component.

The Controller Code
You have both the model and view components; now you need to build the con-
troller component to tie these two components together. Listing 12.11 shows
the Velocity servlet that will do the work.

U s i n g Ve l o c i t y w i t h S e r v l e t s170

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.velocity.Template;

import org.apache.velocity.context.Context;

import org.apache.velocity.servlet.VelocityServlet;

import org.apache.velocity.exception.*;

import javax.naming.*;

import javax.ejb.*;

import cd.*;

import org.apache.velocity.app.Velocity;

public class cdVelocityHandler extends VelocityServlet {

private CDRecordHome cdHome = null;

private TracksRecordHome tracksHome = null;

protected Properties loadConfiguration(ServletConfig config)

throws IOException, FileNotFoundException {

Properties p = new Properties();

String path =

config.getServletContext().getRealPath("/");

if (path == null) {

System.out.println("

Unable to get the current webapp root");

path = "/";

}

p.setProperty(Velocity.FILE_RESOURCE_LOADER_PATH,

path);

return p;

}

Listing 12.11 The controller servlet for the CD example. (continues)

Creating an MVC Application 171

public void init() throws ServletException {

try {

javax.naming.Context cmp = (javax.naming.Context)

new InitialContext().lookup("java:comp/env/cmp");

cdHome = (CDRecordHome) cmp.lookup("CDRecordBean");

tracksHome = (TracksRecordHome)

cmp.lookup("TracksRecordBean");

} catch (NamingException e) {

e.printStackTrace();

}

}

public Template handleRequest(HttpServletRequest req,

HttpServletResponse res, Context context) {

Template template = null;

if (req.getParameter("submit").equals("new")) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

int tracks =

Integer.parseInt(req.getParameter("tracks"));

CDRecord cd =

cdHome.create(req.getParameter("title"),

req.getParameter("artist"), tracks);

if (cd != null) {

context.put("thanks",

"Thank you for the new CD
");

} else {

context.put("thanks",

"We are sorry but your request failed
");

}

try {

template = getTemplate("thanks.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

} else if (req.getParameter("submit").equals("obtain")) {

Listing 12.11 The controller servlet for the CD example. (continues)

U s i n g Ve l o c i t y w i t h S e r v l e t s172

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds =

cdHome.findByArtist(req.getParameter("artist"));

context.put ("cds", cds);

try {

template = getTemplate("displaycds.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

} else if (req.getParameter("submit").equals("tracks")) {

try {

if (tracksHome == null) {

context.put("message", "Sorry we had an error");

} else {

int id = Integer.parseInt(req.getParameter("id"));

Collection tracks = tracksHome.findByCdID(id);

context.put ("tracks", tracks);

try {

template = getTemplate("displaytracks.vm");

} catch(Exception e) {

System.out.println("Error " + e);

}

}

} catch(Exception e) {

e.printStackTrace();

}

} else if (req.getParameter("submit").equals("addtrack")) {

try {

if (tracksHome == null) {

context.put("message", "Sorry we had an error");

} else {

int id= Integer.parseInt(req.getParameter("id"));

TracksRecord track = tracksHome.create(id,

req.getParameter("name"),

req.getParameter("length"));

if (track!= null) {

context.put("thanks",

"Thank you for the new track
");

Listing 12.11 The controller servlet for the CD example. (continues)

Creating an MVC Application 173

} else {

context.put("thanks",

"We are sorry but your request failed
");

}

try {

template = getTemplate("thanks.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

} else {

}

return template;

}

}

Listing 12.11 The controller servlet for the CD example. (continued)

The controller component is a Velocity servlet that uses the handleRequest()
method of the VelocityServlet class. There are a few housekeeping steps you
need to take in order for the servlet to be able to access both the Velocity tem-
plate and the entity EJBs.

The Velocity templates are kept in the root directory of the servlet application,
and the servlet must have access to that directory. To be sure the servlet can
access the root directory of the application, set the FILE_RESOURCE_
LOADER_PATH properties to be equal to the real path to the directory. You can
do this in the loadConfiguration() method, which is called automatically before
the handleRequest() method is called.

Next, you need to get access to the entity EJB home interfaces. You accomplish
this in the init() method, which is called the first time the servlet is executed.
The method obtains a naming.Context object for the comp/env/cmp JNDI ref-
erence. This reference is used to access the EJBs in the system. Next, you look
up each of your beans and return an appropriate home object for both beans.
These home objects will be used shortly to build entity beans.

In the handleRequest() method, the code checks to see which of the four oper-
ations defined for your application have been requested by the user. Let’s take
a look at these four operations.

Entering a New CD

When the user enters the title, artist, and total number of tracks for a new CD,
the code must place the CD into the table. The code begins by making sure the
home interface object is valid. If the object isn’t valid, an error message is
assigned to the “message” reference, which in turn is added to the context.

If the interface object is valid, the tracks string passed from the HTML <form>
is converted to an integer. Next, the tracks and the rest of the values from the
<form> are passed to the create() method of the CD bean’s home interface. The
result of the method call is either a null or a new entity EJB representing the
row in the CD table. If the value from the method is not null, the “thanks” refer-
ence is set to a text string and added to the Context object. Otherwise, a failure
message is added to the Context.

In either case, a Template object is set to the value returned from the getTem-
plate() method using the filename thanks.vm. If no exceptions occur, the new
Template object is returned from the handleRequest() method and the user
sees the appropriate output.

Entering a New CD Track

The code for adding a new CD track for the tracks database is basically the
same as the code for adding a new CD. However, the track interface is used
instead. In a production system, you must make certain that the CD for which
the track is being added appears in the CD table.

Listing CDs by Artist

Getting a list of CDs by a particular artist is a little different from adding a CD
because you need to query the database. You will remember that the EJB files
for the two entity EJBs in the application each defined a <query> element. In
the case of the CD table, our defined query returns all of the rows in the CD
table by a specific artist.

The code calls the query using the findByArtist(String) method. The value
returned from this method is a Collection object containing zero or more entity
objects from the CD table. Regardless of the number of objects in the collec-
tion, it is added to the context using the command

context.put ("cds", cds);

After the Collection object is added to the context, the displaycds.vm template
is pulled from the server’s hard drive and the Template object is returned for
display to the user.

U s i n g Ve l o c i t y w i t h S e r v l e t s174

Listing CD Tracks

When a user wants to display the tracks of a specific CD, the code takes the ID
passed from the <form> in the ID variable and passes it to the findByCdID(int)
method. This method executes the <query> element found in the EJB file for
the TracksRecordBean. The result of the method is a collection containing the
tracks for the specified CD. The collection is added to the context as the
$tracks reference.

Advanced Servlet Functionality

For the VelocityServlet base class, numerous additional methods can be over-
ridden. These methods are as follows:

■■ Properties loadConfiguration(ServletConfig)—A method that allows addi-
tional properties to be added to the servlet’s properties. The properties cur-
rently defined in the Velocity runtime are:

static java.lang.String--COUNTER_INITIAL_VALUE—The initial
counter value in #foreach directives.

static java.lang.String--COUNTER_NAME—The initial counter name
in #foreach directives.

static java.lang.String--DEBUG_PREFIX—-Log message prefixes.

static java.lang.String--DEFAULT_RUNTIME_DIRECTIVES-—Default
runtime directives.

static java.lang.String--DEFAULT_RUNTIME_PROPERTIES—Default
runtime properties.

static java.lang.String--ENCODING_DEFAULT—The default encod-
ing type.

static java.lang.String--ERROR_PREFIX—Error message prefixes.

static java.lang.String--ERRORMSG_END—The ending tag for error
messages triggered by passing a parameter that is not allowed in the
#include directive.

static java.lang.String--ERRORMSG_START—The starting tag for
error messages triggered by passing a parameter that is not allowed
in the #include directive.

static java.lang.String--FILE_RESOURCE_LOADER_CACHE—The
public handle for turning the caching on in the FileResourceLoader.

static java.lang.String--FILE_RESOURCE_LOADER_PATH—
The public handle for setting a path in the FileResourceLoader.

static java.lang.String--INFO_PREFIX—Information message
prefixes.

Advanced Servlet Functionality 175

static java.lang.String--INPUT_ENCODING—The character encoding
for the templates.

static java.lang.String--INTERPOLATE_STRINGLITERALS—The
switch for the interpolation facility for string literals.

static java.lang.String--LOGSYSTEM_LOG4J_EMAIL_BUFFER_SIZE-
-log4J configuration.

static java.lang.String--LOGSYSTEM_LOG4J_EMAIL_FROM—log4J
configuration.

static java.lang.String--LOGSYSTEM_LOG4J_EMAIL_SERVER—
log4J configuration.

static java.lang.String--LOGSYSTEM_LOG4J_EMAIL_SUBJECT—
log4J configuration.

static java.lang.String--LOGSYSTEM_LOG4J_EMAIL_TO—log4J con-
figuration.

static java.lang.String--LOGSYSTEM_LOG4J_FILE_BACKUPS—log4J
configuration.

static java.lang.String--LOGSYSTEM_LOG4J_FILE_SIZE—log4J con-
figuration.

static java.lang.String--LOGSYSTEM_LOG4J_PATTERN—log4J con-
figuration.

static java.lang.String--LOGSYSTEM_LOG4J_REMOTE_HOST—log4J
configuration.

static java.lang.String--LOGSYSTEM_LOG4J_REMOTE_PORT—log4J
configuration.

static java.lang.String--LOGSYSTEM_LOG4J_SYSLOGD_FACILITY—
log4J configuration.

static java.lang.String--LOGSYSTEM_LOG4J_SYSLOGD_HOST—
log4J configuration.

static int--NUMBER_OF_PARSERS—The number of parsers you
want to create.

static java.lang.String--OUTPUT_ENCODING—Encoding for the out-
put stream.

static java.lang.String--PARSE_DIRECTIVE_MAXDEPTH—The maxi-
mum recursion depth allowed for the #parse directive.

static java.lang.String--PARSER_POOL_SIZE—The total number of
parsers in the pool.

static java.lang.String--RESOURCE_LOADER—The key used to re-
trieve the names of the resource loaders that you want to use.

U s i n g Ve l o c i t y w i t h S e r v l e t s176

static java.lang.String--RESOURCE_MANAGER_CACHE_CLASS—
A class implementing the resource manager cache.

static java.lang.String--RESOURCE_MANAGER_CLASS—A class im-
plementing the resource manager.

static java.lang.String--RESOURCE_MANAGER_LOGWHEN-
FOUND—Used to determine whether the finding of a resource is
logged.

static java.lang.String--RUNTIME_LOG—Location of the Velocity log
file.

static java.lang.String--RUNTIME_LOG_ERROR_STACKTRACE—
The stack trace output for error messages.

static java.lang.String--RUNTIME_LOG_INFO_STACKTRACE—Stack
trace output for informational messages.

static java.lang.String--RUNTIME_LOG_LOGSYSTEM—An externally
provided logger.

static java.lang.String--RUNTIME_LOG_LOGSYSTEM_CLASS—A
class of log system you want to use.

static java.lang.String--RUNTIME_LOG_REFERENCE_LOG_IN-
VALID—The logging of invalid references.

static java.lang.String--RUNTIME_LOG_WARN_STACKTRACE—
Stack trace output for warning messages.

static java.lang.String--UNKNOWN_PREFIX—Unknown message
prefixes.

static java.lang.String--VM_CONTEXT_LOCALSCOPE—A switch for
local context in VM; the default is false.

static java.lang.String--VM_LIBRARY—The name of the local Veloci-
macro library template.

static java.lang.String--VM_LIBRARY_AUTORELOAD—A switch for
autoloading library-sourced VMs (for development).

static java.lang.String--VM_MESSAGES_ON—A switch for VM mes-
sages; the default is true.

static java.lang.String--VM_PERM_ALLOW_INLINE—boolean
(true/false); the default is true; allows inline (in-template) macro def-
initions.

static java.lang.String--VM_PERM_ALLOW_INLINE_REPLACE_
GLOBAL—boolean (true/false); the default is false; allows inline
(in-template) macro definitions to replace existing ones.

static java.lang.String--VM_PERM_INLINE_LOCAL—Switch for forc-
ing inline macros to be local : default false.

static java.lang.String--WARN_PREFIX—Warning message prefixes.

Advanced Servlet Functionality 177

■■ Context createContext(HttpServletRequest, HttpServletResponse)—The
createContext() method allows developers to create their own Context
objects, which can be used for a private merge().

■■ void setContentType(HttpServletRequest,HttpServletResponse)--By
default, handleRequest() will output in text/HTML format, but you can
change to another format, such as XML or even an image file.

■■ void mergeTemplate(Template, Context, HttpServletResponse)—If you
want to control the output yourself instead of relying on the han-
dleRequest() method, then you can get your own context using the create-
Context() method listed earlier and merge it with a template and output to
the response object passed to the handleRequest() method. The mer-
geTemplate() method takes all three objects and produces the output.

■■ void requestCleanup(HttpServletRequest, HttpServletResponse,
Context)—If you handle the output yourself, you should override the
requestCleanup() method to handle any last-minute issues. By default, this
method has no implementation.

■■ protected void error(HttpServletRequest, HttpServletResponse, Excep-
tion)—The error() method is called when an exception occurs in the pro-
cessing of a user’s request. You can override this method to provide more
advanced error handling. The default implementation sends an error mes-
sage and a stack trace back to the user.

Adding Reports

Our application to this point has focused on generating output in the form of
HTML. But what if you don’t want any fancy HTML tables and just want to run
a text-based report of all the CDs in the database? Well, consider the Velocity
template in Listing 12.12.

U s i n g Ve l o c i t y w i t h S e r v l e t s178

CD Database ID Artist Title

#set ($counter = 0)

#foreach($value in $cds)

#if ($counter == 50)

#set ($counter = 0)

CD Database ID Artist Title

#else

Listing 12.12 A Velocity template that produces a text report. (continues)

TEAMFL
Y

Team-Fly®

Adding Reports 179

#set ($counter = $counter + 1)

#end

$value.id $value.artist $value.title

#end

Listing 12.12 A Velocity template that produces a text report. (continued)

The Velocity template in Listing 12.12 is designed to output a heading to a page,
list 50 CDs in the database, and then produce another heading. The number of
CDs between headings can be changed to accommodate various outputs. To
produce the full report of CDs in the database, you need to add a button to the
primary CD index.html page. Here’s the code for the new button:

<h3>Reports</h3>

<form action="http://localhost:8080/cd/cdVelocityHandler" method="post">

<input type="submit" name="submit" value="fullreport"> -

download 'report.txt' to your local system

</form>

This new form displays a button called FullReport on the index page. When the
user clicks the button, control is passed to the cdVelocityHandler servlet
defined in Listing 12.11. The code that handles the new button appears in List-
ing 12.13.

else if (req.getParameter("submit").equals("fullreport")) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds = cdHome.findAllCDs();

context.put ("cds", cds);

try {

template = getTemplate("fullreport.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

Listing 12.13 The control servlet report task.

There isn’t anything special about the new code--except the findAllCDs query
associated with the CDRecordBean entity bean. Listing 12.14 shows the query
for the new report.

U s i n g Ve l o c i t y w i t h S e r v l e t s180

<query>

<query-method>

<method-name>findAllCDs</method-name>

</query-method>

<ejb-ql>SELECT o FROM CDTable o</ejb-ql>

</query>

Listing 12.14 The bean query.

The new query pulls all of the rows from the CDTable database table. Once all
of the rows are pulled, the resulting Collection object is placed in the context.
Finally, the fullreport.vm Velocity template is called to output the results of the
query. The results of this process are shown in Figure 12.5.

Figure 12.5 The report output in a browser.

As you can see, the output isn’t all you might have hoped for--the text output
didn’t render well in the HTML of the Web browser. What if you could produce
a properly formatted text file and offer the option for the user to download the
file? Consider the new Velocity template in Listing 12.15.

Adding Reports 181

CD Database ID Artist Title

#set ($counter = 0)

#foreach($value in $cds)

#if ($counter == 50)

#set ($counter = 0)

CD Database ID Artist Title

#else

#set ($counter = $counter + 1)

#end

$value.id

$value.artist$stringlength.tabs($value.artist)$value.title

#end

Listing 12.15 The Velocity template for text only.

The purpose of the Velocity template in Listing 12.15 is to properly format the
report using tabs the data produced from the database. What this means is that
the strings under the Artist and Title headings will be properly formatted and
aligned with each other regardless of their length. You won’t see any jagged
rows. To accomplish this, you have to produce the right number of tabs after
the Artist value is displayed in the template but before the Title value. If you
look in the template code, you will see a line like the following:

$value.artist$stringlength.tabs($value.artist)$value.title

This line isn’t one command but three:

$value.artist

$stringlength.tabs($value.artist)

$value.title

The $value.artist and $value.title commands simply produce the artist and title
for the current row being displayed. The interesting part of the command is
$stringlength..tabs($value.artist). The $stringlength reference relates to an object
placed in the context using the StringLength class, as shown in Listing 12.16.

public class StringLength {

public StringLength(){}

public String tabs(String st) {

String s = new String();

Listing 12.16 The StringLength class. (continues)

U s i n g Ve l o c i t y w i t h S e r v l e t s182

for (int i=3;i>st.length()/5;i--)

s = s + "\t";

return s;

}

}

Listing 12.16 The StringLength class. (continued)

The StringLength class has a single job: to expose a method called tabs(). The
method calculates and returns a string with the total number of tabs necessary
to line up the artist and title values in our report. The name of the artist is
passed to the tabs() method and tabs are returned.

Now that you have a Velocity template that will produce the right output, you
have to determine how the control servlet will produce a file for the user to
download. The code in Listing 12.17 shows the control servlet code for the Full-
Report button.

else if (req.getParameter("submit").equals("fullreport")) {

try {

if (cdHome == null) {

context.put("message", "Sorry we had an error");

} else {

Collection cds = cdHome.findAllCDs();

context.put ("cds", cds);

try {

res.setContentType("APPLICATION/OCTET-STREAM");

res.setHeader("Content-Disposition","attachment;

filename=report.txt");

template = getTemplate("fullreport.vm");

} catch(Exception e) {

e.printStackTrace();

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

Listing 12.17 The servlet code for downloading the report.

As you can see, the findAllCDs query is used to pull all of the CD information
from the database and the fullreport.vm Velocity template is used for the out-
put. Two additional commands are included:

res.setContentType("APPLICATION/OCTET-STREAM");

res.setHeader("Content-Disposition","attachment; filename=report.txt");

These two commands tell the user’s browser that the return information from
the <form> interaction is a file called report.txt, which will be presented to the
user as a download dialog box. Figure 12.6 shows an example of the file down-
loaded using this application.

What’s Next 183

Figure 12.6 The report output.

What’s Next

In this chapter, we introduced the possibilities available to the developer when
mixing Velocity and servlets. In the next chapter, we show how to expand
Velocity driven sites to be usable from around the world using internationaliza-
tion techniques.

If you are building a world-class Web site, would you want to code just to an
American, or even just an English-speaking, audience? Of course not.
Numerous Web sites around the world provide the user with a list of target

countries, a map, or links that display content in a language appropriate for the
selected country and language. Fortunately, some of the components within
Java itself offer a solid way to internationalize applications and Web sites. You
can use Velocity to highlight these components and develop an easy methodol-
ogy for internationalization. In this chapter, we briefly cover those Java com-
ponents and then introduce a Velocity application based on the CD collection
Web application found in Chapter 12, “Using Velocity with Servlets.”

Java Internationalization Components

In this section, we examine the Java components that you can use to interna-
tionalize your Web applications. For a complete understanding of this process,
see the Java Tutorial Trailhead at http://java.sun.com/docs/books/tutorial/i18n/.
Before we start, let's narrow our focus a little to building a Web application that
can be read in both English and German.

Probably one of the easiest ways to present a Web application in two languages
is to build two pages. Suppose you have an original Web page called index.html.
For the English page, you might use the name /en/index.html and call the Ger-
man page indexgerman.html. Or you could build directories for the files, such
as /en/index.html and /de/index.html.

Velocity and Internationalization

C H A P T E R13

185

Of course, building two or 20 pages for the same content in different languages
is a waste of time. If you have the opportunity to build your Web application
using Java and servlets as well as Velocity, that's a much better solution.

The Java Locale Class
The Java Locale class is designed to be a catchall object for other Java classes.
The Locale object is passed to a class that knows how to deal with various loca-
tions in the world. You create a Locale object by passing two parameters: the
language you want to use and the country. Both the language and country are
identified by two-character abbreviations. For example, the English language is
represented by en and the German language by de. The countries are repre-
sented by US and DE, respectively.

So, you can create a Locale object using the following code:

Locale location = new Locale('en', 'US');

You can view a full list of language codes at www.ics.uci.edu/pub/ietf/http/
related/iso639.txt. The country codes can be found at /www.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html.

Resource Bundles
For Java internationalization, most of the work is accomplished in the
ResourceBundle object. This object acts like a large multidimensional map that
lets you supply a key string and return a value based on the Locale object pro-
vided to the bundle. The ResourceBundle object relies on properties files,
which are just text files with key value relationships defined within them. There
will always be a default properties file called MessagesBundle.properties. This
bundle is used if the ResourceBundle object cannot find another properties file
that matches the provided locale. Let's first look at how you create a Resource-
Bundle object:

message = ResourceBundle.getBundle("MessagesBundle", location);

The statement instantiates a ResourceBundle object based on the property file-
name of MessagesBundle and the provided Locale object. If you are planning to
code a Web application for English/U.S. and German/Germany locations, you
need two additional properties files:

■■ MessagesBundle_en_US.properties

■■ MessagesBundle_de_DE.properties

The ResourceBundle object is responsible for choosing the proper properties
file. As we mentioned, each properties file contains key value pairs. For exam-

Ve l o c i t y a n d I n t e r n a t i o n a l i z a t i o n186

ple, to display a greeting to your user, you include an entry like this one in the
properties file:

Greet = Hello

Of course, you have to include the appropriate entry in the default, the U.S., and
the German files. You then ask the ResourceBundle object to return the value
for the key “Greet’ based on the current Locale object. For example:

String hello = messages.getString("Greet");

With this code, the proper greeting is presented to the user. Now let’s see how
you can use this knowledge to build an international Web site.

An International CD Web Application

In the previous chapter, you created an application that allowed you to store
and retrieve CDs and their tracks in a database. As you’ll recall, the application
displayed a primary Web page with options to enter CDs and tracks, as well as
options for viewing that information. The application presented this page in
English, but there might be times when you want to either provide the applica-
tion to another country or post it on the Internet for all to use. This means you
have to internationalize the application, which you can accomplish by creat-
ing a template from the primary display page.

Let’s begin by prompting users to select the language and country in which they
would like the Web page to be displayed. Listing 13.1 shows the HTML code you
need, and Figure 13.1 shows the output from the HTML page.

An International CD Web Application 187

<HTML>

<BODY>

<form action="http://localhost:8080/cd/cdIndex">

<select name="country">

<option value="US">US</option>

<option value="DE">DE</option>

</select>

<select name="language">

<option value="en">us</option>

<option value="de">de</option>

</select>

<input type="submit" value="submit">

</form>

</BODY>

</HTML>

Listing 13.1 The international.html file.

Ve l o c i t y a n d I n t e r n a t i o n a l i z a t i o n188

Figure 13.1 The language/country select page.

There are two important things to glean from the code in Listing 13.1. The first
is the action in the <form> tag. When users click the submit button, they are
sent to a new servlet called cdIindex. This servlet is responsible for obtaining
the text for the display screen in the requested language. Also note the country
and language selection boxes. The inputs in the form are passed to the cdIndex
servlet so that it knows the correct properties file to use for displaying text.

The output from the cdIndex servlet is a Velocity template displaying informa-
tion for entering and viewing CDs. Listing 13.2 shows this template.

<HTML>
<HEAD>

<TITLE></TITLE>
<link rel="stylesheet" type="text/css" href="default.css">

</HEAD>
<BODY BGCOLOR="#3A6BA5" link="ffffff" alink="999999" vlink="ffffff">

<table border="1" >
<tr><td>
$createstring

<form action="http://localhost:8080/cd/cdVelocityHandler"
method="post">
<table>
<tr><td>$title</td><td><input name="title"></td></tr>
<tr><td>$artist</td><td><input name="artist"></td></tr>
<tr><td>$tracks</td><td><input name="tracks"></td></tr>
</table>

<input type="submit" name="submit" value="new">
</form>
</td>
<td valign="top">
$displaystring

<form action="http://localhost:8080/cd/cdVelocityHandler"

Listing 13.2 The index.vm Velocity template. (continues)

TEAMFL
Y

Team-Fly®

An International CD Web Application 189

method="post">
<table>
<tr><td>$artist</td><td><input name="artist"></td></tr>
</table>

<input type="submit" name="submit" value="obtain">
</form>
</td>
</tr>
<tr>
<td valign="top">
$viewstring

<form action="http://localhost:8080/cd/cdVelocityHandler" method="post">
<table>
<tr><td>$ID</td><td><input name="id"></td></tr>
</table>

<input type="submit" name="submit" value="tracks">
</form>
</td>
<td valign="top">
$addstring

<form action="http://localhost:8080/cd/cdVelocityHandler"
method="post">
<table>
<tr><td>$ID</td><td><input name="id"></td></tr>
<tr><td>$name</td><td><input name="name"></td></tr>
<tr><td>$length</td><td><input name="length"></td></tr>
</table>

<input type="submit" name="submit" value="addtrack">
</form>
</td>
</tr>
</table>
</BODY>
</HTML>

Listing 13.2 The index.vm Velocity template. (continued)

The display page is broken up into four tasks. Each of the tasks displays an
instruction and several form fields to be filled in by the user. All of the text dis-
played on the page has been converted to Velocity references. The Velocity ref-
erences are filled by the cdIndex servlet, shown in Listing 13.3.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.velocity.Template;

Listing 13.3 cdIndex.java. (continues)

Ve l o c i t y a n d I n t e r n a t i o n a l i z a t i o n190

import org.apache.velocity.context.Context;
import org.apache.velocity.servlet.VelocityServlet;
import org.apache.velocity.exception.*;
import javax.naming.*;
import javax.ejb.*;
import cd.*;

import org.apache.velocity.app.Velocity;

public class cdIndex extends VelocityServlet {

protected Properties loadConfiguration(ServletConfig config)
throws IOException, FileNotFoundException

{
Properties p = new Properties();

String path = config.getServletContext().getRealPath("/");
if (path == null) {

System.out.println(
" SampleServlet.loadConfiguration() : unable to "
+ "get the current webapp root. Using '/'. Please fix.");

path = "/";
}

p.setProperty(Velocity.FILE_RESOURCE_LOADER_PATH, path);
return p;

}

public Template handleRequest(HttpServletRequest req,
HttpServletResponse res, Context context) {
Template template = null;

String country = req.getParameter("country");
String language = req.getParameter("language");

Locale currentLocale = new Locale(language, country);
ResourceBundle messages =

ResourceBundle.getBundle("MessagesBundle", currentLocale);

context.put("title", messages.getString("title"));
context.put("artist", messages.getString("artist"));
context.put("ID", messages.getString("ID"));
context.put("name", messages.getString("name"));
context.put("length", messages.getString("length"));
context.put("tracks", messages.getString("tracks"));
context.put("createstring", messages.getString("createstring"));
context.put("displaystring", messages.getString("displaystring"));
context.put("viewstring", messages.getString("viewstring"));
context.put("addstring", messages.getString("addstring"));

Listing 13.3 cdIndex.java. (continues)

An International CD Web Application 191

try {
template = getTemplate("index.vm");

} catch(Exception e) {
e.printStackTrace();

}

return template;
}

}

Listing 13.3 cdIndex.java. (continued)

The cdIndex servlet has two jobs. First, it obtains the language and country
information from the <form> that called it and uses the information to build a
Locale object. The Locale object is used to obtain a ResourceBundle object.
Depending on the language and country selected, the ResourceBundle chooses
either the default properties file, the U.S. file, or the German file (shown in List-
ings 13.4 through 13.6, respectively). These files all reside in the same directory
as the cdIndex servlet class file.

The second and probably most important task is for the servlet to fill the con-
text with the appropriate references and their values. As you can see in the
code, each of the references are added along with a value selected using the
messages.getString(String) method call. The result is a context filled with the
references needed by the cdIndex Velocity template.

When users select the US option, they see the screen shown in Figure 13.2. If
they select German, they see the page shown in Figure 13.3. As you can see,
adding internationalization to your application is a piece of cake. To add Span-
ish, for example, just include the appropriate identifiers in the HTML selections
and build the appropriate properties file.

title = Title:

artist = Artist:

ID = ID:

name = Name:

length = Length:

tracks = Tracks:

createstring = To Create a New CD:

displaystring = To display CDs for an Artist

viewstring = To see all Tracks for a CD

addstring = To add a new track

Listing 13.4 MessagesBundle.properties.

Ve l o c i t y a n d I n t e r n a t i o n a l i z a t i o n192

Figure 13.2 The U.S. display page.

Figure 13.3 The German display page.

What’s Next 193

title = Title:

artist = Artist:

ID = ID:

name = Name:

length = Length:

tracks = Tracks:

createstring = To Create a New CD:

displaystring = To display CDs for an Artist

viewstring = To see all Tracks for a CD

addstring = To add a new track

Listing 13.5 MessagesBundle_en_US.properties.

title = Titel

artist = Kônstler

ID = IDENTIFIZIERUNG

name = Name

length = L?nge

tracks = Spuren

createstring = Um eine neue CD zu schaffen

displaystring = Um CDS fôr einen Kônstler darzustellen

viewstring = Um CD Spuren anzusehen

addstring = Um Spuren hinzuzufôgen

Listing 13.6 MessagesBundle_de_DE.properties.

What’s Next

In this chapter, we showed you how to combine Java’s internationalization fea-
tures with Velocity to build world-class Web sites that your users can view in a
variety of languages. In the next chapter, we look at using Velocity with Tur-
bine, an application framework that provides the tools you need to build enter-
prise-level applications.

If you have been developing Web applications for very long, you probably
realize that you spend a good amount of your time reinventing the wheel.
Typical tasks include database connection pooling, building control

servlets, writing navigation menus, and designing a wide variety of pages.
Where is the reuse, the components, the frameworks? Fortunately, many peo-
ple have thought about such problems and created the tools Web developers
need. In this chapter, we introduce Turbine, a framework that attempts to bring
Web development into the same arena as traditional software development.
What makes this framework so important is that it relies on Velocity for the
view component of the MVC paradigm.

What Is Turbine?

Turbine, another of the Apache Software Foundation’s Jakarta projects is one
of the most visible frameworks for Web development using Velocity. Some of its
features include:

■■ It is based on servlets for the controller component.

■■ It emphasizes security inherent in applications like shopping carts.

■■ You can use it independently of the Web.

Turbine isn’t just another application server; it is an application framework

that provides developers with the tools they need to build enterprise-level
applications without having to duplicate the work of others. This isn’t to say

Using Velocity and Turbine

C H A P T E R14

195

that you can toss your application server. The framework has to be hosted and
executed by the appropriate environment, such as Tomcat or Resin. Turbine
provides services that you would typically have to build for a specific Web
application. In addition, Turbine is designed to work in the MVC arena with
EJBs, controller servlets, and screens written using Velocity.

As we begin our quest into understanding what Turbine is and how it relates to
Velocity, it will become very clear that Turbine is designed for the Web devel-
oper. If you’re a Web designer who isn’t familiar with code, specifically Java,
you may have a tough time with the material initially, but you can certainly
work through the detailed steps we provide. Of particular importance to Web
designers, though, is Velocity’s role in building the screens used in Turbine to
display results to the user. Note that Velocity isn’t the only template language
that you can use with Turbine; it also supports WebMacro, JSP, Cocoon, and
Freemarker.

With all of this in mind, bucket your seat belt and get ready to learn about a
framework designed by developers for developers!

The Turbine Architecture

First you need a clear picture of the architecture around which Turbine was
designed. Figure 14.1 illustrates the various modules in the framework.

U s i n g Ve l o c i t y a n d Tu r b i n e196

������

����	�

���������

�����

����

�
��
�
�
�
�

�
�
��
�
�
�

�
�
��
�
�
�

�
���

�
�
�

�
���

�
�
�

����������

Figure 14.1 The Turbine architecture.

As you can see, the framework includes five major modules, all under the direc-
tion of assemblers:

Action—Code that performs a specific task

Navigation—Velocity templates that display navigational links and
controls

Screen—Typically a combination of a Velocity template and a Java class for
displaying key information in the body of a Layout module

Layout—A Velocity template describing how the page will look

Page—A conceptual object that contains all of the above modules

Let’s explore each of these modules in order.

The Action Module
As you might expect, the Action module is a snippet of Java code that performs
a specific task. One of the most important tasks this module performs is the
processing of information passed to the user in an HTML <form>. The code in
an Action module that processes this information is specific to the form to
which it is attached, but in general you know that the information will have to
be validated, processed, and possibly persisted. Figure 14.2 shows the flow per-
spective between the Action and other modules.

As you can see in Figure 14.2, the Page module executes an Action module in
response to a POST or GET request. The Action module “communicates” with
the Page module to determine the proper screen to return to the user.

If you think about the paradigm being created here, you can easily create a
library of Action modules that can be reused throughout your Web application
without creating new code for each page. Consider a shopping site where you
want the user to be able to add items to the shopping cart regardless of where
those items appear in the application. By writing the processing code for the
form in an Action module, you ensure that the same module can be used
throughout your site without any code change.

The Turbine Architecture 197

���� ����	�

������
������
����	�

������

������

Figure 14.2 The Action module flow.

In our traditional Web development model, the code for handling the form pro-
cessing would be found in the servlet called by the form. However, with Action
modules, you can keep the business logic and the interface to the database sep-
arate from the controller. You can even use EJBs if you so desire.

The Navigation Module
When you visit a Web site, you are presented with a navigation scheme on the
page. The scheme might be at the top of the page, or at the bottom, or on the left
side of the page. Turbine supports navigation schemes with the Navigation
module. A Web application might have many different navigation schemes,
including, but not limited to, the location: the top, bottom, or side of the page.
The Navigation module is used to handle the schemes, and the schemes change
based on the particular page presented to the user. The modules have the abil-
ity to communicate with the database to obtain information through mecha-
nisms like EJBs. As we discuss a bit later, Navigation modules are executed by
the Layout module.

The Screen Module
A Web page includes navigation information as well as information pertinent to
that page. The “important” page content is typically placed in the body of the
page. The body is handled in Turbine using a Screen module. This module is
responsible for rendering HTML tags that are passed back to the user. It would
not be uncommon for the Screen module to access the database to pull infor-
mation specific to the user.

The Layout Module
All Web pages have a physical layout or template they follow when presenting
information to the user. In some cases, the same template may be used through-
out the application or site, but in other cases—like a bookstore, for example—
the template changes based on the page presented to the user. Layouts in
Turbine are defined in the Layout module. This module provides placeholders
for Navigation modules as well as the body or screen of the page defined by the
Screen module. The Layout module is responsible for executing both the Navi-
gation and Screen modules depending on the layout of the page.

The Page Module
For the most part, a Page module is a container for the other modules and is the
first module to receive a request from a user’s browser. If the request contains
an action defined within the Page module, it will be executed. After the action

U s i n g Ve l o c i t y a n d Tu r b i n e198

TEAMFL
Y

Team-Fly®

has been performed, the Page module communicates with the Screen module
to determine the layout that will be executed.

Module Object Encapsulation
Figure 14.3 shows how all of the modules are encapsulated within one another.
When a Page module is called, it executes an enclosed Action module if
requested by the call from the user’s browser. Next, it calls the Layout module
to determine how the screen should appear to the user. The Layout module
calls the Navigation modules to display the navigation information for this
page. Finally, the Screen module is executed to place the requested information
in HTML format on the page.

As you can see, the Turbine framework views a Web page as a collection of
objects. Each of the objects in the page is responsible for specifying how it is
presented to the user in the form of HTML tags.

The Turbine Architecture 199

Page

Layout

Navigation

Screen

Navigation

Figure 14.3 The Turbine modules.

Loaders

For each of the five modules we just discussed, Turbine defines five classes,
called loaders, with one loader being responsible for knowing how to load a
particular module. Figure 14.4 shows the hierarchical layout of loaders used in
Turbine. As you can see, loaders are available for each of the five modules dis-
cussed in the previous section.

U s i n g Ve l o c i t y a n d Tu r b i n e200

����������	

����������	

���������

����	

��
		�����	

���	����	

	
��
	
�
�
�

	
��
	
�
�
�

	
�
�	
�
�
�

	
��	

�
�
�

	
��	

�
�
�

�	�	
�� ����	

��������	

	
�
�	
�
�
�

Figure 14.4 Loader modules.

Every effort has been made in the design of Turbine and the loaders to give
them a degree of intelligence. Using a CLASSPATH variable defined as a prop-
erty in TurbineResources.properties, you can define a specific path or set of
paths where the loaders attempt to locate a resource. Once a loader has pulled
a resource into memory from the hard drive, it has the option to cache the mod-
ule for use again at a later time. As you might expect, multiple loaders can
attempt to load a single module, and therefore all modules have to be written in
a thread-safe manner.

How Does It Work?

Before we dive into installing Turbine and building a few applications, let’s take
a moment to look at the process of requesting a Web page using the Turbine sys-
tem. First, we outline the layout of a test system.

The user makes a request using a Web browser. The request is then dispatched
to a URL corresponding to a Turbine controller servlet. The request is made
using HTTP—thus the need for a traditional Web server on the server machine.
The Web server might be Apache or Resin’s built-in HTTP server. The servlet
request is then transferred to the application server as specified in a configura-
tion file.

When the Turbine servlet receives the request from the user, it checks to see
whether an HttpSession object exists for the current user. Since one of the

foundations of the Turbine system is security, all users have to be logged into
the application. The HttpSession object is a result of the login. Turbine uses
either cookies or extended URLs with session information in them. If no
HttpSession object exists, the system automatically redirects the user to a login
page, which you configure through the TurbineResources.properties file.

One of the more important jobs of the Turbine servlet is the creation of a Run-
Data object. This object is a non-thread-safe object designed to carry informa-
tion such as Action, Screen, and Document objects, as well as any information
passed to the servlet through the Request object.

The Turbine servlet attempts to determine if the user is logging into the appli-
cation by examining the currently defined action for the user. If the action’s
value is LoginUser, the corresponding action is executed. Ultimately, a method
called validateUser() is executed, within which the developer writes code to
validate the user’s username and password against some store, like a database.
Upon validation, the user is either directed back to the Login screen or the
DefaultPage. All of this work is performed by the SessionValidator action,
which can be overridden to provide other functionality.

When the DefaultPage executes, it checks for an action and executes it. After
the action, the DefaultPage queries the Screen module associated with the
DefaultPage for its layout, which is then executed. The Layout module executes
the Navigation and Screen modules, and finally, control returns to the Turbine
servlet and a new HTML page is delivered to the user.

Obtaining and Installing TDK

The first step in our quest for using Velocity and Turbine is obtaining the Tur-
bine system and installing it. The Turbine system is broken into several down-
loads. While it is possible to use Turbine in a stand-alone situation, the most
powerful configuration is a combination of Turbine and an application server
like Tomcat and Velocity. You can download a preconfigured environment in
the form of a Turbine Development Kit (TDK) from http://jakarta.apache.org/
builds/jakarta-turbine/release/.

Within this directory, you can find all of the released versions of TDK. At the
time of this writing, the most current release version is 2.1. Click on the direc-
tory of the most recent release to find the various downloads for Turbine. You’ll
see TAR.GZ and zip files for TDK, Turbine, and Torque. You want to download
the TDK, so click on the zip or TAR.GZ most appropriate for your environment
(Windows users need the zip, and Unix/Linux users need the TAR.GZ).

Obtaining and Installing TDK 201

Once you’ve downloaded the file to your system, unzip or tar/ungzip the file to
an appropriate directory. In both cases, the install creates a /tdk directory with
numerous subdirectories.

Before you test the installation, you must install two additional systems on your
system:

Ant—Available at jakarta.apache.org/ant (this needs to be in your path so
it can be executed in any directory)

JDK—Available at sun.java.com

Testing the TDK Installation
Testing the TDK installation involves two steps. First you have to compile the
sample applications that accompany the TDK. You execute the compile by
changing to the /tdk directory and executing Ant (simply type ant). The Ant
application executes based on the build.xml file contained in the /tdk directory.
After several seconds, the build completes. In most cases, the build is success-
ful. If you experience problems, check the mailing lists for Turbine located on
the Turbine Web site.

Once the build has completed, it’s time to test the system. Change to the /bin
directory of the /TDK root directory. Part of the TDK installation is a fully func-
tional and preconfigured Tomcat application server. Although Turbine and
Velocity can be used with Resin (as discussed later in this chapter), Tomcat is
the recommended application server.

If you are executing on Windows, you execute the Tomcat server by issuing the
command

catalina.bat run

If you are executing on Unix/Linux, execute Tomcat with the command

catalina.sh start

If the execution is successful, you see output like this:

Using CLASSPATH: ..\bin\bootstrap.jar;c:\j2sdk1.4.1_01\lib\tools.jar

Starting service Tomcat-Standalone

Apache Tomcat/4.0-b6-dev

Starting service Tomcat-Apache

Apache Tomcat/4.0-b6-dev

With Tomcat executing, browse to the following URL to see the sample appli-
cation that ships with the TDK:

http://localhost:8080/newapp/servlet/newapp

If the browse is successful, you see a display like the one shown in Figure 14.5.

U s i n g Ve l o c i t y a n d Tu r b i n e202

Figure 14.5 TDK sample application.

At this point, you know that your installation of the TDK has been successful. If
you are interested in learning more about the TDK sample application, check
the documentation that ships with the TDK using the URL

http://localhost:8080

Your First Turbine Application

Now that you’ve installed the TDK, you can begin the process of building your
own application that uses Turbine as an MVC framework and Velocity as the
view component. The first step is to add a task to the Ant build file, as well as
an appropriate directory structure in build.properties. Open the build.proper-
ties file located in the /tdk root directory. Modify the first three variables in this
file:

turbine.app—The name of your application (testApplication, in our
example)

target.package—The name of the package for your application (com.com-
pany.testApplication, in our example)

target.directory—The directory where your package will be built (usually
the same name as target.package—com/company/testApplication, in our
example)

Your First Turbine Application 203

Next, execute Ant to build your new application. Remember that Turbine is a
framework, so you will get many services for free. The Ant script moves various
files into your specified application directories. In the next section of this chap-
ter, we explore the files placed in the directories.

Turbine (and probably your application) will be using a database. When build-
ing a new Turbine application, change to the /tdk/webapps/<your application

name>/WEB-INF/build directory and open the build.properties file. Make these
changes:

■■ Locate the database entry that defaults to mysql and change to the appro-
priate value. The value you specify is used when Turbine creates SQL state-
ments.

■■ Locate the databaseUrl entry and add the appropriate JDBC connection
string. Place the appropriate JDBC drivers in the /WEB-INF/lib directory.

■■ Change the databaseDriver entry to the JDBC driver class.

■■ Change the databaseUser to the login user for the database.

■■ Change the databasePassword to the login user for the database.

■■ Change the databaseHost to the IP for the server.

At this point, the system must create a database table for Turbine. So, change to
the directory /tdk/webapps/<your application name>/WEB-INF/build direc-
tory and execute ant init. The Ant build script connects to the database you
specified in the build.properties file and creates the necessary tables. When the
any init command executes, a number of errors can occur. For example, the
build.xml file looks only for Windows 98, Windows NT, and Windows 2000, and
if you are running Windows XP, just change all of the 98 monikers to XP or
include an additional <target> element for XP. Another error that may arise is
the build script’s attempt to access the command-line administration tool for
your database. Ensure that the /bin directory of your database server is in the
system path.

Once the ant init command is successful, it’s time to try out your new applica-
tion. (Keep in mind that we will add look and feel with Velocity shortly!) To see
your application, start Tomcat and then browse to

http://localhost:8080/testApplication/servlet/testApplication

You will see a Turbine login, as shown in Figure 14.6.

To access your new application, type turbine as both the username and pass-
word. After entering this information, you see the screen shown in Figure 14.7.

Let’s now move ahead and look at the application you just built and how to
expand to a new application that does something you need.

U s i n g Ve l o c i t y a n d Tu r b i n e204

Your First Turbine Application 205

Figure 14.6 The Turbine login.

Figure 14.7 The Turbine main page.

Dissecting the Application

Okay, you’ve installed Turbine and seen the output produced from the sample
application—but what does it all mean? Well, let’s look at the application and
see how you could use what you’ve learned about Velocity to make appropriate
changes to it. Let’s go through the application click by click and discuss the var-
ious base classes, methods, and functions involved in making a Turbine appli-
cation.

When you browse to your sample application’s URL as shown earlier, control is
given to a universal servlet called the Turbine servlet. Regardless of what
occurs within this servlet, you need some kind of HTML output to be produced
for the client. As you will see in the course of this discussion, there are only a
couple ways that you might have contacted the server—through a link or a
form. In the first case, you are calling the server through the primary applica-
tion URL.

The URL to your application is first handled by a Web server, either internal or
external to the application server. When the URL is finally passed to the appli-
cation server, it checks its list of hosted applications to determine if the URL
matches one of them. In this case, Tomcat finds that the application testAppli-
cation is hosted and a directory structure exists for it. One of the first things
Tomcat and Resin will do is open the web.xml file located in the /WEB-INF
directory of the application. This is a configuration file that tells the server what
class to execute when a particular URL pattern is found. The web.xm file of
your application includes these elements:

■■ <servlet-name>testApplication</servlet-name>

■■ <servlet-class>org.apache.turbine.Turbine</servlet-class>

These elements tell the application server to execute the code found in the Tur-
bine class. It just so happens that the Turbine servlet is found in the Turbine
class. When the Turbine servlet executes, it immediately attempts to execute a
default page. The default page for an application is defined in the file /WEB-
INF/conf/TurbineResource.properties. About 25 percent into the file is the fol-
lowing setting:

services.VelocityService/default.layout.template = /Default.vm

Thus, because no layout or action is associated with the call to your application
(we show you how to add that a bit later), the Turbine servlet uses the
default.vm layout. The default.vm layout (Listing 14.1) is located in the /tem-
plates/app/layouts directory.

U s i n g Ve l o c i t y a n d Tu r b i n e206

Listing 14.1 The default.vm Velocity template.

The default.vm file is a Layout module for a page in your application. The code
in the file represents how the page will appear in the user’s browser. There isn’t
much on the page, but you could easily add various look-and-feel components,
such as a colored background and illustrations (like the CD application in
Chapter 12, “Using Velocity with Servlets”). The default.vm file contains four
Velocity references:

■■ The first defines a navigation component for the top of the page.

■■ The second defines another navigation component representing a nav bar
on the left part of the Web page.

■■ The third is the screen component, where you define the body of the page.

■■ The fourth is another navigation component at the bottom of the screen.

Any changes you make to this template are reflected in the page the user
receives.

At this point, you might be asking what the $navigation.setTemplate(String)
method does. Remember that Velocity provides the ability to make method
calls against objects in the context. The $navigation.setTemplate(String) makes
a method call, setTemplate(String), against the $navigation object found in the
context. The result of the method call is placed in the default.vm template to be

Dissecting the Application 207

<table width="100%">

<tr>

<td colspan="2">

$navigation.setTemplate("/DefaultTop.vm")

</td>

</tr>

<tr>

<td width="20" align="left" valign="top">

$navigation.setTemplate("/Menu.vm")

</td>

<td align="left" valign="top">

$screen_placeholder

</td>

</tr>

<tr>

<td colspan="2">

$navigation.setTemplate("/DefaultBottom.vm")

</td>

</tr>

</table>

returned to the user. Now, the change to the default.vm template is taking place
in memory, so it isn’t permanent. In the case of the $screen_placeholder refer-
ence, the Velocity parser attempts to replace the reference with whatever is
associated with the $screen_placeholder reference. As you know from our dis-
cussion of the Turbine process flow, the Layout module calls appropriate
Screen modules and automatically replaces the code returned from a particular
Screen module into $screen_placeholder. All of this is done without any work
on your part. Some of this gets a little deep, so hold on as we trace what is
occurring.

You might be asking where the $navigation and $screen_placeholder references
are placed. Both of these references use objects placed in a context supplied by
the Turbine servlet itself and really aren’t something we access ourselves. We
let Turbine handle these references. So, Turbine takes the Layout file
and attempts to resolve each of the references. The easiest to consider are the
$navigation ones. Let’s look at one of the navigation component template files.
The code in Listing 14.2 represents the menu.vm template.

U s i n g Ve l o c i t y a n d Tu r b i n e208

Insert Entry

<p>

Flux

Users

Groups

Roles

<a href="$link.setPage("permission,FluxPermissionList.

vm")">Permissions

<p>

Services

##

##Intake Service

##

##Localization Service

##

##Pull Service

##

##Scheduler Service

Upload Service

Servlet Service

Listing 14.2 The menu.vm Velocity template. (continues)

TEAMFL
Y

Team-Fly®

Listing 14.2 The menu.vm Velocity template. (continued)

The menu.vm template includes quite a bit of Velocity code. Two different calls to
the context take place. The first is the $link.setPage(String) method call. This
code accesses the “link” object found in the context and passes in the name of the
Velocity template that should be used when a user clicks on a link. The system
adds the appropriate path information and possibly modifies the URL for those
users who don’t allow cookies. For example, the $link.setPage(“Upload.vm”) call
produces a link like the following:

http://localhost:8080/TestApplication/servlet/TestApplication/

template/Upload.vm

Next is setAction(String), another method call to the link object in the context.
This method is also associated with a link on a page, but instead of just putting
in a link, you get a link with an associated action attached to it. The $link.set
Action(“LogoutUser”) produces the link

http://localhost:8080/TestApplication/servlet/TestApplication/

action/LogoutUser

As you might expect, the logoutuser action is a Java class that extends an
Action base class in some form. As you look through the code for the sample
application, you see code like

$link.setPage(“UploadComplete.vm”).setAction(“Upload”)

This type of call creates a link to a template and denotes an action that must
occur. As we discussed earlier, the action is executed before the page is built.

Now you might be wondering where the code comes from that fills the
$screen_placeholder. This is where things start to get a little tricky. The infor-
mation for the $screen_placeholder is generated through a Screen module. A
Screen module is created using two components: a Velocity template and a Java

Dissecting the Application 209

##Unique Id Service

##

##XML-RPC Service

##

##XSLT Service

<p>

Common Tasks

User Downloads

<p>

Home

<p>

Logout

class. The template provides the look and feel, and the Java class adds refer-
ences to the context for the template to use. Later in this chapter, we explain
why both of these components are necessary. For the system to work correctly,
the template is given the same name as the Java class.

So when the default.vm layout is used, where does it get a Screen module since
a screen isn’t specified in the URL? The answer: back in the Turbine-
Resources.properties file. Within this file are two entries:

template.homepage=/Index.vm

template.login=/Login.vm

Because no screen is specified in the URL, Turbine automatically uses the
index.vm screen. The code for this screen is found in the directory
webapps/TestApplication/templates/app/screens, and we’ve shown it in Listing
14.3. Your system uses the Velocity template to substitute for the placeholder,
depending on the screen you want to display.

U s i n g Ve l o c i t y a n d Tu r b i n e210

$page.setTitle("Index")

$page.setBgColor("#ffffff")

#set ($headings = ["Title", "Dept", "Author", "Url","Body"," "])

#if ($entries)

<table>

<tr>

<td>

<table cellspacing="1" cellpadding="1">

<tr>

#foreach ($heading in $headings)

#headerCell ($heading)

#end

</tr>

#foreach ($entry in $entries)

<tr>

#entryCell ($entry.Title)

#entryCell ($entry.Dept)

#entryCell ($entry.Author)

#entryCell ($entry.Url)

#entryCell ($entry.Body)

<td><a href="$link.setPage("Form.vm").addPathInfo("rdfid",

$entry.RdfId)">Edit</td>

</tr>

#end

</table>

</td>

Listing 14.3 The index.vm code. (continues)

Listing 14.3 The index.vm code. (continud)

The code in Listing 14.3 is one of many screens that you can use as a replace-
ment for the $screen_placeholder reference in the default.vm page. We’d like to
point out a couple of things in this listing. First, note that this page is designed
to show dynamic data produced from the database through the $entries refer-
ence. The $entries reference is filled and added to the context in a page called
index.java, as shown in Listing 14.4. Because the name of the Java class is the
same as that of a template, the Turbine system automatically uses the index.vm
page when the index.java class is called by the user’s Web browser. It is the
responsibility of the index.java class to put the appropriate values in the
$entries reference. Second, note that the index.vm Velocity template takes
advantage of Velocimacros. The #entryCell() is a macro that provides format-
ting within the display table.

Dissecting the Application 211

</tr>

</table>

#end

package org.mycompany.newapp.modules.screens;

import java.util.Vector;

import org.apache.turbine.modules.screens.VelocityScreen;

import org.apache.turbine.util.RunData;

import org.apache.turbine.util.db.Criteria;

import org.mycompany.newapp.om.RdfPeer;

import org.apache.velocity.context.Context;

public class Index extends SecureScreen {

public void doBuildTemplate(RunData data, Context context) {

context.put("entries", getEntries());

}

private Vector getEntries() {

try {

Criteria criteria = new Criteria();

return RdfPeer.doSelect(criteria);

} catch (Exception e) {

return null;

}

}

}

Listing 14.4 Java code for the index.vm template.

As you can see, the index.java class extends the SecureScreen class, which
means the Index class is a screen and requires the user to log into the system to
be displayed. Okay, let’s stop here for a moment. The SecureScreen class is
derived from a Turbine base class called VelocityScreen. All Screen modules
inherit from VelocityScreen (if no validation is required) or SecureScreen (if
validation is required). However, all of this hinges on the template.login prop-
erty we listed earlier. If there is a proper template and associated Java class for
the listed login property, the user is required to log into the system to use it.
(You actually saw this when you executed the testApplication code and had to
enter Turbine/Turbine as a username/password combination.) If you remove
the /login.vm from the template.login property, the system won’t prompt for a
login because it doesn’t know which default screen to use for logging into the
system.

Let’s return to the index.java file. The purpose of the Index class is to build the
$entries reference so that the index.vm template will have data to present to the
user. Within the VelocityScreen base class from which SecureScreen is derived
is a method called doBuildTemplate(). This method is automatically called by
the Turbine system when a Screen module needs to render its template. Thus,
Turbine calls doBuildTemplate(), the Screen modules put all of the required
Velocity references into the context, and the associated template picks up the
references to ultimately return HTML that Turbine places in the $screen_place-
holder reference—all nice and clean.

Before you run the code to see if all of this actually pans out, let’s take a
moment to explore the doBuildTemplate() method as well as some of the refer-
ences on the index.vm Velocity template. Although you cannot see it, the
index.vm and index.java files query the database and display any results. You
need to understand this so you can use the same technique in your own code.

From a high level, the code in the index.java file puts a reference in the context
called $entries and associates it with the values returned by the getEntries()
method. The getEntries() method uses a Peer object, which is a helper object
for performing a select on the database. The resulting rows are placed in the
context.

Okay, what does all of that mean? When the Layout module calls the index
Screen module, the doBuildTemplate() method executes, which adds a refer-
ence called $entries to the supplied Context object. The value associated with
the $entries reference is obtained from the getEntries() method within the
Index class. Although this method contains only two lines of code, a lot of work
is being performed.

The first line of code obtains an object of type Criteria. The Criteria class is a
helper for obtaining information from a database managed by Turbine and an

U s i n g Ve l o c i t y a n d Tu r b i n e212

associated package called Torque. Using the Criteria class, you can place filters
or limits on a SELECT SQL command executed against a database. When
instantiated without parameters or additional methods used against it, the
object tells a SELECT to pull all rows and columns from a database. The full list
of methods for the Criteria object are found here http://jakarta.apache.org/tur-
bine/torque-3.0.0/apidocs/org/apache/torque/util/Criteria.html

Now, the last line of code in the getEntries() method returns

RdfPeer.doSelect(criteria);

A lot occurs with this statement, and we will need to take a database detour to
explain it all.

Handling Databases in Turbine

All of the databases for a Turbine application are defined in a configuration file
found at /webapps/testApplication/WEB-INF/conf/testapplication-schema.xml.
Listing 14.5 shows what is currently in this file.

Dissecting the Application 213

<database>

<table name="RDF">

<column name="RDF_ID" required="true" autoIncrement="true"

primaryKey="true" type="INTEGER"/>

<column name="TITLE" size="255" type="VARCHAR"/>

<column name="BODY" size="255" type="VARCHAR"/>

<column name="URL" size="255" type="VARCHAR"/>

<column name="AUTHOR" size="255" type="VARCHAR"/>

<column name="DEPT" size="255" type="VARCHAR"/>

</table>

</database>

Listing 14.5 The database schema XML.

From the listing, you see that defining a database in Turbine is very easy. Just
provide the columns, size, type, and other attributes for a particular column.
You add the table to your database store by executing the command

ant init

from the /webapps/testApplication/WEB-INF/build directory. When you do, Ant
executes a task that builds all of the databases found in the schema XML file. If
you take a close look at the Ant build XML file, you see that the first operation
is to DROP any table with the table name found in the schema XML file. Thus,
all data is lost from existing tables. You can either modify the Ant task or make
sure you define all of your tables up-front.

Figure 14.8 shows a listing of the tables produced for the testApplication.

Figure 14.8 Tables for testApplication in MySQL.

Two primary operations take place when the new table is created. First, the
schema is written to the database specified in the database configuration (com-
pleted as part of the Turbine configuration). The second operation is the cre-
ation of the code that handles SELECT, INSERT, DELETE, UPDATE, and other
database tasks. All of this code is placed in the directory /webapps/testApplica-
tion/WEB-INF/src/java/com/company/testApplication/om. The path com/com-

pany/testApplication is dependent on the name of your application.

In this directory, you find four files that include the name of your table. In the case
of the RDF table created by Turbine using the Torque system, these files are:

■■ BaseRdf.java

■■ BaseRdfPeer.java

■■ Rdf.java

■■ PdfPeer.java

The BaseRdf.java file contains all of the setter/getter methods for a row in the
database. Make no changes to this file. Rdf.java is a derived class from
BaseRdf.java, where specific application logic could reside if needed. BaseRdf-
Peer.java is a helper class that uses BaseRdf.java to do the low-level database
work. The object contains methods for doing all of the normal operations on a
database. RdfPeer.java is a derived class from BaseRdfPeer.java, where appli-
cation logic can be placed. This is the object used in the code to obtain or place
data in the appropriate table.

Executing the Select

Based on the information we’ve presented, the getEntries() method creates a
Criteria object with no limits on the table or results returned. Next, the Criteria
object is provided to the doSelect() method of the RdfPeer class. This method
isn’t overridden in the RdfPeer class, so a call is made to the doSelect() method
of the BaseRdfPeer class. This method retrieves rows from the database based
on the Criteria object passed in.

U s i n g Ve l o c i t y a n d Tu r b i n e214

Displaying the Result

Once getEntries() returns, the rows from the RDF table are provided as a value
to the $entries reference placed in the Context object. After the Index object
has done its work, the Turbine servlet merges the context with the index.vm
template to provide the code for the $screen_placeholder reference. The final
step is returning an HTML page to the user.

Adding a User with testApplication
On the page returned to the user from the default.vm layout and index.vm/java
Screen module are numerous links on the left navigation bar. The first link is
called Insert Entry. The underlying link placed on the page by the Velocity code

Insert Entry

is

http://localhost:8080/testApplication/servlet/testApplication/

template/Insert.vm

As you can see, this resembles our original URL to the application—except we
now have new path information: /template/Insert.vm. When you click this link,
the default.vm layout is used, but instead of the default index.vm, you have told
the Turbine servlet to use the Screen module defined by the insert.vm and
insert.java combination. Let’s take a moment and look at insert.vm, as shown in
Listing 14.6.

Dissecting the Application 215

$page.setTitle("Insert")

<meta http-equiv="Content-Type" content="text/html; charset=iso-

8859-1">

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0"

marginwidth="0" marginheight="0">

<form

method="post"

action="$link.setPage("Index.vm").setAction("SQL")">

<div align="left">

<table bgcolor="#ffffff" cellpadding="5">

<tr>

#formCell ("Title" "title" "")

</tr>

<tr>

#formCell ("Author" "author" "")

Listing 14.6 The insert.vm Velocity template. (continues)

Listing 14.6 The insert.vm Velocity template. (continued)

We’ve covered almost everything in the insert.vm Velocity template; however,
this time the code includes a <form> tag. This tag is used to pull information
from the user and supply it to the server for storage in the database. The form
action includes a Turbine Action module reference:

<form action=”$link.setPage(“Index.vm”).setAction(“SQL”)”>

The Turbine action is found as a call to the SQL action. To tell the SQL action
what to do, the input button has the name eventSubmit_doInsert. This is quite
a bit to remember, but let’s think about what the code is doing. First, the user
clicks the Insert Entry link. The Turbine servlet pulls the default layout,
default.vm, which renders the appropriate Navigation modules in addition to
calling the doBuildTemplate() method on the insert.java class. However, if you
look in the /src/com/mycompany/testApplication/modules/screens/ directory,
you won’t find an insert.java source file. This brings up a good point. Screen
modules don’t need to consist of both VM and Java class files. If a Screen mod-
ule has only a VM template, the Turbine server simply renders the Velocity tem-
plate without any changes to the context. If only a Screen module class is
included, the class is responsible for providing all of the output because there
will be no Velocity template to render for HTML output.

In our case, the insert.vm Velocity template is rendered to the $screen_place-
holder reference based on the current Context object. At this point, the user
enters data into the <form> input fields and clicks the submit button. The click
causes the Turbine servlet to execute an Action module called SQL. Remember
all actions are executed before the Layout object.

The SQL action is found in the modules/actions directory. The source for the
action (Listing 14.7) is found in the directory /src/com/mycompany/testAppli-
cation/modules/actions under the SQL.java file.

U s i n g Ve l o c i t y a n d Tu r b i n e216

</tr>

<tr>

#formCell ("Department" "dept" "")

</tr>

<tr>

#formCell ("Url" "url" "")

</tr>

<tr>

#formCell ("Body" "body" "")

</tr>

</table>

<input type="submit" name="eventSubmit_doInsert" value="Insert"/>

</div>

</form>

Listing 14.7 The SQL Action class.

The SQL Action is derived from SecureAction. By using the SecureAction base
class, the action is executed only when a user is logged into the system. The
submit button uses a value of doInsert. Within the doInsert() method, the sys-
tem makes use of the global runData object, where the parameters from the
<form> are located. In this case, you aren’t using a Peer object for the RDF
table but are using the RDF class itself. The values from the <form> are placed
in the RDF object and saved to the database.

Dissecting the Application 217

import org.apache.velocity.context.Context;

import org.apache.turbine.util.RunData;

import org.apache.turbine.util.db.Criteria;

import org.apache.turbine.modules.actions.VelocityAction;

import com.company.testApplication.om.Rdf;

import com.company.testApplication.om.RdfPeer;

public class SQL extends SecureAction {

public void doInsert(RunData data, Context context)

throws Exception {

Rdf entry = new Rdf();

data.getParameters().setProperties(entry);

entry.save();

}

public void doUpdate(RunData data, Context context)

throws Exception {

Rdf entry = new Rdf();

data.getParameters().setProperties(entry);

entry.setModified(true);

entry.setNew(false);

entry.save();

}

public void doDelete(RunData data, Context context)

throws Exception {

Criteria criteria = new Criteria();

criteria.add(RdfPeer.RDF_ID, data.getParameters().getInt("rdfid"));

RdfPeer.doDelete(criteria);

}

public void doPerform(RunData data, Context context)

throws Exception {

data.setMessage("Can't find the button!");

}

}

Once the SQL Action has stored the new information in the appropriate database,
the default layout is executed using its Navigation modules as well as the index.vm
screen as specified in the <form action>. Figure 14.9 shows the database after
we’ve added a new entry, and Figure 14.10 shows the testApplication page.

U s i n g Ve l o c i t y a n d Tu r b i n e218

Figure 14.9 A database entry in MySQL.

Figure 14.10 The testApplication page after the insert.

Notice the edit link to the right of the entry on the screen in Figure 14.10. If you
hover your mouse over the link, you see that the link looks like the following

http://localhost:8080/testApplication/servet/testApplication/

tempalte/Form.vm/rdfid/1

At this point, you should have a good idea of what the code is going to do when
you click the link. The form.vm and form.java Screen module files are invoked.
This time, you have a form.java file. As you might expect, the rdfid/1 informa-
tion on the end of the URL is used to pull the row from the database and display
it, as shown in Figure 14.11. The code for the Form class appears in Listing 14.8.

TEAMFL
Y

Team-Fly®

Figure 14.11 An edit on the database row.

Dissecting the Application 219

public class Form extends SecureScreen {

public void doBuildTemplate(RunData data, Context context {

try {

int entry_id = data.getParameters().getInt("rdfid");

Criteria criteria = new Criteria();

criteria.add(RdfPeer.RDF_ID, entry_id);

Rdf rdf = (Rdf) RdfPeer.doSelect(criteria).elementAt(0);

context.put("entry", rdf);

} catch (Exception e){

}

}

}

Listing 14.8 The form.java code.

As you know, the code for the Screen module executes before the Velocity tem-
plate. So the doBuildTemplate() code in Listing 14.8 takes the primary key sup-
plied on the link, pulls the database row, and places it in the context for the
form.vm Velocity template to display to the user. The rdfid at the end of the link
is translated into a parameter and placed in the RunData object. then it is pulled
out and used with a Criteria object to locate just the one database row. The ele-
mentAt(0) is used to pull the one row and place it in the context under the
“entry” reference.

Note that actions don’t return results. When you need to get information from
the database, use a class for a Screen module. If there is something you need to
convey from the action, you can set a message variable in the RunData object
by using the command data.setMessage(String).

When writing your actions, you derive a new class from either VelocityAction or
Secure Action depending on whether the user needs to be logged into the sys-
tem for the action to take place. In either case, the action contains one or more
ActionEvents. As you saw in the SQL Action, there are events for submit button
values as well as a method called doPerform(RunData, Context). The doPer-
form() method is a default method for the action. If no other methods are avail-
able or the button click on a form doesn’t match any of the ActionEvents in the
class, the doPerform() method is executed.

Rebuilding and Deployment
Once you modify your application, you have to rebuild it. This is easy with the
current TDK. Just move to the /webapps/testApplication/WEB-INF/build direc-
tory and issue the command

ant compile

Finally, it isn’t a requirement that Turbine execute on Tomcat. If you want to
move to Resin, BOSS, or another application server, just package up your
testApplication or other application name directory structure and deploy it
elsewhere. You might need to remove or adjust the DTD in the web.xml file.

Advanced Velocity in Turbine

The last section was quite a mouthful, and we covered most of the primary fea-
tures of using Velocity with Turbine. However, we want to cover a few addi-
tional advanced features. Of course, you can check the Turbine documentation
for more information.

The RunData Object

Throughout our discussion of the sample application, we referred to the Run-
Data object and obtained a reference to the object using the data keyword. The
RunData object has many methods and fields that can be useful to a developer
when producing a Web application. Since the RunData object is available in
both templates and most of the Module Java classes, a developer should take
advantage of the object. Some of its methods are:

void setMessage(String msg)—Sets a message in the RunData object.
This is useful for error handling and other information passed from, say, an
Action module.

string getMessage()—Returns the RunData message.

parameter Parser getParameters()—Returns parameters passed from
an HTML <form> or on the URL of a link.

U s i n g Ve l o c i t y a n d Tu r b i n e220

void setTitle(String)—Specifies the title for the page often seen as the
first statement in a Velocity Screen module template.

user getUser()—Gets the current user in the session.

boolean userExists()—Checks if the current user exists in the session.

boolean removeUserFromSession()—Invalidates the current user from
the session.

void setRedirectUri(String ruri)—Sets the URI for a redirection.

If you are processing information in a Screen module Java class and you want
to change the Screen module template, you can use the getTemplateInfo()
method to obtain a TemplateInfo object and use setScreenTemplate(String) to
set a new template dynamically.

The TemplateLink Object

In all of the Velocity templates, you create new links to other templates using
the TemplateLink object, which is derived from DynamicURI. The new link is
added with the code

$link.setPage(String);

The $link reference is a TemplateLink object, which along with DynamicURI
has an extensive list of methods and fields for aiding in the building of dynamic
links. All of the links in our example are to dynamic pages. We can also link to
static HTML pages with the same command:

$link.setPage(“/docs/static/privacy.html”)

The new static page is the primary page of the user’s Web browser without any
navigation or layout controls. A better option is to use the static page within a
Velocity template and maintain the look and feel of the Web application.

The TemplatePageAttributes Object

When the $page reference is used in a Velocity template, a TemplatePageAttrib-
utes object is obtained. This object allows elements of the current page to be
changed, such as the title and background color. For example:

$page.setBgColor(“#FF0000”)

This command produces a red background. You allow access to the <body> tag
with the addAttribute(string, int) command. Other useful commands include:

addAttribute(String name, String value)—Adds the attribute “name”
and “value” to the body tag.

setBackground(String url)—Sets the background URL.

Advanced Velocity in Turbine 221

setDescription(String description)—Sets a description tag.

setKeywords(String description)—Sets a keyword tag.

setLinkColor(String color)—Specifies the link color.

setStyleSheet(String url)—Sets a stylesheet.

setTextColor(String color)—Specifies the text color.

setVLinkColor(String color)—Specifies the vlink color.

What’s Next

As you learned in this chapter, Velocity is a major component in the develop-
ment of Turbine-driven Web applications. In the next chapter, we explore
another framework, called Maverick.

U s i n g Ve l o c i t y a n d Tu r b i n e222

Maverick is a Model-View-Controller (MVC) framework designed to be
used with Java and Java 2 Enterprise Edition (J2EE). In true developer
fashion, Maverick is open source and works with a variety of templat-

ing solutions, among them Velocity and JSP. In addition, Maverick enables you
to perform transformations of templates using Extensible Stylesheet Language
(XSL) as well as Declarative Velocity Style Language (DVSL), a transformation
language designed for Velocity templates.

When designing a framework, you typically have to make a tradeoff between
creating a minimalist framework and providing a rich set of services. Maverick
takes the view that many good components have already been written to han-
dle connection pools and other such services; therefore, its goal is to provide a
skeleton for pulling all of the pieces together.

Although Java and servlets serve as the foundation on which Maverick is writ-
ten, it doesn’t try to force a specific solution for the model and view compo-
nents of the paradigm. The system includes two examples (which we cover
later in this chapter) written in Velocity and JSP with the JavaServer Pages
Standard Tag Library (JSTL). Another templating solution known to work is
Domify/XSLT. At the other end of the paradigm is the model, and Maverick
allows you to pull data straight from the database using JDBC or to rely on
entity EJBs.

The framework adds the ability to further simplify the view component by
applying transformations on the view output before it is sent back to the user.
You can perform transformations using XSLT, DVSL, FOP (Formatting Objects
Processor), or Perl. All of the transformations can be chained together to form

Using Velocity and Maverick

C H A P T E R15

223

a large variety of output options. For the look and feel of an application, you
can apply a wrapping transformation to a view that embeds one view within
another.

By far one of the most important features of Maverick is the maverick.xml file
contained within each Web application. This file acts as a roadmap for the
components of an application. Tasks within the application are considered
commands, which in turn may have controller and view components. View
components are chosen based on the outcome of a controller class and its inter-
nal operations. The configuration file is written in XML and provides an easy
way to configure a Web application.

How Maverick Works

As we mentioned, you confirgure a Web application in Maverick through an
XML file called maverick.xml. Listing 15.1 shows an example.

Using Velocity and Maverick224

<?xml version="1.0"?>

<maverick version="2.0" default-view-type="document">

<commands>

<command name="HelloWorld">

<controller class="HelloWorld"/>

<view name="success" path="HelloWorld.vm"/>

<view name="error" path="error.vm" />

</command>

<command name="displayAll">

<view name="all" path="all.vm"/>

</command>

</commands>

</maverick>

Listing 15.1 An example maverick.xml file.

In a Maverick Web application, much of the work is accomplished in a servlet
called the dispatcher. The dispatcher, as you will see shortly, works with a map
of workflow objects created from the maverick.xml file. The map is created
during the load phase of the Maverick-hosted application. This phase is
designed to handle all of the initialization tasks so the exection phase can be as
clean as possible. With a preconfigured Map object, Velocity’s execution phase
consists of simple method calls and lookups against the Map object.

The Load Process
To get an idea of the load phase and the objects within the workflow tree, let’s
walk through the processing of the configuration file in Listing 15.1. For the
Maverick framework, the <command> element represents a Command object
and is the top-level object within the map. From an implementation perspec-
tive, two interfaces are available to the framework: CommandSingleView and
CommandMultipleViews.

To build the proper Command object, you use a CommandFactory. It creates an
object based on the number of <view> elements found within a particular
<command> element. When a command is being processed by Maverick, the
framework uses the Command object to determine whether it needs to look up
a View object based on the interface type used. In the case of CommandSingle-
View, the framework can bypass any lookup and just use the single view asso-
ciated with the command.

Each command contains a single Controller object (whether or not one is spec-
ified in the maverick.xml file). The ControllerFactory builds a Controller object
using the supplied <controller> element defined in the <command> element, or
it creates a null controller if a <controller> element is not found.

For all of the possible views in a command, the ViewFactory is used to build
View objects. If multiple <view> elements are found in a command, a Map is
created to hold key/value pairs based on the name of the view and its pathname.
If any transform elements are found in the <command> element, a Transform-
Step object is used to render the transformation. Otherwise, if no transforma-
tions are found, the template passes through to a response output stream.

The Execution Process
Before you start using Maverick, let’s take a moment to see how the system
processes an HTTP request from a user’s Web browser. Figure 15.1 shows an
example of the process.

Here are the steps in this process:

1. The user makes a request of a Maverick command. The command is usu-
ally a request like localhost:8080/maverick/Signup.m.

2. The application server where Maverick is hosted processes the .m exten-
sion on the request and forwards the URL to a class called dispatcher.

3. The dispatcher class looks in its previously built Web application Map for
the command. The command is determined by stripping off the .m and
matching the name against the <command> elements that are defined in
the maverick.xml file.

How Maverick Works 225

4. When a command object is found, the go() method is called for the con-
troller class associated with the command.

5. The controller class, if not null, processes its statements, and optionally
sets the Model object for the command. Based on its processing, a String is
returned indicating the view used as a response to the command.

6. The command object checks a Map object to determine which template
corresponds to the String returned by the controller. A View object is
returned from the search.

7. The go() method of the View object is executed and passed the Model
object from the controller.

8. The View’s go() method processes the current template and possibly sends
the output to another step based on the getNextStep() method. Otherwise,
the output is copied to an output stream and displayed to the user.

Using Velocity and Maverick226

�����������
����

������� ����

������

�������

�������
����������

����
����������

������

Figure 15.1 Maverick's execution process.

Downloading and Installing Maverick

The Maverick project is hosted on SourceForge and is available at
http://mav.sourceforge.net/. Click on the Downloads link on the left navigation
screen to bring up the download page for the project. The page is divided into
many different sections--including the primary Maverick download as well as
optional components. Let’s download two files.

First you need the Maverick system file. As of this writing, the most current ver-
sion of Maverick is 2.1.2, and it is the topmost file on the download page. The
files are supported only in zip format. Click on the file and save it to a tempo-
rary page on your system. Then, move to the bottom of the download page,
download the latest optional Velocity version file, and save it to a temporary
location.

Requirements
The current Maverick system has the following prerequisites:

■■ An application server—The Maverick system requires an application
server--such as Tomcat 4, Jetty 4, Resin, or Orion--that supports Servlet API
2.3.

■■ J2SDK 1.2+—We developed the examples in this chapter using version
1.4.1.

■■ JAXP 1.1—Use the stand-alone or the version used in the current J2SDK
release.

Installing Maverick
Technically there isn’t anything to install on the Maverick system because it
ultimately consists of a primary JAR along with several support JARs. Figure
15.2 shows the directories associated with the distribution.

Downloading and Installing Maverick 227

Figure 15.2 Maverick installation directories.

The directories are:

■■ /dist—Includes the example Web archive (WAR) files as well as the pri-
mary Maverick JAR

■■ /docs—Contains the manual as well as the JavaDoc

■■ /examples—Contains the source code for the Friendship and Shunting
examples

■■ /lib—Includes all support JAR files

■■ /src—Includes the source code for Maverick

■■ /tools—Contains properties and XSL stylesheets

Testing the Installation with the
FriendBook Application

Within the /dist directory is a WAR file for the FriendBook application called
friendbook-jsp.war. This WAR files consists of the files found in the /exam-
ples/friendship-jsp directory along with the necessary Maverick files that exe-
cute the application. Let’s install this sample application to make sure you have
an operating system.

For this example, we assume that you have an appropriate application server
installed on your machine. In the test environment, we installed Tomcat. Start
by copying the JAR file log4j.jar from the maverick/lib directory to the Tomcat
/lib directory. Next, move the friendbook-jsp.war file to the /webapps directory.
Now start Tomcat and browse to the URL

http://localhost:8080/friendbook-jsp

You should see a page prompting you to either log into the application or create
a new login. At this point, you know that your system is ready for development.
If you don’t get the login screen, make sure you have the log4j.jar in the /lib
directory. You can check the Maverick mailing list archive for additional help.

Installing the Optional Velocity
Module

If you were able to get the FriendBook application up and running, let’s switch
to the optional Velocity module. Earlier we went through the process of down-
loading the optional Velocity file and saving it. Using your favorite unzip pack-
age, extract the contents of opt-velocity-2.0.zip.

The result of the extraction is a directory structure like the Maverick one
shown earlier. Within the /dist directory is a WAR file called friendbook-veloc-
ity.war, which is the FriendBook application written with Velocity templates

Using Velocity and Maverick228

TEAMFL
Y

Team-Fly®

instead of JSP templates. You can use this application as a template for your
own applications, as you see in a moment.

Use the same steps as we described for the JSP version and place the files in the
/webapps directory of Tomcat. Move the log4j.jar file and browse to the URL

http://localhost:8080/friendbook-velocity

After several seconds, you see the same login page that you did for the JSP ver-
sion. The key to the Velocity application and its templates is that the view type
used doesn’t change. The “normal” document view is used along with a servlet
called VelocityViewServlet. This servlet was designed to be used with Struts (as
you learn in Chapter 17, “Using Velocity and Struts”). The Maverick team was
able to reuse the servlet and provide Velocity templates with Maverick. In addi-
tion to the FriendBook application, a transformation type called DVSL is
included with the optional Velocity package. DVSL is a transformation language
(like XSLT) designed specifically to be used with Velocity.

The Maverick Hello World

Now it’s time to look at how you can use Maverick to write a simple application.
Let’s follow the Hello World example here with two additional applications
using Velocity. The development of a Maverick application consists of five pri-
mary steps:

■■ Writing the web.xml file

■■ Writing the maverick.xml file

■■ Building controller classes

■■ Building view files

■■ Building the model

Writing the web.xml File
When you write a new application for Maverick, you have to first build the
application framework. You need the following directory structure:

■■ /webapps/<application name>--Contains the view files

■■ /webapps/<application name>/WEB-INF--Holds the web.xml and mav-
erick.xml files

■■ /webapps/<application name>/classes--Contains the source and class
files

■■ /webapps/<application name>/lib--Holds the library files

Next you build the web.xml file (see Listing 15.2).

The Maverick Hello World 229

Listing 15.2 The HelloWorld web.xml file.

The web.xml file consists of two primary tasks that evaluate URLs for the Web
application. The first task directs any URL ending with .m (which is assumed to
be a Maverick class) to the Maverick dispatcher defined in the org.infohaz-
ard.maverick.Dispatcher class. The dispatcher then executes the appropriate
class. The second task directs any URL ending with .vm to the Veloci-
tyViewServlet class, which makes the appropriate reference substitutions.
Without both of these servlet mappings, the Web application wouldn’t be able to
operate correctly.

The dispatcher servlet class includes several init-parameters that you can use
to configure the dispatcher:

configFile—Defines the path to the maverick.xml configuration file. The
default path is /WEB-INF/maverick.xml.

Using Velocity and Maverick230

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<servlet>

<servlet-name>dispatcher</servlet-name>

<display-name>Maverick Dispatcher</display-name>

<servlet-class>org.infohazard.maverick.Dispatcher</servlet-class>

<load-on-startup>2</load-on-startup>

</servlet>

<servlet>

<servlet-name>velocity</servlet-name>

<servlet-class>

org.apache.velocity.tools.view.servlet.VelocityViewServlet

</servlet-class>

<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>dispatcher</servlet-name>

<url-pattern>*.m</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>velocity</servlet-name>

<url-pattern>*.vm</url-pattern>

</servlet-mapping>

</web-app>

configTransform—Defines the path to an XSL file that you can use to
transform the maverick.xml configuration file. You can use this file to
change the loaded maverick.xml file as needed for your Web application.
The default is no transformation.

currentConfigCommand—Outputs the current maverick.xml file.

reloadCommand—If defined, instructs Maverick to reload its configura-
tion file and all cached data.

defaultRequestCharset—Allows the default charset to be overridden.
The default is ISO-8859-1.

Writing the maverick.xml File
The web.xml file is responsible for determining how URLs are handled. The
maverick.xml configuration file defines the Maverick application, including the
commands that will be directed from the dispatcher, the controller you want to
use for a command, and any possible views. For the HelloWorld application,
use the configuration file shown in Listing 15.3.

The Maverick Hello World 231

<?xml version="1.0"?>

<maverick version="2.0" default-view-type="document">

<commands>

<command name="HelloWorld">

<controller class="HelloWorld"/>

<view name="success" path="HelloWorld.vm"/>

<view name="error" path="error.vm" />

</command>

</commands>

</maverick>

Listing 15.3 The HelloWorld application maverick.xml file.

You have to define all of your Maverick commands in the configuration file.
Commands may have a controller associated with them, or they may include a
redirect. For your HelloWorld application, you have a single command called
HelloWorld. Associated with this command is a controller, also called Hel-
loWorld, which corresponds to a class defined in the next section. The result of
the controller is a string that must match one of the name attributes of a <view>
element.

The elements that may appear in a maverick.xml configuration file are:

<maverick>—Contains the root element for the configuration file

<commands>—Contains <command> elements

<command>—Defines the behavior and components of a single command

<controller>—Contains a controller for a command; requires a corre-
sponding Java class

<views>—Includes the views that may be used with an associated con-
troller of a command

<view>—Contains a view that is part of a command or a globally refer-
enced view

<transform>—Defines a transformation file that can be used on a view

<modules>—Contains elements for pluggable modules

<view-factory>—Defines a pluggable view type

<transform-factory>--Defines a pluggable transform type

<shunt-factory>—Defines a shunt factory

Building Controller Classes
Your HelloWorld command has a single controller as defined in the
maverick.xml file. The controller is called HelloWorld—the name of the class
that implements the controller, as shown in Listing 15.4.

Using Velocity and Maverick232

import org.infohazard.maverick.ctl.Throwaway2;

public class HelloWorld extends Throwaway2{

public String go() throws Exception {

this.getCtx().setModel(new Model());

return SUCCESS;

}

public class Model {

protected String message = "Hello World!";

public String getMessage() {

return message;

}

}

}

Listing 15.4 The HelloWorld controller class.

The Maverick system includes quite a number of base classes for building con-
troller classes, all defined in the org.infohazard.maverick.ctl package. Some of
the classes populate a bean from the parameters of a <form>, and others do
not. In either case, the base classes define either a go() or a perform() method,
which will be called automatically by the Maverick dispatcher. Our example
uses a couple of different base classes.

In the HelloWorld example, you don’t have parameters to deal with from a
<form>. This means you can take advantage of a controller base class called
Throwaway2. This base class doesn’t worry about parameters and has a go()
method that must be overridden in order to handle the functionality of the con-
troller.

Your controller will be very simple. You place a message in the model, or con-
text in terms of Velocity, and return the “success” string. The string is then
matched with one of the views defined in the maverick.xml file.

The model for your controller is a public class called Model. You instantiate an
object of the class and assign its attribute, message, as “Hello World!”. Next,
you assign the Model object to the controller using the command

this.getCtx().setModel(new Model());

Finally, the go() method returns a “success” string. You compile the HelloWorld
class and place it in the /WEB-INF/classes directory by using the command

javac –classpath –..\lib\maverick.jar" HelloWorld.jar

Building View Files
The HelloWorld application uses two primary view files. The first one is the
welcome screen presented to the user. The code for this Velocity template is
shown in Listing 15.5.

The Maverick Hello World 233

<p>Say Hello:</p>

<form action="HelloWorld.m" method="post">

<input type="submit" value="Hello"/>

</form>

Listing 15.5 The welcome.vm file.

The primary functionality in the welcome template is a form that exposes a but-
ton called Hello. When a user clicks the button, a POST request is made to the
server using the URL in HelloWorld.m. The Tomcat application server processes
the URL and sends the request to the Maverick dispatcher (because of the .m
extension). The dispatcher then calls the go() method of the controller.

Once the “success” string is returned from the controller, the HelloWorld.vm
Velocity template is processed and returned to the user. Listing 15.6 shows the
HelloWorld.vm template.

Using Velocity and Maverick234

$request.setAttribute("title", "Success")

<html>

<head>

<META http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

<title>$title </title>

</head>

<body>

Success - $model.Message

</body>

</html>

Listing 15.6 The HelloWorld.vm file.

Probably the most important part of the HelloWorld.vm Velocity template is the
line

Success - $model.Message

As you learned in previous chapters, the reference $model.message accesses
the Model object from the context, which relates directly to the model used in
Maverick.

Velocity and Maverick

With that introduction of Maverick and Velocity behind us, let’s look at using
the two technologies to build a sample Web application that will handle storing
and retrieving news items from a database. This Web application consists of a
database (MySQL in the test environment) having a table with the following
schema:

id int auto_increment not null primary key

headline varchar(128)

date varchar(32)

textfield text

The Web application itself consists of four Maverick commands, two con-
trollers, and five Velocity templates.

Commands
The commands for your application all relate to operations that a user will need
to perform. The commands are:

News—The controller for putting new articles into the database

NewsSearch—The controller for searching on the database

NewsSearchEntry—The page that displays the search output

welcome—The page that displays fields for entering a new article

All of the commands are defined in the maverick.xml file, shown in Listing 15.7.

Velocity and Maverick 235

<?xml version="1.0"?>

<maverick version="2.0" default-view-type="document"

default-transform-type="document">

<commands>

<command name="News">

<controller class="NewsEntry"/>

<view name="success" path="NewsEntry.vm">

<transform path="frame.vm"/>

</view>

<view name="error" path="error.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="NewsSearch">

<controller class="NewsSearch"/>

<view name="success" path="NewsResults.vm">

<transform path="frame.vm"/>

</view>

<view name="error" path="error.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="NewsSearchEntry">

<view path="NewsSearch.vm">

<transform path="frame.vm"/>

</view>

</command>

Listing 15.7 The News Web application maverick.xml file. (continues)

Listing 15.7 The News Web application maverick.xml file. (continued)

Let’s take a closer look at each of the commands and what they are designed to
do when called.

welcome

The welcome command is triggered by a URL with a value of welcome.m. The
purpose of this command is to display the NewEntry.vm template, which allows
the user to enter a new article. The <view> NewsEntry.vm is transformed with
the Frame.vm template, and no controller is associated with the command.

NewsEntry

After a user has entered information on the NewsEntry.vm template page, that
data needs to be placed in the database. The <form> action on the NewsEntry
page is a URL to the Maverick command NewsEntry.m. This command includes
a <controller> element for the NewsEntry controller class. A successful update
of the database results in the display of the NewsEntry.vm page. Otherwise, an
error page lets the user know there was a problem.

NewsSearchEntry

On the menu part of the display is a link called Search. When the user clicks on
this link, a Maverick URL is used via the command NewsSearchEntry. No con-
troller is associated with this command--only a view. The NewsSearchEntry.vm
template displays another form that allows the user to enter a keyword for
searching the database. When the user clicks the form’s submit button, the
NewsSearch command is sent to Maverick.

NewsSearch

The NewsSearch command has a controller called NewsSearch, which
searches the database for the supplied keyword and returns the results to the
Velocity template NewsResults.vm.

Using Velocity and Maverick236

<command name="welcome">

<view path="NewsEntry.vm">

<transform path="frame.vm"/>

</view>

</command>

</commands>

</maverick>

Controllers
The primary functionality for the news application is contained in two con-
trollers. The NewsEntry controller is designed to take the values submitted by
the user and place them in a news table based on the schema discussed earlier.
The code is shown in Listing 15.8.

Velocity and Maverick 237

import java.sql.*;

import org.infohazard.maverick.ctl.Throwaway2;

import org.infohazard.maverick.flow.*;

import javax.servlet.http.*;

public class NewsEntry extends Throwaway2{

public String go() throws Exception {

String returnValue = "";

Model m = new Model();

ControllerContext cxt = this.getCtx();

cxt.setModel(m);

try {

Class.forName("com.mysql.jdbc.Driver");

Connection connection = DriverManager.getConnection(

"jdbc:mysql://localhost/velocity");

Statement statement = connection.createStatement();

int i = statement.executeUpdate(

"INSERT INTO news VALUES(null, '" +

cxt.getRequest().getParameter("headline") + "','" +

cxt.getRequest().getParameter("date") + "','" +

cxt.getRequest().getParameter("text") +"')");

statement.close();

connection.close();

if (i == 1) {

returnValue = SUCCESS;

} else {

returnValue = ERROR;

}

} catch(SQLException e) {

m.setMessage("SQLException: " + e.getMessage());

returnValue = ERROR;

}

Listing 15.8 The NewsEntry command controller. (continues)

Listing 15.8 The NewsEntry command controller. (continued)

As you can see, there really isn’t much to the NewsEntry controller. If the insert
to the database is successful, a SUCCESS value is returned to Maverick; other-
wise, ERROR is returned. The other controller in the system is called
NewsSearch (Listing 15.9).

Using Velocity and Maverick238

return returnValue;

}

public class Model {

protected String message;

public String getMessage() {

return message;

}

public void setMessage(String m) {

message = m;

}

}

}

import java.util.*;

import java.sql.*;

import org.infohazard.maverick.ctl.Throwaway2;

import org.infohazard.maverick.flow.*;

import javax.servlet.http.*;

public class NewsSearch extends Throwaway2{

public String go() throws Exception {

String returnValue = ERROR;

Vector v = new Vector();

Model m = new Model();

ControllerContext cxt = this.getCtx();

cxt.setModel(m);

try {

Class.forName("com.mysql.jdbc.Driver");

Connection connection = DriverManager.getConnection(

"jdbc:mysql://localhost/velocity");

Statement statement = connection.createStatement();

Listing 15.9 The NewsSearch command controller. (continues)

TEAMFL
Y

Team-Fly®

Listing 15.9 The NewsSearch command controller. (continued)

The NewsSearch controller has a little more work to do. It uses the keyword
supplied by the user in a query to find articles in the database. The result this
search is a ResultSet. The values in the ResultSet are stored in individual Result
classes (defined in Listing 15.10). All of the Result classes are put in a Vector
and placed in the Model object. The results are displayed in the SearchRe-
sult.vm Velocity template.

Velocity and Maverick 239

ResultSet rs = statement.executeQuery(

"SELECT * FROM news WHERE textfield like '%" +

cxt.getRequest().getParameter("keyword") + "%'");

while (rs.next()) {

v.add(new Result(rs.getString("headline"),

rs.getString("date"), rs.getString("textfield")));

}

statement.close();

connection.close();

returnValue = SUCCESS;

} catch(Exception e) {

e.printStackTrace();

returnValue = ERROR;

}

m.setResults(v);

return returnValue;

}

public class Model {

protected Vector results;

public Vector getResults() {

return results;

}

public void setResults(Vector r) {

results = r;

}

}

}

Listing 15.10 The result helper class.

Velocity Templates
To provide a good look and feel to your site, you can employ a number of Veloc-
ity templates:

Frame—Provides a common look and feel to the site

NewsEntry—Displays a form for article entry

NewsSearchEntry—Displays a form for keyword entry

SearchResults—Displays the results from a search

Error.vm—Displays errors from the news entry

The code for the Frame.vm Velocity template is shown in Listing 15.11. The
HTML provides a nice frame for all of the other templates in the system. At the
top of the frame are two links for the NewsEntry and NewsSearch commands.
These links allow a user to access this functionality from anywhere in the Web
application.

Using Velocity and Maverick240

public class Result {

String headline;

String date;

String text;

public Result(String h, String d, String t) {

headline = h;

date = d;

text = t;

}

public String getHeadline() {

return headline;

}

public String getDate() {

return date;

}

public String getText() {

return text;

}

}

Velocity and Maverick 241

<html>

<head>

<title>$title</title>

</head>

<body bgcolor="#ffffff">

<STYLE>A:link {

COLOR: #ffffff; TEXT-DECORATION: none

}

A:visited {

COLOR: #ffffff; TEXT-DECORATION: none

}

A:hover {

COLOR: #ffff80; TEXT-DECORATION: underline

}

</STYLE>

<table border="0" cellpadding="0" cellspacing="0" width="711">

<!-- fwtable fwsrc="logoxp.png" fwbase="logoxp.gif"

fwstyle="Dreamweaver" fwdocid = "742308039" fwnested="0" -->

<tr>

<td><img src="images/spacer.gif" width="116" height="1"

border="0"></td>

<td><img src="images/spacer.gif" width="102" height="1"

border="0"></td>

<td><img src="images/spacer.gif" width="274" height="1"

border="0"></td>

<td><img src="images/spacer.gif" width="104" height="1"

border="0"></td>

<td><img src="images/spacer.gif" width="115" height="1"

border="0"></td>

<td><img src="images/spacer.gif" width="1" height="1"

border="0"></td>

</tr>

<tr>

<td colspan="5"><img name="logoxp_r1_c1"

src="images/logoxp_r1_c1.gif" width="711" height="29"

border="0"></td>

<td><img src="images/spacer.gif" width="1" height="29"

border="0"></td>

</tr>

<tr>

<td rowspan="4"><img name="logoxp_r2_c1"

src="images/logoxp_r2_c1.gif" width="116" height="114"

border="0"></td>

<td colspan="3" background="images/logoxp_r2_c2.gif">

<div align="center">

Listing 15.11 The Frame.vm Velocity template. (continues)

Using Velocity and Maverick242

Entry

Search

</div>

</td>

<td rowspan="4"><img name="logoxp_r2_c5"

src="images/logoxp_r2_c5.gif" width="115" height="114"

border="0"></td>

<td><img src="images/spacer.gif" width="1" height="26"

border="0"></td>

</tr>

<tr>

<td colspan="3"><img name="logoxp_r3_c2"

src="images/logoxp_r3_c2.gif" width="480" height="23"

border="0"></td>

<td><img src="images/spacer.gif" width="1" height="23"

border="0"></td>

</tr>

<tr>

<td rowspan="2"><img name="logoxp_r4_c2"

src="images/logoxp_r4_c2.gif" width="102" height="65"

border="0"></td>

<td background="images/logoxp_r4_c3.gif">

<div align="center">News

Achive</div>

</td>

<td rowspan="2"><img name="logoxp_r4_c4"

src="images/logoxp_r4_c4.gif" width="104" height="65"

border="0"></td>

<td></td>

</tr>

<tr>

<td><img name="logoxp_r5_c3" src="images/logoxp_r5_c3.gif"

width="274" height="29" border="0"></td>

<td></td>

</tr>

<tr>

<td colspan="5" valign="top">

$wrapped

</td>

<td><img src="images/spacer.gif" width="1" height="304"

border="0"></td>

</tr>

</table>

</body>

</html>

Listing 15.11 The Frame.vm Velocity template. (continued)

The code for the NewsEntry.vm Velocity template is shown in Listing 15.12. The
most important part of this template is the <form>. Users are allowed to enter
information about a news article they want to place in the database. When they
click submit, the form sends a Maverick command back to the server so the
NewsEntry controller can insert the information into the database. The action
for the <form> specifies the NewsEntry.m URL, which is processed by the Mav-
erick dispatcher. Figure 15.3 shows how the NewsEntry page appears to a user.

Velocity and Maverick 243

$request.setAttribute("title", "News Entry")

#if ($model.message)

<HR>

$model.message

<HR>

#end

Welcome to News R US.

Please enter a new items or click on the search button above.

<form action="News.m" method="post">

Headline: <input type="text" name="headline">

Date: <input type="text" name="date">

Text: <input type="text" name="text">

<input type="submit" value="submit">

</form>

Listing 15.12 The NewsEntry.vm Velocity template.

The Velocity template that displays a form for searching the database appears
in Listing 15.13. Called NewsSearch.vm, this template works in much the same
way as the NewsEntry.vm template; it contains a form that includes an action
with a NewsSearch.m URL. The Maverick dispatcher processes the URL and
activates the NewsSearch controller, as specified in the maverick.xml file. Fig-
ure 15.4 shows how the page appears to the user.

$request.setAttribute("title", "News Search")

Enter text for search on:

<form action="NewsSearch.m" method="post">

Search keyword: <input type="text" name="keyword">

<input type="submit" value="submit">

</form>

Listing 15.13 The NewsSearch.vm Velocity template.

Figure 15.3 The NewsEntry page.

Using Velocity and Maverick244

Figure 15.4 The NewsSearch page.

After a search is performed on the database, the results are displayed using the
NewsResults.vm Velocity template, shown in Listing 15.14. The real work in the
template is accomplished by the #foreach directive, which pulls Result objects

from the vector in the model (or context). Each of the news articles found is
displayed to the user. Figure 15.5 shows an example results page.

Velocity and Maverick 245

$request.setAttribute("title", "News Results")

The results of your search are:

#foreach($value in $model.results)

Headline: $value.headline

Date: $value.date

Text: $value.text

<HR>

#end

Listing 15.14 The NewsResults.vm Velocity template.

Figure 15.5 The NewsResults page.

Of course, our system wouldn’t be complete without an error template (Listing
15.15).

$request.setAttribute("title", "News Error")

There has been an error

Listing 15.15 The Error.vm Velocity template.

What’s Next

In this chapter, you learned how Velocity can be incorporated into the Maverick
MVC framework to provide the functionality in the view component. In the next
chapter, we explore Velocity integrated development environments (IDEs).

Using Velocity and Maverick246

Integrated development environments (IDEs) can be a heated topic of dis-
cussion. Some people insist on using WordPad or VI, while others take
advantage of the features a good IDE provides. Regardless of which camp

you're in, using an IDE has become more popular especially when the IDE sup-
ports a WYSIWYG visualizer.

Tools that make the development process with Velocity easier include the fol-
lowing:

■■ A template for the IntelliJ IDEA IDE

■■ An addition for UltraEdit

■■ A Velocity mode for JEdit

■■ A syntax definition for TextPad

■■ A minor mode addition to Emacs that color-codes all view template library
(VTL) constructs

In this chapter, we discuss these extensions and how to use them.

IntelliJ's IDEA

IntelliJ's IDEA IDE isn't just an editor for handling source code; it's a full-
fledged development environment. It includes support for XML, EJB, JSP, and
refactoring. You can download an evaluation copy at http://intellij.com/
idea/download.jsp. You'll find versions for Windows, Linux, general Unix, and
Mac. (You have to obtain an evaluation key via email.)

Velocity IDEs

C H A P T E R16

247

To install on Windows, just download the installer, which walks you through a
series of wizard windows. Once you've completed the installation, obtain the
Velocity template at http://cvs.apache.org/viewcvs/jakarta-velocity/contrib/
tools/intellij/IntelliJ-Live-Template.xml by right-clicking on the download link,
as shown in Figure 16.1, and selecting Save As.

Velocity IDEs248

Figure 16.1 Downloading the IntelliJ IDEA template.

The template XML is really just a bunch of “templates” that open up into the full
VTL syntax. To install the live templates found in the XML file, copy the file to
the directory <installation drive>/Documents and Settings/<install user>/
.IntelliJIdea\config\templates, as shown in Figure 16.2.

Once you place the file in the /config/templates directory, restart IDEA, click
Options, and then click Live Templates. You will see the dialog box shown in
Figure 16.3; at the top of the live templates list are the various entries for Veloc-
ity.

To see how these live templates work, simply start a new project and add a
class. Within the new file, type one of the live templates. The test automatically
fills in the entire structure so you don't have to worry about missing a closing
#end, for example.

TEAMFL
Y

Team-Fly®

IntelliJ 's IDEA 249

Figure 16.2 The templates directory.

Figure 16.3 The Live Templates dialog box.

UltraEdit

You can download the UltraEdit editor at http://www.ultraedit.com. This
product is available in a number of languages and is generally considered
a “programmer's editor” rather than a general-purpose text editor. UltraEdit
is a Windows-based product, so no Linux/Unix version is available. You can
obtain a 45-day evaluation copy from http://www.ultraedit.com/downloads/
index.html. The installation is easy; just execute the downloaded file and click
through the windows.

Before launching the editor, you must make an adjustment to your support
files. First, download the UltraEdit addition from http://cvs.apache.org/view-
cvs/jakarta-velocity/contrib/tools/ultraedit/ultraedit.txt, as shown in Figure
16.4. Click on either the download or view links to see the information you
need.

Velocity IDEs250

Figure 16.4 The UltraEdit additional CVS download.

Copy all of the information from the browser. Now, open <ultraedit installa-

tion directory>/word.txt and paste the information at the end of the file. Notice
that the file contains a line that begins with

/L9"Velocity"

The L9 is an increment value used by UltraEdit to determine additions. The
most recent version of UltraEdit already includes the L9 in the word.txt file, so

change it to L10 and save the word.txt file. Be sure there is a blank line between
the column above the L10 and the previous information in the file.

Now start UltraEdit and either create a new Velocity template or open a defined
one. Figure 16.5 shows the template.

J Edit 251

Figure 16.5 The UltraEdit Velocity template.

Although you can't see this in Figure 16.5, the Velocity references are high-
lighted in green and the directives in blue.

JEdit

JEdit is another “programmer's editor’ but it happens to be open source. The
editor is very powerful, and with the addition of plug-ins, it can become an IDE
as well. Plug-ins are available for a wide range of formats. To download JEdit,
browse to http://www.jedit.org. Once you’ve downloaded it, install the editor
with the command

java –jar JEdit41installer.jar

The installation process consists of a straightforward set of wizards. With the
editor installed, download the velocity.xml from http://cvs.apache.org/view-
cvs.cgi/jakarta-velocity/contrib/tools/jedit/. Save the velocity.xml file to a mode
directory of your installation.

Now open the catalog file of that mode directory and add the following:

<MODE NAME="velocity" FILE="velocity.xml"

FILE_NAME_GLOB="*.vw" />

If you currently have JEdit running, stop and restart it; otherwise, start JEdt.
You will now see the syntax of your file’s contents color-coded.

TextPad

TextPad is simply an editor for text files. You can download the application
from www.textpad.com; it is available for Windows only. Several plug-ins exist
for handling technologies like Velocity.

To install TextPad, just download the EXE file and double-click on it to launch
the installation wizard. Click Next a few times to install the editor. You can
obtain the Velocity plug-in at http://textpad.com/add-ons/synu2z.html (under
the Velocity heading).

Download the plug-in, then unzip and extract the velocity.syn file to the
<installation>/Program Files/Textpad4/system directory. The following steps
should guide you through installing the plug-in:

Open TextPad and click Configure, then choose New Document Class.

1. Enter the class name Velocity in the dialog box that appears and click
Next.

2. In the next dialog box, enter the names of your Velocity files. (I used *.vm.)
Click Next.

3. In the next dialog box, enable the option Syntax Highlighting. Now click on
the combo box arrow and select Velocity.syn. Click Next to continue.

4. Finally, click Finish.

Open a Velocity file with the extension VM and notice how the syntax for the
Velocity commands are highlighted in various colors.

Emacs

If you use Emacs on either a Windows or a Unix flavor machine, you can obtain
font locking or syntax coloring for the Velocity language. Download the EL file
from http://cvs.apache.org/viewcvs/jakarta-velocity/contrib/tools/emacs/vtl.el
and be sure to place the downloaded file in the appropriate directory of your
Emacs installation.

Velocity IDEs252

Note that this EL file uses minor mode, so if you are currently uisng a major
mode plug-in, the Velocity EL will not override it. To use the syntax coloring,
load the file you want to edit and type

M-x vtl-mode

Your document will be highlighted based on the current VTL constructs in use.

What’s Next

In this chapter, we described how you can add support for Velocity to various
editors and IDEs. While the additions aren’t earth-shattering, they provide more
convenience for both the designer and the developer. In the next chapter, we
discuss how to use Velocity with Struts.

What’s Next 253

This chapter introduces the last of three frameworks that enables you to
create dynamic Web sites using the MVC paradigm and Velocity. Struts,
produced under Apache's Jakarta project, is probably the most well-

known of the Web frameworks available today; entire books have been written
about Struts. Our goal in this chapter is to explain how to use Struts with Veloc-
ity (just as we did for Turbine and Maverick). We introduce an example regis-
tration system for illustration purposes.

Introducing Struts

As we mentioned earlier, entire books on the topic of Struts are available. This
section serves as a short introduction to the major components of the system.
Figure 17.1 shows a flow diagram of what occurs within the Struts framework.

As you can see in Figure 17.1, the entire process starts with a home page that
presents the user with links or HTML forms. In the example we introduce later
in this chapter, you present the user with a registration form. When the user
clicks a link or submit button, the Struts ActionServlet is invoked. This servlet
is designed to take the URL specified in the action attribute of the HTML form
or the link URL and determine the “action” it should perform. You define the
action in a configuration file along with the Action class and action JavaBean,
as well as the response HTML pages.

Using Velocity and Struts

C H A P T E R17

255

Figure 17.1 Struts flow diagram.

The Action class is defined around the Action base class, and the form data is
defined around ActionForm. You can write the HTML response pages in JSP or
Velocity (we use Velocity for our example). In the remainder of this chapter, we
discuss the prerequisites necessary for Struts and provide an example using
both Struts and Velocity.

Installing Struts

Struts is a framework and, as such, it relies on a few “friends” to accomplish its
tasks. They include:

■■ An application server like Tomcat or Resin (we use Tomcat here)

■■ Ant, which is required to compile the source code for Struts or examples
(but not for the example in this chapter)

■■ JDK

■■ Velocity, of course (you need the Velocity JAR, Struts library, Struts view,
and associated dependencies)

To make the download easy, we’ve included all of the necessary libraries in
the source code download for this chapter on the book’s Web site at
http://www.wiley.com/compbooks/gradecki.

U s i n g Ve l o c i t y a n d S t r u t s256

�����������
����

����

������

���� ���� �������

������

�������

������

����� ������

�����

A Sample Application

To see how simple it is to use Struts with a Velocity templating solution, let’s
build a Web application that allows a user to register using a username and
password. The system displays a registration page with a form for gathering the
username, password, and a copy of the password (which verifies that the user
typed in the correct combination of characters).

Creating the registration system involves the following six steps:

1. Create an ActionForm.

2. Build the action.

3. Modify the struts-config.xml file.

4. Create an appropriate web.xml file.

5. Creating success and failure pages.

6. Create the register page.

Building the ActionForm
As you might expect, you use an HTML form to gather the username, password,
and verification password. You need a method of getting the data entered by the
user into the system so it can be processed. In the “old” way, you’d obtain the
HttpServletRequest object and use the getParameter() method to get the val-
ues. Under Struts, you can use a JavaBean for the transport object. As you
learned earlier, when a user clicks a submit button in a form, the action
attribute of the <form> tag specifies a Struts action defined in the struts-con-
fig.xml file. Associated with the Struts action is an ActionForm. For our regis-
tration example, use the class defined in Listing 17.1.

A Sample Application 257

import org.apache.struts.action.*;

public class RegisterForm extends ActionForm {

protected String username;

protected String password;

protected String password2;

public String getUsername() { return this.username; }

public String getPassword() { return this.password; }

public String getPassword2() { return this.password2; }

Listing 17.1 The RegisterForm code. (continues)

public void setUsername(String username) { this.username =

username; };

public void setPassword(String password) { this.password =

password; };

public void setPassword2(String password) { this.password2 =

password; };

}

U s i n g Ve l o c i t y a n d S t r u t s258

Listing 17.1 The RegisterForm code. (continued)

The RegisterForm class is designed to handle all of the data that is sent from
your form. The class must inherit from ActionForm, which is a Struts base
class. As you can see, the code in the class is what you would expect from a Jav-
aBean. It includes protected attributes and getter/setter methods for each of
them. Both the system and the developer use this Form class. The developer
accesses it from the Velocity templates as well as in the Action object (which
we discuss next).

Creating an Action
The Action object is where all of business work occurs, usually as a result of a
user clicking on a link or a submit button. Based on the Struts configuration
file, an Action object is put into play. Listing 17.2 shows the code for the Regis-
terAction class.

import org.apache.struts.action.*;

import javax.servlet.http.*;

import java.io.*;

public class RegisterAction extends Action {

public ActionForward perform(ActionMapping mapping,

ActionForm form, HttpServletRequest request,

HttpServletResponse response) {

RegisterForm rf = (RegisterForm) form;

String username = rf.getUsername();

String password = rf.getPassword();

String password2 = rf.getPassword2();

if (password.equals(password2)) {

try {

return mapping.findForward("success");

} catch(Exception e) {

return mapping.findForward("failure");

Listing 17.2 The RegisterAction code. (continues)

TEAMFL
Y

Team-Fly®

Listing 17.2 The RegisterAction code. (continued)

As you might expect, the RegisterAction class extends the Struts Action base
class. The Struts system calls the perform() method, providing a Form object if
appropriate, as well as the HttpServletRequest and Response objects. In this
case, you immediately cast the Form class into RegisterForm and pull the val-
ues for the username, password, and verification password.

The code checks to see if the two passwords match. If they do, the code tells
Struts to return a value of success, which is matched against the configuration
file and the success.vm template. Otherwise, a value of failure is returned (and
the failure.vm template is displayed).

Configuring Struts
Most of the structure for a Struts Web application is defined in the configura-
tion file struts-conf.xml, as shown in Listing 17.3.

A Sample Application 259

}

}

return mapping.findForward("failure");

}

}

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"

"http://jakarta.apache.org/struts/dtds/struts-

config_1_0.dtd">

<struts-config>

<form-beans>

<form-bean name="registerForm" type="RegisterForm"/>

</form-beans>

<action-mappings>

<action path="/struts"

type="RegisterAction"

name="registerForm">

<forward name="success" path="/success.vm"/>

<forward name="failure" path="/failure.vm"/>

</action>

</action-mappings>

</struts-config>

Listing 17.3 The Struts configuration file.

In the configuration file, you define the Form JavaBeans, including their name,
which is also a reference for the <action> element and the class name. Next,
you define all of the actions that can occur in the application. In this example
you have only one, named struts. When the struts action is called from a <form>
or link, the framework activates the RegisterAction action and uses the Regis-
terForm form to pull the data from the <form> data. Also defined in the
<action> element are the forwards, which represent the pages where results
are provided to the user.

The web.xml File
In addition to the Struts configuration file, you need to create a web.xml file so
the application server knows how to handle requests from the user. Listing 17.4
shows this file.

U s i n g Ve l o c i t y a n d S t r u t s260

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<!-- Action Servlet Configuration -->

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<init-param>

<param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

<init-param>

<param-name>debug</param-name>

<param-value>2</param-value>

</init-param>

<init-param>

<param-name>detail</param-name>

<param-value>2</param-value>

</init-param>

<init-param>

<param-name>validate</param-name>

<param-value>true</param-value>

</init-param>

<load-on-startup>2</load-on-startup>

</servlet>

Listing 17.4 The web.xml file. (continues)

Listing 17.4 The web.xml file. (continued)

The web.xml file consists of two important parts. The first is a definition of
<servlet-mapping> and <servlet> elements for Struts. The configuration says
that any URL that ends in .do will be redirected to the ActionServlet servlet pro-
vided with Struts. The second important part is the configuration section for
Velocity, which specifies that all .vm URLs are to be directed to Veloci-
tyViewServlet. Notice the parameter to the Velocity <servlet> for a toolbox.xml
file. This file is shown in Listing 17.5.

A Sample Application 261

<servlet>

<servlet-name>velocity</servlet-name>

<servlet-class>org.apache.velocity.tools.view.servlet.

VelocityViewServlet</servlet-class>

<init-param>

<param-name>toolbox</param-name>

<param-value>/WEB-INF/toolbox.xml</param-value>

</init-param>

<load-on-startup>10</load-on-startup>

</servlet>

<!-- Action Servlet Mapping -->

<servlet-mapping>

<servlet-name>velocity</servlet-name>

<url-pattern>*.vm</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

<!-- Struts Tag Library Descriptors -->

<taglib>

<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

<taglib>

<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>

<taglib>

<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>

</web-app>

Listing 17.5 The toolbox.xml file.

The toolbox.xml file defines several classes that the Struts ActionServlet can
use to provide a bridge between Struts, its Form JavaBeans, and Velocity tem-
plates. You can find all of the code in the Velocity Struts plug-in.

The Success Page
When a user provides a username and two passwords that match, the Register-
Action class instructs the Struts ActionServlet to use the success forward. The
success forward, defined in the Struts configuration file, tells the system to use
the success.vm Velocity template to display output to the user. The code for the
template is shown in Listing 17.6.

U s i n g Ve l o c i t y a n d S t r u t s262

<?xml version="1.0"?>

<toolbox>

<tool>

<key>toolLoader</key>

<class>org.apache.velocity.tools.tools.ToolLoader</class>

</tool>

<tool>

<key>link</key>

<class>org.apache.velocity.tools.struts.LinkTool</class>

</tool>

<tool>

<key>msg</key>

<class>org.apache.velocity.tools.struts.MessageTool</class>

</tool>

<tool>

<key>errors</key>

<class>org.apache.velocity.tools.struts.ErrorsTool</class>

</tool>

<tool>

<key>form</key>

<class>org.apache.velocity.tools.struts.FormTool</class>

</tool>

</toolbox>

Listing 17.6 The success.vm template.

The template is fairly basic, but you get the idea. If the user is successful in pro-
viding accurate information, you pull the username from the RegisterForm
object created when the RegisterAction action was executed by Struts. Notice
the use of the $! directive. This directive tells Velocity to search all available
Context objects for the registerForm object and the username() method. Figure
17.2 shows the result of this page.

A Sample Application 263

<HTML>

<HEAD>

<TITLE>Success</TITLE>

</HEAD>

<BODY>

Registration Success!

Thanks for logging in $!registerForm.username

<P>Try Another?</P>

</BODY>

</HTML>

Figure 17.2 Success under Struts and Velocity.

The failure page looks like the success Velocity template but of course tells
users that they must try again.

The Register Page
Throughout this discussion we have referenced the page where the user pro-
vides information and submits it to the server. Listing 17.7 shows the register
Velocity template that provides this capability.

U s i n g Ve l o c i t y a n d S t r u t s264

<html>

<head>

<title>Register</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body bgcolor="#CCCCCC" text="#006699" link="#006699"

vlink="#006699" alink="#006699">

<table width="80%" border="1" cellspacing="0" cellpadding="0"

bgcolor="#999999" bordercolor="#000000" align="center">

<tr>

<td>

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td>

<div align="center"><font face="Verdana, Arial,

Helvetica, sans-serif" size="-1"><a href="http://localhost:

8080/register.vm">Home</div>

</td>

</tr>

</table>

</td>

</tr>

</table>

<table width="80%" border="1" cellspacing="0" cellpadding="0"

bordercolor="#000000" align="center">

<tr>

<td width="22%" align="right"><img src="header2.gif"

width="200" height="75"></td>

</tr>

</table>

<table width="80%" border="1" cellspacing="0" cellpadding="0"

bordercolor="#000000" align="center">

<tr>

<td align="left" valign="top" height="423">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td width="20%" height="9"><font face="Verdana, Arial,

Helvetica, sans-serif" size="-2" color="#000000">$date</td>

<td width="43%" height="9"> </td>

<td width="37%" height="9" bgcolor="#000000">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr bgcolor="#000000">

</tr>

</table>

Listing 17.7 The register.vm template. (continues)

Listing 17.7 The register.vm template. (continued)

A good deal of the template consists of formatting information. At the end, how-
ever, the code creates an HTML form with an action attribute set equal to
struts.do. As you’ll recall, the name of your action in the Struts configuration
file is also struts. When the struts.do URL is provided to the server, the .do is
stripped and the “struts” string is matched against the <action> elements in the
configuration.

Setup
The setup for the application is quite simple. The directory structure looks like
this:

/webapps/struts

/webapps/struts/register.vm

/webapps/struts/success.vm

/webapps/struts/failure.vm

A Sample Application 265

</td>

</tr>

</table>

<table width="69%" border="0" cellspacing="0"

cellpadding="0" align="center">

<tr>

<td width="71%" height="246" align="left" valign="top">

<p> </p>

<form action="struts.do" method="post">

username: <input type="text" name="username"/>

password: <input type="text" name="password"/>

again : <input type="text" name="password2"/>

<input type="submit" name="submit" value="Register"/>

</form>

</td>

</tr>

</table>

</td>

</tr>

</table>

<p> </p>

<p> </p><p> </p>

<p> </p>

</body>

</html>

/webapps/struts/WEB-INF/web.xml

/webapps/struts/WEB-INF/struts-config.xml

/webapps/struts/WEB-INF/toolbar.xml

/webapps/struts/WEB-INF/classes/RegisterForm.java

/webapps/struts/WEB-INF/classes/RegisterAction.java

/webapps/struts/WEB-INF/lib/struts_1_0_2.jar

/webapps/struts/WEB-INF/lib/dom4j.jar

/webapps/struts/WEB-INF/lib/commons-collections.jar

/webapps/struts/WEB-INF/lib/velocity-1.3-dev.jar

/webapps/struts/WEB-INF/lib/velocity-tools-library-0.2.jar

/webapps/struts/WEB-INF/lib/velocity-tools-struts-0.8.jar

/webapps/struts/WEB-INF/lib/velocity-tools-view-0.7.jar

Compile

To compile the Action and Form classes, use the following command:

javac "../lib/struts_1_0_2.jar;./;" *.java

Once the Java source files have been compiled, restart the application server.

Run

Execute the application by browsing to this URL:

http://localhost:8080/struts/register.vm

You should see the screen shown in Figure 17.3. Enter a username and your
password twice, then click submit.

What's Next

In this chapter, we explained how to use Velocity and Struts to provide a com-
prehensive MVC solution for developing dynamic Web pages. In the next chap-
ter, we build a complete example using Velocity.

U s i n g Ve l o c i t y a n d S t r u t s266

Figure 17.3 The register.vm template output.

What's Next 267

TEAMFL
Y

Team-Fly®

Now that you're familiar with Velocity and you've seen how to use it in
various examples, in this chapter we examine a fairly large Web appli-
cation that uses Velocity to handle all its view components. We illustrate

how to use Velocity in a situation that calls for a production system.

The Hotel Specifications

For this application, you'll construct a hotel reservation system (HRS) for Motel
37, a fictitious hotel that has just five rooms available. The Web application
must allow users to perform three main functions:

■■ Search for a room to book

■■ Book a room

■■ Look up an existing reservation

In addition to these three tasks, the application should present a good Web site
flow and include pages that help users move through the site. This means you
need to have a home page that introduces the hotel and provides users with
task options as well as navigation controls. If users want to book a new room in
the hotel, they need to know what rooms are available for a given timeframe
and the amenities the available rooms offer. When the results of the search are
presented to users, they can either book one of the rooms or perform another
search. Once they book a room, they should be provided with a reservation
number, which they can use to look up the reservation at a later time. Of course,
all of this functionality must be contained within a proper look and feel. Figure
18.1 shows the page map for the hotel reservation system.

The Hotel Reservation Velocity
Application

C H A P T E R18

269

Figure 18.1 The Hotel 37 page map.

As you can see in the figure, the Velocity view templates are broken down into
four major areas. The first is the frame template, which handles all of the com-
mon look-and-feel aspects of the site. All pages presented to the user are
wrapped by the Velocity frame template, which is called frame.vm. Next, you
have the introduction pages. These pages include home.vm (which handles all
initial views of the Web application) and start.vm (which handles those users
who need to use the Web application for searching or looking up a reservation).

Searching the database for an open room is accomplished by search.vm, and
the results of the search are presented in the page bookIt.vm. The bookIt.vm
template is also used to indicate the desire of the user to book an actual room.
The results of a successful booking attempt are confirmed by the goodBook.vm
template; badBook.vm indicates when the booking has failed.

In order to look up a previously successful reservation, the customer uses the
reservation number provided on the goodBook.vm template page and enters it
into the lookup.vm template page. If the application finds the reservation in the
database, the displayReservation.vm template is displayed to the user. If no
reservation is found using the supplied reservation number, the noReserva-
tion.vm template is displayed.

The Hotel Architecture

Of course, just providing the templates doesn't do much for the functionality
that must appear behind the scenes. Figure 18.2 shows a sample architecture
diagram for the HRS.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n270

�������
����

	
��

����

�����
����

�����
�����

����

	�����
����

	�����
�����

����

���������
����

��� ���
����

Figure 18.2 The HTS's architecture.

As Figure 18.2 shows, this solution uses Maverick as a framework for the MVC
paradigm and MySQL as the underlying database. Seven commands are associ-
ated with the Maverick framework:

■■ doWelcome

■■ startReservation

■■ doSearch

■■ doLookup

■■ lookupReservation

■■ bookReservation

■■ searchReservation

Only three of the commands--lookupReservation, bookReservation, and
searchReservation--have controller objects associated with them. The Lookup-
Reservation controller is responsible for looking up a supplied reservation
number in the database and populating the model with appropriate information
for display to the user. The BookReservation populates the database with a new
reservation using the information supplied in the appropriate form. Finally, the
SearchReservation controller uses information supplied by the user to deter-
mine whether any rooms are available based on the desired criteria.

The Hotel Database Schema

The HRS application requires two tables in its database. You can build the first
table, called rooms, with the following MySQL SQL dump:

CREATE TABLE rooms (

id int(11) NOT NULL default '0',

beds varchar(16) default NULL,

smoking int(11) default NULL,

refrigerator int(11) default NULL,

The Hotel Database Schema 271

������

�����	�

������

����	��
������

�����������	��

�������������	��

�������������	��

baserate double default NULL,

PRIMARY KEY (id)

) TYPE=MyISAM;

INSERT INTO rooms VALUES (1,'double',0,0,110);

INSERT INTO rooms VALUES (2,'king',0,1,140);

INSERT INTO rooms VALUES (3,'suite',1,1,190);

INSERT INTO rooms VALUES (4,'double',1,1,110);

INSERT INTO rooms VALUES (5,'king',1,1,140);

The rooms table is designed to hold information about all of the rooms in the
hotel as well as the amenities provided by each. Another table, called reserva-
tions, holds all of the reservations currently attributed to the hotel. You can
build this table with the following:

CREATE TABLE reservations (

id int(11) NOT NULL auto_increment,

room int(11) default NULL,

indate date default NULL,

outdate date default NULL,

adults int(11) default NULL,

children int(11) default NULL,

cost double default NULL,

PRIMARY KEY (id)

) TYPE=MyISAM;

Configuring the Maverick XML

Because you are using Maverick as your control framework, you must build a
maverick.xml file appropriate for your page map and controllers. Listing 18.1
shows the maverick.xml file for the HRS application.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n272

<?xml version="1.0"?>

<maverick version="2.0" default-view-type="document"

default-transform-type="document">

<commands>

<command name="doWelcome">

<view path="home.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="startReservation">

<view path="start.vm">

<transform path="frame.vm"/>

Listing 18.1 The maverick.xml file. (continues)

</view>

</command>

<command name="doSearch">

<view path="search.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="doLookup">

<view path="lookup.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="lookupReservation">

<controller class="LookupReservation"/>

<view name="success" path="displayReservation.vm">

<transform path="frame.vm"/>

</view>

<view name="error" path="noReservation.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="bookReservation">

<controller class="BookReservation"/>

<view name="success" path="goodBook.vm">

<transform path="frame.vm"/>

</view>

<view name="error" path="badBook.vm">

<transform path="frame.vm"/>

</view>

</command>

<command name="searchReservation">

<controller class="SearchReservation"/>

<view name="success" path="bookIt.vm">

<transform path="frame.vm"/>

</view>

<view name="error" path="search.vm">

<transform path="frame.vm"/>

</view>

</command>

</commands>

</maverick>

Configuring the Maverick XML 273

Listing 18.1 The maverick.xml file. (continued)

The maverick.xml file includes all seven of the commands you need to present
the appropriate view pages to the user. Notice that all of the view elements
include transform subelements for handling the addition of the velocity
frame.vm template (which wraps each template for the site's look and feel).

The Look and Feel Frame

You know that one of the most important things a Web site can provide is a
common look and feel. The navigation menus and logos should appear in the
same place on every page of the site. This look-and-feel component makes
users feel more comfortable with the flow from page to page. Listing 18.2 shows
the frame.vm Velocity template used in the HRS Web application.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n274

<html>

<head>

<title>$title</title>

</head>

<body bgcolor="#FFFFFF" text="#000000">

<table width="85%" border="0" cellspacing="0" cellpadding="5">

<tr>

<td width="25%">

<img src="images/title1.jpg" width="200" height="100"

alt="Your logo here" border="0">

</td>

<td width="75%"><img src="images/banner_space.jpg"

width="468" height="60" alt="Banner space here" border="0"></td>

</tr>

<tr>

<td width="25%"><i><font face="Verdana,

Arial, Helvetica, sans-serif">

Getting to know you in 37 different ways</i></td>

<td width="75%"> </td>

</tr>

</table>

<table width="85%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td width="13%" bgcolor="#0033FF" align="left"><img

src="images/left_corner.gif" width="50" height="50"></td>

<td width="55%" bgcolor="#0033FF" align="center"><font

color="#FFFFFF" face="Verdana, Arial, Helvetica, sans-serif">

</td>

<td width="32%" align="left"><img src="images/

right_corner.gif" width="50" height="50"></td>

</tr>

<tr>

Listing 18.2 The frame Velocity template. (continues)

<td width="5%" bgcolor="#0033FF" height="183" valign="top">

<table width="100%" border="0" cellspacing="0" cellpadding="5">

<tr>

<td bgcolor="#0033FF"><font

color="#FFFFFF" face="Verdana, Arial, Helvetica,

sans-serif">Home</td>

</tr>

<tr>

<td><font color="#FFFFFF"

face="Verdana, Arial, Helvetica, sans-serif">Reservations

</td>

</tr>

</table>

</td>

<td width="95%" height="183" align="center" valign="top">

<p> </p>

<table width="95%" border="1" cellspacing="0"

cellpadding="5" bordercolor="#0033FF">

<tr>

<td bgcolor="#0099FF" align="left"><font

face="Verdana, Arial, Helvetica, sans-serif" size="-1">

$wrapped

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="13%" bgcolor="#0033FF" height="189" valign="bottom">

</td>

<td width="55%" height="189">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td> </td>

</tr>

<tr>

<td align="center" height="65"><font face="Verdana,

Arial, Helvetica, sans-serif" size="1">©

Copyright 2003, Motel 37</td>

</tr>

</table>

</td>

<td width="32%" height="189"> </td>

</tr>

</table>

<p> </p>

</body>

</html>

The Look and Feel Frame 275

Listing 18.2 The frame Velocity template. (continued)

The look and feel for the application isn't complex, but it includes all of the
major features a good Web site requires. Figure 18.3 shows how the frame
appears to the user.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n276

Figure 18.3 The look and feel frame.

There are a couple different areas where you have to change the frame depend-
ing on the functions provided by your Web application. The first area is the left
navigation menu. The HTML tags for the menu are as follows:

<td bgcolor="#0033FF">

Home

</td>

<td>

Reservations

</td>

In the HRS application, two links are available on all pages: Home and Reser-
vations. If users click on the Home link, they should be sent back to the home
page of the Web application. The Maverick command doWelcome causes the
home.vm Velocity template to be presented to the user (after being transformed
with the frame.vm Velocity template).

The Reservations link sends users to the page where they can either search for
a new room or look up a current reservation. This process starts on the
start.vm Velocity template and is activated through the startReservation Mav-
erick command.

If you want to expand the application with additional tasks, you can place a link
in the navigation menu code. By using the Maverick MVC framework and Veloc-
ity templates, you can expand the functionality of an application quite easily.

The second important area in the frame is where all of the primary pages are
located when transformed by the frame.vm Velocity template. Toward the end
of the frame.vm code, you see a Velocity reference named $wrapped. The Mav-
erick system places all view Velocity templates here in the look-and-feel tem-
plate.

Building the Welcome Pages

When users first arrive at the HRS Web application, they are greeted with infor-
mation about the site. Listing 18.3 contains the code for the welcome page;
Figure 18.4 shows what the user sees.

Building the Welcome Pages 277

$request.setAttribute("title", "Welcome")

Welcome to Motel 37

If you are interested in a reservation, searching, booking or

displaying a current one, click on the button.

<form action="startReservation.m" method="post">

<input type="submit" name="submit" value="Goto Reservation">

</form>

Listing 18.3 The home Velocity template.

All view templates should set the $title Velocity reference to properly display
the title of each page on the user's browser. If you don't assign a value to the
title reference, the user's browser will display text like "$title" in the title bar
when the page is rendered.

The home.vm Velocity template features a <form> HTML tag, which includes
only a single button, which the user clicks to begin the process of working with
a reservation. The action for the <form> tag is the Maverick command
startReservation. Notice the .m extension is used so the application server will
be able to properly handle the Maverick command.

When users click the Goto Reservation submit button, they are transferred to
the Start reservation page, as shown in Figure 18.5. The purpose of this page
(see Listing 18.4) is to give users a common place where they can decide what
type of reservation function they wish to perform. In the HRS application, two
task functions are available: Search For A Room and Look Up A Reservation.
Each function is started by the user clicking on the appropriate button dis-
played on the page. The buttons are placed within two different forms. For the
Search For A Room function, the form action triggers the use of the doSearch.m
Maverick command. The Look Up A Reservation function triggers the
doLookup.m Maverick command. Each of these commands activates controller
classes, as we discussed earlier.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n278

Figure 18.4 The welcome page.

TEAMFL
Y

Team-Fly®

Listing 18.4 The start Velocity template.

Building the Welcome Pages 279

$request.setAttribute("title", "Start")

Here are the operations available for a reservation:

Search for a room:

<form action="doSearch.m" method="post">

<input type="submit" name="submit" value="Search for a Room">

</form>

Look up a reservation:

<form action="doLookup.m" method="post">

<input type="submit" name="submit" value="Lookup a Reservation">

</form>

Figure 18.5 The start page.

Searching for a Room

When the doSearch.m Maverick command executes, the search.vm Velocity
template is displayed to the user. This search page allows the system to gather
all of the information necessary for the search controller to find an appropriate
room for the user. The code for the search.vm Velocity template appears in List-
ing 18.5; Figure 18.6 shows the page within a browser window.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n280

$request.setAttribute("title", "Reservation Search")

In order to find a room that is appropriate for your needs, we

need a little more information:

<form action="searchReservation.m" method="post">

<table>

<tr>

<td>Enter date arriving:</td><td> <input type="text"

name="indate" value="yyyy-mm-dd"></td>

</tr>

<tr>

<td>Enter date departing:</td><td> <input type="text"

name="outdate" value="yyyy-mm-dd"></td>

</tr>

</table>

<table>

<tr>

<td>Beds:</td>

<td>

<select name="beds" >

<option value="Any">Any</option>

<option value="double">Double</option>

<option value="king">King</option>

<option value="suite">Suite</option>

</select>

</td>

</tr>

<tr>

<td>Smoking:</td>

<td>

<select name="smoking" >

<option value="Any">Any</option>

<option value="0">No</option>

<option value="1">Yes</option>

</select>

</td>

</tr>

Listing 18.5 The search Velocity template. (continues)

Listing 18.5 The search Velocity template. (continued)

Searching for a Room 281

<tr>

<td>Refrigerator:</td>

<td>

<select name="refrigerator" >

<option value="Any">Any</option>

<option value="0">No</option>

<option value="1">Yes</option>

</select>

</td>

</tr>

<tr>

<td>Cost:</td>

<td>

<select name="cost" >

<option value="Any">Any</option>

<option value="140.0">140.00</option>

<option value="170.0">170.00</option>

</select>

</td>

</tr>

</table>

<input type="submit" value="submit">

</form>

Figure 18.6 The search page.

For the search controller to be able to find a room for the user, the system must
have the user's arrival and departure dates. Optionally, users can tell the system
whether they want a refrigerator or a room in which smoking is permitted. They
can also specify what type of bed they want and inquire about the cost of the
room. Once all of this information is gathered, the user clicks the submit button
to send the information to the server. The Maverick command searchReserva-
tion is the trigger for the server to put into play the SearchReservation con-
troller class, which is shown in Listing 18.6.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n282

import java.util.*;

import java.sql.*;

import org.infohazard.maverick.ctl.Throwaway2;

import org.infohazard.maverick.flow.*;

import javax.servlet.http.*;

public class SearchReservation extends Throwaway2 {

Connection connection = null;

Model m = null;

ControllerContext cxt = null;

HttpServletRequest request = null;

private void setUpModel() {

m = new Model();

cxt = this.getCtx();

request = cxt.getRequest();

cxt.setModel(m);

}

private boolean loadDriver() {

boolean ready = true;

try {

Class.forName("com.mysql.jdbc.Driver");

connection =

DriverManager.getConnection("jdbc:mysql://localhost/products");

} catch(Exception e) {

ready = false;

}

return ready;

}

private ResultSet findInclusiveDates(String indate, String outdate) {

ResultSet rs = null;

try {

Statement statement = null;

String query = new String("SELECT DISTINCT room FROM

reservations WHERE ('" +

Listing 18.6 The SearchReservation class. (continues)

request.getParameter("indate") + "' >=

reservations.indate) and ('" +

request.getParameter("outdate") + "' <=

reservations.outdate)");

statement = connection.createStatement();

rs = statement.executeQuery(query);

} catch(Exception e) {

rs = null;

}

return rs;

}

private String buildReservationQuery(String indate, String

outdate, ResultSet rs) {

String query = null;

try {

query = new String("SELECT DISTINCT rooms.id, rooms.beds,

rooms.refrigerator, rooms.smoking, rooms.baserate FROM rooms left

join reservations on (('" +

request.getParameter("outdate") +

"' <= reservations.indate) or ('" +

request.getParameter("indate") +

"' >= reservations.outdate)) ");

boolean where = false;

if (!request.getParameter("beds").equals("Any")) {

query += " where beds = '" + request.getParameter("beds")

+ "'";

where = true;

}

if (!request.getParameter("smoking").equals("Any")) {

if (!where) {

query += " where smoking = " + request.getParameter("smoking");

where = true;

} else {

query += " and smoking = " + request.getParameter("smoking");

}

}

if (!request.getParameter("cost").equals("Any")) {

if (!where) {

query += " where cost <= " + request.getParameter("cost");

where = true;

} else {

query += " and cost <= " + request.getParameter("cost");

Searching for a Room 283

Listing 18.6 The SearchReservation class. (continues)

}

}

if (!request.getParameter("refrigerator").equals("Any")) {

if (!where) {

query += " where refrigerator = " +

request.getParameter("refrigerator");

where = true;

} else {

query += " and refrigerator = " +

request.getParameter("refrigerator");

}

}

if (!where) {

query += " where reservations.id IS NOT NULL";

} else {

query += " AND reservations.id IS NOT NULL";

}

if (rs.next()) {

query += " and rooms.id NOT IN ("

+ rs.getString("room") + ",";

while(rs.next()) {

query += rs.getString("room") + ",";

}

query += "null)";

}

} catch(Exception e) {

query = "";

}

return query;

}

private Vector executeReservationQuery(String query) {

Vector v = null;

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(query);

v = new Vector();

while (rs.next()) {

v.add(new Result(rs.getString("id"),

rs.getString("beds"),

rs.getString("smoking"),

rs.getString("refrigerator"),

rs.getString("baserate"), "", "", "", ""));

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n284

Listing 18.6 The SearchReservation class. (continues)

}

} catch(Exception e) {

v = null;

}

return v;

}

public String go() throws Exception {

String returnValue = ERROR;

ResultSet rs = null;

setUpModel();

if (loadDriver()) {

String indate = request.getParameter("indate");

String outdate = request.getParameter("outdate");

rs = findInclusiveDates(indate, outdate);

String query = buildReservationQuery(indate, outdate, rs);

Vector v = executeReservationQuery(query);

m.setResult(v);

returnValue = SUCCESS;

} else {

returnValue = ERROR;

}

m.setBeds(request.getParameter("beds"));

m.setSmoking(request.getParameter("smoking"));

m.setIndate(request.getParameter("indate"));

m.setOutdate(request.getParameter("outdate"));

m.setRefrigerator(request.getParameter("refrigerator"));

m.setCost(request.getParameter("cost"));

connection.close();

return returnValue;

}

public class Model {

protected Vector rs;

String beds;

String indate;

String outdate;

String smoking;

String refrigerator;

String cost;

public Vector getResult() {

return rs;

}

Searching for a Room 285

Listing 18.6 The SearchReservation class. (continues)

public void setResult(Vector r) {

rs = r;

}

public void setBeds(String b) {

beds = b;

}

public String getBeds() {

return beds;

}

public void setIndate(String i) {

indate = i;

}

public String getIndate() {

return indate;

}

public void setOutdate(String o) {

outdate = o;

}

public String getOutdate() {

return outdate;

}

public void setSmoking(String s) {

smoking = s;

}

public String getSmoking() {

return smoking;

}

public void setRefrigerator(String r) {

refrigerator = r;

}

public String getRefrigerator() {

return refrigerator;

}

public void setCost(String c) {

cost = c;

}

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n286

Listing 18.6 The SearchReservation class. (continues)

Listing 18.6 The SearchReservation class. (continued)

Handling a Reservation Search

The SearchReservation class in Listing 18.6 handles the process of finding a
room based on the information provided by the user. The class is instantiated
when the searchReservation Maverick command is encountered. Fundamen-
tally, the controller takes the information from the user and adds data to the
context or model so it can be displayed to the user.

The first thing the controller does is call a private method named setUpModel().
This method is responsible for obtaining the context from Maverick, instantiat-
ing a Model object, and adding the object to the context. The Model class is con-
tained within the controller class as a private class and is designed to hold a
Vector of Result objects. The model must include a vector of Result objects
because the Velocity template cannot use a ResultSet object (which is obtained
directly from a database call). Instead, you need to convert the information in
the ResultSet and place it in a vector. In addition to the results from the data-
base, the Model object includes attributes for the search information (such as
bed types, smoking preference, and reservation dates).

Once the model is set up, the code attempts to load the MySQL database driver
and build a connection to the remote database for the application. If the con-
nection to the database is successful, the arrival and departure dates for a pos-
sible reservation are passed to the private findInclusiveDates() method.

Before going into the method itself, let's discuss how you determine if a room
is available in the hotel. As you know, the application contains two tables. The
first, room, is indexed on a room number. Each room number relates to a spe-
cific room with certain features (bed type, cost, availability of a refrigerator,
and whether smoking is permitted). The reservation table holds all current
reservations. For the reservation, you include the arrival and departure date as
well as a link to the room number. To determine whether a particular room
might be a match for a new arrival and departure date pair, you should consider
three basic cases:

■■ The arrival and departure occur before any other reservation.

■■ The arrival and departure occur after any other reservation.

■■ The arrival and departure are the same as another reservation.

Searching for a Room 287

public String getCost() {

return cost;

}

}

}

The application uses two different database calls to determine whether the
reservation can be made. The first occurs in the findInclusiveDates() method.
Here you execute a query that attempts to find all room numbers for which the
requested arrival and departure occur during the same timeframe. The result of
the method is either an empty result set (indicating no other reservations occur
during the same time) or a set of rows with room numbers that cannot be used
by the new reservation. This ResultSet object is passed to the method buil-
dReservationQuery().

In buildReservationQuery(), a large query statement is created that joins the
rooms and reservation tables and that includes any of the additional criteria
that limits a reservation (such as smoking). The query string is passed to the
executeReservationQuery() method, and the result is a Vector object that can
be placed in the model to be used by the displayReservation Velocity template.

The model is also provided with the search criteria passed from the user. This
data includes the arrival and departure dates as well as the cost, refrigerator
request, bed type, and smoking toggles.

When SearchReservation locates any appropriate rooms for the user, the class
returns either a SUCCESS or an ERROR value. The ERROR value doesn't indi-
cate that no rooms were found; instead, it means that an error occurred during
the search process. If the controller is able to successfully return results from the
database, the SUCCESS value is returned. The Maverick XML file indicates that
the bookIt.vm Velocity template should be returned to the user. The bookIt.vm
template is shown in Listing 18.7; what the user sees appears in Figure 18.7.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n288

$request.setAttribute("title", "Bookit")

Based on the information provided by you:

In Date: $model.indate

Out Date: $model.outdate

Beds: $model.beds

Smoking: $model.smoking

Refrigerator: $model.refrigerator

Cost: $model.cost

We have come up with following rooms available:

<form action="bookReservation.m" method="Post">

Please enter the number of adults and children to be in the room:

Adults: <input type="text" name="adults" value="1">

Children: <input type="text" name="children" value="0">

Listing 18.7 The bookIt Velocity template. (continues)

TEAMFL
Y

Team-Fly®

Listing 18.7 The bookIt Velocity template. (continued)

Searching for a Room 289

Here are the rooms available. Click on the appropriate button to

book the room:

#foreach($room in $model.result)

<input type="hidden" value="$room.id" name="roomid">

<input type="hidden" value="$model.indate" name="indate">

<input type="hidden" value="$model.outdate" name="outdate">

<input type="hidden" value="$room.cost" name="cost">

Book this Room: <input type="submit" value="Book it">

beds in room : $room.beds

cost: $$room.cost

<HR>

#end

</form>

To try another search:

<form action="doSearch.m" method="post">

<input type="submit" name="submit" value="Search for a Room">

</form>

Figure 18.7 The search results page.

The results from the searching process have two purposes. The first is to dis-
play the original search criteria along with all of the rooms found that match the
criteria. The second purpose is to display buttons the user can click to book an
appropriate room. In order to book a room, the system needs to provide appro-
priate information to the booking controller. This information is supplied in the
<form> tag using hidden fields. Of particular importance is the room ID, which
acts as the relationship between the room and reservation tables.

Booking a Room

When the user clicks one of the buttons displayed by the bookIt.vm template, the
bookReservation Maverick command is executed. This execution causes the
BookReservation controller object to be instantiated and executed (Listing 18.8).

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n290

import java.sql.*;

import org.infohazard.maverick.ctl.Throwaway2;

import org.infohazard.maverick.flow.*;

import javax.servlet.http.*;

public class BookReservation extends Throwaway2{

public String go() throws Exception {

String returnValue = "";

Model m = new Model();

ControllerContext cxt = this.getCtx();

HttpServletRequest request = cxt.getRequest();

cxt.setModel(m);

Connection connection = null;

Statement statement = null;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection("jdbc:mysql://localhost/prod-

ucts");

statement = connection.createStatement();

String query = "INSERT INTO reservations VALUES(null, "

+ request.getParameter("roomid") + ",'"

+ request.getParameter("indate") + "','"

+ request.getParameter("outdate") + "',"

+ request.getParameter("adults") + ","

+ request.getParameter("children") + ","

+ request.getParameter("cost") +")";

Listing 18.8 The BookReservation class. (continues)

Listing 18.8 The BookReservation class. (continued)

Based on what we've discussed previously, you can probably guess that the
BookReservation controller class inserts a new row into the reservation table.
In addition to inserting the row, you must obtain the reservation number and
place the number in the model that will be displayed by a Velocity template. The
reservation number isn't fancy; it's just the auto-incremented index value of the
reservation table. The auto-increment column value is obtained by issuing a
query against the database with the statement SELECT LAST_INSERT_ID().
You execute the query only if the INSERT to the table returns a value of 1 (indi-
cating a row was changed or added to the database).

Booking a Room 291

int i = statement.executeUpdate(query);

if (i == 1) {

returnValue = SUCCESS;

ResultSet rs = statement.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {

m.setId(rs.getInt(1));

} else {

m.setId(0);

returnValue = ERROR;

}

} else {

returnValue = ERROR;

}

} catch(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

returnValue = ERROR;

} finally {

statement.close();

connection.close();

}

return returnValue;

}

public class Model {

protected int id;

public int getId() {

return id;

}

public void setId(int i) {

id = i;

}

}

}

If the book reservation is successful, the Maverick system executes the good-
Book.vm Velocity template, shown in Listing 18.9; the user sees the screen
shown in Figure 18.8.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n292

$request.setAttribute("title", "Good Book")

Your reservation number is: $model.id

Listing 18.9 The goodBook Velocity template.

Figure 18.8 The successful reservation.

If the Web application encounters a problem inserting the new reservation into
the table, an error occurs and the badBook.vm Velocity template (Listing 18.10)
is displayed, as shown in Figure 18.9.

$request.setAttribute("title", "Bad Book")

We are sorry but something in the backend has occured when we attempted to

book your reservation.

 Please try again!

Listing 18.10 The badBook Velocity template.

Figure 18.9 An unsuccessful reservation.

Looking up a Room

The last task that we cover is looking up a previously entered reservation. List-
ing 18.11 shows the code for the LookupReservation controller class, which is
executed when the lookupReservation Maverick command is issued. This Mav-
erick command is executed when users enter their reservation number in a form
created by the template lookup.vm (Listing 18.12), as shown in Figure 18.10.

Looking up a Room 293

import java.sql.*;

import org.infohazard.maverick.ctl.Throwaway2;

import org.infohazard.maverick.flow.*;

import javax.servlet.http.*;

import java.util.*;

public class LookupReservation extends Throwaway2{

Listing 18.11 The LookupReservation class. (continues)

public String go() throws Exception {

String returnValue = "";

Model m = new Model();

ControllerContext cxt = this.getCtx();

cxt.setModel(m);

try {

Class.forName("com.mysql.jdbc.Driver");

Connection connection =

DriverManager.getConnection("jdbc:mysql://localhost/products");

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT * FROM

reservations WHERE id = " +

cxt.getRequest().getParameter("reservationnumber"));

Vector v = new Vector();

while (rs.next()) {

v.add(new Result(rs.getString("id"),

"",

"",

"",

rs.getString("cost"),

rs.getString("adults"), rs.getString("children"),

rs.getString("indate"),

rs.getString("outdate")));

}

m.setResult(v);

statement.close();

connection.close();

returnValue = SUCCESS;

} catch(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

returnValue = ERROR;

}

return returnValue;

}

public class Model {

protected Vector v;

public Vector getResult() {

return this.v;

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n294

Listing 18.11 The LookupReservation class. (continues)

Listing 18.11 The LookupReservation class. (continued)

Looking up a Room 295

}

public void setResult(Vector v) {

this.v = v;

}

}

}

Figure 18.10 The lookup page.

$request.setAttribute("title", "Lookup")

Please enter your reservation number to lookup and press submit:

<form action="lookupReservation.m" method="post">

<input type="text" name="reservationnumber">

<input type="submit" name="Submit" value="submit">

</form>

Listing 18.12 The lookup Velocity template.

The controller class simply builds a vector based on the information returned in
the ResultSet object after pulling all of the rows with the provided reservation
number. The vector is placed in the model, and the displayReservation.vm
Velocity template (Listing 18.13) displays information about the current reser-
vation, as shown in Figure 18.11.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n296

Figure 18.11 The results page.

public class Result {

String id;

String beds;

String smoking;

String refrigerator;

String cost;

String adults;

String children;

String indate;

String outdate;

Listing 18.13 The displayReservation Velocity template. (continues)

public Result(String id, String b, String s, String r, String

c, String adults, String children,

String indate, String outdate) {

this.id = id;

beds = b;

smoking = s;

refrigerator = r;

cost = c;

this.adults = adults;

this.children = children;

this.indate = indate;

this.outdate = outdate;

}

public String getId() {

return id;

}

public String getBeds() {

return beds;

}

public String getSmoking() {

return smoking;

}

public String getRefrigerator() {

return refrigerator;

}

public String getCost() {

return cost;

}

public String getAdults() {

return adults;

}

public String getChildren() {

return children;

}

public String getIndate() {

return indate;

}

public String getOutdate() {

return outdate;

}

}

Looking up a Room 297

Listing 18.13 The displayReservation Velocity template. (continued)

What's Next

In this chapter, we showed you a complete Web application that uses the Mav-
erick MVC framework and about a dozen Velocity templates. You've seen how
to move data between the context and the template, as well as how to use a
common template for the look and feel. In the next chapter, we discuss using
both JSP and the Velocity Templating Language in the same page.

Th e H o t e l R e s e r v a t i o n Ve l o c i t y A p p l i c a t i o n298

TEAMFL
Y

Team-Fly®

The phrase “because I said so” can be so powerful--and yet so demoraliz-
ing. Now that you have a good appreciation for the simplicity of Velocity
and its ability to bind seamlessly with the Java object model, it’s likely

you don’t ever want to use another scripting/templating language. Of course, if
you are working with legacy code or a manager who doesn’t understand new
technology, the words “because I said so” will be familiar to you. However, all is
not lost. Velocity provides the ability to use its directives and binding with
legacy JSP. In this chapter, we explore how to accomplish this feat.

The Velocity Taglib

At this point, we are going to ignore the reasons why you would embed Veloc-
ity into a JSP page instead of refactoring. Consider the JSP page from the Mav-
erick distribution shown in Listing 19.1

Using JSP and Velocity

C H A P T E R19

299

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<c:set var="title" scope="request">Sign Up</c:set>

<p>To create an account, just fill out this form:</p>

<form action="signupSubmit.m" method="post">

<table border="0">

<tr>

<td align="right"> Login Name: </td>

Listing 19.1 An example JSP file. (continues)

Using JSP and Velocity300

<td> <input type="text" name="loginName"

value="<c:out value="${model.loginName}"/>" /> </td>

<td class="errorText"><c:out

value="${model.errors['loginName']}"/></td>

</tr>

<tr>

<td align="right"> Password: </td>

<td> <input type="password" name="password" value="<c:out

value="${model.password}"/>"/> </td>

<td class="errorText"><c:out

value="${model.errors['password']}"/></td>

</tr>

<tr>

<td align="right"> Password Again: </td>

<td> <input type="password" name="passwordAgain"

value="<c:out value="${model.passwordAgain}"/>"/> </td>

<td class="errorText"><c:out

value="${model.errors['passwordAgain']}"/></td>

</tr>

<tr>

<td></td>

<td> <input type="submit" value="Signup"/> </td>

</tr>

</table>

</form>

Listing 19.1 An example JSP file. (continued)

Assume that a new feature must be added to the login JSP code in Listing 19.1,
but instead of using JSP you want to take advantage of Velocity. You can do this
by taking advantage of the Velocity tag library.

Installing the Velocity Taglib
The first step in using Velocity within the JSP page is to obtain the Velocity tag
library code. When you downloaded the Velocity distribution in Chapter 4,
“Installing Velocity,” you skipped over the directory /contrib/temporary/veltag.
The Velocity taglib is currently considered contribution software and thus is
not automatically compiled with the distribution. There are two ways to build
the library: using JJAR and traditional compilation.

The release notes for the Velocity taglib state that the JJAR method might not
always work; therefore, the release notes define both methods. The JJAR
method allows the Ant application to gather the individual JARs needed for the
tag library and place them in the appropriate location. To accomplish this step,
change to the /contrib/temporary/veltag directory and execute the command

ant getjars

Issuing this command places all dependent libraries into the /contrib/tempo-
rary/veltag/lib directory. Now just compile the library with the command

ant jars

This creates a file called veltag-xx.jar (xx represents the version number of the
current code). If any step in this process fails, do the following:

1. Place a servlet API JAR into the /contrib/temporary/veltag directory. You
should be able to find such a JAR in the /lib directory of your application
server. Under Tomcat, you can find it in the /bin directory.

2. Add the Velocity JAR to the same directory. Both of these JARs are expected
to be in the /lib directory, but you could also change the Ant build file in the
/contrib/temporary/veltag directory to reflect the location of the files.

3. Change to the /contrib/temporary/veltag directory and execute the ant

command. This creates the veltag-xx.jar file for you.

Once you have a veltag JAR, you must install it in your application. Here are the
steps you generally follow:

1. Copy the veltag-xx.jar file into the /lib directory of your application. The
/lib directory is typically under the /WEB-INF directory.

2. Copy the taglib descriptor, veltag.tld, from the /examples directory of the
Velocity distribution into the /WEB-INF directory of your application.

3. Update your web.xml file to include the following information about the
new taglib:

<taglib>
<taglib-uri>

http://jakarta.apache.org/taglibs/veltag-1.0
</taglib-uri>
<taglib-location>/WEB-INF/veltag.tld</taglib-location>

</taglib>

Adding the Velocity Taglib to JSP
Let’s now turn our attention to the JSP file shown in Listing 19.1. You want to be
able to use Velocity directives and references in the same file as the JSP code
without removing the JSP. The first thing you should do is add a taglib directive
to the page, just like the page has for JSTL. Add this statement:

<%@ taglib uri="/WEB-INF/veltag.tld" prefix="vel" %>

This line tells the server that using tags from the Velocity tag library is possible,
and also specifies the prefix used within the file for those tags. When you want
to use Velocity within the JSP file, you must block the references, directives,
and macros with these tags:

<vel:velocity>

</vel:velocity>

The Velocity Taglib 301

Within the block created by the tags, you can use the Velocity Templating Lan-
guage and access objects in the context. You can access objects in the context
using two methods: automatic and strict.

In automatic mode (the default), the system searches for an object when used
in a reference in the order:

1. Page scope

2. Request scope

3. Session scope

4. Application scope

For most applications, automatic mode is appropriate; however, if there is a
possibility that objects with the same names could be contained in the various
scope levels, automatic mode could cause big problems. One application might
place an object with the name of your object at a “lower” scope level; then,
when you use a reference to the object, the methods and attributes won’t be
correct and an error occurs.

When that possibility exists, you should use strict-access mode. In strict-access
mode, the Velocity context does not search for an object but instead relies on
the developer to specify where to look. You turn on strict mode using an
attribute to the <velocity> tag, as shown here:

<vel:velocity strictaccess='true'>

</vel:velocity>

You tell the context where to look for a reference by using the ScopeTool
object. This object includes the following methods for specifying the scope:

■■ getRequestScope(string)

■■ getPageScope(string)

■■ getApplicationScope(string)

■■ getSessionScope(string)

For example, suppose you want to add the total number of people who have
already signed up with your Web application using the login shown in Listing
19.1. Since you don’t want to use JSP, use these tags:

<vel:velocity strictaccess="true">

A total number of $scopetool.getApplicationScope("signincount") users

have signed up with us.

</vel:velocity>

In this example, you told the system that you will be using Velocity language
constructs in the section of code that follows and that the Velocity context
should not try to find the objects on its own. Next, you specifically tell the con-

Using JSP and Velocity302

text where to find a reference with the name of signincount. The ScopeTool
object gains access to the Application scope and tries to find the object there.

Beans and Tags
When you’re using the using the Velocity tags, you can access any JavaBean cre-
ated in the JSP. For example, look at this code:

<jsp:useBean id="counts" class="CountBean" scope="session" />

<vel:velocity strictaccess="true">

#set($ourbean = $scopetool.getRequestScope("counts"))

$ourbean.total

#foreach($value in $ourbean.array)

$item.showAccess

#end

</vel:velocity>

In this example, a bean of the type CountBean has been created and placed in
the Session scope. You can use Velocity as well as JSP to access the methods of
the bean. With Velocity, you can also place objects in a specific scope and allow
other pages to access the objects.

What’s Next

In this chapter, we looked at the process involved in incorporating both JSP and
Velocity into a single page. Be sure to weigh the benefits of mixing different
templating and scripting languages instead of refactoring the JSP code. In the
next chapter, we cover DVSL and Velocity.

What’s Next 303

The goal of the style language known as Declarative Velocity Style Lan-

guage (DVSL) is to allow you to transform XML into another format.
With the availability of XSLT, you may be wondering why you need DVSL.

The biggest advantage of DVSL is Velocity’s ability to access Java objects as
well as the VTL functionality. At first glance, this might not seem like a big deal,
but imagine being able to access a database based on information in the XML
file. With DVSL, you are able to do this. If you know XSLT, you will be comfort-
able with DVSL because its syntax is similar, and control and selection of nodes
within the XML structure is based on XPath. In this chapter, we examine DVSL
and describe how to use it to make transformations.

Obtaining and Installing DVSL

The primary Web page for DVSL is http://jakarta.apache.org/velocity/
dvsl/index.html. Here, you’ll find a link to the nightly builds for DVSL. Click this
link to obtain the DVSL source code based on the previous night’s build or pull
the source directly from CVS with this command:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic

checkout jakarta-velocity-dvsl

Executing this command (or using the nightly build link) places a directory
called jakarta-velocity-dvsl on your system. To compile the source code, you
must have Jakarta Ant installed. (If you’ve gotten this far in the book, this
shouldn’t be an issue.) Change to the jakarta-velocity-dvsl directory and type

ant

DVSL and Velocity

C H A P T E R20

305

This command executes and builds a JAR called velocity-dvsl-0.45.jar (or an
equivalent) in the root directory.

Creating a Simple Transformation

DVSL as well as XSL are all about matching. The basic idea is to have an XML
input file that contains information obtained from a database or another sys-
tem. The input file is matched with a stylesheet containing DVSL commands.
Probably the most important command is #match(string). This command
watches for the “string” provided as a parameter within the XML file. If it finds
this string, all of the statements between #match and #end are “executed.” The
commands might be HTML or output for XPath commands like applyTem-
plate().

Consider the XML in Listing 20.1 and the DVSL file in Listing 20.2.

DVSL and Velocity306

<?xml version="1.0"?>

<cds>

<cd artist="Rush" title="Exit...Stage Left">

<track>The Spirit of Radio</track>

<track>Red Barchetta</track>

<track>YYZ</track>

<track>A Passage to Bangkok</track>

</cd>

<cd artist="Rush" title="Grade Under Pressure">

<track>Distant Early Warning</track>

<track>Afterimage</track>

<track>Red Sector A</track>

<track>The Enemy Within</track>

</cd>

</cds>

Listing 20.1 An example XML file.

#match("cds")

<html>

<body>

$context.applyTemplates()

</body>

</html>

#end

Listing 20.2 An example DVSL file. (continues)

Creating a Simple Transformation 307

#match("cd")

<hr>

CD Title: $attrib.title

CD Artist: $attrib.artist

Tracks

$context.applyTemplates("track")

#end

#match("track")

$node.value()

#end

Listing 20.2 An example DVSL file. (continued)

In Listing 20.1, you see an XML document used to describe two CDs in a CD col-
lection. The root element, called <cds>, contains zero or more <cd> elements.
Each <cd> element has two attributes: title and artist. In addition, the <cd> ele-
ments contain one or more <track> elements, which describe the tracks on the
CD. It is assumed that the order of the <track> elements is the same as that on
the CD itself.

Listing 20.2 contains DVSL statements designed to work specifically on the CD
XML document and output a formatted HTML page. As you can see, the DVSL
is basically a bunch of #match(string) statements. The statements are generally
listed in the order the system will match them, but that isn’t necessary. At the
top of the list is the #match(“cds”) statement. This is your root element, and it
handles output for the <HTML> tags and so forth. Notice the $context.apply
Templates() statement. As it does in XSL, this statement tells the system to
match other elements of the XML file. Because the method call includes no
parameters, the system attempts to match the next XML element found. In this
case, it is a <cd> element.

As you might expect, a #match(“cd”) method call is executed. The code within
the <cd> match outputs more HTML and displays the information associated
with the attributes of the <cd> element. All of this information is followed by
another applyTemplate() method call, but now you are telling the system to
match only <track> elements within the <cd> element.

Again, you have a #match(“track”) method that is called when <track> ele-
ments are found. When an appropriate match is found, the code outputs the
value of the element.

Compiling the DVSL/XML
To invoke the DVSL against your XML file, you can either use command-line
calling (as we discuss later in this chapter) or use an Ant task (as we did for
Anakia in Chapter 11). Listing 20.3 shows an example of the Ant task.

DVSL and Velocity308

<project name="dvsl-simple" default="doall" basedir=".">

<property name="local.repository" value="../../lib" />

<property name="project.name" value="velocity-dvsl" />

<property name="project.version" value="0.43"/>

<property name="docs.src" value="xdocs"/>

<property name="docs.dest" value="docs"/>

<property name="compile.debug" value="true" />

<path id="classpath">

<fileset dir="${local.repository}">

<include name="**/*.jar"/>

</fileset>

</path>

<target name="compile">

<javac srcdir="${basedir}"

destdir="${basedir}"

includes="*.java"

debug="${compile.debug}"

classpathref="classpath" />

</target>

<target name="doall" depends="compile">

<taskdef name="dvsl" classname="org.apache.tools.dvsl.DVSLTask">

<classpath>

<pathelement location=

"../../${project.name}-${project.version}.jar"/>

<path refid="classpath"/>

</classpath>

</taskdef>

<dvsl

basedir="${docs.src}"

destdir="${docs.dest}/"

extension=".html"

style="${docs.src}/example1.dvsl"

includes="example1.xml"

classpath="."

velocityConfigClass="ConfigVel"

/>

</target>

</project>

Listing 20.3 The Ant build file.

The vast majority of the information found in the Ant build file and task relates
to configuration. The build file starts by defining properties. The most impor-
tant ones are docs.src and docs.dest, which specify where the XML and DVSL
files are to be found and where the output should be placed.

TEAMFL
Y

Team-Fly®

Under the <DVSL> tag, an attribute called style specifies the DVSL file that you
want to apply to the XML file defined under the includes attribute. The files for
this example appear in a structure like the following:

/sample/xdocs/example1.xml

/sample/xdocs/example1.dvsl

/sample/docs

/sample/build.xml

To execute the DVSL system, just change to the /sample directory and execute
Ant with the command

ant

Executing this command creates new documents based on the input file and
the DVSL template.

Using Nodes

As you can probably guess, the most important part of the DVSL is the node.
Each element, attribute, and value in the XML file is a node. In our previous
example, you saw a couple of the commands that you can use against a node,
such as value() and $attrib. In this section, we look at the various features of a
node.

Accessing the Node Hierarchy

In our first example, you moved through the XML input file using the applyTem-
plates() command. But what happens if you want to output a value at the cur-
rent node based on a node farther down in the hierarchy but you don’t want the
system to traverse all nodes? The answer is to access the node hierarchy direc-
tory. For example, if you were in the matching code for #match(“cds”) and you
wanted to access the information in the first track of the first CD, you could
access the information with this command:

$node.cd.track.value()

The object $node represents a Node object based on the current position within
the XML file.

Node API

The Node object contains a few methods that you can use to gather information
about a node as well as provide the ability to traverse a node tree. Table 20.1
shows the available methods.

Using Nodes 309

Table 20.1 Node Object Methods

METHOD DESCRIPTION

$node The current node.

$node.name() The name of the node.

$node.value() The content of the node.

$node.attrib("name") The attribute of the node.

$node.selectNodes(xpathexpr) A method that returns a list of nodes based on the
provided XPath expression.

$node.selectSingleNode(xpathexpr) A method that returns the first node based on the
provided XPath expression.

$node.get(xpathexpr) A method that returns the first node based on the
provided XPath expression.

$node.children() A method that returns a list of all children of the current
node.

$node.copy() A method that copies the current node's subtree to
output.

$node.copy(List) A method that copies the subtree of the specified node
to output.

$node.valueOf(xpathexpr) A method that returns an object based on the provided
XPath expression.

The DVSL Toolbox

As we mentioned earlier, one of the features of DVSL is the ability to use the
context and objects it contains. Consider the DVSL in Listing 20.4.

DVSL and Velocity310

#match("cds")

<html>

<head><title>$toolbox.string.title</title></head>

<body>

$context.applyTemplates()

</body>

</html>

#end

#match("cd")

Listing 20.4 DVSL with toolbox context. (continues)

The DVSL Toolbox 311

<hr>

CD Title: $attrib.title

CD Artist: $attrib.artist

$context.toolbox.counter.reset()

Tracks

$context.applyTemplates("track")

#end

#match("track")

$context.toolbox.counter.getNext() $node.value()

#end

Listing 20.4 DVSL with toolbox context. (continued)

The DVSL in Listing 20.4 looks like the first DVSL you created, but now you
want to use a counter to keep track of the tracks in a CD so you can output a
number for each of them. In the #match(“cd”) body, you have the call

$context.toolbox.counter.reset()

The toolbox is an object associated with the context where you place Java
objects and access those objects within the DVSL code. You can also use the
toolbox in the #match(“track”) code to output a number with $context.tool-
box.counter.getNext().

You define a toolbox using a properties file, as shown in Listing 20.5. The prop-
erties file defines each of the objects the toolbox contains. As you can see in
Listing 20.5, the toolbox contains a Counter object and a String called title. All
user-defined objects are associated with the tool attribute of the toolbox. The
title object is just an object is defined with the properties file itself. Listing 20.6
shows the Counter class.

toolbox.contextname = toolbox

toolbox.tool.counter = Counter

toolbox.string.title = CDs!

toolbox.string.sourcebase = ./xdocs/

Listing 20.5 A toolbox properties file.

public class Counter

{

int counter = 0;

Listing 20.6 The Counter class. (continues)

DVSL and Velocity312

public void reset() {

counter = 1;

}

public int getNext() {

return counter++;

}

}

Listing 20.6 The Counter class. (continued)

The Counter class is very simple--it consists of a method that resets the counter
and another that obtains the current value of the counter and increments it for
the next call. The same build file can be used for the toolbox except you need
to tell the system about the toolbox. Listing 20.7 shows the new <dvsl> task.

<dvsl

basedir="${docs.src}"

destdir="${docs.dest}/"

extension=".html"

style="${docs.src}/cds.dvsl"

excludes="**/project.xml"

toolboxfile="toolbox.props"

includes="**/*.xml"

>

<!-- Or, could specify this as an attribute -->

<classpath>

<pathelement location="." />

</classpath>

<!-- This overrides the same property in toolbox.props -->

<tool name="toolbox.string.title" value="CD Collection" />

<!-- Specify name and location of velocity log file -->

<velconfig name="runtime.log"

value="${basedir}/dvsl.log" />

</dvsl>

Listing 20.7 DVSL task changes.

Notice that you have two primary changes from the previous <dvsl> build task.
The first is the addition of the toolboxfile attribute, which specifies which prop-
erties file you want to use. The second change is the overriding of the title string
within the build XML file. Although you defined a title String in the properties
file, the XML build file has the ability to override the value as needed.

The title of the HTML is “CD Collection”--which corresponds to the value given
to the title property in the build XML file. Now each of the tracks in the output
has a number corresponding to its play on the specified CD. Using what you’ve
learned in this chapter, you can easily create an object that accesses a database
and passes in the SQL values obtained from the XML file.

Using the Command Line

As we mentioned, you can execute DVSL from the command line. You simply
combine your original XML and DVSL files with the command

java org.apache.tools.dvsl.DVSL –STYLE ./xdocs/example1.dvsl

-IN ./xdocs/example1.xml –OUT ./docs/example1.html

This command uses the example1.dvsl file as the style and the example1.xml
file as input. The result is placed in the /docs/example1.html file.

Using the Command Line 313

The Velocity system consists of many classes, interfaces, and adapter
classes. In this appendix, we provide a summary of those classes.

org.apache.velocity.Template

Extends: org.apache.velocity.runtime.resource.Resource

Description: This is a primary class that handles all template operations.

Class Summary
Constructors:

public Template()

Methods:

public boolean process()

public void initDocument()

public void merge(Context context, Writer writer)

The Velocity Specification

A P P E N D I X A

315

org.apache.velocity.VelocityContext

Extends: org.apache.velocity.context.AbstractContext

Implements: java.lang.Cloneable

Description: This class defines the application context used to transfer data
from the application to the Velocity template. This class should not be shared
because the HashMap it uses is not synchronized.

Class Summary
Constructors:

public VelocityContext()

public VelocityContext(Map context)

public VelocityContext(Context innerContext)

public VelocityContext(Map context, Context innerContext)

Methods:

public java.lang.Object internalGet(String key)

public java.lang.Object internalPut(String key, Object value)

public boolean internalContainsKey(Object key)

public java.lang.Object[] internalGetKeys()

public java.lang.Object internalRemove(Object key)

public java.lang.Object clone()

org.apache.velocity.anakia.AnakiaElement

Extends: Element

Description: This is a JDOM element defined for Anakia.

Class Summary
Constructors:

public AnakiaElement(String name, Namespace namespace)

public AnakiaElement(String name)

public AnakiaElement(String name, String prefix, String uri)

Th e Ve l o c i t y S p e c i f i c a t i o n 316

Methods:

public org.apache.velocity.anakia.NodeList selectNodes(String xpathExpression)

public java.lang.String toString()

public java.util.List getContent()

public java.util.List getChildren()

public java.util.List getChildren(String name)

public java.util.List getChildren(String name, Namespace ns)

public java.util.List getAttributes()

org.apache.velocity.anakia.AnakiaJDOMFactory

Extends: DefaultJDOMFactory

Description: This is a JDOMFactory for Anakia.

Class Summary
Constructor:

public AnakiaJDOMFactory()

Methods:

public Element element(String name, Namespace namespace)

public Element element(String name)

public Element element(String name, String prefix, String uri)

org.apache.velocity.anakia.AnakiaTask

Extends: MatchingTask

Description: This class allows Anakia to be used within an Ant task to facili-
tate XML transformations.

Class Summary
Constructor:

public AnakiaTask()

org.apache.velocity.anakia.AnakiaTask 317

Methods:

public void setBasedir(File dir)

public void setDestdir(File dir)

public void setExtension(String extension)

public void setStyle(String style)

public void setProjectFile(String projectAttribute)

public void setTemplatePath(File templatePath)

public void setVelocityPropertiesFile(File velocityPropertiesFile)

public void setLastModifiedCheck(String lastmod)

public void execute()

org.apache.velocity.anakia.Escape

Description: This class allows for escaping CDATA sections.

Class Summary
Constructor:

public Escape()

Method:

public static final java.lang.String getText(String st)

org.apache.velocity.anakia.NodeList

Implements: java.util.List, java.lang.Cloneable

Description: This class acts as a wrapper for JDOM objects so they can be
used in templates.

Class Summary
Constructors:

public NodeList()

public NodeList(Document document)

public NodeList(List nodes, boolean copy)

Th e Ve l o c i t y S p e c i f i c a t i o n 318

TEAMFL
Y

Team-Fly®

Methods:

public java.util.List getList()

public java.lang.String toString()

public java.lang.Object clone()

public int hashCode()

public boolean equals(Object o)

public org.apache.velocity.anakia.NodeList selectNodes(String xpathString)

public boolean add(Object o)

public void add(int index, Object o)

public boolean addAll(Collection c)

public boolean addAll(int index, Collection c)

public void clear()

public boolean contains(Object o)

public boolean containsAll(Collection c)

public java.lang.Object get(int index)

public int indexOf(Object o)

public boolean isEmpty()

public java.util.Iterator iterator()

public int lastIndexOf(Object o)

public java.util.ListIterator listIterator()

public java.util.ListIterator listIterator(int index)

public java.lang.Object remove(int index)

public boolean remove(Object o)

public boolean removeAll(Collection c)

public boolean retainAll(Collection c)

public java.lang.Object set(int index, Object o)

public int size()

public java.util.List subList(int fromIndex, int toIndex)

public java.lang.Object[] toArray()

public java.lang.Object[] toArray(Object[] a)

org.apache.velocity.anakia.NodeList 319

org.apache.velocity.anakia.OutputWrapper

Extends: XMLOutputter

Description: This class allows a tree to be effectively output to a String
object.

Class Summary
Constructor:

public OutputWrapper()

Method:

public java.lang.String outputString(Element element, boolean strip)

org.apache.velocity.anakia.TreeWalker

Description: This class allows a JDOM tree to be traversed.

Class Summary
Constructor:

public TreeWalker()

Method:

public org.apache.velocity.anakia.NodeList allElements(Element e)

org.apache.velocity.app.FieldMethodizer

Description: This class allows an application to access static fields of a class.
Velocity does not use introspection for the fields.

Class Summary
Constructors:

public FieldMethodizer()

public FieldMethodizer(String s)

public FieldMethodizer(Object o)

Th e Ve l o c i t y S p e c i f i c a t i o n 320

Methods:

public void addObject(String s)

public void addObject(Object o)

public java.lang.Object get(String fieldName)

org.apache.velocity.app.Velocity

Implements: org.apache.velocity.runtime.RuntimeConstants

Description: This class provides overall Velocity services, like macros and
initialization.

Class Summary
Constructor:

public Velocity()

Methods:

public static void init()

public static void init(String propsFilename)

public static void init(Properties p)

public static void setProperty(String key, Object value)

public static void addProperty(String key, Object value)

public static void clearProperty(String key)

public static void setConfiguration(Configuration configuration)

public static void setExtendedProperties(ExtendedProperties configuration)

public static java.lang.Object getProperty(String key)

public static boolean evaluate(Context context, Writer out, String logTag,
String instring)

public static boolean evaluate(Context context, Writer writer, String logTag,
InputStream instream)

public static boolean evaluate(Context context, Writer writer, String logTag,
Reader reader)

org.apache.velocity.app.Velocity 321

public static boolean invokeVelocimacro(String vmName, String logTag,
String[] params, Context context, Writer writer)

public static boolean mergeTemplate(String templateName, Context context,
Writer writer)

public static boolean mergeTemplate(String templateName, String encoding,
Context context, Writer writer)

public static org.apache.velocity.Template getTemplate(String name)

public static org.apache.velocity.Template getTemplate(String name, String
encoding)

public static boolean templateExists(String templateName)

public static void warn(Object message)

public static void info(Object message)

public static void error(Object message)

public static void debug(Object message)

public static void setApplicationAttribute(Object key, Object value)

org.apache.velocity.app.VelocityEngine

Implements: org.apache.velocity.runtime.RuntimeConstants

Description: This class allows an application to instantiate its own Veloci-
tyEngine object.

Class Summary
Constructor:

public VelocityEngine()

Methods:

public void init()

public void init(String propsFilename)

public void init(Properties p)

public void setProperty(String key, Object value)

public void addProperty(String key, Object value)

Th e Ve l o c i t y S p e c i f i c a t i o n 322

public void clearProperty(String key)

public void setConfiguration(Configuration configuration)

public void setExtendedProperties(ExtendedProperties configuration)

public java.lang.Object getProperty(String key)

public boolean evaluate(Context context, Writer out, String logTag, String
instring)

public boolean evaluate(Context context, Writer writer, String logTag, Input-
Stream instream)

public boolean evaluate(Context context, Writer writer, String logTag, Reader
reader)

public boolean invokeVelocimacro(String vmName, String logTag, String[]
params, Context context, Writer writer)

public boolean mergeTemplate(String templateName, Context context, Writer
writer)

public boolean mergeTemplate(String templateName, String encoding, Con-
text context, Writer writer)

public org.apache.velocity.Template getTemplate(String name)

public org.apache.velocity.Template getTemplate(String name, String encoding)

public boolean templateExists(String templateName)

public void warn(Object message)

public void info(Object message)

public void error(Object message)

public void debug(Object message)

public void setApplicationAttribute(Object key, Object value)

org.apache.velocity.app.event.EventCartridge

Implements: org.apache.velocity.app.event.ReferenceInsertionEventHandler,
org.apache.velocity.app.event.NullSetEventHandler,
org.apache.velocity.app.event.MethodExceptionEventHandler

Description: This class allows you to add event handlers to the system.

org.apache.velocity.app.event.EventCartridge 323

Class Summary
Constructor:

public EventCartridge()

Methods:

public boolean addEventHandler(EventHandler ev)

public boolean removeEventHandler(EventHandler ev)

public java.lang.Object referenceInsert(String reference, Object value)

public boolean shouldLogOnNullSet(String lhs, String rhs)

public java.lang.Object methodException(Class claz, String method,
Exception e)

public final boolean attachToContext(Context context)

org.apache.velocity.app.event.EventHandler

Description: This is the base interface for all event handlers.

org.apache.velocity.app.event.MethodException
EventHandler

Implements: org.apache.velocity.app.event.EventHandler

Description: This class is called when an event method throws an exception.

Class Summary
Method:

public java.lang.Object methodException(Class claz, String method,
Exception e)

org.apache.velocity.app.event.NullSetEvent
Handler

Implements: org.apache.velocity.app.event.EventHandler

Description: This class implements a null event handler.

Th e Ve l o c i t y S p e c i f i c a t i o n 324

Class Summary
Method:

public boolean shouldLogOnNullSet(String lhs, String rhs)

org.apache.velocity.app.event.Reference
InsertionEventHandler

Implements: org.apache.velocity.app.event.EventHandler

Description: This class implements a stream insertion event handler.

Class Summary
Method:

public java.lang.Object referenceInsert(String reference, Object value)

org.apache.velocity.app.tools.VelocityFormatter

Description: This class is a formatting tool for Context insertions.

Class Summary
Constructor:

public VelocityFormatter(Context context)

Methods:

public java.lang.String formatShortDate(Date date)

public java.lang.String formatLongDate(Date date)

public java.lang.String formatShortDateTime(Date date)

public java.lang.String formatLongDateTime(Date date)

public java.lang.String formatArray(Object array)

public java.lang.String formatArray(Object array, String delim)

public java.lang.String formatArray(Object array, String delim, String
finaldelim)

public java.lang.String formatVector(Vector vector)

org.apache.velocity.app.tools.VelocityFormatter 325

public java.lang.String formatVector(Vector vector, String delim)

public java.lang.String formatVector(Vector vector, String delim, String
finaldelim)

public java.lang.String limitLen(int maxlen, String string)

public java.lang.String limitLen(int maxlen, String string, String suffix)

public java.lang.String makeAlternator(String name, String alt1, String alt2)

public java.lang.String makeAlternator(String name, String alt1, String alt2,
String alt3)

public java.lang.String makeAlternator(String name, String alt1, String alt2,
String alt3, String alt4)

public java.lang.String makeAutoAlternator(String name, String alt1, String
alt2)

public java.lang.Object isNull(Object o, Object dflt)

org.apache.velocity.app.tools.VelocityFormatter.
VelocityAlternator

Description: This class returns alternating values from a template.

Class Summary
Constructor:

public VelocityFormatter.VelocityAlternator(String[] alternates)

Methods:

public java.lang.String alternate()

public java.lang.String toString()

org.apache.velocity.app.tools.VelocityFormatter.
VelocityAutoAlternator

Extends: org.apache.velocity.app.tools.VelocityFormatter.VelocityAlternator

Description: This class works with VelocityAlternator when rendering a
template.

Th e Ve l o c i t y S p e c i f i c a t i o n 326

Class Summary
Constructor:

public VelocityFormatter.VelocityAutoAlternator()

Method:

public final java.lang.String toString()

org.apache.velocity.context.AbstractContext

Extends: org.apache.velocity.context.InternalContextBase

Implements: org.apache.velocity.context.Context, java.io.Serializable

Description: This class is an abstract base class for all Velocity Context
implementations.

Class Summary
Constructors:

public AbstractContext()

public AbstractContext(Context inner)

Methods:

public abstract java.lang.Object internalGet(String key)

public abstract java.lang.Object internalPut(String key, Object value)

public java.lang.Object put(String key, Object value)

public java.lang.Object get(String key)

public boolean containsKey(Object key)

public java.lang.Object[] getKeys()

public java.lang.Object remove(Object key)

public org.apache.velocity.context.Context getChainedContext()

org.apache.velocity.context.Context

Description: This is an interface class for the context.

org.apache.velocity.context.Context 327

Class Summary
Methods:

public java.lang.Object put(String key, Object value)

public java.lang.Object get(String key)

public boolean containsKey(Object key)

public java.lang.Object[] getKeys()

public java.lang.Object remove(Object key)

org.apache.velocity.context.InternalContext
AdapterImpl

Implements: org.apache.velocity.context.InternalContextAdapter

Description: This class is an adapter class for all context types.

Class Summary
Constructor:

public InternalContextAdapterImpl(Context c)

Methods:

public void pushCurrentTemplateName(String s)

public void popCurrentTemplateName()

public java.lang.String getCurrentTemplateName()

public java.lang.Object[] getTemplateNameStack()

public org.apache.velocity.util.introspection.IntrospectionCacheData
icacheGet(Object key)

public void icachePut(Object key, IntrospectionCacheData o)

public void setCurrentResource(Resource r)

public org.apache.velocity.runtime.resource.Resource getCurrentResource()

public java.lang.Object put(String key, Object value)

public java.lang.Object get(String key)

public boolean containsKey(Object key)

Th e Ve l o c i t y S p e c i f i c a t i o n 328

TEAMFL
Y

Team-Fly®

public java.lang.Object[] getKeys()

public java.lang.Object remove(Object key)

public org.apache.velocity.context.Context getInternalUserContext()

public org.apache.velocity.context.InternalContextAdapter getBaseContext()

public org.apache.velocity.app.event.EventCartridge
attachEventCartridge(EventCartridge ec)

public org.apache.velocity.app.event.EventCartridge getEventCartridge()

org.apache.velocity.context.InternalEvent
Context

Description: This interface supports events within the context.

Class Summary
Methods:

public org.apache.velocity.app.event.EventCartridge
attachEventCartridge(EventCartridge ec)

public org.apache.velocity.app.event.EventCartridge getEventCartridge()

org.apache.velocity.context.VMContext

Implements: org.apache.velocity.context.InternalContextAdapter

Description: This class is used internally for the implementation of
Velocimacros.

Class Summary
Constructor:

public VMContext(InternalContextAdapter inner, RuntimeServices rsvc)

Methods:

public org.apache.velocity.context.Context getInternalUserContext()

public org.apache.velocity.context.InternalContextAdapter getBaseContext()

public void addVMProxyArg(VMProxyArg vmpa)

org.apache.velocity.context.VMContext 329

public java.lang.Object put(String key, Object value)

public java.lang.Object get(String key)

public boolean containsKey(Object key)

public java.lang.Object[] getKeys()

public java.lang.Object remove(Object key)

public void pushCurrentTemplateName(String s)

public void popCurrentTemplateName()

public java.lang.String getCurrentTemplateName()

public java.lang.Object[] getTemplateNameStack()

public org.apache.velocity.util.introspection.IntrospectionCacheData
icacheGet(Object key)

public void icachePut(Object key, IntrospectionCacheData o)

public org.apache.velocity.app.event.EventCartridge
attachEventCartridge(EventCartridge ec)

public org.apache.velocity.app.event.EventCartridge getEventCartridge()

public void setCurrentResource(Resource r)

public org.apache.velocity.runtime.resource.Resource getCurrentResource()

org.apache.velocity.convert.WebMacro

Description: This class is used to convert a WebMacro template to a Velocity
template.

Class Summary
Constructor:

public WebMacro()

Methods:

public void convert(String target)

public java.lang.String convertTemplate(String template)

public static void main(String[] args)

Th e Ve l o c i t y S p e c i f i c a t i o n 330

org.apache.velocity.exception.Method
InvocationException

Extends: org.apache.velocity.exception.VelocityException

Description: This class is an exception thrown during reference invocation.

Class Summary
Constructor:

public MethodInvocationException(String message, Throwable e, String
methodName)

Methods:

public java.lang.String getMethodName()

public java.lang.Throwable getWrappedThrowable()

public void setReferenceName(String ref)

public java.lang.String getReferenceName()

org.apache.velocity.exception.ParseError
Exception

Extends: org.apache.velocity.exception.VelocityException

Description: This is an application-level exception thrown during a template
parsing.

Class Summary
Constructor:

public ParseErrorException(String exceptionMessage)

org.apache.velocity.exception.VelocityException

Extends: java.lang.Exception

Description: This is the base class for Velocity exceptions.

org.apache.velocity.exception.VelocityException 331

Class Summary
Constructor:

public VelocityException(String exceptionMessage)

org.apache.velocity.io.VelocityWriter

Extends: java.io.Writer

Description: This class implements a fast Writer class.

Class Summary
Constructors:

public VelocityWriter(Writer writer)

public VelocityWriter(Writer writer, int sz, boolean autoFlush)

Methods:

public int getBufferSize()

public boolean isAutoFlush()

public final void clear()

public final void flush()

public final void close()

public final int getRemaining()

public final void write(int c)

public final void write(char[] cbuf, int off, int len)

public final void write(char[] buf)

public final void write(String s, int off, int len)

public final void write(String s)

public final void recycle(Writer writer)

Th e Ve l o c i t y S p e c i f i c a t i o n 332

org.apache.velocity.servlet.VelocityServlet

Extends: HttpServlet

Description: This is a base class for using Velocity with servlets. You can
extend this class, implement the handleRequest() method, add your data to
the context, and then call getTemplate("myTemplate.wm").

Class Summary
Constructor:

public VelocityServlet()

Methods:

public void init(ServletConfig config)

protected void initVelocity(ServletConfig config)

protected java.util.Properties loadConfiguration(ServletConfig config)

public void doGet(HttpServletRequest request, HttpServletResponse
response)

public void doPost(HttpServletRequest request, HttpServletResponse
response)

protected void doRequest(HttpServletRequest request, HttpServletResponse
response)

protected void requestCleanup(HttpServletRequest request, HttpServletRe-
sponse response, Context context)

protected void mergeTemplate(Template template, Context context,
HttpServletResponse response)

protected void setContentType(HttpServletRequest request, HttpServletRe-
sponse response)

protected org.apache.velocity.context.Context createContext(HttpServletRe-
quest request, HttpServletResponse response)

public org.apache.velocity.Template getTemplate(String name)

public org.apache.velocity.Template getTemplate(String name, String encoding)

protected org.apache.velocity.Template handleRequest(HttpServletRequest
request, HttpServletResponse response, Context ctx)

org.apache.velocity.servlet.VelocityServlet 333

protected org.apache.velocity.Template handleRequest(Context ctx)

protected void error(HttpServletRequest request, HttpServletResponse
response, Exception cause)

org.apache.velocity.texen.ant.Texen

Description: This is an Ant task for generating output by using Velocity.

Class Summary
Constructor:

public Texen()

Methods:

public void setControlTemplate(String controlTemplate)

public java.lang.String getControlTemplate()

public void setTemplatePath(String templatePath)

protected void processTemplatePath(String templatePath)

public java.lang.String getTemplatePath()

public void setOutputDirectory(File outputDirectory)

public java.lang.String getOutputDirectory()

public void setOutputFile(String outputFile)

public void setOutputEncoding(String outputEncoding)

public void setInputEncoding(String inputEncoding)

public java.lang.String getOutputFile()

public void setContextProperties(String file)

protected void processContextProperties(String file)

public org.apache.commons.collections.ExtendedProperties getContext
Properties()

public void setUseClasspath(boolean useClasspath)

public void setProject(Project project)

public Project getProject()

Th e Ve l o c i t y S p e c i f i c a t i o n 334

public org.apache.velocity.context.Context initControlContext()

public void execute()

protected void populateInitialContext(Context context)

protected void cleanup()

org.apache.velocity.runtime.RuntimeInstance

Implements: org.apache.velocity.runtime.RuntimeConstants,
org.apache.velocity.runtime.RuntimeServices

Description: The runtime system for Velocity, it is the single access point for
all functionality in Velocity.

Class Summary
Constructor:

public RuntimeInstance()

Methods:

public synchronized void init()

public void setProperty(String key, Object value)

public void setConfiguration(ExtendedProperties configuration)

public void addProperty(String key, Object value)

public void clearProperty(String key)

public java.lang.Object getProperty(String key)

public void init(Properties p)

public void init(String configurationFile)

public org.apache.velocity.runtime.parser.Parser createNewParser()

public org.apache.velocity.runtime.parser.node.SimpleNode parse(Reader
reader, String templateName)

public org.apache.velocity.runtime.parser.node.SimpleNode parse(Reader
reader, String templateName, boolean dumpNamespace)

public org.apache.velocity.Template getTemplate(String name)

org.apache.velocity.runtime.RuntimeInstance 335

public org.apache.velocity.Template getTemplate(String name, String encoding)

public org.apache.velocity.runtime.resource.ContentResource
getContent(String name)

public org.apache.velocity.runtime.resource.ContentResource
getContent(String name, String encoding)

public java.lang.String getLoaderNameForResource(String resourceName)

public void warn(Object message)

public void info(Object message)

public void error(Object message)

public void debug(Object message)

public java.lang.String getString(String key, String defaultValue)

public org.apache.velocity.runtime.directive.Directive getVelocimacro(String
vmName, String templateName)

public boolean addVelocimacro(String name, String macro, String[] argArray,
String sourceTemplate)

public boolean isVelocimacro(String vmName, String templateName)

public boolean dumpVMNamespace(String namespace)

public java.lang.String getString(String key)

public int getInt(String key)

public int getInt(String key, int defaultValue)

public boolean getBoolean(String key, boolean def)

public org.apache.commons.collections.ExtendedProperties getConfigura-
tion()

public org.apache.velocity.util.introspection.Introspector getIntrospector()

public java.lang.Object getApplicationAttribute(Object key)

public java.lang.Object setApplicationAttribute(Object key, Object o)

org.apache.velocity.runtime.RuntimeServices

Description: This is an interface class for internal runtime services.

Th e Ve l o c i t y S p e c i f i c a t i o n 336

Class Summary
Methods:

public void init()

public void setProperty(String key, Object value)

public void setConfiguration(ExtendedProperties configuration)

public void addProperty(String key, Object value)

public void clearProperty(String key)

public java.lang.Object getProperty(String key)

public void init(Properties p)

public void init(String configurationFile)

public org.apache.velocity.runtime.parser.node.SimpleNode parse(Reader
reader, String templateName)

public org.apache.velocity.runtime.parser.node.SimpleNode parse(Reader
reader, String templateName, boolean dumpNamespace)

public org.apache.velocity.Template getTemplate(String name)

public org.apache.velocity.Template getTemplate(String name, String
encoding)

public org.apache.velocity.runtime.resource.ContentResource
getContent(String name)

public org.apache.velocity.runtime.resource.ContentResource
getContent(String name, String encoding)

public java.lang.String getLoaderNameForResource(String resourceName)

public void warn(Object message)

public void info(Object message)

public void error(Object message)

public void debug(Object message)

public java.lang.String getString(String key, String defaultValue)

public org.apache.velocity.runtime.directive.Directive getVelocimacro
(String vmName, String templateName)

public boolean addVelocimacro(String name, String macro, String[] argArray,
String sourceTemplate)

org.apache.velocity.runtime.RuntimeServices 337

public boolean isVelocimacro(String vmName, String templateName)

public boolean dumpVMNamespace(String namespace)

public java.lang.String getString(String key)

public int getInt(String key)

public int getInt(String key, int defaultValue)

public boolean getBoolean(String key, boolean def)

public org.apache.commons.collections.ExtendedProperties get
Configuration()

public org.apache.velocity.util.introspection.Introspector getIntrospector()

public java.lang.Object getApplicationAttribute(Object key)

org.apache.velocity.runtime.RuntimeSingleton

Implements: org.apache.velocity.runtime.RuntimeConstants

Description: The Runtime system for Velocity, it is the single access point for
all functionality in Velocity but supports a singleton design pattern. [This is
the same description for org.apache.velocity.runtime.RuntimeInstance]

Class Summary
Constructor:

public RuntimeSingleton()

Methods:

public static synchronized void init()

public static org.apache.velocity.runtime.RuntimeServices getRuntimeSer-
vices()

public static void setProperty(String key, Object value)

public static void setConfiguration(ExtendedProperties configuration)

public static void addProperty(String key, Object value)

public static void clearProperty(String key)

public static java.lang.Object getProperty(String key)

public static void init(Properties p)

Th e Ve l o c i t y S p e c i f i c a t i o n 338

TEAMFL
Y

Team-Fly®

public static void init(String configurationFile)

public static org.apache.velocity.runtime.parser.node.SimpleNode
parse(Reader reader, String templateName)

public static org.apache.velocity.runtime.parser.node.SimpleNode
parse(Reader reader, String templateName, boolean dumpNamespace)

public static org.apache.velocity.Template getTemplate(String name)

public static org.apache.velocity.Template getTemplate(String name, String
encoding)

public static org.apache.velocity.runtime.resource.ContentResource get
Content(String name)

public static org.apache.velocity.runtime.resource.ContentResource get
Content(String name, String encoding)

public static java.lang.String getLoaderNameForResource(String resource-
Name)

public static void warn(Object message)

public static void info(Object message)

public static void error(Object message)

public static void debug(Object message)

public static java.lang.String getString(String key, String defaultValue)

public static org.apache.velocity.runtime.directive.Directive
getVelocimacro(String vmName, String templateName)

public static boolean addVelocimacro(String name, String macro, String[]
argArray, String sourceTemplate)

public static boolean isVelocimacro(String vmName, String templateName)

public static boolean dumpVMNamespace(String namespace)

public static java.lang.String getString(String key)

public static int getInt(String key)

public static int getInt(String key, int defaultValue)

public static boolean getBoolean(String key, boolean def)

public static org.apache.commons.collections.ExtendedProperties get
Configuration()

org.apache.velocity.runtime.RuntimeSingleton 339

public static org.apache.velocity.util.introspection.Introspector getIntrospector()

public static org.apache.velocity.runtime.RuntimeInstance getRuntimeIn-
stance()

org.apache.velocity.runtime.VelocimacroFactory

Description: This class factory manages the VMs for a Velocity engine.

Class Summary
Constructor:

public VelocimacroFactory(RuntimeServices rs)

Methods:

public void initVelocimacro()

public boolean addVelocimacro(String name, String macroBody, String[]
argArray, String sourceTemplate)

public boolean isVelocimacro(String vm, String sourceTemplate)

public org.apache.velocity.runtime.directive.Directive getVelocimacro(String
vmName, String sourceTemplate)

public boolean dumpVMNamespace(String namespace)

org.apache.velocity.runtime.Velocimacro
Manager

Description: This class manages VMs in all namespaces.

Class Summary
Methods:

public boolean addVM(String vmName, String macroBody, String[] argArray,
String namespace)

public org.apache.velocity.runtime.directive.VelocimacroProxy get(String
vmName, String namespace)

public boolean dumpNamespace(String namespace)

public void setNamespaceUsage(boolean b)

Th e Ve l o c i t y S p e c i f i c a t i o n 340

public void setRegisterFromLib(boolean b)

public void setTemplateLocalInlineVM(boolean b)

public java.lang.String getLibraryName(String vmName, String namespace)

org.apache.velocity.runtime.Velocimacro
Manager.MacroEntry

Description: This is a wrapper class for VM information.

Class Summary
Methods:

public void setFromLibrary(boolean b)

public boolean getFromLibrary()

public org.apache.velocity.runtime.parser.node.SimpleNode getNodeTree()

public java.lang.String getSourceTemplate()

org.apache.velocity.runtime.VelocimacroManager.MacroEntry 341

In this appendix, we include some of the important Web sites available
which discuss how to use Velocity in a real-world application or have other
Velocity resources.

Jakarta Velocity Sites

The Jakarta Velocity Site
URL: http://jakarta.apache.org/velocity/

Description: This is the main Velocity site where you can find the most up-
to-date information on Velocity.

Velocity Tools
URL: http://cvs.apache.org/viewcvs/jakarta-velocity-tools/

Description: Go here to download the Velocity tools. This code is the most
up-to-date for Struts interfacing.

WebMacro
URL: www.webmacro.org/

Description: Velocity has its roots in WebMacro. This is the primary Web-
Macro site, where you can obtain design information.

Velocity Sites

A P P E N D I XB

343

DVSL
URL: http://jakarta.apache.org/velocity/dvsl/index.html

Description: This is the main location for information on DVSL and how to
use it in Velocity.

Velocity Generator
URL: http://xml.apache.org/cocoon/userdocs/generators/
velocity-generator.html

Description: This site shows how you to use a Velocity generator with
Cocoon.

Velocity UI for Eclipse
URL: http://veloedit.sourceforge.net/

Description: This site teaches you how to interface Velocity syntax coding
with Eclipse.

Tutorials

Template-Based Wizards in JBuilder
URL: http://community.borland.com/article/0,1410,28086,00.html

Start Up the Velocity Template Engine
URL: www.javaworld.com/javaworld/jw-12-2001/jw-1228-velocity.html

Getting Up to Speed with Velocity
URL: www.webtechniques.com/archives/2001/09/serv/

Take the Fast Track to Text Generation
URL: www.javaworld.com/javaworld/jw-07-2001/jw-0727-templates.html

What Is Velocity?
URL: www.freebok.net/help/velocity1.html

Template for Going Fast
URL: www.linux-mag.com/2002-12/java_02.html

Ve l o c i t y S i t e s344

Applications

Roller Web Logger
URL: www.rollerweblogger.org/page/project

Description: Roller is a server-based Web logging system that uses Velocity
for its templates.

Maverick
URL: http://mav.sourceforge.net/

Description: This is the primary location for the Maverick MVC frame-
work.

vDoclet
URL: http://vdoclet.sourceforge.net/

Description: This is the main location for the vDoclet system, which
allows for automated Java code generation.

Turbine
URL: http://jakarta.apache.org/turbine/

Description: Turbine is an application server that uses Velocity as a view
component.

WebWork
URL: http://sourceforge.net/projects/webwork/

Description: WebWork is an application development framework for J2EE
that allows you to use Velocity.

JPublish
URL: www.jpublish.org/

Description: JPublish is a Web-publishing system that uses Velocity to pro-
duce output.

JeeWiz!
URL: www.jeewiz.co.uk/index.html

Description: JeeWiz! is an enterprise-level system builder.

Applications 345

Luxor
URL: http://luxor-xul.sourceforge.net/

Description: Luxor is an XML user interface language toolkit that uses
Velocity for templating.

Melati
URL: www.melati.org/

Description: Melati is a tool for building Web sites that use databases for
storage.

Velocity Support in OpenCms
URL: www.opencms.com/opencms/opencms/community/velocity.html

Description: This site describes how to interface Velocity with the
OpenCms open source Web site content management system.

JetSpeed and Portlets
URL: www.collaborium.org/jetspeed/docs/portlet_config_Velocity.html

Description: This site shows you how to interface Velocity with JetSpeed.

JNLP to HTML Converter
URL: www.vamphq.com/hazelp.html

Description: This site illustrates using Velocity to convert JNLP to HTML.

Velocity and Web Album
URL: www.cs.adelaide.edu.au/users/esser/WebAlbum/

Description: This site examines how to use Velocity with Web Album to
output information from the application.

Ve l o c i t y S i t e s346

Index

347

A
AbstractContext class, 327
account information application

coding, 19–20
displaying information,

20–21
page design, 18
requesting information, 19

Action module (Turbine),
197–198

addAttribute() method, 221
aggregate contexts, 133–134
Anakia, 22, 142

Ant task example, 143–144
context references, 149–150
source documents, 144–145
stylesheets, 145–149

Ant, 24
Ant task example, 143–144
application servers, 22
argument passing

(Velocimacros), 109–114
array lists, in #set directives,

89–90
artist query XML example,

150–152

B
block comments, 48
Booleans, in #set directives,

90–92
BufferedWriter object, 40
build targets, 27–30

C
CD database application

example, 160–175
controller code, 170–175
database access, 162–163
database structure, 161–162
internationalization, 187–193
model code, 163–166
view code, 166–170

CGI (Common Gateway
Interface), 2–3

ClasspathResourceLoader
class, 129

Club Velocity application
example, 50–55

coding patterns, 51
Command object, 225
CommandFactory, 225
commenting, 48
Common Gateway Interface

(CGI), 2–3
compiling

DVSL (Declarative Velocity
Style Language), 307–309

Velocity, 27–30
conditional statements

#else directive, 96–97
#elseif directive, 97–100
#if directive, 94–96

containsKey() method, 50
content rendering, 55
Context class, 328
Context object, 19, 40
contexts, 49–50

Anakia references, 149–150
chaining, 133–134

creating, 54
merging templates with,

54–55
naming keys, 49
populating, 49–50, 54
updating. See #set directive

Controller object, 225
ControllerFactory, 225
controllers

(MVC architecture), 12
createContext() method, 178
custom runtime configuration

files, 120–121

D
databases

Hotel reservation example,
271–272

MVC servlet application
example, 161–163

Turbine, 213–214
DataSourceResourceLoader

class, 129–130
debugging, #stop directive,

77–80
Declarative Velocity Style Lan-

guage. See DVSL
dependencies

Jakarta Avalon Logkit, 27
Jakarta Commons

Collections, 27
Jakarta ORO, 27

directive.foreach.counter.
initial.value property, 123

directive.foreach.counter.name
property, 123

directive.include.output.errorm
sg.end property, 124

directive.include.output.errorm
sg.start property, 124

directive.parse.max.depth
property, 124

directives, 21
definition of, 77
#else, 96–97
#elseif, 97–100
#end, 93
escaping, 105–106
#foreach, 42, 100–105
#if, 94–96
#include, 80–83
#macro, 105. See also

Velocimacros
#parse, 83–85
properties, 123–124
#set, 85–93

array lists in, 89–90
Booleans in, 90–92
integer literals in, 92–93
method references in,

88–89
property references in,

87–88
range operators in, 89–90
variable references in,

88–89
#stop, 77–80

dispatchers (Maverick), 224
doBuildTemplate() method, 212
docs build target, 29–30
docs_print build target, 30
doInsert() method, 217
doSelect() method, 214
downloading

Maverick, 226–227
TDK (Turbine Development

Kit), 201
Velocity, 24–27

DVSL (Declarative Velocity
Style Language)
command line, 313
compiling, 307–309
creating transformations,

306–309
downloading, 305–306
installing, 305–306

nodes, 309–310
toolbox, 310–313

E
editors

Emacs, 252–253
JEdit, 251–252
TextPad, 252
UltraEdit, 250–251

#else directive, 96–97
#elseif directive, 97–100
Emacs, 252–253
encoding properties, 124–125
#end directive, 93
error() method, 178
Escape class, 318
escaping

directives, 105–106
references, 72–76

EventCartridge class, 132,
323–324

EventHandler class, 324
events, 130–133
examples/appexample1, 31
examples/appexample2, 31
examples build target, 29
examples/context_example, 33
examples/event_example, 35
examples/logger_example, 34
examples/servletexample1,

31–32
examples/servletexample2, 32
examples/xmlapp_example, 34
extending servlets, 157
Extensible Markup Language

(XML)
accessing in templates,

139–142
Anakia, 142

Ant task example,
143–144

context references,
149–150

source documents,
144–145

stylesheets, 145–149
outputting, 150–154
transforming (DVSL),

306–309

F
FieldMethodizer class, 320–321
FileResourceLoader class, 129
#foreach directive, 42, 100–105
<form> tag, 216
formal reference notation, 70
forumdemo build target, 29
full CD report XML example,

152–154

G
generating text reports, 178–183
get() method, 50
getKeys() method, 50
getMessage() method, 220
getParamters() method, 220
getTemplate() method, 40
getUser() method, 221

H
handling events, 130–133
Hello World! example

Maverick
controller classes,

232–233
maverick.xml file,

231–232
view files, 233–234
web.xml file, 229–231

Velocity
with context, 41–42
as a Web application,

42–44
without context, 38–41

Hotel reservation example
architecture, 270–271
booking rooms, 290–293
database schema, 271–272
look and feel frame, 274–277
looking up reservations,

293–297
maverick.xml file, 272–274
page map, 270
searching for rooms,

280–290
specifications, 269–270
welcome pages, 277–279

I n d e x348

TEAMFL
Y

Team-Fly®

I
IDEs, 247–249
#if directive, 94–96
importing classes, 53
#include directive, 80–83
Index class, 212
initializing runtime

configuration, 119–123
custom configuration files,

120–121
Java Properties object,

121–122
setProperty() method,

122–123
inline Velocimacros, 114
input.encoding property, 124
installing

DVSL, 305–306
Maverick, 227–228

requirements, 227
testing installation, 228
Velocity module, 228–229

Struts, 256
TDK (Turbine Development

Kit), 201–202
Velocity

compiling, 27–30
prerequisites, 23–24
running examples, 31–35
testing installation, 30
versions, 27

Velocity Taglib, 300–301
integer literals, in #set direc-

tives, 92–93
IntelliJ, 247–249
InternalContextAdapterImpl

class, 328–329
InternalEventContext class, 329
internationalization, 185–186

CD database application
example, 187–193

Locale class, 186
resource bundles, 186–187

interpreters (scripting), 4

J
Jakarta Avalon Logkit, 27
Jakarta Commons

Collections, 27

Jakarta ORO, 27
jar build target, 28
jar-core build target, 28
jar-dep build target, 28
jar-J2EE build target, 28–29
jar-J2EE-dep build target, 29
jar-servlet build target, 28
jar-src build target, 30
jar-util build target, 28
JarResourceLoader class, 129
Java

internationalization
CD database application

example, 187–193
Locale class, 186
resource bundles,

186–187
Properties object, runtime

initialization, 121–122
Java Virtual Machine (JVM), 23
JavaBeans, 303
javadocs build target, 30
JEdit, 251–252
JSP pages, Velocity Taglib,

299–300
adding to JSP, 301–303
installing, 300–301

JVM (Java Virtual Machine), 23

L
Layout module (Turbine), 198
library Velocimacros, 114–115
LoadConfiguration() method,

175–177
<loader>.resource.loader.cache

property, 128
<loader>.resource.loader.class

property, 127–128
<loader>.resource.loader.descri

ption property, 127
<loader>.resource.loader.

modificationCheckInterval
property, 128

<loader>.resource.loader.path
property, 128

loaders (Turbine), 199–200
Locale class, 186
logging, 21, 125–126
logic, mixing with presentation,

7–10

M
#macro directive, 105. See also

macros
MacroEntry class, 341
macros, 21

argument passing, 109–114
inline, 114
input parameters

supported, 110
library, 114–115
nesting, 117–118
properties, 115–117
recursion, 117–118

Map object, 224
Maverick, 223–224

dispatchers, 224
downloading, 226–227
example file, 224
execution process, 225–226
Hello World! example

controller classes,
232–233

maverick.xml file,
231–232

view files, 233–234
web.xml file, 229–231

Hotel reservation example
architecture, 270–271
booking rooms, 290–293
database schema,

271–272
look and feel frame,

274–277
looking up reservations,

293–297
maverick.xml file,

272–274
page map, 270
searching for rooms,

280–290
specifications, 269–270
welcome pages, 277–279

installing, 227–228
requirements, 227
testing installation, 228
Velocity module, 228–229

load process, 225
Map object, 224
maverick.xml file, 224
News application example

commands, 235–236

Index 349

controllers, 237–240
Velocity templates,

240–245
merge() method, 40, 54–55
mergeTemplate() method, 178
method references, 63–66

parameter types, 65–66
in #set directives, 88–89

MethodExceptionEventHandler
interface, 130, 324

MethodInvocationException
class, 331

methods, 21
mixing presentation with logic,

7–10
Model-View-Controller (MVC)

architecture. See also

Maverick
controllers, 12
example program, 14–16
extending to Web

applications, 13–14
mixing presentation with

logic, 7–10
models, 11–12
servlet application example,

160–175
controller code, 170–175
database access, 162–163
database structure,

161–162
internationalization,

187–193
model code, 163–166
view code, 166–170

Smalltalk-80, 10–13
Sun models, 13
views, 12

models (MVC architecture),
11–12

modules (Turbine)
Action, 197–198
Layout, 198
module object encapsula-

tion, 199–200
Navigation, 198
Page, 198–199
Screen, 198, 209–210

MVC (Model-View-Controller)
architecture. See also

Maverick
controllers, 12
example program, 14–16
extending to Web

applications, 13–14
mixing presentation with

logic, 7–10
models, 11–12
servlet application example,

160–175
controller code, 170–175
database access, 162–163
database structure,

161–162
internationalization,

187–193
model code, 163–166
view code, 166–170

Smalltalk-80, 10–13
Sun models, 13
views, 12

N
naming

context keys, 49
variable references, 62

Navigation module
(Turbine), 198

nesting, Velocimacros, 117–118
News application example

(Maverick)
commands, 235–236
controllers, 237–240
Velocity templates, 240–245

NodeList class, 318–319
nodes (DVSL), 309–310
non-Singleton model, 137
NullSetEventHandler interface,

130, 324–325

O
output.encoding property, 125
OutputWrapper class, 320

P
Page module (Turbine), 198–199
#parse directive, 83–85
ParseErrorException class, 331
ParseErrorException excep-

tion, 40
parser.pool.size property, 129
passing arguments (Veloci-

macros), 109–114
populating contexts, 49–50
presentation, mixing with logic,

7–10
properties, 21

directive properties, 123–124
encoding properties, 124–125
logging, 125–126
resource management,

126–128
Velocimacros, 115–117

properties files, 186
property references, 66–69

in #set directives, 87–88

Q
quiet notation (references),

71–72

R
range operators, in #set

directives, 89–90
recursion, Velocimacros,

117–118
ReferenceInsertionEvent

Handler interface, 130, 325
references, 21, 46

escaping, 72–76
formal notation, 70
methods, 63–66
naming, 57–58
passing to Velocimacros,

111–114
properties, 66–69
quiet notation, 71–72
variables, 58–63

registration form example
(Struts)

I n d e x350

Action object, 258–259
ActionForm, 257–258
configuration file, 259–260
register page, 263–265
setup, 265–267
success page, 262–263
web.xml file, 260–262

remove() method, 50
removeUserFromSession()

method, 221
rendering content, 55
reports, generating, 178–183
requestCleanup() method, 178
resource bundles, 186–187
resource loaders, 22, 129–130
resource management proper-

ties, 126–128
resource.loader property, 127
resource.manager.cache.class

property, 127
resource.manager.class prop-

erty, 126–127
resource.manager.logwhen-

found property, 127
RunData object, 220–221
runtime initialization, 119–123

custom configuration files,
120–121

Java Properties object,
121–122

setProperty() method,
122–123

RuntimeInstance class, 335–336
runtime.interpolate.string.liter-

als property, 128
runtime.log property, 125
runtime.log.error.stacktrace

property, 126
runtime.log.invalid.references,

126
runtime.log.logsystem property,

125
runtime.log.logsystem.class

property, 125–126
runtime.log.warn.stacktrace

property, 126
RuntimeServices class, 337–338
RuntimeSingleton class,

338–340

S
Screen module (Turbine), 198,

209–210
scripting, 3–4
SecureAction class, 217
SecureScreen class, 212
servlets, 155–156

createContext() method, 178
error() method, 178
example code, 157–159
extending, 157
format, 156–157
LoadConfiguration()

method, 175–177
mergeTemplate()

method, 178
MVC example application,

160–175
controller code, 170–175
database access, 162–163
database structure,

161–162
internationalization,

187–193
model code, 163–166
view code, 166–170

requestCleanup() method,
178

setContentType() method,
178

Turbine, 206
#set directive, 38, 85–93

array lists in, 89–90
Booleans in, 90–92
integer literals in, 92–93
method references in, 88–89
property references in, 87–88
range operators in, 89–90
variable references in, 88–89

setAction() method, 209
setBackground() method, 221
setContentType() method, 178
setDescription() method, 222
setKeywords() method, 222
setLinkColor() method, 222
setMessage() method, 220
setPage() method, 209
setProperty() method, 122–123
setRedirectUri() method, 221

setStyleSheet() method, 222
setTemplate() method, 207
setTextColor() method, 222
setTitle() method, 221
setVLinkColor() method, 222
single-line comments, 48
Singleton model, 137
Smalltalk-80, 10–13
source documents

(Anakia), 144–145
#stop directive, 77–80
Struts, 255–256

installing, 256
registration form example

Action object, 258–259
ActionForm, 257–258
configuration file,

259–260
register page, 263–265
setup, 265–267
success page, 262–263
web.xml file, 260–262

stylesheets (Anakia), 145–149

T
TDK (Turbine Development Kit)

installing, 201–202
rebuilding applications, 220
testing installation, 202–203

Template class, 315
Template object, 40
TemplateLink object, 221
TemplatePageAttributes

object, 221–222
templates

acquisition, 54
Club Velocity application

example, 50–55
commenting, 48
definition of, 45–46
dynamic content, 46
engine initialization, 54
Hello World! example

with context, 41–42
without context, 38–41

merging context with, 54–55
static content, 46
XML access, 139–142

test build target, 30
Texen class, 334–335

Index 351

text reports, generating,
178–183

TextPad, 252
toString() method, 58, 62
transforming XML (DVSL),

306–309
TransformStep object, 225
TreeWalker class, 320
Turbine, 195–197

Action module, 197–198
databases, 213–214
Layout module, 198
loaders, 199–200
module object encapsula-

tion, 199–200
Navigation module, 198
Page module, 198–199
page request process,

200–201
rebuilding applications, 220
RunData object, 220–221
Screen module, 198
TDK (Turbine Development

Kit)
installing, 201–202
testing installation,

202–203
TemplateLink object, 221
TemplatePageAttributes

object, 221–222
testApplication example,

203–213
adding users, 215–220
database, creating,

213–214
displaying results, 215
select execution, 214

Turbine Development Kit (TDK)
installing, 201–202
rebuilding applications, 220
testing installation, 202–203

Turbine servlet, 206

U
UltraEdit, 250–251
userExists() method, 221

V
variable references, 58–63

in #set directives, 88–89
variables, 21
Vector object, 42–43
velocimacro.context.localscope

property, 116
VelocimacroFactory class, 340
velocimacro.library

property, 115
velocimacro.library.autoreload

property, 116–117
VelocimacroManager class,

340–341
velocimacro.messages.on

property, 117
velocimacro.permissions.allow.

inline property, 115–116
velocimacro.permissions.allow.

inline.local.scope property,
116

velocimacro.permissions.allow.
inline.to.replace.global
property, 116

Velocimacros, 21
argument passing, 109–114
inline, 114
input parameters

supported, 110
library, 114–115
nesting, 117–118
properties, 115–117
recursion, 117–118

Velocity
development cycle

example, 21
directory structure, 26
downloading, 24–27
installing

compiling, 27–30
prerequisites, 23–24
running examples, 31–35
testing installation, 30
versions, 27

overview, 17–18
Velocity class, 321–322
Velocity object, 40
Velocity Taglib, 299–300

adding to JSP, 301–303
installing, 300–301
JavaBeans, 303

VelocityAlternator class, 326
VelocityAutoAlternator class,

326–327
VelocityContext class, 54,

316–318
VelocityEngine class, 322–323
VelocityException class,

331–332
VelocityFormatter class,

325–326
VelocityScreen class, 212
VelocityServlet class, 157,

333–334
VelocityWriter class, 332–333
View object, 225
ViewFactory, 225
views (MVC architecture), 12
VMContext class, 329–330
VTL identifiers, 62–63
VTL Method Bodies, 63

W
Web development,

history of, 1–4
WebMacro class, 330–331
whitespace management,

134–136
Writer object, 40

X
XCriteria class, 212–213
XML (Extensible Markup

Language)
accessing in templates,

139–142
Anakia, 142

Ant task example,
143–144

context references,
149–150

source documents,
144–145

stylesheets, 145–149
outputting, 150–154
transforming (DVSL),

306–309

I n d e x352

	Cover
	Contents
	Introduction
	What's in This Book
	Who Should Read This Book
	Book Organization

	Part I - Introduction to Velocity and MVC
	Web Development Basics
	Static Web Pages
	Introducing CGI
	Scripting: JSP/ ASP/ PHP
	Future Development
	What’s Next

	MVC Fundamentals
	Mixing Presentation and Logic
	Smalltalk- 80 MVC Triad
	Sun Models 1 and 2
	Extending MVC to Web Applications
	A Practical MVC
	What’s Next

	Introduction to Velocity
	What Is Velocity?
	How It Works
	Velocity Features
	What’s Next

	Part II - Velocity Basics
	Installing Velocity
	Prerequisites
	Obtaining Velocity
	Velocity Versions
	Testing the Velocity Installation
	Running the Examples
	What’s Next

	Building a Hello World Example
	Hello World!
	What’s Next

	Understanding Templates and Context
	Using Templates
	The Context
	Putting the Pieces Together
	What's Next

	Exploring References
	Reference Types
	Formal Reference Notation
	Quiet Notation
	Escaping References
	What’s Next

	Using Directives
	#stop
	#include
	#parse
	#set
	#end
	#if
	#else
	#elseif
	#foreach
	#macro
	Escaping Directives
	What’s Next

	Introducing Velocimacros
	Argument Passing
	Inline vs. Library Macros
	Velocimacro Properties
	Nesting and Recursion
	What’s Next

	Taking Control of Velocity
	Initializing the Runtime Configuration
	More Velocity Properties
	Resource Loaders
	Events
	Context Chaining
	Managing Whitespace
	Singleton vs. Non- Singleton
	What’s Next

	Part III - Developing with Velocity
	Velocity, XML, and Anakia
	Accessing XML in Velocity Templates
	Velocity and Anakia
	Outputting XML Using Velocity
	What’s Next

	Using Velocity with Servlets
	Using Servlets
	Creating an MVC application
	Advanced Servlet Functionality
	Adding Reports
	What’s Next

	Velocity and Internationalization
	Java Internationalization Components
	An International CD Web Application
	What’s Next

	Using Velocity and Turbine
	What Is Turbine?
	The Turbine Architecture
	How Does It Work?
	Obtaining and Installing TDK
	Your First Turbine Application
	Dissecting the Application
	Advanced Velocity in Turbine
	What’s Next

	Using Velocity and Maverick
	How Maverick Works
	Downloading and Installing Maverick
	The Maverick Hello World
	Velocity and Maverick
	What’s Next

	Velocity IDEs
	IntelliJ's IDEA
	UltraEdit
	JEdit
	TextPad
	Emacs
	What’s Next

	Using Velocity and Struts
	Introducing Struts
	Installing Struts
	A Sample Application
	What's Next

	The Hotel Reservation Velocity Application
	The Hotel Specifications
	The Hotel Architecture
	The Hotel Database Schema
	Configuring the Maverick XML
	The Look and Feel Frame
	Building the Welcome Pages
	Searching for a Room
	Booking a Room
	Looking up a Room
	What's Next

	Using JSP and Velocity
	The Velocity Taglib
	What’s Next

	DVSL and Velocity
	Obtaining and Installing DVSL
	Creating a Simple Transformation
	Using Nodes
	The DVSL Toolbox
	Using the Command Line

	Part IV - References
	Appendix A - The Velocity Specification
	org. apache. velocity. Template
	org. apache. velocity. VelocityContext
	org. apache. velocity. anakia. AnakiaElement
	org. apache. velocity. anakia. AnakiaJDOMFactory
	org. apache. velocity. anakia. AnakiaTask
	org. apache. velocity. anakia. Escape
	org. apache. velocity. anakia. NodeList
	org. apache. velocity. anakia. OutputWrapper
	org. apache. velocity. anakia. TreeWalker
	org. apache. velocity. app. FieldMethodizer
	org. apache. velocity. app. Velocity
	org. apache. velocity. app. VelocityEngine
	org. apache. velocity. app. event. EventCartridge
	org. apache. velocity. app. event. EventHandler
	org. apache. velocity. app. event. MethodException
	EventHandler
	org. apache. velocity. app. event. NullSetEvent
	Handler
	org. apache. velocity. app. event. Reference
	InsertionEventHandler
	org. apache. velocity. app. tools. VelocityFormatter
	org. apache. velocity. app. tools. VelocityFormatter.
	VelocityAlternator
	org. apache. velocity. app. tools. VelocityFormatter.
	VelocityAutoAlternator
	org. apache. velocity. context. AbstractContext
	org. apache. velocity. context. Context
	org. apache. velocity. context. InternalContext
	AdapterImpl
	org. apache. velocity. context. InternalEvent
	Context
	org. apache. velocity. context. VMContext
	org. apache. velocity. convert. WebMacro
	org. apache. velocity. exception. Method
	InvocationException
	org. apache. velocity. exception. ParseError
	Exception
	org. apache. velocity. exception. VelocityException
	org. apache. velocity. io. VelocityWriter
	org. apache. velocity. servlet. VelocityServlet
	org. apache. velocity. texen. ant. Texen
	org. apache. velocity. runtime. RuntimeInstance
	org. apache. velocity. runtime. RuntimeServices
	org. apache. velocity. runtime. RuntimeSingleton
	org. apache. velocity. runtime. VelocimacroFactory
	org. apache. velocity. runtime. Velocimacro
	Manager
	org. apache. velocity. runtime. Velocimacro
	Manager. MacroEntry

	Appendix B - Velocity Sites
	Jakarta Velocity Sites
	Tutorials
	Applications

	Index

