
http://www.cambridge.org/9780521881036

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

ii

This page intentionally left blank

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

Open Source

From the Internet’s infrastructure to operating systems like GNU/Linux, the open
source movement comprises some of the greatest accomplishments in computing over
the past quarter century. Its story embraces technological advances, unprecedented
global collaboration, and remarkable tools for facilitating distributed development.
The evolution of the Internet enabled an enormous expansion of open development,
allowing developers to exchange information and ideas without regard to constraints of
space, time, or national boundary. The movement has had widespread impact on
education and government, as well as historic, cultural, and commercial repercussions.
Part I discusses key open source applications, platforms, and technologies used in open
development. Part II explores social issues ranging from demographics and psychology
to legal and economic matters. Part III discusses the Free Software Foundation, open
source in the public sector (government and education), and future prospects.

fadi p. deek received his Ph.D. in computer and information science from the New
Jersey Institute of Technology (NJIT). He is Dean of the College of Science and
Liberal Arts and Professor of Information Systems, Information Technology, and
Mathematical Sciences at NJIT, where he began his academic career as a Teaching
Assistant in 1985. He is also a member of the Graduate Faculty – Rutgers University
Ph.D. Program in Management.

james a. m. mchugh received his Ph.D. in applied mathematics from the Courant
Institute of Mathematical Sciences, New York University. During the course of his
career, he has been a Member of Technical Staff at Bell Telephone Laboratories (Wave
Propagation Laboratory), Director of the Ph.D. program in computer science at NJIT,
Acting Chair of the Computer and Information Science Department at NJIT, and
Director of the Program in Information Technology. He is currently a tenured Full
Professor in the Computer Science Department at NJIT.

i

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

ii

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

Open Source
Technology and Policy

FADI P. DEEK
New Jersey Institute of Technology

JAMES A. M. McHUGH
New Jersey Institute of Technology

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88103-6

ISBN-13 978-0-521-70741-1

ISBN-13 978-0-511-36775-5

© Fadi P. Deek and James A. M. McHugh 2008

2007

Information on this title: www.cambridge.org/9780521881036

This publication is in copyright. Subject to statutory exception and to the provision of

relevant collective licensing agreements, no reproduction of any part may take place

without the written permission of Cambridge University Press.

ISBN-10 0-511-36775-9

ISBN-10 0-521-88103-X

ISBN-10 0-521-70741-2

Cambridge University Press has no responsibility for the persistence or accuracy of urls

for external or third-party internet websites referred to in this publication, and does not

guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org/9780521881036
http://www.cambridge.org

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

To my children,
Matthew, Andrew, and Rebecca

Fadi P. Deek

To my parents, Anne and Peter
To my family, Alice, Pete, and Jimmy

and to my sister, Anne Marie

James A. M. McHugh

v

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

vi

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

Contents

Preface page ix
Acknowledgments xi

1. Introduction 1
1.1 Why Open Source 2
1.2 Preview 11

Section One: Open Source – Internet Applications,
Platforms, and Technologies

2. Open Source Internet Application Projects 21
2.1 The WWW and the Apache Web Server 23
2.2 The Browsers 37
2.3 Fetchmail 50
2.4 The Dual License Business Model 61
2.5 The P’s in LAMP 70
2.6 BitTorrent 77
2.7 BIND 78

3. The Open Source Platform 80
3.1 Operating Systems 81
3.2 Windowing Systems and Desktops 99
3.3 GIMP 111

4. Technologies Underlying Open Source Development 119
4.1 Overview of CVS 120
4.2 CVS Commands 124
4.3 Other Version Control Systems 143
4.4 Open Source Software Development Hosting Facilities

and Directories 151

vii

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

viii Contents

Section Two: Social, Psychological, Legal, and
Economic Aspects of Open Source

5. Demographics, Sociology, and Psychology of Open Source
Development 159
5.1 Scale of Open Source Development 160
5.2 Demographics and Statistical Profile of Participants 162
5.3 Motivation of Participants 164
5.4 Group Size and Communication 166
5.5 Social Psychology and Open Source 168
5.6 Cognitive Psychology and Open Source 181
5.7 Group Problem Solving and Productivity 190
5.8 Process Gains and Losses in Groups 197
5.9 The Collaborative Medium 206

6. Legal Issues in Open Source 222
6.1 Copyrights 223
6.2 Patents 228
6.3 Contracts and Licenses 232
6.4 Proprietary Licenses and Trade Secrets 236
6.5 OSI – The Open Source Initiative 243
6.6 The GPL and Related Issues 250

7. The Economics of Open Source 265
7.1 Standard Economic Effects 266
7.2 Open Source Business Models 272
7.3 Open Source and Commoditization 281
7.4 Economic Motivations for Participation 285

Section Three: Free Software: The Movement, the
Public Sector, and the Future

8. The GNU Project 297
8.1 The GNU Project 297
8.2 The Free Software Foundation 302

9. Open Source in the Public Sector 309
9.1 Open Source in Government and Globally 310
9.2 Open Source in Education 316

10. The Future of the Open Source Movement 325

Glossary 336
Subject Index 351
Author Index 366

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

Preface

The story of free and open software is a scientific adventure, packed with
extraordinary, larger-than-life characters and epic achievements. From infra-
structure for the Internet to operating systems like Linux, this movement
involves some of the great accomplishments in computing over the past quarter
century. The story encompasses technological advances, global software collab-
oration on an unprecedented scale, and remarkable software tools for facilitating
distributed development. It involves innovative business models, voluntary and
corporate participation, and intriguing legal questions. Its achievements have
had widespread impact in education and government, as well as historic cul-
tural and commercial consequences. Some of its attainments occurred before
the Internet’s rise, but it was the Internet’s emergence that knitted together the
scientific bards of the open source community. It let them exchange their innova-
tions and interact almost without regard to constraints of space, time, or national
boundary. Our story recounts the tales of major open community projects: Web
browsers that fueled and popularized the Internet, the long dominant Apache
Web server, the multifarious development of Unix, the near-mythical rise of
Linux, desktop environments like GNOME, fundamental systems like those
provided by the Free Software Foundation’s GNU project, infrastructure like
the X Window System, and more. We will encounter creative, driven scientists
who are often bold, colorful entrepreneurs or eloquent scientific spokesmen.
The story is not without its conflicts, both internal and external to the move-
ment. Indeed the free software movement is perceived by some as a threat to
the billions in revenue generated by proprietary firms and their products, or
conversely as a development methodology that is limited in its ability to ade-
quately identify consumer needs. Much of this tale is available on the Internet
because of the way the community conducts its business, making it a uniquely

ix

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

x Preface

accessible tale. As free and open software continues to increasingly permeate
our private and professional lives, we believe this story will intrigue a wide
audience of computer science students and practitioners, IT managers, policy-
makers in government and education, and others who want to learn about the
fabled, ongoing legacy of transparent software development.

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

Acknowledgments

Many people helped us during the process of writing and publishing this book.
Although it is impossible to know all of them by name, we offer a word of
appreciation and gratitude to all who have contributed to this project. In par-
ticular, we thank the anonymous reviewers who read the proposal for the text
and carefully examined the manuscript during the earlier stages of the process.
They provided excellent recommendations and offered superb suggestions for
improving the accuracy and completeness of the presented material.

Heather Bergman, Computer Science Editor at Cambridge University Press,
deserves enormous praise for her professionalism and competence. Heather
responded promptly to our initial inquiry and provided excellent insight and
guidance throughout the remaining stages. Her extraordinary efforts were
instrumental in getting this book into the hands of its readers.

xi

P1: KAE
9780521881036pre CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:23

xii

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1

Introduction

The open source movement is a worldwide attempt to promote an open style
of software development more aligned with the accepted intellectual style of
science than the proprietary modes of invention that have been characteristic
of modern business. The idea – or vision – is to keep the scientific advances
created by software development openly available for everyone to understand
and improve upon. Perhaps even more so than in the conventional scientific
paradigm, the very process of creation in open source is highly transparent
throughout. Its products and processes can be continuously, almost instan-
taneously scrutinized over the Internet, even retrospectively. Its peer review
process is even more open than that of traditional science. But most of all: its
discoveries are not kept secret and it lets anyone, anywhere, anytime free to
build on its discoveries and creations.

Open source is transparent. The source code itself is viewable and available
to study and comprehend. The code can be changed and then redistributed to
share the changes and improvements. It can be executed for any purpose without
discrimination. Its process of development is largely open, with the evolution
of free and open systems typically preserved in repositories accessible via the
Internet, including archives of debates on the design and implementation of the
systems and the opinions of observers about proposed changes. Open source
differs vastly from proprietary code where all these transparencies are generally
lacking. Proprietary code is developed largely in private, albeit its requirements
are developed with its prospective constituencies. Its source code is generally
not disclosed and is typically distributed under the shield of binary executables.
Its use is controlled by proprietary software licensing restrictions. The right to
copy the program executables is restricted and the user is generally forbidden
from attempting to modify and certainly from redistributing the code or possible
improvements. In most respects, the two modalities of program development

1

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

2 1 Introduction

are polar opposites, though this is not to say there are not many areas where the
commercial and open communities have cooperated.

Throughout this book, we will typically use the term open source in a
generic sense, encompassing free software as referred to by the Free Soft-
ware Foundation (FSF) and open source software as referred to by the Open
Source Initiative (OSI) organization. The alternative composite terms FLOSS
(for Free/Libre/Open Source Software) or FOSS are often used in a European
context. The two organizations, the FSF and the OSI, represent the two streams
of the free or open source movement. Free software is an intentionally evocative
term, a rallying cry as it were, used by the FSF and intended to resonate with
the values of freedom: user and developer freedom. The FSF’s General Public
License (GPL) is its gold standard for free licenses. It has the distinctive char-
acteristic of preventing software licensed under it from being redistributed in
a closed, proprietary distribution. Its motto might be considered as “share and
share alike.” However, the FSF also recognizes many other software licenses as
free as long as they let the user run a program for any purpose, access its source
code, modify the code if desired, and freely redistribute the modifications. The
OSI on the other hand defines ten criteria for calling a license open source. Like
the FSF’s conditions for free software (though not the GPL), the OSI criteria
do not require the software or modifications to be freely redistributed, allow-
ing licenses that let changes be distributed in proprietary distributions. While
the GPL is the free license preferred by the FSF, licenses like the (new) BSD
or MIT license are more characteristic of the OSI approach, though the GPL
is also an OSI-certified license. Much of the time we will not be concerned
about the differences between the various kinds of free or open source licenses,
though these differences can be very important and have major implications for
users and developers (see such as Rosen, 2005). When necessary, we will make
appropriate distinctions, typically referring to whether certain free software is
GPL-licensed or is under a specific OSI-certified license. We will elaborate on
software licenses in the chapter on legal issues. For convenience we will also
refer at times to “open software” and “open development” in the same way.

We will begin our exploration by considering the rationale for open source,
highlighting some of its putative or demonstrable characteristics, its advantages,
and opportunities it provides. We will then overview what we will cover in the
rest of the book.

1.1 Why Open Source

Before we embark on our detailed examination of open source, we will briefly
explore some markers for comparing open and proprietary products. A proper

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.1 Why Open Source 3

comparison of their relative merits would be a massively complex, possibly
infeasible undertaking. There are many perspectives that would have to be
considered, as well as an immense range of products, operating in diverse
settings, under different constraints, and with varied missions. Unequivocal data
from unbiased sources would have to be obtained for an objective comparative
evaluation, but this is hard to come by. Even for a single pair of open and
proprietary products it is often difficult to come to clear conclusions about
relative merits, except for the case of obviously dominant systems like Web
servers (Apache). What this section modestly attempts is to set forth some of
the parameters or metrics that can help structure a comparative analysis. The
issues introduced here are elaborated on throughout the book.

Open source systems and applications often appear to offer significant ben-
efits vis-à-vis proprietary systems. Consider some of the metrics they compete
on. First of all, open source products are usually free of direct cost. They are
often superior in terms of portability. You can modify the code because you
can see it and it’s allowed by the licensing requirements, though there are
different licensing venues. The products may arguably be both more secure
and more reliable than systems developed in a proprietary environment. Open
products also often offer hardware advantages, with frequently leaner platform
requirements. Newer versions can be updated to for free. The development
process also exhibits potential macroeconomic advantages. These include the
innately antimonopolistic character of open source development and its the-
oretically greater efficiency because of its arguable reduction of duplicated
effort. The open source paradigm itself has obvious educational benefits for
students because of the accessibility of open code and the development pro-
cess’ transparent exposure of high-quality software practice. The products and
processes lend themselves in principle to internationalization and localization,
though this is apparently not always well-achieved in practice. There are other
metrics that can be considered as well, including issues of quality of vendor
support, documentation, development efficiency, and so on. We will highlight
some of these dimensions of comparison. A useful source of information on
these issues is provided by the ongoing review at (Wheeler, 2005), a detailed
discussion which, albeit avowedly sympathetic to the open source movement,
makes an effort to be balanced in its analysis of the relative merits of open and
proprietary software.

1.1.1 Usefulness, Cost, and Convenience

Does the open source model create useful software products in a timely fashion
at a reasonable cost that are easy to learn to use? In terms of utility, consider
that open source has been instrumental in transforming the use of computing

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

4 1 Introduction

in society. Most of the Internet’s infrastructure and the vastly successful Linux
operating system are products of open source style development. There are
increasingly appealing open desktop environments like GNOME and KDE.
Furthermore, many of these products like the early Web servers and browsers
as well as Linux were developed quite rapidly and burst on the market. Fire-
fox is a recent example. It is of course hard to beat the direct price of open
source products since they are usually free. The zero purchase cost is especially
attractive when the software product involved has already been commoditized.
Commoditization occurs when one product is pretty much like another or at
least good enough for the needs it serves. In such cases, it does not pay to
pay more. An open source program like the Apache Web server does not even
have to be best of breed to attract considerable market share; it just has to be
cheap enough and good enough for the purpose it serves. Open source is also
not only freely available but is free to update with new versions, which are
typically available for free download on the same basis as the original. For
most users, the license restrictions on open products are not a factor, though
they may be relevant to software developers or major users who want to mod-
ify the products. Of course, to be useful, products have to be usable. Here the
situation is evolving. Historically, many open source products have been in the
category of Internet infrastructure tools or software used by system administra-
tors. For such system applications, the canons of usability are less demanding
because the users are software experts. For ordinary users, we observe that
at least in the past interface, usability has not been recognized as a strong
suit of open source. Open source advocate Eric Raymond observed that the
design of desktops and applications is a problem of “ergonomic design and
interface psychology, and hackers have historically been poor at it” (Raymond,
1999). Ease of installation is one aspect of open applications where usability
is being addressed such as for the vendor-provided GNU/Linux distributions
or, at a much simpler level, installers for software like the bundled AMP pack-
age (Apache, MySQL, Perl, PHP). (We use GNU/Linux here to refer to the
combination of GNU utilities and the Linux kernel, though the briefer desig-
nation Linux is more common.) Another element in usability is user support.
There is for-charge vendor-based support for many open source products just
as is for proprietary products. Arguments have been made on both sides about
which is better. Major proprietary software developers may have more financial
resources to expend on “documentation, customer support and product train-
ing than do open source providers” (Hahn, 2002), but open source products
by definition can have very wide networks of volunteer support. Furthermore,
since the packages are not proprietary, the user is not locked-in to a particular
vendor.

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.1 Why Open Source 5

1.1.2 Performance Characteristics

Does open source provide products that are fast, secure, reliable, and portable?
The overview in Wheeler (2005) modestly states that GNU/Linux is often either
superior or at least competitive in performance with Windows on the same
hardware environment. However, the same review emphasizes the sensitiv-
ity of performance to circumstances. Although proprietary developers benefit
from financial resources that enable them to produce high quality software, the
transparent character of open source is uniquely suitable to the requirements of
security and reliability.

In terms of security, open source code is widely considered to be highly
effective for mission-critical functions, precisely because its code can be pub-
licly scrutinized for security defects. It allows users the opportunity to security-
enhance their own systems, possibly with the help of an open source consultant,
rather than being locked into a system purchased from a proprietary vendor
(Cowan, 2003). In contrast, for example, Hoepman and Jacobs (2007) describe
how the exposure of the code for a proprietary voting system revealed serious
security flaws. Open accessibility is also necessary for government security
agencies that have to audit software before using it to ensure its operation is
transparent (Stoltz, 1999). Though security agencies can make special arrange-
ments with proprietary distributors to gain access to proprietary code, this access
is automatically available for open source. Open source products also have a
uniquely broad peer review process that lends itself to detection of defects during
development, increasing reliability. Not only are the changes to software pro-
posed by developers scrutinized by project maintainers, but also any bystander
observing the development can comment on defects, propose implementation
suggestions, and critique the work of contributors. One of the most well-known
aphorisms of the open source movement “Given enough eyeballs, all bugs are
shallow” (Raymond, 1998) identifies an advantage that may translate into more
reliable software. In open source “All the world’s a stage” with open source
developers very public actors on that stage. The internal exposure and review
of open source occurs not just when an application is being developed and
improvements are reviewed by project developers and maintainers, but for the
entire life cycle of the product because its code is always open. These theoretical
benefits of open source appear to be verified by data. For example, a significant
empirical study described in Reasoning Inc. (2003) indicates that free MySQL
had six times fewer defects than comparable proprietary databases (Tong, 2004).
A legendary acknowledgment of Linux reliability was presented in the famous
Microsoft Halloween documents (Valloppillil, 1998) which described Linux as
having a failure rate two to five times lower than commercial Unix systems.

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

6 1 Introduction

The open source Linux platform is the most widely ported operating sys-
tem. It is dominant on servers, workstations, and supercomputers and is widely
used in embedded systems like digital appliances. In fact, its portability is
directly related to the design decisions that enabled the distributed open style
of development under which Linux was built in the first place. Its software
organization allowed architect Linus Torvalds to manage core kernel develop-
ment while other distributed programmers could work independently on so-
called kernel modules (Torvalds, 1999). This structure helped keep hardware-
specific code like device drivers out of the core kernel, keeping the core highly
portable (Torvalds, 1999). Another key reason why Linux is portable is because
the GNU GCC compiler itself is ported to most “major chip architectures”
(Torvalds, 1999, p. 107). Ironically, it is the open source Wine software that
lets proprietary Windows applications portably run on Linux. Of course, there
are open source clones of Windows products like MS Office that work on
Windows platforms. A secondary consideration related to portability is soft-
ware localization and the related notion of internationalization. Localization
refers to the ability to represent a system using a native language. This can
involve the language a system interface is expressed in, character-sets or even
syntactical effects like tokenization (since different human languages are bro-
ken up differently, which can impact the identification of search tokens). It
may be nontrivial for a proprietary package that is likely to have been devel-
oped by a foreign corporation to be localized, since the corporate developer
may only be interested in major language groupings. It is at least more nat-
ural for open software to be localized because the source code is exposed
and there may be local open developers interested in the adaptation. Interna-
tionalization is a different concept where products are designed in the first
place so that they can be readily adapted, making subsequent localization
easier. Internationalization should be more likely to be on the radar screen
in an open source framework because the development model itself is inter-
national and predisposed to be alert to such concerns. However, Feller and
Fitzgerald (2002) who are sympathetic to free software critique it with respect
to internationalization and localization, contrasting what appears to be, for
example, the superior acceptability of the Microsoft IIS server versus Apache
on these metrics. They suggest the root of the problem is that these char-
acteristics are harder to “achieve if they are not factored into the original
design” (p. 113). Generally, open source seems to have an advantage in sup-
porting the customization of applications over proprietary code, because its
code is accessible and modification of the code is allowed by the software
license.

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.1 Why Open Source 7

1.1.3 Forward-looking Effects

Is open source innovative or imitative? The answer is a little of both. On the
one hand, open source products are often developed by imitating the function-
ality of existing proprietary products, “following the taillights” as the saying
goes. This is what the GNOME project does for desktop environments, just like
Apple and Microsoft took off on the graphical environments developed at Xerox
PARC in the early 1980s. However, open development has also been incredibly
innovative in developing products for the Internet environment, from infras-
tructure software like code implementing the TCP/IP protocols, the Apache
Web server, the early browsers at CERN and NCSA that led to the explosion
of commercial interest in the Internet to hugely successful peer-to-peer file
distribution software like BitTorrent. Much of the innovation in computing has
traditionally emerged from academic and governmental research organizations.
The open source model provides a singularly appropriate outlet for deploying
these innovations: in a certain sense it keeps these works public.

In contrast, Microsoft, the preeminent proprietary developer, is claimed by
many in the open community to have a limited record of innovation. A typical
contention is illustrated in the claim by the FSF’s Moglen that “Microsoft’s
strategy as a business was to find innovative ideas elsewhere in the software
marketplace, buy them up and either suppress them or incorporate them in its
proprietary product” (Moglen, 1999). Certainly a number of Microsoft’s sig-
nature products have been reimplementations of existing software (Wheeler,
2006) or acquisitions which were possibly subsequently improved on. These
include QDOS (later MS-DOS) from Seattle Computer in 1980 (Conner, 1998),
FrontPage from Vermeer in 1996 (Microsoft Press Release, 1996), PowerPoint
from Forethought in 1987 (Parker, 2001), and Cooper’s Tripod subsequently
developed at Microsoft into Visual Basic in 1988 (Cooper, 1996). In a sense,
these small independent companies recognized opportunities that Microsoft
subsequently appropriated. For other examples, see McMillan (2006). On the
other hand, other analysts counter that a scenario where free software domi-
nated development could seriously undermine innovation. Thus Zittrain (2004)
critically observes that “no one can readily monopolize derivatives to popular
free software,” which is a precondition to recouping the investments needed to
improve the original works; see also Carroll (2004).

Comparisons with proprietary accomplishments aside, the track record on
balance suggests that the open source paradigm encourages invention. The avail-
ability of source code lets capable users play with the code, which is a return
to a venerable practice in the history of invention: tinkering (Wheeler, 2005).

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

8 1 Introduction

The public nature of Internet-based open development provides computer sci-
ence students everywhere with an ever-available set of world-class examples of
software practice. The communities around open source projects offer unique
environments for learning. Indeed, the opportunity to learn is one of the most
frequently cited motivations for participating in such development. The model
demonstrably embodies a participatory worldwide engine of invention.

1.1.4 Economic Impact

Free and open software is an important and established feature of the commer-
cial development landscape. Granted, no open source company has evolved to
anything like the economic status of proprietary powerhouses like Microsoft;
nonetheless, the use of open source, especially as supporting infrastructure
for proprietary products, is a widely used and essential element of the busi-
ness strategies of major companies from IBM to Apple and Oracle. Software
companies traditionally rely at least partly on closed, proprietary code to main-
tain their market dominance. Open source, on the other hand, tends to under-
mine monopoly, the likelihood of monopolistic dominance being reduced to the
extent that major software infrastructure systems and applications are open. The
largest proprietary software distributors are U.S. corporations – a factor that is
increasingly encouraging counterbalancing nationalistic responses abroad. For
example, foreign governments are more than ever disposed to encourage a pol-
icy preference for open source platforms like Linux. The platforms’ openness
reduces their dependency on proprietary, foreign-produced code, helps nurture
the local pool of software expertise, and prevents lock-in to proprietary distrib-
utors and a largely English-only mode where local languages may not even be
supported. Software is a core component of governmental operation and infras-
tructure, so dependency on extranational entities is perceived as a security risk
and a cession of control to foreign agency.

At the macroeconomic level, open source development arguably reduces
duplication of effort. Open code is available to all and acts as a public reposi-
tory of software solutions to a broad range of problems, as well as best prac-
tices in programming. It has been estimated that 75% of code is written for
specific organizational tasks and not shared or publicly distributed for reuse
(Stoltz, 1999). The open availability of such source code throughout the econ-
omy would reduce the need to develop applications from scratch. Just as soft-
ware libraries and objects are software engineering paradigms for facilitating
software reuse, at a much grander scale the open source movement proposes to
preserve entire ecosystems of software, open for reuse, extension, and modifi-
cation. It has traditionally been perceived that “open source software is often

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.1 Why Open Source 9

geared toward information technology specialists, to whom the availability of
source code can be a real asset, (while) proprietary software is often aimed
at less sophisticated users” (Hahn, 2002). Although this observation could be
refined, generally a major appeal of open source has been that its code availabil-
ity makes it easier for firms to customize the software for internal applications.
Such in-house customization is completely compatible with all open source
licenses and is extremely significant since most software is actually developed
or custom-designed rather than packaged (Beesen, 2002). As a process, open
source can also reduce the development and/or maintenance risks associated
with software development even when done by private, for-profit companies.
For example, consider code that has been developed internally for a company. It
may often have little or no external sales value to the organization, even though
it provides a useful internal service. Stallman (1999) recounts the example of a
distributed print-spooler written for an in-house corporate network. There was
a good chance the life cycle of the code would be longer than the longevity
of its original programmers. In this case, distributing the code as open source
created the possibility of establishing an open community of interest in the
software. This is useful to the company that owns the code since it reduces
the risk of maintenance complications when the original developers depart.
With any luck, it may connect the software to a persistent pool of experts who
become familiar with the software and who can keep it up to date for their
own purposes. More generally, open development can utilize developers from
multiple organizations in order to spread out development risks and costs, split-
ting the cost among the participants. In fact, while much open source code
has traditionally been developed with a strong volunteer pool, there has also
been extensive industrial support for open development. Linux development is
a prime example. Developed initially under the leadership of Linus Torvalds
using a purely volunteer model, most current Linux code contributions are done
by professional developers who are employees of for-profit corporations.

References

Beesen, J. (2002). What Good is Free Software? In: Government Policy toward Open
Source Software, R.W. Hahn (editor). Brookings Institution Press, Washington,
DC.

Carroll, J. (2004). Open Source vs. Proprietary: Both Have Advantages. ZDNet
Australia. http://opinion.zdnet.co.uk/comment/0,1000002138,39155570,00.htm.
Accessed June 17, 2007.

Conner, D. (1998). Father of DOS Still Having Fun at Microsoft, Microsoft MicroNews,
April 10. http://www.patersontech.com/Dos/Micronews/paterson04 10 98.htm.
Accessed December 20, 2006.

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

10 1 Introduction

Cooper, A. (1996). Why I Am Called “the Father of Visual Basic,” Cooper Interac-
tion design. http://www.cooper.com/alan/father of vb.html. Accessed December
20, 2006.

Cowan, C. (2003). Software security for open-source systems. IEEE Security and Pri-
vacy, 1, 38–45.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Hahn, R. (2002). Government Policy toward Open Source Software: An Overview. In:
Government Policy toward Open Source Software, R.W. Hahn (editor). Brookings
Institution Press, Washington, DC.

Hoepman J.H. and Jacobs, B. (2007). Increased Security through Open Source, Com-
munications of the ACM, 50(1), 79–83.

McMillan, A. (2006). Microsoft “Innovation.” http://www.mcmillan.cx/innovation.html.
Accessed December 20, 2006.

Microsoft Press Release. (1996). Microsoft Acquires Vermeer Technologies Inc., Jan-
uary 16th. http://www.microsoft.com/presspass/press/1996/jan96/vrmeerpr.mspx.
Accessed December 20, 2006.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copyright.
First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/index.
html. Accessed January 5, 2007.

Parker, I. (2001). Absolute Powerpoint – Can a Software Package Edit Our Thoughts.
New Yorker, May 28. http://www.physics.ohio-state.edu/˜wilkins/group/powerpt.
html. Accessed December 20, 2006.

Raymond, E. (1999). The Revenge of the Hackers. In: Open Sources: Voices from the
Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly
Media, Sebastopol, CA, 207–219.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Accessed December 3, 2006.

Reasoning Inc. (2003). How Open Source and Commercial Software Compare: MySQL
white paper MySQL 4.0.16. http://www.reasoning.com/downloads.html. Accessed
November 29, 2006.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law, Prentice Hall, Upper Saddle River, NJ.

Stallman, R. (1999). The Magic Cauldron. http://www.catb.org/esr/writings/magic-
cauldron/. Accessed November 29, 2006.

Stoltz, M. (1999). The Case for Government Promotion of Open Source Soft-
ware. NetAction White Paper. http://www.netaction.org/opensrc/oss-report.html.
Accessed November 29, 2006.

Tong, T. (2004). Free/Open Source Software in Education. United Nations Development
Programme’s Asia-Pacific Information Programme, Malaysia.

Torvalds, L. (1999). The Linux Edge. In: Open Sources: Voices from the Open Source
Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media,
Sebastopol, CA, 101–112.

Valloppillil, V. (1998). Open Source Software: A (New?) Development Methodol-
ogy. http://www.opensource.org/halloween/. The Halloween Documents. Accessed
November 29, 2006.

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.2 Preview 11

Wheeler, D. (2005). Microsoft the Innovator? http://www.dwheeler.com/innovation/
microsoft.html. Accessed November 29, 2006.

Wheeler, D. (2006). Why Open Source Software/Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers! http://www.dwheeler.com/oss fs why.html.
Accessed November 29, 2006.

Zittrain, J. (2004). Normative Principles for Evaluating Free and Proprietary Software.
University of Chicago Law Review, 71(1), 265–287.

1.2 Preview

We will view the panorama of open source development through a number of
different lenses: brief descriptive studies of prominent projects, the enabling
technologies of the process, its social characteristics, legal issues, its status
as a movement, business venues, and its public and educational roles. These
perspectives are interconnected. For example, technological issues affect how
the development process works. In fact, the technological tools developed by
open source projects have at the same time enabled its growth. The paradigm
has been self-hosting and self-expanding, with open systems like Concurrent
Versions System (CVS) and the Internet vastly extending the scale on which
open development takes place. Our case studies of open projects will reveal
its various social, economic, legal, and technical dimensions. We shall see
how its legal matrix affects its business models, while social and psycholog-
ical issues are in turn affected by the technological medium. Though we will
separate out these various factors, the following chapters will also continu-
ally merge these influences. The software projects we consider are intended
to familiarize the reader with the people, processes, and accomplishments of
free and open development, focusing on Internet applications and free software
platforms. The enabling technologies of open development include the fasci-
nating versioning systems both centralized and distributed that make enormous
open projects feasible. Such novel modes of collaboration invariably pose new
questions about the social structures involved and their affect on how people
interact, as well as the psychological and cognitive phenomena that arise in the
new medium/modality. Open development is significantly dependent on a legal
infrastructure as well as on a technological one, so we will examine basic legal
concepts including issues like licensing arrangements and the challenge of soft-
ware patents. Social phenomena like open development do not just happen; they
depend on effective leadership to articulate and advance the movement. In the
case of free and open software, we shall see how the FSF and the complemen-
tary OSI have played that role. The long-term success of a software paradigm

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

12 1 Introduction

requires that it be economically viable. This has been accomplished in free
software in different ways, from businesses based purely on open source to
hybrid arrangements more closely aligned with proprietary strategies. Beyond
the private sector, we consider the public sector of education and government
and how they capitalize on open source or affect its social role. We will close our
treatment by briefly considering likely future developments, in a world where
information technology has become one of the central engines of commerce
and culture.

Section One of the book covers key open source Internet applications and
platforms, and surveys technologies used in distributed collaborative open
development. Section Two addresses social issues ranging from the demograph-
ics of participants to legal issues and business/economic models. Section Three
highlights the role of the Free Software Foundation in the movement, the rela-
tion of open source to the public sector in government and education, and future
prospects. A glimpse of the topics covered by the remaining chapters follows.

Chapter 2 recounts some classic stories of open development related to
the Internet, like Berners-Lee’s groundbreaking work on the Web at CERN, the
development of the NCSA HTTP Web server and Mosaic browser, the Apache
project, and more. These case studies represent remarkable achievements in the
history of business and technology. They serve to introduce the reader unfa-
miliar with the world of open source to some of its signature projects, ideas,
processes, and people. The projects we describe have brought about a social
and communications revolution that has transformed society. The story of these
achievements is instructive in many ways: for learning how the open source
process works, what some of its major attainments have been, who some of
the pioneering figures in the field are, how projects have been managed, how
people have approached development in this context, what motivations have led
people to initiate and participate in such projects, and some of the models for
commercialization. We consider the servers and browsers that fueled the Inter-
net’s expansion, programming languages like Perl and PHP and the MySQL
database so prominent in Internet applications, newer systems like BitTorrent,
Firefox, and others. We also review the Fetchmail project that became famous as
an exemplar of Internet-based, collaborative, bazaar-style development because
of a widely influential essay.

Chapter 3 explores the open source platform by which we mean the open
operating systems and desktops that provide the infrastructure for user inter-
action with a computer system. The root operating system model for open
source was Unix. Legal and proprietary issues associated with Unix led to the
development of the fundamentally important free software GNU project, the
aim of which was to create a complete and self-contained free platform that

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.2 Preview 13

would allow anyone to do all their software development in a free software
environment. The flagship Linux operating system evolved out of a port of a
Unix variant to a personal computer environment and then burgeoned into the
centerpiece project of the open software movement. The Linux and free Unix-
like platforms in turn needed a high-quality desktop style interface and it was
out of this imperative that the two major open desktops GNOME and KDE
emerged, which in turn depended on the fundamental functionality provided by
the X Window System. This chapter recounts these epic developments in the
history of computing, describing the people, projects, and associated technical
and legal issues.

Chapter 4 overviews the key technologies used to manage open source
projects, with a special emphasis on CVS. The free software movement emerged
in the early 1980s, at a time when the ARPANET network with its several
hundred hosts was well-established and moving toward becoming the Inter-
net. The ARPANET allowed exchanges like e-mail and FTP, technologies that
significantly facilitated distributed collaboration, though the Internet was to
greatly amplify this. The TCP/IP protocols that enabled the Internet became
the ARPANET standard on January 1, 1983, about the same time the flagship
open source GNU project was announced by free software leader and advocate
Richard Stallman. By the late 1980s the NSFNet backbone network merged
with the ARPANET to form the emerging worldwide Internet. The exponen-
tial spread of the Internet catalyzed further proliferation of open development.
The specific communications technologies used in open source projects have
historically tended to be relatively lean: e-mail, mailing lists, newsgroups, and
later on Web sites, Internet Relay Chat, and forums. Major open source projects
like Linux in the early 1990s still began operation with e-mail, newsgroups, and
FTP downloads to communicate. Newsgroups provided a means to broadcast
ideas to targeted interest groups whose members might like to participate in
a development project. Usenet categories acted like electronic bulletin boards
which allowed newsgroup participants to post e-mail-like messages, like the
famous comp.os.minix newsgroup on Usenet used by Linus Torvalds to ini-
tiate the development of Linux. A powerful collaborative development tool
was developed during the late 1980s and early 1990s that greatly facilitated
managing distributed software development: the versioning system. Versioning
systems are software tools that allow multiple developers to work on projects
concurrently and keep track of changes made to the code. This chapter describes
in some detail how CVS works. To appreciate what it does it is necessary to
have a sense of its commands, their syntax, and outputs or effects and so we
examine these closely. We also consider newer versioning tools like the decen-
tralized system BitKeeper that played a significant role in the Linux project

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

14 1 Introduction

for a period of time, its free successor Git, and the Subversion system. Other
means that have facilitated open source development have been the software
hosting facilities that help distributed collaborators manage their open source
projects and provide source code repositories for projects. We describe some
of the services they provide and the major Web sites.

There are many demographic, social, psychological, cognitive, process, and
media characteristics that affect open source development. Chapter 5 overviews
some of these. It also introduces a variety of concepts from the social sciences
that can be brought to bear on the open source phenomenon to help provide
a framework for understanding this new style of human, scientific, and com-
mercial interaction. We first of all consider the basic demographics of the phe-
nomenon, such as the number and scale of projects under development, the kinds
of software that tend to be addressed, population characteristics and motivations
for developers and community participants, how participants interact. We survey
relevant concepts from social psychology, including the notions of norms and
roles, the factors that affect group interactions like compliance, internalization,
and identification, normative influences, the impact of power relationships, and
group cohesion. Ideas like these from the field of social psychology help provide
conceptual tools for understanding open development. Other useful abstractions
come from cognitive psychology, like the well-recognized cognitive biases that
affect group interactions and problem solving. Social psychology also provides
models for understanding the productivity of collaborative groups in terms of
what are called process losses and gains, as well as organizational effects that
affect productivity. The impact of the collaborative medium on group interac-
tions is worth understanding, so we briefly describe some of the classic research
on the effect of the communications medium on interaction. Like the field of
social psychology, media research offers a rich array of concepts and a point of
departure for understanding and analyzing distributed collaboration. Potentially
useful concepts range from the effect of so-called common ground, coupling,
and incentive structures, to the use of social cues in communication, the richness
of informational exchanges, and temporal effects in collaboration. We introduce
the basic concepts and illustrate their relevance to open collaboration.

The open source movement is critically affected by legal issues related to
intellectual property. Intellectual property includes creations like copyrighted
works, patented inventions, and proprietary software. The objective of Chapter 6
is to survey the related legal issues in a way that is informative for understanding
their impact on free and open development. In addition to copyright and patent,
we will touch on topics like software patents, licenses and contracts, trademarks,
reverse engineering, the notion of reciprocity in licensing, and derivative works
in software. The legal and business mechanisms to protect intellectual property

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.2 Preview 15

are intended to address what is usually considered to be its core problem: how
to protect creations in order to provide incentives for innovators. Traditionally
such protection has been accomplished through exclusion. For example, you
cannot distribute a copyrighted work for your own profit without the authoriza-
tion of the copyright owner. The FSF’s GPL that lies at the heart of the free
software movement takes a very different attitude to copyright, focusing not on
how to invoke copyright to exclude others from using your work, but on how
to apply it to preserve the free and open distribution of your work, particularly
when modified. We describe the GPL and the rationales for its conditions. We
also consider the OSI and the motivations for its licensing criteria. The OSI,
cofounded by Eric Raymond and Bruce Perens in 1998, was established to
represent what was believed to be a more pragmatic approach to open develop-
ment than that championed by the FSF. The OSI reflected the experience of the
stream of the free software movement that preferred licenses like the BSD and
MIT licenses which appeared more attractive for commercial applications. It
reflected the attitude of developers like McKusick of the BSD project and Get-
tys of the X Window System. We describe some of the OSI-certified software
licenses including the increasingly important Mozilla Public License. We also
briefly address license enforcement and international issues, and the status and
conditions of the next version of the GPL: GPLv3.

Chapter 7 examines economic concepts relevant to open source develop-
ment, the basic business models for open products, the impact of software com-
moditization, and economic models for why individuals participate in open
development. Some of the relevant economic concepts include vendor lock-in,
network effects (or externalities), the total cost of use of software, the impact
of licensing on business models, complementary products, and the potential for
customizability of open versus proprietary products. The basic open business
models we describe include dual licensing, consultation on open source prod-
ucts, provision of open source software distributions and related services, and
the important hybrid models like the use of open source for in-house devel-
opment or horizontally in synergistic combination with proprietary products,
such as in IBM’s involvement with Apache and Linux. We also examine soft-
ware commoditization, a key economic phenomenon that concerns the extent
to which a product’s function has become commoditized (routine or standard)
over time. Commoditization deeply affects the competitive landscape for pro-
prietary products. We will present some of the explanations that have been put
forth to understand the role of this factor in open development and its impli-
cations for the future. Finally, observers of the open source scene have long
been intrigued by whether developers participate for psychological, social, or
other reasons. We will consider some of the economic models that have been

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

16 1 Introduction

offered to explain why developers are motivated to work on these projects. One
model, based on empirical data from the Apache project, uses an effect called
signaling to explain why individuals find it economically useful to volunteer
for open source projects. Another model proposes that international differences
in economic conditions alter the opportunity cost of developer participation,
which in turn explains the relative participation rates for different geographic
regions.

The chapter on legal issues recounted the establishment and motivation for
the OSI in 1998 and Chris Peterson’s coinage of the open source designation
as an alternative to what was thought to be the more ideologically weighted
phrase free software. The OSI represents one main stream of the open software
movement. Of course, the stream of the movement represented by the FSF and
the GNU project had already been formally active since the mid-1980s. The
FSF and its principals, particularly Richard Stallman, initiated the free software
concept, defined its terms, vigorously and boldly publicized its motivations and
objectives, established the core GNU project, and led advocacy for the free
software movement. They have been instrumental in its burgeoning success.
Chapter 8 goes into some detail to describe the origin and technical objectives
of the GNU project, which represents one of the major technical triumphs of
the free software movement. It also elaborates on the philosophical principles
espoused by the FSF, as well as some of the roles and services the FSF provides.

Chapter 9 considers the role of open source in the public sector which,
in the form of government and education, has been critical to the creation,
development, funding, deployment, and promotion/advocacy of open software.
The public sector continues to offer well-suited opportunities for using and
encouraging open source, in domains ranging from technological infrastruc-
ture to national security, educational use, administrative systems, and so on,
both domestically and internationally. Open source has characteristics that nat-
urally suit many of these areas. Consider merely the role of the public sector
in supporting the maintenance and evolution of technological infrastructure for
society, an area in which open software has proven extremely successful. The
government has also historically played an extensive role in promoting innova-
tion in science and technology. For example, the federal government was the
leader in funding the development of the Internet with its myriad of underlying
open software components. Thus public investment in open development has
paid off dramatically in the past and can be expected to continue to do so in
the future. The transparency of open source makes it especially interesting in
national security applications. Indeed, this is an increasingly recognized asset
in international use where proprietary software may be considered, legitimately
or not, as suspect. Not only do governmental agencies benefit as users of open

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

1.2 Preview 17

source, government and educational institutions also play a role in promoting its
expanded use. Governmental policy decisions, whether of a legislative or policy-
driven character, can significantly affect the expansion of open software use in
the government and by the public. For example, nationalistic concerns about the
economic autonomy of local software industries or about national security have
made open source increasingly attractive in the international arena. Lastly, we
will address at some length the uses and advantages of open source in education,
including its unique role in computer science education.

We conclude our book in Chapter 10 with what, we believe, are the likely
scenarios for the prospective roles of open and proprietary software. Our inter-
pretation is a balanced one. On the one hand, the open source paradigm seems
likely to continue its advance toward worldwide preeminence in computer soft-
ware infrastructure, not only in the network and its associated utilities, but also
in operating systems, desktop environments, and standard office utilities. Sig-
nificantly, the most familiar and routine applications seem likely to become
commoditized and open source, resulting in pervasive public recognition of the
movement. The software products whose current dominance seems likely to
decline because of this transformation include significant parts of the current
Microsoft environment from operating systems to office software. However,
despite a dramatic expansion in the recognition and use of open source, this
in no ways means that open software will be dominant in software applica-
tions. To the contrary, the various dual modalities that have already evolved
are likely to persist, with robust open and proprietary sectors each growing and
prevailing in different market domains. While on the one hand, some exist-
ing proprietary systems may see portions of their markets overtaken by open
source replacements, on the other hand proprietary applications and hybrid
modes of commercial development should continue to strengthen. Specialized
proprietary killer-apps serving mega-industries are likely to continue to domi-
nate their markets, as will distributed network services built on open infrastruc-
tures that have been vertically enhanced with proprietary functionalities. Mixed
application modes like those reflected in the WAMP stack (with Windows used
in place of Linux in the LAMP stack) and the strategically significant Wine
project that allows Windows applications to run on Linux environments will
also be important. The nondistributed, in-house commercial development that
has historically represented the preponderance of software development seems
likely to remain undisclosed either for competitive advantage or by default,
but this software is being increasingly built using open source components –
a trend that is already well-established. The hybrid models that have emerged
as reflected in various industrial/community cooperative arrangements, like
those involving the Apache Foundation, the X Window System, and Linux, and

P1: KAE
9780521881036c01 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:20

18 1 Introduction

based on industrial support for open projects under various licensing arrange-
ments, seem certain to strengthen even further. They represent an essential
strategy for spreading the risks and costs of software development and provid-
ing an effective complementary set of platforms and utilities for proprietary
products.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

SECTION ONE

Open Source – Internet Applications,
Platforms, and Technologies

19

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

20

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2

Open Source Internet Application Projects

This chapter describes a number of open source applications related to the
Internet that are intended to introduce the reader unfamiliar with the world
of open development to some of its signature projects, ideas, processes, and
people. These projects represent remarkable achievements in the history of
technology and business. They brought about a social and communications
revolution that transformed society, culture, commerce, technology, and even
science. The story of these classic developments as well as those in the next
chapter is instructive in many ways: for learning how the open source process
works, what some of its major accomplishments have been, who some of the
pioneering figures in the field are, how projects have been managed, how people
have approached development in this context, what motivations have led people
to initiate and participate in such projects, and what some of the business models
are that have been used for commercializing associated products.

Web servers and Web browsers are at the heart of the Internet and free
software has been prominent on both the server and browser ends. Thus the
first open source project we will investigate is a server, the so-called National
Center for Supercomputing Applications (NCSA) Web server developed by
Rob McCool in the mid-1990s. His work had in turn been motivated by the
then recent creation by Tim Berners-Lee of the basic tools and concepts for a
World Wide Web (WWW), including the invention of the first Web server and
browser, HTML (the Hypertext Markup Language), and the HTTP (Hypertext
Transfer Protocol). For various reasons, McCool’s server project subsequently
forked, leading to the development of the Apache Web server. It is instruc-
tive and exciting to understand the dynamics of such projects, the contexts
in which they arise, and the motivations of their developers. In particular, we
will examine in some detail how the Apache project emerged, its organiza-
tional processes, and what its development was like. Complementary to Web

21

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

22 2 Open Source Internet Application Projects

servers, the introduction of easily used Web browsers had an extraordinary
impact on Web use, and thereby a revolutionary effect on business, technol-
ogy, and society at large. The Mosaic, Netscape, and more recently the Firefox
browser projects that we will discuss even shared some of the same development
context. The success of the Mosaic browser project was especially spectacu-
lar. In fact it was instrumental in catalyzing the historic Internet commercial
revolution. Mosaic’s developer Marc Andreessen later moved on to Netscape,
where he created, along with a powerhouse team of developers, the Netscape
browser that trumped all competition in the browser field for several years. But
Netscape’s stunning success proved to be temporary. After its initial triumph,
a combination of Microsoft’s bundling strategies for Internet Explorer (IE) and
the latter’s slow but steady improvement eventually won the day over Netscape.
Things lay dormant in the browser area for a while until Firefox, a descendant of
the Netscape Mozilla browser, came back to challenge IE, as we shall describe.

The process of computer-supported, distributed collaborative software devel-
opment is relatively new. Although elements of it have been around for decades,
the kind of development seen in Linux was novel. Eric Raymond wrote a famous
essay on Linux-like development in which he recounted the story of his own
Fetchmail project, an e-mail utility. Although Fetchmail is far less significant
as an open source product than other projects that we review, it has come to
have a mythical pedagogical status in the field because Raymond used its devel-
opment – which he intentionally modeled on that of Linux – as an exemplar
of how distributed open development works and why people develop software
this way. Raymond’s viewpoints were published in his widely influential essay
(Raymond, 1998) that characterized open development as akin to a bazaar style
of development, in contrast to the cathedral style of development classically
described in Fred Brooks’ famed The Mythical Man Month (twentieth anniver-
sary edition in 1995). We will describe Fetchmail’s development in some detail
because of its pedagogical significance.

We conclude the chapter with a variety of other important Internet-related
open applications. A number of these are free software products that have
been commercialized using the so-called dual licensing model. These are worth
understanding, first of all because licensing issues are important in open devel-
opment, and secondly because there is an enduring need for viable business
strategies that let creators commercially benefit from open software. The first
of these dual licensed projects that we will consider is the MySQL database
system. MySQL is prominent as the M in the LAMP Web architecture, where
it defines the backend database of a three-tier environment whose other com-
ponents are Linux, Apache, Perl, PHP, and Python. Linux is considered in
Chapter 3. Perl and PHP are considered here. We describe the influential role

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 23

of Perl and its widely used open source module collection CPAN, as well as the
server-side scripting language PHP that has its own rather interesting model for
commercialization. We also briefly consider Berkeley DB and Sendmail (which
serves a substantial portion of all Internet sites). Both of these are dual licensed
free softwares. Additional business models for free software are examined in
Chapter 7. The peer-to-peer Internet utility BitTorrent is a more recent open
source creation that exploits the interconnectedness of the Internet network in a
novel way and is intellectually intriguing to understand. BitTorrent has, in a few
short years, come to dominate the market for transferring popular, large files
over the Internet. We complete the chapter with a brief look at the fundamental
BIND utility that underlies the domain name system for the Internet, which
makes symbolic Web names possible. The tale of BIND represents a story with
an unexpected and ironic business outcome.

2.1 The WWW and the Apache Web Server

The story of the Apache Web server is a classic tale of open development. It
has its roots in the fundamental ideas for the WWW conceived and preliminar-
ily implemented by Tim Berners-Lee at a European research laboratory. Soon
afterward, these applications were taken up by students at an American univer-
sity, where Berners-Lee’s Web browser and server were dramatically improved
upon and extended as the NCSA Web server and the Mosaic browser. The
NCSA server project would in turn be adopted and its design greatly revised by
a new distributed development team. The resulting Apache server’s entry into
the marketplace was rapid and enduring.

2.1.1 WWW Development at CERN

We begin by highlighting the origins of the Web revolution. The idea for the
WWW was originated by physicist Berners-Lee at the CERN physics laboratory
in Switzerland when he proposed the creation of a global hypertext system
in 1989. The idea for such a system had been germinating in Berners-Lee’s
mind for almost a decade and he had even made a personal prototype of it
in the early 1980s. His proposal was to allow networked access to distributed
documents, including the use of hyperlinks. As an MIT Web page on the inventor
says,

Berners-Lee’s vision was to create a comprehensive collection of information in
word, sound and image, each discretely identified by UDIs and interconnected by
hypertext links, and to use the Internet to provide universal access to that collection
of information (http://web.mit.edu/invent/iow/berners-lee.html).

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

24 2 Open Source Internet Application Projects

Berners-Lee implemented the first Web server and a text-oriented Web
browser and made it available on the Web in 1991 for the NeXT operating
system. In fact, he not only developed the server and browser, but also invented
HTTP, HTML, and the initial URI version of what would later become URLs
(uniform resource locators). His HTTP protocol was designed to retrieve HTML
documents over a network, especially via hyperlinks. He designed HTML for
his project by creating a simplified version of an SGML DTD he used at CERN,
which had been intended for designing documentation. He introduced a new
hyperlink anchor tag <a> that would allow distributed access to documents
and be central to the WWW paradigm (Berglund et al., 2004). Berners-Lee kept
his prototype implementations simple and widely publicized his ideas on the
www-talk mailing list started at CERN in 1991. He named his browser World-
WideWeb and called his Web server httpd (Berners-Lee, 2006). The server ran
as a Unix background process (or daemon), continually waiting for incoming
HTTP requests which it would handle.

At about the same point in time, Berners-Lee became familiar with the free
software movement. Indeed, the Free Software Foundation’s Richard Stallman
gave a talk at CERN in mid-1991. Berners-Lee recognized that the free software
community offered the prospect of a plentitude of programmer volunteers who
could develop his work further, so he began promoting the development of Web
browser software as suitable for projects for university students (Kesan and
Shah, 2002)! He had his own programmer gather the software components he
had developed into a C library named libwww, which became the basis for future
Web applications. Berners-Lee’s initial inclination was to release the libwww
contents under the Free Software Foundation’s GPL license. However, there
were concerns at the time that corporations would be hesitant to use the Web
if they thought they could be subjected to licensing problems, so he decided
to release it as public domain instead, which was, in any case, the usual policy
at CERN. By the fall of 1992, his suggestions about useful student projects
would indeed be taken up at the University of Illinois at Urbana–Champaign.
In 1994, Berners-Lee founded and became director of the W3C (World Wide
Web Consortium) that develops and maintain standards for the WWW. For
further information, see his book on his original design and ultimate objective
for the Web (Berners-Lee and Fischetti, 2000).

2.1.2 Web Development at NCSA

The NCSA was one of the hubs for U.S. research on the Internet. It produced
major improvements in Berners-Lee’s Web server and browser, in the form of
the NCSA Web server (which spawned the later Apache Web server) and the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 25

Mosaic Web browser. We will discuss the NCSA server project and its successor,
the still preeminent Apache Web server, in this section. The subsequent section
will consider the Mosaic browser and its equally famous descendants, which
even include Microsoft’s own IE.

Like many open source projects, the now pervasive Apache Web server
originated in the creativity and drive of youthful computer science students.
One of them was Rob McCool, an undergraduate computer science major at
the University of Illinois and a system administrator for the NCSA. McCool
and his colleague Marc Andreessen at NCSA had become fascinated by the
developments at CERN. Andreessen was working on a new Web browser (the
Mosaic browser) and thought the CERN server was too “large and cumbersome”
(McCool et al., 1999). He asked McCool to take a look at the server code. After
doing so, McCool thought he could simplify its implementation and improve
its performance relying on his system administration experience. Of course,
this kind of response is exactly what Web founder Berners-Lee had hoped for
when he had widely advertised and promoted his work. Since Andreessen was
developing the new browser, McCool concentrated on developing the server.
The result was the much improved NCSA httpd server.

While McCool was developing the improved httpd daemon, Andreessen
came up with a uniform way of addressing Web resources based on the URL
(Andreessen, 1993). This was a critical development. Up to this point, the
Web had been primarily viewed as a system for hypertext-based retrieval. With
Andreessen’s idea, McCool could develop a standardized way for the Web
server and browser to pass data back and forth using extended HTML tags
called forms in what was later to become the familiar Common Gateway Inter-
face or CGI. As a consequence of this, their extended HTML and HTTP Web
protocols “transcended their original conception to become the basis of general
interactive, distributed, client-server information systems” (Gaines and Shaw,
1996). The client and server could now engage in a dynamic interaction, with
the server interpreting the form inputs from the client and dynamically adapt-
ing its responses in a feedback cycle of client-server interactions. Gaines and
Shaw (1996) nicely describe this innovation as enabling the client to “transmit
structured information from the user back to an arbitrary application gatewayed
through the server. The server could then process that information and generate
an HTML document which it sent back as a reply. This document could itself
contain forms for further interaction with the user, thus supporting a sequence
of client-server transactions.”

In traditional open development style, McCool kept his server project posted
on a Web site and encouraged users to improve it by proposing their own
modifications. At Andreessen’s recommendation, the software was released

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

26 2 Open Source Internet Application Projects

under a very unrestrictive open software license (essentially public domain) that
basically let developers do whatever they wanted with the source code, just like
the Berners-Lee/CERN approach. The open character of this licensing decision
would later significantly expedite the development or evolution of the NCSA
httpd server into the Apache server (see McCool et al., 1999; Apache.pdf, 2006).
For a period of time, McCool’s NCSA httpd daemon was the most popular
Web server on the Internet. Indeed, the Netcraft survey (netcraft.com) gave it
almost 60% of the server market share by mid-1995, surpassing the market
penetration of the CERN server which by then stood at only 20%. Although
Netcraft surveyed fewer than 20,000 servers at the time, there were already
millions of host computers on the Internet (Zakon, 1993/2006). The Apache
server that developed out of the NCSA server would be even more pervasively
deployed.

2.1.3 The Apache Fork

As commonly happens in open source projects, the original developers moved
on, in this case to work at Netscape, creating a leadership vacuum in the NCSA
httpd project. After an interim, by early 1995, an interest group of Web site
administrators or “Webmasters” took over the development of the server. The
Webmasters were motivated by a mix of personal and professional needs, espe-
cially doing their jobs better. Brian Behlendorf, a computer scientist recently out
of Berkeley, was one of them. He was developing the HotWired site for Wired
magazine for his consulting company and had to solve a practical problem:
the HotWired site needed password authentication on a large scale. Behlendorf
provided it by writing a patch to the httpd server to incorporate this functionality
at the required scale (Leonard, 1997). By this point, there were a large number
of patches for the httpd code that had been posted to its development mailing
list, but which, since McCool’s departure from NCSA, had gone unintegrated
because there was no one at NCSA in charge of the project. Using these patches
was time consuming: the patches had to be individually downloaded and man-
ually applied to the NCSA base code, an increasingly cumbersome process. In
response to this unsatisfactory situation, Behlendorf and his band established
a group of eight distributed developers, including himself, Roy Fielding, Rob
Hartill, Rob Thau, and several others and defined a new project mailing list:
new-httpd. For a while after its inauguration, McCool participated in the new
mailing list, even though he was now at Netscape working on a new propri-
etary Web server. Netscape did not consider the free source Apache project as
competitive with its own system, so initially there appeared to be no conflict
of interest. McCool was able to explain the intricacies of the httpd daemon’s

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 27

code to the new group, a considerable advantage to the project. However, after
Apache’s release, it quickly became clear from the Netcraft market share analy-
ses that Apache would be a major competitor to the proprietary Netscape server
McCool was involved with. Thus McCool once again removed himself from
participation (McCool et al., 1999).

Since the NCSA httpd daemon served as the point of departure for the
new project, the new server’s development can be thought of as a fork in the
development of the original httpd project. The new group added a number of
fixes which it then released as “a patchy” server. Eventually, they recognized
they had to revise the code into a completely rewritten software architecture that
was developed by Rob Thau by mid-1995. Thau called his design Shambhala.
Shambhala utilized a modular code structure and incorporated an extensible
Application Programming Interface (API). The modular design allowed the
developers to work independently on different modules, a capability critical to
a distributed software development project (Apache.pdf, 2006). By the summer
of 1995 the group had added a virtual hosting capability that allowed ISPs
to host thousands of Web sites on a single Apache server. This innovation
represented a highly important capability lacking in the competing Netscape and
Microsoft Web servers. After considerable further developmental machinations,
the “Apache” version 1.0 was released at the end of 1995 together with its
documentation. The thesis by Osterlie (2003) provides a detailed technical
history of the development based on the original e-mail archives of the project.
Although the appellation Apache is allegedly associated with the customary
open source diff-and-patch techniques used during its development, whence it
could be thought of as “a patchy” Web server, the FAQ on the server’s Web
site says it is eponymous for the American Indian tribe of the same name,
“known for their skill in warfare . . . and endurance.” Within a few years the
Apache server dominated the Web server market. By late 1996, according to
Netcraft.com, Apache already had 40% of the market share, by 2000 it was
about 65%, and by mid-2005 it was over 70%, with Microsoft’s IIS lagging far
behind at around 20% of market penetration for years. More recent statistics
from Netcraft credit Apache with about 60% of the Web server market versus
30% for Microsoft IIS.

The review of the Apache project by McCool et al. (1999) gives an inside
look at the project. Notably, the major developers were not hobbyist hackers but
either computer science students, PhDs, or professional software developers. All
of them had other regular jobs in addition to their voluntary Apache involve-
ment. Their developer community had the advantage of being an enjoyable
atmosphere. Since the development occurred in a geographically distributed
context, it was inconvenient if not infeasible to have physical meetings. The

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

28 2 Open Source Internet Application Projects

circumstances also precluded relying on synchronous communication because
members had different work schedules. The volunteers had full-time job com-
mitments elsewhere and so could not predictably dedicate large portions of
their time to the project. Consequently, not only was the workspace decentral-
ized, the uncoordinated work schedules necessitated asynchronous communi-
cation. E-mail lists followed naturally as the obvious means for communicating.
Mockus et al. (2002) observe how the Apache development “began with a con-
scious attempt to solve the process issues first, before development even started,
because it was clear from the very beginning that a geographically distributed
set of volunteers, without any traditional organizational ties, would require a
unique development process in order to make decisions.” Their procedures for
decision making and coordinating the project had to reflect its asynchronous,
distributed, volunteer, and shared leadership character, so the team “needed to
determine group consensus, without using synchronous communication, and
in a way that would interfere as little as possible with the project progress”
(Fielding, 1999, p. 42).

The organizational model they chose was quite simple: voting on decisions
was done through e-mail, decisions were made on the basis of a voting con-
sensus, and the source code (by 1996) was administered under the Concurrent
Versions System (CVS). The core developers for Apache, a relatively small
group originally of less than ten members, were the votes that really counted.
Any mailing list member could express an opinion but “only votes cast by the
Apache Group members were considered binding” (McCool et al., 1999). In
order to commit a patch to the CVS repository, there had to be at least three pos-
itive votes and no negative votes. For other issues, there had to be at least three
positive votes, and the positive votes had to constitute a majority. A significant
tactical advantage of this approach was that the process required only partial
participation, enabling the project to proceed without hindrance, even though at
any given point in time only a few core developers might be active. Despite such
partial participation, the voting protocol ensured that development progress still
reflected and required a reasonable level of peer review and approval. Because
negative votes acted as vetoes in the case of repository changes, such votes were
expected to be used infrequently and required an explanation. One acceptable
rationale for a veto might be to reject a proposed change because it was thought
that it would interfere with the system’s support for a major supported platform
(McCool et al., 1999). Another acceptable rationale for a veto was to keep the
system simple and prevent an explosion of features. A priori, it might appear
that development deadlocks would occur frequently under such a voting system,
but the knowledge-base characteristics of the core developer group tended to
prevent this. Each of the group members tended to represent disjoint technical

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 29

perspectives and so they primarily enforced “design criteria” relevant to their
own expertise (McCool et al., 1999). Of course, problems could occur when
development was rapid but the availability of CVS kept the process simple
and reversible. Relatively routine changes could be committed to the repos-
itory first and then retroactively confirmed, since any patch could be easily
undone. Although participants outside the core group were restricted in their
voting rights, McCool’s review confirms the benefits derived from the feedback
obtained from users via newsgroups and e-mail.

The Apache Group that guided the project had eight founding members and
by the time of the study by Mockus et al. (2002) had grown to twenty-five
members, though for most of the development period there were only half that
many. Refer to http://httpd.apache.org/contributors/ for a current list of Apache
contributors, their backgrounds, and technical contributions to the project. The
core developers were not quite synonymous with this group but included those
group members active at a given point in time and those about to be eligible for
membership in the group, again adding up to about eight members in total. The
Apache Group members could both vote on code changes and also had CVS
commit access. In fact, strictly speaking, any member of the developer group
could commit code to any part of the server, with the group votes primarily
used for code changes that might have an impact on other developers (Mockus
et al., 2002).

Apache’s pragmatic organizational and process model was in the spirit of
the Internet Engineering Task Force (IETF) philosophy of requiring “rough
consensus and working code” (see such as Bradner (1999) and Moody (2001)).
This motto was coined by Dave Clark, Chief Protocol Architect for the Internet
during the 1980s and one of the leaders in the development of the Internet. In
a legendary presentation in 1992, Clark had urged an assembled IETF audi-
ence to remember a central feature of the successful procedure by which the
IETF established standards, namely “We reject: kings, presidents, and voting.
We believe in: rough consensus and running code” (Clark, 1992). In the IETF,
the expression rough consensus meant 80–90% agreement, reflecting a process
wherein “a proposal must answer to criticisms, but need not be held up if sup-
ported by a vast majority of the group” (Russell, 2006, p. 55). The condition
about running code meant that a party behind a proposed IETF standard was
required to provide “multiple actual and interoperable implementations of a pro-
posed standard (which) must exist and be demonstrated before the proposal can
be advanced along the standards track” (Russell, 2006, p. 55). The pragmatic,
informal IETF process stood in stark contrast to the laborious ISO approach to
developing standards, a process that entailed having a theoretical specification
prior to implementation of standards. The IETF approach and Clark’s stirring

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

30 2 Open Source Internet Application Projects

phrase represented an important “bureaucratic innovation,” a way of doing
things that “captured the technical and political values of Internet engineers
during a crucial period in the Internet’s growth” (Russell, 2006, p. 48). Free
software advocate Lawrence Lessig (1999, p. 4) described it as “a manifesto
that will define our generation.” Although its circumstances and process were
not identical to Apache’s, the IETF’s simple pragmatism reflected the same
spirit that let productive, creative work get done efficiently, with appropriate
oversight, but minimal bureaucratic overhead.

By 1998, the project had been so remarkably successful that IBM asked to
join the Apache Group, a choice that made corporate sense for IBM since its
corporate focus had become providing services rather than marketing software.
The Apache Group decided to admit the IBM developers subject to the group’s
normal meritocratic requirements. The group intended the relationship with
IBM to serve as a model for future industrial liaisons (McCool et al., 1999). As
of this writing a significant majority of the members of the Apache Software
Foundation appear to be similarly industrially affiliated (over 80%) based on
the member list at http://www.apache.org/foundation/members.html (accessed
January 5, 2007).

Apache Development Process
Mockus et al. (2002) provide a detailed analysis of the processes, project devel-
opment patterns, and statistics for the Apache project. The generic development
process applied by a core developer was as follows:

� identify a problem or a desired functionality;
� attempt to involve a volunteer in the resolution of the problem;
� test a putative solution in a local CVS source copy;
� submit the tested code to the group to review; and
� on approval, commit the code to the repository (preferably as a single

commit) and document the change.

New work efforts were identified in several ways: via the developer mailing
list, the Apache USENET groups, and the BUGDB reporting system (Mockus
et al., 2002). The developer mailing list was the most important vehicle for
identifying changes. It was the key tool for discussing fixes for problems and
new features and was given the highest priority by the developers, receiving “the
attention of all active developers” for the simple reason that these messages were
most likely to come from other active developers and so were deemed “more
likely to contain sufficient information to analyze the request or contain a patch
to solve the problem” (Mockus et al., 2002). Screening processes were used
for the other sources. The Apache BUGDB bug-reporting tool was actually not

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 31

directly used by most developers, partly because of annoying idiosyncrasies
in the tool. Instead, a few developers filtered the BUGDB information and
forwarded entries thought to be worthwhile to the developer mailing list. The
Apache USENET groups were also used less than one might expect because
they were considered “noisy.” Once again, volunteers filtered the USENET
information, forwarding significant problems or useful enhancements to the
developer mailing list.

Once a problem was identified, the next issue was “who would do the work?”
A typical practice was for the core developers associated with the code for the
affected part of the system, having either developed it or spent considerable
time maintaining it, to take responsibility for the change. This attitude reflects
an implicit kind of code ownership (Mockus et al., 2002). Correlative to this
cultural practice, new developers would tend to focus on developing new fea-
tures (whence features that had no prior putative “owner”) or to focus on parts of
the server that were not actively being worked on by their previous maintainer
(and so no longer had a current “owner”). These practices were deferred to by
other developers. As a rule, established activity and expertise in an area were
the default guidelines. In reality, the actual practice of the developers was more
flexible. Indeed, the data analysis provided by Mockus et al. (2002) suggests
that the Apache group’s core developers had sufficient respect for the expertise
of the other core developers that they contributed widely to one another’s mod-
ules according to development needs. Thus the notion of code ownership was in
reality “more a matter of recognition of expertise than one of strictly enforced
ability to make commits to partitions of the code base” (Mockus et al., 2002).

Regarding solutions to problems, typically several alternatives were first
identified. These were then forwarded by the volunteer developer, self-charged
with the problem, to the developer mailing list for preliminary feedback and
evaluation prior to developing the actual solution. The prototype solution
selected was subsequently refined and implemented by the originating devel-
oper and then tested on his local CVS copy before being committed to the
repository. The CVS commit itself could be done in two ways: using a commit-
then-review process that was typically applied in development versions of the
system, versus a post-for-review-first process in which the patch was posted to
the developer mailing list for prior review and approval before committing it,
as would normally be done if it were a stable release being modified (Mockus
et al., 2002). In either case, the modifications, including both the patch and the
CVS commit log, would be automatically sent to the developer mailing list.
It was not only standard practice that the core developers reviewed all such
changes as posted, but they were also available to be reviewed by anyone who
followed the developer mailing list. The Apache Group determined when a new

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

32 2 Open Source Internet Application Projects

stable release of the product was to be distributed. An experienced core devel-
oper who volunteered to act as the release manager, would, as part of that role,
identify any critical open problems and shepherd their resolution, including
changes proposed from outside the core developer group. The release manager
also controlled access to the repository at this stage and so any development
code that was supposed to be frozen at this stage was indeed left alone.

The development group achieved effective coordination in a variety of ways.
A key software architecture requirement was that the basic server functional-
ity was intentionally kept limited in scope, with peripheral projects providing
added functionality by interfacing with the core server through well-defined
interfaces. Thus the software architecture itself automatically helped ensure
proper coordination, without significant additional effort required by the devel-
oper group since the interface itself enforced the necessary coordination. Exter-
nal developers who wanted to add functionality to the core Apache server
were thereby accommodated by a “stable, asymmetrically-controlled interface”
(Mockus et al., 2002). The presence of this API has been a key feature in the
success of Apache since it greatly facilitates expanding the system’s func-
tionality by the addition of new modules. On the other hand, coordination of
development within the core area was handled effectively by the simple means
described previously, informally supported by the small core group’s intimate
knowledge of the expertise of their own members. The relative absence of for-
mal mechanisms for approval or permission to commit code made the process
speedy but maintained high quality. Bug reporting and repair were also simple
in terms of coordination. For example, bug reporting was done independently
by volunteers. It entailed no dependencies that could lead to coordination con-
flicts, since these reports themselves did not change code, though they could
lead to changes in code. Similarly, most bug fixes themselves were relatively
independent of one another with the primary effort expended in tracking down
the bug, so that once again coordination among members was not a major
issue.

Statistical Profile of Apache Development
Well-informed and detailed empirical studies of projects on the scale of Apache
are uncommon. Therefore, it is instructive to elaborate on the statistical anal-
ysis and interpretations provided in Mockus et al. (2002). The credibility
of their analysis is bolstered by the extensive commercial software develop-
ment experience of its authors and the intimate familiarity of second author
Roy Fielding with Apache. The study analyzes and compares the Apache and
Netscape Mozilla projects based on data derived from sources like the devel-
oper e-mail lists, CVS archives, bug-reporting systems, and extensive interviews

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 33

with project participants. We will focus on the results for the Apache project.
(Another worthwhile study of the structure of open projects is by Holck and
Jorgensen (2005), which compares the Mozilla and FreeBSD projects. It pays
special attention to how the projects handle releases and contributions as well
as their internal testing environments.)

The Apache server had about 80,000 lines of source code by 2000 (Wheeler,
2000), with approximately 400 people contributing code through 2001 (the time
frame examined in Mockus et al. (2002)). The Mockus study distinguishes two
kinds of Apache contributions:

code fixes made in response to reported problems
code submissions intended to implement new system functionality

Rounded numbers are used in the following statistical summaries for clarity.
The summary statistics for Apache code contributions are as follows:

� Two hundred people contributed to 700 code fixes.
� Two hundred fifty people contributed to 7,000 code submissions.

The summary error statistics are as follows:

� Three thousand people submitted 4,000 problem reports, most triggering no
change to the code base, because they either lacked detail or the defect had
been fixed or was insignificant.

� Four hundred fifty people submitted the 600 bug reports that led to actual
changes to the code.

The 15 most productive developers made 85% of implementation changes,
though for defect repair these top 15 developers made only 65% of the code
fixes. A narrow pool of contributors dominated code submissions, with only 4
developers per 100 code submissions versus 25 developers per 100 code fixes.
Thus “almost all new functionality is implemented and maintained by the core
group” (Mockus et al., 2002, p. 322).

The Apache core developers compared favorably with those in reference
commercial projects, showing considerably higher levels of productivity and
handling more modification requests than commercial developers despite the
part-time, voluntary nature of their participation. The problem reporting respon-
sibilities usually handled by test and customer support teams in proprietary
projects were managed in Apache by thousands of volunteers. While the 15
most productive developers submitted only 5% of the 4,000 problem reports,
there were over 2,500 mostly noncore developers who each submitted at least
one problem report, thus dispersing the traditional role of system tester over
many participants. The response time for problem reports was striking: half the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

34 2 Open Source Internet Application Projects

problems reported were solved in a day, 75% in a month, and 90% in 4 months,
a testimony to the efficiency of the organization of the project and the talent of
the volunteers. Of course, the data used in such studies is invariably subject to
interpretation. For example, metrics like productivity of groups can be affected
by the procedures used to attribute credit, while response rates reported could
be affected by details like when bug reports were officially entered into the
tracking system.

The social and motivational framework under which the developers oper-
ated was an important element in the success of the Apache project. The merito-
cratic process that enables candidate developers to achieve core developer status
requires persistence, demonstrated responsibility to the established core team,
and exceptionally high technical capability. The motivational structure also dif-
fers significantly from commercial environments, where the project worked
on and component tasks are assigned by management, not freely chosen by a
developer. From this viewpoint, it seems unsurprising that the passionate, vol-
untary interest of the project developers should be a strong factor contributing
to its success. The stakeholder base for Apache is now sufficiently broad that
changes to the system must be conservatively vetted, so services to end users
are not disrupted. For this reason, Ye et al. (2005) characterize it as now being
a service-oriented open source project.

The Mockus et al. (2002) review makes several tentative conjectures about
the development characteristics of open projects based on their data for Apache
and Netscape Mozilla development (prior to 2001). For example, they suggest
that for projects of Apache’s size (as opposed to the much larger Netscape
Mozilla project), a small core of developers create most of the code and func-
tionality and so are able to coordinate their efforts in a straightforward way
even when several developers are working on overlapping parts of the code
base. In contrast, in larger development projects like Netscape Mozilla, stricter
practices for code ownership, work group separation, and CVS commit author-
ity have to be enforced to balance the potential for disorder against excessive
communication requirements. Another simple pattern is that the sizes of the par-
ticipant categories appear to differ significantly: the number of core developers
is smaller by an order of magnitude than the number of participants who submit
bug fixes, which in turn is smaller by an order of magnitude than the number
of participants who report problems and defects. The defect density for these
open source projects was lower than the compared proprietary projects that had
been only feature tested. However, the study urges caution in the interpretation
of this result since it does not address postrelease bug density and may partly
reflect the fact that the developers in such projects tend to have strong domain
expertise as end users of the product being developed. The study concluded

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.1 The WWW and the Apache Web Server 35

that the open projects considered exhibited “very rapid responses to customer
problems” (Mockus et al., 2002).

Reusing Open Source Creations
One of the key objectives of the open source movement is to build a reusable
public commons of software that is universally available and widely applica-
ble. Brian Behlendorf of the Apache (and later Subversion) project has some
valuable insights about how to apply the creations of open development to
circumstances beyond those originally envisioned. He identifies some general
conditions he believes are necessary for other applications to benefit from open
products and libraries when they are applied not just in environments they were
originally designed for but in updated versions of those environments or when
they have to be integrated with other applications (Anderson, 2004). There are
three key ingredients that have to come together to effectively support the reuse
of open software:

1. access to the source code,
2. access to the context in which the code was developed, and
3. access to the communities that developed and use the code.

One might call this the 3AC model of what open source history has taught
us about software reuse. The availability of the code for a program or soft-
ware library is the first essential ingredient, not just the availability of stable
APIs like in a COTS (Commercial Off-the-Shelf) environment. Open source
obviously provides the source code. Source code is required for effective reuse
of software because any new application or infrastructure context, like a new
operating system, will necessitate understanding the code because embedding
software components in new contexts will “inevitably . . . trigger some defect
that the original developers didn’t know existed” (Anderson, 2004). However,
if you are trying to improve the code, you also need access to the context of
its development. In open source projects this can be obtained from a variety
of sources including e-mail archives and snapshots from the development tree
that provide the history of the project and its development artifacts. This way
you can find out if the problems you identify or questions you have in mind
have already been asked and answered. Finally, in order to understand how the
software was built and why it was designed the way it was, you also need to be
able to interact with the community of people who developed the product, as
well as the community of other users who may also be trying to reuse it. This
kind of community contact information is also available in open source that
has mailing lists for developers and users, as well as project announcements
that can be scavenged for information about how the project developed. That’s

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

36 2 Open Source Internet Application Projects

how you get a truly universal library of reuseable software: open code, the
developmental context, and the community that made the software and uses it.

References

Anderson, T. (2004). Behlendorf on Open Source. Interview with Brian Behlendorf.
http://www.itwriting.com/behlendorf1.php. Accessed November 29, 2006.

Andreessen, M. (1993). NCSA Mosaic Technical Summary. NCSA, University of Illi-
nois. Accessed via Google Scholar, November 29, 2006.

Apache.pdf. (2006). World Wide Web. http://www.governingwithcode.org. Accessed
January 10, 2007.

Berglund, Y., Morrison, A., Wilson, R., and Wynne, M. (2004). An Investigation
into Free eBooks. Oxford University. http://ahds.ac.uk/litlangling/ebooks/report/
FreeEbooks.html. Accessed December 16, 2006.

Berners-Lee, T. (2006). Frequently Asked Questions. www.w3.org/People/Berners-
Lee/FAQ.html. Accessed January 10, 2007.

Berners-Lee, T. and Fischetti, M. (2000). Weaving the Web – The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Harper, San Francisco.

Bradner, S. (1999). The Internet Engineering Task Force. In: Open Sources: Voices
from the Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors).
O’Reilly Media, Sebastopol, CA, 47–52.

Clark, D. (1992). A Cloudy Crystal Ball: Visions of the Future. Plenary presentation at
24th meeting of the Internet Engineering Task Force, Cambridge, MA, July 13–17,
1992. Slides from this presentation are available at: http://ietf20.isoc.org/videos/
future ietf 92.pdf. Accessed January 10, 2007.

Fielding, R.T. (1999). Shared leadership in the Apache Project. Communications of the
ACM, 42(4), 42–43.

Gaines, B. and Shaw, M. (1996). Implementing the Learning Web. In: Proceedings of
EDMEDIA ’96: World Conference on Educational Multimedia and Hypermedia.
Association for the Advancement of Computing in Education, Charlottesville, VA.
http://pages.cpsc.ucalgary.ca/∼gaines/reports/LW/EM96Tools/index.html.
Accessed November 29, 2006.

Holck, J. and Jorgensen N. (2005). Do Not Check in on Red: Control Meets Anarchy in
Two Open Source Projects. In: Free/Open Software Development, S. Koch (editor).
Idea Group Publishing, Hershey, PA, 1–26.

Kesan, J. and Shah, R. (2002). Shaping Code. http://opensource.mit.edu/shah.pdf.
Accessed November 29, 2006.

Leonard, A. (1997). Apache’s Free Software Warriors. Salon Magazine. http://
archive.salon.com/21st/feature/1997/11/cov 20feature.html. Accessed Nov-
ember 29, 2006.

Lessig, L. (1999). Code and Other Laws of Cyberspace. Basic Books, New York.
McCool, R., Fielding, R.T., and Behlendorf, B. (1999). How the Web Was Won. http://

www.linux-mag.com/1999–06/apache 01.html. Accessed November 29, 2006.
Mockus, A., Fielding, R.T., and Herbsleb, J.D. (2002). Two Case Studies of Open Source

Development: Apache and Mozilla. ACM Transactions on Software Engineering
and Methodology, 11(3), 309–346.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 37

Moody, G. (2001). Rebel Code. Penguin Press, New York.
Osterlie, T. (2003). The User-Developer Convergence: Innovation and Software Systems

Development in the Apache Project. Master’s Thesis, Norwegian University of
Science and Technology.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version: http://
www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Russell, A. (2006). “Rough Consensus and Running Code” and the Internet-OSI Stan-
dards War. IEEE Annals of the History of Computing, 28(3), 48–61.

Wheeler, D. (2000). Estimating Linux’s Size. http://www.dwheeler.com/sloc/redhat71-
v1/redhat71sloc.html. Accessed November 29, 2006.

Ye, Y., Nakakoji, K., Yamamoto, Y., and Kishida, K. (2005). The Co-Evolution of
Systems and Communities. In: Free/Open Source Software Development, S. Koch
(editor). Idea Group Publishing, Hershey, PA, 59–83.

Zakon, R. (1993/2006). Hobbes’ Internet Timeline v8.2. http://www.zakon.org/robert/
internet/timeline/ . Accessed January 5, 2007.

2.2 The Browsers

Browsers have played a critical role in the Internet’s incredibly rapid expan-
sion. They represent the face of the Internet for most users and the key means
for accessing its capabilities. Three open source browsers have been most
prominent: Mosaic, Netscape Navigator, and Firefox. The proprietary Inter-
net Explorer browser, which is based on Mosaic, coevolved and still dominates
the market. The development of these browsers is an intriguing but archetypal
tale of open source development. It combines elements of academic provenance,
proprietary code, open source code and licenses, technological innovations, cor-
porate battles for market share, creative software distribution and marketing,
open technology standards, and open community bases of volunteer developers
and users. The story starts with the revolutionary Mosaic browser at the begin-
ning of the Internet revolution, moves through the development of Netscape’s
corporately sponsored browser and its browser war with Internet Explorer, and
finally on to Netscape’s free descendant, Firefox.

2.2.1 Mosaic

The famed Mosaic Web browser was instrumental in creating the Internet boom.
Mosaic was developed at the NCSA starting in 1993. The University of Illi-
nois student Marc Andreessen (who was the lead agent in the initiative) and
NCSA full-time employee and brilliant programmer Eric Bina were the chief
developers. Andreessen wanted to make a simple, intuitive navigational tool

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

38 2 Open Source Internet Application Projects

that would let ordinary users explore the new WWW more easily and let them
browse through the data available on the Web. Andreessen and Bina (1994)
identified three key design decisions. The tool had to be easy to use, like a word
processing Graphical User Interface (GUI) application. It had to be kept simple
by divorcing page editing from presentation. (The original Berners-Lee browser
had included publication features that complicated its use.) The software also
had to accommodate images in such a way that both text and embedded images
could appear in the same HTML page or browser window. For this, Andreessen
had to introduce an HTML image tag, even though the standards for such a tag
had not yet been settled. Significantly, Mosaic also introduced forms that users
could fill out. It took a short six weeks to write the original program of 9,000
lines of code (Wagner, 2002). Mosaic transcended the capabilities of previous
text-oriented tools like FTP for accessing information on the Internet. Instead,
it replaced them with a multimedia GUI tool for displaying content, including
the appeal of clickable hyperlinks. Mosaic was initially available for Unix but
was quickly ported to PCs and Mac’s. It rapidly became the killer app for Web
access of the mid-1990s.

Mosaic’s success was not merely a technical accomplishment. Andreessen’s
management of the project was nurturing and attentive. He was an activist
communicator and listener, one of the top participants in www-talk in
1993 (NCSAmosaic.pdf, 2006). According to Web founder Berners-Lee,
Andreessen’s skills in “customer relations” were decisive in the enhancement
of Mosaic: “You’d send him a bug [problem] report and then two hours later
he’d mail you a fix” (quoted in Gillies and Cailliau (2000, p. 240)). Mosaic’s
popularity had a remarkable effect: it caused an explosion in Web traffic. Each
increase in traffic in turn had a feedback effect, attracting more content to the
Internet, which in turn increased traffic even further. Mosaic had over 2 million
downloads in its first year, and by mid-1995 it was used on over 80% of the
computers that were connected to the Internet. An article in the New York Times
by John Markoff (1993) appreciated the implications of the new software for the
Internet. The article ballyhooed the killer app status of Mosaic. However, it did
not allude to the software’s developers by name but only to the NCSA director
Larry Smarr. This slight reflected the institutional provenance of the tool and the
attitude of NCSA: Mosaic was a product of NCSA, not of individuals, and the
University of Illinois expected it to stay that way. We refer the interested reader
to Gillies and Cailliau (2000) and NCSAmosaic.pdf (2006) for more details.

The Mosaic license was open but not GPL’d and had different provisions
for commercial versus noncommercial users. Refer to http://www.socs.uts.
edu.au/MosaicDocs-old/copyright.html (accessed January 10, 2007) for the
full terms of the NCSA Mosaic license. The browser was free of charge for

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 39

noncommercial use, which meant academic, research, or internal business pur-
poses, with the source code provided for the Unix version. Noncommercial
licensees were allowed to not only develop the software but redistribute deriva-
tive works. These redistributions were subject to a proviso: the derivative prod-
ucts had to be identified as different from the original Mosaic code and there was
to be no charge for the derivative product. The terms for commercial licensees
were different; for commercial distribution of a modified product, license terms
had to be separately negotiated with NCSA. NCSA assigned all the commer-
cial rights for Mosaic to Spyglass in late 1994 (Raggett et al., 1998). By 1995,
Microsoft had licensed Mosaic as the basis for its own early browser Internet
Explorer, but by that point Netscape Navigator dominated the browser market.
Ironically, however, to this day the Help > About tab on the once again dom-
inant Internet Explorer has as its first entry “based on NCSA Mosaic. NCSA
Mosaic(TM); was developed at the National Center for Supercomputing Appli-
cations at the University of Illinois at Urbana–Champaign.”

Beyond the revolutionary impact of its functionality on the growth of the
Internet, the Mosaic browser also expedited the Web’s expansion because of the
public access it provided to HTML, which was essentially an open technology.
Mosaic inherited the View Source capability of Tim Berners-Lee’s browser.
This had a significant side effect since it allowed anyone to see the HTML code
for a page and imitate it. As Tim O’Reilly (2000) astutely observed, this simple
capability was “absolutely key to the explosive spread of the Web. Barriers to
entry for ‘amateurs’ were low, because anyone could look ‘over the shoulder’
of anyone else producing a web page.”

2.2.2 Netscape

Software talent is portable. Given the uncompromising, albeit by the book, insti-
tutional arrogation of Mosaic by the University of Illinois, there was no point
in Andreessen staying with NCSA. After graduating in 1993, he soon became
one of the founders of the new Netscape Corporation at the invitation of the
legendary Jim Clark, founder of Silicon Graphics. Netscape was Andreessen’s
next spectacular success.

Andreessen was now more than ever a man with a mission. At Netscape,
he led a team of former students from NCSA, with the mission “to develop an
independent browser better than Mosaic, i.e. Netscape Navigator.” They knew
that the new browser’s code had to be completely independent of the original
Mosaic browser in order to avoid future legal conflicts with NCSA. As it turned
out, a settlement with the University of Illinois amounting to $3 million had
to be made in any case (Berners-Lee, 1999). The internal code name for the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

40 2 Open Source Internet Application Projects

first Netscape browser was Mozilla, a feisty pun combining the words Mosaic
(the browser) and Godzilla (the movie monster) that was intended to connote
an application that would kill the then dominant Mosaic browser in terms of
popularity. (The page at http://sillydog.org/netscape/kb/netscapemozilla.php,
accessed January 10, 2007, provides a helpful description of the sometimes
confusing use of the name Mozilla.) The development team worked feverishly.
As one member of the group put it, “a lot of times, people were there straight
forty-eight hours, just coding. I’ve never seen anything like it. . . . But they were
driven by this vision [of beating the original Mosaic]” (Reid, 1997). The sense
of pride and victory is even more pungent in a well-known postmortem by
team member Jamie Zawinski (1999) that would come later, after Netscape’s
unhappy browser war with Internet Explorer:

. . . we were out to change the world. And we did that. Without us, the change
probably would have happened anyway . . . But we were the ones who actually did
it. When you see URLs on grocery bags, on billboards, on the sides of trucks, at the
end of movie credits just after the studio logos – that was us, we did that. We put
the Internet in the hands of normal people. We kick-started a new communications
medium. We changed the world.

Netscape’s pricing policy was based on a quest for ubiquity. Andreessen’s
belief was that if they dominated market share, the profits would follow from
side effects. According to Reid (1997), Andreessen thought,

That was the way to get the company jump-started, because that just gives you
essentially a broad platform to build off of. It’s basically a Microsoft lesson, right?
If you get ubiquity, you have a lot of options, a lot of ways to benefit from that. You
can get paid by the product you are ubiquitous on, but you can also get paid on
products that benefit as a result. One of the fundamental lessons is that market share
now equals revenue later, and if you don’t have market share now, you are not
going to have revenue later. Another fundamental lesson is that whoever gets the
volume does win in the end. Just plain wins.

Netscape bet on the side effects of browser momentum. It basically gave
the browser away. However, it sold the baseline and commercial server they
developed, originally pricing them at $1,500 and $5,000, respectively. The free
browser was an intentional business marketing strategy designed to make the
product ubiquitous so that profits could then be made off symbiotic effects like
advertising and selling servers (Reid, 1997). In principle, only academic use of
the browser was free and all others were supposed to pay $39.00. But in practice,
copies were just downloaded for free during an unenforced trial period. How-
ever, although the product was effectively free of charge, it was not in any sense
free software or open source. The original Netscape software license was pro-
prietary (http://www.sc.ucl.ac.be/misc/LICENSE.html, accessed January 10,

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 41

2007). It also explicitly prohibited disassembly, decompiling or any reverse
engineering of the binary distribution, or the creation of any derivative works.

Netscape’s strategy paid off handsomely and quickly. Originally posted for
download on October 13, 1994, Netscape quickly dominated the browser mar-
ket. This downloaded distribution of the product was itself a very important
Netscape innovation and accelerated its spread. The aggressive introduction of
new HTML tags by the Netscape developers was also seductive to Web design-
ers who rapidly incorporated them into their Web pages (Raggett et al., 1998;
Griffin, 2000). Since Netscape was the only browser that could read the new
tags, the Web page designers would include a note on their page that it was best
viewed in Netscape. They would then provide a link to where the free download
could be obtained, so Netscape spread like a virus. A major technical advan-
tage of the initial Netscape browser over Mosaic was that Netscape displayed
images as they were received from embedded HTTP requests, rather than wait-
ing for all the images referred to in a retrieved HTML page to be downloaded
before the browser rendered them. It also introduced innovations like cookies
and even more importantly the new scripting language Javascript, which was
specifically designed for the browser environment and made pages much more
dynamic (Andreessen, 1998; Eich, 1998). Thus, brash technology meshed with
attractiveness, pricing, and distribution to make Netscape a juggernaut. The
company went public on August 9, 1995, and Andreessen and Clark became
millionaires and billionaires, respectively. By 1996 Netscape had penetrated
75% of the market. It was eventually bought by AOL for $10 billion.

Given this initial success, how did it happen that within a few years of
Netscape’s triumphant conquest of the browser market, Internet Explorer, the
proprietary Microsoft browser, which was deeply rooted in Mosaic, became
the dominant browser? It was really Microsoft’s deep pockets that got the
better of Netscape in the so-called browser wars. Indeed, Microsoft called
its marketing campaigns jihads (Lohr, 1999). Microsoft destroyed Netscape’s
browser market by piggybacking on the pervasive use of its operating system
on PCs. It bundled Internet Explorer for free with every copy of Windows sold,
despite the fact that it had cost hundreds of millions of dollars to develop.
With its huge cash reservoirs, Microsoft was able to fund development that
incrementally improved IE until step by step it became equivalent in features
and reliability to Netscape. As time went by, the attraction of downloading
Netscape vanished, as the products became comparable. Netscape became a
victim of redundancy.

Many of Microsoft’s practices were viewed as monopolistic and predatory,
resulting in its being prosecuted by the federal government for illegally manip-
ulating the software market. Government prosecutor David Boies claimed that

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

42 2 Open Source Internet Application Projects

Microsoft was trying to leverage its de facto monopoly in Windows to increase
its market share for browsers and stifle competition (Lea, 1998). A settlement,
which many considered as a mere slap on the wrist to Microsoft, was reached
with the Justice department in late 2001 (Kollar-Kotelly, 2002). In any case, the
original Netscape Navigator browser’s market share had fallen steadily. From
a peak of over 80% in 1996, it dropped to 70% in 1997, 50% in 1998, 20% in
1999, to a little over 10% in 2000. Microsoft’s IE rose in tandem as Netscape
fell, almost saturating the market by 2002, prior to Firefox’s emergence.

In a last ditch effort to rebound, Netscape decided that perhaps the proprietary
IE dragon could be beaten by a reformed, more open Netscape. So early in 1998
Netscape responded to Internet Explorer by going open source – sort of. The
company stated that it was strongly influenced in this strategy by the ideas
expressed in Raymond’s famous “The Cathedral and the Bazaar” paper (1998).
Refer to the e-mail from Netscape to Raymond in the latter’s epilogue to his
paper, updated as per its revision history in 1998 or later. Netscape thought
it could recover from the marketing debacle inflicted by the newly updated
releases of Internet Explorer by exploiting the benefits of open source style-
collaborative development. So it decided to release the browser source code as
open source.

The new release was done under the terms of the Mozilla Public License
(MPL). The sponsor was the newly established Mozilla Organization whose
mission would be to develop open source Internet software products. The intent
of the MPL license and the Mozilla Organization was to promote open source as
a means of encouraging innovation. Consistent with the general sense of copy-
left, distributed modifications to any preexisting source code files obtained under
an MPL open source license also had to be disclosed under the terms of the MPL
license. However, completely new source code files, which a licensee developed,
were not restricted or covered by any of the terms of the MPL. Furthermore, this
remained the case even when the additions or changes were referenced by mod-
ifications made in the MPL-licensed section of the source code. In comparison
with some existing open source licenses, the MPL license had “more copyleft
(characteristics) than the BSD family of licenses, which have no copyleft at all,
but less than the LGPL or the GPL” licenses (http://www.mozilla.org/MPL/mpl-
faq.html). The Netscape browser itself (post-1998) contained both types of files,
closed and open. It included proprietary (closed source) files that were not sub-
ject to the MPL conditions and were available only in binary. But the release
also included MPL files from the Mozilla project, which were now open source.

Although Netscape’s market share still declined, out of its ashes would come
something new and vital. The versions of Netscape released after 2000 con-
tained a new browser engine named Gecko, which was responsible for rendering

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 43

and laying out the content of Web pages. This was released under the MPL
license and was open source. But, the open source releases of Netscape were
not very successful, partly because of a complicated distribution package. The
Netscape project was finally shut down by then owner AOL in 2003. How-
ever, a small, nonprofit, independent, open source development organization
called the Mozilla Foundation, largely self-funded through contributions, was
set up by AOL to independently continue browser development. The purpose
of the foundation was to provide organizational, legal, and financial support for
the Mozilla open source software project. Its mission was to preserve choice
and promote innovation on the Internet (mozilla.org/foundation/). Out of this
matrix, the Firefox browser would rise phoenix-like and open source from the
ashes of Netscape. Thus “a descendant of Netscape Navigator (was) now poised
to avenge Netscape’s defeat at the hands of Microsoft” (McHugh, 2005).

2.2.3 Firefox

The Mozilla Foundation development team that produced Firefox began by
refocusing on the basic needs of a browser user. It scrapped the overly complex
Netscape development plans and set itself the limited objective of making a
simple but effective, user-oriented browser. The team took the available core
code from the Netscape project and used that as a basis for a more streamlined
browser they thought would be attractive. In the process they modified the
original Netscape Gecko browser layout engine to create a browser that was
also significantly faster. The eventual outcome was Firefox, a cross-platform
open source browser released at the end of 2004 by the Mozilla Foundation
that has proven explosively popular. Firefox is now multiply licensed under
the GPL, LGPL, or MPL at the developer’s choice. It also has an End User
License Agreement that has some copyright and trademark restrictions for the
downloaded binaries needed by ordinary users.

Firefox has been a true mass-market success. It is unique as an open source
application because the number of its direct end users is potentially in the hun-
dreds of millions. Previous successful open source applications like Linux and
Apache had been intended for technically proficient users and addressed (at least
initially in the case of Linux) a smaller end-user market, while desktop environ-
ments like GNOME and KDE are intended for a Linux environment. Firefox’s
market advantages include being portable to Windows, Linux, and Apple.
This increases its potential audience vis-à-vis Internet Explorer. It also closely
adheres to the W3C standards that Internet Explorer has viewed as optional. Like
the original Netscape browser, Firefox burst onto the browser scene, quickly
capturing tens of millions of downloads: 10 million in its first month, 25 million

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

44 2 Open Source Internet Application Projects

within 100 days of publication, and a 100 million in less than a year. Fire-
fox 1.5 had 2 million downloads within 2 days of publication in November
2005. It rapidly gained prominence in the browser market, capturing by some
estimates 25% of the market (w3schools.com/browsers/browsers stats.asp,
accessed December 6, 2006) within a year or so of its initial release, though
sources like Net Applications Market Share survey show significantly lower
penetration, under 15% in late 2006 (http://marketshare.hitslink.com, accessed
December 6, 2006).

Microsoft’s complacency with regard to the security of Internet Explorer
serendipitously helped Firefox’s debut. In June 2004, a Russian criminal orga-
nization distributed Internet malware called Download.ject that exploited a
composite weakness jointly involving Windows IIS servers and a security vul-
nerability in Internet Explorer. Ironically, the exploited security shortcoming
in Internet Explorer was tied precisely to its tight integration with the Win-
dows operating system. This integration provided certain software advantages
to the browser but also allowed hackers to leverage their attacks (Delio, 2004).
Although the attack was countered within a few days, its occurrence highlighted
IE security holes and was widely reported in the news. US CERT (the US Com-
puter Emergency Readiness Team) advised federal agencies at the time to use
browsers other than Internet Explorer in order to mitigate their security risks
(Delio, 2004). The negative publicity about IE vulnerabilities occurred pre-
cisely when the first stable version of Firefox appeared. This played right into
one of Firefox’s purported strengths, not just in usability but also in security,
thereby helping to establish Firefox’s appeal.

The (Mozilla) Firefox project was started by Blake Ross. Blake had been
a contractor for Netscape from age 15 and already had extensive experience
in debugging the Mozilla browser. The precocious Ross had become dissatis-
fied with the project’s direction and its feature bloat. He envisioned instead
a simpler easy-to-use browser, so he initiated the Firefox project in 2002.
Experienced Netscape developer Dave Hyatt partnered with Ross, bringing
with him a deep knowledge of the critical Mozilla code base. Ben Goodger
was engaged to participate because of his Web site’s “thorough critique of
the Mozilla browser” (Connor, 2006b). He subsequently became lead Firefox
engineer when Ross enrolled in Stanford at age 19. Firefox was released in late
2004 under Goodger, who was also instrumental in the platform’s important
add-on architecture (Mook, 2004). Although its development depended on the
extensive Netscape code base, it was an “extremely small team of commit-
ted programmers” who developed Firefox (Krishnamurthy, 2005a). The core
project group currently has six members: the aforementioned Ross, Hyatt, and
Goodger, as well as Brian Ryner, Vladmir Vukicevic, and Mike Connor.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 45

Key factors in the success of Firefox included its user design criteria, the
characteristics and policies of its development team, and its unique, open
community-based marketing strategy.

The project’s central design principle was “keep it simple.” Ross has used
family imagery to describe the design criteria for determining which features to
include in the browser. They would ask the following questions about putative
features (Ross, 2005b):

Does this help mom use the web? If the answer was no, the next question was: does
this help mom’s teenage son use the web? If the answer was still no, the feature
was either excised entirely or (occasionally) relegated to config file access only.
Otherwise, it was often moved into an isolated realm that was outside of mom’s
reach but not her son’s, like the preferences window.

In the same spirit, Ross describes Firefox as being about “serving users” and
contends that a window of opportunity for Firefox’s development had opened
because Microsoft had irresponsibly abandoned Internet Explorer, leaving “for
dead a browser that hundreds of millions of people rely on” (Ross, 2006).

The Firefox development team structure was intentionally lean, even elitist.
The FAQ in the inaugural manifesto for the project explained why the devel-
opment team was small by identifying the kinds of problems that handicapped
progress on the original Mozilla project under Netscape after 2000: “Factors
such as marketing teams, compatibility constraints, and multiple UI designers
pulling in different directions have plagued the main Mozilla trunk develop-
ment. We feel that fewer dependencies, faster innovation, and more freedom to
experiment will lead to a better end product” (blakeross.com/firefox/README-
1.1.html, accessed December 6, 2006).

The lead developers wanted to keep the development group’s structure sim-
ple, not just the browser’s design. According to the manifesto, CVS access was
“restricted to a very small team. We’ll grow as needed, based on reputation and
meritorious hacks” (README-1.1.html). Thus in typical open source style,
admission was meritocratic. To the question “how do I get involved,” the blunt
answer was “by invitation. This is a meritocracy – those who gain the respect of
those in the group will be invited to join the group.” As far as getting help from
participants who wanted to chime in about bugs they had detected, the FAQ
was equally blunt. To the question “where do I file bugs,” the answer was “you
don’t. We are not soliciting input at this time. See Q2.” Of course the project
was open, so you could get a copy of the source code from the Mozilla CVS tree.
Despite these restrictions, the list of credited participants in the 1.0.4 version
included about 80 individuals, which is a significant base of recognized con-
tributors. You can refer to the Help > About Firefox button in the browser for
the current credits list. Subsequent documents elaborated on how to participate

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

46 2 Open Source Internet Application Projects

in the project in a more nuanced and inclusive way but without changing the
underlying tough standards (Ross, 2005a).

The study by Krishnamurthy (2005a) describes the project as a “closed-door
open source project,” a characterization not intended to be pejorative. It analyzes
the logistic and organizational motivations for and consequences of enforcing
tight standards for participating in development. Overly restrictive control of
entry to participation in an open project can have negative ramifications for the
long-term well-being of the project. Indeed, Firefox developer Mike Connor
complained vocally at one point that “in nearly three years we haven’t built up
a community of hackers, and now I think we’re in trouble. Of the six people
who can actually review in Firefox, four are AWOL, and one doesn’t do a lot of
reviews” (Connor, 2006a). However, a subsequent blog by Connor described
the ongoing commitment of the major Firefox developers and the number of
participants in Mozilla platform projects more positively, including the presence
of many corporate sponsored “hackers” (Connor, 2006b).

Although the core development team was small and initially not solicitous to
potential code contributors, the project made intensive effort to create an open
community support base of users and boosters. The site http://www.mozila.org/
is used to support product distribution. A marketing site at www.spreadfirefox.
com was set up where volunteers were organized to “spread the word” about
Firefox in various ways, a key objective of the promotional campaign being used
to get end users to switch from Internet Explorer. The site www.defendthefox.
com was established to put “pressure on sites that were incompatible with Fire-
fox. Users could visit it and identify web sites that did not display appropriately
when Firefox was used as the browser” (Krishnamurthy, 2005b). Although
Firefox was open source, the notion that large numbers of developers would be
participating in its development was mistaken; the participants were primarily
involved in its promotion. The combination of a complacent competitor (Inter-
net Explorer), an energized open volunteer force organized under an effective
leader, and an innovative product was instrumental in the rapid success of Fire-
fox (Krishnamurthy, 2005b). It also benefited from strong public recognition
like being named PC World Product of the Year 2005.

There are a number of characteristics on which Firefox has been claimed to
be superior and perceptions that have helped make it popular, including having
better security, the availability of many user-developed extensions, portabil-
ity, compliance with Web standards, as well as accessibility and performance
advantages. We will briefly examine these claims.

Open source Firefox is arguably more secure than proprietary Internet
Explorer. For example, the independent computer security tracking firm Secu-
nia’s (Secunia.com) vulnerability reports for 2003–2006 identify almost 90

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 47

security advisories for IE versus slightly more than 30 for Firefox. Further-
more, about 15% of the IE advisories were rated as extremely critical versus
only 3% for Firefox. Other related security statistics from Secunia note that as
of June 2006, more than 20 of over 100 IE advisories were unpatched, with one
or more of these listed as highly critical. In contrast, only 4 of the 33 Secunia
advisories for Firefox were unpatched and were listed as less critical. It must be
kept in mind that these security vulnerabilities fluctuate over time and there are
details to the advisories that make the interpretation of the statistics ambiguous,
but Firefox seems to have a security edge over Internet Explorer, at least at the
present time. Aside from the Firefox security model, the fact that the browser
is less closely bound to the operating system than Internet Explorer, its lack of
support for known IE security exposures like ActiveX, and the public accessi-
bility of an open source product like Firefox to ongoing scrutiny of its source
code for bugs and vulnerabilities arguably bolster its security.

A significant feature of Firefox is that it allows so-called extensions to pro-
vide extra functionality. According to Firefox Help, “extensions are small
add-ons to Firefox that change existing browser functionality or add new
functionality.” The Firefox site contains many user-developed extensions,
like the NoScript extension that uses whitelist-based preemptive blocking to
allow Javascript and other plug-ins “only for trusted domains of your choice”
(https://addons.mozilla.org). The extensions are easy to install and uninstall.
Individuals can develop their own extensions using languages like Javascript
and C++. Refer to http://developer.mozilla.org/ for a tutorial on how to build an
XPCOM (Cross-Platform Component Object Model) component for Firefox.
This feature helps recruit talent to further develop the product. The extension
model has two important advantages. Not providing such functionalities as
default features helps keep the core product lean and unbloated. It also pro-
vides an excellent venue for capitalizing on the talent and creativity of the open
community. Creative developers can design and implement new add-ons. Users
interested in the new functionality can easily incorporate it in their own browser.
This provides the advantage of feature flexibility without feature bloat and lets
users custom-tailor their own set of features. Firefox also provides a variety of
accessibility features that facilitate its use by the aged and visually impaired.

The relative performance of browsers in terms of speed is not easy to judge,
and speed is only one aspect of performance. A fast browser compromised
by serious security weaknesses is not a better browser. Useful Web sites like
howtocreate.co.uk/browserSpeed.html (accessed December 6, 2006) present a
mixed picture of various speed-related metrics for browsers for performance
characteristics, like time-to-cold-start the browser, warm-start-time (time to
restart browser after it has been closed), caching-retrieval-speed, script speed,

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

48 2 Open Source Internet Application Projects

and rendering tables, for browsers such as Firefox, Internet Explorer, and Safari.
These statistics do not uniformly favor any one of the browsers.

HTML and Javascript
We conclude our discussion of browsers with some brief remarks about HTML
and Javascript, tools that are central features of the Internet experience. Both
HTML (a markup language) and Javascript (a client-side scripting language that
acts as the API for an HTML document’s Document Object Model) have acces-
sible source code. Therefore, in this rudimentary sense, they are not “closed
source.” Of course, neither are they “open source” in any strict sense of the
term, since, other than the visibility of the code, none of the other features of
open source software come into play, from licensing characteristics, to modi-
fication and redistribution rights, to open development processes. The HTML
and Javascript contents have implicit and possibly explicit copyrights and so
infringement by copying may be an issue, but there are no license agreements
involved in their access. Some purveyors of commercial Javascript/HTML
applications do have licenses specifically for developer use, but these are not
open software licenses. Despite the absence of licensing and other free software
attributes, the innate visibility of the code for these components is noteworthy
(see also Zittrain, 2004). O’Reilly (2004) observed, as we noted previously, that
the simple “View Source” capability inherited by browsers from Berners-Lee’s
original browser had the effect of reducing “barriers to entry for amateurs” and
was “absolutely key to the explosive spread of the Web” because one could
easily imitate the code of others.

References

Andreessen, M. (1998). Innovators of the Net: Brendan Eich and Javascript. http://
cgi.netscape.com/columns/techvision/innovators be.html. Accessed January 10,
2007.

Andreessen, M. and Bina, E. (1994). NCSA Mosaic: A Global Hypermedia System.
Internet Research, 4(1), 7–17.

Berners-Lee, T. (1999). Weaving the Web. Harper, San Francisco.
Connor, M. (2006a). Myths and Clarifications. March 4. http://steelgryphon.com/

blog/?p=37. Accessed December 6, 2006.
Connor, M. (2006b). Myths and Clarifications. March 11. http://steelgryphon.com/

blog/?p=39. Accessed December 6, 2006.
Delio, M. (2004). Mozilla Feeds on Rival’s Woes. http://www.wired.com/news/

infostructure/0,1377,64065,00.html. Accessed November 29, 2006.
Eich, B. (1998). Making Web Pages Come Alive. http://cgi.netscape.com/columns/

techvision/innovators be.html. Accessed January 10, 2007.
Gillies, J. and Cailliau, R. (2000). How the Web Was Born. Oxford University Press,

Oxford.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.2 The Browsers 49

Griffin, S. (2000). Internet Pioneers: Marc Andreessen. http://www.ibiblio.org/pioneers/
andreesen.html. Accessed January 10, 2007.

Kollar-Kotelly, C. (2002). United States of America v. Microsoft Corporation. Civil
Action No. 98–1232 (CKK). Final Judgment. http://www.usdoj.gov/atr/cases/
f200400/200457.htm. Accessed January 10, 2007.

Krishnamurthy, S. (2005a). About Closed-Door Free/Libre/Open Source (FLOSS)
Projects: Lessons from the Mozilla Firefox Developer Recruitment Approach.
European Journal for the Informatics Professional. 6(3), 28–32. http://www.
upgrade-cepis.org/issues/2005/3/up6–3Krishnamurthy.pdf. Accessed January 10,
2007.

Krishnamurthy, S. (2005b). The Launching of Mozilla Firefox – A Case Study
in Community-Led Marketing. http://opensource.mit.edu/papers/sandeep2.pdf.
Accessed November 29, 2006.

Lea, G. (1998). Prosecution Says Gates Led Plan to Crush Netscape. Octo-
ber 20. http://www.theregister.co.uk/1998/10/20/prosecution says gates led plan/.
Accessed January 10, 2007.

Lohr, S. (1999). The Prosecution Almost Rests: Government Paints Microsoft as
Monopolist and Bully. January 8. The NY Times on the Web. http://query.nytimes.
com/gst/fullpage.html?sec=technology&res=9C03E6DD113EF93BA35752C0
A96F958260&n=Top%2fReference%2fTimes%20Topics%2fSubjects%2fA%2f
Antitrust%20Actions%20and%20Laws. Accessed January 10, 2007.

Markoff, J. (1993). A Free and Simple Computer Link. December 8. http://www.
nytimes.com/library/tech/reference/120893markoff.html. Accessed January 10,
2007.

McHugh, J. (2005). The Firefox Explosion. Wired Magazine, Issue 13.02.
http://www.wired.com/wired/archive/13.02/firefox.html. Accessed November 29,
2006.

Mook, N. (2004). Firefox Architect Talks IE, Future Plane. Interview with Blake Ross.
November 29. http://www.betanews.com/article/Firefox Architect Talks IE
Future Plans/1101740041. Accessed December 6, 2006.

NCSAmosaic.pdf. (2006). World Wide Web. http://www.governingwithcode.org. Ac-
cessed January 10, 2007.

O’Reilly, T. (2000). Open Source: The Model for Collaboration in the Age of the Inter-
net. O’Reilly Network. http://www.oreillynet.com/pub/a/network/2000/04/13/
CFPkeynote.html?page=1. Accessed November 29, 2006.

Raggett, D., Lam, J., Alexander, I., and Kmiec, K. (1998). Raggett on HTML 4. Addison-
Wesley Longman, Reading, MA.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version: http://
www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Reid, R.H. (1997). Architects of the Web: 1,000 Days That Built the Future of Business.
John Wiley & Sons, New York.

Ross, B. (2005a). Developer Recruitment in Firefox. January 25. http://blakeross.com/.
Accessed December 6, 2006.

Ross, B. (2005b). The Firefox Religion. January 22. http://blakeross.com/. Accessed
December 6, 2006.

Ross, B. (2006). How to Hear without Listening. June 6. http://blakeross.com/. Accessed
December 6, 2006.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

50 2 Open Source Internet Application Projects

Wagner, D. (2002). “Marc Andreessen,” Jones Telecommunications and Multime-
dia Encyclopedia. Jones International. See also: http://www.thocp.net/biographies/
andreesen marc.htm. Accessed January 10, 2007.

Zawinski, J. (1999). Resignation and Postmortem. http://www.jwz.org/gruntle/nomo.
html. Accessed November 29, 2006.

Zittrain, J. (2004). Normative Principles for Evaluating Free and Proprietary Software.
University of Chicago Law Review, 71(1), 265.

2.3 Fetchmail

Eric Raymond, a well-known open source advocate, published an essay in 1998
about open source development. The essay was called “The Cathedral and The
Bazaar” (Raymond, 1998). It famously contrasted the traditional model of soft-
ware development with the new paradigm introduced by Linus Torvalds for
Linux. Raymond compared the Linux style of development to a Bazaar. In con-
trast, Brooks’ classic book on software development The Mythical Man Month
(Brooks, 1995) had compared system design to building a Cathedral, a cen-
tralized understanding of design and project management. Raymond’s essay
recounts the story of his own open source development project, Fetchmail,
a mail utility he developed in the early 1990s. He intentionally modeled his
development of the mail utility on how Linus Torvalds had handled the devel-
opment of Linux. Fetchmail is now a common utility on Unix-like systems for
retrieving e-mail from remote mail servers. According to the description on
its project home page, it is currently a “full-featured, robust, well-documented
remote-mail retrieval and forwarding utility intended to be used over on-demand
TCP/IP links (such as SLIP or PPP connections). It supports every remote-mail
protocol now in use on the Internet” (http://fetchmail.berlios.de/, accessed Jan-
uary 12, 2007.)

Although Fetchmail is a notable project, it pales in scope and significance
to many other open source projects. Efforts like the X Window System are
orders of magnitude larger and far more fundamental in their application but
receive less coverage. However, Fetchmail had a bard in Eric Raymond and his
essay has been widely influential in the open source movement. It aphoristically
articulated Torvalds’ development methodology at a critical point in time and
took on the status of an almost mythological description of Internet-based open
source development. It also introduced the term bazaar as an image for the open
style of collaboration.

Raymond structures his tale as a series of object lessons in open source
design, development, and management that he learned from the Linux process
and applied to his own project. The story began in 1993 when Raymond needed

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.3 Fetchmail 51

a mail client that would retrieve his e-mail when he dialed up on his intermit-
tent connection from home. Applications like this were already available and
typically used a client-side application based on the POP (or POP3) Post Office
Protocol. However, the first clients he tried did not handle e-mail replies prop-
erly, whence came his first Linux-derived lesson or moral: every good work of
software starts by scratching a developer’s personal itch. This is a now famous
aphorism in the literature on the motivations of open source developers. This
motivation contrasts sharply with the workaday world of most programmers
who “spend their days grinding away for pay at programs they neither need nor
love. But not in the Linux world – which may explain why the average quality
of software originated in the Linux community is so high” (Raymond, 1998).
The lessons extend on from there and are both interesting and instructive.

A defining characteristic of open source is that it lets you build on what
went before. It lets you start from somewhere, not from nowhere. It is a lot
easier to develop an application if you start with a development base. Linus did
that with Linux. Raymond did it with his more humble application, Fetchmail.
After Raymond recognized his need for an application, he did not just start
off programming it ex nihilo. That would have violated what Raymond (1998)
called the second lesson of open source development: “Good programmers
know what to write. Great ones know what to rewrite (and reuse).” People
typically think of code reuse in the context of general software engineering or
object-oriented style, class/library-based implementation. But reuse is actually
a quintessential characteristic and advantage of open source development. When
only proprietary software is available, the source code for previous applications
that a developer wants to improve or modify is, by definition, undisclosed. If
the source code is not disclosed, it cannot be easily reused or modified, at least
without a great deal of reverse engineering effort which may even be a violation
of the software’s licensing requirements. If a proprietary program has an API,
it can be embedded in a larger application, on an as-is basis, but the hidden
source itself could not be adapted. Exactly the opposite is the case in the open
source world, where the source code is always disclosed by definition. Since
there is plenty of disclosed source code around, it would be foolish not to try
to reuse it as a point of departure for any related new development. Even if the
modification is eventually thrown away or completely rewritten, it nonetheless
provides an initial scaffolding for the application. Raymond did this for his
e-mail client, exactly as Linus had done when he initiated Linux. Linus had not
started with his own design. He started by reusing and modifying the existing
Minix open source software developed by Tanenbaum. In Raymond’s case, he
“went looking for an existing POP utility that was reasonably well coded, to use
as a development base” (Raymond, 1998), eventually settling on an open source

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

52 2 Open Source Internet Application Projects

e-mail client called Fetchpop. He did this intentionally, explicitly in imitation
of Linus’ approach to development. Following standard open source practice,
Raymond modified Fetchpop and submitted his changes to the software owner
who accepted them and released it as an updated version.

Another principle of development is “reuse,” and then reuse and rebuild
again if appropriate. Fred Brooks’ had opined that a software developer should
“plan to throw one away; you will anyhow” (Brooks, 1995). This is partly an
unavoidable cognitive constraint. To really understand a problem, you have to
try to solve the problem. After you’ve solved it once, then you have a better
appreciation of what the actual problem was in the first place. The next time
around, your solution can then be based on a more informed understanding
of the issues. With this in mind, Raymond anticipated that his first solution
might be only a temporary draft. So when the opportunity for improvement
presented itself, he seized it. He came across another open source e-mail client
by Carl Harris called Popclient. After studying it, he recognized that it was
better coded than his own solution and he sent some patches to Harris for
consideration. However, as it turned out, Harris was no longer interested in the
project. But, he gladly ceded ownership of the software to Raymond who took
on the role of maintainer for the Popclient project in mid-1996. This episode
illustrated another principle in the open source code of conduct: “When you
lose interest in a program, your last duty to it is to hand it off to a competent
successor” (Raymond, 1998). Responsible open source fathers don’t leave their
children to be unattended orphans.

Open source development has not always been distributed collaborative
development, which Raymond calls bazaar style development. He describes the
Linux community as resembling “a great babbling bazaar of differing agendas
and approaches . . . out of which a coherent and stable system could seemingly
emerge only by a succession of miracles” (Raymond, 1998). He contrasts this
with one of the longest standing open source projects, the GNU project, which
had developed software the old-fashioned way, using a closed management
approach with a centralized team and slow software releases. With exceptions
like the GNU Emacs Lisp Library, GNU was not developed along the lines of
the Linux model. Indeed, consider the sluggishness of the development of the
GNU GCC Compiler, done in the traditional manner, versus the rapid develop-
ment that occurred when the GCC project was bifurcated into two streams: the
regular GCC development mode and a parallel “bazaar” mode of development
à la Linux for what was called EGCS (Experimental GNU Compiler System)
beginning in 1997. The difference in the rates of progress of the two projects
was striking. The new bazaar development style for EGCS dramatically out-
paced the conventional mode used for the GCC project, so much so that by

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.3 Fetchmail 53

1999 the original GCC project was sunset and development was placed under
the EGCS project, which almost amounted to a controlled experiment on the
relative effectiveness of the bazaar and conventional methods.

In the open source and Unix tradition, users tend to be simultaneously users
and developers, often expert developers or hackers. As expected, Raymond’s
adopted Popclient project came with its own user base. So once again in con-
scious imitation of the Linux development model, he recognized that this com-
munity of interest was an enormous asset and that “given a bit of encourage-
ment, your users will diagnose problems, suggest fixes, and help improve the
code far more quickly than you could unaided” (Raymond, 1998). The devel-
opment principle he followed was that “treating your users as co-developers
is your least-hassle route to rapid code improvement and effective debugging”
(Raymond, 1998). This process of successfully engaging the user-developer
base was exactly what Linus had done so well with Linux.

The use of early and frequent software releases was another quintessen-
tial characteristic of the Linux development process. This kept the user base
engaged and stimulated. Linus’ approach ran contrary to the conventional think-
ing about development. Traditionally, people believed that releasing premature,
buggy versions of software would turn users off. Of course, in the case of sys-
tem software like Linux and a user-developer base of dedicated, skilled hack-
ers, this logic did not apply. The Linux development principle was “Release
early. Release often. And listen to your customers” (Raymond, 1998). Granted
that frequent releases were characteristic in the Unix tradition, Linus went far
beyond this. He “cultivated his base of co-developers and leveraged the Internet
for collaboration” (Raymond, 1998) to such an extent and so effectively that he
scaled up the frequent release practice by an order of magnitude over what had
ever been done previously. Releases sometimes came out at the unbelievable
rate of more than once a day. It was no accident that the initiation of the Linux
project and the burgeoning growth of the Internet were coincident because the
Internet provided both the distributed talent pool and the social interconnec-
tivity necessary for this kind of development to happen. Raymond’s Fetchmail
project intentionally followed Linus’ modus operandi, with releases almost
always arriving at most at 10-day intervals, and sometimes even once a day à la
Linux.

This community-participation-driven process unsurprisingly required a lot
of people skills to manage properly. Again per Linus’ practice, Raymond cul-
tivated his own beta list of tester supporters. The total number of participants
in his project increased linearly from about 100 initially to around 1,500 over a
5-year period, and with user-developers reaching a peak of about 300, eventually
stabilizing at around 250. During the same period the number of lines of code

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

54 2 Open Source Internet Application Projects

grew from under 10,000 to nearly 50,000. As with many open source projects,
there are excellent development statistics. For Fetchmail, see the historical and
statistical overview at http://www.catb.org/∼esr/fetchmail/history.html. These
user-developers had to be kept engaged, just as Linus had to keep his user-
developers interested. Their egos had to be stroked by being adequately recog-
nized for their contributions, and even given rapid satisfaction via the speedy
releases incorporating new patches. Raymond added anyone who contacted
him about Fetchmail to his beta list. Normally beta testing, where a product
is given exposure to real-world users outside the development organization,
would be the last round of testing of a product before its commercial release.
But in the Linux model, beta testing is dispersed to the user-developers over
many beta style releases, prior to the release of a stable tested product for more
general users. Raymond would make “chatty announcements” to the group to
keep them engaged and he listened closely to his beta testers. As a result, from
the onset he received high-quality bug reports and suggestions. He summarized
the attitude with the observation that “if you treat your beta-testers as if they’re
your most valuable resource, they will respond by becoming your most valu-
able resource” (Raymond, 1998). This not only requires a lot of energy and
commitment on the part of the project owner, it also means the leader has to
have good interpersonal and communication skills. The interpersonal skills are
needed to attract people to the project and keep them happy with what’s hap-
pening. The communication skills are essential because communicating what
is happening in the project is a large part of what goes on. Technical skill is a
given, but personality or management skill is invariably a prominent element
in these projects.

The user-developer base is critical to spotting and fixing bugs. Linus observed
that the bug resolution process in Linux was typically twofold. Someone would
find a bug. Someone else would understand how to fix it. An explanation for
the rapidity of the debugging process is summarized in the famous adage:
“Given enough eyeballs, all bugs are shallow” (Raymond, 1998). The bazaar
development model appeared to parallelize debugging with a multitude of users
stressing the behavior of the system in different ways. Given enough such beta
testers and codevelopers in the open source support group, problems could be
“characterized quickly and the fix (would be) obvious to someone.” Further-
more, the patch “contributions (were) received not from a random sample, but
from people who (were) interested enough to use the software, learn about how
it works, attempt to find solutions to problems they encounter(ed), and actually
produce an apparently reasonable fix. Anyone who passes all these filters is
highly likely to have something useful to contribute” (Raymond, 1998). On
the basis of this phenomenon, not only were recognized bugs quickly resolved

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.3 Fetchmail 55

in Linux development, the overall system was relatively unbuggy, as even the
Halloween documents from Microsoft observed.

Debugging in an open source environment is extremely different from debug-
ging in a proprietary environment. After discussions with open developers, Ray-
mond analyzed in detail how the debugging process works in open source. The
key characteristic is source-code awareness. Users who do not have access to
source code tend to supply more superficial reports of bugs. They provide not
only less background information but also less “reliable recipe(s) for reproduc-
ing the bug” (Raymond, 1998). In a closed source environment, the user-tester
is on the outside of the application looking in, in contrast to the developer
who is on the inside looking out and trying to understand what the bug report
submitted by a user-observer means. The situation is completely different in
an open source context where the “tester and developer (are able) to develop
a shared representation grounded in the actual source code and to communi-
cate effectively about it” (Raymond, 1998). He observes that “most bugs, most
of the time, are easily nailed given even an incomplete but suggestive charac-
terization of their error conditions at source-code level (italics added). When
someone among your beta-testers can point out, ‘there’s a boundary problem
in line nnn’, or even merely ‘under conditions X, Y, and Z, this variable rolls
over’, a quick look at the offending code often suffices to pin down the exact
mode of failure and generate a fix” (Raymond, 1998).

The leader of an open source development project does not necessarily have
to be a great designer himself, but he does have to be able to recognize a great
design when someone else comes up with one. At least this is one of Ray-
mond’s interpretations of the Linux development process. It certainly reflects
what occurred in his own project. By a certain point, he had gone through mod-
ifications of two preexisting open source applications: Fetchpop, where he had
participated briefly as a contributor, and Popclient, where he had taken over
as the owner and maintainer from the previous project owner. Indeed he says
that the “biggest single payoff I got from consciously trying to emulate Linus’
methods” happened when a “user gave me this terrific idea – all I had to do
was understand the implications” (Raymond, 1998). The incident that precip-
itated the revelation occurred when Harry Hochheiser sent him some code for
forwarding mail to the client SMTP port. The code made Raymond realize that
he had been trying to solve the wrong problem and that he should completely
redesign Fetchmail as what is called a Mail Transport Agent: a program that
moves mail from one machine to another. The Linux lessons he was emulating
at this point were twofold: the second best thing to having a good idea yourself
is “recognizing good ideas from your users” and that it is often the case that “the
most striking and innovative solutions come from realizing that your concept

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

56 2 Open Source Internet Application Projects

of the problem was wrong” (Raymond, 1998). The code of the redesigned soft-
ware turned out to be both better and simpler than what he had before. At this
point it was proper to rename the project. He called it Fetchmail. Fetchmail
was now a tool that any Unix developer with a PPP (Point-to-Point Protocol)
mail connection would need, potentially a category killer that fills a need so
thoroughly that alternatives are not needed. In order to advance it to the level
of a truly great tool, Raymond listened to his users again and added some more
key features like what is called multidrop support (which turns out to be useful
for handling mailing lists) and support for 8-bit MIME.

Raymond also elaborates cogently on the key preconditions for a bazaar style
of development to be possible in the first place. These include programmatic,
legal, and communication requirements. The programmatic requirements were
particular to a project, and the legal and communications infrastructure were
generic requirements for the entire phenomenon.

The Linux style design process does not begin in a vacuum. Programmati-
cally, in open source development there has to be something to put on the table
before you can start having participants improve, test, debug, add features, and
so on to the product. Linus, for example, began Linux with a promising prelim-
inary system which in turn had been precipitated by Tanenbaum’s earlier Minix
kernel. The same was true for Raymond’s Fetchmail, which, like Linux, had a
“strong, attractive basic design(s)” before it went public. Although the bazaar
style of development works well for testing, debugging, code improving, and
program design, one cannot actually originate a product in this forum. First of
all, there has to be a program to put on display that runs! There cannot be just a
proposal for an idea. In open source, code talks. Secondly, the running program
has to have enough appeal that it can “convince potential co-developers that it
can be evolved into something really neat in the foreseeable future” (Raymond,
1998). It may have bugs, lack key features, and have poor documentation, but
it must run and have promise. Remember that “attention is still a nonrenew-
able resource” and that the interest of potential participants as well as “your
reputation is on the line” (Fogel and Bar, 2003).

Another precondition for bazaar-style open development is the existence
of an appropriate legal framework. The nondisclosure agreements of the pro-
prietary Unix environment would prevent this kind of free-wielding process.
Explicitly formulated and widely recognized free software principles lay the
ground for a legal milieu people can understand and depend on.

Prior to free software and Linux, the open development environment was
not only legally impeded but geographically handicapped as well. The field
already knew from extensive experience with the multidecade effort in Unix
that great software projects exploit “the attention and brainpower of entire

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.3 Fetchmail 57

communities” even though coding itself remains relatively solitary. So collab-
orative distributed development was a recognized model – and after all it was
the classic way in which science had always advanced. But remote collabora-
tion had remained clumsy, and an effective communications infrastructure that
developers could work in was needed. The Internet had to emerge to transcend
the geographically bound developer communities at institutions like Bell Labs,
MIT, and Berkeley that did foster free interactions between individuals and
groups of highly skilled, but largely collocated, codevelopers. With the WWW
emerging, the collaborative approach represented by these traditional groups
could be detached from its geographic matrix and could even be exponentially
larger in terms of the number of people involved. At that point, one merely
needed a developer who knew “how to create an open, evolutionary context in
which feedback exploring the design space, code contributions, bug-spotting,
and other improvements come from hundreds (perhaps thousands) of people”
(Raymond, 1998).

Linux emerged when these enabling conditions were all in place. The Linux
project represented a conscious decision by Torvalds to use “the entire world as
its talent pool” (Raymond, 1998). Before the Internet and the WWW that would
have been essentially unworkable and certainly not expeditious. Without the
legal apparatus of free and open software, the culture of development would not
have had a conceptual framework within which to develop its process. But once
these were in place, things just happened naturally. Linux, and its intentional
imitators like Fetchmail, soon followed.

Traditional project management has well-identified, legitimate concerns:
how are resources required, people motivated, work checked for quality, inno-
vation nurtured, and so on. These issues do not disappear just because the
development model changes. Raymond describes how the project manage-
ment concerns of the traditional managerial model of software development
are addressed or obviated in the bazaar model of development. Let us assume
the basic traditional project management goals are defining the project goals,
making sure details are attended to, motivating people to do what may be bor-
ing, organizing people to maximize productivity, and marshaling resources for
the project. How are these objectives met in open source development?

To begin with, consider human resources. In open projects like Linux the
developers were, at least initially, volunteers, self-selected on the basis of their
interest, though subsequently they may have been paid corporate employees.
Certainly at the higher levels of participation, they had meritorious development
skills, arguably typically at the 95% percentile level. Thus, these participants
brought their own resources to the project, though the project leadership had to
be effective enough to attract them in the first place and then retain them. The

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

58 2 Open Source Internet Application Projects

open process also appears to be able to organize people very effectively despite
the distributed environment. Because participants tend to be self-selected, they
come equipped with motivation, in possible contrast to corporate organiza-
tions based on paid employees who might rather be doing something else or
at least working on a different project. The monitoring provided in a conven-
tional managerial environment is implemented radically differently in an open
source, where it is replaced by widespread peer and expert review by project
leaders, maintainers, committers, or beta testers. In fact, in open source “decen-
tralized peer review trumps all the conventional methods for trying to ensure
that details don’t get skipped” (Raymond, 1998). Finally, consider the initial
definition of the project, an issue that is also directly related to the question of
innovativeness. Open projects like Linux have been criticized for chasing the
taillights of other extant projects. This is indeed one of the design techniques
that has been used in the free software movement where part of the histori-
cal mission has to be to recreate successful platforms in free implementations
(see such as Bezroukov (1999) on the Halloween-I document). However, open
projects do not always imitate. For example, Scacchi (2004, p. 61) describes
how in the creation of open requirements for game software, the specifications
“emerge as a by-product of community discourse about what its software should
or shouldn’t do . . . and solidify into retrospective software requirements.” On
the other hand, the conventional corporate model has a questionable record
of defining systems properly, it being widely believed that half to three quar-
ters of such developments are either aborted before completion or rejected by
users. Creative ideas ultimately come from individuals in any case, so what is
needed is an environment that recognizes and fosters such ideas, which the open
source model seems to do quite well. Furthermore, historically, universities and
research organizations have often been the source of software innovation, rather
than corporate environments.

We conclude with some comments about the bazaar metaphor and Linus’
law. To begin with, let us note that though Raymond’s seminal bazaar metaphor
is striking; every metaphor has its limitations. The imagery resonates with the
myriad of voices heard in an open development and has an appealing romantic
cache. The term also probably resonates with Raymond’s personal libertarian
beliefs, with their eschewal of centralized control. But it lacks adequate refer-
ence to an element essential in such development: the required dynamic, com-
petent, core leadership with its cathedral-like element. Of course, Raymond’s
essay clearly acknowledges this, but the bazaar metaphor does not adequately
capture it. Feller and Fitzgerald (2002, p. 160) point out that many of the
most important open source projects from Linux and Apache to GNOME and
FreeBSD are in fact highly structured, with a cadre of proven developers with

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.3 Fetchmail 59

expertise acknowledged in the development community (p. 166). Raymond
himself underscores that a project must begin with an attractive base design
which more often than not comes from one or perhaps a few individuals. Con-
tributions from a broader contributor pool may subsequently radically redefine
the original vision or prototype, but all along there is either a single individual
like Linus Torvalds or a small coherent group that adjudicates and vets these
contributions, integrating them in a disciplined way and generally steering the
ship (Feller and Fitzgerald, 2002, p. 171). The bazaar can also be a source
of distraction. Participation by “well meaning . . . (but) dangerously half clued
people with opinions – not code, opinions” (Cox, 1998) may proliferate like in
a bazaar, but this does not advance the ship’s voyage. Such caveats aside, it is
also indisputable that some of the unknown voices emanating from the bazaar
may ultimately prove invaluable, even if this is not obvious at first. As Alan
Cox observes, there are “plenty of people who given a little help and a bit of
confidence boosting will become one with the best” (Cox, 1998). The bazaar
can also provide helpful resources from unexpected sources. For example, Cox
advises that “when you hear ‘I’d love to help but I can’t program’, you hear a
documenter. When they say ‘But English is not my first language’ you have a
documenter and translator for another language” (Cox, 1998).

We next comment about the reliability achieved by open processes. Ray-
mond’s statement of Linus’ law, “with enough eyeballs, all bugs are shallow,”
focuses on parallel oversight as one key to the reliability of open source. The
implication is that bugs are detected rapidly. One might ask “are the products
actually more reliable and is the reliability due to the fact that there are many
overseers?” The record of performance for open source systems generally sup-
ports the thesis that open development is often remarkably effective in terms
of the reliability of its products. There are also specific studies like the anal-
ysis of the comparative reliability of MySQL mentioned in Chapter 1. Even
the Halloween memos from Microsoft refer to Microsoft’s own internal stud-
ies on Linux that accentuate its record of reliability. The “eyeballs” effect is
presumably part of the explanation for this reliability.

Research by Payne (1999, 2002), which compares security flaws in open and
closed systems, suggests that other causes may be at work as well. It suggests
that a mixture of practices explains reliability/security differences for the sys-
tems studied. The study examined the security performance of three Unix-like
systems in an effort to understand the relation between the security characteris-
tics of the systems, their open or closed source status, and their specific devel-
opment processes. The systems considered were OpenBSD, the open source
Debian GNU/Linux distribution, and the closed source Sun Solaris system.
Granted the myriad uncertainties intrinsic to any such study, Payne concluded

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

60 2 Open Source Internet Application Projects

that in terms of metrics like identified security vulnerabilities, OpenBSD was
the most secure of the three, followed at a considerable distance by Debian and
Solaris, with a slight edge given to Debian over Solaris. The results suggest an
overall security advantage for open source systems, though the relative close-
ness of the Debian and Solaris evaluations imply that open source status per
se is not the decisive driving factor. Indeed, as it turns out, there was a major
difference in the development processes for the systems that likely explains
much of the outcome. Namely, the “OpenBSD source code is regularly and
purposely examined with the explicit intention of finding and fixing security
holes . . . by programmers with the necessary background and security exper-
tise to make a significant impact” (Payne, 2002). In other words, the factor that
produced superior security may actually have been focused in auditing of the
code by specialists during development, though open source status appears to
be a supplemental factor.

Another perspective on the reliability or security benefits of open source is
provided by Witten et al. (2001). Their analysis is guarded about the general
ability of code reviews to detect security flaws regardless of the mode of devel-
opment. However, they observe that the proprietary development model simply
obliges users to “trust the source code and review process, the intentions and
capabilities of developers to build safe systems, and the developer’s compiler”
and to “forfeit opportunities for improving the security of their systems” (Witten
et al., 2001, p. 61). They also underscore the important role that open compil-
ers, whose operation is itself transparent, play in instilling confidence about
what a system does. Incidentally, they observe how security enhancing open
compilers like Immunix Stackguard, a gcc extension (see also Cowan, 1998),
can add so-called canaries to executables that can “defeat many buffer overflow
attacks” (Witten et al., 2001, p. 58). From this perspective, Linus’ law is about
more than just parallel oversight. It is a recognition of the inherent advantages
of transparency: open source code, a process of open development, the ability
to change code, giving the user control of the product, open oversight by many
community observers, and even the transparency and confidence provided by
open compilers.

References

Bezroukov, N. (1999). A Second Look at the Cathedral and Bazaar. First Monday,
4(12). http://www.firstmonday.org/issues/issue4 12/bezroukov/. Accessed January
5, 2007.

Brooks, F.P. (1995). The Mythical Man-Month – Essays on Software Engineering, 20th
Anniversary Edition, Addison-Wesley Longman, Reading, MA.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.4 The Dual License Business Model 61

Cowan, C. (1998). Automatic Detection and Prevention of Buffer-Overflow Attacks.
In: Proceedings of the 7th USENIX Security Symposium, USENIX, San Diego,
63–78.

Cox, A. (1998). Cathedrals, Bazaars and the Town Council. http://slashdot.org/
features/98/10/13/1423253.shtml. Accessed December 6, 2006.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Fogel, K. and Bar, M. (2003). Open Source Development with CVS, 3rd edition.
Paraglyph Press. http://cvsbook.red-bean.com/.

Payne, C. (1999). Security through Design as a Paradigm for Systems Development.
Murdoch University, Perth, Western Australia.

Payne, C. (2002). On the Security of Open Source Software. Information Systems, 12(1),
61–78.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version: http://
www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Scacchi, W. (2004). Free and Open Source Development Practices in the Game Com-
munity. IEEE Software, 21(1), 59–66.

Witten, B., Landwehr, C., and Caloyannides, M. (2001). Does Open Source Improve
System Security? IEEE Software, 18(5), 57–61.

2.4 The Dual License Business Model

A software product can be offered under different licenses depending, for exam-
ple, on how the software is to be used. This applies to proprietary and open
source products and provides a basis for a viable business model. Karels (2003)
examines the different commercial models for open products. The Sendmail
and MySQL products described later are representative. They have their feet
planted firmly in two worlds, the commercial one and the open community one.
On the one hand, the business model provides “extensions or a professional ver-
sion under a commercial license” for the product (Karels, 2003). At the same
time, the company that markets the product continues its management of the
open version. A key distinction in the dual license model is whether the free and
commercial products are identical. For the companies and products we discuss
the breakout as follows:

1. Open and proprietary code different Sendmail, Inc.
2. Open and proprietary code same MySQL AB, Berkeley DB, Qt

But with the proper license, proprietary enhancements can be done, for
example, for MySQL. Licensing duality can serve a company in a number of
ways. It continues the operation of the open user-developer base. It also pro-
motes goodwill for the company with the user-developer base. It maintains and

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

62 2 Open Source Internet Application Projects

improves acceptance for the open source base version. The continued sponsored
development of the open version simultaneously helps maintain and expand the
market for the commercial product. With products like Sendmail, the propri-
etary enhancements may include security improvements, such as e-mail virus
checking. Its distributions may typically provide “configuration and manage-
ment tools, higher-performance or higher-capacity versions” (Karels, 2003) to
supplement the root product in order to make a more attractive, commercially
viable product. The company’s product can thus end up incorporating both
open and commercially licensed software. From the customer’s point of view,
the product is now much like a traditional software product that is licensed and
paid for. One ongoing challenge for the distributor is to “maintain differentia-
tion between the free and commercial versions” since the commercial product
competes with its open fork, at least when the commercial version is different.
In order for the open version to retain market share, its functionality has to be
maintained and upgraded. In order for the commercial version to avoid com-
petition from evolving open variants, it has to continue to provide “sufficient
additional value to induce customers to buy it and to reduce the likelihood of a
free knockoff of the added components” (Karels, 2003). The commercial ver-
sion also has to provide all the accoutrements associated with a conventional
software provider, such as support, training, and product documentation.

Products that can be successfully marketed under a dual licensing framework
tend to have what are called strong network effects; that is, the benefit or value
of using a copy of the software tends to depend on how many other people also
use the software. For example, e-mail is not of much value if you have no one
to e-mail; conversely, its value is greater the more people you can reach. For
such products, the broader the user base, the more valuable the product. In the
dual license model, the free, open license serves the key role of establishing
a wide user base by helping to popularize the product with users (Valimaki,
2005). This popularized base helps make the product a branded entity, which
is extremely valuable for marketing purposes, especially for IT organizations
that are converting to open applications (Moczar, 2005). These effects in turn
make the proprietary license more worth buying for the relatively limited group
of potential commercial developers. It also makes it more attractive for them
to create a commercial derivative under the proprietary license because; for
example, the product will have an established audience of users. There is another
economic reason for allowing mixed license options like this: the open source
version can be used to build up a coterie of independent developers, bug spotters,
and so on – free contributors who can help enhance the product in one way
or another, benefiting the commercial company. As we will see later when
we discuss configuration management tools, Larry McVoy created a dual faux

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.4 The Dual License Business Model 63

free license for BitKeeper, especially for use on the Linux kernel. This had
the express purpose of building BitKeeper’s proprietary market share and also
obtaining highly useful input about bugs in the product from the Linux kernel
developers who used it. This “dual licensing” business strategy worked very
well until it had to be discontinued because of the open community controversies
about the “free” license version.

References

Karels, M. (2003). Commercializing Open Source Software. ACM Queue, 1(5), 46–55.
Moczar, L. (2005). The Economics of Commercial Open Source. http://pascal.case.

unibz.it/handle/2038/501. Accessed November 29, 2006.
Valimaki, M. (2005). The Rise of Open Source Licensing: A Challenge to the Use of

Intellectual Property in the Software Industry. Turre Publishing, Helsinki, Finland.

2.4.1 Sendmail

The open source product Sendmail is a pervasive Internet e-mail applica-
tion. However, its story is much less well known than Fetchmail’s because
of the unique influence of Raymond’s (1998) Cathedral and Bazaar article that
ensconced Fetchmail’s development as a canonical story of the practices and
principles of open development, even though Fetchmail is for a far more limited
use than Sendmail. Sendmail is worth discussing, not only because it carries
most of the world’s e-mail traffic, but because it represents another major open
source application that eventually morphed into dual open and commercial
versions.

The Sendmail project was started as an open project at UC Berkeley in 1981
by Eric Allman, who has also maintained the project since that time as an open
development. Allman had previously authored the ARPANET mail application
delivermail in 1979 that was included with the Berkeley Software Distribution
(BSD), which in turn would subsequently include Sendmail instead. Sendmail
is a Mail Transfer Agent or MTA. As such, its purpose is to reliably transfer
e-mail from one host to another, unlike mail user agents like Pine or Out-
look that are used by end users to compose mail. The software operates on
Unix-like systems, though there is also a Windows version available. The open
source version of Sendmail is licensed under an OSI-approved BSD-like license
(see http://directory.fsf.org for verification), as well as, since 1998, under both
generic and custom commercial licenses. Sendmail serves a significant percent-
age of all Internet sites, though there appears to be a decline over time (Weiss,
2004). It represents a de facto Internet infrastructure standard like TCP/IP, Perl,
and Apache.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

64 2 Open Source Internet Application Projects

Naturally, and healthily, the free software movement has never been about not
making money. The time frame in which time spent, effort, and talent are fun-
gible with compensation may be elastic, but it is finite. People eventually have
to cash in on their products or their expertise in one way or another, or switch to
another line of work where they can make a living. This is obviously appropriate
and expected since their involvement will almost always have been long, intense,
and valuable. Thus for Sendmail as with many open source projects, the project
originator and leader Allman eventually took the project on a commercial route,
establishing Sendmail Inc. in 1998 in order to develop a commercial version of
the software (see http://www.sendmail.org/ and the complementary commer-
cial site http://www.sendmail.com). The expanded commercialized version of
the product is different from the open source version and offers many features
not available in the open version. For example, it provides a GUI interface that
significantly facilitates the installation and configuration of the software, in con-
trast to the open source version that is well known to be extremely complicated
to install. The commercial product also incorporates proprietary components
that are combined with the open source components. According to the Send-
mail Inc. Web site, their commercial products provide “clear advantage over
open source implementations” in a variety of ways, from security and techni-
cal support to enhanced features. The Sendmail Inc. and its project maintainer
Allman still manage the development of the open source project, but they now
use its development process to also support the continued innovation of both
the open and the commercial version of the product. After the Sendmail incor-
poration, the licensing arrangement was updated to reflect the dual open source
and commercial offerings. The original license for the pure open source appli-
cation remained essentially the same, a few remarks about trademarks and such
aside. For redistribution as part of a commercial product, a commercial license
is required.

References

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version: http://
www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Weiss, A. (2004). Has Sendmail Kept Pace in the MTA Race? http://www.serverwatch.
com/stypes/servers/article.php/16059 3331691. Accessed December 1, 2006.

2.4.2 MySQL – Open Source and Dual Licensing

MySQL (pronounced My S-Q-L) is the widely used open source relational
database system that provides fast, multiuser database service and is capable

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.4 The Dual License Business Model 65

of handling mission-critical applications with heavy loads. It is suitable for
both Web server environments and embedded database applications. MySQL
is famous in open source applications as the M in the LAMP software archi-
tecture. The company that owns MySQL provides a dual licensing model for
distribution that permits both free and proprietary redistribution. One of the
notable characteristics of MySQL as an open source project is that virtually all
of its development is done by the company that owns the product copyright. This
model helps keep its license ownership pure, ensuring that its proprietary license
option remains undisturbed. (We will not consider the other major open source
database PostgreSQL (pronounced postgres Q-L) which is licensed under the
BSD license. The BSD’s terms are so flexible that the dual licensing model we
are considering does not seem to come into play unless proprietary extensions
are developed or value-added services are provided.)

MySQL was initially developed by Axmark and Widenius starting in 1995
and first released in 1996. They intended it to serve their personal need for an
SQL interface to a Web-accessible database. Widenius recalls that their moti-
vation for releasing it as an open source product was “because we believed that
we had created something good and thought that someone else could probably
have some use for it. We became inspired and continued to work on this because
of the very good feedback we got from people that tried MySQL and loved it”
(Codewalkers, 2002). The trademarked product MySQL is now distributed by
the commercial company MySQL AB founded by the original developers in
2001. The company owns the copyright to MySQL.

All the core developers who continue the development work on MySQL
work for MySQL AB, even though they are distributed around the world. The
complexity of the product is one disabling factor in allowing third-party involve-
ment in the project (Valimaki, 2005). Independent volunteer contributors can
propose patches but, if the patches prove to be acceptable, these are generally
reimplemented by the company’s core developers. This process helps ensure
that the company’s copyright ownership of the entire product is never clouded
or diluted (Valimaki, 2005). The code revisions ensure that GPL’d code created
by an external developer, who is de facto its copyright owner, is not included in
the system, so that the overall system can still be licensed under an alternative
or dual proprietary license that is not GPL. The business and legal model is fur-
ther described later. Sometimes code contributions are accepted under a shared
copyright with the contributor. Despite the strict handling of patch proposals by
external contributors, a significant number of the company’s employees were
actually recruited through the volunteer user-developer route. Indeed, accord-
ing to Hyatt (2006), of MySQL AB’s 300+ full-time employees, 50 of them
were originally open source community volunteers for MySQL.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

66 2 Open Source Internet Application Projects

MySQL was originally distributed for Unix-like environments under a free-
of-charge and free open source license that allowed free redistribution under the
usual copyleft restriction (according to which any modifications had to be redis-
tributable under the same terms as the original license). On the other hand, the
distribution license of MySQL in Windows environments was originally only
as so-called shareware that allowed copying and redistribution of the product
but did not permit modification and in fact required users to pay a license fee
to use the software after an initial free trial period. This was changed to the
standard GPL for all platforms after 2000 (Valimaki, 2005).

The MySQL AB distribution uses the dual licensing business model. The
same technical product is distributed both as a free GPL-licensed package and
under different licensing terms for the purpose of proprietary development.
Refer to http://www.mysql.com/company/legal/licensing/ (accessed January
10, 2007) for the legal terms of the license. Some of the basic points to keep in
mind follow. If you embed MySQL in a GPL’d application, then that application
has to be distributed as GPL by the requirements of the GPL license. However,
the MySQL proprietary license allows commercial developers or companies to
modify MySQL and integrate it with their own proprietary products and sell the
resulting system as a proprietary closed source system. The license to do this
requires a fee ranging up to $5,000 per year for the company’s high-end server
(as of 2005). Thus if you purchase MySQL under this commercial license, then
you do not have to comply with the terms of the GNU General Public License,
of course only in so far as it applies to MySQL.

You cannot in any case infringe on the trademarked MySQL name in any
derivative product you create, an issue that arose in the dispute between MySQL
and NuSphere (MySQL News Announcement, 2001). The commercial license
naturally provides product support from MySQL AB, as well as product war-
ranties and responsibilities. These are lacking in the identical but free GPL’d
copy of the product, which is offered only on an as-is basis. This proprietary
form of the license is required even if you sell a commercial product that only
merely requires the user to download a copy of MySQL, or if you include a
copy of MySQL, or include MySQL drivers in a proprietary application! Most
of MySQL AB’s income derives from the fees for the proprietary license with
additional revenues from training and consultancy services. The income from
these services and fees adds up to a viable composite open source/proprietary
business model. As per Valimaki (2005), most of the company’s income comes
from embedded commercial applications.

The preservation of copyright ownership is a key element in the continued
viability of a dual license model like MySQL AB’s. In particular, the licensee
must have undisputed rights to the software in order to able to charge for the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.4 The Dual License Business Model 67

software, distribute it under different licenses, or modify its licensing policies
(Valimaki, 2005). The generic open source development framework, where
development is fully collaborative and distributed, tends to undermine or diffuse
copyright ownership since there are many contributors. For example, there
could be “hidden liabilities in code contributions from unknown third parties”
(Valimaki, 2005). Thus, maintaining the ability to dual license with a proprietary
option mandates that the developer of any new or modified code for the system
must ensure that he has exclusive copyright to the work – whence the cautious
behavior by MySQL AB with respect to how development contributions are
handled.

MySQL AB appears to apply a rather strict interpretation of what the condi-
tions of the GPL mean in terms of its own legal rights (Valimaki, 2005, p. 137).
For example, consider a hypothetical case where someone develops a client
for MySQL. The client software might not even be bound either statically or
dynamically with any of the MySQL modules. The client software could just
use a user-developed GUI to open a command prompt to which it could send
dynamically generated commands for MySQL based on inputs and events at
the user interface. The client would thus act just like an ordinary user, except
that the commands it would tell MySQL to execute would be generated via the
graphical interface based on user input, rather than being directly formulated
and requested by the user. However, since the composite application requires
the MySQL database to operate, it would, at least according to MySQL AB’s
interpretation of the GPL, constitute a derivative work of MySQL and so be sub-
ject to GPL restrictions on the distribution of derivative works if they are used
for proprietary redistribution; that is, the client, even though it used no MySQL
code, would be considered a derivative of MySQL according to MySQL AB.
As per Valimaki (2005, p. 137), it seems that “the company regards all clients as
derivative works and in order to even use a client with other terms than GPL the
developer of the client would need to buy a proprietary license from MySQL
AB” and that in general “if one needs their database in order to run the client,
then one is basically also distributing MySQL database and GPL becomes bind-
ing,” though this does not appear to be supported by either the standard GPL
interpretation or the copyright law on derivative works (Valimaki, 2005).

Ironically, in the tangled Web of legal interactions that emerge between cor-
porate actors, MySQL AB was itself involved in mid-2006 in potential legal
uncertainties vis-à-vis the Oracle Corporation and one of its own components.
The situation concerned MySQL AB’s use of the open source InnoDB storage
engine, a key component that was critical to MySQL’s handling of transactions.
The InnoDB component ensures that MySQL is ACID compliant. (Recall that
the well-known ACID rules for database integrity mean transactions have to

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

68 2 Open Source Internet Application Projects

satisfy the following behaviors: atomicity: no partial transaction execution –
it’s all or nothing in terms of transaction execution; consistency: transactions
must maintain data consistency – they cannot introduce contradictions among
the data in the database; isolation: concurrent transactions cannot mutually
interfere; durability: committed transactions cannot be lost – for example, they
must be preserved by backups and transaction logs.) Oracle acquired the Inn-
oDB storage engine and in 2006, it bought out Sleepycat which makes the
Berkeley DB storage engine also used by MySQL. The InnoDB storage engine
was effectively a plug-in for MySQL, so alternative substitutions would be fea-
sible in the event that MySQL’s continued use of the storage engine became
problematic. Additionally, the InnoDB engine is also available under the GPL
license. Nonetheless, such developments illustrate the strategic uncertainties
that even carefully managed dual licensed products may be subject to (Kirk,
2005).

References

Codewalkers. (2002). Interview with Michael Widenius. http://codewalkers.com/
interviews/Monty Widenius.html. Accessed November 29, 2006.

Hyatt, J. (2006). MySQL: Workers in 25 Countries with No HQ. http://money.cnn.com/
2006/05/31/magazines/fortune/mysql greatteams fortune/. Accessed November
29, 2006.

Kirk, J. (2005). MySQL AB to Counter Oracle Buy of Innobase. ComputerWorld,
November 23. http://www.computerworld.com.au/index.php/id;1423768456.
Accessed February 11, 2007.

MySQL News Announcement. (2001). FAQ on MySQL vs. NuSphere Dispute. http://
www.mysql.com/news-and-events/news/article 75.html. Accessed November, 29
2006.

Valimaki, M. (2005). The Rise of Open Source Licensing: A Challenge to the Use of
Intellectual Property in the Software Industry. Turre Publishing, Helsinki, Finland.

2.4.3 Sleepycat Software and TrollTech

Sleepycat Software and TrollTech are two other examples of prominent and
successful companies that sell open source products using a dual licensing
business model.

Berkeley DB
Sleepycat Software owns, sells, and develops a very famous database system
called Berkeley DB. The software for this system was originally developed as
part of the Berkeley rewrite of the AT&T proprietary code in the BSD Unix
distribution, a rewrite done by programmers Keith Bostic, Margo Seltzer, and

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.4 The Dual License Business Model 69

Mike Olson. The software was first released in 1991 under the BSD license.
Recall that the BSD license allows proprietary modification and redistribution
of software with no payments required to the original copyright owners. The
original software became widely used and embedded in a number of proprietary
products.

Berkeley DB is not an SQL database. Queries to the Berkeley DB are done
through its own specific API. The system supports many commercial and open
applications, ranging from major Web sites to cell phones, and is one of the stor-
age engines available for MySQL. The software currently has over 200 million
deployments (Martens, 2005). Berkeley DB is a C library that runs in the same
process as an application, considerably reducing interprocess communication
delays. It stores data as key/value pairs, amazingly allowing data records and
keys to be up to 4 GB in length, with tables up to 256 TB. The Sleepycat Web
site describes the Berkeley DB library as “designed to run in a completely unat-
tended fashion, so all runtime administration is programmatically controlled
by the application, not by a human administrator. It has been designed to be
simple, fast, small and reliable” (sleepycat.com). We refer the reader to the
article by Sleepycat CTO Margo Seltzer (2005) for a commanding analysis of
the opportunities and challenges in database system design that go far beyond
the traditional relational model. In response to the demand for Berkeley DB and
some needs for improvements in the software, its developers founded Sleep-
ycat, further significantly developed the product, and subsequently released
it under a dual licensing model in 1997 (Valimaki, 2005). The license model
used by Sleepycat is like that of MySQL. Versions earlier than 2.0 were avail-
able under the BSD, but later versions are dual licensed. The noncommercial
license is OSI certified. However, the commercial license requires payment
for proprietary, closed source redistribution of derivatives. About 75% of the
company’s revenues come from such license fees. Similarly to the MySQL
AB model, Berkeley DB software development is basically internal, with any
external code contributions reimplemented by the company’s developers. This
is motivated, just as in the case of MySQL, not only by the desire to keep
ownership pure but also because of the complexity of the product.

The Qt Graphics Library
Another company that has long used a dual license model is TrollTech. Troll-
Tech develops and markets a C++ class library of GUI modules called Qt (pro-
nounced “cute” by its designers), which was eventually adopted by and played
an important role in the open source KDE project. Qt is cross-platform, support-
ing Unix-like, Windows, and Macintosh environments and provides program-
mers with an extensive collection of so-called widgets. It is an extremely widely

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

70 2 Open Source Internet Application Projects

used open GUI development library. Qt was first publicly released in 1995, orig-
inally under a restrictive though still open source license, which prohibited the
free redistribution of modifications. The use of Qt in the GPL’d KDE desktop
environment caused a well-known licensing controversy. Eventually TrollTech
was pressured by the open source community to release its product not merely
as open source but under the GPL and despite the initial aversion of the company
founder toward the GPL because of doubts about the implications of the GPL
in a dual license context (Valimaki, 2005). As it turned out, the approach was
successful and increased the popularity of the product. The company’s sales
derive largely from its licensing fees. Proprietary development of the product
requires it be purchased under a commercial license. The free version helps
maintain the open source user base. An educational version of the product that
integrates with Microsoft’s Visual Studio.NET is available for Windows.

References

Martens, C. (2005). Sleepycat to Extend Paw to Asia. InfoWorld. http://infoworld.com/
article/05/06/22/HNsleepycat 1.html. Accessed November 29, 2006.

Seltzer, M. (2005). Beyond Relational Databases. ACM Queue, 3(3), 50–58.
Valimaki, M. (2005). The Rise of Open Source Licensing: A Challenge to the Use of

Intellectual Property in the Software Industry. Turre Publishing, Helsinki, Finland.

2.5 The P’s in LAMP

The first three letters of the ubiquitous LAMP open source software stack
stand for Linux, Apache, and MySQL. The last letter P refers to the scripting
language used and encompasses the powerful programming language Perl, the
scripting language PHP, and the application language Python. These are all open
source (unlike, for example, Java whose major implementations are proprietary
even if programs written in it are open). Perl comes with an immense open
library of Perl modules called CPAN. We will focus our discussion on PHP and
Perl. Concerning Python, we only note that it is a widely ported open source
programming language invented by Guido van Rossum in 1990 and used for
both Web and applications development, such as in BitTorrent and Google, and
sometimes for scripting.

2.5.1 PHP Server-Side Scripting

PHP is a server-side scripting language embedded in HTML pages. It typi-
cally interfaces with a background database, commonly MySQL, as in LAMP

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.5 The P’s in LAMP 71

environments. Thus, it allows the creation of data-based, dynamic Web pages.
The name PHP is a recursive acronym like GNU, standing for PHP Hypertext
Preprocessor, though it originally referred to Personal Home Page tools. The
Netcraft survey indicates that PHP is the most widely deployed server-side
scripting language, with about one-third of all Internet sites surveyed having
PHP installed by early 2004.

PHP is another instructive tale of open source development. It illustrates
some of the ways in which open source projects originate, the influence of their
initial developers and the impact of new developers, the degree of open source
commitment, and attitudes toward commercialization. In the case of PHP, the
original developer Rasmus Lerdorf was later joined by a group of other major
core developers. Lerdorf has kept with the open source project but did not
join in its commercialization – except in the indirect sense that he is currently
involved as a development engineer in its vertical application internally within
Yahoo. In fact, Lerdorf seems to believe that the greatest monetary potentials
for open source lies in major vertical applications like Yahoo rather than in
support companies (like Zend in the case of PHP) (Schneider, 2003). Some of
the core PHP developers formed a commercial company named Zend, which
sells a number of PHP products, including an encoder designed to protect the
intellectual property represented by custom PHP scripts by encrypting them!

Programmers are often autodidacts: open source helps that happen. Rasmus
Lerdorf in fact describes himself as a “crappy coder” who thinks coding is a
“mind-numbing tedious endeavor” and “never took any programming courses
at school” (Schneider, 2003). He has an engineering degree from the University
of Waterloo. But despite an absence of formal credentials in computer science
and the self-deprecatory characterization of his interests, he had been quite a bit
of a hacker since his youth, hacking the CERN and NCSA server code soon after
the latter’s distribution (Schneider, 2003). He was a self-taught Unix, Xenix,
and Linux fan and learned what he needed from looking at the open source code
they provided. To quote from the Schneider interview (2003), “What I like is
solving problems, which unfortunately often requires that I do a bit of coding.
I will steal and borrow as much existing code as I can and write as little ‘glue’
code as possible to make it all work together. That’s pretty much what PHP is.”

Lerdorf started developing PHP in 1994–1995 with a simple and personal
motivation in mind, the classic Raymond “scratch an itch” model. He wanted to
know how many people were looking at his resume, since he had included a URL
for his resume in letters he had written to prospective employers (Schneider,
2003). He used a Perl CGI script to log visits to his resume page and to collect
information about the visitors. To impress the prospective employers, he let
visitors see his logging information (Schneider, 2003). People who visited the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

72 2 Open Source Internet Application Projects

page soon became interested in using the tools, so Lerdorf gave the code away
in typical open source fashion, setting up a PHP mailing list to share the code,
bug reports, and fixes. He officially announced the availability of the initial
set of PHP tools (Version 1.0) in mid-1995, saying that “the tools are in the
public domain distributed under the GNU Public License. Yes, that means
they are free!” (see reference link under Schneider (2003)). Admittedly, there
are a lot of ambiguities in that statement, from public domain to free, but
the intent is clear. His own predisposition to open source was partly related
to money. As Lerdorf observes, “I don’t think I was ever really ‘hooked’ by
a ‘movement’. When you don’t have the money to buy SCO Unix and you
can download something that works and even find people who can help you
get it up and running, how can you beat that?” (Yank, 2002). Lerdorf worked
intensively on the PHP code for several years. Being the leader and originator
of a popular open source project is not a lark. Like Linus he personally went
through all the contributed patches during that period, usually rewriting the code
before committing it. He estimates that he wrote 99% of the code at that time.
Lerdorf’s involvement with open source has continued in a proprietary context at
Yahoo. Unlike many organizations, Yahoo has what Lerdorf describes as a “long
tradition of using open source” (like FreeBSD) for use in their own extremely
complex and demanding infrastructure (Schneider, 2003). Andrei Zmievski is
currently listed as the PHP project administrator and owner on freshmeat.net
and the principal developer of PHP since 1999. PHP 4 is licensed under the
GPL. There are over 800 contributors currently involved in its development
(available at http://www.php.net).

Open source developments can go through generational changes as the prod-
uct or its implementation evolves in response to outside events or the insights of
new participants. This happened with PHP. Computer scientists Zeev Suraski
and Andi Gutmans became involved with PHP in mid-1997 as part of a Web
programming project at the Technion in Israel. An odd syntax error in PHP
led them to look at the source code for the language. They were surprised to
see that the program used a line-by-line parsing technique, which they rec-
ognized could be dramatically improved upon. After a few months of intense
development effort, they had recoded enough of the PHP source to convince
Lerdorf to discontinue the earlier version of PHP and base further work on
their new code. This led to a successful collaboration between Lerdorf and a
new extended group of seven PHP core developers. Lerdorf has observed that
“this was probably the most crucial moment during the development of PHP.
The project would have died at that point if it had remained a one-man effort
and it could easily have died if the newly assembled group of strangers could
not figure out how to work together towards a common goal. We somehow

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.5 The P’s in LAMP 73

managed to juggle our egos and other personal events and the project grew”
(Lerdorf, 2004). Another major overhaul followed. At the time, PHP still used
an approach in which the code was executed as it was parsed. In order to handle
the much larger applications that people were using PHP for, the developers had
to make yet another major change. This once again led to redesigning and reim-
plementing the PHP engine from scratch (Suraski, 2000). The new compilation
engine, which used a compile first and then execute approach, was separable
from PHP 4. It was given its own name the Zend engine (combining Zeev +
Andi). It is licensed under an Apache-style as-is license. The company does
not dual license the Zend engine but provides support services and additional
products for a fee.

Although the PHP language processor is open source and the scripting lan-
guage programs are human-readable text (on the server side), its major com-
mercial distributor Zend ironically has tools for hiding source code that is
written in PHP – just like in the old-fashioned proprietary model! Gutmans and
Suraski, along with another core developer Doron Gerstel, founded Zend in
1999. It is a major distributor of PHP-related products and services. From an
open source point of view, a particularly interesting product is the Zend Encoder.
The Zend Web site describes the encoder as “the recognized industry standard in
PHP intellectual property protection” – italics added (http://www.zend.com/).
The encoder lets companies distribute their applications written in PHP “with-
out revealing the source code.” This protects the companies against copyright
infringement as well as from reverse engineering since the distributed code is
“both obfuscated and encoded” (http://www.zend.com/). As the site’s selling
points describe it, this approach allows “Professional Service Providers (to) rely
on the Zend Encoder to deliver their exclusive and commercial PHP applications
to customers without revealing their valuable intellectual property. By protect-
ing their PHP applications, these and other enterprises expand distribution and
increase revenue” (http://www.zend.com/). It is important to understand that it
is not the source code for the PHP compiler that is hidden, but the PHP scripts
that development companies write for various applications and that are run in
a PHP environment that are hidden. Furthermore, the application source code
is not being hidden from the end users (browser users), since they would never
have seen the code in the first place since the PHP scripts are executed on the
server and only their results are sent to the client, so there’s nothing to hide from
the client. The code is being hidden from purchasers of the code who want to
run it on their own Web servers. In any case, this model represents an inter-
esting marriage of open source products and proprietary code. The encoding
is accomplished by converting the “plain-text PHP scripts into a platform-
independent binary format known as Zend Intermediate Code. These encoded

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

74 2 Open Source Internet Application Projects

binary files are the ones that are distributed (to prospective users) instead of the
human-readable PHP files. The performance of the encoded PHP application is
completely unaffected!” (http://www.zend.com/). None of this turns out to be
open license related, since the proprietary nature of the distributions that Zend
is targeting is not about the PHP environment itself which is GPL’d but about
scripts written using PHP. Nonetheless, the thinking is not on the same page
as traditional open source distribution where disclosure of source is viewed as
beneficial.

There are striking arguments to be made about the cost-effectiveness of
open tools like PHP and open platforms. Who better to hear them from than
an open source star and proprietary developer like Rasmus Lerdorf? In an
interview with Sharon Machlis (2002), Lerdorf did an interesting back-of-the-
envelop calculation about the relative cost benefits of open applications versus
proprietary tools like Microsoft’s. In response to the hypothetical question of
why one would choose PHP over (say) Microsoft’s ASP, he estimated that (at
that time) the ASP solution entailed (roughly): $4,000 for a Windows server,
$6,000 for an Internet security and application server on a per CPU basis,
$20,000 for an SQL Enterprise Edition Server per CPU, and about $3,000 per
developer for an MSDN subscription, at a final cost of over $40,000 per CPU.
In contrast, you could build an equivalent open source environment that did the
same thing based on Linux, Apache + SSL, PHP, PostgreSQL, and the Web
proxy Squid, for free. The price comparisons become even more dramatic when
multiple CPUs are involved. Granted if you have an existing Microsoft shop in
place, then the open source solution does have a learning curve attached to it
that translates into additional costs. However, especially in the case where one
is starting from scratch, the PHP and free environment is economically very
attractive.

References

Lerdorf, R. (2004). Do You PHP? http://www.oracle.com/technology/pub/articles/php
experts/rasmus php.html. Accessed November 29, 2006.

Machlis, S. (2002). PHP Creator Rasmus Lerdorf. http://www.computerworld.com/
softwaretopics/software/appdev/story/0,10801,67864,00.html. Accessed Novem-
ber 29, 2006.

Schneider, J. (2003). Interview: PHP Founder Rasmus Lerdorf on Relinquishing Con-
trol. http://www.midwestbusiness.com/news/viewnews.asp?newsletterID=4577.
Accessed November 29, 2006.

Suraski, Z. (2000). Under the Hood of PHP4. http://www.zend.com/zend/art/under-
php4-hood.php. Accessed November 29, 2006.

Yank, K. (2002). Interview – PHP’s Creator, Rasmus Lerdorf. http://www.sitepoint.com/
article/phps-creator-rasmus-lerdorf. Accessed November 29, 2006.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.5 The P’s in LAMP 75

2.5.2 Perl and CPAN

According to the perl.org Web site, the open source programming language
Perl, together with its largely open library of supporting perl modules CPAN,
is a “stable, cross-platform programming language . . . used for mission-critical
projects in the public and private sectors and . . . widely used to program web
applications” (italics added). Perl 1.0 was initially released by its designer Larry
Wall about 1987, with the much revised Perl 5 version debuting in 1994. Perl
is a procedural language like C. It is also implemented with a combination of
C and some Perl modules. Perl has some of the characteristics of Unix shell
programming and is influenced by Unix tools like awk and sed. Although Perl
was originally designed for text manipulation, it has become widely used in
many systems applications, particularly to glue systems together. It was also
the original technology used to produce dynamic Web pages using CGI. Its
diverse applicability has given it a reputation as a system administrator’s Swiss
army knife. In fact, hacker Henry Spencer comically called Perl a Swiss army
chainsaw (see the Jargon File at http://catb.org/jargon/html/index.html), while
for similar reasons others call it “the duct tape of the Internet.” The Perl 5 ver-
sion allowed the use of modules to extend the language. Like the Linux module
approach, the Perl 5 module structure “allows continued development of the
language without actually changing the core language” according to developer
Wall (Richardson, 1999). This version has been under continuous develop-
ment since its release. Perl is highly portable and also has binary distributions
like ActivePerl, which is commonly used for Windows environments. Perl and
CPAN modules are pervasive in financial applications, including long-standing
early use at the Federal Reserve Board and more recently in many bioinformat-
ics applications. Indeed a classic application of Perl as an intersystem glue was
its application in integrating differently formatted data from multiple genome
sequencing databases during the Human Genome Project (Stein, 1996).

The essay by Larry Wall (1999), the inimitable creator of Perl, is worth
reading for a philosophical discourse on the design and purpose of Perl. Wall
discourses, among other things, on why the linguistic complexity of Perl is
needed in order to handle the complexity of messy real-world problems. Wall’s
academic background is interesting. Although he had worked full time for his
college computer center, his graduate education was actually in linguistics (of
the human language kind) and he intended it to be in preparation for doing
biblical translations. The interview with Wall in Richardson (1999) describes
what Wall calls the “postmodern” motivation behind Perl’s design.

Perl is open source and GPL compatible since it can be licensed using either
the GPL or the so-called Artistic License, an alternative combination called the

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

76 2 Open Source Internet Application Projects

disjunctive license for Perl. The GPL option in this disjuncture is what makes
Perl GPL compatible. The Free Software Foundation considers the Artistic
License option for Perl to be vague and problematic in its wording and so it
recommends the GPL. On the other hand, the perl.com Web site characterized
the Perl license as the Artistic license, which it describes as “a kinder and gentler
version of the GNU license – one that doesn’t infect your work if you care to
borrow from Perl or package up pieces of it as part of a commercial product”
(perl.com). This last is a very important distinction since it allows the code for
Perl or Perl modules to be modified and embedded in proprietary products.

A very significant part of Perl’s power comes from CPAN, which stands for
Comprehensive Perl Archive Network, an immense library of Perl modules that
is far more extensive than the Java class libraries or those available for either PHP
or Python. The CPAN collection located at cpan.org was started about 1994,
enabled by the module architecture provided by Perl 5. It currently lists over
5,000 authors and over 10,000 modules. The search engine at search.cpan.org
helps programmers sort through the large number of modules available. The
modules are human-readable Perl code, so they are naturally accessible source.
However, a limited number of Perl binaries are also available, but these are not
stored on the CPAN site. While the Perl language itself is distributed as GPL
(or Artistic), the modules written in Perl on the CPAN site do not require any
particular license. However, the CPAN FAQ does indicate that most, though
not all, of the modules available are in fact licensed under either the GPL or
the Artistic license. Contributors do not have to include a license but the site
recommends it. With the limited exception of some shareware and commercial
software for Perl IDEs, SDKs and editors as indicated on the binary ports page
of the Web site, the site stipulates that it strongly disapproves of any software
for the site that is not free software at least in the sense of free of charge.

References

Richardson, M. (1999). Larry Wall, the Guru of Perl. 1999–05–01. Linux Journal. http://
www.linuxjournal.com/article/3394. Accessed November 29, 2006.

Stein, L. (1996). How Perl Saved the Human Genome Project. The Perl Journal. 2001
version archived at Dr. Dobb’s Portal: www.ddj.com/dept/architect/184410424.
Accessed November 29, 2006. Original article: TPJ, 1996, 1(2). Also via: http://
scholar.google.com/scholar?hl=en&lr=&q=cache:vg2KokmwJNUJ:science.
bard.edu/cutler/classes/bioinfo/notes/perlsave.pdf+++%22The+Perl+Journal%22
+stein. Accessed November 29, 2006.

Wall, L. (1999). Diligence, Patience, and Humility. In: Open Sources: Voices from the
Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly
Media, Sebastopol, CA, 127–148.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.6 BitTorrent 77

2.6 BitTorrent

BitTorrent is a next-generation P2P Internet utility. It was created by Brahm
Cohen in 2002 and has become extremely widely used, particularly for sharing
popular multimedia files. We discuss it here for two reasons. It represents a next
generation type of Internet service, called a Web 2.0 service by O’Reilly (2005).
It also facilitates the largest peer-to-peer network according to estimates done
by CacheLogic. BitTorrent works by exploiting the interconnectivity provided
by the Internet, avoiding the bottlenecks that occur if every user tries to get an
entire copy of a file from a single source, as is done in the client-server model of
data exchange. It also differs from conventional peer-to-peer networks, where
exchanges are limited to a single pair of uploaders and downloaders at any given
time. Under the BitTorrent protocol, a central server called a tracker coordinates
the file exchanges between peers. The tracker does not require knowledge of
the file contents and so can work with a minimum of bandwidth, allowing
it to coordinate many peers. Files are thought of as comprising disjoint pieces
called fragments. Initially, a source or seed server that contains the entire file
distributes the fragments to a set of peers. Each peer in a pool or so-called
swarm of peers will at a given point have some of the fragments from the
complete file but lack some others. These missing fragments are supplied by
being exchanged transparently among the peers in a many-peer-to-many-peer
fashion. The exchange protocol used by BitTorrent exhibits a fundamental,
remarkable, and paradoxical advantage. The more people who want to have
access to a file, the more readily individual users can acquire a complete copy
of the file since there will be more partners to exchange fragments with. Thus
BitTorrent is an example of what has been called a Web 2.0 service. It exhibits
a new network externality principle, namely, that “the service gets better the
more people use it” (O’Reilly, 2005). In contrast to earlier Internet services
like Akamai, BitTorrent can be thought of as having a BYOB (Bring Your Own
Bottle) approach. Once again, O’Reilly expresses it succinctly:

. . . every BitTorrent consumer brings his own resources to the party. There’s an
implicit “architecture of participation,” a built-in ethic of cooperation, in which the
service acts primarily as an intelligent broker, connecting the edges to each other
and harnessing the power of the users themselves.

Developer Cohen’s software also avoids the so-called leeching effect that
occurs in P2P exchanges under which people greedily download files but self-
ishly refuse to share their data by uploading. The BitTorrent protocol rules
require that downloaders of fragments also have to upload fragments. In Cohen’s
program, the more a user shares his files, the faster the torrent of fragments from

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

78 2 Open Source Internet Application Projects

other users downloads to his computer. This reflects a motto Cohen had printed
on T-shirts: “Give and ye shall receive” (Thompson, 2005). It’s a “share and
share alike” principle. BitTorrent now carries an enormous share of world Inter-
net traffic, currently one-third according to the estimate by CacheLogic, though
some aspects of the estimate have been disputed. The BitTorrent license is a
custom variation of the Jabber license. It reserves the BitTorrentTM name as a
trademark, which prevents the name from drifting into generic usage. Although
the BitTorrent source code is open source, it does not appear to be an OSI-
certified license or a free software license, partly because of some relicensing
restrictions, although the license definition seems to be GPL-like in charac-
ter. The BitTorrent company is now acting as a licensed distributor for movie
videos, an important, new open source business model.

References

O’Reilly, T. (2005). What is Web 2.0 Design Patterns and Business Models for the
Next Generation of Software. http://www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html. Accessed November 29, 2006.

Thompson, C. (2005). The BitTorrent Effect. Wired.com, Issue 13.01. http://wired.com/
wired/archive/13.01/bittorrent.html. Accessed November 29, 2006.

2.7 BIND

BIND is a pervasive and fundamental Internet infrastructure utility. From an
open source business model point of view, BIND is instructive precisely because
it led to such an unexpected business model. The model did not benefit the
original developers and was not based on the software itself. Instead it was
based indirectly on information services that were enabled by the software.

The acronym BIND stands for Berkeley Internet Domain Name. BIND is
an Internet directory service. Its basic function is to implement domain name
services by translating symbolic host domain names into numeric IP addresses,
using distributed name servers. The DNS (Domain Name System) environ-
ment is an enormous operation. It relies on domain name data stored across
billions of resource records distributed over millions of files called zones (Sala-
mon, 1998/2004). The zones are kept on what are called authoritative servers,
which are distributed over the Internet. Authoritative servers handle DNS name
requests for zones they have data on and request information from other servers
otherwise. Large name servers may have tens of thousands of zones. We will
not delve further into how the system works.

P1: KAE
9780521881036c02 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:16

2.7 BIND 79

The general idea of using symbolic names for network communications
was originally introduced to support e-mail on the ARPANET, long before the
Internet, in fact going back to the mid-1970s. As network traffic increased,
the initial implementation approaches had to be completely revised (see RFC
805 from 1982, as well as RFC 881, etc.). The original version of the new
BIND software was written in the early 1980s by graduate students at UC
Berkeley as part of the development of Berkeley Unix under a DARPA grant.
Its current version BIND 9 is much more secure than earlier BIND versions and
is outsourced by the Internet Software Consortium to the Nominum Corporation
for continued development and maintenance.

The business opportunity that emerged from BIND is interesting because
it turned out to be neither the software itself nor the service and marketing of
the software that was profitable. Instead, the profit potential lay in the service
opportunity provided by the provision of the domain names. It is highly ironic
that the project maintainer for BIND which is arguably “the single most mission
critical program on the Internet” had “scraped by for decades on donations and
consulting fees,” while the business based on the registration of domain names
that was in turn based on BIND thrived (O’Reilly, 2004). As O’Reilly observed,

. . . domain name registration – an information service based on the software –
became a business generating hundreds of millions of dollars a year, a virtual
monopoly for Network Solutions, which was handed the business on government
contract before anyone realized just how valuable it would be. The . . . opportunity
of the DNS was not a software opportunity at all, but the service of managing the
namespace used by the software. By a historical accident, the business model
became separated from the software.

References

O’Reilly, T. (2004). Open Source Paradigm Shift. http://tim.oreilly.com/articles/
paradigmshift 0504.html. Accessed November 29, 2006.

Salamon, A. (1998/2004). DNS Overview and General References. http://www.dns.net/
dnsrd/docs/whatis.html. Accessed January 10, 2007.

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3

The Open Source Platform

We use the term open source platform to refer to the combination of open
operating systems and desktops, support environments like GNU, and under-
lying frameworks like the X Window System, which together provide a matrix
for user interaction with a computer system. The provision of such an open
infrastructure for computing has been one of the hallmark objectives of the
free software movement. The GNU project sponsored by the Free Software
Foundation (FSF) had as its ultimate objective the creation of a self-contained
free software platform that would allow computer scientists to accomplish all
their software development in a free environment uninhibited by proprietary
restrictions. This chapter describes these epic achievements in the history of
computing, including the people involved and technical and legal issues that
affected the development. We shall also examine the important free desktop
application GIMP which is intended as a free replacement for Adobe Photo-
shop. We shall reserve the discussion of the GNU project itself to a later
chapter.

The root system that serves as the reference model for open source operating
systems is Unix whose creation and evolution we shall briefly describe. Over
time, legal and proprietary issues associated with Unix opened the door to Linux
as the signature open source operating system, though major free versions
of Unix continued under the BSD (Berkeley Software Distributions) aegis.
The Linux operating system, which became the flagship open source project,
evolved out of a simple port of Unix to a personal computer environment,
but it burgeoned rapidly into the centerpiece project of the movement. To be
competitive with proprietary platforms in the mass market, the Linux and free
Unix-like platforms in turn required high-quality desktop style interfaces. It
was out of this necessity that the two major open desktops GNOME and KDE
emerged. Underlying the development of these desktops was the extensive,
longstanding development effort represented by the X Window System, and an

80

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 81

open source project begun in the early 1980s at MIT that provided the basic
underlying windowing capabilities for Unix-like systems.

3.1 Operating Systems

This first section addresses the creation of Unix and its variants and the emer-
gence of Linux.

3.1.1 Unix

The Unix operating system was developed at AT&T’s Bell Telephone Labora-
tories (BTL) during the 1970s. An essential factor in the historic importance of
Unix lay in the fact that it was the first operating system written in a high-level
language (C), although this was not initially so. This approach had the critical
advantage that it made Unix highly portable to different hardware platforms.
Much of the development work on Unix involved distributed effort between
the initial developers at AT&T’s BTL and computer scientists at universities,
especially the development group at University of California (UC) Berkeley that
added extensive capabilities to the original AT&T Unix system during the 1980s.
Remember that the network communications infrastructure that would greatly
facilitate such distributed collaboration was at this time only in its infancy. While
Unix began its life in the context of an industrial research lab, it progressed with
the backing of major academic and government (DARPA) involvement.

From the viewpoint of distributed collaboration and open source develop-
ment, the invention and development of Unix illustrates the substantial benefits
that can accrue from open development, as well as the disadvantages for inno-
vation that can arise from proprietary restrictions in licensing. The Unix story
also illustrates how distributed collaboration was already feasible prior to the
Internet communications structure, but also how it could be done more effec-
tively once even more advanced networked communications became available
(which was partly because of Unix itself).

Initially the AT&T Unix source code was freely and informally exchanged.
This was a common practice at the time and significantly helped researchers
in different organizations in their tinkering with the source code, fixing bugs,
and adding features. Eventually, however, licensing restrictions by AT&T, con-
siderable charges for the software to other commercial organizations, and legal
conflicts between AT&T and the UC Berkeley handicapped the development
of Unix as an open source system, at least temporarily during the early 1990s.
The early 1990s was also precisely the time when Linux had started to emerge

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

82 3 The Open Source Platform

and quickly seize center stage as the most popular Unix-like system, offered
with open source, licensed under the General Public License (GPL), and free
of charge.

Necessity is the mother of invention – or at least discomfort is. The devel-
opment of Unix at Bell Labs started when Ken Thompson and Dennis Ritchie
wrote an operating system in assembly language for a DEC PDP-7. The project
was their reaction to Bell Labs’ withdrawal from the Multics time-sharing oper-
ating system project with MIT and General Electric. Even though the Multics
project had problems (like system bloating), it was an important and innovative
system and the two programmers had become accustomed to it. Its unavailabil-
ity and replacement by an inferior, older system frustrated them (Scott, 1988).
In response, they decided to design a new, simple operating system to run on
their DEC machine. Interestingly, the idea was not to develop a BTL corporate
product but just to design and implement a usable and simple operating sys-
tem that the two developers could comfortably use. In addition to the core of
the operating system, the environment they developed included a file system,
a command interpreter, some utilities, a text editor, and a formatting program.
Since it provided the functionality for a basic office automation system, Thomp-
son and Ritchie persuaded the legal department at Bell Labs to be the first users
and rewrote their system for a PDP-11 for the department.

In 1973, a decisive if not revolutionary development occurred: the operating
system was rewritten in C. The C language was a new high-level programming
language that Kernighan and Ritchie had just invented and which was, among
other things, intended to be useful for writing software that would ordinarily
have been written in assembly language, like operating systems. This extremely
innovative approach meant that Unix could now be much more easily updated
or ported to other machines. In fact, within a few years, Unix had been ported to
a number of different computer platforms – something that had never been done
before. The use of a higher level language for operating system implementation
was a visionary development because prior to this, operating systems had always
been closely tied to the assembly language of their native hardware. The high-
level language implementation made the code for the operating system “much
easier to understand and to modify” (Ritchie and Thompson, 1974), which
was a key cognitive advantage in collaborative development. Furthermore, as
Raymond (1997) observed:

If Unix could present the same face, the same capabilities, on machines of many
different types, it could serve as a common software environment for all of them.
No longer would users have to pay for complete new designs of software every time
a machine went obsolete. Hackers could carry around software toolkits between
different machines, rather than having to re-invent the equivalents of fire and the
wheel every time.

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 83

The Unix environment was also elegantly and simply designed as a toolkit of
simple programs that could easily interact. Allegedly the terse character of the
Unix and C commands was just an artifact of the fact that teletype machines
that communicated with the PDP were quite slow: so the shorter the commands
(and the error messages), the more convenient it was for the user!

The professional dissemination of their work by Ritchie and Thompson also
strongly affected the rapid deployment of Unix. At the end of 1973, they gave
a report on Unix at the Fourth ACM Symposium on Operating Systems, which
was later published in the Communications of the ACM (Ritchie and Thompson,
1974). As Tom Van Vleck observed, this report still “remains one of the best
and clearest pieces of writing in the computer field” (Van Vleck, 1995). The
ACM symposium presentation caught the eye of a Berkeley researcher who
subsequently persuaded his home department to buy a DEC on which to install
the new system. This initiated Berkeley’s heavy historic involvement in Unix
development, an involvement that was further extended when Ken Thompson
went to UC Berkeley as a visiting professor during 1976 (Berkeley was his
alma mater). The article’s publication precipitated further deployment.

The system was deployed widely and rapidly, particularly in universities. By
1977, there were more than 500 sites running Unix. Given the legal restrictions
that the AT&T monopoly operated under, because of the so-called 1956 consent
decree with the U.S. Department of Justice, AT&T appeared to be prohibited
from commercially marketing and supporting computer software (Garfinkel and
Spafford, 1996). Thus, de facto, software was not considered as a profit center
for the company. During this time, the source code for Unix, not merely the
binary code, was made available by AT&T to universities and the government,
as well as to commercial firms. However, the distribution was under the terms of
an AT&T license and an associated nondisclosure agreement that was intended
to control the release of the Unix source code. Thus, although the source code
was open in a certain sense, it was strictly speaking not supposed to be disclosed,
except to other license recipients who already had a copy of the code. University
groups could receive a tape of the complete source code for the system for
about $400, which was the cost of the materials and their distribution, though
the educational license itself was free.

The distribution of Unix as an operating system that was widely used in
major educational environments and as part of their education by many of the
top computer science students in the country had many side-benefits. For exam-
ple, it meant – going forward – that there would be within a few years literally
thousands of Unix-savvy users and developers emerging from the best research
universities who would further contribute to the successful dispersion, develop-
ment, and entrenchment of Unix. A Unix culture developed that was strongly
dependent on having access to the C source code for the system, the code that

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

84 3 The Open Source Platform

also simultaneously served as the documentation for the system programs. This
access to the source code greatly stimulated innovation. Programmers could
experiment with the system, play with the code, and fix bugs, an advantage for
the development of Unix that would have been nonexistent if the distributions
of the Unix source and system utilities had only been available in binary form.

By 1978, the Berkeley Computer Systems Research Group, including stu-
dents of Ken Thompson at Berkeley, were making add-ons for Unix and dis-
tributing them, always with both the binary executable and the C source code
included, basically for the cost of shipping and materials as so-called Berkeley
Software Distributions of Unix – but only as long as the recipient had a valid
Unix source license from AT&T. The license under which the BSD application
code itself was distributed was very liberal. It allowed the BSD-licensed open
source code, or modifications to it, to be incorporated into closed, proprietary
software whose code could then be kept undisclosed.

Legal issues invariably impact commercializable science. An important legal
development occurred in 1979 when AT&T released the 7th version of Unix.
By that point AT&T was in a legal position to sell software, so it decided that
it was now going to commercialize Unix, no longer distributing it freely and
no longer disclosing its source code. Companies, like IBM and DEC, could
receive the AT&T source-code licenses for a charge and sometimes even the
right to develop proprietary systems that used the trademark Unix, like DEC’s
Ultrix. Almost inevitably the companies created differentiated versions of Unix,
leading eventually to a proliferation of incompatible proprietary versions. The
UC Berkeley group responded to AT&T’s action at the end of 1979 by making
its next BSD release (3BSD) a complete operating system, forking the Unix
development (Edwards, 2003). Berkeley, which was now strongly supported by
DARPA especially because of the success of the virtual memory implementation
3BSD, would now come to rival Bell Labs as a center of Unix development.
Indeed, it was BSD Unix that was selected by DARPA as the base system for
the TCP/IP protocol that would underlie the Internet. During the early 1980s the
Berkeley Computer Systems Research Group introduced improvements to Unix
that increased the popularity of its distributions with universities, especially
because of its improved networking capabilities.

The networking capabilities provided by BSD 4 had what might be described
as a meta-effect on software development. BSD version 4.2 was released in
1983 and was much more popular with Unix vendors for several years than
AT&T’s commercial Unix System V version (McKusick, 1999). But version 4
didn’t merely improve the capabilities of an operating system. It fundamentally
altered the very way in which collaboration on software development could
be done because it provided an infrastructure for digitally transmitting not

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 85

only communication messages but also large amounts of source code among
remotely located developers. This created a shared workspace where the actual
production artifacts could be worked on in common.

However, AT&T did not stand still with its own Unix versions. The AT&T
System V variants, starting with the first release in 1983 and continuing to
release 4 of System V in 1989 (also designated SVR4), eventually incorporated
many of the improvements to Unix that had been developed at Berkeley (Scott,
1988). Indeed, release 4 of System V had over a million installations. However,
these commercial releases no longer included source code. System V was the
first release that AT&T actually supported (because it was now a commercial
product) and ultimately became the preferred choice for hardware vendors,
partly because its operating system interfaces followed certain formal stan-
dards better (Wheeler, 2003). While the Unix license fees that AT&T charged
universities were nominal, those for commercial firms had ranged as high as
a quarter of a million dollars, but AT&T lowered the costs of the commercial
license with the release of System V. Many private companies developed their
own private variations (so-called flavors) of Unix based on SVR4 under license
from AT&T. Eventually, AT&T sold its rights to Unix to Novel after release 4
of System V in the early 1990s.

BSD Unix evolved both technically and legally toward free, open source
status, divorced from AT&T restrictions. Throughout the 1980s, Berkeley’s
Computer Science Research Group extensively redeveloped Unix, enhancing
it – and rewriting or excising almost every piece of the AT&T Unix code. The
BSD distributions would ultimately be open source and not constrained by the
AT&T licensing restrictions. Indeed, by 1991, a BSD system (originally Net/2)
that was almost free of any of the AT&T source code was released that was
freely redistributed. However, in response to this action by Berkeley, AT&T,
concerned that its licensing income would be undermined, sued Berkeley in
1992 for violating its licensing agreement with AT&T. Later Berkeley counter-
sued AT&T for not giving Berkeley adequate credit for the extensive BSD code
that AT&T had used in its own System V! The dispute was settled by 1994. An
acceptable, free version of Unix called 4.4BSD-Lite was released soon after the
settlement. All infringements of AT&T code had been removed from this code,
even though they had been relatively minuscule in any case.

The legal entanglements for BSD Unix caused a delay that created a key
window of opportunity for the fledgling Linux platform. Indeed, the timing of
the legal dispute was significantly disruptive for BSD Unix because it was pre-
cisely during this several year period, during which UC Berkeley was stymied
by litigation with AT&T, that Linux emerged and rapidly gained in popularity.
That said, it should be noted, in the case of Linux, that half of the utilities that

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

86 3 The Open Source Platform

come packaged with Linux in reality come from the BSD distribution – and of
course Linux itself in turn depends heavily on the free or open tools developed
by the GNU project (McKusick, 1999).

The BSD open source versions that forked from 4.4BSD-Lite and which
were essentially free/open Unix-like clones included four systems: OpenBSD,
NetBSD, BSDI, and most significantly FreeBSD. These versions were all
licensed under the BSD license (at least the kernel code and most new code)
which unlike the GPL permits both binary and source code redistribution. It
includes the right to make derivative works that can be taken proprietary, as
long as credit is given for the code done by the Berkeley group. OpenBSD
is the second most popular of these free operating systems, after FreeBSD. It
has recognized, empirically verified, strong security performance, as we briefly
elaborated on in Chapter 2. NetBSD was designed with the intention of being
portable to almost any processor. BSDI was the first commercial version of Unix
for the widespread Intel platform (Wheeler, 2003). FreeBSD is the most popu-
lar of all the free operating systems, after Linux. Unlike Linux, it is developed
under a single Concurrent Versions System (CVS) revision tree. Additionally,
FreeBSD is a “complete operating system (kernel and userland)” and has the
advantage that both the “kernel and provided utilities are under the control
of the same release engineering team, (so) there is less likelihood of library
incompatibilities” (Lavigne, 2005). It is considered to have high-quality net-
work and security characteristics. Its Web site describes it as providing “robust
network services, even under the heaviest of loads, and uses memory efficiently
to maintain good response times for hundreds, or even thousands, of simulta-
neous user processes” (http://www.freebsd.org/about.html, accessed January
5, 2005). Yahoo uses FreeBSD for its servers as does the server survey Web
site NetCraft. It is considered an elegantly simple system that installs easily
on x86 compatible PCs and a number of other architectures. FreeBSD is also
considered as binary compatible with Linux in the sense that commercial appli-
cations that are distributed as binaries for Linux generally also run on FreeBSD
including software like Matlab and Acrobat.

For more information on the Unix operating system and its history, we refer
the interested reader to Raymond (2004) and Ritchie (1984).

Open Standards for Unix-like Operating Systems
Standards are extremely important in engineering. And, as Andrew Tanenbaum
quipped: “The nice thing about standards is that there are so many of them to
choose from” (Tanenbaum, 1981)! Standards can be defined as openly avail-
able and agreed upon specifications. For example, there are international stan-
dards for HTML, XML, SQL, Unicode, and many other hardware and software

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 87

systems, sanctioned by a variety of standards organizations like the W3C con-
sortium or the International Organization for Standardization (ISO). Publicly
available standards are important for software development because they define
criteria around which software products or services can be built. They ensure
that software implementers are working toward an agreed upon shared target.
They help guarantee the compatibility and interoperability of products from
different manufacturers or developers.

Standards help control emergent chaos: something that was definitely hap-
pening in the development of Unix-like systems. The closed versions of Unix
developed by AT&T and eventually the various Unix vendors naturally tended
to diverge increasingly over time, partly because the code bases were pro-
prietary and the individual hardware vendors’ needs were specialized. Such
divergences may have the advantage of allowing useful specialized versions of
a system to emerge, tailored to specific hardware architectures, but they also
make it increasingly difficult for software developers to develop applications
programs that work in these divergent environments. It also increases the learn-
ing difficulties of users who work or migrate between the different variations.
Establishing accepted, widely recognized standards is a key way of guarding
against the deleterious effects of the proliferation of such mutating clones of an
original root system.

Operating systems exhibit the scale of complexity that necessitates standards.
In the context of operating systems, standards can help establish uniform user
views of a system as well as uniform system calls for application programs.
Two related standards for Unix (which have basically merged) are the POSIX
standard and the Single Unix Specification, both of which were initiated in
the mid-1980s as a result of the proliferation of proprietary Unix-like systems.
Standards do not entail disclosing source code like in the open source model,
but they do at least ensure a degree of portability for applications and users,
and mitigate against the decreasing interoperability that tends to arise when
closed source systems evolve, mutate, and diverge. Thus, while open source
helps keep divergence under control by making system internals transparent and
reproducible, open standards attempt to help control divergence by maintaining
coherence in the external user and programming interfaces of systems.

POSIX refers to a set of standards, defined by the IEEE and recognized by
the ISO, which is intended to standardize the Applications Program Interface
for programs running on Unix-like operating systems. POSIX is an acronym for
Portable Operating Systems Interface, with the post-pended X due to the Unix
connection. The name was proposed (apparently humorously) by Stallman who
is prominent for his role in the Free Software Foundation and movement. POSIX
was an effort by a consortium of vendors to establish a single standard for Unix,

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

88 3 The Open Source Platform

making it simpler to port applications across different hardware platforms. The
user interface would look the same on different platforms and programs that
ran on one POSIX system would also run on another. In other words, the user
interface would be portable as would the Application Programmer Interface,
rather than the operating system.

The POSIX standards include a compliance suite called the Conformance
Test Suite. Actually, the term compliance is weaker than the stronger term
conformance that implies that a system supports the POSIX standards in their
entirety. The POSIX standards address both user and programming software
interfaces. For example, the Korn Shell is established as the standard user
command-line interface, as are an extensive set of user commands and utilities
like the command for listing files (ls). These standards fall under what is called
POSIX.2. The standards also define the C programming interface for system
calls, including those for I/O services, files, and processes, under what is called
POSIX.1. The POSIX standards were later integrated into the so-called Single
Unix Specification, which had originated about the same time as the POSIX
standards. The Single Unix Specification is the legal definition of the Unix
system under the Unix trademark owned by the Open Group. The Open Group
makes the standards freely available on the Web and provides test tools and
certification for the standards.

References

Edwards, K. (2003). Technological Innovation in the Software Industry: Open Source
Development. Ph.D. Thesis, Technical University of Denmark.

Garfinkel, S. and Spafford, G. (1996). Practical Unix and Internet Security. O’Reilly
Media, Sebastopol, CA.

Lavigne, D. (2005). FreeBSD: An Open Source Alternative to Linux. http://www.
freebsd.org/doc/en US.ISO8859-1/articles/linux-comparison/article.html.
Accessed February 10, 2007.

McKusick, M. (1999). Twenty Years of Berkeley Unix: From AT&T-Owned to Freely
Redistributable. In: Open Sources: Voices from the Open Source Revolution, M.
Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media, Sebastopol, CA,
31–46.

Raymond, E. (2004). The Art of UNIX Programming. Addison-Wesley Professional
Computer Series. Pearson Education Inc. Also: Revision 1.0. September 19, 2003.
http://www.faqs.org/docs/artu/. Accessed January 10, 2007.

Raymond, E.S. (1997). A Brief History of Hackerdom. http://www.catb.org/∼esr/
writings/cathedral-bazaar/hacker-history/. Accessed November 29, 2006.

Ritchie, D. (1984). The Evolution of the UNIX Time-Sharing System. Bell System Tech-
nical Journal, 63(8), 1–11. Also: http://cm.bell-labs.com/cm/cs/who/dmr/hist.pdf.
Accessed January 10, 2007.

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 89

Ritchie, D. and Thompson, K. (1974). The UNIX Time-Sharing System. Communica-
tions of the ACM, 17(7), 365–375. Revised version of paper presented at: Fourth
ACM Symposium on Operating System Principles, IBM Watson Research Center,
Yorktown Heights, New York, October 15–17, 1973.

Scott, G. (1988). A Look at UNIX. U-M Computing News. University of Michigan
Computing Newsletter, 3(7).

Tanenbaum, A. (1981). Computer Networks, 2nd edition. Prentice Hall, Englewood
Cliffs, NJ.

Van Vleck, T. (1995). Unix and Multics. http://multicians.org/unix.html. Accessed Jan-
uary 10, 2007.

Wheeler, D. (2003). Secure Programming for Linux and Unix HOWTO. http://www.
dwheeler.com/secure-programs. Accessed November 29, 2006.

3.1.2 Linux

Linux is the defining, triumphant mythic project of open source. It illustrates
perfectly the paradigm of open development and the variegated motivations
that make people initiate or participate in these projects. It led to unexpected,
unprecedented, explosive system development and deployment. It represents the
metamorphosis of an initially modest project, overseen by a single individual,
into a global megaproject.

Linux was the realization of a youthful computer science student’s dream of
creating an operating system he would like and that would serve his personal
purposes. It began as a response to limitations in the Minix PC implementation
of Unix. As described previously, Unix had originally been freely and widely
distributed at universities and research facilities, but by 1990 it had become
both expensive and restricted by a proprietary AT&T license. An inexpensive,
open source Unix clone named Minix, which could run on PCs and used no
AT&T code in its kernel, compilers, or utilities, was developed by Professor
Andrew Tanenbaum for use in teaching operating systems courses. In 1991,
Linus Torvalds, then an undergraduate student at the University of Helsinski
got a new PC, his first, based on an Intel 8086 processor. The only available
operating systems for the PC were DOS, which lacked multitasking, and Minix.
Linus bought a copy of Minix and tried it on his PC, but was dissatisfied with its
performance. For example, it lacked important features like a terminal emulator
that would let him connect to his school’s computer. A terminal emulator is a
program that runs on a PC and lets it interact with a remote, multiuser server.
This is different from a command-line interpreter or shell. Terminal emulators
were frequently used to let a PC user log on to a remote computer to execute
programs available on the remote machine. The familiar Telnet program is a
terminal emulator that works over a TCP/IP network and lets the PC running

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

90 3 The Open Source Platform

it interact with the remote server program (SSH would now be used). Com-
mands entered through the Telnet prompt are transmitted over the network and
executed as if they had been directly entered on the remote machine’s console.
Linus implemented his own terminal emulator separate from Minix and also
developed additional, Minix-independent programs for saving and transferring
files.

This was the beginning of the Linux operating system. The system’s name is
an elision of the developer’s first name Linus and Unix (the operating system it
is modeled on). Linux is said to be a Unix-like operating system in the sense that
its system interfaces or system calls are the same as those of Unix, so programs
that work in a Unix environment will also work in a Linux environment. It
would be worthwhile for the reader to look up a table of Linux system calls and
identify the function of some of the major system calls to get a sense of what
is involved.

The post that would be heard round the world arrived in late August 1991.
Linus posted the note on the Usenet newsgroup comp.os.minix (category: Com-
puters > Operating Systems > Minix), a newsgroup of which Linus was a
member, dedicated to discussion of the Minix operating system. He announced
he was developing a free operating system for the 386(486) AT clones. These
networked communications groups that had first become available in the 1980s
would be key enabling infrastructures for the kind of distributed, collaborative
development Linux followed. The group provided a forum for Linus to tell
people what he wanted to do and to attract their interest. The posted message
asked if anyone in the newsgroup had ideas to propose for additional features
for his system. The original post follows:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out there using minix –

I’m doing a (free) operating system (just a hobby, won’t be big and professional
like gnu) for 386(486) AT clones. This has been brewing since april, and is starting
to get ready. I’d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the file-system (due to practical
reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that I’ll get something practical within a few months, and I’d like to know

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 91

what features most people would want. Any suggestions are welcome, but I won’t
promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes – it’s free of any minix code, and it has a multi-threaded fs. It is NOT
portable (uses 386 task switching etc), and it probably never will support anything
other than AT-harddisks, as that’s all I have :-(.

Though Linux would become a dragon-slayer of a project, the initial post was a
“modest proposal” indeed, though it does convey the sense of the development.
It was motivated by personal need and interest. It was to be a Unix-like system.
It was to be free with a pure pedigree. Just as Minix contained none of the
proprietary AT&T Unix code, Linux too would contain none of the Minix code.
Linus wanted suggestions on additional useful features and enhancements. A
few basic Unix programs had already been implemented on a specific processor,
but the scale was small and it was not even planned to be “ported” (adapted and
implemented) on other machines. A little later, Linus posted another engaging
e-mail to the Minix newsgroup:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Free minix-like kernel sources for 386-AT
Message-ID: <1991Oct5.054106.4647@klaava.Helsinki.FI>
Date: 5 Oct 91 05:41:06 GMT
Organization: University of Helsinki

Do you pine for the nice days of minix-1.1, when men were men and wrote their
own device drivers? Are you without a nice project and just dying to cut your teeth
on an OS you can try to modify for your needs? Are you finding it frustrating when
everything works on minix? No more all-nighters to get a nifty program working?
Then this post might be just for you :-)

The rest of the post describes Linus’ goal of building a stand-alone operating
system independent of Minix. One has to smile at the unpretentious and enthu-
siastic tone of the e-mail. The interest in making a “nifty program” sort of says
it all.

Linux would soon become a model of Internet-based development which
itself relied on networked communication and networked file sharing. Linus
encouraged interested readers to download the source code he had written and
made available on an FTP server. He wanted the source to be easily available
over FTP and inexpensive (Yamagata, 1997). Thus in addition to collaborators
communicating with each another via the network, the networked environment
provided the means for the rapid dissemination of revisions to the system.
Potential contributors were asked to download the code, play with the system

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

92 3 The Open Source Platform

developed so far, tell about any corrections, and contribute code. The patch
programs had already been introduced some years earlier, so the exchange of
code changes was relatively simple.

Releases were to follow quickly as a matter of development strategy and
Unix functionality was soon matched. Within a month of his October 1991
announcement, ten people had installed the first version on their own machines.
Within two months, 30 people had contributed a few hundred error reports
or contributed utilities and drivers. When the comp.os.linux newsgroup was
subsequently established, it became one of the top five most read newsgroups
(Edwards, 2003). Later in 1991, Linus distributed what he called version 0.12. It
was initially distributed under a license that forbade charging for distributions.
By January 1992, this was changed and Linux was distributed under the GNU
GPL. This was done partly for logistic reasons (so people could charge for
making disk copies available) but primarily out of Linus’ appreciation for the
GPL-licensed GNU tools that Torvalds grew up on and was using to create
Linux. Linus gave credit to three people for their contributions in a December
release. By the release of development version 0.13, most of the patches had
been written by people other than himself (Moon and Sproul, 2000). From that
point on, Linux developed quickly, partly as a result of Linus’ release-early,
release-often policy. Indeed, within a year-and-a-half, Linus had released 90
updated versions (!) of the original software, prior to the first user version 1.0
in 1994. By the end of 1993, Linux had developed sufficiently to serve as a
replacement for Unix. Version 1.0 of the Linux kernel was released in March
1994.

Linux is just the kernel of an operating system. For example, the command-
line interpreter or shell that runs on top of the Linux kernel was not developed by
Linus but came from previously existing free software. There were of course
other key free components used in the composite GNU/Linux system, like
the GNU C compiler developed by the FSF in the 1980s. Successive Linux
versions substantially modified the initial kernel. Linus advocated the then
unconventional use of a monolithic kernel rather than a so-called microkernel.
Microkernels are small kernels with hardware-related components embedded in
the kernel and which use message-passing to communicate between the kernel
and the separate outer layers of the operating system. This structure makes
microkernel designs portable but also generally slower than monolithic kernels
because of the increased interprocess communication they entail. Monolithic
kernels, on the other hand, integrate the outer layers into the kernel, which makes
them faster. Linux’s design uses modules that can be linked to the kernel at
runtime in order to achieve the advantages offered by the microkernel approach
(Bovet and Cesati, 2003). A fascinating historical exchange about kernel design

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 93

occurred in the heated but instructive debate between Minix’s Tanenbaum and
Linux’s Torvalds in their controversial early 1992 newsgroup discussions. Refer
to Tanenbaum’s provocative “Linux is obsolete” thread in the comp.os.minix
newsgroup and Linus’ equally provocative response; (see also DiBona et al.,
1999, Appendix A).

Bugs in operating systems can be difficult, unpredictable critters, but Linux’s
massive collaborative environment was almost ideally suited for these circum-
stances. Since operating systems are subject to temporal and real-time concur-
rent effects, improvements in the system implementation tend to focus on the
need to remedy bugs – as well as on the need to develop new device drivers
as additional peripherals are developed (Wirzenius, 2003). Typical operating
system bugs might occur only rarely or intermittently or be highly context-
dependent. Bugs can be time-dependent or reflect anomalies that occur only
in some complicated context in a concurrent user, multitasking environment.
The huge number of individuals involved in developing Linux, especially as
informed users, greatly facilitated both exposing and fixing such bugs, which
would have been much more difficult to detect in a more systematic develop-
ment approach. The operative diagnostic principle or tactic from Linus’ view-
point is expressed in his well-known aphorism that “given enough eyeballs, all
bugs are shallow.” On the other hand, there have also been critiques of Linux’s
development. For example, one empirical study of the growth in coupling over
successive versions of Linux concluded that “unless Linux is restructured with
a bare minimum of common coupling, the dependencies induced by common
coupling will, at some future date, make Linux exceedingly hard to main-
tain without inducing regression faults,” though this outcome was thought to
be avoidable if care were taken to introduce no additional coupling instances
(Schach et al., 2002).

The modular design of Linux’s architecture facilitated code development
just as the collaborative framework facilitated bug handling. For example, the
code for device drivers currently constitutes the preponderance of the Linux
source code, in contrast to the code for core operating system tasks like mul-
titasking which is much smaller by comparison. The drivers interface with
the operating system kernel through well-defined interfaces (Wirzenius, 2003).
Thus, modular device drivers are easy to write without the programmer having
a comprehensive grasp of the entire system. This separable kind of structure
is extremely important from a distributed development point of view. It facili-
tates letting different individuals and groups address the development of drivers
independently of one another, something which is essential given the minimally
synchronized and distributed nature of the open development model. In fact,
the overall structure of the kernel that Linus designed was highly modular. This

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

94 3 The Open Source Platform

is a highly desirable characteristic of an open source software architecture,
because it is essential for decomposing development tasks into independent
pieces which can be worked on separately and in parallel, with only relatively
limited organizational coordination required. Furthermore, this structure also
allows so-called redundant development (Moon and Sproul, 2000) where more
than one individual or groups of individuals can simultaneously try to solve a
problem with the best outcome or the earliest outcome ultimately selected for
inclusion in the system.

Linux was portable, functional, and turned out to be surprisingly reliable.
As we have noted, over its first several years of development, enough features
were added to Linux for it to become competitive as an alternative to Unix.
Its portability was directly related to the design decision to base Linux on a
monolithic core kernel (with hardware-specific code like device drivers han-
dled by so-called kernel modules). This decision was in turn directly related to
enabling the distributed style of Linux development. The structure also allowed
Linus Torvalds to focus on managing core kernel development, while others
could work independently on kernel modules (Torvalds, 1999b). Several years
after the version 1.0 release of the system in 1994, Linux was ported to proces-
sors other than the originally targeted 386/486 family, including the Motorola
68000, the Sun SPARC, the VAX, and eventually many others. Its reliability
quickly became superior to Unix. Indeed, Microsoft program manager Vallop-
pillil (1998), in the first of the now famous confidential Microsoft “Halloween”
memos, reported that the Linux failure rate was two to five times lower than
commercially available versions of Unix, according to performance analyses
done internally by Microsoft itself.

The scale of the project continued to grow. The size of the distributed team
of developers expanded almost exponentially. Despite this, the organizational
paradigm remained lean in the extreme. Already by mid-year 1995, over 15,000
people had submitted contributions to the main Linux newsgroups and mailing
lists (Moon and Sproul, 2000). A decade later, by the year 2005, there would be
almost 700 Linux user groups spread worldwide (http://lugww.counter.li.org/,
accessed January 5, 2007). The 1994 version 1.0 release, which had already
been comparable in functionality to Unix, encompassed 175,000 lines of source
code. By the time version 2.0 was released in 1996, the system had 780,000
lines of source code. The 1998 version 2.1.110 release had a million and a
half lines of code (LOC), 30% of which consisted of code for the kernel and
file system, about 50% for device drivers, while about 20% was hardware
architecture-specific (Moon and Sproul, 2000). The amazing thing was that, to
quote Moon and Sproul (2000): “No (software) architecture group developed
the design; no management team approved the plan, budget, and schedule; no

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 95

HR group hired the programmers; no facilities group assigned the office space.
Instead, volunteers from all over the world contributed code, documentation,
and technical support over the Internet just because they wanted to.” It was an
unprecedented tour de force of large-scale distributed development and led to
a blockbuster system.

What motivated such an army of dedicated participants? Many of them
shared the same kind of motivation as Linus had: they wanted to add features to
the system so that it could do something useful that they wanted for their personal
benefit. People also wanted to be known for the good code they developed.
Initially, Linus provided personal acknowledgements for individuals who made
significant contributions. Already by the version 1.0 release in 1994, Linus
personally acknowledged the work of over 80 people (Moon and Sproul, 2000).
This version also began the practice of including a credits file with the source
code that identified the major contributors and the roles they had played. It
was up to the contributors themselves to ask Linus to be included in the credits
file. This kind of reputational reward was another motivation for continued
developer participation in a voluntary context like that of Linux.

All participants were by no means equal. Linux kernel developer Andrew
Morton, lead maintainer for the Linux production kernel at the time, observed
in 2004 (at the Forum on Technology and Innovation) that of the 38,000 most
recent patches to the Linux kernel (made by roughly 1,000 developers), 37,000
of these patches – that’s about 97% – were made by a subset of 100 devel-
opers who were employees paid by their companies to work on Linux! It is
worth perusing the Linux credits file. For example, you might try to observe
any notable demographic patterns, like country of origin of participants, their
industrial or academic affiliations based on their e-mail addresses, the apparent
sex of participants, and the like.

Decisions other than technical ones were key to Linux. Managerial innova-
tiveness was central to its successful development. Technical and managerial
issues could very well intertwine. For example, after the original system was
written for the Intel 386 and then re-ported in 1993 for the Motorola 68000,
it became clear to Linus that he had to redesign the kernel architecture so
that a greater portion of the kernel could serve different processor architec-
tures. The new architectural design not only made the kernel code far more
easily portable but also more modular. Organizationally, this allowed different
parts of the kernel to be developed in parallel (Torvalds, 1999a, b) and with
less coordination, which was highly advantageous in the distributed develop-
ment environment. The way in which software releases were handled was also
determined by market effects. A simple but important managerial/marketing
decision in this connection was the use of a dual track for release. The dual

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

96 3 The Open Source Platform

track differentiated between stable releases that could be used confidently by
people who merely wanted to use the operating system as a platform on which to
do their applications work – versus development releases that were less stable,
still under development, and included the newest feature additions. This kept
two potentially disparate audiences happy: the developers had flexibility, the
end users had certainty. The distinction between developer and stable releases
also supported the “release-early, release-often” policy that facilitated rapid
development. The release-numbering system reflected the categorization and
is worth understanding. Odd-numbered release series such as 2.3 (or its sub-
tree members like 2.3.1 and 2.3.2) corresponded to developer or experimental
releases. Stable releases had an even-numbered second digit, like 2.0, 2.2. Once
a stable release was announced, a new developer series would start with the next
higher (odd) number (such as 2.3 in the present case). Amazingly, there were
almost 600 releases of all kinds between the 0.01 release in 1991 that started it
all and the 2.3 release in 1999 (Moon and Sproul, 2000).

Though development was distributed and team-based, the project retained
its singular leadership. While Linus displayed a somewhat self-deprecatory and
mild-mannered leadership or management style, it was ultimately he who called
the shots. He decided on which patches were accepted and which additional
features were incorporated, announced all releases, and at least in the beginning
of the project reviewed all contributions personally and communicated by e-
mail with every contributor (Moon and Sproul, 2000). If it is true that enough
eyeballs make all bugs shallow, it also appears to be true that in the Linux
world there was a governing single pair of eyes overseeing and ensuring the
quality and integral vision of the overall process. So one might ask again: is it
a cathedral (a design vision defined by a single mind) or a bazaar?

The choice of the GPL has been decisive to the developmental integrity of
Linux because it is instrumental in preventing the divergence of evolving ver-
sions of the system. In contrast, we have seen how proprietary pressures in the
development of Unix systems encouraged the divergence of Unix mutations,
though the POSIX standards also act against this. This centralizing control
provided by the GPL for Linux was well-articulated by Roger Young (1999)
of Red Hat in a well-known essay where he argued that unlike proprietary
development: “In Linux the pressures are the reverse. If one Linux supplier
adopts an innovation that becomes popular in the market, the other Linux ven-
dors will immediately adopt that innovation. This is because they have access to
the source code of the innovation and it comes under a license that allows them
to use it.” Thus, open source creates “unifying pressure to conform to a common
reference point – in effect an open standard – and it removes the intellectual
property barriers that would otherwise inhibit this convergence” (Young, 1999).

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.1 Operating Systems 97

This is a compelling argument not only for the stability of Linux but also for
the merits of the GPL in rapid, innovative system development.

Writing code may be a relatively solitary endeavor, but the development of
Linux was an interactive social act. We have remarked on the organizational
structure of Linux development, the motivations of its participants, and the
personal characteristics of its unique leader. It is also worthwhile to describe
some characteristics of the social matrix in which the project operated. For more
detail see the discussion in (Moon and Sproul, 2000). To begin with, Linus’
participation in the Usenet newsgroup comp.os.minix preceded his original
announcement to the community of his Linux adventure. This was a large online
community with about 40,000 members by 1992. The group that would develop
Linux was a self-selected subset that sat on top of this basic infrastructure,
which in turn sat on top of an e-mail and network structure. Of course, by
word of e-mail the Linux group would quickly spread beyond the initial Minix
newsgroup.

Communities like those that developed Linux exhibit a sociological infras-
tructure. This includes their group communication structure and the roles
ascribed to the different members. In Linux development, group communi-
cation was handled via Usenet groups and various Linux mailing lists. Within
months of the initial project announcement, the original single mailing list
(designated Linux-activists) had 400 members. At the present time there are
hundreds of such mailing lists targeted at different Linux distributions and
issues. The comp.os.linux newsgroup was formed by mid-1992. Within a few
years there were literally hundreds of such Linux-related newsgroups (lin-
uxlinks.com/Links/USENET). The mailing list for Linux-activists was the first
list for Linux kernel developers, but others followed. It is worth looking up
the basic information concerning the Linux kernel mailing list at www.tux.org.
Check some of the entries in the site’s hyperlink Index to understand how the
process works. If you are considering becoming a participant in one of the
lists, beware of which list you subscribe to and consider the advice in the FAQ
(frequently answered questions) at the site that warns:

Think again before you subscribe. Do you really want to get that much traffic in
your mailbox? Are you so concerned about Linux kernel development that you will
patch your kernel once a week, suffer through the oopses, bugs and the resulting
time and energy losses? Are you ready to join the Order of the Great Penguin, and
be called a “Linux geek” for the rest of your life? Maybe you’re better off reading
the weekly “Kernel Traffic” summary at http://www.kerneltraffic.org/.

The kernel mailing list is the central organizational tool for coordinating ker-
nel developers. Moon and Sproul (2000) observe that: “Feature freezes, code
freezes, and new releases are announced on this list. Bug reports are submitted

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

98 3 The Open Source Platform

to this list. Programmers who want their code to be included in the kernel sub-
mit it to this list. Other programmers can then download it, test it within their
own environment, suggest changes back to the author, or endorse it.” Messages
sent to the list are automatically resent to everyone on the list. The e-mail traf-
fic is enormous, with thousands of developers posting hundreds of thousands
of messages in the course of time. As of 2005, a member of the kernel list
could receive almost 10,000 messages per month, so that digest summaries of
messages are appropriate to look at, at least initially. The modular architecture
of Linux also affects the communications profile of the development since the
architecture partitions the developers into smaller groups. This way intensive
collaboration is not across a broad population of developers but with smaller
sets of developers.

The technical roles of the major participants are divided into so-called
credited developers and maintainers. Credited developers are those who have
made substantial code contributions and are listed in the Linux credits file
(such as http://www.kernel.org/pub/linux/kernel/CREDITS, accessed January
10, 2007). There are also major contributors who for various personal reasons
prefer to keep a low profile and do not appear on the credits list. There were about
400 credited Linux kernel developers by 2000. Maintainers are responsible for
individual kernel modules. The maintainers “review linux-kernel mailing list
submissions (bug reports, bug fixes, new features) relevant to their modules,
build them into larger patches, and submit the larger patches back to the list and
to Torvalds directly” (Moon and Sproul, 2000). These are people whose judg-
ment and expertise is sufficiently trusted by Linus in areas of the kernel where
he himself is not the primary developer that he will give close attention to their
recommendations and tend to approve their decisions. The credited developers
and maintainers dominate the message traffic on the Linux-kernel mailing list.
Typically, 1/50th of the developers generate 50% of the traffic. Of this 50%,
perhaps 30% of the traffic is from credited developers while about 20% is from
maintainers. The norms for how to behave with respect to the mailing lists are
specified in a detailed FAQ document that is maintained by about 20 contrib-
utors. For example, refer to the http://www.tux.org/lkml/ document (accessed
January 10, 2007) to get a sense of the range of knowledge and behaviors that
are part of the defining norms of the developer community. It tells you every-
thing from “What is a feature freeze?” and “How to apply a patch?” to “What
kind of question can I ask on the list?” Documents like these are important in a
distributed, cross-cultural context because they allow participants to understand
what is expected of them and what their responsibilities are. In the absence of
face-to-face interactions, the delineation of such explicit norms of conduct is
critical to allowing effective, largely text-based, remote communication.

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 99

References

Bovet, D.P. and Cesati, M. (2003). Understanding the Linux Kernel, 2nd edition. O’Reilly
Media, Sebastopol, CA.

DiBona, C., Ockman, S., and Stone, M. (1999). The Tanenbaum-Torvalds Debate in
Appendix A of Open Sources: Voices from the Open Source Revolution. M. Stone,
S. Ockman, and C. DiBona (editors). O’Reilly Media, Sebastopol, CA.

Edwards, K. (2003). Technological Innovation in the Software Industry: Open Source
Development. Ph.D. Thesis, Technical University of Denmark.

Moon, J.Y. and Sproul, L. (2000). Essence of Distributed Work: The Case of the Linux.
http://www.firstmonday.dk/issues/issue5 11/moon/index.html. Accessed Decem-
ber 3, 2006.

Schach, S., Jin, B., Wright, D., Heller, G., and Offutt, A. (2002). Maintainability of the
Linux Kernel. IEE Proceedings – Software, 149(1), 18–23.

Torvalds, L (1999a). The Linux edge. Communications of the ACM, 42(4), 38–39.
Torvalds, L. (1999b). The Linux edge. In: Open Sources: Voices from the Open Source

Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media,
Sebastopol, CA, 101–111.

Valloppillil, V. (1998). Open source software: A (New?) development methodology,
(August 11, 1998). http://www.opensource.org/halloween/. Accessed January 20,
2007.

Wirzenius, L. (2003). Linux: The Big Picture. PC Update Online. http://www.melbpc.
org.au/pcupdate/2305/2305article3.htm. Accessed November 29, 2006.

Yamagata, H. (1997). The Pragmatist of Free Software: Linus Torvalds Interview.
http://kde.sw.com.sg/food/linus.html. Accessed November 29, 2006.

Young, R. (1999). Giving It Away. In: Open Sources: Voices from the Open Source Revo-
lution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media, Sebastopol,
CA, 113–125.

3.2 Windowing Systems and Desktops

By the early 1970s, computer scientists at the famed Xerox PARC research
facility were vigorously pursuing ideas proposed by the legendary Douglas
Engelbart, inventor of the mouse and prescient computer engineer whose sem-
inal work had propelled interest in the development of effective bitmapped
graphics and graphical user interfaces years ahead of its time (Engelbart, 1962).
Engelbart’s work eventually led to the development of the Smalltalk graphical
environment released on the Xerox Star computer in 1981. Many of the engi-
neers who worked at Xerox later migrated to Apple, which released the relatively
low-cost Macintosh graphical computer in 1984. Microsoft released systems
like Windows 2.0 with a similar “look and feel” to Apple by 1987, a similarity
for which Microsoft would be unsuccessfully sued by Apple (Reimer, 2005),
though see the review of the intellectual property issues involved in Myers
(1995). The provision of open source windowing and desktop environments

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

100 3 The Open Source Platform

for Unix began in the early 1980s with the initiation of the X Window System
project. By the mid-1990s the GNOME and KDE projects to create conve-
nient free desktop environments for ordinary users, with GUI interfaces similar
to Windows and Mac OS, were begun. This section describes the enormous
efforts that have gone into these major open source projects: X, GNOME,
and KDE.

3.2.1 The X Window System

The X Window System (also called X or X11 after the version which appeared
in 1987) lets programmers develop GUIs for bitmap displays on Unix and other
platforms which do not come with windowing capabilities. It was developed for
a Unix environment beginning at MIT in 1984 in a joint collaboration between
MIT, DEC, and IBM and licensed under the permissive MIT/X open source
license by 1985. It is considered to be “one of the first very large-scale free
software projects” (X Window System, 2006), done in the context of the budding
Internet with extensive use of open mailing lists. The system lets programmers
draw windows and interact with the mouse and keyboard. It also provides what
is called network transparency, meaning that applications on one machine can
remotely display graphics on another machine with a different architecture and
operating system. For example, X allows a computationally intensive program
executing on a Unix workstation to display graphics on a Windows desktop (X
Window System, 2006). X now serves as the basis for both remote and local
graphic interfaces on Linux and almost all Unix-like systems, as well as for
Mac OS X (which runs on FreeBSD). KDE and GNOME, the most popular
free desktops, are higher level layers that run on top of X11. In the case of KDE
on Unix, for example, KDE applications sit on top of the KDE libraries and Qt,
which in turn run on X11 running on top of Unix (KDE, 2006).

The X Window System is a large application with an impressive code base.
For example, X11 had over 2,500 modules by 1994. In an overview of the size
of a Linux distribution (Red Hat Linux 6.2), Wheeler (2000) observed that the
X Windows Server was the next largest component in the distribution after
the Linux kernel (a significant proportion of which was device-dependent). It
occupied almost a million-and-a-half SLOC. X was followed in size by the gcc
compiler, debugger, and Emacs, each about half the size of X. In comparison,
the important Apache project weighs in at under 100,000 SLOC. Despite this,
X also works perfectly well on compact digital devices like IBM’s Linux watch
or PDA’s and has a minimal footprint that is “currently just over 1 megabyte of
code (uncompressed), excluding toolkits that are typically much larger” (Gettys,
2003).

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 101

The system was used on Unix workstations produced by major vendors
like AT&T, Sun, HP, and DEC (Reimer, 2005). The X11 version released in
1987 intentionally reflected a more hardware neutral design. To maintain the
coherent evolution of the system, a group of vendors established the nonprofit
MIT X Consortium in 1987. The project was directed by X cofounder Bob
Scheifler. The consortium proposed to develop X “in a neutral atmosphere
inclusive of commercial and educational interests” (X Window System, 2006),
with the objective of establishing “the X Window System as an industry-wide
graphics windowing standard” (Bucken, 1988). IBM joined the consortium in
1988. Over time, commercial influence on the project increased. There were
also ongoing philosophical and pragmatic differences between the FSF and
the X project. In fact, Stallman (1998) had described the X Consortium (and
its successor the Open Group) as “the chief opponent of copyleft” which is
one of the defining characteristics of the GPL, even though the X license is
GPL-compatible in the usual sense that X can be integrated with software
licensed under the GPL. The FSF’s concern is the familiar one that commercial
vendors can develop extensive proprietary customizations of systems like the
X reference implementation which they could then make dominant because of
the resources they can plow into proprietary development, relying on the liberal
terms of the MIT/X license.

A notable organizational change occurred in 2003–2004. The XFree86
project had started in 1992 as a port of X to IBM PC compatibles. It had
over time become the most popular and technically progressive version of X.
However, by 2003 there was growing discontent among its developer commu-
nity, caused partly by the difficulty of obtaining CVS commit access. On top of
this, in 2004, the XFree86 project adopted a GPL-incompatible license that con-
tained a condition similar to the original BSD advertising clause. The change
was supposed to provide more credit for developers, but it had been done in the
face of strong community opposition, including from preeminent developers
like Jim Gettys, cofounder of the X project. Gettys opposed the change because
it made the license GPL-incompatible. Stallman (2004) observed that although
the general intention of the new license requirement did “not conflict with the
GPL,” there were some specific details of the licensing requirement that did.
In combination with existing discontent about the difficulty of getting CVS
commit access, the new GPL incompatibility had almost immediate disruptive
consequences. The project forked, with the formation of the new X.Org foun-
dation in 2004. X.Org rapidly attracted almost all the XFree86 developers to its
GPL-compatible fork. The newly formed organization places a much greater
emphasis on individual participation. In fact, Gettys (2003) notably observed
that “X.org is in the process of reconstituting its governance from an industry

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

102 3 The Open Source Platform

consortium to an organization in which individuals, both at a personal level and
as part of work they do for their companies have voice, working as part of the
larger freedesktop.org and free standards community” (italics added). X.Org
now provides the canonical reference implementation for the system which
remains “almost completely compatible with the original 1987 protocol” (X
Window System, 2006).

References

Bucken, M. (1988). IBM Backs X Windows. Software Magazine, March 15. http://
findarticles.com/p/articles/mi m0SMG/is n4 v8/ai 6297250. Accessed December
3, 2006.

Engelbart, D.C. (1962). Augmenting Human Intellect: A Conceptual Framework.
Stanford Research Institute, Menlo Park, CA. http://www.invisiblerevolution.
net/engelbart/full 62 paper augm hum int.html. Accessed December 3, 2006.

Gettys, J. (2003). Open Source Desktop Technology Road Map. HP Labs, Version 1.14.
http://people.freedesktop.org/∼jg/roadmap.html. Accessed December 6, 2006.

KDE. (2006). K Desktop Environment: Developer’s View. http://www.kde.org/
whatiskde/devview.php. Accessed January 10, 2007.

Myers, J. (1995). Casenote, Apple v. Microsoft: Virtual Identity in the GUI Wars.
Richmond Journal of Law and Technology, 1(5). http://law.richmond.edu/jolt/
pastIssues.asp. Accessed December 6, 2006.

Reimer, J. (2005). A History of the GUI. http://arstechnica.com/articles/paedia/gui.ars.
Accessed December 3, 2006.

Stallman, R. (1998). The X-Window Trap. Updated Version. http://www.gnu.org/
philosophy/x.html. Accessed December 3, 2006.

Stallman, R. (2004). GPL-Incompatible License. http://www.xfree86.org/pipermail/
forum/2004-February/003974.html. Accessed December 3, 2006.

Wheeler, D. (2000). Estimating Linux’s Size. Updated 2004. http://www.dwheeler.com/
sloc/redhat62-v1/redhat62sloc.html. Accessed December 1, 2006.

X Window System (2006). Top-Rated Wikipedia Article. http://en.wikipedia.org/wiki/
X Window System. Accessed December 3.

3.2.2 Open Desktop Environments – GNOME

The objective of the GNOME Project is to create a free General Public Licensed
desktop environment for Unix-like systems like Linux. This ambition has long
been fundamental to the vision of free development for the simple reason that
providing an effective, free GUI desktop interface for Linux or other free oper-
ating systems is necessary for them to realistically compete in the mass market
with Windows and Apple environments. Aside from Linux itself, no other
open source project is so complex and massive in scale as GNOME, and so
overtly challenges the existing, established, proprietary platforms. The acronym
GNOME stands for GNU Network Object Model Environment. It is the official

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 103

GNU desktop. In addition to the user desktop, GNOME also encompasses a
variety of standard applications and a comprehensive development environ-
ment used to develop applications for GNOME or further develop the GNOME
platform itself.

The idea for the GNOME project was initiated in 1996 by Miguel de Icaza.
Icaza, a recent computer science graduate who was the maintainer for the GIMP
project, released (along with Fedrico Mena) a primitive version (0.10) of a
GUI infrastructure for Unix in 1997. The development language used was C
(de Icaza, 2000). There was a significant free licensing controversy behind
the motivation for developing GNOME. There already existed by that time
another free desktop project called KDE, but there were licensing controversies
associated with KDE. One of its key components, the Qt toolkit library discussed
in Chapter 2, did not use an acceptable free software license. To avoid this kind
of problem, the GNOME developers selected, instead of Qt, the GIMP open
source image processing toolkit GTK+. They believed this software would
serve as an acceptable LGPL basis for GNOME. The GNU LGPL permitted
any applications written for GNOME to use any kind of software license, free
or not, although of course the core GNOME applications themselves were to
be licensed under the GPL. The first major release of GNOME was version 1.0
in 1999. It was included as part of the Red Hat Linux distribution. This release
turned out to be very buggy but was improved in a later release that year.

There are different models for how founders continue a long-term relation-
ship with an open source project. For example, they may maintain license own-
ership and start a company that uses a dual open/proprietary track for licenses.
In the case of Icaza, after several years of development work on GNOME, he
relinquished his role and founded the for-profit Ximian Corporation in 2000 as
a provider for GNOME-related services. In order to ensure the continued inde-
pendence of the GNOME project, the GNOME Foundation was established
later that year. Its Board members make decisions on the future of GNOME,
using volunteer committees of developers and release teams to schedule plan-
ning and future releases. The not-for-profit GNOME Foundation, its industrial
partners, and a volunteer base of contributors cooperate to ensure that the project
progresses. The GNOME Foundation’s mandate has been defined as creating
“a computing platform for use by the general public that is completely free
software” (GNOME Foundation, 2000; German, 2003).

GNOME is unambiguously free in lineage and license – and it’s big. Fol-
lowing free software traditions, the development tools that were used to cre-
ate GNOME are all free software. They include the customary GNU soft-
ware development tools (gcc compiler, Emacs editor, etc.), the Concurrent
Versioning System for project configuration management, and the Bugzilla

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

104 3 The Open Source Platform

bug-tracking server software developed by the Mozilla Foundation and avail-
able from http://www.bugzilla.org/. These development tools were of course
themselves the product of lengthy development during the 1980s–1990s by the
GNU project. The project’s code base is extensive and increasingly reliable. It
is now a very large system with about two million LOC and 500 developers
in various categories (German, 2003). As Koch and Schneider (2002) observe,
that’s actually roughly six million LOC added and four million lines deleted
per the project’s CVS repository. As already noted, the GNOME desktop has
been envisioned as an essential component if the free GNU/Linux environment
is to compete in the popular market with Windows and Apple. That vision is
emerging as a reality. Thus GNOME represents one of the culminating accom-
plishments of the free software movement.

GNOME has three major architectural components: the GUI desktop envi-
ronment, a set of tools and libraries that can interact with the environment, and
a collection of office software tools. The scale and organizational structure of
the project reflect these components. The GNOME project architecture con-
sists of four main software categories, with roughly 45 major modules and a
large number of noncore applications. The categories comprise libraries (GUI,
CORBA, XML, etc. – about 20 in total), core applications (about 16: mail
clients, word processors, spreadsheets, etc.), application programs, and several
dozen noncore applications (German, 2003). The modules, as typical in such a
large project, are relatively loosely coupled, so they can be developed mostly
independently of one another. When modules become unwieldy in size, they
are subdivided as appropriate into independent submodules. The modular orga-
nization is key to the success of the project because it keeps the organizational
structure manageable. Basically, a relatively small number of developers can
work independently on each module.

While most open source projects do not, in fact, have large numbers of
developers, GNOME does, with over 500 contributors having write access to
the project repository (German, 2003), though as usual a smaller number of
activist developers dominate. Koch and Schneider (2002) describe a pattern of
participation for GNOME that is somewhat different than that found by Mockus
et al. (2002) in their statistical review of the Apache project. Though GNOME’s
development still emanated from a relatively small number of highly activist
developers, the distribution is definitely flatter than Apache’s. For example,
while for Apache the top 15 developers wrote about 90% of the code, for
GNOME the top 15 developers wrote only 50% of the code, and to reach 80% of
the GNOME code, the top 50 developers have to be considered. At a more local
level, consider the case of the GNOME e-mail client (Evolution). According
to its development log statistics, five developers, out of roughly 200 total for

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 105

the client, were responsible for half the modifications; 20 developers accounted
for 80% of the development transactions; while a total of 55 developers of
the 200 accounted for 95% of the transactions (German, 2003). This skewed
pattern of contribution is not untypical. Refer to the useful libresoft Web site
page http://libresoft.urjc.es/Results/index html for CVS statistics for GNOME,
as well as for many other open source projects.

The user environment that had to be created for GNOME was well-defined:
it was simply a matter of “chasing tail-lights” to develop it. Requirements
engineering for GNOME, like other open source projects, did not follow the
conventional proprietary development cycle approach. It used a more generic
and implicitly defined approach as described in German (2003). The underlying
objective was that GNOME was to be free software, providing a well-designed,
stable desktop model, comparable to Windows and Apple’s, in order for Linux
to be competitive in the mass market PC environment. The nature of the core
applications that needed to be developed was already well-defined. Indeed, the
most prominent reference applications were from the market competition to be
challenged. For example, Windows MS Excel was the reference spreadsheet
application. It was to be matched by the GNOME gnumeric tool. Similarly, the
e-mail client Microsoft Outlook and the multifunction Lotus Notes were to be
replaced by the GNOME Evolution tool. An anecdote by Icaza reflects both the
informality and effectiveness of this reference model tactic in the design of a
simple calendar tool:

I proposed to Federico to write a calendar application in 10 days (because Federico
would never show up on weekends to the ICN at UNAM to work on GNOME ;-).
The first day we looked at OpenWindows calendar, that day we read all the relevant
standard documents that were required to implement the calendar, and started
hacking. Ten days later we did meet our deadline and we had implemented
GnomeCal (de Icaza, 2000).

Requirements also emerged from the discussions that occurred in the mail-
ing lists. Prototypes like the initial GNOME version 0.1 developed by Icaza
also served to define features. Ultimately, it was the project leader and the
maintainers who decided on and prioritized requirements. While fundamental
disagreements regarding such requirements could lead to forks, this did not
happen in the case of GNOME.

GNOME’s collaborative development model relies heavily on private com-
panies. Indeed, much of GNOME’s continued development is staffed by
employees of for-profit companies. However, the project itself is vendor-neutral.
The maintainers of most of GNOME’s important modules are actually employ-
ees of for-profit corporations like Ximian, Red Hat, and Sun. This arrangement
helps guarantee the stable development of the project since essential tasks are

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

106 3 The Open Source Platform

less subject to fluctuations at the volunteer level. The paid employee contribu-
tors tend to handle design, coordination, testing, documentation, and bug fixing,
as opposed to bug identification (German, 2003). Thus, for the Evolution client,
about 70% of the CVS commits come from the top 10% of the contributors, all
of whom are employees of Ximian. Similarly, Sun has extensively supported
the so-called GNOME accessibility framework which addresses usability issues
including use by disabled individuals. Though paid corporate employees play
a major role, the volunteer participants are also pervasive, particularly as beta
testers, bug discoverers, and documenters. The volunteers are especially impor-
tant in the area of internationalization – an aspect that requires native language
experts and is supported by individuals motivated by a desire to see GNOME
supported in their own language. Interestingly, despite the role of voluntarism
it also appears to be the case that a career path strategy is often followed or at
least attempted by volunteers. Thus, most of the paid workers had started off
as project volunteers and later moved from being enthusiastic hobbyists to paid
employees of the major corporate sponsors (German, 2003).

Communication among the project participants is kept simple. It is handled
in a standard manner, using relatively lean media over the Internet commu-
nication channel, supplemented by traditional mechanisms like conferences
and Web sites. Mailing lists are used extensively for end users as well as for
individual development components. Bimonthly summaries are e-mailed on
the GNOME mailing list describing major current work, including the most
active modules and developers during the report period. These are the forums
in which decisions about a module’s development are made. Project Web sites
contain information categorized according to type of participants, from items
for developers and bug reports to volunteer promotional efforts. An annual
conference called GUADEC brings developers together and is organized by the
GNOME Foundation. IRC or Internet Relay Chat (irc.gnome.org) provides an
informal means of instantaneous communication. (Incidentally, the Web site
Freenode.net provides IRC network services for many free software projects
including GNU.) Of course, the CVS repository for the project effectively coor-
dinates the development of the overall project. A limited number of developers
have write access to the repository, having gained the privilege over time by pro-
ducing patches that maintainers have come to recognize as trustworthy, a tried
and true path in open development. Initially, the patches have to be submitted by
the developers to the maintainers as diffs or patches, at least until the developer
has attained a recognized trustworthy status with the maintainer. Rarely, it may
happen that a developer may apply a patch to the repository that is subsequently
rejected by the maintainer. Such an outcome can be disputed by appealing to the
broader community, but these kinds of events are infrequent (German, 2003).

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 107

References

De Icaza, M. (2000). The Story of the GNOME Project. http://primates.ximian.com/
∼miguel/gnome-history.html. Accessed November 29, 2006.

German, D.M. (2003). GNOME, a Case of Open Source Global Software Development.
In: International Conference on Software Engineering, Portland, Oregon.

GNOME Foundation. (2000). GNOME Foundation Charter Draft 0.61. http://
foundation.gnome.org/charter.html. Accessed November 29, 2006.

Koch, S. and Schneider, G. (2002). Effort, Co-operation, and Co-ordination in an Open
Source Software Project: GNOME. Information Systems Journal, 12(1), 27–42.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. (2002). Two Case Studies of Open Source
Development: Apache and Mozilla. ACM Transactions on Software Engineering
and Methodology, 11(3), 309–346.

3.2.3 Open Desktop Environments – KDE

The acronym KDE stands for – believe it or not – Kool Desktop Environ-
ment. The KDE Web site cogently expresses the vision and motivation for the
project: “UNIX did not address the needs of the average computer user. . . . It
is our hope that the combination UNIX/KDE will finally bring the same open,
reliable, stable and monopoly-free computing to the average computer user
that scientist and computing professionals world-wide have enjoyed for years”
(www.kde.org). GNOME and KDE to some extent competitively occupy the
same niche in the Linux environment. But they are now both recognized for
the advances they made in achieving the OSS goal of creating a comprehen-
sive and popularly accessible free source platform. In 2005, USENIX gave the
two most prominent developers of GNOME and KDE, de Icaza and Ettrich, its
STUG award for their work in developing a friendly GUI interface for open
desktops, saying that: “With the development of user friendly GUIs, both de
Icaza and Ettrich are credited with overcoming a significant obstacle in the
proliferation of open source. . . . Their efforts have significantly contributed to
the growing popularity of the open source desktop among the general public”
(http://www.usenix.org/about/newsroom/press/archive/stug05.html, accessed
January 10, 2007).

The theme of product development by a sole inspired youth repeats itself
in KDE. The KDE project was started in 1996 by Matthias Ettrich, a 24-year-
old computer science student at the University of Tubingen. Ettrich had been
first exposed to free software development via the GNU project and Linux.
Actually it was more than mere exposure. Ettrich wrote the first version of the
open source product Lyx which uses the open source software system LaTeX,
developed for Don Knuth’s typesetting system TeX to produce high-quality
document output. Ettrich has said that “this positive and successful experience

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

108 3 The Open Source Platform

of initiating a little self-sustaining free software community made me brave
enough to start the KDE project later” (FOSDEM, 2005).

Ettrich announced his KDE proposal in a now well-known e-mail where he
proposed the idea for the project. The objective is reminiscent of the attitude
that Firefox’s Blake Ross had for Firefox’s potential audience. Ettrich wanted
to define and implement:

A GUI for end users

The idea is NOT to create a GUI for the complete UNIX-System or the System-
Administrator. For that purpose the UNIX-CLI with thousands of tools and
scripting languages is much better. The idea is to create a GUI for an ENDUSER.
Somebody who wants to browse the web with Linux, write some letters and play
some nice games.

The e-mail was posted at the hacker’s favorite mid-morning hour: October
14, 1996, 3:00 a.m., to the Linux newsgroup, de.comp.os.linux.misc. Refer to
the KDE organization’s http://www.kde.org/documentation/posting.txt for the
full text.

In low-key, good-humored style reminiscent of Linus Torvalds, Ettrich
continued:

IMHO a GUI should offer a complete, graphical environment. It should allow a
user to do his everyday tasks with it, like starting applications, reading mail,
configuring his desktop, editing some files, delete some files, look at some pictures,
etc. All parts must fit together and work together.

. . . So one of the major goals is to provide a modern and common look & feel for all
the applications. And this is exactly the reason, why this project is different from
elder attempts.

“IMHO” is the deferential “In My Humble Opinion” acronym derived from
Usenet custom.

The inaugural e-mail refers prominently to the author’s intention to use the
Qt C++ GUI widget library for the planned implementation of the project. Even-
tually, this use of the Qt toolkit would lead to free licensing concerns regarding
KDE. These concerns would be significant in motivating the development of
the competing GMOME project. The X referred to in the e-mail later is the X
Window System for Unix which provided the basic toolkit for implementing
a window, mouse, and keyboard GUI. Motif is the classic open source toolkit
from the 1980s for making GUIs on Unix systems. Incidentally, the misspellings
are from the original, reflecting the relaxed tone of the e-mail and perhaps the
difference in language. The e-mail continues as follows:

Since a few weeks a really great new widget library is available free in source and
price for free software development. Check out http://www.troll.no

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 Windowing Systems and Desktops 109

The stuff is called “Qt” and is really a revolution in programming X. It’s an almost
complete, fully C++ Widget-library that implementes a slightly improved Motif
look and feel, or, switchable during startup, Window95.

The fact that it is done by a company (Troll Tech) is IMO a great advantage. We
have the sources and a superb library, they have beta testers. But they also spend
their WHOLE TIME in improving the library. They also give great support. That
means, Qt is also interesting for commercial applications. A real alternative to the
terrible Motif :) But the greatest pro for Qt is the way how it is programmed. It’s
really a very easy-to-use powerfull C++-library.

It is clear from the post that Ettrich was unaware that there might be licens-
ing complications with the Qt toolkit. Originally Qt appears to have been pro-
prietary to Trolltech. Actually, there were both free and proprietary licenses
available, with the proprietary licenses only required if you were intend-
ing to release as closed source a product you developed using Qt. The free
license, however, was not quite free. For example, the version described at
http://www.kde.org/whatiskde/qt.php (accessed January 10, 2007) requires that
“If you want to make improvements to Qt you need to send your improvements
to Troll Tech. You can not simply distribute the modified version of Qt your-
self,” which was contrary to the GPL. There was much legal wrangling on this
issue between the KDE developers and the FSF. Finally, in 2000, Trolltech –
for which Ettrich then worked – announced that it would license Qt under the
GNU GPL. This satisfied reservations among proponents of the Free Software
Movement. Per the KDE Web site it is now the case that “Each and every line of
KDE code is made available under the LGPL/GPL. This means that everyone is
free to modify and distribute KDE source code. This implies in particular that
KDE is available free of charge to anyone and will always be free of charge to
anyone.”

The Qt licensing issue was a political cause célèbre among certain open
source advocates, but it does not seem to have been a consideration for
users selecting between KDE and GNOME. They were primarily concerned
about the functionality of the systems (Compton, 2005). Already by 1998,
Red Hat had chosen KDE to be their standard graphical interface for their
Linux distributions. Currently, major Linux distributions tend to include both
KDE and GNOME in their distributions, with some companies like Sun
or Caldera preferring one to the other. A port of KDE to run on a Win-
dows environment is the mission of Cygwin (http://kde-cygwin.sourceforge.
net/).

The demographic profile of the KDE participants is fairly standard. KDE
has about 1,000 developers worldwide, mainly from Europe, having origi-
nated in Germany. It consists mostly of males aged 20–30 years old, many

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

110 3 The Open Source Platform

of whom are students or are employed in IT (Brand, 2004). The KDE
Web site is interesting and quite well-organized. Refer to the organization’s
http://www.kde.org/people/gallery.php “Virtual Gallery of Developers” for
biographies of the major developers, with academic, professional, and personal
remarks. About two-thirds of the participants are developers, the remainder
being involved in documentation, translation (about 50 languages are currently
represented), and other activities. According to the survey by Brand (Chance,
2005), the work efforts of individual contributors vary from a quarter-of-an-hour
to half-a-day, per day, with an average of two to three hours per day. In gen-
eral, as we have noted previously, open development processes are visible and
extensively documented (Nichols and Twidale, 2003) in a way that proprietary,
closed source, corporate developments cannot be, almost in principle. The mail-
ing lists and CVS repository that are the key communications tools establish an
incredibly detailed, time-stamped record of development with readily available
machine-readable statistics. For example, the libresoft Web site mentioned pre-
viously, particularly the statistics link http://libresoft.urjc.es/Results/index html
(accessed January 10, 2007) is an excellent resource for detailed data on many
open source projects including not only KDE but also important other projects
like GNOME, Apache, FreeBSD, OpenBSD, XFree86, Mozilla and so on, with
plentiful data about CVS commits, module activity, and so on. The site also
contains detailed data on committers and their contributions.

KDE started its development at a propitious moment in the evolution of open
software platforms. This first version was both timely and critical because it
helped advertise the product at a time when Linux was rapidly growing. There
was as yet no easy-to-use desktop interface available for Linux, so the product
filled an unoccupied market niche. The initial success of the project was also
bolstered because the project creators were able to recruit developers from
another open source project they had connections with (Chance, 2005). Further
successful development and possibly even the competition with the GNOME
project helped advertise the project even more, leading to additional developer
recruiting. The C++ implementation of KDE (vs. C for GNOME) facilitated
the enhancement of the system’s core libraries, again arguably facilitating its
success. Though KDE was initiated in 1996, most developers joined between
1999 and 2002 (Brand, 2004).

Influence inside the KDE project is as usual determined by work-based
reputations. Reputations are based on experience and contributions, but
friendly and cooperative behavior is an asset. Admission to the KDE core team
requires a reputation based on “outstanding contributions over a considerable
period of time” (http://www.kde.org/). The kde-core-devel mailing list is where
decisions are made, but the process is informal and unlike the centralized
“benevolent dictatorship” approach characteristic of Linux development. The

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.2 GIMP 111

norm tends to be that “whoever does the work has the final decision” (Chance,
2005). Lead architects and maintainers who are authorized to speak for
the community are responsible for moving the platform forward. Ettrich has
observed that the relatively anarchical structure of the KDE organization makes
it hard to do things, commenting that “unless you have a captain,” then, even
with all the right ideas, “whether we are able to realize them against our own
resistance is a different matter” (FOSDEM, 2005). These challenges reflect the
classic tension between the Cathedral and the Bazaar: it is hard to do without
strong, authoritative leadership in guiding the direction of large projects. The
conflicts that have arisen derive mainly from differences concerning the future
direction of the project. Secondary sources of conflict include interpersonal
reactions to things like refusals to accept patches or ignored contributions.
There are also the traditional conflicts between the end users and developers.
These typically result from a disjuncture between the technical orientation of
the developers versus the preference for stability and ease of use that end users
are interested in. A usability group (http://usability.kde.org/) has developed
that attempts to mediate the two viewpoints, but its standing is still of limited
importance (Chance, 2005). Like GNOME, KDE has placed a strong emphasis
on accessibility issues for individuals with disabilities. In terms of future
developments, Ettrich himself underscores usability issues as one of his “top
3 favorite focus areas for KDE” (FOSDEM, 2005).

References

Brand, A. (2004). Structure of KDE Project. PELM Project, Goethe University, Frank-
furt.

Chance, T. (2005). The Social Structure of Open Source Development. Interview
with Andreas Brand in NewsForge. http://programming.newsforge.com/article.
pl?sid=05/01/25/1859253. Accessed November 29, 2006.

Compton, J. (2005). GNOME vs. KDE in Open Source Desktops. http://www.developer.
com/tech/article.php/629891. Accessed January 20, 2007.

FOSDEM. (2005). Interview with Matthias Ettrich KDE. http://archive.fosdem.org/
2005/index/interviews/interviews ettrich.html. Accessed January 10, 2007.

Nichols, D. and Twidale, M. (2003). The Usability of Open Source. First Monday, 8(1).
http://www.firstmonday.dk/issues/issue8 1/nichols/index.html. Accessed Decem-
ber 3, 2006.

3.3 GIMP

GIMP is a free software image manipulation tool intended to compete with
Adobe Photoshop. We include it in this chapter on open source platforms
because it is an important desktop application (not an Internet-related system

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

112 3 The Open Source Platform

like those considered in Chapter 2) and because its toolkit is used in the GNOME
desktop. Imaging tools like GIMP are of increasing importance in industrial and
medical applications as well as gaming and entertainment technology. The story
of GIMP is important for understanding the record of accomplishment of open
development for several reasons. Its originators were, prototypically, computer
science undergraduates at Berkeley who had themselves been weaned on open
source products. Out of personal curiosity they wanted to develop a product that
incidentally, but only incidentally, would serve an important need in the open
source platform. Their product imitated and challenged a dominant proprietary
software tool for an end-user application, unlike most previous free programs.
Legal questions about the licensing characteristics for some components of the
system created a controversy within the free software movement. The software
architecture represented by its plug-in system strongly impacted the success
of the project by making it easier for developers to participate. The reaction
and involvement of end users of the program was exceptionally important in
making GIMP successful because its value and effectiveness could only be
demonstrated by its ability to handle sophisticated artistic techniques. Conse-
quently, the tool’s development demanded an understanding of how it was to be
used that could easily transcend the understanding of most of the actual devel-
opers of the system. In other words, the end users represented a parallel but
divergent form of sophistication to the program developers. Management chal-
lenges arose with the fairly abrupt departure of the originating undergraduates
for industrial positions on completion of their undergraduate careers and the
replacement of the original leadership with a team of coresponsible developers.
Like the other open source products we have examined, the story of GIMP can
help us understand how successful open source projects are born and survive.

GIMP, an acronym for the “GNU Image Manipulation Program,” is supposed
to be a challenge to Adobe Photoshop. It is intended to stand as the free source
counterpart to Adobe Photoshop and is an official part of the GNU software
development project. Coming out beginning in 1996, GIMP was one of the first
major free software products for an end-user applications, as opposed to most
of the GNU projects that were oriented toward use by programmers. It provides
standard digital graphics functions and can be used, for example, to make
graphics or logos, edit and layer images, convert image formats, make animated
images, and so on. According to its Freshmeat project description, GIMP is
“suitable for such tasks as photo retouching, image composition and image
authoring. It can be used as a simple paint program, an expert quality photo
retouching program, an online batch processing system, a mass production
image renderer, an image format converter, etc.” (from “The Gimp – Default
Branch”; description on www.freshmeat.net).

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.3 GIMP 113

Class projects at UC Berkeley have a way of making a big splash. GIMP was
developed by Peter Mattis and Spencer Kimball in August 1995, initially for
a class project for a computer science course when they were undergraduates.
Mattis “wanted to make a webpage” (Hackvn, 1999) so as a result they decided
it would be interesting to design a pixel-based imaging program. Following
open source development custom, Mattis posted the following question on
comp.os.linux.x > Image Manipulation Program Features in July 1995 at the
canonical hacker time of 3:00 a.m.:

Suppose someone decided to write a graphical image manipulation
program (akin to photoshop). Out of curiousity (and maybe something
else), I have a few (2) questions:

What kind of features should it have? (tools, selections, filters, etc.)
What file formats should it support? (jpeg, gif, tiff, etc.)?

Thanks in advance,
Peter Mattis

At this point, neither Mattis nor Kimball had anything but a cursory familiarity
with image manipulation tools (Hackvn, 1999). However, within six months
Mattis and Kimball working alone – not as part of a free-wheeling bazaar
format – had released a beta version of GIMP as open source. The announcement
was made at 4:00 a.m. on November 21, 1995, on comp.windows.x.apps >

ANNOUNCE: The GIMP. The style of the release announcement is worth
noting for the specificity and clarity of its statement of the project functionality
and requirements. We provide it in some detail as an illustration of how these
announcements are heralded:

The GIMP: the General Image Manipulation Program

The GIMP is designed to provide an intuitive graphical interface to a
variety of image editing operations. Here is a list of the GIMP’s major
features:

Image viewing
� Supports 8, 15, 16 and 24 bit color.
� Ordered and Floyd-Steinberg dithering for 8 bit displays.
� View images as rgb color, grayscale or indexed color.
� Simultaneously edit multiple images.
� Zoom and pan in real-time.
� GIF, JPEG, PNG, TIFF and XPM support.

Image editing
� Selection tools including rectangle, ellipse, free, fuzzy, bezier and

intelligent.

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

114 3 The Open Source Platform

� Transformation tools including rotate, scale, shear and flip.
� Painting tools including bucket, brush, airbrush, clone, convolve,

blend and text.
� Effects filters (such as blur, edge detect).
� Channel & color operations (such as add, composite, decompose).
� Plug-ins which allow for the easy addition of new file formats and

new effect filters.
� Multiple undo/redo. . . .

The GIMP has been tested (and developed) on the following operating
systems: Linux 1.2.13, Solaris 2.4, HPUX 9.05, SGI IRIX.

Currently, the biggest restriction to running the GIMP is the Motif
requirement. We will release a statically linked binary for several
systems soon (including Linux).

URLs
http://www.csua.berkeley.edu/∼gimp
ftp://ftp.csua.berkeley.edu/pub/gimpmailto:g . . . @soda.csua.berkeley.edu
Brought to you by
Spencer Kimball (spen . . . @soda.csua.berkeley.edu)
Peter Mattis (p . . . @soda.csua.berkeley.edu)

NOTE
This software is currently a beta release. This means that we haven’t implemented
all of the features we think are required for a full, unqualified release. There are
undoubtedly bugs we haven’t found yet just waiting to surface given the right
conditions. If you run across one of these, please send mail to g . . . @soda.csua.
berkeley.edu with precise details on how it can be reliably reproduced.

The first public release (version.54) actually came in January 1996.
Plug-ins played an important role in the expansion of GIMP. The two solo

developers had provided a powerful and functional product with important
features like a uniform plug-in system, “so developers could make separate
programs to add to GIMP without breaking anything in the main distribution”
(Burgess, 2003). Spencer noted that “The plug-in architecture of the Gimp had a
tremendous impact on its success, especially in the early stages of development
(version 0.54). It allowed interested developers to add the functionality they
desired without having to dig into the Gimp core” (Hackvn, 1999).

Plug-ins are very important in GIMP also because of its competition with
Photoshop. In fact, plug-ins for Adobe Photoshop can also run on GIMP if
you use the pspi (Photoshop Plug-in Interface) plug-in for GIMP that runs
third-party Photoshop plug-ins. Pspi was developed for Windows in 2001 and

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.3 GIMP 115

for Linux in 2006 (http://www.gimp.org/∼tml/gimp/win32/pspi.html). Pspi
acts as an intermediary between GIMP and Photoshop plug-ins, which are
implemented as dlls. According to pspi developer Tor Lillqvist, “The ques-
tion was ‘How would you load and call code in a Windows DLL on Linux’”
(http://www.spinics.net/lists/gimpwin/msg04517.html). As described by Willis
(2006), pspi appears to be a “full, running copy of Photoshop. It provides the
hooks into the menus and functions of Photoshop that the plugin expects to
see, and connects them to the GIMP’s extension and menu system.” This is
actually extremely significant for the attractiveness of the Linux platform itself.
Professional graphics artists strongly prefer Photoshop under Windows; one
reason being the availability of third-party plug-ins. The availability of pspi for
Linux changes this. There are a few ironies in this story. A software bridge like
pspi is made possible in the first place because of the Adobe policy of encour-
aging the development of third-party plug-ins through the use of its software
development kit. Thus, Adobe’s (natural and logical) plug-in policy, designed to
increase its own marketability, can also by the same token increase its competi-
tion’s marketability. Furthermore, compiling the pspi source requires the Adobe
development kit, so you need the kit to create the executable for pspi. However,
once this is done, the executable itself is of course freely redistributable, as the
pspi is in the first place. Oddly, up until Photoshop 6 Adobe gave the software
development kit away for free but now requires specific approval. Thus, in a
certain sense an original compilation of pspi for use in GIMP would implicitly
require such an approval by Adobe. In any case, the point is moot because down-
loadable binaries are available for multiple platforms for pspi (Willis, 2006).
The pspi development illustrates the complicated interplay between technical
development issues, software architecture choices, legal issues, high-end graph-
ics user expectations, and the sometimes-unintended consequences of corporate
policies like those that encourage external development.

Perhaps unsurprisingly, licensing issues have also affected GIMP’s develop-
ment. The initial GIMP toolkit for building widgets was based on the proprietary
Motif widget library. A widget (which is shorthand for “windows gadget”) can
be defined as a “standardized on-screen representation of a control that may
be manipulated by the user” (redhat.com glossary), examples being scroll bars,
menus, buttons, sliders, and text boxes. Widgets can be thought of as the basic
building blocks of graphical interfaces and are constructed using toolkit pro-
grams. Because the Motif widget library was proprietary, an open source widget
library was developed, called GTK+ (standing for GIMP toolkit), in order to
remain fully consistent with the principles of the free software movement. There
was also another more personal professional motivation for replacing the Motif

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

116 3 The Open Source Platform

library. In addition to the developers thinking that Motif toolkit was “bloated
and inflexible” (Hackvn, 1999), Mattis personally “was dissatisfied with Motif
and wanted to see what it took to write a UI toolkit” for his own edification.
The resulting GTK toolkit (eventually enhanced to GTK+) was licensed under
the LGPL, so it could be used even by developers of proprietary software
(www.gtk.org). GTK was provided with the 1996 release (Bunks, 2000). Sub-
sequent to that release, weaknesses in the beta version of the system, like poor
memory management, were resolved. There were also improvements like the
use of layer-based images, based on what the developers saw used in Photoshop
3.0. Another beta version was released in early 1997.

By June 1997, Kimball and Mattis had released version 0.99.10 with further
improvements, including the updated GTK+ library. That final undergraduate
version represented a huge effort. Kimball remarked that he had “spent the
better part of two years on Gimp, typically at the expense of other pressing
obligations (school, work, life)” and that “probably 95 to 98 percent of the code
in 0.99.10 was written by Pete or myself” (Hackvn, 1999). They both share the
copyright on the entire project, though in point of fact Kimball concentrated
on GIMP and Mattis on the GTK. They never got to release version 1.0 – they
graduated from college in June 1997. The authors say that developing GIMP
was largely a matter of duty to the cause of free software. For Spencer Kimball,
his GIMP development work had been partly his payment on what he felt was a
debt of honor, as he said in an interview: “From the first line of source code to
the last, GIMP was always my ‘dues’ paid to the free software movement. After
using emacs, gcc, Linux, etc., I really felt that I owed a debt to the community
which had, to a large degree, shaped my computing development” (Hackvn,
1999). Similar feelings were expressed by Mattis about having “done his duty”
for free software (Hackvn, 1999).

Transitions can be bumpy in open source. Since the model is significantly
volunteer-driven, you cannot just go out and hire new talent or leadership
(granted, the increasing participation of commercially supported open source
developers modifies this). Management problems set in at GIMP upon the
graduation of its principals from college because of the vacuum caused by
their departure. Spencer and Mattis had moved on. They were holding down
real jobs and could no longer put time into the project (Burgess, 2003). Most
problematically, “there was no defined successor to S&P, and they neglected
to tell anyone they were leaving” according to Burgess (2003). Turnover at
even traditional technical companies, where there is an average time between
job changes of two years, is a significant negative factor in productivity. This
impact is likely exacerbated in the free software community where “the rate of

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

3.3 GIMP 117

turnover for both volunteer and full-time contributors is probably higher and
the resulting losses to productivity and momentum are probably more severe.
New developers have the source code, but usually they can’t rely upon local
experts for assistance with their learning curves” (Hackvn, 1999). Thus, the
GIMP project had management hurdles to face that can handicap any project
and certainly apply to open source development as well. But a new development
model soon emerged – a team of members with designated responsibilities for
managing releases, making bug fixes, etc. There was no single team leader,
and project decisions were made through the #gimp Internet Relay Channel.
The initial effort was “focused almost exclusively on stability” (quote from
Spencer in Hackvn (1999)). As far as the viability of the learning curve for the
volunteers, even without the guidance of the original pair, Spencer approvingly
observed that “I’m not sure how long it took the new maintainers to learn their
way around the code, but judging by the stability of the product, they seem
to be doing quite well” (Hackvn, 1999). By mid-1998 the first stable version
was released. GIMP was ported to Windows by Tor Lillqvist in 1997. A binary
installer was developed by Jernej Simoncic that greatly simplified installation
on Windows. By 2004, after several years of development, a stable release,
supported not only on Unix, but on Mac OS X and Windows was announced.
The www.gimp.org Web site now lists almost 200 developers involved in the
project beyond the founders Kimball and Mattis.

For products like Adobe Photoshop and GIMP, high-end specialized users set
the standards for the product. Indeed, the requirements for an advanced image-
processing product are probably more well understood in many respects by its
end users than its developers, particularly its professional graphic-artist users.
The effective development and application of the product entails the develop-
ment of sophisticated artistic techniques and demands an understanding of how
the tool is to be used that completely surpasses the understanding of most of the
actual developers of the system. Thus, as already observed, GIMP’s end users
represented a parallel but divergent form of sophistication to the program devel-
opers. An impassioned base of such users was decisive in establishing the recog-
nition and acceptance of GIMP. Their positive response and word-of-mouth
publicity helped spread the word about the product and define its evolution.
The Linux Penguin logo was famously made using GIMP. The now-celebrated
Penguin was designed by Larry Ewing in 1996, using the early 0.54 beta version
of GIMP (Mears, 2003). In what would become common expert user action,
Ewing also set up a Web page that briefly described how he used GIMP to
make the logo (Ewing, 1996). The whole episode became the first major expo-
sure that GIMP received (Burgess, 2003). The how-to site Ewing setup was the

P1: KAE
9780521881036c03 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:9

118 3 The Open Source Platform

first of many. As Burgess observed regarding GIMP, “what differentiated this
program from many others is that a lot of sites sprung up on how to use the
program . . . showing off artwork and sharing techniques” (Burgess, 2003).

The bottom line is how do GIMP and Adobe Photoshop compare? It is
a confusing issue because there are very different potential user audiences
involved, and so the level of functionality needed varies from the mundane to the
esoteric. For many applications, GIMP appears to be perfectly suitable. GIMP
was initially awkward to install on Windows, but the current download installer
is fast and effective. The basic GIMP interface is highly professional. One hears
very different comparative evaluations from different sources, and it is not really
clear how objective the evaluators are. Overall, GIMP’s performance appears to
not match that of Photoshop. Photoshop’s interface is more intuitive. GIMP is
less easy to use, an important distinction for a casual user. The proliferation of
separate windows is not always well-received. The quality of the tools in GIMP
is arguably uneven. However, GIMP is free of charge and cross-platform. But
if you are a professional graphics artist or if the application is a significant one
where the graphics output is key to the successful outcome of a costly mission,
the charge for the commercial product would likely not be an issue.

References

Bunks, C. (2000). Grokking the GIMP. New Riders Pub. Also: http://gimp-savvy.com/
BOOK/index.html?node1.html. Accessed November 29, 2006.

Burgess, S. (2003). A Brief History of GIMP. http://www.gimp.org/about/ancient
history.html. Accessed November 29, 2006.

Ewing, L. (1996). Penguin Tutorial. http://www.isc.tamu.edu/∼lewing/linux/notes.html.
Accessed January 10, 2007.

Hackvn, S. (1999). Interview with Spencer Kimball and Peter Mattis. Linux World, Jan-
uary 1999. http://www.linuxworld.com/linuxworld/lw-1999-01/lw-01-gimp.html.
Accessed January 21, 2004.

Mears, J. (2003). What’s the Story with the Linux Penguin? December 26. http://www.
pcworld.com/article/id,113881-page,1/article.html. Accessed January 10, 2007.

Willis, N. (2006). Running Photoshop Plugins in the GIMP, Even under Linux.
April 10. http://applications.linux.com/article.pl?sid=06/04/05/1828238&tid=39.
Accessed November 29, 2006.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4

Technologies Underlying Open
Source Development

The free software movement emerged in the early 1980s at a time when
the ARPANET network with its several hundred hosts was well-established
and moving toward becoming the Internet. The ARPANET already allowed
exchanges like e-mail and FTP, technologies that significantly facilitated dis-
tributed collaboration, though the Internet was to amplify this ability immensely.
The TCP/IP protocols that enabled the Internet became the ARPANET standard
on January 1, 1983. As a point of reference, recall that the flagship open source
GNU project was announced by Richard Stallman in early 1983. By the late
1980s the NSFNet backbone network merged with the ARPANET to form the
emerging worldwide Internet. The exponential spread of the Internet catalyzed
further proliferation of open source development. This chapter will describe
some of the underlying enabling technologies of the open source paradigm,
other than the Internet itself, with an emphasis on the centralized Concurrent
Versions System (CVS) versioning system as well as the newer decentralized
BitKeeper and Git systems that are used to manage the complexities of dis-
tributed open development. We also briefly discuss some of the well-known
Web sites used to host and publicize open projects and some of the services
they provide.

The specific communications technologies used in open source projects have
historically tended to be relatively lean: e-mail, mailing lists, newsgroups, and
later on Web sites, Internet Relay Chat, and forums. Most current activity takes
place on e-mail mailing lists and Web sites (Feller and Fitzgerald, 2002). The
mailing lists allow many-to-many dialogs and can provide searchable Web-
based archives just like Usenet. Major open source projects like Linux in the
early 1990s still began operation with e-mail, newsgroups, and FTP downloads
to communicate. Since the code that had to be exchanged could be volumi-
nous, some means for reducing the amount of information transmitted and for
clarifying the nature of suggested changes to the code was required. The patch

119

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

120 4 Technologies Underlying Open Source Development

program created by Larry Wall served this purpose. Newsgroups provided a
means to broadcast ideas to targeted interest groups whose members might like
to participate in a development project. The Usenet categories acted like elec-
tronic bulletin boards that allowed newsgroup participants to post e-mail-like
messages like the famous comp.os.minix newsgroup on Usenet used by Linus
Torvalds to initiate the development of Linux. Another powerful collaborative
tool, developed beginning during the late 1980s, that would greatly facilitate
managing distributed software development was the versioning or configura-
tion management system. It is this topic that will be the focus of our attention
in this chapter.

Versioning systems are software tools that allow multiple developers to work
on projects concurrently and keep track of changes made to the code. The first
such system was the Revision Control System (RCS) written in the early 1980s
by Walter Tichy of Purdue. It used diffs to keep track of changes just like later
systems, but was limited to single files. The first system that could handle entire
projects was written by Dick Grune in 1986 with a modest objective in mind. He
simply wanted to be able to work asynchronously with his students on a compiler
project. Grune implemented his system using shell scripts that interacted with
RCS and eventually it evolved into the most widely used versioning system,
the open source Concurrent Versions System, commonly known as CVS. Brian
Berliner initiated the C implementation of CVS in mid-1989 by translating the
original shell scripts into C. Later contributors improved the system, noteworthy
being Jim Kingdom’s remote CVS implementation in 1993 that “enabled real
use of CVS by the open source community” (STUG award announcement for
2003, http://www.usenix.org/about/stug.html).

4.1 Overview of CVS

CVS has been crucial to open source development because it lets distributed
software developers access a shared repository of the source code for a project
and permits concurrent changes to the code base. It also allows merging the
changes into an updated version of the project on the repository and monitor-
ing for potential conflicts that may occur because of the concurrent accesses.
Remarkably, at any point during a project development, any previous version
of the project can be easily accessed, so CVS also serves as a complete record
of the history of all earlier versions of the project and that of all the changes
to the project’s code. It thus acts like what has been metaphorically called
a time machine. We will overview the concepts and techniques that underlie

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.1 Overview of CVS 121

CVS (and similar systems) and illustrate its use in some detail, with exam-
ples selected from the comprehensive treatment of CVS by Fogel and Bar
(2003).

CVS, which is available for download from www.nongnu.org/cvs, is the
most widely used version control tool. It is distributed as open source
under the General Public License (GPL). It is an award-winning tool; its
major developers received the STUG (Software Tools User Group) award
in 2003 in which it was identified as “the essential enabling technol-
ogy of distributed development” (STUG award announcement for 2003;
http://www.usenix.org/about/stug.html). As Fogel and Bar (2003, p. 10)
observe, “CVS became the free software world’s first choice for revision control
because there’s a close match . . . between the way CVS encourages a project
to be run and the way free projects actually do run.”

CVS serves two basic functions. On the one hand it keeps a complete his-
torical digest of all actions (patches) against a project and on the other hand
it facilitates distributed developer collaboration (Fogel and Bar, 2003). As an
example, consider the following scenario. Suppose a user reports a bug in the
last public release of a CVS project and a developer wants to locate the bug and
fix it. Assuming the project has evolved since the previous release, the devel-
oper really needs an earlier version of the project, not its current development
state. Recapturing that earlier state is easy with CVS because it automatically
retains the entire development tree of the project. Furthermore, CVS also allows
the earlier version, once the bug is repaired, to be easily reintegrated with the
new current state of the project. Of course, it is worth stating that the kind of
development management that CVS does had already been possible before the
deployment of CVS. The advantage is that CVS makes it much easier to do,
which is a critical factor particularly in a volunteer environment. As Fogel and
Bar (2003, p.11) observe: “[I]t reduces the overhead in running a volunteer-
friendly project by giving the general public easy access to the sources and by
offering features designed specifically to aid the generation of patches to the
source.”

CVS is a client-server system under which software projects are stored in a
so-called repository on a central server that serves content to possibly remote
clients. Its client-side manifestations let multiple developers remotely and con-
currently check out the latest version of a project from the repository. They
can then modify the source code on the client(s) as they see fit, and thereafter
commit any changes they have made to their working copy back to the central
repository in a coordinated manner, assuming they have the write privileges to
do so. This is called a copy-modify-merge development cycle.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

122 4 Technologies Underlying Open Source Development

Prior to CVS, versioning tools followed a lock-modify-unlock model for file
changes. Only one developer could have access to a particular file at a time;
other developers had to wait until the file being modified was released. This
kind of solo, mutually exclusive access requires considerable coordination. If
the developers are collocated, or know each other well and can contact each other
quickly if a lockout is handicapping their work, or if the group of developers is
small so that concurrent accesses are infrequent, then the coordination may be
manageable. But in a large, geographically and temporarily distributed group
of developers, the overhead of coordinating becomes onerous and annoying – a
problematic issue in what may be a preponderantly volunteer community. This
concurrent access is one way in which the copy-modify-merge model of CVS
smoothes the interactions in a distributed development. The impact of conflicts
in CVS also appears to be less than might be expected in any case. Berliner,
one of the key creators of CVS, indicated that in his own personal experience
actual conflicts are usually not particularly problematic: “conflicts that occur
when the same object has been modified by someone else are quite rare” and
that if they do occur “the changes made by the other developer are usually easily
resolved” (Berliner, 1990).

Diff and Patch
The CVS development tree is not stored explicitly. Under CVS, earlier versions
of the project under development are maintained only implicitly with just the
differences between successive versions kept – a technique that is called delta
compression. The CVS system lets a developer make changes, track changes
made by other developers by viewing a log of changes, access arbitrary earlier
versions of the project on the basis, for example, of a date or revision number,
and initiate new branches of the project. The system can automatically inte-
grate developer changes into the project master copy on the repository or to
any working copies that are currently checked out by any developers using a
combination of its update and commit processes. The distributed character of
the project’s developers, who are working on the project at different times and
places, benefits greatly from this kind of concurrent access, with no developer
having exclusive access to the repository files; otherwise the project could not
be collaborated on as effectively. Changes are generally only committed after
testing is complete, so the master copy stays runnable. The committed changes
are accompanied by developer log messages that explain the change. Conflicts
caused by a developer, who is concurrently changing a part of the project that
has already been changed by another developer, are detected automatically
when the developer attempts to commit the change. These conflicts must then
be resolved manually before the changes can be committed to the repository.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.1 Overview of CVS 123

Basic programs (commands, utilities, files) required for such versioning
system include the following:

1. the diff command,
2. the patch command, and
3. the patch file.

The diff command is a Unix command that identifies and outputs the differ-
ences between a pair of text files on a line-by-line basis. It indicates (depending
on the format selected) whether different lines have been added, deleted, or
changed, with unchanged shared lines not output, except as context. Those are
the only possible four editorial states.

Conceptually, diff takes a pair of files A and B and creates a file C represen-
ting their “difference.” The output file is usually called a patch file because of
its use in collaborative development where the difference represents a “soft-
ware patch” that is scheduled to be made to a current version of a program.
Modifications to projects may be submitted as patches to project developers
(or maintainers) who can evaluate the submitted code. The core developers can
then decide whether a suggested patch should be rejected, or accepted and com-
mitted to the source repository, to which only the developers have write access.
The so-called unified difference format for the diff command is especially use-
ful in open source development because it lets project maintainers more readily
recognize and understand the code changes being submitted. For example, the
unified format includes surrounding lines that have not been changed as con-
text, making it easier to recognize what contents have been changed and where.
Then, a judgment is required before the changes are committed to the project
repository.

The diff command works in combination with the patch command to enact
changes (Fountain, 2002). The Unix patch command uses the textual differences
between an original file A and a revised file B, as summarized in a diff file
C, to update file A to reflect the changes introduced in B. For example, in a
collaborative development context, if B is an updated version of the downloaded
source code in A, then:

diff AB > C

creates the patch file C as the difference of A and B. Then the command:

patch A < C

could be used to apply the patch C to update A, so it corresponds to the revi-
sion B.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

124 4 Technologies Underlying Open Source Development

The complementary diff and patch commands are extremely useful because
they allow source code changes, in the form of the relatively small patch file
like C (instead of the entire new version B), to be submitted, for example, by
e-mail. After this submission, the small patch changes can be scrutinized by
project maintainers before they are integrated into the development repository.

These commands are considered the crucial underlying elements in version-
ing systems, regardless of whether they are used explicitly or wrapped up in
a tool. CVS C-implementer Berliner characterizes the patch program as the
“indispensable tool for applying a diff file to an original” (Berliner, 1990). The
patch program was invented by Larry Wall (creator of Perl) in 1985.

4.2 CVS Commands

Note: The following discussion is based on the well-known introduction to
CVS by Karl Fogel and Moshe Bar (2003), specifically the “Tour of CVS”
in their Chapter 2 – though their treatment is far more detailed, overall about
370 pages for the entire text in the current PDF. The present overview gives
only a glimpse of CVS and is intended as a bird’s-eye-view of how it works.
We will use a number of examples from the Fogel and Bar (2003) tour which
we will reference carefully to facilitate ready access to the original treatise. We
also intersperse the examples with contextual comments about the role of CVS.
The interested reader should see Fogel and Bar (2003) for a comprehensive,
in-depth treatment. We next illustrate some of the key CVS commands.

4.2.1 Platforms and Clients

Naturally, in order to execute the cvs program it must have been installed on
your machine in the first place. CVS comes with most Linux distributions, so in
that case you do not have to install it. Otherwise, you can build CVS from the
source code provided at sites like the Free Software Foundation (FSF)’s FTP
site. The stable releases of the software are those with a single decimal point
in their release version number. Unix-like platforms are obviously the most
widely used for CVS development. The well-known documentation manual
for the CVS system is called the Cederqvist Manual, named after its original
author who wrote the first version in 1992 (Cederqvist et al., 2003). (Incidentally,
dates are interesting in these matters because they help correlate noteworthy
technological developments related to open source. For example, CVS debuted
around 1986, but the key C version by Berliner did not come out until 1989.
Linus Torvalds posted his original Linux announcement in August 1991.)

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 125

The cvs executable once installed automatically allows you to use it as a client
to connect to remote CVS repositories. If you want to create a repository on your
own machine, you use the cvs newrepos command and the init subcommand to
create one. If you then add an appropriate Unix users group, then any of the users
can create an independent new project using the cvs import command. Refer to
Fogel and Bar (2003) for detailed information about where to get source code,
compilation, commands, administration, etc.

There are also Windows versions of CVS available. Currently these can
only connect as clients to repositories on remote machines or serve repositories
on their own local machine. They cannot provide repository service to remote
machines. The Windows version is typically available as prebuilt binary exe-
cutables. A free Windows program called WinCVS is distributed under the GPL
that provides a CVS client that only lets you connect to a remote CVS repository
server. However, it does not let you serve a repository from you own machine,
even locally. WinCVS is available as a binary distribution with relatively easy
installation and configuration instructions. The WinCVS client lets you make a
working project copy from a remote repository to which you can subsequently
commit changes, update, or synchronize vis-à-vis the repository, etc.

4.2.2 Command Format

The CVS interface is command-line oriented. Both command options and global
options can be specified. Command (or local) options only affect the particular
command and are given to the right of the command itself. Global options affect
the overall CVS environment independently of the current command and are
given to the left of the command. The format to execute a command is

cvs -global-options command -command-options

For example, the statement:

cvs -Q update -p

runs the update command (Fogel and Bar, 2003, p. 27). The token cvs is of
course the name of the CVS executable. The -Q tells the CVS program to
operate in the quiet mode, meaning there is no diagnostic output except when
the command fails. The -p command option directs the results of the command
to standard output. The repository being referenced may be local or remote, but
in either case a working copy must have already been checked out. We consider
the semantics of the illustrated update command in an upcoming section, but
first we address a basic question: how do you get a copy of the project to work
on in the first place?

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

126 4 Technologies Underlying Open Source Development

4.2.3 Checking Out a Project From a Repository

The transparency of online open source projects is truly amazing. Using CVS,
anyone on the Internet can get a copy of the most current version of a project.
While only core developers can make changes to the master copy of a project in
the repository, CVS allows anyone to retrieve a copy of the project, as well as
to keep any of their own modifications conveniently synchronized vis-à-vis the
repository. This is a major paradigm shift. It is the polar opposite to how things
are done in a proprietary approach where access to the source is prohibited to
anyone outside the project loop. In open source under CVS, everyone connected
to the Internet has instantaneous access to the real-time version of the source
as well as to its development history: what was done, where it was done, by
whom was it done, and when was it done! Of course, the same technology
could also be used in a proprietary development model for use by a proprietary
development team only, or by individuals or small teams working on a private
project.

Remember the nature of the CVS distribution model. There is a single master
copy of the project that some CVS system maintains centrally in a repository.
Anyone who wants to look at the source code for a project in that repository,
whether just to read it or to modify it, has to get his or her own separate working
copy of the project from the repository. Given that a project named myproject
already exists, a person checks out a working copy of the project with the
command (Fogel and Bar, 2003, p. 32):

cvs checkout myproject

Of course, before you can actually check out a working copy of a project,
you first have to tell your CVS system or client where the repository is located
that you expect to check out from. If the repository were stored locally on your
own machine, you could execute the cvs program with the -d (for directory)
option and just give the local path to the repository. A typical Unix example,
assuming the repository is located at /usr/local/cvs (Fogel and Bar, 2003, p. 27),
would be

cvs -d/usr / local /cvs command

To avoid having to type the -d repository you can set the environment variable
CVSROOT to point to the repository. In the rest of this overview we will assume
this has already been done (Fogel and Bar, 2003, p. 30). If the repository were
located on a remote server reached over the Internet, you would use an access
method. The method may allow unauthenticated access to the repository, but it is
also possible to have password-authenticated access to the server (via an access
method called pserver). Authenticated access requires not only a username,

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 127

server name, and the path on the server to the CVS repository, but also a
login command. The login results in a request by the system for a password.
Once this is done, CVS saves the password, sort of like a cookie, so that any
subsequent accesses to the server from the same client machine require no login
password.

Once the repository is identified, the project can be checked out. When a
working copy of a project is checked out, the latest revisions of all the project’s
files are provided in the working copy. In a versioning system like CVS, a
revision is a modified version of a project that has been committed to the
repository. The smallest unit given a revision number is a file. Individual source
code revisions can be accessed by revision number or date. The terms revision
and revision number differ from the version number of a project which is an
unrelated numbering scheme used for public identification of releases.

4.2.4 Updating a Working Copy

Keep in mind that the following cvs update command updates the project work-
ing copy, not the official copy of the project in the cvs repository, remote or
otherwise. It is the commit command that we will examine later that is used to
“update” the actual repository copy on the basis of changes made to the working
copy.

Consider first how to make a change to the source code in the working copy.
Suppose that the project already contains just the following simple C source
code file hello.c (Fogel and Bar, 2003, p. 35):

#include <stdio.h>

void
main ()
{

printf (“Hello, world!\n");
}

As an example, edit the file so that it includes an additional line with a printf
statement as shown later (Fogel and Bar, 2003, p. 35):

#include <stdio.h>

void
main ()
{

printf (“Hello, world!\n");
printf (“Goodbye, world!\n");

}

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

128 4 Technologies Underlying Open Source Development

If we now execute the cvs update command, the effect will be to access the
repository copy of the project and use it to update the current working copy.
Let us reemphasize that these changes are only to the working copy and have
not yet been committed to the repository. There are several possibilities:

1. If a working copy file is the same as its repository copy, then there is no
change to the working file.

2. If some working copy file differs from its repository copy and the
differences are all the result of the local changes the user has made to the
working file, then again the file is left as the user modified it.

3. If a working and repository file differ, and the changes are all from the
repository copy (because it was altered since the user checked it out), then
the updated repository copy replaces the local unaltered working
copy.

4. If a working and repository file differ, and the changes are partly from the
repository copy (because it was altered since the user checked it out) and
partly from the user’s working copy, then the updated repository copy is
merged with the user’s current working copy. Of course, the repository
copy itself is not changed because this is an update command, not a
commit. But the user’s copy has been “updated.”

The purpose of the update command is to allow the local developer to syn-
chronize his or her own working copy with respect to the current state of the
repository. As we shall see shortly, the CVS commit command sends changes
that have been made to the working copy to the centralized repository and
merges them into the repository copy. The update command does the reverse.
It brings any changes already made by other remote developers to the repos-
itory, since the copy was checked out or its last update, back into the local
developer’s working copy – the developer who executes the update command –
from the repository. This keeps that developer’s local working copy synchro-
nized with the repository whenever the local developer wants the update process
done. Remember, it does not keep the repository synchronized with the work-
ing copy. It does not even affect the repository. Nor does it affect the working
copies of other remote developers. If another developer is working on his or her
own working copy concurrently, then an update command will not reflect those
changes until that developer commits them to the repository. Practice differs
as to when to do updates. One approach is to update against the repository for
synchronization before making any significant changes to the working copy.
To maintain closer control on the update, you can also name the files that you
want to allow to be updated. An example of the update command and its results
follow (Fogel and Bar, 2003, p. 36).

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 129

cvs update
cvs update: Updating
M hello.c
cvs update: Updating a-subdir
cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

The M stands for modified. It signals that the file has been modified by this
user since the copy was checked out and that those changes have not yet been
committed to the repository.

The directories and subdirectories referred to here are assumed to be those
for the hypothetical project. These project directories and files are part of our
reference example from Fogel and Bar (2003). For simplicity, we assume that
they were created separately and then imported into the repository using the
import command (which we do not address). For later reference we mention
that hello.c lies in the directory named a-subdir. As it will turn out, there are
two other files we have not needed to refer to yet, named fish.c and random.c,
that will be assumed to lie in the two project directories a-subdir/subsubdir and
b-subdir, respectively (Fogel and Bar, 2003, p. 31).

4.2.5 The Diff Command

The synchronization effect of the update command is significant but the output
of the update command does not say much except that the file hello.c has been
modified (M) but not yet committed to the repository. Thus it reflects that there
has been a change to the file, but does not identify the changes. To identify the
changes, we need to execute the diff command. To compare the current working
copy with the repository copy, we execute

cvs -Q diff -c

The global Q (quiet) option makes the command run quietly. The command
option c (context) makes it provide the surrounding context for any changes. No
file has been identified in this command, so any files where there are differences
between the working and repository copy will be diagnosed. The command
gives the following output (Fogel and Bar, 2003, p. 37):

Index: hello.c
======================================
RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1
diff -c -r1.1.1.1 hello.c

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

130 4 Technologies Underlying Open Source Development

*** hello.c 2001/04/18 18:18:22 1.1.1.1
- hello.c 2001/04/19 02:17:07

4,7*
-4,8-
main ()
{

printf (“Hello, world!\n");
+ printf (“Goodbye, world!\n");
}

Since no file argument was given for the command, CVS automatically
applied it to any file that could possibly be appropriate. In this case, the working
copy of hello.c was compared with the original copy of hello.c in the repository.
The repository copy (time-stamped 2001/04/18) is bounded by asterisks (*’s).
The working copy (time-stamped 2001/04/19) is bounded by dashes (-’s).

In this example, the context and/or changes were in lines 4–7 of the original
repository file and in lines 4–8 of the working copy file. The sole difference
between the files consists in the newly added printf line which is flagged by
the + in the output.

Generally, whenever a pair of files A1 and A2 are diff’ed, the so-called
unified format patch shows all the contrasting new and old code segments,
and the changes they have undergone, as well as their context. The contrasted
segments of code are called hunks. Corresponding hunks are shown following
one another in the diff output. In this case the hunks are delineated by ***4,7
***and – 4,8 –. Symbols like

+ for a line added in A2 when A1 and A2 are diff’ed,
− for a line deleted from A1, and
! for a shared but changed line that appears differently in A1 and A2

make the changes in the paired hunks for A1 and A2 readily recognizable.
The process of using the diff and the associated patch commands, and com-

paring hunks to see what modifications have been made, is essential in dis-
tributed software development. It is basically the information you need in order
to see what the other developers are doing and exactly how it differs from what
you are planning to do, if it does differ. It does not tell you what the motivations
for the changes are or who made them. That is the province of the log command.
The diff command only provides the overall What, the log command provides
the Who and the Why for the ongoing distributed development.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 131

The current example contains only one hunk that requires any notation to
indicate that one of its lines was an addition (Fogel and Bar, 2003, p. 37).

4,7*
-4,8-
main ()
{

printf (“Hello, world!\n");
+ printf (“Goodbye, world!\n");
}

The first hunk is empty because there were no repository changes and no lines
have been altered (!) or removed (-) in the working copy.

The next example (Fogel and Bar, 2003, pp. 38–39) illustrates the effect of
a changed line in a file rather than an added line. The command and its output
follow (a few # Perl comment lines have spilled over):

cvs -Q diff -c

Index: cvs2cl.pl
====================================
RCS file:
/usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c -r1.76 cvs2cl.pl
***cvs2cl.pl 2001/04/13 22:29:44 1.76
- cvs2cl.pl 2001/04/19 05:41:37

212,218 *

can contain uppercase and lowercase
letters,

digits, `-',
and `-'. However, it's not our place to
enforce that, so
we'll allow anything CVS hands us to be a
tag:

! /∧\s([∧:]+): ([0-9.]+)$/;
push (@{$symbolic_names{$2}}, $1);
}

}
- 212,218 -

can contain uppercase and lowercase
letters,

digits, `-',

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

132 4 Technologies Underlying Open Source Development

and `-'. However, it's not our place to
enforce that, so
we'll allow anything CVS hands us to be a
tag:

! /∧\s([∧:]+): ([\d.]+)$/;
push (@{$symbolic_names{$2}}, $1);
}

}

The example identifies an assumed Perl script file named cvs2cl.pl that has
been changed. The corresponding hunks are from lines 212–218 of the repos-
itory and working files. Most of the output consists of context lines that are
unchanged. The exclamation point notation (!) flags the solitary altered line
of the Perl code in line 215: the 0–9 text in the original (where the change is
also flagged) has been changed to \d in the working copy. Had say three of
the comment lines been removed in the altered working copy, the line range in
the working copy would have been 212,215 and the deleted lines, which would
of course still be in the repository copy because the changes have not been
committed yet, would be flagged in the repository hunk with – ‘s to indicate
that they were deleted (from the working copy).

We already observed that diff’s are important to developers because they
allow differences between the current repository copy and proposed changes
in the working copy to be clearly identified. However, diff’s are also important
because they are central in terms of the internal representation of the repository
since projects are represented as a sequence of diff’s. Indeed, the project, as it
was at any past point in time, can be reconstructed by CVS using the diff’s.
That is, the repository implicitly contains, but only implicitly so, every previous
version of the project: the entire project development tree. It does not contain
these earlier versions explicitly, which would certainly be space-consuming. It
only has the current version of the project and the diff’s that lead back to the
earlier versions, any of which can then be reconstructed on demand by CVS.

The procedure for recreating any previous revision from this implicit devel-
opment tree is simple and intuitive. Each new revision in the repository copy
had in fact been derived by applying a diff to a previous revision. Provided this
historical chain of diff’s is retained, any earlier copy can be reconstructed, given
the most recent revision. For example, consider how to get back to the current
repository revision from one’s own tentative working revision (without doing
another checkout). The diff between the two copies identifies the editorial dif-
ferences between them, like what lines may have been removed in the original
or what lines may have been altered. So we could get back to the original by

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 133

simply applying these changes to our own uncommitted working copy. That
operation would effectively bring us back in time (from the putative next revi-
sion represented by the working copy) by applying or following the information
in the diff. In a similar manner, one could work back in a step-by-step fashion
to any earlier revision of the project tree. This is what has been described as the
time-machine-like functionality of the CVS system. Conversely, since the diff
supplies symmetric information, then given only the diff between the working
and repository copy, and without adverting to the working copy, we could go
from the repository copy to the working copy.

Thus, when CVS has to update an out-of-date working copy currently being
used by a distributed developer, all CVS has to do is apply the diff command
to the working copy’s files against the repository copy in order to identify the
patch needed to bring the working copy up to date. This is also similar to the
way in which a developer/maintainer accepts diff output (which are also called
patch files because of how they are used), sent by contributors to a project, and
manually applies the diff (or patch) to the repository to enact the change.

4.2.6 The Commit Command

The update command updates the local working copy with respect to the current
repository copy. This operation requires only read access privileges since the
repository copy is unchanged, just referenced. On the other hand, the commit
command stores changes in the repository, so it requires write access privileges
to the repository. In a major open source project, the write access privileges are
reserved to a limited set of core developers or maintainers. Participants who
want to submit changes to the repository have to send the changes as patches
such as via e-mail. A maintainer/developer can then adjudicate whether the
patch is appropriate. If so, it can be committed or written to the repository by
the maintainer/developer using the commit command. The typical policy is to
try to ensure the master copy of the project in the repository stays in a runnable
state by only committing changes when they are already both complete and
tested (Fogel and Bar, 2003).

The ability to easily recapture any earlier state of a project in CVS makes the
commit process less risky in case of an error. If a submitted patch is committed
and turns out to have problems, the maintainer can easily recoup the original
state of the system, undoing the faulty patch. Of course, as patches build up, this
becomes less and less simple since subsequent patches may depend on previous
ones.

Here is how the commit command works. If executed by a distributed devel-
oper, the command sends the modifications made by the developer to the central

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

134 4 Technologies Underlying Open Source Development

project repository. For example, the following example (Fogel and Bar, 2003,
p. 43) commits the changes that have been made to the hello.c file but so far
only locally, to the repository:

cvs commit -m “print goodbye too” hello.c

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v<– hello.c
new revision: 1.2; previous revision: 1.1
done

The -m option tells the system to use the embedded phrase (“print goodbye
too”) in the log file. This descriptive phrase included by the author on the
command line then becomes part of the log of messages in the repository.
This log can be browsed to see what kind of changes have been made to the
repository over time – a capability that is important for keeping developers
apprised of what is going on in the development. Notice how the system says
that the revised file hello.c has now been checked in to the system (repository),
complementary to how the project/file had originally been checked out via the
checkout command. The previous revision number for the file hello.c has also
been updated from 1.1 to 1.2. We note that the revision numbers of different
files in a project may be very different from one another simply because some
of the files may have been updated more frequently than others. Of course, the
files that are selected to represent the most current revision of a project are
automatically those files with the highest revision numbers.

If the commit command mentions no file, then all the files in the current
directory are committed. The following commit command will therefore affect
any local files that have been modified, which in this hypothetical example we
will assume to be the files named fish.c and random.c, as per the example we
are using from (Fogel and Bar, 2003). We mentioned these files previously, at
the end of the section on the update command. Once again, let us assume they
have been modified in the local copy. The command executed is

cvs commit -m “filled out C code”

The command output is (Fogel and Bar, 2003, pp. 43–44, 52)

cvs commit: Examining
cvs commit: Examining a-subdir
cvs commit: Examining a-subdir/subsubdir
cvs commit: Examining b-subdir

Checking in a-subdir/subsubdir/fish.c;

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 135

/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
<- fish.c
new revision: 1.2; previous revision: 1.1
done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v
<- random.c
new revision: 1.2; previous revision: 1.1
done

Both of the affected files, fish.c and random.c, have had their revision num-
bers updated which in this case happens to be the identical value 1.2, though
that correspondence is purely coincidental. The revision numbers of individual
files are of course not generally thus synchronized, but depend on the frequency
of modification of the files. Just as when you check out a project from the repos-
itory, you get the latest or highest revision numbers for each file in the project,
correspondingly when you commit or check in an update, the revision numbers
of the checked in files get updated to the next higher revision numbers for those
separate files. The user ID, time, and date stamp are also added automatically.

4.2.7 The Log Command

The descriptions given in the developers’ comments on changes can be browsed
through using the CVS log command. The following output is for the hypothet-
ical single file hello.c. It assumes hello.c has gone through a series of revisions
that are listed in the output in reverse order (revision 1.4, 1.3, 1.2, 1.1, 1.1.1.1).
The revisions are assumed to have been made by two developers who had logged
on with names Bert and Harry (a slight change from the reference example). In
this example the last committed change is assumed to have been executed by
developer Bert using the commented commit command (Fogel and Bar, 2003,
p. 50):

cvs commit -m “adjusted middle line”

The log command that displays these explanatory commented commands
and changes is

cvs log hello.c

This returns output, with some trivial changes from the original example
(Fogel and Bar, 2003, p. 51), that includes

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

136 4 Technologies Underlying Open Source Development

RCS file: /usr/local/cvs/myproj/hello.c,v
Working file: hello.c
head: 1.4
branch:
locks: strict
access list:
symbolic names:

start: 1.1.1.1
Bert: 1.1.1

keyword substitution: kv
total revisions: 5; selected revisions: 5

description:

revision 1.4
date: 2001/04/20 04:14:37; author: Bert;
state: Exp; lines: +1 -1
adjusted middle line

revision 1.3
date: 2001/04/20 02:30:05; author: Harry;
state: Exp; lines: +1 -0
added new middle line

revision 1.2
date: 2001/04/19 06:35:15; author: Bert;
state: Exp; lines: +1 -0
print goodbye too

revision 1.1
date: 2001/04/18 18:18:22; author: Bert;
state: Exp;
branches: 1.1.1;
Initial revision

revision 1.1.1.1

date: 2001/04/18 18:18:22; author: Bert;
state: Exp; lines: +0 -0
initial import into CVS
=======================

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 137

A command like the one cvs commit -m “filled out C code” that we used
previously, committed two files (fish.c and random.c) to the repository at the
same time, so the (same) comment from the command will be logged for both
the files. This facilitates recognizing changes that have been committed simul-
taneously when you browse the log file. You can also get the log entries for
explicitly selected files. In fact, because of the difficulty of reading lengthy log
information, it may be best to selectively look at the log data for a single file
at a time. Log files are useful for developers for getting a quick overview of
what has been transpiring in a project. But reading the log command’s output
is confusing if you want to get an overview of the entire development because
the log command gives the log messages for every file. For example, if ten
files were submitted at a single commit then their log entries would all appear
as separate entries with the same log message. There are tools available that
convert the log command’s output to a more understandable and concise form.
A useful CVS add-on provides so-called GNU style ChangeLogs to present the
log file data. In the ChangeLog view, all files committed at the same time are
shown as a group with the single same shared log message that accompanied
the commit.

CVS can also send out so-called commit e-mails to notify developers or other
interested parties about commits. The e-mails are based on the CVS log file.
Commit e-mails are a key opportunity for peer review by project participants
(Fogel, 2005). Its public nature reminds people that review is a regular process
and gives people the opportunity to participate in the review. The peer review
process also makes committers aware of the fact that “what they do is seen and
understood” by a panoply of thoughtful observers (Fogel, 2005, p. 33).

4.2.8 Recognizing Conflicts in Modifications

The process of integrating developer changes with the project’s master copy or
repository is called merging. Changes that are disjoint and affect different files
can be merged automatically, but overlapping changes cause potential conflicts
that have to be resolved manually. This approach is automatically entailed if
one allows concurrent access to a project without locking out developers.

Thus, suppose two developers are working on the same file hello.c of a
project. One developer Harry has already added a statement printf (“between
hello and goodbye\n”) to the code and has successfully committed this change
to the repository. Another developer Bert is preparing to work on the same file in
his working copy but has not made any changes to it as yet. Developer Bert can
determine the status of his working copy vis-à-vis the repository by executing
the cvs status command:

cvs status hello.c

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

138 4 Technologies Underlying Open Source Development

The status command does not update or synchronize Bert’s code with the
repository like the update command does. It only reports whether there have
been any changes to the repository copy since Bert’s current working copy was
checked out. In this case, the system warns Bert that his working copy is now
out of date and needs a patch to bring it into synchronization (Fogel and Bar,
2003, p. 48):

File: hello.c Status: Needs Patch
Working revision: 1.2 Mon Apr 19 02:17:07 2001
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c, v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The affected file is hello.c. Its revision number was 1.2. The repository has
changed since the file was checked out and now the most recent revision of
the file has revision number 1.3. Thus the status of the file is that it needs to
be updated (or patched or synchronized) against the repository copy before
the developer proceeds to work on the file. Had there been no discrepancies
between the repository and working copy, the status command would merely
have reported the status as up-to-date. Had there been no changes to the repos-
itory copy and only local modifications in the working copy, the status would
have been reported as locally modified.

Suppose developer Bert ignores the warning and makes changes directly to
his old revision by adding the statement printf (“this change will conflict\n”),
say, at the same place in the code where a change was already committed by the
other developer to the repository. If Bert executes the status command again,
then this time the system warns him (Fogel and Bar, 2003, p. 48) that not only
the repository copy of his file has changed, but his copy has also changed and
so the situation needs to be resolved by properly merging the changes with the
new revision:

File: hello.c Status: Needs Merge

Suppose that Bert then updates his working copy; thus

cvs update hello.c

CVS once again announces that there is a conflict, but this time it also
identifies the potentially inconsistent lines of code. The partial output in the
following introduces the situation (Fogel and Bar, 2003, p. 49):

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.2
retrieving revision 1.3

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 139

Merging differences between 1.2 and 1.3 into hello.c

rcsmerge: warning: conflicts during merge
cvs update: conflicts found in hello.c
C hello.c

The notation C next to the file name flags the file involved in the potential
conflict. Revision 1.3 is the most recent revision of the file. Revision 1.2 is
Bert’s older working copy revision of the file. Clear warnings are given that a
conflict is present that must be resolved by the receiving developer.

The remainder of the output presents the results of the update command’s
merge. The merge has only been done in the sense that the two disparate copies
were combined in the developer’s copy only, while of course not affecting the
repository. The merged working file hello.c at this point includes the two devel-
opers’ changes that are appropriately distinguished from one another inside
markers (Fogel and Bar, 2003, p. 49):

#include <stdio.h>

void
main ()
{

printf (“Hello, world!\n");
<<<<<<< hello.c

printf (“this change will conflict\n");
=======
printf (“between hello and goodbye\n");

>>>>>>> 1.3
printf (“Goodbye, world!\n");

}

The repeated angular brackets >>> and <<< are called conflict markers
and follow the format (Fogel and Bar, 2003, p. 49):

<<<<<<< (filename)
the uncommitted changes in the working copy
-- change by one of the developers --
=======
the new changes that came from the repository
-- change by the other developer --
>>>>>>> (latest revision number in the
repository)

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

140 4 Technologies Underlying Open Source Development

The conflict is only resolved when the developer, possibly working collab-
oratively with the other developer who made the commits, edits the conflicted
file where the conflicts occur and commits the changes. Thus

1. The correct choice of text is decided on.
2. The conflict markers are edited out.
3. The resulting patch can then be committed to the repository with an

appropriate log message explaining the change.

This kind of conflict detection is nonetheless fairly limited or myopic in
scope. A more nuanced understanding of the nature of potential conflicts has
to be kept in mind. Developers still have to be on guard. Source code is replete
with numerous interfile dependencies. A classic instance of such dependencies
is the effect of changing a header file in a C program. CVS handles these in
its usual nonlocking mode. Of course, such a change does not affect just the
header file. It impacts every file that uses the header file. In such a case, locking a
file, as was done in the conventional lock-modify-unlock model for versioning,
would only give a developer a misleading impression that the changes were only
local to that file. But as Rooney (2004) warns in his discussion of the similar
Subversion versioning system: “Locking gives you the illusion that it’s safe
to make changes, but in reality you need the same amount of communication
among developers that you’d need in the nonlocking mode. Locking just makes
it easier to forget that.”

4.2.9 Branches in CVS – and Forks

The revisions we have considered so far have evolved from the top of the
development tree, that is, from the most recent revision. However, sometimes
one may need to develop a new revision by springing off from an earlier revision
in the tree. Suppose, for example, that an earlier revision corresponded to a
public release of a project. Suppose also that someone has subsequently detected
a bug in this earlier release. Obviously, since the bug has been recognized in the
context of the previous release, the patch that repairs the bug should be applied
against that release rather than more current revisions. This can be easily done
with CVS. A new tangential project development like this is called a branch.

Branches can be thought of as retrospective, alternate project evolutions that
emerge and diverge from earlier versions. A branch of a project is a different
line of development that is split off from the main line of development or trunk
at an earlier release that has been identified as having a problem only after its
distribution. Branching is accomplished by checking out a working copy of that
earlier version. The bug is then fixed in that working copy. Then the patch is

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.2 CVS Commands 141

committed to the branched version. It is not committed, at least at this point, to
the current development version which is left unaltered, though of course it may
turn out that the current version can be similarly debugged and also patched.
If the same patch works for both the earlier release that was branched and the
current development version, then the branch can be merged back to the trunk
with the history or record of all these changes still preserved in the repository
(Fogel and Bar, 2003).

A branch in a CVS development tree is of course completely different from
a fork in an open source project. A branch of the project still belongs to the
project. It is merely a technically driven and perhaps temporary split in the
project tree. A fork of a project, on the other hand, is a political or organizational
phenomenon that occurs when some of the developers or participants disagree
with the core decision maker(s) about the direction of the project – so much
so that they decide to strike off on their own and continue the project in a
different direction. They can make a copy of the project (the existing CVS tree),
assuming the license allows this, as the GPL would, and start a new project with
the current one as the point of departure. Forks are relatively rare in open source
development because they upset the whole applecart, breaking up an originally
unified project. As an illustration, the Apache Web server project can perhaps
be considered as essentially an amicable and successful fork in the NCSA httpd
daemon developed by Rob McCool.

4.2.10 Development Practices: Patches and Releases

CVS provides an effective software tool for handling patches in distributed
development and ultimately for posting new releases of a project. The question
of what practices or policies are used to manage these actions is separate from
the technology provided by the tool.

How are patches handled administratively? In any major project, an open
source participant does not directly commit a patch to the repository with his
or her own commit command because such write privileges to a repository
are reserved to a limited group of developers. Participants have read access
to the repository, so they can checkout copies and modify them. But commits
are typically handled indirectly through a developer filter. The normal partici-
pant/developer can just submit the patch in an e-mail to a core developer who
does have write privileges or to a maintainer. The developer/maintainer then
commits the patch to the repository, or not, as the case may be. As we have
indicated earlier, the time-machine-like functionality of the CVS development
tree allows faulty patches to be easily undone, so even these commits are only
semidecisive. If it turns out, the patch is ineffective, and it can be undone by

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

142 4 Technologies Underlying Open Source Development

backing the development tree up to the previous revision. Of course, the longer
it took to recognize an inappropriate patch, the more likely it would be that
subsequent patches would be piled on top of the revision, incrementing the dif-
ficulty of getting the system integrated back to a satisfactory state. Patches are
reviewed and tested carefully and perhaps modified by the maintainer before
being accepted. The work is tedious. If the patch is rejected, the maintainer has
to explain why and do so in a courteous manner since these are public forums
(Fogel and Bar, 2003).

How are releases handled? There are questions as to when to do it, who is
in charge of the process, and how it is distributed. Consider first the technical
question of distribution of the release. New releases can be distributed in two
ways: in toto or as patch increments. Thus they can be provided as a single
self-contained tarball with all the project files and directories wrapped up into
a single archive. This is suitable for users who are just starting off on the project
and so have no prior version to build on. For users who already have the previous
most recent release of the project, a different approach may be appropriate: they
can be provided a patch file that contains all the patches required to bring the
earlier version up to date. The user can then download this (much smaller)
patch file only and apply it to their previous version, rather than download the
complete project as a tarball (Fountain, 2002).

Releases tend to be made when a sufficient number of bugs have been repaired
or a sufficient number of new features have been added since the last release,
though a new release may sometimes also be done for political reasons because
it may serve the purpose of bringing public attention to the product and the
project. The actual decision as to when to make the release is made by the core
developers who will also typically decide who should be the release manager.
It is the responsibility of the release manager to ensure that the new release
revision is stable. A common practice is to first initiate a so-called freeze. This
usually entails a feature freeze under which “no significant new functionality
is added to the program, but bug fixes are permitted,” and perhaps also a code
freeze wherein “no changes are to be made to the code except those absolutely
necessary to fix known bugs” (Fogel and Bar, 2003, p. 190). Other relevant
terms that reflect the intentions of the release management process include a
soft freeze where the objective is to avoid destabilizing changes to the project
and generally not do “anything big” (Fogel and Bar, 2003, p. 190). In a hard
freeze, only code changes that repair relatively straightforward known bugs may
be allowed.

The restrictions and inconvenience to development imposed by pre-release
freezes are mitigated if a project is differentiated into a development branch and
stable branches. The main project trunk can be considered as the development

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.3 Other Version Control Systems 143

branch. When a decision is made to make a new release, a branch can be made.
This release branch can then be evolved until it stabilizes to the release man-
ager’s satisfaction. At the same time the main development trunk can continue
unaffected. Bugs fixed on the release branch as it is readied for release can of
course also be applied to the development branch. As the release approaches
stability, a beta release may be released which is characterized by being both
fairly well-tested and relatively stable. Stability means very few bugs are being
reported; thus “once bug reports from the beta have slowed down to a trickle,”
the release becomes official (Fogel and Bar, 2003, p. 200). Once the release
is “released,” then development on its offshoot branch can terminate. Future
releases can then similarly branch off the continuing main development trunk
of the project. In Linux development, both the development and stable versions
are always publicly accessible. They cater to different audiences. The stable
versions are for people who need reliability. The development versions are for
the developers, early adopters, and users who need to use or want to test new
features not yet in the stable release. The Linux project introduced a now widely
used distinctive numbering scheme to differentiate stable and development ver-
sions as we have previously described in our discussion of the Linux platform.

References

Berliner, B. (1990). CVS II: Parallelizing Software development. In: Proceedings of the
USENIX Winter 1990 Technical Conference. http://docs.freebsd.org/44doc/psd/
28.cvs/paper.pdf. Accessed January 10, 2007.

Cederqvist, Per et al. (1992). Version Management with CVS. Network Theory Limited,
Bristol, United Kingdom.

Cederqvist, Per et al. (2003). Version Management with CVS, Network Theory Limited,
Bristol, United Kingdom.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media. Sebastopol, CA.

Fogel, K. and Bar, M. (2003). Open Source Development with CVS, 3rd edi-
tion. Paraglyph Press, Scotsdale, AZ. http://cvsbook.red-bean.com/. Accessed
August 30, 2007.

Fountain, D. (2002). Creating and Using Patches. http://tools.devchannel.org/
devtoolschannel/04/06/02/1521207.shtml?tid=46. Accessed November 29, 2006.

Rooney, G. (2004). Practical Subversion. Apress Publishers, Berkley, CA.

4.3 Other Version Control Systems

CVS still dominates the version control market but there are other important
versioning systems available, or Software Configuration Management (SCM)

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

144 4 Technologies Underlying Open Source Development

systems as they are also called. These include Subversion, BitKeeper, Git,
CodeVille, and Monotone. We will discuss Subversion and BitKeeper in some
detail and the others briefly. With the exception of the proprietary BitKeeper,
these systems are all open source. A fundamental distinguishing characteristic
of a versioning system is whether it is centralized or decentralized; see Wheeler
(2004) for a useful overview. CVS and Subversion are both centralized ver-
sioning systems, operating according to a client-server model. They maintain a
unique centralized repository to which changes are fed from distributed devel-
opers. BitKeeper, Monotone, Codeville, and Git are all decentralized systems.
They support environments where distributed developers work asynchronously
and independently, updating local repositories by pulling in changes from
others. The BitKeeper system was used for some time in the Linux kernel
development during which it demonstrated the remarkable power of decen-
tralized (distributed) versioning systems to expedite project management. We
shall begin with a discussion of Subversion and then turn to the decentralized
systems.

4.3.1 Subversion

Subversion is similar to CVS. It uses a distributed nonlocking model for project
management and allows both local and remote server-based access to its reposi-
tory. Subversion was already in development for several years prior to its version
1.0 debut in early 2004. The collaborative software company CollabNet started
its development in 2000, intending it as a replacement for CVS, and brought
in two major CVS experts Karl Fogel and Jim Blandy for the project. Blandy
was a long-time free software advocate and the maintainer for the GNU Emacs
project. It was he who came up with the product’s transgressive name, and it
does have the obvious implication. According to the Subversion Web site its
avowed mission is to “Take over the CVS user base.” Other developers include
Collins-Sussman and a community of open source contributors.

The objective of Subversion was to not radically alter the CVS design, but
only fix what were believed to be its flaws. In fact, its developers wanted Sub-
version to look like CVS precisely to minimize the learning curve for new users
coming from a CVS environment. Subversion became “self-hosting” in August
2001 (Collins-Sussman et al., 2005). The product is open source, distributed
under an Apache-BSD type of license. CollabNet holds the copyright. Collab-
Net also funds most of the development and some of its employees are full-
time developers. Despite the corporate sponsorship and ownership, the project
is nonetheless “run like most open-source projects, governed by a loose, trans-
parent set of rules that encourage meritocracy” (Collins-Sussman et al., 2005).

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.3 Other Version Control Systems 145

The system is implemented as a collection of C libraries with well-defined
APIs and runs on multiple platforms. Windows, Unix, and Mac OS versions
are available. The interface is line-oriented like CVS and includes the same
basic commands, but the command-line output is readable and intentionally
parseable. Although the system is command-line oriented, a Visual Studio.Net
product called AnkhSVN is available for Windows environments that lets you
work with most Subversion commands inside the .NET IDE.

Subversion is much less widely used than CVS, though it is probably the
second most popular versioning system in use and is increasing in popularity.
Its penetration on WebDAV servers increased 25-fold since its release as per the
securityspace.com Apache Module Report, though this still represents only a
tiny fraction of the overall market. The GNU GCC project now uses Subversion
rather than CVS to manage its repository, which is significant, given the promi-
nent status of the GCC project. Significantly, it also serves as the versioning
system for Python and the KDE desktop project. On the other hand, Subver-
sion has limitations that make it inappropriate for some projects. For example,
Linux development uses distributed repositories. Since Subversion, like CVS,
is a centralized source control system, it is not suited to Linux style decentral-
ized development. In fact, Torvalds explicitly disregarded it as a replacement
candidate for BitKeeper, which had temporarily been the Linux versioning
system.

A major improvement in Subversion over against CVS is that Subversion
versions directories not just files. According to the Subversion home page, it
“versions not only file contents and file existence, but also directories, copies,
and renames.” All added, copied, or renamed files get a complete new history.
Subversion’s commits are atomic. It also supports binary files (such as media)
and binary diff’s. The Subversion home page claims the system is “equally
efficient on binary as on text files, because it uses a binary diff’ing algorithm
to transmit and store successive revisions.” In contrast, CVS is text-oriented
because its applications were expected to be about source code development.
Versioning systems like CVS have typically handled binary files such as those
arising in imaging or multimedia contexts in a clumsy manner if at all, particu-
larly binary diff’s. In fact, binary revisions have usually been done by keeping
a separate copy of the binary file for each revision. Versioning tools may even
corrupt a binary file by adding inappropriate end-of-line conversions that dam-
age the file. Conflicts regarding changes in binary files still have to be handled
manually in Subversion, but it facilitates the process. Subversion gives you the
copy you checked out, the modified copy, and the current repository copy. You
can then use an independent tool to decide how to compare them (Rooney,
2004).

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

146 4 Technologies Underlying Open Source Development

References

Collins-Sussman, B., Fitzpatrick, B., and Pilato, C. (2005). Version Control with Subver-
sion. Red-Bean.com. http://svnbook.red-bean.com/. Accessed January 10, 2007.

Rooney, G. (2004). Practical Subversion. Apress Publishers, Berkley, CA.
Wheeler, D. (2004). Comments on Open Source Software/Free Software (OSS/FS)

Software Configuration Management (SCM) Systems. http://www.dwheeler.com/
essays/scm.html. Accessed November 29, 2006.

4.3.2 Decentralized Systems: BitKeeper, Git, Monotone,
CodeVille

BitKeeper is a commercial, proprietary, decentralized versioning system. It
debuted around 1998. Its story is quite well-known in the open source com-
munity, partly because it was controversially used for a time in Linux kernel
development where it demonstrated the dramatic impact decentralized configu-
ration management could have in expediting project management. BitKeeper’s
developer Larry McVoy describes it as a “peer to peer system of replicated
repositories” (Andrews, 2002). According to its Web site, it provides a sys-
tem where “every developer gets their own personal repository, complete with
revision history, and the tool handles moving changes between repositories”
(bitkeeper.com), which is radically different from the centralized CVS model.
The BitKeeper license is proprietary. Despite this, its owners had allowed open
source developers, of which the Linux kernel project was the most promi-
nent example, to use the software free of charge under certain stipulations.
This free-of-charge deployment to the open source community was part of a
business strategy by McVoy (a Linux kernel developer himself) for building
BitKeeper’s market share. In exchange for the free-of-charge use of BitKeeper
in a binary-only version, open developers had to agree not to participate in
developing competing products like CVS while they were using it, as well as
not to try to reverse engineer the product (Corbet, 2005). BitKeeper was, of
course, also available under a purely commercial license. The system’s biggest
platform market is Windows, but it has been ported to many systems including
FreeBSD, Solaris, and Mac OS X, though the BitKeeper Web site affirms that
“Linux is the platform of choice.”

The decentralized character of BitKeeper underlies its tremendous effective-
ness in facilitating project management for parallel development. It supports
what can be thought of as a layered network structure for the collaboration
of developers – a structure that lets a project leader partition and delegate
project responsibilities among a number of subsystem managers. This kind of
partitioning is possible because under BitKeeper each developer group “can

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.3 Other Version Control Systems 147

have a shared repository which sits between them and the global repository”
(BitKeeper Web Site, 2006). Each developer in a group can then clone this
shared repository to establish his or her own work area, and work on his or her
own repository independently. This creates a safer and more robust develop-
ment environment. The staging area that separates each local group from the
rest of the project allows “changes to be debugged within a local group, with-
out breaking” the main repository (BitKeeper Web Site, 2006). These features
were decisive to Linus’ adoption of BitKeeper for kernel development. They
made his role as head of the entire project dramatically more manageable by
buffering him from software changes, except those that had been vetted through
a small number of his trusted lieutenants. As a consequence, he had fewer, less-
fragmented changes to review, coming from fewer, more reliable developers,
and which had been vetted more carefully prior to being considered for inte-
gration into a master repository by Linus. This buffered, partitioned structure
makes BitKeeper’s project management advantages scalable. Furthermore, it
underscores a corresponding vulnerability in the single repository model, where
one bad apple can spoil the barrel because systems like CVS lack “staging areas
to protect the main tree” from bad check-ins (BitKeeper Web Site, 2006). In
CVS, a bad patch, checked into the unique repository tree, impacts everyone as
soon as they synchronize with that repository.

The decentralized BitKeeper model works better because it reflects paral-
lel development more faithfully than a single repository system. Critically, a
system like CVS will “lose information every time there is parallel develop-
ment because you are forced to merge before you check in if someone else
checked in first. The state of your workspace before the merge is lost forever”
(BitKeeper Web Site, 2006). For example, a typical parallel development sce-
nario, which can be handled only clumsily in a centralized system like CVS,
occurs when development information is lost in the course of a merge. As an
example, consider the following scenario from the product’s Web site. Suppose
A and B are developers using CVS and that A checks in his work before B
does. At that point B has to do a merge before checking in her work. If B
later decides that A’s work was incorrect and wants to divorce her work from
it, then in the CVS environment B will have to manually unmerge the work
because the CVS environment doesn’t separate B’s original premerge work and
the results of her merger (BitKeeper Web Site, 2006). In contrast, every one of
the distributed repositories in BitKeeper is just like its own all-remembering
time machine that can reset to any prior state, even after integrating changes
from other developers, because each repository can at any time readily recon-
struct its prior development states. BitKeeper keeps track of multifile changes
with atomically applied changesets. The availability of these changesets in the

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

148 4 Technologies Underlying Open Source Development

repository allows the developer/owner of the repository to reconstruct its devel-
opment tree back to any prior point. Thus the set of distributed repositories lose
none of the development states that occur among the distributed developers in a
parallel development, unlike in a single repository model. Beyond these impor-
tant structural features, BitKeeper also provides reasonable GUI facilities for
viewing information like differences between files, changesets, and repository
history, which are better than those found in a tool like CVS, and it has the
ability to propagate file name changes.

The design and capabilities of a tool like BitKeeper are fascinating in them-
selves, but BitKeeper’s story transcends technical issues. Its history not only
sheds light on versioning tools and the productivity of project management
but is also broadly relevant to open source movement and licensing issues,
the relation between commercial products and open communities, and the via-
bility of open business models. In his controversial decision in 2002, Linus
Torvalds decided to use BitKeeper for Linux kernel development. He described
BitKeeper as unambiguously: “The best tool for the job.” Its selection by Linus
was at the same time a huge publicity boost for BitKeeper because of the impor-
tance of Linux and its centrality in the free software movement. BitKeeper’s
application to the kernel project dramatically improved productivity during its
period of use (Andrews, 2005). Linus himself acknowledged that: “It’s made
me more than twice as productive, and its fundamentally distributed nature
allows me to work the way I prefer to work – with many different groups work-
ing independently, yet allowing for easy merging between them” (BitKeeper
Press Release, 2004). It also profoundly improved the workflow (Andrews,
2005). But free software advocates such as Richard Stallman strongly objected
to using BitKeeper, especially for the signature Linux kernel project, because
its license restrictions were a violation of basic free software principles, and it
is the tradition in the movement to use only “free” software products for devel-
opment. The final complication occurred when there was a controversy over
the development of a tool called SourcePuller by the OSDL’s (the Open Source
Development Labs) Samba project leader Andrew Tridgell. McVoy objected
that this activity constituted reverse engineering in violation of the BitKeeper
free license, though Tridgell vigorously denied this. Linus himself was critical
of Tridgell’s activity, saying it “only caused problems” and merely “insured its
own irrelevance by making BitKeeper no longer available” (McMillan, 2005).
The outcome was that McVoy decided in 2005 to stop making the system avail-
able for free to open source developers. Interestingly, the Linux kernel tree is still
tracked by BitKeeper since many kernel developers commercially license the
product, especially “large companies who actively contribute to Linux devel-
opment such as IBM, Intel, HP, Nokia and Sun” (Andrews, 2005). However,

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.3 Other Version Control Systems 149

by mid-2005, Linus had started developing an alternative system called Git to
do decentralized version control for Linux.

BitKeeper’s McVoy contended that disassociating BitKeeper from the Linux
kernel development reflected badly on the open source community because
third-party applications like BitKeeper were key to the success of any platform.
He stated that “no company is going to port their applications to a platform
whose stated goal and track record is to reverse engineer everything they find
useful. At some point the open source world needs to . . . decide they’ll toler-
ate commercial software” applications without trying to reverse engineer them
(Andrews, 2005). Nor was McVoy overtly concerned about competition from
new tools developed for Linux kernel work. This was partly because he believed
the requirements for commercial versioning tools, which was BitKeeper’s real
market, differed fundamentally from those for projects like Linux kernel devel-
opment. For one thing the Linux application is text-oriented and has little need
for binary files, while revision management for binary files, which introduce
potentially serious storage problems, is critical in commercial applications.
McVoy was also generally skeptical of the general ability of free software to
support a business model with the exception of some special cases. In particular,
he thought a true free license was impossible in principle for a software like
BitKeeper, given the relatively small size of its prospective market and because
the software costs far more to develop than you can realistically “extract from it
in revenue” (Andrews, 2002). McVoy frankly acknowledged that his relation-
ship with Linux had made BitKeeper a “dramatically better product because of
the free users.” Indeed, the free-of-charge license that the product was supplied
under required free users to use the latest image of the software “because that’s
where the free users provide value. It doesn’t help anyone to get bug reports on
problems we’ve already fixed” (Andrews, 2002). McVoy said BitKeeper relied
strongly on its “open source advantage: when we release a new image, it gets
tested by a lot of people very quickly. Unless the other SCM people adopt our
model, it’s tough for them to catch up” (Andrews, 2002). Thus, the open source
community connection, even though temporary, was decisive to BitKeeper’s
competitive advantage versus other SCM systems.

BitKeeper’s Replacement: Git
After BitKeeper was dropped from use in Linux kernel development, Linus
himself began rapidly developing a General Public Licensed replacement that
he modestly called git, which is a self-deprecating slang eponym for a “rot-
ten person” (McMillan, 2005). Development began in early April 2005. The
prototype was already used for managing kernel release by mid-June, and by
the end of July Linus turned the project over to Junio Hamano. His design

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

150 4 Technologies Underlying Open Source Development

very intentionally avoided imitating that of BitKeeper with Linus saying: “I
respect Larry (McVoy) too much, and I didn’t want there to be any question
about git being just a clone” (Torvalds, 2006). As it turned out, the choice to do
things “radically differently” let git be dramatically effective (Torvalds, 2006).
Speed and efficiency were Linus’ primary objectives for the system. Speaking
in the context of the enormous number of kernel development transactions he
was responsible for, Linus commented that git “was designed on the principle
that everything you ever do on a daily basis should take less than a second”
(McMillan, 2005). As he prototyped the system, he insisted that the main thing
when applying patches was to make the process efficient: “If it takes half a
minute to apply a patch and remember the changeset boundary etc (and quite
frankly, that’s fast for most SCM’s around for a project the size of Linux),
then a series of 250 emails . . . takes two hours. If one of the patches in the
middle doesn’t apply, things are bad bad bad” (Torvalds, 2005a). Linus pro-
posed as a performance benchmark that “the first 200 patches in the current git
kernel archive” be able to be processed at the rate of “three per second” (Tor-
valds, 2005b). Within days, Linux developer Matt Mackall (2005) had run the
benchmark at a little over six patches per second. By 2006, Linus felt confident
that git was already better for kernel development than BitKeeper, though this
was partly because it had been specifically developed for work on the kernel
(Torvalds, 2006). The tool also made development management practices like
cherry-picking (merging some but not all of a set of changes) easier and han-
dled branches better. Linus claimed it was “the fastest SCM out there . . . on
almost any operation you can name” and had “the smallest disk footprint I’ve
ever heard of” (Torvalds, 2006). Despite this, he graciously acknowledged the
brilliance of McVoy’s work and that “BK was what taught me what to aim for”
(Torvalds, 2006).

Codeville and Monotone
To complete our look at decentralized SCM systems, we briefly mention Codev-
ille and Monotone. CodeVille, developed by Bram Cohen of BitTorrent fame
together with his younger brother Ross Cohen, is implemented in Python. It is
cross-platform and released under the BSD. At the time of this writing it had not
yet reached version 1.0. A distinguishing feature is CodeVille’s use of a novel-
merging algorithm which helps eliminate possibly unnecessary merge conflicts
by using an automatic technique that devolves into a CVS-style manual merge
in special cases. The underlying algorithm currently uses a two-way merge
between files, and then applies historical information on revisions to “decide
which side of each differing section of code wins based on which side’s revisions

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.4 Open Source Software Development Hosting Facilities 151

have already been applied” (Cohen, 2005). Monotone is another decentralized
SCM system released under the GPL and written in C++. An early release came
out in 2003. Monotone runs on Windows, Unix, and Mac OS. It enforces atomic
commits like Subversion and unlike CVS.

References

Andrews, J. (2002). Interview: Larry McVoy. http://kerneltrap.org/node/222. Accessed
December 6, 2006.

Andrews, J. (2005). No More Free BitKeeper. http://kerneltrap.org/node/4966. Accessed
November 30, 2006.

BitKeeper Press Release. (2004). BitKeeper Helps Double Pace of Linux Development.
http://www.bitkeeper.com/press/2004-03-17.html. Accessed December 6, 2006.

BitKeeper Web Site. (2006). http://www.bitkeeper.com/. Accessed December 6, 2006.
Cohen, B. (2005). The New Codeville Merge Algorithm. May 5. http://lists.zooko.com/

pipermail/revctrl/2005-May/000005.html. Accessed December 6, 2006.
Corbet, J. (2005). The Kernel and BitKeeper Part Ways. April 6. http://lwn.net/Articles/

130746/. Accessed January 10, 2007.
Mackall, M. (2005). Mercurial 0.4b vs Git Patchbomb Benchmark. April 29. http://marc.

theaimsgroup.com/?l=gitandm=111475459526688. Accessed December 6, 2006.
McMillan, R. (2005). After Controversy, Torvalds Begins Work on Git. Australian

PC World, April 20. http://www.pcworld.idg.com.au/index.php/id;1852076002.
Accessed December 6, 2006.

Torvalds, L. (2005a). Re: Kernel SCM Saga . April 7. http://marc.theaimsgroup.com/
?l=linux-kernel&m=111288700902396. Accessed December 6, 2006.

Torvalds, L. (2005b). Re: Mercurial 0.3 vs Git Benchmarks. April 26. http://www.gelato.
unsw.edu.au/archives/git/0504/2078.html. Accessed December 6, 2006.

Torvalds, L. (2006). Re: VCS Comparison Table. October 20. http://marc.theaimsgroup.
com/?l=git&m=116129092117475. Accessed December 6, 2006.

4.4 Open Source Software Development Hosting Facilities
and Directories

Software hosting facilities for open source development are Web sites that help
distributed software collaborators manage their open source project and also
provide source code repositories for development. We describe some of the ser-
vices typically provided for two of the most prominent Web sites, SourceForge
and Freshmeat, as well as the FSF directory. It is also worth noting some of the
other prominent Internet sites that are relevant to open source. One particularly
well-known site is Slashdot.org (named for the “/.” notation in Unix.) Slashdot
is a go-to place for current news on open source. O’Reilly.com is another useful
site for information and books on open source.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

152 4 Technologies Underlying Open Source Development

4.4.1 SourceForge

Sourceforge.net is the largest hosting site with over 100,000 software projects
listed as of mid-2005. SourceForge is owned by the Open Source Technology
Group, which in turn is a wholly owned subsidiary of VA Software which
distributes VA Linux. The same group also runs Freshmeat and the DevChannel
Web sites. The SourceForge home page lists software project categories ranging
from Games, Multimedia, Networking, and Security to Desktop and Financial
programs. It provides basic access to its environment free of charge but expanded
services are based on an annual subscription fee. As of 2003 over 70% of the
SourceForge packages were licensed under the GPL, another 10% under the
LGPL, and about 7% under BSD licenses (Wheeler, 2005).

SourceForge provides its own Collaborative Development System (CDS).
This includes tools like a so-called Compile Farm Service that lets developers
use an SSH (Secure Shell) client to access different hosts with different operat-
ing systems on which they can compile and test their programs. The supported
operating systems currently include POSIX, Unix-like systems, and Mac OS.
The site also provides CVS repository services to projects for software stor-
age with standard CVS capabilities, like controlled access to the repository
under the project administrator as well as access to a CVS client to use the
service. Anonymous CVS access is provided to examine a project repository,
but only project developers with access permissions determined by the project
administrators can access the CVS tree using an SSH client.

The CDS communication tools provided include mailing lists, forums, and
so-called trackers. Both public and project-member-only lists are available.
The mailing posts are archived for later Web-based viewing and search. The
forums are used for project discussions. Posts to the forums are threaded and
searchable. So-called trackers are used to manage user-submitted source code
patches, bug reports, requests for support, and feature requests. The bug tracker
tabulates reported bugs with links to brief descriptions of the bugs, bug prior-
ity, the identity of the submitter, and who if anyone has been assigned to fix
the bug. Proposed user patches to problems are identified together with brief
descriptions for their rationale. A log or table of user requests for enhanced
features describes proposed enhancements, submitters, and possibly assignee.
User support requests are handled similarly.

The site enhances project visibility. In addition to the various develop-
ment and communication services, SourceForge provides increased visibility
for projects: firstly, because the site is well-known and also because projects
undergoing extensive development or experiencing large numbers of down-
loads are highlighted on the SourceForge home page. Projects are provided

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.4 Open Source Software Development Hosting Facilities 153

with various Web services, including space for project-related Web content and
scripts, secure management of content, and project MySQL databases. Project
scripts in Perl, Python, and PHP may be served.

As an illustration of the kind of information provided by SourceForge,
we will describe some of the information it provides for one of its currently
most popular downloads: BitTorrent. The project summary page for BitTorrent
describes the purpose of the software: a tool for distributed download. It identi-
fies the project administrators and the list of developers (in this case there were
eight). In addition to their e-mail addresses, it provides an option for develop-
ers to publicize their skills or expertise. The skill inventory for each developer
identifies the developer’s language and software development skills, level of
accomplishment, and length of experience in the designated skill. A log of skill
entries might include

Skill: Programming
Language: C
Level: Wizard
Experience: > ten years

as well as personal comments by the developer. The development status of the
project is also given. BitTorrent is identified as a Stage-5 project that belongs to
the SourceForge Production/Stable category. Terms like this are explained by
links that also show project statistics. Possible status categories are Planning,
Pre-Alpha, Alpha, Beta, Production/Stable, Mature, and Inactive. The intended
audience for the software is described. In the case of BitTorrent, the expected
product users are end users operating in a desktop environment and system
administrators. The licensing characteristics of the software are also indicated.
BitTorrent is described as licensed under Other/Proprietary. A reference to the
actual BitTorrent Web site at bittorrent.com reveals that the license is actually
a modified version of the Jabber Open Source License. The operating system
platforms to which the software has been ported are listed. The development
languages for the project are given as C and Python. The development activity
on a project is one indicator of how healthy an open source project is. The
SourceForge Activity Percentile for BitTorrent was over 99% in mid-August
2005. In this case this reflected the popularity of downloads of the program rather
than a high development rate during the period. Generally speaking, the Activity
Percentile is a composite measure that reflects project development actions,
page hits, downloads, tracker accesses, and communication metrics like forum
posts. Links to the home page of the project are also given. For BitTorrent, the
actual home page was not on SourceForge, but at bittorrent.com. The BitTorrent
site indicates that it does not use a CVS, BitKeeper, or Subversion repository.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

154 4 Technologies Underlying Open Source Development

Its code is maintained under the open source version control system Codeville
even though the SourceForge site does have a CVS repository for BitTorrent,
albeit the latest entries were all at least a year old.

4.4.2 Freshmeat

Freshmeat.net is another major open source development Web site also owned
like SourceForge by the Open Source Technology Group under VA Software.
Freshmeat is primarily focused on providing information on software releases
as well as updates and articles on open source software, though proprietary
software is also cataloged. As of 2003, over 70% of the Freshmeat packages
were licensed under the GPL or the LGPL and over 5% were under BSD licenses
(http://freshmeat.net/stats/, accessed January 8, 2007). Project developers can
register their projects on the site and provide ongoing updates. Users can search
for software by category such as area of application, licensing requirements,
ported platforms, and programming language used. They can download and
even rate products. For example, if you search for BitTorrent on the site, an entry
appears that describes the product purpose, the nature of its licenses (which
in this case were indicated as OSI-approved), intended audience, platforms,
the implementation programming languages, etc. This is similar to the basic
summary information on SourceForge. Statistics on product popularity and the
vitality of the project development are also given. Terms like popularity and
vitality have clear and accessible definitions. For example, vitality is measured
by the number of announcements about the project multiplied by its age in days,
divided by the number of days since the last announcement. The site does not
provide CVS or other software development services.

4.4.3 The FSF Directory

The http://directory.fsf.org/ Web site is another major catalog of “free software
that runs under free operating systems.” It sponsors many projects including
the GNU project. The directory is now also sponsored by UNESCO. Politically
this new association is an important international statement about the increasing
global recognition of the free software movement.

Products are grouped by category and special attention is given to verify-
ing the license characteristics of the software. For example, in our running
illustration, BitTorrent falls under the Network Applications category of Tools
because it facilitates distributed download. The entry links to a page with basic
information about BitTorrent. It starts with a useful description of the purpose
and rationale for the software. It gives a link to the current home Web site for

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

4.4 Open Source Software Development Hosting Facilities 155

BitTorrent. It also links to a compressed tarball copy of the source code for the
program as well as to a SourceForge page that provides information and down-
loads for source and binaries for BitTorrent. Links are also given for the mailing
lists for user help, bug reporting, and the developer list. Additional informa-
tion similar to some of what is available on SourceForge is also provided. The
identity and mailing address of the person who verified the type of license for
gnu.org are given too. For BitTorrent a link for the license type characterizes
it as being under an X11-style, so-called simple, permissive open license. As
another comparative illustration, consider looking up the KDE project on the
FSF site. One quickly locates the basic information and links for the KDE
graphical desktop environment, its license, source code tarball, announcement
e-mail list, link to a complete list of credited developers, etc., as well as a link
to the KDE home page site.

References

Wheeler, D. (2005). Why Open Source Software/Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers! http://www.dwheeler.com/oss fs why.html.
Accessed January 8, 2007.

P1: JYD
9780521881036c04 CUNY1180/Deek 0 521 88103 6 October 1, 2007 17:3

156

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

SECTION TWO

Social, Psychological, Legal and
Economic Aspects of Open Source

157

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

158

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5

Demographics, Sociology, and Psychology
of Open Source Development

Open source development is a form of distributed, collaborative, asynchronous,
partly volunteer, software development. A new paradigm for cooperation like
this invariably introduces new questions about its social characteristics and its
affects on human behavior. Matters of interest range from the characteristics
of the participants (demographic, motivational, etc.), the social psychology of
their interactions, and the effectiveness of their cooperative processes, to the
cognitive and problem-solving side effects of this kind of development. The
purpose of this chapter is to survey these issues and identify some of the scien-
tific and social concepts that can help in understanding them. We believe these
social science perspectives can help provide a conceptual framework for better
understanding open development. We will begin by considering the basic demo-
graphics of the phenomenon: the characteristics of the developer population,
the motivations of developers and community participants, how participants
interact, the diversity of projects, and so on. The survey by Kim (2003) is one
of a number of useful surveys that have been done on these issues. We also
examine relevant concepts from the field of social psychology, including the
classic notions of norms and roles, factors that affect group interactions like
compliance, internalization, identification and normative influence, the impact
of power relationships and group cohesion, and the application of these concepts
to open development. There are other useful abstractions available from cog-
nitive science, such as the cognitive biases that affect group interactions and
problem solving. Social psychology also provides models for understanding
the productivity of collaborating groups in terms of process effectiveness and
organizational effects that influence productivity. It has been famously said that
“the medium is the message” (McLuhan, 1964). In this spirit we consider the
influence of the collaborative medium on these interactions, briefly surveying
some of the classic research on the effect of the communications medium on
interaction, including the characteristics of the canonical “medium” represented

159

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

160 5 Demographics, Sociology, and Psychology

by face-to-face interaction and collocated work. Like social psychology, this
research offers a rich array of abstractions and perspectives for interpreting
distributed collaboration. Potentially useful concepts range from the impact
of so-called common ground, coupling, and incentive structures, to the use of
social cues in communication, richness of informational exchanges, and tem-
poral effects in collaboration. We introduce the elements of these ideas and
provide simple illustrations of their relevance to open source development.

A methodological caveat is worth mentioning at this point. Much of the data
we report on has a fairly straightforward interpretation. Some of it is descrip-
tive, using the terminology and categories of social psychology to describe
social phenomena recognized in open source communities. We will illustrate in
simple ways how these perspectives might be used to think about open develop-
ment. Some of the studies we examine reflect more empirical, statistically based
research. However, in all cases, it should be kept in mind that the underlying
social, psychological, demographic, cognitive, and media phenomena consid-
ered and the results reported for them are intrinsically complex, and so they
may be subject to multiple interpretations.

5.1 Scale of Open Source Development

A quick way to obtain a general sense of the magnitude of open development
is to examine the major open project Web sites, as we have overviewed in
the previous chapter and which we briefly recall here. The most important of
these sites, which contain directories of open source projects, include the FSF-
Free Software Foundation (FSF)’s GNU directory at http://directory.fsf.org/,
the SourceForge Web site at www.sourceforge.net, and the Freshmeat Web
site at www.freshmeat.net. As of mid-2005, SourceForge, which is the Inter-
net’s largest open source repository, had over 100,000 open source projects
listed. Freshmeat had almost 40,000 projects and GNU over 4,000 projects.
These databases provide descriptions of projects, links to downloads and to
home Web pages for projects, licensing information, e-mail lists for project
participation, project release histories, and development updates. Sourceforge
also provides resources for managing code. Both Sourceforge and Freshmeat
are owned by the Open Source Technology Group (OSTG) that is like a net-
worked information utility. Being hosted on a major site like Sourceforge helps
increase a project’s visibility. According to the site, Sourceforge provides news,
articles, downloads, and forums to help IT professionals, developers, and users
make informed decisions about information technology products and services
(http://www.ostg.com/). It also provides development and project management

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.1 Scale of Open Source Development 161

tools like Concurrent Versioning System (CVS) and Subversion for hosting
open source development projects. In terms of corporate relationships, OSTG
is a subsidiary of VA Software and also owns Slashdot and other organizations
involved with open development. It should not be confused with the OSDL
(Open Source Development Labs) that was succeeded by the Linux Foundation
in 2007.

As should be expected for a movement that evolved from the Unix com-
munity, there is a continuing strong Unix presence on these sites even in the
case of end-user programs. For example, consider the 20 most popular projects
on Freshmeat, 15 of which were for end users, while the remaining 5 were for
developers or system administrators, at the time of Kim’s review (2003). Of
the 15 most popular end-user applications, all of them – without exception –
ran on Unix systems. Just 5 of the 15 could also run on Windows platforms.
Interestingly, the top 5 downloads on Sourceforge are all file-sharing programs,
like BitTorrent. On the other hand, an examination of the 10 most popular
downloads on sourceforge.net in mid-2006 suggests a different picture, with
all top 10 downloads being available for Windows with a few also available
for Unix-like systems. Of these programs, all were available under the General
Public License (GPL).

We are already aware of the many historical reasons for open source being
predominantly a Unix phenomenon (though, as our comments on the promi-
nence of Windows platforms for major Sourceforge downloads indicates, this
appears to be changing). For example, Kim (2003) recalls that at least part
of the reason why source code was provided for Unix systems, while not for
Microsoft systems, was the traditional architectural portability of Unix. Since
Unix-like systems could be ported to run on many different machine archi-
tectures, it was natural for developers to distribute the actual source code for
applications rather than merely binaries, so the applications could be compiled
to execute on different machines. This objective was in turn facilitated by the
fact that Unix systems came with a C compiler, unlike the Microsoft PC sys-
tems. The compiled source could be expected to execute, possibly after some
modifications. And of course, there had also been the longstanding objective
in the free software community of developing a self-contained, nonproprietary
environment for computing that would provide programs ranging from soft-
ware infrastructure tools to end-user applications, specifically for Unix-like
systems. In contrast, the Microsoft market was focused on the IBM PC or its
commoditized clones, so there traditionally had been less reason to distribute
the source code because the binary executables for these essentially equiva-
lent PC’s sufficed. It is noteworthy that there are also a significant number of
Windows and MS DOS shareware and freeware applications available, such as

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

162 5 Demographics, Sociology, and Psychology

at www.simtel.net. The shareware programs have traditionally not been open
software in the sense of the free/open source movement, though the freeware
category does include programs licensed under the GPL.

References

Kim, E. (2003). An Introduction to Open Source Communities. Blue Oxen Associates.
http://www.blueoxen.com/research/00007/. Accessed January 10, 2007.

McLuhan, M. (1964). Understanding Media: The Extensions of Man. McGraw-Hill,
New York.

5.2 Demographics and Statistical Profile of Participants

This section overviews the basic demographics of the populations involved
in free development. Open source participants tend to be young and male, IT
professionals or students, with a part-time or volunteer commitment that is lim-
ited for most but quite substantial for some. A good overview of their general
demographics as well as data on the personal motivations of open developers
is available in the surveys by Lakhani et al. (2002), Ghosh et al. (2002), and
Robles et al. (2001). The remarkably skewed nature of the gender distribution
of OSS participants apparent from these surveys is somewhat astonishing, with
all of these major surveys reporting that almost all of their respondents (98%)
were male. Age distribution was skewed in a more predictable and less extreme
manner, with, perhaps unsurprisingly, about 70% of the respondents being in
their 20–30s with an average age in the upper 20s. The preponderance of par-
ticipants (80%) were from either the United States or Europe. Although about a
quarter of the respondents were students, another half of the respondents were
employed as full-time professionals in IT. Almost half (about 40%) had com-
pleted college degrees, between 10 and 30% had Master’s degrees (depending
on the survey), while about 20% had completed only high-school degrees. The
latter statistic would reflect youth rather than ultimate educational level. For
example, recall that Blake Ross of Foxfire was in high school at the time of
Firefox’s development, but as of this writing is a student at Stanford. Most of the
participation was part-time. Up to 50% expend 5 hours or less per week. About
15% or fewer work half-time, expending 20–40 hours per week. Only 5–10%
of individuals spent on the order of 40 hours per week on open projects. Similar
results were found by the Linux Study and the UNC Open Source Research
Team surveys reported on in Feller and Fitzgerald (2002). Those results indi-
cated that the majority of Linux kernel developers (60%) were involved for
under a year, with another 20% involved for 1–2 years. The developers were
geographically split evenly between the United States and Europe.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.2 Demographics and Statistical Profile of Participants 163

The process of entry into open source development groups has both infor-
mal and stylized characteristics. Brand (2003) describes the relatively casual
process for joining the KDE project. Awareness of the existence of the project
by newcomers tended to be by word of mouth or through reading about the
project on the Internet, such as through newsgroups. Entry and exit were gen-
erally voluntary, with the exception that an individual might be removed from
a community for illicitly removing code from the repository. There was a high
turnover rate because the organizations include a strong volunteer component;
hence, there were always many newcomers or newbies. A newcomer could
evolve to a developer status by making small contributions to the project code
over the course of a half year or so. Progress in the organization was based on
the typical reputation-based process. Individuals might lurk for a while on the
e-mail list of an open project, eventually making a bid to join by making a small
code contribution (Reagle, 2003). The FAQs for the projects are useful sources
for their behavioral norms. As Moon and Sproul (2002) observe regarding entry
into a group, the Linux kernel mailing list FAQ urges that “a line of code is
worth a thousand words,” so the best way to advocate a change to the software
code is to simply “implement it first, then post to the list for comments.” A
signature rite of passage for a group member is the ability to check-in code or
being granted write-access to the CVS repository, a status that allows a contrib-
utor to modify the existing source code. In general, check-in code may be one’s
own code or a patch submitted for approval by a member lacking write-access
privileges. Write-access is naturally one of the ultimate symbols of belonging.
Persistent denial of write-access to experienced participants may trigger their
departure or a fork in the project (Brand, 2003).

References

Brand, A. (2003). The Structure, Entrance, Production, Motivation and Control in an
Open Source Project. http://dot.kde.org/1065087742/. Accessed November 29,
2006.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Ghosh, R., Glott, R., Krieger, B., and Robles, G. (2002). Free/Libre and Open Source
Software: Survey and Study Final Report. International Institute of Infonomics,
University of Maastricht, Netherlands and Berlecon Research GmbH, Berlin.
http://www.infonomics.nl/FLOSS/report/. Accessed November 29, 2006.

Lakhani, K., Wolf, R., and Bates, J. (2002). The Boston Consulting Group Hacker Survey.
http://www.osdn.com/bcg/BCGHACKERSURVEY-0.73.pdf. Accessed Novem-
ber 29, 2006.

Moon, J. and Sproul, L. (2002). Essence of Distributed Work: The Case of the Linux Ker-
nel. In: Distributed Work, S. K. Pamela Hinds (editor). MIT Press, Cambridge, MA,

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

164 5 Demographics, Sociology, and Psychology

Chapter 16. http://www.firstmonday.dk/issues/issue5 11/moon/. Accessed Decem-
ber 3, 2006.

Reagle, J. (2003). Socialization in Open Technical Communities. http://opensource.
mit.edu. Accessed November 29, 2006.

Robles, G., Scheider, H., Tretkowski, I., and Weber, N. (2001) WIDI – Who Is Doing
It? A Research on Libre Software Developers. Technical University of Berlin. Also
at: http://widi.berlios.de/paper/study.html. Accessed November 29, 2006.

5.3 Motivation of Participants

Raymond famously suggested that personal need and curiosity motivate much
of the participation in open source development, as reflected in his well-known
phrase that “every good work of software starts by scratching a developer’s
personal itch” (Raymond, 1998). Linus Torvalds, one of the towering figures
of free software, says that it is about having fun in doing “something that
matters” (Reagle, 2003). Indeed, according to Lakhani and Wolf (2003), the
enjoyment of creative work is actually “the strongest and most pervasive driver.”
This perspective is consistent with classic motivational research that identified
the predisposition of engineers for work that is “interesting and challenging”
(Reagle, 2003).

Let us consider some of the empirically recognized motivations for open
participation, beginning with the simple distinction: which participants work
for free and which are paid. According to the Free/Libre survey (Ghosh et al.,
2002), there is a fairly even mix of paid and unpaid participants. Half the open
source participants who responded to the survey indicated that they received
no financial compensation for their efforts. The remaining half were paid to
either develop open source software (about 15%), administer it (about 15%),
or support it (about 20%). The review and survey by Jørgensen (2001) of the
FreeBSD project shows similar results with almost half the participants indicat-
ing that their employer paid them to work part- or full time on the project. Thus
open development appears equally likely to be development for free, as it is to
be development for pay. Kim (2003) provides an obliquely related perspective:
one in four persons surveyed received indirect compensation for his work, while
one in five persons indicated that his work on open source eventually led to a
job. As the FSF’s Moglen (1999) observes, the prominence of hybrid corporate
strategies that utilize open source means that “an increasing number of people
are specifically employed to write free software. But in order to be employable
in the field, they must already have established themselves there.” Thus prior
volunteer participation can be a prerequisite for subsequent compensated par-
ticipation. Given that corporate employees are so often participants, the next

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.3 Motivation of Participants 165

logical, meta-level question of motivation is “why is the corporate sponsor
involved?” We address this kind of question in more detail when we look at
business models for open source later on. Basically, as Gacek and Arief (2004,
p. 36) succinctly observe, corporate actors “usually get involved to gain market
share or undermine their competitors, or they simply use open source software
so that they won’t have to build an equivalent product from scratch.” Refer to
Hang et al. (2004) for an analysis of motivation according to the roles of the
participants, including developers, distributors, and users.

Unsurprisingly, there are differences between the self-reported motivations
of volunteers versus paid participants. Almost half the volunteers said that they
were interested in the opportunity to improve their skills, versus about 30%
of the paid employees (Lakhani et al., 2002). Conversely, the opportunity to
do their job more effectively was a motivation for almost two-thirds of the
paid participants against only one in five of the volunteers. But regardless of
compensation status, knowledge acquisition was key. Both the Free/Libre by
Ghosh et al. (2002) and the Boston Hacker survey per Lakhani et al. (2002)
indicated that the opportunity to learn and develop new skills was by far the
dominant reason to participate. Thus 80% of respondents in the Free/Libre
survey indicated this reason and over 90% responded similarly in the Boston
Hacker survey (where more than one reason could be checked off). Interestingly,
half the Free/Libre respondents indicated that they had a complementary desire
to share their knowledge and skills with others as a motivation.

There was a range of other motivations as well, from reputation building
and job prospects to philosophical and practical concerns. Frequently reported
motivations included participating in the open source scene (30%+), improving
open source products (30%+), solving problems that were not able to be handled
by proprietary software (30%), a philosophical belief that software should not be
proprietary (30%+), and the possibility of improving job opportunities (about
25%). Although a surprisingly slim 5% said the idea was to make money, twice
that number wanted to establish a reputation in the open source community and
one in four thought that participation would indeed improve their job prospects
(Free/Libre, 2002). Obviously, reputation is a two-edged sword: it is about status
in a community but it is also fungible with compensation. The survey by Hars
and Ou (2002) touches on psychological models of motivation, distinguishing
between internal psychological motivations and external motivations from the
environment, but yields a similar overall perspective to the other studies.

In summary, self-improvement is a decisive element in the self-reported rea-
sons for participation in open development, while the acquisition of knowledge
was also key. Although compensation advantages were not necessarily an imme-
diate objective, a substantial number of participants expected their involvement

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

166 5 Demographics, Sociology, and Psychology

to enable them to do their full-time job better or to ultimately improve their job
prospects.

References

Gacek, C. and Arief, B. (2004). The Many Meanings of Open Source. IEEE Software,
21(1), 34–40.

Ghosh, R., Glott, R., Krieger, B., and Robles, G. (2002). Free/Libre and Open Source
Software: Survey and Study Final Report. International Institute of Infonomics,
University of Maastricht, Netherlands and Berlecon Research GmbH, Berlin.
http://www.infonomics.nl/FLOSS/report/. Accessed November 29, 2006.

Hang, J., Hohensohn, H., Mayr, K., and Wieland, T. (2004). Benefits and Pitfalls of
Open Source in Commercial Contexts. In: Free/Open Software Development, S.
Koch (editor). Idea Group Publishing, Hershey, PA, 222–241.

Hars, A. and Ou, S. (2002). Working for Free? Motivations for Participating in Open-
Source Software Projects. International Journal of Electronic Commerce, 6(3),
25–39.

Jørgensen, N. (2001). Putting It All in the Trunk: Incremental Software Development
in the FreeBSD Open Source Project. Information Systems Journal, 11(4), 321–
336.

Kim, E. (2003). An Introduction to Open Source Communities. Blue Oxen Associates.
http://www.blueoxen.com/research/00007/. Accessed January 10, 2007.

Lakhani, K. and Wolf, R. (2003). Why Hackers Do What They Do: Understanding
Motivation Effort in Free/Open Source Software Projects. Sloan Working Paper
4425–03, 1–28.

Lakhani, K., Wolf, R., and Bates, J. (2002). The Boston Consulting Group Hacker Survey.
http://www.osdn.com/bcg/BCGHACKERSURVEY-0.73.pdf. Accessed Novem-
ber 29, 2006.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copyright.
First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/index.
html. Accessed January 5, 2007.

Raymond, E. S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version: http://
www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Reagle, J. (2003). Socialization in Open Technical Communities. http://opensource.mit.
edu. Accessed November 29, 2006.

5.4 Group Size and Communication

In social psychology, group size is considered one of the characteristics most
determinative of a group’s behavior. Notably, despite the scale of opportunities
for group interaction that the Internet provides and the existence of major, very
large open source projects, the participant communities involved in the vast
number of these projects are generally much smaller than one might expect. In
fact, they tend to be tiny.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.4 Group Size and Communication 167

A useful empirical examination of group size and the communication char-
acteristics of the 100 most active, mature open source projects listed on the
SourceForge Web site are presented in Krishnamurthy (2002). The projects
selected were from a group of about 500 OSS projects that SourceForge cate-
gorizes as mature, a classification that constitutes a relatively small portion of
the Sourceforge repository. The Web site groups projects into six categories:
planning, pre-alpha, alpha, beta, production/stable, and mature. When Krish-
namurthy’s survey was done, there were close to 10,000 SourceForge projects
listed as belonging to the planning stage, approximately 10,000 were in the
alpha or pre-alpha release stage, and roughly 5,000 were in each of the beta
or production/stable stages. Thus of about 30,000 SourceForge projects, the
mature category represented only about one in sixty. Of these, only the 100
most active of the mature projects (as determined by their SourceForge activ-
ity profile) were considered for the study. This highly selective group was
expected to be the most likely to have extensive communities of participants,
but to the contrary the data showed that even “the vast majority of mature OSS
programs are developed by a small number of individuals” (Krishnamurthy,
2002).

The distribution of the selected SourceForge community sizes was as fol-
lows. According to the statistics at SourceForge, the most common number of
developers was 1 (!). The median number of developers was 4. The average
number was 6 to 7. Even the largest developer group examined, with 42 mem-
bers, was dramatically smaller than the numbers one usually sees publicized,
for example, in the Linux credit lists, which even before the year 2000 had
around 350 people. Granted, projects like Linux are successful global projects,
so one does not expect them to be typical. About one in five of the surveyed
projects had only one developer, another one in five had two or three, 50% had
four or less, and only one in five had more than ten developers.

Another metric for project size is the number of administrators. SourceForge
uses a designation called project administrator and automatically associates to
each project it lists at least one project administrator. According to Source-
Forge, the administrator is the individual “responsible for the control of that
project’s presence on SourceForge.net.” Project administrators are often the
primary authors of the hosted software, though they may also include indi-
viduals who “provide support and perform maintenance functions for that
project” (http://sourceforge.net). Krishnamurthy presents statistics about the
project administrators. Here too, the numbers are smaller than might have been
expected. The majority of projects have only one administrator and roughly
70% have at most two. Indeed, the average number of administrators is just
over two, with both the median and the mode equal to one.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

168 5 Demographics, Sociology, and Psychology

The scale of communications among participants in the projects considered
was also more limited than one might expect. The average project had two
forums and two mailing lists. More significantly, the forums tended to have
few messages, with one out of three of the projects having no forum messages
and the preponderance having few messages over the lifetime of the projects,
though some projects had fairly active forums, the highest being a project with
5,000 forum messages over its lifetime. As a statistical pattern, Barabási (2002)
proposes a power-law distribution for participation in open source groups with
the level of participation, as measured by a metric like the number of e-mails
sent, being related to status in the group (see also Barabási and Albert (1999)).
For example, the kth member might have 1/k the metric value associated with
the lead member. This is consistent with the case of the development of Linux
where it appears that 50% of the correspondence was generated by 1/50th of
the contributors (Moon and Sproul, 2002).

References

Barabási, A. (2002). Linked: The New Science of Networks. Perseus Publishing, Cam-
bridge, MA.

Barabási, A. L. and Albert, R. (1999). Emergence of Scaling in Random Networks.
Science, 286(5439), 509–512.

Krishnamurthy, S. (2002). Cave or Community: An Empirical Examination of 100
Mature Open Source Projects. First Monday, 7(6). http://www.firstmonday.dk/
issues/issue7 6/krishnamurthy/index.html. Accessed December 3, 2006.

Moon, J. and Sproul, L. (2002). Essence of Distributed Work: The Case of the Linux Ker-
nel. In: Distributed Work, S. K. Pamela Hinds (editor). MIT Press, Cambridge, MA,
Chapter 16. http://www.firstmonday.dk/issues/issue5 11/moon/. Accessed Decem-
ber 3, 2006.

5.5 Social Psychology and Open Source

Distributed collaborative software development is a relatively new kind of
human interaction, regardless of whether it occurs in a voluntary or organiza-
tionally based open source mode, or in other kinds of distributed or outsourced
development. The traditional social sciences can provide some insight into
these enterprises: what drives their growth, what inhibits their development,
and how they can be improved. Both sociology and psychology are useful in
understanding collaborative development. Although it has been observed that
the psychology of groups ultimately reduces to the psychology of individuals
(Allport, 1924), there is a useful composite perspective on group interactions
called social psychology. We will overview some of the basic ideas from this

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 169

field, including social concepts like norms, roles, normative influence, power
relations, and attitudes, and psychological concepts like conflict and distrac-
tion, and consider their relevance to open development. A subsequent section
on cognitive psychology considers the relevance of cognitive psychology and
how cognitive biases affect the behavior of individuals and groups.

5.5.1 Norms and Roles

The norms under which a group operates and the roles of group members
are core concepts of social psychology that are useful for understanding how
groups behave. Norms and roles help to define member’s expectations about
what is considered appropriate behavior by the group. For example, we have
seen that in open source development there is typically a small group of core
developers surrounded by a broader group of contributors or participants. Each
of these groups has norms of behavior that govern entry into the groups and
how individuals act when in a group. Each group also has roles it plays in the
development process. Group norms are the agreements, implicit or explicit,
reached by members of a group, concerning what should or should not be done
by its members and when it should or should not be done. Norms help minimize
potential disorder in group interactions. They are like rules of conduct for the
members of a group and represent one basic way in which group interactions
are structured. Roles on the other hand are implicit or explicit agreements made
by members of a group that specify who must do something or who must
not do something. Roles can emerge spontaneously. Zigurs and Kozar (1994)
concluded that groups automatically tend to identify two basic types of role
specialists: the task-oriented individual who addresses ideas and the likable
individual who helps manage socioemotional issues that arise in the group.
The satisfaction of group members with group processes and outcomes tends to
be correlated with the distribution of roles between the task-oriented and group-
building roles. Bormann (1975) classically theorized that there was a natural
distribution of role behaviors, with ideally about two-thirds of role behavior
being task oriented and one-third oriented to building the group. This is very
roughly coherent with open source behavior, where the predominant effort is the
technical task itself, but the role of promoting project development and vision
is also essential. Our overview of major open source projects shows that such
roles have often merged in a single individual who has technological talent as
well as highly effective interpersonal abilities. Linus Torvalds is a quintessential
example. He guided the design of the Linux system, demonstrating exceptional
technical judgment as well as excellent judgment in recognizing the merit of
others’ contributions, and solicitously nursed the project along by his speedy

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

170 5 Demographics, Sociology, and Psychology

recognition and adoption of participants’ patches. We have seen the same kind
of 24 × 7 nurturing intervention by other successful open developers like Rob
McCool for the NCSA httpd daemon and Blake Ross for Firefox.

Norms and roles can be thought of as akin to the protocols that govern
the interaction of computer processes in a distributed computing environment.
Network communication protocols define standardized expectations for the
behavior of the components of a system in response to a range of normal and
exceptional processing scenarios. Norms and roles have a similar purpose. Pro-
tocols for group interaction that are defined by the members of a group are
sometimes called social protocols. They include explicit policies like gover-
nance rules for a project and informal patterns of interaction. The often highly
elaborate FAQs found on open source Web sites may be thought of as defining
their social protocols. Protocols that govern the interactions within a group but
which are hardwired into the groupware that supports the interaction are some-
times called technological protocols. Groupware for supporting collaboration
necessarily makes many assumptions about the expected behavior of users that
are embodied in the technical realization of the system. CVS write privileges
are a simple example of an open source technological protocol. Purely social
protocols, in contrast, consist of processes that are agreed to by the members
of a group, affected by the culture and status of the group participants, and
influenced by the organizational structure in which the group is embedded, but
which are not enforced by the software environment as is the case for techno-
logical protocols (Ellis et al., 1991). For example, Jørgensen (2001) describes
an explicit social protocol or norm in the FreeBSD project (Committers’ Guide,
rule 10) that requires that “a committer shall do pre-commit testing to prevent
breaking the build in the development branch.” Another broadly recognized
open source practice that can be thought of as having the force of a strong social
norm is the widespread commitment to the use of free tools for free develop-
ment. Although this is not universally applied, transgressions of this norm can
cause real problems, as happened when the powerful but proprietary BitKeeper
tool was temporarily used for Linux kernel management. This provoked con-
siderable controversy in the open community with the result that BitKeeper
eventually had to be replaced by the free Git system (see Chapter 4 for further
discussion). Another powerful open norm is the avoidance of forks in project
development if at all possible. This norm is based on the simple pragmatic
rationale that forks wastefully split development resources into noncooperat-
ing groups (Feller and Fitzgerald, 2002). Although technologically enforced
protocols have convenient characteristics like automatic enforcement, norms
or social protocols on the other hand appear to promote collaboration better
than technological protocols because the group must collaborate as a team in

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 171

order to create them. This process also helps create group social identity, which
improves the chances of survival and success of the group.

There are of course many other norms in the open development culture. For
example, one simple but classic norm is presenting oneself in a humble manner
and even engaging in good-humored self-deprecation if appropriate (IMHO,
etc.). This demeanor is part of the traditional self-image of the hacker culture,
regarding which Weber (2004, p. 140) observes, “Bragging is off limits. The
norm is that your work brags for you.” However, since contributors are in many
respects synonymous with their code contributions, there is an inevitable ego
impact, depending on whether one’s code is accepted or rejected, so personal
competition for status and approval is unavoidable despite the pretense of under-
statement (Weber, 2004). A variety of norms were tabulated in the treatment
of the original MIT hacker culture that appeared in the well-known “Hackers:
Heroes of the Computer Revolution” by Levy (1984), which elaborated the idea
of a hacker ethic. The free software movement drew from the hacker culture
and in many ways originated in it. The hacker ethic is a mixture of what might
be considered the principles, beliefs, and/or norms of the movement. One of
its imperatives was that “access to computers should be unlimited and total,”
which obviously reflects the prime imperative of the free software movement.
Another is that “all information should be free,” again a founding norm. There
are several other dicta as well, but the idea that “hackers should be judged
by their hacking” seems to reflect a quintessential behavioral norm for open
interactions. For an analysis that puts this hacker ethos into a broader histori-
cal context, relating it to a pre-Protestant work ethic that places a premium on
passion for interesting work and freedom from fixed divisions between leisure
and labor (see Himanen (2001) and Feller and Fitzgerald (2002)).

Raymond’s FAQ style document (Raymond, 2004) describes detailed rules
and bluntly stated norms for expected behavior in open source projects in gen-
eral. As Raymond indicates, it’s all part of the process of publicly maintaining
and reminding people about the norms for proper questioning. This document
is worth reading to get a sense of the social ambience of the environment. One
of its features is that there is a decided tendency not to “suffer fools lightly” and
one should be prepared for that. The KDE Web site (http://www.kde.org) for
the KDE desktop project provides a well-organized introduction to the norms of
behavior for its open source project. For example, it carefully describes what the
norms are for handling communications with the group. Concerning criticism,
Fogel (2005) observes that blunt questions and unvarnished technical criti-
cisms should not be considered as rude. Although this style of interaction may
be unfamiliar to newcomers, he argues that it is typical of the hard science dis-
ciplines. The blunt technical criticism is even arguably a kind of flattery. Fogel

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

172 5 Demographics, Sociology, and Psychology

observes that what would actually be rude under these circumstances would be
to provide inadequate or superficial criticism, without acknowledging that it is
inadequate, perhaps because you lacked the time to be more complete. We have
previously mentioned Brand’s (2003) overview of entry into the KDE commu-
nity. Referring to the KDE FAQ links for a discussion of how its various e-mail
lists are handled, newcomers will find a discussion that orients them about the
kinds of e-mails that are appropriate and how to construct them. Most of these
guidelines are addressed to general users of KDE rather than potential or actual
developers. A sociological model of initiation rites for project enrollment was
suggested by Von Krogh et al. (2003) based on the notion of a so-called joining
script. Although Stutz (2003) amusingly describes the term as overblown soci-
ological jargon about the “dance that wannabe members of a community must
perform in order to become officially sanctioned members,” it’s actually an
interesting term. Jørgensen (2001) describes an initiatory task for the FreeBSD
project that requires new committers to add their name to the Developer section
of the handbook and remove it from the Additional Contributors section, an
accomplishment described as a “good first test of your CVS skills.”

5.5.2 Interactions in Groups

This section overviews some general concepts related to the interactions
between members of a group, not necessarily an open source group. The pri-
mary social factors that affect how members come to agree within groups are
called compliance, internalization, and identification (Kelman, 1958). Com-
pliance refers to the kind of agreement among members arising from social
pressure. Internalization refers to agreement that occurs because a proposition
or objective corresponds to an individual’s own beliefs. Identification refers to
agreement that occurs when an individual appropriates a group’s expectations
as his own. For example, the Firefox promotional campaign, which encourages
Firefox advocates to “spread the word” about the fox, identify noncompli-
ant Web sites (defendthefox), and generally personally promote the browser,
reflects a strategy of persuading Firefox users to self-identify with the product
and its mission. Of course, these individuals also presumably agree internally
with the mission because they have been satisfied with the performance of the
browser and like the idea of free software, though that does not imply they
would de facto be interested in proselytizing for the product. Compliance may
be mediated by normative influence, which refers to the support for an objective
or opinion that results from secondary cues like the number of group partici-
pants who hold an opinion or the status of those participants. It also refers to
the tendency of individuals to defer to what they perceive as the group opinion,

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 173

without even the need for explicit group pressure, persuasion, or coercion. Web
sites that proselytize for a product like Firefox can create a sense of normative
influence. Despite its origin in group preferences, normative influence does not
necessarily lead to an averaged or bland kind of behavior. In fact, quite to the
contrary, groups frequently exhibit a tendency to adopt more extreme positions
than individuals under the pressure of normative influence or group polariza-
tion. Consider the four familiar characteristics of open communities Reagle
(2003) highlights as essential to open source: creation of products that satisfy
open source definitional criteria, transparency in their processes, nondiscrimi-
nation in product development, distribution, and use, and the right to take off on
your own or noninterference. These trivially entail issues of compliance, inter-
nalization, and identification. For example, participants comply with the open
definitional criteria whose rationale they have also likely internalized and the
same holds for development principles like transparency. Especially on the free
software side, one expects to find personal identification with the movement’s
philosophy, and not merely its pragmatic advantages. Striking off on your own
or noninterference, on the other hand, would merely reflect a complete break-
down in group identification.

Groups may be subject to socially significant hierarchical factors that affect
the relationships among members, especially groups that are embedded in orga-
nizations. These factors include the various kinds of power relationships that
affect group interactions, including expert power (corresponding to domain
expertise), charismatic power (corresponding to personal attractiveness), and
group leadership. These power characteristics can in turn influence the norms a
group operates under. For example, Grudin (1994) observed that groups formed
around autocratic individuals may tend toward autocratic norms. Groups whose
members are not significantly differentiated by differences in status, power rela-
tionships, or task expertise are called peer groups. Obviously, most open source
projects are decidedly not mere peer groups, even though they are egalitarian in
their attitude in terms of meritocratic skills, because the core developer group
will generally have both the greatest domain expertise and the most intense
commitment to the project, so there will be intrinsic asymmetries in a group. In
any organizational group, there exist a variety of nonpeer relationships among
the members based on hierarchical or power relationships between individuals.
In fact, open groups established around a preeminent developer are in many
respects fairly authoritarian. Linus Torvalds has a reputation as a nice guy, but
it is he who runs the Linux show, together with his approved trusted lieutenants.
Python creator Guido van Rossum lightly refers to himself as “Benevolent Dic-
tator for Life” in all things pythonic – just like Linus Torvalds does for Linux.
Basically, project management must inevitably be vested in some person or

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

174 5 Demographics, Sociology, and Psychology

small group (Feller and Fitzgerald, 2002, p. 91). But the root legitimacy of the
authority involves leadership abilities and domain expertise rather than mere
ego domination. As Linus himself asserted during the Torvalds–Tanenbaum
debate (see DiBona et al. (1999) for the e-mail), his own standing in the Linux
community was based on the fact that “I know it better than anyone else.”
However, project authority can also evolve and spread out. For example, in
the case of Linux, networking guru Allan Cox became one of Torvalds’ “lieu-
tenant(s)” (Weber, 2004, p. 105) by virtue of his expert role in implementing
Linux’s networking capabilities, leading to “the informal, pyramidal hierar-
chy that characterizes decision-making for Linux” (p. 105). Weber describes
this classic diffusion of power as follows. Initially, power lies wholly in the
hands of the originator of the idea for the project who “articulates the core
values behind the project” (Weber, 2004, p. 259). But as a community develops
around the project, the openness of the environment “moves power away from
the leader and toward the followers” (Weber, p. 259). Another dimension of
power relationships in open groups involves the role of corporate sponsors. The
institutional resources they bring to the table and the nature of their underlying
motivations can easily undermine the open process by altering its power rela-
tionships. However, as we will emphasize when we consider hybrid horizontal
business models in Chapter 7, experienced open source leaders are well aware of
the need to prevent such arrangements from distorting open community norms
and culture.

An effective group requires a measure of unity. The degree to which exist-
ing members are motivated to remain participants in a group is called group
cohesion. The kind of “stroking” that Raymond (1998) alludes to as necessary
to keep a group’s interest in a project at a passionate level of commitment
requires a leader who is able to communicate not only in a broadcast style to
many individuals but also intermittently on a one-on-one basis with individ-
ual members. On the other hand, according to so-called social identity theory
(Whitworth et al., 2000, 2001), group unity is not primarily driven by inter-
personal attraction between group members but rather by identification with
the group as a social entity. The evidence for such a social identity factor in
group behavior is supported by the observation that groups can be cohesive
even when interpersonal relations among the members of the group are poor.
The importance of cohesion even when there are various internal tensions act-
ing against it is alluded to by Lerdorf (2004) in connection with the transition
to a multimember team with Suraski and Gutmans during the development
of PHP.

The number of persons with whom an individual is in regular communication
is called social connectivity. Even before the widespread use of the Internet, it

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 175

was recognized that computer-supported communication systems increase this
connectivity by an order of magnitude (Ellis et al., 1991). It is now obvious that
the Internet has dramatically expanded the social connectivity of a substantial
segment of the entire human race. Indeed, it was precisely this connectivity
that enabled the rapid expansion of collaborative open development. Major
open source developers like Linus demonstrate the ability to creatively exploit
a surprisingly high level of social connectivity via extensive bilateral technical
exchanges with codevelopers. As an illustration, consider that the credits file for
version 1.0 of Linux already had 80 individuals and that was only the group of
recognized contributors. There are also downsides to this massive connectivity.
For example, if you are participating in an open source development, the entire
world is your stage: just imagine how many people you may be communicating
with. Fogel (2005) makes some amusing remarks about cultivating an awareness
of your project social connectivity (though he does not use that term) and its
implications for things like whether or not you should really post an e-mail to
the group. He humorously suggests that pop-ups should be supplied on such
occasions that remind prospective e-mail senders that “your email is about to
be sent to several hundred thousand people who will have to spend at least
10 seconds reading it before they can decide if it is interesting. At least two
man-weeks will be spent reading your email. Many of the recipients will have
to pay to download your email. Are you absolutely sure that your email is of
sufficient importance to bother all these people?” (Fogel, 2005, p. 173). Fogel’s
pragmatic caveat is a bracing reminder about the hidden cost of every message
when connectivity is so high.

5.5.3 Human Factors in Groups

Human relationship factors in group interactions must be distinguished from
objective performance factors. The significance of this distinction was made
prominent by Bales’ experimental studies of group interactions (Bales, 1950,
1951, 1955) and has been used by many subsequent researchers like (Franz,
1999). Bales distinguished between task-related interactions, such as those that
address solution correctness and quality, in contrast with interpersonal or social
interactions, like social influence, group cohesion, and group leadership. This is
now called Bales’ task versus socioemotional distinction. Bales classified group
interactions into 12 categories, depending on whether the interactions exhibited
solidarity, tension release, agreement, disagreement, or antagonism, presented
a suggestion, gave an opinion, gave information, asked for information, asked
for an opinion, or asked for a suggestion (Short et al., 1976, p. 36). The cat-
egories fall into two broad classes corresponding to what can be described

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

176 5 Demographics, Sociology, and Psychology

as the task-related, problem-solving, nonperson-oriented interactions, versus
person-oriented interactions that reveal the existence of an attitude between
members. Whitworth et al. (2001) introduced an additional group-social com-
ponent as reflected in expressions of group solidarity or group confidence in a
decision, versus an individual-emotional component manifested in expressions
of tension or agreement. Group-social effects have practical implications, for
example, individuals “who identify with a group tend to accept the group’s
decisions as their own” (Whitworth et al., 1997, p. 1). Whitworth claimed
that such affects do not depend on so-called rich media for their communica-
tion, with effective group agreement able to “occur through the exchange of
relatively simple position information, or choice valence . . . across distributed
lean-text networks” (p. 1). As we have seen, the voting mechanisms used in
open source developments like Apache are based on exactly such lean commu-
nication mechanisms.

Attitudes can be defined as general, persistent evaluations of a person or
issue by another person. They affect how information is processed and have
socioemotional as well as objective elements (Fabrigar et al., 1999). In a well-
known paper, Festinger (1957) conjectured that the way in which people attend
to information is “congruent with their attitudes” and that there is a converse
tendency to “avoid information which is incongruent” with their attitudes (Fab-
rigar et al., 1999, p. 182), so-called congeniality effects. He assumed these
effects occurred at the “exposure, attention, perception, judgment, and memory
stages of information processing” (p. 182). Later empirical studies supported
Festinger’s thesis, indicating that people tend to negatively evaluate information
which is contrary to their preexisting attitudes. The attractiveness of a source
of information also has an impact on the credibility of the information. While
one rationally expects the credibility of a source to be affected by the source’s
expertise, the attractiveness of the source also plays an important role. Fabrigar
also observed that if there is limited opportunity to scrutinize the contents of a
message, then the source’s attractiveness affects attitudes even if the attractive-
ness is irrelevant. In face-to-face exchanges, attractiveness is apparent, but in
distributed exchanges it would probably be replaced by generic surrogates for
how another individual is perceived, such as their community status in the case
of open source.

Groups do not necessarily mitigate behavior. In fact, inflammatory behavior
may be more common in group contexts than for individuals. It has long been
contended that computer-mediated groups tend to exhibit “more uninhibited
behavior – using strong and inflammatory expressions in interpersonal interac-
tions” (Siegel et al., 1986, p. 157). Sproul and Kiesler (1986) attributed the ten-
dency toward “more extreme, more impulsive, and less socially differentiated”

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 177

(p. 1496) behavior than in a face-to-face context, as due to the lack of ade-
quate social context cues in information-poor media. The use of uninhibited
or angry communications in computer-supported communications is called
flaming. The pervasive acronym RTFM (Read The F – ’ing Manual) used in
computing-related development forums in general, not just for open source, is
symptomatic. Normal people would not routinely express themselves this way
in face-to-face conversation unless the speaker was arrogant or boorish. Further-
more, interactions in open source groups are also by definition both completely
and permanently public, with conflicts exposed not only to the immediate par-
ticipants, but to anyone who has access to the mailing list, including the media,
and to posterity via the archives.

In general, conflict in group interactions may be either detached or emotional,
either type requiring negotiation for resolution. Interpersonal conflict between
the members of a collaborative group differs from domain level conflict, the
latter referring to differences regarding technicalities like implementation or
design criteria. Conflicts between parties may also be differentiated according
to whether they are conflicts of interest or conflicts of viewpoints. Conflicts of
interest lead to so-called hard (win–lose) negotiations, while conflicts of view-
point lead to soft (win–win) negotiations characteristic of friendly, cooperating
parties. Both situations benefit from the use of structured negotiation processes.
The argument between Linus Torvalds and Andrew Tanenbaum is a classic
example of an important technical design conflict that precipitated interpersonal
and domain-level conflict. We previously alluded to this classic incident in our
discussion of Linux kernel design. Minix designer Tanenbaum had sarcastically
characterized the Linux architecture as obsolete in a famed newsgroup post (see
DiBona et al. (1999) for the e-mails). Torvalds responded heatedly within hours
with his own e-mail post to the newsgroup. His response included inflammatory
remarks like “your job is being a professor and researcher: That’s one hell of
a good excuse for some of the brain-damages of minix. I can only hope (and
assume) that Amoeba doesn’t suck like minix does” (response dated: 29 Jan
92 23:14:26 GMT). Amoeba was another operating system project Tanenbaum
was working on. The debate lasted quite a while but eventually the tone settled
down to a more measured, technological one. The entire exchange was instruc-
tive, concerning how open source development works. As Weber (2004, p. 102)
observes of the open development process, in general “discussions get down
to technical issues, clarifying the trade-offs among design strategies and deci-
sions that matter for the function and performance of software.” Tanenbaum’s
provocation had the positive effect of compelling Torvalds to more explicitly
understand and more clearly and effectively articulate his own design rationale
than he had done to that point. Ultimately, as Weber (2004, p. 102) observes,

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

178 5 Demographics, Sociology, and Psychology

the argument had a highly positive outcome because it “pulled people in toward
Linux and excited their interest.”

Social Proxies
We have already seen that open source development is usually supported by
a relatively lean mix of e-mails, CVS, forums, Web sites, and IRC. Simple
adjuncts to this environment might prove useful. New mechanisms to sup-
port computer-based collaborations are regularly proposed. As an illustration
of some additional possibilities, we shall take a brief detour to describe an
interesting mechanism called a social proxy. Erickson et al. (1999) describe a
simple artifice intended to facilitate social interaction in distributed computer-
supported groups by visualizing participation more effectively. It uses a tool
for documenting an ongoing conversation, supplemented by a graphical device
called a social proxy that signals the current state of the interactions. We will
describe the proxy and then indicate its relevance to improving distributed inter-
actions. The social proxy Erickson et al. considered was an iconic circle, with
colored dots called marbles that corresponded to the participants in the conver-
sation (with different members identified by the color of the marble). Marbles
corresponding to individuals participating in the current conversation lay within
the circle, near its center. Marbles of individuals who were logged on to the
system but not currently involved in the conversation lay outside the circle.
The environment the proxy monitored had a list of conversations, only one of
which can be active at a given time for a given user. Whenever a conversation
was selected, the user’s marble moved to within the circle for that conversa-
tion, while it moved out when the user deselected the conversation. A user’s
marble moved nearer to the center the more frequently the user contributed to
the conversation, while it moved gradually out toward the perimeter as the user
participated less, eventually moving outside the circle if the member remained
logged on to the system but ceased to participate in the conversation. Marbles
of listeners not currently actively participating would lie toward the perimeter
of the circle. This simple artifice “gives a sense of the size of the audience, the
amount of conversational activity, as well as indicating whether people are gath-
ering or dispersing, and who it is that is coming and going . . . (and) it focuses
attention on the group as a whole” (Erickson et al., 1999, p. 75). The “conversa-
tions” were shared sequential documents, one per conversation, which persisted
over time. New entries were added with time stamps, with user names at the
head of the document similar to some bulletin boards. The combination of the
conversational documents plus the social proxy icon provided both content and
social cues as to what was going on. Thus, a number of characteristics could

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.5 Social Psychology and Open Source 179

be readily recognized: the formality or informality of the conversation could
be recognized from the text; the tempo of the exchanges could be identified
from the time stamps; the number and frequency of participants from the proxy;
norms for the conversational style were signaled by the length of the exchanges,
and so on. The sequential, scrolling layout of the conversational document pro-
vided a “low overhead way for participants to signal agreement, encouragement,
and empathy” (p. 74), key mechanisms for fostering group identity.

Social proxies create a sense of social translucence in computer-supported
conversation. Socially translucent systems “provide perceptually based social
cues which afford awareness and accountability” (Erickson et al., 1999, p. 72).
To illustrate this concept, consider two ways one can make a swinging door
safe. In one case, a door can have a sign posted on it that says “open slowly”
lest anyone on the other side of the opening door get hit by the door as it swings
open. The textual sign is understandable but this kind of sign will gradually
cease to be noticed especially by those who use the door regularly. Contrast the
result of placing a see-through window in the door, so people using the door
can see someone on the other side. The window provides a perceptually based
social cue. It allows us to readily detect movement and faces on the other side
and instinctively reacts to them more effectively than to a printed sign. The win-
dow mechanism is also immediate, while the sign is only a warning. With the
window, a person sees someone on the other side: they do not just get warned
about a general possibility. This direct awareness also brings social norms into
play since under such norms we are expected to not push a door into some-
one. Furthermore, the effect is bilateral: we not only know someone is on the
other side, but the other person knows we know they are there, further reinforc-
ing the sanctions provided by the social norms. Thus the mechanism provides
both social awareness and accountability. Erickson et al. suggest such socially
translucent mechanisms, of which the software social proxy they designed was
an instance, make it “easier for users to carry on coherent discussions; to observe
and imitate others’ actions; to engage in peer pressure; to create, notice, and
conform to social conventions” (p. 72). These beneficial group-building effects
are achieved by a lean tool: a scrolled conversation supplemented by a percep-
tual social proxy. A collaborative tool like CVS arguably provides a limited
measure of social translucence since the related activity of other users can be
discerned with commands like update, but the mutual awareness is intermittent
and requires an explicit action like a commit or update to achieve awareness.
The CVS watches option provides a slightly greater degree of translucence by
enabling contributors to be automatically notified regarding who is working on
files that they may be interested in.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

180 5 Demographics, Sociology, and Psychology

References

Allport, F. H. (1924). Social Psychology, Houghton-Mifflin, Boston, MA.
Bales, R. (1950). A Set of Categories for the Analysis of Small Group Interaction.

American Sociological Review, 15, 257–263.
Bales, R. (1951). Interaction Process Analysis. Addison-Wesley, Reading, MA.
Bales, R. (1955). How People Interact in Conferences. Scientific American, 212, 3–7.
Bormann, E. G. (1975). Discussion and Group Methods: Theory and Practice, 2nd

edition. Harper and Row, New York.
Brand, A. (2003). The Structure, Entrance, Production, Motivation and Control in an

Open Source Project. http://dot.kde.org/1065087742/. Accessed November 30,
2006.

DiBona, C., Ockman, S., and Stone, M. (1999). The Tanenbaum-Torvalds Debate in
Appendix A of Open Sources: Voices from the Open Source Revolution, M. Stone,
S. Ockman, and C. DiBona (editors). O’Reilly Media, Sebastopol, CA.

Ellis, C., Gibbs, S., and Rein, G. (1991). Groupware Some Issues and Experiences.
Communications of the ACM, 34(3), 39–58.

Erickson, E., Smith, D. N., Kellogg, W. A., Laff, M., Richards, J. T., and Bradner, E.
(1999). Socially Translucent Systems: Social Proxies, Persistent Conversation, and
the Design of Babble. In: Proceedings of the CHI’99 Conference on Human Factors
in Computing Systems. ACM, New York, 72–79.

Fabrigar, L. R., Smith, S. M., and Brannon, L. A. (1999). Application of Social Cognition:
Attitudes as Cognitive Structures. In: Handbook of Applied Cognition, F. T. Durso
(editor). John Wiley & Sons, New York, Chapter 7, 173–206.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press,
Stanford, CA.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project, O’Reilly Media, Sebastopol, CA.

Franz, H. (1999). The Impact of Computer-Mediated Communication on Information
Overload in Distributed Teams. In: Proceedings of 32nd Hawaii International Con-
ference on System Sciences, Maui, Hawaii.

Grudin, J. (1994). Groupware and Social Dynamics: Eight Challenges for Developers.
Communications of the ACM, 37(1), 93–105.

Himanen, P. (2001). The Hacker Ethic. Random House, New York.
Jørgensen, N. (2001). Putting It All in the Trunk: Incremental Software Development

in the FreeBSD Open Source Project. Information Systems Journal, 11(4), 321–
336.

Kelman, H. C. (1958). Compliance, Identification, and Internalization: Three Processes
of Attitude Change. Journal of Conflict Resolution, 2(1), 51–60.

Lerdorf, R. (2004). Do You PHP? http://www.oracle.com/technology/pub/articles/php
experts/rasmus php.html. Accessed November 29, 2006.

Levy, S. (1984). Hackers: Heroes of the Computer Revolution. Penguin Books, New
York, NY.

Raymond, E. (2004). How to Ask Questions the Smart Way. http://www.catb.org/
∼esr/faqs/smart-questions.html. Accessed November 29, 2006.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.6 Cognitive Psychology and Open Source 181

Raymond, E. S. (1998). The Cathedral and the Bazaar. First Monday,
3(3). http://www.firstmonday.dk/issues/issue3 3/raymond/index.html. Accessed
December 3, 2006.

Reagle, J. (2003). Socialization in Open Technical Communities. http://opensource.
mit.edu. http://opensource.mit.edu. Accessed November 29, 2006.

Short, J., Williams, E., and Christie, B. (1976). The Social Psychology of Telecommu-
nications. Wiley, London.

Siegel, J., Dubrovski, V., Kiesler, S., and McGuire, T. W. (1986). Group Processes in
Computer Mediated Communication. Organizational Behavior and Human Deci-
sion Processes, 37, 157–187.

Sproul, L. and Kiesler, S. (1986). Reducing Social Context Cues: Electronic Mail in
Organizational Communication. Management Science, 32, 1492–1512.

Stutz, D. (2003). The Business Schools of Harvard and MIT Consider Free/Open
Source. http://www.synthesist.net/writing/osspatents.html. Accessed November
30, 2006.

Von Krogh, G., Spaeth, S., and Lakhani, K. (2003). Community, Joining, and Special-
ization in Open Source Software Innovation: A Case Study. Research Policy, 32,
1217–1241.

Weber, S. (2004). The Success of Open Source. Harvard University Press, Cambridge,
MA.

Whitworth, B., Gallupe, B., and McQueen, R. (1997). Generating Agreement
in Dispersed, Computer-Mediated Groups: An Integrative Theoretical Frame-
work. Department of Management Research Report, University of Waikato,
1–42.

Whitworth, B., Gallupe, B., and McQueen, R. (2000). A Cognitive Three-Process Model
of Computer-Mediated Group Interaction. Group Decision and Negotiation, 9, 431–
456.

Whitworth, B., Gallupe, B., and McQueen, R. (2001). Generating Agreement in
Computer-Mediated Groups. Small Group Research, 32(5), 625–665.

Zigurs, I. and Kozar, A. (1994). An Exploratory Study of Roles in Computer-Supported
Groups. MIS Quarterly, 18, 277–314.

5.6 Cognitive Psychology and Open Source

Computer-supported collaborative work is a relatively new phenomenon, and
open source development is a unique type of distributed collaboration. It is
natural to inquire as to whether research in cognitive psychology on group
cognition sheds any light on how to think about this phenomenon? We believe
it is beneficial to understand the perspective of such research because at a
minimum it can provide reference points or templates for how to think about
some aspects of these projects and it may provide a matrix for interpreting them.
We present a few elementary cognitive models, contrasting them with software
methodologies, and then we examine some of the interesting cognitive biases
that can hamper problem solving by individuals and groups.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

182 5 Demographics, Sociology, and Psychology

5.6.1 Cognitive Models

Cognitive psychology describes how people think. This is different from soft-
ware methodologies that prescribe how people should develop software. Open
source development usually takes a fairly lean approach to software methodol-
ogy, but the role of cognitive psychology in the process is more of an unavoidable
given because it represents how the human mind addresses problem solving by
individuals or groups. We briefly consider some models for cognitive process
and how cognitive factors affect problem solving in software engineering par-
ticularly for groups.

A software method prescribes a systematic process for doing software devel-
opment. The process consists of a set of recommended rules and procedures to
use during development. By structuring development, software methods facili-
tate not only the identification and sequencing of tasks, but also the distribution
of tasks to members of the development group. Software methods also facili-
tate coordinating the activities of a group by explicitly specifying the processes
the development group should engage in and the outcomes of those processes,
simplifying and improving group coordination. Finally, by defining expected
outcomes and landmarks, software methods also provide consistent frameworks
for the social processes that accompany software development, including the
norms and roles involved in group interactions (Hohmann, 1997).

In contrast to software methods, cognitive models describe the mental pro-
cesses that are used by software developers at both an individual and a group
level. Generally speaking, a cognitive model may be defined as a model of how
people think or a description of how they solve problems (Hohmann, 1997). A
cognitive model may explicitly describe how people think naturally and spon-
taneously when problem solving or it may propose or prescribe ways to think
effectively about problems based on empirical studies of successful problem
solving, a kind of cognitive engineering. As an illustration of the descriptive
mode, consider that according to one cognitive model of software development,
developers solve the key parts of a problem by preliminarily mentally scanning
their own personal, preexisting cognitive library of solution plans until they
identify a plan that suits the problem at hand which they then apply or adapt.
This kind of cognitive strategy underlies what is called opportunistic design
(Hohmann, 1997). This is obviously prominent in open source development. For
example, Raymond’s remarks (Raymond, 1998) about the decisive importance
of reusing or rewriting previously existing code in open source underscores the
strong opportunistic design characteristics of open source development. In fact,
one of the underlying purposes of the open source movement is to increasingly
expand the universally available library of software solutions that people have
to work with, creating a software commons for reuse by all.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.6 Cognitive Psychology and Open Source 183

An instructive descriptive model of group cognition which views groups as
information processors that behave in ways that are in many respects analogous
to how individuals think is presented in (Hinsz et al., 1997). Before describing
this model, let us first consider some of the salient features of individual cog-
nition. Individual cognition requires establishing objectives, paying attention
to the information needed for a task, encoding information in some manner,
remembering and retrieving it, processing information, using feedback to adapt
one’s processing, and producing responses. Individuals acquire information,
by attention, in a context that also defines the “processing objective for the
information” (Hinsz et al., 1997, p. 44). This information is then encoded by a
process that involves structuring, evaluating, and interpreting the information
into an internal representation stored in the individual’s memory for subsequent
access. These processes of attention and retrieval “enable information to enter
awareness (in order to be) . . . processed on the basis of an objective” (Hinsz et
al., 1997, p. 44). Subsequent to processing, an individual makes a response that
can be an alternative, conclusion, judgment, or solution, depending on the type
of task.

Group cognition parallels the elements of individual cognition described
earlier. In the case of groups, processing objectives arise from several possible
sources: an organizational context, the nature of the task, the roles of the mem-
bers, procedures, and so on. Formal procedures like using agendas can help set
“processing objectives and control the way groups process information” (Hinsz
et al., 1997, p. 51). Newsgroup announcements of new open source projects,
like Linus’ famous initiating e-mail for Linux, have often historically set the
preliminary agenda for open projects. To-do lists are another simple example.
Unlike the case for individuals, where the issue does not arise, congruence
among the objectives of group members is critical. The worst-case scenario
from an open project’s point of view is a failure in congruence that leads to
a fork in the project. Just like in individual cognition, groups must “attend to
information to process it” (p. 46). Factors related to group attention include
how the attention of the group is brought to bear on available material or issues,
how groups affect the focus of attention of their members, and how information
is distributed in a group. For example, it is known that groups, merely in and
of themselves, can distract the attention of members because the presence of
others may cause individuals to become self-conscious and focus attention on
themselves or how others perceive them rather than on the task. Fogel’s (2005)
observation about the unnerving exposure of their work that novice open source
developers may experience when their repository commits are e-mail notified
to a huge audience of anonymous project observers for critique is one occa-
sion of such self-consciousness. In general terms, the distribution of available
information also affects what becomes the focus of attention and is subject to

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

184 5 Demographics, Sociology, and Psychology

notable social effects. For example, Olson and Olson (1999) observe that “it
appears that information must be held by at least two people in the group before
it will be brought to the attention of the group as a whole” (p. 419). A possible
reason for this is that information held by a single individual may lack ade-
quate “social validation (for) the value or accuracy of the information” (Hinsz
et al., 1997, p. 47). On the other hand, in open source the process is intention-
ally kept public and transparent. The norms are against private discussions. As
Fogel (2005) observes, “As slow and cumbersome as public discussions can be,
they’re almost always preferable in the long run. Making important decisions
in private is like spraying contributor repellant on your project.” In terms of
their general propensities, collaborating groups will tend to share information
better if the group perceives that there is a single correct solution to a task.
Research differs as to whether the encoded representations of information by
groups are more or less complex than those of individuals. Differences in such
mental representations among members can lead to conflicts whose causes may
not even be evident until after group discussion. Groups tend to be superior to
individuals in terms of their ability to store and retrieve information, the greater
reliability of retrieval being due to the group’s ability to correct faulty indi-
vidual memories. Obviously in computer-supported groups and open source
projects there are extensive mechanisms for institutional memory ranging from
e-mail archives to CVS repositories that can readily reproduce any previous
state of a project and the logged rationales for modifications. The response
of groups is also affected by consensus rules. For example, if a majority vote
rather than merely a unanimous one decides an issue, then groups show greater
flexibility in moving away from an alternative they had previously accepted.
We have previously observed how the IETF (Internet Engineering Task Force)
development structure, based on the motto of “rough consensus and working
code,” informed the process and voting model for key open projects like Apache
(Moody, 2001). For certain kinds of open development issues, like whether a
given interface seems appropriate, nonbinding polls of broader populations of
user-participants can be used to guide consensus. Groups generally appear to
use “information-processing rules or strategies more reliably and consistently”
(p. 50) than individuals, though this does not necessarily correlate with cor-
rectness, just with consistency. A consistently recognizable pattern in group
processing is that “groups generally decrease variability in the way information
is processed, compared with individuals” (p. 53), including “narrowed focus
of attention, redundant memories, accentuation of processing strategies, and
shared distribution of information” (p. 53). Hinsz et al. (1997) also consider
the so-called “combination of contributions” model for small-group collabo-
ration, a model which supplements their own view of groups as information

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.6 Cognitive Psychology and Open Source 185

processors. Some of the issues that arise from the viewpoint of the latter com-
binations model are how to identify the resources, skills, and knowledge that
members bring to an interaction and what processes are involved in combining
or transforming those individual contributions to produce the group outcome.
In the case of open projects, the core developer group tends to be relatively
small and so the individual strengths of their members are well known to one
another, which is in fact one reason for the low bureaucratic overhead of these
groups.

The application of cognitive psychology to the analysis of group collabora-
tion has sometimes been criticized for paying inadequate attention to both the
social and the physical context of collaboration (Olson and Olson, 1999). The
emerging field of distributed cognition represents an attempt to remedy this
by characterizing cognitive processes “not only in terms of activity inside the
heads of individuals but in the patterns of activity across individuals and in
the material artifacts that mediate this activity” (p. 418). In distributed cogni-
tion, the “social setting and the artifacts” (p. 418) include processes like those
that support short-term memory, such as having someone remind us what we
were talking about prior to an interruption occurring, or that support long-term
memory, like remembering who else knows something so that we do not have
to commit it to memory or artifacts like paper-and-pencil calculation to facil-
itate processing. The Olson’s claim that the “most important implication of
the theory of distributed cognition is that we can design the artifacts and the
social processes to embody cognition . . . design new technology-based artifacts
or . . . design the processes that help distributed cognition thrive in new way” (p.
419). Obviously in open software development the ultimate artifact is the code,
as well as the descriptions of the problems to address and the rationales for
solutions. The simple exchange of program source code during development
via the FTP network protocol was one of the earliest advances in exchanging
design artifacts. The introduction of CVS during the late 1980s and early 1990s
together with the Internet accessibility of the CVS repositories represents the
embodiment of the distributed cognition underlying open source development.

5.6.2 Cognitive Biases

Like any other process, cognition is subject to biases that undermine its effec-
tiveness. The field of cognitive psychology has identified a number of these
biases. They are worth being aware of because they represent typical errors
that individuals (or groups) are predisposed to. A cognitive bias refers to the
propensity of individuals to be consistent or predictable in their cognitive behav-
ior, especially with respect to the kind of errors they make. These biases can

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

186 5 Demographics, Sociology, and Psychology

operate at the individual and group level. Biases by groups can be more potent
than those of individuals. According to a well-known thesis in cognitive psy-
chology, groups tend to “display more homogeneous cognitive processes than
their members” (Hinsz, 1997, p. 54). This homogenization can lead to either
accentuation or attenuation of those processes or biases, that is, either “exag-
geration or diminution of an information processing tendency” (p. 54). In terms
of cognitive biases, accentuation means that if a tendency toward the bias is
present in the members of a group, then the group bias will tend to be more
extreme, while if a bias tends to be uncommon among the members, then it will
tend to be even further attenuated or diminished in the group. The phenomenon
of group polarization according to which groups shift toward an extreme of an
already preferred tendency is one example of this pattern.

A practical method for improving one’s critical thinking is to familiarize one-
self with the kind of errors we tend to make. Toward this end, it is instructive
to be aware of the kinds of cognitive errors researchers have identified. They
represent a kind of syllabus of errors to be on guard against when thinking.
Awareness of these errors can help sharpen one’s thinking skills by alerting one
to common errors in problem solving and helping one recognize the errors more
rapidly when they do arise. Biases that both individuals and groups are subject
to include cognitive inertia, cognitive stability, availability bias, cognitive sim-
plification, representativeness bias, input and outcome bias, confirmatory bias,
and process bias. So-called cognitive effects include cognitive dissonance and
cognitive synchronization. We briefly comment on each and examine several
in the context of software development.

Consider first tunnel vision in thinking. In cognitive psychology this ten-
dency of an individual or group to narrowly focus on a single or a few thematic
lines of thought is called cognitive inertia. It is related to other cognitive behav-
iors like cognitive dissonance. While awareness of this tendency can help reduce
its occurrence, it can also be decreased by explicit process structures or coun-
termeasures. For example, it is recognized that during an idea-generation task,
cognitive inertia can be reduced by randomly exchanging sets of ideas among
group members (Dennis et al., 1990), thereby expanding the range of discussion
rather than contracting it. This research also supports the observation that the
simultaneous multiple conversational exchanges that occur in electronic meet-
ing systems are often relatively independent of one another, thereby helping to
reduce cognitive inertia. Groupthink is a related phenomenon, which is defined
by Janis (1982) as an extreme form of group polarization. One of the causes
of cognitive inertia is cognitive dissonance, a widely studied effect defined
as the tendency to resist viewpoints whose adoption would require a global
rethinking of one’s current solution to a problem. Cognitive dissonance occurs

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.6 Cognitive Psychology and Open Source 187

if an individual must choose between two equally appealing, but incompatible,
alternatives, as Festinger (1957) observed in his classic study of dissonance. A
group bias related to cognitive inertia is cognitive stability defined as the ten-
dency of a group to resist a change in the subject of discussion because of social
inhibitions against repeatedly changing the focus of a discussion. Cognitive sta-
bility may often serve a logical purpose. For example, if you post a question
to an open source technical forum where it’s considered off-topic, then you’ll
be either ignored or dismissed as a “loser” (in hacker jargon). The rationale for
this is “to try to protect their communications channels from being drowned in
irrelevance” (Raymond, 2004). A related but slightly different cognitive effect
is cognitive synchronization, which is the nonbias, group cognitive process that
occurs when members synchronize to make sure they have a common, shared
representation of a problem or ensure all the members of the group are “on
the same page” (Robillard and Robillard, 2000). Stabilization of the source
code prior to a project release is a kind of product synchronization that requires
cognitive synchronization by the project members.

The information you decide to attend to tends to drive how you think. For
example, there are biases related to how easily information is remembered
or recalled. A tendency to estimate the frequency of occurrence of a case or
situation as greater than it actually is, because the case is more readily thought of,
more interesting, or more vivid, is called availability bias (Stacy and Macmillan,
1995). It occurs when the likelihood of an event is overestimated because of
the ease with which instances of the event can be recalled. Of course, ease of
recollection may have nothing to do with frequency of occurrence, because
it puts a premium on striking events that are more easily remembered and
recalled. As an example, availability bias may lead a developer to assume that
the particular code features that a developer has worked on are characteristic
of an entire program’s code and that conversely unfamiliar code features are
infrequent. Another example is related to mental representations. In software
development, developers retain mental representations, which reflect their view
of an application but which may be very different from how end users view
the same application. A developer’s representation may be strongly influenced
by those components of a system that were difficult to implement or debug,
even though this may reflect a skewed view of the system from the viewpoint
of its actual use. Availability bias will incline a developer to understand the
system in terms of such a biased mental representation. Availability bias can be
explained in terms of models like ACT, an activation-based model of cognition
developed by Anderson (1976) that originally focused on higher cognition
(Pirolli, 1999). The ACT explanation for availability bias is that remarkable
information may become encoded in cognitive chunks that have high activation

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

188 5 Demographics, Sociology, and Psychology

values, making them more readily brought into working memory when an
individual is cognitively stimulated by appropriate triggering patterns, even
when the details of the triggering patterns are not relevant to the chunk retrieved.

As availability bias reminds us, the readily recollected is not always the most
frequent. The next bias we consider illustrates that what is familiar is not nec-
essarily universal. The tendency to expect the local characteristics of a limited
data sample to be characteristic of the data in general is called representative-
ness bias (Stacy and Macmillan, 1995). From a software development point of
view, representativeness and availability biases can result in misallocating test-
ing resources to unrepresentative cases by affecting the selection of test cases
when verifying program correctness. One way to limit the impact of these biases
is to use an empirical approach. For example, if the issue is how often certain
code constructs occur, automated tools should be used to find out what actually
occurs, or if the objective is to optimize code, one should first identify where
the code spends most of its execution time by empirically profiling the code’s
execution-time behavior.

There are a number of other biases that reflect data, outcome, and process
predispositions. Thus cognitive simplification is related to availability bias and
is defined as the preference for easily available as opposed to actually significant
data – or the tendency to base conclusions on small samples of data (Nosek,
1998). Input bias is a cognitive bias that predisposes one to favor certain kinds
of data and includes a reluctance to use qualitative data, oversimplification of
complex data, a priori dismissal of disconfirmatory evidence, overemphasis
on outlying data, or a preference for people-oriented versus problem-oriented
data (Hohmann, 1997). For example, one of the difficulties in obtaining objec-
tive comparative data on the relative merits of specific open source versus
proprietary applications is that studies and individuals often have a stake in
one category or the other and may ignore disconfirmatory evidence (an input
bias). Outcome bias is a predisposition to favor certain kinds of outcomes for
decision making. This includes aversion to outcomes that can handle complex
cases, a tendency to reject novel solutions, or aversion to thoroughly testing
solutions (Hohmann, 1997). A cognitive bias in favor of specific kinds of pro-
cesses in decision making is called a process bias and includes an excessive
dependence on Standard Operating Procedures (SOPs), a preference for overly
lengthy processes, excessive preference for group processes, excessive analo-
gizing, aversion to detailed examination of assumptions, and oversimplification
(Hohmann, 1997).

Especially when testing software, it’s important to be willing to be proved
wrong. Confirmatory bias refers to the tendency to seek or attend to evidence
that confirms our current viewpoint and is related to cognitive dissonance.
Confirmatory bias looks for evidence that verifies expected results rather than for

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.6 Cognitive Psychology and Open Source 189

evidence that refutes expectations. This bias plays a role in the failure to detect
code errors during inspection because of a priori expectations about behavior.
The broad volunteer tester pool of users for open source products, a group
that is disjoint from and even anonymous to the core developer pool, makes
representative testing far more likely, decreasing this type of bias, at least for
projects with a large user community. Hutchins (1991) provides a mathematical
model for how confirmatory bias arises in groups. A counterintuitive result of
his model is that “increasing the richness of communication may result in
undesirable properties at the group level” (p. 297), such as incoherent shared
interpretations that arise when “the importance of sharing an interpretation
with others outweighs the importance of reaching a coherent interpretation” (p.
299). Confirmatory bias is related to positive-test bias, which may be reduced
by explicitly searching for errors rather than attempting to verify or confirm
one’s viewpoint (Stacy and Macmillan, 1995). As an illustration of this bias, it
appears to be the case that programmers are much more likely to propose test
cases that demonstrate that a program works correctly than they are to propose
cases that demonstrate that a program fails (Teaseley et al., 1993).

The problem solving and cognitive styles of individuals vary widely because
the cognitive activities engaged in by individuals and groups do not follow lines
laid out by prescribed methods. This is to be expected since no one knows how
we think or how to systematically make us think better, though the objective of
software and problem solving methods is to chip away at the ad hoc character
of problem solving and, in specific problem domains, to identify and establish
standardized techniques to improve the efficiency of problem solving and make
it more systematic. The term cognitive style is commonly used to refer to the
kind of cognitive processes an individual may be predisposed to use to solve
problems, the extremes of which are adaptation and innovation. In adaptation,
problems are solved within existing frameworks by adjusting existing solutions.
In innovation, newly invented structures are preferred (Hohmann, 1997). As
we have seen, a recurrent pattern in open source development is the premium
placed on recycling existing solutions, Raymond’s Fetchmail program being
a well-documented example. This reflects an adaptive approach, at least as
the preliminary default choice. On the other hand, the effective open project
leader must be alert to innovative designs suggested by others, another classic
observation about how successful effective open projects work.

References

Anderson, J. R. (1976). Language, Memory, and Thought. Lawrence Erlbaum, Hillsdale,
NJ.

Dennis, A. R., Easton, A. C., Easton, G. K., George, J. F., and Nunamaker, J. F. (1990).
Ad hoc versus Established Groups in an Electronic Meeting System Environment.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

190 5 Demographics, Sociology, and Psychology

In: Proceedings of the 23rd Hawaii International Conference on System Sciences,
III, 23–29.

Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press,
Stanford, CA.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project, O’Reilly Media, Sebastopol, CA.

Hinsz, V. B., Tindale, R. S., and Vollrath, D. A. (1997). The Emerging Conceptualization
of Groups as Information Processors. Psychological Bulletin, 121(1), 43–64.

Hohmann, L. (1997). Journey of the Software Professional. Prentice Hall, Upper Saddle
River, NJ.

Hutchins, E. (1991). The Social Organization of Distributed Cognition. In: Perspectives
on Socially Shared Cognition, L. B. Resnick, J. M. Levine, and D. Teasley (editors).
American Psychological Association, Washington, DC, 283–307.

Janis, I. (1982). Groupthink: Psychological Studies of Policy Decisions and Fiascoes.
Houghton Mifflin, Boston, MA.

Moody, G. (2001). Rebel Code. Penguin Press, New York.
Nosek, J. (1998). The Case for Collaborative Programming. Communications of the

ACM, 41(3), 105–108.
Olson, G. and Olson, J. (1999). Computer Supported Cooperative Work. In: Handbook

of Applied Cognition, F. T. Durso (editor). John Wiley & Sons, New York, Chapter
14, 409–442.

Pirolli, P. (1999). Cognitive Engineering Models and Cognitive Architectures in Human-
Computer Interaction. In: Handbook of Applied Cognition, F. T. Durso (editor).
John Wiley & Sons, New York, Chapter 15, 443–477.

Raymond, E. (2004). How to Ask Questions the Smart Way. http://catb.org/∼esr/faqs/
smart-questions.html. Accessed November 30, 2006.

Raymond, E. S. (1998). The Cathedral and the Bazaar. First Monday, 3(3).
http://www.firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version:
http://www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Robillard, P. N. and Robillard, M. P. (2000). Types of Collaborative Work in Software
Engineering. Journal of Systems and Software, 53, 219–224.

Stacy, W. and Macmillan, J. (1995). Cognitive Bias in Software Engineering. Commu-
nications of the ACM, 39(6), 57–63.

Teaseley, B., Leventhal, L. M., and Rohlman, S. (1993). Positive Test Bias in Software
Testing by Professionals: What’s Right and What’s Wrong. In: Empirical Studies
of Programmers: Fifth Workshop, C. R. Cook, J. C. Scholtz, and J. C. Spohrer
(editors). Ablex, Norwood, NJ.

5.7 Group Problem Solving and Productivity

The kind of problem a group is trying to solve through collaboration strongly
affects its productivity. This section considers some generic types of prob-
lems and the impact of the problem type on the problem solving effective-
ness or productivity of a group. The discussion follows the approach laid
out in Steiner’s (1972) widely referenced analysis of group problem solving

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.7 Group Problem Solving and Productivity 191

work, which remains a classic in the field of social and cognitive psychol-
ogy. Steiner analyzed many of the fundamental issues of problem solving in
groups. Unlike the distributed collaborative group work done over the Internet,
Steiner mainly addressed groups working in a face-to-face context, but many
of his concepts are applicable to the distributed collaboration that occurs in
open source development. We will briefly describe Steiner’s conception of the
relationship between group productivity and what he calls process losses and
process gains, as well as the impact of the type of task on the problem solv-
ing and communication processes of the group. This process gain/process loss
model is widely used in contemporary analyses of computer-supported group
interactions. We also elaborate on Steiner’s classification of tasks as divisible,
unitary, disjunctive, or conjunctive and consider its relevance to open source
development.

5.7.1 Task Type and Group Productivity

The performance of a group on a task depends on three factors:

1. the resources the group has available to perform the task,
2. the requirements of the task itself, and
3. the processes which the group uses to solve the task.

Development resources can be human, tangible, or fiscal. In open source,
the human resources are voluntary participants or corporate employees. The
tangible resources include the underlying Internet collaborative medium, itself
largely created through open development, and software tools like CVS, which
are largely free software. Fiscal resources include governmental support, cor-
porate sponsorships, donations by individuals, or support (like in the case of
GNU) from foundations like the FSF. The task is the software system or appli-
cation to be developed, with subtasks for particular aspects of the development
like programming, bug reporting, and documentation. The processes are like
those we have described for projects such as Apache and Linux, built around
the relatively lean framework of e-mail lists + CVS + Web sites + forums +
IRC. Steiner defined the potential productivity of a group as the productivity of
the group if it arranges its processes to optimally utilize its available resources
to solve the requirements of the task. Invariably, there will be some factors
beyond the control of the group like the resources available to perform the task
or the requirements of the task, but a group may have considerable control over
the processes it uses to solve the task. To the extent that the processes the group
applies are faulty, the resulting actual productivity of the group will be less than

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

192 5 Demographics, Sociology, and Psychology

its potential (ideal or optimal) productivity. Steiner expressed this relationship
as follows:

Actual productivity = Potential productivity – Losses due to faulty processes.

The actual productivity depends strongly on the type of task since the pro-
cesses a group can apply are affected by the kind of task the group faces.
Indeed, task type may account for half the variation in group productivity (Poole
et al., 1985). A commonly used classification of tasks in social psychology was
defined by McGrath (1984) and partitions tasks along two axes: a cognitive –
behavioral axis and a cooperative – conflicting axis, with the attributes affecting
the relative importance to the group of information versus values (McGrath and
Hollingshead, 1994, p. 67). The classification identified four general kinds of
task: generating ideas or plans, choosing solutions, negotiating conflicts with
respect to ideas or interests, and executing tasks (cooperatively or competi-
tively). Steiner’s classification of tasks, which we focus on, is based on their
structure. It distinguishes between divisible and unitary tasks, disjunctive and
conjunctive tasks, as well as a few other categories. We describe these in the
following.

Divisible Tasks
Divisible tasks are those that lend themselves to partitioning into subtasks. The
subtasks can be worked on independently by individuals or subgroups. This
kind of divisibility has obvious implications for group effort and is essential to
the feasibility of open development. In software development, in general, tasks
tend to be partitioned into a well-defined hierarchy of subtasks. Of course,
the most successful open projects like Linux and Apache have intentionally
designed their software architectures in a modular fashion to support parti-
tioned distributed development. A logically large group, which is by definition
combined of members who represent a significantly broader range of knowl-
edge and skills than any individual member, can successfully solve a divisible
task even if none of its members working independently has either the skill or
the capacity to solve the task. Logically large or broad domain expertise by the
set of participants is a well-known characteristic of open groups, complemented
by domain specialization at the individual level. The division of labor that a
divisible task permits can also increase the reliability with which the task can
be accomplished. Thus while the disjoint skills of the individuals in a group
may make a task feasible, the redundant skills and mutual oversight provided
by the group may increase the reliability of the solution.

Partitioning divisible tasks into subtasks may be more art than science. There
may be innumerable ways to subdivide a task, but a successful decomposition

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.7 Group Problem Solving and Productivity 193

defines a set of subtasks that can be solved relatively independently and allo-
cated or assigned to individuals in the group who are most capable of performing
the subtasks. Task partitioning (divide and conquer) is an established technique
in software and algorithm development. This problem solving tactic reflects
how people naturally partition tasks in ordinary activities. It raises the obvious
kinds of questions: in what ways or in how many different ways can a task
be divided? How should individuals be assigned to the divided subtasks? How
can individuals or the group combine, integrate, or synthesize their activities or
outcomes on the subtasks to solve the original or root task? Is there a required
or optimal sequence in which the subtasks should be done since the initiation
of some tasks may depend upon the completion of other tasks? In software
development, a standard technique for task partitioning is based on designing
a system such that it can be implemented in a modular fashion, so its modules
can then be independently worked on by subgroups. Linux is an example where
the solution design was strongly motivated not only by the requirements of the
underlying operating system problem, but also by the ability of the design to
support independent distributed work. The kernel modules in Linux can be
worked on separately and independently. Without this framework, the Linux
project could not have developed at the rate it has. Naturally, the decentralized
repository model of project management used in Linux fits in with this parti-
tioned problem and domain expertise structure, with configuration management
systems like Git and BitKeeper designed to faithfully reflect this structure.

Unitary Tasks
Unitary tasks are problems that do not benefit from partitioning, because they
cannot be practically divided into subtasks each of which can be performed
independently and the results of which can be conveniently combined. Despite
the “bazaar” aspects of open source development, the originating design of
a project is usually unitary or at least the result of a cohesive partnership. It
is easy to think of examples of unitary tasks from everyday life. For exam-
ple, can you partition tying your shoelaces into subtasks which could then be
combined? It seems puzzling to recognize how two people could share the
task of tying the shoelaces into a bow at the end? This action does not seem
easily partitioned into separate tasks. It is even hard to articulate how the task
is done in the first place because the act itself has been transformed by habit
into an almost autonomous action. The lack of such a recognizable specifi-
cation for the final task is one barrier to its decomposition or partitioning.
Another obstacle is the coordination that decomposition would entail because
the elements of the task seem so tightly coupled. The required coordination
seems best centralized through a single individual’s mind because of the subtle

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

194 5 Demographics, Sociology, and Psychology

timing and sensory feedback it requires. In what respects is the initial design
of a software system like this and is that why design tends to be considered as
inseparable? Another thought experiment for understanding task divisibility is
driving a car. Suppose one person handles the steering wheel, while another
works the brakes, while both parties look out the front window to direct the
car! Unlike tying shoelaces, in this case the separate responsibilities are at least
more readily identified or specified in terms of what has to be done and by
whom: one person steers, the other person brakes or accelerates, both direct
or guide based on visual feedback. However, once again complications arise
because of the difficulty of coordinating the separated tasks that are still tightly
coupled in a feedback loop that affects the overall process. Ordinarily, this cou-
pling is transparent, involving the real-time eyes–hands–feet coordination of a
single individual. But when tasks are split between two separate persons, the
feedback loop that works conveniently for a single person becomes clumsy
at best for a pair of cooperating individuals. Thus a task may turn out to
be unitary because of the difficulty of specifying a partition for the task or
because of the difficulty of separating the task into subtasks that are not tightly
coupled.

Although a unitary task is indivisible by definition, it could be collaborated on
by a group by selecting or combining individually generated solutions to obtain
a group response. The specific selection or combination method depends on the
task. For example, reasoning problems done under time constraints are typically
considered as unitary because they do not lend themselves to subtasking to
separate individuals (Steiner, 1972). This is perhaps one reason why individual
programmers check out code from a CVS repository and work on it in temporary
isolation. If a group works on a unitary problem, it acts as a group of individuals
working independently on the same problem. How a group response would be
produced depends on how the individual efforts feed into the group product.
For example, it may be that exactly one of the proposed individual answers
can be correct. This kind of unitary task is said to be disjunctive because a
group decision or response is like an exclusive-or of the separate responses
generated by the members. One solution is selected as the correct response
using some form of group judgment, like voting, and the rest are rejected. For
example, we have previously described how in the case of the Apache project
the protocol was for a developer (self-charged to solve a certain problem) to
collect alternative solutions from contributors, forward them to the developer
mailing list for feedback and evaluation, and then subsequently develop the
actual solution himself based on what was gathered from the proposed solutions.
This seems like a disjunctive approach, though it may have some elements of
the conjunctive category we describe next.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.7 Group Problem Solving and Productivity 195

Other Categories of Tasks
A task is said to be conjunctive if the group outcome depends on the outcomes
of every individual of the group. In a conjunctive task each individual must
produce a satisfactory result on his assigned subtask or else the group cannot
correctly complete the overall task. The word conjunctive derives from the use
of the term in logic where the conjunction of two propositions is true if and only
if both propositions are true. For conjunctive tasks the information separately
available to each member of the group or the subtask solved by each member
is needed to correctly solve the overall problem. The performance of the group
is limited by the performance of the poorest performing member. If a member
fails to understand the rules, the productivity of the entire group suffers. Thus
the problem is said to be conjunctive. As a trivial example, successfully finding
a searched-for element of an array that has been partitioned among individu-
als requires only a single individual to correctly locate the element but if that
member errs then the entire outcome may be wrong. Furthermore, a negative
outcome where the searched element is not in the array requires a correct neg-
ative response from every member and so a failure by any member to correctly
solve his subtask invalidates the entire group outcome. Conjunctive tasks also
occur in a pipelined decomposition of a nonunitary task where all the pipelined
tasks are necessary and indeed each of the pipelined tasks may depend on the
successful prior completion of precedent tasks. Other tasks Steiner defines are
additive and discretionary tasks. In additive tasks the group result is the sum
of the individual results and so every member’s contribution has an impact. In
discretionary tasks the group can use any mechanism it decides on to combine
the individual results, such as simple averaging.

The performance of a group may be measured in a variety of ways such as by
the number of tasks the group performs correctly. Unless there exists a single
member of a group who is the most competent on every subtask, the potential
performance of a group exceeds that of any of its individual members. A classic
instance of a problem where groups perform better is traversing a maze where
groups can learn faster by combining the learning experiences of individual
members. The potential productivity of a group working on a disjunctive task
depends on the capability of its most capable member, as well as on the group
process for accepting solutions. Conjunctive tasks affect group productivity in
the opposite way because the performance of the group depends upon its least
capable member. For divisible tasks, the productivity of the group also depends
on the resources allocated to the individuals performing the subtasks. While
group heterogeneity may increase the potential productivity of a group because
of the broader skill set of its members, partitioning the work efforts entails
matching members to subtasks since the outcome of a subtask depends on the

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

196 5 Demographics, Sociology, and Psychology

competency of a member to perform that subtask. This may increase process
losses for reasons ranging from the need for the most competent individual to
dominate group decision making in disjunctive tasks to the impact of having
greater differences in social status than in homogenous groups.

5.7.2 Effects of Group Characteristics

Group composition refers to the membership characteristics or subject demo-
graphics of a group. Members may be differentiated by status characteristics:
they may be peers or there may be a hierarchical order. Group composition
may be homogeneous or heterogeneous with respect to a particular attribute.
The logical size of a group is a related notion. A group has a small logical size
if the domain knowledge of the group is comparable to that of an individual
member as a result of redundancy in member expertise. As mentioned previ-
ously, logically large groups in contrast have a greater range of knowledge than
any individual member and are obviously what is needed for any substantial
open source project. Homogeneity of the dispositions of the group members
appears to promote collegiality, but it may also adversely affect motivation.
Homogenous dispositions tend to enhance member satisfaction with the group,
but this increased satisfaction does not necessarily manifest itself in increased
task productivity. The dispositional characteristics of the members decline in
importance if appropriate roles are prescribed that can guide behavior. Hetero-
geneity should in principle tend to produce an initial diversity of views in a
group discussion, thereby possibly enhancing the quality of decisions, but the
relation between initial group diversity and heterogeneity is unclear. However,
psychological studies do indicate that heterogeneity on the dominance char-
acteristics of individuals can significantly affect group performance (Steiner,
1972). For open source communities, there are some notable attributes that
characterize group composition. The most obvious is the gender uniformity
that surveys invariably indicate, with almost all participants being male, as
well as the relatively youthful age distribution. Open development projects
obviously have a preponderantly technical membership, including their admin-
istration, but noncore, nontechnical users also participate in the roles of bug
reporters and testers, especially for mass-market tools like browsers and desktop
application.

Assembly effects are differences in performance due to group composition.
They have been examined in the context of so-called ad hoc groups, which are
groups without prior histories of working together. Ad hoc groups are inten-
tionally constructed, for purposes of experiment design, to be homogeneous or
heterogeneous on some attribute. The objective is to configure the group and so
one can analyze how its behavior depends on the homogeneity/heterogeneity

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.8 Process Gains and Losses in Groups 197

of the attribute used in the construction of the group. Despite the intent of such
an experimental design, it is difficult to interpret the experimental results of
such configurations because there may be significant correlations between the
characteristics that have been used to construct the designed group and other
unrecognized characteristics that influence the group behavior. This compli-
cates any subsequent statistical analysis since the factors that actually cause
experimentally observed effects may not in fact be the explicitly constructed
characteristics but only unrecognized correlated characteristics. For example,
Olson and Olson (1997) observe that changes in the physical size of a group
tend to simultaneously affect other variables. Thus larger groups tend to be less
homogeneous, status effects become more of a factor, and structural effects like
the emergence of a leader tend to appear. To circumvent this, they recommend
that instead of examining the effects of group size, one should directly examine
variables based on the characteristics of group members, organizational context
or type of task. Refer also to the research by McGrath (1984) and Morgan and
Lassiter (1992).

The process gain versus process loss model of group productivity analyzed
by Steiner for face-to-face groups serves equally well to analyze interactions in
computer-supported collaborations. The next few sections will look at various
process gains and losses that arise in computer-supported environments and
their apparent impact on productivity and problem solving.

References

McGrath, J. E. (1984). Groups: Interaction and Performance. Prentice Hall, Englewood
Cliffs, NJ.

McGrath, J. E. and Hollingshead, A. B. (1994). Groups Interacting with Technology.
Sage Pub, Thousand Oaks, CA.

Morgan, B. B. and Lassiter, D. L. (1992). Team Composition and Staffing. In: Teams:
Their Training and Performance, R. W. Swezey and E. Salas (editors). Ablex,
Norwood, NJ.

Olson, G. and Olson, J. (1997). Making Sense of the Findings: Common Vocabulary
Leads to the Synthesis Necessary for Theory Building. In: Video-Mediated Com-
munication, K. Finn, A. Sellen, and S. Wilbur (editors). Lawrence Erlbaum Asso-
ciates, Mahwah, NJ, Chapter 4.

Poole, M. S., Siebold, D. R., and McPhee, R. D. (1985). Group Decision-Making as a
Structuration Process. Quarterly Journal of Speech, 71, 74–102.

Steiner, I. D. (1972). Group Process and Productivity. Academic Press, New York.

5.8 Process Gains and Losses in Groups

What is the impact of computer-supported communication on group produc-
tivity and how can productivity be enhanced by such processes? This section

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

198 5 Demographics, Sociology, and Psychology

discusses these issues in terms of Steiner’s model for group productivity as
determined by the task to be solved, the resources available to the group, and
the processes used to solve the task. The characteristics its processes can affect
a group’s productivity. We will examine several phenomena that affect produc-
tivity and how they can be influenced by computer support.

Before considering specific process gains and losses related to software
development, it is worth remembering the global picture of how software devel-
opment itself progressed with the advance of the technology created by open
development. For example, in the case of Unix, original development was slower
and far less distributed because the tools for distributed development remained
inchoate. Networking capabilities like those provided by BSD 4 had a meta-
effect on software development. Version 4, for example, didn’t merely improve
the capabilities of an operating system. It fundamentally altered the very way in
which software development collaboration could be done because it provided
an infrastructure for digitally transmitting not only communication messages
but also large amounts of source code between remotely located developers.
This created a shared workspace where the actual production artifacts could
be worked on in common. The Internet then precipitated even more dramatic
increases in the scale and rate of development. The organization of collabora-
tive processes also had a dramatic impact on software development. One need
only contrast the rate of development of the GNU GCC Compiler project, after
it was managed in bazaar mode, versus its prior traditional development. The
bazaar mode of development for EGCS (the Experimental GNU Compiler Sys-
tem) followed the Linux development model and was initiated in 1997, while
the very same project continued ongoing development according to the con-
ventional nonbazaar mode. The two projects progressed at strikingly different
rates, with the bazaar mode so dramatically outpacing the conventional one
that by 1999 the original GCC project was sunset and development was placed
entirely under the EGCS project. Thus, it is obviously a given that computer-
supported mechanisms have led to revolutionary process gains in development.
The following discussion addresses some aspects of the impact of computer
support. This and subsequent sections provide additional perspectives through
which to view open development.

5.8.1 Process Gains and Losses

Computer-supported collaboration enables processes that improve group pro-
ductivity in a variety of ways. For example, it allows remote, parallel, relatively
instantaneous communication and supports a digitized group memory, all of
which facilitate problem solving. Steiner (1972) viewed group productivity as

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.8 Process Gains and Losses in Groups 199

a resultant of process losses that subtract from a potential or ideal productivity
to yield actual productivity. The ideal productivity of a group was defined by
Steiner as its productivity if a group arranges its processes to optimally utilize
its available resources to solve the requirements of a task. The actual productiv-
ity of a group will be less than its ideal productivity to the extent to which the
processes the group applies cause inefficiencies. Organizing group processes
optimally is more easily said than done. Even in an elementary model like that of
Hohmann (1997), the basic operations of group problem solving are potentially
complex tasks: identify the subtasks required to solve a problem, distribute these
subtasks among the group members to work on, coordinate these distributed
activities, and integrate the distributed results to complete the original task. The
performance of the group depends on all these complex factors. Some factors,
like the resources available to perform a task or the nature of the task itself, may
be outside the control of the group; however, groups may exercise considerable
control over other aspects of their processes. For example, it is often the case
that the nature of the “work task” in open development is already unlike that
in the typical “work” model. The task itself is far more likely to be under the
control of the “workers” because it has been chosen for reasons of personal
interest or passion, rather than assigned by an external agent. Of course, this is
obviously less true in a corporate-sponsored environment that assigns its own
workers to the project.

Computer-supported collaboration may lead to process gains as well as pro-
cess losses for a group. Process gains are factors that increase performance
in a collaborative environment or are efficiencies associated with the intrin-
sic characteristics of a process. They include, for example, the synergies and
learning that can occur in a group environment (Nunamaker et al., 1991b) or
the advantages associated with parallelism in a computer-supported environ-
ment. As we have previously observed, the process gain of “learning” is in fact
recognized as one of the most prominent self-identified motivators for open
source participants. The process gain represented by parallelism is the root of
the famed open source “given enough eyeballs, all bugs are shallow” principle.
Process losses are factors that decrease performance or are inefficiencies asso-
ciated with the intrinsic characteristics of a process (Dennis, 1996). Dennis and
Valacich (1993) examine the process gains and losses associated with computer
communication. Together with Nunamaker et al. (1991a, b), they identify liter-
ally dozens of potential losses. The most prominent of these include production
blocking and evaluation apprehension, which we examine in the following.
Although their work was done in the context of a specific and now somewhat
dated type of interaction environment, many of the concepts and problems they
addressed are still pertinent.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

200 5 Demographics, Sociology, and Psychology

5.8.2 Production Blocking

Production blocking is the kind of process loss that occurs in a face-to-face
environment when more than one participant wants to speak concurrently. This
loss is mitigated in computer-supported collaborations, resulting in the elimina-
tion of a process loss. Since speaking requires mutually exclusive access to the
floor, only one person can speak at a time. Access to this nonshareable resource
(“the floor”) is sometimes called airtime, and various social protocols can be
used to manage its allocation. The delay caused by this access contention and its
cognitive side effects is a key source of productivity loss in face-to-face group
problem solving. Detailed implicit turn-taking protocols and cues are used in
face-to-face and synchronous auditory or visual environments to manage this
access. Computer-supported communications ameliorate production blocking
by allowing simultaneous or parallel communication, thus diminishing block-
ing. The blocking is actually reduced by the combination of two capabilities
of computer-supported environments. Firstly, parallel communications enable
more than one participant to communicate at a time. Secondly, extensive log-
ging of communications enables later access to these communications. Together
these abilities reduce the blocking that occurs in physical meetings.

There are also secondary process gains that arise from these capabilities. The
logged communications in computer-supported environments provide a group
memory by recording communications for later use. This reduces the need for
members to continually keep abreast of and remember exchanges, reduces the
cognitive effort required by listening, and facilitates reflecting on what has been
said. In any event, synchronous exchanges are already a problem for geograph-
ically dispersed developers working under different schedules in different time
zones (McCool et al., 1999), so asynchronous and logged communications are a
precondition of any distributed collaboration. Since group support systems cap-
ture significant amounts of information in the form of meeting logs, these logs
can, in principle, also serve as knowledge repositories that preserve a group’s
collective memory. For open source groups, the logged information is contained
in public e-mail and forum archives, as well as in CVS log statements. As group
membership changes, new members can access the experience of their prede-
cessors. These repositories may provide simple search functions, but they also
represent opportunities to develop intelligent search tools to help access the
information they contain. One would like participants to be able to “drill down”
through the information in a log to help understand a current situation. It would
be useful to develop intelligent agents that can more effectively mine repository
data (Nunamaker, 1999). In the case of open source projects, archives provide
both institutional memory and direct, online transparency about the operation
of the project, which is one of the key characteristics of open development.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.8 Process Gains and Losses in Groups 201

Production blocking can lead to a range of process losses. For example, par-
ticipants who are not allowed to speak at a given point may subsequently forget
what they were going to say when they are finally able to speak. Alternatively,
after listening to subsequent discussion, participants may conclude that what
they had intended to say is now less relevant, less original, or less compelling,
once again suppressing their remarks. The participant may or may not be accu-
rate in this assessment of their intended remarks, but in any case the group does
not know what they were thinking, which could in turn affect how the overall
group discussion proceeds. Another effect of blocking is that individuals who
are waiting to express an idea have to concentrate on what they are about to say
instead of listening to what others are saying or thinking productively about the
problem, thus distracting themselves by trying to remember an idea rather than
moving on and generating new ideas. All of these process losses are mitigated
in a computer-supported environment.

As we have seen in Chapter 4, software versioning systems are used by
developers to keep track of changes to a project as it evolves. Early software ver-
sioning systems exhibited a type of production blocking or access contention.
Modern systems allow simultaneous access to the files of a project. This is
useful even for a local development group but essential for the productivity
of distributed development and now a fundamental feature of open develop-
ment. The most widely used versioning tool is the CVS described in detail in
Chapter 4. Before the development of CVS, versioning tools used a lock-
modify-unlock protocol for file handling that permitted a certain level of con-
currency. However, under that model only one developer at a time was allowed
to have access to a given file. Other developers had to wait until the file being
modified was released. Such mutually exclusive access could require signifi-
cant coordination and obviously constituted production blocking. Collocated
developers might be able to contact one other quickly if such a lockout was
blocking their development work. Similarly, if a development group was small
enough so that access collisions were infrequent, the blocking might be accept-
able or the coordination might be manageable. However, in large distributed
groups such collisions and their coordination are troublesome, especially in a
significantly volunteer community. An especially irksome and common coor-
dination problem was the phenomenon of so-called stale locks (Rooney, 2004).
This occurred when a person checked out a file and took out a lock on the file
so that it could be modified. The developer might work on the file for a while,
perhaps eventually even returning it to its original state after some failed efforts
at modification, and then “temporarily” turn his attention to some other files
with the intention of returning to the original file later, but then forget to return
the lock. In the meantime, another developer attempting to work on the locked
file would be pointlessly blocked out.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

202 5 Demographics, Sociology, and Psychology

In contrast to this older, blocking versioning system, consider CVS. Once
again the software projects are stored in a repository on a central server. More
than one distributed developer can concurrently check out the latest version
of a project from the repository. They can then modify the source code on
the client concurrently even when they are working on the same file. When
the changes are eventually committed back to the server, the CVS detects if
there are any conflicts in the changes made by one developer with concurrent
changes to the same information made by another developer. If a conflict arises,
the developer making the most recent change is automatically notified of this
situation by the CVS and told in a very readable notation exactly what the
conflicting elements appear to be. The developer can then adjust his modification
as appropriate, without having been blocked from working on the files in the
first place. This copy-modify-merge capability dramatically reduces the chance
of such production blocking.

Unsurprisingly, the computer-supported mechanisms that reduce effects like
production blocking can themselves cause process losses. Despite its bene-
fits, there are possible complications and costs associated with these parallel,
synchronous or asynchronous communications. For example, McGrath and
Hollingshead (1994) observe that there is a potentially high cognitive load, and
there are possible sequencing complications to interaction discourse caused by
these communications:

If (message) composition takes different amounts of time for different mem-
bers, and transmission takes some finite additional time, then not only is receipt
of a message separated in time from composition, but messages may also be
received and sent in different sequences by different members. Furthermore,
because multiple sources can transmit at the same time, the reading load is
likely to increase rapidly with small increases in group size (McGrath and
Hollingshead, 1994, p. 20).

The time-honored e-mail mailing lists used in open source are certainly
subject to these effects. Real-time mechanisms like IRC can both alleviate and
exacerbate these effects. The kind of sequencing anomalies that may occur can
disrupt the semantic flow of exchanges that would occur naturally in face-to-
face conversation. This holds even more so for asynchronous communications
where the pattern of responses of users to messages may be unknown, possibly
leading to significant confusion. For example, in a synchronous system if a user
does not reply within a reasonable time frame, one may conclude the choice is
deliberate. But in an asynchronous system, “the assumption that all potential
receivers have in fact read and understood a message within a short span of time
is not likely to be warranted. Hence ambiguity is increased in an asynchronous
computer system because the sender cannot be confident that the failure of

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.8 Process Gains and Losses in Groups 203

any given member to reply to a given message in a timely fashion reflects that
member’s deliberate choice” (McGrath and Hollingshead, 1994, p. 21).

5.8.3 Evaluation Apprehension and Anonymity

Evaluation apprehension is another process loss, most prominent in a face-to-
face environment, which is triggered by fear of being criticized for an opinion
one expresses. Like other process losses we have considered, it too can be miti-
gated by computer-supported collaboration. Evaluation apprehension prevents
individuals, especially timid or low-status individuals, from expressing their
ideas. It causes that type of process loss where members of a group do not
express their ideas because they fear negative evaluation by others in the group
(Dennis and Valacich, 1993). One rudimentary process structure proposed to
decrease evaluation apprehension is enforcing a moratorium on criticism at
those points in a discussion where individuals propose their opinions, a kind of
temporary self-censorship that can be implemented in either a face-to-face or
computer-supported environment. However, such a policy may be more easily
enforced in a face-to-face context because once a critical comment is posted in
a computer-supported environment, it cannot be easily retracted.

Anonymity is a standard technique for reducing evaluation apprehension.
In a computer-supported environment it can be achieved by anonymous com-
munication. Sometimes anonymity is just a side effect of keeping barriers to
participation low, like allowing people to access project information or pro-
vide bug reports without going through a full-scale registration process (Fogel,
2005). More fundamentally, anonymity allows individuals to present their ideas
without fear of being openly embarrassed by critical comments and without hav-
ing to openly challenge the opinions of others. The risk of embarrassment or
even retaliation in an organizational environment is substantially decreased if
no one can be sure who made a comment. Anonymity is relatively straightfor-
ward to implement in a computer-supported environment, though there may be
technical issues related to system security and the trustworthiness of the soft-
ware in guaranteeing anonymity. Furthermore, if group members know each
other well, they may be able to guess the author of an anonymous exchange,
though this is more likely in a small group than in a large group (Nunamaker
et al., 1991a).

Anonymity leads to a number of process gains. It reduces an individual’s
public association with the ideas they generate, with a corresponding decrease
in the kind of personal, premature commitment to one’s opinions that can lead to
cognitive inertia as well as hostility to adverse ideas. Anonymity makes it easier
to present new or challenging ideas because it separates out personalities from

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

204 5 Demographics, Sociology, and Psychology

the ideas being proposed and lets participants change their previous opinions
without having to admit that they have done so. It facilitates devil’s advocacy
and reduces the likelihood of a few individuals dominating a process (Gallupe
et al., 1992). The most significant benefits of anonymity arise in situations
where there are power and status differences with fewer benefits accruing in
peer groups (Nunamaker et al., 1991b). Anonymity empowers group members
with lower social or organizational status who will be less likely to hold back
on presenting their ideas because of evaluation apprehension. In addition to
reducing apprehension, anonymity also tends to reduce conformity, especially
if a discussion is heated and critical, or there are status differences among the
members. In fact, anonymity tends to have little benefit if the issues considered
are not perceived as risky, while its benefits increase when the perceived risks
are substantial, such as may occur in an organizational context where there are
significant differences among individuals and potentially significant costs for
nonconformist opinions or for errors in proposed judgments or recommenda-
tions. In the case of open source development, many of the potential risks of
anonymity or the lack thereof are related to reputation gains and losses. Given
the increased participation of corporations as sponsors of the work efforts of
open developers, impacts on the organizational status of individuals become
more of an issue than it had been when these were predominantly volunteer
efforts. Furthermore, individuals also now represent their organizations and so
their skills reflect not only on themselves but also on their companies.

When a known participant makes a contribution to an open project, it is
available for scrutiny and critique by any observer. These observers can perfectly
well be anonymous. The anonymity of these potentially critical voices operating
in such a public arena may well unnerve even members of the core development
team whose work is subject to such scrutiny. While the anonymity may decrease
the apprehension of the critics, it may increase the evaluation apprehension
of the individuals whose work is a target of the criticism. As Fogel (2005)
observes in the context of the common e-mail commit notices that are triggered
automatically when commits are made to a CVS repository, the developers may
feel that “now you’re asking them to expose their code to the scrutiny of random
strangers, who will form judgments based only on the code. . . . These strangers
will ask lots of questions, questions that jolt the existing developers . . . To top it
all off, the newcomers are unknown, faceless entities. If one of your developers
already feels insecure about his skills, imagine how that will be exacerbated
when newcomers point out flaws in code he wrote, and worse, do so in front of
his colleagues” (Fogel, 2005). Nonetheless, it is precisely the awareness of and
feedback from such scrutiny that brings the best work out of the developers.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.8 Process Gains and Losses in Groups 205

Anonymity tends to be most useful at the start of collaboration “when you’re
exploring ideas and eliciting options” because it promotes candor (Nunamaker,
1999, p. 70). While it might seem that anonymity could destabilize group
behavior and social norms, possibly leading to increased flaming in response
to anonymous critical comments, Nunamaker et al. (1996) observe that in their
experience this does not happen. Indeed, anonymity is useful for team building
because it allows candid exchanges in a safe environment. However, there is a
trade-off between anonymous, free expression of ideas, which are consequently
not owned or sponsored by anyone, versus public expression of ideas for which
an individual may gain merit for a contribution (or possibly demerit and humil-
iation for a perceived error). Because of this trade-off, anonymity is less useful
in groups where individuals are awarded on the basis of individual effort.

Can computer-supported anonymity increase the creativity of problem
solving? The effects of anonymity have been extensively studied for the special
case of idea generation or brainstorming tasks in a series of papers by Nuna-
maker, Dennis, Valacich, and Vogel (such as Nunamaker et al., 1991a). Previous
research found that anonymous groups apparently generated more ideas dur-
ing brainstorming than nonanonymous groups when using computer-supported
communication, at least for tasks with low levels of conflict and under cer-
tain circumstances. The groups involved also perceived the interaction process
as more effective and satisfying. Similar results were obtained in a variety of
different experimental settings, occurring, for example, for both groups that
had preexisting group histories and groups that did not, for groups of varying
sizes, and for groups from public and private organizations (Nunamaker et al.,
1991a). Jones (1988) observed that while so-called Negotiation Support Sys-
tems increased idea productivity or generation of alternative solutions in low-
conflict situations, these systems did not appear to have a significant impact
on idea generation in high-conflict situations. While some have proposed using
interaction processes that require a noncritical tone for group interactions to
enhance idea generation, in fact conflict and criticality of tone seem intrinsic
to such processes. See such as Connolly et al. (1993), which evaluated the
effect of anonymity versus evaluative tone. The impact of anonymity on idea
productivity is most pronounced in groups with high-status differentials, with
behavior changing as one migrates from a peer group to a charged status group
where some participants may not want to express themselves at all. There is
little impact from anonymity in groups where there are no preexisting power
structures, no preexisting vested interests in outcomes, and no fear of neg-
ative consequences for nonconformity, but there are significant impacts from
anonymity for individuals in groups with existing organizational contexts (such
as Nunamaker et al., 1991a).

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

206 5 Demographics, Sociology, and Psychology

References

Connolly, T., Routhieaux, R. L., and Schneider, S. K. (1993). On the Effectiveness of
Group Brainstorming: Test of One Underlying Cognitive Mechanism. Small Group
Research, 24, 490–503.

Dennis, A. R. (1996). Information Exchange and Use in Group Decision Making: You
Can Lead a Group to Information, but You Can’t Make It Think. Management
Information Systems Quarterly, 20(4), 433–457.

Dennis, A. R. and Valacich, J. S. (1993). Computer Brainstorms: More Heads Are Better
Than One. Journal of Applied Psychology, 78(4), 531–537.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Sebastopol, CA.

Gallupe, R. B., Dennis, A. R., Cooper, W. H., Valacich, J. S., Nunamaker J., and Bas-
tianutti, L. (1992). Electronic Brainstorming and Group Size. Academy of Man-
agement Journal, 35(2), 350–369.

Hohmann, L. (1997). Journey of the Software Professional. Prentice Hall, New Jersey.
Jones, K. (1988). Interactive Learning Events: A guide for Facilitators. Kogan Page,

London.
McCool, R., Fielding, R., and Behlendorf, B. (1999). How the Web Was Won.

http://www.linux-mag.com/1999-06/apache 01.html. Accessed November 30,
2006.

McGrath, J. E. and Hollingshead, A. B. (1994). Groups Interacting with Technology.
Sage Pub, Thousand Oaks, CA.

Nunamaker, J. F. (1999). Collaborative Computing: The Next Millennium. Computer,
32(9), 66–71.

Nunamaker, J. F., Briggs, R. O., Romano, N. C., and Mittleman, D. (1996). The Virtual
Office Workspace: Group Systems Web and Case Studies. In: Groupware: Collab-
orative Strategies for Corporate LANs and Intranets, D. Coleman (editor). Prentice
Hall, Upper Saddle River, NJ.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., and Vogel, D. R. (1991a). Information
Technology for Negotiating Groups. Management Science, 37(10), 1325–1346.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R., and George, J. F. (1991b).
Electronic Meeting Systems to Support Group Work. Communications of the ACM,
34(7), 40–61.

Rooney, G. (2004). Practical Subversion. Apress Publishers, Berkley, CA.
Steiner, I. D. (1972). Group Process and Productivity. Academic Press, New York.

5.9 The Collaborative Medium

There are a wide range of environmental and media characteristics that affect
collaboration. This section considers some of them. We briefly discuss the
concepts of interaction environments, collocated work, common ground, cou-
pling, incentive structures, and technological readiness. We consider the role
of cues in communication, how to establish shared understanding, the structure
of conversations, the effect of environment on social cues, the consequences of

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 207

what is called information richness, and the impact of time-related effects on
interaction.

5.9.1 Collaborative Infrastructure

The interaction environment of a collaboration is the modality through which
the group interaction occurs. Face-to-face interactions are the prototypical
human interaction environment and are fundamentally different from computer-
supported ones. For example, the latter provide fewer of the cueing factors
that facilitate shared cognitive attention, factors like gesturing, deictic refer-
ence, and nonverbal expression. A rich cueing environment makes it easier
for a group to attain a common understanding or shared context for its dis-
cussions, effectively letting everyone in a group be on “the same page.” The
scarcity of such cues in computer-supported interactions reflects a process loss.
Of course, computer-supported interactions also have media-related process
gains. For example, these interactions are more documentable, reviewable, and
may be more precise than their face-to-face counterparts (Nunamaker, 1999).
Current technological limitations on what cueing characteristics are available
in computer-supported environments may be mitigated with advances in tech-
nology, but other limitations are intrinsic to remote communication.

To understand the nature of the physical and media factors that affect dis-
tributed collaboration, consider the simplest collaborative environment: collo-
cated work (Olson and Olson, 2000). Collocated work, or proximal interac-
tion, refers to collaboration where participants are located at a common site,
with workspaces separated by at most a short walk, and where the work is
done synchronously. There is a shared space where members of the group can
meet and all group members have convenient access to shared static media like
blackboards, bulletin boards, and so on. Collocation and physical proximity
are known to have a strong positive effect on the initiation of collaboration.
For example, it is known that academic researchers on the same floor of a
building are far more likely to collaborate than researchers on different floors,
even after organizational factors like collocating individuals with similar roles
or interests near each other are taken into account (Kraut et al., 1990). The
explanation for this effect is understood to be the far greater frequency of
communication, especially informal communications, between nearby individ-
uals, a phenomenon especially important during the initiation and planning of
collaboration.

Many of the characteristics of a collocated environment are based on the
“spatiality of human interaction” (Olson and Olson, 2000). Interactions in
such an environment are characterized by rapid feedback (allowing for quick

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

208 5 Demographics, Sociology, and Psychology

correction), multiple information channels (vocal, facial, postural, and gestural),
coreference (such as deictic reference by gaze), spatiality of reference (partic-
ipants are in the same physical space), opportunistic information exchange,
shared local context, implicit cues, and easily nuanced information exchange.
Each of these forms of expression can convey subtleties transcending textual
communications. Except for the communication blocking that occurs in a phys-
ical interaction, the interactions are real time. The discrete communication rep-
resented by text cannot match the easy continuum of nuances that occur in a
proximal context. For example, the elementary issue of identification of partic-
ipants is trivial and immediate since the source of a communication is obvious.
All the participants share the same local context, including the same time of day
and circadian state. Having the same spatial frame of reference, so-called coref-
erence, simplifies deictic reference, the ability to point to objects by gesturing
and the use of the words this or that as references. There is also substantial
individual control, with participants able to readily focus discussions. Most of
these characteristics derive from the shared spatiality that embeds both the indi-
viduals, work products, and artifacts in a single space. Each of these features of
a collocated workspace has certain positive implications for collaboration. For
example, the rapid real-time feedback makes it easy to nip misunderstandings
and errors in the bud. The instant personal identification of sources makes it
easier to evaluate information in the context of its source. The availability of
spontaneous, unplanned interactions that are less likely to occur in a computer-
supported context permits opportunistic exchange of information, as well as
facilitates individual and group cohesion (Olson and Olson, 2000). This is not
to imply that face-to-face interactions always represent a “gold standard” for
interactions (Olson and Olson, 2000), since remote collaborations may some-
times be more suitable. For example, a variety of factors from safety to cost
may require a remote approach, and distance from the immediate work envi-
ronment may lend a perspective that cannot be achieved locally. Obviously in
the case of open source development, remote access greatly expands the pool of
potential participants. In fact, this is exactly why open collaboration increased
so dramatically subsequent to the expansion of access to the Internet. It also
opens new opportunities for collaboration since it makes it easier to find out
what other developers in other parts of the world are working on, communicate
with them, and gain access to their work artifacts. Collocated work is certainly
not excluded for open development. In fact, companies like IBM and Red Hat
have made increasing use of collocated open source development (Feller and
Fitzgerald, 2002). Such an approach combines the advantages of distributed
collaboration with the many fundamental advantages we have described for
face-to-face interaction.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 209

Many factors are involved in facilitating collaboration. The most fundamen-
tal factor, called common ground, refers to the primitive environmental factors
that make it possible to establish a shared collaborative experience (Olson and
Olson, 2000). Common ground characteristics include factors that enhance cue-
ing, such as the copresence of participants, the visibility of participants to each
other, audibility, cotemporality (which allows immediate reception of com-
munications or messages), simultaneity (which allows all participants to send
and/or receive messages simultaneously), and sequentiality (which ensures that
speaker and communicator items cannot get out of order). The richer the inter-
action environment or medium, the more cues it supports for establishing a
commonly recognized, shared understanding. Copresence, for example, entails
all the advantages that come with convenient deictic reference. If we take an
extended notion of what constitutes common ground, then the Internet can be
considered as creating a virtual, albeit partial, facsimile of actual spatial com-
mon ground, supported by mechanisms like CVS that emulate some of the
attributes of common ground (generalized copresence, generalized visibility,
generalized audibility, cotemporality, and simultaneity). Of course, it is not an
ideal common ground, but then again it creates a whole universe of community
that did not even exist before.

Characteristics that enhance the quality of communications are also rele-
vant to common ground and they can be strongly affected by temporal factors.
These include revisability of messages (which means messages can be revised
by the sender before their final transmission) and reviewability of messages
(which means messages from others can be reviewed after receipt) (Olson and
Olson, 2000). The temporal differences between face-to-face and distributed
interactions affect both these characteristics. Indeed, one striking difference
between copresent and computer-supported interactions is the acceptability of
a delay in response (Adrianson and Hjelmquist, 1991). In fact, one reason why
reviewability and revisability are limited in a face-to-face environment is that it
is awkward or unacceptable to have significant delays between the turns of face-
to-face speakers. In contrast, computerized interactions rely primarily on the
production and perception of textual messages. These can be composed without
the need for the relatively instantaneous generation of verbal content required
in a face-to-face environment. Furthermore, these messages can be planned,
rewritten, and edited by the sender, and read, reread, and thought about by the
receiver after reception. Given that we are considering computer-supported ver-
sus face-to-face interactions, we might note that there are relative differences
between the speeds of entering keyboard data and reading text versus speaking
and listening, though these are not likely to be significant for our present pur-
poses. As McGrath and Hollingshead (1994) observe, “Most people can talk

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

210 5 Demographics, Sociology, and Psychology

much faster than even very skilled typists can type,” but “most people can read
faster than they can listen” (p. 19). In other words, spoken output in face-to-face
communication is faster than keyboard output in computer-supported environ-
ments, but computer-supported input via reading is faster than face-to-face input
by listening.

A fundamental temporal characteristic that differentiates between interaction
environments is whether they are synchronous or asynchronous. Face-to-face
communications are synchronous by nature, while computer communications
can be synchronous or asynchronous. These different modes lead to different
patterns of communication. Synchronous communications are strongly con-
strained by temporal constraints that tend to limit the length of communications,
while asynchronous communication tends to encourage lengthier messages
and possibly more simultaneous discussion topics (McGrath and Hollingshead,
1994). Collaboration in open source is mainly asynchronous, with an empha-
sis on media like e-mail, mailing lists, Web sites, and forums as opposed to
synchronous mechanisms, though tools like IRC have also played a role. Feller
and Fitzgerald (2002) remark on the important self-documenting advantage of
asynchronous tools, as well as their compatibility with a globally distributed
environment that is spread across multiple time zones.

The significant role played by visual factors in face-to-face group exchanges
is underscored by Olson and Olson (2000). These cues may eventually become
more widely available when video support in computer communications
becomes more prevalent. However, current environments are limited in these
respects and so are extraordinarily sparse from the viewpoint of typical human
exchanges. This sparseness can be a breeding ground for all sorts of misun-
derstandings and ambiguities. Although it is possible to create substitutes for
some of these factors in a computer-supported environment, it is worthwhile to
be aware of the deeply textured, instinctive, and transparent support for visual
factors that are automatically provided in face-to-face communication.

The absence of some of these common ground characteristics in computer-
supported environments is the basis of some amusing stories about Internet
anonymity and identity that CVS/Subversion guru Karl Fogel tells. One telling
tale is told by free software developer Jim Blandy about a bug reporter who reg-
ularly submitted exceptionally clear bug reports to the project when Blandy was
working on GNU Emacs. At a certain point some required copyright paperwork
had to be sent to the individual by the FSF for legal purposes. As it happened,
the paperwork was sent back incomplete, without an indication of the person’s
employer. After a few further interactions, it turned out that the conspicuously
capable participant was a 13-year old living at home with his parents (Fogel,
2005). But that identity was not evident on the Internet where it was the person’s

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 211

work and writing that spoke for him. In a similar anonymous vein, Fogel alludes
to a New Yorker cartoon by Paul Steiner that depicts a dog at a computer termi-
nal slyly confiding to another dog: “On the Internet no one knows you’re a dog.”
Perhaps videoconferencing would have betrayed the canine! On a more seri-
ous note, Fogel (2005) observes that open source Internet-based collaboration
is “psychologically odd because it involves tight cooperation between human
beings who almost never get to identify each other by the most natural, intuitive
methods: facial recognition first of all, but also sound of voice, posture, etc.”
(Fogel, 2005, p. 89). As an admittedly limited surrogate for an “online face,”
he recommends using a “consistent screen name.” The appellation should be
used for everything from e-mail to your repository committer name. It should
be intuitively related to your real name rather than a make-believe moniker.
Even if you use a pseudonym for purposes of anonymity, it too should have the
same kind of realistic characteristics.

Coupling, Incentives, and Technological Readiness
There are other decisive conditions that affect the ability to collaborate. These
include the degree to which work is tightly coupled, the desire of the participants
to collaborate, and the technological preparedness of a group to work in a
distributed environment. We briefly discuss each of these factors.

The concept of coupling is widely used in software engineering to refer to
the extent to which separate software modules are interlinked. In cooperative
work, coupling is determined by both the characteristics of the task and the
abilities needed for the individuals to implement the task. If a task requires
close, timely interactions between diverse group members who work on the
task, then the task is said to be tightly coupled. Tight coupling requires rapid,
frequent communications, particularly for ambiguity resolution or repair. A
tasklike design is typically tightly coupled, while a tasklike coauthoring is only
moderately coupled (Galegher and Kraut, 1992). Tightly coupled tasks are hard
to implement using computer-supported distributed collaboration (Olson and
Olson, 2000). On the other hand, remote implementation may be feasible if
the component tasks of a project are packaged appropriately. The design of
the Linux kernel is a textbook example of designing an operating system so
that it can be developed in a distributed manner by many participants working
parallelly and independently (Torvalds, 1999). Design can also be simplified,
as it is often in open source, if there is a well-known shared application being
imitated in taillight fashion and whose availability therefore moots much of the
design issue in the first place.

The willingness of participants to collaborate in the first place is tied to the
incentive structure of the work defined as the system of rewards that encourage

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

212 5 Demographics, Sociology, and Psychology

performance of an activity. Collaboratively sharing and seeking information
from or with others requires an appropriate organizational incentive structure.
As an example of an incentive structure hostile to collaboration (remotely or
locally) consider one that awards participants based on individual claims to
ownership of ideas. In such a context, a collaborative environment that clouds
ownership may be perceived as contrary to an individual’s benefit (Olson and
Olson, 2000). Thus, for successful collaboration to occur, the organizational
culture must value and promote sharing. Existing patterns of interaction in an
organization should also reflect a collaborative attitude, like being aware of
other’s information requirements and making one’s own information available
if it is thought to be relevant to others. The open source movement certainly
promotes sharing so that incentive is present. It also allows reputation building,
which as we have seen may be a surrogate for career mobility, another incen-
tive. While GPL’d content is copyrighted in the name of its owner/originator,
the license allows modifications to be copyrighted by the contributor of the
modification, which is certainly an incentive. On the other hand, open GPL’d
projects like MySQL that are dual licensed may have a policy of meticulously
reimplementing code contributions from volunteers, precisely so that the own-
ership of the original and now extended copyrighted product is not clouded or
diluted.

In addition to an organization having the appropriate collaborative culture,
it also needs to be at the correct stage of technological readiness to be a good
candidate for successful distance collaboration (Olson and Olson, 2000). His-
torically, the technologies underpinning collaboration were adopted by orga-
nizations in the following order: telephone, fax, e-mail, telephone audiocon-
ferencing, voice mail, e-mail with attachments, videoconferencing, Web sites
of static information, shared calendars, and so on. We have mentioned else-
where the enabling developments in technology, from FTP to the widespread
dispersion of the Internet, to the creation of versioning systems like CVS,
which were preconditions for the kind of open source environment we see
today. These represented the technological readiness conditions for the entire
paradigm. The impact of technological characteristics on distributed open col-
laboration, as opposed to traditional face-to-face collaboration, is examined
in empirical studies of the open source FreeBSD and GNU GCC projects by
Yutaka Yamauchi et al. (2000). One of the conclusions of the study is that the
conventional model of precoordinated work is inapplicable in these projects.
The project work tends to be coordinated after the fact, using mechanisms
like e-mail, CVS, and to-do lists to provide an appropriate balance between the
spontaneous, independent work contributions of individuals and the centralized
control.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 213

5.9.2 Conversational Interactions

Any kind of communication, whether computer supported or proximate,
requires extensive coordination between speakers (senders) and listeners
(receivers) (Whittaker and O’Conaill, 1997). In the first place, there must
be coordinating processes for initiating and terminating entire conversations
(called availability), as well as processes for coordinating how speakers and
listeners alternate turns during an initiated conversation (turn taking). In addi-
tion to process coordination, conversations also require content coordination,
which refers to the way in which the participants in the conversation establish
a shared understanding. Even something as apparently simple as turn taking
in proximate spoken communication is remarkably subtle. For example, colli-
sions, which occur when speakers overlap, happen only 5% of the time, so for
95% of the time only a single person is speaking. Despite this extensive mutual
exclusion, the delays between turns in spoken communications often occur at
the millisecond level! The turn-taking process determines how these transi-
tions are negotiated. Availability refers to the initiation of entire conversations.
Potential participants must identify when partners are available to converse
and also recognize whether the moment is opportune to initiate a conversation.
These processes require awareness and alertness on the part of participants to
cues that signal turn taking and availability, including understanding the social
protocols that reflect readiness to begin a conversational process or to switch
turns between speaker and listener. A simple relationship here is to the CVS
update command or the repository conflicts identified after commits. These are
different from one another but both are related to potential collisions in changes
made on a particular file. The CVS system does not preclude these collisions
but does at least notify the developer affected that a collision has occurred and
exactly what the nature of the resulting potential confusions is. The developers
involved are not really having an explicit conversation, but it is nonetheless like
a dialog mediated through the repository.

The role of nonverbal cues in face-to-face conversational exchanges is well
known. Argyle (1969) classified nonverbal cues into mutual attention (evi-
dence of attention by the other), channel control (nods and looks that negotiate
turn taking), feedback (to track agreement), illustrations (gestures for deixis or
emphasis), emblems (like a head shake to indicate “no”), and cues that reflect
interpersonal attitude (like facial expression, proximity, gaze, etc.). Such non-
verbal cues “are always combined with other cues and usually with a verbal
message” (p. 63), and in their absence, the participants will modify or adapt
their actions to attempt to accommodate the deficit. For example, a click on
a downloaded copy of a program’s license agreement may be the gesture that

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

214 5 Demographics, Sociology, and Psychology

confirms or assents to the contractual text of a license. The click that down-
loaded the product in the first place is a conceptually separate artifact and has
no licensing implications. In a sense this is a primitive conversational exchange
with verbal and nonverbal elements, though in this case it is the underlying legal
content that represents the substance of the interaction. On the other hand, for
the GPL it is the very act of modifying or distributing the software that connotes
assent to the license agreement rather than explicit acts of agreement like clicks
(Fitzgerald and Bassett, 2003).

Establishing a shared understanding is far more complex than simply navi-
gating a conversation. For one thing the literally expressed meaning of a com-
munication underspecifies what the speaker fully intends. What is unspoken has
to be inferred by the listener from the discussion context, prior understandings,
and contextual environmental cues in the physical environment. Some of this
inferred understanding can be gathered from the preposited shared source rep-
resented by common ground. For example, common ground facilitates deictic
reference, which lets participants easily identify artifacts in the environment.
As part of establishing shared understanding, conversations require a feedback
loop so that speakers can confirm that listeners have correctly understood the
intent of their communications.

Human conversation, face-to-face or computer-supported, can be viewed as
a series of interlocked communication cycles, each cycle involving a “series
of operations on a given message: composition, editing, transmission, recep-
tion, feedback (acknowledgment of receipt), and reply,” the time to complete
the cycle depending on the communication media (McGrath and Hollingshead,
1994, p. 8). Much of the information used to support conversations is based
on visual cues automatically available in face-to-face environments, includ-
ing communicative cues about other participants in the interaction and cues
about the shared environment itself. Communicative cues include gaze, facial
expression, gestures, and posture. Communicative processes like turn taking
may depend on information from multiple channels, such as gaze, gesture, and
posture. Each of these cues in turn is complex. For example, gaze information
depends on where a person looks, how long he looks, and the manner in which
he looks. When a listener gazes at a speaker, the listener picks up important
visual cues that clarify the content of the speaker’s words. When a speaker
gazes at a listener(s), this supplies critical feedback as to whether the speaker
is being understood and, if not, the speaker can adjust or clarify the message
accordingly until cues indicating understanding manifest.

Significantly, nonverbal signaling can proceed concurrently with verbal com-
munication without interrupting the verbal communication (Short et al., 1976).
The effects are subtle in terms of their impact on the conversational process.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 215

For example, a “negotiated mutual gaze” (Whittaker and O’Conaill, 1997,
p. 29) between speaker and listener signals that the speaker is yielding the
turn to the listener. Or, the speaker can gaze at the listener to prompt atten-
tion on the listener’s part. A gaze can be modulated to indicate the speaker’s
affective attitude to the listeners or the affective content of what the speaker
is saying: trustworthy, sincere, skeptical, amicable, and so on. The characteris-
tics of a person’s gaze behavior are also revealing. For example, an individual
who looks at his conversational partner only a small part of the time will tend
to be evaluated as evasive, while a person with the opposite behavior may be
interpreted as friendly or sincere. Facial expressions are an even richer source
of communicative information and feedback than gaze. They range from head-
nod frequency to cross-cultural expressions of affect. A glance is another useful
visual behavior that can allow a participant to determine whether another person
is available for conversation, or not present, or engaged in another activity or
conversation. Glances also serve as useful “prompts to the identity of a potential
participant” (Daly-Jones et al., 1998, p. 34).

Conversational dialog is a prototypical interaction and so it is useful to
understand the structure of such dialogs. Models of discourse like the conver-
sation analysis of Sacks et al. (1974) and the interactionist model of Clark and
Schaeffer (1989) have been used to analyze the structure of conversations. The
Sacks model takes a regulatory view of dialog, emphasizing the role of turn
taking in discussions and factors like how often the speakers in a conversation
overlap, the length of gaps between speakers, the lengths of individual turns,
interruptions, and breakdowns in the dialog. It tends to interpret breakdowns
in conversational flow as failures of communication and a smooth flow of turn
taking as indicating conversational success. The alternative interactionist model
interprets the underlying issue in a dialog as attaining a shared understanding,
not about regulating turn taking. This approach interprets interruptions and
overlaps in speech not as disruptions of a normative smooth sequence of turns,
but as necessary to produce a common ground of shared understanding, which
is the real objective of the dialog.

Human interactions have multiple components, including making contact
in the first place, turn-taking disciplines, attention monitoring, comprehension
feedback, and various kinds of deixis to objects or persons (Whittaker and
O’Conaill, 1997). Each of these components can be supported by auditory or
visual cues. Both parties can use auditory or visual signals. Visual signals appear
to be more important when larger the number of participants. Turn taking can
use either visual or auditory cues, the latter including affects like vocal changes
in pitch, which serve as turn regulators. Beyond the issue of attention, there
is also the question of agreement. Visual cues like “postural congruence or

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

216 5 Demographics, Sociology, and Psychology

mirror imaging of body orientation may signal similarity of views” (Whittaker
and O’Conaill, 1997, p. 25) but explicit auditory verifications of interpretations
may be required in addition to the visual cues. So-called back-channel cues
are also used to implement reciprocity. These include auditory references like
“OK” and visual back-channel cues like nods. Both auditory and visual deixis
provide important support for collaboration because they facilitate reference to
“the artifacts used in cooperative tasks (which) support distributed cognition
in that they allow people to externalize their thought processes so that they
can be shared by others” (p. 26). Shared artifacts can play an important role in
mediating and coordinating negotiations. Increased conversational interaction
aids understanding more than mere listening. The putative explanation for this
effect is that “conversation involves participants trying to establish the mutual
belief that the listener has understood what the speaker meant . . . a collaborative
process called grounding” (Grayson and Conventry, 1998, p. 37). This mutual
view of conversational understanding contrasts with the autonomous view of
understanding according to which “merely hearing and seeing all that happens
and having the same background knowledge is sufficient to understanding fully”
(Grayson and Conventry, 1998, p. 37).

5.9.3 Social Cues

Social context cues are generally attenuated in computer-supported systems.
For example, the detailed real-time feedback that face-to-face interactions pro-
vide allows remarks that are recognized as offensive, on the basis of social
cues after being spoken, to be quickly retracted on the grounds they were actu-
ally misinterpreted or unintended. This is less feasible in a computer-supported
environment because the subtle cues signaling offense are less available. Sproul
and Kiesler (1986) claimed that the diminution of such cues tends to result in
behavior that is “more extreme, more impulsive, and less socially differentiated”
(p. 1496) than in a face-to-face context, with negative behaviors exhibited rang-
ing from flaming to decreased inhibition about delivering negative information.
They explain this behavior as resulting from reduced static and dynamic social
cues. Static social cues refer to artifacts symbolizing status, like an overwhelm-
ing entrance lobby to a corporate building that is intended to connote the status
and power of the enterprise. Dynamic social cues refer to body expressions
like nods of approval or frowns. Adrianson and Hjelmquist (1991) note there
are some benefits to nonrich computer-supported environments. The absence
in computer-supported systems of nonverbal signals, like the signals available
in face-to-face communications for conveying attitudes and feelings and “regu-
lating interaction” (p. 282), helps explain the more egalitarian communication

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 217

that appears to occur in such systems. This is partly because the attitudes whose
signals are absent include those used to convey status or dominance. The com-
munication of these attitudes depends significantly on face-to-face effects like
“gaze, posture, position, gestures,” and so on (p. 282).

Fewer social cues may also lead “to psychological distance, psychological
distance leads to task-oriented and depersonalized content, and task-oriented
depersonalized content leads in turn to a deliberate, un-spontaneous style,”
according to Spears and Lea (1992, p. 34), while conversely a richer, face-to-
face environment makes interpersonal factors more salient. The limited range
of social cues in computer-supported groups is often used to explain antiso-
cial behaviors like decreased inhibition and the benchmark behavior of group
polarization. Group polarization refers to the “tendency for the (average) atti-
tudes or decisions of individuals to become more extreme, in the direction of
the already preferred pole of a given scale, as a result of discussion within a
group” (p. 37). This disturbing phenomenon is one of the most well-established
characteristics of group behavior. There are different explanations for why it
happens. Spears and Lea claim that computer-supported communications exac-
erbate group polarization because they “undermine the social and normative
influences on individuals or groups, leading to a more deregulated and extreme
(anti-normative) behavior” (p. 37). The usual explanation for group polariza-
tion had been different. It claimed that the egalitarian, uninhibited behavior
of computer-supported groups increases the number of so-called “persuasive
arguments,” reenforcing the general direction of group opinion. The fact that
there are a reduced number of social cues in the environment then leads to more
extensive exchanges of arguments and progressively more extreme arguments.
Factors like deindividuation and depersonalization come into play. In social
psychology, deindividuation refers to “the loss of identity and weakening of
social norms and constraints associated with submergence in a group or crowd”
(p. 38). It is encouraged by the anonymity and reduced feedback typical of
computer-supported environments which in turn provoke more asocial behavior.
Depersonalization also occurs in these groups because the decreased number of
social cues redirects the attention of participants to the objective task and away
from the social context. These two psychological effects combine to allegedly
make the group less interpersonally oriented and more information-oriented.
The group is then more affected by the impact of “persuasive arguments,” with
the resulting tendency toward group polarization. In contrast to this conven-
tional social–psychological explanation for group polarization, Spears and Lea
explain polarization as a consequence of the fact that people are more likely to
be affected by group influence “under de-individuating conditions because the
visual anonymity (provided by computer-supported environments) will further

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

218 5 Demographics, Sociology, and Psychology

reduce perceived intra-group differences, thereby increasing the salience of the
group” (p. 47, italics added). According to this explanation, group polarization
is not a manifestation of the socially barren computer-supported environments
but merely reflects the convergence of the group on an extreme group norm.
These are interesting but complicated analyses for why behavior like group
polarization occurs, but the basic point is that group polarization is an empiri-
cally recognized phenomenon.

5.9.4 Information Richness

Information richness refers to the information-carrying capacity of a medium.
In an analysis written before the widespread use of e-mail and the Web, Daft and
Lengel (1984) rated face-to-face contact at the high end of information richness,
followed by telephone communication (rated high), personal memos and letters
(rated moderate), and formal written documents (rated low). Since the exchange
of information represents the most basic level of functionality in a group collab-
oration, it is worth understanding what kinds of information tend to be used by
whom and how. For example, managers differed from nonmanagerial workers
in the kinds of information they use. They rated face-to-face communication
highest because of its immediate feedback capabilities, multiple cues, natu-
ral language use, auditory, and visual character. In contrast, traditional textual
communications suffered from slow feedback and no audiovisual cues, though
e-mail would of course be radically different in respect to the potential rate of
feedback, which could be both almost instantaneous and pervasively available.
Managers reacted to media characteristics based on their need to “make sense
of ill-defined, complex problems about which they may have little or unclear
information.” Consequently, they tended to use rich media when addressing
the “unpredictable human dimensions of organizations.” Because of their more
rapid feedback characteristics and multiplicity of cues, information-rich media,
such as face-to-face contact, let managers “communicate about and make sense
of these processes” more effectively.

The preference of managers for face-to-face interactions is informed by the
importance of intangible social and emotional factors in these communications
and the managerial significance of the “poorly understood aspects of the organi-
zation” (Daft and Lengel, 1984, p. 201). For a manager, “rich media” is a broad
category, including everything from site visits, breakfast meetings, and special
tours for personal contact, to phone calls for informal, personal communica-
tions. According to Mintzberg (1973), managers (at that time) spent over 80%
of their day on communicating but made only modest use of formal commu-
nications, extensively relying instead on internal and external contacts, gossip,

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 219

rumor, and so on. Although that study is a dated one, it seems plausible that
the technologies available have not radically altered the types of information
sought. Leaner media in contrast may “oversimplify complex topics and may
not enable the exchange of sufficient information to alter a manager’s under-
standing,” though they provide sufficient information for more routine problems
(Daft and Lengel, 1984, p. 192). Although this analysis was done before e-mail
became commonplace (e-mail is not one of the written forms considered), it
still resonates.

A preference for rich information sources increases with the uncertainty and
complexity of a problem, while less rich sources of information are perceived
as suitable for more routine matters. A medium is considered more information
rich, the more rapidly it allows users to disambiguate lack of clarity (Lee, 1994).
Information richness reflects how effective a medium is for producing timely
shared understanding and for its capacity to support learning. This is relevant to
managerial concerns like equivocality, defined as uncertainty about the mean-
ing of information because the information can be viewed from more than one
perspective. Face-to-face communication provides many cues to reduce equiv-
ocality. Uncertainty or lack of information about a situation can be reduced
by obtaining additional information, but equivocality is unaffected by further
information and only resolved or clarified through a negotiating discussion that
is used to converge on a consensus interpretation that minimizes equivocality
(Hohmann, 1997). Such a process of negotiation is highly social and interper-
sonal. According to Kraut et al. (1990), high equivocality leads decision makers
into a fundamentally social interaction because they are essentially involved
in a process of “generating shared interpretations of the problem, and enact-
ing solutions based on those interpretations” (p. 7). This research even claims
that “organizations reduce equivocality through the use of sequentially less
rich media down through the hierarchy” (p. 212). Such a conclusion would be
consistent with the notion that nonrich, computer-supported communications
are better suited for reducing uncertainty or lack of information, as opposed
to reducing equivocality or the existence of multiple interpretations of infor-
mation. The reliance of open source development on lean as opposed to rich
information sources in the sense just described may be related to the commonly
expressed concerns about the limited ability of open development to thoroughly
understand user needs (Messerschmitt, 2004).

References

Adrianson, D. and Hjelmquist, E. (1991). Group Process in Face-to-Face Computer
Mediated Communication. Behavior and Information Technology, 10, 281–296.

Argyle, M. (1969). Social Interaction. Methuen, London.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

220 5 Demographics, Sociology, and Psychology

Clark, H. H. and Schaeffer, E. (1989). Contributing to Discourse. Cognitive Science,
13, 259–294.

Daft, R. and Lengel, R. (1984). Information Richness: A New Approach to Managerial
Behavior and Organizational Design. In: Research on Organizational Behavior,
vol. 6, L. Cummings and B. Staw (editors). JAI Press, Homewood, IL.

Daly-Jones, O., Monk, A., and Watts, L. (1998). Some Advantages of Video Conferenc-
ing over High-Quality Audio Conferencing: Fluency and Awareness of Attentional
Focus. International Journal of Human–Computer Studies, 49, 21–58.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Fitzgerald, B. and Bassett, G. (2003). Legal Issues Relating to Free and Open Software.
In: Essays in Technology Policy and Law, vol. 1, B. Fitzgerald and G. Bassett (edi-
tors). Queensland University of Technology, School of Law, Brisbane, Australia.,
Chapter 2.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Sebastopol, CA.

Galegher, J. and Kraut, R. E. (1992). Computer-Mediated Communication and Collab-
orative Writing: Media Influence and Adaptation to Communication Constraints.
CSCW, New York, 155–162.

Grayson, D. and Coventry, L. (1998). The Effects of Visual Proxemic Information in
Video Mediated Communication. SIGCHI Bulletin, 30(3), 30–39.

Hohmann, L. (1997). Journey of the Software Professional. Prentice Hall, New Jersey.
Kraut, R. E., Egido, C., and Galegher, J. (1990). Patterns of Contact and Communica-

tion in Scientific Research Collaborations. In: Intellectual Teamwork: Social and
Technological Foundations of Cooperative Work. Lawrence Erlbaum, Hillsdale,
NJ, 149–171.

Lee, A. S. (1994). Electronic Mail as a Medium for Rich Communication: An Empirical
Investigation Using Hermeneutic Interpretation. MIS Quarterly, 18, 143–174.

McGrath, J. E. and Hollingshead, A. B. (1994). Groups Interacting with Technology.
Sage Pub, Newbury Park, CA.

Messerschmitt, D. (2004). Back to the User. IEEE Software, 21(1), 89–91.
Mintzberg, H. (1973). The Nature of Managerial Work. Harper and Row, New York.
Nunamaker, J. F. (1999). Collaborative Computing: The Next Millennium. Computer,

32(9), 66–71.
Olson, G. and Olson, J. (2000). Distance Matters. Human–Computer Interactions, 15,

139–178.
Sacks, H., Schegloff, E. A., and Jefferson, G. A. (1974). A Simplest Systematics for

the Organization of Turn-Taking in Conversation. Language, 50, 696–735.
Short, J., Williams, E., and Christie, B. (1976). The Social Psychology of Telecommu-

nications. Wiley, London.
Spears, R. and Lea, M. (1992). Social Influences and Influence of the “Social” in

Computer-Mediated Communication. In: Contexts of Computer Mediated Com-
munication, M. Lea (editor). Harvester Wheatsheaf, London, Chapter 2, 30–65.

Sproul, L. and Kiesler, S. (1986). Reducing Social Context Cues: Electronic Mail in
Organizational Communication. Management Science, 32, 1492–1512.

Torvalds, L. (1999). The Linux edge. Communications of the ACM, 42(4), 38–39.

P1: KAE
9780521881036c05 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:53

5.9 The Collaborative Medium 221

Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida, T. (2000). Collaboration with
Lean Media: How Open-Source Software Succeeds. In: Proceedings of Computer
Supported Cooperative Work Conference (CSCW ’00). ACM, New York, 329–338.

Whittaker, S. and O’Conaill, B. (1997). The Role of Vision in Face-to-Face and Mediated
Communication. In: Video-Mediated Communication, K. Finn, A. Sellen, and S.
Wilbur (editors). Lawrence Erlbaum Associates, Mahwah, NJ, Chapter 2, 23–49.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6

Legal Issues in Open Source

Much of the impetus for the free and open software movement arose as a reaction
to legal issues related to software licensing. Consequently, questions concern-
ing what is commonly called intellectual property have been a habitual feature
of the open source landscape. Intellectual property includes creations like copy-
righted works, patented inventions, and proprietary software. The purpose of
this chapter is to survey some of the relevant legal issues in this domain in
an accessible manner informative for understanding their relevance to free and
open development. The legal and business mechanisms that have been devel-
oped to protect intellectual property are intended to address the core objective
of protecting creations in order to provide appropriate incentives for innovators.
Traditionally, such protection has been accomplished through exclusion. For
example, under copyright law, one is not allowed to distribute a copyrighted
work without the authorization of the owner of the copyright. The General Pub-
lic License (GPL) that lies at the heart of the free software movement takes an
unconventional perspective on the use of copyright. It focuses not on how to
exclude others from using your work, but on how to preserve the free and open
distribution of your work when you do allow others to modify and redistribute
it (Weber, 2004). We will consider the basic legal concepts associated with
intellectual property and how they have been brought to bear in the open source
movement. We describe the characteristics of the flagship free software license
(the GPL) and various other open and proprietary licenses, particularly the so-
called OSI-certified licenses sanctioned by the Open Source Initiative (OSI).
We address the basic concepts of copyright, derivative works, public domain,
patents, software patents, contracts, and licenses. We also touch on related
matters like trade secrets, nondisclosure agreements, trademarks, reverse engi-
neering, the novel concept of copyleft, enforcement issues, the next version of
the GPL (GPLv3), and the nature of derivative works of software. Our primary
frame of reference is the U.S. legal system, so caution must be exercised when

222

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.1 Copyrights 223

interpreting the concepts examined here in a global context. There are impor-
tant international differences especially in the area of software patents, as well
as in copyright enforcement, contract, and the acceptability of techniques like
reverse engineering, which we address only briefly.

Disclaimer: The discussion in this chapter should not be considered legal
advice. It is an overview by nonlawyers of legal and licensing issues pervasive
in the free software movement and a discussion of relevant historical context. It
is not intended to replace competent legal counsel for which you must consult
a lawyer.

6.1 Copyrights

A copyright gives the creator of a work the exclusive right to

1. make a copy of the work,
2. distribute copies of the work for sale or for free,
3. disclose or display the work publicly, and
4. create so-called derivative works that are derived from the original product.

The protection of such intellectual property was considered so fundamental
in U.S. history that it was included under the powers granted to Congress as
the so-called “Patent and Copyright Clause” in the U.S. Constitution; namely,
that the Congress had the power and obligation “To promote the Progress of
Science and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries” (Article 1: The
Legislative Branch, Section 8: Powers of Congress, of the U.S. Constitution).
Over time, progress in technology led Congress to update the laws on intellectual
protection on multiple occasions. Software was explicitly defined and added to
this protection in 1980. The Digital Millennium Act in 1998 made some further
refinements and extended copyright protection to 70 years after the death of the
author. Copyrights can be applied to software products, including both programs
and data files like images.

The protection provided by copyright starts automatically as soon as a work
is fixed in tangible form. The notion of tangibility is treated in a broad and
forward-looking way in the law. Thus the Copyright Act of 1976 defined it as
referring to works “fixed in any tangible medium of expression, now known or
later developed, from which they can be perceived, reproduced, or otherwise
communicated, either directly or with the aid of a machine or device,” making
the meaning of “tangible” technologically invariant! You can establish proof
of the starting date of the copyright by dating the product in a manner that

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

224 6 Legal Issues in Open Source

guarantees the authenticity of the date. According to the Berne Convention
for the Protection of Literary and Artistic Works (which is followed by most
nations), a copyright generally lasts for a minimum of 95 years after the death
of the author, rather than from the date of the original copyright. Under U.S.
law copyrights for new works last for the author’s life plus 70 years, or, for
works made for hire, 95 years from publication or 120 years from creation,
whichever is shorter, after which the work passes into the public domain. The
fact that copyrights have been largely internationally harmonized under the
Berne Convention is important because it makes their application more uniform
than contract law, which is more subject to local or national vagaries (Fitzgerald
and Bassett, 2003).

A notice of copyright on a product has the form Copyright @ 2006 Don
Knuth, indicating the beginning date (year) of the copyright and the copyright
owner (or owners). Although the notice of copyright is not required, it is very
important in infringement suits because it eliminates the defense of uninten-
tional infringement. In the United States a copyright may be registered with the
Library of Congress (refer to www.copyright.gov for the process). Although
under international law, registration is not a condition of copyright protection,
registration does serve as a substantial proof of authorship in the event of an
infringement suit. Furthermore, “registration is required to initiate litigation to
enforce the copyright” and “early registration provides added protection in the
form of statutory damages and attorney’s fees if litigation becomes necessary”
(Rosen, 2005, p. 18). There is a requirement for what is called mandatory deposit
under which “copies of all works under copyright protection that have been pub-
lished or distributed in the United States must be deposited with the Copyright
office within 3 months of the date of first publication” (www.copyright.gov),
though failure to do so does not result in a loss of copyright protection. The
copyright owner has the right to sell his copyright or transfer it to another. A
distinction, especially noteworthy in the case of software production, is that the
author of the work is not necessarily synonymous with the owner of the copy-
right. If the work is done as part of the author’s employment, the owner of the
default copyright is the author’s employer, not the author. This is also the case
for works that are done “for hire” for another party. Interestingly, copyrights
in works not done for hire that have been transferred appear to revert to the
original owner after a 35-year period, under certain conditions.

Copyright protects only the tangible implementation or expression of an
idea, not the idea itself. Thus it is not a violation of copyright to produce a
similar product that is inspired by the overall look and contents of an original
copyrighted product, subject to the criterion of substantial similarity, as dis-
cussed later. This aspect of copyright is particularly relevant to open source

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.1 Copyrights 225

development, a fair amount of which has been based on implementing open
source systems that mimic the appearance and functionality of proprietary sys-
tems. A work formed by collecting together previously or separately copy-
righted works whose copyrights are still preserved in the collection is called a
compilation. For example, in the case of a software system consisting of copy-
righted components, the system would include permissions from the copyright
owners of its components. The need for an appropriate paper trail to substantiate
the legal pedigree of open source code is increasingly recognized as essential.
The Free Software Foundation (FSF) has actually long required that “each
author of code incorporated in FSF projects provide a copyright assignment,”
which is the only way the FSF believes it can ensure the code is and remains free
(http://www.gnu.org/licenses/why-assign.html). On the other hand, the Linux
project until 2004 did not require contributors to assign their copyrights over
to Linus Torvalds or even to confirm that they were the copyright owner of
their contributions. Each individual contributor maintained his copyright, like
in a compilation. Post-2004, Linux contributors had to state that they owned
the contributions they were making, though they do not have to assign their
copyright. In a related vein, Brian Behlendorf of Apache observes that while
the Apache project did not require contributors to sign a copyright assignment,
they had always used a contributor license agreement that gives Apache the
right to distribute the code under any license it desired (Andersen, 2004).

Infringement and Derivative Works
The violation of a copyright condition is called a copyright infringement. A
form of copyright infringement, in the case of software, is redistributing mul-
tiple copies of a copyrighted software product, whether for free or for sale,
a practice called software piracy. Even making additional copies for personal
use, unless as authorized by a software license agreement, is an infringement
since the copyright owner is the only one who has the right to make copies.
Whether the owner sells or gives away the software for free, he still retains
the original “copyrights,” except insofar as they are transferred to the user via
a licensing agreement or assignment. In the case of derivative works (to be
defined shortly), a key legal test for the existence of a copyright infringement
is based on substantial similarity between an allegedly infringing work and
the copyrighted work. Two works are said to be substantially similar if a lay
observer would recognize the infringing work as at least partly copied from the
original copyrighted work (Jassin and Schecter, 1997). Copyright infringement
whether intentional or not is subject to civil and criminal liability. The copyright
owner can sue in the case of infringement for actual financial losses. Alterna-
tively, the law also allows a plaintiff to sue for so-called statutory damages,

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

226 6 Legal Issues in Open Source

which are damages specified under law or statute, to a maximum of $150,000
per infringement, even in the absence of demonstration of actual loss for so-
called willful infringements. A striking example of the financial implications
of copyright infringement is demonstrated by the MP3.com case, where plain-
tiffs were awarded $25,000 per uploaded CD for a total of over $100 million
dollars (Landau, 2000). Such damages can even apply for what might appear to
be minor copyright infringements. A court can also issue an injunction against
continued infringement.

The U.S. Copyright Act defines a derivative work as a work that is based on
a previously copyrighted work, but this law does not address the case of deriva-
tives of software works (Webbink, 2003). An ordinary copyright preserves to
its owner the copyright for any derivative works based on the copyrighted work,
but for software the definition of what constitutes a derivative work is sometimes
tendentious. For example, simple translation of a copyrighted work into another
language, such as another programming language, is prohibited by the Berne
Convention without the permission of the original copyright owner. Generally,
a software product is considered as derivative if it contains original, modified,
or translated source code from an original program. But it is not considered as
derivative if it merely links to a preexisting copyrighted program library or plugs
into a copyrighted program designed to accept plugins, absent indications of
intent, such as “whether the resulting program is being sold as an enhanced ver-
sion of the original” (Rosen, 2003), though the legal issues do not appear to be
settled. A key legal test is whether the work is substantially similar to the orig-
inal in its “total concept and feel” (see Fitzgerald and Bassett, 2003; Fishman,
2004a). Refer to the work by Fishman (2004b) for a treatment of copyright in
open source. To get a sense of what might or might not constitute substantial
similarity, consider a case referred to by Fitzgerald and Bassett (2003). They
describe a challenge to the legal status of an improved computer game where
the difference was that the game characters could move faster and could float.
The court decided that the modification did not constitute an infringement of
the original game’s copyright.

Fair Use
Copyrighted materials are generally subject to what is called a fair use provision.
Fair use refers to the copying and use of limited parts of a copyrighted work for a
limited period of time, under the assumption of proper attribution of the owner of
the copyright, for such purposes as education and research, but without requiring
the explicit permission of the copyright holder. Such use does not constitute
copyright infringement and is explicitly allowed by the U.S. Copyright Act.
However, there are strict guidelines on how much of a work may be copied.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.1 Copyrights 227

A key consideration in the application of fair use is the question of damage to
any commercial value of the product. However, in the case of software, fair use
in the traditional sense becomes immediately problematic since the program’s
useful functionality requires copying the entire code, which is contrary to fair
use restrictions even in the case of educational use.

Public Domain
Software or other creative works that are not under copyright protection are said
to be in the public domain. Anyone can copy, modify, redistribute, or sell such a
work as if it were his own. Previously copyrighted works become public domain
when their copyright expires. Works created by government employees are
automatically in the public domain. The original owner of a copyrighted work
can allow his work to enter the public domain by relinquishing the copyright,
though this appears to be rarely done and the mechanisms for doing it also appear
unclear. The Judicial Improvement Act of 1990 provides some mechanism
related to the Library of Congress that allows the owner of software copyrights
to donate his software to the public domain (Samuels, 1993). Once a work
enters the public domain, it remains public. However, derivative works based
on a public domain work are automatically the property of their author. This
also applies to modified versions of public domain software. An interesting
case is Don Knuth’s TeX system, which he has repeatedly indicated should be
considered as public domain, though the TeX name is registered as a trademark,
so versions that others produce cannot be called TeX. Knuth has also stated that
the version of TeX extant at his death will be “forever left unchanged” for
the reason that he believes an unchanging permanent system “has great value”
(Knuth, 1990, p. 145). In contrast, the LaTeX language for TeX is free software
(though its license is not GPL-compatible). Curiously, even though no one owns
a public domain work, a collection of such works based on some distinctive
selection criteria can nonetheless be copyrighted as a whole. Finally, we note an
application of the concept of public domain that is somewhat pertinent to free
software issues, the so-called abstraction–filtration–comparison test used by
courts to decide whether or not a program is a derivative work. One of the steps
in the test involves filtering out the public domain elements from the software
(Webbink, 2003).

Clearly, open source and free software are obviously not in the public domain,
since their licenses rely on preexisting copyright ownership of the software,
while public domain software has by definition no copyright protection. In
fact, the FSF Web site recommends using the term “public domain” only in its
strict meaning of “not copyrighted,” though if the source code for a program
is in the public domain, the site (gnu.org/philosophy/categories.html, accessed

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

228 6 Legal Issues in Open Source

December 19, 2006) does characterize it as “noncopylefted free software.” A
cautionary perspective about trying to just give software away is provided in
Rosen (2002), who observes that, in addition to the fact that such software can
subsequently be enclosed in proprietary products (which may or may not be your
intention), providing it as a “gift” exposes the giver to potential warranty and
liability claims. Disclaiming warranties and liabilities and distributing software
“as is” requires a license in the first place. Rosen suggests that if you want to
give software away, an appropriate solution is to “use a simple license such as
the MIT license” (Rosen, 2002).

6.2 Patents

The legal notion of a patent is a longstanding one, but software patents have
become available only much more recently. Their use is still evolving and
controversial, and there are significant differences between nations. The FSF
strongly opposes the application of patents to software, believing that this will
severely undermine the free software movement. We shall discuss some of the
objections, but we will first elaborate on the basic principles and practice of
patenting. In contrast to copyright, where there has been considerable interna-
tional harmonization, the law on patents varies considerably across countries,
and especially so in the case of software patents.

In the United States, it is the United States Patent and Trademark Office
(USPTO) (http://www.uspto.gov) that administers the approval of patents. The
USPTO defines a patent as “the grant of a property right to the inventor” by
the government, for a novel, useful, and nonobvious invention. The patent gives
the owner the “right to exclude others from making, using, offering for sale, or
selling” the patented invention. This does not give the patent owner the right to
exploit the patent, because the patented invention may itself be an improvement
over a previously patented invention whose patent is still in effect. However,
in that case the owner of the original underlying patent could license his own
invention to the new patent owner for a royalty fee. A patent covers the idea
underlying an invention and not just a specific expression or implementation
of the concept. A patent can also cover the ideas embedded in software. A
patent application should be applied for before any public demonstration of the
invention, else patent rights can be lost (such as 12 months after publication in
the United States). The patenting process itself is not cheap. The Patent Office
indicates that it costs “a minimum of about $4,000 over the life of the patent”
in patent office fees, but additional attorney’s fees add up quickly, so the total
costs are likely to be significantly more, and the stronger the patent claim, the
more expensive the legal process will be. A patent applies for 20 years “from

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.2 Patents 229

the date on which the application for the patent” is filed. This is a significantly
shorter period of time than the duration of a copyright. A patent from the U.S.
Patent Office will apply only in the United States. The United States is one of
the few nations that bases patents on a first-to-invent as opposed to first-to-file
principle, though the first person to file obviously has a default presumption in
his favor.

A patent requires disclosure of the idea underlying the invention in an appli-
cation to the Patent Office. This disclosure is part of the quid pro quo between
the government and the inventor. The inventor discloses – which promotes
progress because other inventors can build on his invention. The government
protects the inventor’s intellectual property – so that he can at least potentially
benefit commercially from the invention. The disclosure is basically a written
description of “how to make and use” the proposed invention. An accelerated
process for review of a patent proposal provides a decision about patentabil-
ity within one year, while the normal process takes an average of almost two
years. Naturally, the rationale for an expedited process follows from the very
purpose for intellectual protection given in the U.S. Constitution. The Patent
Office Web site describes this as an “accelerated examination (that) can provide
innovators with the early certainty they may need to attract investors or protect
their inventions against infringers,” which immediately connects the patent to
commercial prospects and legal protection. Under the accelerated process, the
inventor must search for the relevant prior art that lies close to the invention,
identify what that prior work teaches, and distinguish the proposed invention
from the art.

Patents differ from copyrights in that patents protect the idea of an invention,
while copyrights protect the expression of a creation. For example, in the case
of software, while a copyright may be circumvented without infringement by
implementing a program differently from a copyrighted program, this would not
avoid software patent infringement and the possibility of significant damages.
A software patent has a very different impact than a software copyright. Since a
copyright protects only the expression of an idea, it does not prevent developers
from creating an alternative implementation with very similar functionality.
A patent on the other hand protects the idea behind a piece of software and
not merely its implementation. Thus while just rewriting some code could
circumvent a copyright, this would but not necessarily avoid a patent on the
software.

Software Patents
Until recently the U.S. Patent Office had allowed patents only for “pro-
cesses, machines, articles of manufacture, and compositions of matter.” Patents
had traditionally not been allowed for “scientific truths” or “mathematical

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

230 6 Legal Issues in Open Source

expressions,” the latter of which software and computer algorithms were
deemed to be. The first landmark decision leading to the recognition of software
patents came in the case of Diamond v. Diehr in 1981 when the U.S. Supreme
Court first allowed a patent to be sustained for an application that involved
software control of a manufacturing process. The next decisive case was that
of In v. Iwahashi decided by the U.S. Supreme Court in 1989 when a patent for
a voice recognition algorithm was approved that did not involve an associated
device. The U.S. Patent Office issued detailed guidelines for software patent
handling in 1996. Significantly, U.S. courts supported a presumption of patent
validity, making it even easier to obtain patents.

Well-known software patents include those on the LZW compression algo-
rithm, which is used in the algorithm for creating GIF files, Karmarkar’s
renowned algorithm for linear programming for which AT&T Bell Labs was the
patent assignee (patent filed 1986, granted 1990), and the MP3 music format.
A famous legal case involving software patents is that of the U.S. corporation
Eolas, which obtained a patent for browser plug-ins. The patent was initially
rejected by the U.S. Patent Office and widely disputed by both open source
advocates Microsoft and even World Wide Web inventor Tim Berners-Lee.
Despite this, the company sued Microsoft in 1999 for patent infringement and
eventually won a half-billion-dollar settlement against Microsoft, which was
let stand by the U.S. Supreme Court in 2005. Interestingly, Eolas indicated it
would license the patented method free of charge to not-for-profit companies.

The basic objection of the FSF to software patents is that they make soft-
ware development a veritable minefield of intellectual property entanglements.
Stallman’s article on software patents and GIFs (gnu.org/philosophy/gif.html)
is instructive on these issues. The following observation by Stallman (2005)
crystallizes some of the concerns:

Developing a large and complex program means combining many ideas, often
hundreds or thousands of them. In a country that allows software patents, chances
are that some substantial fraction of the ideas in your program will be patented
already by various companies. Perhaps hundreds of patents will cover parts of your
program.

As an illustration of the magnitude of the problem, a study by Open Source Risk
Management (2004) identified almost 300 patent exposures in Linux. Although
a third of the patents were owned by Linux-friendly companies like IBM and
Red Hat, almost 30 were owned by Microsoft. Notably, both IBM and Red
Hat have promised not to assert their patents against the Linux kernel (Carver,
2005). In fact, IBM has pledged access to 500 key patents to “individuals
and groups working on open source software” (IBM Press Release, 2005).
In another interesting development related to free software patent protection,

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.2 Patents 231

Microsoft and Novell entered a mutual agreement to deploy and increase the
interoperability of Linux (specifically SUSE Linux Enterprise) and Windows
and to “provide each other’s customers with patent coverage for their respective
products” (Microsoft, 2006), though it will take time to understand what the
implications of this kind of agreement truly are. Another line of defense against
the threat posed by software patents may lie in the very code being developed
by the open source community. Patentable inventions must by law be novel and
nonobvious in terms of prior art. Since the free software community is in the
process of “building the largest repository of software prior art in existence,”
it may be increasingly difficult to establish a claim that a patented software
process is an advance over previous art (Carver, 2005, p. 464).

Despite the relatively recent emergence of software patents as a legal device,
there are an extraordinary number of such patents being granted. According to
Evans (2002) the number of software patents granted yearly has dramatically
increased from about 800 in 1986 to over 7,000 in the year 2000. The pre-
sentation by Stallman referred to earlier observes that there are currently “a
hundred thousand software patents each year,” a figure which if accurate can
only be described as astonishing. It has been argued that software patents tilt
the market in favor of proprietary developers (Bessen, 2002). Commercial com-
panies are more likely to have the financial and legal resources to even file a
patent. They can also acquire pools of patents, which they can use to negotiate
royalty-free use of another company’s patents (Shapiro, 2001). Despite the high
profile of the free software movement in opposing the use of software patents,
the open community’s objections are applicable to both open and closed source
software, though since open source is disclosed by definition, it is obviously a
more evident target for charges of infringement. Advocacy organizations like
the Public Patent Foundation can assist developers against individual charges
of infringement, but this is arguably only a temporizing measure.

The magnitude of the threat to free software from patents is cogently and
ominously described in a discussion by open source legal advocate Bruce Perens
(2004 and 2006), who underscores the potentially damaging cost of protection
against patent suits for free software developers and any but very large cor-
porations including those with proprietary software models. Remarkably, even
invalid patents can lead to huge awards. Perens describes, for example, the case
of Blackberry v. NTP. Based on a patent, the NTP company sued Blackberry
for patent infringement and subsequently received a half-billion-dollar settle-
ment, which was not reversed by the adjudicating court even after the U.S.
Patent Office had ruled the patent itself invalid! Furthermore, even the mere
threat of litigation can be incapacitating since, as Perens observes, “the cost
of a patent defense is many times the net worth of the typical Open Source

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

232 6 Legal Issues in Open Source

developer.” Indeed, accusation of infringement can even become a predatory
business model with individuals and smaller enterprises willing to pay license
fees to settle an allegation rather than embark on expensive litigation. Given
that the entire intent of the Patent and Copyright Clause of the U.S. Constitu-
tion was to promote the advancement of commerce, science, and the arts and to
encourage inventors to make their inventions public, so other inventors could
build on earlier work, it is strange that patent law itself now seems to threaten
software invention. Ironically, the mere act of making oneself aware of existing
patents, and thus exposing oneself to the accusation of being aware of a preex-
isting patent that one is accused of violating, can expose an individual to what
are called treble damages in law.

The corporate and international landscape with regard to software patents is
confusing. For example, despite being itself a target of major patent infringe-
ment claims, proprietary giant Microsoft has played a not inconsiderable role
in advocacy for the promotion of software patents. Although Microsoft had
initially relied solely on copyrights and a closed source software model for pro-
tection, in 1994 it advocated software patents at a U.S. Patent Office hearing.
Internationally speaking, software patents are treated quite differently in dif-
ferent countries. India rejected software patents in 2005, but software patents
have been widely issued in Europe. In mid-2006 the European Patent Commis-
sion announced a surprising decision to exclude software from patentability,
an action that on the surface represented a significant change in its anticipated
direction. However, the commission allows patents on software ideas. The FSF
strongly opposes this practice partly because such patents can be used to instill
fear by the threat of litigation. A successful litigation by a patent holder can
lead to significant fines, seizure of assets, and even imprisonment for the alleged
infringer. Even if most suits eventually fail, the mere threat of such litigation
can have a chilling effect on both software users and developers.

6.3 Contracts and Licenses

A contract is a legal agreement between two parties that identifies what each
party promises to do as part of an exchange. For example, the agreement may be
that party A will pay for goods or services provided by party B. A license is a con-
tract between the owner of a product and a prospective user that grants the user
certain rights regarding the use of the product that would otherwise be illegal.
For example, a landowner could grant a person license to walk on his property
but subject to some time of day restrictions and perhaps keeping quiet. It’s a two-
way agreement between the parties. As a more pertinent example, suppose a

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.3 Contracts and Licenses 233

person owns a copyright on a work. As the copyright owner, the person can grant
or transfer to a prospective user of the work some of the privileges that come
with copyright protection under U.S. law, under conditions stated in a license
agreement. For example, the license could say that the licensee can run the soft-
ware (an act that represents a copyright privilege) but is allowed to do so only
for personal and not commercial applications (which would represent a restric-
tion imposed by the copyright owner in the terms of the license). If the licensee
violates any of the conditions of the license, the licensor can consider the license
terminated at that point and sue the licensee for copyright violation since the
licensor only conditionally transferred some of the copyright privileges and at
this point that agreement would be voided. Thus, while a contract is enforced
under the provisions of contract law, a software license that transfers copy-
right under restrictions can be effectively enforceable under the provisions of
copyright law. Generally speaking, in the context of copyrights or patents for
intellectual property such as software, a license is an agreement by the owner
or licensor of the software property or invention to allow the licensee or license
holder to use the software, but only under certain conditions. The most com-
mon kinds of software licenses are proprietary licenses for commercial appli-
cations and the various open software licenses like the FSF GPL and the OSI-
certified licenses like the BSD, MIT, and Mozilla Public License (MPL). In
subsequent sections, we shall look at the kinds of conditions such licenses
impose.

The following discussion very briefly examines some relations between
copyrights, licenses, and contracts (refer to the Rosen (2005) for a more com-
plete treatment). A key principle to remember is that under copyright law, one
cannot exercise the “exclusive rights of a copyright owner or patent owner
without a license” (Rosen, 2005, p. 54). Therefore, open software requires a
license for its distribution. The GPL licenses its copyrights (but not copyright
ownership) through what is called a bare license. A bare license is not con-
sidered a contract, because among other reasons it does not require an explicit
manifestation of assent, which is one of the requirements for a valid contract.
The GPL is unusual in that it relies solely on copyright law rather than also
on contract law (Rosen, 2005). Its license states that “you are not required to
accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works.”
Thus there is no manifestation of assent required as needed for a contract. There
are significant legal differences between bare licenses and contracts. Since bare
licenses are not contracts, they cannot be enforced under contract law, so a
violation of the GPL can be enforced only under copyright law. Furthermore,
only a copyright owner has the legal standing to sue for infringement to enforce

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

234 6 Legal Issues in Open Source

a bare license like the GPL, while “a contract can be enforced by a licensor
even if he doesn’t own the underlying copyrights” (p. 58). In principle, a bare
license “can be revoked by the licensor . . . while a contract . . . can be enforced
under contract law and so that it cannot be revoked” (Rosen, 2005, p. 62).
Indeed, a licensed distributor can “enforce a license even if he or she doesn’t
own the copyrights in the underlying works” (p. 139). Although both copyright
and contract law vary worldwide, Rosen observes that the “global requirement
for consistency of commercial transactions . . . helps ensure that contracts are
interpreted in much the same way around the world” (Rosen, 2005, p. 58). It
is not hard for a license to be handled as a contract. In fact it does not even
require a change to its text, only that it be “offered and accepted as a contract”
(for some “consideration” – another requirement of a valid contract) (Rosen,
2005, p. 56). The required assent can be indicated when you click to agree to a
license that is presented to you before accessing software. We note that Eben
Moglen (2001) of the FSF has a very different perspective on the significance
of these issues, as we describe in the subsection on enforcement of the GPL
later in this chapter (also refer to Jones (2003)).

It is elementary but noteworthy to observe that the terms of a software
license generally impose no constraints on the owner of the software, only on
the person to whom the software license is granted; for example, restrictions
in a license on how the licensee is allowed to use the software apply to the
licensee, not the licensor. Of course, in the case of software the situation may
be dynamic. Thus, suppose the licensed software is part of an open source
development project and a contributor submits a patch he authored for which
he owns the copyright. The patch is designed to improve the original software,
and its incorporation would then constitute a derivative work of the original.
However, for the original licensor to create the derivative work, the licensor
must now obtain the contributor’s permission to incorporate the copyrighted
contribution into the improved derived work. The derivative work in a sense is a
type of compilation, since it now consists of a number of separately copyrighted
elements, albeit they may have been modified and integrated or merged in some
fashion. Alternatively, the author of the patch can transfer copyright ownership
to the project.

The right to sublicense is particularly relevant in open source development
because open projects develop recursively, with one developer building on the
work of another. Rosen (2005) discusses sublicensing in some detail. Since
open software is built up as a sequence of contributions to an original work, the
question that arises is “from whom does the person at the end of the chain of
title get a license to use, copy, etc” (Rosen, 2005, p. 87). The answer depends on

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.3 Contracts and Licenses 235

whether the license is sublicensable. Nonsublicensable projects just refer to the
copyright and other notices for any component in the source files. On the other
hand, if a license is sublicensable, “then any distributor has the right to grant
a license to the software, including its components, directly to third parties”
(p. 88). The open source MIT license (though not the BSD) is an example of
a license that is sublicensable, thus providing the advantage that “a distributor
can provide to his customers all the rights needed to the entire work without
expecting (them) to follow the chain of title to its beginning” (Rosen, 2005,
p. 90).

Other relevant license issues include patent rights, liabilities, and warranties.
For example, licenses like the IBM-originated, OSI-certified, corporate Com-
mon Public License include an explicit “grant of license to any patents con-
cerning the software that the author holds” (Capek et al., 2005), lest users
of the software inadvertently infringe such patents. As Rosen (2005, p. 167)
observes, the patent grant is not absolute but only for “those specific uses and
combinations . . . contemplated at the time of (the) initial Contributions.” This
condition affects the creation of derivative works that notably “may not exceed
the scope of the initial patent license” (Rosen, 2005, p. 167). The MIT open
source license illustrates the question of license warranties for noninfringe-
ment. Its “as is” condition, in addition to the standard indication that there are
no warranties “for fitness for a particular purpose,” also explicitly states that
it provides no warranty protecting you against claims of infringement if one
of the licensed components turns out to have a copyright or patent problem,
a responsibility which in any case “would be an impossible burden to impose
upon an open source licensor” (Rosen, 2005, p. 90). Ironically, Zittrain (2004)
observes, in contrast, how “a proprietary firm can stand behind the pedigree
of its code, both because the code presumably originated in controlled and
known circumstances and because the absence of accompanying source code
makes the firm’s offerings difficult to examine for evidence of theft.” Software
licenses commonly contain a provision renouncing or seriously limiting the
licensor’s liability for the licensee’s use of the software. Liability refers to a
condition where the use of a defective product causes harm. In general, the
developer or seller of a product may be legally liable for financial damages in
such cases. Licenses for software products typically require the user to agree
to limit liability for damages to the purchase price as a condition of use. For
example, if you read the Microsoft EULA (End-User License Agreement), you
will see that the warranty is limited to 90 days and your exclusive remedy is
basically a refund of the cost of the product if it proves defective within that
period.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

236 6 Legal Issues in Open Source

6.4 Proprietary Licenses and Trade Secrets

Software licenses fall into a variety of types: proprietary licenses that typically
do not disclose source code and have various restrictions, reciprocal licenses
like the GPL that require derivative works to follow the same license, and
intermediate licenses including academic licenses like the BSD that provide
source code but do not preclude derivative works from being closed source
(Rosen, 2005), effectively letting the user do anything. We begin our discussion
of the different kinds of software licenses with proprietary licenses. We shall also
discuss a number of related topics, including trade secrets, reverse engineering
software obfuscation, and nondisclosure agreements.

6.4.1 Basics of Proprietary Licenses

Proprietary software (assuming it is distributed for use by others) is the soft-
ware that is usually licensed by the owner under terms that restrict its use and
redistribution. Zittrain (2004) observes that “proprietary software in mass dis-
tribution almost uniformly reserves all rights to the author except a license to
‘run’ the software on the purchaser’s computer.” It is generally distributed as
closed source in the form of a binary executable. Zittrain characterizes this
practice as a “hallmark of proprietary software, complementing the creator’s
exercise of a legal right to prevent the use of source code in new works, with
a technical barrier to unauthorized use.” This type of distribution is done both
in order to protect the secrecy of the source code and because for most users
the executable is the most usable format for the product because it does not
require a separate compilation operation, which would be problematic for most
users. Closed source software is generally taken as synonymous with propri-
etary, but the point is sometimes made that closed and open are opposites, while
the opposite of proprietary is public domain.

An End-User License Agreement or EULA is the most common kind of soft-
ware license. It is typically proposed to a user for acceptance during software
installation as a precondition for use of the software. A EULA is usually agreed
to by checking a box on a form to indicate you have read the license and agree to
its terms, which seems to be the digital equivalent of signing a contract. These
licenses generally have extensive disclaimers about liability for the use of the
software, as well as restrictions on the use and sharing of the software. Pro-
prietary licenses typically indicate that fair use “does not include decompiling,
reverse engineering, or other such uses,” or copying, except for purposes of
backup (Webbink, 2003). Despite their prevalence, these licenses appear to be
very infrequently read, at least by average users (refer to Magid (2005) for an

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.4 Proprietary Licenses and Trade Secrets 237

amusing experiment that the security Web site PC PitStop devised to illustrate
this). The Web site included a clause in one of its own EULAs that promised
the reader consideration and possibly money if they e-mailed an address that
was listed in the license. Four months and 3,000 downloads later, only one
person had responded – and was rewarded $1,000 for his effort! The fact that
few people read the license was the likely explanation for the lack of follow-up
on the tempting offer, rather than prudence on the part of a legion of meticulous
license readers. In any case, it is unsurprising that these licenses go unread by
most users. People generally don’t read the fine print. However, licenses may be
very important to developers since they affect the extent to which the developer
can adapt the software and under what restrictions, as well as to corporate users
with deep pockets who could be seriously legally exposed for violations of the
license requirements.

Trademarks
Trademarks can be incredibly relevant to both proprietary and open source
products. In fact as Rosen (2005, p. 37) observes, “Often the key to marketing
success for open source projects are their product or brand names, or trade-
marks.” Trademarks are names or symbols that are used to brand the name
of a product for such purposes as protecting the reputation of the product or
differentiating the product from competitors. They identify the product as that
of a particular source or party. They are especially useful in environments like
open source where it is easy to enter derivative products into the market; in such
a case, established names can command customer loyalty as well as attention.
The existence of a trademark for an open project also tends to limit forking
in the project because only the main trunk of development has access to the
trademark recognition. This is important for the stability of development in
the open source movement. Trademarks can be registered with the USPTO,
but only marketing for public awareness and use of the trademark on products
can make a trademark valuable. For example, Red HatTM is a valuable trade-
mark that indicates that a premium organization is behind the software and
so connotes a superior product, and similarly for products like ApacheTM and
MySQLTM (Rosen, 2001a). To understand the impact of a trademark, consider
a product like Coca-ColaTM, which is based on a secret formula or trade secret.
As a matter of fact it appears not to be too expensive to reverse engineer this
formula chemically. But the value of the product is really in the trademark that
is internationally recognized, distinguishes the product in the marketplace, and
is accepted as a symbol of quality. Thus even in the case of a physical product
like Coca-ColaTM the market value of the product is inextricably linked to a

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

238 6 Legal Issues in Open Source

rather abstract intellectual property, not the intellectual property represented by
the trade secret, but the registered symbol represented by the trademark.

6.4.2 Trade Secrets, Nondisclosure Agreements, Reverse
Engineering, and Obfuscation

Software can be kept secret in a variety of ways, such as making it available
only in binary executables or only allowing access to its functionality over
a network without availability of the executables at all. Distributed software
can also be protected in other ways. Legal mechanisms like nondisclosure or
confidentiality agreements protect software by the threat of penalties for its
disclosure. Agreements like these for the Unix system were at the root of the
grievances that led to the free software movement. Although code can be hidden
in various ways, it can also be revealed by techniques like reverse engineering.
On the other hand, reverse engineering can be thwarted or at least complicated
by technical countermeasures like obfuscation. We briefly consider these issues
because they are intimately related to the very possibility of proprietary code.

Trade Secrets and Nondisclosure Agreements
Trade secrets are a way of keeping product information hidden. A trade secret
refers to undisclosed information about a product that provides a commercial
advantage to its owner. The secret can be enforced by using mechanisms like
confidentiality or nondisclosure agreements, which employees of the company
owning the product are required to sign in order to be able to work for the com-
pany. A nondisclosure agreement means that party A acknowledges receiving
information from party B and is bound to protect its confidentiality. This is
an extremely important commitment on the part of A. Thus if A subsequently
develops a related product even after leaving this employer, then it is up to A, if
challenged by litigation by B, to prove he did not use information obtained under
the confidentiality or nondisclosure agreement to develop the new product. For
example, the original AT&T Unix license required nondisclosure agreements
by individuals receiving the software. Violation of such agreements can entail
significant monetary damages. Naturally, the owner of the protected property
also has a responsibility and is expected to exert considerable caution in protect-
ing the secret. Given that such precautions are in place, illegal means to obtain
the secret constitute industrial or economic espionage. This crime is severely
prosecutable under the federal Economic Espionage Act of 1996. Violators,
including both the perpetrators and the receivers of the protected information,
can be imprisoned for 10 years, as well as fined for up to half a million dollars

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.4 Proprietary Licenses and Trade Secrets 239

($5 million for a corporation). The penalties are even more severe if foreign
entities are involved.

The concern with trade secrecy is not always merely a matter of their remain-
ing permanently secret. For example, in a case in 2006 an employee of Coca-
ColaTM obtained a sample of a new drink under development by the company
that was not yet on the market. The employee made the sample available to
industrial spies. The business risk or loss to Coca-ColaTM was not so much
the disclosure of the product per se so that it could be reverse engineered by
a competitor, as the disclosure of a sample of the product before it came to
market, thereby undermining the company’s strategic advantage in being the
first to market this type of product. Rapid successful entry of such products to
market can affect not just a company’s immediate market share but also the
longer term share. The same holds for software products.

Unlike patents, trade secrets have the advantage of not requiring public
disclosure of the hidden information, but conversely they are also not legally
protected by reverse engineering, though this may possibly be prohibited by a
software license (though see Samuelson, 2002). It is worth recalling that Richard
Stallman’s own first personal experience with nondisclosure agreements had a
memorable impact on him. It happened during the 1970s. He had been trying
to modify the printer driver for a Xerox printer but could not obtain the source
code from his university or colleagues because of their nondisclosure agree-
ments. As Stallman observes, “This was my first encounter with a nondisclosure
agreement, and I was the victim. . . . nondisclosure agreements have victims”
(Stallman, 2001).

Reverse Engineering and Obfuscation
Reverse engineering is basically about “trying to figure out how something
works” (Jones, 2005). It refers to the analysis of a system for the purpose
of identifying its internal components and their interrelationships. This may
be done to create a representation of the system in an alternative form or a
representation at a higher level of abstraction. Alternatively, it can refer to
the extraction of design information from a system’s behavior, yielding an
inventory analysis of a system’s scope and functionality. Reverse engineering
may be motivated by competitive reasons or benignly, to design a product
that can interoperate with a proprietary product. Generally, black-box reverse
engineering refers to reverse engineering a software product on the basis of
an inventory analysis of a system’s scope and functionality. White-box reverse
engineering, on the other hand, refers to reverse engineering a software product
by a process like decompiling that exposes the implementation of its object
code. Either may be legal if done for purposes of interoperability. But it may

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

240 6 Legal Issues in Open Source

not be done to avoid or circumvent a protection mechanism. The review article
by Jones (2005) is quite instructive on these issues, as is the work by Payne
(2002), which considers how disassembling and comprehending code compiled
by an optimizing compiler can be a formidable task.

Reverse engineering of manufactured products has often been viewed as a
competitive counterbalance to trade secrets. However, the legal issues entailed
by reverse engineering for software products can be complex and vary signif-
icantly among countries. Reverse engineering may also be encumbered by the
presence of copyrights or patents, as well as restrictive software licenses that
forbid reverse engineering, such as the license for Microsoft Windows (Jones,
2005). If copyrighted software is reverse engineered in order to develop a com-
petitive product then in order to avoid charges of copyright infringement, it is
customary to split the development process between two separate groups. One
group does the reverse engineering and produces an abstract specification of
the desired product. A completely separate group then uses this specification
to implement the new product. This approach is not applicable if the product
is protected by patents, since patents would protect the idea not merely its
implementation.

The cloning of the original IBM PC is a classic example of a highly sig-
nificant case of reverse engineering. The reversal was done not for the device
hardware but for the BIOS firmware code that underlay its functionality. The
IBM PC was a very successful machine and so was a natural target for reverse
engineering. Companies like Phoenix Technologies Ltd. and Compaq wanted
to create a cloned machine that would be “IBM compatible.” The BIOS for the
IBM PC, which was available in an IBM technical manual, was copyrighted,
so its code could not be just duplicated (Hollaar, 2002). Phoenix legally cir-
cumvented the copyright protection by organizing its development team into
two separate noncommunicating groups, the so-called clean-room or Chinese
wall approach (Schwartz, 2001). The first Phoenix group studied the original
BIOS code to determine exactly what it did and created a complete functional
specification of the system. The second group then took these functional spec-
ifications and wrote its own new code to implement the specifications. This
did not constitute a copyright infringement, since copyright protects only the
expression of code, not its actual behavior or function. In fact, portions of
such code could even be substantially similar as long as this was “dictated by
function” (Hollaar, 2002). On the other hand, had the code, for example, just
been rewritten in piecemeal segments based on the original code, this would
have constituted serial infringements or a sequence of derivative works. The
clean-room approach constituted legally viable reverse engineering of the BIOS
without copyright infringement. The rest of this story is history since the IBM

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.4 Proprietary Licenses and Trade Secrets 241

PC thereafter became commoditized, eliminating IBM’s monopoly in the mar-
ket.

Decompiling is a specific type of reverse engineering based on attempting
to reverse the effects of compiling source code into object code by converting
object code back to some high-level language that can be more readily under-
stood. Decompilers, such as the Reflector tool for.NET, are generalizations of
disassemblers that convert machine code back into assembly language. It is
not always possible to decompile object code or create a humanly meaningful
high-level version of the code because of the intermixture of code and data in
a program and the loss of symbol tables (containing the originally meaningful
names) that are typically no longer available in the executable code. See such as
Tonella et al. (2000) for an application example and further references. There are
also active countermeasures available to inhibit techniques like decompiling.
One of these methods used to make such white-box reverse engineering of soft-
ware more difficult is obfuscation. Obfuscation refers to scrambling code and
changing symbolic names so that the altered code’s behavior remains equivalent
to the original but the code is confusing for human readers and much harder to
reverse engineer. Tools like Dotfuscator are called obfuscators, and these auto-
mate the process. Obfuscation may also be combined with encryption. Software
obfuscators make it harder to decompile object code and so are obviously tech-
nically useful in protecting intellectual property. The type of code that managed
code compilers like Microsoft’s.NET compilers for C# and VB.NET translate
source code into is called Intermediate Language (IL), as opposed to native
assembly language code. IL code is intended to be cross-platform and cross-
language, but it lends itself to reverse engineering because of its consistent
structure. As a consequence, Microsoft includes obfuscation tools to make the
IL code harder to decompile. The .NET framework code itself however is not
obfuscated (Downen, 2005). It is worth noting in this connection that the OSI
criteria for open source software explicitly requires that the source code itself
cannot be obfuscated.

6.4.3 Miscellaneous Types of Proprietary Software

Before addressing the fundamental issue of the types of open licenses available,
we shall briefly digress to remark on some other kinds of software distributions,
such as freeware, shareware, and liteware.

Freeware is software provided free of charge by its developer or author,
but its distribution or redistribution remains under the control of the developer.
The software license may permit limited copying and redistribution, but these
copies cannot typically be sold by the user and commercial use may also be

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

242 6 Legal Issues in Open Source

restricted. The developer retains the right to modify the software in the future
or decide at some point to charge for future copies. The software is usually
provided without source code, which prevents, or at least makes it problematic,
to modify. There are some very important examples of freeware. Both Adobe
Acrobat Reader and Internet Explorer are freeware. The free Adobe Reader
represented a business strategy for popularizing the PDF format and the for-
sale Adobe Professional. The free Internet Explorer essentially destroyed the
market share of the Netscape browser. Freeware is decidedly different from free
software in the sense of the free software movement where the term free refers
to freedom of use rather than absence of a fee for use.

Shareware is also called try-before-you-buy software or trialware. It is usu-
ally delivered digitally free of charge to the user, but the user is expected on
the basis of an honor system to pay some small amount for the product after a
trial usage period if the user retains the product. Liteware is a specific kind of
shareware that omits some of the functionality of the complete version. Upon
purchase, the user’s copy is typically registered with the shareware’s distributor
and a more complete version of the product may be supplied, as well as access
to future product updates and possibly some level of technical assistance or
support. The shareware product is copyrighted, so users cannot redistribute it
as their own. An important aspect of the underlying business model is the direct
one-to-one relationship between the user of the product and the shareware prod-
uct developer, rather than through an intermediary in a retail outlet. However,
shareware vendors with extensive catalogs of shareware products may also dis-
tribute products for a fee. This business or marketing model was developed
in the early 1980s and successfully used to market some basic PC utilities.
Nagware is shareware that regularly reminds the user that the program is not
free of charge and should be paid for. The reminders typically occur as pop-up
messages during the execution of the program. One of the most widely used
examples of nagware is the WinZip utility for file compression in Microsoft
Windows. Despite the reminders in WinZip, this utility still remains fully func-
tional even after the initial trial period. Free-of-charge software that displays
advertisements is called adware. The Opera browser is adware that lets the user
eliminate the ads for a fee. Stallman (1996/2001) discusses the various terms
used to describe software, particular from the viewpoint of their relation to free
software.

The Microsoft Shared Source Initiative refers to software distributed under a
Microsoft initiative that uses a range of software licenses for different products
that gives selected customers and developers access to some of Microsoft’s
source code for their own use, such as the Windows template library. Possible
restrictions include nondisclosure agreements or prohibitions against modifying

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.5 OSI – The Open Source Initiative 243

code. The initiative is quite broad with almost 700,000 developers currently
reported to be using shared source (Zittrain, 2004). Rosen warns that for soft-
ware developers planning “to write software that might potentially compete with
Microsoft’s copyrights or patents, there is great risk in looking at Microsoft’s
source code” since you may become an infringer if there is “substantial similar-
ity between your commercial software and theirs” (Rosen, 2005, p. 258). Some
Microsoft products like WiX (a batch-oriented build tool suitable for Microsoft
developers) have been released under open source licenses, like the Common
Public License (Walli, 2005). Researchers can modify the source, though not for
redistribution without appropriate Microsoft approval or licensing and the same
holds for allowed modifications that are distributed for commercial purposes.

An emerging and controversial type of licensing arrangement is represented
by so-called Trusted Computing. In this model of software licensing, a user
can run software but is otherwise not able to “tamper” with it. The systems
communicate with the software owners (not the licensee) to ensure registra-
tion and protect against software piracy and other activities considered to be
license violations. This approach derives from the Digital Rights Management
Model used by the Disney Corporation to prevent purchasers of CDs from copy-
ing them. Major chip manufacturers such as Intel are expected to incorporate
hardware to support this approach. Some of the proposed objectives of trusted
computing are to increase the security of systems to the benefit of end users and
protect against identity theft. However, this approach is strongly opposed by
the FSF, which calls it ‘treacherous computing’ for reasons ranging from the
loss of Internet anonymity to the argument that it is likely to increase vendor
lock-in and enable “remote censorship.” The topic is discussed extensively in
(Anderson, 2003a, b).

6.5 OSI – The Open Source Initiative

The previous sections have introduced some basic concepts of intellectual
property: copyright, derivative works, patents, software patents, contracts,
licenses, and so on, as well as more narrowly focused but relevant issues like
reverse engineering, obfuscation, trademark, and nondisclosure agreements.
These ideas provide basic conceptual tools for understanding the purpose and
features of the various free and open software licenses we consider next. The
OSI is an organization established to foster a better relationship between the
free software movement and business. The OSI is a counterpoint to the FSF.
It has defined explicit standards for what it calls OSI-certified open source
licenses and has a process for approving them. This section reviews the OSI

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

244 6 Legal Issues in Open Source

and considers illustrative OSI-certified licenses. We address the definitions and
legal characteristics of these licenses, their historical context, implications of the
license requirements, different reciprocity characteristics, GPL compatibility,
and the important MPL license in particular.

6.5.1 Open Source Initiative and OSI-Certified Licenses

The OSI (www.opensource.org), established by Eric Raymond and Bruce
Perens in 1998, is a nonprofit foundation, whose mission is to promote the
use of open source software, particularly in commercial applications. The cre-
ation of the organization was triggered by the perceived opportunity represented
by Netscape’s opening of its browser code. The FSF, founded in 1985 before
the Internet revolution had represented a more activist or ideological position
that advocated the eventual complete disappearance of proprietary software, an
attitude that arguably fostered suspicion in the business community (see Rosen
(2005) and the useful book review by Rosenberg (2005)). The OSI was founded
to counter these commercial concerns about what free and open source software
mean. The pragmatic, nonideological approach of the OSI is reflected in the
following sound bite from its Web site that describes in a nutshell what open
source is all about:

Open source promotes software reliability and quality by supporting independent
peer review and rapid evolution of source code. To be OSI-certified, the software
must be distributed under a license that guarantees the right to read, redistribute,
modify, and use the software freely (http://www.opensource.org/advocacy/faq.php).

Even more strongly, the history document at the OSI site characterizes the
motivation for the new organization and thus

We realized it was time to dump the confrontational attitude that has been
associated with “free software” in the past and sell the idea strictly on the same
pragmatic, business-case grounds that motivated Netscape
(http://www.opensource.org/docs/history.php).

The very term “open source” that is now so universally recognized originated
at this time, much later than the phrase “free software” promoted by the FSF.
The term came about as a result of a meeting occasioned by the Netscape’s
opening of its Navigator code in 1998. It was coined by Chris Peterson and was
motivated by both the ambiguity of the word “free,” which at least sounded like
it meant “free of charge,” and the impression that the free software movement
could be perceived as being anticommercial, even though this was not the intent
of the FSF. But the new description was also a “proxy” for a wider spectrum
of issues in the open source community about the community’s relation to the

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.5 OSI – The Open Source Initiative 245

business world (see the opensource.org site for a history of the organization and
timelines).

The establishment of the OSI formalized the other major branch of the free
software movement, the one that had built its projects under the legal matrix
provided by licenses like the BSD and MIT, which appeared more attractive for
commercial applications. The organization reflected the beliefs of prominent
open source developers like Marshall McKusick of the BSD project, Jim Gettys
of the X Window System, and Michael Tiemann, author of the GNU C++
compiler, later CTO of Red Hat and current OSI President. It is noteworthy
that OSI cofounder Bruce Perens left the organization only a year after its
founding, stating in a well-known e-mail (Perens, 1999a) that “Open Source
has de-emphasized the importance of the freedoms involved in Free Software.
It’s time for us to fix that. We must make it clear to the world that those freedoms
are still important, and that software such as Linux would not be around without
them.”

The OSI Foundation maintains a list of approved software licenses which it
recognizes as consistent with the basic principles of open source development.
Software distributed under any of these licenses can be labeled as OSI Certified
Open Source Software. All of the FSF’s licenses satisfy these criteria a fortiori,
but some of the OSI licenses do not satisfy the FSF requirements. In an analysis
of open source license types, Ueda et al. (2004) found that about 30% of the
OSI-certified licenses listed on the OSI site were not free per the FSF list, while
conversely about 30% of the FSF licenses were not OSI certified, though in the
latter case they could be OSI certified since the FSF conditions are tighter than
the OSI criteria. Licenses like the BSD are provided as templates in the sense
that you only have to enter the appropriate owner, organization, and year to
adapt the license to your own software. Typically to apply a license to your own
software, you include the license in a separate file and then reference the file
from each of your source files, as well as provide the identity of the copyright
holder, the license name, and the copyright date.

The OSI Web site lists the criteria or standards that determine whether
a new license will be eligible to be described as OSI certified. These cri-
teria were derived from the so-called Debian Free Software Guidelines (see
debian.org). The reader may also refer to Perens (1999b) for a useful history
by a leader of the Debian project who was also a founder of the OSI and the
author/editor of the licensing criteria. The process for having a new license OSI
certified requires one to submit an explanatory document, created with the aid
of a lawyer, explaining how your proposed license satisfies the OSI criteria.
This document must be e-mailed to the OSI via license-approval@opensource.
org.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

246 6 Legal Issues in Open Source

OSI License Certification Criteria
There are ten certification criteria that OSI-certified licenses must satisfy. They
are presented here. These descriptions are paraphrased from the official state-
ment on the OSI Web site for brevity. We have also italicized the qualifiers:
cannot restrict, must be, must allow, and so on to underscore the force of the
different criteria. The reader should refer to the opensource.org Web site for
complete statements and more detailed explicit rationales for each condition.

1. Free redistribution: The license cannot restrict the licensee from either
selling the software or giving it away for free.

2. Open source: The source code of the program must be readily available,
such as through free Internet download. The code must not impede
subsequent development by being intentionally obfuscated.

3. Derivatives: The license must allow derivative works. It must allow these
to be redistributed under the same license.

4. Code integrity: The license may require derivative works to be distributed
as the original base source code plus separate patches in order to ensure
that modifications are readily distinguishable from the original.

5. Nondiscrimination: The license cannot discriminate against any group or
individual, since this would impede open development.

6. Commercialization: Fields of application, like commercial use, cannot be
restricted and indeed are encouraged.

7. License distribution: The license rights automatically apply to anyone to
whom the software is redistributed without requiring another license.

8. No product restrictions: The license cannot make the rights depend on the
software remaining a “part of a particular software distribution.”

9. No codistribution restrictions: The license cannot restrict what software it
is allowed to be distributed with. For example, open source can be
distributed with closed source.

10. Technology: The license cannot require “gestures” like click-wrap to
“establish a contract between the licensor and the licensee,” since these
may not be available in some technologies.

Open source licenses as defined under the OSI do not necessarily apply
restrictions on how derivative works are themselves licensed. The types of
licenses that satisfy these criteria are often broken into subcategories like aca-
demic or reciprocal, permissive or nonpermissive, protective or nonprotective,
copyleft or not copyleft, and GPL compatible or not. There are other categories
as well, but these are the common ones. For example, Webbink (2003) distin-
guishes between two broad categories of what he calls non protective versus
protective open source licenses. Nonprotective open source licenses refer to

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.5 OSI – The Open Source Initiative 247

open source licenses like the BSD and Apache licenses that impose no restric-
tions on the distribution of derivative works, including the inclusion of such
redistributions in proprietary code (Webbink, 2003); that is, for such licenses
while the open code itself is disclosed, derivative code based on it need not
be disclosed. On the other hand, the term protective open source license refers
to open source licenses, such as the GPL and the Lesser GPL (LGPL), which
impose restrictions on the distribution of derivative works to ensure that the
original code and derivative works will remain open. The less restrictive, non-
protective licenses reflect a dynamic that is as yet unresolved in the computing
industry. In economic terms, the issue is the trade-off to be made between the
irrevocable “decision to disclose technology” and the “ability to appropriate
the returns from that technology” (West, 2003). The article by Warrene (2005)
is also a useful primer on the different kinds of licenses. Rosen’s book (2005)
is a canonical resource for license explications that are both nuanced and lucid.
Rosen uses the academic versus reciprocal license terminology.

6.5.2 Illustrative Academic OSI-Certified Licenses

We will now briefly describe the BSD, Apache, and MPL. These are all examples
of the so-called academic or permissive licenses that either relax or do not
include some restrictions/conditions in the GPL.

BSD-type licenses are the most popular alternative to the GPL. The BSD
(Berkeley Software Distribution) license was first used for BSD UNIX in 1980.
It is widely used such as in major free operating systems like FreeBSD. See
www.opensource.org for a copy of the license. The so-called modified BSD
license (or new BSD) is generally considered preferable to the original BSD.
(The old BSD had a so-called advertising clause that made it incompatible with
the GPL; it was removed in later new, revised or “3-clause” versions of the
BSD.) The key characteristic of the BSD is that it allows BSD-licensed code or
modifications to be incorporated into closed, proprietary software whose source
code can be subsequently kept secret, unlike so-called reciprocal or copyleft
licenses like the GNU GPL. On the other hand, BSD-licensed code can also be
released under the GPL license as well because of the complete flexibility of
the BSD. As a consequence of these licensing characteristics “chunks of BSD
code” can be found not only in the Linux kernel and Mac OS X, but also in
Solaris and Windows NT (Feller and Fitzgerald, 2002, p. 20).

The BSD license contains the usual “as is” warrantee disclaimers, permits
redistribution in either source code or binary form, requires that the original
copyright notice be included to allow proper attribution of modified works,
and forbids using the names of the open source contributors for endorsement

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

248 6 Legal Issues in Open Source

without their approval. One of the objectives of the University of California
in defining the BSD license was “to avoid having to pay damages if a user
was injured in any way by the software.” It accomplished this by including the
express warranty and liability disclaimers in the license (Rosen, 2005, p. 76).
An even simpler but related license is the MIT X Window license. The BSD-
style license seems to offer more obvious guarantees to prospective corporate
sponsors of development than the more restrictive GPL. For an example of how
commercial circumstances and license conditions can combine to influence
the attitudes of even committed GPL-oriented developers, consider the case
of the.NET-type framework Mono. Mono was initially under development by
the open source company Ximian. It is licensed at least partially under an
X11 (BSD-type) license. Ximian cofounder Miguel de Icaza of free GNOME
fame has explained the pragmatic reasons for the choice. He believes this type
of license helps ensure “that the Mono project will attract a growing pool of
talented developers, while enabling their companies to control and protect their
Mono-based products and services” (Evans, 2002).

The modified BSD license is said to be “compatible with the GPL” according
to the FSF Web site, but the relationship between the BSD and the GPL is
asymmetric (Lerner and Tirole, 2005). It is compatible in the sense that a GPL
project could incorporate open software licensed under the BSD, but this is only
because the BSD license itself does not care about license restrictions added
by the more restrictive GPL. The BSD pretty much lets you do anything you
want to do. While one usually thinks of compatibility as a two-way street, the
compatibility referred to by the FSF in this instance is not symmetric. A BSD
project could not incorporate software licensed under the GPL into a project that
was to be BSD licensed and, say, went proprietary, because while that closed
distribution would be compatible with the BSD, it would not be compatible
with the GPL and so would violate the GPL license’s requirements. In other
words the BSD project could use the GPL only by becoming GPL itself and
eliminating options available in the BSD. Thus the compatibility works only in
one direction.

The Apache license (version 2.0) for the Apache Web server is of the BSD
type, though the version 2.0 statement of the license from 2004 is much more
detailed than the BSD license. For example, it is fairly explicit about derivative
works and excludes from them works that “remain separable from or merely
link (or bind by name) to the interfaces of the work.” The license protects the
ApacheTM trademark name from being applied to derivative works. It allows
modified versions of the source code to be redistributed in closed products,
so Apache-style licenses are compatible with proprietary licenses (McMillan,
2002) just as the BSD. However, the FSF does not consider the Apache license

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.5 OSI – The Open Source Initiative 249

as compatible with the GPL, because the license includes “certain patent termi-
nation cases that the GPL does not require” (gnu.org). See www.apache.com
or www.opensource.org for a copy of this OSI-certified license.

The MPL is an increasingly popular license, though not nearly as widely
used as the BSD or GPL (Wilson, 2005). It is the license, for example, that
the Firefox browser is released under and one of the two licenses Netscape
introduced at the release of its source code for the Mozilla Web browser (the
open source version of Netscape). The other less well received license was the
Netscape Public License (NPL). Recall that this Netscape initiative was part of
the climax of the so-called browser wars. Netscape could not have distributed the
browser under the GPL for various reasons, even if had so wished. The reasons
included the browser’s use of cryptographic codes, which at that time could not
be exported due to U.S. security regulations, as well as its incorporation of third-
party components the company was not privileged to disclose. Consequently,
the company introduced the twofold MPL and NPL combination. The NPL
was unsuccessful and is in any case not OSI certified. However, the MPL has
become well accepted.

Rosen (2005) provides an extremely detailed and informative discussion of
the MPL and its rationale; Wilson (2005) is also useful. As is the case for the
GPL, publicly distributed derived works that modify existing MPL-licensed
files were required to remain under the conditions of the license. However, the
license also allowed completely proprietary files, provided they contain no orig-
inal code or modifications of the original code, to be combined with the open
source code, while remaining outside the terms of the MPL license. Per Wilson’s
(2005) discussion, “Put simply, someone can take an MPL-licensed work and
build upon it with new components. The resulting work can be distributed, with
the MPL covering the use of the original work, and any license covering the
rest.” Rosen (2005) praises the MPL definition for being “a high-quality, pro-
fessional legal accomplishment in a commercial setting” (p. 142), “the first of
the industrial strength open source licenses” (p. 156), and the “model for most
of the important commercial open source licenses that followed” (p. 142), rep-
resenting a carefully defined compromise between academic licenses, like the
BSD, and reciprocal licenses, like the GPL. We will elaborate on the license’s
so-called reciprocity characteristics in more detail when we discuss the GPL.
The MPL is OSI-certified license but is incompatible with the GPL. It also
has notable patent-related conditions (Engelfriet, 2005). It requires contribu-
tors to a Mozilla-licensed project to grant royalty-free patent license on their
contributions to everyone, while, conversely, users of the licensed software can
assert their own patents only if they pay royalties for any past use of the MPL’d
product.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

250 6 Legal Issues in Open Source

6.6 The GPL and Related Issues

The GPL is the flagship license of the free software movement. Its simple
purpose is to keep software licensed under it permanently open. The FSF also
defines the LGPL for use with software libraries and regards this license as suit-
able under special circumstances. There are subtleties in how the implications of
these licenses are interpreted, such as those revolving around the issue of what
constitutes a derivative work of software. We also briefly consider international
and enforcement issues for the GPL and discuss the GPL version 3.

6.6.1 General Public License

The GPL license grew out of the GNU project begun in 1983 by Richard
Stallman. The purpose of the GNU project (an acronym for “GNU is not UNIX”)
had been to provide a nonproprietary, UNIX-compatible operating system built
on openly available source code that could be copied, modified, and redistributed
under terms compatible with the free software movement and none of which
was subject to the original AT&T proprietary software licenses for UNIX. The
project was intended to comprise a collection of system programs and software
development tools, including text editors and compilers, like the now widely
used GNU GCC compiler for C. Eventually, the Linux kernel, initiated later on
by Linus Torvalds, was integrated with the GNU system to form the GNU/Linux
system. The initial GNU software was distributed under a variety of ad hoc
licenses until 1989 when the more convenient and generally applicable GPL
was defined.

Shortly after the GNU project was started, Stallman founded the FSF in
1985 to financially support the GNU project and advocate the principles of free
software. The FSF defined the GNU GPL which would become the most widely
used license of the free and open source movement. It was authored by Richard
Stallman. The current version 2 (GPLv2) was introduced in 1991 (version 1
came out in 1989). It was created with the vision of allowing downstream
developers or users of programs distributed under the license to preserve most
of the freedoms and privileges of the original copyright holder. These privileges
included the freedom to

1. run the programs without restriction on use (including commercial and
military uses),

2. view the source code of the program and be able to study it,
3. modify the source code to improve it if desired,
4. redistribute the program or modifications of the program, but

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 251

5. redistribution must provide any modifications under the same conditions as
the original GPL.

The last item in this list is obviously a license restriction, but it is precisely
the condition that ensures that the other rights granted in the license are indeed
propagated to subsequent, downstream receivers of the program and its modi-
fications. Thus, though sounding like a restriction (which it is), it is intended to
be a freedom-enabling condition, passing the freedoms of the original license
onto software posterity. This unique “self-perpetuating feature” is arguably the
primary factor in the widespread use of the GPL (Carver, 2005, p. 448). The
GPL is intended to establish a permanently free commons of software, avail-
able to all, and where distributed improvements must be made public. Although
framed in idealistic language, it has some extremely important practical side
effects. One key benefit is that by keeping product evolution public, it helps
prevent the kind of proprietary divergence that occurred with Unix that tends
to lead to both software incompatibility and vendor lock-in (Rosen, 2005).

The preamble to the GPL states that users of software licensed under the
GPL must be made aware of their rights to copy, modify, redistribute, and so
on. In order to distribute software under the GPL, you place a copyright notice
in your own name, such as at the top of each source file, and a notice stating
that the program is being distributed under the terms of the GPL. You must also
include a copy of the GPL somewhere in your distribution, such as in a separate
file. The license FAQ explains that “including a copy of the license with the
work is vital so that everyone who gets a copy of the program can know what
his rights are” (http://www.gnu.org/licenses/gpl-faq.html#WhyMustIInclude,
accessed December 20, 2006). Thus this is a requirement that serves to prop-
agate awareness of the GPL. If you want to distribute changes you have made
to the software you received under a GPL license, then you must ensure that
any modified files “carry prominent notices stating that you changed the file
and the date of the change” (http://www.gnu.org/licenses/gpl.html). This con-
tinues the chain of title for modifications and preserves the integrity of the
original authors’ source code, similar to OSI requirements and motivations.
The developer of the original program retains his copyright ownership of the
program. The copyright for the text of the GPL license itself belongs to the FSF,
but the copyright for the work protected by the license belongs to the author
of the work and only the author has the right to sue in the case of copyright
infringement.

With respect to the issue of free as in free of charge, the GPL explicitly allows
charging a distribution fee, but explicitly prohibits imposing a license fee for
distributed GPL’d software, though it makes no objections to fees for services,

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

252 6 Legal Issues in Open Source

warranty protection, or indemnification (insurance against monetary loss). Thus
the software does not have to be offered for free, though if an individual receives
a copy for a charge, he can nonetheless redistribute that copy free of charge, and
if the software is downloaded, a binary copy cannot be cheaper than a source
copy.

Modifications of GPL’d software can remain private and do not have to
be distributed, but if they are distributed then this must of course be done
under the GPL. While the license explicitly precludes the inclusion of GPL-
licensed software in publicly distributed proprietary programs, this does not
affect programs used only internally in an organization. This also applies to
using the program or a modification on a public Web site to operate the site
(Fishman, 2004a). Thus the requirement for GPL licensing of modifications
does not mean you have to distribute modifications, only that if you do so, they
must be under the GPL (OSS Watch, 2006). You are perfectly free to use the
modifications in any way you want if the software is not distributed. Distributed
copies must include the original copyright notice and the exclusion of warranty.
The exclusion of warranty condition as usual protects the owner of the code
from liability in the case of failure of the code to carry out its expected purpose.

Patents are addressed in the Preamble and Section 7 of the GPL. These
indicate that patents that apply to any of the GPL’d code “must be licensed
for everyone’s free use or not licensed at all”; that is, if the code cannot be
distributed royalty free then it cannot be distributed at all for which reason
this condition is called the “Liberty or Death” clause. Thus distribution of the
software is tantamount to an implicit grant of patent license. However, with the
proliferation of software patents this matter is increasingly significant, and so
for a number of reasons an express grant of patent rights from the copyright
owner to the user is included in the proposed (draft version of) version 3 of the
GPL, in addition to other new, patent-related conditions.

The GPL is the most popular form of license used for open source soft-
ware, representing the license for almost 70% of open source projects (Rosen,
2005), with the Linux kernel being perhaps the most prominent example. See
www.gnu.org for the complete text of the license, as well as www.fsf.org for a
discussion of common issues. Although the definition of the GPL was strongly
motivated by ideological or philosophical concerns, there is also a strong case
to be made that it is a pragmatic choice for a software license. For example, not
having a truly GPL-compatible license may in fact be a practical disadvantage
for successful project development on the grounds that otherwise “there’s a
significant risk that you’ll fail to receive enough support from other developers
to sustain your project” (Wheeler, 2003). Dual licensing is another option for
free software distribution. In this connection, it is worth remembering what

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 253

should be obvious: the copyright owner of a project that distributes its product
under a GPL license is not restricted by the terms of that license; that is, the
copyright owners can license the product any way they want. In particular, as
in the case of the company that distributes MySQL, the owner can dual license
the product as GPL for some users or versions, but as proprietary for others
such as commercial users.

Reciprocity and Copyleft
The GPL incorporates a novel licensing concept introduced by the free software
movement called copyleft. Copyleft is intended to avoid some of the downside
associated with putting a product in the public domain, particularly the conse-
quence that public domain software can be embedded in proprietary products.
While under the law copyright limits the right of others to copy and redistribute
a work, copyleft has a complementary intent, whence its oddly reversed name.
Copyleft requires that anyone who receives a copy of a work, such as the source
code for a program, receives the right to copy, modify, and redistribute the orig-
inal work and derived modifications of the work, but only as long as they agree
to the obligation that if they distribute such modifications, they do so under
the same liberal conditions under which they received the work. As described
by gnu.org, “Copyleft says that anyone who redistributes the software, with
or without changes, must pass along the freedom to further copy and change
it.” This copyleft intent is asserted in the license that accompanies the original
work that requires that all redistributed copies of the work and its derivatives
must be distributed under this same license, which is tantamount to a recursive
propagation of the original copyleft-restricted license. The owner of the origi-
nal work still preserves his own copyright ownership. OSI general counsel and
prominent open source advocate Lawrence Rosen recommends using the term
reciprocity instead of copyleft because it is “less alarming and more descrip-
tive than the word copyleft” (Rosen, 2005, p. 106), though he acknowledges
that copyleft still has “rhetorical value” (p. 106). Another appealing way of
describing copyleft is to say that it merely reflects a “share and share alike”
principle. If you want someone to share his code with you, then you must share
alike any improvements you make to that code, at least if you distribute them
(Carver, 2005). The underlying purpose of such reciprocity arrangements is to
create free software in a sense similar to and in the spirit of scientific freedom.
As Rosen (2005) describes it, reciprocal licenses “contribute software into a
public commons (italics added) of free software, but they mandate that deriva-
tive works also be placed in that same commons” (p. 70). This is in contrast
with software distributed under so-called academic licenses like the BSD that
“create a public commons of free software, and anyone can take such software

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

254 6 Legal Issues in Open Source

for any purpose – including for creating proprietary collective and derivative
works – without having to add anything back to that commons” (p. 70).

The more permissive open source licenses exhibit so-called weak copyleft.
If software is licensed under the GPL, that license is by definition inherited
by the software’s descendants (derived works) under the copyleft proviso. In
contrast, an open source license that does not require all derivative works to
follow the original license exhibits weak copyleft. The MPL is a prominent
example. It requires original and modified files licensed under the MPL to
remain under that license. As described by Fishman (2004b), “The MPL’s
copyleft provision entails only changes to files subject to the MPL or new files
that contain MPL-licensed code. New files that don’t contain MPL-licensed
code do not fall under the MPL.” OSI-certified licenses like the Apache and BSD
licenses that do not require copyleft are sometimes called no-copyleft licenses.
Rosen (2005) lucidly explains the reciprocity characteristics of the MPL: “If you
create and distribute a Modification to one of the files containing Original Code
or previous Modifications, or create and distribute a new file containing Original
Code or previous Modifications, those files must be released under the same
MPL license” (Rosen, 2005, p. 143). MPL reciprocity is thus more narrowly
applied than in the GPL and has the objective of encouraging “the use of
open software as building blocks to create Larger Works,” which may even be
derivative works (Rosen, 2005, p. 147). However, “those Larger Works may be
open or proprietary; with respect to them, the MPL acts like an academic license.
But the individual building blocks are licensed with reciprocity obligations. If
you distribute improvements to those building blocks, you must license those
improvements under the MPL as open source software” (Rosen, 2005, p. 147).

Enforcement of the GPL
The enforcement of GPL license requirements has traditionally been han-
dled privately through “negotiation and settlement agreements” (Carver, 2005,
p. 464). In fact, there has not been even a U.S. court ruling on the enforceability
of the GPL since the release of GPLv2 in 1991, though the case of SCO versus
IBM may change that, as described in Carver (2005). Since it is the copyright
holder who licenses the software, it is only the copyright holder who can make
a claim if there is a violation of the license terms. The FSF is the copyright
holder for some free software products and is the author of the GPL, but it is
not the enforcer for the GPL, except for the products it owns. However, the
FSF investigates reports it receives about GPL violations as part of its role
in the free software movement. When appraised of a violation, it negotiates
with the violator directly not for the purpose of seeking monetary damages
but just to obtain compliance. Refer to the FSF compliance site for its policy

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 255

(http://www.fsf.org/licensing/compliance, accessed December 20, 2006). As an
example, an intervention by the FSF in the case of a popular Linksys wireless
router that was distributed without the source code for its GPL’d software is
described in Carver (2005). After the FSF negotiated with corporate owner
Cisco, the company complied, providing the GPL software for dozens of its
devices. This response had the beneficial side effect that the router became
popular with hackers who developed projects to install more GPL’d applica-
tions on it.

Eben Moglen of the FSF puts the very absence of court cases on the valid-
ity of the GPL in a decidedly positive light (Moglen, 2001). He says that it
follows from the simple, but effective and low-key, way that the FSF handles
compliance, which they do frequently and successfully every year. They have
never won – or lost – a case in court, simply because no one ever wants to go
to court after the FSF talks to him. The discussion in Moglen (2001) conveys
the unorthodox spirit of the General Counsel of the FSF, which is simultane-
ously legally savvy, witty, and street-smart. Moglen observes that the GPL has
to be accepted only when copies are redistributed and since “no one can ever
redistribute without a license, we can safely presume that anyone redistributing
GPL’d software intended to accept the GPL” (Moglen, 2001). If there is a com-
pliance problem, the FSF quietly contacts the violator, rarely publicizing the
case or insisting on damages. However, it does make sure that the perpetrator
understands the many consequences of noncompliance, including enormous
bad publicity for violating cherished free software principles, widespread loss
of goodwill, a level of ignominy such that no accomplished programmer would
ever want to work for them again, all followed if they persist by a certain loss
in court because of the clear violation of copyright law involved. With deadpan
good humor Moglen says, “Look at how many people all over the world are
pressuring me to enforce the GPL in court, just to prove I can. I really need to
make an example of someone. Would you like to volunteer?” (Moglen, 2001). It
is difficult to argue with his record of success. In fact it is arguably the strongest
empirical argument for the solidity of the GPL and seems even more convincing
than legal arguments about its validity.

Private individuals can directly try to enforce the GPL on their own copy-
rights. A notable case was that of Harold Welte, head developer for Netfilter (a
firewall for GNU/Linux widely used in hardware routers) who pursued a num-
ber of GPL violations of Netfilter (Carver, 2005). In one case, Welte made an
out-of-court settlement with the violator who subsequently made a substantial
donation to FSF, Europe. A later case, with Sitecom Germany GmbH, again
involving a violation where a router vendor was not providing the source for the
GPL’d Netfilter firewall program used in the router went to a German District

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

256 6 Legal Issues in Open Source

court. The court quickly issued an injunction against the violator and quickly
decided for Netfilter. The decision was based on the simple termination clause
in the GPL that says, “You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this license” (Carver, 2005, p. 469,
italics added). Significantly for the GPL’s enforceability, the termination clause
was held to be valid under German law.

As previously noted, no U.S. court has at this point ruled on the GPL.
However an important case was brought in 2003 when the SCO Group sued
IBM, alleging it had illegally contributed SCO UNIX code to Linux in the
course of IBM’s sponsorship of Linux development. IBM made a counterclaim
that SCO had violated GPL’d IBM code in the Linux kernel (on which IBM
holds copyrights to almost 800,000 lines of GPL’d code) in various ways,
including “that SCO was distributing sixteen of IBM’s own contributions to
the Linux kernel while rejecting the GPL license that covered them” (Carver,
2005, p. 476; see also Stone 2004). According to analyst Carver, the most likely
outcome of the case is a victory for IBM and the GPL analogous to the Welte
case in Germany. However, the case is still not settled as of this writing, though
the discovery judge dismissed most of SCO’s claims in mid-2006.

International Enforcement
The recognition of intellectual property rights varies greatly across different
nations. As a social construct, it is “deeply embedded in the ethos of some
nations (like the U.S.) and not in others” (Meeker, 2006, p. 1). Copyrights are
strongly enforced in the United States and the European Union (EU). Treaties
like the Berne Convention and the Patent Cooperation Treaty aim to establish
a degree of worldwide uniformity in copyright and patents, but realistically
that does not mean there is anything even approximating global uniformity
in their enforcement. Patents vary even more widely than copyrights, espe-
cially the relatively new software patents. As we observed previously, tens of
thousands of software patents have been at least granted in the United States,
though their validity can of course be challenged, but their status is not set-
tled in the EU and India rejects them. There are also differences between the
enforcement of legal mechanisms like contract and copyright, Meeker criti-
cally observing that “while most countries have some tradition of enforcing
contracts, in many countries . . . copyright law is a joke” (p. 2). Major nations
like China, India, and Russia provide minimal copyright enforcement, a cir-
cumstance especially relevant to the free/open source movement, since these
countries are also increasingly major software developers. This combination of
their weak copyright enforcement and their robust software development seems
to undermine the enforceability of the GPL that relies on license termination

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 257

in the case of violation, followed by legal action against copyright infringers to
enforce compliance. Indeed, one might speculate that under such circumstances,
“international outsourcing companies may become the software equivalent of
money launderers” (Meeker, 2006, p. 4).

Meeker ironically characterizes open source software as “free software with-
out enforcement” (Meeker, 2006, p. 4), where free as used here refers to recip-
rocal licenses like the GPL, while open source refers to nonreciprocal licenses
like the BSD. Despite the cogency of this analysis, one could argue that most
software development currently occurs in countries with strong copyright tra-
ditions. This provides a broad, geographically rooted enforcement matrix that
protects GPL-based development. Global corporations then become implicated
in GPL compliance because their operations encompass the copyright-stable
regions. Furthermore, outside this legal matrix, the intrinsic practical benefits
of the GPL still keep it attractive. Its public disclosure requirements ensure
the rapid evolution of software because “each favorable acquired characteristic
of others’ work can be directly inherited” by other versions of the software
(Moglen, 1999). It also has the critically important practical advantage that it
protects a project from proliferating into multiple disjoint proprietary forks.
The fact that the software is mandated to be published as it develops creates a
centripetal force on the development process since different development ver-
sions can converge on the evolving visible changes which would otherwise tend
to diverge. Major practical factors like these help to maintain robust GPL-based
projects that can attract collaborators worldwide, including even those regions
beyond where copyright is currently reliably enforced.

The Next Version of the GPL: GPLv3
The current version of the GPL, GPLv2, debuted in 1991. An updated GPLv3
currently under development will address issues like internationalization and
software patents. A key objective of GPLv3 will be to ensure that it is “under-
stood and enforceable” in an international context (Peters, 2006, p. 4). For
example, as a trivial illustration, since the GPL license is based on copyright,
the term for the license should be for the period recognized by applicable copy-
right law. In addition to internationalization, GPLv3 is intended to address
software patents more explicitly and strongly. The draft version includes an
explicit patent license grant, which is intended to improve internationalization
and respond to some of the dangers software patents pose to free software.
For example, currently GPLv2 relies on an implied grant of patent license,
which is unacceptable in some countries. This is replaced in the GPLv3 draft
by an “express patent license grant” (Peters, 2006, p. 4). The draft language
is not simple to understand, so we will quote a paraphrase “the distributor is

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

258 6 Legal Issues in Open Source

granting a royalty-free, worldwide patent license covering all patent claims the
distributor controls or has the right to sublicense, at the time of distribution or
in the future, that ‘would be infringed or violated by the covered work or any
reasonably contemplated use of the covered work’” (Peters, 2006, p. 4, italics
added). The GPLv3 response to problems posed by the proliferation of software
patents is also reflected in a new patent-related restriction that applies even to
the private use of GPLv3’ed software! Recall that GPLv2 asserts limitations
and conditions only when the software is actually distributed. In contrast, the
most recent GPLv3 draft states that you lose the right to “make and run pri-
vately modified versions of the Program . . . if you bring suit against anyone
for patent infringement of any of your essential patent claims in any such ver-
sion” (http://gplv3.fsf.org/gpl-draft-2006-07-27.html). Distributors also incur
an obligation to protect downstream users. A distributor of GPLv3-licensed
code “who knowingly relies on a patent license to protect itself from liability in
connection with the distribution” must also “shield downstream users from that
same liability . . . through the grant of a sublicense . . . indemnification, or simi-
lar mechanism” (Peters, 2006, p. 7). As another modification, users will appar-
ently also be able to combine code under licenses previously deemed incompat-
ible,” like the Eclipse and Mozilla Public License (Peters, 2006, pp. 6–7). The
eventual impact and form of the GPLv3 license is not yet clear. For example, in
early 2007, Linus Torvalds and a group of Linux kernel developers expressed
reservations such as about the treatment of Digital Rights Management and
patent provisions in the GPLv3.

6.6.2 The Lesser GPL and Derivative Works

The GNU Lesser General Public License or LGPL, previously called the Library
GPL, uses weak copyleft. The LGPL is an open source license that is intended
to be useful for open source software libraries because it allows such libraries
to be used or called (linked to) by closed source, proprietary programs, with-
out the proprietary programs being affected or “contaminated” by any GPL
requirements.

Most GNU libraries are licensed under the LGPL, but the FSF has tactical
motivations for when this license should or should not be used. In contrast to the
LGPL, were an open source library licensed under the ordinary GPL, then any
program that used the library would itself have to be licensed as GPL and hence
could not be proprietary. This is what Stallman says in his gnu.org essay on
“Why you shouldn’t use the Library GPL for your next library” (italics added).
Actually a key point in this essay is other than a legal one. It is tactical; namely,
that it is better for the ultimate success of the free software movement if free

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 259

developers chose to release libraries they develop under the GPL (rather than the
LGPL) because this gives the free software movement a competitive advantage
vis--vis proprietary developers who already have the considerable advantage of
immense private funding. This development/licensing tactic provides the com-
munity of free developers with a software library advantage that proprietary
developers cannot avail themselves of. That is why the FSF might recommend
the GPL for such situations, even though the FSF also has the library-related
LGPL license available. On the other hand, if there are already other equiva-
lent libraries that a proprietary developer could use, then in that case Stallman
recommends that the new free library under consideration be released under
LGPL so that it can better compete with the existing proprietary libraries. In
either case, from the FSF’s point of view, it is less a matter of principle than of
competitive advantage as to which licensing choice is made.

Derivative Works – Static and Dynamic Linking – APIs
The relationship between the GPL, derivative works of software, and how a new
program interacts with existing GPL’d code presents licensing issues that may
be subtle or potentially confusing. The following discussion attempts to address
some of these issues, but the final interpretations do not all seem conclusive.
There appear to be conflicting points of view on some of these issues that do
not appear to have been settled yet by judicial decisions.

One consideration is whether there is a difference between the impact of static
linking as opposed to dynamic linking in the context of GPL, or depending on
the nature of the APIs that a program interfaces with. Consider first the case of
static linking. In software development, static linking refers to the resolution by
a linker of all the unresolved references that an application program’s compiled
(object) code makes to external library modules, until the separate modules have
all been knitted together into a single executable file. From a copyright point
of view, it seems that the resulting unified object code seems likely to thereby
constitute a derivative work of a GPL’d open source library, and hence be subject
to the GPL because the application code and library parts are now inseparable
(Asay, 2003). On the other hand, consider the implications of dynamic linking,
which refers to the resolution by a linker of the unresolved references that an
application’s compiled (object) code makes to external modules – but absent
combining the application and external module objects into a single executable
file. Thus the executables remain separate. From a copyright point of view, the
resulting interacting programs do not appear to constitute a derived work of
the original external modules. The article by Rosen (2001b) addresses these
issues and, in this context, also challenges the notion of the GPL as a viral or
contagious type of licensing arrangement. In particular, concerning dynamic

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

260 6 Legal Issues in Open Source

links, Rosen indicates that they do not create a derivative work, because they
are transitory relations that do not modify the code of the original program that
is linked to.

The relationship between software interfaces and the GPL can be viewed
from other viewpoints as well. For example, well-known Linux commentator
Jonathan Corbet (2003) asserted, “It is reasonably widely accepted that a pro-
gram which simply uses a well-documented API does not become a derived
work of the code implementing that API” (italics added). The same should
apply to an ABI, an Application Binary Interface, which is defined in terms of
the object code rather than the source code interface. The Linux kernel system
call interface is an example of such a well-known and well-documented, sta-
ble interface. Indeed in the case of Linux, “the COPYING file supplied with
the kernel explicitly states that programs using the system call interface are
not considered to be derived works” (Corbet, 2003). Furthermore, the Linux
kernel license even includes the following clarification: “This copyright does
not cover user programs that use kernel services by normal system calls –
this is merely considered normal use of the kernel, and does *not* fall under
the heading of ‘derived work’” (Epplin, 2001; Raymond, 2001; and the Linux
kernel COPYING file referred to there). It seems to be general practice/belief
that such an interaction allows a GPL’d library, accessed as in Linux system
calls, to act as “as an acceptable platform to build” on, letting proprietary appli-
cation programs “leverage (the platform’s) functionality without stealing” it, in
a manner consistent with the open source requirements of licenses like the GPL
(Asay, 2003). But while the stable and well-known external Linux interface
based on Unix system calls is one thing, internal Linux modules that are not
part of this stable interface are another matter according to Torvalds (Corbet,
2003). A pertinent distinction is that the stable interface represents a recognized
“boundary for derived works” (Corbet, 2003), while that was not the intent for
low-level kernel modules. Another consideration would be whether the exter-
nal module was “implemented independently of Linux,” like in the case of new
device drivers.

The FSF’s Eben Moglen (2003), on the other hand, appears to offer a different
interpretation. In response to a question as to whether a newly composed Java
application that uses a JAR (a zipped Java class library) that is licensed under
the GPL must itself also necessarily be licensed under the GPL, Moglen said,
“The situation is no different than the one where your code depends on static
or dynamic linking of a GPL’d library, say GNU readline. Your code, in order
to operate, must be combined with the GPL’d code, forming a new combined
work, which under GPL Section 2(b) must be distributed under the terms of the
GPL and only the GPL. If the author of the other code had chosen to release

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 261

his JAR under the Lesser GPL, your contribution to the combined work could
be released under any license of your choosing, but by releasing under GPL he
or she chose to invoke the principle of share and share alike.” A noteworthy
difference between this and the Linux system-call case may be that the JAR is
not an operating system built on an existing stable API like the Linux platform.

References

Andersen, T. (2004). Behlendorf on Open Source. http://www.itwriting.com/
behlendorf1.php. Accessed December 1, 2006.

Anderson, R. (2003a). ‘Trusted Computing’ Frequently Asked Questions, Version 1.1.
http://www.cl.cam.ac.uk/∼rja14/tcpa-faq.html. Accessed December 1, 2006.

Anderson, R. (2003b). ‘Trusted Computing’ and Competition Policy – Issues for Com-
puting Professionals. Upgrade. The European Journal for the Informatics Profes-
sional, 4(3), 35–41.

Asay, M. (2003). Open Source’s General Public License: Why Microsoft Is So Scared.
Wasatch Digital IQ, 3(1). http://www.wasatchdigitaliq.com/parser.php?nav=
article&article id=49. Accessed December 1, 2006.

Bessen, J. (2002). What Good is Free Software? In: Government Policy toward Open
Source Software, R. W. Hahn (editor). Brookings Institution Press, Washington,
DC.

Capek, C., Frank, S., Gerdt, S., and Shields, D. (2005). A History of IBM’s Open-Source
Involvement and Strategy. IBM Systems Journal, 44(2), 249–257.

Carver, B. (2005). Share and Share Alike: Understanding and Enforcing Open Source
and Free Software Licenses. Berkeley Technology Law Journal, 20, 443–481.

Corbet, J. (2003). Binary Modules and Derived Works. http://lwn.net/Articles/61490/.
Accessed December 1, 2006.

Downen, M. (2005). Obfuscation. Posted May 26. http://blogs.msdn.com/CLRSecurity/.
Accessed December 1, 2006.

Epplin, J. (2001). Using GPL Software in Embedded Applications: Wind River’s
Worries. http://www.linuxdevices.com/articles/AT9161119242.html. Accessed
December 1, 2006.

Engelfriet, A. (2005). Patent Risks of Open Source Software. http://www.iusmentis.com/
computerprograms/opensourcesoftware/patentrisks/. Accessed December 1, 2006.

Evans, D. (2002). Politics and Programming: Government Preferences for Promoting
Open Source Software. In: Government Policy toward Open Source Software, R. W.
Hahn (editor). Brookings Institution Press, Washington, DC.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Fishman, S. (2004a). Open Source Licenses Are Not All the Same. 11/18/2004. http://
www.onlamp.com/pub/a/onlamp/2004/11/18/licenses.html. Accessed December
1, 2006.

Fishman, S. (2004b). Web and Software Development: A Legal Guide. Nolo Pub.,
Berkeley, CA.

Fitzgerald, B. and Bassett, G. (2003). Legal Issues Relating to Free and Open Software.
In: Essays in Technology Policy and Law, vol. 1. B. Fitzgerald and G. Bassett

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

262 6 Legal Issues in Open Source

(editors). Queensland University of Technology, School of Law, Brisbane, Aus-
tralia,, Chapter 2.

Hollaar, L. (2002). Legal Protection of Digital Information. BNA Books. http://digital-
law-online.info/. Accessed January 20, 2007.

IBM Press Release. (2005). IBM Pledges 500 U.S. Patents to Open Source in Support
of Innovation and Open Standards. January 11. Armonk, New York.

Jassin, L. and Schecter, S. (1997). Copyright Permission and Libel Handbook: A
Step-by-Step Guide for Writers, Editors and Publishers. John Wiley & Sons,
New York.

Jones, P. (2003). The GPL Is a License, Not a Contract, Which Is Why
the Sky Isn’t Falling. December 14. http://www.groklaw.net/article.php?story=
20031214210634851. Accessed December 20, 2006.

Jones, P. (2005). Software, Reverse Engineering, and the Law. http://lwn.net/Articles/
134642/. Accessed December 1, 2006.

Knuth, D. (1990). The Future of TEX and METFONT., Nederlandstalige TeX Gebruik-
ersgroep, MAPS 5, 145–146. www.ntg.nl/maps/maps5.html. Accessed January 5,
2007.

Landau, M. (2000) “Statutory Damages” in Copyright Law and the MP3.com
Case. http://chnm.gmu.edu/digitalhistory/links/pdf/chapter7/7.24b.pdf. Accessed
December 1, 2006.

Lerner, J. and Tirole, J. (2005). The Scope of Open Source Licensing. Journal of Law,
Economics, and Organization, 21(1), 21–56.

Magid, L. (2005). It Pays to Read License Agreements. http://www.pcpitstop.com/
spycheck/eula.asp. Accessed December 1, 2006.

McMillan, R. (2002). Patent War Pending? Lawrence Rosen on How Open Source
Can Protect Itself from Software Patents. http://linuxplanet.com/linuxplanet/
interviews/4575/1/. Accessed December 1, 2006.

Meeker, H. (2006). Only in America? Copyright Law Key to Global Free Software
Model. LinuxInsider. May 16.

Microsoft. (2006). Microsoft and Novell Announce Broad Collaboration on Windows
and Linux Interoperability and Support. Microsoft Press Release. November 2.
http://www.microsoft.com/presspass/press/2006/nov06/11–02MSNovellPR.
mspx. Accessed January 20, 2007.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copy-
right. First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/
index.html. Accessed January 5, 2007.

Moglen, E. (2001). Enforcing the GNU GPL. http://www.gnu.org/philosophy/enforcing-
gpl.html. Accessed December 20, 2006.

Moglen, E. (2003). Professor Eben Moglen Replies. February 20. http://interviews.
slashdot.org/interviews/03/02/20/1544245.shtml. Accessed February 18, 2007.

Open Source Risk Management. (2004). Results of First-Ever Linux Patent Review
Announced, Patent Insurance Offered by Open Source Risk Management. August 2.
http://www.osriskmanagement.com/press releases/press release 080204.pdf.
Accessed December 20, 2006.

OSS Watch (2006). The GNU General Public License – An Overview.
Open Source Advisory Service. http://www.oss-watch.ac.uk/resources/gpl.xml.
Accessed December 1, 2006.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

6.6 The GPL and Related Issues 263

Payne, C. (2002). On the Security of Open Source Software. Information Systems Jour-
nal, 12(1), 61–78.

Perens, B. (1999a). It’s Time to Talk about Free Software Again. http://lists.debian.org/
debian-devel/1999/02/msg01641.html. Accessed January 5, 2007.

Perens, B. (1999b). The Open Source Definition. In: Open Sources: Voices from the
Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly
Media, Sebastopol, CA, 171–188.

Perens, B. (2004). The Problem of Software Patents in Standards. http://perens.com/
Articles/PatentFarming.html. Accessed December 1, 2006.

Perens, B. (2006). The Monster Arrives: Software Patent Lawsuits against Open Source
Developers. June 30. http://technocrat.net/d/2006/6/30/5032. Accessed January 5,
2007.

Peters, D. (2006). Software Patents and Open Source Software: An Overview of Patent
Provisions in the First Draft of GPLv3. American Intellectual Property Law Asso-
ciation 2006 Spring Meeting, May 3–5, Chicago.

Raymond, E. (2001). Email from Raymond to Torvalds. Subject: Controversy over
Dynamic Linking – How to End the Panic. June 21, 2001, 14:14:42. Linux Kernel
Mailing List Archive. http://lwn.net/2001/0628/a/esr-modules.php3. Accessed
February 18, 2007.

Rosen, L. (2001a). Naming Your Open Source Software. http://www.rosenlaw.com/
lj6.htm. Accessed December 1, 2006.

Rosen, L. (2001b). The Unreasonable Fear of Infection. RosenLaw.com, 32. September
23, 2001. http://www.rosenlaw.com/html/GPL.PDF. Accessed December 1, 2006.

Rosen, L. (2002). Why the Public Domain Isn’t a License. Tuesday, 2002–10–01, 01:00.
Linux Journal. http://www.linuxjournal.com/article/6225. Accessed December 19,
2006.

Rosen, L. (2003). Derivative Works. http://www.linuxjournal.com/article/6366.
Accessed December 1, 2006.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall, Upper Saddle River, NJ.

Rosenberg, D. K. (2005). Open Source Licensing: Software Freedom and Intellectual
Property Law: Book Review. Open Source Licensing Page, Stromian Technologies.

Samuels, E. (1993). The Public Domain in Copyright Law. Communications Media
Center at New York Law School. Journal of the Copyright Society of the USA, 41,
137–182. http://www.edwardsamuels.com/copyright/beyond/articles/public.html.
Accessed December 6, 2006.

Samuelson, P. (2002). Reverse Engineering under Siege. Communications of the ACM,
45(10), 15–20.

Schwartz, M. (2001). Reverse-Engineering. http://www.computerworld.com/
softwaretopics/software/appdev/story/0,10801,65532,00.html. Accessed Decem-
ber 1, 2006.

Shapiro, C. (2001). Navigating the Patent Thicket: Cross Licenses, Patent Pools and
Standard Setting. In: Innovation Policy and the Economy, A. Jaffe, J. Lerner, and
S. Stern (editors). National Bureau of Economics. http://faculty.haas.vberkeley.edu/
shapiro/thicket.pdf. Accessed December 1, 2006.

Stallman, R. (1996/2001). Categories of Free and Non-Free Software. http://www.gnu.
org/philosophy/categories.html. Accessed January 20, 2007.

P1: JYD
9780521881036c06 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:46

264 6 Legal Issues in Open Source

Stallman, R. (2001). Free Software: Freedom and Cooperation. www.gnu.org/events/
rms-nyu-2001-transcript.txt. Accessed December 1, 2006.

Stallman, R. (2005). Fighting Software Patents – Singly and Together. http://www.gnu.
org/philosophy/fighting-software-patents. Accessed December 1, 2006.

Stone, L. (2004). The Linux Killer. Issue 12.07. http://www.wired.com/wired/archive/
12.07/linux.html. Accessed December 1, 2006.

Tonella, P. Antoniol, G., Fiutem, R., and Calzolari, F. (2000). Reverse Engineering 4.7
Million Lines of Code. Software Practice and Experience, 30, 129–150.

Ueda, M., Uzuki, T., and Suematsu, C. (2004). A Cluster Analysis of Open Source
Licenses. In: Proceedings of 1st International Conference on Open Source Systems,
Genova.

Walli, S. (2005). Perspectives on the Shared Initiative. http://www.onlamp.com/
pub/a/onlamp/2005/03/24/shared source.html. Accessed December 1, 2006.

Warrene, B. (2005). Navigating Open Source Licensing. http://www.sitepoint.com/
article/open-source-licensing. Accessed December 1, 2006.

Webbink, M. (2003). Understanding Open Source Software. New South Wales Society
for Computers and Law Journal, 51. http://www.groklaw.net/article.php?story=
20031231092027900. Accessed December 1, 2006.

Weber, S. (2004). The Success of Open Source. Harvard University Press, Cambridge,
MA.

West, J. (2003). How Open Is Open Enough? Melding Proprietary and Open Source
Platform Strategies. Research Policy, 32(7), 1259–1285.

Wheeler, D. (2003). Make Your Open Source GPL-Compatible. Or Else. Revised
November 2006. http://www.dwheeler.com/essays/gpl-compatible.html. Accessed
December 1, 2006.

Wilson, R. (2005). The Mozilla Public License – An Overview. Open Source Advi-
sory Service. http://www.oss-watch.ac.uk/resources/mpl.xml. Accessed December
1, 2006.

Zittrain, J. (2004). Normative Principles for Evaluating Free and Proprietary Software.
University of Chicago Law Review, 71(1), 265.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7

The Economics of Open Source

This chapter looks at open source development from an economic and busi-
ness point of view. We have two objectives. One is to understand the economic
matrix in which open source development operates, what characteristic eco-
nomic factors affect its viability, and what proven business models have been
established. The other objective is to consider some of the classic motiva-
tional questions about why people do open development from an economic
perspective. Some standard economic factors we consider are the influence
of vendor lock-in, network effects (or network externalities), the total cost of
use of software, the impact of licensing on business models, the potential for
customizability for open source versus proprietary products, implications of
complementary products, and the effect of commoditization. We also examine
some of the successful open source business models that have evolved over
time. The longstanding question about open business models is basically how
can people make money off a product that is given away for free? Who pays
for the cost of developing this software? We consider various approaches that
have proved successful, including dual licensing, consultation on open source
products, provision of open source software (OSS) distributions and related
services, and hybrid business models like the use of open source for in-house
development or horizontally in a strategic synergistic combination with pro-
prietary products such as in the case of IBM’s involvement with the Apache
Foundation and Linux. With respect to the competitive prospects of a product,
a key economic characteristic is the extent to which the product’s function has
become standard, routine, or commoditized (in economic terminology). Com-
moditization deeply affects the competitive landscape for proprietary products.
It also appears to be a fundamental force or driving factor in open source appli-
cations development. We will present some explanations that have been set
forth to understand the role of this factor in open source success and its impli-
cations for the future. Speculation about whether individuals participate in open

265

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

266 7 The Economics of Open Source

development for psychological, social, or other reasons has also long intrigued
observers of the open source scene. We consider some economic interpretations
of motivations for participation. One of these models, which derives its data
from an empirical study of the Apache Project, uses a so-called signaling inter-
pretation to explain why individuals find it economically useful to volunteer
for open source projects. Another model argues that international differences
in economic conditions alter the opportunity cost of developer participation
and that this is the decisive factor in variations between participation rates for
different geographic regions.

7.1 Standard Economic Effects

The success of an open source product in the marketplace is influenced by a
range of factors. What does the product do? Is it easy to use and reliable? Is it
secure, or fast, or portable? The answers to these questions vary greatly with
the application involved and who the expected users are. The considerations
for a Web server, or an Internet utility, or a systems administration tool are
vastly different from those involved for mass market tools like Web browsers or
special-purpose tools like graphics or accounting utilities. One common element
is the impact of basic economic effects like vendor lock-in, network effects, and
total cost of use. We consider how each of these affects the marketplace for soft-
ware products in general and for open versus proprietary products in particular.
Vendor lock-in, for example, has been argued to provide an advantage to pro-
prietary giants like Microsoft with respect to its Windows platform. Network
effects are feedback effects that make the level of market share increase as a
function of market penetration. Such a pattern can influence the selection of
marketing strategies for software products. Total Cost of Ownership (TCO) is
a standard composite business metric. It is often used to evaluate products and
to compare proprietary to open source products, often in the context of a claim
by proprietary providers that whereas open products may be initially cheaper
because they are (relatively) free of charge, their long-term costs are actually
less attractive.

7.1.1 Vendor Lock-in

A user of a product is said to be locked-in to a particular brand if the direct and
indirect costs of switching to another brand are prohibitive. This is also called
vendor lock-in. The switching costs may be due to the cost of training workers
to use another system, contrasted with the fact that they are already familiar

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.1 Standard Economic Effects 267

with the tools they need in the current system. Or there may be switching costs
due to program or file incompatibilities that would result if the user migrates
to another system. Vendor lock-in is not just a technical effect: it can also be
based on perceptual effects like market recognition. For example, Microsoft is a
well-recognized and widely accepted operating system, whatever its faults and
limitations are. In the absence of strong countervailing reasons, the decision
to use Microsoft Windows or products is thus often likely to be perceived as a
“safe” decision when it is purchased for corporate or organizational use. If for
some reason it turns out that there are problems with this choice because the
system does not perform satisfactorily, then the decision maker is at least less
likely to face repercussions for having made an idiosyncratic choice; after all,
it’s a standard solution and there’s safety in numbers.

The effects of vendor lock-in can arise with either proprietary or open sys-
tems, but are more likely to occur with proprietary systems. Thus proprietary
Unix vendors produced different versions of the openly defined Unix system
during the late 1980s–1990s that, while “Unix-like,” were sufficiently incom-
patible that users of one Unix environment could not readily use components
from another. So lock-in can occur even in relatively similar environments.
The use of OSS in general and the GPL in particular tends to protect against
lock-in for the obvious reason that any distributed code and functionality must
be public, and so users are much less likely to become married to a particular
vendor. The users, or at least sophisticated users, in principle have control over
the open code, which gives them at least a measure of control over the under-
lying technology, making them more independent of the vendor. The ratio-
nale for why open source promotes vendor-independence over vendor lock-
in is succinctly expressed by Bob Young of Red Hat regarding open source
(Broersma, 2002):

It’s like buying a car with a hood that you can open, as opposed to the traditional
model in the software industry where the hood is locked shut. If you can open the
hood it means you can fix your car, but it also means you have access to 10,000 car
repair shops . . . Whereas if the hood’s locked shut, and if your vendor . . .

In other words, open source provides users freedom and control and relative
independence of vendors; however, keep in mind that this is only for sophisti-
cated users with the resources to exploit the control that is theoretically available.

The Windows operating system is usually considered the most prominent
example of vendor lock-in. Windows and its accompanying applications rep-
resent a highly attractive, unified, packaged environment where the parts are
designed to interoperate within that environment. Furthermore, the availability
of the Microsoft Windows Application Programming Interface (API) allows

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

268 7 The Economics of Open Source

many third-party programs to be written for the Windows platform, which also
contributes to helping lock users into the environment. This lock-in effect even
applies to the developers of independent software for Windows environments
because their applications tend to be heavily dependent on the Windows API
and so not readily ported to other operating systems. However, the level of user
lock-in to Windows because of third-party applications should be decreasing
with the availability of Wine for running Windows apps on non-Windows plat-
forms. Vendor lock-in can also arise in cases where proprietary hardware must
be used to access a service – a current example being the interaction between
the Apple’s iPod device and the Apple iTunes Music Store.

7.1.2 Network Effects

Network effects, which are also called network externalities, refer to an increase
in the value of a product or service the greater the number of people who use
the product or service. For example, the more people use services like e-mail
or Web services like eBay, the more valuable the services become because the
potential social connectivity of any given user becomes greater. Similarly, the
more Web sites or resources on the Internet, the more benefit others gain from
the Internet – a classic feedback factor in the original exponential development
of the Internet. Likewise, the more people use a software product like Microsoft
Word, the more useful it becomes for a given user to use the same package.
This is because anyone else using the same software can have complete access
to the documents made by the original user. For example, one benefit is that
it is easier for collaborators to share a document if they all have access to the
same word processing program.

The network effect is obviously not limited to software products and in
fact it was first examined in other contexts. For example, the English language
has become increasingly important because so many people speak it, making
the value of learning it greater, thereby extending the number of speakers in a
positive feedback cycle. Of course, not everything behaves in this way. Obvious
examples are resources like highways that are constrained by their limited
carrying capacities. In this case, the more people who use a highway, the less
valuable it becomes to other users, at least at a certain point, because traffic speed
and throughput decreases as the road gets more crowded. This corresponds
to a negative network effect (or negative externality). It obviously applies to
communication networks in general, where increased demand inversely affects
access to a network. Social examples where network effects are inverted include
products where uniqueness is prized, like a stylish dress valued because it’s the

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.1 Standard Economic Effects 269

only one of its kind. Or a valued rare metal like gold whose value would plummet
if it became commonplace and hence commoditized. The work by Liebowitz
and Margolis (1998) extensively and critically analyzes the application of this
and related concepts (see also Liebowitz (2002) as well as the seminal work by
Leibenstein (1950)).

Certain software products such as operating systems have positive network
effects because the larger the market for the system, the more likely it is that
products will be developed for the system, thereby increasing its value to users.
Of course, this phenomenon is not always relevant to the success of a popular
software product. For example, the dominant provider of financial and tax
software is Intuit which markets Turbo-Tax and Quicken, both of which are
widely used. However, unlike, say, the documents generated by word processors
which are often exchanged with other users, the type of information these
products deal in is not widely exchanged among users, so there are limited
network effects. These products are dominant and successful because they are
the best products in the field in terms of their functionality (Liebowitz and
Margolis, 1998), albeit word of mouth regarding the quality of the product
spreads in a network-like fashion.

The attempt to exploit network effects explains certain market strategies
like Netscape’s original free-of-charge browser strategy that was expected to
have the side effect of enhancing the market for other Netscape products. The
strategy initially worked, leading to a dominant market share for the Netscape
browser partly through network effects. Of course, as we have noted previously,
the effect was not permanent. Mismanagement by Netscape and slow-and-
steady technical progress by Microsoft’s Internet Explorer, combined with the
arguably predatory Microsoft practice of bundling its browser and shipping
it for free, eroded Netscape’s short-lived victory. Freeware products like the
Adobe Reader are also motivated by the strategy of exploiting network effects.
In the case of Adobe, the Reader is essential for the utility of the product.
Without it, most of the public that receives such documents would be unable
to read them, which would greatly undermine the utility of the full Adobe
software package for the full-function users who create and disseminate these
documents. Of course, Netscape was released as open source, while Adobe
Reader is proprietary freeware, so the network effect impacts both categories
of software similarly. However, a symbiotic combination of network effects for
both users and developers does have a relationship to open source development.
For example, Firefox’s rapid spread created a word-of-mouth network effect
among its users. As its market share expanded, the scale of distribution of the
project, at that point, helped make it a more attractive target of interest for open

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

270 7 The Economics of Open Source

developer contributions, who were able to participate in development precisely
because of the open nature of the product. Their contributions were then able
to further expedite the appeal and spread of the product.

Network effects also manifest themselves significantly in the case of certain
Web services where user contributions to a site are decisive to the success and
even the functionality of the site in the marketplace (O’Reilly, 2005). Impor-
tant examples of this phenomenon include the services provided by the online
encyclopedia Wikipedia, all of the contributions to which are completely user
provided and edited. The value of an auction site like eBay also derives from
the number of participants it attracts to its auctions.

7.1.3 Total Cost of Ownership

The total cost of ownership for software consists of all the direct and indirect
costs involved in purchasing (licensing), deploying, using, training and support-
ing, administering, and maintaining the software. It includes any costs triggered
by the purchase of the product, from migration and integration costs to the cost
of lost business or even damage to one’s business reputation if the product is
unsatisfactory. Understanding the TCO of a product is obviously a prerequisite
to correctly estimating the return on investment of the decision to purchase the
software. Obviously free software is free of charge and so its purchase price is
nominally a major advantage. However, the TCO is frequently used by propri-
etary software providers as a metric to discourage the use of open source. The
free-of-charge initial license is said to save up-front costs but to mask hidden,
downstream costs. Certainly, up-front purchase costs should be and are recog-
nized as only one element of a quantitative decision process. For example, a
report by the Gartner Group estimated original purchase costs of software as
less than 10% of total cost, with 90% of total costs being for various indirect
costs (Gonzalez, 2002).

TCO is a complex, composite metric. A report by the Computer Sci-
ences Corporation (Hohn and Herr, 2004) breaks down TCO into four major
categories: planning and deployment, support and learning, human resources
or people, and ongoing costs. Planning and deployment include acquisition,
installation, and data migration, as well as the cost of researching the deci-
sion, experimenting, and meetings. Support and learning include disruption dur-
ing migration and incompatible tools, skills, and experience. Human resources
include costs for hiring and training new staff and for consultants. Ongoing costs
include those for administration and technical support, including administra-
tion of licenses, professional development, and opportunity costs. This elaborate
model surfaces many cost drivers. Clearly an implication is that understanding

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.1 Standard Economic Effects 271

these costs is a nontrivial matter and that acquisition costs are only a single,
and possibly small, part of the overall cost picture.

Concerning the comparison of costs for open and proprietary platforms, there
are detailed, objective analyses that have examined the conditions under which
a Linux platform may be less expensive than a Microsoft platform in the TCO
sense. Thus the Gartner Report by Smith et al. (2003) considered how TCO
can be applied in decision making for office software. They compare the use of
Microsoft Office, Linux, and StarOffice. The analysis identifies a preliminary
savings of $150 in hardware and software costs for the initial acquisition costs
for a Linux environment with StarOffice, versus about half that if StarOffice is
installed on a Windows platform. However, to even have a chance of savings in
TCO, the Linux environment had to be “locked down.” The system was largely
sealed, with the user having little control over anything but the interface, and
was not even able to reinstall the operating system.

An increasingly important case is represented by situations where so-called
large multipliers occur that amplify acquisition and deployment costs. For exam-
ple, the impact of the initial purchase cost is magnified in the case of digital
appliances that have embedded software. This occurs, for example, when a
manufacturer embeds software in a device like a PDA or cell phone. Since
millions of these devices may be distributed, the availability of free-of-charge
OSS components immediately provides a huge savings in costs because of the
multiplier involved. The same multiplier effects can also benefit organizations
with large numbers of desktop PCs. Hohn and Herr (2004) observe that in the
case of the Computer Sciences Corporation, the company had 40,000 desktops,
which establishes a huge immediate cost savings multiplier when open source
decisions are made.

The detailed and well-respected Web site by Dave Wheeler (Wheeler, 2005)
contains extensive links to articles comparing the TCO for open source versus
proprietary products. The theoretical and empirically supported arguments he
advances for often cheaper TCO for open products include lower maintenance
and upgrade costs, lower licensing administration costs, and lower costs for
hardware including the reuse of low-end and obsolete machines. Wheeler ref-
erences and overviews a lengthy list of empirical studies. The examples are
too extensive to conveniently summarize, but a few stand out. For example,
one study indicated that Intel saved $200 million by switching from Unix to
GNU/Linux servers. Another study showed Windows versus Linux TCO sav-
ings in the range of 20–40% for Linux. The results depend strongly on the
application areas, and there are many factors that can affect the relative advan-
tages of the products, but overall there is a great deal of evidence supporting
claims of lower total cost of use for open solutions in many venues.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

272 7 The Economics of Open Source

7.2 Open Source Business Models

The longstanding paradoxical quandary about open source business models
is basically how can people make money off a product that is sold for free?
Who pays for the cost of developing this software? There are a number of
approaches that have been successful. The following are some of the basic possi-
bilities:

1. dual licensing,
2. consulting on OSS,
3. providing open software distributions and services,
4. hybrid proprietary/open model – vertical development with OSS, and
5. hybrid proprietary/open model – horizontal arrangements.

For example, the owners of the copyright for an open product can use dual
licensing models that differentiate customers based on individual versus com-
mercial use. The myriad of cost factors that we have seen lie behind a TCO
analysis serve to reveal many other opportunities for a viable business model
as well. Most of these factors come into play after the acquisition of an open
source product, but even during the systems analysis and selection phase there
are business opportunities. A complex and variegated business can be built on
providing expertise in consulting for a repertoire of open source products, with
consultation running the gamut from choice of products and system configu-
ration to service support and local adaptation of the software. Open software
can be provided with provisions for training and support on a for-charge basis.
A business that is primarily running on proprietary software can complement
its software operation with open source components adapted for internal use
only and not for distribution. There are other possibilities as well for commer-
cial venues for open development. Thus commercial companies can provide
products or services that are complementary to open products – an approach
that has been called “living symbiotically” with the open source community,
a prime example being the strategy adopted by the IBM corporation which
invested over $1 billion in 2001 alone in this type of relationship (Lerner and
Tirole, 2004). A related approach, which represents the most profitable area
for open source to date, is vertical use of open source combined with in-house
proprietary software. An underlying trend that also arises, especially in both the
dual-licensed and software distributions models, is an emphasis on branding the
open product, so it becomes synonymous in the customer’s mind with qualities
like reliability, thus making it the default trusted product of choice (Moczar,
2005).

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.2 Open Source Business Models 273

7.2.1 Dual Licensing

Dual licensing lets the owner of a copyrighted licensed product provide free and
open distribution for nonprofit users but requires a separate paid approach for
commercial users. We introduced our discussion of this model in Chapter 2. The
MySQL database system is offered under a dual license by the company MySQL
AB that owns the software. The noncommercial license is free of charge and pure
GPL. The GPL version helps keep the product connected to the creativity of the
open source community. The commercial license provides an enhanced version
of the software, called MySQL Pro that, according to the Web site, is more secure
and reliable, as well as provides service support for a fee. The company has a
variety of other products as well and will also develop custom enhancements
to the product, which their expertise in the product’s implementation puts them
in an ideal position to do. Naturally, if any licensed user embeds MySQL
in an existing General Public Licensed application, thereby modifying that
product, then the resulting application has to be distributed as GPL, if it is
redistributed at all, because it comes under the force of that other product’s
GPL. However, the proprietary MySQL license presents quite different terms
and opportunities. It allows commercial developers or companies to not only
modify the MySQL source code but also integrate it with their own proprietary
products, and redistribute and sell the resulting system as a proprietary closed
source system! MySQL can do this, even though such conditions are contrary to
the requirements of the GPL, precisely because the MySQL AB company owns
the copyright to the software and so, as owner, is not restricted by the provisions
of one of its licenses, including the fact that it obviously preserves its right to
release its product under different licenses! The commercial license requires
a fee currently ranging up to $5,000 per year for their high-end server (as of
2005). Thus, if you purchase MySQL under its commercial license, then you do
not have to comply with the terms of the GPL. Naturally, you cannot infringe
on the trademarked MySQLTM name in any derivative product – an issue that
arose particularly in the dispute between MySQL and NuSphere (MySQL News
Announcement, 2001). The commercial license provides product support from
MySQL AB as well as product warranties and responsibilities that are not in
the free General Public Licensed copy of the product that is offered only on
an as-is basis. This proprietary form of the license is required even if you only
sell a commercial product that merely requires the user to download a copy of
MySQL, or if you include a copy of MySQL, or include MySQL drivers in a
proprietary application. Most of MySQL AB’s income derives from the fees for
the proprietary license, with additional revenues from training and consultancy
services. According to Valimaki (2005), most of the fee income comes from

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

274 7 The Economics of Open Source

embedded commercial applications. The income from these services and fees
adds up to a viable composite open source/proprietary business model.

7.2.2 Consulting on OSS

The broad array of existing open source products also constitutes a fertile and
natural opportunity for consulting. These products comprise a large inven-
tory of important, viable, and possibly even best-of-breed open products, with
regard to which any business can establish expertise because the internals of
the products are public. The range of products is clearly complex and widely
enough used such that expertise would present a considerable level of busi-
ness value. The British OSS consulting firm GBdirect is an excellent example
of a business model that is based on a company’s expertise across a broad
spectrum of open source products. The corporate Web site (http://software-
support.gbdirect.co.uk/, accessed January 20, 2007) gives a very instructive
overview of the market needs that such a company serves. It describes their
services as having traditionally involved the design, implementation, installa-
tion, integration, and handcrafting of open source solutions. More recently the
company offers a wide collection of open source packaged solutions. Its effec-
tiveness depends on having a highly experienced staff of open source experts.
The site describes how many of the standard, mature open source packages are
“written for experts” so that even technically very capable systems people with-
out the proper experience may have difficulty maintaining them, or modifying
and adapting them if needed. It also describes how the company can expedite the
conventional proprietary “escalation” of technical assistance by providing soft-
ware fixes directly from the software author (!) or by designing it themselves,
all without any legal impediments, due to the open nature of the licenses. The
company’s embedding in and familiarity with the open source developer com-
munity lets it tap into the expertise of multiple individuals as well as that of
other open source companies. The latter opportunity is much less usual in a
proprietary framework but is common among open source providers who have
a longstanding community tradition of sharing skills since they all work on the
same kind of software. The public, open nature of the code also allows the firm
to invoke the help of other companies when their own workload is strained, so
it can respond more effectively to its clients. The open solutions of other com-
panies can also facilitate innovation because the solutions are available without
having to be reverse-engineered.

Expertise like this is increasingly relevant to in-house software develop-
ers. Over the past decade, in-house software development has increasingly
relied on integrating off-the-shelf components to implement software systems.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.2 Open Source Business Models 275

Previously this process had emphasized the selection and integration of COTS
(Commercial-Off-The-Shelf) products, but there are increasing opportunities
for mature, OSS components with the appropriate characteristics, including
commercial levels of support, reliability, licensing, etc. (Wang and Wang, 2001).
For example, Serrano et al. (2004) briefly overview a project where open source
components were determined to be the better selection than traditional COTS
components. This change in methodology also increases the general market-
place need for companies with expertise in consulting on a range of open
systems.

7.2.3 Providing Open Software Distributions and Services

A company like Red HatTM represents a different business model than either
MySQL AB or GBdirect. It constructs and sells software distributions rather
than software products. For example, Red Hat is unlike MySQL AB which
owns the MySQL copyright so that it maintains the right to dual license its own
product. It is also unlike a company such as GBdirect that primarily capitalizes
on its expertise and experience in working with a broad array of open products
on the basis of which it can then provide consulting services, software mod-
ification, system integration, etc. Instead, Red Hat specializes in creating and
providing its own distributions of Linux, as well as providing extensive train-
ing, documentation, and support for its distributions. Red Hat does not own the
Linux copyright, nor does it only consult on products. Of course, there are many
possible different components in such a system, with multiple options for con-
figuration and installation. Red Hat assembles updated, tested combinations,
or prepackaged suites of the newest stable Linux versions, combined with the
requisite open system components such as GNU compilers, Apache servers, IO
drivers, and windowing infrastructure like X11. Companies like the German
Linux distributor SUSE follow a similar model. The Debian GNU/Linux distri-
bution is an example of a noncommercial distribution. It tends to be about twice
the size of the Red Hat distributions but has less frequent releases (Gonzalez-
Barahona et al., 2005). The extremely widely used Ubuntu Linux distribution
for personal computers is based on the Debian distribution. A fundamental
advantage of such distributions is that the user does not have to be a Unix
or Linux expert in order to install and configure the system. The user does
not have to know what software libraries or programs to use or where to put
files. Distributions intentionally handle such details for nonexperts, including
the management of ongoing software releases for the components (so-called
release engineering). In fact, distributions are now a matter of choice even
for Linux experts. The Red Hat installation program is called Anaconda and is

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

276 7 The Economics of Open Source

also General Public Licensed. Separate applications and services are segregated
into so-called packages which can be selectively installed using a package man-
agement system. Red Hat provides multiyear commercial “subscriptions” for
distributions like its Red Hat Enterprise Linux system that it guarantees (as per
its product descriptions) to have the “latest, extensively tested security patches”
with “quality-controlled features, updates, and upgrades” that are regularly and
automatically revised, and Web-based administration tools for “updating and
managing your system.” These are equivalent to full-fledged off-the-shelf pro-
prietary environments, like Microsoft Windows XP with its repertoire of user
tools.

Thus, in some respects Red Hat acts like a proprietary software provider
except that the systems it sells and its services are based on open source com-
ponents. Though it offers what may be a commodity product, its mission is to
have the preeminent trusted brand name in the Linux distribution market. The
branded distribution of trusted commodities is a classic way to run a successful
business. As Red Hat cofounder Bob Young described it, commodity industries
“base their marketing strategies on building strong brands. These brands must
stand for quality, consistency, and reliability” (Young, 1999). Furthermore, per-
ception and product control are key. As Young (1999) observes: “Heinz owns
80% of the ketchup market because they have been able to define the taste of
ketchup in the mind of ketchup consumers.”

7.2.4 Hybrid Proprietary/open Model: Vertical
Development with OSS

According to PHP creator Rasmus Lerdorf (as of this writing a prominent soft-
ware engineer at Yahoo), the most promising business model for open source
is neither distribution nor even dual licensing models, but in-house, propri-
etary, vertical development utilizing open source platforms and components.
He observes that: “the real money . . . in open source is in the verticals. It’s about
taking open source software, applying it to a problem and selling the resulting
solution. That’s where you will find the billion-dollar companies” (Schneider,
2003). The extensive use of open source infrastructure to implement the Yahoo
environment is one example. Google is another instance of proprietary ser-
vices that have been developed on top of open source platforms. The Google
development model is extensively committed to using open source in general,
though of course its search engine is proprietary. Internally, Google uses the
Linux core as posted on the Linux kernel Web site to support its proprietary
search services, rather than Linux distributions like Red Hat. It also extensively

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.2 Open Source Business Models 277

utilizes other open products like Python, MySQL, Apache Tomcat, the GCC
compiler, and Java (albeit the Java virtual machine is not open), according to
Google open source programming manager Chris DiBona (Shankland, 2005).
In fact, Google now provides a Subversion-based open development hosting
service. Neither Yahoo nor Google distributes its software; instead each keeps
the software internal and private and distributes the services provided by their
software solution to solve valuable consumer problems. As we have noted else-
where, most software, in general, is developed for in-house use in any case.
From a labor economics point of view, the marriage of open source and propri-
etary code for successful in-house development, whether it is done for purely
in-house use or to distribute services based on the software, is a significant
positive development for programmers.

7.2.5 Hybrid Proprietary/open Model: Horizontal
Arrangements

Though there has long been major industrial support and participation for open
source development, its importance is increasingly widely recognized and the
involvement of corporate sponsors more direct. These arrangements represent a
business strategy for the sponsors where open source serves as an adjunct, rather
than as a full-fledged driver, for their businesses. Fogel (2005, p. 72) lucidly
analyzes some of the reasons for industrial involvement, ranging from helping
companies spread the burden, cost, and risk of software development across
multiple enterprises to allowing companies to support open source projects
that play a supportive or complementary role to their own commercial prod-
ucts. Project participation can also benefit a company by associating it with a
prominent open source brand. For hardware vendors, open source can provide
low-cost added value for their hardware products. Participation may also be
used as part of a corporate strategy to indirectly challenge a dominant competi-
tor on market share and vendor lock-in. IBM’s involvement with Linux serves
this purpose with respect to Microsoft Windows. On the open community side,
a lessened risk of project failure is a major psychological benefit of corporate
participation. As Fogel observes, if “IBM backs an open source project, people
pretty much assume the project won’t be allowed to fail,” a perception which
can become a “self-fulfilling prophecy” (Fogel, 2005, p. 71).

However, these corporate sponsorships have to be handled adroitly to be
successful, otherwise the arrangements can kill the goose that lays the golden
egg of passionate volunteer participation and enthusiasm. In effect, while a
company may financially support a project and pay employees to participate,
the participation must remain meritocratic as exemplified by the collaborative

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

278 7 The Economics of Open Source

participation between Apache and IBM. There will also be a built-in cultural
tension between the hierarchical structure of a commercial organization ver-
sus the “semi-decentralized volunteer communities of free software projects”
(Fogel, 2005, p. 71). A successful relationship requires that the norms for open
source participation not change merely because a company becomes involved.
The corporate sponsor needs to appreciate that its contributions must fit into “the
community’s vision for the software. You may have some say in that vision, but
you won’t be the only voice” (Fogel, 2005, p. 71). The sponsor must establish
a relationship of trust with the open source community, not just through sup-
port, but by, for example, releasing new code back to the community’s software
commons. Establishing an effective participatory environment is not simple.
Jim Gettys of the X Window System project observes, in a cautionary manner,
that X.org had to restructure itself from “from an industry consortium (X Con-
sortium) to an organization in which individuals, both at a personal level and
as part of work they do for their companies have voice, working as part of the
larger freedesktop.org and free standards community” (Gettys, 2003).

IBM is an example of a company that has established a symbiotic relationship
with open source. On the one hand, IBM uses open source products, but it also
supports open communities that are involved in developing products that can
benefit IBM’s own proprietary software. IBM’s portfolio of proprietary prod-
ucts tends to focus on middleware and enterprise level applications. IBM’s Web-
Sphere is an example and is used for a variety of applications like load-balancing
across servers. But WebSphere is built using the Apache server as a key com-
ponent (Capek et al., 2005), so IBM receives a corporate gain from supporting
and participating in the Apache project. IBM ports its proprietary products like
Lotus, WebSphere, and DB2 to Linux, thereby “Linux-enabling” them as part
of its strategy of integrating its software with free and open platforms. Such
porting of proprietary software to open platforms is one of the most prominent
commercial strategies for using open source. IBM’s corporate expectation is that
“Linux will do for applications what the Internet did to networks” (http://www-
03.ibm.com/servers/eserver/linux/passport.swf, accessed January 5, 2007).
Another major way the company benefits from open source is by support-
ing open source development tools like Eclipse. While such development tools
are not in themselves profitable for IBM, it needs to invest in them because of
their side-benefits for its profitable proprietary products. Software tools like
Eclipse positively affect IBM products like WebSphere, increasing their value
to its customers. The Eclipse Web site defines the product as an open, extensible
integrated development platform that provides a “plug-in based framework that
makes it easier to create, integrate and utilize software tools” (eclipse.org). By
supporting the Eclipse project, IBM can not only help the tool evolve but to
some extent influence its evolution, not only for the benefit of the open source

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.2 Open source business models 279

community but also for its own corporate benefit. IBM is also heavily involved
in Linux development, helping to bolster its role in mission-critical, enterprise
level applications. The major areas of the company’s open source involvement
are the Linux, Apache, Eclipse, and Globus projects, with more than 700 of
its employees contributing to the projects (Capek et al., 2005). IBM’s open
source strategy is to “contribute to key OSS projects that are functionally con-
nected with some of our key products. The joint participation of commercial
developers and independent OSS developers creates a synergy that enhances
the open-computing ecosystem” (Capek et al., 2005, p. 254).

From the viewpoint of economic theory, IBM can be considered as sup-
porting commoditized open products that are complementary (in the economic
sense) to its core proprietary products. This has the effect of making its core
products more attractive since the complementary products they work with
are free or inexpensive (Spolsky, 2002). At the same time, IBM is also con-
ducting a platform war against its most prominent competitor Microsoft, with
Linux as the commoditized proxy. To the extent that Linux erodes Windows
market share, IBM is strengthened because its products run on Linux, while
Microsoft is simultaneously weakened, reducing the financial resources it can
bring to bear in its competitive battles. The involvement also helps IBM pro-
mote open standards with open source implementations – a strategic objective
that strengthens IBM against the exploitation of proprietary standards by com-
petitors like Microsoft. The company additionally benefits from the expertise
it gains in open source products and development techniques that it can apply
internally to its own products as well as in connection with its consulting ser-
vices. On the legal infrastructure side, IBM has also promoted the use of more
rigorous processes for ensuring the copyright integrity of code contributions in
open source projects – an area in which many open projects had been somewhat
lax and which could in principle affect their commercial viability. It also intro-
duced the Common Public License, an OSI-certified license that it believes
serves as a model for commercial use. Eclipse uses the Eclipse License, a
modified version of the CPL, with rights owned by the independent Eclipse
Foundation.

References

Broersma, M. (2002). Q&A: Red Hat: Linux Can’t Compete with Windows. Interview
with Bob Young, February. http://news.zdnet.com/2100–3513 22–828802.html.
Accessed December 1, 2006.

Capek, C., Frank, S., Gerdt, S., and Shields, D. (2005). A History of IBM’s Open-Source
Involvement and Strategy. IBM Systems Journal, 44(2), 249–257.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Sebastopol, CA.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

280 7 The Economics of Open Source

Gettys, J. (2003). Open Source Desktop Technology Road Map. HP Labs, Version 1.14.
http://people.freedesktop.org/∼jg/roadmap.html. Accessed December 6, 2006.

Gonzalez, J. A. (2002). Letter to General Manager of Microsoft, Peru. April 8th.
Letter copied in: MS in Peruvian Open Source Nightmare by T. Greene.
http://www.theregister.co.uk/2002/05/19/ms in peruvian opensource nightmare/.
Accessed December 1, 2006.

Gonzalez-Barahona, J., Robles, G., Ortuno-Perez, M., Centeno-Gonzalez, J., Matellan-
Olivera, V., Barbero, E., and Quiros, P. (2005). Analyzing the Anatomy of
GNU/Linux Distributions: Methodology and Case Studies (Red Hat and Debian).
In: Free/Open Software Development, S. Koch (editor). Idea Group Publishing,
Hershey, PA, 27–58.

Hohn, S. and Herr, G. (2004). Open Source: Open for Business. A Report from Computer
Science Corporation: Leading Edge Forum, September.

Leibenstein, H. (1950). Bandwagon, Snob, and Veblen Effects in the Theory of Con-
sumer’s Demand. Quarterly Journal of Economics, 64, 183–207.

Lerner, J. and Tirole, J. (2004). The Economics of Technology Sharing: Open Source
and Beyond. National Bureau of Economic Research, Cambridge, MA.

Liebowitz, S. J. (2002). Rethinking the Networked Economy: The True Forces Driving
the Digital Marketplace. AMACOM, New York, NY.

Liebowitz, S. J. and Margolis, E. (1998). Network Externalities (Effects). In: The New
Palgrave Dictionary of Economics and the Law. MacMillan. http://www.utdallas.
edu/∼liebowit/palgrave/network.html. Accessed December 1, 2006.

Moczar, L. (2005). The Open Source Monopoly. IT Manager’s Journal, February 02.
http://www.itmanagersjournal.com/feature/3146. Accessed December 1, 2006.

MySQL News Announcement. (2001). FAQ on MySQL vs. NuSphere Dispute. http://
www.mysql.com/news-and-events/news/article 75.html. Accessed November, 29
2006.

O’Reilly, T. (2005). What Is Web 2.0. Design Patterns and Business Models for the
Next Generation of Software. http://www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html. Accessed December 1, 2006.

Schneider, J. (2003). Interview: PHP Founder Rasmus Lerdorf on Relinquishing Control.
http://www.midwestbusiness.com/printer/article.asp?newsletterID=4577. Acce-
ssed December 1, 2006.

Serrano, N., Calzada, S., Sarriegui, J., and Ciordia, I. (2004). From Proprietary to Open
Source Tools in Information Systems Development. IEEE Software, 21(1), 56–58.

Shankland, S. (2005). Google Throws Bodies at OpenOffice. http://news.com.com/
Google+throws+bodies+at+OpenOffice/2100–7344 3–5920762.html. Accessed
December 1, 2006.

Smith, D., Simpson, R., Silver, M., and Fiering, L. (2003). Linux on the Desktop:
The Whole Story. Technical Report AV-20–6574, Gartner. http://www.gartner.com/
DisplayDocument?id=406459. Accessed December 1, 2006.

Spolsky, J. (2002). Strategy Letter V. June 12. http://www.joelonsoftware.com/articles/
StrategyLetterV.html. Accessed December 20, 2006.

Valimaki, M. (2005). The Rise of Open Source Licensing: A Challenge to the Use of
Intellectual Property in the Software Industry. Turre Publishing, Helsinki, Finland.

Wang, H. and Wang, C. (2001). Open Source Software Adoption: A Status Report.
IEEE Software, 18(2), 90–95.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.3 Open Source and Commoditization 281

Wheeler, D. (2005). Why Open Source Software/Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers! http://www.dwheeler.com/oss fs why.html.
Accessed December 1, 2006.

Young, R. (1999). Giving It Away. In: Open Sources: Voices from the Open Source Revo-
lution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media, Sebastopol,
CA, 113–125.

7.3 Open Source and Commoditization

The process of the commoditization of software, under which successful propri-
etary software products tend to become commodified over time, is a fundamen-
tal economic phenomenon which has been proposed as a major factor in open
source development. First, let us recall that a commodity traditionally refers to a
widely demanded generic product like timber, crude oil, and iron. Some charac-
teristics of traditional commodities are that they are produced and consumed in
mass quantities. They serve as the building blocks of industrial and commercial
processes and products. Because of their fundamental and pervasive character,
commodities are produced not only in large quantities but also by many differ-
ent producers. In the world of computer hardware, the commoditization of the
standardized IBM PC is considered a paradigmatic example of the potentially
disruptive power of this kind of phenomenon (Christensen, 1997). A commod-
ity made by one producer can be used interchangeably with that of another
producer. Because they are multisourced, such products are expected to adhere
to uniform and open standards of performance (Stutz, 2004b). Commodities
are generally not brand-driven products, though they can certainly be branded.
The implications of the commoditization of software have been the subject
of considerable discussion by analysts in the software industry. For example,
commentators like Martin Fink (2003) compare the effect of OSS to that of
commoditized, generic drugs in the pharmaceutical industry, producing lower
prices and greater vendor competition, albeit in the case of pharmaceuticals
only after the original grace period afforded by the patent for the drug.

There is an intimate relation between the forces that drive commoditiza-
tion and the principles of open source development. The well-known Microsoft
software engineer David Stutz, for example, contends that it is the commodi-
tization of software that represents “the critical force behind the rise of open
source software” (Stutz, 2004b). Software companies can only optimize their
products’ potential market by maximizing “their product’s potential for useful
combination with other software, while at the same time minimizing any restric-
tions upon its further re-combination,” according to Stutz (2004b). However, it
is precisely this kind of open-ended flexibility that is intrinsic to the principles

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

282 7 The Economics of Open Source

underlying the open source movement. Stutz also contends that data is more
influential than software in these developments and that the software industry
is in the process of “reorganizing itself around the network exchange of com-
modity data.” For example, the MP3 (Mpeg Audio Layer 3) process for audio
compression became recognized, and thereafter commoditized, after it became
widely used as a standard for exchanging digital music. From this point of view,
it is the data that is exchanged and stored (XML files, HTML files, MP3 files,
etc.), that is, the commodity-like invariant, not the constantly evolving software
that processes the data.

Proprietary software producers like Microsoft are under pressure, not merely
from competitive open source operating systems like Linux, but from open
source applications across the board. Open applications that run in Windows
environments threaten to undermine Microsoft’s closed, packaged software,
business model, gradually causing an “erosion of the economic value of soft-
ware” (Stutz, 2003). Granted, the open software approach can be temporarily
circumvented when dominant companies bypass it by introducing proprietary
extensions of standards, as for example, in Microsoft’s implementation of Ker-
beros. However, though such tactics may have temporary success, the trend
toward commoditization seems inevitable because open source excels at creat-
ing innovative, individual applications that do not require buying into extensive
software suites like MS Office or platforms like Windows. Indeed, over time,
open source is app-by-app “accreting (italics added) into a legitimate alternative
to Windows” (Stutz, 2003).

Another principle Stutz proposes is that resources that lend themselves to
many uses are likely to “penetrate society more fully than resources that are
special-purpose” (Stutz, 2004b). This has implications for the relative attrac-
tiveness of open source versus proprietary products in terms of what are called
economies of scope where the idea is to leverage consumer demand for a com-
modity by “reusing the underlying commodity in many different ways.” For
example, the Unix API is more interoperable; it is more familiar because it
is open; and much of it has even been formally and openly standardized, so
it represents a standard item that is “good enough” for other software to be
built on top of it. This simpler Unix API is therefore more likely “to emerge as
the successful cross-platform standard for non-graphical software construction
than the complex and monolithic Windows API” (Stutz, 2004b). Or, consider
the conventional Microsoft Word document format, which is “complex and
encumbered by proprietary behaviors that make it hard for software producers
to conform to its detailed, and undocumented, layout” (Stutz, 2004b), so that
it appears destined to eventually lose ground as a document standard (granted,
there is movement toward a more open standard for the document format).

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.3 Open Source and Commoditization 283

A further factor related to open development is the impact of open standards.
Software agents like servers and browsers are interchangeable because they are
all constrained to implement the underlying HTTP and HTML standards or
formats (O’Reilly, 2004). In a network-driven environment governed by open
standard protocols, not only open source but also proprietary software become
effectively commoditized. There are commoditized Web servers like Apache
on the one hand and commoditized Web browsers like Internet Explorer on the
other hand. O’Reilly (2004) contends that had Microsoft controlled both ends
of the HTTP protocol pipeline between server and browser with proprietary
Microsoft products, then the continued open nature of the product evolution
could have been undermined. Thus it is essential for the standards themselves
to be kept honest and open. One way to maintain this is for organizations like
the W3C consortium to reject standards that are realized only by proprietary or
patent-encumbered implementations.

Some level of commoditization of software products appears inevitable. In
the long term even highly successful proprietary platforms become commodi-
fied (Stutz, 2004a). The reason is that if a proprietary product becomes dominant
in the market or even highly successful, then its functions, interface, etc., tend to
become static over time. Once this happens the product becomes a natural refer-
ence target for development by cloners who eventually commodify the product,
as has happened in the open source efforts to clone Windows and MS Office
with competing reference products like GNOME that are similar to the Win-
dows interface. Generally, well-defined systems make easy targets for cloning:
one just follows their taillights. Stutz (2004a) describes the phenomenon, in
the context of software, as follows: “because mature and successful platform
ecosystems are so well-defined and so difficult to change, the vendors who build
them invariably place themselves at risk of commoditization through cloning.”
In other words, the potential for commoditization inexorably “occurs through
a hardening of the external shell presented by the platform over time. As a plat-
form succeeds in the marketplace, its APIs, UI, feature-set, file formats, and
customization interfaces ossify and become more and more difficult to change”;
that is, a phenomenon of “ossification followed by cloning” occurs, with an ini-
tially “value-laden proprietary platform” becoming over time a “replaceable
component” (Stutz, 2004a).

Since stable products become commodified, products are actually at their
most profitable when they are not so transparently good enough as to satisfy
customers. At that point, producers try to make proprietary configurations of the
products that make them competitive or superior in performance with the best
performing products dominating the market. Thus, the fulcrum of product evo-
lution depends on when a product is “good enough” for the needs of consumers

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

284 7 The Economics of Open Source

(Christensen, 2004; O’Reilly, 2004; Stutz, 2004a). Eventually, production of
a version of the product with good enough performance becomes sufficiently
routine that manufacturers or producers can no longer differentiate themselves.
Profit margins on these commoditized products then decline. The key factors in
consumer product preference then become “speed to market and the ability to
responsively and conveniently give customers exactly what they want” (Chris-
tensen, 1997, 2004). At this point, producers are led to use modular approaches
for software product architecture. The opportunities for “attractive profits” tend
to move elsewhere in the value chain, for example, to “subsystems from which
the modular product is assembled” (Christensen, 2004). In other words, as the
product becomes commoditized, the subsystems of which the product is com-
posed become decommoditized (Christensen and Raynor, 2003). Stutz believes
that the value opportunities at this point are not primarily in the infrastructure
software components that arise, but in the opportunities represented by the abil-
ity to distribute “platform-standardized information” such as digital media and
Web content (Stutz, 2004a).

Commoditization may seem to be a destroyer of value, but new value oppor-
tunities simply emerge elsewhere. The business implications of software com-
moditization appear to be negative: it removes monetary value from the market.
In place of the tens of billions of dollars in revenue generated by the not-yet-
commodified Microsoft products, the outcome would appear to be a vast decline
in business value as the result of replacement of the proprietary products by the
essentially discount distributors of commodity packages like Red Hat Linux.
Are companies like Microsoft, which themselves benefited from the commodi-
tization of the PC, destined to suffer a similar decline when their products are
commoditized (Stutz, 2004b)? On the one hand, the answer is yes because the
commoditization outcome appears historically inevitable. On the other hand,
the answer is no because there are always emerging alternative value opportu-
nities. The economic value that disappears at one point in the value chain may
in fact merely end up reappearing as new opportunities at other points in the
value chain (Christensen, 2004). Of course, in order to be realized, these oppor-
tunities must first of all be recognized and then seized, the way IBM seized the
idea of becoming a major software services provider after the commoditization
of the PC, rather than trying to hold on to its old role of being a proprietary
hardware provider. Similarly, the commoditized OSS that underlies the Internet
has opened up enormous opportunities for proprietary software services that
rely on this commoditized infrastructure, including as a compelling example
the kind of proprietary extensions of Linux that inhabit google.com’s tens of
thousands of Web servers (Christensen, 2004). There is an ongoing dynamic

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.4 Economic Motivations for Participation 285

between large established firms and start-ups. Established firms have struc-
tural characteristics that can make them less effective at recognizing oppor-
tunities for exploiting new technologies, while small firms may have a dis-
ruptively successful ability to recognize opportunities for adopting emerging
technologies. However, the advantages of small firms in these situations may
be temporary, possibly lasting only until large firms decide to enter the market
(Park, 2005); see also Christensen (1997), Schumpeter (1934), and Schumpeter
(1942).

References

Christensen, C. (2004). Law of Conservation of Attractive Profits. In: Breakthrough
Ideas for 2004: The HBR List. Harvard Business Review, February, 17–18.

Christensen, C. and Raynor, M. (2003). The Innovator’s Solution: Creating and Sustain-
ing Successful Growth. Harvard Business School Press, Boston, MA.

Christensen, C. (1997). The Innovator’s Dilemma: When New Technologies Cause Great
Firms to Fail. Harvard Business School Press, Boston, MA.

Fink, M. (2003). The Business and Economics of Linux and Open Source. Prentice Hall,
Upper Saddle River, NJ.

O’Reilly, T. (2004). Open Source Paradigm Shift. http://www.oreillynet.com/pub/a/
oreilly/tim/articles/paradigmshift 0504.html. Accessed December 1, 2006.

Park, J. (2005). Opportunity Recognition and Product Innovation in Entrepreneurial Hi-
tech Start-ups: A New Perspective and Supporting Case Study. Technovation, 25,
739–752.

Schumpeter, J. A. (1934). Theory of Economic Development. Harvard University Press,
Cambridge, MA.

Schumpeter, J. A. (1942). Capitalism, Socialism and Democracy. Harper, New York.
Stutz, D. (2003). Advice to Microsoft Regarding Commodity Software. http://www.

synthesist.net/writing/onleavingms.html. Accessed December 1, 2006.
Stutz, D. (2004a). The Natural History of Software Platforms. http://www.synthesist.net/

writing/software platforms.html. Accessed December 1, 2006.
Stutz, D. (2004b). Some Implications of Software Commodification. http://www.

synthesist.net/writing/commodity software.html. Accessed December 1, 2006.

7.4 Economic Motivations for Participation

This section considers two economic explanations for why developers get
involved in open source. One uses a labor economics model based on so-called
signaling theory; the other uses a cost–benefit model that analyzes geograph-
ically dependent wage differences to understand differences in participation.
The models are not merely theoretical. They are based on statistical analysis of
extensive empirical project data.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

286 7 The Economics of Open Source

7.4.1 A Signaling Model for Motivation

Participation in open source development does not per se lead to higher wages.
But it appears to have an indirect effect in that “higher status in a merit-based
ranking” does have a significant impact on wages. This was one conclusion of
the empirical investigation of the Apache project by Hann et al. (2002). Their
study considers a range of possible explanations for what motivates participa-
tion, from the cultural and social-psychological to the economic. They conclude
that the benefits of purely social or cultural recognition for a developer are not
credible as determinative motivations, since similar benefits could be expected
to largely accrue in a commercial environment (Lerner and Tirole, 2000) and
would not in any case be limited to the field of software. (An argument against
this is that open source participation, to a significant extent, disintermediates the
presumptive employer, who would gain much of the recognition for the product
the programmer works on.) A traditional economic analysis of the motivation
would view the decision about participation as driven by a cost–benefit analy-
sis by the programmer, whether or not done consciously. The major cost factor
would be the opportunity cost of the decision to participate and would be rep-
resented by what other projects the programmer could have spent time on. The
benefits balanced against this cost include delayed effects like peer recognition
or higher evaluation by prospective employers, as well as immediate benefits
like craftsman-like satisfaction in creating something interesting or solving a
personally useful technical problem. A labor economics perspective, on the
other hand, suggests models of motivation based on enhancement of human
capital or so-called signaling theory interpretations. The human capital model
is a familiar one. Participation in open source simply provides training in mar-
ketable skills. This motivation is clearly applicable and is consistent with the
results of statistical surveys of motivation for open source participation, such
as Kim (2003). From this viewpoint, the involvement is tantamount to tradi-
tional technical and professional training which is expected to enhance one’s
wage prospects like any other type of training. However, the signaling model
of motivation appears to be even more effective in explaining the data.

How do you signal how good you really are, if you’re a software developer?
That’s where the signaling theory of labor markets comes in (Hann et al.,
2002). Official status or crediting in open source projects signals that you’re
really good – and that’s very attractive to prospective employers. As Moglen
(1999) observes, free software participants receive “reputational compensation
for their activity” with “Famous Linux hackers . . . known all over the planet
as programming deities” with obvious implications for economic betterment.
From the viewpoint of signaling theory, open source development provides an

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.4 Economic Motivations for Participation 287

even sharper interpretive indicator than mere participation because an individ-
ual’s level of accomplishment can be used to calibrate his or her productive
ability. This is a decisively important attribute for programmers who are known
as a group to vary greatly in terms of their productivity. Furthermore, their
open source work products are accessible, as is their level of recognition by
the project group. Open source by definition allows access to the code cre-
ated by a developer in a way that is not possible with closed source. There are
no nondisclosure agreements to worry about, and publicly verifiable sources
like the Concurrent Versions System (CVS) log permanently document contri-
butions. Furthermore, the productivity represented by code contributions is a
surrogate for a variety of other critical, though more amorphous and less easily
measured attributes like “the depth of their understanding, the efficient design
of the solution, and their ability to persuade, to get people ‘on board’ with their
ideas and strategies, that represent the true quality of their contribution” (Hann
et al., 2002). Recognized effective participation in open source development can
serve as a “proxy” reflecting the presence of such key desirable characteristics.
In other words, “If potential employers can use open source participation as a
signaling mechanism, then the existence of a ‘credential’ or observable mea-
sure of successful participation would allow firms to make inferences about a
developer’s productive capacity” (Hann et al., 2002).

Apache Software Foundation (ASF) projects provided the experimental data
for the signaling interpretation of motivation in Hann et al. Their study inves-
tigated the rank of participants within several ASF projects as the putative
signaling mechanism because “Membership in the ASF is by invitation only
and is based on a strict meritocracy.” The study focused on the outcomes for
participants in three major Apache projects: the well-known Apache HTTP Web
server project, the Jakarta project, which encompasses all the Apache server-
side Java projects, and the Mod Perl project, which is intended to integrate
Perl as an Apache HTTP module. These are the largest Apache projects with
respect to numbers of developers, numbers of contributions, and the amount
of archival data readily available (e-mail archives, forum data, CVS records,
etc). The project archival data was supplemented by the results of a survey of
Apache participants in these projects.

The key reference variable interpreted as a signal was the ASF project sta-
tus attained by the participants. These were the observable ranks in the ASF
organization, which from the lowest to highest rank are as follows:

1. developer,
2. committer,
3. project manager,

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

288 7 The Economics of Open Source

4. committee member,
5. ASF member, and
6. ASF Board member.

Progression through this meritocratic gauntlet works as follows. Develop-
ers who make consistent significant contributions over time can be nominated
to become committers (who can commit code changes to the CVS repository
without prior approval by an intermediary). Members of the Project Manage-
ment Committee must be nominated by the committers and approved by the
ASF Board and have responsibility for managing all the aspects of a subpro-
ject. ASF members are nominated by other ASF members on the basis of their
contributions as well as their collaborative skills and must be approved by the
ASF Board. The ASF Board members are in turn elected by ASF members and
are responsible for the overall governance of the entire Apache organization.

The study showed a strong correlation between status and subsequent
employment salary. The preliminary conclusion was that “contributions, as
measured by number of patches submitted, per se do not increase wages. On the
other hand, the wage of contributors with rank committer or above is on average
about 29% higher than that of developers after controlling for education, pro-
gramming experience, work experience, job switch, and firm characteristics”
(Hann et al., 2002).

7.4.2 An Opportunity-cost Model Based on
Geographic Differences

Are the actors in open source driven by an opportunity-cost calculus? The thesis
seems to be supported by a geographical analysis of wages versus participa-
tion rates. The study by Lancashire (2001) attempts to understand the driving
factors of open participation using a model that combines economic theory
with empirical data analysis. It proposes that a careful review of the differ-
ential economic trends (wages and job opportunities) across countries, versus
the international geographic distribution of open developers (nationality), sug-
gests that the attraction of programmers to open development is a reflection
of the opportunity costs of the involvement as perceived by local developers.
Though Lancashire’s analysis acknowledges that cultural arguments do pro-
vide a degree of explanation for the “dynamic of involvement” of participants
once they are engaged in the process (Lancashire, 2001), he counters that such
sociological/cultural explanations fail to explain why open source development
occurs in the first place. According to this investigation, data analysis shows that
“differentials in international market conditions appear to play a decisive role

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.4 Economic Motivations for Participation 289

in determining the relative vibrancy of open source communities worldwide”
(Lancashire, 2001).

Constructing a utilitarian, economic model for participation requires decon-
structing some of the noneconomic models. Recall Raymond’s influential essay
which proposed an essentially noneconomic understanding of the motivations
of open source participants, namely, that the utility function such participants
were in fact optimizing “is not classically economic, but is the intangible (prod-
uct) of their own ego satisfaction and reputation among hackers” (Raymond,
1998a). Lancashire (2001) rejects this by arguing that purely cultural and soci-
ological explanations of open involvement are romanticized. They reflect an
underlying group myth that accepted, uncritically and from a variety of sources
both intellectual and literary, notions that romanticized hackers “as unique for
their cultural proclivity to reject the materialist trappings of modern life” (Lan-
cashire, 2001). The influences that encouraged this myth range from a post-
materialistic, political thesis about behavior in industrially advanced cultures
elaborated in Inglehart (1990) to fictionally expressed attitudes in works of sci-
ence fiction and cyberpunk by authors like Heinlein (1966) and Gibson (1984).
These stories romanticized engineers as “elite actors in a society where social
boundaries are drawn primarily in terms of technical expertise” (Lancashire,
2001). The idea that the intellectual background of Raymond’s seminal discus-
sion reflects these influences is consistent with Raymond’s tone in his “A Brief
History of Hackerdom” (Raymond, 1998b). Ghosh’s (1998) effort at formaliz-
ing Raymond’s ideas in terms of rational economic decisions arguably fails to
adequately explain why people initiate open source projects in the first place.
He falls back on Raymond’s memorable explanation that it’s about scratch-
ing an itch (Raymond, 1998a), that is, solving some personally useful soft-
ware problem or creating some needed software functionality. Though Ghosh’s
theory may help explain “why existing projects gain snowballing support,” it
does not, according to Lancashire (2001), explain where, when, or why new
projects emerge, succeed, or fail – a paradoxical issue in theories of collective
action, first observed by Olson (1971). The reputation game explanation for
participation can also be critiqued on the grounds that such games are never
ends-in-themselves but only means-to-ends or intermediate variables, with a
victory in the game merely acting like a signal of capability as in a signaling
model (Lerner and Tirole, 2000). The latter also suggests that, in fact, open
source developers tend to be attracted to projects that have the greatest likeli-
hood of exhibiting strong signaling effects. This is the case, for example, with
software where performance is a key metric of success, because competing prod-
ucts can be easily compared in terms of their level of performance (Edwards,
2003).

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

290 7 The Economics of Open Source

How can one disentangle the causes of open source participation from the
hodgepodge of causal factors that potentially affect open involvement, espe-
cially given the enormous variety of kinds of open projects? A so-called cru-
cial case analysis may be the most promising method for dissecting the real
motivating factors (Lancashire, 2001). The idea in this approach is to iden-
tify cases of project development which appear to be the most challenging for
an economic analysis to explain, while most suitable to explain by a cultural
analysis. What are the possibilities? Noncomplex software applications can be
disregarded because the barriers to entry into such markets are low and hence
so are the profits, so that economic interests would not be compelling in any
case. Additionally, an application that attracted for-profit companies because
the application currently had little market competition should be disregarded
since it is tinged with economic appeal, so the cultural and economic factors in
participation could not be sorted out. What’s left would seem to be open source
projects which are highly complex, requiring significant effort for their creation,
but that are also antiproprietary in the sense that there already exist effective,
low-cost, commercial alternatives when the project is initiated. These types of
projects would appear to intuitively offer the strongest proof that the motivation
for participation was basically cultural or ideological because the projects are
anticommercial. If one could demonstrate that the motivation for participation
in such apparently economically unattractive projects was still classically eco-
nomic, then one would have refuted the cultural hypothesis, precisely in those
cases where it should have been strongest.

There are relatively few open source projects that fall into the complex/
antiproprietary category. Two prominent examples are Linux and GNOME.
They seem like the best litmus tests for this culture-versus-economics contest.
The Linux system began as a free alternative for proprietary Unix systems.
The GNOME environment began partly as an alternative for the proprietary
Microsoft Windows desktop. Both projects are highly complex. There are also
reasonable commercial alternatives for each. Lancashire’s (2001) argument is
that “if strong arguments supporting economic causation can be made for these
two projects . . . we should treat theories about cultural causation with much
greater skepticism.”

It appears that geographic data about wages versus participation rates for
GNOME and Linux do not support the cultural, sociological explanation for
participation. Lancashire used project data about national origin of participants
(garnered from e-mail addresses as per first appearance on Credits lists in the
case of Linux) to geographically locate developers for Linux and GNOME.
When this data is normalized to reflect population sizes as well as national
levels of Internet access, it turns out, contrary to first impression, that Northern

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.4 Economic Motivations for Participation 291

European countries are “disproportionately represented among the top-tier of
developers in both projects.” Indeed, it appears that after this normalization,
the United States remarkably falls to a “position of relatively inactive devel-
opment,” ranking slightly behind countries in Southern Europe. Countries in
Northern Europe stay in the forefront and indeed “appear to be undertaking a
completely disproportionate amount” of the actual development work. Mexico,
Canada, and England exhibit an average level of participation. The discrep-
ancy with respect to U.S. participation is so pronounced that, in economic
terms, the United States is arguably “free riding on a collective good provided
predominantly by non-Americans.” This is completely contrary to what one
would expect from “Raymond-style arguments about post-scarcity gift cultures”
(Lancashire, 2001). The most prosperous nation on the field is thus, relatively
speaking, among the lowest of the “contributors to open source development.”
There are also historical anomalies because this underparticipation occurs in
the context of a free software movement that “originated in the U.S. and was
strongly associated with the U.S. through the 1980s.” Furthermore, this “decline
in commitment goes contrary to the snowballing ‘network externality effects’
expected in countries with an initially well-established open source commu-
nity.” One wonders how there could be such a decline in support by the country
that originally started and led the entire movement?

Economic analysis suggests a very plausible explanation for the migration
of interest in open development from the United States to Europe over time;
namely, the opportunity cost of involvement in open development for U.S.
programmers has changed over the years. During the period of Lancashire’s
(2001) study, the demand for and wage rate of U.S. programmers had become
considerably higher than that for their European counterparts. This increased
the “opportunity cost of coding free software over commercial applications,
and thereby decrease(d) the amount of free software production” in the United
States (Lancashire, 2001). This increase in demand and compensation for IT
workers in the United States was a consequence of the very high level of U.S.
investment in IT during the 1990s, which, for example, greatly exceeded that
in Europe during this period, and which in turn increased the demand for IT
professionals in the U.S. market. Furthermore, it is also clear that:

if the opportunity cost of working on open source projects is lower for European
developers than for their American counterparts, the potential benefits Europeans
gain from working on them are much greater as well. In a global economy lacking
perfect labor mobility and characterized by wage-inequality across countries, we
expect individuals to produce free software if doing so can help them shift to a
higher wage-level. This implies . . . that developers may embrace open source work
as a way to tap into lucrative corporate networks abroad (Lancashire, 2001).

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

292 7 The Economics of Open Source

The same reasoning also explains the relative youth of open source participants
because older participants would have less time to “establish a monetizable
reputation than their younger, more mobile counterparts, given less time in
which to amortize its immediate costs” (Lancashire, 2001).

Even the initial history of open source in the United States supports argu-
ments for an economic interpretation. The opportunity-cost explanation for the
significant change in the distribution of open development is bolstered by the
underlying economic, industrial, and governmental matrix in which this devel-
opment first emerged in the United States. Much of the early open development
in the United States was in environments where there was substantial corporate
or public support or subsidization for long-term development. Free software
may be free for the user and free of restrictions, but its development was not
for free. In particular, Lancashire contends that:

early open source work thrived because its development took place in an immature
and publicly-subsidized market. While academics and researchers were no doubt
driven by a desire to “scratch an itch” and perform work they found stimulating, it
is significant that they performed labor for which there was essentially very little
immediate private-market demand. Is free software truly free? It may be something
for which developed countries have already paid: through early funding for
academic research and development and support for public research at times when
the market for certain types of software was immature. It is hardly accidental that
early “hacker” communities emerged at organizations with the resources and will to
subsidize long-term development.

Thus, once again one comes to the conclusion that cultural motivations appear
less fundamental than economic ones in fostering open source development
and less probative for explaining why developers tend to get involved with
open development in the first place, even in the litmus case of projects that are
complex and antiproprietary.

These utilitarian/economic critiques of cultural explanations aside, one must
keep in mind the “nonmaterialistic” motivation represented by the aesthetic
joy and pleasure taken in participating in the creative act of programming –
first well described by Brooks (1995). It is an activity where systems that are
useful to others, dynamic and unpredictable in their effects, or beautiful in their
operation are created as products of the pure thought of the developer. This is
a creative act akin to creating art, or mathematics, or music, and this process
of creation is simultaneously an exercise in learning. As with any artist, it is
not always the case that man lives by bread alone. This applies not only to
works that are the product of a solitary artist or craftsman, but also to the act
of collaborating in the creation of a collectively designed work of art – like a
cathedral.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

7.4 Economic motivations for participation 293

References

Brooks, F. P. (1995). The Mythical Man-Month – Essays on Software Engineering, 20th
Anniversary Edition. Addison-Wesley Longman, Boston, MA.

Edwards, K. (2003). Technological Innovation in the Software Industry. Ph.D. Thesis,
Technical University of Denmark.

Ghosh, R. (1998). Cooking-Pot Markets: An Economic Model for the Trade in Free
Goods and Services over the Internet. First Monday, 3(3). http://firstmonday.dk/
issues/issue3 3/ghosh/index.html. Accessed December 1, 2006.

Gibson, W. (1984). Neuromancer. Penguin Putnam, New York.
Hann, I., Roberts, J., Slaughter, S., and Fielding, R. (2002). Why Do Developers Con-

tribute to Open Source Projects? First Evidence of Economic Incentives. 2nd Work-
shop on Open Source Software Engineering. In: 24th International Conference on
Software Engineering. Orlando, FL.

Heinlein, R. (1966). The Moon Is a Harsh Mistress. Tom Doherty Associates, Inc., New
York.

Inglehart, R. (1990). Cultural Shift in Advanced Industrial Society. Princeton University
Press, New Jersey.

Kim, E. (2003). An Introduction to Open Source Communities. Blue Oxen Associates.
http://www.blueoxen.com/research/00007/. Accessed January 10, 2007.

Lancashire, D. (2001). Code, Culture, and Cash: The Fading Altruism of Open Source,
Development. First Monday, 6(12). http://www.firstmonday.dk/issues/issue6 12/
lancashire/index.html. Accessed December 3, 2006.

Lerner, J. and Tirole, J. (2000). The Simple Economics of Open Source. National Bureau
of Economic Research. http://papers.nber.org/papers/W7600. Accessed December
1, 2006.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copy-
right. First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/
index.html. Accessed January 5, 2007.

Olson, M. (1971). The Logic of Collective Action. Harvard University Press, Cambridge,
MA.

Raymond, E. S. (1998a). The Cathedral and the Bazaar. First Monday, 3(3).
http://www.firstmonday.dk/issues/issue3 3/raymond/index.html. Ongoing version:
http://www.catb.org/∼esr/writings/cathedral-bazaar/. Accessed December 3, 2006.

Raymond, E. S. (1998b). A Brief History of Hackerdom. In: Open Sources: Voices
from the Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (edi-
tors). O’Reilly Media, Sebastopol, CA, 19–30. Online version: http://www.catb.
org/∼esr/writings/cathedral-bazaar/hacker-history/. Accessed December 1, 2006.

P1: JYD
9780521881036c07 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:44

294

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

SECTION THREE

Free Software: The Movement, the
Public Sector, and the Future

295

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

296

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8

The GNU Project

The Open Source Initiative represents the formalization of one stream of the
free and open software movement. We have described its establishment in 1998
by Raymond and Perens, and Peterson’s coinage of the term open source as an
alternative to what was thought to be the more ideologically laden phrase free
software. Of course, ever since the mid-1980s, the other distinct stream of the
movement represented by the Free Software Foundation (FSF) and the GNU
project had already been active. The FSF and Richard Stallman initiated the free
software concept, defined its terms, vigorously and boldly publicized its moti-
vations and objectives, established and implemented the core GNU project, and
led advocacy and compliance for the free software movement. They have been
instrumental in its burgeoning success. We have already discussed the FSF’s
General Public License (GPL) in Chapter 6. This chapter describes the origin
and technical objectives of the GNU project that represents one of the major
technical triumphs of the free software movement. We also elaborate on some
of the responsibilities, activities, and philosophical principles of the FSF, par-
ticularly as expressed by FSF General Counsel Eben Moglen.

8.1 The GNU Project

The GNU project was founded to create a self-contained free software platform.
The project was begun in 1983 by Stallman. It had an ambitious and arguably
almost utopian vision. The acronym GNU stands for “GNU’s Not Unix,” a
kind of recursive acronym that was popular at MIT where Stallman worked.
Stallman’s objective was to create a complete, open source version of Unix,
together with a comprehensive environment of software development tools. All
of these were to be not merely “not closed source,” but were to be licensed
in such a way that neither the software nor any derivative software based on it

297

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

298 8 The GNU Project

could ever be distributed as closed source. As Stallman described it, his software
would be free software, as in the sense of a free person who can never have his
or her freedom or free expression taken away. The free character of the software
would be inalienable. And the domain of free software would be broad enough
that a programmer could live there without ever again having to depend on
using proprietary code. It was like building a “Brave New World” and the GPL
was its Declaration of Independence and its Constitution.

Stallman’s vision was based on regaining what he regarded as a “Paradise
Lost.” During his experience as an operating systems’ programmer at the MIT
AI Lab, it had been traditional for programmers to freely share their code with
programmers at other universities as well as at companies – and in turn other
people would freely let them see their code, change it, or use it to make new pro-
grams (Stallman, 2002a). But by 1982, when the AI Lab purchased a new PDP,
the culture had changed. The operating system was no longer “free” in the
sense of the programmer community that Stallman had matured in. He thought
it was absurd that this community now faced a situation where “you had to
sign a nondisclosure agreement even to get an executable copy” of an operating
system – never mind not having open access to its source code (Stallman,
2002a). He believed this was a morally reprehensible situation, and one that he
could not in good conscience participate in. Stallman in fact quit MIT in early
1984, precisely, so MIT itself could have no proprietary claim on any software
he developed. He intended his software, along with its progeny and descendants
to continue to be freely available – permanently.

It was a point in time when two paths diverged in the computing world. Stall-
man thought he knew the road to take. With the open and sharing programming
community he so admired in the process of dissolving, Stallman asked himself
if there was anything he personally could do to change what was happening.
Since he was a programmer, he posed the question: “Was there a program or
programs that I could write, so as to make a community possible once again?”
(Stallman, 2002a). To Stallman the answer became crystal clear: “What was
needed first was an operating system. That is the crucial software for starting
to use a computer” (Stallman, 2002a). Unix was the obvious reference system,
and so that was the system for which he set out to create a free version, includ-
ing all the miscellaneous and sundry tools that have to be included in every
development environment. As he observed: “In the 1970s, every operating sys-
tem worthy of the name included command processors, assemblers, compilers,
interpreters, debuggers, text editors, mailers, and much more. ITS had them,
Multics had them, VMS had them, and Unix had them. The GNU operating sys-
tem would include them too” (Stallman, 2002a). Every new movement deserves

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8.1 The GNU Project 299

a proclamation. Within a year, Stallman had articulated his ideas in his famous
GNU Manifesto (Stallman, 1985/2005). The Manifesto expressed the objec-
tives and philosophy of the GNU project. Stallman and other volunteers would
create a body of software that they would freely share with others and that was
broad enough that its users would never need any software that was not free.
He described the essence of its free characteristics as being that, in addition
to being open source, “Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That
is to say, proprietary modifications will not be allowed. I want to make sure that
all versions of GNU remain free” (Stallman, 1985/2005). This emphatically
also meant that GNU would not be in the public domain – because if it were,
modifications to it or to the original code itself could be subsequently concealed
in distributed proprietary products.

The first tool Stallman developed for the GNU project was Emacs. Emacs
is well-known to aficionados as the “King of all Editors.” In fact, Stallman
won the 1990 Grace Hopper award from the ACM for his work on developing
Emacs. He also won the distinguished MacArthur Foundation award the same
year. Emacs is a very powerful programmable text editor. It was implemented
by Stallman at the MIT AI Lab in late 1984. He had written an earlier version
at MIT in 1975. Although he had officially quit MIT by that point, the director
of the lab had allowed him to continue to use the facilities. Emacs has since
continued to be developed by the FSF through multiple releases and is sup-
ported on many platforms (gnu.org/software/emacs/emacs.html). One of the
interesting features of Emacs is that it has modes that let it adapt itself to handle
not just text files but also specialized texts, like the source code for program-
ming languages, LaTeX, or HTML documents. It includes features like syntax
highlighting and specialized editing commands. Stallman initially distributed
Emacs via an anonymous FTP server at MIT. Later he made it available for dis-
tribution by magnetic tape to customers who could not access the FTP site. He
charged $150 for this service. The current Emacs distribution is available from
http://ftp.gnu.org/pub/gnu/emacs/ and its project development tree is available
under the CVS system at http://savannah.gnu.org/cgi-bin/viewcvs/emacs/. The
fact that Stallman’s organization sold copies reflects a few things. First of all,
as we must underscore, the term free did not necessarily mean free of charge.
As Stallman said: “I had no job, and I was looking for ways to make money
from free software” (Stallman, 2002b, p. 20). The free software movement was
about freely accessible software. Secondly, despite the fact that the title of the
movement’s Manifesto might remind one of another very famous historical
manifesto – the Communist Manifesto of Karl Marx and Frederick Engels

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

300 8 The GNU Project

proclaimed in 1848 – the GNU Manifesto is not at all anticommercial
in tone.

The GNU project developed many important and very highly recognized
free programs. Perhaps the most prominent of these is the GNU compiler col-
lection or GCC released in mid-1987. The collection originally contained only
an optimizing C compiler but was extended to C++, Fortran, Java, and other
languages and their libraries (http://gcc.gnu.org). The compilers were written
mainly in C and have been ported to many architectures including the x86 series,
Motorola 68000, Alpha, VAX, etc. The collection includes a debugger named
GDB that works for many programming languages. The quality and impact
of the GCC compiler has been dramatic. Michael Tiemann, an early GNU
developer and advocate who made major contributions to the first versions of
GCC, won the 1996 STUG award which described the GNU C compiler as
having “unparalleled influence upon the availability of efficient and standard
code on a vast number of hardware platforms” (STUG announcement for 1996,
usenix.org). Tiemann himself also recognized early on the commercial poten-
tial of free software, which he believed was “a business plan in disguise,” even
though he thought the GNU Manifesto on the surface appeared to read like
“a socialist polemic” (Tiemann, 1999, p. 139). Tiemann helped found Cygnus
Solutions in 1989 (later merged with Red Hat Linux) to market and support
free software.

Software may be free of charge, but developers aren’t. So as interest in the
GNU project grew, Stallman decided in 1985 to establish what he called the Free
Software Foundation to seek funding to support the work that needed to be done.
The foundation was established as a tax-exempt charity (http://www.gnu.org).
Its purpose was to support the development of free software, in particular to
pay developers to create software for the GNU project. The organization was
also generally intended to promote the development of freely redistributable
software. The FSF ran the initial Emacs tape distribution as a business. Most of
its business still comes from selling copies of free software, free manuals, and
custom-built free software collections for specific hardware platforms.

Stallman realized that free software needed a corresponding license. So in
1985, he introduced a software license based on a variation of the notion of
copyright, called copyleft, a term coined by software developer Don Hopkins.
Copyleft gave the user the right to copy, change, and redistribute modified
programs which were based on the licensed software, but prohibited anyone
from adding restrictions on the use of that redistribution (http://www.gnu.org/
gnu/thegnuproject.html). Developers could redistribute their own variations but
they could do so only under the same terms as they had received the free software

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8.1 The GNU project 301

in the first place. Later these concepts would be formally embodied in the
GNU GPL.

Developers for Stallman’s FSF created additional critical packages. Roland
McGrath developed the C library, though many others contributed to it (see the
GNU Web site). Other FSF developers produced a free version of the Bourne
shell (bash) and a GNU tar command (which combines a set of files into
one file while still preserving file system information). All of these packages
were sine qua nons for a full Unix-like system. Significantly, the C library would
be licensed under a different license than the GNU GPL, called the GNU library
license (later called the Lesser GPL) and which, unlike the ordinary GPL, allows
proprietary software to link to the library code. The strategy behind this choice
of license for the free C library was a matter of tactics rather than principle
as we discussed in Chapter 6. The idea was that this kind of licensing would
encourage the use of the library software. Every proprietary C compiler or
Unix-like system needs a C library, so why not encourage that to be the free C
library?

Ultimately, the FSF created many of the software accoutrements surrounding
an operating system kernel, but the kernel itself never quite came together.
Instead, Linux with its kernel burst onto the scene and thereafter a complete
free system quickly became available as the free GNU/Linux combination.
As a side-comment, the designation for GNU + Linux distributions has been
the subject of some controversy. The combination of the GNU utilities with the
Linux kernel is commonly called Linux though the FSF strongly prefers the term
GNU/Linux. The FSF believes the longer designation more properly reflects
the broad scope of the GNU project and its planned objective of building a
complete operating system and implicitly acknowledges the key role of the
FSF in the success of this project. However, there are others who claim that
such distributions also include large amounts of software such as from the X
Window System and other non-GNU components like KDE and Apache. It
is worth noting that embedded systems like mobile devices primarily use the
Linux kernel and so have few if any GNU components, so for such systems
there is no ambiguity in the Linux designation.

References

Stallman, R. (1985/2005). The GNU Manifesto. Dr. Dobb’s Journal of Software
Tools, 10(3). Also: http://www.gnu.org/gnu/manifesto.html. Accessed January 5,
2007.

Stallman, R. (2002a). The GNU Project. http://www.gnu.org/gnu/thegnuproject.html.
Accessed December 1, 2006.

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

302 8 The GNU Project

Stallman, R. (2002b). Free Software Free Society: Selected Essays of Richard M. Stall-
man. Edited by J. Gay, The GNU Press, http://www.gnu.org, Free Software Foun-
dation, Boston, Massachusetts. Accessed June 21, 2007.

Tiemann, M. (1999). Future of Cygnus Solutions: An Entrepreneur’s Account. In: Open
Sources: Voices from the Open Source Revolution, M. Stone, S. Ockman, and C.
DiBona (editors). O’Reilly Media, Sebastopol, CA, 71–90. .

8.2 The Free Software Foundation

We have described how the FSF (http://www.fsf.org/) was founded by Richard
Stallman in the mid-1980s (1985) after he had initiated the GNU project. It
was, as we suggested, an effort by Stallman to regain the Eden of his early MIT
career when the relatively free distribution of source code was a given. The
objective of his foundation was to promote the free software movement of which
Stallman was now a leader. As described in the previous section, it was also
intended to obtain sponsorship and support for the GNU software project with
its fundamental mission of creating a fully free, Unix-like, comprehensive, self-
contained development environment, permanently unconstrained by proprietary
restrictions. Stallman defined the General Public License intending it to serve
as the uniformly used license for distributing free software. The license, first
released in 1989, was a generic version of licenses that had been used for
individual previously released GNU products. It is now far and away the most
widely used free or open software license. The related Lesser GPL for software
libraries was introduced two years later in 1991. As Moglen (1999) observes,
the success of the free software movement in general and the GNU/Linux
project in particular has been and remains critically dependent on the legal
matrix provided by the GPL because it provides “the legal context in which the
labor is mobilized” that creates these projects. The FSF owns the copyrights
to most GNU software and is responsible for legally enforcing the GPL on the
software it owns, but it also assists owners of other GPL copyrights in seeking
compliance from license violators. It has so far been highly effective in the area
of compliance, with no successful court challenge to the license to date and
most disputes resolved outside the judicial forum.

The Web sites at www.gnu.org and www.fsf.org are interesting, informa-
tive, and complementary sources of information about the movement. The
FSF site links to numerous documents, interviews, and speeches by Stallman
on www.gnu.org where the philosophy of the movement is set forth (such as
www.gnu.org/philosophy/philosophy.html). The GNU site focuses on the GNU
project, its history, philosophy, and programs. It also includes many interesting
essays by Stallman. These cover a broad range of topics: what free software

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8.2 The Free Software Foundation 303

is, the famed GNU Manifesto (http://www.gnu.org/gnu/manifesto.html) on the
necessity of a comprehensive free software environment, why only free software
should be used in schools, its reliability, licensing issues, the harmful nature of
software patents, and so on. It characterizes the difference between the free
versus the open software movement as a matter of values. While the open
source movement views the issue as a practical matter, a better way of devel-
oping better software, the free software movement views it as a question of
ethical responsibility and social values. Indeed, for the FSF, the entire move-
ment to create free software is only “part of the long struggle in the history
of human beings for the creation of freedom” (Moglen, 2003b, p. 15). The
FSF site focuses on the foundation’s mission of protecting and promoting
free software and provides many useful services, including a directory of free
packages.

The analyses of free software issues on the GNU site are a treasure trove. For
example, there is a detailed essay on why the GNU Web site does not use GIF
files (Stallman, 1997/2006). Although the point is now moot, the discussion
is fascinating because it involves an eclectic mix of algorithmic issues, like
the Unisys and IBM patents on the LZW compression algorithm used in the
GIF representation, the legal statements of those companies regarding their
patents, the charitable status of the FSF, the legal implications of making GIFs
for companies that redistribute free software, the difference if GIFs are only
decoded rather than generated, the general attitude of the FSF toward software
patents, alternative patent-free compression formats, references to activist sites
like http://www.burnallgifs.org/archives/ (accessed January 5, 2007) dedicated
to discouraging the use of GIFs, software patents on the compaction algorithms
present in the widely used MP3 format. The organization’s position is precisely
and meticulously articulated in a discussion that is simultaneously technical,
legal, and nuanced. The updated 2006 version of the essay notes that “after
1 October 2006, there will be no significant patent claims interfering with
employment of the GIF format” (Stallman, 1997/2006). Software patents are
a major strategic concern of the FSF because even though such patents may
be transparent to the users of such files, they can have a significant impact on
software developers who must pay license fees if they develop software to make
these files – a circumstance that can inhibit open source development. Refer
also to the informative essays at fsf.org/licensing/essays.

The FSF today focuses on legal and sociopolitical issues related to free
software. Consistent with this, there are both lawyers and computer scientists
on its current Board of Directors. Stallman is President. Eben Moglen, a member
of the Board and Professor at Columbia University Law School, serves as its
General Counsel. Moglen, who worked as a professional programmer in his

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

304 8 The GNU Project

teens, has a diverse background in literature, philosophy, history (in which he
has a doctorate), and also law.

The ideological or political character of the FSF’s mission remains a sharply
distinctive feature of the organization. Its idealistic, humanitarian, and intel-
lectual perspective is attractively expressed in a discussion of the process for
defining the GPLv3 where Stallman and Moglen write that the FSF’s “goals
are primarily social and political, not technical or economic” and, moreover,
that the FSF regards “free software as an essential step in a social movement
for freer access to knowledge, freer access to facilities of communication, and
a more deeply participatory culture, open to human beings with less regard
to existing distributions of wealth and social power” (Stallman and Moglen,
2005). From the viewpoint of the history of culture and science, they propose
that free software “is the only ethically satisfactory form of software devel-
opment, as free and open scientific research is the only ethically satisfactory
context for the conduct of mathematics, physics, or biology” (Stallman and
Moglen, 2005).

However, the FSF’s advocacy is not always so mild. For example, the
tone of Moglen’s dotCommunist Manifesto (Moglen, 2003a) is evocatively
and provocatively revolutionary. The title and rhetoric are redolent of Marx
and Engels’ Communist Manifesto with the Internet dot thrown in for context.
Consider the following rhetorical appeal against what are called the dominant
owners of culture (Moglen, 2003a, p. 6):

To the owners of culture, we say: You are horrified at our intending to do away with
private property in ideas. But in your existing society, private property is already
done away with for nine-tenths of the population. What they create is immediately
appropriated by their employers, who claim the fruit of their intellect through the
law of patent, copyright, trade secret and other forms of “intellectual property.”
Their birthright in the electromagnetic spectrum, which can allow all people to
communicate with and learn from one another, freely, at almost inexhaustible
capacity for nominal cost, has been taken from them by the bourgeoisie, and is
returned to them as articles of consumption – broadcast culture, and
telecommunications services – for which they pay dearly. Their creativity finds no
outlet: their music, their art, their storytelling is drowned out by the commodities of
capitalist culture, amplified by all the power of the oligopoly of “broadcasting,”
before which they are supposed to remain passive, consuming rather than creating.
In short, the property you lament is the proceeds of theft: its existence for the few is
solely due to its non-existence in the hands of everyone else.

Or Moglen (2003a, p. 7):

We, the creators of the free information society, mean to wrest from the
bourgeoisie, by degrees, the shared patrimony of humankind. We intend the

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8.2 The Free Software Foundation 305

resumption of the cultural inheritance stolen from us under the guise of
“intellectual property,” as well as the medium of electromagnetic transportation.

Despite its pedigree, the term bourgeoisie seems misplaced since most of
the referenced middle class (bourgeoisie) is probably considerably less well-
off than the relatively elite group represented by free software developers from
top-tier institutions; the real target is obviously overweening corporate power.
The rhetoric seems excessive and reflects the kind of language that originally
differentiated the Open Source Initiative from the FSF. Too bad, because many
of the underlying grievances are legitimate. Also, though dotCommunist is a
great take-off on the original Communist Manifesto, Eben Moglen – as we shall
shortly see – seems much more effectively persuasive when he admixes with
his advocacy some of his delightfully puckish sense of humor. In any case,
the jeremiad against the consumer culture seems particularly well-placed. For
example, the human right to the glory of the electromagnetic spectrum has a
noble, even cosmic resonance.

The following demands, which are intended to identify what is needed to
advance the class struggle for free software, are also directly quoted from
Moglen (2003a, p. 7):

1. Abolition of all forms of private property in ideas.
2. Withdrawal of all exclusive licenses, privileges and rights to use of

electromagnetic spectrum. Nullification of all conveyances of permanent
title to electromagnetic frequencies.

3. Development of electromagnetic spectrum infrastructure that implements
every person’s equal right to communicate.

4. Common social development of computer programs and all other forms of
software, including genetic information, as public goods.

5. Full respect for freedom of speech, including all forms of technical speech.
6. Protection for the integrity of creative works.
7. Free and equal access to all publicly-produced information and all

educational material used in all branches of the public education system.

Prescinding from the merits of Moglen’s position and the style of his advo-
cacy, the ideological and rhetorical character of the presentation once again
underscores the very different sensibilities that differentiate the open source
movement in general from the FSF’s expression of that movement in particular.

The tone of the FSF dialog is not always so provocative as in the dotCommu-
nist manifesto. For example, we also hear Stallman expressing more measured
and conventional sentiments: “The free software philosophy rejects a specific
widespread business practice, but it is not against business. When businesses

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

306 8 The GNU Project

respect the users’ freedom, we wish them success” (http://www.gnu.org/
gnu/thegnuproject.html). Nonetheless, widespread concern about perceived
antibusiness rhetoric (granted the Moglen quotations here are from 2003) was
one of the issues that led to the formalization of the open source stream of the
movement and its open source terminology.

Eben Moglen’s tone is not always so provocative – in fact it is often down-
right entertaining. We referred in Chapter 6 to his legally astute but engaging
description of how the FSF assures compliance with the GPL. The attitude is
low-key, savvy, and pragmatic, with a delightful undercurrent of ironic, good-
natured cajolery. Thus one of his descriptions of how he coaxes GPL violators
into compliance is worth requoting because it illustrates how effective his style
has been in practice. This is how he acts when he is speaking to license viola-
tors. “Look,” I say, “at how many people all over the world are pressuring me to
enforce the GPL in court, just to prove I can. I really need to make an example
of someone. Would you like to volunteer?” (Moglen, 2001). Or, as he pithily
states in Moglen (2003b, p. 9): “My client (the FSF) didn’t want damages, my
client wanted compliance. My client didn’t want publicity, my client wanted
compliance. We settled for compliance all the time. We got compliance all the
time.” That approach clearly converted the resistant as its perfect batting record
demonstrates, and it did so with disarming good humor.

The presentation by Moglen (2003) reflects a balanced historical perspective
of his philosophical views on free software. He describes the free software
movement as neither novel nor idiosyncratic but merely a reflection of “the
received understanding of our common culture with regard to the production of
knowledge by collaborative effort. The free sharing of scientific information is
the essence of Western science” (Moglen, 2003b, p. 2). He also marshals some
fairly pragmatic economic arguments for its ascendancy. For example, with
regard to software embedded in digital appliances like cell phones, he forecasts
complete free software dominance by Linux in the near term for the simple
reason that manufacturer’s cannot afford to do otherwise. When the digital
“box costs fifty bucks, there’s no room left for paying $12.95 to Mister Gates”
for an operating system license (Moglen, 2003b, p. 6). More boldly, he projects
that in another generation, software development will focus around “project
management, indemnification, distributional customization, and tailoring, piece
by piece, to the individual needs of consumers” (Moglen, 2003b, p. 11).

The FSF’s overall vision may sometimes be dramatically stated, but its objec-
tives have been visionary and realized in historic, practical accomplishments, the
most extraordinary being the increasingly widespread acceptance of the GPL. In
addition to its continued support for the GNU project, some other more mundane

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

8.2 The Free Software Foundation 307

activities include the major free software directory at http://directory.fsf.org/s
that it manages and which extensively catalogs “free software programs that run
on free operating systems.” It also sponsors the GNU Savannah project that runs
an open source development site for free projects. The Savannah hosting site
(http://savannah.gnu.org/) strictly enforces policies that attempt to ensure that
all of the hosted software is actually free and has no unnoticed or hidden nonfree,
proprietary legal dependencies or other encumbrances or impediments. The site
provides the usual software hosting services: bug-tracking, CVS, mailing lists,
etc., in an ad-free environment. The hosting site at savannah.gnu.org is restricted
solely to GNU projects. The complementary site at savannah.nongnu.org hosts
non-GNU free software projects. Both Savannah sites differ from the Source-
forge hosting service in that the latter hosts nonfree projects as well.

A final comment regarding the GNU Web site – it is, as they say, a fascinating
read. As is typical of free developments, there is a multilingual cohort of volun-
teer supporters, with the result that many of the site pages are available in trans-
lations into many human languages. There are unexpected, informative, and
provocative discussions on an array of topics, with interleaving political, tech-
nological, social, legal, scientific, and philosophical perspectives. For example,
a glimpse at the whatsnew page on the site discloses a range of references, from
EU actions on patents, a revised music score for the Free Software Song, Stall-
man on Patent Absurdity, even a sympathetic evangelical Christian perspective
on the free software movement’s philosophy (Parris, 2005). The tone in Parris’s
book is different from that evinced by Moglen, though no less filled with revo-
lutionary fervor, with Parris concluding his forward with the quotation: “What
the Messiah has freed us for is freedom! Therefore, stand firm, and don’t let
yourselves be tied up again to a yoke of slavery” – quoted from “The Complete
Jewish Bible.” The FSF’s vision of the role of open software in society remains
a passionate one.

References

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copy-
right. First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/
index.html. Accessed January 5, 2007.

Moglen, E. (2001). Enforcing the GNU GPL. http://www.gnu.org/philosophy/enforcing-
gpl.html. Accessed December 20, 2006.

Moglen, E. (2003a). The dotCommunist Manifesto. http://emoglen.law.columbia.edu/
publications/dcm.html. Accessed December 1, 2006.

Moglen, E. (2003b). Freeing the Mind: Free Software and the Death of Propri-
etary Culture. June 29, 15 pp. http://moglen.law.columbia.edu/publications/maine-
speech.html. Accessed December 20, 2006.

P1: JYD
9780521881036c08 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:13

308 8 The GNU Project

Parris, D. C. (2005). Penguin in the Pew. Lulu.com, Morrisville, NC.
Stallman, R. (1997/2006). Why There Are No GIF Files on GNU Web Pages.

http://www.gnu.org/philosophy/gif.html. Accessed January 5, 2007. Most recent
copyright is 2006.

Stallman, R. (1985/2005). The GNU Manifesto. http://www.gnu.org/gnu/manifesto.
html. Accessed January 5, 2007.

Stallman, R. and Moglen, E. (2005). GPL Version 3: Background to Adoption. http://
www.fsf.org/news/gpl3.html. Accessed January 5, 2007.

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9

Open Source in the Public Sector

The public sector is uniquely important to the success of open source for a
number of reasons. It offers well-suited opportunities for open development,
in domains ranging from technological infrastructure, science, and innovation
to national security and education. Furthermore, not only do public agencies
and society benefit from the use of open products, the public sector, through its
role in policy formulation, also provides a vehicle for advocating the expanded
use of open software in society. To appreciate the opportunities, consider some
of the roles the public sector plays. It has a central position in supporting the
maintenance and evolution of technological infrastructure for society, an area
where open software has proven extremely successful. It has also historically
played an extensive role in promoting innovation in science and technology.
For example, the government was the leader in funding the development of
the Internet with its myriad of underlying open software components. Thus,
clearly, public investment in open development has paid dramatic dividends in
the past and can be expected to continue to do so in the future. The public sector
is also where decisions on national economic objectives and strategy are made.
These decisions, whether of a legal, legislative, or policy-driven character, can
significantly affect the expansion of open source use within the government or
by the public at large. The public sector is broadly charged with responsibilities
from education to national security, domains that are particularly compatible
with the characteristics of open source. For example, free software offers cost
advantages pertinent in education, though its low up-front cost is not neces-
sarily a determinative factor in its adoption, and it also provides transparency
advantages important in national security. This chapter considers various appli-
cation domains for open source in government, on both the domestic scene and
internationally, as well as the policy attitudes of different governments toward
open source. We conclude the chapter by considering the use of open source in
education, particularly its privileged role in computer science education.

309

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

310 9 Open Source in the Public Sector

9.1 Open Source in Government and Globally

We will first consider the use of open source in the U.S. government, subse-
quently addressing its use by and the attitudes of foreign governments. While
open source products are used throughout the federal environment, two espe-
cially prominent consumers are the DoD (Department of Defense) and the NSA
(National Security Agency). We consider these two first and then discuss the
use of open source products by other agencies.

A study by the MITRE corporation, sponsored by the Defense Informa-
tion Systems Agency (Bollinger, 2003), found extensive and diverse use of
open software at the DoD, with over 100 open products being used in more
than 250 applications. The study also offered reasons why the role of open
source should be further expanded. Security applications were most prominent,
such as those using the Unix-like OpenBSD operating system that explicitly
focuses on system security. Widely used open security tools included Snort,
a lightweight intrusion detection tool useful for plugging “network security
holes when new attacks emerge,” and SARA (the Security Auditor’s Research
Assistant), used for relatively straightforward network security risk analyses.
Both these applications are licensed under the GPL, though SARA is done
so indirectly (Bollinger, 2003). The MITRE report lists more than 100 open
source products that have demonstrated superior records of security and reli-
ability, as “measured by speed of closures of CERT reports in comparison to
closed-source alternatives,” that should be considered as “safe” for DoD use.
Some of the applications involved only the use of the software, without exploit-
ing the open character of its source code. However, other applications involved
explicit modification of the code through development, in purely open or hybrid
(proprietary/open) combinations. The MITRE study strongly encouraged the
increased acquisition and use of open source products in defense applications.
An important motivation was to promote product diversity. The idea is that prod-
uct diversity reduces dependence on a more narrow set of proprietary products,
thereby increasing the robustness of security and reliability for the DoD’s over-
all software environment. This reduces the risk of catastrophic failure in the
event of cyberattack. The report also advocated the use of proprietary products
like Microsoft Windows Services for Unix that interface effectively with open
source software.

The NSA is involved not only in using open source but also in developing and
distributing secure open software. For example, the NSA announced in 2001
that it had developed a prototype of a secure Linux kernel named SELinux
and would be publicly distributing the software (Benner, 2001). Development
on the system continues to the present time. According to the NSA Web site

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.1 Open source in government and globally 311

for SELinux, the licenses used were under the same conditions as the original
sources, with patches to the Linux kernel being released under the GPL as
required and patches to some libraries released under the BSD. Notably, the
licensing information on the site says that “some new libraries and new programs
available here are released into the public domain” (NSA Web site, license for
SELinux; italics added), rather than under a GPL or OSI-certified license. Of
course, this is consistent with U.S. law which requires that intellectual property
developed by the federal government be released, if it is released at all, as public
domain, though in general this law does not also appear to require disclosure
of the source code (Tyler, 2004). Also, as we have seen previously, in the
federal environment new work creations are not copyrighted, so they are a
priori ineligible for open source licensing. On the other hand, work that has
been developed through outsourced collaboration with private organizations
can be copyrighted and released under an open source license.

A key factor in the attractiveness of open software in security (and national
security) applications is its auditability. It is obviously harder to conceal things
in open source code, while, conversely, governments may have reason to be
leery of what may lurk inside proprietary code. For example, the reader may
refer to references under gnu.org/philosophy for an intriguing discussion of
hidden NSA access keys embedded in proprietary Windows code as described
in articles by Campbell (1999). In the U.S. context, the major proprietary vendor
Microsoft is a domestic corporation, so at least the government can be expected
to work out disclosure mechanisms with the vendor. However, this is a less likely
scenario for foreign-held entities. For example, is Microsoft likely to disclose
proprietary code to the government of Venezuela because that government wants
to scrutinize Microsoft applications for security flaws or traps?

Governmental organizations with special responsibilities in security have a
specific interest in the relative security performance of open systems. The issue
of whether open source is intrinsically more or less secure than proprietary code
is a disputed topic, where persuasive but inconclusive arguments have been mar-
shaled on both sides (Payne, 2002). Earlier in the book, we described how the
empirical study of Solaris, the Debian GNU/Linux distribution, and OpenBSD
by Payne (2002) concluded that two factors the openness of the source together
with specific development processes for reviewing security were the key ingre-
dients for better security and in combination gave an overall advantage to the
open model, at least in the systems considered. Strangely, the availability of open
source can have odd side effects on proprietary code. For example, the process
of open source review and open response to security attacks has sometimes
had security implications for related proprietary systems. Hissam et al. (2002)
describe the open community’s response to the Teardrop Denial of Service

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

312 9 Open Source in the Public Sector

attack around 1997. The community’s solution of the underlying security flaw,
which was in the Linux kernel IP stack, exposed a second vulnerability in the IP
stack, which was resolved by the open community at the same time. However,
ironically, the advertised Linux patch’s revelation of the second flaw exposed
Microsoft Windows’ vulnerability to variations of the original Teardrop attack.
Indeed variations successfully attacked Windows before Microsoft was able to
correct this vulnerability, though Microsoft did fix it soon thereafter.

Open products are also used in many other U.S. federal agencies. As one
illustration, consider the case of Perl. Perl is an open language, but it is also
the implementation vehicle for a vast array of open Perl modules. These are
available at the huge Perl module collection on the CPAN Web site. The use
of Perl is a reasonable proxy for open source use. Perl can be embedded in
closed applications that benefit from open Perl resources, on which they are at
least partly built. Or, applications can be developed using Perl or Perl modules,
where some of the new open components are donated back to the community,
thereby expanding the open software commons. In either case, there’s open
development involved, either as consumed or as produced. A perusal of news
stories on the application of Perl in government agencies (Perl Success Stories,
1999–2004) gives a sense of its widespread use. For example, economists at the
U.S. Federal Reserve have long used Perl to glue different applications together,
such as in converting the outputs from mathematical econometric models into
the formats required for the simulation languages used at the Fed (Scoville,
1999). The extensive open Perl and CPAN resources have long made it attrac-
tive to the Census Bureau. The FedStats/IMF Web site, developed through the
combined effort of many federal agencies including the Census Bureau, uses
the Perl DBI and LWP modules to pull together statistical data from the Web
sites of multiple federal agencies (Stephenson, 2001). NASA and Sandia Labs,
agencies where scientific computing and simulation applications are prominent,
have also developed open software released under the GPL (Bessen, 2002). An
example is the SAP data analysis tool developed by NASA. It was intentionally
implemented using as many open source components as possible, combined
with a small number of COTS (Commercial-Off-The-Shelf) components. This
might be called FOTS (Free-Off-the-Shelf) software development. A case study
is described in Norris (2004), which documents not only the savings garnered,
but also the high quality of the open components, their superior levels of docu-
mentation, and even the remarkable responsiveness of the open community, as
opposed to the more costly closed source COTS suppliers.

These brief remarks are intended to illustrate the wide use of open software
in the federal government. The government has also been an active promoter
of open development, sponsoring the innovative R&D in computing that has

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.1 Open source in government and globally 313

been a major driving factor behind the creation of the open source paradigm,
from the early Unix-like systems, servers, and browsers to the enormous vol-
umes of scientific software produced in governmental research facilities. It will
inevitably continue to play this role of supporting research that either enters
into the public domain or is licensed under protocols that enable some form of
transfer of the discovered technologies to the private sector.

The International Sector
We turn our attention next to the status of open software in countries and govern-
ments outside the United States. We first observe that the international market
for open source products is increasingly substantial. For example, in 2004 alone,
Russia and Poland bought almost $20 billion worth of Linux-related technolo-
gies according to Adelstein (2005). That’s a lot of money for free software.
These purchases do not all represent governmental spending but a significant
part of it is. This gives some sense of the popularity of these products beyond
the United States. The same growth in open source use is occurring in countries
around the world as foreign governments have increasingly bought into the cost
benefits of using open systems and the perception of greater national autonomy
or independence it provides. Indeed, an increasing number of governments have
created legislative policies that establish an active predisposition for the use of
open source in their societies. The phenomenon is worldwide. For example,
the government of Singapore offers “tax breaks to companies that use Linux
instead of proprietary alternatives like Windows” (Hahn, 2002). The state pro-
vides governmental benefits to corporations that adhere to this policy. This kind
of policy represents a macroeconomic decision by the government to foster the
development of its own domestic industry in a certain, planned direction. It is
also a strategic political decision related to a desire for political autonomy and
issues of confidentiality and security. In Germany, an agreement between IBM
and the German federal government involved discounted IBM machines that
came equipped with Linux provided by the German Linux distributor SUSE.
Once again, this policy simultaneously supported a domestic software vendor
and promoted the use of open source in a governmental context. The European
Union requires open products to be explicitly considered (though not mandated)
when evaluating software for acquisition (Applewhite, 2003). In Italy, Brazil,
and Peru, legislation actually mandates an open source software preference in
government offices (Hahn, 2002).

An informed analysis of the issues involved was articulated in a letter to
Microsoft from a Peruvian congressman (Gonzalez, 2002). The official demon-
strates a remarkable grasp of the issues swirling around open versus proprietary
code. Gonzalez critically and instructively dissects a range of problems, from

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

314 9 Open Source in the Public Sector

the nature of intellectual property to the true cost of software use, offering a
compelling argument for the open source case. In fact, there is increasing pres-
sure for legislation both in the United States and worldwide that would require
the open source option to be explicitly considered by state and federal agencies,
though most of these proposals are not for a so-called hard preference for open
source under which its use would be obligated. According to Applewhite (2003)
over two dozen countries (in the year preceding his article) introduced legis-
lation to at least encourage the use of open software. Predictably, Microsoft
remains a useful boogeyman for political purposes even though its share of
global revenue for packaged software is only about 10% (Evans, 2002, p. 37).
Especially in Latin America, a combined animus toward the U.S. government
and Microsoft appears to be a salient factor, as well as the perceived cost benefit
from the software. In 2005, Venezuela mandated a move to open software by
governmental agencies over a two-year period, including the software used in
its extensive petroleum industry.

Factors that affect the global opportunities for deploying open software
include price, legal and policy issues, national autonomy, and the size of the
local market. We have already mentioned some of the legal, policy, and leg-
islative dimensions. These interact with the other factors. For example, price is
not always a significant barrier to the use of proprietary software in develop-
ing countries, particularly at the level of individual use. This is because soft-
ware piracy is so widespread that the proprietary code may be free of charge,
though not legally so. There are countermeasures at work against these prac-
tices. For example, globalization measures, like the World Trade Organization
Agreement on Intellectual Property Rights, will require mandatory antipiracy
enforcement by 2006, even by poor countries (Kshetri, 2004). The differing
cultural, legal, and economic lenses through which nations interpret issues of
intellectual property are overviewed in Marron and Steel (2000). At a corpo-
rate level, piracy is less of an option and this works much to the advantage
of free software. For example, when proprietary software is bundled with PCs
distributed in these markets, it significantly adds to the price of the final prod-
uct. This presents a key opportunity to reduce price by using free software like
Linux as the bundled environment. Another kind of opportunity is illustrated
by the highly successful and inexpensive Indian-developed Simputer. This is
a Linux-based, special-purpose, software appliance that provides affordable
technology adapted to local needs (Kshetri, 2004). In addition to such hard-
ware vendor applications, there are opportunities for cost savings in major soft-
ware projects for government infrastructure functions like healthcare systems
(Fitzgerald and Kenny, 2004). Free software also enables commercial software
development with less capitalization. The availability of free-of-charge open

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.1 Open source in government and globally 315

source systems and tools dramatically reduces the cost of entry into the busi-
ness of software development. Today, “even small programming shops with
a couple of developers can use sophisticated tools that once only large and
well funded development efforts could afford” (Spinellis and Szyperski, 2004,
p. 31). Linux nationalism is also prevalent. National versions of Linux now exist
in almost every Asian country, from India’s enormous Indlinux.org project to
the Chinese government-sponsored Yangfan Linux. This includes a Chinese-
sponsored version of Wine, the open source API that lets “native Windows
programs run on X Windows and Unix-like systems” (Lussier, 2004, p. 68).
Another opportunity is represented by the older PCs that are widespread in
developing markets due to factors like recycling and charitable distribution of
computer hardware to poorer regions. This provides an important “window”
of opportunity for free software like Linux, which works well on legacy hard-
ware, at least versus newer versions of Windows. Localization effects vary with
the size of the market. Although localization is addressed by proprietary sys-
tems like Windows for large Asian language groups such as Chinese, Japanese,
and Korean, this adaptation is challenging for commercial vendors in markets
that are too small to make a proprietary version viable. This represents an
opportunity for open software, which can be modified to adapt it to the local
languages.

References

Adelstein, T. (2005). Linux in Government: Outside the U.S., People Get It. July 18.
http://www.linuxjournal.com/article/8449. Accessed December 1, 2006.

Applewhite, A. (2003). Should Government Go Open Source? IEEE Software, 20(4),
88–91.

Benner, J. (2001). NSA Takes the Open Source Route. http://www.wired.com/news/
business/0,1367,42972,00.html. Accessed December 1, 2006.

Bessen, J. (2002). What Good Is Free Software? In: Government Policy toward Open
Source Software, R. W. Hahn (editor). Brookings Institution Press, Washington,
DC.

Bollinger, T. (2003). Use of Free (or Open Source) Software (FOSS) in the U.S. Depart-
ment of Defense. Version 1.2.04. A Report by the MITRE Corporation.

Campbell, D. (1999). How NSA Access Was Built into Windows. http://echelononline.
free.fr/documents/dc/nsa access windows.htm. Also: http://www.techweb.com/
wire/story/TWB19990903S0014. Accessed December 1, 2006.

Evans, D. (2002). Politics and Programming: Government Preferences for Promoting
Open Source Software. In: Government Policy toward Open Source Software, R. W.
Hahn (editor). Brookings Institution Press, Washington, DC.

Fitzgerald, B. and Kenny, T. (2004). Developing an Information Systems Infrastructure
with Open Source Software. IEEE Software, 21(1), 50–55.

Gonzalez, J. A. (2002). Letter to General Manager of Microsoft, Peru. April 8th. Letter
copied in: MS in Peruvian Open Source Nightmare by T. Greene. http://www.

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

316 9 Open Source in the Public Sector

theregister.co.uk/2002/05/19/ms in peruvian opensource nightmare/. Accessed
December 1, 2006.

Hahn, R. (2002). Government Policy toward Open Source Software: An Overview. In:
Government Policy toward Open Source Software, R. W. Hahn (editor). Brookings
Institution Press, Washington, DC.

Hissam, S., Plakosh, D., and Weinstock, C. (2002). Trust and Vulnerability in Open
Source Software. IEE Proceedings – Software, 149(1), 47–51.

Kshetri, N. (2004). Economics of Linux Adoption in Developing Countries. IEEE Soft-
ware, 21(1), 74–81.

Lussier, S. (2004). New Tricks: How Open Source Changed the Way My Team Works.
IEEE Software, 21(1), 68–72.

Marron, D. and Steel, D. (2000). Which Countries Protect Intellectual Property? The
Case of Software Piracy. Economic Inquiry, 38(2), 59–174.

Norris, J. (2004). Mission-Critical Development with Open Source Software: Lessons
Learned. IEEE Software, 21(1), 42–49.

Payne, P. (2002). On the Security of Open Source Software. Information Systems Journal,
12(1), 61–78.

Perl Success Stories. (1999–2004). http://www.oreillynet.com/pub/a/oreilly/perl/news/
success stories.html. Accessed December 1, 2006.

Scoville, T. (1999). Perl and the Crystal Ball Economic Forecasting at the Fed.
http://www.oreillynet.com/pub/a/oreilly/perl/news’battenberg 0199.html.
Accessed December 1, 2006.

Spinellis, D. and Szyperski, C. (2004). How Is Open Source Affecting Software
Development? IEEE Software, 21(1), 28–33.

Stephenson, E. (2001). Learning to Count on Perl at the Census Bureau. January
2, 2001. http://www.oreillynet.com/pub/a/oreilly/perl/news/census 0101.html.
Accessed December 1, 2006.

Tyler, M. (2004). How Your Open Source Company Can Begin Government Contracting.
June 08, 2004. http://www.itmanagersjournal.com/feature/341. Accessed Decem-
ber 1, 2006.

9.2 Open Source in Education

Open source software and open educational content can serve schools in a
variety of ways in academic contexts from K-12 to university. There is a certain
poetic justice to this because much of open software was originally created under
federally supported programs in the first place. We have seen how open source
provides the infrastructure for the Internet. It is now increasingly providing the
infrastructure for the academic environment as well – and there are compelling
reasons for dramatically expanding its use.

The use of open software in education offers many advantages of which the
following are only a few:

1. It provides basic software platforms and tools for students and teachers.
2. It provides free-of-charge software for students and even their parents.

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.2 Open Source in Education 317

3. It exposes the inner workings of software code to IT and computing
students facilitating apprenticeship in computing.

4. It supplies tools for learning specific academic subjects that are not
themselves computing related.

5. Academic institutions can provide open courseware for distance learning
education and open textbooks available free of charge.

6. Increasingly, open source is able to provide the underlying organizational
tools needed to support academic administration, like student registration
and library management systems.

These free solutions are low cost. Most open source programs are available
for free even though the GPL does not require open products to be free in
the sense of cost. Alternatively, for-charge copies may be purchased from a
distributor in exchange for provision of premium service guarantees. The free-
of-charge advantage of open source has direct and indirect cost benefits which
are more compelling the more educational costs are constrained. For example,
open software can play an irreplaceable role in underdeveloped nations or in
poorer school districts in developed countries where cost may make the use
of proprietary software prohibitive or encourage software piracy as an alter-
native. Of course, even wealthy communities are subject to budget constraints
for which free software is attractive. Open licensing arrangements also reduce
direct and indirect licensing costs. Open licenses are automatically scalable
because they are free in the first place, in contrast to proprietary licenses where
the cost is related to the number of copies used (Tong, 2004). Even after initial
proprietary license costs are paid, subsequent costs for updates are incurred in
proprietary environments that are free under open source. Schools are relieved
of the burden of conducting software audits to verify that all their installed
software is properly licensed, including software lurking on donated machines.
There are even advantages for parents since they have the option of freely
acquiring copies of open applications used at their children’s schools, allow-
ing students to use the same software at home without the major expense they
could incur if the software were proprietary and had to be purchased separately.
Even in situations where there is limited bandwidth available for download-
ing software, an initial disk copy of an application can be purchased for a
nominal cost, and then copied repeatedly for free (Tong, 2004). There may
also be security and reliability advantages to using open source. Especially in
some countries, proprietary software may be suspect because the hidden, non-
transparent nature of its code allows it to harbor spyware and other software
threats (Hart, 2004). These cost benefits accrue without requiring one to set-
tle for a second-rate product. Many open products are of top quality. We have
previously mentioned empirical analyses like those by Reasoning (Reasoning

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

318 9 Open Source in the Public Sector

Inc., 2003) which documented, for example, that free MySQL has superior
reliability, with six-times fewer defects than comparable proprietary databases
(Tong, 2004).

A hypothetical scenario-of-use example can help underscore the deploy-
ment opportunities. Imagine if, instead of using the Microsoft Office Suite, one
chooses an open source competitor like OpenOffice from OpenOffice.org. This
software suite includes counterparts to Microsoft’s word processing, presenta-
tion, and spreadsheet applications and works with files that interoperate with
the proprietary Microsoft products Word and Excel (Hart, 2004). OpenOffice
also comes with the ability to convert documents to PDF format. Migration to a
more open inventory of applications can be done incrementally. For example, a
tool like OpenOffice can be installed and tested first, and then other applications
can be added as learning and familiarity progress. The initial learning curve for
any new product including open ones may be a concern. However, it is worth
noting that these products are often built to “follow the tail-lights” of proprietary
products, imitating their interfaces and functionalities, so the learning involved
in understanding how to use an open product with proprietary analogs may be
minimal. Furthermore, open products even have an advantage over some propri-
etary ones, since they are often cross-platform, operating in Windows and Linux
as well as Mac OS X. This kind of interoperability is commonplace in the open
source environment and has the side effect of making learning how to use these
applications portable. Costly applications like Adobe Photoshop can be served
satisfactorily for basic educational purposes by alternatives like the open source
GIMP image-editing-and-design application. Indeed, in some cases GIMP is
arguably even more powerful than Photoshop. Apache is of course the classic
open alternative to proprietary servers and is available in a variety of free forms,
like the easy-to-use bundled package from Apachefriends.org that installs and
configures Apache together with open source PHP and MySQL, providing
everything you need for a three-tier Web architecture. Content Management Sys-
tems that enable users to develop and publish their own Web content are available
through open products like PostNuke (postnuke.com), Joomla (Joomla.org),
Plone (Plone.org), Zope (zope.org), and Bricolage (www.bricolage.cc). These
packages represent a major opportunity for cost-cutting functionality in gov-
ernment and education.

Educational environments have a learning curve that is both steep and recur-
rent because there is a continual flow of new users as students flow into and
through the system. Consequently, it is essential to have proper user support for
the software products used in education. Open source has a variety of excellent
mechanisms for support. First of all, just as with proprietary software, there are
open source vendors who provide support services for a charge. Moreover and

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.2 Open Source in Education 319

more basically, the open source community itself provides superb free service,
over the Internet, delivered by means ranging from user forums and e-mail lists,
to listservs and Web sites for user support. There may even be top-notch support
provided by leaders in the field. For example, it is legendary how, in the course
of developing Linux, Linus Torvalds would often fix bugs that had been brought
to his attention by users and release an entire updated, patched version that cor-
rected the bug within hours (Hart, 2004). Nowadays, specialized forum-based
sites like JustLinux.com are dedicated to providing user support for the Linux
environment. Because these are public forums, there are the proverbial open
source “many eyes” looking at notices of problems or buggy occurrences, so it
is often possible to get expert assistance and response in real time – a level of
support that is unmatched by proprietary vendors.

The flagship operating system Linux has significant advantages as a free edu-
cational environment. It is highly cross-platform. In fact, it often works particu-
larly well on older machines in contrast to the escalating hardware requirements
of Windows. This ability is especially relevant to schools that rely on legacy
equipment because they are unable to purchase newer machines for budgetary
reasons. Contrast the situation for a proprietary platform like Windows, with
newer versions of Windows frequently bringing with them the need to upgrade
hardware requirements to more powerful but also more costly machines. Linux
also has security advantages. For various reasons, it is arguably better than
Windows at isolating a computer system from malware attacks such as in the
famed Blaster worm episode that subverted Windows environments. Thus, free
environments may be not only more reliable but more immune to security
threats.

Open source resources and materials that support teaching standard academic
subjects are widely available. The resources include programs for learning basic
subjects such as geometry (Kig), chemistry (Ghemical), and physics (opensour-
cephysics.org) for K-12 applications. A variety of applications that are useful
for children are offered by Tux4Kids.com as free and open software including
mathematics and drawing programs. Schoolforge.net is a specialized site dedi-
cated to the use of open source applications in education. The reader can refer
to sites like offset.org for catalogs of open source educational software (Tong,
2003). The K12 Open Source Now Web site hosted by Red Hat is dedicated to
precollege uses of open software and to promoting and supplying free down-
loads of OpenCourseWare for K-12 schools including curricular and learning
materials licensed under the Creative Commons License (www.k12os.org). This
site also serves as a forum where K-12 users from anywhere can pose ques-
tions to one another and receive guidance about the use of open software in
their schools. The state of California has an initiative called the Open Source

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

320 9 Open Source in the Public Sector

Textbook Project (COSTP) to offer a wide array of K-12 open textbooks and
related materials.

At the university and graduate level, Stanford University’s online course
management system CourseWork (see aboutcoursework.stanford.edu) is a use-
ful open educational product which provides support for developing course
Web sites, including tools for grading, discussion forums, scheduling, etc.
Another such application is Moodle (available from moodle.org) which is a
cross-platform system for distance learning and other educational uses (Tong,
2003). In addition to course development tools, the open availability of actual
course content or courseware is becoming a major educational endeavor. For
example, the MIT OpenCourseWare project provides open access to the course
materials used in MIT courses for use by other educational institutions or by
self-learners. The next generation version of Stanford’s CourseWork product is
the Sakai Project, a joint venture of Stanford, MIT, the University of Michigan,
and Indiana University, the objective of which is to “integrate and synchro-
nize their educational software into a preintegrated collection of open source
tools” (www.sakai.org). Open textbook content is also available, especially
on computing-related topics. A good example is the “How to Think Like a
Computer Scientist” series (Downey, 2002) that uses Java as the programming
language, with other versions in Python and C++. Printed copies of such texts
are available for a charge from vendors such as www.GreenTeaPress.com.

It is natural to wonder what role open online encyclopedias can serve as
a source of educational information for students. Wikipedia is an important
example of such a vehicle which has significant utility for making factual content
available, though less so for areas of controversy. Wikipedia was started in 2001.
It was conceived as an alternative to traditional approaches to compiling factual
information where articles by experts had to be reviewed prior to publication;
in Wikipedia they are not. It has grown rapidly in a few years. According
to its statistics page, Wikipedia has almost 1.5 million articles with over 5
million pages as of mid-2006. There has been an average of almost 15 edits
per-page per-day since mid-2002. There are almost 2 million registered users
and roughly 1,000 administrators. At this writing, almost 40 million people
access Wikipedia everyday. About 60% of users access the English language
site, with another 5–10% each for the German, Spanish, and Japanese versions.
The Alexa.com traffic service ranked it in early 2007 as the 12th most commonly
accessed site on the Web. Its information is distributed under the GNU Free
Documentation license (GFDL). The key characteristic of Wikipedia is that
anyone can edit the material. Intuitive expectations to the contrary do not seem
to have been widespread disinformation disasters in its contributions. Users can
edit pages without being logged in, but then their IP addresses are identified

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.2 Open Source in Education 321

and maintained. However, users are encouraged to log in, which gives the user
a Wikipedia identity, though this does not require a person to disclose his or her
off-line identity. Edits that you make are credited to you under your login name
or publicly to your IP address if you are not logged in. The logins of article
authors do not appear at the bottom of the article as they would with a traditional
encyclopedia, even though the logins of majority authors could be determined by
backtracking through previous versions of articles (Ciffolilli, 2003). Registered
users can be notified of any changes to any page for which they put themselves
on a watchlist. Administrators are known, trusted members of Wikipedia who
are given special privileges, like the ability to block other editors and to delete
pages. Some of their responsibilities include keeping watch on new articles and
removing “obvious vandalism.” A general norm for community contributions
is that they are supposed to be written from a neutral point of view. The site
uses a change management approach that lets destructive changes be easily
removed, like graffiti that can be easily erased. Each page is accompanied by a
separate discussion page for editors. Graffiti or writing deemed nonneutral can
be permanently removed by an administrator along with the entire history of
the page. The IP addresses of offending individuals can even be banned.

Some obvious concerns regarding Wikipedia include the self-selecting
nature of the participants on topics, including the administrators, and the ques-
tion whether, on controversial topics, Wikipedia’s “policy of neutrality” is really
adhered to. In particular, sources that Wikipedia accepts as “reliable” may
themselves be highly disputed. The content is intended to be encyclopedic and
purely factual in nature, not original research or opinion, and is supposed to
be verifiable in a reliable (published) source. The reliability of the articles on
noncontroversial matters of straightforward fact seems generally to be quite
reasonable. For example, if one looks up the article on the Poincare Conjec-
ture, one will get a very useful statement of its meaning, history, and current
standing, together with references and links. Certainly many of the articles
on computing are extremely informative, like the excellent article on the X
Window System or the intriguing article on Knuth’s TeX system. However, on
the many other matters that have cultural, political, religious, philosophical, or
other personal dimensions or implications, or where factual analysis is prob-
lematic to determine, the representativeness and objectiveness of the content
is significantly subject to the personal proclivities of the editing audience. The
conclusion seems to be that for certain areas, Wikipedia serves a useful purpose
for accessing information on a topic, but, just as in the case of even reviewed
material, controversial topics provide coverage that must be carefully scruti-
nized, just like one would a magazine or newspaper article. Wikipedia articles
can be quite helpful as quick preliminary sources of information about a topic.

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

322 9 Open Source in the Public Sector

This can then be scrutinized or elaborated on through subsequent research, like
general Internet searches or article links, where a user can further develop the
content presented and verify it from multiple sources.

Open source is a new paradigm for software development and an essential
one that undergraduate computer science students must become familiar with.
Aside from any putative cost benefits, undergraduates in computing-related
fields should be exposed to free software in addition to proprietary products in
order to broaden their exposure to its development model and creations. The
availability of the open source code provides a unique educational benefit to
computing students since it gives them an opportunity that is rare in the case of
proprietary code. They can actually see professional code, written and tested
by some of the best software experts in the world. The practice of learning by
imitating the work of experts is universally applied in other fields. For exam-
ple, a traditional method for improving one’s writing is by imitating the work
of master authors. This practice is equally important in professional software
development, but it is underutilized in the undergraduate computing environ-
ment. It can also be thought of as a way to expose students early on to best
practices in programming. Open source code allows students to study high-
quality, tested, real-life applications code, written by groups of experts, usually
under the leadership of a premier developer (Tong, 2004). Code availability
also presents an opportunity for qualified students or teams of students to learn
how open source development is actually done. Students can use open source
development tools like CVS to participate in local open source development
projects or existing real open projects initially as observers and possibly later
as contributors.

Senior capstone projects in software development are a perfect opportunity
to bring open venues into play. One possibility is to create an open version
of a senior development project, with the team members following the open
development model and using the standard development tools. Such projects
can provide useful and marketable career-related training in open techniques.
The likely programming languages to participate in actual projects are C, C++,
or Java (which represent about 20% each of the languages used in OSS devel-
opment projects), followed up by PHP and Perl (about 10% each – statistics
from sourceforge.net). The very origins of open development were forged in
an academic research context precisely as a reaction against closed, proprietary
systems. The presence of a strong open source culture, even from the high
school level and up, can act as an effective incentive for innovative software
development where students experiment with transparent software products,
incrementally tinkering and improving them, in the best spirit of inventive sci-
entific development. This type of computing milieu will undoubtedly lead to

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

9.2 Open Source in Education 323

major new technical developments in the future just as it has in the past, develop
students’ software talent, build career-related skills and prospects, maintain
interest and enthusiasm, and encourage a sophisticated but pragmatic approach
to computing education.

Granted the extraordinary advantages that can come from using open soft-
ware in the budget-constrained area of education, one has to puzzle over the
continuing widespread dominance of environments like Windows and Apple
in academic settings. The phenomenon is partly a result of the high quality of
these well-funded proprietary products, but it is compounded by inadequate
public awareness of the benefits of open source as well as the inertia of lock-in
to familiar systems. Therefore, increased public awareness of the quality of
these products and their cost benefits is key to improving penetration of this
sector. Studies like the BECTA (British Educational and Technology Associa-
tion) study have helped publicize the cost benefits. BECTA conducted a study
of about 60 primary and secondary schools in Britain that evaluated the cost
advantages of nonproprietary solutions (see the overview in Wheeler (2005)).
The study concluded that the secondary schools considered could reduce their
total IT costs by 25% and primary schools could reduce total IT costs by 60%
using an open source framework, versus proprietary software. One assumes
that similar economies would apply in the United States. Public perception of
the applicability of open source is also changing. The study in Abel (2005)
surveyed awareness of various open source educational products in American
institutions of higher education. The survey revealed a strong “cultural” pre-
disposition for open products in these institutions. For some categories, like
student information and financial systems, proprietary products were thought
to be relatively immune to competition from open software. However, tools
like course management systems (such as Sakai and Moodle), portal frame-
works (like uPortal), and tools for facilitating “assessment” were perceived as
seriously competitive with commercial software.

References

Abel, R. (2005). Preliminary Analysis of the Open Source in Higher Education Survey
Conducted from April 15, 2005 to May 1, 2005 by the Alliance for Higher Educa-
tion Competitiveness, published May 3, 2005. http://www.a-hec.org/media/files/A-
HEC os survey report 050305.pdf. Accessed November 29, 2006.

Ciffolilli, A. (June 24, 2003). Phantom Authority, Self-Selective Recruitment and Reten-
tion of Members in Virtual Communities: The Case of Wikipedia. First Monday,
8(12). http://www.firstmonday.dk/issues/issue8 12/ciffolilli/index.html. Accessed
December 3, 2006.

Downey, A. (2002). How to Think Like a Computer Scientist. Java Version. http://www.
greenteapress.com/thinkapjava/. Accessed November 29, 2006.

P1: JYD
9780521881036c09 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:6

324 9 Open Source in the Public Sector

Hart, T. (2004). Open Source in Education. University of Maine. http://www.mbs.
maine.edu/m̃itchell james/OpenSource/Introduction.htm. Accessed November 29,
2006.

Reasoning Inc. (2003). How Open Source and Commercial Software Compare:
MySQL White Paper MySQL 4.0.16. http://www.reasoning.com/downloads.html.
Accessed November 29, 2006.

Tong, T. (2004). Free/Open Source Software in Education. United Nations Development
Programme’s Asia-Pacific Information Programme, Malaysia.

Wheeler, D. (2005). Why Open Source Software/Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers! http://www.dwheeler.com/oss fs why.html.
Accessed November 29, 2006.

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10

The Future of the Open Source Movement

This chapter attempts to present a balanced view of what the future seems
likely to hold for the open source movement based on past and present trends
and the underlying structural, social, political, scientific, and economic forces
at work. We will first sketch what we believe are the likely dominant modes
for software development and then we will elaborate on the rationales for our
projections.

First of all, we believe the open source paradigm is moving inexorably toward
worldwide domination of computer software infrastructure. Its areas of domi-
nance seem likely to include not only the network and its associated utilities, but
also operating systems, desktop environments, and the standard office utilities.
Significantly, it seems that precisely the most familiar and routine applications
will become commoditized and satisfied by open source implementations, facil-
itating pervasive public recognition of the movement. The software products
whose current dominance seems likely to decline because of this transformation
include significant components of the Microsoft environment from operating
systems to office software.

However, despite a likely widespread increase in the recognition, acceptance,
and use of open source, this does not imply that open software will dominate the
entire universe of software applications. The magnitude of financial resources
available to proprietary developers is enormous and increasing, giving such
corporations a huge advantage in product development. One might note, for
example, that expenditures on research and development by publicly traded
software companies increased tenfold between 1986 and 2000, from 1 to 10%
of industrial research expenditures (Evans, 2002). To put the relative sizes of the
players in perspective, one might make the following, perhaps not quite apro-
pos, comparison. Thus recall that, while Microsoft’s share of global revenue
from software packages may only be around 10% (Evans, 2002), its several

325

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

326 10 The Future of the Open Source Movement

hundred billions of dollars in market capitalization compare rather favorably
to the mere $2 million in assets of the Free Software Foundation that devel-
oped the GNU project (Moglen, 2003)! These David and Goliath differences
hardly portend a minatory diminution in the resources that can be plowed back
into improving the proprietary products that generate these immense revenues.
Furthermore, the proprietary software industry is very healthy, competitively
speaking. The Herfindahl-Hirschman Index, commonly used to measure con-
centration or competition in the industrial sector, rates the software industry as
one-third less concentrated than average manufacturing firms. There are also
frequent changes in the identity of the top firms (Evans, 2002); that is another
indication of competitive robustness. This data indicates that at an objective
econometric level the proprietary software sector is robust and highly dynamic.
Thus it seems destined to continue to play a pervasive role in software develop-
ment because it has the resources and dynamism needed to continue to produce
highly attractive products.

The picture that emerges is one where the different modes of production
that have already evolved seem likely to persist: open, proprietary, and hybrid
combinations. Pure open source and proprietary modes will both grow, each
dominant in certain market areas. Hybrid modes of cooperative development
will continue to be increasingly widely used. While some existing proprietary
systems will see their markets overtaken by open source replacements, other
proprietary applications, as well as mixed modes of commercial development,
can be expected to flourish. Specialized proprietary mega-applications serv-
ing large industries will continue to dominate their markets. The various dis-
tributed network services, built partly on open infrastructures that have been
enhanced with sophisticated proprietary functionalities, will also continue to
thrive. Another mixed mode that seems certain to significantly increase in scope
is bilateral platforms that intermix Windows environments and applications with
open platforms and applications, providing some of the advantages of both. The
development of software for in-house purposes has historically represented the
preponderance of software development. This kind of commercial development,
in-house, nondistributed, and customized, will increasingly be built using open
source components. It may remain proprietary by intention (for competitive
purposes) or by default, but its software development process will be increas-
ingly dependent on the software commons provided by open source. Existing
symbiotic arrangements between the open community and proprietary devel-
opers, like the open sponsorship strategy promoted by IBM, will continue to
strengthen. However, such arrangements will have to be handled gingerly and
with appropriate deference to the underlying open community’s native culture,
lest the entire dynamics of the model be undermined.

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10 The Future of the Open Source Movement 327

In summary, the likely dominant modalities for software development seem
to be as follows:

Open Infrastructure Commoditization
Open source in standard (commoditized) applications for business, personal,
educational and government use, though complementary mixed approaches like
WAMP and Wine will also be attractive.

Proprietary Mega-applications
Specialized complex proprietary mega-applications for major industries or
applications sectors like entertainment, medical research, insurance, and
manufacturing.

Vertical Synthesis of Distributed Services
Proprietary networked services for specialized or ubiquitous purposes, built on or
integrated with non-distributed open source components and platforms.

Vertical Synthesis of In-house Applications
Special-purpose, in-house, vertical software development whose results are not
distributed and are proprietary by default or intent, even though they employ open
components.

Horizontal Synthesis with Complementary Open Software
Horizontal development and deployment of specialized proprietary software
products or hardware which are supported or enhanced by complementary open
source products.

The underlying factors that encourage these configurations appear to be cost
effectiveness and risk reduction, geopolitical forces, professional/pedagogical,
technological, and structural factors, as we will describe in the following.

Open Source Commoditized Infrastructure
Software is not an apolitical product. It is not just economic but geopolitical
factors that will be decisive in the inexorable diffusion of open source in the
global market. Independent nations cannot in the long term accept the dom-
inance of their computer software infrastructure by foreign entities. This is a
simple matter of national and regional identity and autonomy that will persist
despite the interconnectedness of the “global village.” In fact, this is simply
a translation into the geopolitical realm of the kind of autonomy open source
provides at the user/vendor level. For example, at the corporate or organiza-
tional level, open source provides sophisticated users with flexibility because

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

328 10 The Future of the Open Source Movement

they are potentially experienced enough to understand and adapt the code it dis-
closes, reducing their dependence on proprietary vendors of code to help them
modify it (Hahn, 2002). The same motivation is at least as compelling at the
geopolitical level, especially in the case of economically powerful nations like
China whose political policies and security concerns are likely to be increas-
ingly divergent or at least independent of those of the United States. Consider
that China started Red Flag Linux precisely to “reduce domination of the Chi-
nese computer market by Microsoft’s Windows operating systems” (Searls,
2002), quoting a Bloomberg News Report. The United States has an analogous
perspective on its own national interests. For example, during the 1990s, the
United States tried to restrict the export of cryptographic tools, though this
only succeeded in precipitating the development of network security tools by
overseas developers (Hohn and Herr, 2004).

The software profile of other nations seems likely to imitate the trajectory
taken by the open source movement itself in developing commoditized software
infrastructures. The first domains where free software should predominate are
those where it has already established itself, in network infrastructures, plat-
forms, and routine tools. This transformation will take longer to transpire in
the United States because, since many of the dominant proprietary players are
domestic, issues of political autonomy are less exigent. However, the United
States ultimately has the same underlying concerns. As an example, consider the
case of the open source security tool Snort. The United States blocked a deal for
an Israeli company to acquire Snort in 2006 because it thought the foreign com-
pany might take the future development of the Snort code proprietary. This was
deemed an unacceptable risk to the United States, given the widespread use of
Snort by Federal agencies (Arnone, 2006). Hybrid complementary approaches
to purely open systems, like WAMP (where Windows is used instead of Linux
in the LAMP stack), are also likely to become more widespread. They offer
intermediate venues that promise some of the savings of open source, com-
bined with the learning curve and migration advantages of retaining Windows.
The open source Wine project is also strategically significant because it imple-
ments the Windows API (Application Programming Interface), allowing native
Windows programs to execute on Linux and Unix-like systems like FreeBSD.
Wine opens the door to third-party proprietary applications on the basic free
platforms, thereby significantly increasing the attractiveness of these systems
vis--vis Windows (Lussier, 2004).

The nature of computer science education and the professional computing
culture are also highly important driving factors in the propagation of open
source. In a sense, open source and its creations now constitute a sort of lin-
gua franca of global education in software engineering. Thus, even aside from

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10 The Future of the Open Source Movement 329

geopolitical factors, the increasing prevalence of open source as a key operative
paradigm to which computer science students are exposed will increasingly
foster open source ubiquity. The dynamics will be similar to the way in which
the Unix-culture of the 1980s and 1990s defined an educational nursery and
environment for computer specialists. The consequences of that previous edu-
cational technological matrix are clear: Unix-like operating systems became
increasingly widespread, at least partly because they were the ones computer
scientists were weaned on. The point is that a combination of training, familiar-
ity, and predisposition toward open source, combined with the natural influence
of computer scientists in defining the future of the field, inevitably argues for a
pervasive role for open source in the future. The GNU/Linux system (and other
free Unix-like systems) will inevitably proliferate even more so over time. The
same progression should be natural for other fundamental free software sys-
tems, such as the open KDE/GNOME desktops.

Proprietary Mega-applications
While certain geopolitical, cultural, and technological factors are promoting free
software, other structural factors will continue to promote proprietary products.
Though open applications will become familiar and routine, they will not prevail
everywhere. To the contrary, vast opportunities will remain where the major
applications continue to be proprietary and new ones will continually emerge.
As an example, we will consider the case of Adobe Photoshop. Several forces
conspire to drive its kind of secure market dominance and are likely to persist
in the future. They are the following:

1. the existence of a major industrial base for the application;
2. the mission-criticality of the application;
3. the complexity of the application; and
4. the consequent return on development investment.

In the case of Adobe, the first driving element is that multimedia and graphics
applications are prominent in massive industries, like entertainment, gaming,
and advertising, that have enormous profits and capitalization as well as great
growth potential. The second factor combines with the first. It concerns whether
the industry-specific application software is critical to competitiveness and
success in the industry, as is the case with Adobe. The third factor addresses
whether the software is not merely mission-critical but serves an application area
that is intrinsically complex, requiring software of substantial sophistication and
effectiveness. Once again, this is the case with graphics software like Photoshop.
The fourth factor is a consequence of the others and leads to self-perpetuating,
feedback effects. These conditions jointly ensure that best-of-breed products

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

330 10 The Future of the Open Source Movement

will necessarily dominate such markets. A hypothetical decision by any serious
commercial player in the industry to choose a lesser product as an essential
software engine would be penny-wise and pound-foolish to say the least. The
cost-savings of using similar open source tools are negligible compared to
the advantage of using the top-of-the-line product. Even marginal advantages
may be important under these circumstances, and in fact the advantages of
the best such proprietary products are more than marginal. The sale of this
kind of proprietary, effective, essential software in highly profitable industries
invariably generates lucrative returns for the software provider. Two feedback
effects help to bolster the proprietary product’s competitive advantage against
competing products. One is based on profit effects, the other on sunk costs in user
learning. Firstly, profits from the product’s sale can be recycled by the software
producer back into R&D to further improve the product, making it difficult
for potential competitors to ever close the performance gap with the leading
product. Making the refinements necessary to produce a polished software
product is detailed and costly work. Secondly, the complexity of the application
makes acquiring a commanding understanding of how to use the product a major
sunk cost in human capital. This same factor can also help to produce a vendor-
product lock-in effect, making it costly for users to switch to alternatives. The
advantages of this cycle of improvement can easily become self-perpetuating.
Furthermore, there may exist a vast range of possible improvements for such
applications, so a company that provides the market leader software is unlikely
to be surpassed in the short term, and certainly less so by providers of open
software with its far lower direct profit margins and its consequently limited
financial resources for improving the product. The opportunities to create such
proprietary mega-applications seem likely to continue and even expand.

There is one caveat regarding the preceding analysis. Again, we will continue
the discussion by using the example of Adobe Photoshop. There may be a
symbiotic or feedback relationship between proprietary products like Photoshop
and open source competitors like GIMP. Features introduced in the proprietary
tool can be reverse engineered or emulated (by following “taillights”) after a
delay in the open tool, leading to a mirrored tracking of the proprietary product
by the open one. On the other hand, innovative developments in the open tool
can be even more directly adopted by the proprietary tool by reimplementing the
open functionality in the proprietary software without incurring a copyright or
General Public License (GPL) violation, again after a delay. This combination
of effects can tend to cause the development of the open product to track the
evolution of the proprietary one over time, but with a time delay, perhaps a year
or so. The advantage is still in favor of the proprietary product, due both to
the greater financial resources of its corporate provider and the greater ease of

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10 The Future of the Open Source Movement 331

reimplementing functionality based on an existing open source implementation,
though the issue of software patents may also come into play. The consequence
is that the special-purpose proprietary system will tend to represent the cutting
edge of the tool’s application category, with a continual positive differential
advantage over any open source competitor. Thus, while the open tool may be
always catching up, the proprietary tool can be always advancing as well and so
maintains an incremental advantage. Therefore, for the reasons we have argued
previously, the proprietary product should maintain its market leadership among
major users for whom the cost of critical software is a relatively secondary
factor. The only escape from this pattern occurs if the products eventually
evolve to an asymptotic state where the potential functionality of this type
of product has been saturated; that is, when (and if) the open and proprietary
products sufficiently converge in functionality so that the product itself becomes
commoditized. If that occurs in the long term, then at that point the two products
become functionally equivalent for the purposes of most users. At that point,
the open product can dominate the market since there would be no reason for
users to pay a premium charge for a negligible advantage.

Vertical Synthesis of Distributed Services
Another domain where nondisclosed, proprietary applications are likely to dom-
inate is in organizations that provide networked services built on infrastructures
partly rooted in open source software, but which have been extended in a pro-
prietary manner in order to provide specialized services. This is a form of
vertical, in-house development of a platform that provides distributed services.
The textbook example of this type of development model is Google. Google
thrives by providing networked applications for search services that are con-
structed partly on top of open systems that have been enhanced by proprietary
programs, algorithms, and data sources. Organizations using this model may
merely use existing Linux or other free platforms via the normal operating
system interface. However, they may also creatively leverage and adapt open-
licensed applications to expedite the development of their proprietary systems.
Some systems may be built on BSD-licensed open products for which enclo-
sure in proprietary software distributions would be compatible with the license.
But even the more restrictive GPL-licensed systems can be used in the nondis-
tributed model because their mode of use obviates or bypasses the redistribution
restrictions of the GPL. The software developed is not redistributed even though
the services produced by these platforms may be distributed anywhere, anytime,
to anyone. There is obviously an endless list of services of this type that can be
created, but none of the proprietary enhancements that underlie them need ever
be disclosed. Indeed, such systems arguably represent an even more secretive

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

332 10 The Future of the Open Source Movement

paradigm for software development than traditional distributed software since
not even the binaries for the executables are distributed! Thus ironically, though
the open source movement has been instrumental in enabling such providers,
their level of software transparency has moved even further along the axis of
proprietary secrecy and nondisclosure than traditional proprietary systems.

Vertical Synthesis of In-house Applications
Two-thirds of software is developed for in-house or customized use. There
is no reason to expect this to change in the future. Thus though firms like
Microsoft may be perceived as prototypical of software companies, in point
of fact, historically “packaged software has never accounted for more than a
third of software investment” (Bessen, 2002). In-house development can be
based on internal software implementations which are essentially proprietary.
However, it may also be based on originally open software which is modified,
extended, or in some way customized for internal use, but which may not be
distributed externally. Companies can also develop integrated compositions of
proprietary and open source components. The availability of the open source
code represents a significant advantage in such development, since it can make
it easier for firms to customize the components because they have access to
the entire code base (and the open community) and not just to an interface, as
would be the case, for example, in Commercial-Off-The-Shelf software. This
development model is increasingly widespread. In-house customization and
integration is completely compatible with any open source license, including
the GPL.

Horizontal Synthesis with Complementary Open Software
Horizontal synthesis is a proven successful business model that uses open source
software as a complementary adjunct to a business’ proprietary products. How-
ever, the open source products are not themselves the profit-making elements
in the situation, though they indirectly benefit the proprietary product line by
reducing costs. This differs from vertical approaches where, for example, sys-
tems are built whose services are distributed or used for in-house processing,
but the system itself is not distributed.

A variety of horizontal strategies are possible. For example, a company may
develop proprietary products some of whose components are open source. Of
course, the use of the open components must be compatible with the terms
of their free licenses. Or, the horizontal strategy may exploit the availability
of free software platforms. For example, a company may develop proprietary
product lines that run on platforms like Linux. This has the additional business
advantage of undermining the dominance of competing proprietary platforms.

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10 The Future of the Open Source Movement 333

A company may take advantage of complementary open software that helps
the company or its clients develop, maintain, or adapt its proprietary offerings.
This strategy requires that the company reciprocate by supporting open projects
that develop software that is useful in combination with the company’s propri-
etary products. Support can come in the form of financial support or the use of
regular corporate employees as full-time contributors to the open projects of
interest. The company may also establish permanent relations with the com-
munities of users and developers around the open projects of interest. Another
widespread strategy is using free software on hardware platforms. The com-
plementary free software product provides free or low-cost added value to the
hardware product. In contrast, the use of proprietary software could make the
cost of a functional hardware product prohibitive. Instances of this practice
include the use of free software in digital devices that have sufficiently com-
plicated interfaces that one needs a platform like a pared down Linux kernel to
handle tasks like process scheduling. An example of this is the use of Linux
versions in digital appliances like cell phones or PDAs. Another tactic, although
it is not open source, is to adopt a half-open approach for proprietary products,
emphasizing open standards and publicly defined interfaces for these prod-
ucts. This encourages third-party development of applications that can inter-
operate with the proprietary products, adding value and making them more
attractive.

A classic example of the power of the horizontal model is illustrated by the
strategic practices of IBM as described in Chapter 7. The company uses open
source products to facilitate its own development and supports open communi-
ties whose products add value to its proprietary software (Capek et al., 2005).
This sustains the open projects but also simultaneously lets IBM influence at
least part of their evolution, a symbiotic relation which can benefit the open
source community and the company. Corporations like IBM have been instru-
mental in increasing the credibility of the Linux platform worldwide, expanding
its functionality and improving its performance. The corporation benefits from
the expertise it gains in open products, as well as in open development method-
ology – expertise which can in turn be applied to its own product development
and consulting. It is essential to the viability of such relationships that corporate
sponsors handle them adroitly, in full compliance with the norms of the open
source community whose passionate commitment is what makes the model
possible in the first place.

Concluding Note
The GPL created by Richard Stallman of the Free Software Foundations has
been decisive in “creating a large public commons of software that is freely

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

334 10 The Future of the Open Source Movement

available worldwide” (Rosen, 2005). This commons provides an inexorably
expanding frame of reference for future software development. This princi-
pled, historic achievement has a counterpart in the accomplishments of the
pragmatic Open Source Initiative and a long, ongoing history of industrial
cooperation as reflected in the BSD and MIT licenses. Open Source Initiative
cofounder Eric Raymond contends that a combination of economic forces and
the scale of software development projects is compelling even large firms to
spread development costs across a wider base that extensively utilizes open
source development. This involves significant industrial cooperation and sup-
port for open projects like Linux and the Apache Software Foundation and
“informal cooperative efforts regulated by open source licensing” (Raymond,
2004, p. 90). On the other hand, critical voices like IT expert David Messer-
schmitt believe that the open development model is seriously limited “in deeply
understanding user needs” and is “incomplete as a software creation process” in
contrast to commercial software (Messerschmitt, 2004, p. 89). Messerschmitt
also underscores the necessity for realistic profit margins for software vendors,
so they can fund research and risky, new product development, contending that
were the industry dominated by open source, “products would be replaced by
marginally profitable services, and research and risk-taking would be gravely
damaged” (Messerschmitt, 2004, p. 91).

All these principles reflect highly informed, experientially based perspec-
tives. Therefore, it seems prudent to assume that each of their perspectives
contains a significant element of truth. As a consequence, it seems realistic to
assume that the future software environment will be a syncretistic one. The
industrial collaborative use of open source in certain areas of application,
already historically established, will continue to grow, expanding for simple
economic reasons and the quality of the results. Disparate economic, geopolit-
ical, and technological forces will continue to strengthen the roles of free and
open source development worldwide. A variety of free models, ranging from
the essential GPL-based permanent software commons model to the more per-
missive licensing models, will continue to engage strong industrial, university,
governmental, and global sponsorship, reflecting a spectrum of modes and rela-
tionship models, from purely open to hybrid. These will be counterbalanced by
a variety of highly robust, proprietary modes of development.

References

Arnone, M. (2006). A New Direction for Open Source: Software Vendors Consider
Switch to Fee-Based Model. http://www.fcw.com/article95251–07-17–06-Print.
Accessed November 30, 2006.

P1: JYD
9780521881036c10 CUNY1180/Deek 0 521 88103 6 October 1, 2007 16:0

10 The Future of the Open Source Movement 335

Beesen, J. (2002). What Good Is Free Software? In: Government Policy toward Open
Source Software, R. W. Hahn (editor). Brookings Institution Press, Washington,
DC.

Capek, C., Frank, S., Gerdt, S., and Shields, D. (2005). A History of IBM’s Open-Source
Involvement and Strategy. IBM Systems Journal, 44(2), 249–257.

Evans, D. (2002). Politics and Programming: Government Preferences for Promoting
Open Source Software. In: Government Policy toward Open Source Software, R. W.
Hahn (editor). Brookings Institution Press, Washington, DC.

Hahn, R. (2002). Government Policy toward Open Source Software: An Overview. In:
Government Policy toward Open Source Software, R. W. Hahn (editor). Brookings
Institution Press, Washington, DC.

Hohn, S. and Herr, G. (2004). Open Source: Open for Business. A Report from Com-
puter Science Corporation: Leading Edge Forum, September. http://www.csc.com/
features/2004/uploads/LEF OPENSOURCE.pdf. Accessed November 30, 2006.

Lussier, S. (2004). New Tricks: How Open Source Changed the Way My Team Works.
IEEE Software, 21(1), 68–72.

Messerschmitt, D. (2004). Back to the User. IEEE Software, 21(1), 89–91.
Moglen, E. (2003). Freeing the Mind: Free Software and the Death of Propri-

etary Culture. June 29, 15 pp. http://moglen.law.columbia.edu/publications/maine-
speech.html. Accessed December 20, 2006.

Raymond, E. (2004). Up from Alchemy. IEEE Software, 21(1), 88–90.
Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property

Law. Prentice Hall, Upper Saddle River, NJ.
Searls, D. (2002). Raising the Red Flag. 2002–01–30. http://www.linuxjournal.com/

article/5784. Accessed November 30, 2006.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary

Disclaimer: The legal terms defined in this glossary do not constitute legal
advice and are for reference only. Any legal questions should be referred to an
IP attorney.

Note: Most of the glossary terms are further discussed in the body of the text
and referenced there as well.

Adware. This is free of charge software that displays advertisements. For exam-
ple, the Opera browser is adware that lets the user eliminate the ads for a
fee.

Apache license. This is a BSD-type license that allows modified versions of
the source code to be redistributed in closed products. The license also pro-
tects the Apache trademark name from being applied to derivative works. The
license is considered incompatible with the GPL because of a patent termination
condition.

BIND. The open source Internet service that provides the APIs (Application
Programming Interfaces) for translating symbolic domain names into numeric
IP addresses. The acronym stands for Berkeley Internet Name Domain.

Black box reverse engineering. This refers to reverse engineering a software
product on the basis of an inventory analysis of the system’s scope and function-
ality. See also reverse engineering and white box reverse engineering. This may
be legal if done for purposes of interoperability, but not to avoid a protection
mechanism.

Branches in CV. Branches are alternate project evolutions that emerge form
and diverge from earlier project releases, for example, because a bug is detected
against that earlier release. Since the bug appeared in the context of the earlier
release, a patch that fixes the bug should be applied against that release rather

336

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 337

than a more current version of the project. A branch is split off from the trunk
or main line of development at the old release, a working copy of that version
is checked out and fixed, and the patch is committed to that branched version,
not to the current development version which is unaltered. The current version
can be similarly debugged and patched. If the same patch works for the earlier
release that was branched and the current development version, the branch can
be merged back to the trunk, with the history or record of all these changes still
preserved in the repository (Fogel and Bar, 2003).

Brook’s law. “Adding manpower to a late software project makes it later.” For-
mulated by Fred Brooks in “The Mythical Man-Month.” Contrast Eric Raymond
in “The Cathedral and the Bazaar” (Raymond, 1998).

BSD (Berkeley Software Distribution) license. This is a very unrestrictive
type of open source software license. BSD-licensed code or modifications
can be incorporated in proprietary software whose source code is kept secret,
which is completely unlike the General Public License (GPL). The license con-
tains express warrantee and liability disclaimers, permits redistribution in either
source or binary form, requires that the original copyright notice be included
to allow proper attribution of modified works, and forbids using the names of
the open source contributors for endorsement without their approval. The BSD
license was first used for BSD UNIX in 1980 and is widely used in Linux dis-
tributions. The original version of the license included a so-called advertising
requirement (that was later removed in the new or modified BSD license) which
made the license GPL-compatible. See www.opensource.org for a copy of the
license.

Build time. The object modules produced by, for example, a C compiler may
contain unresolved references to other modules that were not available when the
module was compiled. A linker program combines a set of such object modules
into a single executable file called a build. The separation of responsibilities
between the compiler and the linker is useful during development since the
time to compile a set of object modules is typically much longer than the time
to link them. Thus if changes are made to a single object module, then a new
build can be created by just recompiling that single module and then quickly
relinking the entire set of object modules. The build time for the rebuild is just
the time for the single compilation plus the time for the entire linking operation.
The operating system Loader runs the executable file, though there may still be
dynamic linking to shared library modules like .dll files in Windows at run-time.

Closed software. Software distributed under a license that prevents it from
being copied, modified, or redistributed. It may also be called proprietary

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

338 Glossary

software. To protect disclosure of the source code, the program is distributed
only as binary.

Common Public License. This is an OSI-certified license but is considered
incompatible with the GPL. IBM introduced this license for products such as
Eclipse.

Compilation. This is a work formed by collecting together previously copy-
righted works whose copyrights are still preserved in the compilation. In the
case of software, this would include copyright permissions from the copyright
owners of any components (Hollaar, 2002).

Concurrent Versions System (CVS). This is the most widely used version con-
trol system. It is a General Public Licensed client-server system under which
software projects are stored in a so-called repository on a server, while client-
side tools let multiple developers remotely and concurrently check out latest
versions of a project from the repository, modify the source code on a client,
and commit changes to the working copy back to the repository. This is the
so-called copy-modify-merge development cycle. Conflicts caused by devel-
opers concurrently changing overlapping parts of the project are automatically
detected at commit and must be resolved manually before the changes can be
committed to the repository.

Contract. A legal agreement between two parties that identifies what each party
promises to do as part of an exchange, such as an agreement for party A to pay
for goods or services provided by party B. A contract can be enforced under
the provisions of contract law.

Copyleft. Copyright limits the right of others to copy and redistribute a work.
Copyleft has a somewhat contrary intent (whence the reversed name) in that it
tries to guarantee that anyone who receives a copy of an original work (such
as the source code for a program) also receives the right to copy, modify,
and redistribute the original work and derived modifications of the work. This
copyleft intent is asserted in a license that accompanies and is distributed along
with the original work. This license requires that all redistributed copies of the
original work and works derived from it must also include this same license,
which is tantamount to a recursive propagation of the original copyleft license.
Copyleft guarantees that every user in the redistribution supply chain preserves
freedom with respect to the product. According to the GNU Web site: “Copyleft
says that anyone who redistributes the software, with or without changes, must
pass along the freedom to further copy and change it” (www.gnu.org). The
owner of the original product, however, still preserves copyright ownership of
the original work.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 339

Copyright. Copyright gives the creator of a work the exclusive right to make
a copy of the work, distribute copies of the work, disclose or display the work
publicly, as well as to create so-called derivative works which are derived from
the original product. The protection provided by copyright starts automatically
as soon as the work is fixed in tangible form. Copyrights can be applied to
software products like programs and image files. Copyright only protects the
tangible implementation of an idea, not the idea itself. Thus it is not a violation
of copyright to produce a similar product that is inspired by the overall look
and contents of an original copyrighted product, subject to the criterion of
substantial similarity.

Copyright infringement. The violation of a copyright condition is called a
copyright infringement. One form of copyright infringement is redistributing
multiple copies of a copyrighted software product, whether for free or for sale,
which is called software piracy. Even making additional copies for personal use,
unless as authorized by a software license agreement, is an infringement, since
the copyright owner is the one who has the right to make copies. In the case of
derivative works, a key legal test for the existence of a copyright infringement is
based on so-called substantial similarity between an allegedly infringing work
and the copyrighted work. Copyright infringement, whether intentional or not,
is subject to civil and criminal liability.

Decompiling. This is an attempt to reverse the effects of compiling source code
into object code by converting object code back to some high-level language
that can be understood by a person. Decompilers, such as the Reflector tool for
.NET, are generalizations of disassemblers that convert machine code back into
assembly language. It is not always possible to decompile object code or create
a humanly meaningful high-level version because of the intermixture of code
and data in a program and the loss of symbol tables (containing the originally
meaningful names) that are typically not still available in the executable code.
Software tools called obfuscators make it harder to decompile object code and
are used to protect intellectual property.

Derivative works. The U.S. Copyright Act defines a derivative work as one
based on a previously copyrighted work, but does not address the case of soft-
ware (Webbink, 2003). An ordinary copyright preserves to its owner the copy-
right for any derivative works based on the copyrighted work, but for software
the definition of what constitutes a derivative work is sometimes tendentious.
Simple translation of a copyrighted work into another (programming) language
is prohibited by the Berne Convention without the permission of the original
copyright owner. Generally, a software product is considered as derivative if it
contains original, modified, or translated source code from an original program,

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

340 Glossary

but not so if it merely links to a preexisting copyrighted program library or plugs
into a copyrighted program designed to accept plug-ins, absent indications of
intent such as “whether the resulting program is being sold as an enhanced
version of the original” (Rosen, 2003), though the legal issues do not appear
to be settled. A key test is whether the work is substantially similar to the
original.

diff. The Unix diff command shows the differences between a pair of files on a
line-by-line basis. It indicates (depending on the format) whether different lines
have been added (a), deleted (d), or changed (c), with shared lines not output.
Conceptually, diff takes a pair of files A and B and creates a file C representing
their “difference.” The output file is also called a patch file because of its use in
collaborative development where the difference represents a “software patch”
to a current version of a program. The so-called unified difference format for
the diff command is especially useful in open source development because it
lets project maintainers more readily understand code changes. For example,
the unified format includes surrounding lines that have not been changed as
context, so it is easier to recognize what has been changed and where. The
diff command works together with the patch command to enact the changes.
The commands are key in open source development, either used explicitly or
wrapped in a tool like CVS.

Dynamic linking. From a software development point of view, dynamic linking
is the resolution by a linker of all the unresolved references an application’s com-
piled (object) code makes to external library modules, but without combining
the application and library objects into a single executable file; the executables
remain separate.

End User License Agreement (EULA). The most common kind of software
license, typically proposed to a user for acceptance during software installation
as a precondition for use of the software. The licenses usually have extensive
disclaimers about liability as well as restrictions on use and sharing of the
software.

Fair use. This refers to the copying and use of limited parts of a copyrighted
work for limited periods of time, with attribution, for such purposes as education
and research, but without requiring the permission of the copyright holder. Such
use does not constitute copyright infringement and is explicitly allowed by the
U.S. Copyright Act. However, there are strict guidelines on how much of a
work may be copied. Damage to any commercial value of the product is a
key consideration. In the case of software, fair use in the traditional sense
is immediately problematic, since the program’s useful functionality requires

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 341

copying the entire code, which is contrary to fair use restrictions, even in the
case of educational use.

Fork. In an open source context, a fork occurs when a development team splits
at some stage in the project development, with each team then independently
pursuing a separate evolution of the product. If there was an original single
leader of the open source project, the project of the group with that person
preserves the project name and may get the lion’s share of the associated repu-
tation. A fork of the development team is different from a branch in a CVS-style
development tree, since it involves a split in the development team, not merely
an alternate line of development of a project.

Free Software Foundation. The foundation founded by Richards Stallman in
the mid-1980s to financially support the GNU project’s software development
and serve as an advocacy organization for the free software movement.

Freeware. This is software provided free of charge by its developer or author
but on which the developer retains the copyright. Distribution or redistribution
remains under the control of the developer. The software license may permit
limited copying and redistribution, but these copies cannot typically be sold
by the user and commercial use may also be restricted. The software is usu-
ally provided without source code. Freeware is completely different from free
software in the sense of the free software movement.

FUD. Dis-information marketing strategies directed against the products of
other software or hardware companies are sometimes called FUD (Fear, Uncer-
tainty, Doubt). Although first used in reference to IBM, it tends to be applied
in an open source context to tactics attributed to Microsoft.

GNOME. An open source GUI environment for Linux and Unix-like operating
systems, which emphasizes usability and is widely supported, for example,
under the Red Hat Linux distribution. In addition to the desktop, the GNOME
project includes the “GNOME development platform, an extensive framework
for building applications that integrate into the desktop” (www.gnome.org).
GNOME is written in C, unlike the C++-based KDE environment, but allows
language bindings to other languages like C++ and Java. The GNOME libraries
are licensed under the Lesser GPL while the GNOME project itself is licensed
under the GPL.

GNOME Human Interface Guidelines. The GNOME project document that
describes the design principles for the GNOME interface and provides highly
specific advice for designers and developers on how to apply interface elements
effectively. The guidelines are intended to help open source developers and

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

342 Glossary

interface designers create applications that “look right, behave properly, and
fit into the GNOME user interface as a whole” (http://developer.gnome.org/
projects/gup/hig/).

GNU. GNU (an acronym for “GNU is not UNIX”) is a collection of free system
programs and software development tools, including text editors and compilers
(especially the widely used GNU GCC compiler for C), developed by the Free
Software Foundation which are highly portable across operating system plat-
forms. A fundamental goal of the GNU Project was to provide a nonproprietary,
Unix-compatible operating system consisting of freely available source code
which could be copied, modified, and redistributed under the terms of its GPL.
The Linux kernel was integrated with the GNU system to form the GNU/Linux
system.

GNU General Public License (GPL). This is the software license developed
as part of Stallman’s free software movement, which is intended to allow the
downstream users of programs distributed under this license to preserve most
of the freedoms and privileges of the original developer and copyright holder.
These privileges include the freedom to run the programs without restriction
on use, to see and learn from the source code of the program and modify it
if desired, to redistribute the program or modifications of the program, though
such redistribution must provide the modifications under the same conditions as
the original GPL. The license explicitly precludes the inclusion of GPL-licensed
software in publicly distributed proprietary programs, though this does not affect
programs used only internally in an organization. The software does not have to
be offered for free. The developer of the original program retains the copyright
ownership of the program. GPL is the most popular form of license used for
open source software (almost 70% of open source projects (Rosen, 2005)), with
the Linux kernel being perhaps the most prominent example.

GPL. See GNU General Public License.

The Halloween documents. Internal Microsoft memos that expressed concerns
about the competitive consequences of open source software and the implica-
tions of the GPL. The documents indicated that open source was too credible
to be handled by simple FUD tactics. These memos are widely referred to in
the open source literature.

Hunk. This refers to a situation when a pair of files A and B are diff’ed (see
entry for diff above). The unified format patch shows all the contrasting new
and old code segments and the changes they have undergone as well as their
context. These contrasting segments of code are called hunks. Related hunks

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 343

are displayed adjacent to each other for easy visual comparison. Using the diff
and patch commands, and comparing hunks, is intrinsic to distributed software
development.

Intermediate language (IL). The type of code that managed code compilers
like Microsoft’s .NET compilers for C# and VB.NET translate source code
into, as opposed to, native assembly language code. IL code is intended to be
cross-platform and cross-language, but it lends itself to reverse engineering, so
Microsoft includes obfuscation tools to make harder to decompile.

KDE. The first open software GUI environment for Linux, similar in appear-
ance to the desktop environments in Windows. Most major Linux distributions
include the KDE desktop as well as GNOME. KDE runs on Unix-like systems.
It is written in C++. See also GNOME.

Lesser GPL. This open source license is intended for open source software
libraries and allows such libraries to be used or linked to by closed source,
proprietary programs. In contrast to the Lesser GPL, if the library were instead
licensed under the ordinary GPL, then any program that referenced the library
would itself have to be licensed under the GPL and could not be proprietary.

License. A contract between the owner of a product and a prospective user that
grants the user certain rights regarding the use of the product that would oth-
erwise be illegal. The most common kinds of software licenses are proprietary
licenses for commercial software and the various free or open licenses.

Linux. The widely used Unix-like open source operating system developed
under the leadership of Linus Torvalds and licensed under the GPL.

Linux distributions. Software distributions that supplement the Linux kernel
and core operating system components with a variety of components including
installation software, configuration tools, software libraries, desktop environ-
ments like GNOME and KDE, applications, firewalls, etc. Red Hat is probably
the most prominent Linux distribution. Distributions are usually organized into
packages containing the different components which are managed using Pack-
age Management Systems that facilitate installation and update of packages.

Liteware. A shareware or other program that omits some of the function-
ality of the complete version, such as shareware that is not fully functional
or is functional only for a limited time unless the software is purchased or
registered.

Merging. In the context of version control systems, such as CVS, as used in
distributed software development, merging refers to the process of integrating

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

344 Glossary

developer changes with the project master copy or repository. Disjoint changes
that affect different files can be merged automatically, but overlapping changes
cause conflicts which have to be resolved manually.

Microsoft shared source. This refers to an initiative that uses a range of soft-
ware licenses for different products that lets selected customers and developers
access some of Microsoft’s source code, such as the Windows template Library,
for their own use. Possible restrictions include nondisclosure agreements or
restrictions on modifying code.

Mozilla Public License (MPL). This is the license that the Mozilla Web
browser, the open source version of Netscape, was distributed under. As with the
GPL, publicly distributed derived works that modify its existing MPL licensed
files are required to remain under the conditions of the license. However, the
license also allows proprietary files (provided they contain no original code or
modifications of the original code) to be combined with the open source code,
while remaining outside the terms of the MPL license. This is an OSI-certified
license.

Nagware. Nagware is shareware that regularly reminds the user that the program
is not free of charge and should be paid for.

Nondisclosure agreement. A nondisclosure agreement is a legal agreement
according to which party A acknowledges receiving information from party B
and is bound to protect its confidentiality.

Nonprotective open source licenses. This refers to open source licenses, such
as the BSD and Apache licenses, that impose no restrictions on the distribution
of derivative works, including the inclusion of such redistributions in proprietary
code (Webbink, 2003).

Obfuscation. This refers to scrambling code and changing symbolic names so
that the altered code’s behavior remains equivalent but the code is confusing to
human readers and harder to reverse engineer.

Open Source Initiative (OSI). The OSI established in 1998 is a nonprofit
foundation whose objective is to promote the use of open source software. The
foundation maintains a list of approved software licenses that it recognizes
as consistent with the basic principles of open source development. Software
distributed under any of these licenses can be labeled as “OSI-certified Open
Source Software.”

Open Standards Organizations. The World Wide Web Consortium (W3C)
organization that develops standards for Internet technologies like HTML and

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 345

the HTTP protocol, and the IETF (Internet Engineering Task Force) are exam-
ples of organizations that develop specifications and standards in an open
manner.

OSI-certified Open Source License. A software license approved by the Open
Source Initiative.

Paradigm shift. A phrase coined by Kuhn in 1962 to characterize how unprece-
dented breakthroughs affect scientific progress, fundamentally altering the the-
ory of the subject and the interpretation of its facts (Kuhn, 1996), while also
taking considerable time for their implications to be understood. In the field of
computing, paradigm shifts arguably include commoditization of the standard-
ized IBM PC architecture and the widespread use of open source development.

Patch. A Unix command that uses the textual differences between an original
file A and a revised file B, as summarized in a diff file C, to update A to reflect
the changes introduced in B. The complementary diff and patch commands
allow source code changes (in the form of a relatively small patch file like C
instead of the entire new version B) to be submitted by e-mail, after which the
patch can be scrutinized by a project maintainer before being integrated into
the development repository.

Patch files. Modifications to open source projects are typically submitted to the
project developer’s e-mail list, where interested developers evaluate the sub-
mitted code submitted by the contributor. The core developers decide whether a
suggested patch is to be rejected or committed to the source repository, to which
only developers have write access. The open source Apache Web server’s name
derives from its origin as “a patchy” server.

Patent. The U.S. Patent and Trademark Office defines a patent as “the grant
of a property right to the inventor” by the government, for a novel, useful, and
nonobvious invention, and which applies for 20 years “from the date on which
the application for the patent is filed.” A patent requires disclosure of the idea
underlying the invention. It grants the owner the “right to exclude others from
making, using, offering for sale, or selling” the patented invention. A patent
covers the idea underlying an invention or the ideas embedded in software in
the case of a software patent and not just a specific expression or implementation
of the concept.

Product liability. If the use of a defective product causes harm, the developer
or seller of the product may be legally liable for financial damages. Licenses for
software products typically attempt to limit liability for damages to the purchase
price, as a condition of use.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

346 Glossary

Proprietary software. This refers to private software, licensed by the owner
typically under terms that restrict its use and redistribution, and usually dis-
tributed in binary form to protect the secrecy of the source code.

Protective open source licenses. This refers to open source licenses, such as
the GPL and the Lesser GPL, that impose restrictions on the distribution of
derivative works to ensure that the code and derivative works will remain open.

Public Domain Software. Software or other creative works which are not under
copyright protection are said to be in the public domain. Anyone can copy,
modify, redistribute, or sell such a work as if it were their own. Previously
copyrighted works become public domain when the copyright expires. Works
created by the government are automatically in the public domain.

Red Flag Linux. The Chinese language Linux distribution whose name puns
the “Red Hat” distributor of Linux and the red flag of China. The distribution
company was founded in 2000.

Red Hat Linux. Red Hat is one of the earliest purveyors of Linux distributions.
Its current version is called Red Hat Enterprise Linux.

Release-early, release-often. Eric Raymond’s catch phrase to describe the kind
of release policy that Linus Torvalds followed in the development of Linux.

Repository. In the context of version control systems such as CVS as used
in distributed software development, the repository is a shared database that
embeds the revision history of a project and allows any earlier version of the
project to be reconstructed.

Reverse engineering. This is basically the process of trying to figure out how
something works. It refers to the analysis of a system for the purpose of identify-
ing its internal components and their interrelations. This may be done to create a
representation of the system in an alternative form or at a higher level of abstrac-
tion. Alternatively, it refers to the extraction of design information from a given
system’s behavior as identified by an inventory analysis of a system’s scope
and functionality. The latter is also called black box reverse engineering, as
opposed to white box reengineering which involves a process like decompiling
that exposes the implementation.

Revisions. In a distributed collaboration system like CVS, a revision is a
modification to the project that has been committed to the repository. It differs
from the version number of the project which is used for public identification of
releases. Revisions can be accessed by revision number or date. When a working
copy of the project is checked out, the latest revisions of all its files are provided.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 347

Shareware. This is sometimes try-before-you-buy software or trialware. It is
usually delivered digitally free of charge to the user, but the user is expected (on
the basis of an honor system) to pay some small amount for the product after a
trial usage period, if the user retains the product. After payment, the user’s copy
is typically registered with the shareware’s distributor. Upon purchase, a more
complete version of the product may be supplied, as well as access to future
product updates and possibly some level of technical assistance or support. The
shareware product is copyrighted, so the users cannot redistribute it as their
own.

Software commoditization. This occurs when software products in a particular
application area become so standardized or routine or similar that the differences
between products are perceived as marginal. The products then exhibit the
behavior of typical commodities.

Software piracy. A form of copyright infringement where multiple copies of a
copyrighted software product are redistributed for sale, rented, or given away.

Static linking. From a software development point of view, static linking is the
resolution by a linker of all the unresolved references an application’s compiled
(object) code makes to external library modules, until the separate modules are
all knitted together into a single executable file. From a copyright point of view,
the resulting unified object code seems likely to constitute a derivative work
of a General Public Licensed open source library because the application code
and library parts are now inseparable (Asay, 2003).

Statutory damages. A law may allow a plaintiff a monetary damage even in
the absence of a demonstration of actual loss. Such damages can even apply for
what might appear to be minor copyright infringements.

Tarball. Tar files collect a set of files into a single archive file in such a way that
the separate file information is preserved. They are commonly used for software
distribution. Tar files compressed with zip programs are called tarballs. Tarballs
are often used to distribute new releases of projects such as those released by
CVS-based open development projects.

Trade secret. This refers to information that provides a commercial advantage
to its owner and which is kept secret by using mechanisms such as confidentiality
and nondisclosure agreements that employees are required to sign in order to
be able to work for the owner of the product. Violation of such agreements
entails significant monetary damages. The owner is expected to exert consid-
erable caution in protecting the secret. Unlike patents, trade secrets have the
advantage of not requiring disclosure of the hidden information, but conversely

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

348 Glossary

they are also not protected by reverse engineering, though this may possibly be
prohibited by a software license (but see Samuelson (2002)).

Trademarks. Trademarks are names or symbols that are used to brand the
name of a product for such purposes as protecting the reputation of the product
or differentiating the product from competitors. They are especially useful in
environments like open source (where it is easy to enter derivative products into
the market) because established names can use trademark to promote customer
loyalty and attention. For the same reason, trademarks also tend to limit forking
in open code. Trademarks can be registered with the U.S. Patent and Trademark
Office, but only marketing for public awareness and use of the trademark on
products can make a trademark valuable. Red Hat Linux is an example of a
valuable trademark that indicates a premium organization is behind the software
and so connotes a superior product (Rosen, 2001).

Trialware. See shareware.

Usenet. The collective name for Internet newsgroups. This distributed set of
bulletin boards was instrumental in popularizing public adoption of the Internet.
It was used for e-mail and software (as well as many other forms of) collabo-
ration and was a key technological enabler of open source collaboration.

Wiki. A Web site consisting of the ongoing work of many authors where anyone
can modify content that has been placed on the site.

White box reverse engineering. This refers to reverse engineering a software
product by attempting to decompile its object code. This may be legal if done
for the purposes of interoperability, but not to avoid a protection mechanism
(Jones, 2005).

References

Asay, M. (2003). Open Source’s General Public License: Why Microsoft Is So Scared.
Wasatch Digital IQ, 3(1), www.wasatchdigitaliq.com. Accessed January 20,
2007.

Fogel, K. and Bar, M. (2003). Open Source Development with CVS, 3rd edition.
Paraglyph Press. http://cvsbook.red-bean.com/. Accessed January 20, 2007.

Hollaar, L. (2002). Legal Protection of Digital Information. BNA Books. http://digital-
law-online.info/. Accessed January 20, 2007.

Jones, P. (2005). Software, Reverse Engineering, and the Law. http://lwn.net/Articles/
134642/. Accessed December 1, 2006.

Kuhn, T. (1996). The Structure of Scientific Revolutions, 3rd edition. University of
Chicago Press, Chicago, IL.

Raymond, E. S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3 3/raymond/index.html. Accessed December 3, 2006.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

Glossary 349

Rosen, L. (2001). Naming Your Open Source Software. http://www.rosenlaw.com/
html/GL6.pdf. Accessed January 20, 2007.

Rosen, L. (2003). Derivative Works. January 1. http://www.linuxjournal.com/article/
6366?from=50&comments per page=50. Accessed January 20, 2007.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall, Upper Saddle River, NJ.

Samuelson, P. (2002). Reverse Engineering Under Siege. Communications of the ACM,
45(10), 15–20.

Webbink, M. (2003). Understanding Open Source Software. Computers and Law Jour-
nal, March http://www.nswscl.org.au/journal/51/. Accessed January 20, 2007.

P1: JYD
9780521881036gsy CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:55

350

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index

Abstraction–filtration–comparison test, 227
Academic licenses, 247

Apache license, 248
BSD license, 247, 248
Mozilla Public License, 249

ACID rules, 67
atomicity, 68
consistency, 68
durability, 68
isolation, 68

ACM, 83
ActivePerl, 75
ActiveX, 47
Activity percentile, 153
Ad hoc groups, 196
Additive tasks, 195
Adobe Photoshop, 318, 329

and GIMP comparative study, 118
and market dominance, 329, 330

Adware, 242
Amoeba, 177
AMP package, 4
Anaconda, 275
AnkhSVN, 145
Anonymity

benefits of, 203, 204, 205, 217
risk of, 204

Apache, 27
developers role in, 33
high success rate of software, 30
organizational model in, 28, 29
statistical profile of, 32

Apache BUGDB, 30
Apache code contributions, 33
Apache fork, 26

Apache group
core developers, 31
founding members, 29
IBM membership, 30

Apache HTTP Web server project, 287
Apache license (version 2.0), 248
Apache project, 16, 21, 30

reason for sucess, 34
review of, 27

Apache Software Foundation (ASF), 30, 287,
288, 334
and projects, 287

Apache USENET groups, 30
problems with, 31

Apache version 1.0, 27
Apache Web server, 7

bug reporting, 32
classic tale of, 23
key feature in the success, 32
line of codes, 33
origin of, 25
solutions to problems, 31

ApacheTM, 237
API. See Application Programming Interface
Application Programming Interface, 27
ARPANET

mail application, 63
network, 13, 119

Artistic license, 75
AS-is license, 73
ASP, 74
attitudes

role in group interactions, 176
Authoritative servers, 78
Availability bias, 187, 188

351

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

352 Subject Index

Bales classification, of group interactions, 175
Bare license, 233
Bazaar model of development, 56, 57
Behavior norms, 169
Bell Telephone Laboratories, 81
Berkeley Computer Systems Research Group,

84
Berkeley DB, 23, 68

software development, 69
Berkeley DB Library, 69
Berkeley Internet Domain Name, 78
Berkeley Software Distribution (BSD), 84

3BSD, 84
4.4BSD-Lite, 85

Berne Convention, 224, 226, 256
Beta release, 114, 143
Beta testers, 58, 106, 109
Beta testing, 54
BIND. See Berkeley Internet Domain Name
BIND software, 23, 79
BitKeeper, 13, 146

decentralised character, 146
developmental history of, 146
distributed repositories, 147
for Linux kernel development, 148
replacement Git, 149

BitTorrent, 12, 23, 77
BitTorrent license, 78
BitTorrent protocol, 77

terminology used in, 77
Boston Hacker survey, 165
Bourne shell (bash), 301
Branches, in CVS development tree, 141
British Educational and Technology

Association (BECTA), 323
Browser wars, 41
Browsers, 37. See also Web browsers
BSD. See Berkeley Software Distribution

key characterstic of, 247
BSD license, 15, 65, 69, 247, 248

modified, 247, 248
BSD open source versions, 86
BSD or MIT license. See Berkeley Software

Distribution
BSD project, 248
BSD-type licenses, 247
BSD Unix, 85

and legal entanglements, 85
BTL. See Bell Telephone Laboratories
BUGDB reporting system, 30
Bugzilla, bug-tracking server software, 104

C language, 82
C library, 69, 301
Caching-retrieval-speed, 47
CDS. See Collaborative Development System
Cederqvist Manual, 124
Central repository, 121
Centralized versioning system, 119

CVS and Subversion, 144
CERN physics laboratory in Switzerland,

23
CERN server, 25
CGI. See Common Gateway Interface
Chinese Wall approach, 240
Clean-room approach, 240
Client-server information systems, 25
Closed source environment, debugging, 55
Closed source software, 236
Code fixes, 33
Code freeze, 142. See also releases
Code ownership, 31
Code submissions, 33
CodeVille, 150

distinguishing features, 150
Cognitive biases, 185

and availability bias, 187, 188
and cognitive errors, 186
and cognitive stability, 187
and confirmatory bias, 188
and input bias, 188
and output bias, 188
for predicting behaviors, 186

Cognitive dissonance, 186
Cognitive errors, 186
Cognitive inertia, 186
Cognitive models, 181, 182

for analysis of mental processes, 182, 185
Cognitive psychology, 186

and cognitive inertia, 186
causes of, 186

and open source, 181, 182
for analysis of group collaboration, 185

Cognitive simplification, 188
Cognitive stability, 187. See also cognitive

inertia
Cognitive style, 189
Cognitive synchronization, 187
Cohen’s program, 77
CollabNet, 144
Collaborative Development System (CDS),

152
Collaborative environment, 207

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 353

Collaborative medium, 206, 207
and conversational interactions, 213
coupling in, 211
incentive structure, 212
information richness, 218
infrastructure, 207
technological rediness stages, 212

Collocated environment
characteristics based on, 207, 208
collocated work, 207

Command format
for execution, 125

Commercial licensees terms, 39
Commercial-Off-The-Shelf software, 332
Commit command, 127

function of, 133
working of, 133, 134, 135

Commit e-mails, 137
Commit-then-review process, 31. See also

Concurrent Versions System
Common Gateway Interface, 25
Communications

enhancing chataceristics, 209
Communications technologies, 13

in open source projects, 119
Communicative cues

and processes, 214
Comp.os.linux newsgroup, 92
Compilation, 225
Complementary open software

horizontal synthesis with, 332
Compliance, 172

normative influence, 172
Comprehensive Perl Archive Network, 75, 76
Concurrent Versions System (CVS), 11, 13,

28, 103, 120, 133. See also versioning
systems

advantages, 121
basic functions, 121
branches and forks in, 140, 141
ChangeLogs, 137
client-server system, 121
commit command, 128, 133
copy-modify-merge, 121
CVS commands, 124
development tree, 122
diff command, 129, 130, 132, 133
fork, 141
log command, 135
modification conflicts recognition, 137, 140
patches and releases, 141, 142

platforms and clients in, 124, 125
project checking from repository, 126, 127
update command, 128
working copy updation, 127, 128, 129

Concurrent Versions System (CVS) command
format, 125

Confidentiality agreements, 238
Confirmatory bias. See also cognitive biases
Conflict markers, 139
Conflict recognition, by CVS

step by step, 137, 138, 139, 140
Conflicts of veiwpoints, 177
Conformance Test Suite, 88
Congeniality effects, 176
Conjunctive tasks, 195
Contract, defined as, 232
Conversational interactions, 213

and communicative processes, 214
and nonverbal signaling, 214, 215
and role of nonverbal cues, 213
and verbal and nonverbal elements, 214

Cookies, 41
Copyleft, 300

highlights of, 253
Copy-modify-merge model, 121, 122
Copyright, 223

enforcement in international market, 256,
257

infringement of, 225
MP3.com case, 226

materials with
and fair use concept, 226

notice of, 224
product with, 224
protection for only tangible expression of an

idea, 224
registration of, 224

Copyright Act of 1976, 223
Core developers, 29
Coreference, 208
Coupling concept, 211
Course management systems, 323
CourseWork, 320
CPAN. See Comprehensive Perl Archive

Network, 23
CPAN collection, 76
Credited developers, 98
Credits file, 95
CSRG. See Berkeley Computer Systems

Research Group
Cueing factors, 207

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

354 Subject Index

CVS commands, 124
CVS distribution model, 126
CVS interface, command-line oriented, 125
CVS update command, 127

execution of, 128
CVSROOT, 126
Cygnus Solutions, 300

Debian, 59
Debian Free Software Guidelines, 245
Debian GNU/Linux distribution, 275, 311
Debugging

of open source environment, 55
Decentralized systems, 146

BitKeeper, 146
BitKeeper model

effective functioning, 147
Git, 149
SCM systems

CodeVille & Monotone, 150
Decompiling, 241. See also reverse enineering
Defect density, 34
Delivermail, 63
Delta compression, 122
Derivative works, 234, 259

defined, 226
Derivative works, of software, 222
Desktop environments, 17, 153, 325, 343

GIMP, 111
GNOME, 4, 43, 102
KDE, 4, 43, 70, 107

Diamond v. Diehr case, 208, 230
Diff command, 123, 129, 130

and patch, complementary commands, 124
importance in software development, 132

Digital Millennium Act in 1998, 223
Discretionary tasks, 195
Disjunctive license, 76
Disjunctive task

and impact on group productivity, 195
Distributed services

vertical synthesis of, 331. See also Google,
331

Divisible tasks
and impact on group production, 192, 193

DNS. See Domain Name System
DoD (Department of Defense)

extensive use of open software, 310
Domain-level conflict, 177. See also group

interactions conflicts
Domain Name System, 78
Dotfuscator, 241

Download.ject, 44
Dual faux free license, 63
Dual licensing

and open source business models, 273
business model, 22
free software, 23

Dual licensing business model, 61
distinction in, 61

Dual licensing framework
and products marketed, 62

Dual licensing model
and MySQL database system, 65

Dynamic linking, in software developement,
259

Eclipse project, 278
EGCS. See Experimental GNU Compiler

System
Emacs, 299

features of, 299
Emacs distribution, 299
E-mail lists, 28
Embedded HTTP, Netscape browser, 41
End User License Agreement (ELUA), 235,

236
Ergonomic design and interface psychology, 4
European Patent Commission, 232
Experimental GNU Compiler System, 52

bazaar mode of development, 198
Extensions, Firefox browser, 47

Face-to-face interactions, 210
advantages of, 208
and role played by visual factors, 210

Fair use, of copyrighted materials, 226
Fast browser

and security weaknesses, 47
Federal Economic Espionage Act of 1996, 238
Fetchmail, 50, 53. See also Mail Transport

Agent, 12, 22
development process, 22
named as, 56

Fetchpop, 52, 55
Firefox, 4, 12
Firefox (Mozilla) project, 44

core team structure, 45, 46
team structure, 45

Firefox browser, 43
central design principle for, 45
characteristics claming superiority, 46
core developers in, 44
extensions in, 47

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 355

market advantages, 43
mass-market success, 43
success and key factors, 45

Firefox security model, 47
Flaming, 177
FLOSS. See Free/Libre/Open Source Software
Fork, 27
FOSS, 2
FOTS (Free-Off-The-Shelf) software

development, 312
Fragments, 77
Free desktop project

GIMP, 80, 111
GNOME, 103
KDE, 107

Free MySQL defects, 5
Free or open source licenses

differences between, 2
Free software, 2, 16

and threat from patents, 231
Free software concept, 297
Free software distribution, 252. See also dual

licensing
Free Software Foundation (FSF), 2, 12, 15,

244, 302
and principles and roles of, 16
approach toward software patents, 303
established in, 300
focus areas of, 303, 304
goals and vision, 306
goals of, 303, 304
GPL license, 24
packages developed by, 301

Free Software Foundation Directory, 154
Free software issues

analyses of, 303
Free software movement, 64

and APRANET, 119
and demands, 305

Free software patent protection, 230
Free software products

GIMP, 112
Free/Libre survey, 165
Free/Libre/Open Source Software, 2
FreeBSD, 86
FreeBSD project

social protocol or norm in, 170
FreeBSD project survey

participants responses, 164
Freeware examples, 242
Freeze release, 142
Freshmeat

prime informative focus areas, 154
Freshmeat.net, 154
FSF. See Free Software Foundation
FTP, 38

Gartner report, 270, 271. See also Total Cost of
Ownership (TCO)

GBdirect, 274
GCC compiler impacts, 300
Gecko

browser engine, 42
General Public License, 2, 222, 236, 258, 301,

302, 333
and issues related to, 250
and privileges, 250, 251
current version of, 257
popularity rate, 252
relation with derivative works, 259

Ghosh’s theory, 289
GIMP project

development and licensing issues, 115
development process, 116
developmental history, 112, 113, 114
features include, 113, 114
management problems, 117
role of plug-in architecture, 114

GIMP software, 80
and Adobe Photoshop comparative study,

118
features of, 112
imaging tool, 111

GIMP ToolKit, 115
Git, 14, 149

better approach for kernel development, 150
Git developement, 149
Global hypertext system

access to distributed documents, 23
Glue systems

Perl use in, 75
GNOME. See GNU Network Object Model

Environment, 4, 13, 43
major release, 103

GNOME desktop, 104
GNOME Foundation

mandate of, 103
GNOME project, 7, 103

architechture components, 104
demographic profile of developers, 104
developement process, 103, 104
objectives of, 102

GNU compiler collection, 300
GNU desktop, 103

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

356 Subject Index

GNU Emacs Lisp Library, 52
GNU Free Documentation license (GFDL),

320
GNU GCC project

and Subversion, 145
GNU Image Manipulation Program, 112
GNU libraries

LGPL licensed, 258
GNU Library license, 301
GNU Network Object Model Environment,

102
GNU project, 12, 13, 297, 326

and free programs developed, 300
and GPL license, 250
as compared to Linux, 52
developmental process, 298, 299
objectives and philosophy of, 299, 301, 302
origin of, 297

GNU Savannah project, 307
GNU tar command, 301
GNU/Linux, 301

components used in, 92
distributions, 4

GNU/Linux project, 302
GNU/Linux system, 329
Google, 331

development model, 276
Governmental organizations

and interest in open software for security
applications, 311

application of Perl in, 312
GPL. See General Public License
GPL license enforcement

and requirements for, 254, 255, 256
GPL-licensed software, 252
GPLv3, key objective of, 257
Group cognition model, 183
Group cohesion, 174
Group composition

homogeneous or heterogeneous, 196
Group interaction protocols, 170
Group interactions

and social connectivity, 174
Bales classification of, 175
concepts, 172

compliance and internalization and
identification, 172, 173

hierarchical factors affecting relationships,
173, 174

human relationship factors in, 175,
177

congeniality effects, 176
flaming imapact, 176
role of attitudes of people, 176

nonperson- or peron-oriented interactions,
176

unity among group members, 174
Group interactions conflicts, 177
Group norms, 169
Group polarization, 186, 217
Group problem-solving effectiveness

and impact on productivity, 190, 191
Groups characteristics

effects
on production, 196, 197

Groupthink, 186
GTK+. See GIMP ToolKit
GUADEC, 106
GUI for end users, 108
GUI modules, 69

Hacker ethic, 171
Halloween documents, 59
Hard freeze, 142. See also releases
Herfindahl-Hirschman Index, 326
Homogenous dispositions, 196
Horizontal bussinesss model, 333
Horizontal strategies, 332
HotWired site, 26
HTML. See Hypertext Markup Language:

forms
HTML image tag, 38
HTML, markup language, 48
HTTP. See Hypertext Transfer Protocol
httpd server, 24, 25

and patches, 26
popular web server, 26

Hunks, 130
hybrid proprietary/open model

horizontal developement, 277, 279
vertical developement, 276

Hypertext Markup Language, 24
Hypertext Transfer Protocol

for HTML documents retrieval,
24

IBM’s open source strategy, 279
Identification, 172
IE security holes, 44
IETF. See Internet Engineering Task Force
IETF process, 29
IIS, 27. See also Web servers

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 357

Immunix Stackguard, 60
Inflammatory behavior

impact on group interactions, 176
Information processors, 183
Information-rich medium

and advantages, 219
In-house applications

vertical synthesis of, 332
InnoDB storage engine, 67
Input bias, 188
Intellectual property, 14, 222

legal concepts associated with, 222, 223
Interactionist model, 215
Intermediate Language (IL), 241
Internalization, 172
International Organization for Standardization,

87
Internationalization concept, 6
Internet Engineering Task Force, 29
Internet Explorer browser, proprietary, 37
Internet Relay Chat, 106
IRC. See Internet Relay Chat

Jabber, 153
Jabber license, 78
Jakarta project, 287
Jargon File, 75
Javascript, 48
Javascript, scripting language. See

also Netscape browser
Joining script, 172
Judicial Improvement Act of 1990, 227

K12 Open Source Now, 319
KDE. See Kool Desktop Environment, 4, 13,

43
KDE participants

demographic profile of, 109
KDE project, 110

GUI for end users, 108
initiated and developed, 107
propagation and growth, 110
Qt licensing issue, 109

Kernel mailing list, 97
Kernel modules, 6
Kool Desktop Environment, 107
Korn Shell, 88

LAMP open source software stack, 70
LAMP stack, 328
LAMP Web architecture, 22

LaTeX, 107
Lean media, 106
Leeching effect, 77
Lesser General Public License or LGPL, 258
Lesser GPL. GNU Library license
Liability, 235
Library GPL, 258
Libwww, 24
license enforcement

in international market, 256, 257
license, defined as, 232
licenses kinds, 247
licensing duality

advantages of, 61
Linux, 57

as free educational environment, 319
GNU GCC compiler, 6

Linux community, 52
Linux development principle, 53
Linux development process, 53, 55

debugging process, 54
patch contributions, 54
use of early and frequent software releases,

53
Linux environment, 43
Linux kernel license, 260
Linux model beta testing, 54
Linux operating system, 4, 13, 80
Linux OS, 89

and bugs, 93
development process, 89, 90, 91, 92, 93

and interesting features in, 94
and team structure, 96, 98

General Public License choice for, 96
kernel of an operating system, 92
motivational factors for, 95
propagation and growth, 92, 94

Linux portability, key reasons for, 6
Linux project, 13. See also BitKeeper
Linux style design process, 56
Liteware, 242
Lock-in effect

and the open source products, 268
Lock-modify-unlock model, 122. See also

Concurrent Versions System (CVS)
Log Command, CVS, 135, 137

working of, 135
LZW compression algorithm, 230

Mail Transfer Agent, 63. See also Sendmail
Mail Transport Agent. See also Fetchmail

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

358 Subject Index

Master copy, 126
McCool’s server project, 21
Merging, 137
Meritocratic process, of Apache development,

34
Microkernels, 92
Microsoft

proprietary vendor, 7, 311
Microsoft IIS server vs. Apache, 6
Microsoft monopolistic practices

and impact on Netscape’s browser market,
41

Microsoft Office Suite, 318
Microsoft products, 243
Microsoft’s signature products

inspired or modified form of existing
software, 7

Minix, 51, 89
MIT licenses, 15
MIT OpenCourseware project, 320
MIT X Consortium, 101
MITRE corporation, 310
MITRE report, 310
Mod Perl project, 287
Monolithic kernels, 92
Monotone, 151
Moodle, 320
Mosaic browser, 22, 25, 37, 38

introduced forms, 38
role in expediteding web expansion, 39
success story, 38

Mosaic browser projects, 22
Mosaic license, 38
Mozilla, 40
Mozilla Firefox project, 44
Mozilla foundation, 43
Mozilla organization, 42
Mozilla Public License (MPL), 42, 249, 254
Mozilla-licensed project, 249
MPL. See Mozilla Public License
MTA. See Mail Transfer Agent
Multics, 82
Multidrop support, 56
MySQL

ACID-compliant, 67
MySQL AB

and legal issues, 67
dual license model

and copyright ownership preservation, 66,
67

income source, 66
MySQL AB company, 65
MySQL AB distribution, 65, 66
MySQL DB system, 12, 22, 64, 65, 273

dispute with NuSphere, 66
initial development by, 65
third party involvement in, 65

MySQL products, 61
MySQL proprietary license, 66
MySQLTM, 237

Nagware, 242. See also shareware
National Center for Supercomputing

Applications, 24, 37
National Security Agency (NSA)

use and distribution of open software,
310

Navigator code, 244
NCSA. See National Center for

Supercomputing Applications
Web development at, 24

NCSA MosaicTM, 39
NCSA Web server, 21–23, 24
negative network effect (or negative

externality), 268
Negotiation Support Systems, 205
Net/ 2, 85
NetBSD, 86
Netcraft survey, 26, 71
Netcraft.com, 27
Netscape

pricing policy of, 40
proprietary license, 40

Netscape browser, 22, 39, 41
technical advantage over Mosaic, 41
victim of redundancy, 41

Netscape Gecko browser modification
outcome as Firefox, 43

Netscape Navigator, 39
internal code name for first, 39

Netscape Public License (NPL), 249
Network Applications category

BitTorrent, 154
network communication

and protocols, 170
Network communications

symbolic names for, 79
Network effects

and impact on market stategies, 269
positive and negative, 268

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 359

Newbies, 163
NeXT operating system, 24
Nondisclosure agreements, 238
Nonverbal cues, classification of, 213
NoScript extension, 47. See also Firefox
NSA (National Security Agency), 310
NSFNet, 119
NSFNet backbone network, 13. See also

ARPANET
NuSphere, dispute with MySQL, 66

Obfuscation, refers to, 241
Object-oriented style, 51
Open and closed systems, security flaws in,

59
Open business models, 15
Open communities, familiar characterstics,

173
Open desktop environments

GIMP, 111
GNOME, 4, 102
KDE, 4, 107

Open desktops, GUI interface for, 107
Open development culture

group interactions, 172, 174
hierarchical factors influence on, 173

group unity importance in, 174
norms and rules, 169, 170, 171

Open educational product, 316, 320
advantages of, 316, 317, 318
open online encyclopedias, 320

Open Group, 88
Open KDE/GNOME desktops, 329
Open online encyclopedias, 320
Open participation

and driving factors, 288. See also
opportunity-cost model

Open products, commercial models for,
61

Open projects. See Linux
Open software, 8, 233

complementary, 332
distributions and services, 275, 276
in federal government, 312
in international market, 313, 315
in security applications, 311
reuse key ingredients, 35
roles of, 17

Open software license
and public domain, 26

Open software propagation
factors affecting global opportunities,

314
Open software, complementary, 333
Open source, 2

and Unix tradition, 53
bazaar metaphor for, 50, 52, 54, 56, 58
coinage, 16
commoditization infrastructure, 327, 328
CVS, 121
debugging in, 55
defining characteristic of, 51
diff-and-patch techniques, 27
differentiated with proprietary code, 1
educational software, 319
Gimp image-editing-and-design application,

318
idea or visison behind, 1
impact on monopoly, 8
in public sector, 309
initiatives and criteria for, 2
internet application projects, 21

Web servers and web browsers, 21
internet applications and platforms, 12
relationship with IBM, 278
reliability or security benefits of, 60
role in public sector, 16
root operating system model for, 12
security tool Snort, 328
transparency in, 1
Unix phenomenon, 161

Open source applications, 55
Open source browsers, 37
Open source business models, 272

and consulting, 272
and role of dual licensing, 273
hybrid proprietary/open model (vertical and

horizontal set up), 276, 277, 279
software distribution and services model,

275, 276
Open source concept, 1
Open source desktop environments, 99
Open source development, 11, 159, 191

and browsers, 37
and economical aspects, 265
and role of rich information medium, 218,

219
and social concepts influencing

norms and rules, 169, 170, 171, 172
and social psychology, 168

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

360 Subject Index

Open source development (cont.)
and Unix culture, 83
and Unix distribution, 83
and Unix-like operating systems, 86
avoidance of fork, 170
basic concept of, 56
cognitive strategy, 182
communication characteristics impact on,

168
demographics and ststistical profile of

participants, 162, 163
demographics of the phenomenon, 159
economic concepts relevant to, 15
economic motivations for participation, 286

opportunity-cost model, 288
signaling model, 286

effect of group characterstics, 196
forces driving commoditization, 281, 282,

283
group cognition model in, 182
group size impact on, 166, 167
impact of divisible task, 192
impact of unitary task, 193, 194
motivational factors for participants, 164,

165
number of project administrators role in, 167
opportunistic design characteristics, 182
PHP project tale, 71
process of entry in, 162
reusing code and rebuilding, 51, 52
role of cognitive psychology in, 182, 183,

184, 185
role of CVS, 120
Unix project, 81
volunteers versus paid participants, 165
write-access privileges, 163

Open Source Development Labs, 148, 161
Open source development scale, 161

sites providing information, 160, 161
Open source economics, 265

and factors behind success in market, 266
dual licensing role in, 273, 274
network effects, 268, 270
total cost of ownership, 270, 271
vendor lock-in, 266

Open source groups, 200
advantages of anonymity, 203, 204, 205
and process gains and losses, 198
and production blocking effects, 200, 201
and role of coordinated communication,

213

and role of nonverbal cues in conversation,
213, 214

and role of nonverbal signaling in
communication, 214

and role of social cues, 216, 217
participation and power law distribution,

168
Open Source Initiative (OSI), 2, 11, 15, 222,

243, 244, 297
establishment and motivation for, 16, 245
license certification criteria, 245, 246

Open source licenses
defined under OSI, 246
protective and nonprotective, 246, 247

Open source Linux platform, 6
Open source MIT license, 235
Open source model, 7
Open source movement

advantages of, 8
affect of legal issues on, 14. See also

intellectual property
and economic impact of, 8
aphorisms for, 5
objectives of, 35

Open source paradigm
and economic impact of, 9
and educational benefits, 3
and scope of invention, 7
and underlying technologies, 119
domination in computer software

infrastructure, 325
Open source platforms, 12, 80

operating systems, 81, 89, 99
X Window system, 100

Open source products
advantages of, 3, 4
and educational benefits, 322
and performace characterstics of, 5, 6
broad peer review process for, 5
commoditization of, 4
effectiveness from security prespective, 5
in federal environment, 310
role as internet infrastructure tools, 4
Sendmail, 63
zero purchase cost, 4

Open source programs, 317
Apache Web server, 4
as public repository of software solutions, 8
customization of applications, 6
ease of installation, 4
Firefox, 4

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 361

innovative or imitative, 7, 8
Linux operating system, 4
role in underdeveloped nations, 317

Open source projects, 13, 169
and technological tools developed, 11
Apache Web server, 25
communication characteristics role in, 168
copy retrieval of project by CVS, 126
Linux, 119
social protocols, 170
technologically enforced protocols, 170
transparency in, 126

Open source propagation, 328
Open source resources

for academic purposes, 319
Open source software, 2, 48

and consulting firm GBdirect, 274
and consulting for revenue generation, 272,

274
comparative analysis with proprietary

software, 3, 5
contribution to education, 317
hosting facilities and directories, 151, 152,

153, 154
programs and contribution to education,

316, 318, 319
reduced development and maintenance

risks, 9
utility and cost-effectiveness of, 3, 4

Open source systems
security advantage for, 60

Open source technological protocol, 170
Open Source Technology Group (OSTG), 152,

160
Open Source Textbook Project (COSTP),

320
Open source windowing, 99
Open source Wine project, 328
OpenBSD, 59, 86, 311
OpenOffice, 318
Opera browser, 242
Operating systems, 81

Linux, 89
Unix, 81

Opportunistic design, 182. See also open
source development

opportunity-cost model, based on geographic
differences, 288, 289, 290, 291, 292

Organizational group
hierarchical factors affecting relationships,

173

nonpeer relationships, 173, 174
power relationships, 173

social connectivity with in, 174
unity among members, 174

OSDL. See Open Source Development Labs
OSI. See Open Source Initiative
OSI-certified Open Source Software, 245
OSI criteria, 2
OSI foundation, 245
OSI-certified license, 2, 15, 222, 243

academic, 247
OSTG. See Open Source Technology Group
Outcome bias. See also cognitive biases
Outlook, 63

P2P Internet utility, 77
Patch, 234

testing and review, 141
Patch command, Unix, 123
Patch file, 123
Patch increments, 142
Patch program, 120
Patchy server, 27. See also Web browsers
Patent Cooperation Treaty, 256
Patents, 228

and copyright clause, 223
differs from copyrights, 229
requirements for, 229

PC World, 46
Peer groups, 173
Peer-to-Peer network, 77
Perl, 12, 70, 75

applications in government agencies, 312
artistic license, 75
classic application of, 75
module structure, 75
modules, 75
modules, open library, 70
success stories, 312

Permissive licenses, 247
Photoshop Plug-in Interface (pspi), 114
PHP. See PHP Hypertext Preprocessor
PHP applications

and revenue generation by, 73
PHP Hypertext Preprocessor, 12, 23, 70, 71

PHP products, 71
PHP intellectual property protection, 73
PHP language processor, 73
PHP project, 72

development process, 71, 72
Pine, 63

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

362 Subject Index

Point-to-Point Protocol, 56
POP. See Post Office Protocol
Popclient, 52, 53, 55
Portable Operating Systems Interface, 87
Positive-test bias. See also cognitive

biases
POSIX. See Portable Operating Systems

Interface
POSIX standards, 88
Post Office Protocol, 51
Post-for-review-first, 31. See also Concurrent

Versions System
PostgreSQL, 65
Power relationships

in open groups, 173, 174
Power-law distribution, 168
PPP. See Point-to-Point Protocol
Process bias. See also cognitive biases
Process gains

and losses in group, 198
anonymity, 203
in group, 199

Process losses, 199
evaluation apprehension, 203
production blocking, 201

Production blocking, 201. See also process
losses, 200

Project administrator
role in project growth, 167

Projects categories, 167
Proprietary codes, privacy in, 1
Proprietary killer apps, 17
Proprietary licenses, 236

basics of, 236
Proprietary mega-applications, 327, 329

and driving factors for market dominance,
329, 330, 331

and market dominanace, 326
Proprietary software, 2, 3, 4, 8, 9, 14, 16, 17,

154, 165, 222, 236, 272
Proprietary software sector, 326
pserver method, 126
Pspi. See Photoshop Plug-in Interface
Pspi development

and GIMP project, 115
Public domain concept, 72, 227
Public domain software, 227

and TeX system, 227
Public sector

and open source sucesss, 309
Python, 70

QDOS (later MS-DOS), 7
Qt Graphics Library, 69
Qt, cross-platform, 69

Raymond’s FAQ style document
rules and protocols in open source projects,

171, 172
RCS. See Revision Control System
Real-time mechanisms, 202
Reciprocal licenses, 253
Red Flag Linux, 328
Red Hat Linux, 300
Red HatTM, 237, 275
Redundant development, 94
Release distributions, 142
Release engineering, 275
Rendering tables, 48
Repository, 121
Repository identification

and check project, 127
Representativeness bias, 188
Reuseable software, 36
Reverse engineering, 238, 239

cloning of IBM PC, 240
for software products, 240
refers to, 239
type of, 241

Revision Control System, 120
Rich information sources, 219
Rough consensus, 29
Running code condition, 29

Sacks model, 215
SAP data analysis tool, 312
SARA (the Security Auditor’s Research

Assistant), 310
SCM. See Software Configuration

Management
Script speed, 47
Secunia note, 47
Security applications

and open source products, 310
Seed server, 77
SELinux, 310
Sendmail, 23, 61, 63, 64
Sendmail company, 64
Sendmail project, 63
Server-side scripting language, 70. See also

PHP
Shambhala, 27
Shared Source Initiative, by Microsoft, 242

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 363

Shareware, 242
products, 242

Signaling model for motivation, 286, 287
Signaling theory, 285

interpretations, 286
Simputer, 314
Single repository model vs. distributed

repositories, 148
Single Unix Specification, 88
Skill entries log, 153
Sleepycat software, 68, 69
Snort, 310, 328
Snort code proprietary, 328
Social concepts

impact on open source development, 169,
170, 171, 172. See also open development
culture

Social connectivity, 174
Social context cues, 216
Social cues, 217

static and dynamic, 216
Social identity theory, 174
Social protocols, 170
Social proxy mechanism

features of, 178
Socially translucent, 179

Social psychology
role in understanding open source

developmental process, 168
Soft freeze, 142. See also releases
Software architecture, 32
Software commoditization, 15, 281. See also

open source products
and impacts, 284

Software Configuration Management (SCM)
systems, 143, 149, 150

Subversion, 144
Software development

collaborative processes organization, 198
dominant modalities for, 327
process gains and losses, 199
specific process gains and losses, 198

Software freedom project, 297, 299, 305, 306,
307

Software hosting facilities, for open source,
151

Freshmeat, 154
SourceForge, 152

Software interfaces and relation with GPL,260
Software invention

and patent threat, 232

Software licensing, 2
and associated legal issues, 222, 226, 227,

228, 229, 232, 236, 237, 238, 239,
241

and terms and conditions, 234
for free soft ware, 300. See also copyleft
kinds of, 233, 236

Software licensing model, 243. See also
Trusted Computing

Software localization
and relation with portability, 6

Software obfuscators, 241
Software packages

and revenue generation, 325
Software patents, 228, 229, 230

handling guidelines, 230
objections from FSF to, 230
vs. software copyright, 229

Software piracy, 225
Software products, 17

and copyrights, 223, 224
and impact of network effects, 269

Solaris, 311
Source code, 1, 2, 5, 6, 8, 9, 14, 28, 33, 35,

37, 39, 42, 45, 47, 48, 51, 52, 55,
60, 72, 73, 78, 81, 83, 84, 85, 86,
87, 91, 93, 94, 95, 109, 116, 117,

120, 121, 123, 124, 125, 126,
127, 140, 145, 151, 152, 155,
161, 163, 185, 187, 198, 202,
225, 226, 227, 235, 246, 247,

248, 249, 250, 251, 253, 255,
260, 273, 299, 310, 311, 322, 332,
236, 237, 338, 339, 341, 342, 344,
345

and reusing software, 35
SourceForge, 152

activity percentile for projects, 153
and information provided by, 153
and provided features of, 152
Collaborative Development System (CDS),

152
features of, 152

SourceForge Web site, 152, 160
SourcePuller, 148
SQL interface, 65
SSH, 152
Stale locks phenomenon, 201
Static linking, in software developement, 259
Steiner’s model for group productivity, 198

ideal productivity, 198

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

364 Subject Index

Steiner’s tasks classification, 191
task type and group productivity, 191, 192,

193
STUG (Software Tools User Group) Award,

121
Sublicensable lisence, 235
Sublicense right, 234
Subversion, 144

demand as compared to CVS, 145
improvement in, 145
objectives, 144

Sun Solaris system, 59
Sun SPARC, 94
Swarm, 77
System V, 85

Tarball, 142
Task

and group perfoemance
factors responsible for, 191, 192

classification of, 192
partitioning of, 193
See also divisible tasks

TCP/IP, 119
TCP/IP protocols, 7, 13
Teardrop attack, 312
Technological protocols, 170
Telnet program, 89. See also Linux OS
Temporal characteristic, 210
Terminal emulator, 89. See also Linux OS
The Cathedral and The Bazaar, essay, 50
The Mythical Man Month, 22, 50
Time-machine. See CVS
Time-to-cold-start, 47
Total Cost of Ownership (TCO), 270

for open source vs. proprietary products, 271
major categories, 270

Tracker, 77
Trade secrets, 238
Trade secrets, impact on bussiness, 239
Trademarks

for proprietary and open source products,
237

impacts of, 237
Trialware, 242
TrollTech, 68, 69
Trusted computing

and objectives of, 243
licensing arrangement, 243

Try-before-you-buy software, 242

U.S. government and federal agencies
and use of open products, 312

open source application domains in,
310

Ubuntu Linux distribution, 275
Ultrix, 84
UNC, 162
Unified difference format, 123
Unified format, 130
Uniform resource locator, 25
Unitary tasks

and impact on group production, 193,
194

United States Patent, 228
Unix operating system, 12

and open source developement, 161
and open source development, 81

Unix project, 81
development process, 82

BSD Unix evolution, 85
FreeBSD, 86
in C language, 82, 83
Unix distribution, 83

Unix-like operating systems, 90. See also
Linux OS

open standards for, 86, 87, 88
Update command, 125

and function or role, 133
URI version, 24
URL. See Uniform Resource Locator
US CERT, 44
Usenet categories, 13
USENET groups, 30
USENIX, 107

Vendor lock-in concept, 266
Windows operating system, 267

Version Control Systems (VCS), 143
Versioning systems, 11, 13, 120

basic programs, 123
diff and patch command, 123, 124
fundamentals, 144

W3C (World Wide Web Consortium), 24
WAMP stack, 17, 328
Warm-start-time, 47
Weak copyleft, 254
Web 2.0 service, 77
Web browsers, 21

Firefox, 22
Internet Explorer, 22
Mosaic, 22
Netscape, 22
text-oriented, 24

Web revolution, 23

P1: KAE
9780521881036Sind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:51

Subject Index 365

Web servers, 21
Apache, 3
IIS, 6, 27, 44
NCSA, 21
NCSA httpd server, 25

WebDAV, 145
Webmasters, 26
Widget, 115
Wikipedia, 320

key characteristics, 320, 321
WinCVS, 125
Windowing systems and desktops, 99
Wine project, 17, 268, 315

third-party proprietary applications in, 328
World Wide Web, 23, 24

basic tools and concepts for, 21
origin, 23

World Wide Web Consortium, 24
Write-access privileges, 163

X Window System, 50, 100
application with strong code base, 100

X.Org foundation, 101
Xerox PARC, 7, 99
XFree86 project, 209
Xerox Star computer, 99
Ximian corporation, 103
XPCOM, 47

Yahoo environment, 276

Zend, 71, 73
Zend Intermediate Code, 73
zones, 78

P1: KAE
9780521881036Aind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:32

Author Index

Adelstein, T., 313
Adrianson, D., 209, 216
Allport, F.H., 168
Andersen, T., 225
Anderson, J.R., 187
Anderson, R., 243
Anderson, T., 35
Andreessen, M., 22, 25, 37, 38, 39, 40,

41
Andrews, J., 146, 148, 149
Applewhite, A., 313, 314
Argyle, M., 213
Arief, B., 165
Arnone, M., 328
Asay, M., 259, 260, 347

Bales, R., 175
Bar, M., 56, 121, 124, 125, 126, 127, 128, 129,

131, 133, 134, 135, 138, 139, 141, 142, 143,
337

Barabasi, A., 168
Bassett, G., 214, 224, 226
Beesen, J., 9
Behlendorf, B., 26, 35, 225
Benner, J., 310
Berglund, Y., 24
Berliner, B., 120, 122, 124
Berners-Lee, T., 12, 21, 23, 24, 25, 26, 38, 39,

48, 230
Bessen, J., 231, 312, 332
Bezroukov, N., 58
Bina, E., 38
Bollinger, T., 310
Bovet, D.P., 92
Bradner, S., 29
Brand, A., 110, 163, 172

Broersma, M., 267
Brooks, F.P., 22, 50, 52, 292
Bucken, M., 101
Burgess, S., 114, 116, 117, 118

Cailliau, R., 38
Campbell, D., 311
Capek, C., 235, 278, 279, 333
Carver, B., 230, 231, 251, 253, 254, 255,

256
Cederqvist, P., 124
Cesati, M., 92
Chance, T., 110, 111
Christensen, C., 281, 284, 285
Clark, D., 29
Clark, H.H., 215
Cohen, B., 151
Collins-Sussman, B., 144
Compton, J., 109
Conner, D., 7
Connolly, T., 205
Connor, M., 44, 46
Conventry, L., 216
Cooper, A., 7
Corbet, J., 146, 260
Cowan, C., 60
Cox, A., 59, 174

Daft, R., 218, 219
Daly-Jones, O., 215
de Icaza, M., 103, 105, 107, 248
Delio, M., 44
Dennis, A.R., 186, 199, 203, 205
DiBona, C., 93, 174, 177, 277
Downen, M., 241
Downey, A., 320

366

P1: KAE
9780521881036Aind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:32

Author Index 367

Edwards, K., 84, 92, 289
Eich, B., 41
Ellis, C., 170, 175
Engelbart, D. C., 99
Engelfriet, A., 249
Epplin, J., 260
Erickson, E., 178, 179
Evans, D., 231, 248, 314, 325, 326
Ewing, L., 117

Fabrigar, L.R., 176
Feller, J., 58, 59, 119, 162, 170, 171, 174, 208,

210, 247
Feller, J., 6
Festinger, L., 187
Fielding, R.T., 28, 32
Fink, M., 281
Fischetti, M., 24
Fishman, S., 226, 252, 254
Fitzgerald, B., 6, 58, 59, 119, 162, 170, 171,

174, 208, 210, 214, 224, 226, 247, 314
Fogel, K., 56, 121, 124, 125, 126, 127, 128,

129, 131, 133, 134, 135, 137, 138, 139, 141,
142, 143, 144, 171, 175, 183, 184, 203, 204,
210, 211, 277, 278, 337

Fountain, D., 123, 142
Franz, H., 175

Gacek, C., 165
Gaines, B., 25
Gallupe, R.B., 204
Garfinkel, S., 83
German, D.M., 103, 104, 105, 106
Gettys, J., 15, 100, 101, 245, 278
Ghosh, R., 162, 289
Gibson, W., 289
Gillies, J., 38
Gonzalez, J.A., 270, 313
Gonzalez-Barahona, J., 275
Grayson, D., 216
Griffin, S., 41
Grudin, J., 173

Hackvän, S., 113, 114, 116, 117
Hahn, R., 4, 9, 313, 328
Hang, J., 165
Hann, I., 286, 287, 288
Hars, A., 165
Hart, T., 317, 318, 319
Heinlein, R., 289
Herr, G., 270, 271, 328

Himanen, P., 171
Hinsz, V.B., 183, 184, 186
Hissam, S., 311
Hjelmquist, E., 209, 216
Hoepman, J.H., 5
Hohmann, L., 182, 188, 189, 199, 219
Hohn, S., 270, 271, 328
Holck, J., 33
Hollaar, L., 240
Hollingshead, A.B., 192, 202, 209, 210, 214
Hutchins, E., 189
Hyatt, J., 65

Inglehart, R., 289

Jacobs, B., 5
Janis, I., 186
Jassin, L., 225
Jefferson, G.A., 215
Jones, K., 205
Jones, P., 234, 239, 240, 348
Jørgensen, N., 172

Karels, M., 61, 62
Kelman, H.C., 172
Kenny, T., 314
Kesan, J., 24
Kiesler, S., 176, 216
Kim, E., 159, 161, 164, 286
Kirk, J., 68
Knuth, D., 227, 321
Kollar-Kotelly, C., 42
Kozar, A., 169
Kozar, E.G., 169
Kraut, R.E., 207, 211, 219
Krishnamurthy, S., 44, 46, 167
Kshetri, N., 314
Kuhn, T., 345

Lakhani, K., 162, 164, 165
Lancashire, D., 288, 289, 290, 291, 292
Landau, M., 226
Lassiter, D.L., 197
Lea, G., 42
Lea, M., 217
Lee, A.S., 219
Leibenstein, H., 269
Leibowitz, S.J., 269
Lengel, R., 218, 219
Leonard, A., 26
Lerdorf, R., 71, 72, 73, 74, 174, 276

P1: KAE
9780521881036Aind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:32

368 Author Index

Lerner, J., 248, 272, 286, 289
Lessig, L., 30
Levy, S., 171
Lohr, S., 41
Lussier, S., 315, 328

Machlis, S., 74
Macmillan, J., 187, 188, 189
Magid, L., 236
Margolis, E., 269
Markoff, J., 38
Marron, D., 314
McCool, R., 21, 25, 26, 27, 28, 29, 30, 141,

170, 200
McGrath, J.E., 192, 197, 202, 209, 210, 214
McHugh, J., 43
McKusick, M., 15, 84, 86, 245
McLuhan, M., 159
McMillan, A., 7
McMillan, R., 148, 149, 150, 248
Meeker, H., 256, 257
Messerschmitt, D., 219, 334
Mintzberg, H., 218
Mockus, A., 28, 29, 30, 31, 32, 33, 34, 35,

104
Moczar, L., 62, 272
Moglen, E., 7, 164, 234, 255, 257, 260, 286,

297, 302, 303, 304, 305, 306, 307,
326

Monk, A., 215
Moody, G., 29, 184
Mook, N., 44
Moon, J.Y., 92, 94, 95, 96, 97, 98, 163, 168
Morgan, B.B., 197
Myers, J., 99

Nichols, D., 110
Norris, J., 312
Nosek, J., 188
Nunamaker, J.F., 199, 200, 203, 204, 205,

207

O’Conaill, B., 213, 215, 216
O’Reilly, T., 39, 48, 77, 79, 151, 270, 283, 284
Olson, G., 184, 185, 197, 207, 208, 209, 210,

211, 212
Olson, J., 184, 185, 197, 207, 208, 209, 210,

211, 212
Olson, M., 69, 289
Osterlie, T., 27
Ou, S., 165

Park, J., 285
Parker, I., 7
Parris, D.C., 307
Payne, C., 59, 60, 240, 311
Perens, B., 15, 231, 244, 245, 297
Peters, D., 257, 258
Pirolli, P., 187
Poole, M.S., 192

Raggett, D., 39, 41
Raymond, E., 4, 5, 15, 22, 42, 50, 51, 52, 53,

54, 55, 56, 57, 58, 63, 71, 82, 86, 164, 171,
174, 182, 187, 244, 260, 289, 297,
334, 337

Raynor, M., 284
Reagle, J., 163, 164, 173
Reid, R.H., 40
Reimer, J., 99, 101
Richardson, M., 75
Ritchie, D., 82, 83, 86
Robillard, M.P., 187
Robillard, P.N., 187
Robles, G., 162
Rooney, G., 145, 201
Rosen, L., 224, 226, 228, 233, 234, 235, 236,

237, 243, 244, 247, 249, 251, 252, 253, 254,
259, 260, 334, 340, 342, 348

Rosenberg, D.K., 244
Ross, B., 44, 45, 46, 108, 170
Russell, A., 29, 30

Sacks, H., 215
Salamon, A., 78
Samuels, E., 227
Samuelson, P., 239, 348
Scacchi, W., 58
Schach, S., 93
Schaeffer, E., 215
Schecter, S., 225
Schegloff, E.A., 215
Schneider, G., 104
Schneider, J., 71, 72, 276
Schumpeter, J.A., 285
Schwartz, M., 240
Scott, G., 82, 85
Scoville, T., 312
Searls, D., 328
Serrano, N., 275
Shah, R., 24
Shankland, S., 277
Shapiro, C., 231

P1: KAE
9780521881036Aind CUNY1180/Deek 0 521 88103 6 October 1, 2007 15:32

Author Index 369

Shaw, M., 25
Short, J., 214
Siegel, J., 176
Smith, D., 271
Spafford, G., 83
Spears, R., 217
Spinellis, D., 315
Spolsky, J., 279
Sproul, L., 92, 94, 95, 96, 97, 98, 163, 168,

176, 216
Stacy, W., 187, 188, 189
Stallman, R., 9, 13, 16, 24, 87, 101, 119, 148,

230, 231, 239, 250, 258, 259, 297, 298, 299,
300, 301, 302, 303, 304, 305, 307, 333, 341,
342

Steel, D., 314
Stein, L., 75
Steiner, I.D., 190, 192, 194, 195, 196, 198
Stephenson, E., 312
Stoltz, M., 5, 8
Stutz, D., 172, 281, 282, 283, 284
Suraski, Z., 72, 73, 174
Szyperski, C., 315

Tanenbaum, A., 51, 56, 86, 89, 93, 177
Teaseley, B., 189
Thompson, C., 78
Thompson, K., 82, 83
Tiemann, M., 300
Tirole, J., 248, 272, 286, 289
Tonella, P., 241
Tong, T., 5, 317, 318, 319, 320, 322
Torvalds, L., 6, 9, 13, 50, 57, 59, 89, 94, 95,

98, 120, 148, 150, 164, 169, 173, 174, 177,
211, 225, 250, 258, 260, 319, 343, 346

Twidale, M., 110
Tyler, M., 311

Ueda, M., 245

Valacich, J.S., 199, 203, 205
Valimaki, M., 62, 65, 66, 67, 69, 70, 273
Valloppillil, V., 5, 94
Van Vleck, T., 83
Von Krogh, G., 172

Wall, L., 75, 120, 124
Walli, S., 243
Wang, C., 275
Wang, H., 275
Warrene, B., 247
Watts, L., 215
Webbink, M., 226, 227, 236, 246, 247, 339,

344
Weber, S., 171, 174, 177, 222
Weiss, A., 63
West, J., 247
Wheeler, D., 3, 5, 7, 33, 85, 86, 100, 152, 252,

271, 323
Whittaker, S., 213, 215, 216
Whitworth, B., 174, 176
Wilson, R., 249
Wirzenius, L., 93
Witten, B., 60
Wolf, R., 164

Yamagata, H., 91
Yamauchi, Y., 212
Yank, K., 72
Ye, Y., 34
Young, R., 96, 276

Zawinski, J., 40
Zigurs, I., 169
Zittrain, J., 7, 48, 235, 236, 243

	052188103X
	Title
	Copyright
	Dedication

	Contents
	Preface
	Acknowledgments

	1 Introduction
	1.1 Why Open Source
	1.1.1 Usefulness, Cost, and Convenience
	1.1.2 Performance Characteristics
	1.1.3 Forward-looking Effects
	1.1.4 Economic Impact

	1.2 Preview

	Section i: Open Source – Internet Applications, Platforms, and Technologies
	2 Open Source Internet Application Projects
	2.1 The WWW and the Apache Web Server
	2.1.1 WWW Development at CERN
	2.1.2 Web Development at NCSA
	2.1.3 The Apache Fork

	2.2 The Browsers
	2.2.1 Mosaic
	2.2.2 Netscape
	2.2.3 Firefox

	2.3 Fetchmail
	2.4 The Dual License Business Model
	2.4.1 Sendmail
	2.4.2 MySQL – Open Source and Dual Licensing
	2.4.3 Sleepycat Software and TrollTech

	2.5 The P’s in LAMP
	2.5.1 PHP Server-Side Scripting
	2.5.2 Perl and CPAN

	2.6 BitTorrent
	2.7 BIND
	References

	3 The Open Source Platform
	3.1 Operating Systems
	3.1.1 Unix
	3.1.2 Linux

	3.2 Windowing Systems and Desktops
	3.2.1 The X Window System
	3.2.2 Open Desktop Environments – GNOME
	3.2.3 Open Desktop Environments – KDE

	3.3 GIMP
	References

	4 Technologies Underlying Open Source Development
	4.1 Overview of CVS
	4.2 CVS Commands
	4.2.1 Platforms and Clients
	4.2.2 Command Format
	4.2.3 Checking Out a Project From a Repository
	4.2.4 Updating a Working Copy
	4.2.5 The Diff Command
	4.2.6 The Commit Command
	4.2.7 The Log Command
	4.2.8 Recognizing Conflicts in Modifications
	4.2.9 Branches in CVS – and Forks
	4.2.10 Development Practices: Patches and Releases

	4.3 Other Version Control Systems
	4.3.1 Subversion
	4.3.2 Decentralized Systems: BitKeeper, Git, Monotone, Code Ville

	4.4 Open Source Software Development Hosting Facilities and Directories
	4.4.1 SourceForge
	4.4.2 Freshmeat
	4.4.3 The FSF Directory

	References

	Section ii: Social, Psychological, Legal and Economic Aspects of Open Source
	5 Demographics, Sociology, and Psychology of Open Source Development
	5.1 Scale of Open Source Development
	5.2 Demographics and Statistical Profile of Participants
	5.3 Motivation of Participants
	5.4 Group Size and Communication
	5.5 Social Psychology and Open Source
	5.5.1 Norms and Roles
	5.5.2 Interactions in Groups
	5.5.3 Human Factors in Groups

	5.6 Cognitive Psychology and Open Source
	5.6.1 Cognitive Models
	5.6.2 Cognitive Biases

	5.7 Group Problem Solving and Productivity
	5.7.1 Task Type and Group Productivity
	5.7.2 Effects of Group Characteristics

	5.8 Process Gains and Losses in Groups
	5.8.1 Process Gains and Losses
	5.8.2 Production Blocking
	5.8.3 Evaluation Apprehension and Anonymity

	5.9 The Collaborative Medium
	5.9.1 Collaborative Infrastructure
	5.9.2 Conversational Interactions
	5.9.3 Social Cues
	5.9.4 Information Richness

	References

	6 Legal Issues in Open Source
	6.1 Copyrights
	6.2 Patents
	Software Patents

	6.3 Contracts and Licenses
	6.4 Proprietary Licenses and Trade Secrets
	6.4.1 Basics of Proprietary Licenses
	Trademarks

	6.4.2 Trade Secrets, Nondisclosure Agreements, Reverse Engineering, and Obfuscation
	6.4.3 Miscellaneous Types of Proprietary Software

	6.5 OSI – The Open Source Initiative
	6.5.1 Open Source Initiative and OSI-Certified Licenses
	OSI License Certification Criteria

	6.5.2 Illustrative Academic OSI-Certified Licenses

	6.6 The GPL and Related Issues
	6.6.1 General Public License
	Reciprocity and Copyleft
	Enforcement of the GPL
	International Enforcement
	The Next Version of the GPL: GPLv3

	6.6.2 The Lesser GPL and Derivative Works
	Derivative Works – Static and Dynamic Linking – APIs

	References

	7 The Economics of Open Source
	7.1 Standard Economic Effects
	7.1.1 Vendor Lock-in
	7.1.2 Network Effects
	7.1.3 Total Cost of Ownership

	7.2 Open Source Business Models
	7.2.1 Dual Licensing
	7.2.2 Consulting on OSS
	7.2.3 Providing Open Software Distributions and Services
	7.2.4 Hybrid Proprietary/open Model: Vertical Development with OSS
	7.2.5 Hybrid Proprietary/open Model: Horizontal Arrangements

	7.3 Open Source and Commoditization
	7.4 Economic Motivations for Participation
	7.4.1 A Signaling Model for Motivation
	7.4.2 An Opportunity-cost Model Based on Geographic Differences

	References

	Section iii: Free Software: The Movement, the Public Sector, and the Future
	8 The GNU Project
	8.1 The GNU Project
	8.2 The Free Software Foundation

	9 Open Source in the Public Sector
	9.1 Open Source in Government and Globally
	The International Sector

	9.2 Open Source in Education
	References

	10 The Future of the Open Source Movement
	Open Source Commoditized Infrastructure
	Proprietary Mega-applications
	Vertical Synthesis of Distributed Services
	Vertical Synthesis of In-house Applications
	Horizontal Synthesis with Complementary Open Software
	Concluding Note
	References

	Glossary
	Subject Index
	Author Index

