Mobile Agents for
Telecommunication
Applications

Eric Horlait

KOGAN PAGE

Mobile Agents for
Telecommunication
Applications

This Page Intentionally Left Blank

Mobile Agents for
Telecommunication
Applications

Edited by

Eric Horlait

£

KOGAN
PAGE

First published in 2000 by Hermes Science Publications, Paris

First published in 2002 by Hermes Penton Ltd

Derived from Networking and Information Systems Journal, Mobile Agents for Telecommunication
Applications, Vol. 3, No. 5-6.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing
of the publishers, or in the case of reprographic reproduction in accordance with the terms and
licences issued by the CLA. Enquiries concerning reproduction outside these terms should be sent
to the publishers at the undermentioned address:

Hermes Penton Science
120 Pentonville Road
London N1 9JN

© Hermes Science Publications, 2000
© Hermes Penton Ltd, 2002

The right of Eric Horlait to be identified as the editor of this work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A CIP record for this book is available from the British Library.

ISBN 1 9039 9628 7

Typeset by Saxon Graphics Ltd, Derby
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
www.biddles.co.uk

Contents

Foreword
Eric Horlait vii

1. Implementing secure distributed computing with mobile agents
Gregory Neven, Erik Van Hoeymissen, Bart De Decker and
Frank Piessens 1

2. Network domain agency for QoS management in OSPF configured
networks

Farag Sallabi and Ahmed Karmouch 19

3. Partitioning applications with agents
Oskari Koskimies and Kimmo Raatikainen 39

4. Mobile agents for adaptive mobile applications
Thomas Kunz, Salim Omar and Xinan Zhou 61

5. Active networks: architecture and service distribution
Nicolas Rouhana and Eric Horlait 77

6. Resource trading agents for adaptive active network applications
Lidia Yamamoto and Guy Leduc 95

Index 121

This Page Intentionally Left Blank

Foreword

This publication is concerned with mobile agents for telecommunication appli-
cations. Papers have been selected from those presented during MATA’00 in
Paris, the MATA reviewers having reviewed this second version of the papers
presented here.

Mobile agents refer to self-contained and identifiable computer programs
that can move within the network and can act on behalf of the user or another
entity. Most current research work on the mobile agent paradigm has two gen-
eral goals: reduction of network traffic and asynchronous interaction. These two
goals stem directly from the desire to reduce information overload and to effi-
ciently use network resources.

There are certainly many motivations for the use of a mobile agent paradigm.
However, intelligent information retrieval, network and mobility management,
and network services are currently the three most cited application targets for a
mobile agent system.

We provide in this publication an overview of how mobile codes could be
used in networking. A huge field of application is now open and a research com-
munity really exists. We have tried here to illustrate this emerging application
domain of mobile agents and mobile code.

Eric Horlait

This Page Intentionally Left Blank

Chapter 1

Implementing secure distributed

computing with mobile agents

Gregory Neven, Erik Van Hoeymissen,
Bart De Decker and Frank Piessens

Department of Computer Science, KU Leuven, Belgium

1. Introduction

Secure distributed computing (SDC) addresses the problem of distributed
computing where some of the algorithms and data that are used in the computation
must remain private. Usually, the problem is stated as follows, emphasizing
privacy of data. Let f be a publicly known function taking » inputs, and suppose
there are n parties (named p,, i = 1 ... n), each holding one private input x. The n
parties want to compute the value f(x, ..., x) without leaking any information
about their private inputs (except of course the information about x, that is
implicitly present in the function result) to the other parties. An example is voting:
the function f is addition, and the private inputs represent yes (x, = 1) or no (x, = 0)
votes. In case you want to keep an algorithm private, instead of just data, you can
make f an interpreter for some (simple) programming language, and you let one of
the x, be an encoding of a program.

In descriptions of solutions to the secure distributed computing problem, the
function f is usually encoded as a boolean circuit, and therefore secure distributed
computing is also often referred to as secure circuit evaluation.

It is easy to see that an efficient solution to the secure distributed computing
problem would be an enabling technology for a large number of interesting
distributed applications across the Internet. Some example applications are:
auctions ([NIS 99]), charging for the use of algorithms on the basis of a usage
count ([SAN9S, SAN 98b]), various kinds of weighted voting, protecting mobile
code integrity and privacy ([SAN 98, LOU 99)).

2 Mobile agents for telecommunication applications

Secure distributed computing is trivial in the presence of a globally trusted
third party (TTP): all participants send their data and code to the TTP (over a
secure channel), the TTP performs the computation and broadcasts the results.
The main drawback of this approach is the large amount of trust needed in the
TTP.

However, solutions without a TTP are also possible. Over the past two
decades, a fairly large variety of solutions to the problem has been proposed. An
overview is given by Franklin [FRA 93] and more recently by Cramer [CRA 99].
These solutions differ from each other in the cryptographic primitives that are
used, and in the class of computations that can be performed (some of the
solutions only allow for specific kinds of functions to be computed). The main
drawback of these solutions is the heavy communication overhead that they incur.
For a case study investigating the communication overhead in a concrete example
application, we refer the reader to [NEV 00].

Mobile agents employing these cryptographic techniques can provide for a
trade-off between communication overhead and trust. The communication
overhead is alleviated if the communicating parties are brought close enough
together. In our approach, every participant sends its representative agent to a
trusted execution site. The agent contains a copy of the private data x; and is
capable of running a SDC-protocol. Different participants may send their agents to
different sites, as long as these sites are located closely to each other. Of course, a
mobile agent needs to trust his execution platform, but we show that the trust
requirements in this case are much lower than for a classical TTP. Also, in contrast
with protocols that use unconditionally TTPs, the trusted site is not involved
directly. It simply offers a secure execution platform: i.e. it executes the mobile
code correctly, does not spy on it and does not leak information to other mobile
agents. Moreover, the trusted host does not have to know the protocol used
between the agents. In other words, the combination of mobile agent technology
and secure distributed computing protocols makes it possible to use a generic TTP
that, by offering a secure execution platform, can act as TTP for a wide variety of
protocols in a uniform way. A detailed discussion of the use of mobile agent
technology for advanced cryptographic protocols is given in Section 3.

The combination of cryptographic techniques for secure computing and
mobile code has been investigated from another point of view by Sander and
Tschudin ([SAN 98], [SAN 98b]). In their paper on mobile cryptography, they
deal with the protection of mobile agents from possibly malicious hosts. Hence,
the focus in their work is on the use of cryptographic techniques for securing
mobile code. The security concerns posed by the mobile agent protection problem
are code privacy (can a mobile agent conceal the program it wants to have
executed?), code and execution integrity (can a mobile agent protect itself against
tampering by a malicious host?) and computing with secrets in public (can a
mobile agent remotely sign a document without disclosing the user’s private

Implementing secure distributed computing 3

key?). To address some of these concerns, cryptographic secure computation
techniques can be used. We discuss this in more detail in Section 2.3, which is part
of our survey on secure distributed computing protocols.

The structure of this paper is as follows. In the next section, we start with a
survey of existing cryptographic solutions to the secure computing problem. In
Section 3, we introduce and compare three possible ways to implement secure
distributed computing, making use of both cryptographic techniques, and trusted
parties. The comparison is based on a simple model of the trust and
communication requirements for each of the solutions. In Section 4, we focus on
an example application of secure distributed computing. More precisely, we will
show how multi-party secure computations can be used to perform second price
auctions and we will assess the incurred communication overhead. Finally, in
Section 5, we summarize the main outcomes of this contribution.

2. Survey of SDC protocols

Various kinds of solutions for the secure distributed computing problem have been
proposed in the literature (often using different terminology than the one used in
this paper).

2.1 Using probabilistic encryption

One class of techniques to compute with encrypted data is based on homomorphic
probabilistic encryption. An encryption technique is probabilistic if the same
cleartext can encrypt to many different ciphertexts. To work with encrypted bits,
probabilistic encryption is essential, otherwise only two ciphertexts (the
encryption of a zero and the encryption of a one) would be possible, and crypt-
analysis would be fairly simple. An encryption technique is homomorphic if it
satisfies equations of the form E(x op y) = E(x) op’ E(y) for some operations op
and op’. A homomorphic encryption scheme allows operations to be performed on
encrypted data, and hence can be used for secure circuit evaluation.

Abadi and Feigenbaum present a protocol for two-player secure circuit
evaluation using a homomorphic probabilistic encryption scheme based on the
Quadratic Residuosity Assumption (QRA) in [ABA 90]. This protocol allows A
who has a secret function f and B who has secret data x to calculate f(x) without
revealing their secrets.

Let k be the product of two primes p and g, each congruent to 3 mod 4. An
integer a € Z, [+1] — the integers relatively prime to k with Jacobi symbol 1 —is a
quadratic residue mod k if there exists an x € Z; [+1] such that a = x? mod k. The
QRA states that determining if an integer a is a quadratic residue mod k is a
difficult problem if the factorization of k is unknown but is easy to solve if p and ¢
are given.

4 Mobile agents for telecommunication applications

If we encrypt a zero by a quadratic residue and a one by a quadratic nonresidue
mod k, we can define the encryption of a bit b as

E(b)=(-1)"- r*mod k

with r €, Z; [+1] chosen at random. This probabilistic encryption scheme has two
homomorphic properties that will come in handy in the protocol:

E (D)= (~1)-E,(b) mod k
E(b,®b,)=E/b,) - E (b, mod k

B starts the protocol by choosing p and ¢ and multiplying them to produce k. B
sends k and the encryption of his data bits E(x,), ..., E,(x,) to A. B keeps the
factorization of k secret. A then starts evaluating her secret circuit. If she has to
evaluate a NOT gate with input E (b), she simply calculates — E (b) mod k. An
XOR with inputs E (b)) and E,(b,) is also easy to evaluate: A just takes E, (b)) -
E,(b,) mod k as the output of the gate. To evaluate the AND of inputs E,(b,) and
E,(D,), she needs B’s help. A chooses two bits ¢, and c, at random and sends E, (b,
@ c,) and E,(b, D c,) to B. B decrypts the bits A just sent him as d, and d, (he can
do so because he knows p and ¢) and sends the tuple

<E(d,/\d),E(d /N\d),E(d/d) E(/d)>

to A. A takes the first element of this tuple as the output of the AND gate if she
chose ¢, = ¢, = 0, the second if she chose ¢, = 0 and ¢, = 1, the third if she chose
¢, =1and ¢, =0 and the last one if she chose ¢, = ¢, = 1. Proceeding this way from
gate to gate, A ends with the encrypted result E,(f(x)) and sends it for decryption
to B.

Note the large amount of communication overhead in the protocol: for each
AND gate to be evaluated, a large amount of communication is necessary.
Concrete estimates of the communication overhead in a realistic example can be
found in [NEV 00].

2.2 Protocols based on oblivious transfer

In [GOL 87], Goldreich, Micali and Wigderson present a two-party protocol for
the problem of combined oblivious transfer which is equivalent to the problem of
secure circuit evaluation. The setting is slightly different than in the previous
protocol. Here, two parties A and B want to evaluate a publicly known boolean
circuit. This circuit takes input from both A and B, but each party wants to keep his
part of the data private. In contrast, in the previous protocol, the circuit was private

Implementing secure distributed computing 5

to A, and the data was private to B. Recall from the introduction that these two
settings are essentially equivalent: by making the publicly known circuit an
universal circuit, it is still possible to hide functions instead of data.

The basic idea of the protocol we are about to describe is the following: A will
evaluate the circuit, not on the actual bits, but on encodings of those bits. The
encoding of the bits is known only to B. So A evaluates the circuit, but cannot make
sense of intermediary results because she doesn’t know the encoding. B knows the
encoding but never gets to see the intermediary results. When the final result is
announced by A (in encoded form), B will announce a decoding for this final
result.

We give a more detailed description of the protocol. B assigns two random bit
strings ¢ and r} to every wire i in the circuit, which represent an encoded 0 and 1
on that wire. This defines a mapping ¢, : r? — b for every wire i. B also chooses a
random bit string R that will allow A to check if a decryption key is correct. The
general idea of the protocol is that, if b is the bit on wire i in the evaluation of the
circuit for A’s and B’s secret inputs, A will only find out about and r” will never get
any information about ¢, (r?) or rf. In other words, A evaluates the circuit with
encoded data.

We use the notation E(M, r) for a symmetric encryption function of the
message M with secret key r. To encrypt a NOT-gate with input wire i and output
wire o, B constructs a random permutation of the tuple

<ER-rl,r9ER-r’r})>

where - denotes the concatenation of bit strings. To encrypt an AND-gate with
input wires / and r and output wire o, B constructs a random permutation of the
tuple

<ER-r,riDr%), ER-r), r9®rh),
ER-r%r,®r)),ER-rl,r,®r)>

with € the bit-wise XOR. Any other binary port can be encrypted in an analogous
way.

B sends the encryption of every gate in the circuit together with R, the encoding
of his own input bits and the mapping ¢,_ of the output wire m to A. To perform the
evaluation of the circuit on encoded data, A first needs encodings of all the input
bits. For B’s input bits, the encoding was sent to her, but since B doesn’t know A’s
inputs, B can’t send an encoding of them. Note that B can’t send the encoding of
both a 1 and a 0 on A’s input wires either, because that would allow A to find out
more than just the result of the circuit. The technique that is used to get the
encoding of A’s input to A is called one-out-of-two oblivious transfer ((EVE 85]).

6 Mobile agents for telecommunication applications

This is a protocol that allows A to retrieve one of two data items from B in such a
way that (1) A gets exactly the one of two items she chose and (2) B doesn’t know
which item A has got.

Thus, A and B execute a one-out-of-two oblivious bit string transfer (often
referred to as (;) —OT*) for each of A’s input bits. This guarantees that A only
obtains the encoding of her own input bits without releasing any information about
her bits to B. A evaluates each gate by trying to decrypt every element of the tuple
using the encoding of the bit on the input wire (or the XOR of two input bit
encodings) as a key; she will only decrypt one of the elements successfully,
thereby obtaining the encoded bit on the output wire. Note that she can verify if a
decryption was correct by comparing the first bits of the decrypted string with R.
Proceeding this way through the entire circuit, A obtains the encoding of the final
output and applies ¢, to reveal the plain output bit.

Another protocol for two-party secure computation based on oblivious transfer
is presented in [GOL 87b]. The basic idea in this protocol is to have the
participants compute the circuit on data that is shared by the two parties using a
technique known as secret sharing.

2.3 Autonomous protocols

The protocols discussed in the two previous subsections require more communi-
cation rounds than strictly necessary. The probabilistic encryption based protocol
requires one communication round per AND-gate in the circuit. The oblivious
transfer based protocol requires one communication round for performing the
oblivious transfer of the input, and another for sending the encrypted circuit.

For protecting mobile code privacy and integrity, non-interactive (or autonomous)
protocols are necessary ([SAN 98b]). The idea here is to realize a system where a host
can execute an encrypted function without having to decrypt it. This, functions would
be encrypted such that the resulting transformation can be implemented as a mobile
program that will be executed on a remote host. The executing computer will be able
to execute the program’s instructions but will not be able to understand the function
that the program implements. Having function and execution privacy immediately
yields execution integrity: an adversary can not modify a program in a goal-oriented
way. Modifying single bits of the encrypted program would disturb its correct
execution, but it is very hard to produce a desired outcome.

It turns out to be possible to construct such autonomous solutions where the
client sends (in one message) an encrypted function f, and it receives from the
server an encrypted result f(x) in such a way that f remains private to the client
and x remains private to the server.

Various autonomous protocols have been proposed in the literature. Sander
and Tschudin ([SAN 98, SAN 98b]) introduce a technique that allows for a fairly
efficient evaluation of polynomials in a ring of integers modulo n using a

Implementing secure distributed computing 7

homomorphic encryption scheme. They also show how an autonomous protocol
could be realized using compositions of rational functions.

Sander and Tschudin emphasize in their paper that securing single functions is
not sufficient. Consider for example the problem of implementing a digital signing
primitive for mobile agents. Even if the real signature routine can be kept secret,
still the whole (encrypted but operational) routine might be abused to sign
arbitrary documents. Thus, the second task is to guarantee that cryptographic
primitives are unremovably attached to the data to which they are supposed to be
applied (the linking problem). The general idea behind the solution here is to
compose the signature generating function s with the function f of which the
output is to be signed. Crucial for the security of this scheme is the difficulty of an
adversary to decompose the final function into its elements s and f. An outline of
how this could be implemented using rational functions is given in [SAN 98b].

Loureiro and Molva ([LOU 99]) use a public key encryption system based on
Goppa codes. Their protocol allows for the evaluation of functions describable by
a matrix multiplication. Loureiro and Molva also show how any boolean circuit
evaluation can be done by a matrix multiplication. However, the representation of
a boolean circuit requires a huge matrix (for a circuit with / inputs, one of the
dimensions of the matrix is 2/). It remains an open problem whether more efficient
representations of boolean circuits as matrices can be achieved.

Finally, two very recent papers also focus on autonomous protocols: Sander,
Young and Yung ([YUN 00]) propose an autonomous protocol based on a new
homomorphic encryption scheme, and Cachin, Camenisch, Kilian and Miiller
([CAC 00]) start from an OT-based SDC protocol as in Section 2.2, and succeed in
merging the two phases of this protocol into one.

It is worth emphasizing that, even though autonomous protocols use the
minimal number of messages, they do not solve the communication overhead
problem: even though there are only two messages exchanged, these messages are
extremely large.

2.4 Using group-oriented cryptography

All the previous protocols concentrate on the two-party case: only two parties are
involved in the secure computation process. It is clear that the multi-party case is
even more interesting from an application-oriented point of view. The multi-party
case has also received considerable interest in the literature.

In [FRA 96], Franklin and Haber propose a protocol that is somewhat similar to
the protocol by Abadi and Feigenbaum ([ABA 90]), in the sense that this protocol
too evaluates a boolean circuit on data encrypted with a homomorphic probabilistic
encryption scheme. The major difference between the two protocols, however, is
that this protocol allows any number of parties to participate in the secure
computation, while Abadi and Feigenbaum’s protocol is restricted to two parties.

8 Mobile agents for telecommunication applications

To extend the idea of [ABA 90] to the multi-party case, we need an encryption
scheme that allows anyone to encrypt, but needs the cooperation of all participants
to decrypt. In a joint encryption scheme, all participants know the public key K.,
while each participant P, ..., P has his own private key K, ..., K. Using the
public key, anyone can create an encryption E(m) of some message m, where S C
{P,, ..., P}, such that the private key of each participant in S is needed to decrypt.
More formally, if D, denotes the decryption with Ps private key, the relation
between encryption and decryption is given by

D(E(m) =y, (m)

The plaintext m should be easily recoverable from E(m).
In the joint encryption scheme used by Franklin and Haber, a bit b is encrypted as

Eb) = [g’ mod N, (~1) (]._.[gK-'>r mod N]

jESs

where N = pq, p and g are two primes such that p = g mod 4, and r €, Z,. The
public key is given by [N, g, g¢X mod N, ..., g& mod N]. This scheme has some
additional properties that are used in the protocol:

— XOR-Homomorphic. Anyone can compute a joint encryption of the XOR
of two jointly encrypted bits. Indeed, if E((b) = [a, B] and Es(b’) =[a’, B'], then
E(b®b') = [aa’ mod N, BB’ mod N].

— Blindable. Given an encrypted bit, anyone can create a random ciphertext
that decrypts to the same bit. Indeed, if Es(b) =la, Bland r €, Z , then

RN
[ag’ mod N, B (Hg’@) mod N}

jEs

is a joint encryption of the same bit.

— Witnessable. Any participant can withdraw from a joint encryption by
providing the other participants with a single value. Indeed, if E(b) = [a, B], it is
easy to compute D (E (b)) from

W(la, B1) = aXimod N

First of all, the participants must agree on a value for N and g, choose a secret key
K and broadcast g% mod N to form the public key. To start the actual protocol,
each participant broadcasts a joint encryption of his input bits. For an XOR-gate,
everyone simply applies the XOR-homomorphism. The encrypted output of a
NOT-gate can be found by applying the XOR-homomorphism with a default
encryption of a one, e.g. [1, —1].

Implementing secure distributed computing 9

Again, it is the AND-gate that causes some trouble. Suppose the encrypted
input bits for the AND-gate are # = E(u) and v = E(v). To compute a joint
encryption w= E(w) = E(u /\ v), they proceed as follows:

1. Each participant P, chooses random bits b, and ¢, and broadcasts l;l. = E®)
and ¢, = E(c,).

2. Each participant repeatedly applies the XOR-homomorphism to calculate
W' =EW)=Eu®b D ..Db)and V' EO')=EWv Dc, @ .. Dc). Each
participant broadcasts decryption witnesses W (') and W (").

3. Everyone can now decrypt 4’ and v'. We have the following relation
between w’' =u’ /A\v andw=u/\v:

w o o=u AV
=udb,B..Bb)N\ vBc,D...Dc)
=uN\v) & wNc) &..8 (@/\c)
& (bNc) ®...® (b Ac,)

® b Ac) ®..0 (b Ac)
S b,Nv ©..8 (b, N\

n

— —
w w

=(u/\v)69wl@...l@wn

n

Each participant is able to compute a joint encryption of w: he knows b, and c, (he
chose them himself) and he received encryptions & from the other participants, so
he can compute E(b, N cj) as follows:

—If b, =0, then b, \ ¢; =0, so any default encryption for a zero will do, e.g.
[1, 1]. '
—Ifb,=1, then b, /\ ¢, =c, 50 ¢,is a valid substitution for E(b, AN c).

E(u/\ c,) and E(v AN b,) can be computed in an analogous way. He uses the XOR-
homomorphism to combine all these terms, blinds the result and broadcasts this as

A

W.
i

4. Each participant combines W' and W, (j =1 ... n), again using the XOR-
homomorphism, to form w= E(w).

When all gates in the circuit have been evaluated, every participant has a joint
encryption of the output bits. Finally, all participants broadcast decryption
witnesses to reveal the output.

10 Mobile agents for telecommunication applications

2.5 Other multi-party protocols

Chaum, Damgard and van de Graaf present a multi-party protocol in [CHA 87]
that starts with the truth tables of every gate in the circuit. Each player in turn
receives a “scrambled” version of the truth tables from the previous player, trans-
forms the truth tables by adding his own encryptions and permutations, commits
to his encryptions and sends these transformed truth tables to the next player.
When the last player finished his transformation, all players evaluate the
scrambled circuit by selecting the appropriate row from the truth tables.

Even information-theoretically secure multi-party computation can be
achieved (as opposed to only computationallly secure). A possible realisation is
discussed in [CRA 99].

The communication overhead for multi-party protocols is even more serious
than that for the two-party protocols.

3. Trust versus communication overhead

In this section, the different options for implementing secure distributed compu-
tation are discussed. It will be shown that there is a trade-off between trust and
communication overhead in secure computations. If all participants are distrustful
of each other, the secure computation can be performed using protocols surveyed in
the previous section with a prohibitive huge amount of communication. However, if
a TTP is involved, the communication overhead can be made minimal.

Recall from Section 1 that f is a publicly known function taking n inputs.
Assume that there are n distrustful participants p , ..., p,, each holding one private
input x. The n participants want to compute the value of f(x,, ..., x,) without
leading information of their private inputs to the other participants.

To compare the trust requirements of the different approaches, we use the
following simple trust model. We say a participant frusts an execution site if it
believes that:

— the execution site will correctly execute any code sent to it by the participant;
— the execution site will correctly (i.e. as expected by the participant) handle
any data sent to it by the participant.

It also implies that the execution site will maintain the privacy of the data or the code
if this is expected by the participant. If p trusts E, we denote this as shown in Figure 1.

p E

.—»'

Figure 1. Notation for “p trusts E”

Implementing secure distributed computing 11

To compare bandwidth requirements (for communication overhead), we make
the following simple distinction. High bandwidth is required to execute a SDC
protocol. Low bandwidth suffices to transmit data or agent code. We assume low
bandwidth communication is available between any two sites. If high bandwidth
communication is possible between E, and E,, we denote this as shown in Figure 2.

Figure 2. Notation for high bandwidth connection between E, and Ej

To see that this simple two-valued model of bandwidth requirements is
sufficient for our case, we refer the reader to [NEV 00]. In that paper, a case
study investigating the communication overhead for a so-called Secret Query
Database is given. In this application, A has a query ¢ and B owns a database
with records x. The Secret Query Database allows them to cooperate in such a
way that they can compute g(x) while A preserves the secrecy of g and B
preserves that of x. The communication overhead to solve this concrete case
with SDC protocols is in the order of magnitude of 100 megabytes. On the other
hand, sending just the query data, or sending an agent containing the query
requires only a few kilobytes of communication. The large difference in amount
of communication shows that our simplified model of high and low bandwidth
requirements is realistic.

Based on these simple models of communication and trust, we compare the
three options for implementing secure distributed computations.

3.1 A trusted third party

The first, perhaps most straightforward option, is to use a globally trusted third
party. Every p, sends its private input x, to the TTP who will compute f(x, ..., x)
and disseminate the result to the participants p, i = 1..n.

Of course, before sending its private data to the TTP, every p, must first
authenticate the TTP, and then send x, through a safe channel. This can be
accomplished via conventional cryptographic techniques.

It is clear that this approach has a very low communication overhead: the data
is only sent once to the TTP; later, every participant receives the result of the
computation. However, every participant should unconditionally trust the TTP.
For the case of 4 participants, the situation is as shown in Figure 3.

It is not clear whether n distrustful participants will easily agree on one single
trustworthy execution site. This requirement of one single globally trusted
execution site is the main disadvantage of this approach.

12 Mobile agents for telecommunication applications

TTP

/f\\

0.0
p1p2p3

Figure 3. Situation with 4 participants and a TTP

3.2 Cryptographic secure distributed computing

The second option is the use of cryptographic techniques (as surveyed in Section
2) that make the use of a TTP superfluous.

The trust requirements are really minimal: every participant p, trusts its own
execution site £, and expects that the other participants provide correct values for
their own inputs.

Although this option is very attractive, it should be clear from the previous
sections and from [NEV 00] that the communication overhead is far too high to be
practically useful in a general networked environment. High bandwidth is required
between all of the participants. For the case of 4 participants, the situation can be
summarized as shown in Figure 4.

Figure 4. Situation with 4 participants without a TTP

3.3 A virtual trusted third party

Finally, our solution tries to combine the two previous options: the communication
overhead of SDC-techniques are remedied by introducing semi-trusted execution
sites and mobile agents.

In this approach, every participant p, sends its representative, agent a, to a
trusted execution site Ej. The agent contains a copy of the private data x, and is
capable of running a SDC-protocol.

It is allowed that different participants send their agents to different sites; the
only restriction being that the sites should be located closely to each other, i.e.
should have high bandwidth communication between them.

Implementing secure distributed computing 13

Of course, every execution site needs a mechanism to safely download an agent.
However, that can be easily accomplished through conventional cryptographic
techniques.

The amount of large distance communication is moderate: every participant
sends its agent to a remote site, and receives the result from its agent. The agents
use a SDC-protocol, which unfortunately involves a high communication
overhead. However, since the agents are executing on sites that are near each other,
the overhead of the SDC-protocol is acceptable. For a situation with 4 participants,
we could have the situation as depicted in Figure 5.

El E2
®----@

o O o O
pl p2 p3 pd
Figure 5. Situation with 4 participants and a virtual trusted third party

No high bandwidth communication between the participants is necessary, and
there is no longer a need for one single trusted execution site. p,, for example, does
not need to trust site £,. The agents that participate in the secure computation are
protected against malicious behaviour of other (non-trusted) execution sites by the
SDC-protocols. That is sufficient to make this approach work.

Moreover, in contrast with the approach where one uses an unconditionally
trusted third party, the trusted sites are not involved directly. They simply offer a
secure execution platform: the trusted hosts do not have to know the protocol used
between the agents. In other words, the combination of mobile agent technology
and secure distributed computing protocols makes it possible to use generic
trusted third parties that, by offering a secure execution platform, can act as trusted
third party for a wide variety of protocols in a uniform way.

Finally, the question remains whether it is realistic to assume that participants
can find execution sites that are close enough to each other. Given the fact however
that these execution sites can be generic, we believe that providing such execution
sites could be a commercial occupation. Various deployment strategies are
possible. Several service providers, each administering a set of geographically
dispersed “secure hosts”, can propose their subscribers an appropriate site for the
secure computation. The site is chosen to be in the neighbourhood of a secure site
of the other service providers involved. Another approach is to have execution
parks, offering high bandwidth communication facilities, where companies can
install their proprietary “secure site”. The park itself could be managed by a
commercial or government agency.

14 Mobile agents for telecommunication applications

4. Case study: second price auctions

In this example we consider the case of a second price auction, where there is one
item for sale and there are n bidders. The item will only be sold if the bid of one
participant is strictly higher than the other bids. In all other cases there is no
winner. The clearing price is the second highest bid. The requirements for this type
of auction are the following:

— if there is no winner, do not reveal anything;

— if there is a winner:
—reveal the identity of the highest bidder, but hide the highest bid;
—reveal the 2nd highest bid, but hid the identity of the 2nd highest bidder;
— do not reveal any other information.

Our goal is to estimate the communication overhead of an implementation of
secure distributed second price auctions with the protocol proposed by Franklin
and Haber (Section 2.4). The auction is designed as a boolean circuit and the
communication overhead for secure circuit evaluation is estimated. The
communication overhead is determined by the following steps in the protocol:

— broadcast of the encrypted input bit of each participant;

— evaluation of an AND gate:
— broadcast of the encrypted bits E(b), E(c);
—broadcast of the decryption witnesses W (i), W.(V');
— broadcast of the blinded W ;

— broadcast of the output decryption witnesses.

The associated communication overhead is:

—2-INl-in, - n for the broadcast of the input bits;
— 8- INI - n for the evaluation of an AND gate;
—IN1- out - n for the decryption broadcast.

where |V is the length of N in bits, which is the same as the number of bits needed
to represent an element of Z_, in, is the number of input bits of participant i, n is
the number of participants and out is the number of output bits of the circuit. In

Table 1. Network overhead of secure second price auctions

n |4 16 32

Overhead (MB) | 15 1000 8000

Implementing secure distributed computing 15

order to estimate the communication overhead, we need to be able to determine the
number of AND gates in the boolean circuit (remember that each OR gate can be
implemented with AND and NOT gates).

For three participants X, Y and Z, the boolean circuit is shown in Figure 6. The
inputs to the circuit are 32-bit bids. The output is the identity of the winner,
represented by the bits R1 and RO (R1R0 = 00 no winner, 01 winner is X, 10 winner
is Y, 11 winner is Z), and the clearing price. If there is no winner, the clearing price
is set to zero. To determine the winner, the circuit uses three comparators and a
number of AND and OR gates. To determine the clearing price, four multiplexers
are used. Consider the situation where X makes the highest bid. In this case G1 /\
G2=1,L1/\G3=0,L2/\ L3 =0and R1R0 = 10, so the second input to the final
multiplexer will be chosen. The input on this line is determined by the bids made
by Yand Z. If Y > Z then G3 = 1 and Y will be selected as the clearing price. In the
other cases (Y < Z or Y = Z) Z will be the clearing price.

For n > 3 participants, the circuit changes as follows. The number of
comparators needed is now (3) =7 - (n — 1)/2 and each comparator has 434 AND
gates. The final multiplexer will need to distinguish between n + 1 different cases,
i.e. n possible winners or no winner at all. The other n multiplexers are there to
select the clearing price out of n — 1 bids when there is a winner. The number of
AND gates needed for each multiplexer as a function of the number of inputs m is
shown in Figure 7. Besides the comparators and the multiplexers, some additional
AND and OR gates are needed. However, the number of these gates is negligible
compared to the number of gates needed for the comparators and multiplexers. In
summary, the circuit has a total gate complexity of O(n?).

The results of estimating the communication overhead for this circuit as a
function of the number of participants n are summarized in Table 1.! Franklin and
Haber’s protocol is linear in the number of broadcasts, so the total message
complexity is O(n®). However, it must be noted that this only holds on a network
with broadcast or multicast functionality, such that the communication overhead
of sending a message to all participants is the same as that of sending a message to
a single participant. In absence of such infrastructure, the total message
complexity is O(n?).

The figures in Table 1 show that the mobile agent approach for implementing
SDC protocols makes sense: the communication overhead is feasible on a LAN,
but prohibitive over the Internet.

5. Conclusion

This paper shows how the use of semi-trusted hosts and mobile agents can provide
for a trade-off between communication overhead and trust in secure distributed

1. We choose INI to be 1024 bits.

16

Mobile agents for telecommunication applications

Figure 6. Boolean circuit implementation of second price auctions

log,(m)

NERNER

xcg

(652 'eg2(m +1_34) AND gates

Figure 7. Number of AND gates needed in a multiplexer

X Y z
X 61
comp
L1
X G2
COMP
L2
y G3
comp
L3
— d heeed
™ L) L
u
Y 1x
R i
M
x |u
X
—
Yim
u
X4 x
-)
e 32 bits
MUX
———— 1bit l
PRICE R1 RO

Implementing secure distributed computing 17

computing. There is no need for one generally trusted site, nor does the program
code have to be endorsed by all participants. The trusted execution sites are
generic and can be used for a wide variety of applications. The communication
overhead of secure distributed computing protocols is no longer prohibitive for
their use since the execution sites are located closely to each other.

REFERENCES

[ABA 90] M. ABabl, J. FEIGENBAUM, “Secure Circuit Evaluation, a Protocol Based on
Hiding Information from an Oracle”, Journal of Cryptology, 2(1), p. 1-12, 1990.

[CAC 00] C. CACHIN, J. CAMENISCH, J. KiLIAN, J. MULLER, “One Round Secure Computation
and Secure Autonomous Mobile Agents”, submitted to /CALP 2000.

[CHA 87] D. CHAuUM, |. DAMGARD, J. VAN DE GRAAF, “Multiparty Computations Ensuring
Privacy of Each Party’s Input and Correctness of the Result”, in Advances in
Cryptology — CRYPTO ‘87 Proceedings (Lecture Notes in Computer Science, Vol.
293), ed. C. Pomerance, p. 87-119, Springer-Verlag, New York, 1988.

[CHO 95] B. CHOR, O. GOLDREICH, E. KusHILEVITZ, M. SUDAN, “Private Information
Retrieval”, Proceedings of 36th IEEE Conference on the Foundations of Computer
Science (FOCS), p. 41-50, 1995.

[CRA 99] R. CrRAMER, “An Introduction to Secure Computation”, in LNCS 1561,

p. 16-62, 1999.

[EVE 85] S. Even, O. GoLDREICH, A. LEmpEL, “A Randomized Protocol for Signing
Contracts”, Communications of the ACM, vol. 28, 1985, p. 637-647.

[FRA 93] M. FrankLIN, “Complexity and Security of Distributed Protocols”, Ph.D. thesis,
Computer Science Department of Columbia University, New York, 1993.

[FRA 96] M. FRANKLIN AND S. HABER, “Joint Encryption and Message-efficient Secure
Computation”, Journal of Cryptology, 9(4), p. 217-232, Autumn 1996.

[GOL 87] O. GoLDREICH, S. MicALl, A. WIGDERSON, “How to Play any Mental Game”,
Proceedings of 19th ACM Symposium on Theory of Computing (STOC),

p. 218-229, 1987.

[GOL 87b] O. GoLprEicH, R. VAINISH, “How to Solve any Protocol Problem: an Efficiency
Improvement”, Proceedings of Crypto ‘87, LNCS 293, p. 73-86, Springer-Verlag, 1987.

[LOU 99] S. Lourero, R. MoLva, “Privacy for Mobile Code”, Proceedings of the
Workshop on Distributed Object Security, OOPSLA ‘99, p. 37-42.

[NEV 00] G. NEeven, F. Piessens, B. DE DEckeRr, “On the Practical Feasibility of Secure
Distributed Computing: a Case Study”, Information Security for Global
Information Infrastructures (S. Qing and J. Eloff, eds.), Kluwer Academic
Publishers, 2000, p. 361-370.

[NIS 99] N. Nisan, “Algorithms for Selfish Agents”, Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March
1999, p. 1-15.

18 Mobile agents for telecommunication applications

[SAN 98] T. SANDER, C. TscHUDIN, “On Software Protection via Function Hiding”,
Proceedings of the Second Workshop on Information Hiding, Portland, Oregon,
USA, April 1998.

[SAN 98b] T. SANDER, C. TscHUDIN, “Towards Mobile Cryptography”, Proceedings of the
1998 IEEE Symposium on Security and Privacy, Oakland, California, May 1998.

[YUN 00] T. SANDER, A. YOUNG, M. Yung, “Non-Interactive CryptoComputing for NC'",
preprint.

Chapter 2

Network domain agency for QoS
management in OSPF configured

networks

Farag Sallabi and Ahmed Karmouch

Multimedia Information and Mobile Agents Research Laboratory, School of Information
Technology and Engineering, University of Ottawa, Canada

1. Introduction

Recent multimedia applications require stringent values of QoS. Introducing
high quality video and audio signals has made it difficult for the existing infra-
structure of the Internet to cope with those multimedia applications.
Furthermore, recent applications are associated with user interactions, and the
ability to browse different scenarios at the same time. In fact, these services made
the researchers look for other solutions and even make changes to the existing
Internet infrastructure. The problem of the QoS in the Internet requires a close
cooperation between different protocols and components. For example, in the
network there should be cooperation between the session setup protocols and the
routing protocols to establish a path that can handle the QoS request. This also
requires the cooperation of admission control, packet classifiers and packet
schedulers.

The literature on QoS contains many proposals for fulfilling the requirements
of real-time applications. All proposals agree that the best way to guarantee QoS is
to provide some sort of resource reservations in the network elements. Resource
reservations could be done immediately or in advance, to reflect human life in
arranging and monitoring their activity schedules. To increase the admission rate
of real-time applications several proposals for improving the routing protocols, to
be QoS sensitive, have been suggested.

20 Mobile agents for telecommunication applications

In previous work [SAL 99b] we have developed end-to-end resource
reservations architecture. The architecture treats the Internet as a collection of
autonomous systems that are configured and operated by the OSPF protocol. In
OSPF, each autonomous system can be divided into areas interconnected by a
backbone area. Therefore, we have adopted this configuration scheme and
introduced a domain agency in each area (domain). In fact, if these areas are
selected properly we can manage their network resources effectively, and obtain a
better scalability for admitting immediate and advance resource reservations. We
state in this paper a framework, which outlines the operation of the domain
agencies in the OSPF configured networks.

In this paper, we present architecture for network domain agency, which we have
designed to handle the resource reservations and QoS routing. We have used a
different approach for QoS routing, where the underlying routing protocol in the
network works as the background protocol for routing background packets. The
QoS routing is invoked only when there is need for resource reservations. Resources
in the domain are partitioned between best-effort service and QoS service.

The rest of this paper is organized as follows. In Section 2, we highlight the
benefits of using agent technology in QoS managements. In Section 3, we state the
mechanism of the end-to-end resource reservations and resource managements.
The domain agency architecture is presented in Section 4. Section 5 explains the
operation of the domain agencies in response to AS changes. In Section 6, we
discuss the implementation directions. Finally, we conclude the paper in Section 7.

2. Supporting QoS protocols with software agents

Quality of service provisioning in computer networks requires at least two
processes, QoS negotiation process and resources setup process. The two
processes require the exchange of messages between end systems (which may
require the presence of the user), and between end systems and the network
elements. The negotiation process continues in exchanging messages until a final
decision is made. In fact, this process may take a long time to finish, depending on
the resources’ availability. If we account for the fast expansion of the Internet, the
new sophisticated multimedia applications and the fast growing number of
Internet users, we realize that there is a non-negligible amount of traffic, due to
QoS negotiation and resources setup, which puts extra load on the network
resources. The alternative way of using classical QoS negotiation and resource
setup is to use Intelligent Agents (IA), which work on behalf of the user or another
entity to complete a certain task. In the negotiation process agents are provided
with the necessary information that enable them to act intelligently and accom-
plish their job without the intervention of users.

There are two types of agents; static agents and mobile agents. Static agents
accomplish their task, in the host node, without the need to move to another node,

Network domain agency 21

while mobile agents have the ability to move from node to another node in order to
cooperate with other agents and/or software to complete a certain job. In fact, if
those types of agents are used effectively in the network domains, the QoS
negotiation and resources setup processes could be made much easier, scalable,
flexible and fast. Following is a short description of the agent technology.

Pattie Maes, one of the pioneers of agent research, defined agents as
“Autonomous agents are computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals or tasks for which they are designed” [MAE 96]. The
distributed nature of the Internet has contributed in the addition of mobility to be
one of the agent behaviours. In fact, agents should be able to communicate and
cooperate with local and remote agents and should be able to migrate to remote
hosts to operate closer to physical data stores [FAL 98].

Nwana defined mobile agents as “Computational software processes capable
of roaming wide area networks (WANSs) such as the www, interacting with foreign
hosts, gathering information on behalf of its owners and coming ‘back home’
having performed the duties set by its user” [NWA 96]. These duties may range
from a flight reservation to managing a telecommunication network. The idea of a
self controlled program execution near the data source has been proposed as the
next wave to replace the client-server paradigm as a better, more efficient and
flexible mode of communication [PHA 98]. Agents exhibit some properties that
make them a best candidate for being used in the QoS management in computer
networks. Those properties have been defined by Nwana [NWA 96] that include
but are not limited to the following:

— Autonomy: The ability to operate without human intervention;

— Cooperation: The ability to interact with other agents and or human via some
communication language;

— Learning: The ability to learn as they interact with external environment.

3. Resource allocation in network domains

Figure 1 exhibits a sample network with network domains. The resource
management mechanism relies on finding the best path from the client to the
server, then allocating the necessary resources. The network domains are the same
as OSPF [MOY 98] domains/areas. In the OSPF, each router in a certain domain
maintains an identical database describing the domain’s topology. Therefore, any
router in the domain can calculate the routing table of any other router. This
property has been taken into account in designing the QoS routing agent
(described later). The following sections describe the resource reservations
process from the receiver to the sender.

22 Mobile agents for telecommunication applications

3.1 Negotiation phase

The negotiation process is further divided into two stages. The first stage is
between the receiver and the sender, and the second stage is between the end
systems (receiver and sender) and the domain agencies in the network domains.
This process includes the following types of messages:

— Request Message: This message is carried by the presentation agent, which
takes it to the server for negotiation. It contains the user requirements.

— Path Message: This message is carried by the presentation agent and is sent
from the sender to the domain agency in the sender domain. The message carries
the traffic and time specifications, in addition to other information. After the
agency finishes its job, it forwards the message to the next domain agency in the
way to the receiver until it gets to the receiver.

— Reserve Message: The receiver sends this message just after it receives the
Path Message. The message follows the reverse path of the Path Message and
carries the same information. The Reserve Message is treated as a reserve
confirmation message.

Intra-Domain Agency

Inter-Domain Agency

! path selected by
g Inter-domain

Multimedia PC

Figure 1. Sample network domains

Network domain agency 23

3.1.1 Receiver-sender negotiation

The negotiation process starts as soon as the user involves his/her request. The
User Request launches a Presentation Agent (PA), which receives the user infor-
mation and works on behalf of the user to finish the negotiation process. Before
the PA goes to the sender(s) site, it consults the admission control unit in the
receiver side to make sure that the system can handle the user requirements. After
accomplishing this step the PA travels to the sender(s) carrying the information
that is common between the user requirements and the available system
resources. When the PA arrives at the sender side, it negotiates with the sender the
requested scenario and the QoS parameters. The result of the negotiation will be
as follows:

PA, = User Requirements N Available System Resources [1]
Scenario (Tspec) = [Scenario, (Tspec) | Scenario, (Tspec) = PA,] [2]
i=1,..,n

When Scenario, (Tspec) has the highest QoS parameters.

Scenario (Tspec, Timespec) = [(Scenario (Tspec) + User start time) |
(Scenario (Tspec) + User start time) = Available Server Resources at
specified time duration] [3]

Equation [1] is a result of applying admission control at the receiver side; the
result should satisfy the user requirements in terms of QoS and presentation time,
otherwise the user is instructed to select another parameter. Then in equation [2] the
sender retrieves, from the database, the scenario that has the best traffic
specifications (Tspec) and suits the PA’s requirements. Then in equation [3] the
sender submits the selected scenario together with the start time (supplied by the
PA) to the admission control in the sender to admit the new scenario. If the scenario
is accepted, the sender starts negotiating with the network. If the scenario is not
accepted, the sender re-negotiates with the PA alternative QoS parameters and
starting time. If all alternatives are not accepted the PA returns carrying a reject
message.

3.1.2 End system-network negotiation

After finishing the receiver-sender negotiation, the PA carries the Path Message to
the domain agency in the sender domain. The Path Message carries the session’s
Tspec, time specification (Timespec) and session addresses. The Tspec is used by
the routing agent and admission control in the Domain Agency (DA) to prevent
over-reservation, and admission failure. The DA establishes a QoS route
(according to the Tspec and Timespec) in the domain towards the receiver(s), and

24 Mobile agents for telecommunication applications

reserves resources temporarily. Then it forwards the PA to the next DA in the way
to the receiver. This process continues until the PA reaches the receiver. At this
time, the receiver sends a Reserve Message to the DA in its area. The DA handles
the Reserve Message as a reserve confirmation, and makes the necessary updates
in the reservation state. Then the Reserve Message is forwarded to the next DA
towards the sender and sends confirmation back to the previous DA or receiver.
The process is repeated until the Reserve Message reaches the sender.

3.2 Resource reservation phase

This phase is concerned with making the actual resource reservations in routers
and end systems, and maintaining them. Each domain agency and end system
checks its reservation state for due sessions. If there are sessions ready to start, the
DA sends messages to the RSVP on routers in its domain that are involved in the
session. The messages set some parameters in packet classifiers and packet sched-
ulers to obtain the desired QoS. The domain DA is also responsible for main-
taining the reserved resources by sending refresh messages at specified time
intervals. In the end systems, a Resource Reservation Agent (RRA) sets para-
meters in its node to provide the due sessions with its requested QoS. It also sends
a refresh message to the DA. This phase includes the following messages:

— Start Message: Just before the playback of every session, the domain agency
sends a start message to the routers involved in this session, to set some parameters
in packet classifiers and packet schedulers.

— Refresh Message: This message is sent from the receiver to maintain the
reservations. The message is sent at certain time intervals to the domain agencies,
and the agencies are responsible for sending refresh messages to the RSVP in the
routers. Time-out of refresh messages will cause the domain agency to teardown
the session.

— Session Teardown Message: This message can be initiated by the sender or
by the receiver. It ends a specific session and releases the resources used by this
session.

3.3 Adaptation phase

Adaptation is concerned with adjusting reserved resources according to user inter-
actions. The user can interactively participate in the presentation of the multi-
media application, where he/she can use VCR like control buttons, or link to other
scenarios from the current scenario; the user may also make changes to reserved
resources not yet started. These interactions will certainly introduce a change in
the reserved resources, either in QoS parameters or in time duration. Any user
interaction is received by the RRA that makes the necessary calculations to find
the change. Then the request is forwarded to the admission control in the receiver.

Network domain agency 25

If the change is accepted, the receiver RRA sends the user interaction request to
the sender RRA. This step is necessary to check first if the sender can handle the
user interaction request. The sender RRA responds to the receiver RRA by either
accept or reject. If accepted the receiver RRA informs the domain agencies with
the change for adapting the reserved resources. If one or more network domains
reject the interaction request, a best effort service could be used. This phase
includes the following message:

— User Interaction Message: This message is sent during the active or the
passive state of the session. If there is any user interaction, the action is first
negotiated between the receiver and the sender. If it is accepted, it is forwarded by
the receiver to the domain agencies to update the reserved resources. The
interaction request may come at a time where all resources are exploited; at this
time the best-effort service can be used.

4. Domain agency architecture

The resource reservations scheme described in the previous section relies on domain
agencies, in network domains, to manage domain resources. The domain agency
receives resource reservations requests from end systems and agencies in other
domains. This architecture has been adopted for several reasons. The first reason is
to provide better advance and immediate resource reservation scalability. In previous
resource reservation architectures [BRA 97], every network element is responsible
for reserving resources and maintaining them. Due to the high volume of resource
reservations, this would overload the routers and affect their performance. The
problem is getting even worse when advance reservations have been permitted for
users, which encourage many users to reserve resources in advance. Therefore, by
this architecture the agency will take care of resource reservations and maintain their
states. The other reason for using this architecture is the QoS route calculations.
Sessions that need specific QoS should send their requests to the domain agency,
which calculates the best-path in the domain and reserves the necessary resources in
this path. The traditional routing protocol works in its normal way for forwarding
background traffic. This will relieve the QoS routing protocol from finding the QoS
routes on demand, as other proposals suggest [APO 99b, CRA 98, SHA 98, WHA
96, ZHA 97]. The other reason for using domain agencies is that the domain agency
takes care of any problems in the domain and hides them from the end systems. In
the example of route failure, the domain agency handles it without informing the end
systems. The agency takes care of refresh messages as well, which allow us to
control the flow of the refresh messages from end systems to the domain agencies
and from the domain agencies to the routers within the domain. Figure 2 shows the
components of the domain agency. The agency should reside in any router except the
area boarder routers and there should be a backup domain agency.

26 Mobile agents for telecommunication applications

4.1 Domain Resource Reservation Agent

The Domain Resource Reservation Agent (DRRA) works as a coordinator in the
domain, where it receives the Path Message from the PA, and then it instructs the
DACA to provide the available resources. Then it submits the traffic and time
specifications together with the available resources to the QoSRA. The DRRA has
also interface to the RSVP, through which it receives and sends the messages to
RSVP in routers to setup QoS parameters and maintain reservations. The DRRA is
also responsible for updating the reservations state agent. This update can be
either adding accepted sessions or removing finished sessions. If the DRRA
receives any User Interaction Message it forwards it to the DACA.

QoSRA

Domain Agency

Router

DACA: Domain admission control agent
DRRA: Open shortest path first

OSPF: Open shortest path first

PC: Packet classifier

PS: Packet scheduler

QoSRA: Quality of service routing agent
RSA: Reservations state agent

RSVP: Resource reservations protocol

Figure 2. Domain agency architecture

Network domain agency 27

4.2 Quality of Service Routing Agent

The Quality of Service Routing Agent (QoSRA) has been introduced to find the
best-path that satisfies the QoS needs of the multimedia applications [SAL 99a].
The QoSRA runs a modified dijkstra algorithm based on domain topology
obtained from the OSPF, and the available link resources obtained from the
domain admission control agent. The QoSRA is based on the OSPF property,
which enables any router to calculate the routing table of any other router.
Therefore, all resource reservations requests are sent to the domain agency that
instructs the QoSRA to construct the QoS path. In fact, this is a new departure
from other proposals [APO 99a, CRA 98, SHA 98, WHA 96, ZHA 97] that
suggest enhancing the existing routing protocols to support QoS. In these
proposals the calculation is done by every router, which overloads the routers and
makes the advance reservations almost impossible, because of the scalability
problem, and overhead result from calculating advance routes.

Two QoS routing calculation approaches are considered in the literature so far
[APO 99b]. The first one is the on-demand calculation. In this approach the QoS
path is calculated at the arrival of every request (requests that demand constraint
QoS), this calculation is done by every router receiving the request. This approach
is not scalable in the fast growing Internet. This situation is even worse if the QoS
requests include advance reservations. The second approach is to pre-compute
paths to all destinations for each node. Then at the arrival of every request, the path
that satisfies the requested QoS is selected to forward the session’s packets. This
approach has many disadvantages. The QoS paths should be frequently pre-
computed to reflect the current available resources. For every arrived request, the
QoS paths need to be searched for the suitable path, which adds extra processing.
Due to the high demand on QoS, the pre-computed paths are outdated and do not
reflect the currently existing resources. Furthermore, the pre-computed paths are
useless for advance reservations.

4.3 Domain Admission Control Agent

The Domain Admission Control Agent (DACA) has two functions [SAL 99a, SAL
99c]. The first one is to find the available link resources of all links in the domain
at specified time intervals and submit this information to the DRRA (to be used by
the QoSRA). The second function is to receive user interaction requests from the
DRRA and apply admission control algorithm.

The idea of monitoring the available link capacities is as follows. At the
beginning the QoS routing agent receives the domain topology from the OSPF and
submits it to the DRRA. The DRRA inquires about each link capacity and submits
the complete information to the reservations state agent. At each resource
reservation request, the admission control finds the available link resources, for

28 Mobile agents for telecommunication applications

the specified time intervals, and then gives this information to the DRRA. The
QoS routing agent constructs the best-path for this request and submits the
resulting path to the DRRA. The DRRA reserves the resources temporarily until it
receives a confirmation message from the receiver.

4.4 Reservations State Agent

The Reservations State Agent (RSA) stores all accepted reservation states. For
better performance, the RSA is divided into two parts. The first part keeps track of
link reservation states, while the second part keeps track of aggregated link reser-
vation states. Figure 3 shows a snapshot of resource reservations made in a single
link. The numbers indicate session’s id, while « indicates a new session asking for
admission. As we can see in the figure the duration as well as the bandwidth of
each session is clearly defined. Therefore, if we aggregate the reservation state of
every link, we get a summary database as described in Figure 4. This summary
database enables the domain admission control agent to get quick values of the
available link resources.

The RSA periodically checks the reservation database for due sessions; if there
are any sessions ready to start, it sends the session’s traffic specification to the
DRRA that forwards them to the RSVP in the routers. The RSVP then set some
parameters in the packet classifier and packet scheduler to achieve the requested
QoS. The time of the playback of the scenario is controlled by the RSA, where it
sends a start and finish message to the DRRA.

Bandwidth
1
1
]
1 o
|
16
I
g 8
4 j ' ’
3 :
2 m— i
1 H >
Now Lookahead L [P Time

Figure 3. Snapshot of reservation state of a single link

5. Domain agency communications protocol

In previous sections, we saw how domain agencies receive and send QoS
management messages. In this section we state a communications protocol that
enables domain agencies to exchange messages about domain changes and

Network domain agency 29

Reserved Resources

>
Link ID

Time

Figure 4. Dimensions of the reservation database

policies. In fact, as the OSPF domains change, by the network administrators, the
domain agencies should react quickly to these changes in order not to lose any
information and to adapt to the new configuration. The following section describes
the communications protocol.

5.1 Interactions between domain agencies

Assume that there is one AS and one DA that manages the whole AS resources. As
soon as the AS is split into areas, the Q0SRA will be aware of this separation from
the OSPF. The QoSRA informs the DRRA with the new AS configuration. From
this configuration, the DRRA knows the addresses and number of the new areas.
Then it duplicates and sends one DA to each new area including the backbone (the
backbone is an area with address 0.0.0.0). Each DA resides in a router other than
the area border router.

After each DA settles in its domain, it needs to communicate back with the
parent DA to get its information. The DRRA in the child DA gets the topology data
from the QoSRA, and sends this information to the DRRA in the parent DA. The
DRRA in the parent DA gets the information related to each child DA from the
RSA, according to topology database of each child DA, and then sends it back to its
child DA. At the same time the parent DA constructs addresses table for the new
DAs, and sends this table to every DA. This step is important to enable the DAs to
communicate with each other. The parent DA should fall into one of the new areas
including the backbone. Figure 5 shows the parent DA in the backbone and other
DAs communicate with it to fetch their information.

There are five packet types that are used to convey the information between
domain agencies.

— Database description packet: This packet is sent by the child DA to the
parent DA. It carries the topology database of the child’s domain.

30 Mobile agents for telecommunication applications

Figure 5. Interactions between domain agencies and the parent DA

— Reservations State: For each child DA, the parent DA collects the
reservations state from the RSA and sends them back to the child DA. The
message contains also the addresses table of the other DAs.

— Policy and Service Agreement: Domain agencies need to cooperate with each
other to set up policies that each DA should follow. DA could also request another
DA to reserve a certain path with certain bandwidth.

— Hello Packet: Every DA should send Hello packets to its neighboring DAs,
to maintain relationships and check reachability. The DAs should also send Hello
packets to end systems, to identify themselves and maintain reachability.

— Acknowledgment Packet: This packet is sent between the parent DA and the
child DA. It has different interpretation as shown in Figure 6.

5.2 Status of current (immediate and advance) reservations

Because of the currently running sessions and the current reservations, the domain
partitioning and the exchange of configuration messages should not create any
disruptions for the currently running sessions, and the current reservations should
be valid for the new configuration as well, otherwise the architecture would be
useless. Figure 7 [MOY 98] presents an AS before and after partition. In Figure 7a
all network elements belong to the same area (AS). In this configuration, only one
DA manages the AS resources. If this AS is split into several areas as shown in
Figure 7b, the DA will react quickly and dispatch DA for each new area. All
borders that have been introduced to create areas are virtual, the location and inter-
faces of the network elements have not been changed. Therefore, the current
resources reservations will also be applicable for the new configuration, and the
active sessions will not be affected.

Network domain agency 31

6. Implementation directions and experience

As we have stated previously, the end-to-end resource reservations and QoS
management relies largely on the performance of the domain agency. In the end
systems, we can easily control the scalability issue and the performance of the
systems, especially with the appearance of the new machines with powerful
speeds and storage. So the main problem is still concentrated in the network
resources, with the increasing number of users and the emergence of sophisticated
multimedia applications. Therefore, in our domain agency architecture we focus
on the performance of the individual agents and the scalability of the domain
agency. For these reasons, before we start implementing the DA, we have tested
the QoSRA and the DACA using simulations to verify their functionality. In the
following sections, we comment on the simulations and the next section presents
the implementation directions.

Parent DA Child DA
After child has settled
‘% in its domain
Poll child for topology Ack

database

Link-state Database Send link-state
/ Database
Send reservations Reservations state
state \

Ack Ready to start

Go ahead message *’

Figure 6. Parent DA and child DA setup

6.1 Simulation experience

We have performed simulations for single path admission control with and
without user interactions [SAL 99c] and then applied the QoS routing algorithm
on a certain network topology to get multiple paths (QoS paths) [SAL 99a], and
then we compare the results of the simulations. The performance measures for the
simulation was to test the advance and immediate rejection probabilities, the
preemption probability and to compare the duration of the admitted advance and

32 Mobile agents for telecommunication applications

immediate flows. Table 1 shows the results of the single path simulation and Table
2 shows the results of the multiple paths simulation.

o2

I ose
[&m3) ™

N4
NIl

SLIP
Nio o ke g _
7.a. Before partition 7.b. After partition
Figure 7. OSPF AS domain
Table 1. Simulation results for single path
Look-ahead Time
0 250 500 1000
Advance Rej. Prob. .07 .07 .07 .07
Immediate Rej. Prob. 42 5 18 .83
Preemption Prob. .54 13 .06 .02
Table 2. Simulation results for multiple paths
Look-ahead Time
0 250 500 1000
Advance Rej. Prob. .0 0 .0 .0
Immediate Rej. Prob. 0 .07 1 -125
Preemption Prob. .56 .08 .04 .02

The offering load for single path admission control is 170%, while for multiple
paths it is 200%. As we can see from the tables, there is improvement in the

Network domain agency 33

immediate and advance rejection probabilities in the multiple paths than in the
single path. The preemption probability is also slightly improved and depends on
the look-ahead time (the time that we account in admitting immediate flows). We
noticed also that the duration of the admitted advance flows is significantly
improved, i.e. the flows with long time duration have big chance to be admitted in
the multiple paths than in the single path, see Figure 8 and Figure 9.

Advance Duration (x1000)

1.5 2
time {(seo) (x1le+06)

Figure 8. Admitted advance duration for single link

Adv Duvxation {(x1000) (s)

0O # N e down
s
3
H
]
H
i
1
i

0 0.5 1 1.8 2 2.8 a3
time {seo) {x3100000)>

Figure 9. Admitted advance duration using QoS routing agent

1(150)

2(150)

Where: X (Y) are linked Id and Link capacity, respectively

Figure 10. Simulated network topology

34 Mobile agents for telecommunication applications

In addition, the average link utilization in multiple paths is high according to
the QoS routing algorithm that we have used in calculating the best path [SAL
99a]. Figure 10 shows the network topology used in the simulation and Table 3
depicts the average utilization of each link.

6.2 Implementation directions

From the promising results obtained for the simulations, we moved to the imple-
mentation stage. As we have stated in previous sections, domain agencies need to
communicate with each other, and agents in the same domain agency exchange
messages with each other. Therefore, we have adopted the FIPA-OS (Foundation
for Intelligent Physical Agents-Open Source) as an agent platform. FIPA-OS is a
product from Nortel [NOR 00], which implements the FIPA specifications [FIP
96]. Figure 11 shows how the domain agency is mounted on top of the FIPA-OS.
According to the software agent definition and properties, we have configured the
domain agency with Agents that provide high performance, scalability and flexi-
bility. Agents in the domain agency communicate with the software (OSPF and
RSVP) using agent wrappers. The OSPF agent wrapper gets information from the
OSPF protocol and submits them to the QoSRA. The RSVP agent wrapper relays
commands from the DRRA to the RSVP protocol, and forwards messages from
RSVP to DRRA.

Table 3. Average link utilization

Link Id Look-ahead Time

0 250 500 1000
Link 0 Ave. Util. .959 984 .988 .990
Link 1 Ave. Util. .369 767 782 787
Link 2 Ave. Util. .0 .0098 .015 .0279
Link 3 Ave. Util. .968 .993 .995 996
Link 4 Ave. Util. 495 .542 .543 .543
Link 5 Ave. Util. .830 934 .940 947
Link 6 Ave. Util. 129 .646 .683 705
Link 7 Ave. Util. .956 .982 .987 .989
Link 8 Ave. Util. 424 .540 538 .545
Link 9 Ave. Util. 367 778 .8 817

Network domain agency 35

uuopie[d u3dy SO-VdId L&ouaﬁv -mq

Figure 11. Using FIPA-OS as an agent platform

7. Conclusion

Network domains provide a better chance for network protocol developers to scale
their protocols and get control of the resources in the domain. The OSPF routing
protocol has the advantage of dividing an autonomous system into manageable
areas, where each node in the domain knows only the nodes in its domain. We have
considered this advantage in designing our resource reservation architecture and
assigned a domain agency in every domain. In this paper, we have provided a
framework, which enable domain agencies to react to area splitting and commu-
nicate with each other and with the end systems.

REFERENCES

[APO 99a] ApPosTOLOPOULOS G., GUERIN R., KAMAT S., ORDA A., TRIPATHI S., “Intra-Domain
QoS Routing in IP Networks: A Feasibility and Cost/Benefit Analysis”, Special Issue
of IEEE Networks on Integrated and Differentiated Services for the Internet,
September 1999.

36 Mobile agents for telecommunication applications

[APO 99b] ArostoLoPouLOs G., GUERIN R., KAMAT S., ORDA A., PRzYGIENDA T., WiLLIAMS D.,
"QoS Routing Mechanisms and OSPF Extensions”, RFC 2676, Experimental RFC,
Internet Engineering Task Force, August 1999.

[AUR 98] AURRECOECHEA C., CAMPBELL A., HAauw L., “A Survey of QoS Architectures”,
ACMI/Springer Verlag Multimedia Systems Journal, Special Issue on QoS
Architecture, Vol. 6, No. 3, p. 138-151, May 1998.

[BER 98] BERsON S., LINDELL R., BRADEN R., “An Architecture for Advance Reservations
in the Internet”, Technical Report, USC Information Sciences Institute, July 16,
1998.

[BRA 97] BRADEN R., ZHANG L., BERSON S., HERZOG S., JAMIN S., “Resource Reservation
Protocol (RSVP) — Version 1 Functional Specification”, RFC 2205, September 1997.
ftp://ftp.ietf.org/internet-drafts-ietf-rvsp-spec-16.ps

[CLA 92] CLARK D., SHENKER S., ZHANG L., “Support Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism”, Proceedings
Of ACM SIGCOMM’92, August 1992, p. 14-26.

[CRA 98] CRAWLEY E., NAIR R., RAJAGOPOLAN B., SANDICK H., “A Framework for QoS-Based
Routing in the Internet”, RFC 2386, August 1998.

[FAL 98] FaLcHuk B., “A Platform for Mobile Agent-Based Data, Access, Retrieval, and
Integration”, Ph.D. Thesis, University of Ottawa, December 1998.

[FER 95] FERrRARI D., GupTA A., VERTRE G., “Distributed Advance Reservation of Real-Time
Connections”, Fifth International Workshop on Network and Operating System
Support for Digital Audio and Video, Durham, NH, USA, April 19-21, 1995.

[FIP 96] http://www.fipa.org/, Established 1996.

[HAF 96] HaFiD A., BockMANN G., Dssoull R., “A Quality of Service Negotiation Approach
with Future Reservation (NAFUR): A Detailed Study”, Technical Report, University
of Montreal, Montreal, 1996.

[MAE 95] Mats P, “Artificial Life meets Entertainment: Interacting with Lifelike
Autonomous Agents”, Special Issue on New Horizons of Commercial and
Industrial Al, Vol. 38, No. 11, p. 108-114, Communications of the ACM, ACM
Press, November 1995.

[MOY 98] Moy J., “OSFP Version 2", RFC 2328, April 1998.

[NOR 00] http://www.nortelnetworks.com/products/announcements/fipa/, 2000.

[NWA 96] NwaNA H., “Software Agents: An Overview”, Knowledge Engineering
Review, Vol. 11, No. 3, p. 205-244, October/November 1996.

[PHA 98] PHAM V., KARMOUCH A., “Mobile Software Agents: An Overview”, IEEE
Communications Magazine, July 1998, p. 26-37.

[REI 94] REINHARDT W., “Advance Reservation of Network Resources for Multimedia
Applications”, Proceedings of the Second International Workshop on Advanced
Teleservices and High Speed Communication Architectures, 26-28 September
1994, Heidelberg, Germany.

Network domain agency 37

[SAL 99a] SaLLasl F., KaRMoucH A., “Immediate and Advance Resource Reservations
Architecture with Quality of Service Routing Agents”, Proceedings of Multimedia
Modeling (MMM’99), October 4-6, 1999, Ottawa, Canada.

[SAL 99b] SaLLaBl F,, KarmoucH A., “New Resource Reservation Architecture with User
Interactions”, Proceedings of IEEE Pacific Rim Conference on Communications,
Computer and Signal Processing, August 22-24, 1999, Victoria, BC, Canada.

[SAL 99¢] SaLLABI F., KARMOUCH A., “Resource Reservation Admission Control Algorithm
with User Interactions”, Proceedings of the Globecom ‘99, December 5-9, 1999,
Rio de Janeiro, Brazil.

[SCH 97] ScHeLen O., PINk S., “Sharing Resources Through Advance Reservation
Agents”, Proceedings of IFIP Fifth International Workshop on Quality of Service
(IWQo5°97), New York, May 1997, p. 265-276.

[SHA 98] SHAIKH A., RExFORD J., SHIN K., “Efficient Precomputation of Quality-of-Service
Routes”, Proceedings of Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV’98), July 1998, Cambridge, England,

p. 15-27.

[WHA 96] WHANG Z., CROWCROFT J., “Quality of Service Routing for Supporting
Multimedia Applications”, IEEE Journal on Selected Areas In Communications,
14(7), p. 1228-1234, September 1996.

[WOL 95] WoLF L., DELGROSSI L., STEINMETZ R., SCHALLER S., WITTING H., “Issues of Reserving
Resources in Advance”, Proceedings of NOSSDAV, Lecture Notes in Computer
Science, p. 27-37, Durham, New Hampshire, April 1995, Springer.

[ZHA 97] ZHANG Z., SoNcHEz C., SALkewicz B., CRAWLEY E., “Quality of Service Extensions
to OSPF or Quality of Service Path first Routing (QOSPF)”, Internet draft (draft-
zhang-qos-ospf-01.txt"”, work in progress, September 1997.

This Page Intentionally Left Blank

Chapter 3

Partitioning applications with agents

Oskari Koskimies and Kimmo Raatikainen

Department of Computer Science, University of Helsinki, Finland

1. Introduction

The environment of mobile computing is in many respects very different from the
environment of the traditional distributed systems of today. Bandwidth, latency,
delay, error rate, interference, interoperability, computing power, quality of
display, and other non-functional parameters may change dramatically when a
nomadic end-user moves from one location to another, or from one computing
environment to another — for example from a wired LAN via a wireless LAN [4]
(WLAN) to a GPRS [20] or UMTS [33] network. The variety of mobile worksta-
tions, handheld devices, and smart phones, which nomadic users use to access
Internet services, increases at a growing rate. The CPU power, the quality of
display, the amount of memory, software (e.g. operating system, applications),
hardware configuration (e.g. printers, CDs), among other things ranges from a
very low performance equipment (e.g. hand held organizer, PDA) up to very high
performance laptop PCs. All these cause new demands for adaptability of data
services. For example, palmtop PCs cannot properly display high quality images
designed to be looked at on high resolution displays, and as nomadic users will be
charged based on the amount of data transmitted over the GPRS network, they will
have to pay for bits that are totally useless for them.

Software agent technology has gained a lot of interest in the recent years. It is
widely regarded as a promising tool that may solve many current problems met in
mobile distributed systems. However, agent technology has not yet been
extensively studied in the context of nomadic users, which exhibits a unique
problem space. The nomadic end-user would benefit from having the following
functionality provided by the infrastructure: information about expected
performance provided by agents, intelligent agents controlling the transfer

40 Mobile agents for telecommunication applications

Figure 1. The adaptation triad

operations, a condition-based control policy, capability provided by intelligent
agents to work in a disconnected mode, advanced error recovery methods, and
adaptability.

The research project Monads [19] examines adaptation agents for nomadic
users [26]. In the project we have designed a software architecture based on agents
and we are currently implementing its prototypes. Our goal is not to develop a new
agent system; instead, we are extending existing systems with mobility-oriented
features. The Monads architecture is based on the Mowgli communications
architecture [25] that takes care of data transmission issues in wireless
environments. In addition, we have made use of existing solutions, such as FIPA
specifications [14] and Java RMI [27], as far as possible. However, direct use was
not sufficient but enhancements for wireless environments were necessary [3, 22].

By adaptability we primarily mean the ways in which services adapt
themselves to properties of terminal equipment and to characteristics of
communications. This involves both mobile and intelligent agents as well as
learning and predicting temporary changes in the available Quality-of-Service
(QoS) along the communications paths. The fundamental challenge in nomadic
computing is dynamic adaptation in the triad service—terminal-connectivity (see
Figure 1) according to preferences of the end-user.

The ability to automatically adjust to changes in the wireless environment in a
transparent and integrated fashion is essential for nomadicity — nomadic end-users
are usually professionals in other areas than computing. Furthermore, today’s
distributed systems are already very complex to use as a productive tool; thus,
nomadic end-users need all the support, which an agent based distributed system
could deliver. Adaptability to the changes in the environment of nomadic end-
users is the key issue. Intelligent agents could play a significant role in
implementing adaptability. One agent alone is not always able to make the

Partitioning applications with agents 41

decision how to adapt, and therefore adaptation is a cooperative effort carried out
by several agents. Thus, there should be at least some level of cooperation between
adapting agents.

Wireless Link

Crdit | t
Partitoned Apphcation

o
(3

o< Component Agent +—— Agent Communication

Figure 2. Application partitioning

Dynamic adaptation of a service to the properties of terminal equipment and
available communication infrastructure is an attractive feature. We have
previously explored predictive adaptation to available bandwidth with a Web
browsing agent [26]: When the network connection is slow or predicted to become
slow, the browser agent may automatically use different kinds of compression
methods or even refuse to fetch certain objects.

We are now also examining adaptation to terminal equipment through
application partitioning. With application partitioning we refer to the idea of
dividing an application into component agents that communicate using e.g. FIPA
ACL [16] messages. In this way, the application is running in a distributed fashion
on both sides of the wireless link, as depicted in Figure 2.

Partitioning can be either static, partially dynamic or fully dynamic. Static
partitioning, where component agent configuration is determined at compile time
and cannot be changed, is of little interest to us. In partially dynamic partitioning,
the location of a component agent is determined dynamically during application
initialization, but cannot change during the application session. The most
interesting is fully dynamic partitioning, which allows the component agents to be
moved at any time during the application session. This is useful when bandwidth
(or other dynamic resources such as memory) changes radically, and the change is
expected to last for some time. For bandwidth, such a drastic change would
typically be a vertical handover or a disconnection.

Partially dynamic partitioning is sufficient for adapting to different terminal
types, but adapting to bandwidth changes (including disconnections) requires
fully dynamic partitioning. Note that fully dynamic partitioning requires the
component agents to be mobile, whereas partially dynamic partitioning does not.

42 Mobile agents for telecommunication applications

2. Related work

In the 90s the notion of nomadic computing was introduced to launch
information processing services accessible anytime and anywhere. According to
Prof. Leonard Kleinrock [24], “Nomadic computing and communications will
dramatically change the way people access information — and a paradigm shift in
thinking about applications of the technologies involved. It exploits the advanced
technologies of wireless, the Internet, global positioning systems, portable and
distributed computing to provide anytime, anywhere access. It is beginning to
happen, but it makes everything much harder for the vendors.” He identified the
following drivers:

Increased productivity: In many situations, the expenses associated with hiring,
integrating, and developing staff account for much of the total cost entailed
in deploying a given organizational capability.

“The personal touch”: Another motivator is the social requirement for personal
contact. The requirement for movement is rooted in the desire to meet, take
the measure of, and enjoy the company of others.

Personal environment: The many parts of our lives — our family life, business
life, personal social life, business social life, etc. — each frequently involves
a different physical location. People move between these places as they
move between the different aspects of their lives. Doing the appropriate
thing in the appropriate place is key to the way many people organize their
lives.

Interactivity: Much of the communication in intense human interactions is non-
verbal and therefore requires face-to-face contact.

Setting: For various reasons, people frequently carry out business in locations
other than in their own office.

Behind the notions of ubiquitous computing and pervasive computing there is
almost the same problem space. The objective is to focus on services and to hide
computing and communication. The ultimate goal is invisible computing and
communication infrastructure on which services can be provided in various and
dynamically changing environments.

In addition to seamless service provisioning, another significant trend is the
requirement of ever-faster service development and deployment. The immediate
implication has been the introduction of various service/application frameworks/
platforms. Middleware is a widely used term to denote a set of generic services
above the operating system. Although the term is popular, there is no consensus of
a definition [8]. However, typical middleware services include directory, trading
and brokerage services for discovery, transactions, persistent repositories, different
transparencies such as location transparency and failure transparency.

Partitioning applications with agents 43

The problem area of nomadic/pervasive/ubiquitous computing is vast and
addressed by several research groups around the world. Below we briefly
summarize most important ones that develop middleware infrastructure for future
applications. The Endeavour Expedition at UC Berkeley [7] is a collection of
projects that examines various aspects of ubiquitous computing. The goal is to
enhance human understanding through the use of information technology, by
making it dramatically more convenient for people to interact with information,
devices, and other people. A revolutionary Information Utility, which is able to
operate at planetary scale, will be developed. The underlying applications, which
are used to validate the approach, are rapid decision making and learning. In
addition, new methodologies will be developed for the construction and
administration of systems of this unprecedented scale and complexity. In the
middleware area the projects include:

® Ninja: Enabling Internet-scale Services from Arbitrarily Small Devices that
develops a software infrastructure to support scalable, fault-tolerant and
highly-available Internet-based applications [13].

® Jceberg: An Internet-core Network Architecture for Integrated Communications
that is seeking to meet the challenge for the converged network of diverse access
technologies with an open and composable service architecture founded on
Internet-based standards for flow routing and agent deployment [9].

® QOceanStore: An Architecture for Global-Scale Persistent Storage that is
designed to span the globe and to provide continuous access to persistent
information [10].

® Telegraph: An adaptive dataflow system that allows people and
organizations to access, combine, analyze, and otherwise exploit data
wherever it resides [11, 23].

In the MIT the corresponding project is called Oxygen [29]. The Oxygen project
targets in the means of turning a dormant environment into an empowered one that
allows the users to shift much of the burden of their tasks to the environment. The
project is focusing on eight enabling technologies: new adaptive mobile devices,
new embedded distributed computing devices, networking technology needed to
support those devices, speech access technology, intelligent knowledge access
technology, collaboration software, automation technology for everyday tasks,
and adaptation methods. [6]

The project in the University of Washington at Seattle is called Portolano [31].
The project has three main areas of interest: infrastructure, distributed services, and
user interfaces. An essential research area is data-centric routing that facilitates
automatic data migration among applications. Context aware computing, which
attempt to coalesce knowledge of the user’s task, emotions, location, and attention,
has been identified as an important aspect of user interfaces. Task-oriented

44 Mobile agents for telecommunication applications

applications encounter infrastructure challenges including resource discovery,
data-centric networking, distributed computing, and intermittent connectivity. [1]

In the University of Illinois at Urbana-Champaign the research project in this
area is 2K: A Component-Based, Network-Centric Operating System for the next
Millennium [34]. The 2K is an open source, distributed adaptable operating system.
The project integrates results from research on adaptable, distributed software
systems, mobile agents and agile networks to produce an open systems software
architecture for accommodating change. The architecture is realized in the 2K
operating system that manages and allocates distributed resources to support a user
in a distributed environment. The basis for the architecture is a service model in
which the distributed system customizes itself in order to better fulfill the user and
application requirements. The architecture encompasses a framework for
architectural-awareness so that the architectural features and behavior of a
technology are reified and encapsulated within software. Adaptive system software,
which is aware of the architectural and behavioral aspects of a technology,
specializes the use of these technologies to support applications forming the basis
for adaptable and dynamic QoS, security, optimization, and self-configuration. [32]

The Mobile Computing Group at Stanford University (MosquitoNet [28] has
developed the Mobile People Architecture (MPA) that addresses the challenge of
finding people and communicating with them personally, as opposed to
communicating merely with their possibly inaccessible machines. The main goal
of the MPA is to put the person, not the device that the person uses, at the
endpoints of a communication session. The architecture introduces the concept of
routing between people by using the Personal Proxy. The proxy has a dual role: as
a Tracking Agent, the proxy maintains the list of devices or applications through
which a person is currently accessible; as a Dispatcher, the proxy directs
communications and uses Application Drivers to massage communication bits
into a format that the recipient can see immediately. It does all this while
protecting the location privacy of the recipient from the message sender and
allowing the easy integration of new application protocols. [12]

The PIMA project [30] at the IBM T.J. Watson Research Center has developed
a new application model for pervasive computing. The model is based on the
following three principles:

® A device is a portal into a space of applications and data, not a repository of
custom software managed by the user.

® An application is a means to perform a task, not a piece of software written
to exploit capabilities of a device.

® The computing environment is the information-enhanced physical
surroundings of a user, not a virtual space to store and run software.

Based on those principles the following research challenges were identified:

Partitioning applications with agents 45

® development of a programming model that identifies abstract interaction
elements, specifying an abstract service description language, creating a
task-based model for program structure, and creating a navigation model;

® building a development environment that supports the programming model
above;

® developing specification languages for applications in terms of requirements,
and for devices in terms of capabilities;

® developing mediating algorithms to negotiate a match between application
requirements and device capabilities;

® run-time detection of changes in available resources and redistribution of
computation;

® handling temporary disconnections; and

® enhancing current techniques of failure detection and recovery.

3. The need for terminal adaptation

The QoS of a wireless link can vary wildly, due to interference, network load and
vertical handovers. In some cases, like vertical handover, these changes can be
quite drastic. In order to provide smooth operation, an application needs to adapt
to changes in QoS. Traditionally, the adaptation is done by compressing and
reducing content that is transferred to the terminal.

However, adapting to just QoS is not enough. Unlike the users of fixed
networks, who almost all have fairly similar, workstation-class terminals, the
terminals of nomadic users vary from smartphones to powerful laptops. Even the
same user is likely to use different classes of terminals, e.g. a laptop on business
trips and a PDA or smartphone during his free time. However, currently the
nomadic user often has to use a different application for the same purpose on
different classes of terminals. For example, the calendar software on a laptop is
likely to be very sophisticated and offer an advanced graphical user interface,
whereas the software on a smartphone would probably offer only minimal
functionality. Even though the different applications may be able to exchange
information, the situation is still undesirable for two reasons:

1. An application is limited to the terminal class it was designed for, and
2. Users have to learn a different application for each terminal class.

The application can, of course, be implemented separately for each terminal class,
but this wastes implementation effort, and a version for smaller terminals may
have drastically reduced functionality. What is required is an application that can
adapt to different terminal classes without sacrificing functionality.!

1. However, usability may suffer. No amount of adaptation can make the keyboard or screen of a
smartphone match that of a laptop.

46 Mobile agents for telecommunication applications

4. Adaptation by partitioning

We are examining adaptation to terminal equipment and QoS variation by parti-
tioning an application into components. Because adaptation of the overall appli-
cation requires that the individual components can cope with varying component
configurations, the components must both be themselves adaptive, and also have a
degree of autonomy. Thus, it makes obvious sense to model the components as
agents. To give an example: an email application can work with different types of
terminals by partitioning the application in different ways, depending on terminal
and wireless link characteristics. Assume the email application consists of four
agents:

1. User interface agent: Either a standard FIPA UDMA agent [17] or a
dedicated UI agent that has an advanced graphical user interface and
supports voice input.

2. Core email agent: Handles basic email processing.

3. Email filtering agent: Groups and prioritizes messages, and handles any
automated email processing.

4. Email compression agent: Compresses messages prior to transferring them
to the terminal (this includes lossy methods such as leaving out
attachments).

With low-performance equipment (a high-end mobile phone, for example), only
the user interface (a standard FIPA UDMA agent) of the application runs on the
terminal. If the terminal has more capabilities (like a PDA), also the core email
agent can run on the terminal, with the email filtering and compression agents
running on the network side. Finally, with a laptop terminal, all agents except the
compression agent can be run on the terminal.

Partitioning can be used for adapting to available bandwidth as well. For
example, if bandwidth is very low, it is better to run the filtering agent on the
network side, since it may be able to handle some emails automatically, and
prioritizing means the user will get the more important messages first. On the
other hand, if bandwidth is high, it is better to run the filtering agent on the
terminal, since that allows it to more easily communicate with the user about
filtering decisions, enabling more fine-grained filtering control. By using mobile
agents, this kind of adaptation can be dynamic, with agents moving to optimal
locations while the application is running. We call this repartitioning.

Another facet of partitioning is the possibility to use different agents for
different terminals, or not to use a particular agent at all. For example, with a high-
performance laptop, a large, dedicated email UI agent can be used instead of a
small, generic FIPA UDMA agent. Or, when bandwidth is high, the use of an
email compression agent becomes unnecessary.

Partitioning applications with agents 47

4.1 Assumptions

The design of our partitioning system is based on a few assumptions:

Applications are specially designed We assume that the application is specially
designed to support partitioning, for the following reasons:

1. An application that wasn’t designed to be partitioned is unlikely to be easily
divided into separate independent components.

2. Partitioning, and especially repartitioning, requires the component agents to
be designed flexible so that reconfiguration is possible. It is unrealistic to
expect this from applications in general, although applications built by
component composition (from “off-the-shelf” component agents) in the
future might have the required flexibility.

3. Practical agent applications are still scarce, so one can assume that the most
important agent applications are still to be built, and their design is thus still
open.

Application metadata is available Since applications are already assumed to be
specially designed for partitioning, it is not unreasonable to assume that
some meta-data (such as agent resource requirements) has been made
available as well.

Repartitioning is heavy and uncommon The actual time taken by any single
repartitioning operation depends on available bandwidth and the size of the
agents involved, but we assume that repartitioning is a heavy operation, due
to both its transactional nature and the need to transfer agent state. Thus,
repartitioning would be worthwhile only when drastic changes in
circumstances occur (e.g. vertical handover).

Note that the initialization of a partitioned application is a much lighter
operation, but may still require application code to be transferred over the
wireless link.

4.2 How to partition an application

Our project has previously produced a system for predicting near-future QoS
fluctuations [26]. We utilize these predictions, along with profiles, to make
partitioning decisions.

48 Mobile agents for telecommunication applications

Terminal
capabilities

%Applicmion profite”
for a configuration

10 Ap jon

Application profiles [
for currently running applications
(active configurations

Figure 3. Partitioning decision

4.2.1 Profiles

Three types of profiles are used:

Application profiles The Application profile lists the component agents in the
application, and a set of possible configurations for them. For each
configuration, agent locations and a communication profile are given, as
well as a utility value that represent how “good” (in terms of usability) that
configuration is for the user. If the application is willing to share some
agents with other applications, that information would be here also.

Note that alternative (such as different GUI agents) and optional (such as
compression agents) agents can be represented by configurations where all
agents are not included.

Agent profiles Agent profiles contain resource requirements for the agent, as
well as startup cost and repartitioning (movement) costs. Additionally, if the
agent cannot move and/or be replaced, that information is stored here.

Terminal profiles The capabilities of terminals, such as memory and screen size,
are listed in terminal profiles.

4.2.2 Bandwidth distributions

Figure 3 illustrates how a partitioning decision is made. When an application is
started, the partitioning service first loads the application profile. The list of
agents is then used to get the resource requirement profiles for the agents. These

Partitioning applications with agents 49

requirements are compared against the terminal capability profile to get a list of
possible configurations for this terminal, and the communication profiles for
those configurations.

In simple terms, for each possible application configuration, its bandwidth use
(from the communication profile) is added to the bandwidth use of currently
running applications, to get combined bandwidth use. This is then deducted from
the predicted total available bandwidth, to get the predicted net available
bandwidth. This is the prediction of the remaining bandwidth after the application
is started.

The reality is more complex, however: A prediction of available bandwidth is
not a single value but a distribution that gives the probability for getting a specific
bandwidth. Likewise, the bandwidth use of an application varies according to a
probability distribution. Thus, the result of the above calculation is also a
distribution.

If the resulting distribution gives a high probability for having a negative net
(remaining) bandwidth, that means that the configuration that is being examined
cannot be run with the available bandwidth. Otherwise, the resulting distribution is
given a utility score that is based on how much bandwidth was taken by it, and the
utility value of that configuration for the user (available from the application
profile). The score is penalized if the configuration exhausts available resources on
the terminal. The configuration with the best final score is then selected.

4.2.3 Simulation

Unfortunately, adding and subtracting distributions is not trivial. Also, if a simple
histogram-type of distribution is used to represent the bandwidth use of an appli-
cation, we do not take into account that the bandwidth use often varies with time.
For example, there may be an initial surge of bandwidth use during application
initialization, to be followed by more moderate use. If this kind of variation is
taken into account, the distribution calculations quickly become unwieldly.2 As an
alternative, we propose to use simulation.

If simulation is used, then application profiles contain serialized application
simulator objects instead of bandwidth use distributions. The simulator objects are
used by the partitioning service to simulate a run of the application. By including
the simulator objects of currently running applications in the simulation, together
with a prediction of future QoS, we get an estimate of remaining bandwidth. By
running the simulation several times, we can increase the reliability of the estimate.

The advantage with simulation is that calculations are simple (unless very
complex models are used in the simulator objects), and it allows more accurate

2. We are using a relatively simple method of calculation, however. Research into more mathematically
sophisticated methods might yield improvements in efficiency.

50 Mobile agents for telecommunication applications

modeling of application behaviour. Furthermore, the amount of processing
devoted to evaluating a configuration can be adjusted by varying the number of
simulation runs and the length of the simulation time unit. Also, the utility of a
configuration can be determined dynamically by the simulation object. The
disadvantage is that the statistical error in the results is probably higher, since the
number of repeated simulations that can be made is limited.

A simulation object contains at least a generic model (common for all users)
for the bandwidth use of the application. In addition, the application itself can
update the simulation object with user-specific models. As a simple but effective
way of doing this, the application can collect traces of bandwidth use, and add
them to the simulation object. Others, e.g. terminal-class-specific models, could
also be used.

Additionally, simulation objects keep track of the QoS the simulated
application receives during a simulation run, and provide a utility value to the
partitioning service at the end of the simulation run. The utility value describes
how well the application was able to function in the simulation.

The modified decision-making process is depicted in Figure 4. First, the
partitioning service collects from the profiles all the simulation objects for the
active configurations of currently running applications. Then it tries the possible
configurations for the new application one by one, simulating each in turn.

When simulating a configuration, the partitioning service first selects a
simulation time unit based on the processing power available, and decides how
long one configuration can be simulated. At the start of the simulation, each
simulation object is initialized and given the relevant terminal profiles. Then, for
each simulation round:

1. Each simulation object is given the time period the round corresponds to.

2. The simulation object returns the amount of data it wants to send that round.
If data transfer priorities are used by the application, then those must be
returned as well.

3. Each simulation object is then given the bandwidth available to the
application that round. Any scheduling policy in use (e.g. priority-based)
has to be taken into account at this point.

4. Finally, the simulation object then gives its current estimate of the overall
utility of the application at this point. Depending on user preferences
(minimum utility values), a low utility value may cause the simulation to be
terminated and restarted with another configuration.

At the end of the simulation, the final overall utility is marked for the configu-
ration. If there is still time, the simulation is redone. The utility for the configu-
ration is then the average of the utilities from the different runs. If a significant
fraction (depending on user preferences) of the simulation runs results in the

Partitioning applications with agents 51

P oy x s grcoarprmes 4
“ | Application Simulator Profiles
= .!l Generic ﬂ User mode) H for current],
Profile for a bandwidth || (e.g. saved s - Y
. use model il session waces) sl | running
configuration of the ~ Ty A applications (active
application to be started configurations)

Figure 4. Partitioning decision (modified)

application becoming unusable (utility below user-defined acceptance level), the
configuration is rejected. When all configurations have been simulated, the one
with the best utility is chosen.

4.3 Starting the application

The application startup sequence is shown in Figure 5. The original startup request
(1) is directed to the partitioning service. First, the partitioning service selects a
unique ID for the application session. Then it queries the yellow pages (e.g. a FIPA
DF [15]) in the terminal and on the network side (2) to see if some agents are
already running and previously registered (2b), and then issues create-agent
requests for those agents that are not running (or cannot be shared) (3).

To start an agent, the partitioning service may use a Factory service that
advertises itself via the Yellow Pages, or it can contact the agent platform directly
(e.g. a FIPA AMS [15]). Either way, a new agent is created (4). If agent profiles
contain a startup cost, the fact that an agent is running can also be taken into
account when selecting configurations. When an agent has successfully
initialized itself, it sends a message (5) to the partitioning service to confirm that
it is ready.

52 Mobile agents for telecommunication applications

Wireless Link

o5 Component Agent

Figure 5. Application startup

Finally, the application session ID is sent to all participating agents, together with
information about their partners (6), binding them together to form the application.
The application session ID is especially important for shared agents, who use it to
manage their state information. Application communication can now start (7). In
fully dynamic partitioning, this phase can be redone during repartitioning to remove
the need for rerouting messages of moved agents.

4.4 Repartitioning

The weakness of partially dynamic partitioning is that while the partitioning
decision depends on both terminal capabilities and the QoS of the wireless
connection, only terminal capabilities are relatively static. QoS may change dras-
tically during the lifetime of an application session, making a previously made
partitioning decision invalid. Fully dynamic partitioning becomes necessary: The
application must be repartitioned by moving its component agents to new loca-
tions. Thus, mobile agents are required.

In fully dynamic partitioning, the decision making process is rerun when QoS is
predicted to change drastically. Frequent reruns of the process can be avoided by
ignoring smaller changes, or by only considering vertical handoffs and disconnections.

If a rerun of the decision making process shows that another configuration is
superior to the current one, the difference of the utility scores of the configurations
(the profit), multiplied with the time the new conditions are predicted to last, is
compared to a penalty calculated from the repartitioning costs of the agents. If the
profit is greater, repartitioning is initialized.

The actual repartitioning process, shown in Figure 6, is somewhat like a two-
phase commit (see e.g. [18]). First, the partitioning service sends each component

Partitioning applications with agents 53

agent a partitioning request that contains the application session ID and the agent’s
orders (to stay, move, be replaced or shut down), and asks if the agent is able to
participate. The agent checks if it can free itself of any application state that cannot
be carried over the repartitioning process, and sends a ‘yes’ answer if it can. Once
the answer has been sent, the agent enters a state where it waits for the partitioning
process to complete, refusing requests not related to the partitioning process. Note
that even though an agent answers ‘no’, it should not continue normal operation,
since other agents in the application may not be ready to continue yet.

1.
ere?ess Lm -

2.
Wireless Link

]

Figure 6. Repartitioning

54 Mobile agents for telecommunication applications

Error handling follows the normal two-phase commit procedure, with one
exception: an agent may be unable to move because it is shared by other
applications. In that case, it sends back a no answer, and additionally indicates that
the refusal is due to a sharing violation. The partitioning service may then
immediately (without aborting) resend the partitioning request to the agent, but
with replacement orders instead of movement orders. Since the additional
message exchanges takes time, service-type shared agents should preferably be
marked as non-movable in the agent profile.

If the partitioning service gets a yes answer from all agents, it then sends each
agent a message which tells them what to do. Once an agent has completed the
order, it sends back a reply to the partitioning service to signal that the order has
been successfully executed. If the agent platform does not support adequate
message rerouting after agent movement, the reply may contain the new
messaging address of the agent.

If the new configuration requires agents that were not present in the old one,
these are created the same way as in application startup, described in the previous
section. If an agent in the old configuration is not present in the new one, its order
will be to shut down, and it will send the reply just before shutting down.

Finally, once all agents have reported in, the partitioning service sends each
agent a ‘continue’ message to tell them that the repartitioning has completed, and
informs them of changed messaging addresses and new, removed or replaced
agents. The agents can now continue from where they left off. Note that in some
cases this is not straightforward; for example, a simple user interface agent may
have been replaced with a more complex one, or some agents may not be present
in the new configuration. However, it is up to the agents themselves to adapt to the
new situation. Note that this implies that component agents really must be agents;
mere objects would not have the required adaptability.

- Component
Agent

" » Agent
Communication

""" * Movement

Figure 7. Personal mobility

Partitioning applications with agents 55

4.5 Repartitioning and personal mobility

As shown by Figure 7, repartitioning can also be used for personal mobility. This
requires only minor extensions to the system described above. Firstly, the parti-
tioning service on terminal A must fetch the terminal profile for terminal B, and
use it instead of the terminal A profile. Secondly, all agents that the repartitioning
process would have placed on terminal A, are issued orders to move to terminal B.
Agents that are specific to a terminal type may be replaced by others, but that is a
normal part of the partitioning process. Finally, the partitioning service on
terminal A must pass on the responsibility for the application to the partitioning
service on terminal B.

Table 1. Example agents

Agent | Description | State Information | Footprint |
UDMA | Generic user interface agent 10kB 100kB*
DGUI Dedicated Ul 10kB 1 MB
Core Core Email Agent 100 kB 1 MB
Filter Email Filtering Agent 20kB 200 kB
Compr | Email Compression Agent - 200kB

4.6 An example scenario

To give an idea of the communication costs involved in partitioning, we have built
a prototype of the partitioning system, using the JADE 1.4 [2, 5] agent platform.?
It was tested with a test application consisting of four agents, mimicking the email
application example. Each agent had only the functionality necessary for the parti-
tioning process, and some dummy state data.

The agents, their state data and memory requirements (as contained by the
profiles) are described in Table 1. The test scenario is outlined in Figure 8:

1. The user is in her office, using a desktop computer with a 100 Mbps LAN
connection. She starts reading her mail. The partitioning system chooses a
configuration with a dedicated UI agent* and without an email compression
agent, where everything is running on the terminal, and starts the email
application.

3. The reason for using Jade is that it is also otherwise used by our project. However, JADE’s
implementation of agent mobility is not optimized, so using it also has the benefit of getting
conservative results.

4. The generic user interface agent can be shared by other applications.

56 Mobile agents for telecommunication applications

Figure 8. Example scenario

2. The user reads her mail. After a while, she comes across one that requires a
reply, and switches to voice input, dictating the reply message.

3. After dictating about half of the reply, she notices it is time to go home, and
switches to her palmtop, which has a 2 Mbps WLAN connection in the
office, and a 28.8 kbps GSM High Speed Data connection [21] while
outside.’ The partitioning system moves the email application to the
palmtop, using now a configuration with a generic user interface agent. The
partial reply is saved to the state of the core email agent, and moved with it.

4. The user finishes writing the reply while waiting for the elevator. Because a
generic Ul agent is used, the GUI of the email application is now less
polished, and no longer accepts voice input, but the user can continue to
write the reply using normal text input.

5. Based on the time, and the fact that the user left the office, the QoS
prediction system [26] gives a high probability that bandwidth will soon
drop dramatically. The partitioning system recalculates the optimal
configuration. The resulting configuration has an email compression agent
and the email filter agent on the network side, and the other agents in the
terminal.

6. The user continues to read her email using this configuration while sitting on
a train. Although the user interface of the email application is more bare
(generic Ul), attached images lose some detail or are omitted (compression),
and messages from mailing lists are ignored (filtering), she is still using the

5. All these connection types are already commercially available.

Partitioning applications with agents 57

same application, and even the same application session, as when she started
reading her email.

The scenario was tested with our prototype. The test was run using a Pentium III
Linux workstation as the access node, a Pentium II Linux workstation as the
desktop terminal and a Pentium Linux laptop as the palmtop computer. A real
WLAN was used, but the GSM data link was simulated with software. The results
are given in Table 2. Note that the times are median values from five test runs.

As can be seen, the communication delays are quite acceptable for this
scenario. On the last partitioning, however, that is due to the successful QoS
prediction that allowed repartitioning to be initiated while bandwidth was still
high. If the repartitioning had been done after the drop in QoS, when bandwidth
was down to 28.8 kbps, the repartitioning would have taken 14 seconds — still
acceptable, but a very noticeable delay. Note that application classes were already
present on access node and terminals.

Table 2. Test results

{ Event Bandwidth | State data | Time
Application start (1) 100 Mbps - 07s
Terminal change repartitioning (3) 2 Mbps 120 kB 43s
QoS change repartitioning (5) 2 Mbps 20kB 22s

5. Conclusions and future work

We have shown how partitioning can be used to adapt an application to varying
QoS and terminal capabilities. Partitioning can be used for implementing personal
mobility, as well. Our first tests indicate that the solution is feasible as far as
communication costs are concerned.

Our next step will be to fully implement the partitioning system and use it in
the Monads QoS prediction system, so that the prediction system can be optimally
configured for different terminal types. The problem of how to minimize state loss
during repartitioning is also worthy of attention. Finally, partitioning-related
messaging must be optimized to reduce the partitioning overhead.

REFERENCES

[1] M. EsLer ET AL. Next Century Challenges: Data-Centric Networking for Invisible
Computing. In Proceedings of MobiCom99, p. 256-262, Seattle, Washington,
August 1999.

58 Mobile agents for telecommunication applications

[2] F BELLIFEMINE, G. RiMAssA, AND A. PoGal. JADE — A FIPA-compliant Agent
Framework. In Proceedings of the Fourth International Conference and
Exhibition on the Practical Application of Intelligent Agents and Multi-Agents
(PAAM 1999), April 1999.

[3]1 S. CampaDELLO, H. HELIN, O. KoskiMIes, AND K. RAATIKAINEN. Performance Enhancing
Proxies for Java2 RMI over Slow Wireless Links. In Proceedings of the Second
International Conference and Exhibition on the Practical Application of Java (PA
Java 2000), April 2000.

[4] B. P. CRow, I. WiDJaJA, J. G. Kim, AND P. T. Sakal. IEEE 802.11 Wireless Local Area
Networks. IEEE Comm. Mag., pp. 116-126, September 1997.

[5]1 Jade Web Site. Available electronically from http://sharon.cselt.it/projects/jade/

[6] M. Dertouzos. The Oxygen Project. Scientific American, 281(2): 52-63, August
1999.

[71 Endeavour Expedition: Charting the Fluid Information Utility. Available
electronically from http://endeavour.cs.berkely.edu/

[8] B. Aitken et al. Network Policy and Services: A Report of a Workshop on
Middleware. IETF RFC 2768, February 2000.

[9]1 H. J. WANG et al. An Internet-core Network Architecture for Integrated
Communications. IEEE Personal Communications, August 2000.

[10] J. KusiaTowicz et al. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000),
November 2000.

[11] J. M. HeLLersTEIN et al. Adaptive Query Processing: Technology in Evolution. IEEE
Data Engineering Bulletin, 2000.

[12] P. ManiaTIs et al. The Mobile People Architecture. ACM Mobile Computing and
Communications Review, July 1999.

[13] Steven D. GriaLE et al. The Ninja Architecture for Robust Internet-Scale Systems
and Services. Computer Networks (Special Issue on Pervasive Computing). To
appear.

[14] Foundation for Intelligent Physical Agents. FIPA Web Site. Available electronically
from http://www.fipa.org/

[15] Foundation for Intelligent Physical Agents. FIPA 97 Specification Part 1: Agent
Management, October 1997. Available electronically from http:/www.fipa.org/

[16] Foundation for Intelligent Physical Agents. FIPA 97 Specification Part 2: Agent
Communication Language, November 1997. Available electronically from

http://www.fipa.org/

Partitioning applications with agents 59

[17] Foundation for Intelligent Physical Agents. FIPA 98 Specification: Human-Agent
Interaction, 1998. Available electronically from http://www.fipa.org/

[18] A. Goscainski. Distributed Operating Systems: The Logical Design, chapter 5.4.8, pp.
203-204. Addison-Wesley, 1991.

[19] Monads Research Group. Monads Web Site. Available electronically from
http://www.cs.helsinki.fi/research/monads/

[20] GSM Technical Specification, GSM 02.60. GPRS Service Description, Stage 1, 1998.
Version 6.1.0.

[21] GSM Technical Specification, GSM 03.34. High Speed Circuit Switched Data
(HSCSD), Stage 2, May 1999. Version 5.2.0.

[22] H. HEeLN, H. LAAMANEN, AND K. RAATIKAINEN. Mobile Agent Communication in
Wireless Networks. In Proceedings of the European Wireless ‘99 Conference,
October 1999.

[23] J. M. HELLERSTEIN AND R. AVNUR. Eddies: Continuously Adaptive Query Processing. In
Proceedings of the ACM SIGMOD 2000 Conference, 2000.

[24] L. KLeinrock. Nomadicity: Anytime, Anywhere in a Disconnected World. Mobile
Networks and Applications, 1(4): 351-375, January 1997.

[25] M. KoJo, K. RAATIKAINEN, M. LILJEBERG, J. KiISKINEN, AND T. ALaNKO. An Efficient
Transport Service for Slow Wireless Telephone Links. IEEE Journal on Selected
Areas in Communications, 15(7): 1337-1348, September 1997.

[26] M. MAKELA, O. KoskiMIEs, P. MisIKANGAS, AND K. RAATIKAINEN. Adaptability for
Seamless Roaming Using Software Agents. In X/l International Symposium on
Services and Local Access (ISSLS2000), Stockholm, Sweden, June 2000.

[27] Sun Microsystems. Java Remote Method Invocation — Distributed Computing for
Java. White Paper, 1998.

[28] MosquitoNet: The Mobile Computing Group at Stanford University. Available
electronically from http:/mosquitonet.stanford.edu/

[29] MIT Project Oxygen. Available electronically from http://www.oxygen.lcs.mit.edu/

[30] The PIMA Project: Platform-Independent Model for Applications. Available
electronically from http://www.research.ibm.com/PIMA/

[31] Portolano: An Expedition into Invisible Computing. Available electronically from
http://portolano.cs.washington.edu/

[32] M. RomaN AND R. H. CamPBELL. Gaia: Enabling Active Spaces. In Proceedings of the
9th ACM SIGOPS European Workshop, Kolding, Denmark, September 2000.

[33] Third Generation Partnership Project Web Site. Available electronically from

http://www.3gpp.org/

60 Mobile agents for telecommunication applications

[34] 2K: An Operation System for the Next Millennium. Available electronically from

http://choices.cs.uiuc.edu/2k

Chapter 4

Mobile agents for adaptive mobile

applications

Thomas Kunz, Salim Omar and Xinan Zhou

Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada

1. Introduction

Mobile computing is characterized by many constraints: small, slow, battery-
powered portable devices, variable and low-bandwidth communication links.
Together, they complicate the design of mobile information systems and require
the rethinking of traditional approaches to information access and application
design. Finding approaches to reduce power consumption and to improve appli-
cation performance is a vital and interesting challenge. Many ideas have been
developed to address this problem, ranging from hardware to software level
approaches.

Designing applications that adapt to the challenges posed by the wireless
environment is a hot research area. One group of approaches concentrates on
mobile applications that adapt to the scarce and varying wireless link bandwidth
by filtering and compressing the data stream between a client application on a
portable device and a server executing on a stationary host. Some [BOL 98]
enhance the server to generate a data stream that is suited to the currently available
bandwidth. Others [ANG 98, FOX 98] extend the client-server structure to a
client-proxy-server structure, where a proxy executes in the wireless access
network, close to the portable unit. This proxy transparently filters and
compresses the data stream originating from the server to suit the current wireless
bandwidth.

A second set of approaches provides general solutions that do not change the
data stream, focusing on improving TCP throughput [BAL 95]. They usually treat
IP packets as opaque, i.e., they neither require knowledge of, nor do they exploit

62 Mobile agents for telecommunication applications

information about, the data stream. While this addresses issues such as high link
error rates and spurious disconnections, it does not address the low bandwidth
offered by most wireless technologies, nor does it address the problem of limited
resources at the portable device.

We propose a third, complementary approach, focusing not on the data stream
but on the computational effort required at the portable device. Mobile
applications, especially ones that are used for intensive computation and
communication (such as next-generation multi-medial PCS and UMTS
applications), can be divided dynamically between the wired network and the
portable device according to the mobile environment and to the availability of the
resources on the device, the wireless link, and the access network. The access
network supports the mobile application by providing proxy servers that can
execute parts of the application [WAN 00]. This may potentially increase the
performance of applications and reduce the power consumption of portable
devices since offloading computation to the proxies in the wired network will
reduce their CPU cycles and memory requirements [OMA 99].

This paper discusses our mobile code toolkit and demonstrates the feasibility
of this idea by reporting on our experience with a resource-intensive mobile
application, an MP3 player. The results show that both increased application
performance and reductions in power consumption are possible under certain
conditions by encapsulating the resource-intensive decoding in a mobile agent and
migrating it to the less constrained access network.

The paper is organized as follows. Section 2 reviews toolkits to support
adaptive mobile applications based on mobile agents/code. Section 3 presents our
mobile code toolkit. Performance improvements and power reductions achievable
under certain environment conditions for our MP3 player are the topic of Section
4. Section 5 discusses the scalability of our approach and Section 6 summarizes
our main contributions and highlights future work.

2. Related work

Mobile applications need to be capable of responding to time-varying QoS condi-
tions. In the following sub-sections, we briefly describe popular tools and
middleware that support adaptive mobile applications and contrast their approach
to our work.

Comma [KID 98] provides a simple and powerful way for application
developers to access the information required to easily incorporate adaptive
behavior into their application. It provides easy-to-use methods to access this
information, a wide variety of operators and ranges available to provide the
application the information it needs when it needs it, a small library to link with to
minimize the overhead placed on the client and to minimize the amount of data
that needs to be transferred between the clients and the servers.

Adaptive mobile applications 63

The Rover toolkit [JOS 95] offers applications a distributed-object system
based on the client-server architecture. The Rover toolkit provides mobile
communication support based on re-locatable dynamic objects (RDOs). A re-
locatable dynamic object is an object with a well-defined interface that can be
dynamically loaded into a client computer from a server computer, or vice versa,
to reduce client/server communication requirements.

Sumatra [RAN 96] is an extension of the Java programming environment.
Policy decisions concerning when, where and what to move are left to the
application. The high degree of application control allows programmers to explore
different policy alternatives for resource monitoring and for adapting to variations
in resources. Sumatra provides a resource-monitoring interface, which can be used
by applications to register monitoring requests and to determine current values of
specific resources. When an application makes a monitoring request, Sumatra
forwards the request to the local resource monitor.

Mobiware [ANG 98] provides a set of open programmable CORBA interfaces
and objects that abstract and represent network devices and resources, providing a
toolkit for programmable signaling, adaptation management and wireless
transport services. Mobile applications specify a utility function that maps the
range of observed quality to bandwidth. The observed quality index refers to the
level of satisfaction perceived by an application at any moment. The adaptation
policy captures the adaptive nature of mobile applications in terms of a set of
adaptation policies. These policies allow the application to control how it moves
along its utility curve as resource availability varies.

In general, it is left to the application to decide how to react to environment
changes. This argues for exporting the network state as well as available resources
of the portable device to the mobile applications to be designed to be adaptive. On
the other hand, the automation of adaptation to the resources was not explored.
There are a number of similarities between our work and the work in Sumatra.
Both Sumatra and our work use extended Java Virtual Machines for portability
and the ease of use of the language especially for implementing object mobility
toolkits. The main difference is that, in our work, adaptation to the change in the
resources and environment is partially left to the toolkit. We try first to use
available remote resources to achieve the same task; otherwise, as a last resort, we
let the application do the adaptation.

3. Mobile code toolkit

The central concept of our framework is the proxy server. An application can use
the resources of the proxy server to increase the performance and decrease the
power consumption by executing selected objects on the proxy server. To enable
this approach, we need to identify computationally intense, closely-coupled
groups of objects and encapsulate them in a mobile agent. This agent may execute

64 Mobile agents for telecommunication applications

locally or be shipped to the access network, depending on the wireless link condi-
tions and the available resources at both the portable device and the proxy server.

3.1 Toolkit design

Our goal is to extend the Java Virtual Machine with a toolkit that facilitates the
mobility of objects between portable device and proxy server in a dynamic
manner, transparent to the application designers and users. This toolkit is designed
to work on PDAs with a limited amount of memory. Other existing ORBs and
object mobility toolkits do not support these platforms or they have too big a
memory footprint.

The toolkit has a set of APIs, which provides the required functionality for
moving objects dynamically. One instance of the toolkit executes on both the
portable device and the proxy. It contains the following major modules:

— Monitor: monitors and delivers the state of the portable device and the proxy
server as events to the Object Server. Changes in the bandwidth or changes in the
power status are examples of the events that this unit exports.

— Code Storage: storage of the validated classes files (bytecode) at the portable
device.

— Object References and Profiling: representation of the application’s objects
along with the profiling information about these objects.

— Object Server: core of the toolkit. It runs a thread that listens continuously to
all the commands from a remote object server. Commands can be related to
moving objects or related to the remote invocation of a method on a remote object.

— Remote Method Invocation Protocol: marshal and un-marshal a method’s
parameters.

— Dynamic Decision: analyzes the profiling information of application’s
objects. It resides only at the proxy server.

— Communication Control Layer: simulates wireless links in terms of low
bandwidth. We introduce a controllable amount of delay between data packets,
which allows us to control the throughput dynamically at run time for testing
purposes.

In our toolkit, every movable application object is associated with a proxy object
that has the same interface. Other objects will not reference application objects
directly, but they reference them through their proxies. Assume a simple
application with two objects, A and B. Initially, four objects reside at the portable
device: A, B, A’s proxy, and B’s proxy. B references A, so in our toolkit B will
contain a reference to the proxy of A. Moving B from the portable device to the
proxy server will not require moving A to the proxy server as well. However, at the
proxy server, a proxy of A must be created to forward the calls to A at the portable

Adaptive mobile applications 65

device. Also, a new proxy of B will be instantiated at the proxy server to allow
local objects there to reference B.

Should the toolkit migrate A to the proxy server, changing the reference to A in
B is not required since B references only the proxy of A (which will remain behind
at the portable device). Any calls from B to A will be forwarded remotely through
the proxy at the portable device.

3.2 Distributed garbage collection

Every proxy object created in the toolkit is assigned a local and a remote reference
counter. These counters are updated whenever a proxy object is referenced locally or
remotely and are used to determine when the garbage collector can claim the proxy
and its associated object. Whenever a proxy object is not being referenced remotely
and locally, it will be finalized and garbage collected. If the associated object of this
proxy is local, then the associated object will be finalized and claimed again by the
garbage collector as well. If the associated object is remote, then the proxy object
will inform the remote object server to decrement the remote reference counter for
the associated object at the remote site, which in turn garbage collects the object if
there are no further references locally or remotely to the associated object.

3.3 Toolkit performance

To obtain a first impression of our toolkit performance, we performed a few simple
tests, comparing various aspects with Voyager [OBJ 99], a popular mobile code
toolkit. The following table compares the measured overhead of the toolkit against
Voyager. The measurements were taken under Windows NT on a Pentium I 350
MHz PC.

Table 1. Overhead comparison

Voyager Our toolkit
Footprint 2620 KB 204 KB
Moving object 142 ms 80 ms
Calling a method 23 ms 110 ms

Based on these results, we are confident that our toolkit can be used for small
portable devices such as Palms and PDAs. The memory requirement of our toolkit
is small compared to Voyager (which supports many additional features such as
CORBA compliance), allowing it to be embedded in these small devices. The cost
of migrating the objects compared to Voyager is lower as well; however, we still
need to improve the remote method invocation protocol.

66 Mobile agents for telecommunication applications

3.4 Automatic agent identification

In the final version of the toolkit, we also expect to provide support for the auto-
matic identification of suitable mobile agents. In essence, suitable mobile agents
are sets of application objects that consume lots of CPU time and communicate
heavily. Currently, we are profiling applications with a Java profiler, derive infor-
mation about objects, their CPU consumption, and their interaction patterns, and
use an external clustering algorithm to determine a suitable set of application
objects to group as agent. This external definition of an agent is then used by the
mobile code toolkit. For our MP3 player, Table 2 lists the instances (objects) that
exist during the decoding of MP3 frames and some information about their CPU
time consumption. This profiling information was measured on a 350 MHz
Pentium IT PC.

Table 2. MP3 player profiling information

Object Name Data # of Code | Calls/Frame Avg. CPU
Size Instances Size Time/Instance
(bytes) (bytes)

Table43 28 1 107344 620 0.00794
Bit_Reserve 16666 1 1430 3355 0.50058
SBI 223 6 2905 97 0.01926
gr_info_s 376 4 5195 7184 0.06222
temporaire2 376 2 1409 1687 0.00445
Temporaire 593 2 1819 52 0.22175
Header 765 1 9245 11 0.00267
II1_side_info_t 959 1 2022 35 0.16715
Ibitstream 1972 1 5301 449 0.29177
huffcodetab 2526 35 45493 693 0.11331
SynthesisFilter 4414 2 18724 4824 0.44725
LayerIII_Decoder | 25114 1 47146 160 1.07052

The profiler also collects information about the number of method
invocations and the number and size of parameters exchanged. Most objects
communicate only relatively infrequently, but some communicate frequently,
with lots of data being passed. Unfortunately, the heavily communicating objects
are not necessarily the most CPU-intensive objects. The clustering algorithm
therefore starts with the computationally heavy objects and adds additional
objects to the group to reduce “coupling”. Some objects, such as those
implementing the GUI component or the one interacting with the local sound

Adaptive mobile applications 67

card, cannot be migrated to the proxy server. In our application environment,
“coupling” measures the amount of inter-object communications between the
mobile agent and the remaining application objects. Should the toolkit decide to
migrate the agent to the proxy server, such inter-object communication will result
in remote method invocations, and we aim to minimize the traffic over the slow
wireless link. In the future, we hope to integrate profiling into our toolkit to allow
us to determine appropriate agent candidates dynamically at runtime. This also
enables us to track changes in the application behavior and to react to them
appropriately.

4. Case study

We implemented an MP3 player in Java to demonstrate the feasibility of our
general approach. This application requires a powerful CPU to decode the sound
file due to the complexity of its encoder/decoder algorithm, which makes it an
ideal candidate to demonstrate the need for fast static hosts, i.e. proxy servers, to
support the relative resource-constrained portable devices.

We executed the MP3 player under various emulated environment conditions
and observed application performance and power consumption on the portable
device. Based on the observed environment, our runtime system instantiates some
objects on the proxy server, others are created on the portable device. We studied
in particular the following two parameters:

— Available Bandwidth.
— Relative CPU speeds (Portable Device: Proxy Server).

To observe the importance of the first parameter, the bandwidth available, we
choose 19.2 Kb/sec to represent CDPD [CDP 95], a typical wide-area cellular
data service. For high bandwidths we choose 1000 Kb/sec to represent the
bandwidth that can be obtained from Wireless Ethernet cards such as WaveLan
[LUC 99].

To observe the importance of the second parameter, the relative CPU speed, we
fixed the bandwidth to 1000 Kb/sec, so it does not represent a scarce resource. A
Windows CE PDA and a laptop were used as portable devices. The PDA contains
a RISC processor at 75 MHz and the laptop runs a Pentium processor at 133 MHz.
The proxy server runs on a 350 MHz Pentium II PC. The performance of Java
applications depends primarily on the performance of the JVM. Both laptop and
the proxy server run high performance JVMs. The JVM on the PDA, on the other
hand, is very slow, so the relative CPU speed degrades considerably. We measured
the relative CPU speed between the PDA, laptop and the proxy and found it to be
1:116 and 1:4, respectively.

68 Mobile agents for telecommunication applications

The experiments are based on decoding MP3 coded audio frames, with the
assumption that output is mono, with a sampling rate of 11025 Hz, and 16 bits per
sample (which will impact the network traffic when decoding is done remotely and
is based on the achievable quality of sound-cards in low-cost handheld devices).

The detailed experiments and results are discussed in depth in [OMA 00].
These results demonstrate that available bandwidth is an important factor. If
bandwidth is the bottleneck in the system, neither reduction in power consumption
nor increases in MP3 player performance can be obtained, no matter what the
relative CPU speed. However, if bandwidth is not the bottleneck, then the relative
CPU speed becomes a decisive factor in increasing the performance and
decreasing the power consumption of the portable device. It is possible to save
power and increase performance of the MP3 player if the entire decoder is to be
executed remotely and the PDA only works as sound player. These improvements
can be very dramatic: the application will execute up to 20 times faster if decoding
is done at the proxy, consuming only 5% of the power it would take to decode the
MP3 file on the PDA. On the other hand, using the laptop as a portable device, an
MP3 player that decodes locally always performs better than decoding at the
proxy, even though the available bandwidth is sufficient to handle the decoded
sound and the computational power is quite high at the proxy server.

Overall, the results show that it is not always beneficial to ship mobile agents
to more powerful proxies to gain performance and/or decrease power
consumption. The benefits depend on available bandwidth and relative CPU
speed. We also expect them to depend on the graph topology and the data traffic
volume between application objects. For our sample application, an MP3 player,
migrating the decoding component to a more powerful proxy leads to a
considerable decrease in power consumption as well as an increase in the
performance when executing on a Windows CE PDA; however, it is not worth
migrating the MP3 decoder to a proxy server when using a laptop as portable
device.

5. Scalability

To support our approach, proxy servers need to be deployed throughout the access
network, which could be a large provincial or national cellular network. On the
one hand, one could envision an architecture where each wireless cell provides
dedicated proxy servers, resulting in relatively little concurrent use of an indi-
vidual server but inducing a high handover overhead and costs. At the other
extreme, we could provide only one or very few proxy servers that support appli-
cations in many different wireless cells, reducing the handover overhead but
requiring more powerful servers. With potentially multiple thousands of users
executing resource-intensive next-generation mobile applications, the scalability
of our approach becomes extremely important. To explore this issue, we started to

Adaptive mobile applications 69

develop performance prediction models based on Layered Queuing Networks
(LQNS).

LQNs study the performance of distributed systems that have hardware and
software [FRA 98, ROL 95]. A task is a basic unit in LQN. A task represents the
software in execution. An entry represents a service provided by a task. If a task
can provide multiple services, then the task has multiple entries. Entries in
different tasks communicate with each other through requesting and providing
services. Client tasks make requests to proxies; these in turn invoke services
provided by the application server task. Requests are either synchronous or
asynchronous.

Each task has at least one entry. The entries in a task have execution demands
respectively, and may also interact with entries in other tasks by calling the entries
in those tasks. The client tasks will not receive requests from other tasks. They are
called reference tasks. For reference tasks, usually there is a think time that is
denoted by Z, which implies the pause time between two consecutive operations.
Execution demands of entries are characterized in two phases. Phase 1 is the
service demand between reception and response (for synchronous requests), phase
2 describes the service demands after the response (for synchronous requests) or
the total service demand for asynchronous requests. The LQN analytical tool
describes the system by the average behaviour of the entries and solves the
performance model by approximate MVA calculations. To study the scalability of
our system, we developed a four layer LQN, extracted data from traces collected
from an operational WAP-based system [9], and studied the impact of introducing
proxy servers. In modelling terms, the introduction of a proxy results in less
execution demand on the portable devices and more execution demand on the
proxy servers. Since we assume the proxy servers to be more powerful, the
increase in load is only fraction of the load decrease on the portable device.

The complete model is shown in Figure 1. A parallelogram represents a task
entry. Cascaded parallelograms indicate an entry of multiple tasks. The task name
is written near the parallelogram. [Z] in the client task entry models the client think
time. [0, tc] in the client task entry represents the execution demands of the client
task entry between requests. The pair of brackets inside the non-referential task
entries has the same meaning as the one in the client task entry. The notation under
the pair of brackets is the entry name. The ellipse represents CPU processors. The
arrow segment connects the calling entry and the called entry. The straight
segment connects the task and the CPU on which the task runs. The pair of circular
brackets beside the arrow line contains the number of calls from the calling entry
to the called entry. ‘sh’ denotes synchronous calls and ‘ay’ denotes asynchronous
calls. Client tasks make (indirectly) requests to an application server and wait for
the responses. This server answers some of the requests directly and passes some
to other servers on the Internet. Generally, passing a request to another server takes
less time than answering one directly. The application server task has four entries.

70 Mobile agents for telecommunication applications

Application
Server

loett ei2) /[ezt e} [ssat,ienn /ot o)
se3 sed
@ @ [wsl, ws2) / lidl, id2]

General Server Idle Server

Figure 1. Layered queuing model

The first entry sel processes the synchronous requests from client tasks and
responds to the clients directly. The second entry se2 is responsible for
asynchronous requests from client tasks. The third entry se3 passes synchronous
requests from the clients to other servers. The General Server task is used to
represent additional servers on the Internet since it is impossible to get information
for all the Internet servers and model them individually. The fourth entry se4 is
used to represent the idle time between consecutive sessions with the help of an
imaginary Idle Server task and CPU4.

We studied the capacity of the system under various conditions and the effect
of transferring execution load from handsets to proxies. The capacity of the system
indicates the maximum number of users that the system can serve at the same time
without being saturated. Proxies, Application Server, General Server and Idle
Server are multithreaded, and can provide as many threads as needed. We define
0.7 as the threshold utilization of CPU2, beyond which we consider that the
system is saturated. ‘MC’ is the maximum number of clients that the system can
sustain in this case. We studied the effect of increasing the percentage of requests
serviced directly by the application server and executing a higher proportion of the
client tasks at the proxy servers.

We traced the WAP-based application for several months; some detailed data is
reported in [KUN 00]. The total average number of synchronous requests (the sum

Adaptive mobile applications 71

of shl and sh2) per user session is 11.2, i.e., shl + sh2 = 11.2. sh1l = O represents
the case when all the requests are passed on to other servers. shl = 11.2 represents
the case when all the requests are directly processed by the Application server. We
show the capacity implications of various splits between sh1 and sh2 in Table 3. To
derive the base system capacity, we assumed that the proxy layer is essentially
non-existent: requests from clients and replies from the Application server are
forwarded immediately and no processing happens at the proxy.

The base capacity of the system decreases with the increase of sh1l. That is, the
more requests the Application server processes directly, the smaller the system
capacity becomes. For the period we traced the application, the average maximum
numbers of concurrent sessions for each month are indeed below 8, but during the
peak hours of some days, the maximum number of concurrent sessions is bigger
than 10. This period of potential capacity overload is very short, however, usually
less than one minute.

Table 3. Basic system capacity

shi |0 112 {22132 (42 (521627282192]102 {112
MC |50136 129 124 {20 [17 {15 |13 |11 {10 |9 8

We also investigated the effect of load migration from handsets to the proxies.
We assume that the proxy CPU is 25 times faster than the handset CPU. The load
migration from handsets to the proxies reduces the service demand at the clients’
side. Assuming that each user has access to a dedicated proxy server, this is
equivalent, in modeling terms, to replacing a slow user with a faster, more
demanding user (more requests per unit time), reducing the overall system
capacity. However, since proxy servers are shared between multiple users, this
may not necessarily be the case. We varied the service demand on the portable
device (tc) from 6 to 0, in steps of 1, with a corresponding (smaller) increase in
service demand (pel) at the proxy. The performance prediction results are shown
in Tables 4 and 5.

Table 4. Capacity vs. load migration, all client requests processed by application server

Tc |6} 5 4 3 2 1 0
Pel |0 004 | 008 | 0.12 | 0.16 | 0.2 | 0.24
MC |8} 7 7 7 1 6 6

72 Mobile agents for telecommunication applications

Table 5. Capacity vs. load migration, all client requests forwarded to external servers

tc 6 5 4 3 2 1 0
pel | O [0.04 | 008 { 0.12 } 0.16 | 0.2 | 0.24
MC | 50| 46 43 42 41 | 40 | 39

We can see that, all else being equal, the capacity decreases with increasing
migration of computational load from portable devices to the proxies. This is
consistent with other result reported in [ZHO 00] that show that the system can
serve more slow users than fast ones.

6. Conclusions and future work

Finding approaches to reduce power consumption and to improve application
performance is a vital and interesting problem for mobile applications executing
on resource-constrained portable devices. We suggested a new approach in which
part of an application will be encapsulated in a mobile agent and potentially
shipped for execution to proxy servers, according to the portable device and fixed
host’s available resources and wireless network state. To support our approach, we
designed and developed a mobile object toolkit, based on Java. With this toolkit
we combine JVMs on both the proxy server and the portable device into one
virtual machine from the application point of view. The results showed that it is
possible to simultaneously improve application performance and reduce power
consumption by migrating the entire MP3 decoder to the proxy server in the case
of a slow portable device and sufficient wireless bandwidth.

To study the scalability of our approach, we developed a Layered Queuing
Model, derived trace data from a live system, and studied the maximum number of
concurrent users that can be supported. Even in a system with many potential
users, our traces reveal that only a relatively small number of users are
concurrently accessing the application server. In these cases, the introduction of
proxy servers does not overly reduce system capacity. Other studies have shown
that for the system studied, the application server is more likely to become a
bottleneck, rather than the proxy server. While these findings are application-
specific, they are encouraging. Contrary to our initial suspicions, we will probably
not need proxy servers in each cell to support the user population. In all likelihood,
a few centrally placed proxy servers can support potentially many users.

A number of issues need to be addressed in future work, some of which is
currently under way. We are working on improving the mobile object toolkit. The
main improvement to our toolkit optimizes the RMI protocol. Another
improvement deals with proxy objects. To support location-transparent invocation

Adaptive mobile applications 73

of methods, each object is associated with one or more proxy objects. Currently,
we manually write these proxy objects; however, we plan to develop tools to
automate this process (similar to Voyager) and integrate it with the toolkit.
Another addition to the toolkit would be to integrate profiling to enable dynamic
agent identification, based on computational demands and inter-object
communication patterns. Finally, we are currently porting the toolkit to Palm OS,
which requires fundamental changes to the object migration component due to the
limitations of the available Java Virtual Machines (no reflection mechanism, no
object serialization).

A second issue is to explore scenarios where either the application behavior or
the execution environment changes drastically while the application executes.
Intuitively, we would expect the runtime system to rebalance the application
accordingly. However, migrating agents/objects at runtime is not cheap. So we
need to explore how to balance the resulting overhead with the anticipated
performance gains and power reductions, in particular in execution environments
that change rapidly. Also, while our results reported here show that there is no
trade-off between power reduction and performance improvement, previous work
[OMA 99] indicates that there may well be such trade-offs for other applications.
In these cases, we need to identify how to balance conflicting objectives. One
possible solution could be to allow the mobile user to select preferences that
prioritize objectives.

A third area is the refinement of the performance prediction model. The current
model is essentially based on a multi-tier client-server architecture. In cases where
the mobile agent acts like a server (decode the next MP3 frame and return the
sampled sound), this accurately reflects the application structure. In more general
cases, though, objects at the proxy server side will request services from objects
that remain at the portable device. Another refinement of the model would include
the wireless link as additional “service” layer between client tasks and proxies, to
capture contention for that shared and scarce resource.

Yet another area currently under investigation is the extension of our work to
support truly mobile users. The work reported here focuses on the migration of
application components between a portable device and a more powerful proxy
server. Should more than one proxy server be required to support a given user
population, we need to concern ourselves with handoffs between proxies. As
described in [WAN 00], such handoffs can occur for a number of reasons: proxy
servers can become overloaded, different proxy servers may be closer to a roaming
user and therefore be better suited to provide better service, etc. Our toolkit needs
to be expanded to include agent migration between proxies and we need to identify
and test appropriate migration strategies.

A final area of possible future work is the interaction between application-
aware and application-transparent adaptation. Our MP3 player does not react to
changes in bandwidth, for example by reducing sampling size or audio quality. In

74 Mobile agents for telecommunication applications

our experiments, we fixed the output playing rate and the sampling size. Further
study is required to show how application adaptation policies affect and interact
with the automated adaptation by our toolkit.

Acknowledgements

This work was support by the National Research and Engineering Council,
Canada (NSERC) and a research grant by Bell Mobility Cellular, a Canadian
wireless service provider.

REFERENCES

[ANG 98] AnGIN O. et al., “The Mobiware Toolkit: Programmable Support for Adaptive
Mobile Networking”, IEEE Personal Communications, 5(4), August 1998, p. 32-43.

[BAL 95] BALAKRISHNAN H. et al., “Improving TCP/IP Performance over Wireless
Networks”, Proceedings of the 1+ Int. Conf. on Mobile Computing and
Communications, Berkeley, USA, November 1995, p. 2-11.

[BOL 98] BoLLIGER J., Gross T., “A Framework-based Approach to the Development of
Network-aware Applications”, IEEE Trans. on Software Eng., 24(5), May 1998,

p. 376-390.

[CDP 95] CDPD Consortium, Cellular Digital Packet Data System Specification, Release
1.1, January 19, 1995 (CD-ROM).

[FRA 98] FraNks G., Woobsipe M., “Performance of Multi-level Client-server Systems
with Parallel Service Operations”, Proceedings of the 15t Int. Workshop on
Software and Performance (WOSP98), Santa Fe, October 1998, p. 120-130.

[FOX 98] Fox A. et al., “Adapting to Network and Client Variation using Infrastructure
Proxies: Lessons and Perspectives”, IEEE Personal Comm., 5(4), August 1998,

p. 10-19.

[JOS 95] JoserH A. D. et al., “Rover: a Toolkit for Mobile Information Access”, ACM
Operating Systems Review, 29(5), December 1995, p. 156-171.

[KID 98] Kipston D. et al., “Comma, a Communication Manager for Mobile
Applications”. Proceedings of the 10t Int. Conf. on Wireless Communications,
Calgary, Alberta, Canada, July 1998, p. 103-116.

[KUN 00] Kunz T. et al., “"WAP Traffic: Description and Comparison to WWW Traffic”,
Proceedings of the 39 ACM Int. Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM 2000), Boston, USA, August 2000.

[LUC 99] Lucent, WaveLAN Wireless Computing, http://www.wavelan.com/

[OBJ 99] ObjectSpace, Voyager 2.0.0 User Guide, http://www.objectspace.com/Voyager/

[RAN 96] RANGANATHAN L. et al., Network-aware Mobile Programs, Technical Report CS-
TR-3659, Dept. of Computer Science, University of Maryland, College Park, MD
20740, June 1996.

Adaptive mobile applications 75

[OMA 99] OmaR S., Kunz T., “Reducing Power Consumption and Increasing Application
Performance for PDAs through Mobile Code”, Proceedings 1999 Int. Conf. on
Parallel and Distributed Processing Techniques and Applications, Vol. ll, Las
Vegas, Nevada, USA, June 1999, p. 1005-1011.

[OMA 00] OmAR S., A Mobile Code Toolkit for Adaptive Mobile Applications, April
2000, Thesis (M.C.S.), Carleton University, School of Computer Science.

[ROL 95] RoLiA J. A, Sevcik K. C., “The Method of Layers”, IEEE Transactions on
Software Engineering, 21(8), August 1995, p. 689-700.

[WAN 00] WanNG J., Kunz T., “A Proxy Server Infrastructure for Adaptive Mobile
Applications”, Proceedings of the 18t IASTED Int. Conf. on Applied Informatics,
Innsbruck, Austria, February 2000, p. 561-567.

[ZHO 00] ZHou, X., Cellular Data Traffic: Analysis, Modeling, and Prediction, Master’s
Thesis, School of Computer Science, Carleton University, July 2000.

This Page Intentionally Left Blank

Chapter 5

Active networks: architecture and

service distribution

Nicolas Rouhana

University Saint-Joseph, Beirut, Lebanon

Eric Horlait

University Pierre et Marie Curie, Paris, France

1. Introduction

The past ten years has witnessed the rapid development of computer networks, accom-
panied by an increased demand for new value-added services to meet the highly
varying requirements of end-users. For example, new alternative levels of service are
currently needed at various points of the Internet to provide a better than traditional
“best-effort” service, such as admission control, DiffServ and IntServ/RSVP mecha-
nisms, MPLS technology, QoS Routing, as shown in Figure 1 [1].

The need for these services has resulted in more and more functionality having
to be deployed inside the network, which lead to engineer programmable
networking infrastructures that offered open and extensible programming
interfaces providing abstraction between hardware and software. The IN concept
[2] was a solution that emerged from the telecommunications sector and defined
open interfaces to the switching control plane, thus easing the deployment of third
party novel control software and services. The Opensig [3] community is also
based on open-interfaces and virtual node abstractions, and regroup projects such
as the IEEE Project 1520 [4] and Columbia University xbind [5] project allows the
programmability of management and control planes in diverse networks.

In IP networks, the DARPA community introduced Active Networks in which
service construction is based on code mobility through “active” packets that

78 Mobile agents for telecommunication applications

Policing
Re-markiag
Re-shaping
— /\/—\ Basisiklog 9‘:“ ;n‘
siflication ' "
Marking Domain A Qcuies Bomain B

gis

funclions

Figure 1. Example of new services in today’s Internet

contain not only data, but also code, and “active” nodes that perform customized
computations depending on packets contents (Figure 2). The packet-switching
paradigm hence evolved to become “store, compute and forward”; i.e., the
traditional router or switch responsible for “passive” header processing and
routing, now present a transient execution environment that evaluates and executes
code in the “active” packets. Network behavior and service construction can thus
be controlled dynamically and at run-time on a per-packet, per-user, or other basis,
rather than a programmable control plane.

Figure 2. Active networks = 3 active nodes + active packets

A key enabler for active networks was the advance in technologies such as
ultra-fast hardware, safe and efficient code languages and mobility schemes. This
created a research environment in which diverse active networks architectures [6]
were experimented with different execution environments and programming
languages that could be applied in “real networks”. In parallel, efforts have been
underway at DARPA to define and standardize a new active network architecture
[7] aiming to supplant the current Internet architecture. The next section details
the functional elements of the DARPA architecture, while Section 3 will give

Active networks 79

examples of existing architectures and how they relate to the proposed framework.
We present future works and conclusions in Section 4.

2. Architecture of an active node

In the draft framework, the functionality of an active network node is divided
between Execution Environments (EEs), a Node Operating Systems (NodeOS)
and Active Applications (AAs). Figure 3 shows the modular architecture of the
active node “reference model”. By analogy with a traditional OS, the NodeOS is
responsible for allocating and controlling the node’s physical resources (e.g. band-
width, memory, CPU cycles), and each Execution Environment interprets
incoming active packets that contain the necessary code constituting the active
application. The detailed role of each component is discussed in the following
paragraphs.

2.1 Node Operating System

The NodeOS constitutes a layer of abstraction between the Execution
Environments and the underlying physical resources of the node (i.e., CPU cycles,
memory, transmission bandwidth, etc.). A NodeOS can be layered on top of any

A

U
All A A A
A|| A A A

Compu- Memory - Commu+ Storage
tation nlcation |

Figure 3. Generic components of an active node

80 Mobile agents for telecommunication applications

traditional OS that provides the access to the node’s low-level resources; the exis-
tence of the NodeOS is therefore necessary to provide a base level of functionality
common to every active node independent of the underlying OS and hardware
used.

The NodeOS also adds mechanisms to the underlying OS to provide novel and
interesting services to support active networking:

— supports multiple competing execution environments in the node and
provides basic safety between them;

— provides configurable task-scheduling and level of concurrency between the
execution environments;

— provides the execution environments with fine-grained control over
scheduling or over accountability, meaning that the NodeOS must be able to
identify individual packet flows, and limit how much resources a particular packet
flow or EE is able to consume.

Traditional operating systems, of course, provide more services, such as
protection between programs running in different address spaces, or some
priority-based scheduling policy favoring interactive programs over long-running
batch-jobs. The NodeOS should be able to work equally well with a host OS that
does or does not provide additional services; i.e., Execution Environments can
make use of special capabilities in the underlying OS and hardware (e.g. multi-
processing, real-time, etc.), but it should also be possible for them to exist on just
a set of minimal services.

[8] defines an abstract NodeOS-EE interface providing access to the node’s
resources through a system-calls interface. This interface consists of five primary
resource abstractions: thread pools, memory pools, channels, files and flows. The
first four abstractions are mapped by the NodeOS to actual physical resources,
respectively being computation, memory, communication and storage. The fifth
abstraction is used to aggregate control and scheduling of the other four
abstractions. Typically, each execution environment creates, runs and destroys a
flow, which consists of a set of input and output channels through which messages
are received and sent, a memory pool, and a thread pool. Active packets arrive on
an input channel, are processed by their corresponding execution environment
using threads and memory allocated to the flow, and then transmitted on an output
channel. The abstract communication channels actually consist of physical
transmission links (e.g. Ethernet, ATM) plus higher-level protocol stacks (e.g.
TCP, IP, link protocols). The NodeOS classifies incoming packets based on
specified criteria on the packets header defined by the EEs or the AAs, and
forwards the packets to the appropriate channel. Packets can also follow a cut-
through path and directly forwarded to an output channel if no treatment is
required at this particular node.

Active networks 81

2.2 Active transport

Some means is required to allow an active node receiving a packet to uniquely and
quickly determine the environment in which it is intended to be evaluated. We
already stated that the NodeOS can use a certain criteria specified by each EE (e.g.
based on specific fields in the packets headers) to classify the packets, or can make
use of a separate protocol at the NodeOS level that demultiplexes directly the
execution environment.

Early active networks architectures, prior to the node model with NodeOS,
used the “overlay” method, whereby networks were emulated by connecting the
active nodes and their execution environments with UDP channels, (e.g. ANTS
[9]), providing the paths for the active packets. Another scheme is to use the
ActivelP [10] option, which defined a new option to the IP datagram header,
allowing embedding of a program fragment in an IP datagram that gets evaluated
and executed in “active” routers, while “legacy” routers just forward the datagram.

Both these methods relied on IP-based networks. A more general approach is
to use a transport protocol independent of the technology used (i.e. the protocol
can be placed over Ethernet, IP or UDP), and that ensures interoperability with
existing networks. Two protocols have been proposed in that direction: the Active
Network Encapsulation Protocol (ANEP) [11] and the Simple Active Packet
Format (SAPF) [12].

2.2.1 Active Network Encapsulation Protocol

ANEP is a protocol for encapsulation of active network frames, designed to
provide the capability to identify the different evaluation environments, and to
allow minimal, default processing of packets for which the intended evaluation
environment is unavailable. Furthermore, information that does not fit concep-
tually or pragmatically in the encapsulated program, such as security headers, can
be placed in the header. The ANEP header includes a Type Identifier field that
indicates the EEs at the node. The proper authority for assigning public Type ID
values to interested parties is the Active Networks Assigned Numbers Authority
(ANANA).

ANEP also provides a vehicle for other communications with the NodeOS,
including:

— Error-handling instructions. When a packet fails to reach the desired
execution environment at a node (perhaps because the node does not support it, or
resources were not available), the ANEP header lets the user instruct the Node OS
as to the expected response, for example: drop the packet silently, try to forward it,
or send an error message.

— Security vouchers. The ANEP header is a natural location for a node-to-node
credential. It is impractical for every node in the network to retrieve or store the

82 Mobile agents for telecommunication applications

information (e.g. public key certificate) required to authenticate every packet
passing through it. However, it may be practical for a packet to be authenticated
just once (based on its originator) when it enters the network, and thereafter be
vouched-for node-to-node using keys shared between neighboring nodes.

2.2.2 Simple Active Packet Format

The SAPF protocol is based on an identifier carried by the packet that directly
points to the associated execution code (like a function handler) in the node. The
motivation behind SAPF is to enable a generic NodeOS to remove considerable
packet handling overhead from each active execution environment: currently, EEs
parse the ANEP format themselves whilst SAPF moves all (destination specific)
packet fields to the payload field except the one that allows for demultiplexing the
packet to the targeted EE.

The active network cloud consists of nodes that exclusively exchange SAPF
packets containing SAPF selectors. Well-known selectors will be statically
assigned, but the majority of the field values is dynamically assigned with the
help of active packets that are exchanged via the few statically assigned selector
values. An intermediate active node assigns a locally unique selector to this
handler and communicates it back to the upstream node. The upstream node
forwards all subsequent packets belonging to the same IP flow to this “SAPF
channel”. In order to interwork with IP networks, the ingress active node handles
an IP flow using active networking mechanisms instead of simple IP forwarding.
In this case, the node would create a handler in one of the active network EEs that
transforms each IP packet into an active packet or does some other packet
processing.

2.3 Execution Environments, Active Applications and User Applications

The Execution Environments evaluate and execute the code in the packets. They
provide the network APIs through which users can create end-to-end high-level
services. The execution environment can be, for example, a Java Virtual Machine
or any language interpreter, and the framework provides support for multiple and
diverse execution environments. One reason for this multiplicity is that the limi-
tation to one standard byte code and execution semantics would yield too much
functionality and complexity for a common element, and would probably not
reach a consensus in the active network community. The interface between the
execution environment and the active application is by definition EE-specific, and
thus reflects its “programming paradigm”. Some execution environments may
offer services that are accessible via a narrow, language-independent interface (as
with sockets); others may require that the active application code be written in a
particular language (e.g. Java). The intention is that this interface should be more
or less independent of the underlying active network infrastructure.

Active networks 83

Active Applications are the programs run by the execution environments and
define the actual end-to-end service associated with the packets. They implement
the customized services for End-User Applications (e.g. congestion control,
reliable multicast), using the programming interface supplied by the execution
environment.

The execution environments extend the role of the NodeOS “upwards” into
user-space. They distribute their available resources among the applications they
launch, control the execution of applications and prevent boundary and resource
violations between them, and can allow the applications to deliberately share
information. The NodeOS and the EE must cooperate to dispatch active packets
received to the appropriate active applications and to send their packets into the
network.

Execution environments can provide for simultaneous access to more than one
service. As a somewhat artificial example, consider an active application that
provides mobility and another that provides reliable group communication.
Ideally, an end-user should be able to invoke both services simultaneously, which
is a very challenging problem for today’s implementations.

Service deployment and distribution

A fundamental requirement of active networking is that the Active Application
code be dynamically loadable over the network. Schemes for distribution and
downloading of code are developed so that not all nodes need to have the code that
they may use. The code can be carried within protocol data packets, called the inte-
grated approach, or it can be resident in the node and loaded out-of-band from the
protocol data, called the discrete approach. The former approach offers maximum
flexibility in support of service creation, i.e. at packet transport granularity, but
with the cost of adding more complexity in the programming model in providing
safe transient execution environments.

The discrete approach is definitely preferable when programs are relatively
large compared to the packets, and maintains a modularization between user data
and program, which may be useful for network management tasks. Details of how
the “code” constituting the active application is loaded into the relevant nodes of
the network are determined by the Execution Environment. Out-of-band loading
may happen during a separate signaling phase or on-demand, upon packet arrival;
it may occur automatically (e.g. when instructions carried in a packet invoke a
method not present at the node, but known to exist elsewhere) or under explicit
control. Also, users can send a program “off-line” to a particular node, and when a
packet arrives at that node, the corresponding program is selected using header
information and then executed at the node. When a new version of the program is
necessary, or if a different type of processing is required, the user can send the new
program to the node to replace the old one.

84 Mobile agents for telecommunication applications

3. Related architectures

In this section, we provide a survey on some active networks implementing some
or all of the functions and mechanisms related to the previous section, namely
NodeOS, Execution Environments, and Active Applications.

3.1 Odyssey architecture

The Odyssey active networking environment is an implementation of the DARPA
active networking architecture. It consists of two major components: the Bowman
[14] Node Operating System and the CANEs [13] execution environment (Figure
4). Odyssey assumes a host operating system (e.g. Solaris, Linux) over which a
node operating system is built. Execution environments and generic services that
are likely to be useful across environments (e.g. routing) are built using the
abstractions provided by the node operating system; user code and particular
protocols are run as part of an execution environment.

Bowman is a NodeOS design implementing a subset of DARPA NodeOS
interface. It is developed in user-space level and exports to EEs an API based on
three resource abstractions: channels, a-flows and state stores, with functions for
manipulating these abstractions such as create, run, delete, etc. Bowman channel
is a communication end point of abstract links; it consists of a set of protocols
(TCP, UDP, IP, etc) and optionally local and remote addresses supporting abstract
topologies that constitutes user-defined connectivity between Bowman nodes over
physical topologies, thus enabling network-wide abstractions used to implement
virtual networks. A-flows abstractions in Bowman represent channel-specific
computation, and consist of at least one thread, processing contexts, user states
and time-out routines. Execution environments may create a-flows per-user or

AA AER

k& CANEs

NodeOS Bowman
+ User space

Figure 4. Components of an Odyssey node

Active networks 85

may just create one a-flow hence the EE itself becomes just one user to Bowman
(equivalent to a “process” in Unix). Flow-specific processing is based on a high-
performance and configurable packet classifier that identifies the set of channels
on which the received packet should be processed. The state-store provides a
mechanism for a-flows to store and retrieve state for data-sharing between them
without sharing program variables.

The CANESs execution environment executes as an a-flow within Bowman in
Odyssey and provides a composition framework for active services based on a
foundation of one or more generic behaviors (the underlying program) that can be
customized by injecting code (the injected program) to run in specific points
called slots. Composition is achieved in two steps; in the first the user selects an
“underlying program” that is executed on behalf of the user. Forwarding functions
are typical examples of underlying programs. Depending on the user, and the
network provider, there may be several forwarding functions available at each
node, each of which would define a specific set of processing slots. Depending
upon their needs, users may choose different underlying programs. The users then
select/provide a set of “injected programs”, which correspond to individual code
modules, that can be used to customize the underlying program on a per-user
basis. In effect, slots identify specific points in the underlying program where the
injected code may be executed. Slots are also the mechanism by which the
underlying program asserts properties that hold at the node.As in an event-driven
framework, injected code is “bound” to specific processing slots, and becomes
eligible for execution when appropriate slots are “raised”. Both the underlying and
injected programs are demand loaded, dynamically. CANEs also provides
mechanisms for variable sharing between programs exporting and sharing slots.

Active Error Recovery (AER) [15] is an attempt to develop a reliable multicast
framework using active processing. AER is an active application that makes use of
a repair server residing within the network to cache packets, respond to
retransmission requests, suppress redundant NAKs from receivers, and detect
gaps in sequence numbers indicating lost packets. AER also includes protocols to
calculate round trip times and dynamically select a worst receiver to handle
sliding-window-based flow control. AER is implemented in CANEs using two
underlying programs, a multicast forwarding engine for sending data, NAKs and
source path messages, and the generalized forwarding function for calculating the
round trip time and monitoring congestion status.

The Bowman channel, a-flow, and state-store abstractions are too elementary
to be useful for most users. Thus, Bowman provides an extension mechanism that
is analogous to loadable modules in traditional operating systems. Using
extensions, the Bowman interface can be extended to provide support for
additional abstractions such as queues, routing tables, user protocols and services.
Bowman does not enforce safety constraints on loaded code at run time. During
the signaling phase in Bowman, the code-fetching mechanism must decide, based

86 Mobile agents for telecommunication applications

on credentials provided by the user and the node security policy, whether it trusts
the requested code; if not, the request is denied.

3.2 Active Network Node

The software architecture of ANN [16] supports two EEs: ANTS [9] (for network
management and experimental prototyping of network protocols), and Distributed
Code Caching for Active Networks (DAN [17]), running on top of a NodeOS, as
shown in Figure 5. ANN has been developed as part of the Router Plugins project
[18], which is an architecture allowing code modules (compiled object code in
‘C’), called plugins, to be dynamically added and configured at run time within
active routers.

In these active routers, the regular IP forwarding loop is extended to look for
special headers between the IP header and the UDP or TCP header, which
reference plugins. If such a header is found, the packet is passed to the referenced
plugin prior to being forwarded. If the referenced plugin is not present on the
system, it is downloaded from a code server over the network and automatically
installed in the kernel by the DAN on-demand downloading of plugins scheme.
The Active Applications are built by deploying new plugins, like the WaveVideo
Plugin and Application that uses an active router plugin to provide congestion
control by doing intelligent scaling for a wavelet video transmission [19].

ANN uses as a base for NodeOS a modified NetBSD Unix kernel
implementing IPv4/IPv6 and QoS functionality in a modular fashion,

ANTS DAN P
JVM /FI;M\\ PM RSVP
User space v v
Kernel space '
4 o ¥ am EL
oWy, __/ PCU _/
Selector Packet Packet
Ressource Dispatcher Classifier Scheduler
Controller
Network Device Driver

Figure 5. The ANN software architecture

Active networks 87

incorporating user-processing at specific points (gates) on the IP forwarding path.
Components of the NodeOS permitting flow-specific processing include: a fast
packet filter that classifies incoming packets to specific flows and identifies the
function that is bound to a packet at each processing gate, a DRR Packet
Scheduler, a Selector Dispatcher (to demultiplex packets containing selectors
instead of IP headers), and a Resource Controller that keeps track of the CPU
cycles and memory consumed by plugin instances and distribute fair CPU time
sharing among active functions. The packet processing path in Router Plugins is
integrated with the flow-specific processing, Router Plugins do not incur thread-
switching and queuing overheads.

Architecturally, Router Plugins merge Node OS and EE functionality and thus
Router Plugins do not export a node OS interface over which different execution
environments can be built. The major feature that is missing from Router Plugins
is the general set of communication abstractions — channels, abstract links and
topologies reflecting the IP-based focus of the Router Plugins project. The
proposed framework introduces an execution environment which is a userspace
software component for code downloading, called Plugin Management (PM). The
plugin management includes the following sub-components: an Active Module
Loader (AML) which loads the active modules authenticated and digitally signed
by their developers from well known code servers using a lightweight network
protocol (e.g. UDP/IP); a Policy Controller which maintains a table of policy rules
set up by an administrator, e.g. restrict the set of supported modules; a Security
Gateway which allows/denies active modules based their origin and developer by
analyzing their digital signatures/authentication information; a Module Database
Controller which efficiently administers the local database of active modules, and
an Active Function Dispatcher (AFD) which identifies references to active
modules in data packets and passes these packets to their corresponding function
implementations.

3.3 Active Reservation Protocol

The ARP project [20] is exploring the use of portable and dynamically-extensible
protocol code for network control protocols, especially for signaling protocols.
That is, ARP is developing a facility for dynamic composition of new or modified
service features with an existing signaling service. In terms of the active network
architecture under development by the DARPA research community, the ARP
project is building an Execution Environments appropriate for active signaling, as
well as significant Active Applications to execute in that environment (Figure 6).
At present, the architecture runs on a traditional OS and the Execution
Environment is called the Active Signaling Protocol (ASP). The ASP is
essentially a user-mode operating system, providing services and resources to
the Active Applications executing within it. These services are defined by a

88 Mobile agents for telecommunication applications

AA RSVP RIP
EE ASP
NodeOS
Classifier Routing Scheduter

Figure 6. The ARP architecture

Protocol Programming Interface (PPI) that the EE presents to its applications.
With ARP, an initial or “base version” version of the code that implements a
particular signaling algorithm can be modified by one or more “functional
extensions” (FEs). The base version plus the set of FEs in use for a particular
signaling activity define a “version” of the signaling code. An appropriate
version may be selected for each distinguishable signaling activity; for example,
for RSVP, an appropriate version may be used for each RSVP session, with the
base version as default. New versions may be installed and controlled by
network management, which would exert administrative control over the
mapping of sessions onto versions by instalation of appropriate classifiers.
Ultimately, this would allow individual customers of the signaling function to be
able to develop and dynamically install their own versions, which requires
solving the protection and security problems inherent in allowing arbitrary code
fragments in the node.

Security and isolation are important issues in the design of the ASP EE. Like
the active applications, the ASP EE is written in Java providing class-based
protection, and isolation, and the standard Java “sand-boxing” severely restricts
the mischief that an application can cause. The architecture does not use the
capsule model, but instead fetches AA code out of band from the flow of active
packets. Therefore, important objectives of the ASP EE are the support of
dynamic loading of new versions upon demand from protocol packets, while
sharing a common byte code to reduce the memory footprint.

The ARP project has developed two significant active applications to execute
under the ASP execution environment:

— Jrsvp implements the Internet signaling protocol RSVP. Except for framing,
its network packet formats are compatible with the RSVP standard.

— Jrip implements the routing protocol RIP. This protocol is implemented as an
AA but it sets the default forwarding table used by the ASP EE for ASP active

Active networks 89

packets. This is accomplished using a “Network Management Interface” (NMI) to
the ASP EE.

3.4 ANTS

The Active Network Transport System (ANTS) [9] was one of the first active
packet systems developed. Active packets, or capsules, logically contain the code
that is needed to process them. Architecturally, ANTS is a Java-Virtual-Machine-
based execution environment acting like a minimal NodeOS. The current ANTS
prototype is written in Java and relies upon the JVM’s bytecode verification and
sandboxing facilities for the safety features they provide.

Local node resource usage is governed through the use of watchdog timers and
memory allocation limits. The Java code is executed in the JVM and makes calls
into a fixed and limited API to gain node-specific information. In addition, related
capsules may leave a node-resident state for one another in a soft-state cache.
Capsule types are grouped into protocols, and capsules are restricted to only
access soft state belonging to their own protocol. The reference to the code
actually takes the form of a MDS5 cryptographic hash of the actual code preventing
code spoofing. Thus, a misbehaving capsule is isolated from other capsules and
the node itself, and if it consumes too many resources it is terminated.
Furthermore, to control network-wide resource use, ANTS provides a TTL field,
which is decremented at each hop, and duplicated when packets create a child
packet. Since packets can create any number of child packets, the TTL limits the
distance a packet’s children can travel, but not the total work in the network.

One of the unique features of the ANTS system is an on-demand code loading
system. Rather than carry the code itself, the capsules instead contain references to
the code. If a node does not have a cached copy of the necessary code, it is loaded,
typically from the previous node in the flow, but potentially from the source node.
Thus the code for an active application marches ‘ants-like’ across the network as
the caches are loaded. Perhaps the best demonstration of the flexibility of the
ANTS system is the number and variety of active networking applications that
have been built using the ANTS toolkit. These include specialized web caching,
reliable multicast, mobile IP and distributed auction services [9].

Because the standard JVM does not support access to transmission resources at
a sufficiently low level, implementations of ANTS on standard platforms cannot
support quality-of-service capabilities, and are limited to the basic network
capabilities provided by Java, and experiments have shown that the forwarding
performance of capsules containing Java byte-code is dominated by overhead
incurred due to execution within the Java virtual machine. However, efforts based
on ANTS lead to the development of a new operating system called Janos [21].
Janos implements a special Java Virtual Machine and Java run-time for executing
Java byte code. Janos includes a modified version of ANTS that supports resource

90 Mobile agents for telecommunication applications

management. Their main design goal is to provide a strong protection and
separation mechanism between different user code executed at the active node.
While execution of user code within a virtual machine (like Java) provides a high
degree safety of execution, it also has associated performance costs. This is the
time-honored approach of relying on the code supplier for safety in order to obtain
better performance.

The aim of the Practical Active Network (PAN) [22] project is also to build a
high performance capsule-based active node that is based on the ANTS
framework. Architecturally, PAN is an in-kernel implementation of an EE using
Linux as the node OS, able to saturate a 100 Mbps Ethernet with 1500 byte
capsules containing native code and executed in-kernel.

3.5 Anetd

Anetd [23] is an experimental software designed to support the deployment, oper-
ation and control of active networks. It performs two major functions:

— Deployment, configuration, and control of networking software and
distributed services, including active networking execution environment
prototypes (e.g. ANTS), from a centralized source of electronic knowledge.

— Demultiplexing active network packets encapsulated using ANEP to
multiple EEs located on the same network node and sharing the same input port.

The network services to be deployed are specified as URLs. Anted, after
downloading the service with an HTTP GET command, strips the HTML header
from the received code and installs the service. The current prototype supports the
deployment of native binary compatible code or Java applications.

Anetd uses ANEP to support the merging of both the integrated and discrete
approach to network programmability. Anetd not only accepts commands to
implement the discrete approach (i.e. download, conFigure, etc.), but if the packet
received is destined for a downloaded service, it forwards that packet to the
appropriate service. Security is managed by using a 512-bit public key
cryptography to authenticate control commands, and access control is managed
through access lists and well-known servers.

3.6 The YAAP active platform

YAAP (Yet Another Active Platform) [24] was designed to be a simple prototype
implementation of the mechanisms associated with active networks. YAAP active
nodes are actually PCs running Linux OS as NodeOS using the ANEP protocol for
demultiplexing active packets (Figure 7). A special dispatcher daemon is used to
load and activate the services in the YAAP nodes. In order to provide a safe
computation environment, the EE consists of a Java virtual machine in which the

Active networks 91

HOA
Dispatcher >~ " |
User -space
ANEP
Kernel-space ir

Figure 7. YAAP architecture

services run, making use of Java Native Interface (JNI) to establish communi-
cation between the virtual machine in user-space and the kernel.

The dispatcher is a daemon running in user space and plays an important part
of a YAAP node; it constitutes the interface between the kernel and the different
components of the node, and serves also as a “bus” enabling the different
components to communicate with each other as explained later. The dispatcher has
also three main roles: the initiation of the download mechanism of a service, local
creation of a service, and registration of a client to use a particular service.

Unlike other active platforms that use ANEP over UDP, ANEP is implemented
within the kernel alongside IP, for obvious performance reasons. A new protocol
code type specifying the ANEP protocol is used in the IP header. Intermediate
YAAP nodes evaluate each ANEP packet even though the node is not the final
destination. For that purpose, a minor modification was done to the IP routing
code in Linux so that the kernel delivers the packet to YAAP, when the MSbit of
the Flags field in the ANEP header is O allowing the packet to be “executed”
locally.

YAAP supports loading-on-demand of services, i.e., when an ANEP packet
arrives at a node with an unknown TypelD, and this packet is to be evaluated at that
node, one role of the dispatcher is to initiate a download mechanism for the
appropriate service, and launches the service. When a new service is launched at a
node, it creates and binds to a YAAP socket, and listens on its own ANEP Type ID,
thus permitting the kernel to deliver to it the appropriate packet. An API developed
for YAAP (called YAPI) allows creation of ANEP sockets to send and receive
packets in the same way as the TCP/UDP API.

This platform builds on concepts found in ANTS (e.g. demand-loading, Java
execution environment) and Anetd (e.g. the use of ANEP). It also adds the
possibility to download a service manually at any specified node in the network.

92 Mobile agents for telecommunication applications

4. Conclusions

Viewing the network as a general computation engine enables an exciting set of
capabilities and applications. Prior to the standardization efforts of the DARPA
framework, early Active Networks platforms developed specific Execution
Environments that made use of traditional machine operating systems for
resources access and management. Porting execution environments to use
standard NodeOS are currently being written, and is critical for refining the stan-
dards being developed to be able to reach a unified active networks architecture.

Current works are focusing on developing a common node OS. Here also,
experimentation show a number of major open issues in active networking,
including algorithms for integrated processor and link scheduling; algorithms for
allocation of resources to flows within active nodes; and policies for instantiation
and isolation of different abstract topologies.

One specific question currently debated is where to draw the EE/NodeOS
boundary, and whether the NodeOS itself should be extensible, or if the ability to
add functionality to the node should be reserved for the EEs. The answer seems to
be that each NodeOS should be extensible in some way (i.e., analogous to loadable
modules in traditional operating systems) and must allow the EEs to exploit these
extensions, while not providing means for an EE to directly extend the NodeOS in
order to be generic.

REFERENCES

[1]1 Xireng X. et al., “Internet QoS: A Big Picture”, IEEE Network, March/April 1999.

[2] AwmsrosH W., “The Intelligent Network"”, A Joint Study by Bell Atlantic, IBM and
Siemens, Germany, 1989.

[3] "Open Signaling Working Group”, http://comet.columbia.edu/opensig/

[4] Biswas J. et al., "The IEEE P1520 Standards Initiative for Programmable Network
Interfaces”, IEEE Communications Magazine, Special Issue on Programmable
Networks, October 1998.

[5] CHAN M.-C. et al., “On Realizing a Broadband Kernel for Multimedia Networks”,
3rd COST 237 Workshop on Multimedia Telecommunications and Applications,
Barcelona, Spain, November 1996.

[6] CampeeLL A. T. et al., “A Survey of Programmable Networks”, ACM SIGCOMM
Computer Communication Review, Vol. 29, No. 2 p. 7-24, April 1999.

[7] CavverT K. (Editor), “Architectural Framework for Active Networks”, DARPA AN
Working Group Draft, 1998.

[8] PeTerson L. (Editor), “NodeOS Interface Specification”, DARPA AN NodeOS
Working Group Draft, 1999.

Active networks 93

[9] WETHERALL D. et al., “ANTS: A Toolkit for Building and Dynamically Deploying
Network Protocols”, IEEE OPENARCH’98, San Francisco, CA, April 1998.

[10] WETHERALL D. et al., “The ActivelP Option”, 7" ACM SIGOPS European Workshop,
1996.

[11] ALexanper D. et al., “Active Network Encapsulation Protocol”, Draft, July 1997.
Available at http://www.cis.upenn.edu/~switchware/ANEP/

[12] Decasper D. et al., “Simple Active Packet Format (SAPF)”, Experimental RFC,
August 1998.

[13] ZeGura E., “CANEs: Composable Active Network Elements”, Georgia Institute of
Technology, http://www.cc.gatech.edu/projects/canes/

[14] CaLverT K. et al., “Bowman: A Node OS for Active Networks”, IEEE Infocom 2000,
Tel Aviv, Israel, March 2000.

[15] Active Error Recovery (AER), http://www.tascnets.com/panama/AER

[16] Decasper D. et al., “A Scalable, High Performance Active Network Node"”, IEEE
Network, January/February 1999.

[17] Decasper D. et al., “DAN - Distributed Code Caching for Active Networks”, IEEE
INFOCOM’98, April 1998, San Francisco.

[18] Decasper D. et al., “Router Plugins: A Software Architecture for Next Generation
Routers”, SIGCOMM ‘98, Vancouver, CA, September 1998.

[19] KELLER R. et al., “An Active Router Architecture for Multicast Video Distribution”,
IEEE INFOCOM 2000, Tel Aviy, Israel, March 2000.

[20] Active Reservation Protocol (ARP), http://www.isi.edu/active-signal/ARP/

[21] "Janos: A Java-based Active Network Operating System”,
http://www.cs.utah.edu/projects/flux/janos/summary.htmil

[22] NvGren E. et al., “PAN: A High-Performance Active Network Node Supporting
Multiple Mobile Code Systems”, IEEE OpenArch ‘99, March 1999.

[23] Ricaul L., “Anetd: Active NETworks Daemon (v1.0)", http://www.csl.sri.com/ancors

[24] RouHANA N. et al., "YAAP: Yet Another Active Platform”, 2" International
Workshop on Mobile Agents for Telecommunications (MATA), September 2000,
Paris, France.

This Page Intentionally Left Blank

Chapter 6

Resource trading agents for adaptive
active network applications

Lidia Yamamoto and Guy Leduc

Research Unit in Networking, University of Liége, Belgium

1. Introduction

In the context of an increasingly decentralized and heterogeneous network such as the
Internet today, it is very difficult for the applications to know how much quality they
can really expect. A lot of research effort has been dedicated to techniques to offer
QoS guarantees, but these techniques are only effective when deployed in all the
nodes concerned by a communication, or at least in all the nodes where resource
shortage may occur. However, it is very difficult to achieve global agreements such
that these techniques can be deployed. They are feasible in a private enterprise
network, ISP or isolated operator, but not at the global scale. Therefore the only real-
istic answer seems to be to rely on applications that are able to adapt to a wide range
of network conditions in a dynamic way, and in particular to the amount of resources
available when these resources cannot be reserved in advance.

An adaptive application must be able to make optimal use of the available
resources, and be able to adapt itself to fluctuations in resource availability. But
this kind of application faces the difficulty of obtaining enough information about
the network conditions, due to the Internet black-box model.

Clearly the use of more intelligent network elements in the network can allow
applications to obtain the feedback they need to perform the adaptation functions
more easily. Recently router support has been considered to assist adaptive
applications to achieve better performance. But then the same question arises, how
to add new functionality inside the network nodes without going through a long
standardization process and without having to face the difficulties of global scale
deployment.

96 Mobile agents for telecommunication applications

Mobile agents and active networks can become useful tools to help in the
adaptation process, since it becomes possible to inject customized computations at
optimal points in the network, and the deployment problem can be easily solved
using dynamic code mobility. In the long run this can lead to self-configurable,
auto-adaptive network elements that are intelligent enough to “learn” the
protocols they need to use at a given moment according to the devices available,
services offered, operator policies, user demand, etc.

A special class of adaptation mechanisms is the so-called market-based control
[CLE 96], for which a considerable amount of research results are available
mainly in the agents field. It provides algorithms inspired by optimization and
economy theories for distributed control of resource usage, with many
applications to computer and telecommunication networks. The benefit of such
mechanisms is two-fold: on one side, optimal resource sharing configurations can
be achieved in a decentralized way; on the otherside, it becomes easier to quantify
heterogeneity in terms of resource availability, to offer the users the opportunity to
trade one type of resource for another.

However, relatively few results have been shown which directly apply such
artificial economy models to the specifics of active networks, with special
attention to highly adaptive applications. We address this issue in this article by
providing a simple model which allows the active applications to make decisions
about the amount of resources to use, according to the network conditions found in
the active nodes. Using such a model, an audio mixer is developed as an instance
of adaptive active network application, which is able to trade bandwidth for
memory according to the available prices of each resource.

The article is organized as follows: in Section 2 we review the state of the art in
agent and active network techniques for adaptive applications. Section 3 presents
our model to trade resources inside an active node. Section 4 applies the model to
the case of an audio mixing application. Section 5 shows simulation results for the
audio application, and Section 6 concludes the article.

2. Background

In this section we give a survey of the current research directions concerning agent
and active network techniques applied to adaptive applications. We start with an
overview of current techniques used in network and transport level adaptation
protocols, and then discuss the potential of mobile agents and active networks for
such applications, with a survey of current proposals in this area. After that we
review market-based control research applied to resource sharing in computer and
telecommunication networks. The use of such techniques in the active network
context is the focus of our work.

Resource trading agents 97

2.1 Adaptive applications

Adaptive applications can tolerate fluctuations in resource availability, and are
necessary in a heterogeneous environment such as the Internet today, where
different network technologies and user terminals are interconnected together, and
over which a multitude of services coexist. In the case of multimedia applications,
a good survey can be found in [VAN 00].

The adaptation mechanisms can be implemented at several layers of the
protocol stack, ranging from pure application layer techniques to network level
protocols. For example, we can adapt to the available bandwidth using elastic
traffic that reduces the data rate generated in presence of network congestion.
Fluctuations in delay can be dealt with by using elastic buffers to adjust the play-
out time. To deal with CPU and memory bottlenecks, some interaction with the
operating system is necessary (see Section 5 of [VAN 00] for examples). Our focus
in this paper is on network and transport level mechanisms for adaptation. At this
level, the classical approaches are typically end-to-end based and adapt to the
available network bandwidth (congestion control). The best known example is the
TCP protocol, which adjusts its window size in response to the current level of
congestion. Since TCP is so widespread today, but does not support the emerging
multimedia applications, a lot of research is in progress in order to obtain TCP-
friendly protocols for real-time and streaming applications, for unicast as well as
multicast traffic [FLO 00] [KHA 00].

It is well known that classical end-to-end approaches often present drawbacks
such as annoying quality fluctuations, sub-optimal resource utilization and
sharing, and slow convergence. Part of these problems come from the fact that the
applications try to adapt in a blind way, without having enough information about
the network conditions, since the Internet uses a black-box model, which hides all
information from the end hosts.

Recently some router support has been considered to assist adaptive
applications to achieve better performance, e.g. [GOP 00]. However, how to have
such schemes widely accepted and deployed is still a question mark.

We believe that code mobility as provided by mobile agents and active
networks is the only generic solution to allow adaptive software to be
incrementally deployed and evolve through usage experience. In Section 2.2 we
give a brief introduction to the active network concepts used throughout the
article, and in Section 2.3 we discuss the relationship between mobile agents and
active networks. In Section 2.4 we review the current research efforts towards
adaptation protocols that can benefit from code mobility.

2.2 Active networks

Active networks (AN) allow the network managers or users to program the
network nodes according to their needs, offering a great amount of flexibility. The

98 Mobile agents for telecommunication applications

nodes of an active network [TEN 97] are capable not only of forwarding packets as
usual but also of loading and executing mobile code. The code can be transported
out-of-band, within specialized signalling channels (programmable networks) or
in-band, within special packets called “capsules” (active networks). Capsules
might contain the code itself (such as in [HIC 99]) or a reference to it, such that it
can be downloaded when the first capsule containing the reference arrives at a
given node (such as in [WET 98]).

If the distinction between active and programmable networks seemed at some
point in time clear [TEN 97] [CH 98], the tendency today seems to be towards an
integration of the two concepts [ALE 99], since both are forms of achieving open
programmability in networks [CAM 99], and special flavours in between or
combining both approaches are also possible [ALE 99] [HJA 00]. In this paper we
focus on the capsule model in order to be more generic and avoid programmability
restrictions.

There are basically two AN architectural lines, derived from the two original
communities on out-of-band and in-band programmability. The first one is the
IEEE P1520 reference model [DEN 99], which offers a set of standard interfaces
to program IP routers, ATM switches and other network devices. The P1520
model is the first standardization effort towards open network programming
interfaces, and is likely to be one of the first AN interfaces to become
commercially available.

The second architectural line is the framework for an active node architecture
[CAL 99] which is being proposed within the DARPA AN research community. It
includes a supporting operating system (the NodeOS), one or more execution
environments (EE), and the active applications (AA). These components are
outlined in Figure 1. The NodeOS is responsible for managing local resources

‘\‘ EE1 EE1 ‘/.z
Aes.mng. Res.mng.
Resources Resources
1 |
S X S 2
NodeOS AP}
NodeOS
Resource manager
Resources

Figure 1. Main components of the DARPA AN architecture

Resource trading agents 99

such as CPU processing time, link bandwidth and memory storage. On top of the
NodeOS, a number of EEs can be installed. On top of each EE, various AAs can be
dynamically loaded and executed. The EE is responsible for controlling the access
from the AAs to local resources, and limiting resource usage depending on
specified policies.

The NodeOS plays a crucial role in providing access to local node resources, as
well as information about resource availability. A NodeOS API is currently being
defined [PET 00]. At the moment this API treats four types of resources:
computation, memory, communication, and persistent storage. The
communication resource is handled through the channel abstraction, which when
ready should include QoS support, as well as access to link information such as
bandwidth, queue length, and other properties and statistics.

2.3 Mobile agents and active networks

Mobile agents are autonomous pieces of mobile code that travel through the
network acting on behalf of their owners. There is a vast amount of literature on
the subject, applied to several areas such as manufacturing, e-commerce, network
management [HAY 99a] [PAP 00].

The intersection between mobile agent technology and active network
technology is the use of mobile code. The capsules of an active network can be
seen as subclasses of mobile agents, specialized for network-related operations.
The similarity between active networking and mobile agent concepts is briefly
discussed in [HAY 99b] [BRE 99].

Actually, we can consider that the pioneer AN platform came from a mobile
agent framework: the M@ platform [TSC 93]. M@ is based on the concept of
messengers as mobile computational entities that are able to perform any network
service. In [TSC 93] it is shown that any protocol based on the classical PDU
paradigm — which is the case of basically all the network protocols in operation so
far — can be implemented using the messengers paradigm. On the other hand, it is
also pointed out that not all the protocols that can be implemented with
messengers can be implemented using simple PDUs. The typical case is the one
of protocols that are able to evolve their own code on the fly. The author called
such protocols “genetic protocols” but admitted to be unable to come up with
concrete examples where such protocols would really be necessary in practice.
Since then, the search for such protocols still persists in the AN and mobile agent
worlds [BOL 00].

If conceptually the border line between mobile agents and AN capsules or
messengers is a blur, in practice many differences subsist between the two
approaches. Mobile agents concentrate mainly on application-level or network
management duties, and can typically accomplish much more complex tasks, with
richer functionality, that what is generally allowed to capsules or even to out-of-

100 Mobile agents for telecommunication applications

band active code. Moreover, while capsules can be designed to be autonomous and
mobile, downloadable modules for programmable networking are typically like
plug-ins, and have no autonomy nor mobility once they are installed at the target
network element. The architectures for mobile agent platforms and active network
platforms differ in the kind of support for code mobility that is offered. Mobile
agent platforms tend to concentrate on application level or network value added
services, while active network platforms are optimized for transport rather than
processing of information.

It is interesting to note that the simplicity of AN platforms compared to agent
platforms may enlarge their applicability beyond the network domain they were
initially designed for. An example of that can be found in [RUM 00], where the
concept of “active network calls” is introduced, which uses AN capsules to
support distributed computations. The authors report that efficiency was the
reason for the choice of AN capsules instead of mobile agents.

On the other hand, mobile agents can also be used as enabling platform for
active networks as pointed out in [BRE 99] [SUG 99]. In this case, instead of the
usual plug-ins, it is possible to benefit from full mobile agent functionality in an
AN environment.

Finally, it is important to remember that both mobile agent and AN
technologies face the same challenges which are mainly security, performance,
resource management and interoperability.

2.4 Resource management

One of the main difficulties encountered in classical adaptation approaches is how
to obtain the required information about resource availability, mainly when this
information is hidden in a black box network and has to be inferred using only
some indirect indications that are observed at the end systems. Using code
mobility as provided by mobile agents and active networks, new models for
adaptive applications could be envisaged, which can benefit from the possibility to
send capsules or agents to certain elements inside the network. These agents can
be in charge of collecting information about network conditions, without having to
rely on indirect indications or on heavy signalling protocols. Indeed, the idea of
sending small pieces of code directly to where the data needs to be treated, instead
of exchanging a large amount of data, is one of the main motivations of mobile
agent technology, and it can also be applied to mobile code in the case of active
networks.

Actually many adaptation mechanisms come from the world of mobile agents.
In [JUN 00] an adaptive QoS scheme for MPEG client—server video applications
is described. It is based on intelligent agents that reserve network bandwidth and
local CPU cycles, and adjust the video stream appropriately. Many agent-based
adaptation schemes use artificial market mechanisms [CLE 96]. In [YAM 96] a

Resource trading agents 101

market model to allocate QoS is applied to a conferencing tool targeted at casual
meetings where sudden variations in bandwidth availability require an adaptive
QoS control strategy. In [TSC 97] an open resource allocation scheme based on
market models is applied to the case of memory allocation for mobile code. [GIB
99] describes a market-based mechanism to set up circuit switching paths with
resource reservation. In [BRE 00] the problem of budget planning for mobile
agents is addressed, such that they can successfully complete their tasks given
their limited budget constraints.

In the domain of end-to-end congestion control in networks, optimization
schemes (see [LOW 99] for an overview) are receiving a lot of attention recently.
The algorithms derived from such studies also use a price measure to indicate the
level of congestion, and utility functions to quantify users’ share of bandwidth.
They are therefore closely related to artificial economy systems, but they are
restricted to the specific case where bandwidth is the only scarce resource.

Active networks can more easily benefit from the various adaptation
mechanisms described, when compared to classical networks, since their code can
be dynamically deployed. However, most of the current AN architectures still
offer little support for such mechanisms to be implemented in a straightforward
manner. For example, ANTS capsules carry a resource limit field that is
decremented for the consumption of resources [WET 98]. When it reaches zero
the capsule is discarded. However, no mechanisms are specified to manage this
field, or to quantify the amount to be decremented.

This situation is rapidly changing though. Recently, [ANA 00] presented a
very promising market-based resource management infrastructure for active
networks. It includes a distributed trust-management system which ensures that
the market-based policies can be properly enforced in a scalable way.

Another step towards market-based models for AN is the cost model proposed
in [NAJ 00], which expresses the trade-off between different types of resources in
a quantitative way. However, the recursive approach adopted makes its use more
appropriate in the context of reservation-based applications, instead of highly
adaptive ones.

A crucial issue for resource management in active networks is the support for
incremental deployment. The success of active networks, protocols and services
will depend on their ability to complement and interoperate with existing networks
in a transparent way, such that active nodes and active functionality can be
incrementally deployed. In a hybrid network where only a few nodes might be
active, it is important to be able to estimate the resource availability outside an
active node. In [SIV 00] an equivalent link abstraction is proposed as part of the
Protean architecture. Using this abstraction, it is possible to consider a set of non-
active nodes as a single link from the point of view of the active nodes involved.
Such a virtual link presents changing properties which must be discovered in real-
time, such as average rate, delay and packet loss probability. The use of this type of

102 Mobile agents for telecommunication applications

abstraction in the context of artificial market models, as well as its extension to
multi-access links, to the case of asymmetric and/or changing routes, etc., are still
open issues.

3. Resource trading model

In previous work [YAM 00a] we proposed a model for trading resources inside an
active node, and applied it to an audio application. This paper is an extended,
corrected and updated version of that work. The model was derived from our
earlier work on a layered multicast protocol [YAM 00b], therefore it is not a mere
abstract proposal but is motivated by concrete application needs.

Our model aims at offering a generic communication abstraction between
active network agents, such that different adaptive applications and different
resource management policies can be implemented. We are mainly concerned
with adaptation to available resources when resources cannot be reserved in
advance, either because the router itself does not support reservations, or because
the network is heterogeneous and some of the routers along the path offer no QoS
support.

In the model, two types of agents communicate to seek an equilibrium. Each
agent tries to optimize its own benefits: on one side resource manager agents have
the goal of maximizing resource usage while maintaining a good performance
level. On the other side, user agents try to obtain a better quality/price relation for
the resources consumed, and to efficiently manage their own budgets avoiding
waste. Both types of agents are implemented as AAs with different privileges, and
they communicate such that the resource managers can “sell” resources to the user
agents at a price that varies as a function of the demand for the resource.

A currency is introduced into the system to allow for trading of different
resource types. This is the basic requirement for artificial economy models such as
[BRE 00] [FER 96] [TSC 97] to develop in active nodes, and is also an essential
feedback parameter for most algorithms based on optimization (e.g. [LOW 99]).

The idea is to enable auto-configurable applications and resource managers,
such that the code from both types of agents can be dynamically loaded, in order to
make them evolve to adapt to new conditions. Figure 2 shows the model as it could
be implemented over the DARPA AN architecture. The main implementation
difficulty at the moment seems to be the definition of interfaces to local
information concerning resource availability, which need to be exported to the
active applications. In this matter, we can learn from the mobile agents field in
order to model the interactions between resource manager agents and user agents.
Software agent communication paradigms such as Agent Communication
Languages can be helpful, but still need to be specialized to the AN context.

Such a model is per se not entirely new, and is in fact a mere simplification of
existing artificial economy models which have been mainly applied to the agents

Resource trading agents 103

Secum communication

Dynamic
EE1 EE 2 res.mng.
Statc res.mng. Static res.mng.
Resources Resources
1 1
s £ J v
NodeOS API
NodeOS
Resource manager netw.admin.
Resources | ’

Figure 2. Resource managers and active applications. Hypothetic placement over the
DARPA AN architecture

domain. For example, the scheme in [GIB 99] is similar to ours, although more
complex. The main difference with respect to our model is that we try to adapt it to
the specifics of adaptive applications over active networks (no resource
reservations), in which reaction time is critical, therefore precluding the use of
complex transactions.

The AN market-based infrastructure proposed in [ANA 00] allows the trading
of resources between producing agents and consuming agents, which can be
mediated by service broker agents. The currency used takes the form of a resource
access right. This architecture also bears many similarities with our model. The
main different is that we focus on AAs that can trade resources, while [ANA 00]
focuses on the underlying architecture and security mechanisms to support such
AAs. Our research efforts are therefore complementary, and we plan to implement
our ideas over the platform developed by [ANA 00].

3.1 Resource manager agents

Resource managers export resource prices which are a function of the resource
utilization. The utilization is related to the load, and to the demand for a resource.
The function or algorithm used to calculate prices can be shaped to implement
desired policies, such as to achieve high utilization, but also to offer good quality
to the users. Resource managers may contain dynamic and/or static code. Some
lower level functions which are especially time-critical might be implemented
using static code (or even in hardware) while the mobile part would be used to
implement more complex policies and to select from a set of pre-existent lower

104 Mobile agents for telecommunication applications

level functions. It is necessary to have the possibility to use dynamic code in order
to be able to improve strategies, that is, make them evolve over time, in an active
network. Here is one of the places where the alliance between AN and mobile
agents can become a must: resource managers can be deployed using mobile
agents that are sent by the network manager in order to install new policies.
Classical mobile agents for network management can be used for this purpose.

Resource managers are implemented as AAs injected by the network provider,
which are executed with network administrator’s privileges. There is one class of
resource manager for each type of resource concerned. The most relevant classes
are: link managers, CPU managers, and memory managers. We will give some
more attention to link managers, since they play a crucial role in network
congestion control.

Link manager agents also allow abstractions to be made which enable the user
applications to adapt to a wide variety of environments in a transparent way. By
exporting prices instead of the link internal state information directly, it is possible
to hide the specific details of link characteristics while at the same time offering a
proper congestion indication to adaptive applications. For example, the price
function for a classical point-to-point link would be different from that of a
multiple access link, where the local interface load is not a good indication of the
actual link utilization.

An important feature of the link manager price abstraction is that it allows the
active applications to deal with non-active nodes in a transparent way. For example,
a link manager that implements the equivalent link abstraction [SIV 00] could
export a price which would be a function of the estimate average rate, average delay
and packet loss probability, which are changing properties in the case of an Internet
virtual link. As discussed earlier, this type of abstraction is crucial for the success of
active networks, since the deployment of active nodes will depend on their ability to
complement and interwork with existing technologies.

A lot of research is still to be done on how to adjust prices in artificial agent-
based economies. An interesting analysis can be found in [MIZ 99]. For this paper,
however, this will not be our focus. We will rather concentrate on the user side,
assuming that the resource manager agents in the active nodes are able to
implement suitable pricing algorithms.

3.2 Capsules as reactive user agents

The second type of agent in the model are the active packets themselves, modelled
as simple reactive mobile agents. Actually capsules can be regarded as a
specialized subclass of mobile agents. They travel to network nodes where they
decide when to continue or stop the trip (e.g. stop due to congestion), when to fork
new capsules (e.g. in a multicast branch), and which amount of resources to use at
each node in order to complete their (generally simplified) tasks.

Resource trading agents 105

Capsules have the properties of autonomy and mobility, but need to be simple
enough to be executed at the network layer, where performance is often critical.
They need to take fast decisions using little data and reasoning, therefore they
must be extremely reactive. They can therefore be classified in the reactive agents
category. This does not exclude from the model the possibility of using more
intelligent mobile agents, jointly with capsules. However, in this paper we focus
only on capsules.

Capsules generally represent the user interests, with the goal of attaining the
best possible quality at the lowest possible cost. This means that a capsule must be
able to make rational decisions on how to spend its limited budget, after consulting
resource manager agents for information about the prices of the various resources
needed.

Capsules carry a budget that allows them to afford resources in the active
nodes, as the resource limit field in ANTS [WET 98]. It looks like a TTL (Time-
To-Live) field which is decremented by a number of units for the consumption of
a certain amount of resources. When it reaches zero the capsule is discarded. As
explained in [WET 98], the budget field must be protected such that the capsules
themselves cannot modify it. Again, since capsules are reactive agents, the
transactions must be kept simple enough. Instead of the auction mechanisms
frequently used by agents [CLE 96], the capsules will most of the time either
accept or refuse to pay a given price. Refusal might imply that the capsule simply
disappears from the system, because it does not have enough budget to proceed on
its journey to its destination. Again, we do not preclude the usage of more complex
mechanisms implemented by intelligent mobile agents. These agents can also
have access to the resource manager interfaces; therefore they can also benefit
from the model, but they are not our focus as pointed out earlier in this section.

At the end systems (hosts) conventional programs or intelligent agents can be
used to spawn capsules. Since these hosts can dedicate significant amounts of
resources to information processing, sophisticated strategies can be used to decide
which capsules to spawn and when, and how much of the total user’s income can
be assigned to each capsule (planning). These tasks are then not delegated to the
capsules themselves, but can be delegated to more generic mobile agents such as
the ones described in [BRE 00].

Here we face the problem of how the budget should be distributed between
capsules for one user, and among different users, and also of how to make
purchase decisions according to budget constraints. This can be done with the help
of utility functions, which quantify the level of user satisfaction for receiving a
certain amount of a good, or more generally a combination of goods (market
basket) [PIN 98].

According to economics, a typical behaviour of a rational consumer agent is to
try to maximize its utility subject to the budget constraints given by its limited
income.

106 Mobile agents for telecommunication applications

For an example where only two goods are involved, the user optimization
problem is then typically expressed as:

Maximize U(x,y)

subject to: p -x+p -y = 1

where U(x,y) is the utility function, x and y are the quantities of two goods in their
respective units, p is the price per unit of x, p, is the price per unit of y, and / is the
user’s income.

Such a maximization process will lead to an equilibrium if the utility function
satisfies some properties such as being strictly concave increasing, i.e. the increase
in satisfaction is smaller the more items of one good are consumed. The increase
in satisfaction that a user obtains from consuming one more item of a given good
is called the marginal utility. Within the rational consumer assumption, the
marginal utility is a decreasing function of the number of items of a given good.
This is called the diminishing marginal utility assumption, and it is directly related
to the demand function of a given user for a given good. It means that the more one
has from something, the less it is willing to pay to obtain more of it.

A typical utility function is the Cobb—Douglas utility function, given by:

U(xy)=alog (x) + (1 -a) log ()

where 0 = a = 1 is a constant which represents the importance the user assigns to
x with respect to y.

Applying the method of Lagrange multipliers, the solution of the user
optimization problem with the Cobb-Douglas utility function is given by [PIN
98]:

x(p,) =21]
P,

yp,) = d-9:1 2]
p

y

The functions x(p_) and y(p,) are the demand functions for goods x and y given
their current prices per unit p_and p, respectively. With demand functions shaped
like these, it is possible to choose the quantity of a given resource to consume in
order to maximize user satisfaction, given the current price for the resource and the
agent’s income. Since the price information for each type of resource is available
in the active nodes, it is possible for an agent to calculate the amount of resources
it can consume at each node, given only an upper bound on the budget per hop it
has planned to spend. In the case of capsules, the planning decisions to calculate

Resource trading agents 107

this upper bound could be performed either at the hosts or by more intelligent
mobile agents that would be sent to the active nodes less frequently than capsules.
The techniques for such planning are out of scope of this article, and the interested
reader can refer to [BRE 00] for more information.

The same reasoning can be easily generalized to an arbitrary number of
resources [FER 96]. However, for the purpose of our study this will be sufficient,
since we will restrict ourselves to link and memory resources.

Another important characteristic of the Cobb-Douglas function is that it
allows us to easily quantify the preferences of different consumers towards one
good. For example, given two user agents u, and u, with the same income I, if
agent u, has the weight ¢, on its utility function for good x, and agent u, has weight
a,=na, for the same good, we have:

a-l
xl(px) =
P,
ay;l napl
'x2 (p/\):—: =I’l~x1 (p,c)
P, P,

Thus for a given price p_we have:
a,=n-a=x,=nx,

It means that if we know that agent u, values resource x twice as much as agent
u,, then when faced with the same price, u, will get twice as much of x as u ” This
is an interesting tool for computer network applications, since it provides a
quantitative way to provide service differentiation according to the preferences of
users. This capability is already known from literature, e.g. [LOW 99] [FER 96].
For example, when trading bandwidth for memory storage, a time-constrained
application such as an audio-conference will certainly prefer bandwidth to storage
if prices are the same, while a bulk transfer application would probably prefer to
store as much information as possible when the links are congested, in order to
avoid losses and retransmissions.

In real world economies it is difficult to quantify utilities, but in artificial
economies this might be less difficult. Without having to relate artificial currencies
to real ones, we could imagine that the maximum budget per unit of time is
controlled by a policy server from the network provider that the user is subscribed
to, in order to guarantee that users will employ such budget rationally and prevent
malicious users from grabbing most of the resources by marking all their capsules
with a high budget. This can be compared to the IETF diffserv policies. However,
in diffserv only a few predefined classes of service are available, while with such
artificial economies, a whole range of classes could appear (and eventually die
out), defined by their particular utility characteristics.

108 Mobile agents for telecommunication applications

4. Congestion control for a concast audio mixer

We illustrate the use of the trading model through a congestion control scheme for
a many-to-one (concast) service. The concast example shows capsules that trade
brandwidth for memory when there is congestion.

The term “concast” has been defined in [CAL 00] as a many-to-one service, in
opposition to multicast (one-to-many). Figure 3 illustrates this concept. While
multicast copies information from one source to many destinations, concast
merges information from several sources to one destination. A concast service can
be used, for instance, to aggregate feedback in a reliable multicast service, to
transmit reception statistics in a multimedia session, to merge information coming
from several sources in an auction or tele-voting application, or to combine several
real-time streams into one, e.g. to perform audio mixing from several audio
sources.

The concast service is faced with the feedback implosion problem, that is,
multiple simultaneous sources might congest the path to the single destination, if
no congestion control is performed. This problem is aggravated by the fact that
many concast flows are used as signalling to support a more robust protocol such
as the aggregation of NACK feedback messages for a reliable multicast protocol.
Flow control for such signalling messages is often neglected or oversimplified,
since the signalling traffic is assumed to be kept small enough when compared to
the data traffic. This might lead to poor performance when there is congestion in
such a signalling path. We argue that for future sophisticated active services
congestion control will be equally important on the signalling and data paths,
since the distinction between both tends to become naturally blurred as we
approach new network service composition frameworks which are not simply
stack-based as the classical OSI model.

For the purpose of this study, we focus on the case of an audio mixing
application. However, the same ideas are applicable to any application making use

C) S
merge
R O<—=F0) sz

Sn

(b)

Figure 3. Multicast (a) versus concast (b) service abstractions

Resource trading agents 109

of the concast service, differing only in the way that packets are combined (merge
semantics).

In our audio mixing application, several sources generate audio streams in a
session. The streams are collected at a single node, which can either record them,
play them back or redistribute them to a multicast group. If the receiving node
collects all the data and mixes it locally, it might end up with the implosion
problem. It is possible to perform mixing operations at every active node, so that
the receiver gets a single stream already mixed. However this might cost too much
processing and/or memory space in the active routers, so it might become too
expensive. Also note that mixing streams delays them, since it is necessary to wait
until a minimum number of packets arrive in order to sum up their audio payloads.

The mixing operation is a physical sum of audio samples. Therefore the
resulting audio payload has the same number of bytes as each of the original
payloads. We assume that there is a maximum amount of signals that can be added
up without saturation. Another assumption is that a constant bit rate code is used,
with no silence suppression, such that the signals are generated at a constant rate
from the beginning to the end of the session. This initial rate will be altered along
the path, as capsules are mixed according to the network conditions.

Note that the mixing operation requires a list of addresses, in order to identify
the list of sources already mixed. One might argue that such a list might also
occupy bandwidth, since the packet size has to increase in order to accommodate
it. But if an estimation of the group size is available, a fixed-size bitstream can be
used to hold the list of sources. Adding or removing a source becomes as simple as
setting or resetting a bit in the bitstream. The intersection and union operations can
also be implemented as AND and OR binary operations respectively.

We propose to trade bandwidth for processing and memory space to achieve a
compromise solution which uses resources efficiently and therefore is able to
control congestion. The idea is that when there is congestion at an outgoing
interface, the consequently high bandwidth prices will push the users to save
bandwidth by performing mixing of data. When the congestion clears up, the users
can again benefit from the available bandwidth to avoid the extra delays imposed
by the mixing operation.

When a capsule arrives at a node, the first thing it does is to check whether
another payload coming from the same source is already buffered. In this case, the
arriving capsule cannot mix its payload to the buffered one, which carries earlier
samples. Note that this check is in fact an intersection operation to check whether
one of the sources mixed in the current capsule is already buffered. If that is the
case, the arriving capsule immediately dispatches the buffered payload by creating
a new data capsule and injecting it into the local execution environment. This
procedure also prevents misordering of packets. As a consequence, at most one
packet payload per session is buffered in an active node. We assume that all
payloads have the same size.

110 Mobile agents for telecommunication applications

After that, the capsule can take a decision to either proceed, buffer its payload
(for mixing), or discard itself. This decision depends on the budget it carries, and
on the prices of the memory and link resources it needs. A number of alternative
decision strategies can be envisaged:

Null strategy: Corresponds to the trivial case when no congestion control is
performed. In this case the capsule always goes intact to the outgoing interface.

First strategy: If there are other audio payloads from the same group waiting
in the memory buffer, it adds its own payload to the buffered one and adds its list
of sources to the list of sources already buffered (union operation). Then it
terminates execution. If no other audio payloads from the same group are buffered
yet, it decides for the cheapest resource: if the price of memory (to buffer the
payload for future mixing) is currently lower than the transmission price for the
capsule, then it decides to buffer itself; otherwise it decides to move on to the next
hop.

Second strategy: The arriving capsule mixes its own data with the buffered
one (if existent), then it chooses the cheapest resource, either memory or
bandwidth.

The difference between the first strategy and the second strategy is that the first
strategy always decides for storage when another payload from the same session is
already buffered, while the second strategy always chooses the cheapest resource,
independent on the fact that another payload is already buffered or not.

Although the first and second strategies are very naive, they already give quite
reasonable results as we will see below. However, their behaviour is sub-optimal
and they do not take into account the different preferences for resources.

Third strategy: It first mixes its own data with the buffered one (if existent),
as in the second strategy. It obtains a new payload that combines samples from n
sources (n is known from the list of source addresses). It also knows N, the
maximum number of sources that can be mixed together without saturation. Then
it calculates the amounts of link and memory resources according to equations [1]
(for link) and [2] (for memory), where the a parameter is also carried in the
capsule, and expresses its preferences for link resources with respect to memory. It
then tries to keep the resources in the proportions obtained, as follows:

If

N—-n _ x
> — then store, else move on,
n y

where x is the demand for link resources according to equation [1], and y is the
demand for memory resources according to equation [2].
Since we have:

x__ ap,
y (-a)-p,

Resource trading agents 111

the decision is independent on the capsule’s budget /. The a parameter will play a
role in the proportion of link resources used with respect to memory resources.
The higher a, the higher the amount of link resources used, and therefore less
capsules will be mixed together, for given memory and link prices.

Note that in all cases, capsules that run out of budget are automatically
discarded by the resource managers, thus there is no need to explicitly indicate this
operation.

5. Simulations

The audio mixing AA has been simulated with the help of an AN module that we
developed for the NS simulator [NS 00]. This module implements a simplified AN
architecture consisting of a NodeOS, an EE, and some resource managers. The
simulated EE executives capsules written in TCL language.

The topology for the simulations is shown in Figure 4. It consists of n sessions
of m sources and one receiver each. The sessions traverse a bottleneck (link L), so
that the capsules in active node N must decide to mix or to proceed intact to the
receiver node, according to the prices of link or memory resources available from
the resource managers.

The price function used is based on the one in [TSC 97]:

price = 1000- Lo 1000

1.01 — load

S11
Sa1

S1 m

S2m

Son @

Figure 4. Topology used in the simulations

112 Mobile agents for telecommunication applications

This function is a practical implementation of a convex increasing function
that would go to infinity as the load approaches 100%. It forces the price to rise
sharply as we approach high loads, which discourages applications from using a
resource when its load is too high. This gives the applications a clear indication of
the “dangerous zone” to avoid, while at the same time encouraging a relatively
high utilization.

In the case of the memory manager, the load is given by the ratio between the
average number of memory units occupied, and the total number of memory units
available to user capsules (which is of course assumed to be much smaller than the
actual amount of memory available). The average is calculated using an
exponential weighted moving average (EWMA [FLO 93]).

For the link manager, the load is given by the average queue occupancy ratio at
the outgoing link interface. This average ratio is obtained by calculating the
average queue length as an EWMA, and then dividing by the maximum queue
size. The resulting congestion indication is a bit similar to RED, except that here
the binary feedback is replaced by an explicit price indication to the arriving
capsules. Note that the actual usage of bandwidth is not taken into account in the
price function, if it does not cause queues to build up. This is therefore a very
simplified version of a link manager, but it already serves the purpose of
controlling congestion.

We first run an example where 2 sessions are active. There are 5 sources per
session, each sending an audio stream of 100 kbps to a single receiver, resulting in
a total of 1 Mbps of traffic arriving at N. The capacity of link L is set to 500 kbps.

Figure 5 (top) shows what happens in the trivial case when no congestion
control is used. In this case, link overflow occurs at L, and half of the packets are
dropped. The remaining packets receive and unequal share of the bottleneck link
as we can see in the figure.

Figure 5 (middle) shows what happens when the first strategy is used. First we
can notice that the two sessions (left and right) get approximately the same share
of the bottleneck. Additionally, no packet losses were observed during the
simulation. However, the link is underutilized. This can be explained by the fact
that this strategy always favours memory when there is already an item in memory.

The second strategy is a bit more clever (Figure 5, bottom). It always chooses
the cheapest resource, either memory or bandwidth. Therefore it is able to grab
any bandwidth when it becomes available. Here again, no packet losses occur.
However, with this strategy it is not possible to specify different weights for each
resource.

Now let us look at the third strategy, which allows us to specify utility weights
through the a parameter. Figure 6 (top) shows its behaviour when the weights of
the two sessions are the same. We see that this strategy is able to share the
bandwidth efficiently. It also leads to more stable rates when compared to the
previous strategies. The same happens when the weights are different (bottom side

Resource trading agents

113

500000 500000 T -
450000 450000 S
o 350000 ‘@ 0000 i AN A {
H'H
£ 250000 £ 250000 it ,w
T 200000 H @ 200000 e i
150000 150000
100000 100000
50000 50000 + -
0 10 20 30 40 50 60
Time (s)
500000
450000 Str1: K;'g)' R
400000
I - 350000
8 & 300000
E £ 250000
.3 £ 200000 4
150000 |
100000
50000
0 10 2 30 40 50 60
Time (s)
500000
450000
400000
- 350000 ™
é 300000 &
£ 250000 2
& 200000 o
150000
100000
50000
0 10 20 30 40 50 60 0 10 20 30 4 50 60
Time (s) Time (s}

Figure 5. Evolution of rates in time for 2 sessions, as perceived by their respective
receivers. Left: first session (receiver r,). Right: second session (receiver r,).
Top: no congestion control. Middle: first strategy. Bottom: second strategy

of Figure 6), but in this case each session receives link resources in proportion to
its respective weight, expressed by the a parameter value.

Until this point only the rates have been shown, since our main goal is to
achieve congestion control. Table 1 shows average memory and link parameters
taken over the complete duration of the simulations shown in Figures 5 and 6. The
null strategy (Str.0, no congestion control) occupies most of the link resources and
causes the link price to rise, since the link queue is most of the time full. Strategy
1 reduces link utilization by using memory for mixing, however it does that in an

114 Mobile agents for telecommunication applications
400000 400000
(1) ——- . H2)
a 8=0.5 j4a4) a=0.5: idga)l
7 300000 & 300000
2 &
o 250000 WWWJ%W—%T 5 250000 WWW
8 ; 2
é 200000 & 200000
150000 150000
100000 100000
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s} Time (s)
200000 . 500000
r(1) —- . H2)
a=025: g1} T 450000 s=075; 12) -
180000
E 160000 2
& 8
2 o
E 140000 -
120000 3
100000
0 10 20 30 40 50 60 0 10 20 3 40 S0 &0
Time (s) Time (s)

Figure 6. Evolution of rates in time for 2 sessions using the third strategy.
Top: a, = a, = 0.5 for link resources. Bottom: a, = 0.25, a, = 0.75

inefficient way when compared to strategy 2, which is able to use more bandwidth
while decreasing both link buffer occupancy and memory utilization. The result is
a decrease in link and memory prices.

Strategy 3, when a, = a, (Str.3a in Table 1), improves further by keeping the
average link queue occupancy at a very low level, in spite of a high bandwidth
utilization. This can be explained by the fact that this strategy tries to find an
optimum balance between the usage of memory (which delays packets) and the
usage of link resources. It therefore waits for the good moment to send a packet
over the link, the movement when link prices are favourable (which in our case
corresponds to low queue occupancy).

Column Str.3b in Table 1 shows the average resource parameters when
a,#a,, corresponding to the situation illustrated at the bottom side of Figure 6.
There are no significant changes in the parameters at node N, with respect to
Str.3a, but the prices are higher, which is an unexpected result, as we we would
expect the two sessions to concentrate each one on its respective preferred
resource, making the load equally distributed. We are still investigating the
reason for this discrepancy.

Resource trading agents 115

Table 1. Memory and link usage parameters for different strategies

Parameter (average) Str.0 Str.1 Str.2 Str.3a Str.3b

memory utilisation (%) 0 7.18 5.14 498 5.33
bandwidth utilisation (%) 99.91 84.54 98.18 98.93 96.37
link queue occupancy (%) 93.58 5.83 4.97 1.61 2.98
memory price ($) 0 37.71 26.57 25.62 27.37
link price ($) 2914.6 32.35 27.1 10.17 17.22

In order to have a better insight on the mixing procedure, we now look at the
number of audio sources carried by each capsule that arrives at its destination.
Table 2 shows the percentage of packets that arrived at both receivers, over the
total number of packets sent, which is the mix of a given number of sources. The
first row (“O (lost)”) represents lost packets. The second row (one source)
represents the percentage of packets that arrive intact from the source. The third
row (two sources) represents packets that mix samples from two different sources,
and so on for the rest of the rows. The columns represent the strategies used. For
the null strategy, roughly half of the packets are lost, and the remaining packets
arrive intact (no mixing). Strategy 1 is an all-or-nothing strategy: two thirds of the
arriving packets contain data from only one source, while one third contains data
from all the sources for a given session. The second strategy distributes the mixing
effort more evenly.

Table 2. Average percentage of packets carrying the sum of samples from a given
number of sources

sources |[Str.0 Str.1 Str.2 Str.3a Str.3b(rl) |Str.3b(r2)

0 (lost) 49.61 0 0 0 0 0
1 50.39 66.22 39.87 1.54 0.05 60.86
2 0 0.02 33.53 96.16 0.48 39.14
3 0 0 15.80 2.30 1.93 0
4 0 043 6.26 0 97.54 0
5 0 33.34 4.53 0 0 0

As for the third strategy, column Str.3a of Table 2 shows the results when
a, = a,, corresponding to the simulation result shown at the top side of Figure 6.
Columns Str.3b(rl) and Str.3b(r2) show the results for receivers r, and r,
respectively, when a, #a, (Figure 6, bottom). We can see that when a, = a,, most of

116 Mobile agents for telecommunication applications

the packets arrive at the receivers containing samples from two sources mixed
together, while for a, = 0.25 (r,), most of the packets contain samples from four
sources, and for a,=0.75 (r,), more than one third of the arriving packets contain
a mix of only two sources, and the rest only one source (no mixing). This shows
that strategy 3 tries to stabilize at a target mixing level, which is characterized by
the a parameter. The lowest the a parameter value is for a given session, the
highest the mixing level which is achieved.

Finally, we vary the number of sessions in parallel using the third strategy, in
three separate runs: during the first run all sessions have a = 0.25, during the
second, a = 0.5, and the third, @ = 0.75. The total average prices for memory and
link buffer occupancy are depicted in Figure 7. We can see that the a parameter has
a clear influence on the link prices, that increase with a for a given number of
sessions, as expected. However it has little influence on the memory prices. This
can probably be explained by the fact that, although the application avoids using
the memory during a too long period due to delay constraints, at any time each
session has at most one packet stored in memory. In the simulations shown,
memory does not become a bottleneck, therefore the small impact on prices.

6. Conclusions and future work

We have presented a survey of current research on agent and active network tech-
niques applied to adaptive applications, with special attention to optimization and
market-based approaches. We have also described a model for trading resources
inside an active network node, which draws many elements from agent tech-
nology. We have applied the model to a concast audio mixing application which
trades off link resources against memory in the presence of bottleneck links. The

140 a=0.25 --w-
140 a=0§ ——
120 120 a=0.75 e ;
g0 % 100
f e a 80
. 2
£ (=]
£ g e
° 2 40
20 20
0 0

Number of sessions Number of sessions

Figure 7. Average link and memory prices when varying the number of sessions in
parallel

Resource trading agents 117

concast application is able to take congestion control decisions locally at each
active node, such that no closed loop feedback between source and destination is
needed. Using simulations, we studied three different strategies to make a decision
on the amount of resources to use: two naive strategies based on the cheapest price,
and a strategy that makes use of utility function weights. The results indicate that
the first two strategies are already able to make improvements over the case when
no congestion control is used, but they use resources inefficiently. The third
strategy gives better results, achieving a stable and efficient sharing of resources.

We have several research directions to pursue: the most immediate one is to
perform more complex simulations involving multiple node and link types,
resource manager types, active and non-active nodes, different user strategies, etc.
An implementation over a real active networking platform is also envisaged for the
near future. We also plan to investigate the issues of dynamic resource manager
upgrade with the help of mobile agents. The precise communication abstractions
among the various kinds of agents need further attention too.

Acknowledgements

This work has been carried out within the TINTIN project funded by the Walloon
region in the framework of the programme “Du numérique au multimédia”.

REFERENCES

[ALE 99] D. S. ALEXANDER, J. M. SMITH, “The Architecture of ALIEN", LNCS 1653,
Proceedings of IWAN’99, Berlin, Germany, June/July 1999, p. 1-12.

[ANA 00] K. G. ANAGNOSTAKIS et al., “Scalable Resource Control in Active Networks”,
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000,

p. 343-357.

[BOL 00] L. BoLoni, D. C. MARINEscy, “Agent Surgery: The Case for Mutable Agents”,
Proceedings of the Third Workshop on Bio-Inspired Solutions to Parallel
Processing Problems (BioSP3), Cancun, Mexico, May 2000.

[BRE 00] J. BrepIN et al., “A Game-Theoretic Formulation of Multi-Agent Resource
Allocation”, Proceedings of the 2000 International Conference on Autonomous
Agents, Barcelona, Spain, June 2000.

[BRE 99] M. BRreuasT et al., “Grasshopper — An Agent Platform for Mobile Agent-Based
Services in Fixed and Mobile Telecommunications Environments”, In [HAY 99a],
Chapter 14, p. 326-357.

[CAL 99] K. L. CaLverT (ed.) et al., “Architectural Framework for Active Networks”,
(DARPA) AN Working Group, draft version 1.0, July 1999, work in progress.

[CAL 00] K. CaLverT, “Toward an Active Internet”, Active and Programmable Networks
Mini-conference, Networking 2000, Paris, France, May 2000.

118 Mobile agents for telecommunication applications

[CAM 99] A. T. CampeELL, et al., "A Survey of Programmable Networks”, ACM
SIGCOMM Computer Communication Review, April 1999, p. 7-23.

[CHE 98] T. M. CHeNn, A. W. JacksoN, “Active and Programmable Networks”, Guest
Editorial, IEEE Network, May/June 1998, p. 10-11.

[CLE 96] S. H. CLEARWATER (ed.), “Market-Based Control — A Paradigm for Distributed
Resource Allocation”, World Scientific Press, 1996.

[DEN 99] S. Denazis et al., “Designing Interfaces for Open Programmable Routers”,
LNCS 1653, Proceedings of IWAN’99, Berlin, Germany, June/July 1999, p. 13-24.

[FER 96] D. F. FErRGUsoN, C. NickoLAou, J. SAIRAMESH, Y. YEMINI, “Economic Models for
Allocating Resources in Computer Systems”, in [CLE 96], Chapter 7, p. 156-183.

[FLO 93] S. FLoyp, V. Jacossen, “Random Early Detection Gateways for Congestion
Avoidance”, IEEE/ACM Transactions on Networking, August 1993.

[FLO 00] S. FLoyp, et al., “Equation-Based Congestion Control for Unicast
Applications”, Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, August
2000.

[GIB 99] M. A. GiBNEY, N. J. VRIEND, J. M. GRIFFITHS, “Market-Based Call Routing in
Telecommunications Networks Using Adaptive Pricing and Real Bidding”, LNA/
1699, Proceedings of the IATA’99 Workshop, Stockholm, Sweden, August 1999.

[GOP 00] R. GoPALAKRISHNAN et al., “A Simple Loss Differentiation Approach to Layered
Multicast”, Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[HAY 99a] A. L. G. HAYZzELDEN, J. BicHAM (eds), “Software Agents for Future
Communication Systems”, Springer-Verlag, 1999.

[HAY 99b] A. L. G. HAvzELDEN, et al., “Future Communication Networks using Software
Agents”, In [HAY 99a], Chapter 1, p. 1-57.

[HIC 99] M. Hicks et al., “PLANet: An Active Internetwork”, Proceedings of IEEE
INFOCOM’99, New York, 1999.

[HJA 00] G. HiALmTYSsoN, “The Pronto Platform: A Flexible Toolkit for Programming
Networks using a Commodity Operating System”, Proceedings of IEEE
OPENARCH 2000, Tel-Aviv, Israel, March 2000, p. 98-107.

[JUN 00] K. Jun., L. BoLoNi, D. Yau, D. C. Marinescu, “Intelligent QoS Support for an
Adaptive Video Service”, To appear in the Proceedings of IRMA 2000.

[KHA 00] I. EL KHAYAT, G. LEbuc, “Contréle de Congestion pour la Transmission
Multipoints en Couches”, JDIR’2000, 4iémes Journées Doctorales Informatique et
Réseaux, Paris, France, November 2000.

[LOW 99] S. Low, D. E. LapsLEY, “Optimization Flow Control, I: Basic Algorithm and
Convergence”, IEEE/ACM Transactions on Networking, 1999.

[MIZ 99] H. MizuTa, K. SteiGLITZ, E. LIRov, “Effects of Price Signal Choices on Market
Stability”, 4th Workshop on Economics with Heterogenous Interacting Agents,
Genoa, June 1999.

[NAJ 00] K. NaJAFI, A. LEON-GARCIA, “A Novel Cost Model for Active Networks”,
Proceedings of International Conference on Communication Technologies, World
Computer Congress 2000.

Resource trading agents 119

[NS 00] UCB/LBNL/VINT Network Simulator — ns (version 2),
http://www.mash.cs.berkeley.edu/ns/

[PAP 00] T. PAPAIOANNOU, “On the Structuring of Distributed Systems: The Argument for
Mobility”, PhD thesis, Loughborough University, February 2000.

[PET 00] L. PeTersoN (ed.) et al., “NodeOS Interface Specification”, (DARPA) AN
NodeOS Working Group, draft, January 2000, work in progress.

[PIN 98] R. S. PiINDYCK, D. L. RuBINFELD, “Microeconomics”, 4th Edition, Prentice Hall
International Inc., 1998.

[RUM 00] R. Stainov, J. Dumont, “Distributed Computations by Active Network Calls”,
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000, p. 45-56.

[SIV 00] R. SIVAKUMAR, S. HAN, V. BHARGHAVAN, "A Scalable Architecture for Active
Networks”, Proceedings of IEEE OPENARCH 2000, Tel-Aviv, Israel, March 2000.

[SUG 99] K. SuGaucH! et al., “Flexible Network Management Using Active Network
Framework”, LNCS 1653, Proceedings of IWAN’99, Berlin, Germany, June/July
1999, p. 241-248.

[TEN 97] D. L. TENNEHOUSE et al., “A Survey of Active Network Research”, IEEE
Communications Magazine, Vol. 35, No. 1, p. 80-86, January 1997.

[TSC 93] C. TscHuDIN, “On the Structuring of Computer Communications”, PhD thesis,
University of Geneva, Switzerland, 1993.

[TSC 97] C. TscHupIN, “Open Resource Allocation for Mobile Code”, Proceedings of the
Mobile Agent ‘97 Workshop, Berlin, Germany, April 1997.

[VAN 00] B. VANDALORE et al., “A Survey of Application Layer Techniques for Adaptive
Streaming of Multimedia”, to appear in the Journal of Real Time Systems, 2000.

[WET 98] D. J. WETHERALL, J. V. GUTTAG, D. L. TENNEHOUSE, “ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols”, Proceedings of IEEE
OPENARCH’98, San Francisco, USA, April 1998.

[YAM 96] H. Yamaki, M. P. WELLMAN, T. IsHiDA, “A Market-Based Approach to Allocating
QoS for Multimedia Applications”, Proceedings of ICMAS’96, Kyoto, Japan,
December 1996.

[YAM 00a] L. YamamoTo, G. Lebuc, “An Agent-Inspired Active Network Resource
Trading Model Applied to Congestion Control”, LNCS 1931, Proceedings of MATA
2000, Paris, France, September 2000.

[YAM 00b] L. YAMAMOTO, G. LEDUC, “An Active Layered Multicast Adaptation Protocol”,
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000, p. 180-194.

This Page Intentionally Left Blank

Index

2K: a component-based, network-centric
operating system for the next
millennium 44

active applications 83
error recovery (AER) 85
network 81

applications, adaptive
resource trading agents for
seq
encapsulation protocol (ANEP) 81
node (ANN) 86
transport system (ANTS) 89
networks (AN) 77 et seq, 97, 99
architecture, service distribution and
77 et seq
mobile agents and 99
node, architecture of 79
platform, YAAP 90
reservation protocol (ARP) 87
signaling protocol (ASP) 87
transport 81

adaptation phase 24
by partitioning by 46
terminal, the need for, 45

adaptive active network applications 95,

95 et seq
95 et

97
mobile applications, mobile agents for
61 et seq
resource trading agents for 95 et seq

agent
automatic identification 66
domain, admission control (DACA)
27
resource reservation (DRRA) 26
quality of service routing (QoSRA) 27
reservations state (RSA) 28
agents
mobile 1 et seq, 61 et seq, 99
active networks and 99
adaptive mobile applications for 61
et seq
secure distributed computing 1 et
seq
partitioning applications 39 et seq
reactive user, capsules as 104

resource 95 et seq
manager 103
trading 95 et seq
adaptive active network
applications for 95 et seq
software, supporting QoS protocols 20
Anetd 90
application
active 83
adaptive 61 et seq, 95 et seq, 97
active network 95 et seq
resource trading agents for
seq
mobile, mobile agents for
end-user 83
partitioning 39, 41
agents, with 39
automatic agent identification 66
autonomous protocols 6

95 et

61 et seq

computing
Mobile Group (Stanford) 44
nomadic 42
pervasive 42
secure distributed (SDC)
12
cryptographic secure distribution 12
mobile agents with 1 et seq
protocols 3
concast audio mixer, congestion control
for 108
congestion control 108
concast audio mixer, fora 108
cryptographic secure distributed
computing 12
cryptography, group-oriented, 7

1 et seq, 3,

distributed garbage collection 65
domain
admission control agent (DACA) 27
agencies 25
architecture 25
communications protocol 28
interactions between 29
network 19 et seq, 21
agency 19 etseq

122 Index

QoS management, OSPF configure
networks in, 19 et seq
resource allocation 21
resource reservation agent (DRRA) 26
dynamic partitioning
full 41
partial 41

Endeavour Expedition 43
end-user applications 83
execution environments 82

garbage collection, distributed 65
group-oriented cryptography 7

homomorphic probabilistic encryption 3

implementation, directions and experience
31

Java virtual machine 64

mobile agents 1 et seq, 61 et seq, 99
active networks and 99
adaptive mobile applications 61 et seq
secure distributed computing (SDC) 1

et seq

mobile code toolkit 63

mobile computing group 44

multi-party protocols 10

network
active 81, 86, 89, 95 et seq
applications, adaptive 95 et seq
resource trading agents 95 et seq
encapsulation protocol (ANEP) 81
node (ANN) 86
transport system (ANTS) 89

adaptive active applications 95 et seq
resource trading agents for 95 et
seq
domain 19 et seq, 21
agency 19 et seq

QoS management, OSPF
configured networks in,
19 et seq
resource allocation 21
networks
active (AN) 77 et seq, 97, 99
architecture, service distribution and
77 et seq
mobile agents and 99

configured, QoS management in OSPF,
19 et seq
network domain agency
node
active 79, 86
architecture of 79
network (ANN) 86
operating system 79
nomadic computing 42

19 et seq

oblivious transfer, protocols based on, 4
Odyssey architecture 84
OSPF configured networks, QoS

management 19 et seq
network domain agency 19 et seq
Oxygen 43
partitioning

adaptation by 46
applications with agents
dynamic 41
full 41
partial 41
static 41
personal mobility, repartitioning and 55
Portolano 43
probabilistic encryption
homomorphic 3
protocols
active network encapsulation (ANEP)
81
reservation (ARP) 87
signaling (ASP) 87
autonomous 6
domain agency communications 28
multi-party 10
oblivious transfer 4
QoS, supporting, 20
software agents with 20
SDC 3

39 et seq

QoS
management, OSPF configured
networks in, 19 et seq
network domain agency 19 et seq
protocols, supporting with software
agents, 20
routing agent (QoSRA) 27

repartitioning 52
personal mobility and 55
reservations state agent (RSA) 28

Index 123

resource allocation, network domains in,
21
management 100
manager agents 103
reservation 24, 26
domain agent (DRRA) 26
trading 95 et seq, 102

agents 95 et seq
adaptive active network
applications 95 et seq
model 102

scalability 68
second price auctions 14
secure circuit evaluation 1
distributed computing (SDC)
3,12
cryptographic 12

1 et seq,

mobile agents
protocols 3
simple active packet format (SAPF) 81,
82

1 et seq

toolkit

design 64

mobile code 63

performance 65
transport

active 81, 89

network system (ANTS) 89

trust versus communication overhead 10
trusted third party 11

virtual 12

YAAP active platform (yet another active
platform) 90

This Page Intentionally Left Blank

Innovative Technology Series
Information Systems and Networks

Other titles in this series
Advances in UMTS Technology

Edited by J. C. Bic and E. Bonek
£58.00 1903996147 216 pages April 2002

The Universal Mobile Telecommunication System (UMTS), the third generation
mobile system, is now coming into use in Japan and Europe. The main benefits —
spectrum efficient radio interfaces offering high capacity, large bandwidths,
ability to interconnect with IP-based networks, and flexibility of mixed services
with variable data — offer exciting prospects for the deployment of these networks.

This publication, written by academic researchers, manufacturers and
operators, addresses several issues emphasising future evolution to improve the
performance of the 3rd generation wireless mobile on to the 4th generation.
Outlining as it does key topics in this area of enormous innovation and commercial
investment, this material is certain to excite considerable interest in academia and
the communications industry.

The content of this book is derived from Annals of Telecommunications, published by GET,
Direction Scientifique, 46 rue Barrault, F 75634 Paris Cedex 13, France.

Java and Databases

Edited by A. Chaudhri
£35.00 1903996155 136 pages April 2002

Many modern data applications such as geographical information systems, search
engines and computer aided design systems depend on having adequate storage
management control. The tools required for this are called persistent storage
managers. This book describes the use of the programming language Java in these
and other applications.

This publication is based on material presented at a workshop entitled ‘Java
and Databases: Persistence Options’ held in Denver, Colorado in November 1999.
The contributions represent the experience acquired by academics, users and
practitioners in managing persistent Java objects in their organisations.

For information about other engineering and science titles published by Hermes Penton
Science, go to www.hermespenton.com

126 Other titles in this series

Quantitative Approaches in Object-oriented Software Engineering

Edited by F. Brito e Abreu, G. Poels, H. Sahraoui, H. Zuse
£35.00 1903996279 136 pages April 2002

Software internal attributes have been extensively used to help software managers,
customers and users characterise, assess and improve the quality of software
products. Software measures have been adopted to increase understanding of how
software internal attributes affect overall software quality, and estimation models
based on software measures have been used successfully to perform risk analysis
and to assess software maintainability, reusability and reliability. The object-
oriented approach presents an advance in technology, providing more powerful
design mechanisms and new technologies including OO frameworks,
analysis/design patterns, architectures and components. All have been proposed to
improve software engineering productivity and software quality.

The key topics in this publication cover metrics collection, quality assessment,
metrics validation and process management. The contributors are from leading
research establishments in Europe, South America and Canada.

Turbo Codes: Error-correcting Codes of Widening Application

Edited by M. Jézéquel and R. Pyndiah
£50.00 1903996260 206 pages May 2002

The last ten years have seen the appearance of a new type of correction code — the
turbo code. This represents a significant development in the field of error-
correcting codes.

The decoding principle is to be found in an iterative exchange of information
(extrinsic information) between elementary decoders. The turbo concept is now
applied to block codes as well as other parts of a digital transmission system, such
as detection, demodulation and equalisation.

Providing an excellent compromise between complexity and performance,
turbo codes have now become a reference in the field, and their range of
application is increasing rapidly to mobile communications, interactive television,
as well as wireless networks and local radio loops. Future applications could
include cable transmission, short distance communication or data storage.

This publication includes contributions from an internationally-based group of
authors, from France, Sweden, Australia, USA, Italy, Germany and Norway.

The content of this book is derived from Annals of Telecommunications, published by GET,
Direction Scientifique, 46 rue Barrault, F 75634 Paris Cedex 13, France.

For information about other engineering and science titles published by Hermes Penton
Science, go to www.hermespenton.com

Other titles in this series 127

Millimeter Waves in Communication Systems

Edited by M. Ney
£50.00 1903996171 180 pages May 2002

The topics covered in this publication provide a summary of major activities in the
development of components, devices and systems in the millimetre-wave range. It
shows that solutions have been found for technological processes and design tools
needed in the creation of new components. Such developments come in the wake
of the demands arising from frequency allocations in this range. The other
numerous new applications include satellite communication and local area
networks that are able to cope with the ever-increasing demand for faster systems
in the telecommunications area.

The content of this book is derived from Annals of Telecommunications, published by GET,
Direction Scientifique, 46 rue Barrault, F 75634 Paris Cedex 13, France.

Intelligent Agents for Telecommunication Environments

Edited by D. Gaiti and O. Martikainen
£35.00 1903996295 110 pages June 2002

Telecommunication systems become more dynamic and complex with the intro-
duction of new services, mobility and active networks. The use of artificial intelli-
gence and intelligent agents, integrated reasoning, learning, co-operating and
mobility capabilities to provide predictive control are among possible ways
forward. There is a need to investigate performance, flow and congestion control,
intelligent control environment, security service creation and deployment and
mobility of users, terminals and services. New approaches include the intro-
duction of intelligence in nodes and terminal equipment in order to manage and
control the protocols, and the introduction of intelligence mobility in the global
network. These tools aim to provide the quality of service and adapt the existing
infrastructure to be able to handle the new functions and achieve the necessary co-
operation between nodes. This book’s contributors, who come from research
establishments all over the world, address these problems and provide ways
forward in this fast-developing area of intelligence in networks.

For information about other engineering and science titles published by Hermes Penton
Science, go to www.hermespenton.com

128 Other titles in this series

Video Data

Edited by M-S Hacid and S. Hassas
£35.00 1903996228 128 pages July 2002

With recent progress in computer technology and reduction in processing costs it
is possible to store huge amounts of video data needed in today’s communication
applications. To obtain efficient use of such data efficient storage, querying and
navigation of this data is needed. To meet the increasing demands of the new
developments, new management techniques and tools need to be developed, and
this publication addresses the application of the many research disciplines
involved.

Multimedia Management

Edited by J. Neuman de Souza and N. Agoulmine
£40.00 1903996236 140 pages July 2002

With the arrival of multimedia services via the network, the study of multimedia
transmission over various network technologies has been the focus of interest for
research teams all over the world.

The previously antagonistic QoS and IP-based network technologies are now
part of an integrated approach, which are expected to lead to new intelligent
approaches to traffic and congestion control, and to provide the end user with
quality service customised multimedia communications. This publication
emanates from papers presented at a Multimedia Management conference held in
Paris in May 2000.

For information about other engineering and science titles published by Hermes Penton
Science, go to www.hermespenton.com

Other titles in this series 129

Applications and Services in Wireless Networks

Edited by H. Afifi and D. Zeghlache
£58.00 1903996309 260 pages July 2002

Emerging wireless technologies for both public and private use have led to the
creation of new applications. These include the adaptation of current network
management procedures and protocols and the introduction of unified open
service architectures. Aspects such as accounting for multiple media access and
QoS (Quality of Service) profiling must also be introduced to enable multimedia
service offers, service management and service control over the wireless Internet.
Security and content production are needed to foster the development of new
services while adaptable applications for variable bandwidth and variable costs
will open new possibilities for ubiquitous communications. In this book the
contributors, drawn from a broad international field, address these prospects from
the most recent perspectives.

Wireless Mobile Phone Access to the Internet

Edited by Thomas Noel
£40.00 1903996325 150 pages August 2002

Wireless mobile phone access to the Internet will add a new dimension to the way
we access information and communicate. This book is devoted to the presentation
of recent research on the deployment of the network protocols and services for
mobile hosts and wireless communication on the Internet.

A lot of wireless technologies have already appeared: IEEE 802.11b,
Bluetooth, HiperLAN/2, GPRS, UTMS. All of them have the same goal: offering
wireless connectivity with minimum service disruption between mobile
handovers. The mobile world is divided into two parts: firstly, mobile nodes can be
attached to several access points when mobiles move around; secondly, ad-hoc
networks exist which do not use any infrastructure to communicate. With this
model all nodes are mobiles and they cooperate to forward information between
each other. This book presents these two methods of Internet access and presents
research papers that propose extensions and optimisations to the existing protocols
for mobility support.

One can assume that in the near future new mobiles will appear that will
support multiple wireless interfaces. Therefore, the new version of the Internet
Protocol (IPv6) will be one of the next challenges for the wireless community.

For information about other engineering and science titles published by Hermes Penton
Science, go to www.hermespenton.com

	Mobile Agents for

Telecommunication

Applications
	Mobile Agents for

Telecommunication

Applications
	Copyright
	Contents

	Foreword Eric Horlait
	1. Implementing secure distributed computing with mobile agents

 Gregory Neven, Erik Van Hoeymissen, Bart De Decker and

Frank Piessens
	1. Introduction
	2. Survey of SDC protocols
	2.1 Using probabilistic encryption
	2.2 Protocols based on oblivious transfer
	2.3 Autonomous protocols
	2.4 Using group- oriented cryptography
	2.5 Other multi- party protocols

	3. Trust versus communication overhead
	3.1 A trusted third party
	3.2 Cryptographic secure distributed computing
	3.3 A virtual trusted third party

	4. Case study: second price auctions
	5. Conclusion

	2. Network domain agency for QoS management in OSPF configured

networks

Farag Sallabi and Ahmed Karmouch
	1. Introduction
	2. Supporting QoS protocols with software agents
	3. Resource allocation in network domains
	3.1 Negotiation phase
	3.2 Resource reservation phase
	3.3 Adaptation phase

	4. Domain agency architecture
	4.1 Domain Resource Reservation Agent
	4.2 Quality of Service Routing Agent
	4.3 Domain Admission Control Agent
	4.4 Reservations State Agent

	5. Domain agency communications protocol
	5.1 Interactions between domain agencies
	5.2 Status of current (immediate and advance) reservations

	6. Implementation directions and experience
	6.1 Simulation experience
	6.2 Implementation directions

	7. Conclusion

	3. Partitioning applications with agents

 Oskari Koskimies and Kimmo Raatikainen
	1. Introduction
	2. Related work
	3. The need for terminal adaptation
	4. Adaptation by partitioning
	4.1 Assumptions
	4.2 How to partition an application
	4.3 Starting the application
	4.4 Repartitioning
	4.5 Repartitioning and personal mobility
	4.6 An example scenario

	5. Conclusions and future work

	4. Mobile agents for adaptive mobile applications

Thomas Kunz, Salim Omar and Xinan Zhou
	1. Introduction
	2. Related work
	3. Mobile code toolkit
	3.1 Toolkit design
	3.2 Distributed garbage collection
	3.3 Toolkit performance
	3.4 Automatic agent identification

	4. Case study
	5. Scalability
	6. Conclusions and future work

	5. Active networks: architecture and service distribution

 Nicolas Rouhana and Eric Horlait
	1. Introduction
	2. Architecture of an active node
	2.1 Node Operating System
	2.2 Active transport
	2.3 Execution Environments, Active Applications and User Applications

	3. Related architectures
	3.1 Odyssey architecture
	3.2 Active Network Node
	3.3 Active Reservation Protocol
	3.4 ANTS
	3.5 Anetd
	3.6 The YAAP active platform

	4. Conclusions

	6. Resource trading agents for adaptive active network applications

Lidia Yamamoto and Guy Leduc
	1. Introduction
	2. Background
	2.1 Adaptive applications
	2.2 Active networks
	2.3 Mobile agents and active networks
	2.4 Resource management

	3. Resource trading model
	3.1 Resource manager agents
	3.2 Capsules as reactive user agents

	4. Congestion control for a concast audio mixer
	5. Simulations
	6. Conclusions and future work

	Index

