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dependent interactions between electrical and optical signals. The properties of the
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Preface

Optoelectronic guided-wave devices are used in many optical fiber communication and
optoelectronic systems. In these systems optical and electrical signals are transmitted,
received, multiplexed and converted bymeans of a variety of procedures. In guided-wave
optoelectronic devices, laser radiation propagates in a waveguide and energy can be
coupled effectively to and from single mode optical fibers. The properties of materials
used to fabricate the waveguides have a profound effect on the phase, amplitude or
directional variations of the optical waves used for the generation, modulation, switch-
ing, conversion, multiplexing, and detection of optical signals. The small lateral dimen-
sions of the waveguide structures provide for efficient control of their optical properties
by means of electrical voltages or currents. On the other hand, optical signals are
converted back into electrical signals via detectors. Therefore, the electrical character-
istics of these devices are as important as their optical properties. Devices may potentially
be monolithically integrated optically on the same chip. This is called photonic integra-
tion. Optical components may also be integrated, monolithically, with electronic devices
on the same chip. This is called optoelectronic integration. In earlier times, these were
called integrated optical devices, as opposed to integrated electronic devices.

Themanner in which different material properties affect the electrical characteristics as
well as the propagation of optical signals in optoelectronic devices is of great importance.
Also of considerable importance is the process of back and forth conversion of the
electrical signals and of the optical signals. Furthermore, because the electrical signals
must be received or transmitted to external circuits, how the devices are interconnected or
driven by other electrical systems is also of great importance. The electrical signals may
propagate at microwave frequencies within the optoelectronic devices. Therefore their
performances must be analyzed and evaluated in terms of time-dependent interactions of
electrical and optical waves.

A large number of books are already available in the technical literature on the optical
analysis of waveguides. There are also many books that analyze the specific properties of
electrical devices and circuits. This book is intended for use as a graduate level reference
or text book. It provides an analysis of guided-wave devices from both the optical and the
electrical points of view so that the interwoven optical and electrical properties of the
devices, including their optical and electrical interconnections to external components,
can be represented clearly. When appropriate, the impact of material properties on guided-
wave devices is presented and the importance of time-dependent interactions between
electrical and optical signals is emphasized. The book emphasizes fundamental concepts



and analytical techniques rather than giving a comprehensive coverage of different
devices. The intention of the author is to illustrate these concepts and analytical techniques
clearly so that they can be applied to all guided-wave optoelectronic devices, including
many that are not covered in this book, or have not been investigated as yet.

Optical waveguides can be divided into planar waveguides (two-dimensional) and
channel (three-dimensional) waveguides. The fabrication and analysis of optical wave-
guides constitute the most basic knowledge needed for understanding and designing
guided-wave components. Chapter 1 begins with a discussion of the formation and the
modal analysis of planar and channel optical waveguides. The optical analysis presented
is similar to those in other books concerned with waveguides. Differently from other
guided-wave books, a two-dimensional Green’s function approach is presented which
could be used to analyze propagation of planar guided waves in general. Also included
is a description of the materials technologies employed for fabrication of optical
waveguides.

The mathematical analysis of channel waveguide modes is already complicated
because of the geometry of the boundaries of waveguides. Yet, in order to understand
guided-wave devices, it is necessary to analyze the mutual interactions between optical
waves in two or more channel waveguides. Therefore approximation techniques such as
perturbation and coupled mode analyses are introduced in Chapter 2. They could be used
to analyze the coupled waveguides and the interaction of optical waves with changes in
material properties. Examples of waveguide components, such as the grating filter, the
directional coupler and the Mach–Zehnder interferometer, are used as examples to
illustrate these approximate analytical techniques. Another powerful technique useful
for analysis of multiple waveguide components is the super mode analysis. It is intro-
duced next in Chapter 2, after the coupled mode analysis. Additional insight into the
properties of guided-wave devices such as the directional coupler, the Y-branch coupler
and the interference coupler can be obtained from super mode analysis.

Optical amplification and photo-carrier generation are the basis of lasers and photo-
detectors and they are described in many other books. In this book, how changing the
material properties affects the propagation and interaction of optical waves, thereby
producing modulation, switching, beam scanning, etc. in optoelectronic components is
treated in detail. Electro-optical effects such as the linear electro-optic effect, the electro-
absorption effect and the electro-refraction effect are discussed in Chapter 3.

In optoelectronic applications, electrical fields are created by time varying electrical
voltages applied to electrode structures of the components. Analytical techniques for
dealing with the time varying electrical properties of optoelectronic guided-wave struc-
tures are reviewed in Chapter 4. These techniques include the analyses of electrical fields
produced by time varying voltages, the electro-optical effects produced by the electric
fields, and the representation of the parameters of electro-optic devices by lumped circuit
elements at lower frequencies and by traveling wave transmission lines at higher
frequencies. Discussion in this chapter includes issues related to impedance matching
such devices to microwave sources. Note that the frequency response and the electrical
behavior of the device, in turn, place additional demands on the design of electrode and
waveguide configurations.
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Chapters 5 and 6 provide a description of guided-wave devices using planar and
channel waveguides. The analyses of these devices utilize all the optical and electrical
analytical tools, material properties and electro-optical effects described in Chapters 1 to 4.
The optical and electrical performances of such devices are evaluated from the application
point of view and the properties of different devices designed for the same application are
compared to each other.

In planar waveguides, optical guided waves can propagate in any direction, following
the contour of the waveguide layer. Summations of planar guided waves form divergent,
converging, diffracted and deflected waves. Therefore, how to harness the refraction,
diffraction and reflection of planar guided waves by planar waveguide devices is also the
focus of Chapter 5. However, most of the applications will involve channel waveguide
devices because of the ease of coupling to optical fibers, the superior electro-optical
performance derived from the small lateral dimension of channel waveguides, and the
advantage of small electrical capacitance of the device at high electrical frequencies.
Devices that perform the same practical functions such as power division, wavelength
filtering, resonance filtering, signal time delay, switching, multiplexing, and modulation
are described, analyzed, and compared together. Their time-dependent characteristics are
derived from combined microwave and optical analyses. Device performances are
evaluated in terms of the systems requirements in applications. This is an unusual feature
of the book.
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1 The formation and analysis
of optical waveguides

1.1 Introduction to optical waveguides

Optical waveguides are made from material structures that have a core region which
has a higher index of refraction than the surrounding regions. Guided electromagnetic
waves propagate in and around the core. The transverse dimensions of the core are
comparable to or smaller than the optical wavelength. Figure 1.1(a) illustrates a typical
planar waveguide. Figure 1.1(b) illustrates a typical channel waveguide. For rigorous
electromagnetic analysis of such guided-wave structures, Maxwell’s vector equations
should be used. Many of the theoretical methods used in the analysis of optical guided
waves are very similar to those used in microwave analysis. For example, modal analysis
is again a powerful mathematical tool for analyzing many devices, applications and
systems.

However, there are also important differences between optical and microwave
waveguides. In microwaves, we usually have closed waveguides inside metallic bound-
aries. Metals are considered as perfect conductors at most microwave frequencies.
Microwaves propagate within the metallic enclosure. Figure 1.2 illustrates a typical
microwave rectangular waveguide. In these closed structures, we have only a discrete
set of waveguide modes whose electric fields terminate at the metallic boundary.
Microwave radiation in the waveguide may be excited either by an electric field or by
a current loop. At optical wavelengths, we avoid the use of metallic boundaries because
of their strong absorption of radiation. Ideal optical waveguides, such as those illustrated
in Fig. 1.1(a) and (b), are considered to have dielectric boundaries extending to infinity.
They are called open waveguides. Optical guided-wave modes are waves trapped in and
around the core. They can be excited only by electric fields.

1.1.1 Differences between optical and microwave waveguides

Mathematically, modes represent propagating homogeneous1 solutions of Maxwell’s
electromagnetic equations in waveguide structures that have constant cross-section
and infinite length. Homogeneous solutions means that these are the propagating electric
and magnetic fields that satisfy the differential equations and all the boundary conditions
in the absence of any radiation source.2 There are three important differences between
optical and microwave waveguide modes and their utilization.



(1) In open dielectric waveguides, the discrete optical modes have an evanescent
field outside the core region (the core is often called vaguely the optical waveguide).
There may be a significant amount of energy carried in the evanescent tail. The
evanescent field may be used to achieve mutual interactions with the fields of other
modes of such waveguides or structures. The evanescent field interaction is very
important in devices such as the dielectric grating filter, the distributed feedback
laser and the directional coupler.

(2) The mathematical analysis is more complex for open than for closed waveguides.
In fact, there exists no analytical solution of three-dimensional open channel wave-
guide modes (except the modes of the round step index fiber) in the closed form.
One must use either numerical analysis or approximate solutions in order to find the
field distribution of optical channel waveguide modes.

Y
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X(a)

X = 0

X = t
Y = –W Y = +W

Substrate

Film

Y

Z
X

Y = –W
Y = +W

X = –t 
Substrate, n = ns

High index core, n = nc

Air

(b)

Fig. 1.1. An optical waveguide. (a) A planar waveguide. The substrate and the film are so wide in the Y
direction thatW can be approximated by ∞. The substrate thickness is also considered to be ∞ in the
–x direction. Guided-wave modes could propagate in any direction in the YZ plane. (b) A channel
waveguide. The high index core (–t≤ x≤ 0, −W≤ y≤+W) is embedded in the substrate. The core is
very long in the z direction with nc > ns > 1. The guided wave propagates in the z direction.
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(3) In addition to the set of guided modes that have discrete eigenvalues, there is an
infinite set of continuous modes in open waveguides. Only the sum of the discrete
and continuous modes constitutes a complete set of orthogonal functions. It means
that, rigorously, any arbitrary incident field should be expanded mathematically as a
summation of this complete set of modes. At any dielectric discontinuity, the
boundary conditions of the continuity of electric and magnetic fields are satisfied
by the summation of both the guided-wave modes and the continuous modes on both
sides of the boundary. In other words, continuous modes are excited at any disconti-
nuity. Energy in the continuous modes is radiated away from the discontinuity. Thus,
continuous modes are called radiation modes.

1.1.2 Diffraction of plane waves in waveguides

The propagation and properties of optical waves in optical waveguides can also be
understood from conventional optical analysis of plane wave propagation in multilayered
media. A typical optical planar waveguide is illustrated in Fig. 1.3. It has a high index
film surrounded by cladding and a substrate; both have a lower index of refraction. The
width of the film, the cladding and the substrate, extend to y = ±∞. The thickness of the
substrate and cladding also extends to infinity in the x direction. If we analyze optical
plane waves propagating in multilayered media such as that shown in Fig. 1.3, we find
that there are three typical cases.

(1) In the first of these, a plane wave is incident obliquely on the film from either x << 0 or
x >> t. Without any loss of generality, let us assume that the plane wave is polarized in
the y direction. It propagates in the xz plane in a direction which makes an angle θj
with respect to the x axis. The angle, θj, will be different in different layers, where
j designates the layer with index nj. For example, plane waves in the film with index n1
will have a functional form, exp � jn1k sin θ1 zð Þ exp � jn1k cos θ1 xð Þ exp jω tð Þ:

X
Z

Y
X = –t 

X = +t

Y = –W Y = +W

Metallic walls

Fig. 1.2. A microwave waveguide. The rectangular waveguide has metallic walls at y = ±W and at
x = ±t. Guided waves propagate along the Z direction in the hollow region, –t < x < +t, −W < y < +W.
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There will be reflected and transmitted waves at the top and bottom boundaries of the
film. The continuity of the tangential electric field demands that n1k sin θ1 ¼
n2k sin θ2 ¼ n3k sin θ3 at the boundaries. There is a continuous range of real values
of θj that will satisfyMaxwell’s equations and the boundary conditions in all the layers.
Plane waves with real values of θj represent radiation waves for x < 0 and for x > t
because they propagate in the x direction. In the language of modal analysis, the
multiple reflected and refracted waves constitute the radiation modes with continuous
eigenvalues βxj (βxj ¼ njk cos θj) in the x direction, and βxj is real.

(2) In the second cases, the y-polarized plane waves are trapped in the high index
film by total internal reflections from the top and the bottom boundaries of the film
at x = 0 and x = t. In this case the plane waves in the film will still have the functional
variation of exp � jn1k sin θ1 zð Þ exp � jn1k cos θ1 xð Þ exp jω tð Þ with real values of
θ1. When θ1 is sufficiently large, total internal reflection occurs at the boundaries.
In total internal reflection, “n1k sinθ1” is larger than njk of the surrounding media,
and θj (for j ≠ 1) becomes imaginary in order to satisfy the boundary conditions at
all values of z. The fields in the cladding and substrate regions, x < 0 and x > t, decay
exponentially away from the boundaries. When the trapped waves in the high
index film are bounced back and forth between the two boundaries, they will cancel
each other because of the difference in phase and yield zero total field except at
specific values of θ1 at which the round trip phase shift of the reflections is a
multiple of 2π. In other words, trapped waves can only have discrete values of real
propagation constant, βx1 (βx1 = n1k cosθ1), in the film in the x direction. It means that
plane waves in the substrate and cladding (or air) only have discrete imaginary
θj values outside the film. As we shall show later, the non-zero (i.e. the homo-
geneous solutions of wave equations) waves trapped in the high index film at these
specific θ1 values constitute the various orders of guided waves. Each order of
guided wave propagates in the z direction with a phase velocity equal to ω/β1
(β1 ¼ n1k sin θ1).

Y

Z

X

Y = –∞ Y = +∞

X = 0

X = t

Film, n = n1

Substrate, n = n2

Cladding, n = n3

Fig. 1.3. The index profile in a planar waveguide.
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(3) Let us assume that, in the third situation, the index of the substrate n2 is higher than
the index of the cladding n3, and lower than the index of the film n1. In this case, there
are propagating plane waves in two regions of x: in the substrate and in the high index
film region. The value of θ1 is just large enough so that plane waves are totally
internally reflected at the boundary between the film and the top cladding. Only the
field in the cladding region now decays exponentially away from the film boundary.

When there are also index variations in the lateral direction (i.e. the y direction) similar
observations, like those we discussed in (2), can be made for optical planar guided waves
propagating in the lateral direction in the yz plane. Guided-wave modes in a channel
waveguide such as the one shown in Fig. 1.1(b) can be analyzed as planar guided-wave
modes totally internal reflected at the lateral boundary at y = ±W, see Section 1.2.6. There
will be evanescent fields in the y direction at y > W and y < −W.

1.1.3 General characteristics of guided waves

In summary, optical waveguides always have a higher index core, surrounded by lower
index regions, so that optical guided waves in the core can be considered as waves
trapped in the core with evanescent field in the surrounding regions. There are also
radiation waves (or cladding waves) that also propagate in the structure. The field
distribution and the propagation constant of the guided waves are controlled by the
transverse dimensions of the core and the refractive indices of the core and all the
surrounding regions. In order to understand more clearly the properties of modes in
the optical waveguide, electromagnetic analysis of modes in optical waveguides is
presented in the next section.

The most important characteristics of guided-wave modes are the exponential decay of
their evanescent tails, the distinct polarization associated with each mode, and the
excitation of continuous modes at any defect or dielectric discontinuity that causes
diffraction loss of the guided-wave mode. The evanescent tail ensures that there is only
minor perturbation of the mode pattern for structure changes several decay lengths away
from the surface of the high index layer.

Since propagation loss of the guided-wave modes is caused usually by scattering
or absorption, the attenuation rate of the guided mode will be very low as long as there
is very little absorption or scattering loss in or near the high index layer. Themost common
causes of absorption loss are the placement of a metallic electrode nearby, the absorption
of the core material, and the use of semiconductor cladding or substrate (or core and
cladding) that has absorption. In electro-absorption modulators or switches (discussed in
Section 3.2) the absorption of the waveguide is controlled by an electrical signal so that
the output optical power is modulated by the electrical signal. Besides absorption, the
propagation losses are most commonly caused by volume scattering in the layers or by
surface scattering at the dielectric interfaces. Volume scattering is introduced by defects
in the material developed during growth or processing deposition. Surface scattering is
created usually through roughness incurred in the fabrication processes such as etching
and lift-off. Scattering converts the energy in the guided-wave mode into radiation modes.
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The exponential decay rate of any guided-wave mode in the media surrounding the
core is determined only by the indices of the layers (e.g. either the cladding index at x > t
or the substrate index at x < 0, in planar waveguides) and the β value of the mode. The
βc/ω value is called the effective index, neff, of the mode. The velocity of light in free
space c divided by the effective index is the phase velocity of the guided-wave mode in
the z direction. For the same polarization, lower order modes will have a larger effective
index (i.e. larger β) and faster exponential decay outside the core. For the same defects
or interface roughness, modes that have a smaller effective index will be scattered
more strongly into radiation modes. Therefore, higher order modes usually have larger
attenuation. Any mode that has an effective index very close to the refractive index of the
substrate or cladding will have large scattering loss. It is called a weakly propagating
mode.

On the other hand, the evanescent tail also enables us to affect the propagation of
the guided-wave mode by placing perturbations adjacent to the core of the high index
layer. For example, in the next chapter, we will discuss the directional coupler formed
by two waveguides placed adjacent to each other or by a grating filter fabricated on top
of a waveguide.

1.2 Electromagnetic analysis of modes in optical waveguides

In order to understand clearly the electromagnetic properties of guided waves, modal
analysis of an optical waveguide is presented in this section. The rigorous mathematical
analysis of simple planar waveguides such as those shown in Fig. 1.1(a) will be presented
first. In principle, modes of planar waveguides (or a summation of planar guided-wave
modes) may propagate in any direction in the plane of the waveguide (i.e. the yz plane).
However, for simplicity and without any loss of generality, the mathematical solution of
the modes of the planar waveguide will be presented first just for modes propagating in
the z direction. How these modes of planar waveguide (or combination of modes)
propagate in any arbitrary direction in the yz plane will be discussed in terms of these
z-propagating modes.

The geometry of channel waveguides is usually too complex for us to find mathema-
tically the solutions of the Maxwell’s equations in closed form. Numerical simulation
programs such as Rsoft BeamProp© are used. The exception is the solution of the circular
symmetric modes in step-index round fibers. The modes of optical fibers have been
discussed in many books [1]. They will not be repeated here. We will discuss in
Section 1.2.6 an approximate analysis, called the effective index analysis, of the modes
of open rectangular channel waveguides such as those shown in Fig. 1.1(b). Results
obtained from the effective index analysis are accurate only for well-guided modes,
i.e. modes with a short evanescent tail. Nevertheless, the effective index analysis enables
us to understand the basic properties of all channel guided-wave modes.

It will be clear later from the discussions of planar and channel waveguide modes that
the fields of most guided-wave modes can be approximated just by the dominant
component of the mode perpendicular to the direction of propagation. In other words,
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instead of solving Maxwell’s vector equations, modes of arbitrary cross-section of the
core may be calculated approximately by a scalar equation in terms of just the dominant
field. Such a quasi-scalar approximation of the Maxwell’s equations will be presented
after the discussion of planar and channel waveguide modes.

1.2.1 The asymmetric planar waveguide

A typical uniform dielectric thin film planar waveguide has been shown in Fig. 1.3,
where the film, the cladding and the substrate are all uniform and infinitely wide in the y
and the z directions. The film typically has a thickness of the order of a wavelength or
less, supported by a substrate and a cladding many wavelengths (or infinitely) thick. The
refractive index of the film (i.e. the waveguide core), n1, is higher than the indices of the
surrounding layers.

Since the structure is identical in any direction in the yz plane, we will temporarily
choose the +z axis as the direction of propagation in our mathematical analysis. For
planar modes, we further assume ∂/∂y ≡ 0. This assumption is similar to the assumption
made for plane waves in a homogeneous medium in many textbooks. This assumption on
the y variation applies in Sections 1.2.2, 1.2.3 and 1.2.4.

1.2.2 TE and TM modes in planar waveguides

The variation of the refractive index in the transverse direction is independent of z in
Fig. 1.3. From discussions of electromagnetic theory in classical electrical engineering
textbooks, we know that modes for structures that have constant transverse cross-section
in the direction of propagation can be divided into TE (transverse electric) and TM
(transverse magnetic) types. Note that TE means that there is no electric field component
in the direction of propagation, TM means that there is no magnetic field component in
the direction of propagation.

For planar waveguides, if we substitute ∂/∂y = 0 into ∇×E and ∇×H in Maxwell’s
equations, we obtain two separate groups of equations:

∂Ey

∂ z
¼ μ ∂Hx=∂ t;

∂Ey

∂ x
¼ �μ∂Hz=∂ t;

∂Hz

∂ x
� ∂Hx

∂ z
¼ �ε∂Ey=∂ t;

and

∂Hy

∂ z
¼ �ε∂Ex=∂ t;

∂Hy

∂ x
¼ ε∂Ez=∂ t;

∂Ez

∂ x
� ∂Ex

∂ z
¼ μ∂Hy=∂ t:

(1:1)

Clearly, Ey, Hx, and Hz are related only to each other, and Hy, Ex, and Ez are related
only to each other. Since the direction of propagation is z, the solutions of the first
group of equations are the TE modes. The solutions of the second group of equations are
the TM modes. In other words, all planar waveguide modes can be divided into TE and
TM types.

Since ε is only a function of x, the z variation of the fields must be the same in all
layers. This is a consequence of the requirement for continuity of Ey or Hy for all z. Let
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us also assume that the time variation of the field is ejωt. Then, for propagating waves in
the +z direction, we will have an exp(–jβz) variation, while the waves in the –z direction
will have an exp(jβz) variation. The TE wave equations for planar Ey in Eq. (1.1) can now
be written as a product of a function in y and a function in z, i.e. Ey x; zð Þ ¼ Ey xð ÞEy zð Þ

∂2

∂ x2
þ ω2με xð Þ � β2
� �� �

Ey xð ÞEy zð Þ ¼ 0; (1:2a)

∂2

∂z2
þ β2

� �
Ey zð Þ ¼ 0; (1:2b)

or

∂2

∂x2
þ ω2με xð Þ � β2
� �� �

Ey xð Þ ¼ 0: (1:2c)

Similar equations exist for TM modes.

1.2.3 TE modes of planar waveguides

The planar TE modes (i.e. modes with ∂/∂y = 0) in the planar waveguides are eigen
solutions of the equation,

∂2

∂ x2
þ ∂2

∂ z2
þ ω2με xð Þ

� �
Ey x; zð Þ ¼ 0

ε xð Þ ¼ n23εo x � t

¼ n21εo t4x40

¼ n22εo 0 � x

Hx ¼ � j

ωμ

∂Ey

∂ z
; Hz ¼ j

ωμ

∂Ey

∂ x
: (1:3)

Here, εo is the free space electric permittivity. All layers have the same magnetic
permeability μ, and the time variation is exp(jωt). Note that when Ey is known, Hx and
Hy can be calculated directly from Ey. The boundary conditions are the continuity of the
tangential electric andmagnetic fields at x = 0 and at x = t. As we shall see in the following
subsections, the TE modes can be further classified into three sub-groups. One group, the
guided waves, is characterized as plane waves trapped inside the film, and the other two
groups are two different kinds of combination of radiating plane waves known as
substrate modes and air modes. Mathematically, all the TE modes form a complete set
of eigenfunctions, meaning that any arbitrary electric field polarized in the y direction
with ∂/∂y= 0 can be expanded as a summation of TE modes.

1.2.3.1 TE planar guided-wave modes
Mathematically, Eq. (1.2) and (1.3) suggest that the solution of Ey(x) is either a sinusoidal
or an exponential function, and the solution of Ey(z) is e�jβz. Guided by the discussion in

8 Fundamentals of Guided-Wave Optoelectronic Devices



Section 1.1, we look for solutions of Ey(x) with sinusoidal variations for t > x > 0 and with
decaying exponential variations for x > t and x < 0. Since we have chosen the time
variation as e+jωt, the exp(−jβz) variation of Ey(z) represents a forward propagating wave
in the +z direction. In short, we will assume the following functional form for Ey(x,z):

Em x; zð Þ ¼ Am sin hmtþ �mð Þ exp �pm x� tð Þ½ � exp �jβmzð Þ x � t

Em x; zð Þ ¼ Am sin hmxþ �mð Þ exp �jβmzð Þ t4x40

Em x; zð Þ ¼ Am sin�m exp qmx½ � exp �jβmzð Þ; 0 � x

where in order to satisfy Eq. (1.2a, b and c)

βm=kð Þ2 � pm=kð Þ2 ¼ n23

βm=kð Þ2 þ hm=kð Þ2 ¼ n21

βm=kð Þ2 � qm=kð Þ2 ¼ n22: (1:4)

The subscript m stands for the mth order solution of Eq. (1.3). Equation (1.3) is clearly
satisfied by Em in all the individual regions. We have also chosen this functional form so
that the continuity of Ey is automatically satisfied at x = 0 and x = t. In order to satisfy the
magnetic boundary conditions3 at x = 0 and x = t, hm, qm, and pmmust be themth set of the
roots of the transcendental equations which are also called the characteristic equations,

tan hm=kð Þkt þ �m½ � ¼ �hm=pm and tan�m ¼ hm=qm: (1:5)

For a given normalized thickness kt, there are only a finite number of roots of the
characteristic equations yielding a discrete set of real values for h, p, and q. For this
reason, the guided-wave modes are also called the discrete modes. They are labeled by
the integer subscript m (m = 0, 1, 2,…). The lowest order mode with m = 0 has the largest
β value, β0 > β1 > β2 > β3… and h0 < h1 < h2…. Moreover, one can show that the number
of times in which sin (hmx + �m) is zero is m. The Hx and Hz fields can be calculated
from Ey according to Eq. (1.1). Since βm >> hm, Hx is the dominant magnetic field for
TE modes. The mth TE mode propagating in the –z direction will have ejβz variation for
Ey(z), with the same xy field variation given in Eq. (1.4).

The exponential decay rate of any guided-wave mode is determined only by the index
of the surrounding layer (either at x > t or at x < 0) and the β/k value of the mode. The β/k
value is called the effective index, neff, of the mode. The velocity of light in free space
divided by effective index neff is the phase velocity of the guided-wave mode. For the
same polarization, lower order modes will have larger effective index and faster expo-
nential decay. For the same Δε of defects or interface roughness, modes that have a
smaller effective index will be scattered more strongly into radiation modes, i.e. substrate
and air modes. Therefore, higher order modes usually have larger attenuation.

1.2.3.2 TE planar guided-wave mode in a symmetrical waveguide
In order to visualize why there should be only a finite number of modes, let us consider
the example of a symmetrical waveguide. In that case, n2 = n3 = n and pm = qm. The
quadratic equations for hm and βm and the transcendental equation now become
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hm
k

� �2

þ pm
k

� 	2

¼ n21 � n2; (1:6)

and

tan
hm
k

� �
kt

� �
¼

�2 hm
pm

1� hm2

pm2

: (1:7)

Since,

tan 2
hm
k

� �
kt

2

� �
¼ 2 tan hm

k

� �
kt
2


 �
1� tan2 hm

k

� �
kt
2


 � ;
Eq. (1.7) can be reduced to two equations,

tan
hm
k

� �
kt

2

� �
¼ pm=k

hm=k
; hence

hm
k

tan
hm
k

� �
kt

2

� �
¼ pm

k
; (1:8a)

or

tan
hm
k

� �
kt

2

� �
¼ � hm=k

pm=k
; hence � hm

k
cot

hm
k

� �
kt

2

� �
¼ pm

k
: (1:8b)

In the coordinate system of pm/k and hm/k, the solutions of Eq. (1.6) and (1.7) are given
by the intersections of the two curves representing the quadratic equation, hm=kð Þ2þ
pm=kð Þ2¼ n21 � n2; and one of the two equivalent tangent equations, (1.8a) or (1.8b).
To summarize, there are two sets of equations. The solutions for the first tangent equation
(1.8a) and the quadratic equation (1.6) are known as the even modes because they lead to
field distributions close to a cosine variation in the film. They are symmetric with respect
to x = t/2. The solutions from the second tangent equation (1.8b) and the quadratic
equation (1.6) are called the odd modes because the fields in the film have distributions
close to sine variations. They are anti-symmetric with respect to x = t/2.

Let us examine the even modes in detail. If we plot the quadratic equation of hm/k and
pm/k, it is a circle with a radius (n1

2 − n2)1/2. The curve describing the first tangent equation
will be obtained from those values of hm/k and pm/k whenever the left hand side (LHS) is
equal to the right hand side (RHS) of the tangent equation. The RHS is just pm/k. The LHS
has a tangent which is a multi-valued function. It starts from 0 whenever (hm/k)kt/2 is 0, π,
ormπ. It approaches + or − infinity when (hm/k)kt/2 approaches +π/2 or −π/2, or (m+π/2) or
(m–π/2) where m is an integer. The curves representing these two equations are illustrated
in Fig. 1.4. Clearly there is always a solution as long as n1 > n, i.e. there is an intersection of
the two curves, nomatter how large (or how small) is the circle (i.e. the n1 value). This is the
fundamental mode, labeled by m =0. However, whether there will be an m ≥ 1 solution
depends on whether the radius is larger than 2π/kt. There will be m = j solutions when
the radius is larger than 2jπ/kt. Notice that h0 < h1 < h2… and β0 > β1 > β2 >…. When the
radius of the circle is just equal to 2jπ/kt, the value for p/k is 0. This is the cut-off point
for the jth (j > 1) mode.
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1.2.3.3 The cut-off condition of TE planar guided-wave modes
There are conditions imposed on the refractive indices without which there is no guided-
wave mode solution for asymmetric waveguides. The first condition is:

n14n2 and n3:

Without any loss of generality, let n1 > n2 ≥ n3. In addition, there is a minimum thickness tm,
called the cut-off thickness, which will permit the mth solution to Eq. (1.3) to exist.
However, differently from the symmetric waveguide for which there is always an m =0
evenmode, there is a cut-off condition for even them =0mode in asymmetric waveguides.
At the cut-off of the mth mode, qm= 0, βm/k = n2, pm/k = (n2

2 − n3
2)1/2, �m = ±(m+1/2)π, and

hm = k(n1
2 − n2

2)1/2. Thus the cut-off thickness can be calculated from Eq. (1.5) to be:

ktm ¼ mþ 1

2

� �
π � tan�1 n21 � n22

� �
=ðn22 � n23Þ


 �1=2� 

n21 � n22
� ��1=2

: (1:9)

The thicker the film, the larger the number of guided-wave modes the film can support.
For all guided-wave modes above cut-off, n1 ≥∣βm/k∣ > n2. In most applications, t and the
indices of the layers are controlled so that there is only one guided-wave mode in the
waveguide.

1.2.3.4 Properties of TE planar guided-wave modes
Figure 1.5 shows the effective index, βm/k, of TEm planar guided-wave modes in epitaxially
grown waveguides on InP substrates as a function of the waveguide thickness t where
n2 = 3.10, n1 = n2 +Δn and n3 = 1. The abscissa is kt in units of π. TheΔn, i.e. n1− n2, depends
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Fig. 1.4. The Graphical Solution of hm and pm for even TE guided-wave modes in a symmetrical planar
waveguide. Taken from ref. 4, Cambridge University Press.
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on the alloy composition of the epitaxially grown layer. Curves with circles, �, are for
Δn =0.10; curves with crosses, �, are for Δn =0.05; curves with solid dots, *, for
Δn =0.025; and curves with triangles, Δ, for Δn =0.01. The a curves are for TE0 modes, b
curves for TE1, c curves for TE2, d curves for TE3, and e curves for TE4. At cut-off, all modes
have neff = n2. The neff values of the higher modes are always smaller than the neff values of
lower order modes. For a given thickness t, there are more modes for waveguides that have a
larger Δn. For kt < 1.8π, the waveguide has only the TE0 mode for Δn =0.1, 0.05 and 0.025.
Notice that we have only real eigenvalues for β, h, p and q. Since β is real, these modes
propagate in the z direction without attenuation. The fields of these modes are evanescent in
the air and in the substrate. This is the most important characteristic of guided waves.

When there is scattering or absorption loss it usually does not affect the mode pattern
significantly. It will cause attenuation as the mode propagates. Figure 1.5 demonstrates
clearly that, at a given thickness t, the higher order modes have lower β/k values. Thus the
evanescent decay of the higher order modes will be slower in the n2 and n3 layers. When
there is scattering or absorption loss in the substrate, the slower the evanescent decay, the
larger is the attenuation rate. For this reason, higher order guided-wave modes often have
a higher attenuation rate. Low scattering and absorption loss in all layers and at all
interfaces is a prerequisite for obtaining a low loss waveguide.

Physically, as we have discussed in Section 1.1, the electric field of themth TE guided-
wave mode inside the film is just a plane wave in the n1 layer (with the electric field
polarized in the y direction), totally internally reflected back and forth from the two
boundaries at x = 0 and x = t. Its propagation direction in the xz plane makes an angle θm
with respect to the x axis:

neff

3.2

3.19

3.18

3.17

3.16

3.15

3.14

3.13

3.12

3.11

3.1
0 1 2 3 4

kt (π)
5 6 7 8

e – TE4

d – TE3

a – TE0

b – TE1

c – TE2

Fig. 1.5. neff values of TEm modes in epitaxially grown waveguides on InP substrates.
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βm ¼ n1k sin θm; hm ¼ n1k cos θm: (1:10)

When βm and hm are given by themth solution of Eq. (1.5), the total round trip phase shift
of such a plane wave after reflection from both the air and the substrate boundary is 2mπ.
Since θm is a very small angle, the magnetic field of TEmodes is polarized predominantly
in the x direction with a small component in the z direction. In some technical papers and
books, instead of solving Maxwell’s equations directly as we did in Eq. (1.4) and (1.5),
the guided-wave modes are defined by requiring the round trip phase shift of a totally
internally reflected plane wave to be 2mπ. This is the condition that the total field for all
the plane waves reflected back and forth is non-zero.4

The lossless TE planar guided-wave modes are orthogonal to each other and to any
other TE or TM modes of the same waveguide [2].5 It is customary to normalize the
constant Am in Eq. (1.4) so that a unit amount of power (1W) per unit length in the y
direction is carried out by a normalized mode. Thus,

1

2
Re

ðþ1

�1
EynH

�
xmdx

2
4

3
5 ¼ βm=2ωμð Þ

ð
EnE

�
mdx ¼ δnm; (1:11)

where the asterisk superscript of a functionmeans the complex conjugate of that function.
From this condition, we obtain

A2
m ¼ 4ωμ

βm

1

pm
þ 1

qm
þ t

� ��1

: (1:12)

1.2.3.5 TE planar substrate modes
In the range, n2 > ∣β/k∣ > n3, the electric field has an exponential variation for x > t and
sinusoidal variation within the film and in the substrate. According to the discussion given
in case (1) of Section 1.1.2, these are substrate modes. For TE substrate modes, we have,

E sð Þ x; z; βð Þ ¼ A sð Þ sin htþ �ð Þ exp �p x� tð Þ½ � exp �jβzð Þ x � t

E sð Þ x; z; βð Þ ¼ A sð Þ sin hxþ �ð Þ exp �jβzð Þ t 4 x 40

E sð Þ x; z; βð Þ ¼ C sð Þ exp �jρxð Þ þ C sð Þ� exp þjρxð Þ
h i

exp �jβzð Þ; 0 � x (1:13)

with

h=kð Þ2þ β=kð Þ2 ¼ n21

β=kð Þ2� p=kð Þ2¼ n23

ρ=kð Þ2þ β=kð Þ2¼ n22; (1:14)

tan h=tð Þktþ �½ � ¼ �h=p; (1:15)

and

C sð Þ ¼ A sð Þ sin�þ j h cos�=ρð Þ½ �=2: (1:16)
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Note that C(s) and A(s) are normalized so that

β=2ωμð Þ
ð1

�1
E sð Þ x; z; βð ÞE sð Þ� x; z; β0ð Þdx ¼ δ ρ� ρ0ð Þ; (1:17)

which requires

C sð ÞC sð Þ� ¼ ωμ
βπ

: (1:18)

Unlike guided-wave modes, which have n1 > ∣βm/k∣> n2 and n3, β, p, h, ρ, and � of the
substrate modes have a continuous range of values which satisfy the above equations
within the range n2 > ∣β/k∣ > n3. Thus these modes are called continuous modes. The field
in the air region still has an evanescent variation. However, the field in the substrate
region has the form of two propagating plane waves with propagation constant ρ, one in
the +x direction and the second one in the –x direction. Thus they are also called the
substrate radiation modes.6

In the plane wave description of the substrate modes in Section 1.1, β/n1k, h/n1k, β/n2k
and ρ/n2k are direction cosines of the plane waves with respect to the z axis and the x axis
in the film region and in the substrate region respectively. The plane waves in the film are
totally internally reflected only at the boundary x = t.

1.2.3.6 TE planar air modes
Mathematically, there are always two independent solutions of Maxwell’s equations for a
given set of propagation constants. By linearly combining the two independent solutions
one can always obtain two orthogonal independent modes for each set of propagation
constants. These orthogonal modes are called air modes because they propagate in both
substrate and cladding with index n2 and n3. They are called air modes because the
cladding medium with n3 is often the air.

If the structure is symmetrical, these two orthogonal modes represent odd and even
variations with respect to x = t/2 inside the film. For asymmetrical structures, such as the
one shown in Fig. 1.3, the x variations are more complex. Nevertheless, there are still two
modes for each set of propagation constants, these two modes differing from each other
by a π/2 phase shift of the sinusoidal variations in the x direction in the film which has the
index n1. The mathematical expressions for Ey of the air modes are:

E0 x; z; βð Þ ¼ D0 exp �jσ x� tð Þ½ � þD0� exp þ jσ x� tð Þ½ �f g exp �jβ zð Þ x � t

E0 x; z; βð Þ ¼ A0 sin hxþ �ð Þ exp �jβ zð Þ t4x40

E0 x; z; βð Þ ¼ C0 exp �jρ xð Þ þ C0� exp þjρ xð Þ½ � exp �jβ zð Þ 0 � x; (1:19)

for the first set, and

E00 x; z; βð Þ ¼ D00 exp �jσ x� tð Þ½ � þD00� exp þjσ x� tð Þ½ �f g exp �jβ zð Þ x � t

E00 x; z; βð Þ ¼ A00 sin hxþ �þ π
2

� 	
exp �jβ zð Þ t4x40

E00 x; z; βð Þ ¼ C00 exp �jρ xð Þ þ C00� þ jρ xð Þ½ � exp �jβ zð Þ; 0 � x (1:20)
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for the second set, with

β=kð Þ2þ σ=kð Þ2¼ n23

β=kð Þ2þ h=kð Þ2¼ n21

β=kð Þ2þ ρ=kð Þ2¼ n22: (1:21)

Imposing the boundary conditions at x = 0 and x = t, we obtain:

C0 ¼ A0 sin�þ j h cos�=ρð Þ½ �=2

D0 ¼ A0 sin htþ �ð Þ þ j
h

σ
cos htþ �ð Þ

� �
=2; (1:22)

note that A″,C″, andD″ are obtained when � is replaced by � + π/2 in the above equation.
All modes form an orthogonal normalized set as defined in Eq. (1.11) and (1.17). For both
sets of modes, a continuous range of solutions of ρ, σ, β and h exists where n2 ≥ ∣β/k∣ ≥ n3.

As discussed in case (1) of Section 1.1.2, the air modes of Eq. (1.4) can be represented
in terms of a plane wave with its accompanying reflected and refracted beams at each
boundary, without total internal reflection at either boundary. It is well known that for
each set of angles of incidence, reflection, and refraction, there are always two indepen-
dent plane wave solutions. One is a plane wave incident on the film from the cladding
side plus its accompanying reflected and refracted waves, and the other is a plane wave
incident from the substrate side plus its accompanying reflected and refracted waves.
They all have the same z variation. The air modes in Eq. (1.19) and (1.20) are just linear
combinations of these plane waves.

1.2.4 TM modes of planar waveguides

The planar TM modes are eigen solutions of the wave equation (with ∂/∂y = 0 and
exp(jωt) time variation):

∂2

∂ x2
þ ∂2

∂ z2
þ ω2ε xð Þμ

� �
Hy x; zð Þ ¼ 0

Ex ¼ j

ωε xð Þ
∂Hy

∂ z
; Ez ¼ �j

ωε xð Þ
∂Hy

∂ x
; (1:23)

where, ε(x) is the same as given in Eq. (1.3). Or, in a manner similar to Eq. (1.3), we can
write,

∂2

∂ x2
þ ω2με xð Þ � β2
� �� �

Hy x; zð Þ ¼ 0: (1:24)

In lossless waveguides, all TM modes are orthogonal to each other and to TE modes [2].

1.2.4.1 TM planar guided-wave modes
Like the TE modes, the y component of the magnetic field for the nth TM planar
guided-wave mode is
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Hn x; zð Þ ¼ Bn sin hntþ �nð Þ exp �pn x� tð Þ½ � exp �jβn zð Þ x � t

Hn x; zð Þ ¼ Bn sin hnxþ �nð Þ exp �jβn zð Þ t4x40

Hn x; zð Þ ¼ Bn sin�n exp qnx½ � exp �jβn zð Þ; 0 � x (1:25)

with

βn=kð Þ2� pn=kð Þ2 ¼ n23

βn=kð Þ2þ hn=kð Þ2 ¼ n21

βn=kð Þ2� qn=kð Þ2 ¼ n22: (1:26)

Continuity of the tangential electric field7 requires that hn, qn, and βn also satisfy the
transcendental equation,

tan hn=kð Þktþ �n½ � ¼ � n23 hn

n21pn
; and tan �n ¼ n2

n1

� �2
hn
qn

: (1:27)

The TMn modes are given by the nth solutions of Eq. (1.26) and (1.27). The magnetic
field is in the y direction. Note that, differently from the TE guided-wave modes, TM
guided-wave modes have the dominant electric field polarized in the x direction.

1.2.4.2 TM planar guided–wave modes in a symmetrical waveguide
It is instructive to see what happens to the TM modes in a symmetrical waveguide,
i.e. n2 = n3 = n. The solution obtained in this example will also be used directly in the
effective index method to find the TE modes in channel waveguides. In this case, pn = qn.
The quadratic equation for hn and βn and the transcendental equations now become

hn
k

� �2

þ pn
k

� 	2

¼ n21 � n2; and tan
hn
k

� �
kt

� �
¼ �

2
n2hn

n21pn

1� n2hn

n21pn

� �2
:

As we have seen in the case of TE guided-wave modes in symmetrical waveguide
structures, the above tangent equation is equivalent to two equations,

tan
hn
k

� �
kt

2

� �
¼ � n2hn=k

n21pn=k
; and tan

hn
k

� �
kt

� �
¼ n21pn=k

n2hn=k
; (1:28a)

or

� n2

n21

hn
k

� �
cot

hn
k

� �
kt

2

� �
¼ pn

k
; and

n2

n21

hn
k

� �
tan

hn
k

� �
kt

2

� �
¼ pn

k
: (1:28b)

These equations again point to the existence of two orthogonal sets of modes, the modes
symmetric and anti-symmetric with respect to t/2. The n = 0 symmetric TM mode has no
cut-off thickness t. These equations are very similar to the equations for the TE modes,
except for the ratio, (n/n1)

2 , which is always smaller than 1. Therefore, for the same order
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(i.e. m = n), the pn values of the TM modes are slightly smaller than the pm values of the
TE modes for the same thickness t and indices.

1.2.4.3 The cut-off condition of TM planar guided-wave modes
Again, for a given normalized thickness kt, there is only a finite number of discrete
modes, labeled by the subscript n (n = 0, 1, 2…) where h0< h1 < h2 < h3… and n1 > β0 >
β1 > β2 > β3… > n2. The cut-off thickness for the nth TM mode is given by q = 0 and by:

ktn ¼ nπ þ tan�1 n21
n23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n23
n21 � n22

s" #( )
n21 � n22
� ��1=2

: (1:29)

Note that the cut-off thickness tn for TMmodes is always larger than the cut-off thickness
tm for TE modes of the same order. Thus it is possible to design the waveguide with
appropriate n1, n2, n3 and t so that only the lowest order TE mode can exist.

1.2.4.4 Properties of TM planar guided-wave modes
Figure 1.6 shows the effective index neff, i.e. βm/k, of TMm planar guided-wave modes in
epitaxially grown waveguides on InP substrates as a function of the waveguide thickness t
where n2 = 3.1, n1 = n2 + Δn and n3 = 1. The abscissa is kt in units of π. The Δn, i.e. n1 − n2,
depends on the alloy composition of the epitaxially grown layer. Curveswith circles,�, are for
Δn=0.10; curveswith crosses,�, are forΔn=0.05; curveswith solid dots,*, forΔn=0.025;

3.2

3.19

3.18

3.17

3.16

3.15

3.14

3.13

3.12

3.11

3.1
0 1 2 3 4 5 6 7 8

kt (π)

neff

b – TM1
c – TM2
d – TM3
e – TM4

a – TM0

Fig. 1.6. neff values of TMm modes in epitaxially grown waveguides on InP substrates.
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andwithtriangles,Δ, forΔn=0.01.TheacurvesareforTM0modes,bcurvesforTM1,ccurves
for TM2, d curves for TM3, and e curves for TM4.At cut-off, all modes have neff = n2. The neff
values of the highermodes are always smaller than the neff values of lower ordermodes. For a
given thickness t, there are more modes for waveguides that have a larger Δn. For kt < 0.6π,
there is no TM guided wave. Thus a single mode waveguide has only the TE0mode. For kt <
1.9π, the waveguide has only the TM0 mode for Δn =0.1, 0.05 and 0.025. Because of the
dependenceon (n2/n1)

2 and (n3/n1)
2,which are always smaller than1, theβ/kof theTMmodes

are usually slightly smaller than the corresponding TEmodes. The most important difference
between TM and TE modes is, of course, the polarization of the optical electric field. Often,
metallicelectrodesare fabricatedontopof then3 layer intendedforapplyingaDCorRFelectric
field. The electric field is polarized predominantly in the y direction for TE modes and in the
x direction for TM modes. The difference in the polarization of the optical electric field may
make a difference to the attenuation of the guided-wavemode in the z direction caused by the
metal electrode. For example, when there is metallic absorption, the TM modes have higher
attenuation. For other purposes, such as the coupling of an incident radiationfield into a planar
waveguide, thecouplingefficiencydependscriticallyon thematchingof thepolarizationof the
incident field with the polarization of the guided-wavemode.

Similarly to TE guided-wave modes, TM planar guided-wave modes inside the film
with index n1 can also be described by a plane wave that has a magnetic field polarized in
the y direction. The electric field of the plane wave is predominantly polarized in the x
direction with a small component in the z direction. It is totally internally reflected back
and forth between the two boundaries, in a propagation direction in the xz plane making
an angle θn with respect to the x axis. The TM guided-wave modes can be found by
requiring the round trip phase shift to be 2nπ.

Like the TEmodes, the exponential decay rate of any guided-wavemode is determined
only by the index of the layer (either at x > t or at x < 0) and the β/k value of the mode. The
velocity of light in free space c divided by neff is the phase velocity of the guided-wave
mode. For the same polarization, lower order modes will have larger effective index and
faster exponential decay. For the same Δε of defects or interface roughness, modes that
have a smaller effective index will be scattered more strongly into radiation modes, i.e.
substrate and air modes. Therefore, higher order modes usually have larger attenuation.

When TM guided-wave modes are normalized,

1

2
Re

ðþ1

�1
HynE

�
xm dx

2
4

3
5 ¼ βn

2ω

ðþ1

�1
HnH

�
m

1

ε xð Þ dx ¼ δnm; (1:30)

and
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2
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: (1:31)
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1.2.4.5 TM planar substrate modes
For the substrate TM modes, the y component of the magnetic field is

H sð Þ x; z; βð Þ ¼ B sð Þ sin htþ �ð Þ exp �p x� tð Þ½ � exp �jβ zð Þ x � t

H sð Þ x; z; βð Þ ¼ B sð Þ sin hxþ �ð Þ exp �jβ zð Þ t4x40

H sð Þ x; z; βð Þ ¼ D sð Þ exp �jρxð Þ þD sð Þ� exp þ jρxð Þ
h i

exp �jβzð Þ; 0 � x (1:32a)

D sð Þ ¼ B sð Þ

2

� �
sin� þ j

n22h cos�

n21ρ

� �� �
; (1:32b)

tan h=kð Þktþ �½ � ¼ � n23h

n21p
: (1:32c)

Values of D and B are obtained from the orthogonalization and normalization
condition,

β
2ω

ðþ1

�1
H sð Þ βð ÞH sð Þ� β0ð Þ=ε xð Þdx ¼ δ ρ� ρ0ð Þ: (1:33)

We obtain

D sð ÞD sð Þ� ¼ ωεon22
βπ

; (1:34)

noting that β, p, h, ρ and � have a continuous range of solutions within the range
n2 > ∣β/k∣ >n3.

1.2.4.6 TM planar air modes
There are again two orthogonal TM air modes for each set of propagation constants.

For the first set of modes,

H0 x; z; βð Þ ¼ E 0 exp �jσ x� tð Þ½ � þ E 0� jσ x� tð Þ½ �f g exp �jβ zð Þ x � t

H 0 x; z; βð Þ ¼ B 0 sin hxþ �ð Þ exp �jβ zð Þ t4x40

H 0 x; z; βð Þ ¼ F 0 exp �jρ xð Þ þ F 0� exp jρxð Þ½ � exp �jβ zð Þ; 0 � x (1:35)

and, for the second set of modes

H00ðx; z; βÞ ¼ E00 exp �jσ x� tð Þ½ � þ E00� jσ x� tð Þð Þf g exp �jβ zð Þ x � t

H00 x; z; βð Þ ¼ B00 sin hxþ �þ π
2

� 	
exp �jβ zð Þ t4x40

H00 x; z; βð Þ ¼ F00 exp �jρ xð Þ þ F 00� jρ xð Þ½ � exp �jβ zð Þ: 0 � x (1:36)

For both sets of orthogonal modes, a continuous range of solutions of ρ, σ, β and h, exist
where n3 ≥ ∣β/k∣ ≥ 0. For the first set of modes, the continuity of the electric and magnetic
fields at x = 0 and x = t requires:
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E 0 ¼ 1

2
B 0 sin htþ �ð Þ þ j

h n23 cos htþ �ð Þ
σ n21

� 


F 0 ¼ 1

2
B 0 sin�þ j

hn22 cos�

ρ n21

� 

: (1:37)

For the second set of modes, � is replaced by � + π/2 in Eq. (1.37).

1.2.5 Generalized guided-wave modes in planar waveguides

In Sections 1.2.3 and 1.2.4, we have presented the analysis of planar modes when they
propagate in the direction of the z axis. In reality, planar modes for a waveguide structure
as shown in Fig. 1.3 can propagate in any direction in the yz plane with the same x
functional variation as given in Eq. (1.4) for TE modes and Eq. (1.25) for TMmodes. For
a planar guided-wave mode propagating in a direction θ with respect to the z axis, it will
have a z variation of exp(–jneffk(cosθ)z) and a y variation of exp(–jneffk(sinθ)y). For such
a planar guided wave, there is no variation of the field in the direction perpendicular both
to x and to the direction of propagation.

There can be superposition of TEm modes propagating in different θ directions to form
diverging or focusing waves in the yz plane with identical x variation. Similarly, there can
be superposition of TMn modes propagating in different θ directions to form diverging or
focusing waves in the yz plane with the same x variation. Notice that, for TE modes, the
electric fields are polarized in the yz plane perpendicular to their direction of propagation;
and the dominant magnetic field is polarized in the x direction. Vice versa, for TM modes,
the magnetic fields are polarized in the yz plane perpendicular to their directions of
propagation, while the dominant electric field is polarized in the x direction. When the
waveguide has only a single mode in the x direction, there are only TE0 modes in various
directions of propagation in the yz plane. When both TE and TM modes exist in a given
waveguide, there could be a mixture of TE and TM modes excited in a planar waveguide.
Whether TE or TMmodes will be excited depends on the polarization of the incident field.

In order to excite effectively a specific polarized guided-wave mode, the incident
radiation must have a polarization close to the polarization of that mode. In a single mode
waveguide, for incident radiation with polarization between the TE and TM polarization,
only the TEmode will be excited by the component of the incident electric field polarized
in the yz plane. The TM mode will be excited by the component of the incident electric
field polarized in the x direction. When the waveguide has both TE and TM modes,
TE modes will be excited by the component of the incident radiation with electric
field polarized in the yz plane, while the TM modes will be excited by the component
of the incident radiation with electric field polarized in the x direction. The direction
of propagation of the guided-wave modes will be determined by the direction of the
incident radiation beam through a relationship similar to Snell’s law in free-space optics.
Since TM and TE modes have different effective indices, they have different phase
velocities. When both TE0 and TM0 modes are excited by a given incident radiation, the
total polarization of the two modes will rotate as they propagate due to the difference in
phase velocities.
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In short, TE or TMmodes of the same order all have the same Em(x) orHn(x) variation.
There may be a number of planar guided waves with the same Em(x) or Hn(x) simulta-
neously propagating in different θ directions in the yz plane. Superposition of such planar
guided waves can give very complex field variations in the yz plane.

1.2.5.1 The Helmholtz equation for generalized guided-wave modes
We will now consider any generalized TEm guided-wave mode in a planar waveguide
to be a product Em(x)Em,t(y,z). As long as the incident electric field is polarized in the
yz plane, only the TE modes will be excited in the planar waveguide. In other words,

Em x; y; zð Þ ¼ Em xð ÞEm;t y; zð Þ: (1:38)

Note that Em(x) is the TEmth solution of Eq. (1.2) which has the eigenvalue βm, or nm,effk.
It is given in Eq. (1.4) as

∂2

∂x2
þ ω2με xð Þ � n2m;eff k

2
� 	� �

Em xð Þ ¼ 0;

Em xð Þ ¼ Am sin hmtþ �mð Þ exp �pm x� tð Þ½ � for x � t

¼ Am sin hmxþ �mð Þ for t4x40

¼ Am sin�m exp qmxð Þ: for x5 0

Note that Em,t(y,z) is a function of y and z satisfying the two-dimensional scalar wave
equation

∂2

∂y2
þ ∂2

∂z2
þ n2m;eff k

2

� �
Em;t y; zð Þ ¼ 0: (1:39)

When Em;t y; zð Þ ¼ e�jnm;effk sin θye�jnm;effk cos θz, it is just the plane wave solution for
Em,t(y,z) (i.e. a plane TE guided wave propagating in the yz plane in the θ direction).
There are many other possible solutions. There is a strong similarity between the equation
for Em,t(y,z) in Eq. (1.39) and the Helmholtz equation in optics. All the techniques
used to solve the Helmholtz equation can be applied here to Em,t(y,z). The major
difference is that the Helmholtz equation in conventional optics is a scalar wave equation
in three dimensions, while Eq. (1.39) is a scalar wave equation in two dimensions. The
mathematical details of how to solve scalar wave equations in two dimensions and in
three dimensions are very different. A general method to solve Eq. (1.39) for a given
incident radiation is the Green’s function method [3]. Since guided waves are focused,
collimated, and diffracted in many planar waveguide devices, the analysis of Em,t is very
important for calculating the diffraction of guided waves in planar waveguides. An
example, using the Green’s function for calculating the diffraction of TE0 waves excited
by an incident radiation over a finite aperture is given in [4].

Similar comments can be made for TMn guided-wave modes when the incident
magnetic field is polarized in the yz plane (or for an incident electric field polarized in
the x direction). In this case,
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Hn x; y; zð Þ ¼ Hn xð ÞHn;t y; zð Þ; (1:40)

∂2

∂y2
þ ∂2

∂z2
þ n2n;eff k

2

� �
Hn;tðy; zÞ ¼ 0; (1:41)

where Hn(x) is given in Eq. (1.25).
When the incident field has electric or magnetic field components polarized in both

the x direction and a direction in the yz plane and when the waveguide can have both TE
and TM modes, mixed TE and TM modes will be excited in the waveguide.

1.2.5.2 Examples of generalized guided waves in planar waveguides
In order to appreciate the importance of the more complex yz variation and the general-
ized guided-wave mode in planar waveguides, we will consider some examples using
TEm modes in planar waveguides.

(A) Radiation from a line source in the yz plane
Let there be a single TE mode planar waveguide (i.e. the index and the thickness
combination allows only the TE0 mode to exist). A line source of guided-wave TE0

mode is placed at the origin of the yz plane. A line source is represented mathematically
as a unit impulse function δ in the yz plane. The solution for E0,t (y,z) in Eq. (1.39) is the
cylindrical wave for distances far away from the origin,

E0;t y; zð Þ ¼ Affiffiffi
ρ

p e�jn0;effkρ; (1:42)

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
: (1:43)

Note that E approaches infinity as ρ approaches zero. This solution is similar to the
spherical waves shown in conventional optics books except for the 1=

ffiffiffi
ρ

p
variation

instead of the 1/R variation in spherical waves. This modification is necessary if we
consider the power P radiated by such a cylindrical wave in the yz plane in the form of a
TE guided wave

P ¼ neff;0k

2ωμ

ð1
�1

E0 xð Þj j2dx
8<
:

9=
;

ðπ
�π

E0;t y; zð Þ�� ��2ρ sin θ dθ
¼ 2π A2: (1:44)

In evaluating P, we already knew fromEq. (1.11) that the result of the integration in x in { }
is 1. ThereforeP becomes proportional toA2. In other words, the square root dependence in
ρ is necessary for power conservation, i.e. for P to be independent of ρ. Notice also that the
E0,t in Eq. (1.42) satisfies Eq. (1.41) only for large ρ when higher orders of 1/ρ can be
neglected.

22 Fundamentals of Guided-Wave Optoelectronic Devices



(B) The cylindrical guided-wave lens
Similarly to the three-dimensional case, an ideal guided-wave cylindrical lens at z = 0,
placed parallel to the xy plane with the axis of the cylinder along the x axis, can be

represented by a quadratic phase shift, e j
πnm;eff

λ f y2 . It will convert a planar guided wave
normally incident on the lens into a convergent cylindrical guided wave focused at z = f.
It will also collimate a divergent guided wave into a collimated guided wave.

In practice, it is difficult to obtain waveguide structures such that the effective
index of the guided-wave mode within the lens is much larger than the effective
index of the guided wave outside the lens. This difficulty is similar to that in making
a three-dimensional lens with materials such that their index is not much larger than the
index of air. Such lenses will be very weak. For these reasons, Fresnel lenses and
Geodesic lenses are usually used for collimating and focusing guided waves in planar
waveguides [5].

1.2.6 Rectangular channel waveguides and the effective index analysis

Rectangular waveguides are important in many practical applications because the
rectangular cross-section is an idealized cross-section of actual waveguides fabricated by
most micro-fabrication procedures such as etching. Figure 1.7 illustrates the index profile
of two rectangular channel waveguides. In each case, the center portion, at W/2 ≥ |Y|,
consists of a ridge with a finite widthW. Because of the complexity of the geometry of the
dielectric boundaries, there is no analytical solution of the modes of such a structure. There
are only approximate solutions [6] and computer programs such as Rsoft BeamProp© that
can calculate numerically the guided-wave modes. These computer programs use numer-
ical methods such as the beam propagation method or the finite element method for
simulation [7]. The guided-wave modes could also be obtained easily by an approximation
method called the effective index method, which will be presented here. This method is
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Fig. 1.7. The index profile of two examples of channel waveguides. (a) Cross-sectional view of an etched
channel waveguide. (b) Cross-sectional view of an etched ridged channel waveguide.
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reasonably accurate for strongly guided modes (i.e. modes well above cut-off). It is based
on the solutions of the planar guided-wave modes discussed in Sections 1.2.3 and 1.2.4.
The effective index analysis also provides much insight into the properties of channel
guided-wave modes.

Let us consider the rectangular channel waveguides in Fig. 1.7(a) and Fig. 1.7(b)
where there is a rectangular core region, y ≤ ∣W/2∣, and a cladding region, y ≥ ∣W/2∣. Let
us also assume that the planar waveguide in the core has only one mode in the x direction,
the TE0 mode. The propagation of the TE0 planar guided-wave mode in the x direction in
the core along its longitudinal direction z is given by exp � jβ0zð Þ where β0/k is its
effective index, ne1. In Fig. 1.7(b), there is also a planar guided-wave mode in the
cladding region where we do not have the ridge. Let the effective index of the TE0 planar
guided-wave mode of the structure in the cladding region be ne2. Since the high index
layer is thicker for y ≤ ∣W/2∣, n1 > ne1 > ne2 >n2. In Fig. 1.7(a), there is no guided-wave
mode in the cladding region, there are only continuous substrate and air modes for
y ≥ ∣W/2∣. These continuous modes will have propagation wave number β in the x
direction, where ne14n24β=k4n3:

Let us now consider the channel waveguide in Fig. 1.7(b). The core planar guided-
wave mode in the y ≤ ∣W/2∣ region can propagate in any direction in the yz plane. Let us
consider a core planar guided wave propagating in a direction which makes a very small
angle δ with respect to the z axis. Let δ be so small that ne1 cos δ > ne2. When this core
planar guided wave is incident on the vertical boundary at y = ∣W/2∣, it excites the
cladding guided-wave mode at y > ∣W/2∣ plus continuous modes. However, in order to
match the boundary condition at y = ∣W/2∣ as a function of z, the cladding guided-wave
mode cannot have a real propagating wave number in the y direction. It must have an
exponentially decaying y variation. In other words, the core planar guided wave is now
totally internally reflected back and forth between the two boundaries at y = ±W/2. The
sum of all the reflected core planar guided waves would yield a non-zero solution only
when the round trip phase shift of total internal reflection at specific values of δ is a
multiple of 2π. These special sets of totally internally reflected core planar waveguide
modes constitute the channel guided-wave modes. The lowest order mode (i.e. the 0th
order) in the y direction has a round trip phase shift of 2π, and the nth order mode has a
round trip phase shift of 2(n+1)π. Consequently the field of the 0th order mode has no
node in the y direction in the core, while the nth order mode has n nodes. IfW is not very
large, then we would also expect to have approximately a single mode in the y direction in
the core. We call this mode the TE00 mode.

Consider now the mathematical details discussed in the preceding paragraph. At the
y = ∣W/2∣ boundaries, the electric field Ey of the core planar guided-wave mode is no
longer the field transverse to the boundaries. Note that Ey is now approximately perpen-
dicular to the boundaries, which are the y = ±W/2 planes. The magnetic field has two
components, Hx and Hz. The dominant tangential field of the core planar guided wave is
Hx. Therefore, at the y = ∣W/2∣ boundary, we will match the magnetic field Hx of the core
and cladding modes.

The transverse field in the cladding that matches closely to the x variation of Hx of
the guided-wave mode in the core at the y = ∣W/2∣ boundary, is the sum of the Hx of the
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cladding TE planar guided wave of the same order and radiation modes. Since the
cladding TE planar guided-wave mode has a similar x variation as the TE guided-wave
mode in the core, it is the dominant component of the field in the cladding near the
boundary. In order to satisfy the boundary condition for all z values, the z variation of this
cladding guided-wave mode must be equal to exp(–jne1cos δ). If we let the y variation of
the cladding guided wave be exp(–jγy), γ must satisfy the equation

γ2 ¼ n2e2 � n2e1 cos2 δ: (1:45)

Thus γ is imaginary when ne1 cos δ4ne2. An imaginary γ represents an exponentially
decaying cladding guidedwave in the y direction, not a propagating cladding guidedwave. In
other words the core guided wave is totally internally reflected back at the y = ∣W/2∣
boundaries. The nth channel guided-wave mode is obtained by demanding that the total
round trip phase shift (with total internal reflection at the y = ±W/2 boundaries) of the core
planar guided wave (at angle δ) be 2(n+1)π. IfW is not very large, then we would also expect
to have only a single mode in the y direction in the core. We call this mode the TE00 mode.

In short, the mathematics used here for analyzing the total internal reflection of the
core planar guided wave in the y direction is equivalent to analyzing the total reflection of
the equivalent TM planar wave propagating in the yz plane at angle δ with the magnetic
field polarized approximately in the x direction. The equivalent material refractive indices
are ne1 and ne2, and the magnetic field is the transverse field. In other words, we can use the
TM planar guided-wave mode equation for a symmetric waveguide in the y direction, i.e.

∂2

∂z2
þ ∂2

∂y2
þ ω2ε yð Þμ

� �
Hx y; zð Þ ¼ 0;

ε yð Þ ¼ εon
2
ej; j ¼ 1 or 2

∂
∂x

¼ 0;

Ey ¼ j

ωε yð Þ
∂Hx

∂z
and Ez ¼ �j

ωε yð Þ
∂Hx

∂y
:

The boundary conditions are the continuity of Hx and Ez at y = ±W/2. The nth solution of
this equation will yield the effective index and the y variation of channel guided-wave
mode TE0n that we are looking for.8 This is the effective index method.

It is important to use the TM equation because the field tangential to the y = ∣W/2∣ plane
is the magnetic field. The most important quantity to be obtained is the effective index,
i.e. the βn/k or ne1cos δn, of the channel waveguide in the z direction. Knowing this
effective index, we know both the δ in the core and the exponential decay constant, γ,
in the cladding. Since δ is very small, the channel guided-wave mode obtained from the
TE core planar guided mode is still approximately a y polarized TE mode propagating in
the z direction. Naturally the x variation of Ey for y < ∣W/2∣ is approximately the same as
for the core planar guided-wave mode TE0.

Notice that we no longer have pure TE or TM modes. We have basically TE-like
modes with an electric field polarized in the y direction and a small electric field
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component in the z direction. These modes are called hybrid modes. Note also that the
effective index approximation did not give us a solution for the x variation of the electric
field near the boundaries. The boundary conditions at y = ±W/2 are not satisfied by just
the core and the cladding guided waves. In order to satisfy the boundary conditions
accurately, many other modes, especially the substrate and air modes, must be involved.
Air and substrate modes will decay in the y direction at different rates than the γ given in
Eq. (1.45). However, based on the knowledge of continuity of the tangential electric field,
we expect the electric and magnetic field to be continuous in the vicinity of y = ±W/2.
Thus, it is customary to assume that, near the boundaries, the field has the same x
variation as the field in the core with an exponential decay rate of γ in the y direction.

For the waveguide shown in Fig. 1.7(a), the x variation of the tangential field of the
core guided wave propagating at angle δ is matched by the summation of the continuous
cladding modes at y = ∣W/2∣. Since ne1 cos δ4n3 and n2, in order to satisfy the boundary
condition as a function of z, all continuous modes will decay exponentially away from the
y = ∣W/2∣ boundary. Thus the core guided-wave mode is again totally internally reflected
back and forth. The sum of all the reflected core planar guided waves would yield a non-
zero solution when the round trip phase shift of total internal reflection for specific values
of δ is a multiple of 2π. These special sets of totally internally reflected core planar
waveguide modes constitute the channel guided-wave modes. However, in this case, we
know the ne1 of the core TE planar guided-wave mode, but we do not know ne2 of the
dominant field outside the core. Since a combination of substrates and air modes is used
to match the x variation of the core guided wave at y = ±∣W/2∣, the value of ne2 is
somewhere between n3 and the substrate index n2. The best effective index ne2 to be used
for the cladding region in the TM equation in y will depend on the profile of the core TE
mode. For a high index waveguide with deep side walls, we will most likely use n3 of the
cladding. For a core guided wave with a long evanescent tail in the x direction in the
substrate, we may use the substrate index. Fortunately, for well-guided channel modes in
the core, the solution of neff and the y variation is not very sensitive to the value of the ne2
used for the calculation. Clearly, the approximation of the effective index method is not
very good for such a structure. It is even more difficult to say anything about the x
variation of the field in the cladding. The best we can do is to estimate the γ in the cladding
region and to assume that for ∣y∣−∣W/2∣ << γ, the x variation is similar to the core guided-
wave mode.

Similarly, a channel guided-wave mode with approximately TM polarization can be
obtained from TM planar guided-wave modes in the core and in the cladding region. In
that case the equivalent TE guided-wave equation will be used to find the effective index
of the channel waveguide mode and the y variation.

1.2.6.1 An example of the effective index method
Consider first a GaAs planar waveguide with n1 = 3.27 and n2 = 3.19 and t = 0.9 μm in the
core region operating at λ = 1.5 μm. This waveguide is exposed to air with n3 = 1. The
GaAs layer has been partially etched away at y ≥ ∣W/2∣,W = 3 μm. In the lateral cladding
region, t = 0.6 μm. We would like to find the effective index and the field of the lowest
order TE-like channel waveguide mode.
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The first step of our calculation is to find the effective index of the TE0 planar guided
wave in the core region atW/2 ≥ ∣y∣ and in the cladding region at ∣y∣ >W/2. FromEq. (1.4)
and (1.5), we find the TE planar guided-wave modes for the core and the cladding
regions, ne1 = 3.223 and ne2 = 3.211. In accordance with Section 1.2.4.2, we solve the
following equations to obtain the lowest order channel waveguide mode in the y direction
(i.e. n = 0):

tan h0n=k
� � kW

2

� �
¼ n2e1p

0
n=k

n2e2h
0
n=k

;
h0n
k

� �2

þ p0n
k

� �2

¼ n2e1 � n2e2: (1:46)

The solution is (h00/k) = 0.1795, which gives neff,0 = 3.218 and p00/k = 0.2121. The field
distributions are approximately
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Here �0, q0, h0 and p0 are parameters of the planar guided-wave TE0 mode in the
core (given by Eq. (1.4) and (1.5) with βm= 3.223k). Since we do not know in detail
how the radiation modes vary, we cannot find the field distributions accurately in the
regions (x>t, ∣y∣ >W/2) and (x<0, ∣y∣>W/2) from the effective index method. A reasonable
estimation is that the fields decay exponentially in the y direction from the x variation of
the field in the core at the y boundaries.

1.2.6.2 Properties of channel guided-wave modes
Channel waveguides are used mostly in guided-wave devices such as a directional
coupler, Y-branch splitter, waveguide laser, guided-wave modulator, waveguide photo-
detector, waveguide demultiplexer, ring resonator, and waveguide filter. Properties of the
channel guided-wave mode which are most important to these applications are the neff,
the attenuation rate, the polarization of the mode, and the evanescent tails described by
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pm, qm, and γ. Most active channel waveguide devices are a few centimeters or less in
length. Thus, unlike optical fibers, any reasonable attenuation rate, such as a few dB/cm
or less, may be acceptable in many practical applications. Active channel waveguide
devices often involve one guided-wave mode interacting with another guided-wave
mode. These interactions will be discussed in detail in the next chapter.

In principle, guided-wave modes of channel waveguides are hybrid modes, meaning
that there are field components in all x, y, and z directions. However, from the effective
index analysis, it is clear that guided-wave modes can be considered as total internal
reflection of the TEm (or TMn) planar guided-wave modes at the y boundaries at a very
small propagation angle δ from the z axis. It means that the polarization of the TE modes
still has predominantly an electric field in the y direction and a magnetic field in the x
direction. Therefore they are still called TEmn (or TMnm) modes.

1.2.7 The representation of fields and the excitation of guided-wave modes

Most commonly, the guided-wave mode (or modes) in an abruptly terminated planar or
channel waveguide (or weakly guiding optical fiber) is excited at its end by incident
radiation from a laser (or an abruptly terminated fiber). The secondmost commonmethod
is to excite the guided-wave mode by a phase-matched interaction of the incident
radiation with the guided-wave mode, utilizing the evanescent tail of the mode in the
lower index cladding. Examples include the directional coupler for channel waveguides
or the prism coupler for planar waveguides. The excitation of a guided wave by coupled
channel waveguides will be discussed in Chapter 2. The excitation of planar guided
waves by a prism coupler will be discussed in Chapter 5. We describe here the end
excitation of guided waves.

For analysis of end excitation, the electric (or magnetic) field incident on the end of the
waveguide is represented in terms of the modes of the waveguide. Mathematically,
modes of the waveguide are solutions of a second order differential equation with proper
boundary conditions. Such solutions form a complete set. This means that any arbitrary
incident field at the input end of the waveguide can be expanded as a summation of such a
complete set of modes. The coefficient of expansion of a specific guided-wave mode is
the magnitude of the mode excited by the incident radiation (i.e. the excitation effi-
ciency). From the amplitude and phase of all the continuous modes, we can calculate the
radiation field excited by the incident radiation. Since the modes of planar and channel
waveguides are divided into TE and TM sets, the transverse incident field will be first
divided into x and y polarization components. The y component of the incident electric
field will be expressed as a summation of TE modes, while the x component will be
expressed as a summation of TM modes.

In order to understand more thoroughly the representation of the field and the excita-
tion process, let us consider a specific example. Let the waveguide be excited by laser
radiation from z < 0. The laser radiation and the waveguide are all oriented along the z
direction. Let the waveguide at z > 0 be abruptly terminated at z = 0. At z = 0, both the x
and y polarized electric fields must be continuous across the z = 0 plane. The transverse
electric field of the incident radiation may be expressed as
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Et x; yð Þ ¼ Ex x; yð Þix þ Ey x; yð Þiy; (1:48)

where ix and iy are unit vectors in the x and y directions. For z ≤ 0, Et consists of the
incident laser mode and the reflected and diffracted laser radiation. If we neglect the
reflection and diffraction at z = 0, Et is just the incident laser radiation. For z ≥ 0, Et

consists of the guided-wave modes and radiation (or cladding) modes of the waveguide.
At z = 0

Ex ¼
X
j

Ajψx;j x; yð Þ þ
ð
β

b βð Þψx β; x; yð Þdβ; (1:49)

and

Ey ¼
X
j

Cjψy;j x; yð Þ þ
ð
β

d βð Þψy β; x; yð Þdβ: (1:50)

Here ψx,j is the jth x polarized guided wave mode (i.e. the TMmn modes), ψy,j is the jth
y polarized guided wave mode (i.e. the TEmn modes), ψxs are the x polarized radiation
modes, and ψys are the y polarized radiation modes. Since the modes are orthogonal to
each other (or non-overlapping), we can multiply both sides of Eq. (1.49) by ψx,j(x,y) and
integrate with respect to x and y from –∞ to +∞. In that case, we obtain:
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The expression,
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Exψ�
x;jdx dy, is called the overlap integral between the incident

field and the jth order mode. Note that Aj
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power efficiency for coupling the laser radiation into the x polarized jth guided-wave
mode. A similar expression is obtained for coupling into the y polarized guided-wave
mode, ∣Cj∣

2.
When guided modes in both polarizations are excited the total polarization and

intensity pattern of the total radiation in waveguides will be position dependent because
of the difference in the phase velocity of different modes. The intensity pattern is
sensitive with respect to geometrical, strain or bending perturbations. Clearly, radiation
(or cladding) modes are also excited at z = 0. However, they radiate away after a short
propagation distance. Therefore, most of the time, only how the guided waves are excited
is of practical interest.

The optical power density carried by all the modes is 1
2Re EyxH
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for TM polarization where the total field is given by Eq. (1.49) and
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the result of the integrations is simplified by Eq. (1.11) and (1.30) so that the total power
carried by all the modes is just the sum of the power carried by each mode. However, the
orthogonality condition does not apply to waveguides that have significant losses [2].

1.2.8 Scalar approximation of the wave equations for TE and TM modes

It is clear from the discussion in Sections 1.2.3 and 1.2.6 that, for TE modes propagating
in the z direction, Ey andHx are the dominant field. The equation for Ey can be written as:

Ey x; y; zð Þ ¼ Ey zð ÞEy x; yð Þ; (1:52)

∂2

∂z2
Ey zð Þ þ n2effk

2Ey zð Þ ¼ 0; (1:53)

∂2

∂x2
þ ∂2

∂y2
þ ω2με x; yð Þ � n2effk

2
� �� �

Ey x; yð Þ ¼ 0; (1:54)

where ε(x,y) is given by the waveguide structure. The solution for Ey(z) is e�jneffkz.
Therefore, Ey can also be calculated directly from Eq. (1.54) plus appropriate boundary
conditions. The boundary conditions can be deduced from the boundary conditions used
in the effective index approximation.

In accordance with the effective index approximation discussed in Section 1.2.6, we
first obtain the x variation of Ey approximately from the solutions of the planar waveguide
equations in the x direction in the core and in the cladding. The boundary condition in the
x direction is the continuity of Ey(x,y) andHz (which is proportional to ∂Ey/∂x across the x
boundaries).9 The neff of the planar guided wave in the core is ne1, and the neff of the
planar guided wave in the cladding is ne2. The channel waveguide mode variation in y is
obtained by total reflection of theHx planar wave at the y boundaries whenever the round
trip phase shift is 2nπ where ne1 and ne2 are used to represent core and cladding indices.
In this calculation, the Ez is the transverse electric field that must be continuous across the
y boundaries. The boundary conditions in the y direction are the continuity of Hx and
Ez. Note that, for an Hx in the planar waveguide in the y direction, Ez ¼ �j

ωε yð Þ
∂Hx
∂y and

Ey ¼ β
ωε yð ÞHx. The continuity of Hx assures the continuity of Dy

10 which is proportional
to ε(y)Ey at the y boundaries. The continuity of Ez means the continuity of 1

ε yð Þ
∂Hx
∂y at the y

boundaries. Therefore, even when Eq. (1.54) is not solved by the effective index method,
the boundary conditions are the continuity of Ey and ∂Ey/∂x at the x boundaries and
continuity of ε(y)Ey and 1

ε yð Þ
∂ε yð ÞEy

∂y at the y boundaries.
Similar comments can be made for TM channel waveguide modes using Hy. The TM

modes are found by solving the equation

∂2

∂x2
þ ∂2

∂y2
þ ω2με x; yð Þ � n2effk

2
� �� �

Hy x; yð Þ ¼ 0; (1:55)

where Hy and 1/ε(x) times ∂Hy/∂x are continuous across x boundaries while Hy and
∂Hy/∂y are continuous across y boundaries. Note that Ex is the dominant electric field.
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1.3 Formation of optical waveguides

How optical waveguides are made depends entirely on the availability of materials
and processing technology. The objective is to obtain a low loss waveguide with precise
control of the effective index, evanescent tail and mode size. Choice of materials and
fabrication technology is affected further by the need to use materials and structures
that have effective electro-optic, electro-absorption, electro-refraction or carrier injection
properties in order to achieve specific active device functions at specific wavelengths.

For planar waveguides, the high index film is often obtained by processes such as
thermal evaporation, electron beam deposition or sputtering, diffusion, ion exchange,
doping, chemical vapor deposition or epitaxial growth. Each process has its own
advantages and disadvantages, and is applicable only to certain materials.

Many techniques used in fabricating planar waveguides are used first to obtain the
desired index variation in the thickness direction, homogeneous films and smooth
interface between different material layers before the fabrication of channel waveguides.
For channel waveguides, the lateral index variation of the waveguide core is obtained
most commonly by one of the following techniques.

(1) Etching (including wet chemical etching and dry reactive etching) of the material
through a mask to form a ridge pattern.

(2) Diffusion or preferential ion exchange through a patterned source or a mask to give a
higher index in the core.

(3) Photo refractive effect using a patterned or a scanned optic beam.
(4) Poling of electro-optic active polymers using a patterned electrode to increase the

index.
(5) Epitaxial regrowth of a semiconductor that has a higher index in a channel etched

in the lower index substrate to provide the core.

Photolithographic techniques such as etching or lift-off through a mask are the most
commonly used methods to create the etched pattern of the ridge, the diffusion source, the
exchange mask, or the pattern of the poling electrode. Photolithography determines the
resolution and the roughness of the masks. In addition, selection of the chemicals for wet
or dry etching and etching time controls the etching depth, vertical profile, and surface
roughness of the waveguides. Since scattering is a major cause of attenuation in channel
waveguides, the roughness created by photolithography processes is a major considera-
tion in selecting the appropriate method to fabricate the channel waveguides. The
resolution of the photolithography also limits the minimumwidth of channel waveguides
that can be fabricated. The specific etching process may also create under or over etch,
which creates trapezoid shaped side walls in the vertical direction. In semiconductors,
selective etching and stop-etch layers may be used to get better etch-depth, roughness and
vertical shape control.

The control of material indices and core size is most important in determining the
effective index, the mode size, and the evanescent decay of the guided-wave mode.
Note that a large mode size of single mode waveguides can be obtained by either having a
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large core with small index difference with the surrounding media or by having a long
evanescent tail when the mode is near its cut-off. Waveguides with large cores that
have substantially higher index than the surrounding material will have multimodes.
Waveguides with small cores and large index difference with surrounding media will
have a small mode. The attenuation of the guided-wave mode is caused mostly by
scattering or by absorption. The homogeneity and uniformity of the core material
determine the amount of volume scattering. The smoothness of the interface with the
cladding region and the index discontinuity of the defects determine the surface scatter-
ing loss of the modes. The closer the mode near its cut-off, the larger is the scattering loss.

A thorough discussion of various technologies on different materials that could be
used to form optical waveguides is beyond the scope of this book. Therefore only four
examples of the formation of optical waveguides on LiNbO3, InP (or GaAs), polymer
materials, and Si will be discussed briefly here.

1.3.1 Formation of optical waveguides on LiNbO3 substrates

Lithium niobate, LiNbO3, is a piezoelectric single-crystal insulator. Many high speed
guided-wave electro-optic modulators and switches are made from this material because
of its large electro-optic coefficients. High quality x-cut or z-cut LiNbO3 substrates
several centimeters long are commercially available. It is very hard and difficult to
etch. Very few materials with index higher than LiNbO3 can be deposited on it and
have good optical quality. Therefore, only two methods, Ti-diffusion and proton ion
exchange, have been used successfully to create optical waveguides.

Lithium niobate is a uniaxial crystalline birefringent material in which the refractive
index is different for the optical electric field polarized along the z axis (i.e. ne) or the x
and y axis (i.e. no) of the crystal. Therefore the TE and TMmodes will have significantly
different effective indices. Its electro-optic properties will be discussed later in
Section 3.1.

For planar waveguides to be fabricated by diffusion, a Ti film is first deposited on the
surface of x-cut or z-cut LiNbO3 and then heated to 1173–1273K under controlled vapor
pressure of gases such asAr, H2O and LiO2. Diffusion of Ti into LiNbO3 causes an increase
of both the extra-ordinary index ne and the ordinary index no. The depth and the core index
of the waveguides are controlled by the diffusion temperature and time. For channel
waveguides, the Ti film is patterned first into a strip in the configuration of the waveguide
by etching or lift-off before diffusion. The channel waveguide is formed in the pattern
defined by the Ti pattern after diffusion. The scattering loss of LiNbO3 waveguides
depends on the composition of the ambient gases, the diffusion tube and the temperature
profile of the diffusion process. Well made Ti-diffused waveguides have very low scattering
loss. There is very little scattering loss or absorption. Thus, straight sections of Ti-diffused
waveguides are expected to have an attenuation rate less than 0.1 dB/cm. Ti-diffused
waveguides are graded index waveguides. The index variation produced by Ti-diffusion is
described commonly by an error function or Gaussian profile [8, 9].

For ion exchange, x-cut or z-cut LiNbO3 substrate is immersed into a molten bath of
benzoic acid at some temperature between the melting point (395K) and boiling point
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(522K) [10]. The exchange between Li+ and H+ ions increases the extra-ordinary index
ne, but not the ordinary index no. The depth of the waveguide is controlled by the
exchange time. The waveguides so obtained have been shown to have a step like index
profile. Channel waveguides are obtained by masking the areas surrounding the wave-
guide to prevent the exchange. Compared with Ti-diffused waveguides, the increase of
extra-ordinary index is much greater in this process, and the processing temperature is
much lower than the diffusion temperature. Therefore a tighter mode size can be
obtained. However, the attenuation rate of ion exchanged waveguide is higher than
that of the lowest attenuation rate of Ti-diffused waveguide. The absence of an increase
of the ordinary index means that there is no TM guided-wave mode for x-cut samples and
no TE mode for z-cut samples.

1.3.2 Formation of optical waveguides on GaAs and InP substrates

High quality and large area GaAs and InP substrates are available commercially.
Successful growth of single crystalline material on GaAs and InP substrates by LPE
(liquid phase epitaxy), VPE (vapor phase epitaxy), MOCVD (metal organic chemical
vapor deposition), and MBE (molecular beam epitaxy) techniques has already been
developed for some time. The favored technique for fabricating commercial electronic
components is MOCVD because it can be used to grow films uniformly over large
substrate areas, while MBE is very useful for research purposes with its flexibility. Films
grown epitaxially by MOCVD or MBE have precise control of thickness. For example,
quantum well hetero-junction structures have been grown by MBE and MOCVD. The
index of the epitaxially grown layer can be controlled by its composition. The lower the
bandgap of the material, the higher is its refractive index. The III-V compound semi-
conductors are attractive for optoelectronic devices because they also have reasonably
high electro-optic coefficients (not as high as LiNbO3), as well as electro-absorption and
electro-refraction effects. These electro-optical effects will be discussed in Chapter 3. In
addition, optical waveguide devices on GaAs and InP could potentially be integrated
monolithically with electronic devices. Such a process is called optoelectronic integra-
tion. Optical waveguide modulators have already been integrated with semiconductor
lasers, called photonic integration in the literature. Therefore, GaAs and InP waveguides
are very important in optoelectronics.

These compounds, GaAs and InP, belong to the III-V group of semiconductors
which have many alloy composition variations, ranging from AlAs and GaP to InAs,
GaSb and InSb. These are single crystals with pseudo-cubic lattice symmetry, so they are
optically isotropic (ne = no= n). There are two important features of epitaxial growth for
waveguide fabrication.

(1) In epitaxial growth, the alloy composition of the film can be different than that of the
substrate, provided that the lattice constant is matched to the substrate.11 Materials
with different composition will have different bandgap energy. The higher the
bandgap, the lower is the refractive index. Figure 1.8 shows the room temperature
bandgap energy of III-V semiconductors as a function of the lattice constant. The
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lattice constants of GaAs and InP are marked on the abscissa. There are many
different alloy compositions that are matched to the lattice constant of GaAs or InP
substrates. Therefore the growth of III-V semiconductor layers can provide us with
high quality single-crystal layers that have precise bandgap or refractive index.

(2) The film thickness can be controlled very precisely with MOCVD or MBE growth,
up to the precision of a single molecular layer. The surface of the epitaxially grown
layer is atomically smooth.

In addition, semiconductors could have n-type or p-type doping, to form a p–i–n diode.
In a reversed biased p-i-n diode, there is very little voltage drop in the p and the n layers.
Most of the applied voltage is applied across the i layer. Since the thickness of the i layer
is much smaller than the lateral dimension of an insulator waveguide such as LiNbO3, we
can obtain a high electric field in the i layer using a moderate electrical voltage. It means
that large electro-optic or electro-absorption effects (to be discussed in Chapter 3) can be
obtained with moderate applied voltage for modulation or switching.

Groups III-V semiconductors have a high refractive index, n > 3. Therefore surface
roughness at the interface with any low index material such as the air will cause large
scattering loss. Epitaxial growth provides us with an atomically smooth surface at the
interfaces of the grown layers, it is good for planar waveguides. But for channel
waveguides, etching is required to fabricate the lateral structure. Etching will generate
surface roughness. Therefore, etched semiconductor waveguides like the one illustrated
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in Fig. 1.7(a) will have high attenuation. Most channel waveguides are formed by etching
only a ridge in the cladding layer, similar to the one illustrated in Fig. 1.7(b), so that only
the evanescent tail of the guided wave is scattered by the roughness of the etched
surfaces. Alternatively, the channel waveguide can be fabricated by etch and regrowth.
In this method, a channel is first etched into the host semiconductor. A lower bandgap
material is regrown in the etched channel to form the higher index core. Surface rough-
ness at the etched surface of the channel is smoothed out in the regrowth process.

1.3.3 Formation of polymer optical waveguides

Electro-optic polymer materials are amorphous organic materials composed of an electro-
optically active component called a chromophore and a polymer matrix. For planar
waveguides, the core layer is surrounded by lower index cladding (usually another polymer)
layers above and below the core layer. The layers are usually spin coated and cured. The
material is made electro-optically active by giving the ensemble of chromophore mole-
cules an average alignment, usually by poling with an electric field at or above the glass
temperature, Tg, and then cooling it to room temperature to freeze in the alignment. After
poling, the material must not be heated to a temperature near the glass transition tempera-
ture, or the chromophore alignment will be lost. The attraction of polymer material is the
very large electro-optic coefficient (much larger than those of LiNbO3) that can be achieved
in some engineered materials. It also has a refractive index only slightly higher than optical
fibers as well as a low dielectric constant at microwave and radio frequencies (RF). Because
of the small difference of the dielectric constants at optical and microwave frequencies,
velocity matching can be easily accomplished in traveling wave devices for microwave and
optical signals. Because of the low dielectric constant, microwave transmission lines will
have higher impedances, easy to match. It is a material whose property depends on how it is
synthesized. It can be spin coated on to a number of substrates such as glass [12].

A cross-section of a typical channel waveguide is shown in Fig. 1.9. The substrate is
typically Si, chosen for its high surface quality and low cost. After depositing and

Substrate

Bottom metal

Bottom cladding

Core

Top cladding

Top metal

Fig. 1.9. An etched rib polymer waveguide. A shallow ridge is etched in the core layer, then it is covered
with top cladding. The metal electrode could be used for poling and for applying the
modulation electric field. (The figure is taken from ref. 12, Cambridge University Press.)
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patterning of the bottom metal layer, the bottom cladding, the core, and the top cladding
layer are deposited (or spin coated and cured) one at a time. The cladding material need
not be electro-optic, but it needs to have a refractive index slightly less than that of the
core. Finally the top metal layer is deposited and patterned. After fabrication of the layers,
poling will be conducted at temperatures above the glass temperature by applying a
voltage to the metal electrodes. The poling field is maintained while the temperature is
lowered to 50–100K below the glass temperature. At some point in the process, before
the top metal pattern is deposited, one of the polymer layers is patterned to cause the
lateral confinement needed to produce channel waveguides. In Fig. 1.9 the core layer was
patterned. Methods of creating lateral optical confinement also include photobleaching
and dry etching of the polymer core layer.

Notice that in order to take advantage of the very large electro-optic coefficient, the
electric field needs to be polarized in the direction of the poling field. Properties of
polymer waveguides depend a great deal on the material that can be synthesized. Ideally,
a material should have high glass temperature, large electro-optic coefficient and low
loss. But such an ideal material still remains to be developed.

1.3.4 Formation of optical waveguides on Si substrates

Since there are many commercial applications in Si electronics, very large Si wafers
with superb surface quality can easily be obtained. Although Si is highly absorbing to
visible light and near infrared radiation, it is transparent at a wavelength such as 1.55 μm.
In addition, very high quality and thick SiO2 buffer layers can be grown routinely on
Si substrates by thermal oxidation or chemical vapor deposition to serve as substrates
for waveguides. Alternatively, large area and high quality silicate substrates are also
easily available. Various techniques such as ion exchange, doping and flame deposition
can be used to obtain a higher index core to make waveguides. These waveguide
materials are isotropic insulators. Such waveguides typically have very little scattering
losses because of the superb interfacial quality and low index difference between the
core and the cladding. Therefore optical waveguides on Si substrates have the lowest
propagation loss. Because of their low loss, such waveguides are superb for applications
such as ring resonators. However, these waveguides have no electro-optic or electro-
absorption effect. Modulations of waves propagating in the waveguides can only be
obtained through the absorption of free carriers injected into Si. No lasers or detectors
can be photonically integrated with these waveguides. On the other hand, they can be
optoelectronically integrated with Si electronics.

Planar waveguides have been fabricated by depositing SiO2 buffer layer, phosphorus
doped SiO2 core layer, and SiO2 cladding layer on Si substrate by plasma enhanced
chemical vapor deposition [13]. The phosphosilicate glass core has 5–10% concentration
of phosphorus while the buffer and cladding layers have 2–3% of phosphorus. The
refractive index difference between the core and surroundings is controlled by the differ-
ence in phosphorus concentration. The core layer was 5 μm thickness. The cladding and
buffer layers are thicker. Channel waveguides were fabricated by first etching the core layer
into a ridge, followed by deposition of the SiO2 cladding on top. After deposition, the
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wafers were subjected to a 1273K 3 hour annealing to reduce the O-H absorption in the
1–4 μm wavelength range. Losses in these channel waveguides were found to be about
0.1 dB/cm. Silver ion-exchanged channel waveguides were made by immersing a masked
soda lime glass substrate into molten silver ions. The resulting lateral refractive index
change is∼ 0.09 at the surface. The refractive index distribution may be modified by post-
baking which relaxes the silver concentration gradient [14]. The single mode 2 μm wide
waveguides made by this process were found to have 2 dB/cm loss.

Low loss waveguides have also been made by a combination of depositing high
silica content glass on Si by flame hydrolysis and a reactive ion etching process. In this
case, SiO2 particles (a mixture of SiCl4-TiCl4 or SiCl4-GeCl4) for a buffer SiO2 layer,
followed by particles for a TiO2-SiO2 core layer, are first deposited on Si substrates by
flame hydrolysis deposition. After deposition, the Si wafers with porous glass layers
are heated to 1473–1573K for consolidation. The desired SiO2-TiO2 core pattern for the
channel waveguide is etched by reactive ion etching through a maskmade from a sputtered
Si material. Finally, a thick SiO2 over-cladding layer on top of the core is formed by
the same flame hydrolysis deposition process used to fabricate the buffer SiO2 layer. The
resultant channel waveguides have a relative index difference of 0.25–0.75 between the
core and the surrounding materials, with a propagation loss from 0.1–0.3 dB/cm [15].

Notes

1. In differential equations, homogeneous solutions are solutions of the equations plus the
boundary conditions without any source term.

2. Electric and magnetic fields tangential to the dielectric boundaries must be continuous.
3. Note that, according to Eq. (1.3), Hx is proportional to Ey while Hz is proportional to ∂Ey/∂x.

Therefore, continuity of ∂Ey/∂x is equivalent to the continuity of Hz which is parallel to the
boundaries at x = 0 and x = t.

4. The plane waves in the cladding and substrate excited by the plane waves of the guided-wave
mode have an imaginary propagation wave number in the x direction. Thus the guided wave
has no radiation loss. In a different structure where a very low index layer is sandwiched
between two high index media, there is also a solution of the plane waves reflected back and
forth with 2π round trip phase shift. In this case, there is loss, produced by transmitted plane
waves propagating away from the boundaries. These waves are not guided waves.

5. The modes are orthogonal only in lossless passive waveguides. When the media have absorp-
tion or amplification, modes may not be orthogonal [2].

6. In all lossless waveguides, radiation modes are orthogonal to guided-wave modes and each
other [2].

7. Similarly to TE modes, the continuity of electric fields is equivalent to the continuity of
Hy i:e: ε xð ÞExð Þ and 1

ε xð Þ ∂Hy=∂x i:e: Ezð Þ across the x boundaries.
8. Note that the TEmn channel waveguide mode is still polarized in the yz plane.
9. The dominant magnetic field of the TE planar waveguide mode transverse to the y boundaries

is Hx. However, Hx is proportional to Ey in Maxwell’s equations for a planar waveguide. Thus
Hx is continuous as long as Ey is continuous.

10. Note that Dy is normal to the y boundaries.
11. Thin layers with slight lattice mismatch may also be grown epitaxially with accompanying

strain. This technique may be useful to obtain material of a given bandgap with a composition
that is not exactly matched to the substrate. However, its thickness is limited because the stress
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creates defects. Too many defects may eventually cause material failure. However, using a step
graded InAlAs buffer layer on GaAs substrate, Lei Shen was able to modify the lattice
constants of the substrate. She has successfully grown InGaAs/InAlAs quantum well mod-
ulators on top of the buffer layer [11].
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2 Guided-wave interactions

The operation of many photonic devices is based on interactions between optical
guided waves. We have discussed the electromagnetic analysis of the modes in individual
planar and channel waveguides in Chapter 1. From that discussion, it is clear that solving
Maxwell’s equations rigorously for several coupledmodes or waveguides is very difficult.
Only approximate and numerical solutions are available. In this chapter, we will introduce
several approximate electromagnetic techniques for analyzing the interactions of guided
waves. These methods include the perturbation method and coupled mode analyses [1, 2].
Practical devices such as the grating filter, the directional coupler, the Y-branch coupler,
the Mach–Zehnder modulator, and the multimode interference coupler will be discussed
as specific examples. In addition, analysis of coupled waveguides as super modes of
the total structure in the effective index approximation is presented. This analysis will
allow us to view the interactions between coupled waveguides from another point of view.

In Chapter 1, we have shown that the guided-wave modes together with the radiation
modes comprise a complete set of modes. In guided-wave devices, radiation modes
are excited at any dielectric discontinuity. Rigorous modal analysis of propagation in a
waveguide with varying cross-section in the direction of propagation should involve, in
principle, all the modes. However, radiation modes usually fade away at some reasonable
distance from the discontinuity. They are important only when radiation loss must be
accounted for. Thus in the discussion of guided-wave interactions in this chapter,
radiation modes such as the substrate and air modes in waveguides (and the cladding
modes in fibers) are not included in our analysis. There are exceptions: for example,
the radiation modes are very important in the analysis of a prism coupler in which a
radiation beam excites a planar guided wave over a long interaction distance, or vice
versa [3]. The prism coupler will be discussed in Chapter 5.

There are three types of guided-wave interaction which are the basis of the operation
of most photonic devices.

(1) The adiabatic transition of guided-wave modes in waveguides (or fiber structures) in
which the cross-section of the waveguides at one longitudinal position is transformed
gradually to a different cross-section at another longitudinal position as the modes
propagate. An example of this type of interaction is the symmetrical Y-branch that
splits one channel waveguide into two identical channel waveguides. The combination
of two symmetrical Y-branches with two well separated channel waveguides inter-
connecting them constitutes the well known Mach–Zehnder interferometer.



(2) The phase matched interaction between guided-wave modes of two waveguides over
a specific interaction distance. A well known example of photonic devices based
on this type of interaction is the directional coupler in channel waveguides (or fibers).

(3) Interaction of guided-wave modes through periodic perturbation of the optical
waveguide. An example of this is the grating filter in channel waveguides (or optical
fibers).

2.1 Perturbation analysis

Perturbation analysis is used to analyze the propagation of the guided wave in an
optical waveguide as it is perturbed by another object in its vicinity.

2.1.1 Review of properties of modes in a waveguide

In any waveguide (or fiber) which has a transverse index variation independent of
z (i.e. independent of the position along its longitudinal direction), the Maxwell’s
equations can be written in another form. The electric and magnetic fields, E(x,y,z)
and H(x,y,z), propagating along the z axis, can be explicitly expressed in terms of the
longitudinal (Ez,Hz) and transverse (Et,Ht) fields as follows:

E ¼ Exix þ Eyiy
� �þ Eziz ¼ Et þ Eziz ¼ E x; yð Þe�jβ zejω t;

H ¼ Hxix þHyiy
� �þHziz ¼ Ht þHziz ¼ H x; yð Þe�jβ zejω t;

r ¼ ∂
∂ x

ix þ
∂
∂ y

iy

� �
þ ∂
∂ z

iz ¼ rt þ ∂
∂ z

iz;

rt � Et ¼ �jωμHziz; rt �Ht ¼ jωε x; yð ÞEziz;

rt � Eziz � jβiz � Et ¼ �jωμHt;

rt �Hziz � jβiz �Ht ¼ jωε x; yð ÞEt: (2:1)

Equation (2.1) implies that the transverse fields can be obtained directly from the
longitudinal fields, or vice versa, and either set specifies the field.

The nth guided-wave mode, given by en and hn, is the nth discrete eigenvalue solution
of E and H in the above vector wave equation that also satisfies the condition of the
continuity of tangential electric and magnetic fields across all boundaries. In view of the
properties of the modes discussed in Chapter 1, we expect the following properties of
the en and hn modes for any general waveguide with constant cross-section in z.

(1) The magnitude of the fields outside the higher index core or channel region
decays exponentially away from the high index region in lateral directions.

(2) The higher the order of the mode, the slower is the exponential decay rate.
(3) The effective index of the nth guided-wave mode neff,n (neff,n = βn/k) is less than the

material index of the core and more than the material indices of the cladding and the
substrate. Note that neff is larger for a lower order mode.
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(4) Most importantly, it can be shown from the theory of differential equations, that the
guided-wave modes of lossless waveguides are orthogonal to each other and to the
substrate or cladding modes. Mathematically this is expressed for channel guided-
wave modes as

ðð
S

et;m � h�t;n
� �

� izds ¼
ð1

�1

ð1
�1

et;m � h�t;n
� �

� izdxdy ¼ 0; for n 6¼ m; (2:2)

where the surface integral is carried out over the entire transverse cross-section with
integration limits extending to ±∞. The guided-wave modes and all the radiation modes
constitute a complete set of modes so that any field can be represented as a super-
position of the modes. Moreover, the channel guided-wave modes are normalized, i.e.

1

2
Re

ðð
S

et;n � h�t;n
� �

� izdS
2
4

3
5 ¼ 1: (2:3)

For planar guided-wave modes, the modes are also orthogonal and normalized in the x
variation as shown in Eq. (1.11) and (1.30). However, the integration in the y coordinate
is absent. The normalization means that the power carried by themth normalized planar
guided-wave mode is one watt per unit distance (i.e. meter) in the y direction.

2.1.2 The effect of perturbation

Consider two waveguide structures that have the cross-sectional ε variation shown in
Fig. 2.1(a) and Fig. 2.1(b). The original waveguide is shown in Fig. 2.1(a). The original
waveguide plus perturbation is shown in Fig. 2.1(b). Let E and H be the solutions of
Eq. (2.1) for the original waveguide with index profile ε(x,y) shown in Fig. 2.1(a).
Let E0 andH0 be the solutions of Eq. (2.1) for the waveguide structure with index profile
ε0(x,y) shown in Fig. 2.1(b). The two structures differ in the dielectric perturbation Δε
shown in Fig. 2.1(c), where Δε(x,y) = ε0(x,y) − ε(x,y). Let us assume that E, H and the

ε1 ε1

ε3

(a) (b) (c)

ε3

ε2 Δε = ε2 − ε3

Fig. 2.1. The index profile of a waveguide perturbed by Δε. (a) The permittivity variation, ε(x,y), of the
original unperturbed waveguide structure. (b) The permittivity variation, ε0(x,y), of the perturbed
waveguide. (c) The permittivity perturbation from the additional material, Δε, to the original
waveguide structure.
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guided-wave modes of the structure in Fig. 2.1(a) are already known. The guided-wave
modes of the waveguide in Fig. 2.1(b) are the perturbation of the guided-wave modes of
the structure in Fig. 2.1(a) due to the Δε. The perturbation analysis allows us to calculate
approximately the change of the E and H of the guided-wave modes without solving
Maxwell’s equations. Perturbation analysis is applicable as long as Δε is either small or
at a position reasonably far away from the waveguide so that the evanescent tail of the
mode for the original waveguide has decayed significantly.

Mathematically, from vector calculus and Eq. (2.1), we know

r � E� � H0 þ E 0 � H�½ � ¼ �jω ΔεE� � E0:

Let us apply volume integration to both sides of this equation over a cylindrical
volume, V,ððð

V

r � E� �H0 þ E0 �H�½ �dxdy dz ¼ �jω
ððð
V

ΔεE0 � E�dx dy dz:

The cylinder has flat circular ends parallel to the xy plane. It has an infinitely large radius
for the circular ends and a short length dz along the z axis. According to advanced
calculus, the volume integration on the left hand side of this equation can be replaced
by the surface integration of E� �H0 þ E0 �H�½ � on the cylinder. The contribution of
the surface integration over the cylindrical surface is zero because the guided-wave fields
E and E0 have already decayed to zero at the surface. For a sufficiently small dz,E� � E0 is
approximately a constant from z to z + dz. Therefore, we obtain:ðð

S

E� �H0 þ E0 �H�½ �jzþdz� E� �H0 þ E0 �H�½ �jz
� 	 � izdS

¼ �jω
ðð
S

ΔεE0 � E�dS

2
4

3
5dz:

Here S is the flat end surface of the cylinder oriented toward the +z direction. In other
wordsðð

S

∂
∂ z

E�
t �H0

t þ E0
t �H�

t

h i
� izdS ¼ �jω

ðð
S

Δε x; yð ÞE0 � E�dS: (2:4)

Mathematically, E0 and H0 can be represented by superposition of any set of
modes. They can be either the modes of the structure shown in Fig. 2.1(b) or the
modes of the structure shown in Fig. 2.1(a). Both sets of the modes, (et,j, ht,j) and
(e0tk,h0tk), form a complete orthogonal set. From the perturbation analysis point of view,
we are not interested in the exact fields or modes of the structure shown in Fig. 2.1 (b).We
only want to know how the fields for the waveguide in Fig. 2.1(a) are affected by Δε.

In Eq. (2.4), let us express any E0 and H0 (in and near the waveguide with the core ε1
and at any position z) in terms of the modes (etj, htj) as follows:
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E0
t x; y; zð Þ ¼

X
j

aj zð Þet;j x; yð Þe�jβjz;

H0
t x; y; zð Þ ¼

X
j

aj zð Þht;j x; yð Þe�jβjz: (2:5)

The radiation modes have been neglected in Eq. (2.5). In general, the coefficients
aj may be different at different z. The variation of the aj coefficient signifies how the
E0 and H0 field may vary as a function of z. Substituting Eq. (2.5) into Eq. (2.4), letting
Et = et,n and Ht = ht,n, and utilizing the orthogonality and normalization relation in
Eq. (2.2) and (2.3),1 we obtain

dan
dz

¼ �j
X
m

amCm;ne
þj βn�βmð Þz

Cm;n ¼ ω
4

ðð
S

Δε em � e�n

 �

dS: (2:6)

This is the basic result of the perturbation analysis [4]. It tells us how to find the aj
coefficients. Once we know the aj coefficients, we know E0 and H0 from Eq. (2.5) just for
the region near the waveguide that has the ε1 cross-section. We will apply this result to
different situations in the next sections. Please note that the results shown in Eq. (2.6) do
not tell us about the fields around the ε2 in Fig. 2.1(b).

2.1.3 A simple application of perturbation analysis – perturbation by a nearby dielectric

In order to demonstrate the power of the results shown in Eq. (2.6), let us find the change
in the propagation constant β0 of a forward propagating guided-wave mode caused by
the addition of another dielectric material with index ε0 in the vicinity of the original
waveguide. Let the original waveguide be located at x = 0 and y = 0. The dielectric
material is located at∞ > x ≥ L and ∞ > y > −∞, L > x dimension of the waveguide. Let us
apply this Δε to Eq. (2.6). If the original waveguide has only a single mode, e0, then we do
not need to carry out the summation in Eq. (2.6). We obtain

da0
dz

¼ �ja0
ω
4

ð1
L

ð1
�1

ε0 � ε1ð Þe0 � e�0dx dy
2
4

3
5 ¼ �jΔβ a0;

or

a0 ¼ A e�jΔβ z; Δβ ¼ ω
4

ε0 � εð Þ
ðþ1

t

ðþ1

�1
e0 � e�0 dx dy;

E0
t ¼ Ae0 x; yð Þej βþΔβð Þz: (2:7)

Clearly the β0 of the guided mode e0 is changed by the amount Δβ. Notice that the
perturbation analysis does not address the field distribution in the region x > L. The
perturbation analysis allows us to calculate Δβ of the original waveguide mode without
solving the differential equation.

Guided-wave interactions 43



2.2 Coupled mode analysis

2.2.1 Modes of two uncoupled parallel waveguides

Consider the two waveguides shown in Fig. 2.2(a). Let the distance of separation
D between the two waveguides, A and B, be very large at first. In that case, the modes
of A and B will not be affected by each other. The modes of the total structure, etn and
htn, are just the modes of individual waveguides, (eAn,hAn) and (eBn,hBn), or a linear
combination of them. The fields of the total structure can be expressed as the summation
of all the modes of the waveguides A and B

E ¼
X
n

aAneAne
�jβAnz þ aBneBne

�jβBnz

H ¼
X
n

aAnhAne
�jβAnz þ aBnhBne

�jβBnz: (2:8)

Here the “a” coefficients are independent of z. Because of the evanescent decay of the
fields, the overlap of the fields (eAn, hAn) with (eBn, hBn) is negligible, i.e.ðð

S

et;An � h�t;Bm
� �

�izdS ¼ 0: (2:9)

In other words, A and B modes can be considered as orthogonal to each other.

∞~D

ε1

ε1

ε2

ε3

ε2

(a) (b) (c) (d)

ε3

A

B

A

B

D

ε2
–
ε3

ε1 – ε3

SB

SA

Fig. 2.2. The mutual perturbation of two waveguides. (a) The permittivity profile of two well separated
waveguides, A and B, with core dielectric constants ε1 and ε2. (b) The permittivity profile of two
coupled waveguides, A and B, with core dielectric constants ε1 and ε2 separated by a moderate
distance D. (c) The perturbation of ε3 by ε2 of the waveguide B for modes in the waveguide A.
(d) The perturbation of ε3 by ε1 of the waveguide A for modes in the waveguide B.
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2.2.2 Analysis of two coupled waveguides, using modes of individual waveguides

When the two waveguides are closer, but not very close to each other, the perturbed
fields, E0 and H0, can again be expressed as a summation of (eAn and eBn) and (hAn
and hBn) as follows:

E0 ¼
X
n

aAn zð ÞeAne�jβAnz þ aBn zð ÞeBne�jβBnz

H0 ¼
X
n

aAn zð ÞhAne�jβAnz þ aBn zð ÞhBne�jβBnz; (2:10)

where the “a” coefficients are now functions of z. However, the effect of the perturbation
created by the finite separation distance D will be different for A and for B modes as
shown below.

Consider now the two waveguides, A and B, separated by a finite distance D as
shown in Fig. 2.2(b). For modes of waveguide A, the significant perturbation of the
variation of the permittivity from the structure shown in Fig. 2.2(a) is the increase
of permittivity from ε3 to ε2 at the position of the B waveguide as shown in Fig. 2.2(c).
For modes of waveguide B, the perturbation of the variation of the permittivity is shown
in Fig. 2.2(d) which is the increase of permittivity from ε3 to ε1 at the position of waveguide
A. Applying the result in Eq. (2.6) to waveguides A and B separately, we obtain

daAn

dz
¼ �j CAn;AnaAn þ

X
m

CBm;Ane
j βAn�βBmð ÞzaBm

" #
;

daBn
dz

¼ �j CBn;BnaBn þ
X
m

CAm;Bne
j βBn�βAmð ÞzaAm

" #
;

where;

CAn;An ¼ ω
4

ðð
SB

ε2 � ε3ð Þ eAn � e�An
� �

dS;

CBm;An ¼ ω
4

ðð
SB

ε2 � ε3ð Þ eBm � e�An
� �

dS;

CBn;Bn ¼ ω
4

ðð
SA

ε1 � ε3ð Þ eBn � e�Bn
� �

dS;

CAm;Bn ¼ ω
4

ðð
SA

ε1 � ε3ð Þ eAm � e�Bn
� �

dS; (2:11)

where the surface integration is carried out over the cylindrical flat end surfaces of
waveguides A and B in Fig. 2.2.

Equation (2.11) is the well-known coupled mode equation [5]. It is used extensively to
analyze many waveguide devices. There are a number of ways in which Eq. (2.11) may
be simplified.
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(1) Since there is evanescent decay of eAn before the field will reach SB,CAn,An is always
much smaller than CBm,An. Similar comments can be made for CBn,Bn. Thus CAn,An

andCBn,Bn are often neglected in Eq. (2.11) for a reasonably large separation distance
D, specially when the effect on aAn and aBn by the CBm,An and CAm,Bn is reasonably
large. The example given in Section 2.1.3 illustrates the case when CAn,An cannot be
neglected.

(2) When there is no em mode in the second waveguide, CBm,An or CAm,Bn will be zero,
then CAn,An is used to calculate the slight change of the propagation wave number of
the modes, as we have done in Section 2.1.3.

(3) When there is more than one mode in waveguides A and B, there should also be
more terms such as CAn,Aj and CBn,Bj in a more precise analysis. However, these C
coefficients are even smaller than CAn,An and CBn,Bn because of the orthogonality of
the unperturbed modes of the same waveguide.2 Therefore, those terms have not
been included in Eq. (2.11).

2.2.3 An example of coupled mode analysis – the grating reflection filter

Modes in different directions of propagation are independent solutions of the wave
equations. For example, the independent modes can be the forward and backward
propagating modes of the same order (or different orders) in a channel waveguide.
They can be planar guided-wave modes in different directions of propagation in a planar
waveguide. They can all be coupled by an appropriate Δε placed in the evanescent tail
region. In the case of a prism coupler, there could even be the coupling of a guided-wave
mode to substrate, air, or cladding modes (see Section 5.1.2.2). Equations (2.4) and (2.6)
are directly applicable in analyzing such interactions. However, the details will differ
for different applications. We will show in this section how the perturbation analysis
could be used to analyze the coupling of modes in different directions of propagation via
the grating reflection filter in an optical waveguide (or fiber).

Grating filters are very important devices in wavelength division multiplexed (WDM)
optical fiber communication networks. In such networks, signals are transmitted via
optical carriers that have slightly different wavelengths. The purpose of a filter is to select
a specific optical carrier (or a group of optical carriers within a specific band ofwavelength)
to direct it (or them) to a specific direction of propagation (e.g. reflection) [6].

A grating reflection filter utilizes a perturbation of the channel waveguide by a
periodic Δε to achieve the filtering function. The objectives of a grating filter are: (1)
high and uniform reflection of incident waves in a waveguide within the selected wave-
length band; (2) sharp reduction of reflectivity immediately outside the band; (3) high
contrast ratio of the intensity of reflected optical carriers inside and outside the band.

Let us consider a grating layer which has a cosine variation of dielectric constant along
the z direction, i.e. Δε(z), thickness d in the x direction and widthW in the y direction. It is
placed on top of a ridged channel waveguide that has a thickness t. An example of a
ridged channel waveguide was shown in Fig. 1.7(b). Let us assume that the ridged
waveguide has only a single mode.

Mathematically, let Δε ¼ Δε0 cos Kzð Þ rect 2 x�Hð Þ
d

� �
rect 2y

W


 �
. It has a periodicity

T = 2π/K in the z direction and a maximum change of dielectric constant Δε0. The Δε
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perturbation layer is centered at x = H, where H ≥ t+(d/2). It is a perturbation of the
cladding refractive index n3 of the channel waveguide. This mathematical expression is a
simplified Δε of a practical grating that normally has a Δε described by a rectangular
function of x and z. Such a rectangular grating will be described in Section 5.2.1.

Let the complex amplitude of the forward propagating guided-wave mode be af
and the amplitude of the backward propagating mode at the same wavelength be ab.
Then application of Eq. (2.4) to the field in the waveguide that has both the forward and
the backward propagating modes yields

Et
0 x; y; zð Þ ¼ af zð Þe�jβ0z þ ab zð Þeþjβ0z

� �
et; 0 x; yð Þ;

daf
dz

¼ �jCffaf � jCbfabe
�j2β0z;

dab
dz

¼ �jCbbab � jCfbafe
j2β0z;

Cff ¼ �Cbb ¼ �Cfb ¼ Cbf ¼ ω
4

ðHþd
2

H�d
2

ðW2
�W

2

Δε0 e0 � e�0
�� ��dxdy

2
64

3
75 1

2
ejKz þ e�jKz

 �� �

; (2:12)

where there is a minus sign on Cbb and Cfb. Because, in the normalization of the modes
shown in Eq. (2.3), the is is pointed toward the +z direction. The iz for the backward wave
is pointing toward the −z direction.

Clearly af and ab will only affect each other significantly along the z direction when
the driving terms on the right hand side of Eq. (2.12) have a slow z variation. Since the
perturbation has a cos (Kz) variation, the maximum coupling between af and ab will take
place when K = 2β0. This is known as the phase matching (or the Bragg) condition of
the forward and backward propagating waves. When the Bragg condition is satisfied, the
relationship between the βs and the K is illustrated in Fig. 2.3, where the β0s of the
forward and backward propagating modes with exp(± j β0 z) variations are represented by
vectors with magnitude β0 in the ±z directions. Since a cosine function is the sum of two

K of the forward propagating mode 

K of the backward propagating mode

K of the grating
↔

Fig. 2.3. Propagation wave vectors for forward and backward waves and the grating. The propagation wave
vectors of the forward and backward guided waves are shown as K vectors in the +z and –z
directions. The K

$
of the grating is shown as a bi-directional vector. Phase matching is achieved

when the magnitude of ∣K
$
∣ is the sum of the ∣K∣.
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exponential functions, K is represented as a bi-directional vector of magnitude K. If we
designate λg as the free space wavelength in which the maximum coupling takes place,
then the phase matching condition is satisfied when K is given by:

K ¼ 4π neff
λg

: (2:13)

Here neff is the effective index of the guided-wave mode. When K ffi 2β0, the terms
involving Cff and Cbb can be neglected in Eq. (2.12), in comparison with the terms
involving Cfb and Cbf.

For a reflection filter, we like to have large ab when any carrier frequency (i.e. β)
is within the desired wavelength band. Since β is inversely proportional to λ,
Eq. (2.12) will not be satisfied simultaneously for all the β within the desired band.
In order to analyze the grating properties as a function of wavelength for a given
K, we need to consider the solution of Eq. (2.12) under approximate phase matching
conditions. Let

2β0 � K ¼ δK : (2:14)

Under this condition, we obtain from Eq. (2.12),

daf
dz

¼ �j
Cg

2
abe

jδKz;

and

dab
dz

¼ þj
Cg

2
afe

�jδKz;

where;

Cg ¼ ω
4

ðHþd
2

H�d
2

ðW2
�W

2

Δε0 eoj j2dx dy: (2:15)

Equation (2.15) is known as the coupled mode equation between the forward and the
backward propagating modes. We know the solutions for such a differential equation are
the familiar exponential functions, eγ

þz and eγ
�z. Specifically, the solutions of Eq. (2.15)

for the forward and backward propagating waves are:

ab zð Þ ¼ A1e
γþz þ A2e

γ�z;

af zð Þ ¼ �j
2

Cg
A1γ

þe�γ�z þ A2γ
�e�γþz

h i
;

γþ ¼ �j
δK
2
þ Q; γ� ¼ �j

δK
2
� Q;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cg

2

� �2

� δK
2

� �2
s

: (2:16)

The A1 and A2 coefficients will be determined from boundary conditions at z = 0
and z = L.
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For a grating that begins at z = 0 and terminates at z = L, ab must be zero at z = L. Thus

A2 ¼ �A1e
2QL;

ab ¼ �A12e
QL�j

δK
2 zð Þ sinh Q L� zð Þ½ �;

af ¼ �jA1
4

Cg
eQLþj

δK
2 zð Þ j

δK
2

sinh Q L� zð Þð Þ þQ cosh Q L� zð Þð Þ
� �

: (2:17)

At z = 0, the ratio of the reflected power to the incident power is

ab z ¼ 0ð Þj j2
af z ¼ 0ð Þj j2 ¼

Cg

2

� �2

sinh2 QL

Q2 cosh2 QLþ ðδK 2= Þ2sinh2 QL
: (2:18)

At z = L, the ratio of the transmitted power in the forward propagating mode to the
incident power of the forward mode at z = 0 is

af z ¼ Lð Þj j2
af z ¼ 0ð Þj j2 ¼ Q2

Q2 cosh2 QLþ ðδK=2Þ2 sinh2 QL
: (2:19)

Since af z ¼ Lð Þj j2þ ab z ¼ 0ð Þj j2¼ af z ¼ 0ð Þj j2, the conservation of power of the inci-
dent, transmitted and reflectedwaves is verified. For a reflection filter, we want ab z ¼ 0ð Þ=j
af z ¼ 0ð Þj2 large within a desired band of wavelength, and small outside this band.

Notice that |ab(z = 0)| is larger for larger L and smaller δK/Cg. At λ = λg, δK is 0, and the
grating reflection is a maximum. The maximum possible value of ab z ¼ 0ð Þ=af z ¼ 0ð Þj j2
is 1. At δK =Cg, there will not be any reflected wave. Let Δλg be the wavelength deviation
from λg such that, when λ = λg ± Δλg, Q is 0. Then 2Δλg is the pass band of the filter,

Δλg ¼ � 4π Cg neff
K2

: (2:20)

In summary, K is used to control the center wavelength λg at which the transmission
of the forward propagating wave is blocked. Note that Cg is used to control the wavelength
width Δλg within which effective reflection occurs. The smaller the Cg, the narrower the
range of the transmission wavelength. For a given transmission range, L is used to control
the magnitudes of the reflected and the transmitted wave. These are useful parameters for
designing grating reflection filters.

2.2.4 An example of coupling of waveguides – the directional coupler

A directional coupler has an interaction region that has two parallel channel wave-
guides (or fibers). A prescribed fraction of power in waveguide A is transferred into
waveguide B within the interaction region and vice versa. A top view of a channel
waveguide directional coupler is illustrated in Fig. 2.4(a). Within the interaction region,
the waveguides are separated from each other by a distanceD, which is usually of the order
of the evanescent decay length. Let the length of the interaction section beW. Outside the
interaction region, the waveguides are well separated from each other without any further
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interaction. Clearly, Eq. (2.11) is directly applicable to the modes of the individual
waveguides in the interaction region.

Let eA and eB be the modes of the two waveguides (or fibers) that are interacting with
each other through their evanescent field in the interaction section, see Fig. 2.4(b). Let the
two waveguides have cores with cross-sections, SA and SB, and dielectric constants, εA and
εB. The cores are surrounded by a mediumwhich has dielectric constant ε3. Let the coupling
region begin at z=0 and end at z=Was shown in Fig. 2.4(a). Formathematical convenience,
the coupling is assumed to be uniform within this distance. Application of Eq. (2.11) yields

daA
dz

¼ �jCBAe
jΔβzaB zð Þ;

daB
dz

¼ �jCABe
�jΔβzaA zð Þ;

CAB ¼ ω
4

ðð
SA

εA � ε3ð Þ eA � e�B
� �

dS;

CBA ¼ ω
4

ðð
SB

εB � ε3ð Þ eB � e�A
� �

dS;

Δβ ¼ βA � βB: (2:21)

The interaction  region

z = 0 z  = W
D

Z

Y

(a)

eA eB eA + eB

(symmetric mode)

eA – eB

(anti-symmetric mode)

D

A

B
Z

Y

(b)

Fig. 2.4. Top view of a directional coupler and illustration of coupledmodes in the interaction region. (a) Top
view of two channel waveguides in a directional coupler. The interaction region is W long. The
separation distance of the two waveguides in the interaction region is D. (b) The field patterns of
symmetric and anti-symmetric super modes of the two coupled identical waveguides in the
interaction region. eA and eB are field patterns of the modes of the isolated waveguides A and B.
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Here, CAA and CBB have been neglected in anticipation of the large effects to be
produced by CAB and CBA at small Δβ. Solution of aA and aB will depend again on
initial conditions. Let the initial condition be aA = A and aB = 0 at z = 0. Then, we obtain

aA ¼ Ae jΔβ=2z

�
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� �

� j
Δβ=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBACAB þ Δβ=2ð Þ2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� ��
;

aB ¼ �jCABAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q e�jΔβ=2z sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� �
; (2:22)

for 0 ≤ z ≤W.

Similarly, if the boundary condition is aB = B and aA = 0 at z = 0, we obtain:

aA ¼ �jCBABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q eþjΔβ=2z sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� �
;

aB ¼ Be�jΔβ=2z

�
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� �

þj
Δβ=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBACAB þ Δβ=2ð Þ2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
z

� ��
; (2:23)

for 0 ≤ z ≤ W.
At z = W, the power transmitted from one waveguide to another and the power

remaining in the original waveguide are calculated from aB and aA. Note that, unless
Δβ = 0, there cannot be full transfer of power from A to B. Substantial transfer of
power from A to B (or vice versa) at z = W can take place only when Δβ is small. Note
that βA = βB is the phase matching condition for maximum transfer of power. Similarly to
all coupled mode interactions, the C coefficients, theW and the Δβ are used to control the
net power transfer from A to B and from B to A. If W is too large, then aA and aB will
exhibit oscillatory amplitude as z progresses.

Conventionally, the directional coupler has two identical channel waveguides.
In that case, CBA = CAB = C, and the ratio of |aB|

2/|aA|
2 is the power distribution between

the two waveguides. At z = 0, let there be an input power Iin in waveguide A, no input
power in waveguide B. Then the output power Iout in waveguide B after an interaction
distance W is given directly by Eq. (2.22). It is

Iout=Iin ¼ 1

C2 þ Δβ
2


 �2 sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Δβ

2

� �2
s

W

0
@

1
A: (2:24)
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A directional coupler modulator is a directional coupler with electro-optical control
of Δβ.3 Since the power transfer will be affected by Δβ, it is an intensity modulator.
Furthermore, the power transfer is dependent on the interaction length W.

The discussion presented in this section is also the approach used commonly in the
literature to describe the directional coupler [7, 8]. However, the directional coupler can
also be viewed as propagation of the super modes in the total two-waveguide structure in
the following section. Such an approach has not been described in most optics books.
The super mode analysis is very useful for understanding thoroughly devices such as
Y-branch couplers that cannot be analyzed by coupled mode analysis.

2.3 Super mode analysis

The operation of a number of devices such as the directional coupler was analyzed in the
previous section by perturbation analysis based on the mutual interactions of guided-
wave modes of two parallel waveguides via the evanescent field. There is an alternative
analysis of the operation of these devices based on the modal analysis of the total
waveguide structure, called the super modes.

What is a super mode analysis? For infinitely long parallel waveguides with uniform
cross-section and distance of separation, the modes of the total structure are called the
super modes. Each mode has a different effective index. When more than one super
mode is excited by the incident radiation, the total field pattern at different longitudinal
positions will be given by the summation of all the super modes. The super mode
analysis is an analysis of waveguide devices based on the interference pattern of super
modes. It is different from the coupled mode analysis because it does not assume that
the modes of the individual waveguides are just perturbed by their neighbors.
Therefore the super mode analysis is more accurate when the separation between
waveguides is very small, or even zero. Devices analyzed by super mode analysis also
shed different light in understanding the device operation. We will present in the
following subsections the super modes of two waveguides in more detail, followed
by analyses of a directional coupler, a Y-branch coupler and a Mach–Zehnder inter-
ferometer as examples. An example of the directional coupler has already been
discussed in Section 2.2.4 in terms of coupled mode analysis. It is interesting to
compare the results of two different analyses. The Y-branch coupler is an example
that cannot be analyzed by coupled mode analysis.

2.3.1 Super modes of two parallel waveguides

2.3.1.1 Super modes of two well separated waveguides
Consider the two waveguides shown in Fig. 2.2(a). Let the distance of separation
G between the two waveguides, A and B, be very large at first. In that case, the modes
of A and B will not be affected by each other. In other words, the fields of the total
structure can be expressed as the summation of all the modes of the waveguides A and B,
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E ¼
X
n

aAneAne
�jβAnz þ aBneBne

�jβBnz

H ¼
X
n

aAnhAne
�jβAnz þ aBnhBne

�jβBnz: (2:25)

Here the “a” coefficients are independent of z. Since there is evanescent decay of the
fields, the overlap of the fields (eAn, hAn) with (eBn, hBn) is negligible, i.e.:ðð

S

et;An � h�t;Bm
� �

�izdS ¼ 0:

In other words, modes of A and B are considered to be orthogonal to each other.
The super modes of the total structure, (esn ,hsn) and (ean ,han) are just linear combinations
of the modes of individual waveguides, (eAn,hAn) and (eBn,hBn), such that

esn ¼
1ffiffiffi
2

p eAn þ eBnð Þ and ean ¼
1ffiffiffi
2

p eAn � eBnð Þ: (2:26)

When waveguide A is identical with waveguide B, these modes are the symmetric and
anti-symmetric modes of the total structure. Note that although A and B are both single
mode waveguides, there are still two modes for the total structure, es0 and ea0.

2.3.1.2 Super modes of two coupled waveguides
When the distance of separation between the two waveguides is small, as shown in
Fig. 2.2(b), we can use the effective index approximation or numerical methods to find
the super modes. Consider two parallel channel waveguides, A and B, as depicted in
Fig. 2.5. Figure 2.5(a) shows the cross-sectional view in the xy plane, while Fig. 2.5(b)
shows the plan view in the yz plane. In this illustration, waveguide A has core thickness

G

WB

WA

tctBtA

X

Y

Z

y

Substrate

Waveguide

(a) (b)

neBneA

nec nec
nec

y = (G/2) + WB
y = –(G/2) – WA

y = –G/2 y = G/2

Waveguide BWaveguide A

Fig. 2.5. A two-channel-waveguide structure. Two parallel ridged waveguides with thicknesses, tA and
tB, and widths, WA and WB are separated by a gap G, the cladding has thickness tc. (a) Cross-
sectional view. (b) Top view.
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tA and width WA, while waveguide B has core thickness tB and width WB. The width of
the gap between two waveguides is G. The thickness of the cladding is tc. The substrate
index is nsub, while the index of the core of the waveguide and the cladding is nwg.
In accordance with the effective index method presented in Section 1.2.6, we first find
the effective indices of the planar waveguide modes for the two waveguides and the
cladding as we have done in Section 1.2.3.1. Let us assume that there is only a single TE0

mode in the x direction. Let the effective index for the planar mode in waveguide A be
neA; the effective index for the planar mode in waveguide B be neB; and the effective
index for the planar mode in the cladding regions be nec. The lateral variation of the super
mode is then found by solving the TM planar waveguide mode of Hx in the y direction,

∂2

∂z2
þ ∂2

∂y2
þ ω2ε yð Þμ

� �
Hx y; zð Þ ¼ 0;

ε yð Þ ¼ εon
2
ej; j ¼ A; B or c; (2:27)

∂
∂x

	 0 for planar TM mode approximation; (2:28)

Ey ¼ j

ωε yð Þ
∂Hx

∂z
; (2:29)

Ez ¼ �j

ωε yð Þ
∂Hx

∂y
; (2:30)

where the boundary conditions are the continuity of Hx and Ez at y = ±|G/2| and
y = ±|W+(G/2)|.

2.3.1.3 An example: super modes of two parallel identical waveguides
When waveguides A and B are identical in Fig. 2.5, we let neA = neB = n1,W =WA =WB,
and nec = n2. The super modes become the symmetric and anti-symmetric modes in the y
direction. In the effective index approximation, the Ey(x) of the planar waveguide modes
are given in Eq. (1.4), while the effective indices are obtained from p0 and q0 in Eq. (1.5).
The y variations of the super modes are:

(1) Symmetric mode:

Hx ¼ B cos h1
W

2

� �
þ �

� �
eþq2 yþ G

2þWð Þ½ �

β2 � q22 ¼ k2n22; for y 
 �G

2
�W (2:31a)

Hx ¼ B cos h1 yþ GþW

2

� �
� �

� �
;

for � G

2
þW

� �

 y 
 �G

2
(2:31b)
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Hx ¼ B0 e�q2y þ eþq2y½ �
β2 þ h21 ¼ k2n21; for � G

2

 y 
 þG

2

(2:31c)

Hx ¼ B cos h1 y� GþW

2

� �
þ �

� �
;

for
G

2

 y 
 G

2
þW (2:31d)

Hx ¼ B cos h1
W

2
þ �

� �
e�q2 y� G

2þWð Þ½ �;

for
G

2
þW 
 y (2:31e)

where B and B0 are related by

B0 e�q2
G
2 þ eþq2

G
2

h i
¼ B cos h1

W

2
� �

� �
: (2:32)

Note that �, q2 and h1 of the symmetric mode are obtained from the following
transcendental equations derived from the boundary conditions at y = ± |G/2| and at
y = ± |W + (G/2)|:

h1

n21
sin h1

W

2
þ �

� �
¼ q2

n22
cos h1

W

2
þ �

� �
; (2:33a)

B
h1

n21
sin h1

W

2
� �

� �
¼ B0 q2

n22
eþq2

G
2 � e�q2

G
2

h i
; (2:33b)

h21 þ q22 ¼ n1
2 � n22


 �
k2: (2:33c)

(2) Anti-symmetric mode:

Hx ¼ �B cos h1
W

2

� �
þ �

� �
eþq2 yþ G

2þWð Þ½ �

β2 � q22 ¼ n22; for y 
 �G

2
�W (2:34a)

Hx ¼ �B cos h1 yþ GþW

2

� �
� �

� �
;

for � G

2
þW

� �

 y 
 �G

2
(2:34b)

Hx ¼ B0 eþq2y � e�q2y½ �
β2 þ h21 ¼ n21 for � G

2

 y 
 þG

2
(2:34c)
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Hx ¼ B cos h1 y� GþW

2

� �
þ �

� �
;

for
G

2

 y 
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2
þW (2:34d)

Hx ¼ B cos h1
W

2
þ �

� �
e�q2 y� G

2þWð Þ½ �;

for
G

2
þW 
 y (2:34e)

where B and B0 are related by

B0 e�q2
G
2 � eþq2

G
2

h i
¼ �B cos h1

W

2
� �

� �
: (2:35)

Note that �, h1 and q2 of the anti-symmetric mode are solutions of the following
transcendental equations obtained from the boundary conditions:

h1

n21
sin

h1W

2
þ �

� �
¼ q2

n22
cos

h1W

2
þ �

� �
; (2:36a)

B0 q2
n22

e�q2
G
2 þ eþq2

G
2

h i
¼ B

h1

n21
sin h1

W

2
� �

� �
; (2:36b)

h21 þ q22 ¼ n21 � n22

 �

k2: (2:36c)

2.3.1.4 Super modes viewed from coupled mode analysis
It is interesting to note that when the separation between the two waveguides is
sufficiently large, coupled mode equations in Eq. (2.11) could be used to show that the
super modes of the total structure are just linear combinations of the modes of the
uncoupled waveguides.

Again, let the two waveguides in Fig. 2.2(b) be identical. This is the classical example
of a pair of coupled identical waveguides. Mathematically, in terms of Eq. (2.11), we
have Δβ = 0, εA = εB, and CAB = CBA = C. Then, the solution of Eq. (2.11) is

aA zð Þ ¼ 1

2
A� Bð ÞeþjCz þ 1

2
Aþ Bð Þe�jCz;

aB zð Þ ¼ 1

2
B� Að ÞeþjCz þ 1

2
Aþ Bð Þe�jCz;

C ¼ ω
4

ðð
SB

εA � ε3ð Þ eB � eA½ �dS: (2:37)

Values of A and B were determined from the initial condition at z = 0. Substituting this
result into Eq. (2.10), we obtain
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E0 ¼ 1ffiffiffi
2

p A� Bð Þ 1ffiffiffi
2

p eA � eBð Þ
� �

e�j β�Cð Þz þ 1ffiffiffi
2

p Aþ Bð Þ 1ffiffiffi
2

p eA þ eBð Þ
� �

e�j βþCð Þz: (2:38)

Therefore, any electric field of two identical waveguides can be considered as a
superposition of two super modes. The mode which consists of the symmetric com-
bination, es ¼ 1ffiffi

2
p eA þ eBð Þ, is a normalized symmetric eigenmode with βs = β +C. The

mode which consists of the anti-symmetric combination, ea ¼ 1ffiffi
2

p eA � eBð Þ, is an anti-
symmetric eigenmode with βa = β−C. In other words,4

E0 ¼ 1ffiffiffi
2

p A� Bð Þeae�jβaz þ 1ffiffiffi
2

p Aþ Bð Þese�jβsz

¼ Aaeae
�jβaz þ Asese

�jβsz: (2:39)

However, the es and ea used in the coupled mode analysis are just the superposition of the
unperturbed eA and eB. The modes, βa and βs, are wrong when the separation of the two
waveguides is small or when the perturbation is strong. In that case there will still be
symmetric and anti-symmetric super modes. The correct solution of the modes, βa and βs,
is given by the super mode analysis.

2.3.1.5 Propagation of super modes in two coupled waveguides with variable gap
When two parallel waveguides have a variable gap between them, the total structure can
be approximated by a series of local coupled waveguides connected in series. Within
each local section j, there are two parallel waveguides with a constant separation Gj.
When super modes are excited at the front end, they propagate from one local section to
another in cascade. If the discontinuity of the gap between two adjacent sections is small,
there will not be any significant change of the amplitude and phase of the super modes at
each junction. This is known as the adiabatic propagation of super modes. Let the length
of the jth local section be lj. Let there be two super modes with complex amplitude
(including phase), A1j and A2j at the input end and A1j

0 and A2j
0 at the output end. Let the

propagation wave numbers, i.e. neffks, of the super modes (corresponding to the sym-
metric and anti-symmetric modes of the case when waveguides are identical) in the jth
section be β1 and β2. Then the complex amplitudes are related by

A0
1j

A0
2j

����
���� ¼ e�jβ1lj 0

0 e�jβ2lj

����
���� � A1j

A2j

����
���� ¼ tj

�� �� � A1j

A2j

����
����; (2:40)

and A1j
0 = A1(j+1) and A2j

0 = A2(j+1). Therefore,

A1;out

A2;out

����
���� ¼ tNk k � tN�1k k � � tj

�� �� � � t2k k � t1k k � A1;in

A2;in

����
����

¼ e�jζ1 0

0 e�jζ2

�����
����� � A1;in

A2;in

����
����; (2:41)

where, ζ1 ¼
Pj¼N

j¼1

β1jlj and ζ2 ¼
Pj¼N

j¼1

β2jlj. Here N is the total number of local sections. A1,in

and A2,in are the input complex amplitudes to the 1st and 2nd super mode, and A1,out and
A2,out are the output complex amplitudes.
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2.3.2 Directional coupling, viewed as propagation of super modes

The symmetric mode, the anti-symmetric mode, and the modes of individual isolated
waveguides are illustrated in Fig. 2.4(b). The symmetric mode es is the lowest order super
mode of the entire structure with the highest effective index. The actual field at any
position z (e.g. z = 0) in the coupled waveguide depends on A and B. When A = B, only the
symmetric mode exists. When A = −B, only the anti-symmetric mode exists. When B = 0
(or A = 0), both the symmetric and the anti-symmetric modes exist with equal amplitude.
Since the symmetric and the anti-symmetric modes do not have the same phase velocity,
the relative phase between the two modes will oscillate as a function of distance of
propagation. Consequently the intensity of the total field in waveguides A and B will be a
function of z for 0 < z < W. Let A = 1 and B = 0 at z = 0. When CW = π/2 in Eq. (2.38),
A = 0 at z = W. We would have transferred all the power from A at z = 0 to B at z = W.
For z >W, the two waveguides are well separated from each other where C = 0 as shown
in Fig. 2.4(a). The symmetric and anti-symmetric modes for z < 0 and z > W have the
same β as the modes of the individual waveguides. The power in waveguide A and B in
those regions is independent of z.

2.3.3 Super modes of two coupled waveguides in general

The discussion in the previous section applies to any two parallel identical waveguides.
It can be generalized directly to two non-identical waveguides. In this case the wave-
guides A and B in Fig. 2.5(a) will have different indices, widths and thicknesses. The
analysis of planar waveguide modes in the x direction applies separately to the cladding
and the waveguides. The top view of the waveguides in Fig. 2.5(b) will have different neA
and neB as well as different widths for waveguides A and B. The effective index
approximation can be used again to calculate all the modes in the y direction.5

However, the first two modes will no longer be symmetric or anti-symmetric, they will
be just the zeroth and first order modes. There may even be higher order modes.
Note that for TM modes in the x direction, TE effective index analysis will be used in
the y direction.

2.3.4 Adiabatic branching and the super mode analysis of the Mach–Zehnder
interferometer

In the following subsections, a new concept, the adiabatic transition is introduced first.

2.3.4.1 The adiabatic transition
Consider the transition for a guided-wave mode propagating from waveguide C into
waveguide D as shown in Fig. 2.6(a), also known commonly as a waveguide horn. Let
waveguide C be a single mode waveguide and waveguide D be a multimode waveguide.
As the waveguide cross-section expands, the second mode emerges at z = z1 (i.e. there
exists a second mode in the electromagnetic solution of an infinitely long waveguide
that has the same transverse dielectric index variation as the cross-sectional index
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variation at z = z1). The third mode emerges at z = z2, etc. The transition section can be
approximated by many steps of local waveguides that have constant cross-section within
each step as shown in Fig. 2.6(b). At each junction of two adjacent steps, modal analysis
can be used to calculate the excitation of the modes in the new step by the modes in the
previous step. For adiabatic transition in the forward direction, the steps are so small that
only the specific order mode is excited in the next section by the same order mode in the
previous section. In terms of Eq. (1.51), the overlap integral of the lowest order mode in
the transmitted section to the lowest order mode in the incident section is approximately
one, while the overlap integrals of the higher order modes in the transmitted section to
the lowest order mode in the incident section are approximately 0. In other words, a
negligible amount of power is coupled into higher order modes and radiation modes.
Therefore, in a truly adiabatic transition, only the lowest order mode is excited in the
multimode output waveguide by the lowest order mode in the input section, and there is
no power loss. Conversion of power into higher order modes will occur when the
tapering is not sufficiently adiabatic or when there is scattering. The same conclusion
can be drawn for propagation of the lowest order mode in the reverse direction,
i.e. from D to C.

Let us now consider a reverse transition from z > z3 to z = 0 where the incident
field excited several modes at D. Whenever a higher order mode propagating in the –z
direction is excited at D, it will not be transmitted to C. The power in this higher
order mode will be transferred into the radiation modes at the z position where this
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(a) The transition from a single mode channel waveguide to
      a multimode channel waveguide

(b) The step approximation of the transition

Fig. 2.6. Top view of an adiabatic transition and its step approximation. (a) The transition from a single mode
channel waveguide to a multimode channel waveguide (i.e. a waveguide horn). (b) The step
approximation of the transition. Within each local section of the waveguide the dielectric constant
profile is independent of z. The 2nd mode exists for z > z1, the 3rd mode exists for z > z2, the 4th
mode exists for z > z3.
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mode is cut-off. Only the power in the lowest order mode at D will be transmitted to the
lowest order mode at C. An important practical significance of this result is that when a
LED is used to excite a single mode waveguide via a waveguide horn, the excitation
efficiency will be very low.

2.3.4.2 Super mode analysis of a symmetric Y-branch
(A) Y-branch of a single mode waveguide
A guided-wave component used frequently in fiber and channel waveguide devices is a
symmetric Y-branch. Its plan view in the yz plane is illustrated in Fig. 2.7(a). The single
mode channel waveguide at z = 0 is connected to two single mode channel waveguides.
The Y-branch is symmetric in the y direction with respect to the xz plane. The waveguides
at z > L0 have large separation distance and identical cross-sectional index profile in the y
direction. The index profile in the x direction is uniform for the entire device. In other
words, a single mode waveguide at z = 0 is split into two uncoupled identical single mode
waveguides at z >L0. The practical application of such a device is to split the forward
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Fig. 2.7. Top view of a symmetric Y-branch coupler. (a) A symmetric 3 dB coupler that splits the power in
the input single mode channel waveguide at C equally into two identical channel waveguides at
D. For a symmetric Y-branch, the modes of individual waveguides at D always have equal
amplitude and phase. (b) The step approximation of the Y-branch 3 dB coupler. (c) The reverse
symmetric coupler that combines the fields from two input waveguides into a single mode output
waveguide at C. The power in the symmetric super mode at D will be transmitted without loss into
the mode of the single mode waveguide at C. Power in the anti-symmetric super mode will be
radiated.
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propagating power in the original waveguide at C equally into two waveguides at D
where they are well separated from each other. It is an adiabatic transition when the angle
of the branching, θ, is sufficiently small such that the scattering and conversion loss from
z = 0 to z = L0 can be neglected. Ideally, a symmetric Y-branch should function like a 3dB
coupler from the input to both outputs.

The forward propagating Y-branch coupler can be analyzed as follows. In Fig. 2.7(a),
the input waveguide has a single TE0 mode at z < 0. The waveguide width in the y
direction begins to broaden at z > 0. At z > z0, the waveguide (or the split waveguides) has
two modes. At z > zt, there are two waveguides. From z = zt to zffi L0, since each isolated
waveguide has a single TE0 mode, eA and eB, the two super modes, are the symmetric
mode and the anti-symmetric mode, discussed in Sections 2.3.1.3 and 2.3.1.4. From the
symmetry point of view, no anti-symmetric mode is excited in an adiabatic transition.
At z > L0, the coupling between two waveguides is zero, thus the optical power is split
equally into waveguides A and B.

In the reverse situation shown in Fig. 2.7(c), when the incident field is the lowest order
symmetric mode of the double waveguides it is transmitted without loss to the output
waveguide as the TE0 mode. However, if the incident mode is an anti-symmetric mode, it
will continue to propagate as the anti-symmetric mode from z = −L0 to its cut-off point.
Let the cut-off point be z = −z0. At z just before −z0, the anti-symmetric mode will be very
close to cut-off, with a very long evanescent tail, and its neff is very close to the effective
index of cladding or substrate modes. As z approaches −z0, the anti-symmetric mode
begins to transfer its energy into the radiation mode in the cladding or the substrate.
Because of the small overlap integral between the anti-symmetric and the TE0 mode, the
TE0 mode will not be excited by the anti-symmetric mode. Similar comments can be
made for any other higher order mode excited at z < −L0. It will be coupled to radiation
modes at its cut-off point. In summary, only the power in the lowest order symmetric
mode will be transferred to the TE0 mode at the output.

(B) Y-branch of a double mode waveguide and the Y-branch reflector
The preceding conclusion will not necessarily apply if the waveguide at z =0 in Fig. 2.7(a)
has two modes. Let the two modes at z = 0 be symmetric and anti-symmetric modes. In the
case of a forward propagating Y-branch, if the incident radiation is just in the symmetric
mode, it will be transmitted as the symmetric mode at z = L0 as discussed in the preceding
paragraph. If the incident radiation is just in the anti-symmetric mode, it will be transmitted
as the anti-symmetric mode at z = L0. In either case, the incident power will still be split
equally into the two waveguides, A and B. However, for the anti-symmetric excitation,
there will be a π phase difference between the amplitudes of the modes in waveguides
A and B. Symmetric and anti-symmetric modes have different phase velocities, i.e. neff.
When both the symmetric and anti-symmetric mode are excited at z =0 the resultant field
at z = L0 will be very different depending on the phase velocity difference and the distance
of propagation. For equal amplitude of symmetric and anti-symmetric mode at z = 0,
the power split could vary from 100% in waveguide A and zero in waveguide B to 100%
in waveguide B and zero in waveguide A. The split depends on the index profiles,
the branching angle and the distance of propagation.
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In the reverse coupler shown in Fig. 2.7(c), when the waveguide at z = 0 has two
modes, radiation in both the symmetric and anti-symmetric mode will be transmitted
without loss to z = 0. However, the total field pattern at z = 0 will be very different
depending on the relative phase between them, which is the total cumulative phase
difference between the two modes from z = −L0 to z = 0.

If there are two Y-branch couplers connected back-to-back as shown in Fig. 2.8(a)
where the single waveguide is a two-mode waveguide, and if the input power at z = −L0 is
all in waveguide A, then equal amplitudes of symmetric and anti-symmetric mode are
excited at z = −L0. The output at z = L could then vary from 100% power in waveguide A
to 100% power in waveguide B, or any other split ratio, depending on the cumulative
phase difference between the symmetric and anti-symmetric mode from z = −L0 to z = L0.
Figure 2.8(b) shows a Y-branch coupler with the single two-mode waveguide terminated
at a mirror. It is simply a back-to-back Y-branch as shown in Fig. 2.8(a) folded over. Thus
its analysis is identical to the previous analysis. However, it has a new practical
significance. It implies that, for power incident into waveguide A, we can make a Y-
branch reflector with a controlled fraction of power reflected back into waveguides A and
B. Note that, from the point of view of super mode analysis, the two-mode waveguide is
just a directional coupler with zero gap of separation.

2.3.4.3 Wave propagation in an asymmetric Y-branch
Note that the analysis based on symmetric and anti-symmetric modes applies only to
symmetrical adiabatic Y-branches. When the branching angle is large in non-adiabatic
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Fig. 2.8. The Y-branch power splitter and reflector. (a) Two symmetric Y-branch couplers connected back-
to-back with a two-mode connecting waveguide. The ratio of the output power transmitted from the
input into waveguides A and B will depend on the relative phase of the symmetric and anti-
symmetric modes at z = +L0. (b) The symmetric Y-branch reflector with a two-mode waveguide.
The ratio of the reflected power in waveguides A and B will depend on the relative phase of the
reflected symmetric and anti-symmetric modes at z = −L0.
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transitions, mode conversion will occur at step junctions. When the branches are not
symmetrical, the local super modes could have very asymmetrical electromagnetic
field profiles. Conversion between super modes might occur at each step junction. The
output, i.e. the cumulative effect, will depend on initial conditions, the branching angle,
the index profile and the asymmetry of the Y-branch. An asymmetrical Y-branch
will behave sometimes as a power divider and sometimes as a mode splitter or converter
[9]. Numerical analysis based on modal analysis of the super modes in the step approx-
imation is required to find the answer.

2.3.4.4 The Mach–Zehnder interferometer
The Mach–Zehnder interferometer consists of two symmetric Y-branches connected by
two parallel channel waveguides which are well separated from each other so that they
are uncoupled. It is illustrated in Fig. 2.9. Similar devices can bemade from optical fibers.
The objective of the input forward Y-branch in the Mach–Zehnder interferometer is to
excite equally the individual modes of the two waveguides, i.e. the symmetric super
mode, immediately after the input Y-branch. The object of the connecting waveguides is
to provide a specific phase difference between the two super modes at the entrance of the
output reverse Y-branch coupler. Only the symmetric mode excited at the reverse output
coupler is transmitted as the output, while the anti-symmetric mode is radiated away as
the substrate radiation modes.

Let the input be a TE0 mode with amplitude A at z = 0. At the exit of the input
Y-branch at z = Lb, the amplitude of the symmetric mode is A exp(j�). Note that � is
the phase shift due to the propagation from z = 0 to z = Lb. In terms of the modes
of the individual waveguides, the amplitudes are 1ffiffi

2
p Aej�eA and 1ffiffi

2
p Aej�eB. The modes

of the two uncoupled connecting waveguides are eA and eB. When the two parallel
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Fig. 2.9. Top view of a channel waveguide Mach–Zehnder interferometer. Two isolated waveguides,
A and B, connect an input symmetrical Y-branch 3 dB coupler to an output reverse symmetrical
Y-branch coupler. Waveguides A and B are well separated from each other. Only the power in
the symmetric mode at the input of the output Y-branch coupler will be transmitted to the single
mode output waveguide.
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waveguides are identical and have equal length Lp, the input to the output Y-branch at
z = Lb + Lp is 1ffiffi

2
p Aej�e�jβALp eA þ eBð Þ. Such a symmetric mode will yield an output

Aej2�e�jβALp at z = 2Lb + Lp.
When the two parallel waveguides in the propagation section have slightly

different effective index or propagation wave number, βA and βB, the input to the output
Y-branch is

1ffiffiffi
2

p Aej�e�jβALp eA þ eBe
�j βB�βAð ÞLp

� �
: (2:42)

In other words, there is a mixture of symmetric mode, es, and anti-symmetric mode,
ea, at z = Lb + Lp. When Δβ Lp ¼ βB � βAð ÞLp ¼ �π or 2n� 1ð Þπ, where n is an
integer, then the input to the output Y-branch is an anti-symmetric mode. In this case, the
output TE0 mode at z = 2Lb + Lp will have zero amplitude. The power in the anti-
symmetric mode is transferred into the radiation modes. When the power transmitted to
the output is calculated based on the amplitude of the symmetric mode at z = Lb + Lp, we
obtain,

Iout
Iin

¼ 1

2
1þ cos Δβ Lp


 �� �
: (2:43)

Such a device is called a Mach–Zehnder interferometer.
The super mode analysis is important to understand the Mach–Zehnder modulator

in depth. For example, when the attenuation of one of the waveguides is very large,
e.g. the B waveguide, then the input to the output Y-branch is 1ffiffi

2
p Aej�e�jβALpeA ¼

A
2 es þ eað Þej�e�jβALp . Since only es will be transmitted, the amplitude of the TE0

mode at the output is A
2 e

2j�e�jβALp . In other words, only 1/4 of the input power is
transmitted, 3/4 of the input power is attenuated and radiated into the cladding or the
substrate.

2.4 Propagation in multimode waveguides and multimode interference
couplers

Interference of modes in a multimode waveguide has interesting and important applica-
tions. A multimode interference coupler consists of a section of multimode channel
waveguide, abruptly terminated at both ends. A number of access channel waveguides
(usually single mode) may be connected to it at the beginning and at the end. Such
devices are generally referred to as NxM multimode interference (MMI) couplers where
N and M are the number of input and output waveguides respectively [10].

Figure 2.10(a) illustrates a multimode interference coupler with two input and two
output access waveguides. The multimode section is shown here as a step-index ridge
waveguide with width W and length L. It is single mode in the depth direction x and
multimode (n ≥ 3) in the lateral direction y. The objective of such a multimode coupler is
to couple specific amounts of power from the input access waveguides into the output
access waveguides. Its operation is based on the interference of the propagating modes.
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Based on the interference pattern we will show that various distributions of the power in
the output access waveguides can be obtained at different z positions.

Let the multimode waveguide be a ridge waveguide as shown in Fig. 1.7(b). For the
planar waveguide mode (i.e. for very large W) in the core (i.e. in the ridge), it has just a
single TE mode in the x direction with an effective index ne1. The cladding region,
outside the ridge, also has a planar waveguide mode with an effective index ne2. ne1 > ne2.
Figure 2.10(b) illustrates the profile of the effective index of the planar TE0modes in the y
direction. The channel guided-wave modes in the core can be found by the effective
index method discussed in Section 1.2.6 or by other numerical methods. Figure 2.10(c)
illustrates the effective mode width,We, and the lateral field variation in the y direction for
the first few modes.

Before we discuss the interference pattern of the modes, let us consider first the
properties of individual modes. For well guided modes, it has been shown in the literature
[11] that the solution of transcendental Eq. (1.46) can be approximated by

tan hn hnk= kð Þ kWe

2

� �
ffi 1:

Here We is an effective width of the ridge, We > W. Note that We is usually taken to be
the effective width of the lowest order mode m = 0 in the x direction and n = 0 in the
y direction. In that case
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Fig. 2.10. A multimode interference coupler. (a) The top view of a 2 × 2 multimode interference coupler. The
multimode waveguide is L long and W wide. (b) The effective index profile of the multimode
waveguide. (c) The field patterns (as a function of y) of the lowest order modes of the multimode
section.
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hn ¼ nþ 1ð Þπ
We

;

and

β20n ¼ n2e1k
2 � h2n; β0n ffi ne1k � nþ 1ð Þ2πλ

4ne1W 2
e

: (2:44)

Equation (2.44) predicts that the propagation constants of the various lateral order modes
will have a quadratic dependence on n. By defining Lπ as the beat length (i.e. the
propagation length in which the phase difference of two modes is π) between the n = 0
and n = 1 modes, we obtain

Lπ ¼ π
β00 � β01

; β00 � β0n ¼ n nþ 2ð Þπ
3Lπ

: (2:45)

Let us now examine the total field of all the modes. As we have discussed in
Section 1.2.7, the y variation of any input field at z = 0, E0(y,z= 0), can be expressed as
a summation of the E0n modes. Thus

E0 y; 0ð Þ ¼
Xn¼N�1

n¼0

CnE0n yð Þ;

E0 y; zð Þ ¼
Xn¼N�1

n¼0

CnE0n yð Þe j
n nþ2ð Þπ
3Lπ

z½ �n o
e�jβ00z;

E0n yð Þ ¼ A sin hnyð Þ: (2:46)

Any input field at z = 0 will be repeated or mirrored at z = L, whenever

exp j
n nþ 2ð Þπ

3Lπ
L

� �
¼ 1; (2:47)

or

exp j
n nþ 2ð Þπ

3Lπ
L

� �
¼ �1ð Þn: (2:48)

When the condition in Eq. (2.47) is satisfied, the field at z = L is a direct replica of the
input field. When the condition in Eq. (2.48) is satisfied, the even modes will have the
same phase as the input, but the odd modes will have a negative phase, producing a
mirrored image of the input field. For the 2 × 2 coupler shown in Fig. 2.10(a), it means
that power in input Awill be transferred to output C when Eq. (2.47) is satisfied. Power in
input Awill be transferred to output D when Eq. (2.48) is satisfied.6

More extensive use of the mode interference pattern can be obtained when we analyze
it in detail in the followingmanner. Figure 2.10(c) shows that the y variation of the field of
a well guided multimode channel waveguide mode resembles the lowest order sine terms
of a Fourier series in y within the period from y = −We/2 to y = +We/2. However, there is
only a finite number of sine Fourier series terms in our modes. In order to recognize the
more complex interference patterns, let us now extend the expression for the modes to
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outside of the range −We/2 to We/2 in a periodic manner so that we can take advantage
of our knowledge of Fourier series. Since these modes have a half-cycle sine variation
within –We/2 < y <We/2, the extendedmode in –3We/2 < y < −We/2 and inWe/2 < y < 3We/2
should be anti-symmetric with respect to the mode in −We/2 < y <We/2. Similar extension
can be made beyond y > |3We/2|. Consider now the total extended field over all
y coordinates, including the periodic extension of the fields outside the multimode
waveguide region. The extended input field from all the input access waveguides
(periodically repeated outside the region from y = −We/2 toWe/2) could then be expressed
as a summation of these Fourier terms. Equation (2.46) shows that at a distance L the
relative phase among the Fourier terms is changed. Different multi-fold images can be
formed within the period, ranged from −We/2 toWe/2, by manipulating these phase terms.
As an example, let us consider L = 3pLπ/2 where p is an odd integer. Then

E0 y;
3pLπ

2

� �
¼

X
n even

CnE0n yð Þ þ
X
n odd

�jð ÞpCnE0n yð Þ

¼ 1þ �jð Þp
2

E0 y; 0ð Þ þ 1� �jð Þp
2

E0 �y; 0ð Þ: (2:49)

The last equation represents a pair of images of E0 in quadrature and with amplitudes
1=

ffiffiffi
2

p
, at distances z ¼ 3Lπ=2; 9Lπ=2 :::. The replicated, the mirrored, and the double

images of E0 at various z distances are illustrated in Fig. 2.11. Clearly, we have a 3 dB
power splitter from the input B into output waveguides, C and D, at z = 3Lπ/2 and at
z = 9Lπ/2. We have transferred the power from B to C (called the cross-state) when
z = 3Lπ, and from B to D (called the through-state) when z = 6Lπ. Note that a 2 × 2
InGaAsP MMI cross coupler has been made withW = 8 μm and L = 500 μm which gives
an excess loss of 0.4 to 0.7 dB and extinction ratio of 28 dB, and a 3 dB splitter with
L = 250 μm and imbalances between C and D well below 0.1 dB [10].
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Fig. 2.11. Images of the input field at various distances in a multimode interference coupler. The input
field is shown at z = 0. It can be decomposed into a summation of all the modes. Each mode has a
different phase velocity. The total field profile of the summation of these modes will yield a two-
fold image of the input at z = 1.5Lπ and at z = 4.5Lπ, a mirror single image at z = 3Lπ, and a direct
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The actual design of an MMI coupler must take into account the number of input and
output access waveguides, the number of modes in the multimode waveguide, the relative
phase and amplitude of the incident modes in the input access waveguides and the
position and width of access waveguides.

Notes

1. The orthogonality relation applies only to modes in lossless waveguides.
2. The orthogonality conditions are not applicable to the Cij integrals in Eq. (2.11) if εis are

spatially variant in the integral. Orthogonality has been proven only for lossless waveguides.
3. Instead of varying Δβ, C could also be varied in order to change Iout/Iin.
4. It has also been shown by coupled mode analysis [2] that when waveguides A and B are

not identical, there are still two super modes, the propagation wave numbers of which are:

β ¼ βAþβB
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δβ=2ð Þp 2
q

:

5. There may be more than one planar waveguide mode in the x direction. In that case effective
index analysis in the y direction must be used separately for each mode in the x direction. Note
that the effective index approximation is effective only when modes with similar Em(x) in the x
direction are used in the calculation of the y variation.

6. Note that a two-mode interference coupler is identical to a two-waveguide directional coupler
with zero gap of separation. Therefore it can also be analyzed by super mode analysis. This
concept can also be extended to an MMI coupler.
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3 Electro-optical effects

Electro-optical effects in materials are used to switch, modulate, detect, amplify, or
generate optical radiation in guided-wave devices.

The best known electro-optical effect is probably the amplification of optical radiation
by stimulated emission of radiation. In edge-emitting semiconductor lasers, the amplifi-
cation of the guided wave is obtained via current injection in a forward biased p–n
junction. In a laser oscillator, the waveguide is terminated by reflectors (or coupled to
a feedback grating) to form a resonant cavity. When amplification exceeds losses in
the cavity, oscillation is obtained [1, 2]. When end reflections (or feedback) are absent
and when there is net gain, a laser amplifier is obtained [3, 4]. The second well known
electro-optical effect is detection of optical radiation by photo-generation of carriers. For
optical radiation incident on a semiconductor with photon energy greater than the
semiconductor bandgap, electrical carriers are generated by the absorption of incident
radiation. In a semiconductor detector, photo-generated carriers in a reverse biased p–i–n
junction are collected and transmitted to the external circuit [5]. In waveguide photo-
detectors, the optical radiation is incident on to and absorbed in a waveguide so that the
absorption can be distributed over a distance, enabling the detector to absorb more
effectively the incident optical power over a longer distance while maintaining a large
operation bandwidth [6]. Discussion of carrier injection, stimulated emission and carrier
transport in semiconductor junctions requires extensive review of semiconductor device
physics. There are already many books on lasers and detectors [7–9]. Therefore, guided-
wave lasers and detectors will not be discussed here.

Other well known electro-optical effects used in guided-wave devices are the changes
of the absorptive or refractive properties of materials created by an applied electrical field
or acoustic strain. How they work, and how they are utilized in modulation or switching,
will be the focus of the discussion in this book.

Electro-optical effects affect the propagation of guided waves via the susceptibility of
the material χ. In general χ is complex,

χ ¼ χ0 � jχ00: (3:1)

In a lossless isotropic material and without any electro-optical effect, we have assumed in
Chapters 1 and 2 that

ε ¼ χoεo ¼ n2εo; or χ0o ¼ n2 and χ00o ¼ 0: (3:2)



When there is an electro-optical effect, there is a change of χ from χo to χeo , by Δχ. Δχ has
a real part Δχ0 and an imaginary part Δχ00,

Δχ ¼ Δχ0 � jΔχ00; (3:3)

ε ¼ χeoεo ¼ χo þ Δχð Þεo ¼ n2εo þ Δχð Þεo: (3:4)

In general, χeo = χeo0 − jχeo00 , thus the real and the imaginary part of χeo are

χ0eo ¼ n2 þ Δχ0 and χ00eo ¼ Δχ00: (3:5)

For plane waves propagating in the z direction in a material that has susceptibility χeo

E z; tð Þ ¼ Eej ωt�keozð Þ: (3:6)

Since

keo ¼ ω
ffiffiffiffiffiffiffiffiffiffi
μoεeo

p ffi ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μon2εo

p
1þ Δχ0

2n2

� �
� j

Δχ00

2n2

� �� �
; (3:7)

we obtain

Eðz; tÞ ¼ Eejωte�jω
ffiffiffiffiffiffiffiffiffiffi
μon2εo

p
z

h i
e�jω

ffiffiffiffiffiffiffiffiffiffi
μon2εo

p
Δχ0
2n2

ze�
ω
ffiffiffiffiffiffiffiffi
μon2εo

p
Δχ00

2n2
z; (3:8)

and

I zð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
μo=εeo

p E z; tð Þj j2ffi 2E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μo=n2εo

p
" #

e�
ω
ffiffiffiffiffiffiffiffi
μon2εo

p
Δχ00

n2
z: (3:9)

We note that

α
dI

dz
¼ �αI ; with α ¼ ω

ffiffiffiffiffiffiffiffiffi
μoεo

p
Δχ00

n
: (3:10)

Therefore a plane wave exhibits an additional electro-optical phase shift, ω
ffiffiffiffiffiffiffiffiffi
μoεo

p Δχ0
2n z,

after propagating a distance z. For positive Δχ00, the intensity I of the plane wave is

attenuated by exp � ω
ffiffiffiffiffiffiffi
μoεo

p
Δχ00

n z
� �

: For negative Δχ00, the intensity I is amplified.

For guided waves, the effect of electro-optical Δχ0 and Δχ00 in the material will create a
change in the effective index and attenuation of the guided wave discussed in Chapters 1
and 2.

3.1 The linear electro-optic Pockel’s effect

The most commonly used electro-optic effect is the linear Pockel’s effect, in which the
change of the refractive index of the material, or Δχ0, is linearly proportional to the applied
electric field. Waveguide materials that exhibit a linear electro-optic effect include single
crystals such as LiNbO3. Unfortunately, material such as LiNbO3 is anisotropic. Thus the
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discussion of the electro-optic effect must begin with a discussion of wave propagation in
an anisotropic medium.

In isotropic materials, the displacement vector D and the electric field vector E are
always parallel to each other, i.e. D ¼ εε0E. Note that ε is commonly known as the
dielectric constant of the material, and ε0 is the permittivity of free space. In anisotropic
materials, E is not generally parallel to D. The D and E are related to each other by a
dielectric tensor ε, D ¼ ε0ε � E, or

Dx

Dy

Dz

						
						 ¼ ε0

εx 0 0
0 εy 0
0 0 εz
















Ex

Ey

Ez

						
						: (3:11)

Here x, y and z, are known as the principal axes of the material. Only when the electric
field is polarized along one of the principal axes willD be parallel toE. The linear electro-
optic effect produces a change in ε linearly proportional to an applied electric field F,
thereby affecting the propagation of the guided wave.

A rigorous solution of guided-wave modes using vector Maxwell’s equations in an
anisotropic medium is very complex. A rigorous analysis of the change of the guided-
wave solutions due to a change of εwhich is affected by the applied electric field is even
more complex. Fortunately, the analysis of a low order TE or TM guided-wave mode
can be approximated by the scalar wave equation analysis of the dominant electric or
magnetic field discussed in Section 1.2.8. In the scalar wave approximation, the
dominant electric and magnetic fields are perpendicular to each other and perpendicular
to the direction of propagation of guided waves. The simplest analysis of propagation
of a wave withD andH perpendicular to the direction of propagation and perpendicular
to each other in an anisotropic medium is a plane wave analysis. Therefore, we will first
review the optical plane wave analysis in an anisotropic medium. We will then show
that simple scalar approximate solutions of guided-wave modes that have the dominant
electric field polarized in certain specific directions can be obtained quickly from plane
wave solutions.

3.1.1 The electro-optic effect in plane waves

From vector Maxwell’s equations, optical plane waves in an anisotropic homogeneous
lossless material, propagating along a given direction of propagation s with propagation

wave vector β ðβ ¼ βxix þ βyiy þ βziz ¼ nω
ffiffiffiffiffiffiffi
με0

p
sxix þ syiy þ sziz
� �Þ, will have an n

value satisfying the equation [10]

s2x
n2 � μεx

þ s2y

n2 � μεy
þ s2z
n2 � μεz

¼ 1

n2
: (3:12)

This is a quadratic equation for n. Therefore, for each direction of propagation there are
only two plane wave solutions. The D for these two plane waves must also satisfy the
relationships
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D2
x

εx
þD2

y

εy
þD2

z

εz
¼ E �D (3:13)

and

D � s ¼ Dxsx þDysy þDzsz ¼ 0: (3:14)

Let n2x ¼ εx; n2y ¼ εy and n2z ¼ εz. If we defineDx=
ffiffiffiffiffiffiffiffiffiffiffiffi
E �Dp ¼ x;Dy=

ffiffiffiffiffiffiffiffiffiffiffiffi
E �Dp ¼ y; and

Dz=
ffiffiffiffiffiffiffiffiffiffiffiffi
E �Dp ¼ z, we obtain

x2

n2x
þ y2

n2y
þ z2

n2z
¼ 1: (3:15)

Equation (3.15) has the mathematical form of an ellipsoid in x, y and z. It is known as
the index ellipsoid of the material. Mathematically, it has been shown that the
solution of Eq. (3.12), (3.14) and (3.15) can be obtained geometrically as follows.
Let us construct first an ellipsoid representing Eq. (3.15) in the x, y and z space.
Propagation direction s is represented by a vector from the origin in that direction.
Let us construct a plane passing through the origin and perpendicular to s, and the
plane intersects the ellipsoid. The intersection is an ellipse, and this ellipse has a
major and a minor axis. The length of each axis is the solution of n in Eq. (3.12) and
the direction of that axis is the direction of the solution of D in Eq. (3.14) and (3.15)
[1 (section 9), 10].

Consider LiNbO3 as an example. It is a uniaxial anisotropic crystal with nx = ny = no
and nz = ne. Note that no is known as the ordinary index and ne is known as the extra-
ordinary index. Figure 3.1 shows the index ellipsoid for LiNbO3. It is shown as an
ellipsoid with no as the axes in x and y and ne as the axis in z. The cross-section of the
ellipsoid in the xy plane is a circle with radius no. The s is shown as a vector in the xz plane
in this example. The intersection of the plane perpendicular to s and the index ellipsoid is
shown as the shaded ellipse. The major and minor axes are marked as De and Do. For s
in the xz plane, one of the axes is the y axis. For D polarized along the y axis, i.e. Do, n
will have the value no. This is the ordinary wave. The other axisDe is tilted in the xz plane.
For D polarized along the direction, De, nwill have a value between no and ne. The plane
wave polarized in this direction is known as an extra-ordinary wave. Since the index
ellipsoid is symmetric in x and y, the conclusion about the ordinary wave and extra-
ordinary wave applies when s is oriented in any direction. Note that when s is along
the x or y axis, there is a plane wave with D polarized along z, this plane wave has n = ne.
The second plane wave hasD polarized along y or x, this plane wave has n = no.When s is
polarized along z, both plane waves have n = no. The plane wave solutions are degen-
erate, meaning the propagation wave numbers of the two plane waves are identical, no
matter what direction the polarization of D in the xy plane.

When a RF1 or a DC electric field F is applied to the electro-optic material, it tilts the
index ellipsoid and changes the values of the ellipsoid along its axes. The new ellipsoid
will have new axes, x0, y0 and z0. Mathematically, it means the functional form of the
ellipsoid in terms of the crystalline principal axes, x, y, and z, will be changed from that
given in Eq. (3.12). The generalized equation for the index ellipsoid is [11]
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In the absence of F,

1
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¼ 1

n2y
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3
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n2
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¼ 1
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¼ 1

n2

� �
6

¼ 0;

and Eq. (3.16) is reduced to Eq. (3.15). The change in (1/n2)i with i = 1, 2, 3, 4, 5, or 6 is
Δ (1/n2)i. Note that Δ (1/n2)i are proportional to the applied electric field F 2 where
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Do
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z

y

x
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Fig. 3.1. The index ellipsoid and plane wave propagation in LiNbO3. The projection of the ellipsoid on
the xy plane is a circle with radius no. The projection of the ellipsoid on the yz plane is an ellipse
with major axis no along y and minor axis ne along z. The intersection of the plane (perpendicular to
s and through the origin) with the index ellipsoid is the shaded ellipse. Do is oriented along the
major axis of the shaded ellipse, and De is oriented along the minor axis of this ellipse.
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Matrix multiplication rules are used for Eq. (3.17). The 6 × 3 matrix with elements rij is
known as the electro-optic tensor of the material. For LiNbO3, the only non-vanishing
elements rij are

3

r33 ¼ 30:8� 10�12 m=V; r13 ¼ 8:6� 10�12 m=V; r22 ¼ 3:4� 10�12 m=V;

r42 ¼ 28� 10�12 m=V;

where

r13 ¼ r23; r22 ¼ �r12 ¼ �r61; r42 ¼ r51:

Substituting these tensor elements into Eq. (3.17) and (3.16), we obtain a new index
ellipsoid for a given F

1

n2o
� r22Fx þ r13Fz

� �
x2 þ 1

n2o
þ r22Fy þ r13Fz

� �
y2 þ 1

n2e
þ r33Fz

� �
z2

þ 2r42Fxð Þzxþ �2r22Fxð Þxy ¼ 1: (3:18)

In principle, in order to determine how plane waves propagate under an applied F we
need to find the new principal axes, x0, y0, and z0 and then determine the polarization D0

o,
D0
e and n0 values for the given s.
For any incident radiation that has arbitrary polarization, its displacement field D

needs to be considered as the sum of ordinary and extra-ordinary wave polarizations,Do

and De, at the input. Since these two plane waves have different phase velocities, their
sum will have variable total polarization as they propagate. The difference between the
propagation of plane waves with and without F represents the modulation produced by
the electro-optic effect in an unbounded medium.

3.1.2 Linear electro-optic effects in optical waveguides

Calculation of the electro-optic effect in guided-wave modes will be complex for a
general F and for a waveguide oriented in an arbitrary direction. Fortunately, most
commonly used optical waveguides are fabricated on a substrate along a specific
crystal orientation. For example, LiNbO3 waveguides are usually fabricated on x-cut
substrates or z-cut substrates with direction of propagation in the y direction of the
crystal. Figure 3.2 illustrates these two types of waveguide. Figure 3.2(a) shows a
diffused waveguide on z-cut LiNbO3. In order to take advantage of the large electro-
optic coefficient, r33, the F in the waveguide applied by the electrodes is predomi-
nantly in the z direction. For simplicity, let us assume for this discussion that F is
uniform in the region occupied by the guided-wave mode. Therefore, Fx = Fy ffi 0, and
the crystalline x, y, and z, axes are still the axes of the index ellipsoid with the applied
F. Plane waves propagating in the y direction with both D and E polarized in the
z direction will have n = ne0 , while plane waves with x polarization of D and E will
have n = no0 . In these two polarizations, D is parallel and proportional to E. According
to Eq. (3.18), the ne0 and no0 are
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n0e ¼
1

n2e
þ r33Fz

� ��1=2

ffi ne � 1

2
n3er33Fz;

n0o ¼ 1

n2o
þ r13Fz

� ��1=2

ffi no � 1

2
n3or13Fz:

(3:19)

For guided-wave modes propagating in the y direction, the TE modes have a dominant
optical electric field polarized in the x direction for waveguides on z-cut substrates
shown in Fig. 3.2(a), while the dominant optical electric fields in TM modes are
polarized in the z direction. Note that D and E are parallel to each other for the
dominant electric field in these two cases. Therefore, in the scalar approximation of
the wave equation and for F uniform across the waveguide, the effective index of the
TE modes can be calculated approximately by using no0 in Eq. (1.4) and (1.5), while
the effective index of TM modes can be calculated approximately by using ne0 in
Eq. (1.26) and (1.27). A diffused waveguide on x-cut substrate is shown in Fig. 3.2(b).
For waveguides along the y direction on x-cut substrates, the TE modes have the
dominant electric field polarized in the z direction, and the TM modes have the
dominant electric field polarized in the x direction. The F applied from the electrodes
is predominantly in the z direction. In this case, the effective index of TE modes for

RF electric field

LiNbO3 substrate

LiNbO3 substrate

Ground electrodes

Signal electrode

Diffused waveguide

(a)

(b)

x

x

z

z

y

y

Diffused waveguide

RF electric field

Signal electrode Ground electrodes

Fig. 3.2. Commonly used waveguide and electrode configurations in LiNbO3. (a) A diffused waveguide
on z-cut substrate. (b) A diffused waveguide on x-cut substrate. The direction of propagation is
along the y direction. The RF field produced by the electrodes is oriented along the z direction in the
core of the waveguide.

Electro-optical effects 75



uniform F can be calculated using ne0 , and the effective index of TM modes can be
calculated using no0 . In summary, in order to maximize the electro-optic effect, F is
applied in the z direction to TE modes in x-cut LiNbO3 and to TM modes in z-cut
LiNbO3. It is also clear that any change from these two cases, for example, an
addition of Fx in addition to Fz may require us to find the x0, y0, and z0 axes and
then find the new De and Do using Eq. (3.18). The analysis of the effective index of
the guided modes would be much more complex.

For polymer waveguides discussed in Section 1.3.3 shown in Fig. 1.9, the direction in
which the poling field is applied is usually defined as the z direction. The x and y axis
are then in the plane parallel to the substrate. Material properties are symmetric in the
x and y directions. The non-vanishing elements of the electro-optic tensor are r13 = r23,
r42 = r51, and r33 [12]. The largest electro-optic coefficient is r33. For example, it has
been shown theoretically that r33 = 3r13 [13]. Therefore, in order to maximize the
electro-optic effect, F is usually applied in the z direction from the electrodes illustrated
in Fig. 1.9. For such a configuration, the analysis of the electro-optic effect of TM
modes is identical to that of the z-cut LiNbO3 with F = Fiz and a different r33 coefficient.
On the other hand, the TE modes will not have an electro-optic effect. The value of the
r33 coefficient will depend on polymer material engineering. The reported r33 is much
larger than that of LiNbO3, making the polymers very attractive for electro-optic
applications. For example, r33 = 130 pm/V may be anticipated. In comparison, r33 =
30.8 pm/V in LiNbO3. The challenge for polymer waveguide design is to obtain a
material that has high glass temperature, low propagation loss and large electro-optic
coefficient simultaneously [14].

Note that GaAs, InP, or other materials grown epitaxially on them have r41 = r52 = r63,
all other rijs are zero. In such a material with cubic crystalline symmetry, nx = ny = nz = no.
Therefore the equation of the index ellipsoid for all III-V compound semiconductor
materials is [11]

x2 þ y2 þ z2

n2o
þ 2r41 Fxyzþ Fyzxþ Fzxy

� � ¼ 1: (3:20)

In GaAs, no = 3.6 and r41 = 1.1 × 10–12 m/V at the 0.9 μm wavelength, and no = 3.3 and
r= 1.43 × 10–12 m/V at the 1.15 μm wavelength. Similar values of no and r41 have been
reported in other III-V compound semiconductors (see Table 9.2 in [1]). As an example,
for a RF electric field F in the z direction, we obtain

x2 þ y2 þ z2

n2o
þ 2r41Fzxy ¼ 1: (3:21)

Let z00=z,
ffiffiffi
2

p
x00 ¼ xþ y and

ffiffiffi
2

p
y00 ¼ �xþ y, then the index ellipsoid in x00, y00 and

z00 is

1

n2o
þ r41Fz

� �
ðx00Þ2 þ 1

n2o
� r41Fz

� �
ðy00Þ2 þ 1

n2o
ðz00Þ2 ¼ 1: (3:22)
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For a plane wave propagating along the y00 axis, the major and minor axes of the
ellipse for D are the x00 and the z00 axes. Their n values are:
for the D//E//z00 axis

n ¼ no;

for the D//E//x00 axis

n ¼ no � 1

2
n3or41Fz:

For waveguides fabricated on z-cut substrates4 and oriented in the y00 direction as shown
in Fig. 3.3, the electric field is obtained by applying an electrical voltage across the i layer
in the reverse biased p–i–n junction. Since the intrinsic layer is usually very thin, the
electric field can be very high for a given voltage applied to the electrode. Let us assume
again that the electric field is uniform in the intrinsic electro-optic layer. The effective
indices of TE modes are found from Eq. (1.14) and (1.15), using no � 1

2 n
3
or41Fz as the

material index of the intrinsic layer. Note that TM modes have no electro-optic effect.
Since Eq. (3.20) is symmetric in x, y, and z, this result is applicable to x-cut or y-cut
samples with electric field applied in the x or y directions.

No matter what materials are used, nor the F the waveguide structure, the electro-
optic effect will create a Δneff of the guided-wave mode due to the ΔF. After propagating
a distance z, the Δneff produces a phase shift Δ� of the guided-wave mode where
Δ� ¼ Δneffω

ffiffiffiffiffiffiffiffiffi
μoεo

p
z.

x”

y”

z and z”

y

x

Ground electrode

i-semiconductor

Signal electrode

Ground electrode

p-semiconductor

n-semiconductor

Ridged channel waveguide

Substrate

Fig. 3.3. Examples of an electro-optic waveguide on III-V semiconductors. The ridged channel waveguide
on the z-cut substrate is oriented along the y00 direction which is 45° from both the x and the y axis.
The high index intrinsic core of the waveguide is sandwiched between a p-doped and an n-doped
semiconductor. A reverse bias is applied from the electrodes to the i layer through the p–i–n junction.
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3.2 Electro-absorption effects in semiconductors

In semiconductors, electrons and holes are the particles that undertake stimulated
emission and absorption. How such carriers are generated, transported and recombined
has been discussed extensively in the literature [15–18]. We note in particular that they
are in a periodic crystalline material. The energy levels of free electrons and holes are
distributed in bulk semiconductors within conduction and valence bands. Within the
conduction band and the valence band, each energy state has a wave function of the
form [18]

CC rð Þ ¼ uCk rð Þejk�r; (3:23)

where uCk rð Þ has the periodicity of the crystalline lattice. The energy of electrons in the
conduction band for a state with given k (known as the parabolic approximation of the
energy band structure) is

Ee kj jð Þ � EC ¼ �h2 kj j2
2me

: (3:24)

A similar expression is obtained for energy levels in the valence band,

Eh kj jð Þ � EV ¼ � �h2 kj j2
2mh

: (3:25)

Note that EC is the bottom of the conduction band and EV is the top of the valence band,
me and mh are respectively the effective mass of the electron and the hole. There are no
energy levels between the conduction and valence band in pure bulk semiconductors.
Note that EC – EV is known as the bandgap Egap of the material, Egap = EC – EV. There are
a large number of energy levels per unit energy range within each band, defined as the
density of states. The specific distribution of energy levels (i.e. the me, the mh and the
parabolic approximation) depends on the material.

The probability that a given energy level is occupied by electrons (i.e. whether the
level is empty or filled) depends on the carrier densities in the conduction band and in
the valence band of the specific sample. When a photon with energy hν is incident on the
material, it may excite an electron from the valence band into the conduction band by
stimulated absorption, i.e. creating simultaneously a hole in the valence band and an
electron in the conduction band. Stimulated absorption takes place directly for a specific
pair of energy levels only: (a) when the photon energy is equal to the difference of
the energy levels in the conduction and in the valence band, i.e. hν = Ee – Eh > EC – EV;
(b) when the energy level in the conduction band is empty; and (c) when the energy level
in the valence band is filled with an electron (i.e. this energy level is not filled by a hole).
The total probability of absorption at a given photon energy (i.e. wavelength) is the sum
of the absorptions for all the energy levels with Ee – Eh = hν. It is proportional to the
probability for stimulated transition between states, the density of states and the prob-
ability distribution of how the energy levels are occupied in the conduction band and the
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valence band. Since there are no energy levels between EC and EV, there is no direct
transition for absorption by photons that have energy less than EC – EV.

3.2.1 The Frantz–Keldysh electro-absorption effect in bulk semiconductors

The Frantz–Keldysh effect denotes the electric field dependent optical absorption in bulk
semiconductors [19, 20]. In basic semiconductor theory, when hν < EC – EV, the photon
energy is not large enough directly to excite an electron from the valence band to the
conduction band. However, experimental results and more detailed analyses show that
the absorption spectra at the band edge exhibit a complicated structure, often giving an
exponential tail in the long wavelength region, known as the Urbach’s rule. There are
many theories. The most convincing, attributed to Dow and Redfield, is that the expo-
nential absorption tail is caused by electric field induced ionization of the exciton
[21, 22]. This theory can be summarized as follows. Excitons are electron–hole pairs
that are bound by the Coulomb potential with respect to each other. Thus the photon
energy corresponding to the exciton transition will be slightly less than EC – EV. The
ionization of the exciton into free electrons and holes is caused by an electric microfield
of optical phonons, impurities and/or other mechanisms. Exciton transition and ioniza-
tion will be affected by the applied electric field, thereby creating the electro-absorption
effect. Although there is not a single theory that dominates, all the analyses showed a
dependence of the exponential tail on the applied electric field. Figure 3.4 shows the
absorption coefficient calculated according to Frantz for GaAs plotted as a function of the
photon wavelength for several values of the electric field [23].

Clearly, in Fig. 3.4, at a wavelength slightly below the wavelength corresponding to
the bandgap, the absorption coefficient is a function of the electric field. Therefore, the
output intensity of an optical wave propagating through the material will be reduced, i.e.
the χ00 will be increased, as the applied electric field is increased. This is the physical basis
of Frantz–Keldysh electro-absorption modulation of optical radiation intensity. In prin-
ciple, all III-V semiconductors have cubic symmetry, thus the Frantz–Keldysh effect
should be independent of the direction of the applied electric field. On the other hand,
since the probability of induced transition is proportional to the matrix element of electric
dipole connecting the upper and the lower energy states, the absorption coefficient α due
to the induced transition would depend on the polarization of the optical field.

Figure 3.5 shows the measured normalized transmitted radiation T as a function of
electrical voltage V in an InGaAsP channel waveguide, 135 μm long, at 1.318 μm
wavelength, and for the TE and TM modes of the waveguide [24]. In this case, the
radiation photon energy is detuned from the band edge by 65 meV. Note that T as a
function of V is clearly different for TE and TM polarizations. The normalized T is the
ratio of the actual transmission to the transmission at V = 0. The relation between T and the
change in absorption coefficient, i.e. Δα due to change in V, is shown in the figure where
L is the length of the waveguide and Γ is the optical filling factor. The quantity Γ is the
optical energy carried in the electro-absorption material as a fraction of the total optical
energy carried by the waveguide mode. It is the same (Γ = 0.66) for TE and for TM
polarization of the optical field. Therefore, data on Δα can be calculated directly from T.
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Note that V is the electrical voltage applied to the reverse biased p–i–n structure in
which the InGaAsP core constitutes the i layer. In other words, the applied electric field
is proportional to V. Welstand has calculated that the applied field ΔF in the i layer
corresponding to 4V bias is 120 kV/cm. The Δα that has been achieved for the TM
mode in this sample is approximately 200 cm−1 for a V variation from 3 to 5V.
Therefore, ΔFffi 60 kV/cm, and Δα

ΔF ffi 3:3� 10�3 V�1.
In order to use Frantz–Keldysh electro-absorption for an optical radiation at a given

wavelength, it is obvious that one should use a semiconductor material with a bandgap
energy, EC – EV, detuned slightly towards a slightly larger value from the photon energy
of the radiation. From Fig. 3.4, it is clear that a radiation wavelength detuned approxi-
mately from the bandgap by 0.1 μm (i.e. Δλdet = 0.1 μm) would be appropriate for GaAs.5

In the InGaAsP waveguide sample shown in Fig. 3.5, Δνdet is 64 meV. Since III-V
semiconductors could be grown epitaxially on and lattice matched to a GaAs or InP
substrate with a variety of bandgaps as shown in Fig. 1.8, it is straightforward to find a
material that will provide Frantz–Keldysh electro-absorption at wavelengths important
for optical fiber communication.

In all cases, electro-absorption creates a change of the transmittance, i.e. ΔT, of the
intensity of the guided wave after a propagation distance L, by changing the absorption
coefficient Δα, i.e. Δχ00, of the electro-absorption layer. However, the electro-absorption
layer covers only a fraction of the lateral size of the guided-wave mode. Thus
ΔT ¼ exp �αoGLð Þ exp �ΔαGLð Þ½ � where αo is the absorption coefficient before the appli-
cation of F, and Γ is the optical filling factor of the electro-absorption layer with respect to
this mode.

3.2.2 Electro-absorption in quantum wells (QW)

3.2.2.1 Energy levels in quantum wells
A quantum well double heterostructure in semiconductors consists of a thin layer of
material, called the well, that has a smaller bandgap, EΓ, sandwiched between materials
with a larger bandgap, Eg, called the barrier. These layers are typically III-V group
semiconductors with different compositions that are grown epitaxially on and lattice
matched to the GaAs or InP substrates as discussed in Section 1.3.2. The thickness of
the well LW is typically 50 to 150 Å. The barrier is just thick enough (e.g. 50 to 100 Å) to
isolate the wells. Figure 3.6(a) shows a typical one-dimensional potential diagram of
the conduction and valence bands as a function of thickness position x at zero applied
electric field. At the interface of the well and the barrier, there are discontinuities in
conduction band edge ΔEC and valence band edge ΔEV, ΔEC +ΔEV = Eg – EΓ. Quantum
mechanical calculations of energy states in such potential wells yield discrete energy
levels Ee for electrons in the conduction band and discrete energy levels Eh for holes in
the valence band [25]. In the example illustrated in Fig. 3.6, Ee1 is the lowest order
energy level for electrons in the conduction band. The energy state for this energy level
is illustrated as ψe. Some holes in the valence band have a greater mass, called heavy
holes, and some holes have a lesser hole mass, called light holes. The highest hole
energy in the valence band is usually for heavy holes. Therefore only Ehh1 and its
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energy state ψhh are illustrated in Fig. 3.6(a). Other higher electron levels and lower
hole levels such as Ee2 and Elh1 are not shown here. The energy states ψ demonstrate
that electrons and holes in a quantum well are confined in the x direction. A multiple
quantum well (MQW) structure consists simply of multiple periods of quantum wells
separated by barriers.

3.2.2.2 Exciton transitions and absorption
Energy levels of the electrons and holes in the thickness, x, direction are Ee and Eh. The
total energy of electrons and holes is the sum of their energy in the x direction, i.e. Ee +
Eh, and the energy of an electron–hole pair in the yz plane, Eyz. In order to understand
the energy of the electron–hole pair in the yz plane, let us consider first the energy of
electron–hole pairs in three dimensions in bulk semiconductors. When electron–hole
pairs are created by absorption of a photon, they are initially closely spaced. In bulk
semiconductors, such electron and hole pairs will experience mutual three-dimensional
Coulomb forces similar to those present in a hydrogen atom. The energy of such an
electron–hole pair is lower than the energy of free electrons and holes; this electron–
hole coordination gives rise to a set of energy levels (called exciton levels) just below
the bandgap. The exciton spectra in bulk materials have been directly observed only at
very low temperatures. These excitons are responsible for the Urbach tail and the
Frantz–Keldysh effect discussed in the preceding section. The situation is different in
quantum wells. In the y and z directions of the quantum well, electrons and holes are
also subject to periodic potentials and forces in a bulk crystal. However, the quantum
confinement in the x direction increases the binding energy of the exciton. In the limit of
a two-dimensional exciton, the binding energy is four times the binding energy of
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Fig. 3.6. Potential energy diagrams, energy levels and energy states in quantum wells. (a) At zero electric
field. (b) At a bias electric field. (The figure is taken from Fig. 6.6 of RF Photonic Technology
in Optical Fiber Links, ed. W. S.C. Chang, Cambridge University Press, 2002.)
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a three-dimensional exciton in bulk material. The binding energy of excitons in
quantum wells is typically less than 15 meV.

Exciton absorption in quantum wells has been observed directly at room temperatures
and under applied electric field. The stimulated transition of heavy hole excitons takes
place at photon energy just below Ee1 – Ehh1. The solid curve in Fig. 3.7 shows the TE
polarized absorption spectrum of an InAs0.4P0.6(93 Å thickness wells)/Ga0.13In0.87P(135 Å
thickness barriers) multiple quantum well (MQW) at zero applied electric field [26]. The
heavy hole exciton transition has a transition wavelength shown as λexo with a linewidth
δexo. For this sample, the half width half maximum δexo is 6 meV. A second transition with
a less distinct absorption peak due to a light hole may also be seen in this figure at λ =
1.250 μm. Since the photon energy corresponding to exciton transition is very close to
Ee –Eh, the photon energy (or wavelength) for exciton transition can be estimated in
practice by just calculating Ee – Eh. For example, Ee1 – Ehh1 can be calculated from EΓ,
ΔEC and ΔEV to estimate the wavelength for a heavy hole exciton, and Ee1 – Elh1 can be
calculated for a light hole exciton.

Note that the absorption coefficient α will be dependent on the polarization of the
electric field because the matrix element for any induced transition between an electron
and a hole is polarization dependent. For a plane optical wave propagating along the x
direction, its electric field is polarized in the yz plane; its absorption coefficient α will be
the same as a TE guided-wave mode propagating along any direction in the yz plane. For
TMmodes in a waveguide oriented in the y plane, its dominant electric field will be in the
x direction, and its α will be different.
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3.2.2.3 The quantum confined Stark effect (QCSE)
Under the application of an electric field in the x direction, the potential wells are tilted as
shown in Fig. 3.6(b). The quantum mechanical solution for the energy values in the
quantum well indicates usually a reduction in Ee1 – Ehh1. Therefore, the exciton absorp-
tion line at Eexo shifts normally toward longer wavelengths (i.e. absorption peak at
smaller photon energy), known as a red shift. Occasionally the shift in a specific potential
well configuration may be toward a shorter wavelength, known as a blue shift. This is the
quantum confined Stark effect (QCSE) [27–29]. Note also that as the potential wells are
tilted the wave functions of energy states for electrons and for holes are also shifted to the
opposite side of the quantum well as illustrated in Fig. 3.6(b). Since the amplitude of
the stimulated absorption between the two energy states depends on the matrix element of
the electric dipole connecting ψe and ψhh, the shift of energy state function to the opposite
side of the quantum well will produce a reduction of the exciton absorption as the electric
field is increased.

The QCSE, the reduction in the absorption coefficient at the exciton peak αm and
the broadening of the exciton line width δex are clearly demonstrated in Fig. 3.7 as the
applied voltage is increased. In this case, the electric voltage shown in the figure is
applied across a reversed biased p–i–n junction that has an i layer approximately 0.5 μm
thickness (containing 21 periods of quantum wells and barriers). Therefore the electric
field F in units of V/cm applied to the quantum well is approximately 2 × 104 times the
applied voltage. In this figure, the laser radiation at the wavelength λlaser is detuned from
the exciton peak at F = 0 by Δλdeto. As the QCSE increases, the absorption coefficient in
the MQW for the λlaser shown in Fig. 3.7 will first increase when Δλdet > 0 and then
decrease when Δλdet < 0 as F is increased. When the electric voltage is changed from 0.5
to 1.5 V, the change in absorption coefficient at λlaser shown in the figure isΔαffi 4000 cm.
Thus Δα/ΔF ffi 200 × 10–3 V−1.

Figure 3.8 shows the measured QCSE and the calculated shift of Ee1 – Ehh1 of the
sample used in Fig. 3.7. The discrepancy has been attributed to the variation of the
exciton binding energy as the applied electric field is varied. Figure 3.9 illustrates the Δα
at the different detuning energies and reverse biases that can be obtained in this sample.
Note the importance of small δexo and appropriate choice of detuning energy and reverse
bias in order to maximize Δα for a given ΔF.

Quantum well structures became a reality because epitaxy technology provided the
means for control of the layer thickness and smoothness to atomic level accuracy.
Quantum wells and barriers are always parallel to the surface of the substrate. In other
words, the thickness direction in the QW and the direction of the applied electric field
must be perpendicular to the substrate surface. The most effective way to apply such an
electric field is by fabricating a p–i–n structure parallel to the substrate surface where the
MQW constitutes the i layer. In a reverse biased p–i–n structure, the electrical field is
predominantly perpendicular to and focused in the i layer. This is the way in which α is
obtained in Fig. 3.7, 3.8, and 3.9. It is the α for the TE polarization. Note that the
measured α is the averaged absorption coefficient of the entire MQW layer. For a given
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electric field, the actual absorption takes place only in the well, not in the barrier.
Therefore Δα/ΔF is increased by using a thinner barrier layer. The minimum barrier
thickness will be governed by the decay of the energy state functions, ψe and ψh, in the
barrier. The conventional guideline is that the barriers be thick enough to ensure that the
energy states of adjacent wells will not significantly interact with each other.
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3.2.2.4 Characterizing the QW structures and the electro-absorption effect
Note that the sharper the exciton absorption line at F = 0 (i.e. the smaller the δexo ), the
smaller the required detuningΔλdet, and the larger the Δα/ΔF. Note that δexo is determined
in practice mostly by the quality of the QW layers, such as interface roughness between
the well and the barrier, the defect density or the uniformity. Ultimately, when the
material quality is excellent, δexo will be limited by the phonon broadening process.
The crystalline quality of the material, grown epitaxially, can be examined by double axis
high resolution X-ray diffraction techniques. High resolution transmission electron
microscopy can be used to examine any local atomic displacements at and around
interfaces. At low temperatures, phonon broadening will be negligible. The quality of
the material can be evaluated by observing the linewidth of photo-luminescence spectra
of the exciton transition at temperatures below 10K. Finally, the absorption coefficient
can be measured directly from the sample using plane waves propagating perpendicu-
larly to the QW layer in TE polarization and guided waves propagating in waveguides
parallel to the QW layers in TE or TM polarization.

3.2.2.5 Saturation of QW electro-absorption
Absorbed light generates electron–hole pairs in quantum wells. The separated electrons and
holes are swept out of the quantumwells by the bias electric field. Holes have a slower escape
rate because of the larger mass. Holes may be trapped in the quantum well heterostructure
interfaces due to the valence band discontinuity ΔEV. As the photo-generated holes accumu-
late, an opposing space charge electric field builds up and perturbs the applied electric field.
Under high optical power illumination, the photo-generated space charge densities may be
large enough to redistribute the electric field and to reduce the electro-absorption effect.
In other words, QWelectro-absorption is known to saturate at high optical power [30].

3.2.3 Comparison of Frantz–Keldysh and QW electro-absorption

The objective of all electro-absorption devices is to obtain the largest change in
waveguide absorption of the optical power using the smallest change in F. Clearly the
principal advantage of using quantum well structures for electro-absorption is that the
Δα/ΔF is much larger in quantum wells than in the bulk. However, the Frantz–Keldysh
effect can be obtained from an electric field applied in any direction, while QCSE in
quantum wells can be obtained only with electric field applied in the direction perpendi-
cular to the quantum well layers. It means that there are more options in the design of
electrodes with the Frantz–Keldysh effect. This may be significant when one considers
the electrical response of the devices. In addition, in order to avoid saturation, photo-
generated carriers created by absorption must be swept away by a bias electric field.
When there is band edge discontinuity between the well and the barrier, it is easier to
retain carriers, and thereby easier to saturate in quantum well structures. Since there is no
valence band discontinuity in bulk material, the Frantz–Keldysh electro-absorption effect
saturates at much higher optical power. Bulk materials can also be grown by the liquid
phase epitaxy (LPE) technique allowing us more alternatives in fabricating the wave-
guide, using techniques such as etching and regrowth.
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3.3 The electro-refraction effect

The χ0 and the χ00 of any passive material are related mathematically to each other through
the Kramers–Kronig relation

χ0 ωð Þ ¼ 1

π
P:V:

ðþ1

�1

χ00 ω0ð Þ
ω0 � ω

dω0;

χ00 ωð Þ ¼ � 1

π
P:V:

ðþ1

�1

χ0 ω0ð Þ
ω0 � ω

dω0; (3:26)

where P.V. stands for the Cauchy principal value of the integral that follows [31]. It is a

mathematical result based on a contour integration of
Ð
c

χ ω0ð Þ
ω0�ωdω

0 ¼ 0 in the lower half ω0

plane for any χ that does not have a pole in the lower half plane. In essence, whenever
there is a change in absorption spectra there is a corresponding change of the spectra of
the refractive index. Therefore, there are refractive index changes accompanying any
electro-absorption.

For guided waves propagating in the z direction, the electric and magnetic fields
have exp(jωt − jβz) variation. For guided waves with attenuation, the propagation
wave number β is also complex, β = β0 − jβ00, β0 = neff ω/c. Note that β00 is related to
the intensity absorption coefficient α by β00 = α/2k. Since Eq. (3.26) is derived mathe-
matically for any χ of a passive material that does not have a pole in the lower half plane
of complex ω0, the Kramers–Kronig relation applies equally well to β0 and β00 of any
passive guided-wave material structure. Thus

neff ¼ 1

π
P:V:

ðþ1

�1

αc=2ωð Þ
ω0 � ω

dω0;

αc
2ω

¼ � 1

π
P:V:

ðþ1

�1

neff
ω0 � ω

dω0: (3:27)

A relationship identical to Eq. (3.27) also exists between Δneff and Δα generated by
electro-absorption. In summary, in any material such as a multiple quantum well
structure, one can choose whether to use the Δneff or Δα to achieve the modulation. In
electro-absorption modulation, material structure and voltage bias are designed to yield
large Δα/ΔF at a specific optical wavelength. The accompanying Δneff causes a phase
shift of the guided wave that is the cause of chirping in electro-absorption modulators
(see Section 6.2.1.4). In electro-refraction modulators, material structure and voltage
bias are designed to achieve large Δneff/ΔF while the α is kept within certain limits at the
specific wavelength. Usually, the Δneff/ΔF volume that can be achieved in the electro-
refraction effect is much larger than those in the electro-optic effect. Comparing the
electro-refraction to the electro-optic effect, it is clear that there will always be some
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absorption in materials exhibiting the electro-refraction effect, while the electro-optic
effect creates no absorption.

Figure 3.10(a) shows the measured TE absorption α spectra at room temperature at
various reversed bias for a 30 period InAsP(well)/GaInP(barrier)MQW sample grown by
gas source MBE on an InP substrate [32]. The exciton peak of the material is at the
1.22 μmwavelength. A QCSE of 46 meV has been observed at 10V bias. Figure 3.10(b)
shows the Δn calculated by Eq. (3.27) as a function of wavelength at various bias
voltages. Since Δα was measured over only a finite spectral range, Δα was assumed to
be zero outside the measurement wavelength range in the calculation for Δn. A compar-
ison of Δn and Δα shows that Δn rolls off much slower than Δα at the longer wavelength
region. For this reason, if electro-refraction is used for modulation it will be more
effective to use a larger detuning energy (e.g. 60 meV), so that there will be a large
Δn/ΔFwhile the αwill be kept small at the operating wavelength. Small α is necessary so
that the attenuation of the optical intensity will be reasonable over the length of the
waveguide. In comparison, for electro-absorption modulation, the detuning energy needs
to be much smaller (e.g. 30 meV) in order to obtain a large Δα/ΔF. For this sample, Δn of
2 × 10–3 was predicted for a 10V change of bias voltage at the 1.32 μmwavelength while
a small α is maintained.

3.4 The acousto-optical effect

Mechanical strain in a solid causes a change in the index of refraction. This photo-elastic
effect is characterized by a photo-elastic tensor that relates the strain tensor to the optical
refractive indices. In the case of the acousto-optic effect, mechanical strain (i.e. the index
change) is produced by an acoustic wave. Usually optical waveguides are only a few μm
thick. Thus surface acoustic waves are used to create the acoustic-optic effect corre-
sponding to the thickness of a waveguide.
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Let there be an acoustic surface wave propagating in the y direction. The net effect of
the acoustic wave is to create a periodic traveling wave of Δε in that direction.
Mathematically, a simplified Δε caused by an acoustic wave is described as

Δε x; y; z; tð Þ ¼ Δε cos Ka � ρ�Ωt
� �

rect
t=2þ x

t=2

� �
rect

W=2� z

W=2

� �
;

Ka ¼ Kaiy; ρ ¼ yiy þ ziz; ε ¼ n2εo; Δε ¼ 2nΔnð Þεo: (3:28)

Here, εo is the free space electric permittivity; Ω is the frequency of the acoustic wave;
Ka is the vector representation of the propagation wave number for the acoustic wave;
W is the width of the acoustic wave in the z direction; t is the height of the acoustic
wave in the x direction; ρ is the coordinate vector; and Ω/Ka is the acoustic velocity vac.
The rectangular functions, rect(u),6 designate an acoustic wave confined to the layer from
x = 0 to x = −t and within a width W.

The change in the refractive index Δn is related to the strain by

Δ
1

n2

� �
¼ pS; (3:29)

where p is the photo-elastic constant; and S is the strain amplitude of the acoustic wave.
Note that Δn is related to the power of the acoustic wave, Pac [33], by

Δn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n6p2107Pac

2ρmv3actW

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2107Pac=2tW

p
: (3:30)

Here Pac is the total acoustic power in watts; vac is the acoustic velocity; and ρm is the
mass density of the material. In crystalline solids, p depends strongly on the orientation.
Usually, Δn that can be obtained from surface acoustic waves is small even for optimum
choice of material and orientation. For example, M2 = 6.9 × 10–18 s−3/g in LiNbO3.
A phase matched interaction between an optical guided wave and an acoustic wave,
like those discussed in Section 2.2.3 for interaction between a grating and a guided wave,
needs to be used to produce significant deflection or switching effect (see Sections 3.5.3
and 5.5, and [34]).

Surface acoustic waves are usually generated by fabricating a set of interdigital
electrodes on piezoelectric material, or by bonding an acoustic transducer to the
material [35]. Figure 3.11 is a schematic of a simple interdigital acoustic surface
wave transducer on a piezoelectric substrate. When a RF voltage is applied to the
electric port, a fringing electric field is excited between the fingers of the electrodes.
Consequently, the polarity of the electric field alternates from one electrode to the
next, exciting the acoustic wave via the piezoelectric effect. The width of the acoustic
wave generated is W. The electrode spacing is L. At the center acoustic frequency fo,
L ¼ Lac=2 ¼ vac=2fo where Λac is the acoustic wavelength at fo. Acoustic power
output versus frequency has the form

Pac fð Þ ¼ sin Nπ f � foð Þ=foð Þ
sin π f � foð Þ=foð Þ

� �2
: (3:31)
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Clearly there is only a finite bandwidth within which an acoustic wave can be efficiently
generated. There is also a conversion efficiency in which the RF electrical drive power
is converted into Pac. Thus, there is a bandwidth and an efficiency for generation of
the acoustic wave. More sophisticated design could provide trade-offs between effi-
ciency and bandwidth. In addition, the attenuation of acoustic waves would increase at
higher fo, thereby limiting the effective frequency range in which the acousto-optic effect
can be used for deflection and switching of optical guided waves [36].

3.5 A perturbation analysis of electro-optical effects

No matter how an electro-optical effect is created (by electro-optic, electro-absorption,
electro-refraction and acousto-optic effects), the propagation of the guided-wave mode
(i.e. the neff or attenuation) is affected by a change in susceptibility of the material. In the
beginning of this chapter we showed how the propagation of a plane wave is affected by a
uniform change of susceptibility. However, the electro-optic change of index is not uniform
over the entire guided wave. Perturbation technique analysis presented in Section 2.1 could
be used to evaluate conveniently the effect of the change in susceptibility in the electro-
optical active region on the propagation of the guided-wave mode. Three examples will be
presented in this section, perturbation of the effective index by Δχ0, attenuation of guided
wave by Δχ00, and scattering of a planar guided wave by an acoustic wave.

Let the nth unperturbed guided-wave mode be en with amplitude an. The electro-
optical effect creates a perturbation Δε only in the active region of the material structure

Δε ¼ Δχ0 � jΔχ00ð Þε0: (3:32)

W

Acoustic waves

Acoustic waves

Piezoelectric substrate

Electrodes

•• Electric port

L

Fig. 3.11. An interdigital electrode, surface acoustic wave transducer. (See ref. 35 for more details.)
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Following the notation used in Eq. (3.1) to (3.4), and for an active material with an
unperturbed refractive index n, the electro-optical effect creates a new ε

ε ¼ χo þ Δχð Þεo ¼ n2 þ Δχ0
� �

εo � jΔχ00εo: (3:33)

3.5.1 Perturbation of the effective index neff by Δχ 0

When the refractive index in the active region is changed from n to n + Δn,

Δχ0 ¼ 2nΔn: (3:34)

From Eq. (2.6),

dan
dz

¼ �janCn;n; (3:35)

Cn;n ¼ ω
4

ðð
active region

Δε en � e�n
� �

ds: (3:36)

Therefore, when Δε is independent of z

an ¼ Ae�jΔβz; Δβ ¼ βoΔneff ¼ ωnεo
2

ð
active region

Δn en � e�n
� �

ds: (3:37)

When the active region covers the entire guided-wave mode, Eq. (3.37) reduces to a
result like the one obtained in Eq. (3.8) for plane waves that experience a uniform electro-
optic effect. Since the en is normalized according to the modal analysis in Chapter 1 and
Eq. (2.3),

β
2ωμ

ðð
1
en � e�nds ¼ 1;

we obtain

Δβ ¼ Δneffβo ¼ βo
n

neff
GΔnav; (3:38)

where

G ¼

Ð Ð
active region

Δn en � e�n
� �

ds

Δnav
Ð Ð
1

en � e�nds
: (3:39)

Note that Δnav is the average Δn taking place in the active region, Γ is a filling factor for
the Δn created by the electro-optical effect. The electro-optical phase shift for a guided
wave propagating over a distance L is Δ� ¼ ΔneffβoL. Similar expressions can be
obtained for the TM modes.

Electro-optical effects 91



3.5.2 Attenuation of guided-wave mode by Δχ 00

When there is Δχ00 caused by electro-absorption, the effect of such perturbation on the
guided-wave mode could also be calculated by perturbation analysis. According to
Eq. (2.6), we have

dan
dz

¼ �Δαn
2

an;
Δαn
2

¼ ω
4
ε0

ðð
active region

Δχ00 en � e�n
� �

ds: (3:40)

The solution of Eq. (3.40) is

an ¼ Ae�
Δαn
2 z: (3:41)

Similarly, in view of the normalization of enwe can rearrange the expression for Δαn/2 of
TE modes into the form

Δαn
2

¼ GΔαav
2

¼ βo
2neff

GΔχ00av; G ¼

ÐÐ
active region

Δχ00 en � e�n
� �

ds

Δχ00av
Ð Ð
1

en � e�nds
; (3:42)

where Δχ00av is the average Δχ00 in the active region and Γ is a filling factor of Δχ00 in
the active region. This result reduces again to that in Eq. (3.10) when the active region
covers more than the guided-wave mode. Note that according to Eq. (3.42), the trans-
mitted intensity of the guided wave after propagating a distance L is T ¼
expð�αoLÞ exp �GΔαavLð Þ. Note that αo includes all the residual attenuation that existed
in the absence of the modulation electric field. Similar expressions can again be obtained
for TM modes.

3.5.3 The diffraction of a planar guided wave by acoustic surface waves

Let there be TE0 planar guided waves in different directions in the yz plane. Each guided
wave is designated by the angle θj that its direction of propagation makes with respect to
the z axis. For small θj, the electric field of the TE0 modes is still polarized in the y
direction. Therefore the total field of a summation of TE modes can be expressed
mathematically as

E0
yiy ffi

X
j

aje
�jn0kj cos θjze�jn0kj sin θjy

" #
E0;y xð Þejωjtiy

ffi
X
j

aje
�jβ

j
�ρ

" #
E0;y xð Þejωj tiy; (3:43)

where

β
j
¼ neffkj cos θjiz þ sin θjiy

� �
; and ρ ¼ ziz þ yiy:

92 Fundamentals of Guided-Wave Optoelectronic Devices



Note that E0,y(x) describes the x variation of the TE0 mode. Note that, in anticipation of
the traveling acoustic wave interaction which will couple incident and diffracted waves at
slightly different frequency, we have allowed the guided-wave modes to be at slightly
different frequencies.

Let us consider two specific planar TE0 guided-wave modes, propagating in the
directions +θ (for βd of the deflected wave) and −θ (for βi of the incident wave) with
respect to the z axis. The complex amplitudes for these modes are ad and ai. In this case,
the acoustic Δε couples the incident wave, ai, to the diffracted wave, ad, as shown in
Fig. 3.12. Equation (2.6), modified by the frequency variations of the incident and
deflected wave, is directly applicable to ai and ad. For the incident and the deflected
modes, we obtain

dai
dz

¼ �jadCae
þj β

i
�β

d

� �
�ρej ωd�ωið Þt ejKa�ρe�jΩt þ e�jKa�ρejΩt

h i
;

dad
dz

¼ �jaiCae
�j β

i
�β

d

� �
�ρej ωi�ωdð Þt ejKa�ρe�jΩt þ e�jKa�ρejΩt

h i
;

Ca ¼ ω
4
Δε0

ð0
�t

e0 � e�0
		 		dx: (3:44)

Clearly the phase matching condition for maximum interaction between ai and ad is

β
i
� β

d

� �
� ρ ¼ 	Ka � ρ or β

d
¼ β

i

 Ka: (3:45)

This is known as the Bragg condition for acousto-optical deflection. The phase matching
condition expressed in Eq. (3.45) is a vector relation in the yz plane. The phase matching

θi

θd

Acoustic transducer

Deflected βd

Incident βi

Ka

W

Film

Substrate

Acoustic wave

y

X

z

Ka

Ka

βd

βi

βi

βd

(a)

(b)

Fig. 3.12. Phase matching of incident and diffracted planar guided waves by surface acoustic waves. The
matching of the propagation wave vectors, βi and βd, of the incident and diffracted planar
guided waves in the θi and θd directions by the surface acoustic waves with Ka propagation
vector. The width of the acoustic wave isW, which is also the distance of acousto-optic interaction.
(a) ωd = ωi + Ω. (b) ωd = ωi − Ω.
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condition in the z direction is satisfied independent of the Ka value because of the
balanced +θ and −θ orientations of the βs, and ∣βi∣= ∣βd∣=neffk. Here, in anticipation
that ωi ffi ωd, we have taken the approximation ki = kd = k. Clearly, the magnitude of Ka

determines the angular relationship between βi and βd, i.e. the θ. In addition, according to
Eq. (3.44), the interaction is strong only when

ωd ¼ ωi 	 Ω: (3:46)

Since Ω (in RF frequency) << ωi and ωd (in optical frequencies), ki = kd = k. The case
using the upper sign in Eq. (3.45) is illustrated in inset (a) of Fig. 3.12. The case using the
lower signs in Eq. (3.45) is illustrated in inset (b). Notice that the diffracted wave is at a
slightly different optical frequency than the incident wave. Such a method is sometimes
used to shift the optical frequency slightly from ωi to ωd.

When the phase and frequency matching conditions are satisfied, the solution to
Eq. (3.44) is now a cos(Caz) or sin(Caz) variation. The exact form of the solution will
again depend on the boundary conditions. Let ai be the amplitude of the incident wave
and ad be the amplitude of the diffracted wave. The interaction by the acoustic wave
begins at z = 0 and ends at z = W. Thus, the boundary condition is “ai = A and ad = 0 at
z = 0”. For this boundary condition and for the case shown in Fig. 3.12, the solution of the
amplitude of the two planar guided waves is

ai zð Þ ¼ A cos Cazð Þ; ad zð Þ ¼ �jA sin Cazð Þ: (3:47)

The power diffraction efficiency, ∣ad(z = W)/ai(z = 0)∣2, and the power transmission
efficiency, ∣ai(z = W)/ai(z = 0)∣2, are

ad Wð Þ
ai 0ð Þ

				
				
2

¼ sin2 CaWð Þ; ai Wð Þ
ai 0ð Þ

				
				
2

¼ cos2 CaWð Þ;

ad Wð Þ
ai 0ð Þ

				
				
2

þ ai Wð Þ
ai 0ð Þ

				
				
2

� 1: (3:48)

For applications such as the acousto-optical switch or optical frequency shifter, maximum
diffraction efficiency is desired. In that case, we needW = π/2Ca. For devices which require
only low efficiency acousto-optical diffraction, the fraction of the optical power diffracted
into the new direction is linearly proportional to Δε0

2, which is often proportional to the
acoustic power at the frequencyΩ in the small signal approximation. UsuallyΩ (inMHz or
GHz) << ω, thus the small θ assumption used in Eq. (3.44) is justified.

Notes

1. RF is an abbreviation for radio frequency. It emphasizes that the applied electric field is a time
varying field at microwave frequencies.

2. In principle, F can be any electric field including the electric field at the optical frequencies.
However, the electric field of optical radiation is much smaller than the applied RF or DC
electric field. Therefore the electro-optic effect refers usually to the change of index ellipsoid by
the RF or DC electric field.
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3. The values of r coefficients given here are for the 0.6328 μm optical wavelength and a RF
electric field. Their values will vary slightly when the wavelength changes. However, the r
coefficients are generally the same for all visible light and infrared wavelengths, they are
independent of the frequency of the applied electric field, from DC to millimeter waves.

4. Typically semiconductor waveguides are fabricated by epitaxial growth of the core and cladding
layers that are parallel to the substrate surface (see Section 1.3.2). In order to apply the RF
electric field most effectively, the core layer is usually an i layer sandwiched between n and p
type semiconductor layers, and a reverse biased voltage is applied to the p–i–n junction. A
voltage is applied across the ground and the signal electrodes. Thus F is usually in the direction
of the cut of the sample. The channel waveguide is often formed by etching a ridge.

5. Optical radiation at 1 μm wavelength has a photon energy of 1.24 eV. Since � ¼ c=λ;
and Δλ λ ¼ Δ�=�;= Δλdet of 0.1 μm at λ ffi 1μm would correspond to a Δνdet of 50 meV.

6. Rect(u) is 1 for −1 < u < 1, and rect(u) is 0 for u ≥ 1 and u ≤ −1.
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4 Time dependence, bandwidth,
and electrical circuits

In order to create the electro-optical effects discussed in Chapter 3, a voltage is applied to
the electrodes of the devices through electrical circuits to produce the electrical field.Most of
the voltages that control the modulation, switching and signal processing functions are time
varying, their frequency spectra range fromMHz to tens of GHz. In analog applications, it is
the frequency response of the device that is important whereas in digital applications, it is the
time response of the device to a voltage (or current) pulse that is important. Pulsemodulators
are usually large signal devices. The time response of devices such as intensity modulation
in a Mach–Zehnder or electro-absorption modulator is usually non-linear with respect to
the magnitude of the applied voltage. Thus it is difficult to give a general discussion of the
time response of electro-optical devices. However, pulses can be represented as a summa-
tion of their frequency components. Section 4.2.6 discusses the relation between frequency
response and pulse propagation. Therefore, only the response of the devices to a time
harmonic small voltage signal at different frequencies will be discussed in this book.

There are two major causes for frequency variation of the small signal response of
electro-optical devices.

(1) The voltage across the device supplied by the electrical circuit is frequency depen-
dent. For example, when the electrical source has a time harmonic variation, the
fraction of the source voltage that appears across the device is frequency dependent.
There is an electrical bandwidth of the voltage produced by the circuit driving the
optoelectronic device.

(2) At high frequencies and for a given voltage applied to the input of the device, electrical
signals propagate at microwave velocities on electrodes that function like transmission
lines. The electrical field at any instant of time is not uniformly distributed over the
length of the device. At the same time, optical guided waves propagate with a phase
velocity of c/neff where c is the velocity of light in the free space. The modulation or
switching effect is created through the electro-optical interaction of a traveling micro-
wave with a traveling optical guided wave. There is a frequency dependence of the
traveling wave interaction.

In addition to the frequency response, the signal voltage needs to be applied to the
electrode from the RF source. It is important to do this efficiently. It is important to
minimize the electrical power needed to drive the device. Properties of electrical circuits
and propagation of electrical signals are reviewed in this chapter, followed by discussion
of the various guided-wave devices and their time response in the chapters that follow.



4.1 Low frequency properties of electro-optical devices

4.1.1 Low frequency representation of devices

At low electrical frequencies or in shorter devices, the time for electrical and optical
waves to propagate through the optoelectronic device is much shorter than the time
period of RF signals. Under these circumstances, the instantaneous electric field variation
seen by the optical guided wave has approximately a uniform time dependence through-
out the device.1 For example, at 100MHz, the free space wavelength of the RF signal is
3m. Within a small fraction of a period of the RF signal, the instantaneous spatial
electrical field distribution in any optoelectronic device up to centimeters long is
approximately the same as the electric field distribution at DC. Lumped electrical circuit
elements such as resistance, capacitance, and inductance are used to characterize the
electrical behavior (such as charging and discharging the electrode and current conduc-
tion and induction) of the device. Lumped circuit element representations of the device
are then used in circuit analysis to determine the voltage applied to the device.

Clearly, any calculation of electro-optical effects must be based fundamentally on
electromagnetic analysis. The lumped circuit elements such as capacitance, inductance
and resistance are used only to simplify the representation of the device to the external
circuits so that the voltage and current applied to the device can be found from circuit
analysis. We still need to know from electromagnetic analysis how to represent quantita-
tively the electro-optical devices by lumped circuit elements and how to calculate the
electric field.

Fundamentally, the microwave electric field E and magnetic field H in any device is
calculated from electromagnetic theory. We know that the time averaged stored electric
energy WE and stored magnetic energy WH for an electromagnetic field with ejωt time
dependence in any volume (Vol) are

WE ¼ 1

4
Re

ð
Vol

E �D�dv; (4:1)

WH ¼ 1

4
Re

ð
Vol

H � B�dv: (4:2)

Here, Re is the real part of the integral, and Vol is the volume of the device. If a
capacitance C and an inductance L are used to represent this device, its stored electric
energy is C|V|2/4, and its stored magnetic energy is L|I|2/4. Therefore

C ¼ 4WE V2
�

; (4:3)

L ¼ 4WH=I
2; (4:4)

where V is the voltage across the electrodes, and I is the current flowing in the electrodes.
In more complex devices, where different parts of the device are represented by different
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lumped circuit elements, the Vol is just the volume of that portion of the device which the
specific circuit element represents.

If there is time averaged power dissipation Pd due to the finite conductivity of the
electrodes, then the resistance R representing that effect can be obtained from

R ¼ 2Pd= Ij j2: (4:5)

Please note that there are different ways in which power is dissipated; I in Eq. (4.5) is the
current in the conductor, and Pd is the power dissipated in the conductor due to its finite
conductivity. In the case of a leakage current across the electrodes, a shunt conductanceG
is used to represent time averaged power dissipation across the junction,

G ¼ 2Pd= Vj j2: (4:6)

For a microwave electric field that has time harmonic variation ejωt,

Pd ¼ ωε0χ00

2

ð
Vol

E � E�dv: (4:7)

A similar expression for Pd can be obtained in terms of the magnetic field H.
In summary, from Eq. (4.1) to (4.7), the lumped elements, C, L and R (or G),

representing the optoelectronic devices can be found from WE, WH and Pd which, in
turn, can be measured or calculated from electromagnetic analysis.

For the electrodes of devices fabricated on insulators such as LiNbO3, polymers or
insulating semiconductors, the metal electrodes are considered as perfect conductors at
low frequencies with no power dissipation. The inductance L is small enough so that its
impedance,ωL, is commonly neglected at low frequencies. Their electrical characteristic
is represented simply by a capacitance C. Occasionally, a shunt conductance G is used to
represent power dissipation due to leakage current through the dielectrics. For semicon-
ductor devices utilizing a reverse biased p–i–n junction to create the electric field, there
may be contact resistance from the metal electrode to the i layer. We may then represent
the p–i–n junction by a capacitance C (representing the portion of the device which is just
the i layer) in series with a series contact resistance Rs (representing the portion of the
device between the i layer and the metal electrode). If there is significant leakage current
in the p–i–n junction, then there will be an additional junction conductance G in parallel
with C. The major difference between the two cases lies not in the representation of the
devices in electrical circuit analysis to determine V, but in calculating the electrical field
for a given Von the electrode. For example, in the case of devices using p–i–n junctions,
factors such as built-in-potential of the junction must be included in the calculation (see,
for example, [1]).

4.1.2 Frequency variation of voltage and power delivered to devices

For most RF sources (or RF amplifiers), their output is represented by an ideal
voltage source Vs in series with an internal resistance Rsource. Figure 4.1 shows the
electrical circuit of the source driving directly a modulator (or switch) in the lumped
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element representation, without any circuit element to match the modulator to the
source. Figure 4.1(a) represents the case of a LiNbO3 (or other insulating piezo-
electric) modulator, while Fig. 4.1(b) depicts the case of a semiconductor modulator
using a p–i–n junction to create the electric field. The voltage applied to the electro-
optical device is Vm.

In the circuit configuration shown in Fig. 4.1(a), the impedance of the capacitance,
1/jωCm, is very large for small ω so that Vm=Vs at very low frequencies. Note that
Vm drops as ω is increased, and Vmj j ¼ Vs=

ffiffiffi
2

p
when ωCm Rsource = 1. In Fig. 4.1(b),

since the leakage current through a reverse biased p–i–n junction is small, Rj >> Rsource.
In addition the contact resistance Rs is much smaller than the junction resistance
Rj. We obtain again Vm ≈ Vs at very low frequencies and Vmj j ffi Vs=

ffiffiffi
2

p
when

ωCmRsource = 1. Therefore the low-pass 3 dB bandwidth2 of this circuit configuration is
ω= 1/CmRsource.

In the circuits shown in Fig. 4.1, all or most of the power provided by Vs is absorbed in
the internal resistance Rsource. In order to maximize the RF power delivered to the
modulator, various circuit elements are used to match the modulator to the source. In
the simplest matching scheme, a matching resistor Rmatch is usually placed in parallel
with the modulator as shown in Fig. 4.2(a). At very low frequencies, the impedance of the
capacitance is so large that all the current passes through the matching resistor. Therefore
the power delivered to the modulator including the matching resistor is

V2
s

Rmatch

1

1þ Rsource
Rmatch

0
@

1
A

2

:

A maximum amount of RF power, V2
s=4Rmatch, is delivered when Rmatch =Rsource. At

higher frequencies, the RF power delivered to the modulator including the matching
resistor is

V2
s

4Rsource

�
ð1þ ðRmatchωCm=2Þ2Þ:

∼ ∼
Vs

Rsource

Cm
Vs

Rsource

Cm   

Vm

Vm

(a) (b)

Rj

Rs

Fig. 4.1. Electrical circuit of an electro-optical modulator driven directly by a voltage source. (a) Electro-
optic modulators on insulators such as LiNbO3 or polymer. (b) Electro-optic modulators using
reverse biased p–i–n junction.

100 Fundamentals of Guided-Wave Optoelectronic Devices



The RF power delivered is reduced by 3 dBwhenωCmRmatch = 2. Therefore, the low-pass
bandwidth of this circuit configuration is ω = 2/Rsource Cm. Usually, Rj >> Rmatch >> Rs,
therefore this result is also applicable approximately to the case of a p–i–n junction
semiconductor modulator.

As another example of how the bandwidth is affected by the circuit configuration,
consider the circuit shown in Fig. 4.2(b). In this case the impedance of the modulator is
matched to the source by circuits represented as an equivalent ideal transformer. The ratio
of the voltage and current transformed is V1/Vm= 1/Nm while i1 =Nmim. Then the RF
power delivered to the modulator including the matching resistor is

V2
s

Rmatch

R2
sourceN

2
m

� ��
1þ Rmatch

RsourceN2
m

� �2

þ ωCmRmatchð Þ2:

At Rmatch ¼ N2
mRsource, the maximum delivered RF power is

V2
s

4Rsource

�
1þ N2

mωCmRsource

2

� �
:

Clearly the 3 dB bandwidth of the maximum delivered power in this circuit is
ω ¼ 2=N 2

mCmRsource. Similar results are obtained for p–i–n junction semiconductor
modulators.

Other circuit configurations could be designed to give a resonance effect so that Vm is
very large at a given frequency over a narrow bandwidth, or a band pass effect so that Vm

is large over a specific bandwidth centered at a specific frequency. However, the basic
problem is that Cm is fairly large for most devices. It is difficult to match a large Cm to the
internal resistance of the source at high ω. In the three cases that we discussed above the
basic bandwidth limitation is caused by RsourceCm. It is called the RC time-constant
bandwidth limitation because, for any sudden change of Vs, the instantaneous voltages
and currents will decay or increase exponentially with a decay constant in the order of
RsourceCm.

Rmatch Rmatch

V1∼ ∼
Vs

Rsource Rsource

Cm
Vs

Cm

(a) (b)

Vm Vm

i1 im

Fig. 4.2. Matching of electro-optic modulators to the microwave source. (a) Modulator matched to the
source by a simple matching resistor. (b)Modulator matched to the source by circuits represented as
a transformer.
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4.2 High frequency properties of electro-optical devices

At high frequencies, the impedance of the inductance, ωL, which we neglected in
Section 4.1 is now significant. The finite conductance of the electrodes may no longer
be ignored. The voltage and current on the electrodes that provide the electric field for the
electro-optical effects are now both a function of distance of propagation and time. We
can no longer represent the device accurately by a single lumped circuit element of L, R
or/and C. However, within a short distance Δz along the electrode, the transit time for
electrical signals to propagate through dz is still much smaller than the time period of
signal variation. We could still represent the Δz segment of the device by L, R, and C.

4.2.1 Representation of the electrodes as a transmission line

Figure 4.3 shows typical circuit elements, with the voltages and the currents of an incre-
mental length of the electrode. Here ZL is the series impedance per unit length. It often
consists of an inductance L, representing the inductance of the electrodes, in series with a
resistanceRc, representing the conductor loss of the electrodes, for the currents flowing along
the electrodes. Note that ZLΔz is the series impedance between the input and the outputs of
the segment, where ZL=Rc + jωL and YC is the parallel admittance per unit length. Note that
YCΔz is the impedance of the segment in parallel with the input and output. It often consists of
a capacitanceC, representing the displacement current due to charging and discharging of the
electrodes across the dielectrics or the p–i–n junction, in parallel with a conductance G,

representing the leakage current across the electrodes, and soYC ¼ jωC þ 1

Rj
. Then L,C,Rc

and Rj can be calculated from E and H by Eq. (4.3) to (4.7), according to the physical
configuration of the device. Notice that, in these equations, Vol now consists of a cylinder
that includes the cross-section of the device and unit length along the electrodes. No matter
what the circuit elements represented in ZL and YC, we obtain

V zþ Δzð Þ � V zð Þ ¼ �I zð ÞZLΔz;

I zþ Δzð Þ � I zð Þ ¼ �V zð ÞYCΔz:

ZLΔz

I(z) I(z + Δz)

V(z) V(z + Δz)
YCΔz

Δz

Fig. 4.3. Impedance representation of a very short section of the electrodes at high frequencies.
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As Δz ! 0, we obtain

∂V
∂z

¼ �ZLI and
∂I
∂z

¼ �YCV: (4:8)

Equation (4.8) is the well known transmission line equation. It applies to the entire
transmission line. For a transmission of any given length, solutions of Eq. (4.8) determine
the V and I in the electrode. For an electrode and waveguide structure with ZL and YC
independent of z, the solution is

Vðz; tÞ ¼ V zð Þejωt ¼ Vfe�γz þ Vbeþγz
� �

ejωt; (4:9)

I z; tð Þ ¼ I zð Þejωt ¼ Ife�γz � Ibeþγz
� �

ejωt ¼ Vf

Zo
e�γz � Vb

Zo
eþγz

	 

ejωt; (4:10)

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ZLYC

p
¼ ZL

Zo
¼ αþ jβ: (4:11)

Clearly the solution, e�γzþjωt ¼ e�αze�j βz�ωtð Þ, is a propagating wave in the +z direction
with phase velocity ω/β, wavelength 2π/β, and amplitude attenuation, exp(−αz).
Similarly, the solution, eþγzþjωt ¼ eαz ej βzþωtð Þ, is a propagating wave in the –z direction
with phase velocity, ω/β, and amplitude attenuation, exp(αz). Note that Vf and Vb are
determined by the initial conditions at the input and output of the uniform transmission
line. Also note that If is related to Vf by If ¼ Vf=Zo while Ib is related to Vb by
Ib ¼ Vb=Zo, where Zo is known as the characteristic impedance of the transmission
line, and α is the propagation loss coefficient, and β is the propagation constant for both
the forward and backward waves. The quantity ω/β is the phase velocity.

When the electromagnetic field produced by the applied voltage is transverse electric
and magnetic (TEM), the voltage V is related to the microwave E by

V ¼
ðsignal electrode

ground electrode

E � ds:

For other electrical waveguide configurations V is still proportional to E, and VI repre-
sents the electrical power transmitted through the transmission line [2]. It is important
to note that TEM electric field is assumed in most transmission line analysis in the
literature.

Electrodes in electro-optical devices are often designed in the form of popular micro-
wave transmission lines such as the micro-strip line, the coplanar waveguide, etc. The ZL
and YC of these lines have been discussed in microwave literature [2]. A discussion of the
field distribution and circuit representation of some transmission lines commonly used in
optoelectronic devices is given by Chung [3]. There are also many computer simulation
programs that can be used to calculate the transmission line field distribution and
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parameters from the configuration of the device [4]. Naturally, transmission line equa-
tions and the circuit parameters can also be derived directly from electromagnetic
analysis [2].

4.2.2 Propagation of electrical voltages and currents

As an example to demonstrate the significance of initial conditions, let us consider a
transmission of length l, from z=− l to z= 0. Let it be terminated at z= 0 with an
impedance Zt. Then the initial condition at z = 0 is

V z ¼ 0ð Þ ¼ ZtI z ¼ 0ð Þ: (4:12)

Therefore,

V zð Þ ¼ V z ¼ 0ð Þ
2

Zt þ Zoð Þe�γz þ Zt � Zoð Þeþγz½ �; (4:13)

I zð Þ ¼ V z ¼ 0ð Þ
2Zo

Zt þ Zoð Þe�γz � Zt � Zoð Þeþγz½ �: (4:14)

When Zt = Zo, there is no backward propagating wave, i.e. no reflection at z= 0. The
transmission line is said to be match terminated. In a matched transmission line,
VðzÞ ¼ ZtI zð Þ at all positions of z. On the other hand, for Zt >> Zo or Zt << Zo, the
forward and backward propagation waves will have nearly equal amplitudes,
Vf ¼ I z ¼ 0ð Þ=2ð ÞZt ¼ Vb or Vf ¼ I z ¼ 0ð Þ=2ð ÞZo ¼ �Vb. In practice, Zt may be
mismatched somewhat from Zo. It will then have partially reflected waves. Usually a
RF source with internal impedance Zsource is also connected to the transmission line on
the input end at z=− l . When Zsource is matched to Zo, there will be no reflections at the
source end. When Zsource 6¼ Zo 6¼ Zt there are multiple forward and backward propa-
gating waves.

For an ideal lossless transmission line discussed in most textbooks, ZL = jωL
and YC = jωC. Then α = 0 and Zo is a real constant independent of ω, Zo ¼ffiffiffiffiffiffiffiffiffiffi

L=C
p

and ω=β ¼ phase velocity ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. In a matched lossless ideal transmission

line, V (z= 0) = Zo I (z= 0). The electro-optical device can now be represented to the
driving circuit as a resistor at the input instead of the capacitor shown in Fig. 4.1(a). The
significance of this substitution is that when Zo = Zt =Rsource, the matching of the device
impedance to the source impedance is good at all frequencies. There is no RC time
constant limitation of the bandwidth in the circuit.

In the above discussions, we have used circuit elements L and Rc in ZL, and C and Rj in
YC. This is the most common case. There may be other elements such as the contact
resistance shown in Fig. 4.1(b). However, Eq. (4.8) to (4.14) are also valid for more
complex ZL and YC. When ZL and YC vary with z, the transmission line can be considered
as segments of transmission that have a constant ZL and YC within each segment. The
initial conditions at the junctions of each segment determine the relation between the
forward and backward waves. Often, there may also be partial reflections caused by
discontinuities of the characteristic impedances of the different segments of the
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transmission line or by other devices connected to the transmission line at different
locations. These discontinuities will produce a complex frequency response of the
transmission line.

If we define Γ as the reflection coefficient of Vb from Vf, i.e.

�r ¼ Vb=Vf; (4:15)

then Eq. (4.9) and (4.10) can be written for any V z ¼ 0ð Þ=I z ¼ 0ð Þ as
V zð Þ ¼ Vf z ¼ 0ð Þ e�γz þ �r z ¼ 0ð Þeþγz½ �; (4:16)

I zð Þ ¼ Vf z ¼ 0ð Þ
Zo

e�γz � �r z ¼ 0ð Þeþγz½ �: (4:17)

The input impedance at z=−l, Zin, can be expressed as

Zin ¼ V z ¼ �lð Þ
I z ¼ �lð Þ ¼ Zo

1þ �r z ¼ 0ð Þe�2γl

1� �r z ¼ 0ð Þe�2γl
: (4:18)

4.2.3 The Smith chart

The Smith chart is a plot of the complex reflection coefficient in both rectangular and
polar coordinates.

The Zin in Eq. (4.18) is a function of the reflection coefficient, �r z ¼ 0ð Þe�2γl. The
reflection coefficient, �r z ¼ 0ð Þe�2γl, is a complex quantity. Mathematically, any com-
plex quantity can be expressed either as a quantity with a real part and an imaginary part
in rectangular coordinates or as a vector in polar coordinates with a magnitude and a
phase angle, thus

�re þ j�im ¼ �r z ¼ 0ð Þe�2γl ¼ �r z ¼ 0ð Þj jejθ: (4:19)

Since �r z ¼ 0ð Þj j � 1 and α > 0 for all passive components, any �r z ¼ 0ð Þe�2 αþjβð Þl can
be plotted as a vector (or point) in the polar coordinate system within a circle of unity. Let
the horizontal axis be the real axis and the vertical axis be the imaginary axis. The
magnitude is plotted as a radius from the center of the circle, up to unity. The phase angle
zero is represented as the horizontal radius to the right. The phase angle − 2jβl can be
expressed as a rotation of angle from the horizontal radius in the polar plot. Since ej2π= 1,
only �π � 2jβl � 2mπð Þ � π needs to be plotted. Here m is an integer. As βl increases,
the phase angle rotates clockwise from the horizontal radius. Vice versa, the phase angle
rotates counter clockwise when βl decreases. The Smith chart is basically a plot of
�r z ¼ 0ð Þe�2 αþjβð Þl simultaneously in rectangular and polar coordinates. Figure 4.4
shows the Smith chart. Any �r z ¼ 0ð Þe�2 αþjβð Þl appears as a point within the circle of
unity centered at Γre = 0 and Γim = 0.

A lot of information about the transmission line can be learned when
�r z ¼ 0ð Þe�2 αþjβð Þl is plotted as βl is varied. For example, when the microwave fre-
quency is varied from low to high, β is increased. For transmission lines described by ZL
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and YC discussed in Section 4.2.1, β is given by Eq. (4.11). If α is independent of
frequency, the magnitude of the vector does not change. Only the rotation angle changes
with frequency. If the α is increased at higher frequencies, as many microwave transmis-
sion lines do, then the magnitude of the vector decreases at higher frequencies. Vice
versa, if �r z ¼ 0ð Þe�2 αþjβð Þl is measured experimentally for a given l as the frequency is
varied, then plotting it in the polar form will let us verify or determine ZL and YC.

The Smith chart also allows us to determine Zin/Zo directly and graphically from the plot of
�r z ¼ 0ð Þe�2 αþjβð Þl. From Eq. (4.18), it is clear that the Zin normalized with respect to Zo is

Zin

Zo
¼ rz þ jxz ¼ 1þ �re þ j�imð Þ

1� �re þ j�imð Þ : (4:20)

Therefore

rz ¼ 1� �2
re � �2

im

1� �reð Þ2þ�2
im

; (4:21)

Fig. 4.4. The Smith chart.
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xz ¼ 2�im

1� �reð Þ2þ�2
im

: (4:22)

Rearranging Eq. (4.21) and (4.22), we obtain

�re � rz
1þ rz

� �2

þ�2
im ¼ 1

1þ rz

� �2

; (4:23)

�re � 1ð Þ2þ �im � 1

xz

� �2

¼ 1

xz

� �2

: (4:24)

Equations (4.23) and (4.24) represent two families of circles in the Γre and Γim plane. For
each constant rz value, Eq. (4.23) describes a set of circles with center at �re ¼
rz= 1þ rzð Þ and �im ¼ 0 and radius 1/(1 + rz). These are shown as the set of resistance
circles in Fig. 4.4. All resistance circles pass throughΓre = 1 andΓim = 0. For each constant xz
value, Eq. (4.24) describes a set of circleswith center at Γre = 1 and Γim = 1/xz and radius 1/xz.
These are shown as the set of reactance circles in Fig. 4.4. All reactance circles also pass
through Γre = 1 and Γim = 0. However, their centers are always at Γre = 1 on the real axis and
Γim = 1/xz on the imaginary axis, which varies according to the value of xz. For a given
transmission line, as soon as the “�r z ¼ 0ð Þe�2 αþjβð Þl” is plotted, the rz and xz of the input
impedance Zin can be read directly from these resistance and reactance circles.

4.2.4 Characterizing the electrodes as electrical transmission lines and circuit analysis

Determination of V (or Vf and Vb), I (or If and Ib), Zo, α and β, is very important in order to
analyze and to understand the performance of electro-optical devices at high frequencies.
There is a large amount of information and analytical techniques in microwaves that can
be used to determine Vand I. More importantly, α, β and Zo, determined theoretically may
not be accurate under many circumstances. Values of V and I at the input or the output
may be the only quantities that can be experimentally measured. It is often necessary to
use the experimental results to determine or to verify the values of α, β and Zo (i.e. the ZL
and YC). The values of the circuit elements in ZL and YC are adjusted numerically so that
the calculated results will fit the measured results.

The analysis of the total circuit, including the driving and termination circuit and the
transmission line using the experimentally verified values of α, β, and Zo, will determine
the voltage variation along the electrodes. Usually, the electrodes are also connected to the
external circuits via transitional transmission lines. Just like the analysis in low frequency
circuits, we need to know how to calculate or measure the propagating waves on the
electrodes via transmission line analysis as a part of the total circuit. For these reasons some
electrical transmission line network notations and analyses will be reviewed here.

4.2.4.1 The ABCD transmission matrix representation
Typically, the transmission line representing an electro-optical device is connected
electrically to a driving circuit at the input and to a terminal impedance (or circuit) at
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the output. Therefore the transmission line is represented conventionally as a two port
electrical network, as shown in Fig. 4.5. Here V1 and I1 are the voltage and current at the
input, and V2 and I2 are the voltage and current at the output. For a given terminal and
source circuit configuration, V1, V2, I1, and I2 are solved by network analysis. They are
the initial conditions that will determine Vf and Vb (or If and Ib). For a transmission line
that has linear and reciprocal elements

V1 ¼ AV2 þ BI2

I1 ¼ CV2 þDI2:
(4:25)

Or, in the matrix notation,

V1

I1

����
���� ¼ A B

C D

����
���� V2

I2

����
����; (4:26)

where

AD� BC ¼ 1: (4:27)

Note that when the directions of current and voltage are used in circuit analysis to indicate
the relative phase of time harmonic variations, I1 and I2 are defined with directions
opposite to each other in Fig. 4.5.

4.2.4.2 The impedance matrix representation
Relations between V1, V2, I1, and I2 could also be expressed as

V1 ¼ Z11I1 þ Z12I2

V2 ¼ Z21I1 þ Z22I2: (4:28)

Or, in the matrix notation,

V1

V2

����
���� ¼ Z11 Z12

Z21 Z22

����
���� I1

I2

����
����; (4:29)

where Z12 = Z21. This is known as the impedance matrix representation. Clearly there is
also a less frequently used admittance matrix representation expressing I1 and I2 in terms
of V1 and V2. Elements of the impedance matrix are related to elements of the transmis-
sion matrix by

V1 V2

I1

Transmission line

I2

Fig. 4.5. Two port network representation of the transmission line electrode.

108 Fundamentals of Guided-Wave Optoelectronic Devices



Z11 ¼ A=C; Z22 ¼ D=C; Z12 ¼ Z21 ¼ 1=C; (4:30)

or

A ¼ Z11=Z21; B ¼ Z11Z22 � Z12Z21ð Þ=Z21;

C ¼ 1=Z21; D ¼ Z22=Z21:
(4:31)

4.2.4.3 The scattering matrix representation
In microwave measurements, one usually measures the magnitude and phase of a
forward or a backward propagating wave at a given port by a vector network analyzer.
Therefore it is convenient to represent the inputs and outputs to the physical transmission
line by the amplitude and phase of its forward and backward waves at port 1 and port 2:

V1 ¼ Vþ
1 þ V�

1 ; V2 ¼ Vþ
2 þ V�

2 : (4:32)

Notice that, in terms of the z direction used in Eq. (4.8) to (4.19), Vþ
1 and Iþ1 are waves in

the +z direction, whileVþ
2 and Iþ2 are waves in the –z direction. SimilarlyV�

2 and I�2 are in
the +z direction, while V�

1 and I�1 are in the –z direction. Since If =Vf/Zo and Ib =Vb/Zo,

I1 ¼ Iþ1 � I�1 ¼ Vþ
1

Zo
� V�

1

Zo
; (4:33)

I2 ¼ Iþ2 � I�2 ¼ Vþ
2

Zo
� V�

2

Zo
: (4:34)

Conversely, Vþ
1 , V

�
1 , I

þ
2 and I�2 (or Vþ

1 , V
�
1 , V

þ
2 , and V

�
2 ) can also be expressed in terms

of linear combinations of V1, V2, I1 and I2.
Knowing the relation between V1, V2, I1, and I2 is equivalent to knowing the relation

between Vþ
1 , V

þ
2 , V

�
1 and V�

2 . Therefore, just like the transmission and the impedance
matrix representation, the backward waves at ports 1 and 2 are linearly related to the
forward waves at ports 1 and 2 by a matrix, called the scattering matrix,

V�
1

V�
2

����
���� ¼ S11 S12

S21 S22

����
���� Vþ

1

Vþ
2

����
����: (4:35)

The elements of the scattering matrix are related directly to the elements of the impedance
matrix and the ABCD transmission matrix. For example

Z11

Zo
¼ 1þ S11ð Þ 1� S22ð Þ þ S21S12

1� S11ð Þ 1� S22ð Þ � S21S12
; (4:36)

Z22

Zo
¼ 1� S11ð Þ 1þ S22ð Þ þ S21S12

1� S11ð Þ 1� S22ð Þ � S21S12
; (4:37)

Z12

Zo
¼ 2S12

1� S11ð Þ 1� S22ð Þ � S21S12
¼ Z21

Zo
: (4:38)
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The element S12 is obtained (or measured) from the reflected wave at port 1,V�
1 , when the

transmission line is driven by a forward propagating wave Vþ
2 at port 2 while Vþ

1 is zero.
This means that port 1 should be terminated with Zo so that V�

1 will not produce any
forward wave (i.e. Vþ

1 ¼ 0). Similarly, S11 is determined (or measured) from V�
1 when

the transmission line is driven by Vþ
1 with Vþ

2 ¼ 0 (i.e. with Zo termination at port 2).
Note that S22 is determined from V�

2 when the transmission line is driven by Vþ
2 with

Vþ
1 ¼ 0. In short,

Sij ¼ V�
i

Vþ
j

�����
Vþ

m¼0 for m 6¼j

: (4:39)

Consider now the S21 of the transmission line described in Eq. (4.9) to (4.11). When a
forward wave Vþ

1 is incident on port 1 which is located at z =− l,

Vþ
1 ¼ Vfeγl;

and Vb is zero because the transmission line is matched at z= 0, i.e. port 2. Therefore, at
port 2

V�
2 ¼ Vf and Vþ

2 ¼ 0:

In other words,

S21 ¼ e�γl: (4:40)

Or alternatively, S21 is just the reflection coefficient �r z ¼ 0ð Þe�2 αþjβð Þl with
�r z ¼ 0ð Þ ¼ 1: It can be plotted on the Smith chart. The measurement of S21 for a
given l plotted on the Smith chart asω is swept from low to high frequencies tells us about
α and β (indirectly ZL and YC through curve fitting) and the normalized Zin can be read
from the resistance and reactance circles directly for Γr (z= 0) = 1. Note that S21 = S12, and
Eq. (4.39) implies also that S11 = S22 = 0.

4.2.5 Impedance matching and bandwidth

In practical applications, the electro-optical device is often connected to the microwave
supply at port 1 through a transitional transmission line and terminated by an impedance
Zt at port 2. The microwave supply, such as the output from an amplifier, is represented as
a microwave source in series with a source impedance Rsource. The electrical representa-
tion of the supply is the same as the source circuit shown in Fig. 4.1. It should be clear
from the preceding discussions that the goal of the design of the transitional transmission
line and the electrodes for high frequency electro-optic devices is to have low loss
transmission lines (for both the transitional transmission and the electrode) with
Zo = 50 ohms and Zt = 50 ohms. Then the electro-optic device is matched to the micro-
wave source impedance at all frequencies. In that case there are no reflected waves on the
transmission line.3 The frequency response (or bandwidth) of the device will be deter-
mined by the interaction of a forward traveling microwave with a forward traveling
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optical guided wave. Note that the attenuation of either the microwave or the optical
wave will limit also the effective length of the traveling wave interactions. Since the
attenuation of microwave transmission line increases at higher frequency, these two
factors impose further bandwidth limitations on the device response at higher frequen-
cies. For example, a great deal of research effort has been expended to obtain specific
shapes and separation of electrodes to achieve the goal of low loss 50 ohms characteristic
impedance for electrodes in LiNbO3 modulators [5]. In practice, 50 ohms of Zo is hard to
get, one usually settles for a design that yields a lower Zo and matches it with an
appropriate Zt and an impedance transformer to the source so that multiple reflections
will not limit the bandwidth of the device.

4.2.6 Transient response

Despite best efforts to match the transmission lines to the source, there may be reflections
caused by impedance mismatches or discontinuities at various points in the transmission
lines caused by bending, transmission line mismatch or material discontinuity in the circuit
which includes the source, the device, the termination and the transitional transmission
line. In the measurement of the various parameters such as Sij or Zij of the total circuit as a
function of frequency, these discontinuities will yield unexpected bumps in the frequency
variation. It is difficult to separate the problems from just the frequency measurements.
A pulsed input from the RF source is then applied to the circuit, and the time behavior of
the reflected pulse from the circuit including the device is monitored. Knowing the
velocity, the time lapse between the transmitted and the reflected pulse then allows us to
determine the position of the discontinuity in the total circuit that caused the reflection.

4.2.7 Pulse propagation and frequency response

In order to relate the frequency response to the pulse response, let V(z,t) be a pulse of the
signal voltage at center frequency ω,

V z; tð Þ ¼ A z; tð Þe�j βz�ωtð Þ;
where A(z,t) is the pulse envelope, β is the averaged propagation wave number,
β ¼ neffk; and ω is the center frequency. In terms of Fourier Transform, it means that
there is a group of CW signal voltage at ω centered about ω such that

V z; tð Þ ¼ A z; tð Þe�j βz�ωtð Þ ¼
ð
a ω; zð Þe�j βz�ωtð Þdω; (4:41)

where a(ω) is the Fourier amplitude of the spectra component at ω. Note that β is
obviously a function of ω, a ωð Þ 6¼ 0 only when ω� Δω5ω5ωþ Δω, and Δω is the
spectral width. Usually Δω Δω � 1= . It is well known that the smaller the Δω, the wider
is the pulse duration.

Utilizing a Taylor series approximation to express the relation between β(ω) and β,
Eq. (4.41) can be rewritten as
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A z; tð Þ ¼
ð
a ω; zð Þej ω�ωð Þt� β�βð Þz½ �dω ¼

ð
a ω; zð Þej ω�ωð Þ t�dβ

dωjβz
� 
h i

dω:

Hence the velocity of advance of a definite value of A such as the maximum of A is given
by the group velocity

vg ¼ dω
dβ

� �����
β

: (4:42)

From the preceding discussions, it is clear that the transmission line analysis will only
give us the amplitude and phase of the forward and backward propagating waves of each
spectral component, i.e. the a(ω) for each group of forward and backward waves. When
there are forward and backward pulses, each individual group of a(ω) will travel with the
group velocity given in Eq. (4.42). The group velocity will only give an estimation of
the response expected from a pulse centered at ω. There is broadening or sharpening of
the pulse as it propagates in the z direction. In an ideal device, where the electrodes are
matched to the source and have proper termination, there will be just the forward
propagating pulse.

4.3 Microwave electric field distribution and the electro-optical effects

For a given voltage on the electrode at a z location, it creates an electric field distribution.
The electric field pattern in the xy plane is the same at different positions of z, but its
amplitude is proportional to the voltage. Part of the electric field that overlaps the electro-
optical active medium creates the electro-optical effects, including the linear electro-
optic effect, the electro-absorption effect and the electro-refraction effect.

Electromagnetic solution of the electrodes fabricated on specific material structures is
required to give the electric field distribution. For all device structures there is a linear
relation between the microwave electric field and the voltage on the electrode. Electrode
structures with two or more electrodes have TEM (transverse electric magnetic) modes,
meaning Ez=Hz= 0. In this case, within each region such as core, cladding, etc., we have

∂Ey

∂x
� ∂Ex

∂y
¼ 0 and

∂Hy

∂x
� ∂Hx

∂y
¼ 0: (4:43)

The Ex, Ey, Hx and Hy are related by

Ex ¼
ffiffiffi
μ
ε

r
Hy and Ey ¼ �

ffiffiffi
μ
ε

r
Hx: (4:44)

Differentiating Ex and Ey in Eq. (4.43) with respect to x and to y once more and using Eq.
(4.44), the Maxwell’s equations simplify into a Laplace Equation (see [2] for derivation)

∂2

∂x2
þ ∂2

∂y2

� �
Et ¼ 0: (4:45)
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Here Et denotes electric field in the transverse xy plane, Et ¼ Exix þ Eyiy.
A simple example of Eq. (4.45) is to calculate the electric field in a parallel plate

capacitor with two parallel plate electrodes with infinite conductivity separated by a
dielectric with distance of separation d and permittivity ε. In that case, for a voltage V

Ex ¼ V=d: (4:46)

For a parallel capacitor with finite electrode area A, we usually neglect its fringe electric
field distribution near the edge of the electrode. Then its capacitance is obtained from Eq.
(4.3) as

C ¼ ε
A

d
: (4:47)

Because of its simplicity the electric field and the capacitance of a parallel plate capacitor
are used commonly to give a first estimation of the electric field of various electrode
configurations.

Various electrostatic solutions of the Laplace Equations such as the scalar potential,
Green’s function and conformal mapping can be used to calculate the microwave electric
field. For example the electric field, the Zo, the effective index (i.e. β) and the attenuation
of micro-strip electrodes similar to those shown in Fig. 1.9 are discussed in microwave
textbooks [2]. The electric field of the thin symmetric and asymmetric coplanar electrode
has been calculated by Ramer [6]. The microwave impedance, the effective index and the
attenuation of a coplanar waveguide and asymmetric coplanar strip electrode on LiNbO3

have been calculated by Chung and Chung et al. [3, 7]. These electrode configurations
are similar to those shown in Fig. 3.2. Commercial software such as ANSOFT is used to
calculate the transverse electric field distribution, Zo, α, and β, for complex structures
such as thick electrodes on a material structure which may contain a reverse biased p–i–n
junction. Note that the electric field distribution for a given electrode configuration will
vary slowly as ω is changed.

It is important to note that there are higher order modes which are not TEM
modes. Since TEM modes give usually the lowest attenuation and the highest Zo,
they are the microwave modes which are intended to be used to create the electro-
optical effect. Nevertheless, higher order modes could be excited in practice and they
may affect significantly the β, the α and the Zo of the transmission line representing
the electrodes.

Only the microwave electric field that overlaps the electro-optical active medium
will produce the electro-optical effect. This electric field will create a Δχ, or
Δε ¼ εoΔχ ¼ εoðΔχ0 � jΔχ00Þ by the linear electro-optic effect, the electro-absorption
effect or the electro-refraction effect in the active medium. If this electric field is
approximately uniform in spatial distribution, then the effect of Δχ on the propagation
of the guided-wave mode can be obtained by substituting ε by χo þ Δχð Þεo for the active
medium in calculating the neff and attenuation for the guided-wave mode. When the
electric field is non-uniform, Δχ will be non-uniform. The change in the propagation
constant can be obtained from substituting Δε into Eq. (2.6) using the perturbation
analysis.
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4.4 Traveling wave interactions

Let there be an optical nth guided wave, Ae�
αn;o
2 ze�jneff;nβozejωt, modulated by a traveling

wave microwave electric field, FRFe
�αRFze�jβRFzejωt, where αRF and βRF of the micro-

wave transmission line are given in Eq. (4.11). Note that FRF is proportional to the
microwave voltage VRF, and βRF is equal to nmβo, where nm is the microwave effective
index. The microwave creates a Δε similar to that discussed in Section 3.5, except that Δε
is now time dependent. Note that αn,o is the attenuation coefficient of the intensity of the
nth order optical guided wave in the absence of RF field, and βo is ω/c, the free space
propagation wave number for both optical andmicrowave waves. Let us assume that both
the optical waveguide and the microwave transmission line are matched. There is no
reflected wave in the –z direction.

The perturbation analysis, given in Eq. (2.1) to (2.6), was derived for a Δε independent
of time. At any specific instant of time, Eq. (3.37) and (3.40) can still be applied to the
optical guided wave for an instantaneous Δε, over a small distance dz. The value of Δε
changes as the optical guided wave propagates in time and distance. For the forward
traveling wave microwave and the nth guided-wave mode assumed here, the instanta-
neous Δε seen by the guided wave as it propagates is

Δε ¼ Δεmaxe
�αRFz cos ωt � δnβozð Þ; with δn ¼ nm � neff;n: (4:48)

Here, the microwave is assumed to be launched at z= 0,Δεmax is the maximumΔε at z= 0,
and δnβo accounts for the difference in the propagation velocity of microwaves and
optical waves. According to Eq. (3.33) and (3.34), Δεmax is complex,

Δεmax ¼ 2nΔnmaxεo � jΔχ00maxεo: (4:49)

Let us now follow an optical guided wave from z= 0. Within each short section dz, the
electro-optic Δn causes a phase shift Δβdz. Therefore, over a propagation distance L, the
total phase shift created by electro-optic effects without electro-absorption is

Δ� ¼
ðL
0

Δβdz ¼ωnεo
2

ð
active region

Δnmax x; yð Þ en � e�n
� �

ds

ðL
0

e�αRFz cos ωt � δnβozð Þdz:
(4:50)

This is the result for a traveling wave interaction that corresponds to Eq. (3.37) for
constant Δn. Let

AL cos ωt � ξð Þ ¼
ðL
0

e�αRFz cos ωt � δnβozð Þdz: (4:51)

After direct integration, we obtain
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A2L2 ¼ 1

α2RF þ δ2
� � 1þ e�2αRFL

� �� 2 cos δnβoLe
�αRFL

� �
; (4:52)

tan ξ ¼ �αRF sin δnβoL� δnβo cos δnβoLð Þe�αRFL þ δnβo
�αRF cos δnβoLþ δnβo sin δnβoLð Þe�αRFL þ αRF

: (4:53)

Therefore,

Δ� ¼ ωnεo
2

ð
active region

Δnmax x; yð Þðen � e�nÞds AL cos ωt � ξð Þ: (4:54)

Similarly, the total attenuation of the amplitude of an optical guided wave, created by
electro-absorption without electro-optic Δn, is

exp �
ðL
0

Δαn
2

dz

0
@

1
A ¼ exp �ω

4
εo

ð
active region

2
64 Δχ00maxðen � e�nÞds

	
ðL
0

e�αRFz cos ωt � δnβozð Þdz

3
75

¼ exp �ω
4
εo

ð
active region

Δχ00maxðen � e�nÞds AL cos ωt � ξð Þ

2
64

3
75: (4:55)

This is the result for traveling wave electro-absorption interaction, corresponding to Eq.
(3.40) for the constant Δχ″.

The factor A cos(ωt− ξ) shows the effect of traveling wave interaction. Note that when
the velocity of the optical guided wave matches that of the microwave, i.e. δn= 0, A = 1
and ξ =0. This is the ideal case for traveling wave interaction where the electro-optical
effect is identical for any modulation frequency ω. The electro-optical susceptibility does
not impose a bandwidth limitation. As δ increases, “A” decreases.

Notes

1. It is important to note that “low frequency” refers only to the case when the electrical
wavelength is much longer than the device length. For short devices only hundreds of micro-
meters long, the “low frequency” electrical representation may still be applicable even at low
GHz frequencies.

2. Since power is proportional to V2, the power delivered to the modulator is reduced by 3 dBwhen
V is reduced by 1=

ffiffiffi
2

p
.

3. The transitional transmission line is often tapered or curved gradually so that the electrode
transmission line can be matched to the source without reflection, conforming to the physical
configuration of the devices.
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5 Planar waveguide devices

Fields of planar guided waves are confined in the depth direction (designated as the x
direction in this book) to the vicinity of the high index layer which is the core. The
mathematical description of the planar waveguide modes has already been discussed in
Sections 1.2.3 and 1.2.4. Since the high index layer is often located near the surface, the
guided waves are sometimes called surface waves. As the surface contour of the various
layers of the waveguide changes gently, the planar guided-waves will follow the contour.
Planar guided waves have three distinct properties.

(1) The evanescent field of the guided-wave modes extends into the air (or cladding)
above the surface. Thus they can be excited or coupled out of the core from the air (or
cladding layer) adjacent to the surface.

(2) The scattered radiation of the propagating wave is often also visible in the free space
above. It can be used to monitor the propagation of the guided wave.

(3) Guided waves are free to propagate in any direction in the transverse plane (desig-
nated as the yz plane in this book).

Summation of planar guided waves can form divergent, convergent or diffracted waves
in the transverse plane. How to analyze the generalized planar guided waves has already
been discussed in Section 1.2.5.

A distinct feature of planar waveguide devices is the utilization of the diffraction, focusing
and collimation properties in the transverse plane to achieve focusing, switching, deflection,
wavelength filtering orother functions. For example, similarly towave propagation in the free
space, transverse aperture restriction will produce diffraction effects such as radiation lobes.
The wider the guided-wave beam, the narrower is the main diffraction lobe. Lenses can be
used to focus or collimate guided waves. A surface grating will diffract guided waves into a
different direction of propagation. The wavelength selective property of the grating provides
the wavelength filtering function. Acousto-optical diffraction in the yz plane can be used for
signal processing and beam scanning. How to harness planar guided waves in the transverse
plane, and some of the relevant devices, will be the focus of discussion in this chapter.

5.1 Excitation and detection of planar guided waves

5.1.1 End excitation

If a planar waveguide has a cleaved or polished end surface, radiation from a laser or
optical fiber can be used to excite planar guided waves by end excitation. Section 1.2.7



discussed the end excitation of a channel waveguide mode. Efficient excitation of a
planar waveguide mode requires that the incident beam be aligned in the direction of
propagation with respect to the direction of propagation of the waveguide mode, and
that the beam pattern matches the guided-wave mode pattern in the thickness direc-
tion. Figure 5.1 illustrates excitation of a waveguide which has a vertical end surface
by a laser beam. In order to match the amplitude pattern of the laser beam with that of
the TE0 guided-wave mode in the x direction, a lens is used to obtain the desired
focused size of the laser beam.1 Excitation of TE modes requires the incident electric
field to be polarized in the y direction parallel to the core layer, while excitation of the
TM modes requires the electric field to be polarized in the x direction, perpendicular to
the core layer. The horizontal variation of the incident beam such as the beam size and
direction determine the propagation pattern in the transverse plane.2 For example, the
TE0 or TM0 guided wave excited by a sharply focused laser or fiber is usually a
divergent beam.

Mathematically, for convenience sake, let us assume that the TEM electric field from a
laser or optical fiber is incident on the vertical end of the waveguide in the z direction.
Its electric field in the xy plane at z= 0 is Einc(x,y). At z ≥ 0, the electric field in the
waveguide excited by Einc can be expressed as a summation of all the modes. Let Einc

(x,y) = Einc (x) Einc (y), then we can express the summation of modes in the x and y
direction separately at z = 0. In the x direction, we have

Einc xð Þ ¼
X
m

Amψm xð Þ þ
ð
β

b βxð Þψ βx;xð Þdβx; (5:1)

where ψm(x) are the mth order planar guided-wave modes that are above cut-off, and Am

are their amplitudes. Note that ψ(βx) are the continuous radiation modes (i.e. substrate

Laser beam

Lens

x

y

z

Substrate

Core

Fig. 5.1. End excitation of a planar waveguide.
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and air modes) with propagation constant βx in the x direction, and b(βx) are their
amplitudes. Using the orthogonal properties of modes, we have shown in Eq. (1.51) that

Amj j ¼

Ðþ1

�1
Einc xð Þψm xð Þdx

����
����

Ðþ1

�1
ψm xð Þψ�

m xð Þdx
: (5:2)

The power efficiency of exciting the mth mode is Amj j2 Ðþ1

�1
ψmψ�

mdx

� Ðþ1

�1
Einc xð Þ

�

E�
inc xð Þdx�2. Note that |Am| is large when the overlap integral,

Ðþ1

�1
Einc xð Þψm xð Þdx

����
����, is

large. High excitation efficiency implies that the incident radiation is well matched in
both amplitude and phase to the mth guided-wave mode.3 Although Eq. (5.2) is applic-
able to all the modes, only the excitation of TE0 or TM0 mode is important in many
practical applications. Since ψ0 has a constant phase variation in x, Einc is phase matched
only to the m = 0 mode when it has a uniform phase in the x direction. In addition, the
amplitude variation of Einc needs to be matched to that of ψ0. When Einc is not matched
well to any guided-wave mode, it will excite a lot of radiation modes, i.e. b(βx) will have
significant amplitudes. In practice, the calculation of b(βx) can be quite complex. Since
we are interested usually only in how the guided-wave modes can be excited efficiently,
and since the radiation modes are radiated away at z >> 0, the weak radiation field is often
not calculated.

In order to determine the diffracted pattern of guided waves in the transverse yz plane,
we express Einc(y) at z= 0 in terms of a summation of generalized planar mth guided-
wave modes. For the mth order guided wave (which has a specific field variation in the x
direction and an effective index neff,m), Einc(y) can be expressed as

Einc yð Þ ¼
ðþneff;mk

�neff;mk

Bm βy
� �

e�jβy ydβy ; (5:3)

where Bme
�jβyye�jβzz ¼ Bme

�jneff;mk sin θ ye�jneff;m cos θ z is a planar guided wave propagating
in a direction θ from the z axis. We can find Bm (βy) by multiplying the above equation
by eþjβ0yyand integrating from −∞ to +∞ with respect to y to obtain

ðþ1

�1
Einc yð Þ eþjβ0yydy ¼

ðþ1

�1

ðþneff;mk

�neff;mk

Bm βy
� �

e�jβy ydβy

0
B@

1
CAeþjβ0yydy

¼
ðþneff;mk

�neff;mk

Bm βy
� � ðþ1

�1
e�jβyyeþjβ0yydy

0
@

1
Adβy: (5:4)

From Fourier Transform theory, we know
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1

2π

ðþ1

�1
e�jβyyeþjβ0yydy ¼ δ βy � β0y

� 	
: (5:5)

Therefore,

Bm βy

� � ¼ 1

2π

ðþ1

�1
Einc yð Þeþjβyydy: (5:6)

The electric field of the mth guided-wave mode in x, y and z, excited by Einc is

Em x; y; zð Þ ¼ Am

ðþneff;mk

�neff;mk

Bm βy
� �

e�jβy y e�jβzzdβy

2
64

3
75ψm xð Þ ¼ Em y; zð ÞEm xð Þ: (5:7)

We can also find Em(y,z) by solving the two-dimensional Helmholtz equation in
Eq. (1.39) and (1.41) where the boundary condition is given by the incident field
Einc(y) at z = 0 [1, 2].

In order to demonstrate the analysis, let us consider a simple example where Einc(y) has
uniform amplitude A for yj j � ly and zero for yj j4ly. Then

Bm ¼ 1

π
Aly

sin βyly
� �
βyly

; (5:8)

where Bm is the amplitude of the planar guided wave propagating in the θ direction
and excited by Einc. The value of Bmwill be large primarily at nm,eff ksinθly << π. Bm is 0 at
nm,eff ksinθly = π. Usually ly >> λ where λ = 2π/k. It means that only planar guided waves
with a small angle θ with respect to the z axis will have a large amplitude which is

proportional to sin
2πneff;mly

λ
sin θ


 ��
2πneff;mly

λ
sin θ. Those planar guided waves con-

stitute the main lobe excited by Einc. The center of the main lobe is directed toward θ =0.
When θ increases, the amplitude of the planar guided wave drops to 0 at θo ≈ sinθo = λ/2neff,m
ly. The θo is controlled by ly. The smaller the ly, the larger is the θo. Such a diffraction pattern is
similar to the diffraction pattern of a plane wave by a rectangular aperture in free space.

Note that if Einc is incident on the waveguide at an angle δ with respect to the z axis in
the yz plane, it would have a functional variation exp �jk sin δyð Þ at z = 0. In that case, the
result obtained from Eq. (5.6) will be

Bm ¼ 1

π
Aly

sin βy � k sin δ
� �

ly
� �
βy � k sin δ
� �

ly
: (5:9)

It means that the center of the main lobe will be directed at θ ¼ sin �1 1

neff;m
sin δ


 �
. This

is just Snell’s law of refraction.
The major advantage of end excitation is its simplicity. However, the waveguide must

have a smooth end surface obtained usually by either cleaving or polishing. For a given
incident radiation all modes that have finite overlap integral with the incident field will
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be excited. The only way to control the excitation of the modes is by the polarization and
by the field pattern of the incident radiation that controls the overlap integral. This
property has important practical implications. For example: (1) if a laser beam focused
through a spherical lens is used to excite a TE0 or TM0mode, the spot size focused on the
end of the waveguide should have a flat wave-front and a spot size matching the mode
size in the x direction. It implies that the spot size will also be small in the y direction,
creating a divergent beam in the yz plane. (2) ATE1 mode will not be excited by an Einc

field symmetric with respect to the center of the waveguide.

5.1.2 Excitation by prism coupler

5.1.2.1 Interaction of waves in a prism and a planar waveguide
Let there be a prism surface parallel to the yz plane and a planar waveguide with top
surface parallel to the prism surface. The planar waveguide is placed below the prism.
They are separated by an air gap g in the x direction. Figure 5.2 illustrates this config-
uration. When an incident plane wave propagates at an angle −θp with respect to the z axis
in a prism that has a refractive index np, the propagation wave constant in the +z direction
is npk cos θp. Let np be larger than the effective index of the planar guided-wave mode.
Then np cos θp ¼ neff;m can be achieved at a specific angle θpm. Since np > neff,m >> 1, the
incident plane wave at −θpm is totally internally reflected at the prism surface for large air
gaps. The reflected wave is a plane wave at angle +θpm. Both the incident and the
reflected plane wave in the prism will propagate toward the +z direction with an

exp �jnpk cos θp
� �

variation. They have an evanescent field in the −x direction, with

an exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np cos θ2p � 1

q� 	
k x� gð Þ

h i
variation in the air gap.

−θp

+θp

−θm +θm
Air gap, g

Prism, n = np

Core, n = n1

Substrate, n = n2 

Incident beam size

Incident beam Reflected beam

Evanescent tail
of incident and
reflected beams 
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of guided-wave 

x

z

Guided-wave

Fig. 5.2. Coupling of waves in a prism and a waveguide.
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The mth planar guided wave propagating in the z direction will have a z variation of

exp nm;effkz
� �

and an exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff;m � 1

q� 	
kx

h i
variation in the air gap. Let the guided

wave have a significant evanescent field in the air gap. At θp = θpm, the evanescent field of
the plane waves propagates in synchronism with the evanescent tail of the mth order
guided wave mode. When the distance of separation g, i.e. the air gap between the prism
surface and the waveguide surface, is less than or comparable to the length of the
evanescent tail, traveling wave interaction between the plane waves and the forward
propagating planar guided-wave mode takes place. The incident plane wave excites the
guided-wave mode while the guided-wave mode adds to the reflected plane wave. For an
incident plane wave beam that has a finite size in the z direction, the amplitude of the
guided wave as a function of z will first grow as the incident wave transfers its power into
the guided wave. The amplitude of the guided-wave mode is too small in the beginning to
transfer much power back to the reflected wave. As the guided wave grows stronger, more
power is transmitted to the reflected wave. Finally, after the end of the incident beam, all
power in the guided wave will eventually be transferred to the reflected beam. In summary,
the amplitude of the guided wave will first grow and then decay. The total reflected beam
will continue after the end of the incident beam until the guided-wave power is exhausted.

The amplitude of the reflected beams at θpm in the prism and the mth guided wave
mode as a function of z can be analyzed by considering the incident and reflected beams
to be composed of a series of parallel optical rays at different z positions. Each optical ray
is still much wider than the optical wavelength so that it can be analyzed approximately
as a plane wave. The guided-wave modes are also represented as a series of rays of plane
waves at different z positions, propagating at their specific angles of propagation ±θm in
the core and reflected at the boundaries of the core as discussed in Sections 1.2.3.4 and
1.2.4.4. Each incident ray at −θpm in the prism and at a given position z is partially
reflected at the prism surface and partially transmitted to the ray of the plane wave of the
mth waveguide mode at −θm in the core. The transmitted energy adds on to the amplitude
of the existing plane wave for the mth order waveguide mode in the core.4 The plane
wave of the mth waveguide mode at +θm is partially reflected at the top boundary back to
the core and partially transmitted to the reflected ray in the prism through the air gap.
Thus the total amplitude of the reflected ray in the prism at the position z is the sum of the
reflection at the prism boundary and the transmission from the guided wave. In summary,
the guided wave receives energy from the incident ray, it also leaks energy to the reflected
ray in the prism.5

A mathematical analysis of the cumulative effect of all the optical rays yields the
amplitude of the reflected beam and the guided-wave as a function of z [3, 4]. It is
straightforward, but long, and so it is not repeated here. It has been shown from such
analysis that: (a) the reflected optical rays in the prism obtained from the prism boundary
reflection and from the guided-wave mode are 180° out of phase. So the reflection first
gets weaker after the beginning of the incident beam. The total reflected ray in the prism
reaches zero at some distance after the leading edge of the incident beam. After that the
reflected wave transmitted from the waveguide mode dominates. The total amplitude of
the reflected ray keeps increasing until the end of the incident optical beam. After the
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incident beam has ended, the total amplitude of the reflected rays then decays to zero
within a short distance as the power in the guided wave decays to zero. In short, the
reflected beam looks as if it has been shifted in position from the incident beam. This is
called the Goos–Haenchen shift of the prism coupler. (b) The amplitude of the guided
wave increases until the end of the incident beam, then it decays. (c) For a given air gap
and length of the evanescent field tail, there is an optimum width of the incident optical
beam at which the efficiency of power transfer from the incident beam to the mth order
guided wave is a maximum at the end of the incident beam. At this optimum beamwidth,
the maximum excitation efficiency is 81%. If the leakage of optical power from the
guided wave to the reflected beam is stopped at this z position, then the power can be
retained in the guided-wave mode. (d) As the θp of the incident beam increases from zero,
it will excite first the zeroth order mode, then the first order mode, etc. The polarization of
the incident beam determines whether the TE or the TM modes will be excited. (e) If
there is power in all the propagating modes in the waveguide and a prism is placed on top
of the waveguide with sufficiently small air gap, then power in different modes will be
coupled out as optical beams propagating at different angles θpm. If a screen is placed at
the output of the prism, these outputs at each specific θpm will appear as illuminated lines,
called the m-lines. They will appear as m-lines instead of m-dots because the guided-
wave beam spreads in the horizontal direction.

5.1.2.2 The prism coupler
Theoretically, for efficient excitation of the guided wave, we need a prism that has a
refractive index larger than the effective index of the mode. We also need an air gap
comparable to (or less than) the length of the evanescent tail.6 We should adjust the size
of the incident beam for a given air gap to achieve the maximum efficiency of 81% at the
end of the incident beam. Simultaneously, we should terminate the coupling between the
prism and the waveguide at the end of the incident beam. Experimentally, it is difficult to
control the width of the incident beam in the z direction in coordination with adjustment
of air gap separation to obtain maximum coupling efficiency. It is even difficult to obtain
a pre-specified air gap separation. In practice, there are often settled dust particles or
defects on either the prism or the waveguide surface. The size of these particles or defects
is comparable to or larger than the desired range of air gap separation. There is no
effective way to monitor the air gap separation.

For these reasons, a right angled prism such as that illustrated in Fig. 5.3(a) with index
np > nm,eff is used experimentally to excite the guided wave. Let there be an incident
beam of finite size. The size of the incident beam is controlled by a lens. The incident
beam is first adjusted in angle of incidence with respect to the prism to obtain the desired
θpm. Its effective excitation length in the z direction is also cut short by the vertical edge of
the prism. In order to adjust the air gap, a localized pressure is exerted by a wedge or a ball
point on the substrate of the waveguide toward the prism, near the vertex of the prism, by
a mechanical jig. The air gap is determined by the size of the random dust particles or
surface irregularities and the pressure. The larger the pressure, the smaller is the air gap.
The prism and the waveguide now form an assembly with the air gap set by the pressure.
Then the waveguide together with the prism assembly is slid in the z direction toward the
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incident beam so that the vertex of the prism cuts into the incident beam. The effective
size of the incident beam exciting the guided wave is now between the leading edge of
the incident beam and the edge of the right angle prism. The intensity of the guided wave
is monitored at a z position after the vertex of the prism.7 At an optimum combination of
the effective beam size and the mechanical pressure exerted on the prism assembly, the
monitored intensity of the guided wave will reach a maximum. This is the maximum
power that can be transferred from the effective portion of the incident beam to the mth
order guided wave for this air gap. Note that when the effective beam size is significantly
smaller than the size of the incident beam, the power in the part of the incident beam cut
off by the vertical edge of the prism is lost. Therefore, even when the excitation of the
guided wave for the effective portion of the incident beam has reached 81%, the
efficiency of excitation for the entire incident beam may be much lower. In order to see
whether the intensity of the guided wave can be further increased, the localized pressure
exerted on the substrate is adjusted to obtain a new air gap, and the incident beam is slid
against the vertical edge of the prism until a new maximum intensity of the monitored
guided wave is obtained. The intensity of the guided wave is monitored and compared
with the intensity obtained in the previous round. The pressure on the waveguide
substrate can be adjusted again until the desired excitation efficiency is obtained.
Obviously, the size of the incident beam could also be adjusted.

A major advantage of the prism coupler is that each mode is excited by the incident
radiation only at the specific angle. The excitation can be initiated at any position by the
placement of the prism. The direction of the excited guided wave is oriented along the
direction of the incident beam. Since the excitation efficiency could be high for relatively
large incident beam size, e.g. a millimeter or more, the beam divergence of such a wide
guided-wave beam in the yz plane will be small.
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Fig. 5.3. Couplers for planar waveguides. (a) A prism coupler. (b) A grating coupler. (c) A tapered thin
film coupler.
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5.1.3 The grating coupler

An incident plane wave propagating at angle −θi with respect to the z axis will have a z
variation exp �jk cos θið Þ. When there is a grating with a periodicity T that satisfies the
Bragg condition

2π
T

¼ neff;m � k cos θi;

phase matched interaction between the incident plane wave and themth guided wave will
occur. The grating will diffract energy from the incident wave into the guided wave. Vice
versa, the grating will also diffract energy from the guided wave into an output radiation
beam.8 This is illustrated in Fig. 5.3(b). It is similar to a prism coupler and is known as a
grating input coupler. Its analysis is very similar to that of the prism coupler [5, 6].

However, the grating may have more than one order of diffraction. The diffraction
condition stated in the equation above is for the first order. The efficiency of a grating
coupler is affected by its higher orders of diffraction. A more detailed analysis of
diffraction by a grating will be presented in Section 5.2.1.1(C). In summary, the grating
coupler functions like a prism coupler without the cumbersome prism coupler assembly.
However, the grating needs to be fabricated on the waveguide. The coupling efficiency is
reduced by higher order diffractions.

5.1.4 The tapered waveguide coupler

Let there be a propagating mth order mode in the waveguide. When the thickness of the
core is reduced, it will eventually reach the cut-off thickness of the mode at a certain
point.9 When the propagating mode reaches that point, all the power in the propagating
mode will be transferred to the substrate modes. The substrate modes will then form a
radiation beam in the substrate as illustrated in Fig. 5.3(c). Therefore, the power in the
mth order mode is coupled out of the waveguide from the substrate, known as the tapered
thin film coupler. In principle, by reciprocity, a thin film coupler could also be used as an
input coupler, provided that the incident beam has the specific beam pattern that excites
the guided-wave mode effectively. Since the shaping of the input beam in the substrate
into a specific pattern is difficult, the tapered thin film coupler has been used only as an
output coupler.

5.1.5 Detection and monitoring of guided waves

The most common method for detection and monitoring of planar guided waves is to use
a right angled output prism with refractive index np larger than the nm,eff of the guided-
wave mode as illustrated in Fig. 5.4. The prism is mechanically pressed against the
waveguide to obtain an air gap comparable to the evanescent tail length, similarly to the
assembly of the input prism coupler. For any reasonable air gap, all of the energy (minus
scattering loss) in the mth guided-wave mode is coupled out as an output beam at the
angle θpm in the prism (i.e. the m-line). The larger the air gap, the wider is the output
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beam, and the narrower is the angular spread of the output beam. The number of m-lines
represents the number of modes that have been excited in the waveguide. Them-lines are
illustrated in Fig. 5.4. The use of a prism for output coupling has an important advan-
tage: each mode will appear only as a discrete m-line at θpm. When a receiver detects the
output of a specific m-line, it measures only the energy in the mth order guided-wave
mode. The output coupling efficiency is close to 100% for each mode. It is easy to use
experimentally. Vice versa, stray light propagating as substrate and air modes in the
waveguide will be coupled out at other angles. Therefore the receiver measures
accurately the energy in the mth guided-wave mode, no matter how many modes are
propagating.

The output prism could also be used to measure the propagation loss of the mth order
mode in that waveguide. When the guided-wave mode propagates with attenuation
coefficient α, its intensity will vary as exp �αzð Þ. When the intensity of the m-line is
plotted as a function of the z position of the output prism on a logarithmic scale, it will be
a straight line, and the slope of the straight line is the measured attenuation coefficient α
of the mth mode.10

Some waveguides have a smooth vertical end fabricated by cleaving or polishing. In
that case, the radiation pattern of the propagating modes at the output end can be directly
observed, imaged, or detected. However, if there are several guided-wave modes, they
will appear simultaneously. Unless there is only one mode, it may be very difficult to
determine what are the excited modes and their relative strength. Fortunately, we know
from theoretical analysis the radiation pattern of the modes. When there are just very few
modes, we may be able to identify the modes by recognition. Moreover, stray radiation
(i.e. substrate and air modes) will usually appear on the end surface at locations far away
from the expected pattern of the guided-wave mode.

Let there be only one propagating mode in the waveguide, and let there be different
lengths L of identical waveguides. The ratio of the output to input intensity of the mode
will again vary as exp �αLð Þ. Let us excite the guided-wavemode andmeasure the output
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Fig. 5.4. The prism output coupler and m-lines.

126 Fundamentals of Guided-Wave Optoelectronic Devices



intensity separately for each waveguide that has different L. When the excitation effi-
ciency can be the same for waveguides of different L, then the α of this mode is the slope
of the logarithmic plot of the ratio of detected output intensity/laser input versus L. This is
called the cut back method for the measurement of propagation loss. However, there will
be variation of the excitation efficiency. Therefore, there will be scattering of the
measured output intensity. The measured slope gives only an averaged α, and it is reliable
only when α is larger than the scattering of the data points.

For waveguides that have considerable scattering loss, the scattered radiation may be
easily detected in the free space above the waveguide. The α can also be obtained by
plotting the detected scattered radiation as a function of the z position. This method is
accurate only if the same fraction of the scattered radiation can be detected as the z
position is varied, for example by a microscope focused on a well-collimated planar
guided-wave mode. However, it is the simplest method for monitoring the power in the
waveguide and for measuring the α.

5.2 Diffraction, focusing, and collimation in planar waveguides

Ability to focus, refract, diffract, filter, and collimate guided waves in the transverse plane
is very important for many applications in planar waveguides.

5.2.1 The diffraction grating

Gratings are fabricated on planar waveguides either by etching the grating pattern on to
the cladding layer or on to the core. A grating can also be obtained by depositing a
material that has the grating pattern on the waveguide. When an electrode with a grating
pattern is fabricated on an electro-optic active waveguide such as LiNbO3 or a polymer
and when a voltage is applied to the electrode, the electro-optic effect of the applied
electric field creates a periodic change of refractive index in the form of a grating. In
Section 3.4, a time varying periodic change of refractive index produced by an acoustic
surface wave was discussed.

An ideal static etched or deposited grating would have a periodic rectangular spatial
profile for the grooves which have permittivity ε0, periodicity T, groove width δ,
thickness d, and groove length W, as illustrated in Fig. 5.5. Note that Δε is the spatial
variation of the permittivity between the total waveguide structure with and without the
grating. In other words, when a grating is fabricated, the original waveguide is
perturbed by the Δε. Mathematically, the Δε of the grating is a periodic summation of
all the grooves,

Δε x; y; zð Þ ¼
X
m

ε0 � ε0ð Þrect mT � z

δ=2


 �" #
rect

x� H

d=2


 �
rect

W=2� y

W=2


 �
;

where

rect τð Þ ¼ 1 for τj j � 1 and rect τð Þ ¼ 0 for τj j41:
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Here ε0 is the free space permittivity. In reality, the spatial profile of the groove may
also be trapezoidal or triangular. For gratings with rectangular grooves, Δε(x,y,z) =
Δε(z)Δε(x,y). It is well known that any periodic function of z can always be represented
by its Fourier series. Since the grating in Fig. 5.5 is an even function of z, we have

Δε zð Þ ¼ 1

T

ðT
0

Δε dzþ 2

ðT
0

Δε cosKz dz

0
@

1
A cosKzþ 2

ðT
0

Δε cos 2Kz dz

0
@

1
A cos 2Kz

þ 2

ðT
0

Δε cos 3Kz dz

0
@

1
A cos 3Kzþ higher orders: (5:10)

The fundamental term of the Fourier series which represents Δε(z)Δε(x,y) is

Δε0 cos Kzð Þ rect x� H

d=2


 �
rect

W=2� y

W=2


 �
: (5:11)

This sinusoidal grating has a periodicity T= 2π/K in the z direction, a width W in the y
direction, a thickness d in the x direction, and a maximum change of dielectric constant

Δε0, Δε0 ¼ 2
ÐT
0

Δε zð Þ cosKz dz. The Δε perturbation layer is centered at x = H, where

H ≥ t+(d/2). There are also higher order terms with declining magnitudes at periodicity
T/2, T/3, T/4, T/5, etc. The relative magnitude of the various Fourier terms will be
determined by the shape of the grooves.

5.2.1.1 Co-linear diffraction
(A) The reflection wavelength filter
Let there be a planar mth order guided wave propagating along the z direction of the
grating as shown in Fig. 5.5. The grating is placed in the evanescent field of themth order
guided-wave mode. For example, a grating may be deposited on the cladding layer or on
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Fig. 5.5. A dielectric grating co-linear with a waveguide.
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top of the waveguide. Discussion in Section 2.2.3 has shown that a forward propagating
wave in the z direction will be reflected by the grating Δε in Eq. (5.11) into the backward
direction when the phase matching condition

K ¼ 2neff;mβo ¼ 2neff;m
2π
λg


 �
; (5:12a)

is satisfied.11 Equation (5.12a) is known as the Bragg condition of reflection which
determines the center wavelength at which the maximum reflection takes place. There
will also be reflection at wavelengths slightly different than the center wavelength.
The phase matched interaction has a pass band within the wavelength range
Δλg ¼ �4πCgneff;m=K2 where Cg is the overlap integral between the Δε0 of the grating
and the guided-wave mode given in Eq. (2.15). The magnitudes of the transmitted and
reflected waves are controlled by the length of the grating and the magnitude of Cg.

There are also higher order terms in the Fourier series in Eq. (5.10). The Bragg
condition for the nth higher order terms is

nK ¼ 2nπ
T

¼ 2neff;mβo ¼ 2neff;m
2π
λgn


 �
: (5:12b)

When this condition is satisfied, reflection of guided waves at wavelengths around λgn
also takes place. Note that for a given wavelength, Bragg reflection at higher orders takes
place at much larger periodicity T. A grating with large T is much easier to fabricate, but
the coupling coefficient Cg is smaller.

In general, the co-linear interaction is used primarily as a wavelength filter. A reflection
grating filter will usually be designed so that only signals within a desired band of
wavelength will be reflected. An important observation for planar guided waves is that
Bragg reflection takes place even when the guided wave is incident on to the grating at a
moderate angle ξ with respect to the z axis. In that case the Bragg condition is

nK ¼ 2neff;mβo cos ξ ¼ 2neff;m
2π
λg


 �
cos ξ: (5:12c)

The reflected beam will be in the −ξ direction. It implies that the incident beam will be
reflected into a new direction like a mirror.

(B) Reflection and transmission between different modes
Let the waveguide have multimodes. A coupled mode analysis similar to those shown in
Section 2.2.3 will show that an incident mth order mode propagating in the +z direction
will transfer part or all of its power to the nth order mode when

K ¼ 2π
T

¼ neff;m � neff;n
�� ��k ¼ neff;m � neff;n

�� �� 2π
λg

; (5:13)

where the – sign applies to a forward propagating nth order mode, and the + sign applies
to the reverse propagating nth mode. However, there is a significant difference in the
power transfer characteristics dependent on the sign.
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In the case of a forward mth order mode interacting with the reverse nth order mode,
the coupled mode equation equivalent to Eq. (2.15) will be

daf
dz

¼ �jab
Cg

2
abe

j neff;mkþneff;nk�Kð Þ;
dab
dz

¼ þjaf
Cg

2
afe

j neff;mkþneff;nk�Kð Þ;

Cg ¼ ω
4

ðHþd
2

H�d
2

Δε0 em � e�n
��� ���dx; (5:14)

whereW is assumed to cover the entire width of the guided-wave beam. Solutions of the
amplitude of the forward and backward waves in Eq. (5.14) are in hyperbolic sine and
cosine functions as expressed in Eq. (2.17). It means that the longer the grating, the
stronger is the reflection. The larger the Δε0 and d, the wider is the wavelength band for
effective reflection. The reflection characteristics will be similar to those of the reflection
grating discussed in Section 2.2.3. The main objective of the grating is to reflect the
power in the mth order mode into an nth order mode within a certain desired wavelength
bandwidth, i.e. a reflection filter.

In the case of a forwardmth order mode interacting with a forward nth order mode, the
coupled mode equation will have a – sign on the right hand side of the equations for both
daf/dz and dab/dz. It leads to solutions of af and ab in cosine and sine functions, similar to
those shown in Eq. (3.47) when Ω ¼ 0. It means that the power transfer between the two
modes will be periodic in z. The larger the Δε0 and d, the shorter is the period. When the
phase match condition in Eq. (5.13) is satisfied, 100% transfer of power can be obtained
whenever CgW = π/2, 3π/2, 5π/2, etc. The usual objective of the grating is to transfer a
specific amount of the power from the mth order mode into the nth order mode.

(C) Coupling to air and substrate radiation – the grating coupler
When the K of the grating Δε provides the phase match condition between the forward
propagating mth guided-wave mode and an air or substrate mode with propagation
constant β in the z direction, through the nth order Fourier series, we have, analogously
to Eq. (5.12), the Bragg condition of diffraction

nK ¼ neff;mk� β
�� �� ¼ neff;m

2π
λg

� β

����
����; (5:15)

where the + sign applies again to substrate (or air) modes in the −z direction, and the –
sign applies to the substrate (or air) modes in the +z direction. Note that β ¼ n cos θ
where n is the index of the substrate (or air) and θ is the propagation angle of the radiation
from the z axis in the substrate (or air).12 However, the coupled mode equation does not
apply. The analysis of the power transfer will now be similar to that of a prism coupler
discussed in Section 5.1.2.2. When there is any incident substrate (or air) mode at the
phase matching angle, the guided-wave mode receives power from the incident radiation
mode and leaks energy to all the diffracted substrate and air modes that satisfy Eq. (5.15).
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There is no coupling of energy back to the incident radiation mode or the guided-wave
mode from the diffracted outgoing waves. The grating has been used as input coupler and
output coupler like the prism coupler.

A grating coupler is more difficult to fabricate, but it is more convenient to use without
the prism assembly. In a grating output coupler, when there is no incident substrate mode
and when there is power in the mth guided-wave mode, the grating enables transfer of
power into all the substrate (or air) radiation modes at all the phase matched angles. Note
that, in an input coupler, when there is only one substrate mode with β that satisfies Eq.
(5.12), there will be no loss of power through other orders of diffraction. Then the
maximum excitation efficiency of a grating input coupler is also 81% [6]. If there are
substrate or air modes that are phase matched to the guided-wave mode through other
orders of diffraction, the excitation efficiency will be much lower.

A practical periodic dielectric grating usually has higher order terms in its Fourier
series expansion. The period of those higher order terms will be 1/n of the T of the
fundamental term shown in Eq. (5.11). There are occasions in which the required T for
the fundamental term is too small to fabricate. Then one may fabricate a grating with a
period nTand utilize the nth order term for phase matching. An example of this is the use of
the 3rd order term for reflection in semiconductor lasers. In that case, since the material
refractive index for semiconductor lasers is more than 3, gratings with periodicity that
satisfy Eq. (5.12) in the first order will be very difficult to fabricate. However, there will be
transfer of power to all those modes that satisfy the phase matching condition through
different order terms.13 The coupling of those modes to the guided-wave mode is a power
loss. For this reason, grating input couplers often only have efficiencies in the 30% range.
Only gratings that provide phase match just between a forward planar guided wave and a
backward substrate mode may have high input efficiency. In such a grating, there is no
phase matched transfer of power to any other mode.

5.2.1.2 Deflection by grating
Let there be a grating that has its grooves oriented along the z direction and periodic
variation of ε in the y direction with periodicity T = 2π/K, thickness d, width δ, centered at
x=H and length W, located from z = 0 to z=W, as shown in Fig. 5.6. It is similar to the
grating shown in Fig. 5.5, except that its orientation is rotated to the y direction. The
fundamental term of the Fourier series expansion of the dielectric variation of the grating
can again be written as

Δε0 cos Kyð Þrect 2 x� Hð Þ
d

� 

rect

W=2� z

W=2


 �
: (5:16)

Often, K = K iy is used to designate the periodic variation of its fundamental order. This
fundamental term is also similar to the acousto-optical grating in Eq. (3.28) with Ω = 0.
Let there also be a planar mth guided-wave propagating at an angle −θi from the z axis
incident on the grating. From discussions in Section 3.5.3 and Eq. (3.45), we know that
there will be a deflected planar guided-wave propagating at an angle +θd from the z axis
when K ¼ � β

i
� β

d

� 	
, as illustrated in the inset of Fig. 5.6. In other words,14
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sin θi þ sin θdð Þneff;m 2π
λg

¼ K: (5:17)

For a guided wave incident on the grating at z = 0, the amplitudes ai and ad of the incident
and deflected wave at z ≥ W are given in Eq. (3.47) to be

ai Wð Þ ¼ A cosCW; ad Wð Þ ¼ A sinCW; (5:18)

where A is the amplitude of the incident wave for z < 0, and C is the coupling coefficient

C ¼ ω
4

ðHþd
2

H�d
2

Δε0 em
�� ��2dx: (5:19)

Therefore, such a grating is a deflector. Its deflection efficiency is determined by CW.
Note that the periodicity T of the deflection grating is much bigger than the period of
gratings used for co-linear diffractions, because θi and θd are usually small. At such large
T, electrodes can be fabricated on electro-optic material such as LiNbO3 to create the
periodic Δε pattern. The most common method to obtain such an electro-optic Δε pattern
is to use an interdigital electrode on an electro-optic material such as LiNbO3.

5.2.2 Refraction, collimation, and focusing of planar waveguide modes

5.2.2.1 Refraction of a planar waveguide mode
When the refractive index (or thickness) of either the cladding or the core layers of
a waveguide changes from one region to another, the effective indices of the planar
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guided-wave modes under different regions are different. Let there be a guided wave in
the mth mode in region 1 obliquely incident on a straight boundary separating the two
regions. The angle of the incident guided wave with respect to the boundary is θi. There
will also be a transmitted beam across the boundary in region 2 and a reflected beam in
region 1. The continuity condition of the tangential electric field must be satisfied along
the boundary in both the vertical and the lateral directions. The field of the mth order
mode on both sides of the boundary matches very well in the vertical direction. The small
difference between the incident and refracted guided waves is made up with radiation
fields. In order to match the boundary condition in the lateral direction, the direction of
propagation of themth mode in the adjacent region 2 with respect to the boundary, i.e. θ0,
must satisfy neff;m cos θi ¼ n0eff;m cos θ0.15 In other words, Snell’s law of refraction is
directly applicable using the effective index. For a moderate and smooth discontinuity at
the boundary, a negligible amount of power will be diffracted into other guided, substrate
or air modes.

A prism for planar guided waves can be made by simply depositing an extra layer of
material in the shape of a prism cross-section (i.e. a triangle) on the original waveguide.
Note, however, the difference between neff,m and n0eff,m will be very small. In other words,
such a prism is a weak prism.

5.2.2.2 Focusing and collimation of planar waveguide modes
Equation (1.42) shows that any guided wave that has an x variation of themth order mode

and a variation exp �jneff;mk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p� 	
in the yz plane is an outgoing cylindrical wave

radiating from z = y = 0. Vice versa, an exp þjneff;mk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p� 	
variation will represent

an incoming cylindrical wave focused on z = y = 0. When z is large,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
ffi zþ y2

2z
: (5:20)

Thus a guided wave at –z that has a phase variation exp þjneff;mk zþ y2

2z


 �� 

will be

focused at y = z = 0. Furthermore, a planar mth order guided-wave mode propagating in

the forward z direction will normally have an exp �jneff;mkz
� �

variation. If its phase front

at z = −f can be modified by the factor, exp þjneff;mk
y2

2f


 �
, then it will be converted into a

cylindrical wave focused at y = z = 0. This is what a waveguide lens placed at –z with a
focal length f should do. In other words, an ideal lens with focal length fwould transform
any input guided wave by multiplying its amplitude variation with a phase factor,

exp þjneff;mk
y2

2f


 �
. The representation of a lens by a quadratic phase transformation is

commonly used in three-dimensional optical analysis (see Section 1.4.3 of [1]).

Note that when the phase factor exp þjneff;mk
y2

2f


 �
is applied to an outgoing cylind-

rical wave at z = f, the resultant amplitude variation is exp �jneff;mkz
� �

which is a planar
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guided wave in the +z direction. In other words, an outgoing cylindrical guided wave is
also collimated by a lens. Needless to say for any lens or guided-wave beam of finite size,
there will be a diffraction effect of the limited aperture such as those discussed in
Section 5.1.1.

There are several ways to obtain a guided-wave lens, including the Luneberg lens, the
geodesic lens and the diffraction lens.

(A) The Luneberg lens
A generalized Luneberg lens in three dimensions is a variable index, circular symmetric
refracting structure which re-images two objects to each other. Luneberg and other
researchers have analytically determined the refractive index distribution that will give
a diffraction limited performance. Using the dispersion relation of the waveguide (i.e. neff
vs. thickness), the analysis has been extended to the required variation of the thickness
profile of the waveguide that will yield a waveguide lens [8]. A Luneberg lens has been
fabricated by depositing lens material on a planar waveguide through a shaped mask.
However, it is difficult to achieve the prescribed effective index distribution. Consequently
it has not been used in practice.

(B) The geodesic lens
When a planar waveguide is fabricated on a substrate with a contoured surface, propagation
of a guided-wave beam will follow the contour. Let there be a contoured depressed area.
Guided-wave beams propagating through the depressed area in different paths will experi-
ence different phase shifts produced by the different path length. Figure 5.7 shows a
waveguide on a substrate which has a spherical depression on its surface; R is the radius
of curvature of the surface depression and 2θ is the vertex angle subtended by the arc of
depression. It has been shown that a guided wave propagating in the z direction through the

depression will have an additional quadratic phase variation exp þjneff;mk
y2

2f


 �
, where

f ¼ R sin θ
2 1� cos θð Þ : (5:21)

Therefore, a plane guided wave will be focused at a distance f after the lens.16 Vice versa, a
cylindrical guided wave originated at distance f before the lens will be collimated. This is
known as the geodesic lens. Since all spherical lenses have spherical aberrations, research
has been conducted to use an aspheric rotationally symmetric depression to correct the
spherical aberration [8]. A numerically controlled, precision lathe has been used for
diamond turning the required surface contour on a y-cut LiNbO3 substrate, followed by
Ti-diffusion, to make a geodesic lens on a LiNbO3 waveguide with f = 2 cm [8].

(C) The Fresnel diffraction lens
In Luneberg and geodesic lenses, the argument in the expression of the quadratic phase

shift for a lens, exp þjneff;mk
y2

2f


 �� 

, exceeds multiples of 2π as | y | increases. It is well
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known that a phase shift of 2nπ is identical to a 0 phase shift. Curve (a) in Fig. 5.8 shows
the normal quadratic phase shift for a lens. Curve (b) shows only the value of the phase
shift that exceeded 2nπ. Clearly, the multiplication of the amplitude and phase of a
guided wave as a function of y by a phase shift shown in either (a) or (b) has the same
effect. In other words, a component that provides the phase shift shown in (b) will also
serve as a lens with a focal length f. Figure 5.8(c) shows a digitalized approximation of
(b) in which any phase shift from 0 to π is approximated by π, and any phase shift from π
to 2π is approximated by 0. The zones in which the digital change of phase shift is applied
to an incoming guided wave are called the Fresnel zones. If we name sn the | y | at which

neff;mk y2=2f
� � ¼ nπ then

x

z

Waveguide

R

Substrate

θ

Fig. 5.7. Cross-sectional view of a geodesic lens.
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Fig. 5.8. Digital approximation of the quadratic phase shift – the Fresnel lens. (a) Quadratic phase shift of an
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sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nπf
neff;mk

s
¼

ffiffiffiffiffiffiffiffiffiffi
nλmf

p
; (5:22)

where λm is the wavelength of the mth order guided-wave mode. The digitalized change
of phase for an incident planar TE0 guided wave has been obtained by depositing
rectangular pads of high index materials with length L and in the zone pattern on a planar
waveguide [9]. The focusing effect of such a lens could also be viewed as the diffraction
effect of the zone pads. Thus it is also known as a Fresnel diffraction lens.

The Fresnel lens is much thinner than the Luneberg or the geodesic lens. However, for
large angle oblique incident or divergent waves, the zone structure gives a phase shift
distorted from that prescribed in curve (c) of Fig. 5.8.

5.3 Diffraction devices

5.3.1 Grating reflectors and filters

The diffraction structures discussed in the preceding sections have many applications.
The most common application is the distributed Bragg reflector (DBR). It is simply a
reflection filter as discussed in Section 5.2.1.1(A). A DBR mirror gives high reflectivity
within a specific wavelength range. It has been used most often in semiconductor lasers
to replace a cleaved mirror. Oscillation of unwanted modes in lasers is eliminated by
using the wavelength selectivity. The center reflection wavelength and the bandwidth can
be tuned by the grating periodicity, the length and the overlap integral between the Δε and
the guided-wave mode (see Section 5.2.1.1). Amodification of a DBR mirror is the use of
a grating to achieve distributed feed back (DFB) semiconductor laser oscillation. Since
semiconductor materials have high refractive index, the grating periodicity required for
reflection at the first order of the grating is very small. Therefore, the 3rd order of a
grating is often used for DBR and DFB. Either DBR or DFB is applicable to channel
waveguides as well as to planar waveguides. Another application is to use the selectivity
of such a grating on the effective index to reflect back a specific propagating mode (or a
set of modes) in a multimode waveguide.

In principle, when a voltage is applied to a periodic electrode, its periodic electric field
would create a periodic change of index in an electro-optic medium. However, when the
periodicity is very small it is almost impossible to make. Its Δε pattern will have very
small thickness t compared to the field pattern of the guided-wave modes, making the
electro-optic grating reflector ineffective.

5.3.2 Grating deflector/switch

The Bragg condition for phased matched interaction given in Eq. (5.17) determines the
relation between the directions of the incident and deflected waves. Planar guided-wave
modes of the same order have the same effective index. Therefore in order to deflect most
effectively a guided wave in one direction of propagation to another direction of
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propagation as shown in Fig. 5.6, the K vector of the grating is perpendicular to the line
bisecting the β of the incident and deflected waves shown in the inset. Equation (5.18)
showed that the efficiency of deflection is proportional to sin2 CWð Þ where W is the
interaction distance given by the length of the grating grooves, and C is the coupling
coefficient which is the overlap integral of the grating Δε with the guided-wave mode
shown in Eq. (5.19). For a fixed grating, the primary application would be a guided-wave
beam splitter, which deflects a desired fraction of power into another direction.

Note that, for a small θi = θd, the T required for a deflection grating is much larger than
the T required for a DBR. For such a large T, it is practical to obtain an effective electro-
optic Δε through a voltage applied to a periodic electrode such as the interdigital
electrode illustrated in Fig. 5.9. In such an electrode, the applied electric field penetrates
into the waveguide below as shown in the inset. The electric field pattern can be
calculated by analytical methods such as those discussed in Section 4.3. When the
waveguide material is electro-optic, the applied field creates an alternating Δε between
adjacent electrode fingers. In other words, we would then obtain an electro-optic Δε. The
primary objective of an electro-optic deflector is to switch a fraction (or the entire
amount) of power into another direction of propagation. The fraction of the power
switched into the fixed deflected direction will depend on the applied voltage.

Three properties of the grating deflector switch should be noted.

(a) The coupling coefficient C in Eq. (5.19) is only moderately dependent on optical
frequency ω and the effective index of the mode. The K is fixed by the electrode
pattern. Even when the Bragg condition in Eq. (5.17) is only satisfied approximately,
deflection could still take place.17 Therefore, the advantage of the grating deflector is
that it has a moderate tolerance to incident and deflected angle alignment, mode order
and optical wavelength.
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Fig. 5.9. An electro-optic deflection switch. The inset shows the alternating electric field under the electrodes.
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(b) There is a serious limitation on the switching speed due to three factors. (1) There is a
finite transit time (~ Wneff,/c) required for the guided waves to travel and interact
through the Δε region. The transit time needs to be much smaller than the switching
time. (2) More importantly, the applied voltage creates a uniform pattern of Δε over
the entire electrode area only when the electrode behaves electrically like a lumped
element circuit element. For a wide and long interdigital electrode that covers the
width of the guided-wave beam (i.e. D) and that provides a reasonably large deflec-
tion efficiency, its lumped circuit representation is a large capacitance C. The speed
with which the deflector could be driven effectively by a time varying source is
limited by the RC time constant, as discussed in Section 4.1.2. (3) It is not possible to
obtain traveling wave interaction between the optical waves and electric waves as we
discussed in Section 4.4.

(c) In addition to the electro-optic Δε, the metallic electrode pattern may produce a fixed
periodic perturbation of the guided waves in the absence of applied voltage. In that
case there will be a residual deflected beam. Use of a low index buffer layer between
the metal and the guided-wave mode will significantly reduce the residual deflection.

5.3.3 The grating mode converter/coupler

Section 5.2.1.1(B) showed clearly that a co-linear grating with periodicity K satisfying
Eq. (5.13) will couple the power between the mth and the nth order planar guided waves.
In the reflection mode, the mutual interaction can be utilized as a reflection filter as we
have discussed in Section 5.3.1. Since different order modes have different propagation
characteristics outside the coupling region such as producing different m-lines through
the output prism coupler, the transfer of power by a grating coupler between forward nth
and mth order modes can be utilized as a power divider between modes.

5.4 The Star coupler

Diffraction of planar guided waves from an aperture can be utilized to distribute the
incident power in a guided wave into a broad range of direction of propagation. An
example of such a device is a planar waveguide Star coupler as shown in Fig. 5.10. The
power from a given input port (i.e. aperture) fed from a channel waveguide is distributed
equally toN output ports. There areN such input ports. Therefore it is anN ×N distributor. It
is used in wavelength division multiplexed (WDM) fiber optical systems.

The Star coupler consists of two arrays of N uniformly spaced identical ports fed from
channel waveguides. Each port has width a. Ports (i.e. ends of channel waveguides) in
each array are located on a circular arc with radius R. There are two circular arcs facing
each other. The center of the circle of the array on the left is at O0 which is also the middle
of the circular arc for the array on the right. Vice versa, the center of the circle on the right
is at O which is also the middle of the circular arc for the array on the left. The center
position of the kth port on the left arc is given by Rθo,k, and the center position of the jth
port on the right arc is given by Rθ0o,j. The region between the two arrays is a single mode
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planar waveguide. The power entering the single mode planar waveguide region (from
any one of the 2N waveguides) will be diffracted and propagated in the yz plane as the
generalized guided wave of the planar waveguide. Waveguides on the opposite circular
arc are excited by the radiation carried by this generalized guided wave.

The objective of the Star coupler is to maximize the power transfer between any one of
the channel waveguides in the left array and any one of the waveguides in the right array.
Ideally, there is no power loss and the power from any input waveguide is divided
uniformly into the N output channels. In that case the transfer efficiency will be 1/N.
However, this is impossible to achieve in practice. In this section we will analyze the Star
coupler using the generalized planar TE0 guided-wave mode. In particular we will
calculate the field at the output array produced by the radiation from a given channel
waveguide in the input array. We will calculate the excitation of the mode of the channel
waveguide in the output array by this field, thereby determining the power transfer from
the input channel to the output channel.

The incident field at each port is the mode of the channel waveguide. Let us assume
here that the Ey of the guided-wave mode for all input and output channels in the yz plane
is ψ(y) or ψ(y0), where y (or y0) is the coordinate along the left (or right) circular arc as
shown in Fig. 5.10. Transmission between any two ports (i.e. the P port on the left circular
arc centered about θo,k and the P0 port on the right circular arc centered about θ0o,j), is
determined by (1) calculating the generalized planar guided-wave field at y0=Rθ0 dif-
fracted from P, and (2) calculating the coupling of that field into P0.

In order to calculate the field radiated from P to Rθ0, we note that the distance between y
and y0 in the first order approximation of the binomial expansion is

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R cos θ0 � R� R cos θð Þ½ �2þ R sin θ0 � R sin θð Þ2

q
ffi R� R sin θ 0 sin θ ffi R� Rθθ0:

θ = θo,k

θ′ = θo,j′

a

y ′ya

O O′

P

2α

R

ψ

a/2–a/2

R(θ − θo,k)

ρ

P ′

Fig. 5.10. The Star coupler. (Taken from ref. 10 with permission from IEEE.)
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Thus, for large βρ, the field produced by P at P0 is

Ey Rθ 0ð Þ ffi
ffiffiffiffiffiffiffiffiffiffi
neffk

j2π R

s
e�jneffkR

ðθo;kþ a
2R

θo;k� a
2R

ψ Rθð Þeþj2π
neff
λ θ0ð ÞRθR dθ: (5:23)

Here, we have assumed that the field for the kth port is confined approximately within the
waveguide as shown in the inset of Fig. 5.10. Note that the phase factor, −jneffkR, is now a
constant on the circular arc on the right. Thus the positioning of the ports on confocal
circular arcs serves the function of creating this constant phase factor, similarly to the
spherical reflectors in a confocal resonator in three dimensions. The relation between
Ey Rθ0ð Þ and ψ Rθð Þ is related by an integral resembling a Fourier Transform as follows.

Using a change of variable, u ¼ 2R

a
θ � θo;k
� �

, we obtain

Ey Rθ0ð Þ ffi a

ffiffiffiffiffiffiffiffi
neff
jλR

r
e�jneffkReþj2π

neffRθo;kθ
0

λ � Rθ0ð Þ;

where

� Rθ0ð Þ ¼ 1

2

ðþ1

�1

ψ
au

2

� 	
eþj2π

neffaθ
0

2λ

� �
udu: (5:24)

Since the ψ(au/2) is identical for all the waveguides, the � factor is independent of θo,k.
The Ey is only dependent on the center position Rθo,k of the input channel through the

factor exp j2π
neffRθo;kθ0

λ


 �
. Let the total Ey at Rθ0 be expressed as a summation of the

fields of all the channel guides, ψi(Rθ0), on the right circular arc array plus the stray
guided-wave fields in the gaps between channel guides, ζ(Rθ0). Let us assume, as an
approximation, that there is negligible overlap among all the ψi and the ζ. Then

Ey Rθ0ð Þ ¼
X
i

biψi Rθ
0ð Þ þ ζ Rθ0ð Þ: (5:25)

Here, ψi(Rθ0) is the ψ centered about θo,i. Multiplying both sides by ψj
*(Rθ0) and

integrating with respect to Rθ0 from −∞ to +∞, we obtain

ðθo;jþ a
2R

θo;j� a
2R

Ey Rθ0ð Þψ Rθ0ð ÞRdθ0 ffi bj

ðθo;jþ a
2R

θo;j� a
2R

ψ Rθ0ð Þj j2R dθ0:

Utilizing once more the change of variable, u0 ¼ 2R

a
θ0 � θ0o
� �

, we obtain

bj
�� ��2 a
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ðþ1

�1

ψ
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2
u0 þ Rθo;j

� 	��� ���2du0
2
4

3
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2

¼ neffa
4

λR
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; (5:26)

or
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bj
�� ��2¼ 4neffa

2

λR

� Rθo;k
� ��� ��2 � Rθo;j

� ��� ��2
Ðþ1

�1

ψ
a

2
uþ Rθo;k

� 	��� ���2du
" #2

: (5:27)

Since the power contained in the total Ey is proportional to
Ð

Ey

�� ��2R dθ which is

approximately equal to
P
i

bij j2Ð ψj j2R dθ, | bj|
2 is the power transfer from the channel

waveguide centered at θo,k to the channel waveguide centered at θo,j.
In an actual Star coupler, R, N and “a” are designed to optimize the power transfer.

Dragone and his colleagues have optimized the design which gives 0.34(1/N) to
0.55 (1/N) of the input power to any one of the output channels [10].

5.5 The acousto-optical scanner, spectrum analyzer, and frequency shifter

An acousto-optical deflector (or scanner) is a device that deflects a planar guided-wave
mode into a different direction by a grating generated from a surface acoustic wave
(SAW). The surface acoustic wave is generated from an electric signal applied to a
SAW transducer such as the interdigital transducer illustrated in Fig. 3.11. The strain
from the acoustic wave creates a surface layer of traveling refractive-index waves with
periodic index variation. An approximate mathematical expression of a traveling
grating generated from a CW single frequency acoustic wave is presented below in
Eq. (5.28). The periodicity of the refractive-index wave is determined by the SAW
wavelength. The generation of the traveling refractive-index wave has been discussed
in Section 3.4.

When there is an incident optical guided wave and when the phase matching condition
along both the lateral and the longitudinal directions is satisfied, efficient diffraction
occurs. Optical energy in the incident wave is transferred to the deflected wave that has a
slightly different direction of propagation than the incident wave as illustrated in
Fig. 3.12. The direction of the deflected wave depends on the acoustic wavelength
which is the acoustic velocity divided by acoustic frequency. At the same time, the
optical frequency of the deflected wave is shifted slightly from that of the incident wave.
Acousto-optical interaction under the phase matched condition has already been ana-
lyzed and discussed in Section 3.5.3. Figure 5.11 illustrates an integrated optical spec-
trum analyzer [8].

In the acousto-optical spectrum analyzer illustrated in Fig. 5.11, the single mode
LiNbO3 waveguide has polished vertical input and output ends. An incident beam of
guided wave in the 0th order TE mode is excited by the semiconductor laser butt coupled
to the waveguide. The small lateral size of the oscillating mode of the semiconductor
laser produces a divergent optical planar guided-wave beam as we have discussed in
Section 5.1.1. A geodesic lens as described in Section 5.2.2.2(B) is used to collimate the
divergent beam. A surface acoustic wave (SAW) transducer generates a surface acoustic
wave in the y direction. It isWwide in the z direction. The SAWis eventually absorbed by
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the acoustic absorber. Hence there is no reflected SAW. When the SAW transducer is
driven by a RF signal, the SAW generates a traveling wave Δε grating. For a CW RF
signal applied to the SAW transducer, the Δε is described mathematically in Eq. (3.28) as

Δε x; y; z; tð Þ ¼ Δε cos Ka 	 ρ� Ωt
� 	

rect
t=2þ x

t=2


 �
rect

W=2� z

W=2


 �
;

Ka ¼ Kaiy; ρ ¼ yiy þ ziz; ε ¼ n2εo; Δε ¼ 2nΔnð Þεo: (5:28)

Note that Ka is proportional to acoustic frequencyΩ,Ka ¼ 2π=λa ¼ Ω=vac. The Δε(x,y,z,
t) is W wide. Although the magnitude of the SAW has an x variation, the magnitude of
Δε(x,y,z,t) in the x direction is approximated by a uniform value of Δε from x =0 to x=− t
in Eq. (5.28). The Bragg condition for phase matched interaction is given in Eq. (3.45),

β
i
� β

d

� 	
	 ρ ¼ 
Ka 	 ρ or β d ¼ β

i
� Ka: (5:29)

When the Bragg condition is satisfied, the Δε grating deflects part of the optical power in
the incident collimated beam in the θi direction into a deflected collimated beam in the θd
direction. Both the incident and the deflected beam are focused by a second geodesic lens
on to the output edge of the LiNbO3 waveguide. Since θi and θd are different, the incident
and the deflected beams will have different focused spots along the y direction.
According to Eq. (3.48) the optical power of the deflected beam will be proportional to
sin2 CaWð Þ. According to Eq. (3.44), (3.30), and (3.28), Ca is proportional to

ffiffiffiffiffiffiffi
Pac

p
,

where Pac is the acoustic power provided by the RF signal. As the acoustic frequency
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Fig. 5.11. The acousto-optical spectrum analyzer. The inset shows the matching of Ka, βi and βd as the
acoustic Ka is varied.
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changes, the direction of the collimated deflected beam will change, resulting in a change
of the position of the focused spot. In the spectrum analyzer, a detector array is used to
detect the optical power coupled out at different y positions. Therefore, change in the
detected position of the focused radiation output is a measure of the RF frequency, while
the amount of the optical power in the deflected spot is a measure of the RF power applied
to the SAW transducer.

Note also that, according to the analysis presented in Section 3.5.3, the optical
radiation in the deflected beam is related to the optical frequency of the incident beam
by ωd ¼ ωi 
Ω. The shift in ωd from ωi is used to obtain frequency shifting. When the
detector array is removed from the spectrum analyzer shown in Fig. 5.11 the component
becomes an acousto-optical scanner.

The acoustic transducer, the lenses and the position of the optical input of the incident
guided wave cannot be repositioned after the devices have been made. Thus the directions
of the incident collimated optical guided wave and the acoustic wave are fixed. Since the
periodicity of the acousto-optical grating is determined by the frequency of the electrical
signal applied to the SAW transducer, the Bragg condition is strictly satisfied for a given θi
only at the center frequencyΩ. When the acoustic (i.e. RF) frequency is varied, the relation
between βi, βd andKa will deviate from the Bragg condition. The diffraction efficiency will
decline when the deviation from the Bragg condition becomes bigger.

We can evaluate again the effect of mismatch between βi, βd and Ka by coupled mode
analysis.18 When the acoustic frequency shifts from Ω to Ω0, Ka changes to Ka

0 . The
optical frequency of the diffracted wave is ωd

0 = ωi − Ω0. Note that βd0 will now be
oriented in a new direction θd0 to satisfy the phase matching condition in the y direction.
Other waves with βs that do not meet the phase matching condition in the y direction will
have negligible amplitude. The shift of θd0 as a function of Ka

0 is the principal mechanism
for controlling the direction of deflection. βi, Ka

0 and βd0 are illustrated in the inset of
Fig. 5.11.

The relation between βi, βd0 and Ka
0 can now be stated as

β0
d
¼ β

i
þ K0

a þ ΔK0
a; or ΔK0

a ¼ ΔK0
aiz ¼ neffk cos θ0d � cos θi

� �
iz: (5:30)

When we include the ΔKa
0 , the coupled mode equation (3.44) becomes

dai
dz

¼ �ja0dCae
jΔK0

az; and
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dz

¼ �jaiCae
�jΔK0

az: (5:31)

The solution for | ad0 | = 0 at z= 0 is
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The degradation of the deflection efficiency from ai into ad0 is small when
ΔK0

a

2
� Ca.

Acousto-optic deflection has a number of applications. (1) When the acoustic frequency
is scanned, the direction of the deflected wave changes. Thus an acousto-optical deflector
can be used as an optical scanner. (2) The optical frequency of the deflected beam is shifted
from the frequency of the incident optical beam. Thus an acousto-optical deflector is used
sometimes as a frequency shifter. (3) When the acoustic signal has a complex RF frequency
spectrum, the optical energy deflected into various directions can be used to measure the
power contained in various RF frequency components, known as the acousto-optical RF
spectrum analyzer. How we utilize acousto-optical deflection for spectral analysis of RF
signals, for scanning of an optical beam, or for slightly shifting the optical frequency
varies. Applications using these devices have different objectives. Their electrical and
optical performance is discussed separately in the following sections.

5.5.1 The optical scanner

The physical structure of an optical scanner will be similar to that of the spectrum
analyzer shown in Fig. 5.11 without the detector array. The CW SAW at frequency Ω
is used to transfer the power in the collimated incident optical guided-wave into a
deflected wave. The deflected spot is scanned as Ω is scanned. The focused spot of the
deflected wave is the output. Each spot has a finite size. In order to resolve different spots,
any change in focused position must be larger than the spot size. In any scanner, we like
to obtain the largest number of resolvable spots. It is also desirable to transfer uniformly
the maximum amount of optical power in the incident beam into the output ports of the
deflected beam. The speed at which the scanning can be achieved is also important.

From the above discussion, we can make the following conclusions.

(A) The wider the range of ΔΩ that we scan, the larger is the scanned Δθd. The range
within which Δθd can be scanned depends on two factors. (1) The bandwidth of the
transducer. (2) The frequency dependence of the attenuation of the SAW. In
Eq. (5.28), we have assumed that the SAW is not attenuated. In reality the attenua-
tion of a SAW increases with Ω. It becomes very high at the GHz range.

(B) For a given lens with focal length F, the distance that the focused spot moves for a
given Δθd is FΔθd. The minimum diffraction-limited focused spot size of an ideal
lens is of the order of Fλg/D, where D is the width of the collimated guided wave,
and λg ¼ λ=neff;m is the wavelength of the guided wave. Therefore the number of
resolvable spots that can be scanned is ΔθdD=λg.

(C) There are limitations on how wide a D can be employed. (1) The D is limited by the
available size of the chip. (2) TheDmay be limited by the desired speed to switch from
one Ω to another. The time required to swing from one Ω to another must be longer
than the transit time for the SAW to cover the width of the optical guided wave D,
i.e. D/vac. The larger the D, the slower is the switching time from one spot to another.

(D) In addition, in order to transfer optical power efficiently into the deflected spot we
like to have CaW � π=2. However, in order to generate SAWat higher frequencies
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the spacing of the interdigital electrodes which controls the height of the acoustic
wave, needs to be reduced. The higher the SAW frequency, the smaller is the height t
of the acoustic wave. The smaller the t, the smaller is the coupling coefficient Ca.
The reduction of Ca and increase of ΔKa limits the uniformity of the power deflected
into the spots.

(E) Obviously, the performance of the scanner will also be affected by the design of the
SAW transducer which has not been covered in this book.

5.5.2 The acousto-optical RF spectrum analyzer

Note that, for small
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

a þ ΔK0
a=2

� �2q
W and for ΔKa

0 << Ca, the intensity of the
diffracted beam, | ad0 |

2, is proportional to CaWð Þ2 which is proportional to Pac. When
the SAW contains many frequency components, it means that the intensity of the
deflected beams at a given θd0 will be proportional to the power of the acoustic surface
wave component at the frequency Ω0. In other words, when one measures the optical
power deflected into different directions θd0 , the detected optical power measures the RF
power at the frequency Ω0 applied to the transducer. The performance of an acousto-
optical spectrum analyzer will be measured by the frequency resolution at which the
spectral components can be distinguished and by the dynamic range at which the RF
power of different frequency components can be measured. Note that the transit time for
the acoustic wave to travel across the optical beam isD/vac. Therefore any variation of the
RF spectrumwithin a time period shorter than the transit time will yield errors in acousto-
optical spectrum analysis.

The diffraction limited spot size of an ideal lens with focal length F is Fλg=D where D
is the size of the incident beam. Vice versa, any incident beam within an angular spread
λg/D will be focused within the spot. According to Eq. (5.30),

Δθ0d ¼ ΔΩ=2πð Þλg
vac

; (5:33)

using the small angle approximation of θs. Therefore, the minimum measurable spread
of acoustic frequency corresponding to the diffraction limited angular spread Δθ0d ¼
λg=D is

Δfac ¼ ΔΩ
2π

¼ vac
D

: (5:34)

If the detector array has detector spacing sd which is just larger than the diffraction limited
spot size, the spread of acoustic frequency corresponding to a single detector cell is

Δfac ¼ vac
D

sd

Fλg=D
� � ¼ vacsd

Fλg
; (5:35)

where Δfac is the minimum frequency resolution of the spectrum analyzer. For LiNbO3,
using vac = 3500m/s, neff = 2.2, sd = 10 μm, and F = 45mm, Δfac is about 2MHz.

The dynamic range of a single spectral component in the spectrum analyzer will be
determined by the logarithm of the ratio of the maximum signal power to the minimum
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detectable signal power in dB. The minimum detectable signal power at a given fre-
quency Ω is the signal power that produces a photo-current in the detector equal to the
photo-current contributed from all noise sources. These sources include the detector shot
and thermal noise, the laser noise, numerous mechanisms that couple the stray optical
power from the incident beam, the signal component, as well as adjacent strong spectral
components entering the detector through mechanisms such as radiation from side
diffraction lobes, in-plane scattering, etc. [8]. The maximum detectable power is the
maximum allowed signal power without producing large spurious signals due to non-
linearity. In reality the maximum signal power is often limited by the available laser
power.

5.5.3 The acousto-optical frequency shifter

In many respect, the acousto-optical frequency shifter is a very simple device. The SAW
transducer needs only to generate efficiently a SAW at the desired shift of frequency Ω.
The magnitude of the SAW needs to be controlled such that CaW � π=2. The focused
spot size should match the mode of the output fiber so that the frequency shifted optical
power is transferred efficiently into the output channel, e.g., an optical fiber.

Notes

1. For waveguides that have an inclined end surface, the incident beam needs to be directed at an
angle according to Snell’s law of refraction.

2. Snell’s law of refraction applies to the directions of propagation of the incident beam and the
excited guided-wave beam where the indices are the index of the air and the effective index of
the guided wave.

3. Note that selective excitation of a higher order mode requires a phase variation of the input
radiation to match that of the guided-wave mode. This is difficult to do.

4. The transmitted wave is in phase with the plane wave representing the mth order waveguide
mode which has been excited by other optical rays at all prior positions of z because
np cos θpm ¼ neff;m. If np cos θp 6¼ neff;m, the transmitted wave will have varying phase relation
with respect to the plane waves of themth order mode excited at different z positions, resulting in
cancellation of the accumulated guided wave.

5. Similarly to the tunneling of electrons between energy gaps, the transmission through the
evanescent field in the air gap is also called tunneling.

6. For example, LiNbO3 waveguides have neff,m ≈ 2.2. Then the evanescent field variation at the
1.5 μmwavelength is exp(−8.2 × 106 x). This means that the air gap should be ≈ 10–7m in order
to get effective interaction.

7. The intensity of the guided wave is usually monitored by observing the intensity of the radiation
scattered from the waveguide by defects or surface irregularities or by employing a second
prism to couple out the guided-wave energy. The energy in the guided-wave mode will appear as
an m-line of the output prism. Sometimes the waveguide is terminated by a smooth vertical end
surface or a tapered end. In that case, the intensity of the guided-wave mode can be observed or
measured directly at the output end.

8. From another point of view, a plane wave in the air is diffracted by the grating into another plane
wave in the core of the waveguide. When the Bragg condition is satisfied, the diffracted plane
wave, internally reflected at the core boundary, is the guided-wave mode in the core.
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9. See Sections 1.2.3.3 and 1.2.4.3 for discussion on the cut-off condition of the modes.
10. An important advantage of using the prism method to measure the waveguide loss is that the

input coupling can be held constant while the output coupler is moved. The output coupling
efficiency is reproducibly 100%.

11. Equation (2.12) is written for channel waveguide modes. To apply it to planar waveguide
modes, we consider the guided wave to be uniform in y and have unity lateral width. When
grating width W covers the entire width of the guided wave, the integration in the y direction
will yield just unity.

12. See Sections 1.1.1, 1.2.3.5 and 1.2.3.6 for further discussion of equivalence between air and
substrate modes and plane waves propagating in the substrate or air.

13. Since the transfer efficiencies to different modes depend on the Fourier coefficient of the
expansion, i.e. the shape of the dielectric grating, a grating with a blazed groove may be used to
reduce diffraction into unwanted orders [7].

14. In comparison with Eq. (3.45), we have assumed here that neff;m cos θi ffi neff;m cos θd. This
means that effective deflection occurs only when θi ffi θd.

15. Since neff,m is close to n0eff;m, the reflection will usually be very small. However when
neff;m cos θi4n0eff;m total reflection will take place at the boundary.

16. Note that f is independent of effective index or wavelength. It depends only on the geometry.
17. Deflection slightly off the Bragg angle will be discussed for the acousto-optic grating in

Section 5.4.
18. Coupled mode analysis is applicable because the incident and deflected beams overlap each

other in the region of the yz plane where the SAW exists.
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6 Channel waveguide components

Fields in channel waveguides are confined to the vicinity of the core within a few μm in
both the lateral and the depth directions. There are two main advantages of the lateral
confinement of channel guided-wave modes:

(1) The RF electric field required to obtain an electro-optical effect such as electro-optic
change of index or electro-absorption needs only to exist in a small region around the
core. The required electric field in a small region can be achieved with just a
moderate RF voltage applied to the electrodes. Furthermore, when the electrodes
are fabricated parallel to the channel waveguides, the electro-optical change of index
or electro-absorption produced by a propagating RF signal can be synchronized with
the propagation of the guided wave in a traveling wave interaction as discussed in
Chapter 4. Thus the electro-optical modulation at high frequencies may be carried
out effectively.1

(2) Most optoelectronic devices are eventually connected to single mode optical fibers.
The optical field pattern of the channel waveguides can be designed such that it
matches well with the field pattern of single mode optical fibers or tapered fibers,
providing high efficiency transmission of optical power to and from the low loss
single mode fibers.

Traditionally, guided-wave devices have been discussed in the literature according to
the type of optical interactions they utilize, such as directional coupling or electro-
absorption. However, for a given application such as switching, there are many compet-
ing channel waveguide optoelectronic devices that may utilize different types of
interaction and electro-optical effects to achieve the desired operational function. The
choice of the device needs to be based on its combined optical and electrical character-
istics best suited for that application. Therefore the discussion of the devices in this
chapter is presented according to the different optoelectronic functions to be performed.

6.1 Passive waveguide components

In many applications, passive waveguide devices are used to split or distribute optical
power into different waveguides, to filter the optical radiation according to its wavelength
or to provide true time delay of pulsed radiation. Besides the optical properties such as
insertion loss, power distribution and wavelength bandwidth, the performances of these



devices are characterized by their ability to interface effectively with single mode optical
fibers. There is no RF electrical signal controlling their characteristics.

6.1.1 The power divider

In guided-wave and fiber optical systems, power dividers are needed to channel specific
fractions of input power into different output channels. The power dividers may also be
interconnected to other waveguide devices. Eventually, single mode fibers are connected
to the waveguide devices. The performance of power dividers is measured by their output
power distribution, wavelength response, insertion loss, physical size and coupling loss
to other components or fibers. Thematching of the channel waveguide mode and the fiber
mode is important to minimize the coupling loss.2

6.1.1.1 The Y-branch equal-power splitter
An adiabatic symmetric single mode Y-branch waveguide splits the optical power in the
input waveguide equally into two output waveguides. In this device, a single mode
waveguide is interconnected with two identical single mode waveguides in a Y-branch
configuration. The device was discussed in Section 2.3.4.2 and illustrated in Fig. 2.7(a).
The waveguide are coupled into other waveguide devices or optical fibers. The perfor-
mance of any splitter is defined by its insertion loss and distribution of input power into
the two output waveguides. Depending on the waveguide mode pattern, the tapering
angle, the sharpness of the intersection, the material and fabrication tolerance, there is an
excess insertion loss, produced by the power scattered into the substrate at the intersec-
tion. In addition, there are propagation losses and coupling losses to and from the optical
fiber. The major cause of scattering loss is often the imperfections created by the
fabrication process. Since the scattering increases as the dielectric discontinuity of the
imperfections increases, the excess loss is more likely to be higher in a Y-branch that has
more abrupt boundaries and a larger difference between the index of the core and the
claddings. Most Y-branches are symmetrical, meaning that the power is divided equally
into the two output waveguides.3 Although an unsymmetrical Y-branch should, in
principle, be able to divide the power unequally into the two output waveguides (see
Section 2.3.4.4), its performance is sensitive to variation of Y-branch and waveguide
configurations. Instead, the directional coupler discussed in Sections 2.2.4 and 2.3.2
is the preferred method to split power unequally into two waveguides. The performance
of the Y-branch equal-power splitter is only very mildly dependent on wavelength
because the splitting ratio is independent of the wavelength and the excess and propaga-
tion losses vary slowly with wavelength.

6.1.1.2 The directional coupler
A directional coupler consists of two parallel waveguides, A and B, that have a coupling
region with lengthW. Outside the coupling region, the waveguides are well isolated from
each other. They function as individual isolated waveguides. Within the coupling region,
the guided waves propagating in the two waveguides are coupled to each other via their
evanescent fields. The powers of the guided waves in A and B transfer back and forth as
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they propagate in the coupling region. The power distribution in the two waveguides at
the end of the coupling region determines the distribution of the output power. The
directional coupler was discussed in Section 2.2.4 and illustrated in Fig. 2.4(a). If the
device is used standing alone, a single mode optical fiber (or a waveguide from another
device) will be coupled to the input waveguide A and to the output waveguides A and B.

Let the coupling region begin at z = 0 and end at z =W. Let the amplitude of the guided
wave in waveguide A be aA, and the amplitude of the guided wave in waveguide B be aB.
At z = 0, let aA = A and aB = 0. From Eq. (2.22), we obtain:

aA ¼ Aej
Δβ
2 W cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
W

� �2
64

�j
Δβ=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBACAB þ Δβ=2ð Þ2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
W

� �375;
aB ¼ �jCABAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBACAB þ Δβ=2ð Þ2
q e�jΔβ2 W sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ=2ð Þ2

q
W

� �
;

(6:1)

where Δβ ¼ neff;A � neff;B
� �

k, W is the length, and CAB and CBA are coupling coeffi-
cients in Eq. (2.11) for the coupling section. Clearly the amplitude ratio aB/A is controlled
by Δβ, C and the length of interaction z = W.

In most directional couplers, A and B are identical waveguides, thus Δβ = 0 and
CAB=CBA=C. At z = W, when propagation and coupling losses are neglected, 100%
power is transferred from waveguide A to waveguide B for CW ¼ nþ 1

2

� �
π, and

all power is retained in waveguide A for CW=nπ. Vice versa, there is 100% transfer
of power from waveguide B to waveguide A when CW ¼ nþ 1

2

� �
π, and all power is

retained in waveguide B when CW = nπ. In practice, there will be a small insertion loss
caused by propagation loss and the excess scattering loss produced from the fabrica-
tion processes.

The directional coupler is a reciprocal device. Reflected optical power in the output
waveguides will also be distributed in the same ratio back to the input waveguides. Thus
the waveguide at the input that does not have the incident radiation could be used to
monitor the reflections from the output. Most commonly, the waveguides at the input end
will be match terminated, meaning that the reflected power to the input guides will be
radiated or absorbed without further reflection. Since the coupling coefficient C and Δβ
are dependent on the wavelength, its performance will have a moderate wavelength
dependence. When the coupling coefficient C or the Δβ of the modes is controlled
electro-optically, it becomes a directional coupler switch (or modulator) which will be
discussed in Section 6.1.2.5. The directional coupler could also easily be made directly
from two coupled optical fibers with cladding partially removed to provide the coupling
via the evanescent field. The length of this interaction region and the proximity of fiber
cores control the power splitting ratio between the two fibers. The advantage of a fiber
directional coupler is that there is no need to couple the fiber to the waveguide.
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There are other power dividers besides the 3 dB Y-branch and directional couplers.
Three examples are discussed here.

6.1.1.3 The Star coupler 1×N splitter
The Star coupler discussed in Section 5.4 is basically a 1×N splitter. It is illustrated in
Fig. 5.10. In this case, the input power can be incident into any one of the waveguides
located on the input circular arc. The output waveguides are located on the opposite
circular arc. The region between the input circular set of waveguides and the output
circular set of waveguides is a planar waveguide. The diffraction of the electric field of
the input waveguide in the planar waveguide distributes the input power to all the output
waveguides. Ideally, the input power will be divided equally into all the output wave-
guides. In reality, Dragone has demonstrated a design which gives 0.34(1/N) to 0.55(1/N)
to the output waveguides [1].4

Alternatively, directional couplers discussed in the previous section could also be used
repeatedly to split the input power into more than one output. There are three advantages
of the Star coupler.

(1) The Star coupler is a much simpler device for N > 2.
(2) The 1×N splitting can be achieved from any one of the N input guides.
(3) There is a well-controlled phase variation of the optical guided waves at each output

channel waveguide (see Eq. (6.11)) while the phases of the optical radiation in the
outputs of the multiple-directional couplers are very difficult to control. However, the
power can only be distributed equally to the output waveguides in a Star coupler,
while the power transfer ratio of each of the multiple-directional couplers could be
adjusted individually.

6.1.1.4 The Y-branch variable power distributor
In Section 2.3.4.2(b) we discussed a device which consists of two symmetrical Y-branch
couplers back-to-back connected by a two-mode waveguide between the two Y-branches.
It is illustrated in Fig. 2.8(a). This is also a power distributor, for whatever the radiation
input into the two input waveguides of the input Y-branch, it excites both the symmetric
mode es and anti-symmetric mode ea at the beginning of the two-mode section.

Let the amplitude of the guided-waves in the two isolated identical waveguides A and
B at the input end of the Y-branch (i.e. at z = −L0 in Fig. 2.8(a)) be Ain and Bin. Then the
electric field at z = −L0 can be represented either by the modes of the isolated waveguides
or by the super modes of the two waveguides combined as follows:

Ain z ¼ �L0ð ÞeA þ Bin z ¼ �L0ð ÞeB ¼ As z ¼ �L0ð Þes þ Aa z ¼ �L0ð Þea; (6:2)

where eA and eB are the modes of the isolated waveguides and es and ea are the symmetric
and antis-ymmetric modes of the combination of waveguides A and B. Note that As and
Aa are amplitudes of the symmetric and anti-symmetric modes. From Section 2.3.2,

es ¼
1ffiffiffi
2

p eA þ eBð Þ; ea ¼
1ffiffiffi
2

p eA � eBð Þ:
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From the orthogonality property of the modes in lossless waveguides, we have

As

ð
es � e�sdxdy¼ Ain

ð
eA � e�sdxdyþ Bin

ð
eB � e�sdxdy

� �

¼ Ainffiffiffi
2

p
ð
eA � e�Adx dyþ

Binffiffiffi
2

p
ð
eB � e�Bdxdy

;

(6:3)

Aa

ð
ea � e�adx dy¼ Ain

ð
eA � e�adxdyþ Bin

ð
eB � e�adxdy

¼ Ainffiffiffi
2

p
ð
eA � e�adxdy�

Binffiffiffi
2

p
ð
eB � e�Bdx dy: (6:4)

For a symmetrical Y-branch,ð
eA � e�Adx dy ¼

ð
eB � e�Bdx dy ¼

ð
es � e�sdxdy ¼

ð
ea � e�adxdy:

Therefore, we obtain:

As ¼ Ain þ Binffiffiffi
2

p and Aa ¼ Ain � Binffiffiffi
2

p : (6:5)

When the symmetric and anti-symmetric modes propagate adiabatically from z = −L0 to
z =+L0, their amplitudes and phases at the output are

As z ¼ þL0ð Þ ¼ As z ¼ �L0ð Þe�j�s;in e�jβs 2Lcð Þe�j�s;out ; (6:6)

Aa z ¼ þLcð Þ ¼ Aa z ¼ �Lcð Þe�j�a;in e�jβa 2Lcð Þe�j�a;out : (6:7)

Here, �s,in and �a,in are the phase shift of the symmetric and anti-symmetric modes at the
input Y-branch, �s,out and �a,out are the phase shift of the symmetric and anti-symmetric
modes at the output Y-branch, and βs and βa are the propagation wave numbers of the
symmetric and anti-symmetric modes in the two-mode waveguides. The two-mode
waveguide is 2Lc long. At the output we have

Aout z ¼ þLcð Þ ¼ Ain þ Bin

2
e�j�s;in e�j�s;out e�j2βsLc

þAin � Bin

2
e�j�a;in e�j�a;out e�j2βaLc ; (6:8)

Bout z ¼ þLcð Þ ¼ Ain þ Bin

2
e�j�s;in e�j�s;out e�j2βsLc

�Ain � Bin

2
e�j�a;in e�j�a;out e�j2βaLc : (6:9)

Various distributions of Aout and Bout can be obtained by variations of Lc, Ain and Bin. In
order to illustrate the power divider functions, we consider several examples.

(1) Whenever Bin is zero, the length of the two-mode waveguide Lc can be adjusted so
thatΔ�Y ¼ �s;in þ �s;out þ 2βsLc

� �� �a;in þ �a;out þ 2βaLc
� �

is zero or 2nπ so that
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Bout = 0. This represents the case where all power is retained in waveguide A. Vice
versa, when Δ�Y is (2n+1)π, Aout = 0. This represents the case where all power is
transferred from A to B.

(2) When Ain is zero, Aout = 0 when Δ�Y = 0 or 2nπ, while Bout = 0 when Δ�Y = (2n+1)π.
(3) When there is only input into either waveguide A or waveguide B, various relative

distributions of power in the two output waveguides can be obtained by using an
appropriate length of the two-mode waveguide to yield the necessary Δ�Y.

5

(4) When there are inputs into both waveguides, the outputs depend on the relative
magnitude of Ain and Bin and their relative phase. For example for Ain = Bin, only the
symmetric mode is excited and Aout and Bout will always have equal magnitude.

6.1.1.5 The mode interference power divider
As a third example, the multimode interference coupler discussed in Section 2.4 is also
a power splitter. It is illustrated in Fig. 2.10(a) for a two-mode interference coupler
which has two input waveguides and two output waveguides. In this example, when
only one of the waveguides is excited by the input radiation, the interference pattern of
the total field in the coupler as a function of the distance was illustrated in Fig. 2.11.6

If losses are neglected, the power transferred to any one of the output waveguides can
be varied from 0% to 100% depending on the length of the coupler. A 2×2 InGaAsP
MMI cross coupler has been made with W = 8 μm and L = 500 μm which gives excess
loss of 0.4 to 0.7 dB and an extinction ratio of 28 dB. A 3 dB splitter has also been
obtained with L = 250 μm. The imbalance between the power in the two output
waveguides is well below 0.1 dB. For a general multimode interference coupler,
there are more than two modes in the coupler and more than two waveguides
connected to the coupler. When a waveguide is coupled to the input at an appropriate
transverse position and output waveguides are coupled to the device after a specific
propagation distance at their specific transverse positions, various distributions of
power into the output guides can be obtained [see 2].

Comparing all the power splitters, the Y-branch equal-power splitter is reliable and
easy to make. The directional coupler is reliable and commonly used for unequal
splitting of power into two outputs. It is difficult to control precisely the length of the
two-mode waveguide in the back-to-back Y-branch coupler.7However, the relative phase
of the guided-wave modes at the output is controlled. The Star coupler and the mode
interference coupler provide 1×N splitting of power. The mode interference coupler is a
very compact device. Typically its length is of the order of 100 μm. However, the Star
coupler and the multimode interference coupler may have a higher insertion loss in
comparison with the directional coupler or Y-branch.

6.1.2 Wavelength filters/multiplexers

In many applications such as wavelength division multiplexing, there are optical carrier
radiations at slightly different wavelengths. Radiation within specific wavelength bands
may need to be directed to different locations.
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6.1.2.1 The reflection filter
In Section 2.2.3, the reflection of a forward propagating wave into the reverse direction
by a grating fabricated in or on the waveguide was discussed. The reflectivity is
wavelength sensitive. We showed in Eq. (2.18) that the 1st order reflection of a grating
parallel to the waveguide is centered at the free space wavelength, λ = 2neffT, where T is
the grating periodicity.8 The wavelength bandwidth of the reflection is Δλ ¼ CgneffT2=π
on both sides of the center wavelength, where Cg is the coupling coefficient between the
fundamental term of the Fourier series of the Δε of the grating and the electric field of
the guided wave as shown in Eq. (2.15). The maximum magnitude of the reflection at
the center wavelength is determined by the product of the coupling coefficient Cg and the
length of the grating L. Occasionally, a higher nth diffraction order of the grating is
utilized. Then its center wavelength will be at λ = 2neffT/n, and the Cgwill be determined
by the nth order Fourier coefficient of the Δε of the grating. A reflection filter has also
been made in optical fibers in which the periodic Δε is fabricated in the cladding using the
photo refractive effect. Note that if a grating is fabricated on or near a multimode
waveguide, then the reflection property for each mode must be determined separately.

Wavelength filtering using a reflection grating in the planar waveguides was also
discussed in Section 5.3.1. There is a great deal of similarity between the characteristics
of the grating filter for the planar waveguide and for the channel waveguide. In compar-
ison, all the transmitted and reflected signals are propagating in the same waveguide in
the channel wavelength filters discussed in Section 2.2.3 and in the above paragraph. If
the reflected radiation needs to be sent to another waveguide or fiber, an optical circulator
will be used. However, in planar waveguides, the radiation can be incident on the grating
at a small oblique angle of incidence, then the radiation within a specific wavelength
range will be reflected to a slightly different direction. There is no need to use a circulator
to separate the reflected beam from the incident beam. Note that the grating deflector
discussed in Section 5.2.1.2 cannot be used as a wavelength filter because the angle and
the magnitude of deflection are not sensitive enough to wavelength variation.

6.1.2.2 The phased array channel waveguide demultiplexer (PHASAR)
In order to direct optical radiations at different wavelength from an input waveguide into
different output waveguides, let us consider a component called a PHASAR demulti-
plexer used in Wavelength Division Multiplexed (WDM) optical fiber systems [3].
Consider two Star couplers as discussed in Section 5.4 interconnected by an array of
identical channel waveguides, each with length Lj, as shown in Fig. 6.1(a). On the input
side of the first Star coupler, there is an input transmitting waveguide. The field distribu-
tion at the input is given by Ey = ψk of the kth input channel and 0 elsewhere. In terms of
the Star coupler discussed in Section 5.4, the input of the Star coupler consists of a
circular array of channel waveguides on the input side within which only the kth
waveguide (i.e. the transmitting waveguide) is excited. All other waveguides have zero
power. The electric field of the input transmitting channel waveguide at the kth position
will create a field distribution Ey(Rθ0) at the output circle in the first Star coupler. If all the
interconnecting waveguides have equal length, and if the stray fields ζ in the gap between
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channel guides are small, a field distribution identical to Ey(Rθ) in the first coupler will be
created on the input side of the second Star coupler. By reciprocity, this field distribution
on the input side of the second Star coupler will create a field distribution on the output
side which is the ψk at the position of the kth output waveguide and zero elsewhere. In

Interconnecting
channel
waveguides

Transmitter
waveguide

Array
waveguide

First Star coupler

Lj

da

S

θ

Δα
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Ra

O

O’

Input aperture

(a)

(b)

Focal line

(measured along
the focal line)

Receiver
waveguidesImage plane

Receiving waveguides

Second Star
coupler

Fig. 6.1. The PHASAR demultiplexer. (a) The layout. (b) Geometry of the Star coupler on the receiver side.
(This copyright figure is taken from [3] with permission from IEEE.) The two Star couplers are
connected by an array of interconnecting channel waveguides that have different lengths. Optical
radiation from the input waveguide is transmitted to the interconnecting waveguides by the input
Star coupler. The input radiation to the output Star coupler will have phase shifts controlled by the
wavelength as well as by the length increments of the interconnecting waveguides. The objective is
to create an appropriate phase shift so that radiation at different wavelengths is transmitted to
different output waveguides of the receiver Star coupler.
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other words, the power in the transmitting waveguide of the first coupler will now be
transmitted exclusively to the kth output channel of the second Star coupler. The situation
does not change if the length of the interconnecting waveguides between the two Star
couplers differs so that the phase shift between adjacent interconnecting waveguides is
2π, i.e.

2πneff;c
λ

Lj � Lj�1

� � ¼ 2πneff;c
λ

ΔL ¼ 2π: (6:10)

Here, neff,c is the effective index of the channel waveguide. The physical ΔL required to
meet this condition will depend on λ.

Let the spacing between adjacent channel waveguides be da (da = RΔα) in the first Star
coupler. Then, according to Eq. (5.24), the Ey (created by the field of the kth channel
waveguide in the input array) at the center of the mth waveguide in the output circular
array, has a phase

exp j2π
neffR

λ
kΔαð Þ mΔαð Þ

� �
;

where kRΔα and mRΔα are the center angular positions of the kth and mth channel
waveguide in the input and output array of the Star coupler as shown in Fig. 5.10 and
Fig. 6.1(b). Note that k and m are integers, ranging from −(N−1)/2 to (N−1)/2, and neff is
the effective index of the planar waveguide in the Star coupler. If the excitation changes
from the kth waveguide to the (k+1)th waveguide, the difference of the Ey caused by this
change is just a phase difference, mΔ� = 2π(RΔα)(neff /λ)(mΔα), at the center of the mth
waveguide. Vice versa, when the radiation in the array of input waveguides in the second
Star coupler has a total Ey field that contains this extra phase factor mΔ� for each input
waveguide, m = −(N−1)/2 to (N−1)/2, the total radiation will be coupled to the (k+1)th
output waveguide instead of the kth output waveguide.

The central idea of this demultiplexer is that, when the kth waveguide is the output
guide at λ1 and when the appropriate phase shift mΔ� is obtained as the wavelength is
shifted from λ1 to λ2, we would have shifted the output from the kth waveguide to the
(k+1)th waveguide at λ2.

Let the difference in length of the adjacent interconnecting waveguides beΔL. Themth
interconnecting waveguide has a length mΔL longer than the waveguide at the origin.
Now consider in detail the second Star coupler at two different wavelengths, λ1 and λ2.
Let the output channel be the kth waveguide at λ1. This extra phase factor mΔ� (which is
needed to shift the output to the (k+1)th waveguide) will be obtained at λ2 when

mΔ� ¼ 2π

c
neff; c Δfð ÞmΔL; or

RΔα

Δf
¼ da

Δf
¼ neff; c

neff

� �
ΔL

Δα

� �
1

f2
: (6:11)

Here, f1 = c/λ1, f2 = c/λ2, and Δf = f1 − f2. The ratio of da/Δf is called the dispersion of the
interconnecting waveguides. In practice, there may be optical carriers at a number of
closely and equally spaced wavelengths, λ1, λ2, λ3 … (i.e. Δf = constant), in the
transmitting channel. When the above dispersion relationship is satisfied, optical carriers
at different wavelengths are transmitted to a different output waveguide. This device is
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called a PHASAR wavelength demultiplexer in WDM fiber systems. The properties of
the channel waveguides important to this application are the neff,c, the uniformity of neff,c
in different channels and the attenuation of the waveguides.

6.1.2.3 Resonator wavelength filters
Another class of narrow band wavelength filter is that of waveguide resonators. In order
to discuss these device more thoroughly, they are presented in Section 6.1.4.

If we compare wavelength filters, it is clear that grating reflection filters and resonance
filters are narrow band filters with well separated center frequencies. They have very
similar properties which will be discussed again in Section 6.1.4. The PHASAR does not
provide very narrow band wavelength filtering. It is primarily a wavelength multiplexer
that direct signals at different equally spaced wavelengths into different channels.

6.1.3 Waveguide reflectors

If a channel waveguide is terminated abruptly at the free space end, the dielectric
discontinuity will cause a reflection of the wave propagating in the waveguide. For a
high index waveguide, this reflection could be quite large. This was used for reflection in
semiconductor lasers in earlier days. In order to increase the reflectivity, a metallic film
can be coated on a vertical cleaved end of a channel waveguide. The metal mirror will
reflect all the incident radiation of the mode back into the backward direction of
propagation independent of wavelength and mode pattern. However, the reflectivity of
the metal is still not high enough for many applications, and it decreases slowly with
shorter wavelength. Higher reflectivity mirrors can be made from multilayer dielectric
coatings replacing the metal. The interference effect in the multilayer thin film creates a
very high reflectivity that is wavelength selective.

In order to obtain end reflection, it is clear that vertical ends can only be made easily in
some waveguides. In waveguides using a substrate such as GaAs, InP or Si, a vertical
surface can be obtained by cleaving. In waveguides made from hard materials such
as LiNbO3, optically flat vertical ends can be obtained by mechanical polishing.
Alternatively, the grating filter discussed in Sections 5.3.1 and 6.1.2.2 can be used as a
reflector within the reflection bandwidth. It is called a distributed Bragg reflector (DBR).
Grating reflectors are made on waveguide structures by etching or by optical exposure of
the photo refractive material. Sometimes materials are deposited on the waveguide to
fabricate the grating pattern. For a given λ, the larger the neff of the waveguide, the smaller
is the required grating periodicity, and the harder it is to make the grating. The required
grating periodicity is much longer if a higher order diffraction is used. In all these
reflectors the guided wave is reflected back into the same mode in the same waveguide.

An unusual reflector would be the Y-branch reflector illustrated in Fig. 2.8(b). In this
device, two identical single mode waveguides form the input of the Y-branch which feeds
into a two-mode waveguide that has a specific length and a reflector at the end. It is
discussed in Section 2.3.4.2(b). The reflector at the end can be any one of the reflectors
discussed in the preceding paragraph. When there is radiation incident on one of the
single mode waveguides in the input both the symmetric and the anti-symmetric mode
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are excited equally in the Y-branch and in the two-mode waveguide. The relative phases
of the symmetric and anti-symmetric modes at the input are also equal so that the total
field is concentrated only in the input waveguide before the Y intersection region. Since
the symmetric and the anti-symmetric modes have the same phase velocity for isolated
waveguides, this amplitude and phase relation is maintained until the two single mode
waveguides become coupled (i.e. the symmetric and anti-symmetric modes have sig-
nificant electric field between the two waveguides). In the coupled region and in the two-
mode waveguide, the neff of the anti-symmetric mode is lower than that of the symmetric
mode. The symmetric and anti-symmetric modes propagate adiabatically down the Y-
branch, and they are reflected by the reflector and propagate back toward the input end.
The total electric field pattern of the reflected modes at the input end is now determined
by the relative phase of the two modes. Dependent on the relative phase, the total
reflected field can be concentrated in the incident branch or in the other branch, or in
some other ratio.9 For a given fabricated Y-branch and end reflector, the relative phase in
the transition region is fixed. Therefore the total relative phase (i.e. the ratio of the
power reflected back into the single mode waveguides) is controlled only by the
propagation length in the two-mode section. In a practical case, in a LiNbO3 wave-
guide, the specific length of the two-mode waveguide section for a given desired
reflection is obtained by polishing the two-mode waveguide to a specific length so that
all the power is reflected back into the other waveguide with 2 dB of insertion loss [4].

In comparison, reflection by mirrors on the end of the waveguide is the simplest
reflector to fabricate. Wavelength selectivity can be obtained with multilayer dielectric
coating. However, for reflection within just a very narrow band of wavelength, a grating
reflector such as DBR or DFR is required. A grating reflector is also used whenever a
vertical end surface of the waveguide cannot be fabricated. The two-mode Y-branch
reflector combines reflection with power division.

6.1.4 Resonators

Resonators have many important applications including intensifying the absorption or
amplification effects, wavelength filtering and providing time delay.

6.1.4.1 The Fabry–Perot resonator
A Fabry–Perot optical resonator consists of a section of waveguide L long with a reflector
at each end. There are multiple transmitted and reflected guided waves in the resonator.
Resonance occurs when the round trip phase shift of the guided-wave mode between the
two reflectors is multiples of 2π. Let R be the intensity reflectivity of the end reflectors,
neff be the effective index of the mode propagating in the waveguide and α be the
attenuation coefficient of the mode. Let us assume here that the amplitude reflection
and transmission coefficients, r and t, at the input end and r0 and t0 at the output end are
identical, with R = rr0 = rr = r0r0. Note that r, r0, t and t0 are not wavelength dependent. The
end reflectors are partially transmitting, with R + tt0 = 1. Then the total transmission T of
the power of the optical guided wave (i.e. Pout/Pin) through the resonator for a CW
radiation at a single wavelength is [5]

158 Fundamentals of Guided-Wave Optoelectronic Devices



T ¼ Pout

Pin
¼ 1� Rð Þ2

1� Re�2αL
� �2þ4Re�2αL sin2 δ

; (6:12)

δ ¼ 2πneffL

λ
¼ ωneffL

c
; (6:13)

where λ is the free space wavelength. Clearly Tmaxs occur at the wavelengths whenever
δ ¼ nπ, and Tmins occur at wavelengths where δ ¼ 2nþ 1ð Þπ=2. Since the sine function
is non-linear, T in Eq. (6.12) for small α and large L is large only within a small range of λ
around each Tmax. These transmission peaks are known as the peaks of the Fabry–Perot
resonance. The performance of the resonator is measured by: (1) its resonance frequen-
cies; and (2) the frequency deviation from the resonance frequency (i.e. the linewidth)
where T drops sharply.

The difference in frequency between two adjacent resonance peaks, called the Free
Spectra Range (FSR), is

FSR ¼ ωnþ1 � ωn ¼ πc
neffL

: (6:14)

For α ffi 0 and R ffi 1, if we let Δ δ = δ − nπ, then T at wavelengths near Tmax can be
expressed as

T ¼ 1� Rð Þ2
1� Rð Þ2þ4RΔδ2

ffi 1� 4RΔδ2

1� Rð Þ2 : (6:15)

Note that T drops to ½ when

δ� nπð Þ2ffi 1� Rð Þ2
8R

: (6:16)

If we let ωo be the center of the resonance frequency, ωo ¼ nπc=neffL, then the half
linewidth Δω in which the T drops to ½ is

Δω ¼ 1�Rð Þc
2

ffiffiffiffiffiffiffi
2R

p
neffL

: (6:17)

A measure commonly used to gauge the resonance linewidth in the optics literature is
the Finesse, F, which is FSR divided by the full linewidth. Using the half linewidth Δω in
Eq. (6.17), we obtain

F ¼
ffiffiffiffiffiffi
2R

p
π

1� Rð Þc : (6:18)

Resonators are also rated in terms of their Q factor in the electrical engineering
literature. The Q factor calculated for the Fabry–Perot resonance with αffi 0 and Rffi 1 is

Q ¼ $resonance
field energy stored

power dissipated
¼ nπ

1� R
: (6:19)
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Note thatQ is also a measure of resonance full linewidth Δω, 1=Q ¼ Δωfull=ωo. FromQ,
we obtain10

Δωfull ¼ 1� Rð Þc
neffL

: (6:20)

A Fabry–Perot resonator is most commonly used as a narrow band wavelength filter
centered about its resonance frequencies. There are many Tmaxs at different resonance
frequencies. When peak transmission at only a specific wavelength is desired, additional
wavelength filtering of R and T could be created by using a multilayer dielectric coating
or a grating reflector, which was discussed in Section 2.2.3. For example, in lasers,
amplification takes the place of the attenuation α, and laser oscillations will occur at all
the Fabry–Perot resonance wavelengths within the amplification linewidth of the mate-
rial. These are known as the longitudinal modes of the laser oscillation. In single mode
lasers, additional frequency selectivity is provided by distributed Bragg reflectors or
distributed feedback gratings to eliminate unwanted longitudinal modes of oscillation.
When the Fabry–Perot resonators are compared with the resonances in grating filters, the
wavelength selectivity of the Fabry–Perot resonance with small α, large R and large L/λ,
can be much higher than that of a grating.

In addition to resonance filtering, the Fabry–Perot resonance effect is useful also in
other applications. When T is measured as a function of the wavelength for a Fabry–Perot
resonator with a known length L, then the Δλ of the adjacent resonances gives an accurate
determination of neff. Let λ1 and λ2 be the wavelength of two adjacent peaks, then the neff
of the waveguide is related to Δλ by

2neffL ¼ λ2λ2= λ1 � λ2j j: (6:21)

On the other hand, the measurement of the ratio of Tmax to Tmin, known as the contrast
ratio CR (CR ¼ Tmax=Tmin), can be used to determine the α,

α ¼ 1

2L
ln

1

R

ffiffiffiffiffiffiffi
CR

p þ 1
� �

ffiffiffiffiffiffiffi
CR

p � 1
� �

" #
: (6:22)

In general, any two discontinuities on a waveguide could cause significant reflections
between them. For example a section of cleaved waveguide will have reflections at the
ends due to dielectric discontinuity. The reflections will create a mild Fabry–Perot
resonance effect which may implicitly affect the device performance significantly.

6.1.4.2 The ring resonator
Channel waveguides could also be made into a ring (or loop) as illustrated in Fig. 6.2(a).
Resonances in an isolated waveguide ring occur at frequencies ω when the phase shift of
a guided-wave mode after one round of propagation is a multiple of 2π,

ωneff
c

2πRð Þ ¼ 2nπ; (6:23)

where R is the radius of the ring. However, the ring resonance is useless unless a guided
wave in another waveguide is coupled to the guided wave in the ring. A ring resonator
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coupled to a straight waveguide via a variable gap directional coupling interaction is
illustrated in Fig. 6.2(b).

Directional coupling between two adjacent waveguides was discussed in Section 2.2.4
for a constant coupling gap. Directional coupling between two waveguides with a
variable coupling gap can be approximated as a cascade of short directional couplers
which has a constant local coupling gap within each local section. The total coupling
effects can be calculated from all the short local sections as follows. Results obtained in
Eq. (2.22) and (2.23) for two coupled waveguides could be rewritten in matrix form for
the jth local section with constant coupling gap as

b1j
b2j

				
				 ¼ tj �j

��
j t�j

				
				 a1j

a2j

				
				; (6:24)

where a1j and b1j are the complex amplitude of the guided-wave at the input and output of
the straight waveguide, while a2j and b2j are for the ring waveguide. At the junction
between the jth local section and the (j+ 1)th local section, a1, j+1 = b1j and a2, j+1 = b2j.

Therefore, the total effect of the variable coupling can be expressed as a matrix
t k
k� t�

				
				

which is the product of all these [tj κj] matrices. Alternatively the coupled mode equation
can be solved with a variable coupling coefficient C.

In Fig. 6.2(b), Amarks the beginning of the coupling region and Bmarks the end of the
coupling region. The distance between A and B of the coupling region is Lc. The length of
the isolated waveguide in the ring is D. The incident optical guided wave in the straight
waveguide is shown to have complex amplitude a1 at position A before the coupling. The
exit optical wave in the straight waveguide is shown to have complex amplitude b1 at

Input Coupling
region

Output
A

B

a1

a2 b2

b1

Lc

Channel waveguide ring

D

Straight
waveguide

(a) (b)

Fig. 6.2. Ring resonators. (a) An isolated ring resonator. (b) A ring resonator coupled to a straight input-
output waveguide.
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position B. The complex amplitude of the guided wave in the ring resonator is a2 at A and
b2 at B. Note that a1, a2, b1 and b2 are related by the variable coupler as

b1
b2

				
				 ¼ t �

�� t�

				
				 a1

a2

				
				; (6:25)

where

��� þ tt� ¼ 1: (6:26)

On the other hand, for the guided-wave propagating from B to A in the ring, the distance
of propagation is D in the isolated waveguide. Therefore

a2 ¼ b2e
�αDe�jneffkD ¼ b2e

�αDe�jθ; (6:27)

where α is the attenuation coefficient of the guided-wave mode and neff is its effective
index. Note that, from Eq. (6.25), b2 = κ*a1 + t*a2 where t ¼ tj jej�t . Thus the phase shift
for one round of propagation is θ + �t. Similarly to what is shown in Eq. (6.23), resonance
for a CW radiation at a single free space wavelength λo now occurs when θ + �t = 2nπ
which is11

θo þ �t ¼ 2πneff Dþ Lcð Þ
λo

¼ 2nπ: (6:28)

The power transmitted from the input guided wave a1 to the output is b1=a1j j2, and the
power transmitted from the input guided wave a1 to the re-circulating guided wave in the
ring is a2=a1j j2. They have been calculated from Eq. (6.25) by Yariv [6] to be

b1
a1

				
				
2

¼ e�2αD þ tj j2�2e�αD tj j cos θ þ �tð Þ
1þ e�2αD tj j2�2e�αD tj j cos θ þ �tð Þ ; (6:29)

a2
a1

				
				
2

¼
e�2αD 1� tj j2


 �
1� 2e�αD tj j cos θ þ �tð Þ þ e�2αD tj j2 : (6:30)

At resonance, cos θ þ �tð Þ ¼ 1 while
b1
a1

				
				
2

drops to zero when e�αD ¼ tj j, known as

the critical coupling condition. At critical coupling (i.e. exp �αDð Þ ¼ tj j), there is perfect
destructive interference between the guided-wave in the output waveguide coupled from

the ring and from the input. The amplitude
a2
a1

				
				
2

also soars to a high value near resonance.

Its maximum value at resonance is

a2
a1

				
				
2

max

¼ tj j2
1� tj j2 : (6:31)

The FSR of adjacent resonances at wavelengths, λn and λn+1, is
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FSR ¼ ωnþ1 � ωn ¼ 2cπ
neff Dþ Lcð Þ : (6:32)

As the wavelength changes, “θ + �t” deviates from its resonance condition by

Δ θ þ �tð Þ ffi neff Dþ Lcð Þ ω� ωoð Þ
c

: (6:33)

As Δ θ þ �tð Þ increases, b1
a1

				
				 will increase and a2

a1

				
				 will decrease. When there is critical

coupling,
a2
a1

				
				
2

drops to half of its maximum value when

Δω ¼
1� tj j2


 �
c

neffD tj j ¼ �j j2c
neffD tj j : (6:34)

Here Δω is defined as half linewidth when the intensity drops to ½ of its maximum.
Again, we can calculate the Q factor of the resonator to be

Q ¼ ωo

2Δω
¼ ωoneffD tj j

2c �j j2 : (6:35)

Assuming that Lc << D, the finesse of the ring resonator is approximately

F ¼ ωnþ1 � ωn

2Δω
ffi π tj j

1� tj j2

 � : (6:36)

There are many similarities between the ring resonator and the Fabry–Perot resona-
tor. For comparison, let us assume that the R in the Fabry–Perot resonator is indepen-
dent of frequency and that the coupling κ in the ring resonator is also independent of
frequency. Both of them will have sharp resonances equally spaced in frequency. It is also
interesting to compare the differences. The important characteristics to be compared are
the wavelength selectivity (i.e. the FSR) and the linewidth or the Q of the resonances.
(1) It is hard to get very long low loss waveguides for Fabry–Perot resonators. It means
that D of the ring resonator tends to be much bigger than the L of the Fabry–Perot
resonator. The reflectivity of mirrors in Fabry–Perot resonators is limited. It is easy to get
very high ∣t∣ and low propagation loss in ring resonators. Thus it is easy to achieve very
high Q or small linewidth in ring resonators at critical coupling. (2) On the other hand,
the radiation loss of channel waveguide ring resonators increases with decrease of the
radius of curvature. Therefore, the FSR, i.e. the separation of the adjacent resonances, is
usually much larger in Fabry–Perot resonators than in ring resonators. Although high
Q (or F) is very important in many filtering applications, FSR also needs to be large in
many other applications. Kominato et al. have shown that a finesse F larger than 30 has
been obtained in ring resonators made from GeO2 doped silica waveguides with a ring
radius of 6.5mm at λ = 1.55 μm [7]. However, the FSR of their resonator is only 5 GHz.
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(3) In Fabry–Perot resonators, additional wavelength selectivity can be obtained by
using a grating filter or multilayer dielectric coating for reflection (or feedback) so that
the Q of the adjacent resonances is wavelength selective. It is not possible to have a high
wavelength selectivity in directional coupling (i.e. κ). Therefore a technique such as a
double ring resonator is used to achieve wide FSR [8]. A double ring resonator with 100
GHz of FSR and F > 138 was demonstrated by Suzuki et al. [9].

High Q or high Finesse depends on the ability to achieve small α in the ring. There are
usually two major factors that may contribute to the propagation loss: (1) the scattering
and absorption loss of the channel waveguide; and (2) the radiation loss of a curved
waveguide. When there is a bend in the waveguide there will be radiation loss into the
cladding or substrate.

The radiation loss of a curved waveguide
In a straight planar waveguide, the guided-wave mode is considered as plane waves
totally internal reflected at the boundaries of the core layer. In a straight channel
waveguide, the guided-wave mode can be considered as planar guided waves totally
reflected at the lateral boundaries of the core. There is an evanescent field in all the
cladding regions because the βz (i.e. neffkz) in the direction of propagation is so large
that the propagation wave numbers of the fields in the lateral directions in the cladding
are imaginary, as they are required by the continuity of the fields in the longitudinal
direction. Total internal reflection has zero propagation loss in the cladding regions as
long as the propagation wave numbers in the lateral directions, βx and βy, are imaginary.
When the waveguide is curved with a curvature ρ, the lateral region outside the curved
waveguide fans out. The electromagnetic field in the expanded lateral region propa-
gates with a new expanded coordinate in the z direction. The expansion of the
coordinate in the z direction increases as the distance from the waveguide increases.
At some distance away from the waveguide, the β of the fields in the lateral direction
outside the curve no longer needs to be imaginary in order to meet the continuity
condition of neffkz. At this point, the fields become propagating waves. Energy will
radiate away. The total internal reflection will now have a radiation loss. The smaller
the curvature ρ, the larger the radiation loss. Unger has presented clearly an analysis of
the radiation loss in a curved planar waveguide [10]. His analysis shows that the
radiation loss increases exponentially as kρ is decreased. Kominato et al. [7] have
shown experimentally that the radiation loss increased dramatically in their wave-
guides for bending radius less than 4mm.

The propagation loss
There are two kinds of propagation loss in waveguides, absorption loss and scattering
loss. Volume scattering is usually caused by defects in materials while surface scattering
is caused by defects on the interface created during processing. Low loss straight channel
waveguides have been made in LiNbO3 waveguides by diffusion, without surface
scattering as discussed in Section 1.3.1. However, the propagation loss of curved
LiNbO3 waveguides is generally unknown. Absorption loss occurs in semiconductors
due to dopands and free carriers. Although absorption in intrinsic semiconductors can be
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kept very low, substantial surface scattering loss occurs quite often in channel wave-
guides in high refractive index crystalline media because of the defects produced in
fabrication processes. For this reason, low loss semiconductor waveguides are usually
ridged waveguides as discussed in Section 1.3.2. Surface scattering loss is especially
high in curved semiconductor waveguides because etching tends to follow crystalline
orientation, thereby creating large defects along the curved boundary. Therefore low loss
ring resonators are made primarily in doped silica waveguides on Si substrates, as
discussed in Section 1.3.4.

6.1.5 The optical time delay line

Controlled true time delay of optical signals has many important applications. For
example, in optical time division multiplexed communication this function is required
for synchronization of optical signals or buffering of optical data. In a phased array
antenna, variation of the delay of the RF signals to different antenna elements can
control the radiation direction of the antenna. Since RF signals can be carried on the
optical carrier, a time delay of RF signals is accomplished by a time delay of optical
signals.

An optical signal group delay, τg, is obtained when the signal propagates in a waveguide
or an optical fiber for a distance L with group velocity vg, τg ¼ L=vg. The difficulties of
this approach are that a long τg requires long L and that a different τg requires a different
length. For example, 1 μs of delay requires 200m of fiber. Therefore, Fabry–Perot and ring
resonators have been used to obtain group delays that are many times longer than L/vg.

When a pulsed optical signal is injected into a resonator as discussed in Section 6.1.4,
it is reflected back and forth in a Fabry–Perot resonator and re-circulated in a ring
cavity. The optical signal pulse is transmitted periodically to the output whenever it
reaches the output port. Therefore, there are delayed output optical signals at multiple
delay time intervals of 2L/vg in Fabry–Perot resonators (or (D+Lc)/vg in ring resona-
tors). For low loss resonators, the output pulses will repeat many times. If there are ng
output pulses and if the last pulse is used for signal processing then the total available
time delay of this pulse from the input pulse is ng times the single time delay interval of the
resonator. The time response of a resonator is related directly to the frequency response
of the resonator (e.g. FSR) discussed in the previous section.

The relation between the time behavior and the frequency spectrum of any output field
can be illustrated through a very simple example. It is well known that when there are N
output fields at discrete frequencies separated at an equal frequency interval δω around a
center frequency ωo, we obtain mathematically

E ¼
Xþ N�1ð Þ=2

� N�1ð Þ=2
Aej ωoþnδωþ�ð Þt ¼ Aejωotej�

sin Nδωt=2ð Þ
sin δωt=2ð Þ ; (6:37)

where A and � are amplitudes and phase of all the output fields, n identifies the individual
field at frequencyωo + nδω, n varies from – (N−1)/2 to +(N−1)/2 for odd N, and E is now
periodic in t with period T ¼ 2π=δω. This example assumes that there is no loss of
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amplitude from pulse to pulse and that the linewidths of the resonances are infinitely
narrow. It is a useless example because outputs with zero bandwidth carry no informa-
tion. Sufficient linewidth is required to accommodate inputs that have finite frequency
spectra. Nevertheless, the example illustrates clearly the direct relation between fre-
quency response and time response. In reality, because of the α in ring resonators (or
the mirror transmittance or loss in Fabry–Perot resonators), the linewidth of resonances
broadens and ng decreases. The behavior of resonators for time delay is quite compli-
cated. For different applications, there are trade-offs between time delay and pulse
distortion that need to be made.

More realistically, a resonator is a linear time-invariant system. Therefore its output is
characterized mathematically by its impulse response function h(t). Given an input signal
x(t), its output signal y(t) is

y tð Þ ¼
ð
x τð Þh t� τð Þdτ: (6:38)

Equivalently, in the frequency domain, we have

Y ωð Þ ¼ H ωð ÞX ωð Þ; (6:39)

where X(ω), Y(ω) and H(ω) are related to x(t), y(t) and h(t) by a Fourier transform. The
trade-offs between frequency and time responses are governed by these transform
relations. Lens et al. have presented a detailed review of the analysis of the trade-offs
between bandwidth constraint and time delay in optical resonators [11]. In their analysis
they have also shown that the trade-offs are different for Fabry–Perot resonators and for
ring resonators. The limitation of bandwidth and time delay in a single resonator can be
circumvented by using a cascade of resonators tuned to slightly different resonance
frequencies to broaden the total bandwidth. Zhuang et al. have demonstrated a maximum
delay of 1.2 ns over a bandwidth of 2GHz with a group delay ripple below 0.1 ns, using
a cascade of seven ring resonators. Using different combinations of various numbers
of ring resonators, they also have obtained time delays of 0.1, 0.25, 0.5, 0.7, 0.8 and
1.0 ns [12].

6.2 Active waveguide components

Besides lasers and detectors, modulators and switches are the most common active
waveguide devices. Although modulation and switching can also be accomplished
using acousto-optical effects,12 magnetostrictive effects, electro-mechanical effects and
even thermal effects, high speed and high frequency switching and modulation have
been achieved only by electro-optical effects such as discussed in Chapter 3. The
electrical characteristics of electro-optical modulators and switches are as important as
their optical characteristics in all applications. The design and analysis of these
devices differ significantly for high speed (or high frequency) operation and for
moderate and low speed (or frequency) operation. For low and moderate speed (or
frequency) operations or short devices, the electrodes producing the electro-optical
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effects are shorter than the wavelength of the electrical signals controlling them. The
transit time for the optical signal to propagate through the device is much shorter
than the time period of the electrical control signal. Thus the instantaneous electric
field at different locations of the device seen by the optical guided wave has approxi-
mately a uniform time variation. In Section 4.1.1 we showed that, in this case, these
devices should be represented by lumped element circuit elements in the analysis of
the driving circuit. For high speed (or high frequency) operations or long devices, the
electrical current and voltage on the electrodes are now a function of both time and
position. We showed in Section 4.2 that the electrical voltages and currents now travel
in the electrodes as they are in an electrical transmission line. The analysis of the
electro-optical modulation (or switching) characteristics must take into account the
electro-optical interaction between a traveling optical wave and a traveling electric
wave, as discussed in Section 4.3.

For digital applications, what is important is the time varying characteristic of the
modulators or switches in response to a large voltage pulse. As we have discussed in the
introductory section of Chapter 4, the time response characteristic of the devices is often
non-linear with respect to the amplitude of the applied electrical pulse. It is difficult to
discuss the time response of a large voltage pulse in general. However, pulse response
can often be inferred from the device response to small signals at various frequencies.
Therefore discussion on the time response of active devices in this chapter will be
focused on responses to small RF signals at various frequencies.

The presentation on active channel waveguide devices will be divided first into the
electrical circuit behavior of lumped element devices that have a length shorter than the
electrical wavelength of the highest operating frequency, and longer traveling wave
devices that have a device length comparable to the electrical wavelength at the high
operating frequencies. Within each type, lumped element or traveling wave device,
devices that operate under different types of guided-wave interaction and electro-optical
effect will then be discussed. Modulators and switches made with the same type of
guided-wave and electric field interaction have many characteristics in common. Thus
discussion on how a given type of modulator can function as a switch appears at the end
of each subsection.

6.2.1 Lumped element modulators and switches

At low frequencies or within devices much shorter than the electrical wavelength, the
time variation of electrical voltage and current at different positions on the electrode is
identical. The transit time of the optical wave propagating through the device is very fast
compared to the time variation of the electrical control signal. The instantaneous electric
field at different longitudinal positions which creates the electro-optical effect experi-
enced by the propagating optical wave has the same time variation. We have shown in
Section 4.1.1 that these devices behave electrically as lumped elements, Rm, Lm and Cm,
in the driver electric circuit. In most cases, ωLm is negligible. The internal resistance
Rsource of the driving source is 50 Ω. The low frequency bandwidth spreads from DC to
the upper frequency limit in which the device response falls to 50% of its maximum
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response at DC. The maximum operating frequency is limited by the RsourceCm constant
of the driving circuit. The smaller the device capacitance, the larger is the bandwidth.
When we compare different devices for a given application, the device capacitance Cm is
the most important consideration that limits the operation bandwidth of the device.
Impedance matching is needed to transfer a maximum amount of the driver RF power
to the device.

6.2.1.1 The phase modulator
The phase modulator is a very simple device. Phase modulation of a guided wave is
obtained when an electric field is applied to a waveguide fabricated on electro-optic
materials. According to Section 2.1.1, the electric field of the mth guided-wave mode
propagating in the z direction is described as

E x; y; zð Þ ¼ Aem x; yð Þe�αg
2 ze�j neffþΔneffð Þkz; (6:40)

where αg is the power attenuation coefficient of the propagating mode, neff is the effective
index of the mode in the absence of the applied electric field, and Δneff is the instanta-
neous change of the effective index produced by the applied electric field F.13 Figure 6.3
illustrates a phase modulator fabricated on x-cut LiNbO3. Phase modulators have also
been made in other waveguide materials such as polymers and III-V semiconductors. In
all linear electro-optic materials, Δneff is directly proportional to the applied electric field
F(x,y) which is proportional to the applied voltage V on the electrode. Thus Δneff is
directly proportional to the instantaneous V. For a uniform electrode Lp long and in the
lumped element approximation, the accumulated change in the phase of E(x,y,z) pro-
duced by the electro-optic effect is

Δ� ¼ Δneff Vð ÞkLp ¼ Δneff Vð ÞjV¼1kVLp: (6:41)

In all these modulators, Δneff could be calculated from Δn(x,y) by solving the guided-
wave mode equation as a function of Δn(x,y). Alternatively, it could be calculated from
Δn using the perturbation method discussed in Sections 2.1 and 3.5.1. From the perturba-
tion analysis, we obtain:

Lp

Electrodesx

y

z

LiNbO3   
Ti diffused waveguide

Fig. 6.3. x-cut LiNbO3 phase modulator.

168 Fundamentals of Guided-Wave Optoelectronic Devices



Δneff;m ¼ n

neff;m
GΔnav ¼ n

neff;m

ÐÐ
electro-optic region

Δnem � e�mdx dy
Ð1

�1

Ð1
�1

em � e�mdxdy
: (6:42)

Section 3.1 discussed how the Δn of the material is determined from the applied
electric field F. Some examples of Δn(F) for LiNbO3, the polymer and the III-V
compound semiconductor materials are shown in Eq. (3.19) and (3.22).

Note that F is produced by the voltage applied to the electrodes. The electrodes are
usually made in several common configurations such as micro-strip line, coplanar
waveguide and coplanar strip. Figure 1.9 showed the electrode configuration in the
form of a micro-strip transmission line for polymer waveguides. Figure 3.2(a) showed
the electrode configuration for phase modulators fabricated on z-cut LiNbO3. Although
the concept of electro-optic phase modulation is simple, the calculation of F(x,y) from a
given applied voltage V on the electrode could be complex. A crude common macro-
scopic approximation is to regard the electric field between two electrodes in terms
of a constant F between two parallel plate electrodes separated by a gap distance d.14 In
that case

F � V=d: (6:43)

Here d is the separation of the electrodes on insulating waveguides or the thickness of the
intrinsic layers in p–i–n structures. Note that F is oriented in the direction from the
electrode at lower potential to the electrode at higher potential. The parallel plate
electrode approximation is so popular that the complex actual field F(x,y) of the elec-
trodes is frequently written as

F x; yð Þ ¼ V

d
fF x; yð Þ; (6:44)

where fF is used to modify the parallel plate approximation to represent the actual F.
From Eq. (6.42), (6.43), and (6.44), it is clear that Δneff is directly proportional to V. The
term ΔneffjV¼1 in Eq. (6.41) is the proportionality constant.

Fortunately, the electromagnetic fields of any two-conductor electrodes are approxi-
mately TEM fields. Thus F(x,y) can be calculated using an electrostatic approximation
and the Laplace equation. The calculation of such a transmission line on insulating
materials has been discussed in many microwave publications [see 13 and 14].
However, in a phase modulator made from semiconductor optical waveguides, the
electrode structure frequently contains a p–i–n diode. The electro-optic change of
index is created in the thin intrinsic layer of the reverse biased p–i–n junction so that
a large F could be created from a small applied voltage V. Figure 3.3 shows such an
example. In this case the calculation of F in the intrinsic region involves calculation of
fields and voltages across doped layers and heterojunctions. There are numerical
simulation programs such as ANSOFT that will calculate F for a given electrode and
waveguide configuration for various material and electrode structures, including the
semiconductor heterojunctions.
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The applied electric field is proportional to the voltage applied to the electrodes. When
a RF source is used to drive the phase modulator, the electrodes can be best represented
by a capacitance Cm in the driving circuit. In the parallel plate approximation, the
capacitance Cm of the modulator using electrodes in the micro-strip configuration is

Cm � εW
d

Lp; (6:45)

where W is the width of the electrode, and εW/d is the capacitance per unit length of
the electrode. There is no simple approximation for calculating the capacitance
per unit length in coplanar waveguide or coplanar strip configurations. However,
Cm can be calculated directly from F. For example, one way to calculate Cm is to use
Eq. (4.3).

The performance of any phase modulator is measured in several different ways. (1) A
modulator is rated by the voltage required to achieve a given Δ� such as π. From Eq.
(6.41) it is clear that the Vrequired for a given optical Δ� is inversely proportional to Lp.
The longer the Lp, the smaller is the required V. From Eq. (6.43), the smaller the d, the
smaller is the required V. However, d will also affect ΓΔnav . (2) A modulator is rated by
the bandwidth within which the modulator can be driven effectively by a RF source.
According to Section 4.1, when such a capacitance is driven directly by a RF source the
frequency bandwidth of the modulator is 1/RsourceCm. Note that Cm is directly propor-
tional to Lp. Impedance matching is often used to improve the efficiency with which the
RF power is transmitted to the modulator. For example, if impedance matching is
provided by a 50 Ω resistor in parallel with Cm, then the low-pass bandwidth of the
modulator is limited to ω ¼ 2=RsourceCm. Different matching arrangements will modify
the bandwidth differently. Nomatter what impedancematchingmethod is used, the larger
the Lp and the smaller the d, the larger is the Cm, and the smaller will be the bandwidth.
There is a trade-off between the voltage required to obtain a required Δ� and the
bandwidth. As an example, the advantage of using a thin intrinsic layer in a p–i–n
junction to reduce the modulation voltage is balanced by the disadvantage of a large
capacitance created by the small d.

Phase modulation is not used much because it is not easy to detect a change in optical
phase. Most commonly, interference with another optical wave is used to convert the
phase modulation into a modulation of the intensity of the interference pattern. An
example is the Mach–Zehnder modulator. The major advantage of phase modulators is
that the Δ� is strictly linearly proportional to V. A stand-alone phase modulator cannot
function as a switch, but phase modulation could be utilized in coordination with other
devices such as the Y-branch power divider discussed in Section 6.1.1.4 to produce
switching.

6.2.1.2 The Mach–Zehnder modulator/switch
A typical Mach–Zehnder (MZ) interferometer was illustrated in Fig. 2.9. Its principle of
operation was discussed in Section 2.3.4. It consists of single mode input and output
waveguides connected to two symmetrical Y-branch couplers back-to-back. The
Y-branch couplers are interconnected by two identical single mode waveguides. The

170 Fundamentals of Guided-Wave Optoelectronic Devices



single mode connecting waveguides are well isolated from each other so that their
evanescent fields no not overlap. When a MZ interferometer is fabricated on an electro-
optic material, the neff of the guided-wave mode in the interconnecting waveguide can be
modulated by the electro-optic effect. In essence, a MZ modulator is just two phase
modulators connected to two Y-branch couplers.

Mach-Zehnder (MZ) modulators have been used in many applications, and such
modulators in LiNbO3 are commercially available. Figure 6.4(a) illustrates schematically
a MZ modulator on z-cut LiNbO3, while a MZ modulator on x-cut LiNbO3 material is
illustrated in Fig. 6.4(b).15 In both cases, the input Y-branch splits the input guided wave
into guided waves in two identical connecting waveguides, called the arms. In an ideal
MZ modulator, these two guided waves have equal amplitude and identical phase in the
absence of electro-optic modulation. When they propagate to the output Y-branch, they
excite the symmetric mode which transforms adiabatically into the fundamental mode of
the single mode output waveguide. Therefore, neglecting any losses, all the input power
is transmitted to the output. When a modulation voltage is applied to the electrodes, the
neff of the guided wave is changed by the electro-optic effect. Thus the arm with the
electrode functions like a phase modulator. In order to take advantage of the large electro-
optic coefficient, r33 in LiNbO3, the electric field is applied in the z direction of the
material. The parallel electrodes are Lp long. According to the perturbation analysis
discussed in Section 3.5.1 and Eq. (3.38), (6.41) and (6.42), the Δ� in any arm created by
the V is:

z-cut LiNbO3

x-cut LiNbO3

Lp

Lp

Electrodes

Electrodes

Waveguide

Waveguide

Input

Input

Output

Output

(a)

(b)

Fig. 6.4. A Mach-Zehnder modulator on LiNbO3 substrate. (a) MZ modulator on z-cut LiNbO3. (b) MZ
modulator on x-cut LiNbO3. Note that LP is the length of the electrode producing the phase
modulation. Phase modulation in one arm of theMach-Zehnder modulator is illustrated here. When
push-pull phase modulation is applied to both arms the Vπ of the modulator will be reduced by 50%.

Channel waveguide components 171



Δ� ¼ πV
n3er33Lp

λd
ne
neff

� � ÐÐ
fF x; yð Þe x; yð Þ � e� x; yð Þdx dyÐÐ

e x; yð Þ � e� x; yð Þdx dy

" #
¼ πV

V π
: (6:46)

When Δ� = nπ, the fields of the guided waves in the two arms incident on the output Y-
branch are 180° out of phase. They excite the anti-symmetric mode. The anti-symmetric
mode is cut-off in the output single mode waveguide. All its power is transmitted to the
radiation modes at the cut-off point of the anti-symmetric mode in the Y-junction. Thus
no power is transmitted to the output. From Eq. (2.32), we obtain

I ¼ Io
2

1þ cosΔ�ð Þ ¼ Io
2

1þ cos
π
Vπ

V

� �� �
; (6:47)

where Io is the input power to the MZ modulator. From Eq. (6.46), we obtain:

VπLp ¼ λdneff
n4er33

ÐÐ
fF x; yð Þe � e�dxdyÐÐ

e � e�dxdy
� ��1

: (6:48)

In the push-pull version of MZ modulators, there are electrodes on both arms. The
voltages applied to electrodes on two arms have opposite polarity, the electric field
creates a +Δneff in one arm and a negative Δneff in the other. In short, both arms are
phase modulators with opposite Δ�. Therefore, the required Δ� in each arm for zero
output power is only nπ/2, and the Vπ is ½ of the Vπ in Eq. (6.48) derived for modulators
using only one arm.16 Equation (6.47) still applies.

Equation (6.47) describes an ideal MZ modulator. In real modulators there are many
defects such as the insertion losses of theY-branch couplers, propagation losses, unbalanced
initial phase and amplitude as well as imbalances in the neff and the length Lp of the two arms.
Betts [15] showed that all those defects will lead to a modification of Eq. (6.47) as

I

�insIo
¼ T Vð Þ ¼ 1

2
1þ Eð Þ þ 1� Eð Þ cos �o þ π

Vπ
V

� �� �
; (6:49)

where E is the ratio of minimum I/�insIo to maximum I/�insIo (also known as the contrast
ratio), and �o is any residual phase imbalance in the two arms. Note that �ins is the
insertion efficiency (10 log10 �insð Þ is the insertion loss in dB), T(V) is the intensity

transmission normalized to the maximum output intensity at �o þ π
Vπ

V ¼ 0 or 2nπ,

and V is the instantaneous voltage applied to the electrode. For a well made LiNbO3 MZ
modulator, the insertion loss, including coupling losses to single mode optical fibers at
the input and the output, is less than 3 dB. The value of E is 0.01 or less and VπLp is of the
order of 100 V mm at λ=1.55 μm.

The MZ modulation can also be achieved with any ratio of unbalanced Δ� in the two
arms. The power output is zero whenever the difference of the total Δ� of the two arms is
nπ. However the phase of the output guided wave as a function of the applied voltage
depends on the Δ� values.

Mach–Zehnder modulators are simply two phase modulators connected to two
Y-branch couplers. Therefore, Eq. (6.34) to (6.41) are equally applicable toMZmodulators
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made in polymer and III-V compound semiconductor materials. However, the relation
between Δn and F and fF(x,y) will differ in each case, depending on the material,
waveguide and electrode configurations. Section 3.1.2 discussed some examples of the
optical waveguide configurations and the Δn as a function of F in those configurations.
The major advantage of polymer material is its large r33 coefficient. However, how to
produce polymer materials that will have a low propagation loss, large r33 coefficient
and high transition temperature is still being investigated. The major advantage of the
MZ modulator in III-V compound semiconductors is the small d that can be obtained in a
reverse biased p–i–n structure. The disadvantage is that Y-branch and waveguides in
III-V compound semiconductor materials usually have large losses due to scattering,
contributing to a high insertion loss, and also r41 is smaller than the r33 in LiNbO3 and
polymers. In short, the Δ� in a MZ modulator could be created by any Δn. For example,
in Section 3.3, the Δn produced by the electro-refraction ER effect in semiconductor
materials was discussed. Also Δn could be obtained in materials that have a Kerr effect.

The performance of MZ modulators will be gauged by both their optical and electrical
characteristics. In analog applications, V consists of a bias voltage Vb and a RF instanta-
neous signal voltage vRF which is much smaller than Vb. Therefore the T(V) in Eq. (6.49)
can be expressed in a Taylor’s series expansion about V = Vb as follows:

T Vb þ vRFð Þ ¼ co þ
Xn¼1

n¼1

cnv
n
RF; (6:50)

where

co ¼ T Vbð Þ and cn ¼ 1

n!

dnT

dVn

				
V¼Vb

: (6:51)

Since T is a cosine function of V, we obtain

co ¼ 1

2
1þ cos �o þ π

Vπ
Vb

� �� �
; (6:52a)

cn ¼ 1

2

1

n!

π
Vπ

� �n
�1ð Þnþ1

2 sin �o þ π
Vπ

Vb

� �
; for odd n (6:52b)

cn ¼ 1

2

1

n!

π
Vπ

� �n
�1ð Þn2cos �o þ π

Vπ
Vb

� �
: for even n (6:52c)

In analog applications, the output from the modulator is transmitted via optical fiber
and detected. A linear photo-detector converts all the transmitted fraction of the output
intensity �insIoT (Vb+vRF) into electrical currents proportional to co and cnv

n
RF. For a

single frequency CW RF signal, νRF = ARF cos ωmt, the photocurrent component at
frequency ωm (which is proportional to ARF) is the output RF signal current. For a
multiple frequency signal, the signal is proportional to vRF ¼ P

j

ARF; j cosωm; jt. The

signal current is proportional to c1 in Eq. (6.52). The output RF signal power is generated
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in the load of the photo-detector circuit by the RF signal current. In order to maximize
the RF signal, Vb is set at Vπ=2. The smaller the Vπ, the more efficient is transmission

of the RF signal. In addition, the RF signal power is also proportional to �insIoð Þ2. Note
that the larger the Io and the larger the �ins, the larger is the RF signal. On the other hand
there are also distortions produced from higher orders of T(V) that vary like cnv

n
RF. At the

bias voltage setting where Vb = Vπ/2, cn(for even n) is zero. The non-linear distortions
of the vRF are contributed mainly from cn(for odd n)vnRF. Since the cn coefficients are
smaller at larger n and the nth order distortion is proportional to the nth power of vRF, the
distortions are negligible at small vRF and increase faster than the signal at large vRF. At
very large vRF, the distortions become as large as the signal. The Spurious Free Dynamic
Range (SFDR) of an analog link is the range of the RF signal power that may vary from
minimum when the detected RF signal power is just equal to noise power to maximum
when the power in the non-linear distortion terms becomes equal to the signal power.
Although the relations between the cn coefficients are fixed for a given Vπ in a simple MZ
modulator which was described in Eq. (6.52), non-linear distortions can be reduced
by various cancellation techniques such as pre-distortion, feed-forward and balanced
modulators. Much research has been conducted to linearize analog links using MZ
modulators and to maximize the SFDR [see 15].

The performance of MZ modulators in analog applications is measured by: (1) their �ins,
Vπ and the maximum Io before any saturation of c1 occurs, (2) the SFDR of the link, and (3)
the bandwidth of the link which is determined primarily by the capacitance of the modulator
Cm.

17 The Cm is the total capacitance of the phase modulator in the two arms of the MZ.
In digital applications, MZ modulators are used to provide on and off switching of

the optical signal. In that case the contrast ratio E is an important performance
criterion in addition to Vπ. However, phase variation associated with the modulation
of the transmitting optical wave will cause pulse broadening in long distance trans-
mission in optical fibers because of fiber dispersion. Therefore, performance of mod-
ulators is also measured by their chirp parameter, α ¼ 2Iδ�=δI [16].18 Gnauck et al.
have shown that the chirp in a MZ modulator can be adjusted from −2 to +2 by varying
the Δ� in the two arms of the MZ modulator to reduce the dispersion penalty [17]. The
chirp is zero for a balanced MZ modulator in push-pull operation. Similarly to analog
applications, the bandwidth of the MZmodulator in digital applications is also limited by
its capacitance Cm.

No matter whether the MZ modulator is used in analog or digital links, the lower the
Vπ and the higher the �ins, the more efficient is the modulation. According to Eq. (6.48),
only VπLp is determined by the material, waveguide and electrode configuration design
of a specific modulator.19 For a given design, the longer the Lp, the lower is the Vπ.
However, like the phase modulators, there is also a trade-off between Lp and the
electrical bandwidth. Since the MZ modulator is basically made from two phase mod-
ulators, the electrical frequency response of the link will be limited by the RCm.

20 It
means that the bandwidth is proportional to d and 1/Lp. The longer the Lp, the smaller the
electrical bandwidth. The smaller the d, the lower is the VπLp, and the smaller is the
electrical bandwidth.
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When the output Y-branch of the MZmodulator is replaced by a two-mode waveguide
power divider as discussed in Section 6.1.1.4, the device becomes a switch. It is
illustrated in Fig. 6.5 in a push-pull electrode configuration on an x-cut LiNbO3

substrate. Its operation can be analyzed as follows. Following the electro-optic phase
shift Δ� in the two arms of the balanced MZ in the push-pull mode, the amplitudes
and phases of the guided waves incident on the output Y-branch power divider are

Ain ¼ Aoffiffiffi
2

p e jΔ� and Bin ¼ Aoffiffiffi
2

p e�jΔ�. According to Eq. (6.8) and (6.9), the amplitudes

of the guided-wave in output waveguides A and B of the Y-branch power divider for such
an input are

Aout z ¼ þLoð Þ ¼ Aoffiffiffi
2

p cosΔ� e�j�s;in e�j�s;out e�j2βsLc

þ j
Aoffiffiffi
2

p sinΔ� e�j�a;in e�j�a;out e�j2βaLc ; (6:53)

Bout z ¼ þLoð Þ ¼ Aoffiffiffi
2

p cosΔ� e�j�s;in e�j�s;out e�j2βsLc

� j
Aoffiffiffi
2

p sinΔ� e�j�a;in e�j�a;out e�j2βaLc : (6:54)

Let the Y-branch power divider be designed so that Δ�Y ¼ �s;in þ �s;outþ
�

2βsLcÞ � �a;in þ �a;out þ 2βaLc
� � ¼ π=2. When cosΔ� ¼ sinΔ� (i.e. Δ� = π/4),

Aout ¼ 0 and Boutj j ¼ Aoj j. When cosΔ� ¼ � sinΔ� (i.e. Δ� = −π/4), Aoutj j ¼
Aoj j and Bout ¼ 0. When Δ� = 0, π/2, π, 3π/2, etc., Aoutj j ¼ Boutj j ¼ Aoffiffiffi

2
p
				

				. Other ratios
of ∣Aout/Bout∣ are obtained when another Δ� is obtained. Clearly the trade-off between Vπ, d,
Lp and bandwidth for the MZ modulators applies also to the MZ switch.

x-cut LiNbO3 substrate

Input
Output  A

Output  B

Two-mode waveguide
Electrodes

G

G

S

Single-mode waveguide

Fig. 6.5. AMach–Zehnder switch on x-cut LiNbO3 substrate. In this example, push-pull modulation is used,
creating +Δ� and −Δ� in the two arms. G is the ground electrode and S is the signal electrode.
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6.2.1.3 The mode extinction modulator
The mode extinction modulator is one of the simplest modulators. Its principle of
operation can be explained as follows. In order for a guided-wave mode to propagate
effectively there must be a sufficient difference between its effective index and the
indices of the substrate and cladding region. When the neff is reduced by the electro-
optical effect so that it becomes close to, or lower than, the equivalent index of the
cladding or substrate radiation modes, the guided-wave mode is close to or beyond
cut-off. The power in the guided mode will then be coupled strongly to the radiation
modes, and the guided-wave mode will have large propagation loss. The modulation of
the propagation loss by the applied voltage produces a modulation of the optical power
transmitted to the output of the waveguides. Since it is difficult to channel the radiated
power effectively to another waveguide or location, it is just a modulator and not a
switch. In short, a mode extinction modulator is similar to a phase modulator as
illustrated in Fig. 6.3, which has an neff of the waveguide mode close to cut-off. The
effective index of the guided-wave mode is reduced by applying a voltage to the two
electrodes parallel to the waveguide to create a�Δn. The intended effect of the�Δn is to
create propagation loss by the cut-off condition of the mode.

Despite its simplicity, the mode extinction modulator has not been used much in
applications for three reasons.

(1) The −Δn that can be obtained by electro-optical effect is limited. For example, in
LiNbO3 (using the r33 as the electro-optic coefficient) and according to Eq. (3.19),
when 100 volts is applied to a pair of electrodes separated by a 10 μm gap, the Δne is
only approximately 1:6� 10�4.

(2) In order for the mode extinction mechanism to be effective for such a small Δn, the
waveguide needs to have a small difference between the neff and the index of the
cladding region in the absence of the applied electric field, much smaller than 0.001.
In such a weak waveguide, the guided-wave energy is easily scattered into radiation
modes by defects in the material and at the interfaces, resulting in a high propagation
loss in the absence of the applied voltage.

(3) When a weak waveguide is excited experimentally from an external source such as a
fiber, radiation modes are easily excited, resulting in poor coupling efficiency and
large insertion loss.

Nevertheless, the concept of electro-optical loss modulation is very useful. In the section
below, we discuss a similar approach, the electro-absorption (EA) modulator which is
much more effective: EA modulators have already been developed into commercial
products.

6.2.1.4 The electro-absorption modulator
The electro-absorption (EA) effect was discussed in Section 3.2. It is a modulation of the
absorption of a well guided mode in III-V compound semiconductor waveguides. The
increase in absorption is produced by an applied electric field for radiation at wavelength
just below the bandgap of the material. The change in absorption coefficient may be
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caused by the Frantz–Keldysh effect in bulk semiconductors or by the Quantum Confined
Stark Effect (QCSE) in quantum well materials. As we have shown in Eq. (6.40), the
propagation of the mth guided-wave mode in a channel waveguide can be described by

E x; y; zð Þ ¼ Aem x; yð Þe�αm
2 ze�jneff;mkz; (6:55)

where αm = αm,o + Δαm.αm,o is the residual absorption coefficient of the intensity of the
mth guided-wave mode in the absence of applied electric field, and Δαm is the change of
the absorption coefficient created by the Δα in the electro-absorption medium by the
instantaneous electric field F.21 No matter what is the mechanism creating it, the Δαm
creates a loss modulation of the guided wave propagating in the waveguide. In contrast to
extinction modulators, electro-absorption modulation is applied to a waveguide that has a
well guided mode which has low residual propagation loss and high coupling efficiency
to fibers (or other waveguides). Figure 6.6 illustrates an EA waveguide modulator. It
shows a ridged waveguide on InP substrate, where the waveguide core consists of a
quaternary InGaAsP layer sandwiched between lower index InP layers in the vertical
direction. A ridge is etched on the top cladding layer to provide the mode confinement in
the lateral direction. Within the cladding layers above the core, there is an EA layer. In
order to provide a large electric field from a given applied voltage, the EA layer is the
intrinsic layer of a reverse biased p–i–n diode. The doped p and n layers are in contact
with the metallic electrodes.

When there is an applied electric field F, the absorption coefficient of the EA material
can be described as α ¼ α Fð Þ.22 Figure 6.7 shows typical measured absorption spectra α
in cm−1 as a function of wavelength at various applied voltages.23 This sample was
designed for EA operation at the 1.3 μm radiation wavelength. The voltage is applied
across a 0.14 μm thickness intrinsic absorption layer which consists of eight periods of

GaAsInP waveguide core

InP  substrate

n-doped InP cladding & contact

Electrodes

Electro-absorption
layer 

p-doped InP contact

Ridge for lateral optical confinement

Fig. 6.6. An electro-absorption modulator.
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8.9 nm compressively strained InAsP quantum wells and 7.4 nm tensile strained GaInP
barriers. Since the voltage drops across the p and n layers are negligible, the electric field
F in the EA material is approximately V 1:4� 10�6

� �
volts/meter. Note that αo and Δα at

the 1.3 μm wavelength as a function of F can be obtained directly from the measured
absorption spectra.

From the perturbation analysis, the αm of the mth guided-wave mode is related to α of
the absorption material by

Δαm ¼ GΔαav ¼

Ð
EAmaterial region

Δαem � e�mdx dyÐ
em � e�mdx dy

: (6:56)

For uniform α in the EA material, Δαav = Δα(F) and

G ¼

Ð
EA material region

em � e�mdx dyÐ
em � e�mdxdy

(6:57)

where Γ is known as the overlap integral of the EAmaterial. It is the fraction of the optical
energy of the guided-wave mode in the absorption layer. The power I carried by this
mode at the output of the EA modulator L long is

I

Ioe�αm;oL
¼ T Fð Þ ¼ e�GΔαav Fð ÞL; (6:58)

where Io is the incident optical power of the mth mode, and T(F) is the power transmis-
sion of the modulator, normalized with respect to the transmission when F = 0. Note that
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Fig. 6.7. Measured absorption coefficient of an InAsP/GaInP multiple quantum well material as a function
of wavelength at various reverse biased voltages. (This figure is taken from ref. 18 with permission
from K. K. Loi.)
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T(F) = 1 at F = 0. Like the electrodes used in phase and MZ modulators, the electric field
F created from an applied electric voltage V can again be expressed as

F ¼ V

d
fF x; yð Þ:

For multiple quantum well materials, F is in the direction perpendicular to the EA layer.
Typically V consists of a bias voltage Vb plus a RF signal voltage VRF. Similar to Eq.
(6.50) and (6.51), T can also be expressed by a Taylor’s series expansion about T(Vb),

T Vb þ vRFð Þ ¼ co þ
X1
n¼1

cnv
n
RF;

co ¼ T Vbð Þ; cn ¼ 1

n!

∂nT
∂Vn

				
V¼Vb

:

In analog applications, the output from the modulator is transmitted via an optical fiber
and detected. A linear photo-detector converts all the transmitted output intensity
e�αm;oLIoT Vb þ vRFð Þ into electrical currents. The photo-current component propor-
tional to c1vRF produces the output RF signal power in the detector circuit. The RF signal
power transmitted to the load is proportional to

Ioe
�αm;oc1vRF½ �2 ¼ Ioe

�αm;oL∂T
∂V

				
Vb

vRF

" #2

¼ �IoGe�αm;oLe�GΔαavjVbLL
∂Δαav
∂V

				
vb

" #2

: (6:59)

The detected RF signal power can be increased in several ways.

(1) It can be increased by designing and fabricating an EA material, waveguide and

electrode structure such that
∂Δαav
∂V

				
Vb

¼ ∂Δαav
∂F

				
Vb

� ∂F
∂V

is large. From Fig. 6.7, it is

clear that multiple quantum well materials that have the sharpest exciton absorption
peak, largest quantum confined Stark shift and appropriate separation of the exciton

absorption peak from the radiation wavelength will yield the largest
∂αav
∂F

				
Vb

.

(2) From Eq. (6.44), it is clear that the p–i–n structure and the electrode design
determine the Fðx; yÞ=V ¼ fFðx; yÞ=d in the EA medium.

(3) The detected RF signal can be increased by increasing �ins and the optical power Io.
(4) Γ depends on the fraction of the guided-wave energy in the EA medium. For a given

electrode, waveguide and p–i–n structure configurations, the RF signal is maximized

by choosing an L that maximizes GL exp � αm;o þ GΔαavjVb


 �
L

h i
.

(5) For a given modulator, the RF signal is maximized by using a Vb which

maximizes
∂T
∂V

				
Vb

.
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Note that the RF signal power is proportional to (c1vRF)
2 in both MZ and EA

modulators. It is helpful to compare the effectiveness of two different types of modulator
in generating the RF signal (i.e. c1vRF) as follows. Let there be a virtual equivalent MZ

modulator biased at the Vb so that �o þ π
Vπ

Vb is π/2. The TMZ of the equivalent MZ

modulator provides the same c1vRF as the TEA of a given EA modulator. Then, according
to Eq. (6.51), this virtual MZ modulator should have a Vπ,eq such that,

Vπ;eq ¼ π
2

∂TEA
∂V

				
Vb

" #�1

: (6:60)

In other words, for each EA modulator there is a virtual equivalent MZ modulator with a
Vπ,eq that will yield the same c1vRF. In the literature, Vπ,eq is often used to designate the
modulation efficiency of EA modulators. Loi et al. have demonstrated a Vπ,e ≈ 2 V in an
InAsP/GaInP multiple quantum well modulator 185 μm long at the 1.3 μm wavelength
[19]. This device had an 11GHz bandwidth. Another similar modulator 90 μm long had
an electrical capacitance of 0.22 pF and a measured bandwidth over 20 GHz.

Similar to the discussion in Section 6.2.1.2 for MZmodulators, the SFDR of a photonic
link will be limited by the noise, the maximum Io allowed without saturation of dα/dVand
the distortions generated from the cnv

n
RF terms of the T(Vb+vRF). However, different than

the MZ modulators, there is no Vb setting that will make c2 = 0. There may be other
methods that may be used to reduce or to eliminate the effect of specific order of distortion.
For example, for analog applications requiring only sub-octave bandwidth, electrical filters
may be used to remove the frequency components produced by different orders of
distortions outside the pass band of the filter. However, whenever vRF consists of more
than one RF signal frequency, there are still distortions produced by mixing of these RF
signals in the higher order cnv

n
RF terms. Some of these distortions, called inter-modulations

(IM), have frequencies that fall within the pass band of the electrical filter. Betts gives a
detailed listing of the magnitude of the distortion signals at various frequencies when there
are two inputs, νRF = νa sin ωat + νb sin ωbt, including all cnv

n
RF up to c5v

5
RF [15]. For sub-

octave applications with an electrical filter, the non-linear distortions due to c2 and c4 are
filtered out. Note that Vb is set so that the third order distortion, is minimized. For multi-
octave applications, Vb may be set to minimize c2. In an InGaAsP multiple quantum well
EAmodulator for the 1.55 μm radiation wavelength, Zhuang has demonstrated a SFDR of
132 dB-Hz4/5 for sub-octave applications with the spurious signal dominated by the fifth
order distortion, and a SFDR of 118 dB-Hz2/3 for multi-octave applications with the
spurious signal dominated by the third order distortion [20].24

A particular characteristic of the EA modulator that does not apply to MZ electro-
optic modulators is the saturation of c1vRF of the EA modulation at very large Io.
Saturation in an EA modulator is caused primarily by the photo-current generated
from the absorbed radiation. The photo-current creates three effects.

(1) High concentration of photo-generated carriers in the i layer shields the applied
electric field, thereby reducing the absorption. Methods such as peripheral coupling
may be used to reduce the saturation effect for a given Io [21].
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(2) The RF photo-current passes through the same electrical circuit as the RF signal
source driving the modulator. It creates a negative feedback of the voltage applied to
the modulator from the RF source.

(3) The photo-current reduces the junction resistance of the p–i–n junction significantly
so that the modulator impedance is no longer matched to the RF source. Although
the effect of negative feedback and impedance change is minor at low and moderate
Io, the output RF signal is no longer proportional to I2o at very large Io.

The ratio of the output RF power to the RF signal power in the photonic link is
completely saturated at high optical power [22].

For digital applications, the important optical modulator characteristics are the con-
trast ratio that can be achieved for a given applied voltage and the frequency chirp
parameter α. The optical power handled by the modulator is typically a few dBm. Thus the
saturation property of the modulator is usually not important. (1) The EA modulator
performance is rated by the V required to achieve a specific contrast ratio. From
Eq. (6.58), it is clear that the larger the applied V, the larger is the contrast ratio. When
an EA modulator is coupled to other components such as fibers at the input and output
ends, there may be radiation coupled to the output through optical leakage paths that
limits the maximum obtainable contrast ratio. (2) Comparing with the electro-optic MZ
modulators, the optical chirping characteristics of the EA modulators are not as desirable
for long distance fiber transmission. In Section 3.3, the electro-refraction effect was
discussed. In any material, the refractive index spectrum is always related to the absorp-
tion spectrum by the Kramers–Kronig relationship shown in Eq. (3.27). Therefore, there is
always a change of the phase of the output guided wave as a function of change of
absorption in EA modulators. Fells et al. measured the change of Δn in EA modulators as
a function of Δk which is the imaginary part of the complex refractive index representing
absorption [23]. Devaux et al. showed that the α of an InGaAsP/InGaAsP multiple
quantum well EA modulator varied from 0.5 to 2.5, depending on the bias voltage [24].

The parallel electrodes and the p–i–n structure may be represented by an electrical
impedance which consists of a capacitance Cm in parallel with a junction resistance Rj.
Therefore, the electrical circuit bandwidth of the EA modulator will be limited again by
the 1/RsCm. There is a trade-off between optical and electrical performance. The longer
the device length L, the more efficient is the modulator, and the lower is the bandwidth. In
comparison, the EA modulator is much shorter than the MZ electro-optic modulator.
Therefore, EA modulators could have a large bandwidth by using a small Cm. Ido et al.
have demonstrated a high-speed InGaAs/InAlAs modulator integrated with InGaAsP/
InP passive waveguides by minimizing the Cm at the 1.55 μm optical wavelength [25].
Their 150 μm long device has 21 GHz bandwidth, while their 50 μm long device has 33
GHz bandwidth. In the digital mode the driving voltage is 3 V and the insertion loss is
8 dB. The optical input power is +5 dBm.When EAmodulators are compared with electro-
optic MZ modulators, their biggest advantages are the low Vπ,eq and the length of the
device. For the same Vπ,eq their length is typically a fraction of a millimeter or less, while
the MZ modulators are centimeters long. The shortness of the EA device is also attractive
physically for many applications. Since the EA effect is used for loss modulation, it has
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not been utilized for switching. The semiconductor EA modulators can be monolithically
integrated with lasers or other electronic components on the same chip. Kawanishi et al.
have demonstrated an EAM-DFB integrated laser for digital applications with 40 GHz
bandwidth and 12 dB contrast ratio [26].

6.2.1.5 Directional coupler modulators and switches
When a directional coupler power divider as discussed in Section 6.1.1.2 is made from
electro-optic material an electrode could be used to apply an electric field on one of the
waveguides as shown in Fig. 6.8 for a directional coupler modulator on z-cut LiNbO3. In
most directional couplers, waveguide A and waveguide B are identical single mode
waveguides. They are well isolated from each other outside the interaction region.Within
the interaction region they are separated by a gap G. The input power is incident on
waveguide A. Typically, a directional coupler modulator will transfer 100% of the optical
power from the guided-wave in the input waveguide A to the output waveguide B in the
absence of the applied voltage. When a voltage is applied to waveguide B, the Δβ reduces
the power transferred from A to B, thereby producing a modulation of the output power
of waveguide B. An analysis of the directional coupler modulator is presented below.

Similarly to the phase modulator discussed in Section 6.2.1.1, the instantaneous applied
voltage creates a change of the refractive index Δn of the electro-optic material which
produces a change of the effective index of the guided-wavemodeΔneff,m in waveguideB in
the interaction region. From the perturbation analysis, Eq. (3.38) and Eq. (3.39), we obtain

Δβ ¼ Δneff;mk ¼ k
n

neff;m
GΔnav ¼ k

n

neff;m

ÐÐ
electro-optic region

Δnem � e�mdx dy
Ð1

�1

Ð1
�1

em � e�mdx dy
: (6:61)

When Δβ is produced by the linear electro-optic effect, Δβ is proportional to F. Since F =
VfF/d, Δβ is also proportional to the instantaneous applied voltage V. In the lumped
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Fig. 6.8. A directional coupler modulator on z-cut LiNbO3 substrate.
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element approximation, the time dependence of Δβ on the time variation of F is
independent of z.

Let the interaction region length of the symmetric directional coupler beW, from y = 0 to
y =W. When waveguides A and B are placed close to each other with a sufficiently small
gap G, the propagation of the guided-wave mode in waveguides A and B is coupled, with
the coupling coefficient C given in Eq. (2.21). The guided-wave amplitudes aA and aB for
an incident wave with amplitude A in waveguide A are given in Eq. (2.22) as follows

aA ¼ Aej
Δβ
2 z cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Δβ=2ð Þ2

q
y

� �2
64

�j
Δβ=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ Δβ=2ð Þ2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Δβ=2ð Þ2

q
y

� �375;
aB ¼ �jCAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ Δβ=2ð Þ2
q e�jΔβ2 z sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Δβ=2ð Þ2

q
y

� �
: (6:62)

For symmetrical waveguides and in the absence of applied electric field, CAB = CBA = C

and βa = βb (i.e. Δβ = 0). WhenW is chosen so thatCW=π/2, then,
aB
A

			 			 ¼ 1 and Iout/Iin = 1.

As a voltage V is applied to the electrode, aB decreases. At V = Vπ the Δβ is so large that

C2 þ Δβ

2

� �2

¼ π

W


 �2

, then aB = 0. Note that Vπ is defined here similarly to the Vπ of the

MZ modulator, it is the voltage at which Iout = 0. From Eq. (6.62)

ΔβjV¼Vπ
�W ¼

ffiffiffi
3

p
π: (6:63)

Since Δβ ¼ V

V π
ΔβjV¼V π

, we obtain

Iout
�insIin

¼ T Vð Þ ¼ 1

1þ 3 V=Vπ½ �2 sin
2 π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 V=Vπð Þ2

q� �
; (6:64)

where the insertion efficiency �ins is added to take care of any residual propagation loss,
and V is the instantaneous voltage applied to the electrode. If a second electrode is also
applied to waveguide A to create a �Δβ in the push-pull operational mode, then

Δβ ¼ 2
V

Vπ
ΔβjV¼Vπ

and ðV=VπÞ is replaced by ð2V=VπÞ in Eq. (6.64). Just like the MZ

electro-optic modulators, Vπ will depend on the material, the waveguide configuration
and the electrode design. For LiNbO3 waveguides, we obtain

VπW ¼
ffiffiffi
3

p
λdneff;m
n4er33

ÐÐ
fF x; yð Þe � e�dxdyÐÐ

e � e�dx dy
� ��1

: (6:65)

Comparing Eq. (6.64) with Eq. (6.49), we see that the directional coupler (DC) mod-
ulator is very similar to the MZ modulator/switch. The transfer function T(V) of both types
of modulator has a sinusoidal dependence on V/Vπ. The electrode and waveguide
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configurations are similar, yielding the same dependence of Vπ and capacitance Cm on fF, d,
em, rij, and neff. There is a trade-off between Vπ and W (or Lp) as well as between the RC
bandwidth and Vπ. The electrical bandwidth of both types of modulator is limited byCm. The
more subtle differences are: (1) the T(V) for a directional coupler has a damped sinusoidal
dependence. (2) For analog applications there is no bias voltage at which the second order
term d2T/dV 2 of the directional coupler modulator is zero. (3) For digital applications there
is no setting of the directional coupler such that the chirping parameter α can be adjusted
like a MZ modulator. (4) For directional couplers, CW=π/2. In order to decrease Vπ by
increasingW, C needs to be reduced by increasing the gap of separation between the optical
waveguides in the coupling region. At large separation, the coupling coefficient C becomes
more sensitive to wavelength variation and fabrication error. Therefore it is difficult to make
a practical long directional coupler modulator with lowVπ in materials such as LiNbO3. (5)
Directional coupler modulators are automatically switches.

6.2.2 Traveling wave modulators and switches

When the wavelength of the electrical signal is comparable to, or shorter than, the
length of the electrode structure, the voltage and current on the electrodes that
provide the electric field for electro-optical effects are both a function of position
and time. The device can no longer be represented in the electrical circuit driving it
by lumped circuit elements, R, L and C. The optical wave no longer experiences a
time invariant electro-optical effect as it propagates through the device. In
Section 4.2.1, we have shown that the electrical characteristics of the electrode
structure can now be represented as an electrical transmission line. In addition, the
ωL of the inductance of the electrode structure is now significant at high RF
frequencies. The conductance of the metal in the electrode can no longer be regarded
as ∞. The electrode is now represented by a transmission line from z = 0 to z = Lp or
W. Furthermore, the impedance representing the electrode to the RF driving circuit
will depend on the location of the connection on the transmission line and the
terminal impedances. There may be reflections of RF signals at the ends or at any
discontinuity. The time varying electrical field on the electrode produced by the RF
signal source will depend on how the electrodes are connected to the external circuits
and how the transmission line is terminated.

In order to provide efficient modulation of the optical guided wave proportional to the
time variation of the RF drive signal without the interference of the reflected RF signals,
the electrical signal from the RF source is usually transmitted to the electrode through
the beginning of the transitional transmission line at z = 0, and the electrode transmis-
sion line is terminated at the end by a matched load at z = L, Lp or W. Ideally, it is
desirable to have the internal impedance of the RF source, the characteristic impedance
of the transitional transmission line and the impedance of the load matched to each other
so that there will not be reflections of electrical signals from any discontinuity. Since the
source impedance is typically 50 Ω, it is desirable to have 50 Ω for the characteristic
impedance for the transition and electrode transmission lines and for the impedance of
the load.
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For most of the electrodes used in modulators and switches, the fundamental electric
mode of the transmission line is a TEM mode. For a CW microwave signal at frequency
ωm, the microwave electric field propagating in the +z direction without any reflections
can be expressed as

FRF x; y; z; tð Þ ¼ 1

2
Fo
RF x; yð Þe�αRF

2 z ej ωmt�βRFzð Þ þ complex conjugate
h i

; (6:66)

where Fo
RF x; yð Þ is the transverse electric field, αRF is the attenuation of the micro-

wave intensity in the z direction, and βRF ¼ ffiffiffiffiffiffiffiffiffiffiffi
εm=εo

p ωm

c
¼ nmωm=c is the microwave

propagation wave number of the mode. Note that εm is the effective permittivity of
the medium between electrodes at microwave frequency, and nm is the equivalent
index of the microwave mode. The microwave phase velocity is c/nm. When a
transmission line with matched load is connected to the RF source, it is represented
by an impedance Zo to the source. When Zo is matched to the source impedance, the
voltage applied to the input of the modulator at all frequencies is a constant Vs/2
where Vs is the RF source voltage. There is no longer an RCm bandwidth limitation

within which the modulator voltage is reduced to less than 1=
ffiffiffi
2

p
of its peak value as

in low frequency modulation.

6.2.2.1 Traveling wave electro-optic modulators
In electro-optic modulators or switches, the FRF(x,y,z,t) of the microwave signal at
frequency ωm produces an instantaneous Δneff of the optical guided-wave mode at z

Δneff;RF z; tð Þ ¼ 1

2
Δnoeffe

�αRF
2 z ej ωmt�βRFzð Þ þ complex conjugate
h i

: (6:67)

The relation between Δneff
o and FRF

o is the same as those derived for low frequency
devices in Eq. (6.42) and (6.61) for phase, MZ and directional coupler modulators.

(A) Traveling wave phase modulators
In phase modulators, the optical guided wave propagates in the z direction with propaga-
tion wave number neffk. The Δneff(z,t) seen by the photons entering the waveguide in the
mth mode at z = 0 is

Δneff ¼ Δnoeffe
�αRF

2 z cos ωmt � nm � neff;m
� �

kz
� 


¼ Δnoeffe
�αRF

2 z cos ωmt � δnkzð Þ;
(6:68)

where δn = nm – neff,m. The electric field of the mth mode of the guided-wave can be
described as

E x; y; zð Þ ¼ Aem x; yð Þe�αg
2 ze�jneff;mze

�j Δno
eff;m

Ðz
0

e
�αRF

2
z
cos ωmt�δnkzð Þdz

� �
: (6:69)

Therefore, when αRF is neglected, the total phase shift Δ� of the guided wave produced
by the CW traveling wave RF signal for a distance of Lp is
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Δ� ¼ Δnoeff;m

ðLp

0

cos ωmt � δnkð Þdz

¼ Δnoeff;mLp

sin δnkLp=2
� �
δnkLp=2
� � cos ωmt � δnkLp

� �
: (6:70)

Note that Δ� is directly applicable to phase modulators, and that when the microwave
equivalent index nm matches the optical effective index neff,m, δn = 0, and the Δ�
modulation is a constant at all RF frequencies for a constant voltage. Note that Δ� is
sensitive to δn at large kLp. When δnkLp=2 = 1.4, Δ� is reduced to 1

ffiffiffi
2

p
of its maximum

value at ω = 0.25 Therefore, the bandwidth of traveling wave modulation for a given δn
and Lp is given in the literature to be

LpΔωm ¼ 2:8c

δn
: (6:71)

As we have discussed earlier for low frequency operations, the longer the Lp, the
smaller is the Δnoeff,m required to yield a given Δ�, and the smaller is the required RF
modulation voltage. There is no RC limitation of electrical bandwidth. Therefore travel-
ing wave phase modulators can operate with low drive voltage and large bandwidth.
However, αRF is also very important in determining Δ�. It increases as the RF frequency
ωm is increased.26 Thus it limits both the effectiveness of using large Lp to reduce the
drive voltage and the bandwidth of the modulator. In Section 4.4, the more general result
including αRF was derived.

27 For an electrode transmission line well matched to the RF
source and the load, the bandwidth of the traveling wave phase modulator is limited by
δnLp and αRF. In practice, matching of the transmission line may not be good. There are
reflections of microwaves. Then the interference effects produced by the reflections of
microwaves created at various discontinuities further limit the bandwidth of the
modulator.

(B) Traveling wave Mach–Zehnder modulators and switches
The traveling wave Mach–Zehnder modulator consists of essentially two Y-branch
power dividers interconnected by two arms which are single mode waveguides. One or
both of the arms are phase modulators. Since the Δ� of the phase modulator determines
the intensity of the output, the characteristics of the MZmodulators at high frequency are
determined by both the characteristics of phase modulation at high frequencies and the
MZ modulator characteristics for a given Δ� at low frequencies. The Vπ for modulators
with long Lp and good ΓΔnav could be quite low. The bandwidth is determined by the
δnLp, αRF and the matching of the electrode transmission line with the RF source and the
load. The characteristics of the Mach–Zehnder switch are the same as the MZ modulator
connected to a Y-branch power divider.

Although the principles of a traveling wave electro-optic MZmodulator are simple, the
engineering design of the electrode and waveguide configurations that will yield low δn
and αRF, large Δneff,m, long Lp and good impedance matching is very demanding. A fully
packaged LiNbO3 traveling wave modulator with 5 V and 40 GHz bandwidth, using
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electrodes 41mm long, was reported by Howerton et al. [27]. The Vπof this device at DC
is 2.2 V. Figure 6.9 Illustrates their device. Broadband operation with 100 GHz band-
width has been reported by Noguchi et al. [28].

(C) Traveling wave directional coupler modulators and switches
For directional couplers as illustrated in Fig. 6.8, the propagating RF voltage on the
electrode transmission line created a propagating electro-optic Δneff(z,t) on waveguide B
as shown in Eq. (6.67). For photons propagating from z = 0 to z = W and for a CW RF
signal at ωm propagating in the +z direction without reflection, it sees a Δβ in its
propagation, i.e.

βB ¼ neff;mk þ Δβ z; tð Þ;

Δβ ¼ Δneff;m z; tð Þk ¼ k
n

neff;m
GΔnav

¼ k
n

neff;m

ÐÐ
electro-optic region

Δne�
αRF
2 z cos ωmt � δnkzð Þem � e�mdx dy

Ð1
�1

Ð1
�1

em � e�mdxdy
:

(6:72)

For directional couplers using identical waveguides A and B, the coupled mode equation
shown in Eq. (2.21) will now be:

daA
dz

¼ �jCejΔβ z;tð ÞzaB zð Þ;
daB
dz

¼ �jCe�jΔβ z;tð ÞzaA zð Þ:
(6:73)
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SiO2 buffer layer
z-cut LiNbO3 substrate
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Fig. 6.9. A fully packaged broadband Mach–Zehnder traveling wave LiNbO3 modulator. (Taken from ref.
27 with permission of IEEE.) (a) Top view of the coplanar waveguide electrode on top of the optical
MZ interferometer. (b) Cross-section of the electrodes and the ridged optical waveguides in the
interferometer region. The ridge is used to improve the electro-optic overlapG. The thin SiO2 layer
is used to improve electrical conduction. The dimensions of the gold electrodes, S = 8mm, W =
25 μm and tg = 21 μm , are designed to minimize δn and to match the 50Ω impedance of the RF
source. The load and the RF source are not shown in the figure.
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Note that Δβ is proportional to the applied voltage at z = 0, V = Vmax cosωmt. The solution of
Eq. (6.73) is complex for finite αRF and δn. When αRF = 0 and δn = 0,Δβ is independent of z.
The solution of Eq. (6.73) is identical to the result given in Eq. (6.62) for the low frequency
(or very short) directional modulators. Results obtained in Eq. (6.63) to (6.65) are directly
applicable. In principle, the Vπ can be very low by using long W and small coupling
coefficient C. There will be no limitation on the bandwidth caused by the Cm. A 1 cm long
traveling wave z-cut LiNbO3 directional coupler modulator with 2.5mm long electrode, 22
GHz 3 dB electrical bandwidth and Vπ = 26 V has been reported by Korotky et al. [29].
Figure 6.10 illustrates the top view of this modulator on z-cut LiNbO3. Note that the ACPS
electrode creates a push-pull operation in Δ�. The gold electrodes have a characteristic
impedance of 35 Ω. A tapered electrode is used to extend the electrodes to the edge of the
LiNbO3 to mate with external microwave circuits. The device bandwidth was limited by δn.

Because of the difficulties of fabricating devices with long W with precise control of
small C, traveling wave directional modulators with low Vπ have not been reported.

6.2.2.2 Traveling wave electro-absorption modulators
In electro-absorption EA modulators, the voltage applied to the electrode consists of a
bias and a RF voltage, V ¼ Vb þ VRF tð Þ. For a CW RF signal, VRF tð Þ ¼ Vo

RF cosωmt,
applied to the transmission line of the electrodes of an EA modulator at z = 0 without
reflection, the FRF(x,y,z,t) described in Eq. (6.66) creates a ΔαRF(x,y,z,t) within the EA
medium given by

ΔαRF x; y; z; tð Þ ¼ 1

2
ΔαoRF x; yð Þe�αRF

2 z ej ωmt�βRFzð Þ þ complex conjugate
h i

: (6:74)

The relation between Fo
RF and ΔαoRF is the same as those discussed in Sections 3.2 and

6.2.1.4.28 The ΔαRF within the EA medium creates a traveling wave Δαm,RF propagating
from z = 0 to z = L in the optical waveguide, so that

ACPS electrode

Waveguide
coupler2.5 mm

LINbO3

10 mm

Fig. 6.10. Top view of a traveling wave electro-optic directional coupler modulator. (Taken from ref. 29 with
permission from American Institute of Physics.) The asymmetric coplanar strip transmission line
for the electrodes has a 35Ω characteristic impedance. It has a strip width of 15mm, a gap of 5 μm
and a thickness of 3–4 μm.
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Δαm;RF z; tð Þ ¼ 1

2
Δαom;RF e

�αRF
2 z ej ωmt�βRFzð Þ þ complex conjugate
h i

; (6:75)

where the relation between Δαm,RF and ΔαoRF is the same as that given in Eq. (6.56)
for low frequency EA modulators. Photons propagate in the mth mode of the waveguide
with propagation wave number neff,mk. The Δαm,RF seen by the photons entering the
region at z = 0 is

Δαm;eff ¼ Δαom;eff Fo
RF

� �
e�

αRF
2 z cos ωmt � δnkz½ �: (6:76)

The intensity I of these photons after propagating from z = 0 to z = L is

I

Io
¼ T Vð Þ ¼ �inse

�Δαbias Vbiasð ÞLe
�
ÐL
0

Δαm;effdz

¼ �inse
�Δαbias Vbiasð Þe�ΔαRFL cos ωmt�ξð Þ; (6:77)

ΔαRFL cos ωmt � ξð Þ ¼ Δαom;eff F o
RF

� �
LA cos ωmt � ξð Þ

¼ Δαom;eff F o
RF

� � ðL
0

e�
αRF
2 z cos ωmt � δnkzð Þdz: (6:78)

Note that Io is the intensity of the guided wave at z = 0 and �ins is the insertion efficiency
which includes the residual propagation loss of the waveguide. Here we have designated

AL cos ωmt � ξð Þ ¼
ðL
0

e�
αRF
2 z cos ωmt � δnkzð Þdz: (6:79)

When we carry out the integration, we obtain

A2 ¼ 1 L2
�

αRF=2ð Þ2þ δnkð Þ2
h i 1þ e�αRFL

� 
� 2 cos δnkLð Þe�αRF
2 L

n o
; (6:80)

tan ξ ¼
�αRF

2
sin δnkLð Þ � δnkð Þ cos δnkLð Þ


 �
e�

αRF
2 L þ δnk

�αRF

2
sin δnkLð Þ þ δnkð Þ cos δnkLð Þ


 �
e�

αRF
2 L þ αRF

2

: (6:81)

As αRF and δn approach 0, A � 1 and ξ � 0. Therefore, the normalized transmission
function T(V) of an ideal traveling wave EA modulator is again identical to the T(V) at
low frequencies. All design considerations as well as the pros and cons of lumped
element EA modulation discussed in Section 6.2.1.4 are directly applicable to traveling
wave EA modulators. However, there is no electrical bandwidth limitation caused by
RCm. In reality, αRF is a function of ωm. Even for an electrode transmission line well
matched to the RF source and the load, αRF and δn limit the Vπ,eq that can be lowered by
lengthening L. In comparison with MZ and directional coupler modulators, the length L
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of a typical EA modulator is 1mm or less while the length of MZ modulators is in
centimeters. Therefore the effect of a moderate δn is not as severe. Since EA modulators
are made on III-V semiconductor materials that have optical refractive indices in the
range 3.2–3.5, a moderate δn is easy to achieve. Irmscher et al. have demonstrated an InP-
InGaAsP Frantz–Keldysh traveling wave modulator at the 1.55 μm wavelength for
digital applications [30]. The impedance of the 12 μm wide electrode is only 11Ω. It is
terminated by a 12Ω load impedance. For devices 250, 450 and 950 μm long and contrast
ratio of 20 dB, the driving voltages are 2, 1.3 and 0.7 V respectively. The devices showed
a measured bandwidth of 45–17GHz. However, the 250 μm long device is predicted to
have a 67 GHz bandwidth.

Note that, ideally, electrodes should have a characteristic impedance that is matched to
the 50 Ω source impedance, a small δn, a low αRF and a field distribution that optimizes
Δαm,eff for a given applied voltage. In practice, the requirement to meet all these demands
is difficult. How to design and fabricate the traveling wave electrode is an important issue
for traveling wave EA modulators. However, because of the short device length, the
demand on small δn is not as tough for EA modulators as for long MZ electro-optic
modulators.

6.2.2.3 Design of traveling wave electrodes
In Section 4.2.2 we have shown that the transmission line’s voltage and current follow a
set of one-dimensional equations,29

dV

dz
¼ �ZLI and

dI

dz
¼ �YcV; (6:82)

where

ZL ¼ Rc þ jωmL and Yc ¼ jωmC þ 1

Rj
: (6:83)

The solutions are

V z; tð Þ ¼ Vfe�γz þ Vbeþγz
� 


ejωmt and I z; tð Þ ¼ Ife�γz þ Ibeþγz
� 


ejωmt: (6:84)

The first term represents a wave propagating in the positive z direction and the second
term a wave propagating in the negative z direction. Their temporal components are
allowed to contain separate phase offsets for each of the propagating directions. The
equivalent circuit relates I and V through

I z; tð Þ ¼ 1

Zo
Vfe�γz � Vbe�γz
� 


ejωmt; (6:85)

where Zo is the characteristic impedance of the line which is related to the circuit
parameters by

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc þ jωmL

1=Rj þ jωmC

s
¼ γ

1=Rj þ jωmC
: (6:86)
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The propagation constant γ is also related to the circuit parameters and given by

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc þ jωmLð Þ 1

Rj
þ jωmC

� �s
¼ αRF

2
þ jβm; (6:87)

where Rc represents the conduction loss of the electrodes and Rj represents the parallel
leakage resistance between the electrodes. The phase velocity of the microwaves vp and
the group velocity of the microwave pulses vg propagating in the z direction are

vp ¼ ωm

βm
; (6:88)

vg ¼ dωm

dβm

� �
: (6:89)

Note that αRF is the attenuation coefficient of the intensity of the microwave, and βm is
related to the effective index of the microwave on the transmission line by

nm ¼ βm=k ¼ c=vp: (6:90)

The design of the transmission line is focused on matching the nm with the neff of the
optical guided-wave, maximizing the electric field in the electro-optic or electro-absorption
medium, minimizing αRF and obtaining a Zo that has an impedance as close to 50 Ω in
resistance as possible. Commonly used electrodes are usually in the form of micro-strip
MCS, coplanar waveguide CPW and coplanar strip CPS transmission line. For electro-
optic modulators on insulators, CPW and CPS are used commonly, while MCS is used
commonly for semiconductor modulators. In LiNbO3 modulators, the anisotropic dielec-
tric constants of the material at microwave frequencies are much larger than that at the
optical frequencies. In addition to the other design requirements, close matching of nmwith
neff over a long length presents a challenge. In polymer modulators the difference of
dielectric constant at microwave and optical frequencies is much smaller. This reduces
the problems encountered in transmission line design. Since electro-optic modulators are
fabricated on insulators, 1/Rj is zero. In semiconductormodulators, the matching of nmwith
neff is easy because the dielectric constants at microwave and optical frequencies are
similar. However, the thin intrinsic layer in the reverse biased p–i–n structure yields a
large capacitance per unit length C unless the width of the electrode is very small.
Impedance matching and microwave attenuation become the primary considerations.

In all modulators the conductor loss Rc is a major concern that affects the αRF,
especially at millimeter wave frequencies.30 Crude approximations for the series resis-
tance Rc may be obtained by calculating the resistance per unit length of the conductors,
using the Wheeler incremental inductance rule [see 31–33]. In general

αRF ¼ αo
ffiffiffi
f

p
; (6:91)

and αo will vary as a function of electrode thickness, width and gap. The calculated αo as a
function of a gold electrode 3 μm thick for CPW and CPS transmission lines with gap g
and width w has been given by Chung [34]. The Wheeler approximation is valid only
when the conductor thickness is much greater than its skin depth, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ωmμσ

p
.
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If we neglect Rc or αRF for the time being, we obtain

Zo ¼
ffiffiffiffi
L

C

r
¼ βm

ωmC
: (6:92)

Note that guided-wave modulators and switches usually have a large C. Therefore, in
order to get a reasonably large Zo, the electrodes need to have a large L.

The fundamental mode of the electrode transmission line is a TEM mode. The
magnetic field experiences a uniform permeability throughout the entire structure, no
matter what the dielectric constants for the electric field. If we replace the dielectric
medium by air, the inductance L per unit length does not change, while the capacitance
per unit length is changed to Ca. The propagation wave number for the TEM mode of all
parallel electrodes in air is just k, k ¼ ωm=c ¼

ffiffiffiffiffiffiffiffiffi
LCa

p
. Thus

βm ¼ k

ffiffiffiffiffiffi
C

Ca

r
; (6:93)

and

Zo ¼ 1

c
ffiffiffiffiffiffiffiffiffi
CCa

p ; (6:94)

nm ¼
ffiffiffiffiffiffi
C

Ca

r
: (6:95)

In order to reduce nm to match neff, C/Ca needs to be reduced.
The CPWand CPS transmission lines in LiNbO3modulators represent a good example

for illustrating the design of electrodes. Applying a low index buffer dielectric layer such
as SiO2 under the electrode decreases the C as the electric field moves out from the high
index LiNbO3. Increasing the thickness of the electrode increases Ca.

31 Note that C and
Ca also depend strongly on the width to gap ratio. Therefore, traveling wave LiNbO3

modulators have very thick gold electrodes that have appropriate width and gap.
However, the increase of the SiO2 buffer and gold electrode thickness will decrease
VπLp because they decrease the electric field in the electro-optic medium. Howerton and
Burns have presented a good review of traveling wave LiNbO3 modulators [35].
Figure 5.10 in this reference shows the effect of varying the gold electrode thickness tg
and the SiO2 buffer thickness tb on the ΔωmLp product, the Zo and VπLp for a phase or MZ
modulator with CPS electrode on z-cut LiNbO3.

32

Notes

1. In comparison, planar guided waves are usually millimeters wide. Electro-optical effects over a
wide guided-wave beam can only be obtained with electrodes that require large applied voltage,
or that have large electrical capacitance. Devices that require large voltage or that have large
capacitance can be driven effectively only at low electrical frequencies.
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2. Because of the small transverse dimension of the channel waveguide mode, it is possible, but
inefficient, to excite the channel waveguide modes by prism or grating as can be done for
planar waveguides discussed in Sections 5.1.2.2 to 5.1.2.4. End excitation is the dominant
method of coupling the waveguides to the fibers.

3. From the super mode point of view, the mode in the input waveguide is symmetrical. It excites
only the symmetric mode at the output of a symmetrical Y-branch, independent of the
waveguide configuration. Thus the 3 dB power splitting is tolerant with respect to variations
in waveguide and tapering configurations.

4. If there are M inputs, then the Star coupler becomes anM × N coupler. The phase, amplitude,
and frequency of the diffracted fields at the entrance of the output waveguides are determined
from the incident field of the input waveguides. There will be interference effects produced
from different input signals.

5. Note that Δ�Y could also be tuned electro-optically by applying a DC electric field to the
waveguide.

6. From the point of view of super modes, a two-mode interference coupler is identical to a
directional coupler with zero gap between the waveguides.

7. Electro-optical tuning of the relative phase may be used.
8. See Section 5.2.1 for a discussion on various orders of a diffraction grating.
9. For a givenYintersection, the relative phase of the backward propagatingmodes reaching the input

is the sum of the relative phase in the transition region (i.e. the coupled region of the Y intersection)
and in the two-mode waveguide. There is no relative phase shift in the uncoupled region.

10. The linewidth Δω is defined in many optics books as the full linewidth when the amplitude of
the transmitted wave drops to half of its maximum. The linewidth in Eq. (6.17) is a half
linewidth for the transmitted power to drop to half of its maximum. This difference accounts
for the factor

ffiffiffi
2

p
:

11. It is clear from Sections 2.2.2 and 2.2.4 that �t is determined primarily by exp(−jneffkLc) at the
resonance frequency in the coupling region.

12. See Section 5.5 for a discussion of the acousto-optical scanner, deflector and spectrum analyzer.
13. In the lumped element approximation, the time variation of Δneff is the same as V at the input,

independent of z.
14. The fringe electric field is neglected in this approximation.
15. In order to simplify our discussion, phase modulation is applied only on one arm of the MZ

modulator in Fig. 6.4. In practice, more efficient modulation is obtained by obtaining +Δ� in
one arm and −Δ� in the other arm, called push-pull operation. The electrode configuration will
be different.

16. Applying electrodes on both arms may also double the electrical capacitance of the electrodes
to be driven by the RF source at low frequencies. At high frequencies, the transmission lines of
the electrodes on both arms may be driven in parallel.

17. For a given RF signal current generated from the detector, the RF power transmitted to the load
and the bandwidth will also depend on the RC time constant of the detector circuit. However,
since the detector capacitance is much smaller than Cm, the bandwidth of the analog link is
determined usually by the modulator Cm.

18. Since the symbol α is used uniformly to designate chirping in the literature, we will also adopt
it here. The reader should not confuse it with the absorption coefficient α.

19. Note that VπLp is usually used to compare different designs of MZ modulator.
20. TheCm of aMZmodulator can be calculated in the same way as theCm of the phase modulator

discussed in Section 6.2.1.1. Note that the Cm of a balanced MZ modulator in push-pull
operation is the total Cm of the electrodes for both arms.

21. Since the intensity is proportional to E2, the absorption coefficient of the intensity of the guided
wave is αmwhich is αm,o plus Δαm. In the lumped element approximation, Δαm for a modulator
with constant transverse configuration is independent of z.
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22. For quantum well materials, F is oriented in the direction perpendicular to the quantum well
layers.

23. Strictly, electro-absorption occurs only in the quantum wells, not in the barriers. Since both the
wells and the barriers are much thinner than the wavelength of the radiation, the measured α is
usually the averaged α of the absorptive medium, including both the wells and the barrier.

24. The SFDR in dB is usually obtained from a log-log plot of RF and distortion at the output versus
RF input. How SFDR will change as a function of the noise level and the output distortion
depends on the dominant order of non-linearity. The exponent on the units for SFDR reflects the
dependence on the order of the dominant non-linearity. See ref. 20 for a detailed discussion.

25. When δnkLp/2 = 1.9, Δ� is reduced to half of its maximum value at ωm = 0. Therefore, the
bandwidth Δω will depend on the variation of the Δ� allowed.

26. Typically αRF is proportional to
ffiffiffiffi
ω

p
in a microwave transmission line.

27. See also Eq. (6.79) to (6.81) for an explicit expression for
ÐLp

0

e�
αRF
2 z cos ωt � δnkzð Þdz:

28. According to Section 3.2, α is a non-linear function of F, and F = Fb + FRF(x,y,z,t). Then FRF

can be treated as a small signal perturbation of Fb. So α(F) can be expressed by a Taylor series
expansion in terms of FRF(x,y,z,t) around Fb. The ΔαRF(x,y,z,t) in Eq. (6.74) is the dominant
first order term in the Taylor series expansion. It is an approximation. There are other higher
order terms corresponding to cosn(ωt − βRFz) for n > 1. They are much smaller.

29. In some transmission lines, there is dielectric loss. In semiconductor transmission lines that
include a p–i–n junction there is also contact resistance Rs. These losses have not been included
in the transmission line equations in Eq. (6.83).

30. When the thickness of the substrate of the optical waveguide can support microwave slab
modes, coplanar transmission lines could also lose microwave energy to the substrate when the
effective indices of the slabmodes are phase matched to the nm of the transmission line. For this
reason, the LiNbO3 substrate is thinned to reduce αRF.

31. A thicker electrode also has a larger inductance L.
32. The ΔωmLp product for a phase modulator is given in Eq. (6.71) for Δ� reduced to half of its

maximum value at ωm = 0. It may vary, depending on the definition of bandwidth. Results
given in this figure are applicable to both phase and MZ modulators.
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