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Preface

Wearable computing is a relatively new area of research and development that 
aims at supporting people in different application domains: health care, fitness, 
social interactions, video games, and smart factory. Wearable computing is 
based on wearable sensor devices (e.g. to measure heart rate, temperature, or 
blood oxygen), common life objects (e.g. watch, belt, or shoes), and personal 
handheld devices (e.g. smartphones or tablets). Wearable computing has been 
recently boosted by the introduction of body sensor networks (BSNs), i.e. 
networks of wireless wearable sensor nodes coordinated by more capable coor­
dinators (smartphones, tablets, and PCs).

In particular, BSNs enable a very wide range of application scenarios in 
different industry sectors. We can categorize them into different domains: e‐Health, 
e‐Emergency, e‐Entertainment, e‐Sport, e‐Factory, and e‐Social.

e‐Health applications span from early detection or prevention of diseases, 
elderly assistance at home, to post‐trauma rehabilitation after surgeries. e‐
Emergency applications include BSN systems to support fire fighters, response 
teams in large‐scale disasters due to earthquakes, landslides, terrorist attacks, 
etc. e‐Entertainment domain refers to human–computer interaction systems 
typically based on BSNs for real‐time motion and gesture recognition. e‐Sport 
applications are related to the e‐Health domain, although they have a non­
medical focus. Specifically, this domain includes personal e‐fitness applica­
tions for amateur and professional athletes, as well as enterprise systems for 
fitness clubs and sport teams offering advanced performance monitoring 
services for their athletes. e‐Factory is an emerging and very promising domain 
involving industrial process management and monitoring, and workers’ safety 
and collaboration support. Finally, e‐Social applications may use BSN tech­
nologies to recognize user emotions and cognitive states to enable new forms 
of social interactions with friends and colleagues. An interesting example is 
given by a system that involves the interaction between two people’s BSNs to 
detect handshakes and, subsequently monitor their social and emotional 
interactions.
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Although the basic elements (sensors, protocols, and coordinators) of a BSN 
are available (already from a commercial point of view), developing BSN sys­
tems/applications is a complex task that requires design methods based on 
effective and efficient programming frameworks. In this book, we will provide 
programming approaches and methods to effectively develop efficient BSN 
systems/applications. Moreover, we also provide new techniques to integrate 
BSN‐based wearable systems with more general Wireless Sensor Network sys­
tems and with Cloud computing.

This book, entitled Wearable Computing: From Modeling to Implementation of 
Wearable Systems Based on Body Sensor Networks, is based on an intense and 
extensive basic and applied research activity driven by the SPINE project (http://
spine.deis.unical.it), whose authors are cofounders, responsible, and main devel­
opers. Thus, the book is connected to the SPINE website to provide readers with 
software and tools for the development of their wearable computing systems.

This book is aimed at a large audience in the Wearable Computing domain, 
that is gaining considerable research interest and momentum, and is expected 
to be of increasing interest to academic researchers and particularly to com­
mercial developers. Upon reading this book the audiences will perceive the 
following benefits:

●● Learn the state‐of‐the‐art in research and development on wearable com­
puting, wireless BSNs, wearable systems integrated with mobile computing, 
wireless networking, and cloud computing.

●● Obtain a future roadmap by learning advanced technology and open research 
issues.

●● Gather the background knowledge to tackle key problems, whose solutions 
will enhance the evolution of next‐generation wearable systems.

●● Use the book as a valuable reference for a technical professional in a related 
industry.

●● Use the book as a text book in the late undergraduate or the graduate level to 
prepare students who intend to perform research in the field of the book or 
intend to be employed in a related industry.

The main topics of the book are the following:

●● Wearable Computing, the study or practice of inventing, designing, building, 
or using miniature body‐borne computational and sensory devices. Wearable 
computers may be worn under, over, or in clothing, or may also be them­
selves clothes.

●● Wireless Sensor Networks (WSNs), collections of tiny devices capable of 
sensing, computation, and wireless communication operating in a certain 
environment to monitor and control events of interest in a distributed man­
ner and collectively react to critical situations. WSN applications span vari­
ous domains such as environmental and building monitoring and surveillance, 
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pollution monitoring, agriculture, health care, home‐automation, energy 
management, earthquake, and eruption monitoring.

●● Body Sensor Networks (BSNs), involving wireless wearable physiological sen­
sors applied to the human body for medical and nonmedical purposes. In 
particular, they allow for the continuous measurement of body movements 
and physiological parameters, such as heart rate, muscular tension, skin con­
ductivity, and breathing rate and volume, during the daily life of a user.

●● In‐node Signal Processing, a central computing method in advanced wireless 
sensor platforms through which data processing is carried out directly on the 
sensor node to preprocess data acquired from sensors, to fuse data coming 
from other sensor nodes, and, notably, to perform higher level computation 
such as classification and decision making.

●● Mobile Computing, human–computer interaction by which a computer is 
expected to be transported during normal usage. Mobile computing involves 
mobile communication, mobile hardware, and mobile software. Communica­
tion issues include ad‐hoc and infrastructure networks as well as communica­
tion properties, protocols, data formats, and concrete technologies. Hardware 
includes mobile devices or device components. Mobile software deals with 
the characteristics and requirements of mobile applications.

●● Cloud Computing, the use of computing resources (hardware and software) 
that are delivered as a service over a network (typically the Internet). The 
name comes from the use of a cloud‐shaped symbol as an abstraction for the 
complex infrastructure it contains in system diagrams. Cloud computing 
entrusts remote services with a user’s data, software, and computation.

●● Platform‐Based Design (PBD), an embedded computing design methodol­
ogy that consists of a sequence of design/development steps that leads the 
initial high‐level description of a digital system to its final implementation. 
Each step is a refinement process that transforms the design from a higher 
level description to a lower level description that is progressively closer to 
the final implementation.

●● Software Framework, an abstraction in which software providing generic 
functionality can be selectively changed by user code, thus providing application‐
specific software. A software framework is a universal, reusable software 
platform used to develop applications, products, and solutions. Software 
Frameworks include support programs, compilers, code libraries, an applica­
tion programming interface (API), and tool sets that bring together all the 
different components to enable development of a project or solution.

●● Autonomic Computing is a paradigm born as a response to the increasing 
complexity of managing computing systems. It faces the problem by intro­
ducing a series of self‐* properties (self‐configuration, self‐healing, self‐
optimization, and self‐protection) into complex systems, through which 
such systems can be capable of performing several self‐management actions 
without any human intervention.
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●● Activity Recognition aims to recognize the actions and goals of one or more 
agents from a series of observations on the agents’ actions and the environ­
mental conditions. Since the 1980s, this research field has captured the 
attention of several computer science communities due to its strength in 
providing personalized support for many different applications and its con­
nection to many different fields of study such as medicine, human–computer 
interaction, or sociology. Specifically, we are mainly interested in sensor‐
based single‐user and multiuser activity recognition that integrates the 
emerging area of sensor networks with novel data mining and machine 
learning techniques to model a wide range of human activities.

Specifically, this book is organized into 12 chapters:

●● Chapter 1, Body Sensor Networks (BSNs), covers the state‐of‐the‐art about 
wearable sensor nodes, network architecture/protocols/standards, and appli­
cations/systems.

●● Chapter  2, BSN Programming Frameworks, analyzes the state‐of‐the‐art 
about the most known software frameworks (CodeBlue, Titan, RehabSPOT, 
and others) for programming BSN applications/systems.

●● Chapter  3, Signal Processing In‐Node Environment, describes in detail 
the  SPINE framework (http://spine.deis.unical.it) from architectural and 
programming perspectives.

●● Chapter 4, Task‐Oriented Programming, discusses task‐oriented program­
ming of BSN applications through SPINE2.

●● Chapter 5, Autonomic BSNs, illustrates how to make BSNs autonomic, by 
using SPINE*, an extension of SPINE2.

●● Chapter 6, Agent‐oriented BSNs, presents the use of the Agent paradigm for 
programming BSN systems. Specifically, the MAPS (Mobile Agent Platform 
for SunSPOT) framework is used to design and implement agent‐based BSNs.

●● Chapter  7, Collaborative BSNs, provides an introduction of methods 
and  architectures to make BSNs interact with each other for supporting 
multiuser BSN applications.

●● Chapter 8, Integration of BSNs and Wireless Sensor Networks, covers gate­
way‐based solution for interoperability between BSNs and infrastructural 
WSNs (e.g. building indoor sensor networks). This would enable “invisible” 
interaction between BSN‐worn people and the surrounding environment.

●● Chapter  9, Integration of Wearable and Cloud Computing, presents an 
architecture for the integration of BSNs and the Cloud, called BodyCloud, 
based on Google App Engine. It is crucial now to move the data acquired or 
preprocessed on the human body to the cloud for storing and nonreal‐time 
analysis purposes.

●● Chapter  10, Development Methodology for BSN Systems, describes 
a  SPINE‐based methodology for the development of BSN systems. 
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The  methodology guides the BSN system developer from requirement 
analysis to implementation and deployment.

●● Chapter  11, SPINE‐based BSN Applications, presents several applications 
developed through SPINE in different application domains (Activity 
Recognition: recognition of human postures and movements, Emotion 
Recognition: recognition of stress and fear, Handshake Detection: collabora­
tive recognition of two people’s handshake, and Rehabilitation: real‐time 
computation of extension angles of elbow/knee). 

●● Chapter 12, SPINE at Work, provides a quick yet effective reference for BSN 
programmers interested in developing their applications using the SPINE 
framework. The chapter provides the necessary information for setting up 
the SPINE environment so as to start programming as well as insights on 
how the framework itself can be customized and extended.
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1

1.1  Introduction

This chapter provides an overview of the state‐of‐the‐art and technology in the 
field of wireless body sensor networks (BSNs). After introducing the motiva­
tions and the potential applications of this emerging technology, the chapter 
focuses on the analysis of the architecture of sensor nodes, communication 
techniques, and energy issues. We will then present and compare some of the 
programmable sensing platforms that are most commonly used in the context 
of wireless sensor networks (WSNs), and in particular those applied to remote 
monitoring of patients. The chapter also contains an analysis of relevant vital 
human signals and physical sensors used for their recording. Finally, the chapter 
presents the hardware/software characteristics that must be taken into con­
sideration during the design stages of a healthcare monitoring system based 
on  BSNs. For instance, important characteristics are sensor wearability, 
biocompatibility, energy consumption, security, and privacy of the acquired 
biophysical information.

1.2  Background

The widespread use of mobile applications for patient monitoring over the last 
few years is radically changing the approach to the health care. In today’s soci­
ety, this is gaining an increasingly important role in the prevention of diseases; 
the convenience, for instance in terms of health‐care costs, is significant. The 
BSN technology makes often use of mobile applications that allow for the 
transmission to a coordinator node, such as a smartphone or a tablet, informa­
tion about vital signs and physical activities (movements and gestures) [1, 2]. 
The miniaturization and the production cost reduction are leading to the realization 
of extremely small‐sized sensing and computing devices with high processing 
capacity thus giving a great impulse to the development of WSNs, and, as a 

Body Sensor Networks
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direct consequence, of BSNs. Very heterogeneous information and diversified 
physiological signals can be transmitted, possibly after the application of sen­
sor fusion techniques [3], by the sensor nodes to the coordinator device.

Figure 1.1 shows a number of wearable sensing devices and their typical loca­
tion on the body:

1)	 Electrocardiography (ECG): the ECG is used to record the electrical activity 
(including the heart rate) of the heart over a period of time using electrodes 
placed on the skin.

2)	 Blood pressure meter: also known as sphygmomanometer, it is a device used 
to measure (typically, both diastolic and systolic) blood pressure.

EEG sensor node

ECG sensor node

Blood pressure
sensor node

Pulse oximetry
sensor node

EMG sensor node

Motion sensor node

Figure 1.1  Common wearable sensors 
and their location on the human body.
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3)	 Pulse oximetry: the oximeter is a medical device that allows us to measure 
noninvasively the amount of hemoglobin in the blood. Since hemoglobin 
binds with oxygen, it is therefore possible to obtain an estimate of the 
amount of oxygen present in the blood.

4)	 Electromyography (EMG): the EMG sensor is used to monitor muscle 
activity, using a needle electrode inserted into the muscle for high accuracy, 
or, more practical and noninvasive, with simple skin electrodes. It records 
the activity of the muscle fibers under different conditions: at rest, during 
voluntary contraction up to the maximum effort, and during a sustained 
average contraction.

5)	 Electroencephalography (EEG): the EEG sensor uses electrodes placed on 
the scalp to monitor the brain activity and capture different types of brain 
waves.

6)	 Motion inertial sensors (e.g. accelerometers and gyroscopes) monitor 
human movements and even gestures.

BSN systems are commonly characterized by a number of hardware and 
software requirements:

1)	 Interoperability: it is necessary to ensure the continuous data transfer 
through different standards (e.g. Bluetooth and ZigBee) to promote the 
exchange of information and ensure interaction between devices. In addition, 
it should provide an adequate level of scalability in relation to the number of 
sensor nodes and the workload of the BSN.

2)	 System device: the sensors must be of low complexity, small size, lightweight, 
energy efficient, easy to use, and reconfigurable. In addition, patient 
biosignal storage, retrieval, visualization, and analysis must be facilitated.

3)	 Security at the device and system level: particular attention must be paid to 
secure transmission and authenticated access to such sensible data.

4)	 Privacy: the BSN could be considered as a “threat” to the freedom of the 
individual, if the purpose of the applications goes “beyond” the medical 
purposes. Social acceptance to these systems is the key to their wider 
dissemination.

5)	 Reliability: the whole system must be reliable at hardware, network, and 
software levels. Reliability affects directly the quality of monitoring because, 
in the worst case, the failure to observe and/or successfully notify a “critical 
risk event” can be lethal for the patient. Because of the limitations and 
requirements on communication and power consumption, the reliability 
techniques used in traditional networks are not easily applicable in the BSN 
domain and, both at the design and implementation phase, this must be 
taken seriously.

6)	 Validation and accuracy of sensory data: sensing devices are subject to 
hardware constraints that can affect the quality of the acquired data; both 
wired and wireless connections are not always reliable; environmental 



1  Body Sensor Networks4

interference and limited energy availability also affect this aspect. This can 
cause inconsistencies in the transmitted data and might lead to critical 
errors in their interpretation. It is very important that all data transmitted 
from the sensor nodes to the coordinator are adequately “validated” either 
in hardware or software, trying to identify the “critical points” of the 
system.

7)	 Data consistency: for large-scale BSNs, with many and heterogeneous sen­
sors, a single biophysical phenomenon may be “fragmented” and only par­
tially detectable into individual signals. This aspect arises problems of 
information consistency, which must be addressed through appropriate 
synchronization strategies, data fusion techniques [3], and/or mutual exclu­
sion in the access to data.

8)	 Interference: wireless links used in the BSN should try to minimize the inter­
ference issues and favor the coexistence of sensor nodes with other network 
devices available within the radio range.

9)	 Biological compatibility: the wearable sensors and skin electrodes must be 
biocompatible and stable, as they might operate on the user for a long 
period of time without interruptions.

In addition to the hardware and software features, we highlight some aspects 
that could encourage the wide diffusion and exploitation of BSN systems:

1)	 Costs: users expect low costs for health monitoring, yet preserving high 
performance of the devices used.

2)	 Different levels of monitoring: users may require different levels of monitor­
ing, for example, to control the risk of ischemic heart disease or of falling 
during movements. Depending on the operating mode, the energy level 
required for the power supply of the devices can also vary.

3)	 Noninvasive easy‐to‐use devices: the devices must be wearable, lightweight, 
and noninvasive. They should not hinder users in their daily activities; their 
operation must be “transparent” to users who should ignore the details of 
the monitoring task.

4)	 Consistent performance: sensors must be calibrated and accurate, and 
they should provide consistent measurements even if the BSN is stopped 
and restarted several times. Wireless links should be as robust as possi­
ble and be able to operate correctly in different (noisy) working 
environments.

1.3  Typical m‐Health System Architecture

Figure 1.2 shows the typical architecture of an m‐Health system based on BSN 
technology. It usually consists of three different tiers communicating through 
wireless (or sometimes wired) channels [4].
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Tier 1 represents the Body Sensor Tier and includes a set of wireless wearable 
medical sensor nodes composing the BSN. Each node is able to detect, sample, 
and process one or more physiological signals. For example, a motion sensor for 
discriminating postures, gestures, and activities; an electrocardiogram (ECG) 
sensor can be used for monitoring cardiac activity; and an electroencepha­
logram (EEG) sensor for monitoring cerebral electrical activity, and so on.

Tier 2 is the Personal Area Network Tier and contains the personal coordina­
tor device (often a smartphone or a tablet, but possibly a PC) running an end‐
user application. This tier is responsible for a number of functions providing a 
transparent interface to the BSN, to the user, and to the upper tier. The inter­
face to the BSN provides functionalities to configure and manage the network, 
such as sensor discovery and activation, sensory data recording and process­
ing, and establishment of a secure communication with both Tier 1 and Tier 3. 
When the BSN has been configured, the end‐user monitoring application 
starts providing feedback through a user‐friendly graphical and/or audio inter­
face. Finally, if there is an active channel of communication with the upper tier, 
it can report raw and processed data for off‐line analysis and long‐term storage. 
Conversely, if Internet connectivity is temporary unavailable, the coordinator 
device should be able to store the data locally and perform the data transfer as 
soon as the connectivity is restored.

Tier 3 is the Global Network Tier and comprises one or more remote medical 
servers or a Cloud computing platform. Tier 3 usually provides services to 
medical personnel for off‐line analysis of a patient’s health status, real‐time 
notification of life‐critical events and abnormal conditions, and scientific and 
medical visualization of collected data. In addition, this tier can provide a web 
interface for the patient itself and/or relatives too.

Tier 1 Tier 2 Tier 3

Figure 1.2  A three‐tier hierarchical BSN architecture: (1) body sensor tier, (2) personal area 
network tier, and (3) global network tier.
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1.4  Hardware Architecture of a Sensor Node

A typical sensor node architecture is shown in Figure 1.3 and consists of the 
following main components:

●● Sensing unit, each node usually includes one or multiple built‐in sensors and an 
expansion bus through which it is possible to attach further sensors that might 
be necessary for specific applications. A sensor is generally composed of a 
transducer and an analog‐to‐digital converter (see next bullet point). The 
transducers are realized by exploiting the characteristics of some materials that 
vary their “electrical properties” to varying environmental conditions. Many 
transducers used on wireless sensor nodes are based on MEMS (Micro‐
ElectroMechanical Systems) technology. MEMS sensors are more efficient and 
require less power consumption with respect to piezoelectric sensors; further­
more, MEMS sensors are characterized by low production costs, although this 
could lead to less precision if compared with piezoelectric sensors.

●● Analog‐to‐Digital Converter (ADC) converts the voltage value of a trans­
ducer into a digital value, which will then be used for post‐processing.

●● Processing unit, the Micro‐Controller Unit (MCU) of a sensor node is usually 
associated with a built‐in limited memory unit to improve the processing 
speed and enable local online sensory data processing. The sensor node is, 
therefore, able to perform signal processing such as “background noise” filter­
ing, data fusion and aggregation, and feature extraction (e.g. mean, variance, 
maximum/minimum value, entropy, and signal amplitude/energy). The MCU 
is also responsible for the management of the other hardware resources.

●● Transceiver unit is the component that connects the node to the network. It 
can be an optical or a radio frequency (RF) device. It is also possible, and 
actually very useful, to use the radio with a low duty‐cycle, to help reducing 
the power consumption.

Transceiver

Microcontroller (MCU)

External memory

ADC

Sensor 1

Sensor 2

P
ow

er supply

Sensor N

…

…

Figure 1.3  Typical hardware architecture of a sensor node.
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●● External memory is needed to store the binary code of the program running on 
the sensor node. Some sensor platforms also include a further memory (usually 
a microSD flash memory) as a mass storage unit for sensory data recording.

●● Power supply is the scarcest resource of a sensor node and must be preserved 
as much as possible to prolong its lifetime; it could be notably supported by 
a unit for energy harvesting (e.g. from solar light, heat, or vibration).

1.5  Communication Medium

In a multi‐hop sensor network the nodes can interact with each other via a 
wireless communication medium. One choice is to use the ISM (industrial, 
scientific, and medical) radio spectrum [5], i.e. a predefined set of frequency 
bands that can be used freely in many countries. Most of the sensors currently 
on the market do in fact make use of a RF circuit. Another option is given by 
infrared (IR) communication. On the one hand, the IR communication does 
not require permits or licenses, it is protected from interference, and IR trans­
ceivers are very cheap and easy to realize. On the other hand, however, IR 
requires line‐of‐sight between the transmitter and the receiver, which makes it 
hardly usable for WSNs and BSNs as nodes very often cannot be deployed in 
such a way.

1.6  Power Consumption Considerations

A sensor node is normally equipped with a very limited energy source. The 
lifecycle of a sensor node heavily depends on the battery dimensions and on 
the processing and communication duty‐cycling. For these reasons, many 
research efforts are focusing on the design of power‐aware communication 
protocols and algorithms, with the aim of optimizing energy consumption. 
While in traditional mobile networks and ad‐hoc networks energy consump­
tion is not the most important constraint, in the WSN domain it is a crucial 
aspect. This is true even in the specific subdomain of the BSNs. Although it is 
generally easier to recharge or replace the batteries of the wearable nodes, due 
to wearability reasons, the battery dimension (and hence its capacity) is gener­
ally much smaller than in other WSN scenarios.

In a sensor node, the energy consumption is mainly due to three tasks:

●● Communication: it is the most affecting factor. Low‐power radios, strict 
radio duty‐cycling, power‐aware WSN‐specific communication protocols 
and standards, and on‐node data fusion and aggregation techniques are 
critical design choices for reducing the activation of the transceiver module 
as much as possible. It is worth noting that both transmission and listening/
reception time must be optimized.
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●● Sensing: the power required to carry out the sampling depends on the nature 
of the application and, as a consequence, on the type of the physical trans­
ducers involved.

●● Data processing: it must be taken into account, even though the energy con­
sumed for processing a given amount of data is very small compared to the 
energy requirements for transmitting the same amount of data. Experimental 
studies showed that the energy cost for transmitting 1 kB of data is about the 
same that would be obtained by performing 3–100 million instructions on 
the sensor node microcontroller [6].

1.7  Communication Standards

The aforementioned requirements impose very tight restrictions on the type of 
network protocols that can be used in WSNs. The short‐range wireless 
technologies are a prerequisite, given the limited power budget available for 
each node. The implementation of a wireless network communication proto­
col that must be robust, fault tolerant, and capable of self‐configuration even in 
hostile environments represents a considerable technological challenge, which 
required (and still requires) the efforts of several standardization bodies, such 
as IEEE and IETF.

The IEEE 802.15.4 [7] is to date the most widely adopted standard in the 
WSN domain. Indeed, it is intended to offer the fundamental lower network 
layers (physical and MAC) of Wireless Personal Area Networks (WPANs) 
focusing on low‐cost, low‐speed ubiquitous communication between 
devices. The emphasis is on very low‐cost communication of nearby devices 
with little to no underlying infrastructure. The basic protocol conceives a 
10 m communication range with a transfer rate of 250 kbit/s. Tradeoffs are 
possible to favor more radically embedded devices with even lower power 
requirements, through the definition of several physical layers. Lower trans­
fer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s rate 
being added later. Even lower rates can be considered with the resulting 
effect on power consumption. The main identifying feature of 802.15.4 is 
the importance of achieving extremely low manufacturing and operation 
costs, and technological simplicity, without sacrificing flexibility or general­
ity. Important features include real‐time suitability by reservation of guar­
anteed time slots, collision avoidance through CSMA/CA, and integrated 
support for secure communications. It operates on one of three possible 
unlicensed frequency bands:

●● 868.0–868.6 MHz: Europe, allows 1 communication channel.
●● 902–928 MHz: North America, up to 30 channels.
●● 2400–2483.5 MHz: Worldwide use, up to 16 channels.
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To complete the IEEE 802.15.4 standard, the ZigBee [8] protocol has been 
realized. ZigBee is a low‐cost, low‐power, wireless mesh network standard 
built upon the physical layer and medium access control defined in the 802.15.4. 
It is intended to be simpler and less expensive than, for instance, Bluetooth. 
ZigBee chip vendors typically sell integrated radios and microcontrollers with 
60 to 256 kB flash memory. The ZigBee network layer natively supports both 
star and tree networks, and generic mesh networks. Every network must have 
one coordinator device. In particular, within star networks, the coordinator 
must be the central node. Specifically, the ZigBee specification completes the 
802.15.4 standard by adding four main components:

●● Network layer, which enables the correct use of the MAC sublayer and pro­
vides a suitable interface for the application layer.

●● Application layer is the highest‐level layer defined by ZigBee and represents 
the interface to the end users.

●● ZigBee device object (ZDO) is the protocol responsible for overall device 
management, security keys, and policies. It is responsible for defining the 
role of a device (i.e. coordinator or end device).

●● Manufacturer‐defined application objects, which allow for customization 
and favor total integration.

Bluetooth [9] is a proprietary open wireless technology standard for exchang­
ing data over short distances (using short wavelength radio transmissions in the 
ISM band from 2400 to 2480 MHz) from fixed and mobile devices, creating 
WPANs with high levels of security. Bluetooth uses a radio technology called 
frequency‐hopping spread spectrum, splitting the data being sent into portions 
and transmitting the portions on up to 79 bands (1 MHz each). Bluetooth is a 
packet‐based protocol with a master–slave structure. One master may com­
municate with up to seven slaves in a so‐called piconet; all devices share the 
master’s clock. Packet exchange is based on the basic clock, defined by the mas­
ter. The specification also provides for the connection of two or more piconets 
to form a scatternet, in which certain devices simultaneously play the master 
role in one piconet and the slave role in another. Although being designed for 
WPANs, the first versions of Bluetooth are actually suitable only for BSN sys­
tems that do not require long battery life before recharging. This is because the 
Bluetooth power consumption profile is significantly higher compared with 
802.15.4. Other factors limiting the use of Bluetooth in the BSN domain are the 
high communication latency (typically around 100 ms) and the long setup time 
(that, due to the discovery procedure, can take several seconds).

To overcome these limitations, Bluetooth released the 4.0 version that has 
been called Bluetooth Low Energy (BLE) [10]. One of the BLE design driving 
factors is the specific support for applications such as health care, sport, and 
fitness. The promoter for such applications is the Bluetooth Special Interest 



1  Body Sensor Networks10

Group in cooperation with the Continua Health Alliance. BLE operates in the 
same spectrum range (2400–2480 MHz) as classic Bluetooth but uses a differ­
ent set of channels. Instead of 79 1‐MHz wide channels, BLE uses 40 2‐MHz 
wide channels. BLE is designed with two implementation alternatives: Single 
mode and dual mode. Small devices like watches and sport sensors based on a 
single‐mode BLE implementation will take advantage of the low power con­
sumption and low production costs. However, pure BLE is not backward com­
patible with the classic Bluetooth protocol. In dual‐mode implementations, 
instead, the new low‐energy functionality is integrated into classic Bluetooth 
circuitry. The architecture will share classic Bluetooth technology radio and 
antenna, enhancing current chips with the new low‐energy stack.

ANT [11] is an ultra‐low‐power wireless communications protocol stack 
operating in the 2.4 GHz band. A typical ANT protocol transceiver comes 
preloaded with the protocol software and must be controlled by an application 
processor. It is characterized by a low computational overhead and high effi­
ciency, resulting in low power consumption by the radios supporting the pro­
tocol. Similar to BLE, ANT has been targeted for sport, wellness, and home 
health monitoring, among other WSN application scenarios. To date, indeed, 
ANT has been adopted in a number of commercial wrist‐mounted instrumen­
tation, heart rate monitoring, speed and distance monitoring, bike computers, 
and health and wellness monitoring devices.

The IEEE 802.15 WPAN Task Group 6 (BAN) [12] is developing a com­
munication standard specifically optimized for low‐power devices operating 
on, in, or around the human body to serve a variety of applications including 
medical, consumer electronics, personal entertainment, and others. Compared 
to IEEE 802.15.4, IEEE 802.15.6 focuses specifically on BSNs, addressing their 
identifying characteristics such as shorter communication range (the stand­
ard supports a range of 2–5 m) and larger data rate (up to 10 Mbps), which 
help in decreasing power consumption and meeting safety and biofriendly 
requirements.

1.8  Network Topologies

The most common network topologies adopted in the BSN domain are the 
following:

●● peer‐to‐peer
●● star
●● mesh
●● clustered

The peer‐to‐peer (P2P) topology (see Figure 1.4) reflects BSN systems that do 
not rely on a coordinator station to operate. It is worth noting that a pure P2P 
topology is never used in practice today. Even for systems where the sensor 
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nodes adopt a decentralized communication para­
digm to reach a certain common goal, there is at 
least one node that interfaces with the user to 
receive commands and provide some sort of feed­
back for the events generated by the BSN.

The most common network topology for a BSN 
system is actually the star (see Figure 1.5). Here, the 
coordinator device acts as the center of the star and 
it is in charge of configuring the remote sensor 

nodes (which do not communicate 
among each other directly), and 
gathering the sensory information.

The P2P and star topologies are 
used for personal BSN applications 
(e.g. health monitoring, wellness, or 
sport) that do not need to interact 
with other BSNs.

The mesh topology (see Figure 1.6) 
is an extension of the star, where mul­
tiple BSNs may interact, and even col­
laborate, through the existence of an 
underlying infrastructure consisting of 
gateway nodes necessary to enable the 
communication among BSNs.

Acknowledged

Bidirectional

Figure 1.4  Peer‐to‐peer 
topology.

Figure 1.5  Star topology.

Figure 1.6  Mesh topology.
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Somewhat similar to the mesh is the clustered topology (see Figure  1.7). 
Here, however, different BSNs may communicate without necessarily relying 
on a fixed infrastructure. In other words, the BSNs are able to communicate 
directly, typically in a P2P fashion.

Mesh and clustered topologies are adopted in complex systems, which 
involve different BSNs to communicate among each other. Depending on the 
specific application, they are often referred to as Collaborative BSNs [13] (see 
Chapter 7).

Figure 1.7  Clustered topology.
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1.9  Commercial Sensor Node Platforms

A comprehensive analysis on commercial sensor platforms for BSN applications 
is out of the scope of this section. However, to provide a overview on their 
current status, a brief list is summarized in Table 1.1. An interesting survey on 
sensor network platforms can be found in Ref. [14].

In the following, we just briefly describe the main technical specifications of 
some of the most popular sensor node architectures.

The Intel Mote [15] is among the first wireless sensor node platforms; built 
on a motherboard of 3 × 3 cm and equipped with an Intel XScale PXA270 
processor with 32 MB of flash memory and 32 MB of SDRAM, it allows for 
high‐performance computing. It integrates an 802.15.4 radio, while additional 
wireless standards, such as Bluetooth and 802.11b, are supported by means of 
attachable boards.

The Mica Mote [16] (see Figure 1.8), developed at the University of California 
at Berkeley, is used for research and development of networks with low‐power 
consumption requirements. It is equipped with an Atmel ATMEGA128 micro­
controller at 4–16 MHz (on the MicaZ) with 128 kB of Flash and 4 kB of SRAM. 
The radio module is based on an RF transmitter at 916.5 MHz on the Mica, 
while on the CC2420 at 2.4 GHz on the MicaZ. The platform is distinguished 
by the high number of additional plug‐in sensor boards.

The TelosB (also known as Tmote Sky) [17] (see Figure 1.9) is an open‐source 
low‐power wireless sensor node platform designed by the University of 
California, Berkeley, for pervasive monitoring applications and for rapid proto­
typing of WSN systems. It integrates an 8 MHz Texas Instruments MSP430 
microcontroller, humidity, temperature and light sensors, and an IEEE 802.15.4 
compliant Chipcon CC2420 radio module.

The Shimmer nodes [18] (see Figure 1.10) are specifically designed to sup­
port wearable medical applications and provide a highly extensible platform, 
by means of plug‐in sensor boards, for real‐time detection of movements and 
changes in physiological parameters. They are among the smaller nodes on the 
market and have a plastic cover that protects the internal electronics and the 
battery. Furthermore, the size and the wide availability of elastic straps (e.g. for 
arms, chest, wrist, waist, and ankle) makes this platform probably the most 
appropriate for developing BSN‐based m‐Health systems. Currently, there are 
four commercial revisions of the platform: Shimmer, Shimmer2, Shimmer2R, 
and Shimmer3. All of them have the same MCU (TI MSP430) and the same 
radio chipset (CC2420), support local storage media microSD, are powered by 
a rechargeable lithium battery, and support Bluetooth communication, thanks 
to a second dedicated radio module. The Shimmer3 revision is slightly differ­
ent as it uses a more powerful 24 MHz MSP430 microcontroller and includes 
natively only the Bluetooth radio, while offering an expansion interface for 
connecting an additional radio or a coprocessor. The Bluetooth support is an 



  Table 1.1    List of commercial sensor node platforms. 

Sensor 
platform MCU Transceiver

Code/data 
memory

External 
memory

Programming 
language    

BTNode ATmega 128L 8 MHz 802.15.4 (CC1000), Bluetooth 180/64 kB 128 kB C, nesC/TinyOS  
Epic mote TI MSP430 8 MHz 802.15.4 (CC2420) 48/10 kB 2 MB Flash nesC/TinyOS  
MicaZ ATMega 128 16 MHz 802.15.4 (CC2420) 128/4 kB 512 kB nesC/TinyOS  
Shimmer3 TI MSP430 24 MHz Bluetooth 256/16 kB 2 GB microSD C, nesC/TinyOS  
SunSPOT ARM920T 180 MHz 802.15.4 (CC2420) 512 kB 4 MB Flash JavaME  
TelosB TI MSP430 8 MHz 802.15.4 (CC2420) 48/10 kB 1 MB Flash C, nesC/TinyOS  
Waspmote ATMega 1281 8 MHz ZigBee or Bluetooth or Wifi 128/8 kB 2 GB microSD C  
Intel Mote XScale PXA270 

13–416 MHz
802.15.4 (CC2420), Bluetooth, 
802.11b

32 MB/32 MB — C, TinyOS



1.9  Commercial Sensor Node Platforms 15

Figure 1.8  Mica Mote. 

Figure 1.9  TelosB Tmote Sky. 

Figure 1.10  Different revisions of the Shimmer platform. 
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important aspect of this platform as it strengthens the motivation for its use in 
market‐ready m‐Health systems, since current smartphones and tablets do 
have Bluetooth connectivity, but do not support the IEEE 802.15.4 standard.

1.10  Biophysiological Signals and Sensors

There exist several and very different vital signs and biophysiological parame­
ters. Some of them are very useful for realizing effective smart‐Health systems. 
Among the main parameters of interest, there are:

●● blood pressure
●● blood oxygenation
●● blood glucose concentration
●● body temperature
●● brain activity
●● thoracic impedance
●● breathing rate
●● breathing volume
●● cardiac electric activity
●● heart rate
●● skin conductivity
●● muscle activity
●● posture and physical activities

There exist wearable noninvasive sensors that can be used to measure, 
directly or indirectly, each of the aforementioned parameters. One or multiple 
sensors are typically included in the basic sensor platforms and additional 
sensors may be integrated through expansion interfaces. In particular, the 
following physical sensors have been commonly used in research and indus­
trial m‐Health systems:

●● Accelerometers for measuring body movements and gestures. In recent years, 
the importance of these sensors increased significantly, as they perfectly fit 
for several medical, sport, fitness, and wellness applications. The operating 
principle is based on the detection of the inertia of a mass when subjected to 
acceleration [19]. Popular accelerometer sensors are today able to detect 
accelerations over the three axes, although there are also two‐axis and one‐
axis accelerometers.

●● Gyroscopes for measuring angular velocity. Three‐axis, two‐axis, and one‐
axis gyros are commonly available. Gyroscopes are relatively immune to 
environmental interferences and, therefore, have been widely accepted in 
medical devices [20].

●● Thermal sensors, a family of sensors that are used to measure temperatures 
or heat fluxes [19].
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●● Electrodes for monitoring cardiac activity (ECG), brain activity (EEG), 
respiratory activity (electrical impedance plethysmogram  –  EIP), muscle 
activity (electromyogram – EMG), and emotions (galvanik skin response – GSR). 
They must be applied directly on the skin, typically with disposable adhesive 
leads that contain a drop of conductive gel.

●● Photoplethysmography (PPG) sensors, they are used as an indirect method to 
measure cardiovascular parameters such as pulse rate, blood oxygenation, 
and blood pressure [21]. They are realized as clips with a light emitting diode 
(LED) and a photosensible sensor placed at the two terminals. The clip is 
usually attached to the earlobe or the finger. The operating principle is based 
on the fact that the blood absorbs or reflects part of the emitted light and the 
variation of the blood volume caused by heart beats modulates the amount 
of transmitted or reflected light.

1.11  BSN Application Domains

Comprehensive overviews of several BSN applications can be found in Refs. 
[22–24]. A few surveys on wearable sensor‐based systems have been published 
to date. For example, in Ref. [22] the focus of the survey is on the functional 
perspective of the analyzed systems (i.e. what kind of applications they target). 
In this work, systems are divided into commercial products and research 
projects, and also grouped on the basis of hardware characteristics: Wired 
electrode‐based, smart textiles, wireless mote‐based, and based on sensors 
found in commercial smartphones. In another frequently cited survey work 
[23], the attention is focused on the hardware components and the application 
scenarios. Analyzed projects are classified into (i) in‐body (implantable), 
(ii) on‐body medical, and (iii) on‐body nonmedical systems.

Hence, to provide a different point of view, in the following, we will introduce 
a categorization on the main application domains in which the BSN technology 
can play a critical role. Moreover, a summary of some literature BSN systems is 
reported in Table 1.2.

As aforementioned, BSNs enable a very wide range of application scenarios. 
We can categorize them into different application domains:

●● e‐Health
●● e‐Emergency
●● e‐Entertainment
●● e‐Sport
●● e‐Factory
●● e‐Sociality

e‐Health applications include physical activity recognition, gait analysis, post‐
trauma rehabilitation after surgeries, cardiac and respiratory diseases prevention 



  Table 1.2    Summary of representative BSN systems. 

Project title
Application 
domain Sensors involved

Hardware 
description Node platform

Communication 
protocol

OS/programming 
language    

Real‐time Arousal 
Monitor   [25]  

Emotion 
recognition

ECG, respiration, 
temp., GSR

Chest‐belt, skin 
electrodes, 
wearable monitor 
station, USB dongle

Custom Sensors connected 
through wires

n/a/C‐like  

LifeGuard   [26]  Medical 
monitoring in 
space and extreme 
environments

ECG, blood 
pressure, 
respiration, temp., 
accelerometer, 
SpO 2 

Custom 
microcontroller 
device, commercial 
biosensors

XPod signal 
conditioning unit

Bluetooth n/a  

Fitbit®   [27]  Physical activity, 
sleep quality, heart 
monitoring

Accelerometer, 
heart rate

Waist/wrist‐worn 
device, PC USB 
dongle

Fitbit® node RF proprietary n/a  

VitalSense®   [28]  In‐ and on‐body 
temperature, 
physical activity, 
heart monitoring

Temp., ECG, 
respiration, 
accelerometer

Custom wearable 
monitor station, 
wireless sensors, 
skin electrodes, 
ingestible capsule

VitalSense® 
monitor

RF proprietary Windows mobile  

LiveNet   [29]  Parkinson 
symptom, epilepsy 
seizure detection

ECG, Blood 
pressure, 
respiration, temp., 
EMG, GSR, SpO 2 

PDA, 
microcontroller 
board

Custom 
physiological 
sensing board

Wires, 2.4 GHz 
radio, GPRS

Linux (on PDA)  



AMON   [30]  Cardiac‐
respiratory 
diseases

ECG, blood 
pressure, temp., 
accelerometer, 
SpO 2 

Wrist‐worn device Custom 
wrist‐worn 
device

Sensors connected 
through wires 
–GSM/UMTS

C‐like/JAVA (on 
the server 
station)  

MyHeart   [31]  Prevention and 
detection of cardio 
vascular diseases

ECG, respiration, 
accelerometer

PDA, textile 
sensors, chest‐belt

Proprietary 
monitoring 
station

Conductive yarns, 
Bluetooth, GSM

Windows mobile 
(on the PDA)  

Human++   [32]  General health 
monitoring

ECG, EMG, EEG Low‐power BSN 
nodes

ASIC 2.4 GHz radio/
UWB modulation

n/a  

HealthGear   [33]  Sleep apnea 
detection

Heart rate, SpO 2 Custom sensing 
board, commercial 
sensors, cell phone

Custom wearable 
station (includes 
XPod signal 
conditioning 
unit)

Bluetooth Windows mobile 
(on the mobile 
phone)  

TeleMuse®   [34]  Medical care and 
research

ECG, EMG, GSR ZigBee wireless 
motes

Proprietary IEEE 802.15.4/
ZigBee

C‐like  

Polar® Heart Rate 
Monitor   [35]  

Fitness and 
exercise

Heart rate, 
altimeter

Wireless chest‐belt, 
watch monitor

Proprietary 
watch monitor

Polar OwnCode® 
(5 kHz) – coded 
transmission

n/a
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and early detection, remote elderly assistance and monitoring, sleep quality 
monitoring and sleep apnea detection, and even emotion recognition [36].

e‐Emergency refers to applications, e.g. for supporting firefighters and response 
teams in large‐scale disasters due to earthquakes, landslides, and terrorist 
attacks [37].

e‐Entertainment domain refers to human–computer interaction systems typi­
cally based on BSNs for real‐time motion and gesture recognition, eye track­
ing, and, more recently, mood and emotion recognition [38, 39].

e‐Sport applications are related to the e‐Health domain, although they have a 
nonmedical focus. They include personal e‐fitness applications for amateur 
and professional athletes as well as enterprise systems for professional fit­
ness clubs and sport teams offering advanced performance monitoring 
services for their athletes [40].

e‐Factory is a slowly emerging domain involving industrial process manage­
ment and monitoring, and workers’ safety and collaboration support [41].

Finally, the e‐Sociality domain involves the recognition of human emotions and 
cognitive states to enable new forms of social interactions. An interesting 
example is a system for tracking interactions between two meeting people by 
detecting, in a collaborative fashion, handshakes and, subsequently, monitor­
ing their social and emotional interactions [42].

1.12  Summary

This chapter has provided an overview of the current state‐of‐the‐art of the BSN 
domain. We have first introduced the motivations for the BSN technology. We 
then provided a description of the most important hardware and software 
requirements of BSN systems, typical m‐Health system architecture and, more 
in detail, the common schematic architecture of a wireless sensor node. In addi­
tion, most popular BSN network topologies, communication protocols and 
standards, and commercial sensor platforms have been introduced. Furthermore, 
particular attention has been given to the main biophysiological signals and the 
corresponding physical sensors for their acquisition. Finally, the chapter has pro­
vided a categorization of the most relevant BSN application domains and sum­
marized a number of related commercial products and research projects.
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2

2.1  Introduction

Beside the technological hardware developments in terms of system integration, 
miniaturization, circuitry design, and energy efficiency, developing effective and 
efficient software applications is the main key factor for wearable systems to 
emerge and turn from research prototypes into powerful cutting‐edge real‐
world products.

However, building high quality and efficient applications is a hard task to be 
accomplished without proper programming skills and flexible development 
tools. This is a very limiting factor, especially in light of the fact that developers 
of BSN applications may be expert in specific scientific fields (e.g. biology, 
medicine, and fitness) rather than in networking or embedded programming. 
As a result, there is an evident need for appropriate methodologies and abstrac-
tions capable of improving and simplifying the BSN system development, 
deployment, and maintenance processes.

This chapter investigates problems and challenges involved in programming 
BSNs and discusses the importance of adopting high‐level programming 
abstractions and software tools through which developers are able to overcome 
the difficulties in managing such distributed and resource‐constrained embed-
ded environments. Moreover, it provides the state‐of‐the‐art of middleware 
and programming frameworks by focusing on both capabilities and lack of 
proper functionalities needed for facing today’s and future challenges in BSN 
application development.

2.2  Developing BSN Applications

Despite more than a decade of research in the BSN field, programming com-
plexity is still one of the challenging issues guilty of hindering a wider diffusion 
of such systems in the real world.

BSN Programming Frameworks
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Implementing software on BSN‐based systems requires the developers to 
face many different programming aspects ranging from efficiently managing 
the very limited hardware resources (power, memory, and computational capa-
bility) of the sensor platforms to translating the global distributed in‐network 
application behavior into a per‐node set of functions and interacting routines. 
Dealing with platform‐level, network‐level, and application‐level implementa-
tion and debugging steps, without flexible development supporting tools, very 
likely leads to time‐consuming and error‐prone tedious tasks prior to having 
the end‐user application ready for deployment.

Unfortunately, a standard and common approach able to effectively fill the 
gap between the complexity of the routines for managing sensor platforms and 
network infrastructure, and the high‐level requirements of the desired user 
applications has not been defined yet. Furthermore, with the ever‐increasing 
application complexity due to the more and more advanced functionalities and 
services provided to the users, the need for integrating different sensor archi-
tectures with other types of devices will lead to further challenges in terms of 
platform interoperability in more heterogeneous and pervasive environments.

Some of the chapters will give a more in‐depth discussion of today’s scenarios 
in which the typical single‐user BSN system is required to be integrated with 
other computing paradigms and infrastructures in order to build smarter 
human‐centered environments and enable more complex services for improv-
ing the human well‐being. To accommodate these new scenarios, the develop-
ment of such enhanced BSNs will entail the adoption of novel systematic design 
approaches based on high level and preferable standardized abstractions 
required to implement, for instance, agent‐oriented BSNs (see Chapter  6), 
multi‐BSN collaborative systems (Chapter  7), BSN and building sensor net-
work integration (Chapter 8), and cloud‐enabled wearable systems (Chapter 9).

As of today, one of the following development methodologies can be adopted 
to build BSN applications [1]: (i) application‐ and platform‐specific program-
ming, (ii) automatic code generation, and (iii) middleware‐based programming.

2.2.1  Application‐ and Platform‐Specific Programming

Application‐ and platform‐specific programming refers to developing appli-
cations that tend to be tailored for a specific purpose. Since they are expressly 
coded to meet specific requirements and accomplish well‐defined tasks, they 
can be optimized for achieving high performance once deployed. By means of 
standard programming languages, like C, and by making use of platform‐spe-
cific Application Programming Interfaces (APIs), developers implement their 
applications directly on top of a particular operating system or software stack. 
In such a way, the final result is a single software program consisting of the 
application logic tightly coupled with the network protocol routines and other 
services because of direct interactions with the embedded operating system 
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and the hardware controlling components. Although such a design strategy 
can lead to a highly optimized code in terms of energy consumption and com-
putational performance, the strong coupling between the application and the 
underlying supporting software is a main issue. This leads to a monolithic 
piece of code specifically conceived to accomplish a fixed task and usually 
targeting a single sensor platform, thus resulting in a rigid and poorly reusable 
infrastructure with no easy‐to‐reuse software component that could actually 
be shared by different applications. Although this approach may still be a 
viable solution for developing quite simple applications, today’s complex sys-
tems are hard to be implemented without proper versatile development tools. 
Indeed, the currently available platform APIs tend to leave to the developers 
many low‐level aspects related to the hardware control (e.g. the access to 
onboard sensor drivers), event handling, as well as in‐node job scheduling 
and code optimization for an efficient use of the scarce node resources. Also, 
some operating system primitives do not make common BSN functionalities 
(i.e. sensor configuration and sampling, multinode communication patterns, 
or distributed data processing) available as ready‐to‐use and customizable 
software components. As a result, coding the global application logic into 
individual node’s behavior implies coping with cumbersome tasks like inter‐
node process synchronization and data integrity and explicitly interfacing 
with the node‐supported network protocols to exchange and parse messages. 
Therefore, BSN developers have to spend most of their development time in 
implementing ad‐hoc routines dealing with low‐level details rather than 
focusing on the application core logic. Since the implementation is bound to 
a specific sensor node architecture and a specific set of sensor drivers, the 
final code is not reusable or easily modifiable in case a different platform is 
required to be used.

The difficulties and limits in developing platform‐specific applications 
directly on top of a sensor platform’s operating system have also been investi-
gated in Ref. [2], which specifically takes into consideration TinyOS [3], 
MANTIS [4], and the Ember ZigBee stack [5].

Early works on BSNs have focused on small and simple applications with no 
relevant development issues. However, as already discussed, when application 
complexity increases, the lack of proper high‐level programming tools 
becomes a strong limiting factor. This is particularly true in light of the fact 
that many recent application domains are demanding for multiple intercon-
nected Internet‐based sensor networks requiring more complex multiplat-
form applications enabling the claimed paradigm of the Internet of Things 
(IoT) [6]. In this very near future scenario, broader and more powerful 
programming interfaces are of paramount importance for better supporting 
more pervasive computing systems. On the basis of these considerations, 
there is a strong interest in using software instruments capable of simplifying 
application development on BSNs.
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2.2.2  Automatic Code Generation

The automatic code generation approach aims at solving the problem of mak-
ing a certain application available for different sensor platforms without tack-
ling multiple manual porting procedures which, depending on the complexity 
of the application, may be very time‐consuming. The technique consists in 
specifying the application logic through a well‐defined platform‐independent 
modeling language, which abstracts away any low‐level details related to both 
hardware and operating system. Subsequently, starting from the defined high‐
level abstractions, a tailor‐made translator tool interprets the application 
model and generates a source code that can only run on a specific hardware 
platform and operating system. Thus, such an approach requires that each 
platform has its own tool for translating the high‐level modeling constructs 
into its low‐level programming language application. The most annoying 
drawback with this approach is the need for recompiling and reflashing the 
firmware into every single sensor node whenever a change is made in the 
application model, unless over‐the‐air (OTA) programming is supported by 
the platform.

2.2.3  Middleware‐Based Programming

Middleware‐based programming allows developers to speed‐up and ease the 
application development tasks by benefiting from the use of (i) well‐defined high‐
level abstractions, representing the interface to developers, and (ii) a middleware 
providing proper runtime mechanisms implementing such abstractions.

Programming frameworks based on middleware support the whole applica-
tion development (including deployment, execution, and maintenance) by hid-
ing the complexity and the heterogeneity of the sensor platforms, so that the 
work of developers is facilitated leading to simpler programming, increased 
code reuse, and easier maintenance. A typical framework solution usually 
comes with the following components (see Figure 2.1):

1)	 Programming abstraction: it provides a programming interface to a specific 
development paradigm and built‐in functionalities for an easier manage-
ment of physical and basic‐software resources (such as storage, sensing, 
communication, and operating system). Since the final application is defined 
in terms of well‐defined high‐level constructs representing the interface to 
the BSN functionalities, the developer can focus on the application logic 
rather than dealing with the implementation of lower level mechanisms.

2)	 Middleware services and functions: a set of reusable routines in charge of 
providing the actual implementation of the high‐level constructs constitut-
ing the programming abstraction. They include the middleware common 
core functionalities and networking mechanisms to perform the user‐
defined application execution.
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3)	 Runtime support: serves as a specific execution environment for supporting 
the services and functions. In practice, it performs the interaction between 
the middleware layer and the sensor platforms, i.e. the embedded operating 
systems and the hardware components.

The middleware‐based development approach is gaining more and more 
attention in the BSN domain and is currently considered as the most effective 
one in bridging the software gap between the complexity of the routines for 
managing the hardware/operating system/network stack layers of the sensor 
platforms and the requirements of the application logic. Therefore, a middle-
ware is generally designed as a distributed software layer running on each sen-
sor node and in charge of providing a set of interfaces and services to the upper 
layers in order to hide low‐level details of the underlying system architecture 
and the related networking protocols. In particular, it is responsible for the 
actual execution of the user‐defined application by “translating” the high‐level 
programming abstractions into real running functions aiming at, for instance, 
extracting, collecting, processing, and transporting data within and across 
nodes. At the same time, it may handle some low‐level management routines 
for constantly controlling platform resources and network status to better 
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Runtime support

Communication
Management

Network stack
support

Processing/Storage
support

Sensors/Actuators
support

Resources
Management

Domain-specific
Services

Data Processing
Management

Security
Management

Application Deployment
Management

WSN network infrastructure
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Figure 2.1  Reference model of a middleware‐based programming framework.
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coordinate the operations or even to decide the best protocol to adopt, based 
on the current application goals and requirements. Thanks to all these benefits, 
the developer is alleviated from tedious and error‐prone tasks and can mainly 
focus on the application logic, thus shortening the whole application develop-
ment process.

2.2.4  Programming Approaches Comparison

In Table 2.1, a summary of the characteristics of the above‐discussed application 
development approaches is reported. In particular, the implementation‐time 
features (i.e. from the application developers’ perspective) as well as the running‐
time features supported are considered.

As clearly shown, programming a framework based on middleware improves 
application development under several aspects, with respect to using low‐level 
programming languages and platform‐specific APIs. A highly efficient code is 
the strength of custom applications at the cost of longer implementation and 
debugging time. When faster and more flexible application development 
and deployment are more important, developers tend to rely on middleware 
and code generators which, if properly designed and implemented, are still 
capable of ensuring very good runtime performance, thanks to little overhead. 
The application maintenance efforts are also greatly reduced by using a 
middleware layer, which usually supports user application reconfiguration 

Table 2.1  BSN‐application development approaches comparison.

Application‐specific 
and platform‐specific 
programming

Automatic code 
generation

Middleware‐based 
programming

High‐level 
application modeling

✓ ✓

Rapid prototyping ✓ ✓
Ease of debugging ✓ ✓
Quick application 
development

✓ ✓

Application 
reconfiguration at 
runtime

✓

Code efficiency ✓ ✓ ✓
System 
interoperability

✓

Software reusability ✓ ✓
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without the need for reflashing an updated firmware into each single node. 
This is accomplished by means of proper messages interpreted by the 
middleware running on the nodes, so as to prevent developers to physically 
access the devices. On the contrary, both low‐level programming and code 
generator‐based approaches do not provide such a feature, since they generate 
new firmware, which need to be manually uploaded on each node, unless a 
sensor platform providing an OTA programming functionality is employed. 
Another important requirement in the BSN is system interoperability that is 
the property of different applications to cooperate across heterogeneous 
platforms. When developed in a middleware environment, the common 
messaging protocol at the high level offers the best support to this purpose, 
whereas in the other approaches, developers have to put much more efforts 
and time in order to achieve similar results. Finally, the design strategy of 
building systems targeting specific applications generates rigid software 
architecture with no reuse of software components or infrastructure.

2.3  Programming Abstractions

As already mentioned, the programming abstractions provide the primary 
interface for the developers and represent the basis for the programming para-
digm supported by the middleware running on the sensor network infrastruc-
ture. These mechanisms can include high‐level constructs for defining several 
operations like sensing, sensor reading aggregation, and data‐flow control, 
computation, and communication. If properly conceived, such abstractions 
greatly relieve application developers from directly dealing with tedious low‐
level details such as resource management, network protocols, and power 
management, among others. For addressing sensor network programming 
issues and supporting developers in a fast and effective application develop-
ment, in the last decade, many frameworks for sensor networks have been 
proposed, focusing on different application aspects. Depending on the specific 
scope of applicability, each of them provides a well‐defined programming 
paradigm along with its related high‐level abstractions. To some extent, most 
of these high‐level approaches can also be employed for building BSN applica-
tions. However, as it will be discussed later in this chapter, a BSN system poses 
different challenges and demands more specific requirements to be fulfilled. 
Thus, appropriate programming paradigms and supporting tools specifically 
designed to accommodate such peculiar needs are required to better exploit 
the potentialities of BSNs.

In the following, a list of existing programming paradigms, and related sup-
porting frameworks, for sensor networks is reported.

Task‐oriented paradigm (SPINE2 [1, 7], Titan [8], and ATaG [9]): the task‐
oriented approach aims at providing an easy and effective way for 
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developing distributed applications as a composition of basic functional 
blocks, tasks. Each task usually performs a well‐specified operation such as 
a data‐processing function or a sensor sampling. By means of such a data‐
flow‐oriented chain of interconnected tasks (data flow from sensors to pro-
cessing results), developers are able to quickly translate the application logic 
into a high‐level, modular, and easily reconfigurable representation, which 
is then automatically executed over the sensor network by means of a 
proper  runtime system, provided as a common middleware layer running 
on every node. This intuitive programming model is particularly suitable for 
distributed signal processing, which represents the main application in the 
BSN context.

Agent‐based paradigm (MAPS [10–12], AFME [13], Agilla [14], SensorWare 
[15], and actorNet [16]): the agent‐based programming model is associated 
with the notion of multiple, desirable lightweight, agents migrating from node 
to node performing part of a given task and collaborating each other to 
implement a global distributed application. An agent could read sensor values, 
actuate devices, and send radio packets. The users do not have to define a per‐
node logic, but an arbitrary number of agents and their behavior, specifying 
how they collaborate to accomplish the needed tasks on the network. According 
to this model, the programming paradigm provides users with high‐level con-
structs to define agents’ characteristics by hiding how communication and 
mobility are actually implemented. Such a paradigm allows developers to build 
distributed, modular applications that can be easily reconfigured and relocated 
by means of a mobile code.

Function‐based paradigm (SPINE [17], C‐SPINE [18, 19], RehabSPOT [20], 
and CodeBlue [21]): Not based on a specific formalism for abstracting data or 
task, these frameworks provide developers with customizable functions as 
main programming interfaces for data collection, processing, and displaying. 
They come with easily reusable libraries and tools conceived to specifically 
address and standardize the core challenges of sensor‐based system design 
within a particular application domain. Moreover, since there is no complex 
execution engine for “translating” high‐level abstractions, a very lightweight 
and flexible middleware guarantees high runtime performance.

Macroprogramming paradigm (ATaG [9], Logical Neighborhoods [22], 
Kairos [23], and Regiment [24]): this approach is for developing highly dis-
tributed applications since it easily allows the definition of the global behav-
ior of the whole sensor network, rather than single actions related to 
individual nodes. This approach has been conceived for dealing with WSNs 
constituted by a large number of nodes, such that the complexity in coordi-
nating their actions makes applications quite difficult to be designed in an 
effective way. The same effectiveness cannot be considered when applied to 
the BSNs. Macroprogramming generally has some language constructs 
for abstracting embedded system’s details, communication protocols, node 
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collaboration, and resource allocation. Moreover, it provides mechanisms 
through which sensors can be divided into logical groups on the basis of their 
locations, functionalities, or roles. Then, the programming task decreases in 
complexity because programmers have only to specify what kind of collabo-
rations exist between groups, whereas the underlying execution environment 
is in charge of translating these high‐level conceptual descriptions into actual 
node‐level actions. Thanks to these high‐level concepts, any domain expert 
not skilled in programming can develop their own application by simply 
defining the whole system behavior through concepts and terms they are 
familiar with.

Model‐based paradigm [2]: it allows developers to define proper models 
representing the desired behavior of an application. Usually, such an approach 
consists in making use of a well‐defined modeling language (such as finite 
state machines and flow charts) and a tool capable of generating a low‐level 
code for a specific target platform starting from the model. Although it 
represents a standard methodology for several domains, such as automotive 
electronics, its employment in the context of WSN/BSN has not been widely 
investigated yet.

Application‐driven paradigm (MiLAN [25]): middlewares belonging to 
this model aim to provide services to applications according to their needs 
and requirements, especially for QoS and reliability of the collected data. 
They allow programmers to directly access the communication protocol 
stack for adjusting the network functions to support and satisfy the requested 
requirements.

Database paradigm (TinyDB [26], Cougar [27], and SINA [28]): The data-
base model lets users view the whole sensor network as a virtual relational 
distributed database system allowing a simple and easy communication scheme 
between users and network. Through the adoption of easy‐to‐use languages, 
the users have the ability to make intuitive queries for extracting the data of 
interest from the sensors. The most common way for querying networks is 
making use of a SQL‐like language, a simple semi‐declarative style language. 
This paradigm is mainly designed to collect data streams, with the limitation of 
providing only approximate results. Moreover, it is not suitable to support real‐
time applications (usually a must in BSNs) because it lacks a time–space rela-
tionship between events.

Virtual machine paradigm (Maté [29], DAViM [30], and DVM [31]): Virtual 
machines (VMs) have been generally adopted for software emulating a guest 
system running on top of a real host. In the WSN context, VMs are used for 
allowing a broad range of applications to run on different platforms without 
worrying about the underlying architecture characteristics. User applications 
are coded with a simple set of instructions that are interpreted by the VM 
execution environment. Unfortunately, this approach suffers from the perfor-
mance overhead that the instructions’ interpretation introduces.
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2.4  Requirements for BSN Frameworks

BSN applications, despite their diversification, share several common tasks on 
top of which the application‐specific logic is implemented. A correct and clear 
identification of such tasks is essential to realize an effective and usable BSN 
programming framework.

Table 2.2 summarizes the results of an in‐depth analysis of research projects 
and technological prototypes to identify the very essential set of tasks com-
monly needed by BSN applications.

The tasks reported in Table 2.2 should be provided by a framework for the 
development of BSN applications, for instance by means of programming 
abstractions and tools. In addition, such a framework should be designed to 
meet specific (functional and nonfunctional) requirements in terms of effec-
tiveness, efficiency, and usability to be actually capable of facilitating the devel-
opment of well‐structured and resource‐efficient applications with less effort 
in terms of development time and application programming complexity. The 
resulting source code should be more reusable, easier to maintain, and sup-
ported by tools for application management. Supporting heterogeneous sensor 
platforms is also relevant; hence, system interoperability is a desirable require-
ment, too. Finally, privacy and security are highly important requirements 
because it is important to protect identifiable and sensitive data such as the 
ones coming from physiological, possibly medical‐relevant signals. In Table 2.3 
we have reported the aforementioned requirements that we deem fundamental 
for a BSN‐specific software framework.

Programming Effectiveness is the ability of the framework to provide effective 
and specific support for application programming, debugging, and testing. In 
practice, it is realized by programming abstractions, software engineering 
methods, and debugging and testing tools. More specifically:

●● Programming abstractions help developers to focus on core application 
aspects by providing higher level functionalities, as already discussed. In the 
domain of BSN development, it is particularly relevant to find (i) tunable 
sensor drivers (to adjust, possibly at runtime, sampling rate, sensitivity, and 
range, or to enable/disable only certain channels of a multichannel sensor), 
(ii) flexible data structures (to handle different data types), (iii) flexible com-
munication APIs (different applications typically require different packet 
lengths and structures in terms of data payload), and (iv) parameterized 
processing functions (to set functions’ parameters without hard‐coding 
their values).

●● Software engineering methods use component‐based (object‐like) 
approaches to support rapid BSN application prototyping. A software 
framework should provide predefined (ready to use) BSN‐specific compo-
nents that are common to most applications; this will help developers to 
reach prototypes in shorter time. Examples of such common components 
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Table 2.2  Common tasks of BSN applications.

Task Description

Sensor sampling Sensor sampling is typically the first step of BSN 
application development. Each application has different 
requirements and each physiological signal has its own 
characteristics, so it is strategic to properly tune the 
sensor sampling rate, as it eventually influences the 
amount of raw data generated and the quality of the 
extracted information.

In‐node data processing Pattern recognition and data mining algorithms often 
need preprocessing of raw data to increase its quality 
and reduce its amount. Raw signals are typically filtered 
(e.g. to mitigate the effect of noise sources) and features 
are extracted in the processing workflow before inferring 
higher level information. In‐node and real‐time feature 
extraction is an important task to reduce wireless traffic 
and computation workload on the coordinator.

Runtime sensor 
configuration

Configuring at runtime each sensor node is useful 
because application demand can change during its 
execution, so as to allow for dynamic application 
behavior. For example, under certain circumstances, it 
might be convenient to reduce the sampling rate of a 
specific sensor, or even disable its data transmission.

Node synchronization Many distributed signal‐processing algorithms require 
multiple nodes to be sampled synchronously (i.e. at the 
same actual time intervals), to ensure consistency of data 
observation and underlying events. Nodes clocks in 
these cases must be kept synchronized to preserve 
synchronized sampling of individual sensor signals.

Duty‐cycling Duty‐cycling is a mechanism for controlling the 
activation of hardware resources (typically radio, sensor 
transducers, and microcontroller) only when actually 
needed, to reduce power consumption and hence 
increase battery lifetime of the sensor node.

Application‐level 
communication protocol

As the application complexity increases, interactions 
among sensor nodes and between sensor nodes and the 
coordinator become diversified. For instance, 
communication involves sensor node discovery/
advertisement, requests for sensing and processing 
activation and configuration, raw and processed sensor 
data transmission, and event delivery. In this scenario, a 
flexible application‐level communication protocol would 
better support the application development.

High‐level processing BSN application services often require pattern 
recognition and classification algorithms to enable fine 
interpretation of BSN‐generated asynchronous events 
and periodic data to extract meaningful information and 
mine high‐level knowledge.
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are signal filters (e.g. FIR filters) to clean or amplify a signal, feature extrac-
tors (e.g. average, variance, zero crossing, and signal slope) to reduce the 
amount of transmitted data, classification algorithms (e.g. k‐NN, decision 
trees) useful as decision support tools, and an application‐level communi-
cation protocol (e.g. for nodes/services discovery, failure notification, and 
user data transmission).

●● Debugging and Testing tools are necessary to verify functional correctness of 
the application under development. Debugger tools help in locating the 
causes of known erroneous application behaviors, while testing tools help in 
verifying the correctness of software components. They may be included 
with the development environment and can consist of simulators or step‐by‐
step debuggers.

System Efficiency indicates qualitatively the performance of the system in 
terms of energy, storage, and computational resource management. Built‐in 
tunable power management schemes let adjusting the trade‐off between perfor-
mance, reliability, and system lifetime. Power management aims at improving 
BSN lifetime, often by means of radio duty‐cycling, sensor down‐sampling, or 
by disabling wireless data transmission in favor of local storage.

System Interoperability is the ability of enabling collaboration (i.e. communi-
cation, distributed sensing, and processing) among different devices in terms 
of hardware/software technologies. To exemplify, interoperability scenarios 
include (i) network formation and communication among devices based on 
different hardware architecture but programmed using the same language, 
(ii)  interoperability among homogeneous BSN coordinators, and (iii) the 
ultimate ability of a system to interoperate with fully heterogeneous devices 
(e.g. Internet through sockets or XML RPC). In practice, it can be achieved 
with an application‐level communication protocol and communication 
adapters for supporting heterogeneous sensor and coordinator devices.

Table 2.3  Requirements for BSN frameworks.

Requirement High‐level techniques

Programming effectiveness Programming abstractions, software engineering 
methods, debugging and testing tools

System efficiency Resource management optimization
System interoperability Application‐level communication protocol and 

adapters for heterogeneous platform support
System usability User‐friendly BSN management, PC and mobile 

device‐based coordinator
Privacy support Data encryption and authentication
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System Usability is a (nonfunctional) property referring to systems that are 
easy‐to‐use for designers, developers, and end users. It is often supported by 
graphical or API‐based BSN management tools running on a remote coordina-
tor (a PC or a mobile device).

Privacy Support is the ability of a system to protect user’s confidential infor-
mation. Encryption and authentication functionalities allow the system to keep 
such information secret and to ensure access only to authorized parties. Privacy 
protection is a necessary requirement in every real‐world e‐Health applica-
tions and it can be effectively achieved only when all the system tiers use pri-
vacy policies.

As for the programming abstractions, on the basis of what was discussed in 
Section 2.3, it emerges that none of them can be considered as the predomi-
nant one. Depending on specific tasks and/or contexts, a certain solution may 
result as a better choice than others. Most of them have peculiar features spe-
cifically conceived for particular application contexts but lack in characteris-
tics useful for more general‐purpose uses. For instance, frameworks based on 
a database approach provide high‐level services for data aggregation and 
querying but not for defining a more general‐purpose computation. Hence, 
the data‐centric model is not suitable in domains requiring more sophisti-
cated collaborative sensor data processing over the network. In the specific 
context of BSN‐based systems, most of these frameworks do not allow a dis-
tributed data flow management and processing over the network. Fast appli-
cation reconfiguration and platform independence are two fundamental 
requirements to be fulfilled by a BSN programming paradigm. Reprogramming 
a network is a desirable feature for supporting rapid and efficient changes of 
sensor node behavior. Systems like Deluge [32] and TinyCubus [33] provide 
code updates by directly loading them over the radio. However, they require 
the use of a homogeneous hardware/software platform; also, the code trans-
mission is a time‐ and energy‐consuming operation. VMs represent a typical 
approach for achieving a platform‐independent behavior. They allow 
the development of applications by means of proper instructions, which are 
interpreted by the VM running on sensor nodes. Unfortunately, this approach 
requires high computational and memory resources and suffers of poor per-
formance due to the overhead for interpreting the instructions. Moreover, 
coding an application with the provided instructions is not fast and intuitive 
(e.g. Maté provides more than a hundred instructions), especially if the appli-
cation needs frequent changes.

2.5  BSN Programming Frameworks

In the following, a brief description of the main current frameworks and archi-
tectures for developing BSN‐based systems is presented.
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2.5.1  Titan

Titan (Tiny task network) [8] is a programming framework conceived to specifi-
cally enable dynamic context recognition on the BSN. A Titan application is 
represented by a task graph that is defined as a set of interconnected basic 
blocks, tasks, which are executed over the sensor network by the framework 
runtime system. In particular, once the whole application is defined, the task 
network is split into a set of task subnetworks, each of which is assigned and 
executed on a single node. In case of two tasks placed on different nodes, the 
data transfer takes place through messages exchanged via an ad‐hoc communi-
cation protocol. Each task is mapped and executed only on a specific node, 
unless it will become unavailable during execution, e.g. due to battery deple-
tion. In such a case, the Titan coordinator automatically performs a reallocation 
of the task by picking one of the remaining running nodes that has sufficient 
resources to handle that specific task. The middleware is also in charge of 
accordingly readdressing the inter‐task communication based on the previously 
defined task graph. Titan provides developers with a library of predefined tasks, 
each representing a specific operation such as a sensor reading, a processing 
function, or a classification algorithm.

2.5.2  CodeBlue

CodeBlue [21] is a sensor network infrastructure specifically conceived to sup-
port medical scenarios ranging from indoor monitoring of patients in medical 
centers to outdoor disaster emergency management. The final aim is to effec-
tively support highly critical decision support systems by continuously feeding 
patient information coming from a set of wearable medical sensors (based on 
TelosB [34] and MicaZ [35]). The middleware platform, built atop TinyOS, is 
designed to provide high‐level services, such as ad‐hoc routing, naming, dis-
covery, and security, and is capable of scaling across a wide range of network 
densities, from sparse clinic environments to mass casualty sites. Mainly 
focusing on communication services, CodeBlue is based on a flexible publish/
subscribe data delivery model in order to provide a common scalable and 
robust (in case of the temporary loss of radio connectivity) information plane 
for coordinating medical devices. In particular, sensors publish important data 
to given channels and coordinator devices (hand‐handled or laptop) subscribe 
to channels of interest.

2.5.3  RehabSPOT

RehabSPOT [20] is a BSN platform based on Sun SPOT sensor nodes [36] 
designed for facilitating physical therapists’ work and improving patients’ limb 
rehabilitation treatment. Based on a three‐tier customizable platform, it features 
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adaptive data collection, online processing, and display. In particular, the wear-
able nodes are organized as a standalone mesh network (first tier) and each of 
them runs a client software. A coordinator (second tier, usually a PC) is in charge 
of managing the nodes by forming a star‐topology network and performing 
real‐time display and online processing. Finally, an Internet infrastructure 
(third tier) is designed to upload data from the coordinator to remote servers for 
off-line analysis.

2.5.4  SPINE

SPINE [17, 37] is an open‐source BSN framework for effective development of 
distributed signal processing. It provides a variety of built‐in sensor drivers, 
signal‐processing functions, and flexible data communication protocols. Also, 
its architecture allows for easy integration of new customized sensor drivers 
and processing functionalities. SPINE currently supports the most popular 
programmable sensor node platforms running TinyOS, i.e. Tmote Sky/TelosB, 
MicaZ, and Shimmer [38]. In addition, there exist SPINE implementations for 
(i) ZigBee devices based on the TI Z‐Stack and (ii) the Java Sun SPOT sensors 
[36]. A more in‐depth description of SPINE is presented in Chapter 3.

2.5.5  SPINE2

SPINE2 [1, 7], evolved from SPINE, is a platform‐independent framework 
designed around a task‐oriented high‐level programming approach. 
According to this paradigm, a signal‐processing application is defined in 
terms of a network of tasks, where each task (available from a library of tasks) 
represents a specific activity, like a sensing operation, a processing function, 
or a data transfer. Designing applications with a set of basic building blocks 
enables a more rapid system development, runtime re‐configuration, and 
easier software maintenance. The software architecture of SPINE2, designed 
by following a software layering approach, is composed of several platform‐
independent components and a set of platform‐dependent modules to access 
the specific platform resources and services. This leads to an easier and faster 
porting of SPINE2 to new C‐like sensor platforms. A more in‐depth descrip-
tion of SPINE2 is presented in Chapter 4.

2.5.6  C‐SPINE

C‐SPINE [18, 19] is a SPINE‐based programming framework specifically designed 
to support the development of distributed applications over Collaborative 
BSNs (CBSNs). The C‐SPINE architecture includes the SPINE sensor‐side and 
the SPINE base station‐side software components, with the addition of specific 
CBSN architectural components enabling several services providing Inter‐CBSN 
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Communication, BSN Proximity Detection, BSN Service Discovery, BSN Service 
Selection, and Application‐specific Protocols and Services, which specifically 
support collaborative computing and multisensor data fusion among BSNs. C‐
SPINE is described in Chapter 7.

2.5.7  MAPS

MAPS [10–12] is a Java‐based programming framework enabling agent‐oriented 
programming over sensor networks. It has been widely used for developing a 
BSN‐specific system showing the versatility of such a programming approach. 
MAPS provides developers a set of fundamental services for programming 
agents including message transmission, agent creation, agent cloning, agent 
migration, timer handling, and easy access to the sensor node resources, whereas 
the agents’ behavior is modeled as a multiplane state machine. MAPS is pre-
sented in Chapter 6 along with a more general discussion about the benefits of 
agent‐oriented programming approaches for developing BSN systems.

2.5.8  DexterNet

DexterNet [39] is an open‐source platform for BSN supporting scalable, real‐
time human monitoring in indoor and outdoor environments over heteroge-
neous wearable sensors. The software platform is designed as a three‐tier 
architecture, which includes the following: (i) the body sensor layer (BSL), 
(ii) the personal network layer (PNL), and (iii) the global network layer (GNL). 
The first two layers are implemented by using the SPINE framework libraries 
for managing a single BSN, whereas the third one allows a multiple‐PNL 
communication over the Internet and supports higher level applications for 
remote data logging and analysis.

2.6  Summary

This chapter discussed the programming issues in sensor networks, with par-
ticular regard to the methodologies for efficiently and effectively building 
applications on BSNs. We have first introduced and compared the different 
development approaches. We then focused on the most common program-
ming abstractions provided in the literature by highlighting their main peculi-
arities and features and their applicability in the BSN domain. Furthermore, 
the requirements for designing effective BSN‐specific frameworks have been 
discussed. Finally, the current available frameworks for developing BSN appli-
cations have been briefly described.
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3

3.1  Introduction

The analysis of the state‐of‐the‐art on the BSN domain has highlighted that the 
development of BSN applications is to date a complex task also due to the lack 
of programming frameworks with dedicated support to the distinctive require-
ments of BSN systems.

To support the programming of optimized BSN applications while minimiz-
ing the development time and effort, we have designed and realized SPINE 
(Signal Processing In‐Node Environment) [1–3], an open‐source domain‐
specific programming framework for BSNs.

SPINE aims at boosting the prototyping of BSN applications. SPINE ena-
bles efficient implementations of signal‐processing algorithms for analysis 
and classification of sensor data through libraries of processing functionali-
ties. It is organized into two interacting macro‐components, which are, 
respectively, implemented on commercially available programmable sensor 
devices and on the personal coordinator (Android smartphones and tablets, 
or a personal computer). Communication among these devices is wireless, 
using Bluetooth or IEEE 802.15.4 standards. The high‐level SPINE API (at 
the coordinator level) allows for dynamic and flexible configuration of sens-
ing and processing functionalities available at the sensor node level. Many 
biophysical sensors and signal‐processing tasks are natively implemented 
and available to application developers. In addition, the SPINE framework 
has been carefully designed to allow for very easy integration of new, custom‐
defined sensor drivers and processing tasks. A key advantage of adopting 
SPINE is its ability to configure the BSN system based on specific sensing and 
processing requirements; in this way, the same sensors can be used by differ-
ent applications without requiring off‐line reprogramming before switching 
from an application to another.

Signal Processing In‐Node Environment
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3.2  Background

TinyOS [4] is an event‐driven operating system, which provides a programming 
environment for embedded systems. It has a component‐based execution model 
implemented in the nesC language [5] with a very low memory footprint.

TinyOS concurrency model is based on commands, asynchronous events, 
deferred computation called tasks, and split‐phase interfaces. The function 
invocation (as command) and its completion (as event) are separated into two 
phases in interfaces provided by TinyOS. Application user has to write the han-
dler, which is invoked upon the triggering of an event. Commands and event 
handlers may post a task, which is executed by the TinyOS FIFO scheduler. 
These tasks are non‐preemptive among each other and, thus, run to comple-
tion. Only an (asynchronous) event can preempt running tasks. Data race con-
flicts that arise due to preemption can be solved using atomic sections.

Radio communication in TinyOS follows the Active Messages [6] model, in 
which each packet on the network specifies the ID of the handler that will be 
invoked on the recipient nodes. The handler ID is an integer that is carried in 
the header of the message. When a message is received, the event associated 
with the handler ID is signaled. Different sensor nodes can associate different 
receive events with the same handler ID.

3.3  Motivations and Challenges

The development of SPINE, as a domain‐specific BSN middleware (MW), is 
motivated by the need of providing more effective solutions than naïve applica-
tion‐specific programming and a more efficient approach than general‐purpose 
programming frameworks. It has been demonstrated that in the BSN domain, 
domain‐specific frameworks contribute to reduce the development cycle and 
maintenance since they provide high‐level abstractions of network protocols and 
hardware details, allowing the programmer to focus mainly on the application 
logic without the burden of carrying the overhead of general‐purpose functionali-
ties that are, in practice, not used in the BSN domain (e.g. multi‐hop support).

The main challenge during the design of SPINE was to find the most effec-
tive trade‐off between high‐level API definition (i.e. fulfillment of require-
ments in the BSN programming domain) and the limitations given by strongly 
resource‐constrained sensing devices.

3.4  The SPINE Framework

SPINE is a full‐fledged and extensible solution that allows rapid prototyping of 
BSN‐based applications and systems. It allows quick implementation of 
distributed signal‐processing intensive applications by supporting several 
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physiological sensors, in‐node and on‐coordinator signal‐processing utilities, 
wireless transmission of biosignals, and built‐in optimized network and 
resource management. SPINE is designed as a modular structure to simplify 
the integration of additional sensor drivers and signal‐processing modules; in 
addition, the framework itself can be tailored and customized by a simple 
mechanism to combine all the sensing and processing modules altogether, 
according to specific application requirements. A key advantage of adopting 
SPINE is its ability to configure the BSN system based on specific sensing and 
processing requirements; in this way the same sensors can be used by different 
applications without requiring off‐line reprogramming before switching from 
an application to another. SPINE supports BSN networks that are conceptually 
organized in a star‐topology, with the sensor nodes representing the edges and 
the coordinator unit the center of the star. Direct node‐to‐node communication 
is also possible, although the predefined processing functionalities do not need 
it. It is worth noting that SPINE devices communicate atop an application‐level 
protocol, so it is in principle possible to use a multi‐hop network layer to realize 
systems that are based on a physical network in which the coordinator and the 
nodes are more than one hop distant.

In the following, we describe the software architecture of SPINE, its High‐
Level Data Processing module, and finally discuss its heterogeneous support of 
sensor and coordinator device platforms.

3.4.1  Architecture

A high‐level representation of the SPINE architecture is shown in Figure 3.1. 
The SPINE MW is partially located at the coordinator device and partially 
on the wearable sensors. The MW provides an API both on the coordinator 
and the sensor nodes to support the development of applications that finally 
rely on the platform‐independent communication protocol layer. This protocol 
represents an abstraction layer including diverse platform‐dependent com-
munication adapters that are dynamically loaded at the coordinator, whereas 
are linked at compile time at the sensor‐node level.

Coordinator device

SPINE middleware

Sensor node
1

Sensor node
n

SPINE API

Platform-independent
SPINE Communication Protocol

Active Message
(on TINYOS)

Bluetooth
(Windows+Android)

Figure 3.1  The SPINE middleware architecture.
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Figures 3.2 and 3.3 show, respectively, the architecture of the SPINE Node(s) 
and SPINE Coordinator components. The former is implemented in the sensor 
platform‐specific embedded programming language and is placed on each 
BSN sensor node; the latter is implemented in Java and runs on the coordinator 
device (an Android porting of the SPINE Coordinator has also been realized).

The SPINE Node (see Figure 3.2) consists of four main components:

●● Sensor Node Manager, which handles the interactions among the Sensing 
Management, Signal Processing, and Communication modules; it dispatches 
the requests from the remote coordinator to the appropriate module.

●● Communication, which handles message reception/transmission and con-
trols radio duty‐cycling. It consists of inbound packet decoders (i.e. service 
discovery, start and reset computation requests, setup function request, 
function (de)activation request, and setup sensor request) and outbound 
packets encoders (i.e. service advertisement, buffered sensor readings, pro-
cessed data message, and acknowledgment packet). Any packet is initially 
handled by the Radio Controller module, which provides a generic interface 
independently from the specific underlying radio chip adapter.

●● Sensing Management (or SensorBoard controller), which is the component 
providing a generic interface to the physical sensors available on the node. It 
allows to perform one‐shot sensor readings and to setup timers for periodic 
sensor sampling. This component provides easy hardware‐independent 
access to all the supported sensor drivers (SPINE currently supports 3D 
accelerometer, 2D gyroscope, 4‐leads ECG, respiration rate, GSR, EMG, vis-
ible and infrared light, humidity, and environmental temperature) through a 
list of parameterized Sensor interfaces. This design choice is motivated by 
the need for high modularity and efficient customization to support hetero-
geneous sensing resources in a convenient way. Sensor readings are stored in 
the BufferPool, a data structure that is shared with the Signal Processing 
module. The BufferPool, internally organized as multiple circular buffers, 
provides two mechanisms to access the sensor data: (i) upon requests, using 
getter functions, and (ii) through event listeners that must be registered by 
interested components (e.g. Signal Processing module) to be notified when 
new sensor data are available. The Sensing Management also features a 
shared sensor registry to which each sensor driver self‐registers upon pro-
gram bootstrap. This registry is accessed at runtime by other components to 
retrieve the list of sensors actually available on that specific node.

●● Signal Processing, which uses a block called Function Manager that is respon-
sible for handling a customizable and expansible set of signal‐processing 
functionalities such as (i) math aggregators (features like maximum value, 
minimum value, amplitude, average, standard deviation, signal energy, and 
entropy), (ii) threshold‐based triggers (also known as alarms), and (iii) filters; 
such processing functionalities can be arbitrarily applied to any sensor data 
stream. The Function Manager engine uses an efficient design approach 
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based on a list of parameterized Function interfaces providing a general‐pur-
pose abstraction for any type of processing task. The Signal Processing mod-
ule retrieves sensor data from the BufferPool and, by interacting with the 
Sensor Node Manager and the Packet Manager, it communicates the results 
to the coordinator unit.

The SPINE Coordinator (see Figure 3.3) consists of two main components:

●● Communication, which has similar functionalities to its corresponding com-
ponent on the sensor node; it loads at runtime the proper radio module 
adapter according to the required network stack. It abstracts the logical 
interactions between the coordinator and the sensor nodes from the actual 
network activity that depends on the selected platform. This abstraction 
layer is realized by decoupling the communication interface from its plat-
form‐dependent implementation layer.

●● SPINE Coordinator Manager, which is the most superficial layer atop which 
every SPINE applications will rely. It is composed of Sensor Network Control 
API (see Table 3.1) and Event Dispatcher. The former is an interface used by 
end‐user application developers for the management of the underlying BSN 
(e.g. to configure the sensors and enable on‐node signal processing). The 
latter is responsible for dispatching events, such as new node discovery and 
data message arrival, to the registered listeners implemented by the SPINE 
applications.

3.4.2  Programming Perspective

From a programming perspective, SPINE provides an intuitive Java API (docu-
mented in Chapter 12) for convenient BSN management to easily support node 
discovery, sensing operations, signal processing, and data communication. In 
addition to several sensor natively supported and pre‐defined processing func-
tions, SPINE is designed such that framework tailoring (i.e. customization and 
extension) becomes very straightforward.

3.4.3  Optional SPINE Modules

The SPINE MW is completed with “optional add‐on” modules available only 
on the coordinator node; they represent an important aspect, despite not being 
part of its core architecture:

●● High‐Level Data Processing, which provides advanced signal processing and 
pattern recognition functionalities. It supports the design and implementa-
tion of complex applications by means of highly generalized interfaces for 
data preprocessing, feature extraction and selection, signal processing, and 
pattern classification. It supports the integration of SPINE in analysis and 
data mining environments with functionalities such as automatic network 



3  Signal Processing In‐Node Environment52

configuration and aggregate data collection. It includes a predefined bridge 
to WEKA [7] (an open‐source Data Mining toolkit) to allow the use of its 
powerful algorithms directly within SPINE.

●● SPINE Management GUI, which consists of a visual programming tool to 
configure a SPINE‐based BSN without manually coding. According to our 
experience, it has been useful during initial system testing. Screenshots of 
its  PC and Android implementations are shown in Figures  3.4 and 3.5, 
respectively.

3.4.4  High‐Level Data Processing

The High‐Level Data Processing module is an optional SPINE plug‐in that 
empowers the core framework functionalities with additional signal process-
ing and decision‐support algorithms (e.g. signal filters, pattern recognition, 
classification, etc.). This module is available at the coordinator level and 

Table 3.1  API exposed by SPINE at the coordinator station.

Functionality Description

discoveryBsn Inquiry node discovery and supported sensing and 
processing capabilities

setupSensor Allows individual specification of sampling rates for multiple 
sensors

setupFunction Setup a preliminary configuration of available processing 
functionalities

activateFunction Enables the execution of one or multiple in‐node (periodic 
or trigger based) signal‐processing functionalities

startBsn Issues a broadcast message to the BSN to command a 
synchronized start of sensing and processing functionalities 
that have been previously setup and enabled

resetBsn Issues a broadcast message to the BSN to command a 
synchronized reset of the nodes

Event Description
newNodeDiscovered Registered SPINE listeners are notified when a new BSN 

node is discovered
discoveryCompleted Registered SPINE listeners are notified when the BSN 

discovery procedure is terminated
dataReceived Registered SPINE listeners are notified when new user data 

sent from a specified node are received by the coordinator
serviceMessageReceived Registered SPINE listeners are notified when a service 

message (e.g. warning or error notifications) sent by a 
specific node is received by the coordinator



Figure 3.4  Java desktop implementation of the SPINE Management GUI (sensor‐node 
configuration dialog window).

Figure 3.5  Android implementation of the SPINE Management GUI (sensor and function 
configuration dialog windows).
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provides robust support throughout the typical signal‐processing workflow, 
from sensor data acquisition up to classification (see Figure 3.6).

A layered representation of the High‐Level Data Processing component is 
depicted in Figure 3.7. SPINE acts as a MW layer between this module and the 
underlying BSN. On top of SPINE, a set of converters are placed to convert 
SPINE data representations into more abstract objects, Datasets and Signals. 
Data mining and machine learning tools can therefore transparently handle 
BSN data, since the module can also generate WEKA‐compliant Comma 
Separated Values (CSVs) and Attribute‐Relation File Format (ARFF) files. 
Finally, a collection of functionality wrappers further support rapid implemen-
tation of common tasks needed during the development of SPINE applications. 
A typical use of this module is described in detail in the following.

BSN sensory data are retrieved with SPINE and converted into more con-
venient data structures (Signal and Dataset objects, depending on application‐
specific requirements). Then, developers can optionally apply filtering and 
segmentation to incoming signals. Feature Extraction algorithms are also avail-
able and they are useful when in‐node feature extraction functionalities pro-
vided by SPINE are not enabled (i.e. SPINE is used to acquire raw sensor 
signals). To support the initial problem analysis, several feature selection 
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Signal Conditioning
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Data Windowing
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Extraction

Classification
Pattern Recognition

Feature Selection Training

Figure 3.6  Data processing chain supported by the SPINE High‐level Data Processing 
plug‐in.

SPINE Coordinator

Data Converters

Signal Processing Machine Learning

Functionality Wrappers

SPINE Applications

Figure 3.7  High‐Level Data Processing layered software architecture.
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algorithms are provided to identify the most significant subset of extracted 
features to reach satisfactory classification accuracy. Finally, the classification 
phase is widely supported, including training. A few algorithms are imple-
mented and ready‐to‐use; in addition, developers may easily integrate further 
classifiers, especially thanks to the choice of providing support for using 
WEKA libraries.

3.4.5  Multiplatform Support

SPINE supports a heterogeneous plethora of hardware platforms, sensors, 
programming languages, and operating systems; these make this framework 
suitable for diverse application scenarios (such as smart‐Health and e‐Fitness), 
in which, due to specific requirements, only certain hardware/software sensor 
platforms might be used.

SPINE supports the most common sensor motes. The TinyOS implementation 
runs on MicaZ, TelosB, and Shimmer/2/2R [8] (for the latter, SPINE supports 
both IEEE 802.15.4 and Bluetooth radios). This implementation includes a 
security function using hardware AES‐128 encryption of the CC2420 radio. In 
addition, there exist SPINE implementations for ZigBee devices (like the 
Telecom Italia “Bollino”, equipped with the CC2530 System‐on‐Chip) based on 
Texas Instruments Z‐Stack and for Java‐based Sun SPOT nodes [9]. SPINE also 
notably provides native support for several physical sensor transducers, including 
accelerometers, gyroscopes, electrocardiogram, electro impedance plethys-
mography, temperature, humidity, and light.

In addition to sensors and platforms supported by default, SPINE is designed 
in such a way that it is easy to integrate further drivers for other sensors and 
even add support for new platforms. The same happens for the processing 
functions: integrating additional feature extractors (and even simple classifier 
algorithms) is straightforward.

At the coordinator level, SPINE supports heterogeneous mobile and desktop 
devices, as depicted in Table 3.2. Originally, Windows‐ and Linux‐based com-
puters were supported through the SPINE Java SE implementation. However, 
with the spread of smartphones and tablets having more than sufficient com-
putation and storage capabilities to support mobile‐health applications and 
(almost) continuous Internet connectivity (through which it is possible to 
transmit raw signals and high‐level information to remote servers or in the 
cloud), we put significant efforts to obtain mobile SPINE coordinators since 
their use is particularly useful (sometimes strictly necessary) when continuous, 
outdoor mobility is required and is not possible to rely on fixed infrastructures. 
A JavaME porting of the framework has been in fact realized. A limited QT 
implementation is also available and runs on Symbian and Windows smartphones, 
enabling Bluetooth communication with Shimmer nodes using the third‐party 
QBluetooth library. Finally, and most significant, an Android implementation 
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of SPINE has been more recently developed. SPINE Android has been evaluated 
on several devices (that have been connected to Shimmer nodes over 
Bluetooth).

Finally, SPINE provides a Java‐based emulation environment that virtualizes 
generic sensor nodes. With this tool, it is possible to emulate a SPINE‐based 
BSN, provided that a dataset is available for each node. Hence, each emulated 
node is equipped with emulated sensors defined by its given dataset. The 
SPINE emulator is helpful in various situations; for example, to simplify testing 
and debugging, processing functionalities can be initially implemented in the 
emulated environment. In addition, the emulator, along with a simple dataset, 
has been released in open‐source to allow interested developers for investigat-
ing the potential of the SPINE framework itself, even if they are not equipped 
with real wireless sensor nodes.

3.5  Summary

In this chapter, SPINE, a domain‐specific programming framework, has been 
presented. The main goal of SPINE is to provide BSN developers with support 
for rapid prototyping of signal‐processing applications. In SPINE, sensors and 

Table 3.2  SPINE‐tested mobile personal devices.

Device CPU RAM (MB) Miscellaneous

HTC Nexus 
One

1 GHz, Snapdragon QSD 
8250

512 Android 2.x., MicroSD, up 
to 32 GB

Samsung 
Galaxy S

1 GHz, ARM Cortex‐A8 
Dual‐Core

512 Android 2.x., MicroSD, up 
to 32 GB

Samsung 
Galaxy S4

1.9 GHz, Snapdragon 600 
Quad‐Core

2048 Android 4.4.2., MicroSD, up 
to 64 GB

Huawei P8 Quad‐core 2.0 GHz 
Cortex‐A53e+Quad‐core 
1.5 GHz Cortex‐A53

3096 Android 6.0, MicroSD, up to 
128 GB

Samsung 
Tab2 10.1

1.0 GHz, ARM Cortex 
A9 Dual‐Core

1024 Android 4.0.3., MicroSD, up 
to 32 GB

Samsung 
Note3

2.3 GHz, Snapdragon 800 
Quad‐Core

3096 Android 4.4.2., MicroSD, up 
to 64 GB

Nokia N95 332 MHz, TI OMAP 
2420 (ARM11‐based)

128 Symbian OS v9.2, S60 rel. 3., 
MicroSD, up to 32 GB

Nokia 6120 369 MHz, ARM11 64 Symbian OS v9.2, S60 rel. 
3.1., MicroSD, up to 8 GB
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common processing functionalities, such as math aggregators and threshold‐based 
alarms, can be configured independently and connected together arbitrarily at 
runtime based on external controls.

Hence, one of the main achievements of SPINE is the reuse of software com-
ponents to allow different end‐user applications to configure sensor nodes at 
runtime based on the application‐specific requirements without off‐line 
reprogramming when switching from an application to another. Furthermore, 
thanks to its modular component‐based design approach, SPINE enables a 
great degree of heterogeneity: a wide variety of hardware platforms, sensors, 
programming languages, and operating systems are supported. This allows for 
a very flexible and usable framework in different BSN application scenarios, 
where, due to specific requirements, only certain platforms or operating 
systems might be used.
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4.1  Introduction

The SPINE framework described in Chapter 3 provides an effective solution 
for easily and rapidly developing highly customizable signal‐processing appli-
cations for BSNs. The in‐node processing applications supported by SPINE are 
usually defined as a three‐layer chain of tasks: (i) acquisition of raw data 
streams from the sensors, (ii) computation of processing functions on the data 
streams to extract specific features, and (iii) transmission of processed data to 
the base station for further computation.

However, some signal‐processing applications require an extension of this 
approach to fully satisfy the needs for a more complex composition of sensing 
and processing tasks. Therefore, a task‐centric programming model has been 
experimented in a new reengineering of the SPINE framework, dubbed SPINE2 
[1]. Conceived not to be a replacement for SPINE 1.x versions, SPINE2 is actually 
intended as an alternative application design tool exposing a different method-
ology to translate the high‐level intentions of the developers into actual execut-
able routines to be deployed on a BSN. The task‐oriented approach aims at 
providing an easy and effective way for developing distributed signal‐process-
ing applications, thanks to its intuitive and graphical design model. It offers a 
wide range of benefits to developers, like the advantage of abstracting away 
low‐level details of the sensor platforms and their operating system as well as 
the complexity of managing the communication among nodes. Moreover, a 
platform‐independent middleware eases the reusability and portability of the 
code and the interoperability of applications among heterogeneous embedded 
environments, while not neglecting the stringent requirements in terms of 
execution efficiency and stability.

In this chapter, the SPINE2 programming paradigm and the software architec-
ture of the underlying distributed middleware running on the sensor nodes are 
presented. With SPINE2 we show how fairly sophisticated signal‐processing appli-
cations can be realized in the form of easy‐to‐implement embedded processes.

Task‐Oriented Programming in BSNs
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4.2  Background

The main limitation in developing applications for BSN‐based systems is the 
need for proper design and programming skills to successfully deal with the 
low‐level aspects of embedded devices. Also, application development is even 
more challenging and time‐consuming due to the very resource‐constrained 
environments provided by the most commonly available sensor platforms. 
Unfortunately, such a hard task prevents BSN‐domain experts, who may not 
have a software development background, from directly contributing to the 
building of applications. Therefore, a proper high‐level development paradigm 
is highly desirable to hide the low‐level programming issues, so as to allow 
anyone with poor or no skills in programming to autonomously prototype and 
test their own applications by focusing on the desired algorithms. Such a 
desired paradigm should come with a set of well‐defined constructs that lead 
to a faster application definition as well as a more component reusability and a 
minimized maintenance process.

That entails the adoption of abstract, easy‐to‐use, and fully configurable 
functional blocks, which should allow to quickly implement the set of the most 
common operations needed by BSN applications. Interoperability and inter-
connection among applications, possibly defined by different users, should 
also be part of the features supported by a high‐level development framework. 
This is usually achieved by defining a common higher level communication 
protocol, which is independent from the actual underlying protocols supported 
by a specific sensor platform. Moreover, its paradigm philosophy should 
strongly promote the potential benefit of enabling an easier application recon-
figuration at runtime and thus providing built‐in mechanisms for dynamic 
reprogramming without directly accessing the already deployed devices.

The idea of employing the well‐known task‐based paradigm in the BSN con-
text comes from the need of finding a better way to meet all these requirements 
with an easy‐to‐understand high‐level paradigm able to (i) effectively and effi-
ciently abstract away from the hardware and the network‐specific details and 
(ii) provide constructs particularly devoted to easily define distributed signal‐
processing applications.

4.3  Motivations and Challenges

4.3.1  Need for a Platform‐Independent Middleware

Applications’ interoperability is completely achieved when their interaction is 
made possible even in the case of execution over different heterogeneous 
sensor devices. This implies the need of a programming framework capable of 
transparently supporting a diversified hardware and software environment. As 
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a consequence, the simplicity in making the entire middleware infrastructure 
ported to a new sensor platform is a further desirable requirement and of cru-
cial relevance for a more widely use of the framework in complex real‐world 
applications involving heterogeneous computing systems. Differently from a 
platform‐specific software architecture, the desired middleware should not be 
developed exclusively by using the library provided by a platform‐specific pro-
gramming environment. Conversely, by adopting a more generic programming 
language for implementing the core functionalities of the middleware in charge 
of executing the high‐level abstractions, this common software layer should be 
able to run over different platforms (supporting such a generic language) with 
little or no additional code.

4.3.2  Challenges in Designing a Task‐Oriented Framework

In the following, the challenges in developing a framework meeting the afore-
mentioned requirements are discussed. To summarize, it is of crucial impor-
tance to keep in mind the following desired requirements while designing a 
BSN framework/middleware:

●● Proper easy‐to‐use high‐level programming paradigm: since the adoption of 
programming methods based on high‐level models can greatly improve pro-
ductivity, a definition of good and easily understandable abstractions to hide 
low‐level platform‐specific operations represents the main key factor for the 
success of a programming framework. In particular, a major challenge is 
finding a good adjustment of the generic task‐based approach for the specific 
needs in the BSN domains, while fulfilling the nonfunctional requirements 
(efficiency, portability, and interoperability).

●● Heterogeneity: the ability to deploy the same applications over different sen-
sor platforms in a transparent way for the developer should also be a must, 
since it would allow for a holistic approach to managing diverse sensor net-
works and applications.

●● Portability: in order to prolong the framework lifetime and keep it up‐to‐
date over the time, the design of the node‐side middleware architecture 
should be properly performed to support a seamless portability process 
across new sensor platforms and embedded systems. However, this is not a 
trivial problem.

●● Extensibility: the middleware should also rely on a modular architecture for an 
easier introduction of new processes, functionalities, and communication capa-
bilities as well as the integration of new physical sensors and drivers. It is not 
simple to design a middleware that guarantees an easy update of components.

●● Efficiency: the aforementioned features would be of little importance with a 
resource‐hungry middleware. Good runtime performance should be achieved 
despite the stringent resource constraints of the common sensor platforms.
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4.4  SPINE2 Overview

The SPINE2 framework has been conceived to further increase simplicity and 
effectiveness in developing distributed signal‐processing application atop 
BSNs. Specifically, its peculiar feature is the adoption of a task‐oriented para-
digm, which allows developers to quickly make use of simple constructs to 
translate the high‐level application logic (global behavior) into actual opera-
tions to be executed on each single sensor node of the networks. Moreover, 
SPINE2 makes reconfigurability and reusability of applications easier than 
other proposed programming frameworks for sensor networks.

SPINE2 comes with two main software components: the sensor node mid-
dleware running on the network and the management software running on 
the coordinator side (typically a PC or a supported hand‐handled device). 
The latter one, developed in Java, is the main interface to the BSN. In par-
ticular, it provides well‐defined APIs, thanks to which developers can easily 
manage the network as well as the application, i.e. defining, deploying, and 
running the defined set of interconnected tasks. Moreover, it gathers the 
data preprocessed on the nodes, which can be further processed by more 
complex and resource‐demanding user‐defined algorithms and visualiza-
tion tools. The node‐side middleware running on top of the sensor node 
operating system has two main functions: (i) handling messages received 
from the coordinator or any other node and (ii) managing and executing the 
tasks the node is responsible for.

The key characteristics of the framework are discussed below.

●● Platform independence and quick portability: supporting a swift portability 
across diverse sensor platforms was one of the primary motivations for 
which SPINE2 has been designed. As such, the node‐side middleware archi-
tecture has been conceived for decoupling the task runtime execution engine 
from any other services provided by specific operating systems, as depicted 
in Figure 4.1. Based on the software layering approach, the whole runtime 
system of the node is composed of two main set of components. The “core 
modules,” which are implemented in C language, is developed to support any 
C‐like sensor platform with any or little need for modifications. Underneath 
the core, a set of “platform‐specific modules” are properly defined as adap-
tors for allowing the core to interact with the operating system services and 
resources (sensors, timers, communication, etc.). Different adaptors inter-
face with specific sensor platforms and software environments, such as 
TinyOS [2] and Z‐Stack [3] (the ZigBee‐compliant implementation provided 
by Texas Instruments). The benefit of such an architecture is that a devel-
oper needs to implement just the necessary adaptation modules in order to 
deploy the platform‐independent components and the applications onto 
new sensor platforms.
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●● Extensibility and customization: thanks to the task‐oriented approach, it is 
possible to easily add new functionality when the need arises. This is done by 
defining a new task implementing a user‐defined computing logic without 
having to change the underlying runtime environment. New drivers for sen-
sors or actuators can also be added by simply developing proper adaptation 
modules.

●● Modularity: the node‐side middleware architecture, described in Section 4.6, 
includes independent modules interacting through well‐defined interfaces, 
with the benefit of easier software maintenance and upgrade processes.

4.5  Task‐Oriented Programming in SPINE2

The task‐oriented programming paradigm provided by SPINE2 is specifi-
cally conceived to support the creation of data‐flow‐based task chains for 
defining distributed signal‐processing applications. Less error‐prone with 
respect to explicitly coding a low‐level code, this approach is more intuitive 
as the user, according to the application requirements, has to specify a set of 
interconnected tasks made available from a task library. Thus, the basic 
abstract components constituting the high‐level application model are tasks 
and task‐connections.

A task represents a specific activity or operation, e.g. a signal‐processing 
function, a data transmission, or a sensor querying. Tasks are executed in an 
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Figure 4.1  The software layering approach in the SPINE2 middleware.
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atomic way with respect to other tasks, whereas they can be interrupted by 
triggered events. In fact, the event‐reactive nature of the sensor nodes implies 
the need for a fast response to asynchronous events like a radio message recep-
tion or a timer expiration. Tasks are connected by means of task‐connection 
representing temporal and data dependency between tasks.

In Figure  4.2, a typical (in this case rather simple) sensor data‐processing 
application is shown. It basically consists of three phases: (i) gathering the sen-
sor readings, (ii) executing processing functions on the sensed data, and 
(iii)  sending results to other nodes of the network or to the coordinator for 
further elaboration.

In order to achieve load‐balancing of resources and an efficient communica-
tion, SPINE2 allows to allocate specific subset of tasks to different nodes, thus 
realizing a full distributed data processing over the network. Since the nodes 
may have different features and capabilities, it is possible, for instance, to allo-
cate the most computational‐intensive tasks to more powerful nodes in the 
network. Thus, the implemented task‐based paradigm gives developers full 
control over data feed, control flows, and event scheduling for performance‐
balancing on multiple dimensions (e.g. CPU, memory, and energy). Moreover, 
composing an application by means of basic functional blocks with well‐specified 
inter‐task interface allows an easy and rapid application reconfiguration and a 
simpler maintenance process. The library of reusable tasks includes two main 
types of tasks:

●● Functional tasks: perform data processing/manipulation or execution 
control.

●● Data‐routing tasks: provide data forwarding or replication.

Sensing task
(Accelerometer)

Node 1 Node 2

Sensing task
(Gyroscope)

Processing task
(Max)

Processing task
(Mean)

Merge Transmission task

Sensing task
(Accelerometer)

Merge

Figure 4.2  A task‐oriented application with tasks instantiated on different nodes.
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Each task is defined as a triple of attributes: Input, Output, and Parameters. 
Depending on the specific functionality for which a task has been defined and 
implemented, the user can configure it by means of a set of pairs (parameter 
and value). Also, there may be zero to multiple (usually in data‐routing tasks) 
input or output connections. Each connection can handle a particular sensed 
data, processed information, or even an empty data, intended to be used as a 
simple “execution complete notification” for the connected task.

The main tasks constituting the currently available library are the following:

●● TimingTask: defines timer expiration and can be adopted for timing other 
tasks. It has no input connection and does not have to process any data. It 
signals a notification through its output when its inner timer expires depend-
ing on the following parameters: the periodicity (i.e. specifies if it is a peri-
odic timing or a one‐shot expiration), the period of expiration, and the 
corresponding time scale/unit.

●● SensingTask: performs a reading from a particular onboard physical sensor. 
It encloses an inner timer for scheduling the sensing operation. The data 
output depends on the specific type of sensor it is configured to read data 
from. Specifically, it can consist of a simple scalar reading value (e.g. when 
linked to the luminosity sensor) or a vector of samples each coming from a 
specific “sensor channel” (e.g. a triaxial accelerometer provides three differ-
ent samples).

●● ProcessingTask: provides the actual computing capabilities by performing 
functions or algorithms to process data. Some set of functions are called 
“feature extractors,” which are usually applied to temporal data series. Some 
examples are mean, variance, max, and min.

●● TransmissionTask: is in charge of explicitly transmitting data coming from 
other connected tasks to a specific destination node/device. It is  usually 
used for sending in‐network preprocessed data to the coordinator of the 
BSN. In the case of interconnected tasks deployed on different nodes, the 
SPINE2 middleware performs proper data transmission (encapsulated in 
proper messages) without the need of a TransmissionTask.

●● StoringTask and LoadingTask: perform data (stream) storage and retrieval by 
using the onboard flash memory, if available on the platform.

●● SplitTask: duplicates incoming data from its input connection to all its out-
put connections, so as to make it available to multiple tasks.

●● MergeTask: merges incoming data from its input connections and feeds its 
single output connection; it first normalizes and/or uniformly formats the 
collected data.

●● HistoricalMergeTask: performs a number (specified by a parameter) of 
sequential merge operations over the time and makes the collected data 
available to the output.
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4.6  SPINE2 Node‐Side Middleware

The main purpose of the middleware running on the nodes of a SPINE2 sensor 
network is to “interpret” and “execute” the high‐level application defined 
through the task‐oriented paradigm. Figure 4.3 depicts its modular architec-
ture composed of a set of modules, each including interacting (but independ-
ent) software components intended to accomplish well‐defined operations.

The core framework of SPINE2 (see also Figure 4.1) is made up of all the com-
ponents in white blocks of Figure 4.3. Implemented in ANSI C language, they 
can be compiled in any “C‐like” development environment with no changes in 
their inner code. The core encloses all the unchangeable parts of the middle-
ware implementing the main runtime task execution logic, including task and 
memory management, application‐level message handling, and abstract access 
to onboard sensors and actuators. By contrast, the grey blocks are the architec-
ture‐dependent part of the middleware and are tailored for a specific sensor 
platform in order to manage the lower level mechanisms and services. Some 
adaptation components (or drivers) bridge the core with the platform by grant-
ing access to the physical resources through well‐defined interfaces.

The use of a common programming language, and its standard libraries, 
along with a strong software decoupling between the core and the platform‐
related components are the key characteristics for the very high portability of 
the SPINE2 middleware.

A more specific description of the modules shown in Figure 4.3 is provided 
below.

●● SPINE2Manager: is the central component of the architecture. Its main 
functionalities include (i) system initializing at startup, (ii) orchestrating the 
modules managing the node resources (sensors, actuators, radio, and flash 
memory), (iii) dispatching the necessary commands to the other compo-
nents to accomplish required operations (e.g. a new task creation or a buffer 
allocation), and (iv) handling the SPINE2 application‐level protocol (see 
Section 4.7) for communication with the coordinator and the other nodes, 
which includes formatting of the SPINE2 outgoing messages before its 
encapsulation into a low‐level packet by the Comm Module.

●● Comm Module: provides the basic services for exchanging messages with the 
other sensor nodes and the BSN coordinator. It encapsulates the applica-
tion‐level messages into packets and performs the reverse operation, by also 
handling the (de)fragmentation operations when required, depending on the 
message length and on the maximum payload supported by the platform‐
specific communication protocol (see Section 4.7).

●● Task Module: is the middleware “task execution engine” in charge of (i) instan-
tiating the tasks allocated on the node by the coordinator, (ii) scheduling, 
and (iii) terminating their executing based on the inter‐task connections.

●● Memory Module: handles the memory space by allocating the task‐based 
application definitions as well as the buffers required both for the inter‐task 
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data exchange and for the tasks’ inner operations (the user application may 
require a variable number of buffers each of which having an arbitrary size). 
It implements an ad‐hoc solution for allowing dynamic memory allocation 
and thus providing other components with a simple interface for allocating 
memory blocks on demand at runtime.

●● Timer Module: manages the dynamic allocation of timers requested by other 
components. The allocation is based on a publish/subscribe mechanism: 
when a SPINE2 component (the subscriber, e.g. the Sensor Manager) needs 
a timer for its own purposes, it makes a request to the Timer Manager (the 
publisher), which in turns provides a timer’s identification code to the sub-
scriber to be able to properly schedule it.

●● Sensing Module: provides a common interface for accessing the physical sen-
sors equipping the sensor node. Each sensor‐specific driver has to be com-
pliant to the common Sensing Module interface.

●● Actuating Module: similar to the Sensing Module, it provides a common 
access point to the available actuators installed on a sensor node.

●● Flash Module: handles storing and loading of data to and from the flash 
memory, if made available by the sensor platform.

4.7  SPINE2 Coordinator

A set of software components, the SPINE2 Coordinator, which comes with a 
proper API, have been developed for running on the coordinator side and con-
ceived to provide a simple software interface to the developer to be able to 
effectively manage a task‐based application over a sensor network.

In particular, on top of an intuitive API, the programmer can develop their 
own application for (i) controlling the remote nodes of a BSN and getting the 
high‐level event notifications issued by the nodes, (ii) defining, deploying, 
and  running the task‐based application, and (iii) collecting the in‐network 
processed data for further off‐line analysis.

To favor portability, Java has been adopted to implement the SPINE2 Coordinator 
software architecture. It is worth noting that a specific set of components have 
been implemented to support some platform‐dependent base stations. These are 
particular devices (a sensor node or a dongle) that need to be connected to the 
Coordinator in order to properly get access to the common IEEE 802.15.4 wireless 
communication interface and be able to communicate with the sensor nodes.

4.8  SPINE2 Communication Protocol

A two‐layer communication stack (see Figure 4.4a) has been defined in SPINE2 
for handling the communication between sensor nodes and the coordinator 
and is built atop the platform‐specific protocol supporting the available 
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onboard radio. The layer in the middle (Packet Layer) provides a point‐to‐point 
communication interface, by also managing the fragmentation of the long 
application‐level messages (split into multiple packets’ payload) coming from 
the upper layer. In particular, the fields constituting the SPINE2 packet are 
depicted in Figure 4.4b.

The upper layer is defined to handle a set of SPINE2 messages, which encap-
sulate the application‐level commands and information for interacting with 
the BSN and more specifically with the deployed task‐oriented application.

The currently supported application‐level messages are summarized in 
Table 4.1 along with some additional information about the communication 
direction and the carried payload. The Init Application, Start Application, and 
Reset Application Messages, which have no additional payload data, are 
adopted for controlling the execution of the task‐based application once cor-
rectly deployed.

The Discovery Nodes initiates the communication scheme between the coor-
dinator and the BSN in order to get general information from the nodes 
(through the Node Advertisement message), like the sensor platform, the avail-
able onboard sensors, and the list of supported tasks. Once the Discovery/
Advertisement phase has terminated, the user can complete modeling the 
application, which is then deployed by mapping the task‐graph throughout the 
network. The Create Task Message is issued to instantiate each single task on 
the intended node. Similarly, the Create Connections message is sent to create 
a connection or a set of connections between tasks. It therefore includes infor-
mation related to the destination task of a specific connection since a task 
may be either local (i.e. instantiated on the same node) or remote. It also 
includes information for allocating the needed buffers on the node. Once the 
application has been deployed, the coordinator can broadcast the Init 
Application to initialize the tasks instantiated over the network, after which 
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every node communicates that it is ready to run (part of ) the application by 
sending a Node Application Ready. The Start Application Message can now be 
broadcast, causing the application to run. The Sensor Data message is for for-
warding data (either raw or preprocessed) from a node to the coordinator, 
whereas the Sensor to Sensor Data message is for data that needs to be 
exchanged between remote tasks. The Error and Status Info messages are 
issued in case of unexpected errors at runtime (e.g. no further block can be 
allocated in the dynamic memory) or for periodic node status advertisement 
(e.g. for communicating the remaining battery charge).

4.9  Developing Application in SPINE2

A typical interaction between the SPINE2 environment and the Java‐based 
user‐defined applications is depicted in Figure  4.5. It is worth noting that a 
SPINE2 Console is made available along with the SPINE2 Coordinator compo-
nent. Specifically, it comes with a simple GUI that allows a user to immediately 
interact with the BSN and define the task‐based application without having to 
implement an application atop the SPINE2 API.

As a consequence of the presence of such GUI, a developer can actually 
interface his own applications to the SPINE2 environment in two different 
ways.

Table 4.1  SPINE2 application‐level messages.

Message type Source Destination Payload

Discovery Nodes Coordinator Node —
Create Task Coordinator Node Task configuration
Create Connections Coordinator Node Connection configuration
Init Application Coordinator Node —
Start Application Coordinator Node —
Reset Application Coordinator Node —
Node Advertising Node Coordinator Node info, sensors list, tasks list
Node Application ready Node Coordinator —
Sensor Data Node Coordinator Formatted data
Error Node Coordinator Error code, error info
Status Info Node Coordinator Status code, status info
Sensor to Sensor Data Node Node Formatted data
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As a first example, since the SPINE2 Console can be adopted for managing 
both the BSN and defining the task‐based application, the Java‐based 
Application 1 needs just to register to the Console in order to get notified 
of messages coming from the network, thus needing only to code the logic 
for collecting information and data useful for off‐line analysis and 
displaying.

By contrast, Application 2 directly makes use of the SPINE2 API and takes 
care of both managing the BSN and the task‐based application, thus requiring 
a greater effort by the developer.

4.10  Summary

This chapter has presented the SPINE2 programming framework, an easy‐to‐
use solution for rapidly and effectively developing distributed application on 
BSNs. We have first provided motivations for needing different programming 
abstractions, by explaining why the well‐known task‐based paradigm is able to 
successfully meet the desired requirements of the BSN domains. Then, an 
overview of the main features of SPINE2 has been presented, along with a 
description of the supported task‐oriented programming approach and related 
benefits: rapid prototyping and easy runtime reconfiguration of highly 
customizable and flexible distributed signal‐processing applications. 
Furthermore, its software architecture has been described by highlighting the 
benefits in having a platform‐independent node‐side middleware in terms of 
quick portability and extensibility.
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Figure 4.5  The SPINE2 components interacting with the user applications.
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5.1  Introduction

High‐impact applications enabled by BSN‐based systems are required to be 
secure, safe, and reliable, especially when dealing with the monitoring and con-
trolling of the physical and biochemical parameters of the human body. 
Achieving correctness, accuracy, and efficiency at execution time by meeting 
the strict requirements in terms of fault tolerance, adaptability, and reliability 
is of crucial importance and a very challenging issue. In this regard, the auto-
nomic computing paradigm can perfectly fulfill such critical requirements of 
BSN applications in which proper techniques can be incorporated to enable 
specific self‐managing capabilities and successfully cope with unforeseen 
changing conditions that may lead to unpredictable behaviors.

This chapter first introduces background concepts on the autonomic para-
digm and its application on the BSN context. Then, the needs for BSN‐specific 
autonomic‐enabling development tools are discussed. Finally, a framework 
conceived to support rapid design and implementation of applications having 
autonomic properties, SPINE‐*, is presented. Implemented as an extension of 
SPINE2, the autonomic elements are incorporated into the same high‐level 
abstractions adopted for developing the BSN applications. Specifically, it aims 
at easily integrating the autonomic behavior without affecting the applications, 
thanks to the adopted task‐oriented paradigm, which allows for the required 
separation of concerns between the user‐defined application business logic 
and the autonomic‐related operations.

5.2  Background

The term Autonomic Computing (AC) was coined by researchers in IBM [1], 
who advised the need for a management component acting in a similar fash-
ion to the autonomic nervous system of the human body, in response to the 

Autonomic Body Sensor Networks
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increasingly complexity of managing computing systems. The AC paradigm 
was then conceived for dealing with the complexity of distributed software 
systems and enabling mission‐critical applications to meet high reliability and 
adaptability requirements. It faces the problem by introducing a series of self‐* 
properties, thanks to systems that are able to perform several self‐management 
actions with no direct human intervention. The main self‐* properties (usually 
known as self‐CHOP properties) are the following:

●● Self‐configuration: depending on high‐level policies and objectives, a system 
is able to effectively configure and adapt itself on the basis of the user’s needs 
and environmental conditions by dynamically adding, replacing, or remov-
ing its components with no system outages.

●● Self‐healing: to guarantee an adequate level of reliability, the system should 
autonomously prevent, detect, and possibly remedy malfunctions and errors. 
The nature of possible problems that can be detected spans from low‐level 
hardware failures to high‐level erroneous software configuration. However, 
it is important that the operations related to the self‐healing process do not 
affect other vital components in the system.

●● Self‐optimization: the system should perform its activities by proactively and 
effectively targeting the maximum performance given the restricted available 
resources. This optimization process should constantly seek performance 
improvement without interfering with the system in achieving the user‐
defined goals.

●● Self‐protection: systems with such a property are able to guarantee an 
adequate level of security in terms of detecting, and possibly preventing, 
malicious attacks aimed at disrupting the normal planned system opera-
tions. Moreover, the system should also protect itself from user inputs 
that may be inconsistent, implausible, and dangerous.

5.3  Motivations and Challenges

As discussed in the previous chapters, BSN developers can benefit from the 
use of programming frameworks (e.g. SPINE, SPINE2, and MAPS), which tar-
get ease of development, fast prototyping, code reusability, efficiency, and 
application interoperability. However, the global quality of the applications not 
only derives from the use of a well‐defined programming approach and related 
tools, but also on how good they are designed and implemented to deal with 
the changing conditions and possible problems due to the interaction with the 
environment and other interconnected systems. In fact, since unpredictable 
conditions (e.g. sensing faults) may lead to unwanted behaviors at execution 
time, it is not reasonable for a BSN system to be constantly supervised 
and maintained by human operators once deployed. Therefore, despite usual 
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development issues are proven to be successfully addressed by the most com-
mon programming frameworks, the way in which the correctness of applica-
tions, during the post‐deployment stage, has to be defined is usually completely 
up to the developers. And this is becoming a particularly challenging task in 
view of the fact that evermore complex BSN applications will need a better 
runtime support as a result of the immersion of people into more pervasive, 
smarter, but also risky environments.

Providing an effective approach to allow developers providing self‐managing 
capabilities and easily integrating them into applications, in order to improve 
reliability and maintainability, is a major challenge. Unfortunately, most of the 
currently available BSN programming frameworks represent trustworthy tools 
for defining the high‐level application logic, but they do not provide an explicit 
and clear way for designing an underlying autonomic structure capable of 
addressing the application management requirements.

5.4  State‐of‐the‐Art

The integration of the autonomic principles into networking systems has been 
studied and proposed in many research works [2, 3]. Also, real prototypes have 
been developed, deployed, and tested as releases of several international pro-
jects: BISON [4], ANA [5], Haggle [6], CASCADAS [7], EFIPSANS [8], and 
Autonomic Internet [9].

However, differently from traditional networks, the peculiar characteristics 
of sensor networks make the design and implementation of the autonomic 
management approaches even more challenging, and to date, this branch of 
research has not been satisfactorily investigated yet. Examples of autonomic‐
oriented system architectures explicitly designed to support sensor networks 
management are MANNA [10], BOSS [11], WinMS [12], and Starfish [13].

MANNA [10] is a generic architecture providing three different abstraction 
planes, one for each management function: functional areas, management lev-
els, and WSN functionalities. The latter includes basic low‐level operations 
like sensing, processing, and communication, whereas the management levels 
represent the typical system’s layers, i.e. the business logic, the middleware 
services, and the networking layer. Finally, the functional areas represent, 
for  each aforementioned system’s layer, the different perspective to which 
autonomic actions can be applied, specifically configuration, maintenance, 
performance, security, accounting, and fault management perspective.

Based on the standard UPnP protocol, the BOOS architecture [11] is 
designed to support automatic discovery, configuration, and controlling of 
devices over traditional networks, by avoiding any manual setup. Due to 
the limited resources of sensor devices, to fully support UPnP functionality, a 
mediator component running on the coordinator serves as a provider of the 
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required services for network management. The BOSS architecture is consti-
tuted of several functional components: control manager, service manager, 
event handlers, and sensor network‐level management functions.

WinMS [12] is a network management system able to support dynamic 
adaptation of nodes as a response to changing network conditions. Depending 
on high‐level policies, WinMS is based on a local management scheme, which 
works according to the neighborhood network state, and a decentralized 
scheme, which depends on global network‐level knowledge. The low‐level 
communication is provided by a lightweight TDMA protocol, FlexiMAC, sup-
porting a tree‐based gathering scheme, which is in charge of collecting and 
disseminating network state data and management information.

Starfish [13] is a framework conceived to support the definition of self‐
adaptive behaviors in sensor networks. Specifically, a node‐side policy man-
agement system, called Finger2, is in charge of executing the adaptive 
strategies dealing with the management of reconfigurations and failures. 
Such strategies are specified by the developers through a desktop client tool, 
which includes a set of libraries to facilitate the programming of nodes by 
providing a high‐level language for defining both autonomic policies and 
user’s application logic.

Although the previously described frameworks and architectures are exam-
ples of generic self‐management systems, most of the current research efforts 
are mainly focused on self‐healing and fault management [14–24]. Moreover, 
these studies are usually carried out by considering the WSN context, whereas 
few efforts are devoted to BSNs. This is why we aim at addressing such a short-
coming by specifically exploring the viability and convenience of autonomic 
computing in the BSN context.

5.5  SPINE‐*: Task‐Based Autonomic Architecture

Due to the intrinsic complexity of distributed computing systems, like BSNs, 
there exist different approaches for integrating the autonomic properties, 
which can be applied at different system’s perspectives: network‐level, com-
munication stack‐level, software layer‐level, service‐level, function‐level, or 
component‐level.

However, we advise the practice of clearly and explicitly separating the 
application business logic from the implemented autonomic management 
operations. If well‐designed, the main benefit from using such separation of 
concerns is that the application developer’s efforts can be focused on the 
characteristics of the application and its primary goals, without being forced to 
take care of any of the autonomic management components. In fact, the auto-
nomic behavior can be easily added afterwards, with no risk of affecting the 
previously defined application logic.



5.5  SPINE‐*: Task‐Based Autonomic Architecture 77

In the following, an autonomic architecture fulfilling the aforementioned 
requirements is presented. It has been designed and implemented around the 
SPINE2 framework, whose task‐based abstractions provide the necessary 
mechanisms for assuring the application isolation and composition properties. 
The autonomic features have been added to SPINE2 without affecting the 
original runtime engine but instead only involving its task library, which has 
been enhanced with the introduction of a new set of autonomic‐specific tasks. 
The way a SPINE‐* application can be defined is depicted in Figure 5.1. Such an 
application is constituted by a multiplane architecture which, in its basic 
configuration, is composed of two distinct planes, one representing the user 
application logic and the other providing the autonomic operations. Since a 
task is only aware of its input data, it is clearly possible to employ a generic 
nonautonomic task in the autonomic plane on the basis of specific needs. Also, 
it is worth noting that, differently from the application example provided in 
Chapter 4 (see Figure 4.2), all tasks have been depicted with no assumption on 
their specific types.

Different kinds of interactions can be established between the planes for per-
forming direct manipulation on the application data streams or reconfiguring the 
application tasks. Despite such interactions, the degree of isolation in the execu-
tion of tasks guarantees that the separation of concerns’ property still holds, with 
the application plane having no awareness of the presence of the autonomic plane.

The generic architecture of Figure  5.1 shows two specific autonomic 
approaches. In the first case, the parameters of task T7 are tuned at runtime 
so as to optimize its function and thus adapting its behavior depending on the 
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Figure 5.1  The multiplane autonomic architecture of a SPINE‐* application.
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data originating from task T1. Specifically, the adaptation action is performed 
by the autonomic task AT2 after a preprocessing made by AT1 on the source 
data coming from T1. Since no data stream is injected to the application plane, 
but rather a reconfiguration action is performed, such an interaction (configu-
ration connection) is represented with a dashed arrow from AT2. In the second 
case, supposing that the aim of the autonomic tasks AT3 and AT4 is to improve 
the quality of data, the output data stream from T5 is redirected to the auto-
nomic plane, specifically to T9. In turn, T9 provides AT3 and AT4 with the data 
stream to be analyzed and manipulated prior to feed the aggregator task T10, 
which is in charge of fusing the two data streams and sending the resulting 
stream to T6. In such a configuration, the direct connection T5–T6 has been 
removed and replaced with the subgraph of tasks in the autonomic plane.

The proposed task‐based multiplane autonomic architecture can be employed 
in many common situations in which self‐* properties need to be satisfied. In 
the following, some examples of task‐based application enhanced with the 
SPINE‐* autonomic mechanisms are presented. In particular, we show the four 
self‐CHOP properties: self‐configuration, self‐healing, self‐optimization, and 
self‐protection.

As represented in the reference architecture of Figure 5.1, a useful property of 
BSN applications is the ability of autonomously reconfiguring the parameters of 
a task at runtime depending on the changing system and/or environmental con-
ditions. As shown in Figure 5.2, two different ways for triggering a reconfigura-
tion task can be adopted. In Figure 5.2a, the SensReconfig task of the autonomic 
plane is driven by the output results of the Processing task (which performs 
some kinds of analyses on raw sensed data). Specifically, the SensReconfig task 
is able to modify the application behavior by acting on the Sensing task param-
eters, e.g. the sampling rate, or even disabling/enabling its execution. In a similar 
way, the example depicted in Figure 5.2b shows a ReconfigTask acting on both 
the Sensing task and the Processing task. However, the autonomic task execu-
tion is not triggered from inside the task application but instead the desktop 
application running on the BSN coordinator (as well as on a remote computer) 
is in charge of driving the autonomic action, for instance when a different sensor 
data acquisition or processing is needed on the basis of new requirements or 
some changing conditions recognized on the coordinator side.

Another important and critical issue for applications in the health‐care domain 
is the ability of recovering from possible faults and errors occurring in data, algo-
rithms, or networking functionalities. Thus, the self‐healing property becomes a 
crucial requirement to be fulfilled not least because reliability and correctness of 
the provided services have to be autonomously and continuously guaranteed at 
runtime by the system itself without requiring the intervention of the operators. 
As an example, Figure 5.3 shows the autonomic tasks interposed between the 
sensing layer and the processing layer so as to determine the quality of the raw 
data from the sensors and thus to avoid that corrupted samples (when detectable) 
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could affect the computing functions and thus the whole application accuracy 
and erroneous behavior. Specifically, the FaultsDetection task may be conceived 
as an online detection process for specific faults in the data stream coming from 
the Sensing task, which is also in charge of possibly redirecting the corrupted 
stream to the FaultsFiltering task for the actual recovering process. As discussed 
in Ref. [25], different kinds of data faults can heavily impact the application cor-
rectness. Moreover, it is also shown that not all of them can easily be treated with 
proper recovery techniques in order to improve system’s tolerance to data faults 
and then achieve better efficiency and reliability.

Sensor node

(a)

(b)

Sensing SplitProcessing

SensReconfig

<reconfiguration>

Sensor node

Sensing Processing

ReconfigTask

reconfiguration
actions

Transmission

Coordinator device

Coordinator-side
application

reconfiguration
message

data
message

Figure 5.2  Examples of application with self‐configuring property; (a) the reconfiguration 
task is driven by the output results of the Processing task; (b) the reconfiguration task is 
driven by the desktop application running on the BSN coordinator.

Sensing ProcessingFaultsDetection

FaultsFiltering 

Figure 5.3  Example of application with self‐healing property.
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As for the optimization of BSN applications, one of the most critical issue 
is to determine the proper conditions that allow to extend the operating life 
of the wearable devices. Since the radio data transmission and the sensing 
process (depending on the type of the physical sensor in use) are the most 
energy‐demanding operations, it is reasonable to extend the typical Sensing–
Processing–Transmission application pattern with proper autonomic tasks 
for optimizing such operations depending on some specific conditions and 
requirements. For instance, as shown in Figure 5.4, the sampling rate can be 
adapted, at runtime, on the basis of the variability of the resulting output of 
the processing task. In fact, such that it can be reduced when the data sam-
ples do not change so much for a certain period of time, i.e. when the sensor 
data variability remains below a certain threshold. For the same reason, the 
radio transmission of such data can be avoided when the application on the 
coordinator‐side does not need to be continuously fed with slightly changing 
data streams and thus saving energy on the battery‐operated sensor nodes by 
optimizing the most power‐hungry operation.

Due to the distinct features of BSNs, like the sensitive nature of data man-
aged (biomedical and personal information), wireless communication, and 
mobility of sensors, privacy and security represent major concerns for wearable 
systems to play a significant role in the e‐health-care domain. Thus, enhancing 
the monitoring of physical environment with proper security mechanisms is of 
prominent importance. The task‐based autonomic architecture of SPINE‐* 
does not aim at addressing such issues with specific self‐protection mecha-
nisms to contrast external attacks but is intended to provide a proper way to 
encapsulate such security solutions in reusable components to be directly 
plugged into the task application when required. As a very simple example, 
the  DataEncryption task of Figure  5.5, which usually demands a lot of 

Sensing Processing Transmission

Variability
Detection

<reconfiguration>

SensReconfig

<reconfiguration>

Figure 5.4  Example of application with self‐optimization property.

Sensing Processing DataEncryption Transmission

Figure 5.5  Example of application with self‐protection property.
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computation, can be activated during outdoor activities or when in public 
untrusted environments but disabled when running at home and secure loca-
tions, so as to adapt the application to the execution context.

5.6  Autonomic Physical Activity Recognition

In the following, the benefits of SPINE‐* in a real BSN application are pre-
sented. Specifically, the existing physical activity recognition described in 
Refs. [26, 27] is considered as testbed application, which has been turned 
into an equivalent autonomic version. The whole system consists of a desk-
top application running on the coordinator and responsible for classifying 
postures and movements through a k‐NN‐based classifier to be applied on 
pre‐elaborated data gathered from waist‐worn and thigh‐worn sensors, both 
equipped with a 3‐axis accelerometer. In particular, the node‐side applica-
tions consist of (i)  sensing the accelerometer sensors, (ii) computing the 
mean, max, and min features over specific accelerometer axes (also called 
channels), and (iii) merging and transmitting the results to the coordinator. 
In Figure  5.6, the two node‐side applications, designed through the task‐
based programming abstraction approach and with no autonomic tasks, are 
depicted.

Even though such an implementation provides a core functionality for the sys-
tem to work, it does not include some important features that could be funda-
mental in case of unexpected conditions. In particular, it is completely unaware 
of the quality of the data streams coming from the accelerometers and, as a con-
sequence, the activity recognition could provide incorrect detection results. 
Hereafter, we show how the addition of an autonomic plane, and specifically the 
integration of self‐healing tasks, is beneficial in case of corrupted data. In this 
regard, the impact of sensed data faults on the activity recognition accuracy is 
first reported. Then, the improved system fault tolerance and reliability is shown 
by adopting a proper self‐healing layer able to detect and possibly recover such 
data faults at runtime.

The evaluation approach that we consider consists in carrying out 
a  testbed on the specific predefined sequence of activities shown in 
Figure  5.7,  starting from the “Standing Still” state, and with each state 
roughly lasting 30 s.

The accelerometer sampling time has been set to 25 ms, whereas the features 
of the processing tasks (see Figure 5.6) are computed over 40 sampled raw data, 
every new 20 acquired samples (shift). The k‐NN‐based classifier has the 
parameter K set to 1, whereas the Manhattan distance has been adopted due to 
its excellent performance on well‐separated classes (i.e. the states of Figure 5.7). 
According to such setting and assuming lack of faults in the raw data streams, 
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the classification over the whole activities’ transition pattern of Figure 5.7 has 
obtained an accuracy of 99.75%.

In order to evaluate the impact of erroneous sensor readings on the classifi-
cation accuracy, we have carried out several tests by considering the original 
raw data streams and altering them with artificial injected faults before feeding 
the processing layers of the applications of Figure 5.6. As data faults injection, 
we consider the models identified in Ref. [22], and in the following, we focus on 
short faults. Such faults consist in irregularities disseminated over a data stream 
and are modeled as random spikes with parameters P and C, where P is the 
percentage of raw data affected by spikes and C is the intensity factor, which 
means that the value of a spike is determined by multiplying the original value 
of a sensor sample by the C factor.

The results of how the classification accuracy significantly degrades due to 
short faults are reported in Table 5.1. As a first example, by considering faults 
affecting all the axes of both accelerometers (on waist and thigh) involved in 
the preprocessing, the accuracy conspicuously drops to slightly more than 50% 
with just 5% of the raw data samples affected by spikes.

Also, when considering only one single channel per time affected by faults, 
the results of Table  5.2 clearly show that the recognition accuracy is more 
influenced by the quality of the data stream coming from the sensor worn on 
the thigh, rather than the ones from the waist node.

Hereafter, we show how the introduction of a self‐healing plane to the node‐
side applications of the activity recognition system is capable of improving the 

Walking Standing
still

Sitting Lying
down

(1)

(2) (4)

(5)(6)

(3)

Figure 5.7  The tested activities’ sequence.
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Figure 5.6  The task‐based applications on the waist node (a) and on the thigh node (b).
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system accuracy by detecting and recovering short faults. The enhanced auto-
nomic version of the application in Figure 5.6a is shown in Figure 5.8. In a simi-
lar way, a self‐healing plane has also been applied on the accelerometer raw 
data streams of the application running on the thigh node.

With specific reference to the short faults, the underlying approach of the 
detection and recovery functionalities of the two autonomic tasks is analyzing 
the variability in the accelerometer data streams. In particular, such streams 
are split into consecutive data windows, each containing W sensor samples, 
over which the mean and the standard deviation sd are computed. Then, every 
single sample in the data window is compared to the standard deviation and, in 
case its value is much greater than sd, the sample is marked as fault. Specifically, 
a task parameter T is adopted to determine the threshold value thr T sd , 
against which the comparison is performed. If no corrupted data is detected, 
samples are directly forwarded to the Split task, otherwise the FaultsFiltering 
will be considered for the subsequent recovering phase. With regards to short 

Table 5.2  Activity recognition accuracy affected by short faults over a specific 
channel and C = 3.

Affected channel P (%) Accuracy (%)

Axis X – Waist sensor 1 98.25
Axis Y – Waist sensor 1 99.75
Axis Z – Waist sensor 1 99.75
Axis X – Thigh sensor 1 81.63
Axis X – Waist sensor 5 96.26
Axis Y – Waist sensor 5 99.75
Axis Z – Waist sensor 5 99.75
Axis X – Thigh sensor 5 44.91

Table 5.1  Activity recognition accuracy affected by short faults over all channels 
and C = 3.

Affected channel P (%) Accuracy (%)

All (in both waist and thigh sensors) 1 79.90
All (in both waist and thigh sensors) 5 55.09
All (in both waist and thigh sensors) 10 51.86
All (in both waist and thigh sensors) 25 48.14
All (in both waist and thigh sensors) 50 46.65
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faults, the adopted recovering method consists in replacing a corrupted sensor 
reading with the previous sampled data. Although it appears as a very simple 
approach, it actually shows its effectiveness in canceling the negative effects of 
such outliers in the accelerometer streams and thus preventing inaccurate pro-
cessing leading to low recognition accuracy. A comparison of classification 
accuracies without and with the self‐healing autonomic plane is reported in 
Table  5.3. In particular, window W = 40 and threshold parameter T = 3 have 
been adopted in our experiments.

With a frequency of short faults within 10%, the recovery operation demon-
strates to guarantee very highly accurate outcomes. Conversely, increasingly 
lower improvements are obtained in the other cases. This is because when a data 
stream has very recurrent faults, it would be impossible to establish if a specific 
value is part of a correct data sequence or is a result of a failed sensing operation.

5.7  Summary

Incorporating fault tolerance, adaptability, and reliability into BSNs is a chal-
lenging task. In this regard, the autonomic computing is an effective paradigm 
whose self‐* properties are able to fulfill such complex requirements. After hav-
ing introduced background concepts on the autonomic paradigm, this chapter 

Sensing
(accelerometer)

Split

Processing
(min)

Processing
(max)

Processing
(mean)

Merge TransmissionFaultsDetection

FaultsFiltering

Figure 5.8  The autonomic application running on the waist node.

Table 5.3  Accuracy improvements over all channels and C = 3.

Affected channel P (%)
Accuracy (without 
autonomic plane) (%)

Accuracy (with 
recovery) (%)

All (in both waist and thigh sensors) 1 79.90 99.75
All (in both waist and thigh sensors) 5 55.09 99.75
All (in both waist and thigh sensors) 10 51.86 98.51
All (in both waist and thigh sensors) 25 48.14 59.55
All (in both waist and thigh sensors) 50 46.65 47.64
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has presented an architecture for rapid prototyping of BSN applications with 
autonomic characteristics, SPINE‐*. It extends the SPINE2 programming frame-
work by means of an autonomic plane, a way for separating out the provision of 
self‐* properties from the BSN application logic. Then, we have considered a 
human activity recognition application as a test case by first analyzing how its 
effectiveness can be heavily affected by data faults in the sensor readings. Finally, 
we have shown how a self‐healing layer (capable of detecting and possibly 
recovering such faults at runtime) can improve the recognition accuracy, thus 
improving the quality of the application.
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6

6.1  Introduction

Many computing paradigms have been to date exploited to support modeling 
and implementation of wireless sensor networks (WSNs) and, more specifi-
cally, of body sensor networks (BSNs). As widely discussed in Chapter 2, different 
kinds of paradigms, from low level to high level, can be used to develop WSN‐
based systems. Among such paradigms, the most notable ones are event‐driven 
programming [1], data‐based models [2], service‐oriented programming [3], 
macro‐programming [4], state‐based programming [5], and agent‐oriented 
programming [6]. This chapter proposes the agent‐oriented paradigm for the 
modeling and implementation of BSNs. After introducing background con-
cepts on the agent‐computing paradigm and, specifically, on software agents in 
the WSN context, the chapter discusses motivations and challenges on the 
exploitation of agents for BSNs and provides a description of the related state‐
of‐the‐art. We then present agent‐based modeling and implementation of 
BSNs. A case study is finally proposed that uses two well‐known agent‐oriented 
platforms (JADE and MAPS) to develop an agent‐based real‐time human 
activity recognition system.

6.2  Background

6.2.1  Agent‐Oriented Computing and Wireless Sensor Networks

Software agents are defined as being networked software entities or programs 
that can perform specific (even complex) tasks for a user and having a degree 
of intelligence that allows them to carry out parts of their tasks/activities 
autonomously and to interact with their environment in a useful manner. The 
features of software agents perfectly fit those of the WSNs and their sensor 
components [7, 8]; in fact, they mainly include [9]:

Agent‐Oriented Body Sensor Networks



6  Agent‐Oriented Body Sensor Networks90

●● Autonomy: agents (or sensor nodes) should be able to perform the majority 
of their problem‐solving tasks without the direct intervention of humans, 
and they should have a degree of control over their own actions and their 
own internal state.

●● Social ability: agents (or sensor nodes) should be able to interact, when they 
deem appropriate, with other software agents (or sensor nodes) and humans 
in order to complete their own problem solving and to help others with their 
activities where and when appropriate.

●● Responsiveness: agents (or sensor nodes) should perceive their environment, 
in which they are situated and which may be the physical world, a user, a 
collection of agents (or other sensors), the Internet, etc., and respond in a 
timely fashion to changes which occur in it.

●● Proactiveness: agents (or sensor nodes) should not simply act in response to 
their environment, but they should be able to exhibit opportunistic, goal‐
directed behavior and take the initiative where and when appropriate.

An interesting taxonomy about WSNs and their relationships with multia-
gent systems (MAS) can be found in Ref. [8]. In particular, the major motiva-
tion of using agents over such networks is that many WSN properties are 
shared with and can be actually supported by agents and MAS: physical distri-
bution, resource boundedness, information uncertainty, large‐scale, decentral-
ized control, and adaptiveness. Moreover, as sensors in a WSN must typically 
coordinate their actions to achieve system‐wide goals, coordination among 
dynamic entities (or agents) is one of the main features of MAS. In the follow-
ing, the aforementioned common properties are discussed:

●● Physical distribution implies that sensors are situated in an environment 
from which they can receive stimuli and act accordingly, also through con-
trol actions aiming at changing their environment. Situatedness is in fact a 
main property of an agent, and several well‐known agent architectures were 
defined to support such an important property.

●● Boundedness of resources (computing power, communication, and energy) is 
a typical property both of sensor nodes as single units and of the WSN as a 
whole. Agents and related infrastructures can support such limitation 
through intelligent resource‐aware, single, and cooperative behaviors.

●● Information uncertainty is typical in large‐scale WSNs in which both the 
status of the network and the data gathered to observe the monitored/con-
trolled phenomena could be incomplete. In this case, intelligent (mobile) 
agents could recover inconsistent states and data through cooperation and 
mobility.

●● Large‐scale is a property of WSNs either sparsely deployed on a wide area or 
densely deployed on a restricted area. Agents in MAS usually cooperate in a 
decentralized way through highly scalable interaction protocols and/or 
time‐ and space‐decoupled coordination infrastructures.
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●● Centralized control is not feasible in large‐scale WSNs as nodes can have 
intermittent connections and also can suddenly disappear due to energy 
lack. Thus, decentralized control should be exploited. The multiagent 
approach is usually based on control decentralization transferred either to 
multiple agents dynamically elected among the available set of agents or to 
the whole ensemble of agents coordinating as peers.

●● Adaptiveness is the main shared property between sensors and agents. An 
agent is by definition adaptive in the environment in which it is situated. 
Thus, modeling the sensor activity as an agent or a MAS and, consequently, 
the whole WSN as a MAS could facilitate the implementation of the adap-
tiveness property.

6.2.2  Mobile Agent Platform for Sun SPOT (MAPS)

MAPS [10–12] is a Java‐based framework purposely developed on Sun SPOT 
technology [13] for enabling agent‐oriented programming of WSN applica-
tions. MAPS has been developed according to the following requirements:

●● Component‐based lightweight agent server architecture to avoid heavy con-
currency by exploiting cooperative concurrency.

●● Lightweight agent architecture to efficiently execute and migrate agents.
●● Minimal core services involving agent migration, naming, communication, 

activity timing, and access to sensor node resources, i.e. sensors, actuators, 
flash memory, switches, and batteries.

●● Plug‐in‐based architecture on the basis of which any service can be defined 
in terms of one or more dynamically installable components implemented as 
single or cooperating (mobile) agent(s).

●● Java language for programming mobile agents.

The architecture of MAPS, shown in Figure 6.1, is based on components that 
interact through (high level or internal) events and provide a set of services to 
(mobile) agents including message transmission, agent creation, agent cloning, 
agent migration, timer handling, and easy access to the sensor node resources.

The main components of the MAPS architecture are described as follows:

●● Mobile Agent (MA) is the basic high‐level component defined by the user for 
developing agent‐based applications.

●● Mobile Agent Execution Engine (MAEE) controls the execution of MAs by 
means of an event‐based scheduler enabling cooperative concurrency. MAEE 
also interacts with the other service‐provider components (see Figure 6.1) to 
fulfill service requests (e.g. message transmission, sensor reading, and timer 
setting) issued by MAs.

●● Mobile Agent Migration Manager (MAMM) supports agents’ migration 
through the Isolate (de)hibernation feature provided by the Sun SPOT 
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environment [13]. Such feature involves a data collection and execution 
state, whereas the agent code should already be at the destination node. This 
is a limitation of the Sun SPOTs, which do not support dynamic class loading 
and code migration.

●● Mobile Agent Communication Channel (MACC) enables interagent commu-
nications based on asynchronous messages (unicast or broadcast) supported 
by the radiogram protocol.

●● Mobile Agent Naming (MAN) provides agent naming based on proxies for 
supporting MAMM and MACC in their operations. MAN also manages the 
(dynamic) list of the neighbor sensor nodes that are updated through a bea-
coning mechanism based on broadcast messages.

●● Timer Manager (TM) manages the timer service for timing MA operations.
●● Resource Manager (RM) manages access to the resources of the Sun SPOT 

node: sensors (3‐axial accelerometer, temperature, and light), switches, 
LEDs, batteries, and flash memory.

The MAPS Mobile Agent model is depicted in Figure 6.2. Specifically, the 
dynamic behavior of MA is modeled as a multiplane state machine (MPSM). 

WSN

MAPS node MAPS node

Sun SPOT sensor node

MA MA MA

MAEE

RM

TM

MAN

MAMM

MACC

Inter-node communications
<<agent messaging and migration>>

Intra-node events

MAPS node

Figure 6.1  Architecture of MAPS.
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The GV block represents the global variables, namely, the data inside an MA, 
whereas the GF is a set of global supporting functions. Each plane may repre-
sent the behavior of the MA in a specific role, thus enabling role‐based pro-
gramming [14], and is composed of local variables (LVs), local functions (LFs), 
and an ECA‐based automaton (ECAA). This automaton is composed of states 
and mutually exclusive transitions among states. Transitions are labeled by 
Event–Condition–Action (E[C]/A) rules, where E is the event name, [C] is a 
Boolean expression (or guard) based on global and local variables, and A is an 
atomic action. A transition is triggered when E is received and C is true. When 
a triggered transition is fired, A is first atomically executed and then the state 
transition is completed. MAs interact through events that are asynchronously 
delivered by the MAEE and dispatched, through the Event Dispatcher compo-
nent, to one or more planes according to the events that the planes are able to 

Event Dispatcher

Agent behavior

MPSM

Plane_i

S1

Event1[Condition1]/Action1

S2

Event2[Condition2]/Action2

Internal events

<<LV, LF>>

<GV, GF>

Event2[!Condition2]/Action3

Figure 6.2  Agent behavior model of MAPS.
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handle. It is worth noting that the MPSM‐based agent behavior programming 
allows exploiting the benefits deriving from three main paradigms for WSN 
programming: event‐driven programming, state‐based programming, and 
mobile agent‐based programming.

6.3  Motivations and Challenges

In the context of highly dynamic distributed computing, mobile agents are a 
suitable and effective computing paradigm for supporting the development of 
distributed applications, services, and protocols [15]. A mobile agent is an 
executing program that has the unique ability to transport itself from one sys-
tem in a network to another in the same network. Networks could be large‐
scale networks or even personal area networks like BSNs. Such ability allows 
mobile agents to (i) move across a system containing objects, agents, services, 
data, and devices with which the mobile agent wants to interact and to (ii) take 
advantage of being in the same host or network as the elements with which 
it interacts. Agent migration can be based on weak mobility (agent data and 
code are migrated) or strong mobility (agent data, code, and execution state 
are migrated) [16]. Mobile agents are supported by MASs [16] that basically 
provide an API for developing agent‐based applications, and an agent server is 
able to execute agents by providing them with basic services such as migration, 
communication, and node resource access.

In their seminal paper [17], Lange and Oshima defined at least seven good 
reasons for using mobile agents in generic distributed systems. In the follow-
ing, we customize them in the WSN context:

1)	 Network load reduction: mobile agents are able to access remote resources, 
as well as communicate with any remote entity, by directly moving to their 
physical locations and interacting with them locally to save bandwidth 
resources. For instance, a mobile agent that incorporates data‐processing 
algorithm/s can move to a sensor node (e.g. a wearable sensor node), per-
form the needed operations on the sensed data, and transmit the results to 
a sink node. This is more desirable, rather than executing a periodic trans-
mission of raw sensed data from the sensor node to the sink node and the 
data processing on the latter.

2)	 Network latency overcoming: an agent provided with proper control logic 
may move to a sensor/actuator node to locally perform the required control 
tasks. This overcomes the network latency that will not affect the real‐time 
control operations also in case of lack of network connectivity with the base 
station.

3)	 Protocol encapsulation: if a specific routing protocol supporting multi‐hop 
paths should be deployed in a given zone of a WSN, a set of cooperating 
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mobile agents encapsulating this protocol can be dynamically created and 
distributed into the proper sensor nodes without any regard for standardi-
zation matter. Also in case of protocol upgrading, a new set of mobile agents 
can easily replace the old one at runtime.

4)	 Asynchronous and autonomous execution: these distinctive properties of 
mobile agents are very important in dynamic environments like WSNs where 
connections may not be stable and network topology may change rapidly. A 
mobile agent, upon a request, can autonomously travel across the network to 
gather required information “node by node” or to carry out the programmed 
tasks and, finally, can asynchronously report the results to the requester.

5)	 Dynamic adaptation: mobile agents can perceive their execution environ-
ment and react autonomously to changes. This behavioral dynamic adapta-
tion is well suited for operating on long‐running systems like WSNs where 
environment conditions are very likely to change over time.

6)	 Orientation to heterogeneity: mobile agents can act as wrappers among sys-
tems based on different hardware and software. This ability can fit well the 
need for integrating heterogeneous WSNs supporting different sensor plat-
forms or connecting WSNs to other networks (like IP‐based networks). An 
agent may be able to translate requests coming from a system into suitable 
ones for another different system.

7)	 Robustness and fault tolerance: the ability of mobile agents to dynamically 
react to unfavorable situations and events (e.g. low battery level) can lead to 
better robust and fault‐tolerant distributed systems; e.g. the reaction to the 
low battery level event can trigger a migration of all executing agents to an 
equivalent sensor node to continue their activity without interruption.

6.4  State‐of‐the‐Art: Description and Comparison

Although many MASs [18] were developed for conventional distributed 
platforms, a very few agent frameworks for WSNs have been to date proposed 
and concretely implemented. In the following, we first describe Agilla and 
actorNet, the most significant available research prototypes based on TinyOS 
[19], and then, we overview AFME and MAPS, which are the most representa-
tive ones based on the Java language.

Agilla [6] is an agent‐based middleware developed on TinyOS and supporting 
multiple agents on each node. It provides two fundamental resources on each node:

●● The tuplespace, which represents a shared memory space where structured 
data (tuples) can be stored and retrieved, allowing agents to exchange infor-
mation through spatial and temporal decoupling. A tuplespace can be also 
accessed remotely.

●● The neighbor list, which contains the address of all one‐hop nodes needed 
when an agent has to migrate.
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Agilla agents can migrate carrying their code and state, but they cannot carry 
their tuples locally stored on a tuplespace. Packets used for node communica-
tion (e.g. for agent migration/cloning and remote tuple accessing) are very 
small to minimize losses, whereas retransmission techniques are also adopted.

ActorNet [20] is an agent‐based platform specifically designed for Mica2/
TinyOS sensor nodes. To overcome the difficulties of code migration and 
interoperability due to the strict coupling between applications and sensor 
node architectures, actorNet exposes services like virtual memory, context 
switching, and multitasking. Due to these features, actorNet effectively sup-
ports agent programming by providing a uniform computing environment for 
all agents, regardless of hardware or operating system differences. The actor-
Net language used for high‐level agent programming has syntax and semantics 
similar to those of Scheme with proper instruction extension.

Both Agilla and actorNet are designed for TinyOS that relies on the nesC 
language.

The Java language, through which Sun SPOT [13] and Sentilla JCreate [21] 
sensors can be programmed, due to its object‐oriented features, could provide 
more flexibility and extendibility for an effective implementation of agent‐
based platforms. Currently, the main available Java‐based mobile agent plat-
forms for WSNs are MAPS [11] and AFME [22].

The AFME framework [22], a lightweight version of the Agent Factory frame-
work purposely designed for wireless pervasive systems and implemented in 
J2ME, is also available on Sun SPOT and is used for exemplifying agent com-
munication and migration in WSNs. AFME is strongly based on the Belief–
Desire–Intention (BDI) paradigm, in which intentional agents follow a 
sense–deliberate–act cycle. In AFME, agents are defined through a mixed 
declarative and imperative programming model. The declarative Agent Factory 
Agent Programming Language (AFAPL), based on a logical formalism of beliefs 
and commitments, is used to encode an agent’s behavior by specifying rules that 
define the conditions under which commitments are adopted. The imperative 
Java code is instead used to encode perceptors and actuators. However, AFME 
was not specifically designed for WSNs and, particularly, for Java Sun SPOT.

MAPS, the Java‐based agent platform overviewed in Section 6.2.2, is con-
versely specifically designed for WSNs and currently uses the release 4.0 (Blue) 
of the Sun SPOT library to provide advanced functionality of communication, 
migration, timing, sensing/actuation, and flash memory storage. MAPS allows 
developers to program agent‐based applications in Java according to the rules 
of the MAPS framework, and thus no translator and/or interpreter need to be 
developed and no new language has to be learnt as in the case of Agilla, 
ActorNet, and AFME. MAPS was also ported on the Sentilla JCreate sensor 
platform and renamed TinyMAPS [21].

In Table  6.1 a comparison among the aforementioned agent platforms is 
reported.



  Table 6.1    Comparison among agent‐oriented platforms (Agilla, ActorNet, AFME, and MAPS) for WSNs. 

Agilla ActorNet AFME MAPS    

Agent migration availability Yes Yes Yes Yes  
Concurrent agents Yes Yes Yes Yes  
Agent communications Tuple‐based Asynchronous messages Asynchronous messages Asynchronous messages  
Agent programming language Proprietary ISA Scheme‐like Declarative + Java Java  
Agent model Assembly‐like Functional BDI Finite state machine  
Intentional agents availability No No Yes No  
WSN‐supported platforms Mica2, MicaZ, TelosB Mica2 Sun SPOT Sun SPOT, Sentilla JCreate
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6.5  Agent‐Based Modeling and Implementation 
of BSNs

As widely discussed in Chapter 1, a BSN is basically composed of a coordinator 
node or base station and one or more wearable sensor nodes connected with a 
1‐hop wireless connection with the coordinator. According to the agent‐
oriented approach, each component of a system is agentified; therefore, both 
the BSN coordinator and the BSN sensor nodes are modeled as agents. A BSN 
system as a whole constitutes a MAS that is basically structured as a master/
slave system (see Figure 6.3a), where the coordinator is the master agent and 
the sensor nodes are the slave agents. The slave agents can only interact with 
the coordinator agent. A variant of the basic architecture (see Figure 6.3b) is a 
mix of Master/Slave (M/S) and peer‐to‐peer (P2P): the coordinator agent can 
interact with all slave agents and the slave agents can interact with each other. 
Both basic M/S and advanced M/S + P2P can be used to structure a single BSN. 
To model collaborative/interacting BSNs (see Chapter 7), the Super Peer model 
(see Figure 6.3c) can be exploited: coordinator agents are super peers and can 
interact with each other, whereas sensor nodes belonging to the same BSN can 
only interact with each other and with their coordinator agent.

Agent‐based implementation of BSN systems should be based on real agent 
platforms [23] supporting the programming of both the coordinator agent and 
the application agents and the sensor agents. Specifically, we propose JADE [24] 
to implement the application and coordinator agents and MAPS [11] to imple-
ment the sensor agents. Thus, agent programming follows the rules of JADE 
and MAPS. Moreover, the application development of agent‐based applications 
is also supported by an agent‐oriented software engineering methodology [25], 
which usually covers the phases of requirement analysis, design, implementa-
tion, and deployment. In the next section, a case study is proposed to exemplify 
the agent‐based engineering approach for BSN applications.

6.6  Engineering Agent‐Based BSN Applications: 
A Case Study

In order to show the effectiveness of agent‐based platforms to support 
programming of BSN applications, in Ref. [26] a MAPS‐based agent‐oriented 
signal‐processing in‐node environment specialized for real‐time human activ-
ity monitoring has been proposed. In particular, the system is able to recognize 
postures (e.g. lying down, sitting, and standing still) and movements (e.g. walk-
ing) of assisted livings. The architecture of the developed agent‐based system, 
shown in Figure 6.4, is organized into three types of agents:

●● The Application‐level Agent (running on a PC or a handheld device) that 
embeds the application logic, implemented with Java and JADE [24].
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Figure 6.3  Agent modeling of BSNs. (a) Master/slave model, (b) Master/slave + peer‐to‐peer 
model, and (c) Super peer model.

●● The Coordinator Agent (running on a PC or a handheld device), implemented 
with Java and JADE.

●● The Sensor Agent (running on the wearable sensor nodes), programmed with 
MAPS [11].
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The Coordinator Agent is based on JADE and incorporates several 
modules of the Java‐based coordinator developed in the context of the 
SPINE framework [27]. In particular, it is used by end‐user applications 
(e.g. the agent‐based real‐time activity recognition application – ARTAR) 
for managing BSNs by (i) sending commands to the sensor nodes and (ii) 
capturing low‐level messages and events coming from the sensor nodes. 
Moreover, the Coordinator Agent integrates an application‐specific logic to 
keep the sensor agents synchronized. To recognize postures and move-
ments, the ARTAR application integrates a classifier based on the K‐Nearest 
Neighbor (k‐NN) algorithm. Postures and movements are defined during 
the training phase. ARTAR and the Coordinator Agent interact through 
JADE ACL messages.

While the ARTAR and the Coordinator Agent are based on JADE, the two 
sensor agents are based on MAPS. Thus, a communication adaptation module 
between JADE and MAPS was developed to allow communication interoper-
ability. The two sensor nodes are, respectively, positioned on the waist and the 
thigh of the monitored‐assisted living. Specifically, two sensor agents are 

JADE-based Activity Recognition Agent

JADE-based Coordinator Agent

SPINE Modules JADE/MAPS 
Communication

Module

WaistSensorAgent

MAPS/Sun SPOT

ThighSensorAgent

MAPS/Sun SPOT

ACL Messages

MAPS Events

Figure 6.4  Architecture of the agent‐based activity monitoring system.
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defined: WaistSensorAgent and ThighSensorAgent. Their behaviors are 
modeled through a 1‐plane MPSM (see Section 6.2.2) by executing the following 
stepwise cycle:

1)	 Accelerometer Data Sensing: the 3‐axial accelerometer sensor collects raw 
accelerometer data (<Acc_X, Acc_Y, and Acc_Z>) according to a given 
sampling time.

2)	 Feature Computation: specific features are computed on the collected raw 
accelerometer data. Features are calculated as follows: (i) Mean on all 
accelerometer axes for the WaistSensorAgent, (ii) Max and Min on the X 
accelerometer axis for the WaistSensorAgent, and (iii) Min on the X accel-
erometer axis for the ThighSensorAgent.

3)	 Feature Merging and Transmission: the computed features are merged into 
a single message and transmitted to the Coordinator Agent.

4)	 Go to 1.

Figure 6.5 also shows how such elaboration cycle is actually programmed using 
the MAPS finite state machine.

In Ref. [26], the entire BSN system has been analyzed in depth by considering 
the following two aspects:

●● The performance evaluation of the timing granularity degree of the sensing 
activity at the sensor node and the synchronization degree or skew of the 
activities of the two sensor agents.

●● The recognition accuracy that shows how well the human postures and 
movements are recognized by the overall agent system.

On the basis of the obtained performance results, it can be stated that MAPS 
shows its great suitability for supporting efficient BSN applications, thus dem-
onstrating that the agent approach is not only effective during the design and 
implementation phases of a BSN application but also during its execution. 
Furthermore, the recognition accuracies are good and encouraging if com-
pared with other works in the literature that use more than two sensors on the 
human body to recognize activities [28]. Finally, with reference to the program-
ming effectiveness of MAPS, the MAPS programming model based on the 
finite state machine offers a very straightforward and intuitive tool for support-
ing BSN application development.

6.7  Summary

This chapter has provided an overview of the use of the agent‐oriented para-
digm to model and implement BSN systems. We have first introduced the 
motivations and challenges for this exploitation. Then, we have introduced 
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MAPS for WSN‐based system development. Furthermore, related work and a 
qualitative comparison among the most diffused (mobile) agent platforms for 
WSNs have been discussed. Finally, the chapter has focused on agent‐oriented 
BSN application development based on MAPS; specifically, a MAPS‐based 
human activity recognition BSN system has been described.

WaitForSensing
AGN_Start/A0

ComputingFeatures

MSG.START/A1

MSG.RESYNCH/A0
MSG.RESTART/A3

MSG.STOP/A4

ACC_CURRENT_ALL_AXES/A2

AGN_Start: event to start the agent behavior plane
MSG.START: event to start the sensing activity
MSG.RESTART: event to restart the sensing activity 
MSG.RESYNCH: event to resynchronize the agent timing
MSG.STOP: event to stop the agent activity
ACC_CURRENT_ALL_AXES: event including raw sensed data

A0: Initialize the local variables of the plane
A1: Initialize the buffers to store raw sensed data
 Create the timer for sensor sampling
 Launch the sensing activity
A2: Fill the buffer with the raw sensed data
 Compute the features after N sensor samplings and 
 Transmit the features to the coordinator agent
 Create the timer for sensor sampling
 Launch the sensing activity
A3: Disable the sensing timer
 Initialize the local variables of the plane
 Execute action A1
A4: Disable the sensing timer

Figure 6.5  Finite state machine of the sensor agents: WaistSensorAgent and 
ThighSensorAgent.
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7

7.1  Introduction

The importance of wearable systems in facilitating and empowering many 
human‐centered domains has been already widely proved and discussed. 
However, despite their potential, the current BSN‐based systems are mostly 
used for applications focusing on the monitoring of a single individual. Also, 
the current BSN frameworks aim at providing effective programming supports 
for easily and efficiently developing applications for remote, real‐time monitoring 
of assisted livings over network based on a multisensors/single‐coordinator 
configuration. Since more and more applications in several domains (health 
care, entertainment, social interaction, sport, and emergency among others) 
demand different and more complex BSN‐based architectures, the paradigm 
centered on a single individual monitoring is not sufficient anymore to meet 
these new applications’ requirements.

Thus, the need for new multi‐BSN infrastructures, henceforth indicated as 
Collaborative Body Sensor Networks (CBSNs), is compelling to foster novel 
applications based on the collaborative approach of groups of individuals, 
where single BSNs have to cooperate with each other to properly monitor and 
recognize group activities in order to fulfill a common goal.

In this chapter, a reference architecture for CBSN applications, thus enabling 
interactions among single BSNs, is presented. Moreover, a new programming 
framework, Collaborative SPINE (C‐SPINE) [1,2], specifically designed to fully 
implement the proposed CBSN architecture, is also described. Proposed as an 
enhancement of the SPINE framework [3,4] (see Chapter 3), it provides specific 
data communication, multisensor data fusion, collaborative processing, and 
joint data analysis capabilities to facilitate the development of novel smart 
wearable systems for the current and future cyber‐physical pervasive computing 
environments.

Collaborative Body Sensor Networks
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7.2  Background

Most of the current applications using wearable systems rely on BSN infrastruc-
tures constituted of a collection of sensor nodes wirelessly connected to a single 
coordinator device (the base station – BS), which usually makes the individual’s 
information locally or remotely available.

However, today’s complex application scenarios require more dynamic and 
flexible interacting components and thus new types of BSNs need to be defined 
in order to offer further capabilities. In the following, the possible kinds of BSN 
infrastructures are introduced. They are categorized on the basis of the “logical 
interconnections” among the main communicating BSN components, i.e. the 
individuals wearing the sensor nodes and the coordinators/BSs (depicted as 
smartphones), with no assumption about the actual underlying physical net-
work topologies. As depicted in Figure 7.1, we have the following logical BSN 
infrastructures:

a)	 Single Body–Single Base station (SBSB) (Figure 7.1a): the wearable devices of 
a single individual communicate with a single BS. This is the most common 
configuration for the current available body‐monitoring applications aimed 
at acquiring, processing, and storing (locally or remotely) the biomedical 
signals of individuals.

b)	 Single Body–Multiple BSs (SBMBs) (Figure  7.1b): such a configuration 
enables communications between a single BSN with multiple BSs. A typical 
scenario could be in the home automation context, where an individual may 
interact with BSs located in different places of the environment.

c)	 Multiple Bodies–Single BS (MBSB) (Figure  7.1c): multiple BSNs can be 
coordinated by a single BS, which allows for indirect interaction among 
different individuals. An example is in the gaming context, where a device 
(smart‐TV or a game console) enables an augmented social experience in a 
group of people wearing sensors.

(a) (b) (c) (d)

Figure 7.1  BSN infrastructures based on the logical communications among individuals 
and base stations.
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d)	 Multiple Bodies–Multiple BSs (MBMBs) (Figure 7.1d): multiple BSNs can 
interchangeably and dynamically communicate with multiple BSs. This 
configuration is needed in more complex scenarios (e.g. during large‐scale 
disaster), where the emergency intervention by a team of rescuers requires 
a more efficient and automatic coordination and a better delivery of infor-
mation related to the victims’ conditions.

7.3  Motivations and Challenges

Based on the characteristics of the different BSN infrastructures, none of the 
BSN‐specific solutions or programming frameworks developed and proposed 
so far (discussed in Chapter  2) is specifically designed to straightforwardly 
support multi‐BSN configuration. In fact, most of them are designed around 
the basic needs to perform multisensor data fusion [5] in single‐BSN contexts 
and are usually implemented by following a three‐layer architecture:

1)	 Sensing layer: this module provides sensor sample acquisition and signal 
data gathering functionality from the on‐body sensors. Besides extracting 
raw data, it usually also computes basic feature extraction functions such as 
min, max, mean, variance, etc.

2)	 Analysis layer: starting from the set of extracted features, this layer is in 
charge of selecting and joining the most significant ones by further providing 
some decision algorithms, like a classifier.

3)	 Dissemination layer: high‐level information from the analysis layer is delivered 
to some user‐applications, which can either be locally (i.e. on the coordinator/
BS device) or remotely executed.

Such a three‐layer architecture lacks fundamental capabilities to support inter‐
BSN communication and collaborative, distributed processing functionality, 
which are needed to successfully support the Multiple Bodies–Multiple BS 
configuration.

Hence, the novel reference architecture for CBSNs proposed in this chapter 
has been purposely conceived to fully adhere to all the possible BSN configura-
tions. Such a general architecture has been later exploited as a guideline for 
implementing a supporting framework aimed at facilitating the development 
of collaborative BSN applications. In particular, the need for a CBSN infra-
structure can be better motivated by the fact that it is capable of easily enabling 
new services allowing single BSNs to interact with each other (not addressed in 
the other BSN configurations):

●● Client/Server services: a pair of BSNs can interact in a standard client/server 
communication paradigm, where a server BSN (e.g. the monitored individ-
ual) provides services to let the client BSN issue (i) a continuous monitoring 
request or (ii) a single data request. In the former, the server BSN continu-
ously pushes information to the client, whereas the latter works as a more 
typical single‐reply‐upon‐request model.
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●● Broadcast services: BSNs can broadcast (push) information without being 
queried about (i) the individuals’ worn sensors or (ii) alarm/events triggered 
by the individuals’ conditions (e.g. a critical status like a fall or a heartbreak).

●● Collaborative services: aimed at performing specific tasks upon direct inter-
actions between BSNs and based on a peer‐to‐peer model to exchange 
information. They usually detect and recognize group activities and relevant 
events based on the implicit or explicit multiuser interactions.

Despite their benefits, such services pose further challenges in implementing a 
CBSN application framework, which needs to successfully fulfill new specific 
requirements:

●● Inter‐BSN communication: all the aforementioned types of service models 
require reliable and robust inter‐BSN communication mechanisms to be 
implemented.

●● BSN proximity detection: providing proper proximity detection protocols is 
of fundamental importance for managing the neighbor CBSNs.

●● Discovery of BSN services: complementary to the BSN proximity detection 
system, a CBSN should rely on dynamic but well‐specified (possibly stand-
ard) service discovery methods.

●● Selection and activation of BSN services: in a similar way, selecting and 
activating services need common mechanisms to be implemented according 
to a specific protocol.

●● Collaborative multisensor data fusion: specific distributed algorithms for 
group activities’ classification/detection represent major tasks (and challenges) 
in the CBSN context.

7.4  State‐of‐the‐Art

As already discussed, most of the proposed BSN solutions or programming 
frameworks developed so far are not conceived to straightforwardly support 
multi‐BSN infrastructures, since they are basically designed around a multisensor 
data fusion approach and implemented by following the three‐layer architecture 
presented in the previous section.

In Ref. [6], a postures and activities recognition system by fusing data from 
multiple two‐axial accelerometers is proposed. The angular velocity, and the 
horizontal and vertical accelerations of sensors placed on different locations of 
the human body are estimated by Kalman Filters (KFs) and the resulting flex-
ion angles of body parts, which are real‐time indicators of limbs and torso posi-
tion, are in turn processed (using statistical, temporal, and spectral features) 
and identified, based on banks of trained Hidden Markov Models (HMMs), 
and fused together to infer whole body posture or activity.

The authors in Refs. [4,7] propose a human activity recognition system using 
two 3‐axial accelerometers placed on the right thigh and on the waist. Specific 
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features are extracted from data collected on a fixed‐length periodic window 
basis: max, min, average and total energy on all axes of the accelerometer on 
the waist, and max on the x axis of the accelerometer of the thigh sensor. Such 
features are then merged and classified by using a k‐NN‐based decision tree to 
identify different activities, like standing still, sitting, lying down, walking, and 
fall events along with the extent of the fall.

In Ref. [8], different human postures (sitting, squatting, standing still, and 
lying down) are detected by using a multisensor data fusion method that relies 
on the D‐S evidence theory. Empirical evidence is extracted from 3‐axial accel-
erometers placed on calf, thigh, arm, and waist so that ranges of the gravity 
acceleration can be defined for each axis and related to each activity of interest. 
The theory of evidence is exploited to first define basic trust functions, which 
are then combined, on the basis of real‐time observations, to generate more 
accurate functions to recognize the postures.

In Ref. [9], a novel multiobjective Bayesian Framework for Feature Selection 
(BFFS) and a method for searching optimal solutions are proposed. It can be 
used in BSN systems for reducing the number of relevant features by eliminat-
ing the redundant ones and thus identifying the sensors that do not considerably 
influence the decision process. Moreover, a contextual multisensor data fusion 
method, based on model learning and inferencing algorithms, is proposed to 
recognize individual’s activities.

The authors in Ref. [10] propose self‐healing methods to detect data faults 
from sensors. Specifically, it is shown how the accuracy of a BSN system for 
human activity recognition is affected by different types of faulty data. Some 
filtering methods are then proposed to improve sensor data quality and 
enhance the recognition accuracy.

In Ref. [11], the authors aim at improving classification robustness against 
sensor failures by proposing a formulation of a latent structure influence 
model capable of capturing the correlation among (including noisy/faulty) dif-
ferent sensing processes. A BSN system able to recognize eight locations, six 
speaking/non‐speaking states, six postures, and eight activities is considered 
as a case study.

7.5  A Reference Architecture for Collaborative BSNs

The proposed reference architecture for supporting a CBSN infrastructure can 
be described under two different perspectives, the networking perspective and 
the functional one:

●● Network Architecture, which shows the communications among BSNs in 
terms of basic and the application‐specific interaction protocols.

●● Functional Architecture, which defines the types and activities of the main 
functional blocks in charge of managing the general system and executing 
some specific tasks depending on the actual applications.
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As depicted in Figure 7.2, the CBSN Network Architecture consists of different 
sets of wearable sensors (the WSs) and base‐stations (BSs). In the picture, we 
assume that every CBSN is controlled by a BS, which manages the sensor nodes 
through an application‐level intra‐BSN communication, usually implemented 
over a single‐hop protocol based on a physical star topology. The interaction 
between a pair of BSs is made through an Inter‐BSN protocol. In the case of 
absence of a BS, the set of WSs constituting the CBSN may be directly accessed 
by other BSs through the Intra‐BSN protocol (IBP).

In the following, the list of functions offered by the IBP is provided:

●● Service discovery, for retrieving the available services (processing, sensing, 
and actuating) for each of the WS composing the CBSN.

●● Service configuration, for setting the parameters of the discovered WS 
services.

CBSN_j

WS_j_1 WS_j_m...........

BS_j

CBSN_i

WS_i_1 WS_i_n

BS_i

WS_k_1 WS_k_o

BS_k

CBSN_k

Inter-BSN interation

Intra-BSN interation

Figure 7.2  The reference CBSN Network Architecture.
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●● Service control, used to manage the operations on the WS services, i.e. acti-
vate/deactivate, monitor, and control a configured service.

●● Data transmission, for exchanging raw and/or processed data between the 
BS and the WSs of the same CBSN.

The inter‐BSN interaction is enabled by some application‐specific protocols, 
which support the collaboration among high‐level applications and services 
running on each CBSN. In addition, in order to provide some basic common 
operations, a set of protocols should be defined: Proximity Detection Protocol 
(PDP), Service Discovery Protocol (SDP), and Service Selection and Activation 
Protocol (SSAP). The activity diagram shown in Figure 7.3 represents the flow 
of these basic inter‐BSN common operations. In particular, the PDP is 
intended to detect and manage other CBSNs in the neighboring location by 
means of a beaconing approach. When a CBSN is detected, the SDP is used for 
sharing and managing the list of the available services that each CBSN can 
provide to the others: at first, a service description request is broadcast, and 
upon its reception, a reply containing services information is communicated. 
The SSAP is in charge of actually controlling and managing calls to one or 
more selected specific services required by a certain application. Once acti-
vated and executed, such collaborative services interact by exchanging some 
service‐specific messages.

Figure 7.4 depicts the CBSN Functional Architecture, which includes the fol-
lowing components at BS side (some of them have been already previously 
described):

Proximity
Detection

 Service
Discovery

 Service
Selection &
Activation

 
 

Service
Execution

 

[activated]

[!activated]

Figure 7.3  Activity diagram of basic CBSN operations.
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Figure 7.4  CBSN Functional Architecture components.
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●● CBSN Manager manages the first three basic operations, by using the PD, 
SD, and SSA protocols. In particular, a service can be either automatically 
activated upon a service discovery or activated on demand by the CBSN 
owner. The former approach usually relies on some mutual knowledge 
relationship among owners.

●● BSN Manager handles the WSs belonging to the CBSN through the IBP.
●● Application‐specific Service Manager manages and executes the application‐

level services through the Application‐specific Service Protocol (ASP, see the 
next point).

●● Application‐specific Service Protocol (ASP) implements the communication 
mechanisms for allowing the interaction among services related to the final 
applications.

●● Proximity Detection Protocol, Service Discovery Protocol, Service Selection 
and Activation Protocol implement the mechanisms for CBSN proximity 
detection and service discovery, selection, and activation.

●● Intra‐BSN Protocol (IBP) is for coordinating the interaction between the 
WSs and the BS.

7.6  C‐SPINE: A CBSN Architecture

A full‐fledged CBSN middleware, named Collaborative SPINE (C‐SPINE), has 
been developed as an implementation of the reference architecture described 
in Section 7.5. It includes the sensor‐side and BS‐side components of SPINE 
(see Chapter 3) besides CBSN‐specific components. In particular, as shown in 
Figure  7.5, C‐SPINE is composed of the following modules to support the 
collaborative functionalities of the applications:

●● Inter‐CBSN Communication relies on the C‐SPINE Inter‐BSN OTA Protocol 
(CIBOP) and provides an efficient communication layer to both basic and 
application‐specific services and protocols.

●● BSN Proximity Detection implements the procedure for detecting neighbor 
CBSNs.

●● BSN Service Discovery discovers the available services among the detected 
CBSNs.

●● BSN Service Selection and Activation implements the mechanisms and rules 
to select and activate discovered services among the surrounding CBSNs.

●● Application‐Specific Protocols and Services are a set of higher level function-
ality to support and implement collaborative applications.

In order to manage the sensor nodes, C‐SPINE reuses the SPINE coordinator 
components at the BS side, which are implemented to support both Java‐based 
and Android‐based devices:
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●● Intra‐BSN Communication handles the message transmission and reception 
according to the SPINE Intra‐BSN OTA Protocol (SIBOP). It abstracts away 
from the specific WS platform‐related communication protocol by using the 
proper radio module. It currently provides radio support for TinyOS motes 
and Sun SPOT devices.

●● WS Commands and Events offers developers the interface to coordinate 
the BSN by allowing to activate sensing and processing functions on the 
nodes as well as handling BSN events (e.g. new discovered nodes, alarms, 
and user data messages) and forwarding them to the registered applica-
tion‐level modules.

●● WS Discovery manages the discovery functionality of WS nodes.
●● Data‐Processing Functions module provides developers the interface for a 

set of signal processing, feature extraction, pattern recognition, and data 
classification functions in order to facilitate the development of new applica-
tions. The module also provides an adaptation with the WEKA Data Mining 
toolkit [12].
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Figure 7.5  C‐SPINE Functional Architecture components.
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Similar to the BS, the WSs are programmed by reusing the following SPINE 
node‐side components:

●● Intra‐BSN Communication has a similar functionality of the counterpart on 
the BS side by also managing the radio duty‐cycling.

●● Sensor Control is the interface to the onboard sensors by providing sam-
pling scheduling and buffering of sensor readings, which is supported by 
circular buffers.

●● In‐Node Processing represents a customizable set of functions for signal pro-
cessing on sensor data streams along with filters, data aggregators, and 
threshold‐based alarms.

●● Node Management supervises the interactions among the Sensor Control, 
In‐Node Processing, and Intra‐BSN Communication modules, and handles 
the requests coming from the BS.

In the following subsections, the collaborative‐enabling components of  
C‐SPINE are described.

7.6.1  Inter‐BSN Communication

The Inter‐BSN Communication component provides an efficient communica-
tion mechanism to the upper‐layer components, i.e. the basic and the applica-
tion‐specific services of C‐SPINE. In particular, it relies on the subcomponents 
of the interaction schema depicted in Figure 7.6. The Communication Provider 
(CP) is in charge of managing the exchange of messages among CBSNs and 
thus provides a set of methods for configuring a CBSN to receive and send 
messages of specific types. Each different type of message requires a specific 

Client
Message
Handler

<<implements>>

Communication
Provider

Platform-specific
Communication Protocols

<<uses>>

<<notifies messages>><<sends messages>>

<<registers handlers>>

Figure 7.6  Inter‐BSN component interaction.
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Message Handler (MH) component in order to be correctly processed, and 
every MH needs to be registered with the CP so as to be notified of new incom-
ing messages.

A specific CIBOP protocol, which depends on the upper‐level services and 
application requirements, is defined and implemented according to such 
design schema. In particular, the following steps have to be accomplished to 
correctly define a new interaction protocol (IP):

1)	 Defining a new univocal message type identifying the new protocol.
2)	 Creating a set of IP‐specific messages, all belonging to the same previously 

defined message type.
3)	 Implementing a MH, linked to the new message type, to handle and inter-

pret the new set of messages.
4)	 Registering the MH with the CP.

Since the Inter‐BSN Communication provides an abstract mechanism to sup-
port higher level communication layers, it includes a set of adapters in order to 
use real platform‐specific lower level communication protocols. In particular, 
C‐SPINE currently supports both the Bluetooth and the IEEE 802.15.4 proto-
cols, which are dynamically chosen depending on the actual physical platform 
of the BS.

7.6.2  BSN Proximity Detection

Based on a beaconing mechanism, the Proximity Detection component is 
designed around network‐driven adaptation approaches for controlling the 
beacon rate and managing the neighbor cache (each CBSN handles a table con-
taining information about its neighbor CBSNs). The beacon rate, defined in 
terms of frequency fhello, depends on the network conditions and specifically on 
the turnover rate (rt) value, which is computed as:

	
r N

Nt
ndn

nc 	

where Nndn is the number of new discovered CBSNs, whereas Nnc is the total 
amount of the currently cached CBSNs. In case the rt value is less than a spe-
cific threshold ropt, the fhello value is reduced (the beacon interval time is 
increased by Δt, which is usually set equal to 500 ms), as a result of few changes 
that occurred in the proximity. Conversely, if rt is greater than the threshold, 
the beacon interval is incremented by Δt.

As for the cache of neighbors, the information regarding each neighboring 
CBSN cb is stored in the history table as a tuple having the following structure:

	
beacon time cb T cb T cb Wait cb_ , , ,1 2 	
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where beacon_time(cb) is the timestamp of the last beacon received from cb, 
T1(cb) and T2(cb) are the reception intervals of the last two beacons, and 
Wait(cb) is the amount of time after which the neighboring CBSN cb is removed 
from the cached table if a new beacon is not received. In particular, Wait(cb) is 
updated as follows:
	

Wait cb

k T cb if T cb T cb

T cb
T cb

T cb T cb

* 1 1 2

1
1

1 2
iif T cb T cb

T cb T cb T cb T cb if T cb

1 2

1 1 1 2 1

1

0* TT cb2 1
	

7.6.3  BSN Service Discovery

This component is in charge of discovering the set of available services between 
pairs of interacting CBSNs. Specifically, C‐SPINE provides two different ser-
vice discovery mechanisms: on‐demand and advertisement‐driven. The former 
approach allows to directly query one or more neighbor CBSNs, among the 
ones detected by the Proximity Detection component, for obtaining the list of 
the provided services. The advertisement‐driven service discovery relies on 
the advertisement messages, containing the list of offered services, which are 
periodically broadcast along with the beaconing messages.

7.6.4  BSN Service Selection and Activation

The Service Selection and Activation component allows pairs of CBSNs to 
mutually make use of their respective discovered services in order to accom-
plish specific collaborative tasks required by the running applications. In par-
ticular, selecting and activating a service is performed through the specification 
of well‐defined rules; it additionally depends on the mutual acquaintance 
relation between interacting CBSNs and possibly on some contextual informa-
tion. A service‐selecting rule is defined by the following tuple:

	 ID CTXS A, ,R 	
where:

●● IDS is a numeric identification code specifying a certain service.
●● RA ⊆ IDn CBSN (with n ≥ 2) represents the relation among two or more CBSNs 

on the basis of their mutual acquaintance. The following annotation are 
examples of relations: <IDx, *> identifies public services, <IDx, IDy> indi-
cates a service that is enabled only between a pair of CBSNs, whereas <ID1, 
ID2, …, IDn> enables a group of CBSNs to use the service. If the interacting 
CBSN identifier is a component of such relation, RA holds.
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●● CTX, which is an optional attribute, specifies a logical (e.g. walking) or physi-
cal context (e.g. home or hospital) in which the interaction takes place. If the 
interacting CBSN has this attribute, CXT holds.

A rule holds if and only if both RA and CXT (if any) hold. Thus, the service can 
be selected and activated. Moreover, according to the defined rules, selection 
and activation of services can be manually (i.e. driven by the user) or automati-
cally configured.

7.7  Summary

Despite the BSN technology is of fundamental importance in enabling and 
facilitating the development of many human‐centered applications, most of 
the current systems have been designed and implemented for simply being 
employed in the monitoring of single individuals. However, new application 
scenarios are demanding different BSN‐based architectures requiring a novel 
paradigm based on multi‐BSN cooperation in order to properly accomplish 
more complex collaborative tasks. Thus, this chapter has focused on the 
motivations and requirements for which the stand‐alone BSN approach is not 
suitable anymore and a novel reference architecture for Collaborative BSNs 
(CBSNs) has been described. Also, a new programming framework, called  
C‐SPINE and evolved from the SPINE basic structure, has been presented as a 
real implementation of the aforementioned CBSN reference architecture.
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8.1  Introduction

This chapter provides a research‐ and technical‐oriented perspective on the 
integration of body sensor networks (BSNs) and Building Networks (BNs), 
which are based on wireless sensor and actuator networks (WSANs). The aim 
of this integration is twofold: (i) supporting indoor wearable computing based 
on BSNs through a data collection and provision infrastructure offered by BNs 
and (ii) seamlessly including data coming from BSNs into WSAN‐based infra-
structures like BNs. This integration would therefore enable the construction 
of human‐centered smart environments ranging from smart buildings to fully 
automated ambient‐assisted living contexts. After providing some fundamen-
tals on BNs, and presenting the motivations and challenges related to the BSN/
BN integration, the chapter focuses on the definition of the integration layers 
according to a networking‐based approach. We will then discuss and compare 
the state‐of‐the‐art about BSN/WSN integration with respect to the defined 
layers. Finally, the chapter presents an agent‐oriented gateway for the integra-
tion of BSNs, based on SPINE (see Chapter 3), and BNs, based on the Building 
Management Framework. Moreover, a set of diverse human‐centered smart 
environments that can be supported through the proposed gateway and, more 
generally, through BSN/WSN integration is also enumerated.

8.2  Background

8.2.1  Building Sensor Networks and Systems

A wireless sensor network (WSN) [1] is a collection of tiny devices capable of 
sensing, computation, and wireless communication operating in a certain 
environment to monitor and control events of interest in a distributed manner 
and to collectively react to critical situations. WSN applications span various 

Integration of Body Sensor Networks and 
Building Networks
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domains such as environmental and building monitoring and surveillance, 
pollution monitoring, agriculture, health care, home‐automation, energy 
management, earthquake, and eruption monitoring. WSNs applied in the con-
text of buildings are typically referred as building sensor and actuator net-
works [2], or simply BNs. An example of BN environment is shown in 
Figure  8.1. BNs aim at satisfying different needs of inhabitants of buildings 
such as awareness regarding their structural health, control over the building 
environment, actuation of specific policies in the energy management of build-
ings, trade‐off with respect to energy consumption and people comfort, sup-
port for context‐aware social and commercial activities, safety, and security. 
Differently from pure WSNs, in BNs actuators are fundamental components 
to regulate devices and thus control the building environment. Examples of 
systems for BNs are described in Refs. [2–7]. In Ref. [8], the authors propose a 
set of qualitative indicators that can be used for analyzing the above‐cited BN 
systems and notably for developing new ones; indeed, they can also be consid-
ered requirements specifically elicited for building management systems based 
on WSANs:

●● In‐node data processing: executing processing on the nodes in a BN allows to 
create and send synthetic packets in the network and to reduce the amount 
of raw data toward the base station, thus decreasing the energy consumption 
on the nodes (the radio is the most energy‐consuming component of the 
nodes). Moreover, reducing the amount of packets created by the BN nodes 
allows more nodes to share the same radio channel.

HVAC Monitoring
Window status/blind control
Lamp control
Ambient Light Monitoring

Desk Presence Monitoring

Figure 8.1  An example of the Building Network environment.
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●● Multi‐hop network protocols: due to the short radio range that the BN nodes 
can cover, a framework for the building management has to provide support 
for multi‐hop networks relying, for example, on specific data‐centric or hier-
archical protocols [9].

●● Fast network (re)configuration: when BN nodes are already placed, it is too 
onerous in terms of time, and sometimes difficult, reaching all the nodes to 
reconfigure them. This means that a framework for BNs has to provide 
mechanisms to quickly (re)configure BN nodes. This is usually done through 
optimized configuration packets sent over the air.

●● Support for heterogeneous devices: the building management can require the 
use of particular sensor boards available only for particular sensor platforms 
or different computation power in different nodes of the BN. To provide this 
flexibility, a framework for the building management should provide multi-
platform support for the inclusion of heterogeneous devices.

●● Support for actuators: managing actuators in a building is fundamental since 
they allow to remotely control devices in order to apply particular policies to 
achieve specific building‐wide goals such as comfort or energy saving.

●● Abstractions to model the building floor plan: since BN nodes can be 
deployed everywhere in a building, it is useful that they are aware of their 
position. Moreover, a coordinator should have the possibility to program/
query nodes on the basis of their physical and logical characteristics (either 
if the node is in a specific position, such as a room or close to a window, or 
if it has particular sensors/actuators, such as the temperature sensor). To 
offer this service, a framework for the building management should provide 
a set of programming abstractions to model the floor plan of a building. 
Typically, to support these programming abstractions, nodes in a BN 
are organized in sets of logical or physical groups that may also partially 
overlap [2].

●● Decision delocalization: in a BN, an important feature that reduces the pack-
ets toward the base station is the delocalization of some functions. Specific 
nodes in a building can have the capacity to take some decisions, controlling 
actuators, or collecting data from their neighbors to make data aggregation. 
For example, a node can collect temperature data in a room and send to the 
base station only the mean temperature over all the nodes of that room or a 
node can decide to switch a radiator on if the temperature in a room goes 
below a certain threshold.

●● Deploy management through human–computer interface: a framework for 
the building management should provide an extensible and user‐friendly 
graphical interface to easily manage the BN. The GUI should allow to 
effectively (re)configure the BN and visually present the data coming from 
the network.

●● Multi‐base station organization for large‐scale BNs: when the scale of a 
BN  starts to be very large, like in skyscrapers, industrial warehouses, or 
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multibuilding constructions, the tree depth of the network can become very 
big and, consequently, every packet in the BN should follow too many hops 
to reach the base station. This results in a big waste of batteries and conse-
quential reduction of the network lifetime. To reduce such a phenomenon, a 
framework for the BN management should provide instruments to manage 
large‐scale environments. A multi‐base station organization of the BN can 
address this problem. In particular, every base station can have its independ-
ence and share with the other base stations only what is needed. Such base 
stations can, for example, be developed as software agents as it has been 
done in Ref. [4].

●● Remote management of the BN: not always a local and centralized manage-
ment is what BN users require. Often, especially for buildings that are large 
or with more than one administrator, a remote control of the BN is needed. 
To provide such functionalities, several approaches can be used. In Ref. [10], 
for example, a gateway approach was used to allow the remote programming 
of a BN and decouple the GUI from the BN base station.

8.2.2  Building Management Framework

The Building Management Framework [2, 11] is a domain‐specific frame-
work implemented for both WSAN nodes and more capable devices at the 
coordinator (or base station) side such as PCs, plug computers, smartphones, 
and PDAs. The BMF allows flexible and efficient distributed sensing and 
actuation in buildings and in all other contexts in which sensors/actuators 
can be deployed in environments and on physical objects. BMF provides fast 
reconfiguration, in‐node processing algorithms, multi‐hop routing, hw/sw 
multiplatform support, a building programming abstraction (named dynamic 
groups) to dynamically model the morphology of buildings and physical 
spaces, support for actuators, and an extensible application programming 
interface. The BMF architecture, portrayed in Figure  8.2 consists of two‐
layered software components at coordinator side and sensor node side. The 
coordinator and the sensor nodes interact through the application‐level 
BMF communication protocol based on a multi‐hop network protocol. 
Moreover, applications can use a high‐level interface (BMF API) to commu-
nicate with the coordinator. At the coordinator, the Request Scheduling layer 
provides an API through which requests for programming sensing and actu-
ating operations can be easily created and scheduled. Requests can address 
single nodes or groups of nodes that can be dynamically created. At the node 
side, the Multi‐Request Scheduling layer is able to execute multiple requests 
sent from the coordinator. Interested readers can find an in‐depth description 
of all BMF components and protocols, along with application examples, in 
Refs. [2, 11].
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8.3  Motivations and Challenges

The integration of BNs and BSNs aims at facilitating the development of novel 
smart environments, namely human‐aware smart buildings, effectively sup-
porting people while entering and moving inside (residential, commercial, 
public, and private) buildings. Figure 8.3 shows a building floor environment 
embedding wireless sensors and hosting people that wear BSNs.

Main provided services, which can be defined through the BN/BSN integra-
tion, could be categorized into basic and advanced:

●● Basic services
–– People identification, which is fundamental to identify people inside the 

building.
–– People localization, which allows to trace the location of people inside the 

building.
–– Information exchange, which enables the transfer of different kinds of 

information between people and the smart building. For instance, the 
smart building could monitor the vital parameters of people for health‐
care assistance.

●● Advanced services
–– Safety, which supports people in case of emergency. For example, this 

service could suggest the safest pathway/s to exit the building in case of 
a fire alarm.

Multi-hop-protocol-based WSN

Sensor Node Layer

Coordinator Layer

Application Layer

BMF API

BMF Protocol

Data Collected 
DB

Figure 8.2  The overall BMF framework architecture.
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Figure 8.3  BN/BSN integration: a scenario.
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–– Security, which supports the security of building by monitoring author-
ized/unauthorized people and enforcing space access.

–– Context‐aware personal support, which is based on the first three basic ser-
vices and provides specific services depending on the type of buildings and 
context in which people are located. For instance, in a commercial building 
such as a mall, the smart building could send advertisements to people 
depending on their captured emotions while approaching and visiting shops.

8.4  Integration Layers

Different types of BN/BSN integration can be envisaged at different network-
ing layers (physical, MAC, network, and application) (see Figure 8.4):

●● BN and BSN use the same protocols: in this case, BN and BSN have to be 
homogeneous (same physical, MAC, network, and application layers) so that 
BSN nodes seamlessly become members of the BN.

●● BN and BSN only have different physical layers: in this case, BN and BSN 
have to be homogeneous at the MAC, network, and application layers and 
have to interact through hubs in the network that translate the data between 
different physical media.

●● BN and BSN have different physical and MAC layers: in this case, BN and 
BSN have to be homogeneous at the network and application layers and have 
to interact through bridges in the network that translate the data between 
different MAC layers. Moreover, bridges can apply filtering on the MAC 
addresses of the packets that are not addressed to the subnet they manage.

MAC

Network

Application

Physical

MAC

Network

Application

Physical

Gateway

Router

Bridge

Hub

BN Sensor Node
Layers

BSN Sensor Node
Layers

Figure 8.4  BN/BSN integration layers.
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●● BN and BSN have different physical, MAC, and network layers: in this case, 
BN and BSN have to be homogeneous only at the application layer and have 
to interact through routers that merge networks running different network 
protocols (usually BNs use multi‐hop network protocols while BSNs use 
star‐topology single‐hop protocols). Routers can filter data based on desti-
nation addresses.

●● BN and BSN implement different physical, MAC, network, and application 
layers: in this case, BSN and BN need to interact through an application gate-
way. So, BSN and BN are independent and share a node that acts as a gateway 
between the two different networks. This node knows both the BSN and the 
BN communication protocols at all layers and will translate data between the 
networks at the application layer.

Among the discussed integration approaches, we believe that the application 
gateway is the most suitable and viable one because it allows to use different 
protocol stacks for BNs and BSNs and also different transmission media. This 
also allows for a high degree of heterogeneity of the involved devices (coordi-
nators, sensors, and actuators) and avoids interoperability issues at different 
layers. The most suitable node on which to install the gateway is represented 
by the BSN coordinator as we can assume that each BSN has a powerful coor-
dinator (smartphone, tablet, and PDA) with (i) a specific node interfacing the 
BN and actually being a (mobile) node of the BN and (ii) a specific node inter-
facing with the BSN nodes. A specific gateway‐based solution is shown in 
Figure  8.5, where the application‐level gateway interfaces BMF‐based BNs 
with SPINE‐based BSNs. Such a solution will be implemented in Section 8.6 
through an agent‐oriented approach.

BMF-based BN SPINE-based BSN

BN Sensor/Actuator Node

BSN Sensor Node

BMF/SPINE
Gateway

 

CB

CB BMF Coordinator

CS

CS SPINE Coordinator

Gw

Gw BN/BSN Gateway

Figure 8.5  BMF‐BN/SPINE‐BSN integration based on the gateway approach.



8.5  State‐of‐the‐Art: Description and Comparison 129

8.5  State‐of‐the‐Art: Description and Comparison

The integration of heterogeneous networked systems is an important problem 
that has been addressed in different research and industrial contexts so far.

In Ref. [12], the authors designed and implemented the NETA Monitoring 
System, which is based on standard agents standing on different platforms. 
NETA addressed the problem of integrating autonomous and heterogeneous 
IT systems that are not correlated, thus allowing for automatic monitoring 
across systems that would otherwise require manual intervention. These 
agents report, in an asynchronous fashion, events to a System Engine, which is 
the core of the NETA Monitoring System. It is in charge of correlating events 
and managing any trouble for each platform.

Integration of different classes of networks is instead the aim of Buddhikot 
et al. [13]. The development of the integration approach is based on the intro-
duction of two components in the system: a new network element called IOTA 
(Integration Of Two Access technologies) gateway deployed in the network 
and a new client software. In particular, the IOTA gateway cooperating with 
the client software offers integrated 802.11/3G wireless data services that 
support seamless inter‐technology mobility, Quality of Service (QoS) guaran-
tees, and multiprovider roaming agreements.

In Ref. [14], the authors design and implement a framework that uses mobile 
agents to ensure information exchange between legacy network management 
systems. Their aim is the realization of an evolutionary network redesign 
that  preserves the existing infrastructure and saves the operator’s existing 
investments. The framework is based on layered decentralized management 
architecture and implemented using agents on the network and subnet layers.

In Ref. [15], the authors present a novel agent‐based approach to data transla-
tion between WSNs and an existing agent‐based air condition monitoring system. 
Their aim is to demonstrate that a multiagent approach combined with wireless 
sensor networking can be used for a number of air condition monitoring applica-
tions. They designed and implemented a sensor network gateway that provides an 
interface between the JADE FIPA‐based multiagent system and the WSN.

In Ref. [16], the authors present the design and implementation of the JADE/
MAPS gateway. It allows integration between two agent platforms, namely 
JADE which is used for conventional distributed environments, and MAPS 
(see Section 6.2.2), which is exploited in WSNs. Thus, the gateway enables also 
the integration of distributed platforms and WSNs. The gateway has been 
implemented as a JADE agent to provide a communication mechanism between 
JADE and MAPS agents, thus facilitating bidirectional translation between 
JADE ACL messages and MAPS events and supporting routing of communication 
between the two agent platforms.
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In Ref. [17], an integrated communications framework for context‐aware 
continuous monitoring with BSNs is proposed. This is the most representative 
work, along with the one described in the next section, related to the integra-
tion of BSNs and WSNs. In particular, the paper proposes a wireless pervasive 
communication system to support advanced health‐care applications. The 
system is based on an ad‐hoc interaction of mobile BSNs with independent 
WSNs already deployed within the environment to allow a continuous and 
context‐aware health monitoring for assisted livings along their daily‐life sce-
narios. Specifically, the proposal is at the MAC level: a novel MAC layer proto-
col, namely MD‐STAR, is proposed, aiming at improving the capabilities of 
synchronization/localization in a scenario in which a mobile BSN interacts 
with fixed WSNs. However, the system is only evaluated through simulation, 
so no real implementation exists.

8.6  An Agent‐Oriented Integration Gateway

The architecture of the gateway solution [18], shown in Figure  8.5, has been 
developed through an agent‐oriented approach based on JADE [19]. In particu-
lar, the JADE‐based gateway is a multiagent system composed of two interacting 
JADE agents: the BMFAgent and the SPINEAgent.

The BMFAgent interfaces the BMF network by encapsulating and enhancing 
the behavior of a BMF node. From the BMF network perspective, the BMFAgent 
is just a BMF node (see Section 8.2.2) interacting with the BMF coordinator by 
using the BMF protocols.

The SPINEAgent interfaces the SPINE network by encapsulating the 
SPINE coordinator (see Chapter 3). From the SPINE network perspective, the 
SPINEAgent is just a SPINE coordinator interacting with the SPINE nodes 
through the SPINE protocols.

The class diagram of the agent‐based gateway including the BMFAgent and 
the SPINEAgent is reported in Figure 8.6.

The BMFAgent is composed of the following classes:

●● BMFAgent, which is the main BMFAgent class, extends the JADE Agent class 
and keeps track of all the instantiated behaviors.

●● BMFInteraction, which is the component allowing the interaction with the 
BMF‐based BN, implements the BMF communication protocol [2].

●● BMFBehavior, which interprets the requests sent from the BN and instanti-
ates new one shot or periodic behaviors, communicates with the SPINEAgent 
through ACL‐based messages to get the list of the available sensors in the 
SPINE‐based system.

●● OneShotBehavior, which is the behavior that allows managing one‐shot requests 
(either threshold‐based or not), interacts with the SPINEAgent through ACL‐
based messages to receive data from sensors.
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●● CyclicBehavior, which is the behavior managing Periodic requests (either 
threshold‐based or not), interacts through ACL‐based messages with the 
SPINEAgent to retrieve data from sensors.

The SPINEAgent consists of the following classes:

●● SPINEAgent, which is the main SPINEAgent class, extends the JADE Agent 
class.

●● SPINEInteraction, which is the component allowing the interaction with the 
SPINE‐based BSN system, implements the SPINE communication protocol 
(see Chapter 3).

●● SPINEBehavior, which is the component allowing the interaction with the 
BMFAgent through ACL‐based messages, provides the list of available 
sensors, collects data from sensors, and sends sampled data to the BMFAgent.

The ACL‐based interaction between the pair <BMFAgent and SPINEAgent> 
and the BMF Coordinator is reported in the interaction diagram of Figure 8.7. 
Specifically, as soon as the gateway is activated, the BMFAgent sends a request 
to the SPINEAgent for retrieving the list of available sensing services. A sens-
ing service is based on either real or virtual sensors. When the BMFAgent 
receives the reply from the SPINEAgent, it sends the advertisement message 
(AD‐PKT) to the BMF Coordinator, advertising the available sensing services. 
Such message is indeed sent periodically. As soon as the BMF Coordinator 
receives the advertisement message, it includes the agent‐based gateway in the 

Agent (from JADE)

BMFAgent SPINEAgent

1

BMFBehavior

OneShotBehavior

1

CyclicBehavior

1

BMFInteraction
1

Behavior (from JADE)

SPINEInteraction
1

SPINEBehavior

1

Figure 8.6  Class diagram of the agent‐based gateway.
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BMF network as a real BMF node. From now on, the BMF Coordinator can 
issue request messages (REQ‐PKT) targeting the BMFAgent that, in turn, 
replies with an acknowledgment message (A‐PKT). The BMFAgent is able to 
interpret three types of sensing requests:

●● One‐shot, which allows to request a single reading of raw or aggregated sensed 
data from selected sensors.

●● Periodic, which allows to set up periodic readings of raw or aggregated sensed 
data from selected sensors.

●● Threshold‐based, which allows to configure a single reading (or periodic 
readings) of raw or aggregated sensed data from selected sensors when such 
data are compliant with the defined threshold‐based operations (>t, <t, >=t, 
<=t, =t, in [t1, t2]).

After request interpretation, the BMFAgent creates and adds a JADE 
OneShotBehavior executing the simple or threshold‐based one‐shot request or 
a JADE CyclicBehavior executing the simple or threshold‐based periodic 
request. Such behaviors are able to request data to the SPINEAgent and, 
according to the request logic, process received data and send data messages 
(D‐PKT) to the BMF Coordinator. If the BMF Coordinator wants to stop any 
data message from the BMFAgent, a reset message (RS‐PKT) can be sent to the 
BMFAgent that will then start sending AD‐PKT to the BMF Coordinator.

BMFCoordinator BMFAgent SPINEAgent

GetListofAvailableSensors

ListofAvailableSensors
AD-PKT

REQ-PKT

GetDataA-PKT

Data

D-PKT

AD-PKT

REQ-PKT

Figure 8.7  Interaction between the agent‐based gateway (pair <BMFAgent, SPINEAgent>) 
and the BMF Coordinator.
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Finally, the gateway has a mechanism dealing with mobility [20]: a problem 
which can arise in this kind of scenarios is that a gateway can be temporarily 
off-line because it is far from any BN node or because the handoff procedure 
(i.e. the gateway detaches from one BN node and attaches to another BN node) 
is not instantaneous. In this case, some data packet from the gateway to the 
BMF Coordinator can be lost. To overcome this problem, at the low level of the 
gateway an intelligent buffer has been implemented; it stores the data to be 
sent to the BMF Coordinator and, once online, sends all the buffered data to 
the coordinator.

8.7  Application Scenarios

The BN/BSN integration promotes the development of diversified smart envi-
ronments such as AAL (Ambient Assisted Living) environments [21] and 
human‐centered smart buildings [3]. Physical activity recognition and moni-
toring is a basic building block that enables both the aforementioned applica-
tion domains. Indeed, physical activity recognition is one of the fundamental 
building blocks of many BSN applications [22]. It is often necessary to monitor 
daily activity levels for wellness applications; it may help identifying abnormal 
heart rate variations, e.g. by correlating the heart rate variations with the 
current activity being performed, and it can be even applied in highly interac-
tive computer games, to cite a few scenarios. Smart environments can monitor 
activities of their inhabitants to better support them for basic and customized 
services (see Section 8.3). In the following subsection, an in‐building human 
activity monitoring system is designed through the agent‐based approach 
proposed in Section 8.6.

8.7.1  In‐Building Physical Activity Monitoring

The proposed in‐building human activity monitoring system architecture is 
shown in Figure 8.8. The overall system consists of the BMF Coordinator, the 
BMF WSAN network, and the BMF/SPINE agent‐based gateway connected to 
a SPINE‐based BSN system. In particular, the SPINE‐based BSN system [23, 24] 
uses only two wireless motion sensor nodes placed on the waist and on the thigh 
of the assisted living, and a personal smart‐phone running an activity recogni-
tion application, which is able to detect the following four basic activities: lying 
down, sitting, standing, and walking. This is achieved with or without an indi-
vidual training phase, and with an overall average accuracy of about 98% [23]. 
Furthermore, the BSN system may also report the number of steps performed 
by the subject and detect the event of accidental falls that may potentially lead 
to dangerous situations (e.g. after a detected fall, the system also recognizes how 
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long the subject is lying down and, according to a given threshold, it can trigger 
an alert message). The complete list of the sensing services provided by the BSN 
system is reported in Table 8.1.

The BN system allows for different monitoring modes of the sensing services 
that can be easily and dynamically programmed by the BMF Coordinator:

●● Continuous, which supports continuous acquisition of the sensing service 
data according to a programmable sampling rate.

●● On‐demand, which allows to query the sensing service when needed.
●● Alert‐based, configures specific thresholds on the sensing service data; when 

such thresholds are satisfied, a notification is sent from the sensing service.

It is worth noting that the BN system can not only simply monitor the activ-
ity of humans in the building but also detect specific transitions (e.g. sit‐to‐
stand) or critical events (e.g. falling) and, on their detection, send out 
alerts. Such system feature is essential to configure personalized monitor-
ing on the basis of people identity and fulfill specific single and collective 
objectives.

BMF network

BMF Coordinator
Human i

Figure 8.8  Architecture of the in‐building physical activity recognition system.

Table 8.1  Sensing services of the BSN system for human activity recognition

Sensing service Description Values

Activity Activity performed {“lying down”, “sitting”, 
“standing”, “walking”}

Step counter Number of steps walked Integer
Fall Person falling True/false
AccWaist 3‐Axial acceleration of the 

sensor worn on the waist
(AccX, AccY, AccZ)

AccThigh 3‐Axial acceleration of the 
sensor worn on the thigh

(AccX, AccY, AccZ)
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8.8  Summary

This chapter has proposed the integration of BSNs and BNs, i.e. WSANs for 
monitoring and automation of buildings. We have first introduced the motiva-
tions and challenges for such integration. We have then introduced a layered 
architecture enabling integration at different network layers. Furthermore, 
related works and their comparison according to this architecture have been 
discussed. Then, the chapter has focused on an agent‐oriented integration 
gateway, actually enabling the integration of SPINE‐based BSNs and BMF‐
based WSANs. Finally, a smart environment for physical activity recognition 
featured by the proposed integration approach has been analyzed.
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9

9.1  Introduction

As widely discussed so far, wearable sensors and BSNs provide a platform 
for many human‐centered applications, ranging from health care to gaming, 
sports performance analysis, and social networking. There is currently an 
enormous public interest in biomedical sensor‐based systems and wearable 
consumer electronics that allow individuals, ranging from children to elders, 
to monitor their health and control their fitness. In all BSN scenarios, 
assisted livings are monitored by BSNs to gather data streams for processing 
them in real time [1] and archiving them in remote data repositories for 
off‐line analysis. Such scenarios imply that a huge amount of data could be 
transmitted, stored, and analyzed. Thus, such huge amount of data gener­
ated by BSNs requires a powerful and scalable processing and storage plat­
form that is able to support both online and off‐line analysis of sensor data 
streams. This chapter therefore provides a research‐oriented perspective on 
the integration of wearable and cloud computing to fulfill the aforemen­
tioned requirement. After providing some basic elements on cloud comput­
ing and introducing the motivations and the challenges of integrating 
wearable computing and cloud computing, the chapter focuses on the virtu­
alization of body sensor networks (BSNs) through a reference cloud‐based 
architecture. We will then discuss and compare the state‐of‐the‐art about 
WSN and BSN virtualization with respect to the features of such reference 
architecture. Finally, the chapter presents BodyCloud, a cloud‐assisted BSN 
architecture for the development of community BSN applications. A set of 
diverse large‐scale community BSN applications that can be engineered 
through BodyCloud is also discussed.

Integration of Wearable and Cloud Computing
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9.2  Background

9.2.1  Cloud Computing

Cloud computing can be defined as a computing paradigm that is based on 
sharing computing resources rather than having local servers or personal 
devices to handle applications. Cloud computing is similar to grid computing 
[2], a computing paradigm where unused processing cycles of all computers in 
a network are harnessed to solve problems too intensive for any stand‐alone 
machine. Cloud computing [3] thus provides flexible, robust, and powerful 
storage and computing resources, which enables dynamic data integration 
and fusion from multiple data sources. Moreover, a cloud computing‐based 
approach can offer flexibility and adaptability in the management and deploy­
ment of data analysis workflows. The dynamic deployment of software compo­
nents as cloud computing‐based services removes the need for new client 
applications to be developed and deployed when the user requirements change. 
This also motivates and introduces an intrinsic competitive environment for 
the development and deployment of better services.

Cloud computing layers (Infrastructure as a Service  –  IaaS, Platform as a 
Service – PaaS, and Software as a Service – SaaS) and software components 
(e.g. databases and data mining workflow tools) can be customized to support 
a distributed (quasi) real‐time system for the monitoring and analysis of BSN 
data streams.

Figure 9.1 shows the diagram of the cloud computing ecosystem. The cloud 
computing Provider exports the IaaS integrated with a Data Mining develop­
ment environment as a PaaS to the Application Workflow Developer. The 
Workflow Developer deploys a particular application as SaaS to the End User 
(e.g. the cardiovascular doctor collecting sensor data from many patients or the 
medical staff at the health‐care point gathers vital parameters from assisted liv­
ings). The front‐end of the application can be developed, for example, for a 
mobile device to ensure mobility and portability. The approach can be based on 
the customization of an open‐source cloud computing toolkit (e.g. Google App 
Engine – GAE, MS Azure, and Amazon EC2) using cloud computing standards 
[4] and integrated with well‐known data mining development tools and work­
flow management systems (e.g. KNIME [5], RapidMiner [6], and Weka [7]).

9.2.2  Architectures for Sensor Stream Management

Data stream management systems (DSMS) [8–10] are designed to provide 
quick response time when managing large volumes of (time‐dependent) data 
streams, e.g. sensor observations. DSMS employ window‐based data process­
ing combined with synopsis to process large volumes of time‐dependent data. 
Using synopsis helps a DSMS in reducing the response time to queries. Global 
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Sensor Network (GSN) [11], TelegraphCQ [12], Aurora [13], and Stream [14] 
are some of the well‐known proposals in the DSMS domain.

There exist several research projects to provide access, query, streaming, and 
management of WSN data. The Sensor Web project [15] provides a dynamic 
infrastructure that allows users to access sensor networks and the data streams 
generated from them. Sensor Information Networking Architecture (SINA) 
[16] is a middleware for querying, monitoring, and tasking of sensor networks. 
Tiny Application Sensor Kit (TASK) [17] is built on top of TinyDB, the well‐
known distributed database based on TinyOS [18], to provide high‐level meta­
data management, query configuration, monitoring, and data visualization. 
These systems are appealing as they address the challenges related to large‐
scale (wireless) sensor resources and data sharing.

In recent years, there have been an increasing number of research studies to 
design and implement distributed platforms based on BSNs for e‐Health applica­
tions. Many national and international research projects in academia, industry, 
and government focus on the development and deployment of health‐care 
platforms in which wearable sensors are attached to patients for enabling 24/7 
monitoring of vital parameters. Examples of such projects include CodeBlue 
[19], DexterNet [20], SPINE [1, 21, 22], SPINE2 [23–25], and Titan [26]. These 
systems provide effective programming abstractions atop the low‐level TinyOS 
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Figure 9.1  The cloud computing ecosystem.
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system programming; however, they do not address the issues of integrating a 
cloud infrastructure to provide extended scalability, seamless data streaming, 
and data analysis.

9.3  Motivations and Challenges

The huge amount of data that is expected to be generated by community BSNs, 
i.e. a great number of (semi)coordinated BSNs, requires a powerful and scalable 
infrastructure for storage and processing that is able to support both online 
and off‐line analysis of data streams. Such requirements can be met by 
integrated platforms based on cloud computing [3] having the following 
characteristics:

1)	 Exploitation of heterogeneous sensors.
2)	 Scalability of data storage.
3)	 Scalability of processing power for different kinds of analysis.
4)	 Global and ubiquitous access to the processing and storage infrastructure.
5)	 Easy sharing of results.
6)	 Pay‐as‐you‐go pricing for using community BSN services.

The integration of BSNs with cloud computing can provide important benefits 
in the following four main aspects:

●● Management: BSN data management deals with the fundamental task of 
defining how BSN data streams are efficiently collected, managed, stored, 
and conveyed for final processing. Activities associated with the collec­
tion and management of data feeds from BSNs in real time may be distrib­
uted in time and/or space [27]. Time distribution refers to activities taking 
place at different times, while being coordinated to have a coordinated 
effect, such as in a workflow. Space distribution implies that activities may 
take place at different locations, while such activities are interconnected 
by a network. A cloud computing infrastructure can ease the management 
of distributed data and processes and support advanced functionalities 
such as information fusion at different levels (sensor, processed data, and 
decision) [28].

●● Processing: the data streams collected from BSNs are processed and (some­
times) combined into measurement composites, e.g. combining body tem­
perature readings and blood pressure into a health chart for given assisted 
livings. In the presence of numerous incoming data streams from a set of 
BSNs, in order to make critical decisions in real time, BSN data processing 
requires fast processing that may be computing and/or resource intensive. 
Harnessing the computational resources of a cloud computing infrastructure 
can be performed for the required provisioning of computing resources [3].
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●● Service composition and invocation: BSN‐processed data are usually associated 
with meaning, confidence, and quality information. Specifically, the data are 
associated with information on how they were processed (derivation), for 
whom and why they were collected (agency), and how they may be distrib­
uted (rights). This process can be modeled and executed through automatic 
formation of workflows and invocation of services. It can be fully supported 
by a platform based on a cloud computing infrastructure.

●● Analysis: BSN datasets are imported into analysis tools and modeling is 
further performed for the use in various applications and decision‐making 
systems. The analysis activity depends on suitable storage and middleware 
technologies to perform highly swift data processing. It can be fully sup­
ported by using the processing power of cloud computing infrastructures 
that provide fast response times.

While there are main advantages of BSN adoption in various applications, 
there are a number of associated challenges that need to be addressed [29]. 
Moreover, the integration of BSNs with a cloud computing infrastructure 
raises additional challenges related to data management, system implementa­
tion, and real‐time computing.

In the following, we first list BSN‐related challenges and then we discuss 
specific challenges regarding BSN‐Cloud computing systems that integrate 
BSN with cloud computing to perform effective data stream processing.

9.3.1  BSN Challenges

●● Interference reduction: BSNs use wireless connectivity for communications. 
The BSN system should be able to reduce/mitigate interference on the wire­
less link and increase the co‐existence of wearable sensor nodes with other 
networked devices [30]. This is important to ensure that the functionalities 
of BSN nodes (and the whole BSN system) do not degrade due to the pres­
ence of other devices capable of possible interruption/interference in the 
data transmission.

●● Data validation and consistency: data collected from multiple sensor nodes 
need to be collected and analyzed seamlessly. BSN sensors are subject to 
inherent hardware, network, and communication failures that may result in 
erroneous gathered datasets [31]. It is crucial that the sensed data are vali­
dated and data quality is maintained under control to reduce any noise in the 
data and identify possible weaknesses in the BSN system.

●● Heterogeneity and interoperability: a BSN system should be capable of integrating 
various different sensors in terms of complexity, power efficiency, storage, and 
ease‐of‐use [20]. Moreover, it should provide a common interface between the 
sensors and a storage service to facilitate remote storage and viewing of sensed 
data as well as access to external processing and networked analysis tools [32]. 
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Moreover, a BSN system requires ensuring seamless data transfer across dif­
ferent standards to promote information exchange, plug‐and‐play device 
interaction and uninterrupted connectivity [33].

●● Security and privacy: transmission of BSN data streams should be secured to 
prevent potential intruders [34]. Moreover, integrity of each assisted living’s 
data has to be maintained with guarantee that one assisted living’s data is not 
mixed with another assisted living’s data. Another key problem of BSN users 
is to protect the privacy of personal data [35]. A BSN system should ensure 
that assisted livings’ privacy is maintained even when data is being analyzed 
using an external tool.

●● Programming: BSNs are usually programmed by using the low‐level APIs 
provided by the adopted BSN sensor platforms (e.g. TinyOS and ZigBee). 
However, to enable a more rapid and effective prototyping, higher level 
programming abstractions offered by a BSN middleware are needed [1].

9.3.2  BSN/Cloud Computing Integration Challenges

●● Interfacing BSNs with cloud computing infrastructures: a well‐defined inter­
face between BSN resources and the cloud fabric needs to be established. 
Communication interfaces are in fact required to manage network con­
nectivity between BSN and the cloud. BSN nodes could be exposed as 
cloud services and indexed via indexing services according to functions/
services they are able to provide. Moreover, the presence of provision is 
important to manage sensing jobs and data streams from the sensor net­
work. The key technology is therefore virtualization. Finally, an integra­
tion framework should provide various services for the underlying 
wearable sensor resources such as power management, security, availabi­
lity, and QoS.

●● Data stream management: data management includes data format conver­
sion into standard formats (when available), data cleaning and aggregation to 
improve data quality, and data transfer to storage clouds.

●● Complex event processing: real‐time data streams from single or multiple 
BSNs may trigger certain events and services in the cloud. These data streams 
are analyzed through complex event processing (CEP) algorithms and the 
results are used in applications for decision making by identifying contextual 
and situational information.

●● Massive scale and real‐time processing: integration of even heterogeneous 
BSNs generating vast amounts of data is a challenge, especially in the presence 
of real‐time requirements. BSNs generating real‐time multimedia content, 
such as streaming video, audio, and images, pose additional issues in order to 
accurately process and store the data in a cloud environment.

●● Large‐scale computing frameworks: the allocation of computational and stor­
age resources as well as data migration in the cloud is critical when BSN data 
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sources are not colocated. This is particularly challenging when the datasets 
and their corresponding access/search services are geographically distributed 
within the cloud.

●● Harvesting collective intelligence: while heterogeneous and real‐time BSN 
data feeds allow improving decision making by using data‐ and decision‐
level fusion techniques, maximizing the intelligence that can be exploited 
from massively colocated information in the cloud is challenging.

●● Large‐scale application development: the development of large‐scale BSN 
systems is a complex task that needs suitable and effective software engi­
neering methodologies and tools. Specifically, an application needs to be 
designed at a high level of modeling abstraction, implemented according to 
a given methodological approach, and then seamlessly deployed onto the 
target cloud platform using suitable tools.

9.4  Reference Architecture for Cloud‐Assisted BSNs

A general reference architecture for the integration of BSNs and cloud com­
puting is portrayed in Figure 9.2.

This architecture is supported by the following requirements:

●● Efficient collection of sensor data streams from highly decentralized BSNs.
●● Effective management of sensor data streams.
●● Configuration of a scalable framework to support processing of multiple 

sensor data streams for (even concurrent) application services.
●● Persistent storage and exchange of sensor data and analysis results to enable 

further decision‐making.
●● Workflow‐oriented decision‐making applications dynamically developed 

through distributed services/components’ mash‐up.
●● Advanced visualization services (both for raw and processed sensor data, 

and for analysis results) that can be flexibly customized by the final users.
●● Multiple‐level security for at least sensor data collection (from sensors to the 

coordinator), sensor data transmission (from the coordinator to the cloud), 
and data analysis/visualization services (cloud access).

Each requirement is discussed in detail in Sections 9.4.1–9.4.7.

9.4.1  Sensor Data Collection

Sensor data collection allows for capturing sensor readings from the BSN sen­
sor nodes, converting the raw values to meaningful measurements, or directly 
using the preprocessed data and store (annotated) data as necessary. A trans­
port layer is used to assist in collecting sensor data points across a large dimen­
sion in (quasi) real time. Usually such data acquisition is deployment dependent. 
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For TinyOS sensor platforms, TinyOS SerialForwarder (for TinyOS 1.x and 2.x 
compatible motes) can be used to capture raw data directly from remote sen­
sors. There can also be hardware‐specific proprietary APIs to read raw sensor 
readings directly from BSN sensors. Indeed, BSN middlewares are currently 
available for such purpose: CodeBlue [19], Titan [26], RehabSPOT [36], and 
particularly SPINE [1, 21, 22] and SPINE2 [23–25] provide high‐level abstrac­
tions and mechanisms to capture, (pre)elaborate, and transmit sensor data to 
static and mobile base stations. In mobility scenarios, a mobile device (also 
called mobile coordinator) is interposed between the BSN and the cloud plat­
form. The mobile coordinator collects sensor data from the BSN and transmits 
them onto the cloud platform. For instance, Android‐SPINE, the Android ver­
sion of the SPINE middleware [1], can be used to enable Android‐based mobile 
devices, such as smartphones and tablets, to be the BSN mobile coordinator. In 
particular, data collected through Android‐SPINE can be easily streamed up to 
the cloud side through an Internet‐based connection. In Android‐SPINE, 
wearable sensors’ communication is currently based on Bluetooth.

9.4.2  Sensor Data Management

After data collection, data are passed through a data calibration process to 
ensure the validity and consistency of the gathered sensor data stream. 
A Quality Assurance Quality Control (QAQC) framework, comprising sta­
tistical models, can be applied to perform outlier detection, missing data han­
dling, aggregation, detection of measurement changes, automated data 
correction, and, if needed, data compression in streaming sensor data [37]. In 
particular, data calibration APIs should be provided to support the implemen­
tation of custom calibration functions or third‐party data calibration packages 
should be reused. Indeed, data quality can also be checked at the sensor 
data collection side, at the sensor node side [38] (see Chapter 5), and/or at the 
BSN coordinator side. When a calibrated data stream is available, it is exposed 
to the application services executing in the cloud and also stored (with 
metadata annotation providing meaning of the sensor streams) in the storage 
cloud resources for future use. Having such components to deal with a large 
number of sensor streams arriving continuously from numerous sensors, the 
cloud‐enabled system should provide full support to guarantee reliability and 
robustness.

9.4.3  Scalable Processing Framework

Application services (e.g. ECG data analysis, health monitoring, sports perfor­
mance monitoring, and rehabilitation control) are hosted in the VM‐based 
cloud computing infrastructure for application execution. The communi­
cation between calibrated data streams and the cloud infrastructure 



9  Integration of Wearable and Cloud Computing148

(i.e. between sensor data management and application execution components) 
should be done through the use of nonblocking callback APIs. These APIs 
should allow application services to receive calibrated sensor data streams 
as streams arrive into the system. As applications (or services) are executed 
inside a VM, a data connection is required to transmit the results of the 
experiment to the result‐processing component. The APIs should be able to 
buffer data streams within a time window in case the application service 
does not respond or the call back connection is lost. Thus, using persistent 
buffers in the cloud system to communicate between the BSNs and the 
hosted application services would ensure users from any potential data 
loss. The output produced by the applications is transmitted to generate 
continuous data streams incorporating the results and also stored in the 
persistent storage.

9.4.4  Persistent Storage

The cloud‐enabled storage component is fundamental for a cloud‐assisted 
BSN architecture in order to persistently store data coming from (i) the sensor 
data collection process, (ii) the processed data streams, and (iii) the data 
analysis results. Such time‐dependent datasets can be therefore reused either 
online or off‐line.

The persistent storage component is characterized by the following elements:

●● Storage virtualization, which refers to thin provisioning of the storage cloud 
infrastructure, with the assistance of a management software layer, to auto­
mate data availability and security management. Storage virtualization, 
which can be encapsulated in an orchestrated workflow, assists in persis­
tency and optimization of existing storage, and in provision of new storage.

●● Enterprise resource management in order to reduce administrators’ efforts to 
manage heterogeneous storage cloud infrastructures. Based on the adminis­
trator’s policies, the management software in the cloud‐based BSN gathers 
information for managing the storage environment.

●● Hierarchical storage management through a tiered storage infrastructure to 
manage growth and provide different levels of service to BSN users. It is used 
for storage space management through automatic data migration and trans­
parent data restore in failure situations.

●● Archive management to provide BSN data retention over time as the stored 
data grows. Storage archives copy data for a dedicated time frame, defined by 
the cloud‐based BSN administrator’s policies.

●● Recovery management is the ability to recover backup/archived data, thus 
ensuring effective operational continuance of sustained performance. 
Recovery management assists in recoverability in a heterogeneous cloud 
storage environment.
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●● Interfacing APIs to interact with different components of the cloud‐based 
BSN architecture. The exposed APIs allow the abstraction of complex 
functionalities, feed input to application execution, data transfer in and out 
of storage, and runtime interactions.

Moreover, cloud‐based BSN architectures can use Google Bigtable [39] or 
Azure BLOB [40] storage. These cloud storage services allow managing large‐scale 
structured data across thousands of commodity servers, ensuring persistent 
data management and fulfilling latency requirements.

9.4.5  Decision‐Making Process

Upon the availability of outputs from the processing stage, the result‐processing 
service/component informs internal (user‐programmed) or external decision‐
making processes (by reusing existing tools) about specific situations. This 
component can provide a set of user‐defined policies that are specific to par­
ticular BSN scenarios. Furthermore, a client decision‐making process applica­
tion can register with the result‐processing component to submit continuous 
query for gathering continuous delivery of latest results. With the use of a 
continuous query, a client application can specify the window size (i.e. the 
amount of data used at the processing stage) and the sliding predicate (i.e. how 
frequent a continuous query is to be evaluated). The decision‐making process 
is usually workflow‐oriented: it is performed through automatic formation of 
workflows and invocation of services. Such operational workflow requires a 
platform to support automatic workflow formation and service invocation, 
potentially through a cloud infrastructure.

9.4.6  Open Standards and Advanced Visualization

Open standards for data and for workflow definitions allow input and interme­
diary data to be propagated through processing elements in data analytics and 
mining workflows. They also allow the workflow components to be exchanged 
and executed in distributed environments. For example, the Attribute‐Relation 
File Format (ARFF) [41] is an ASCII text file format that describes a list of 
instances sharing a set of attributes. The data‐flow programming paradigm 
adopted in KNIME workflows [5] is based on an XML‐based workflow speci­
fication format and on an intermediary data format that incorporates rich 
metadata information about the data attributes. The Predictive Model Markup 
Language (PMML) [42] is an XML‐based open standard for the description 
and exchange of models produced by data‐mining algorithms and for data 
manipulation and transformations.

However, there is no open standard for the representation and visualization 
of the data analysis results. A powerful visualization service is necessary, as the 
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cloud computing environment stores and processes enormous amounts of 
data. The visualization service should provide various predefined and user‐
defined views on the data and analysis results. The visualizations and views can 
be implemented with heterogeneous languages like XML, OLAP/data ware­
house tools, and/or specific graphical languages/frameworks. Separating the 
formal specifications of the visualization from the graphical primitives used to 
generate the views in a given client application is an important aspect for a 
cloud‐based distributed environment with a wide heterogeneity of supported 
devices.

9.4.7  Security

Considering social, ethical, and legal aspects of human‐centered systems such 
as BSN systems, data in cloud‐based BSNs (i.e. data collected from BSNs, and 
stored and processed/analyzed in the cloud) are highly sensitive and should be 
managed properly to guarantee people privacy [35].

It is therefore crucial to define system‐wide security mechanisms to guaran­
tee confidentiality, data integrity, as well as fine‐grained access control to data 
and services.

We devise a three‐level security framework for cloud‐based BSNs:

●● Sensor data collection level: securing data communications from sensors 
to the BSN coordinator through encryption. Wearable sensor nodes have 
limited computing and energy resources, and encryption consumes time 
and energy, so specialized in‐node hardware needs to be exploited (e.g. 
128‐bit AES encryption hardware is included in the TelosB sensor 
platform).

●● Sensor data transmission level: from the BSN coordinator to the cloud. Data 
streams can be transferred onto the cloud through Transport Layer Security 
(TLS)/Secure Sockets Layer (SSL), which is a proven technology. However, 
new security mechanisms dealing with mobility need to be purposely 
defined.

●● Sensor data management and access level: managing and accessing data and 
services on the cloud. Data stored and processed in the cloud computing 
infrastructure need to be protected by authentication and authorization 
measures, and can also be encrypted, if needed. Moreover, the cloud services 
used by different actors of the system need to be secured through specific 
access control policies.

Finally, as cloud‐based BSNs can support different application domains 
(from health care to crowdsourcing), specific national or transnational secu­
rity/privacy standards, e.g. normative on medical data treatment, processing, 
and storing, should be introduced at the application level.
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9.5  State‐of‐the‐Art: Description and Comparison

The integration of WSNs/BSNs with large‐scale distributed computing infra­
structures is a recent research area attracting both academia and industry 
researchers. A few interesting works have been to date proposed. In the follow­
ing, we first describe solutions integrating WSNs and cloud computing; then, 
we discuss specific infrastructures that integrate BSNs and cloud computing 
towards cloud‐based BSNs.

9.5.1  Integration of WSNs and Cloud Computing

In Ref. [43], a SaaS architecture for sensor network analytical services is pro­
posed. It is implemented atop a PaaS layer (e.g. GAE and MS Azure) and is 
organized in three layers: (i) sensor data management, which collect sensor 
data streams coming from the WSN gateway; (ii) run‐time for filter analysis, 
which supports the execution of processing workflows for sensor data accord­
ing to the pipe‐and‐filter paradigm; and (iii) filter management, visualization, 
and notification, which are three components that respectively allow for the 
definition and management of the processing filter chain, for the visualization 
of analyzed data, and for the notification of events to external applications.

The authors in Ref. [44] propose the Open Sensor Web Architecture (OSWA). 
OSWA is an OGC (Open Geospatial Consortium) Sensor Web Enablement 
standard‐compliant software infrastructure for providing service‐oriented‐
based access to and management/integration of sensors. OSWA also integrates 
emerging distributed computing platforms such as SOA and Grid Computing. 
OSWA is designed around the conventional Grid layers: Fabric, Services, 
Development, and Application. Specifically, the OSWA‐based platform pro­
vides a number of sensor services such as sensor notification, collection, and 
observation; data collection, aggregation, and archive; sensor coordination and 
data processing; faulty sensor data correction and management; and sensor 
configuration and directory service.

In Ref. [45], the authors propose a new infrastructure, called Sensor‐Cloud, 
which can manage physical sensors on an IT infrastructure for sensors’ virtu­
alization. The Sensor‐Cloud Infrastructure virtualizes a physical sensor as a 
virtual sensor on the cloud computing platform. Dynamic grouped virtual sen­
sors on cloud computing can be automatically provisioned when the users 
need them through a portal server interacting with the workflow‐oriented 
provisioning server, performing resource management, and a monitoring 
server, monitoring real/virtual sensors.

SAaaS [46] is a cloud‐enabled SaaS architecture aiming at the management 
of wireless sensor and actuator networks (WSANs). SAaaS is a software stack 
that implements the following main functionalities: involvement of (W)SNs, 
smartphones, or other devices endowed with sensors and/or actuators, and 
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their enablement for interoperation and management in a cloud environment; 
exploitation of volunteer‐based methods for node involvement; functions and 
interfaces for federating SAaaS Clouds, either volunteer‐based or commercial/
institutional.

The aforementioned works mainly describe architectural models and/or 
case studies and somehow identify related development issues. However, there 
is still a gap to fill in order to develop a cloud‐based infrastructure that is tar­
geted to BSN applications as the one proposed in Section 9.4. The research 
works discussed in Section 9.5.2 aim at the fulfillment of such a gap.

9.5.2  Integration of BSNs and Cloud Computing

In Ref. [47], the authors propose the development of an autonomic cloud envi­
ronment for hosting an ECG data analysis service. In particular, they propose 
an autonomic cloud environment that collects people’s health data and stores 
them to a cloud‐based information repository and facilitates analysis on the 
data using software services hosted in the cloud. To evaluate the software 
design, a prototype system is developed, which is used as an experimental test­
bed on a specific use case, namely, the collection of electrocardiogram (ECG) 
data obtained at real time from volunteers to perform basic ECG beat analysis. 
The ECG software is hosted as a web‐service such that any client‐side imple­
mentation can simply call the underlying functions (analyze, upload data, etc.) 
without having to go through the complexities of the underlying application. 
The PaaS layer controls the execution of the software using three major com­
ponents: (i) Container scaling manager, (ii) Workflow Engine, and (iii) Aneka 
Cloud middleware.

In Ref. [48], a secure and scalable cloud‐based architecture for e‐Health 
WSNs is proposed. The aim is to support (i) body sensor data collection 
from patients both hospitalized and at home and (ii) medical data manage­
ment for e‐Health monitoring. Collection is based on BSNs worn by 
patients and mobile/static devices working as Internet‐based gateways. 
A cloud infrastructure is used for storing and retrieving the collected BSN 
data. Security protocols and mechanisms are defined to provide data 
security.

In Ref. [49], a cloud‐assisted WBAN is proposed, specifically designed for 
pervasive health care in home, hospital, or outdoor environment. This system 
is composed of four main components: WBANs, wired/wireless transmission, 
cloud services, and users. WBANs can be based on fixed networks at home and 
on mobile devices (smartphone/tablet) at hospital and outdoor. Data are sent 
onto (public and private) cloud, providing several services (automatic diagno­
sis and alarm, location‐based services, GIS services, real‐time monitoring of 
patients, and medical knowledge sharing). Users can access the cloud accord­
ing to their role and they are connected through social networks.
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Finally, BodyCloud [50, 51] is a novel cloud‐enabled system architecture that 
integrates BSNs’ services with a cloud computing infrastructure. In particular, 
BodyCloud is a SaaS architecture that supports the storage and management of 
sensor data streams generated by SPINE‐enabled mobile BSNs and the pro­
cessing and analysis of the stored data using software services hosted in the 
cloud. BodyCloud endeavors to support several cross‐disciplinary applications 
and specialized processing tasks. It enables large‐scale data sharing and col­
laborations among users and applications in the cloud and delivers cloud ser­
vices via sensor‐rich mobile devices. BodyCloud also offers workflow‐oriented 
decision support services to take further actions based on the analyzed BSN 
data. BodyCloud is fully compliant with the reference architecture described in 
Section 9.4.

9.5.3  A Comparison

In Tables  9.1 and 9.2, the main available architectures integrating WSNs or 
BSNs with a cloud computing platform are compared with respect to the 
requirements identified in Section 9.4:

●● Sensor Data Collection: although, sensor data collection is provided by all 
architectures and is based on a (static and/or mobile) gateway device that 
gathers data from the body‐worn sensors and transmits them to the cloud 
through an Internet‐based connection, the exploited technologies are differ­
ent at application, protocol, and system level. It is worth noting that SAaaS 
uses a complex software framework at the gateway side called Hypervisor, 
which is able to manage not only sensor reading collection but also to control 
actuator devices.

●● Sensor Data Management: it is based on different paradigms (data‐driven 
pipes and filters, rule‐based planning, virtual sensors, and workflow‐ori­
ented). However, SAaaS, ECGaaS, Cloud BAN e‐Health, and Cloud‐Assisted 
WBAN do not specify any sensor data management paradigm.

●● Processing Framework: it is basically the execution engine of the sensor data 
management paradigm carried out at the SaaS level or at the PaaS level. CC‐
WSN, SAaaS, Sensor‐Cloud, and BodyCloud provide a processing frame­
work at the SaaS level supported by a specific PaaS. The processing 
framework of OSWA and ECGaaS are implemented at the PaaS level. Finally, 
Cloud BAN e‐Health and Cloud‐Assisted WBAN do not support any spe­
cific processing framework.

●● Persistent Storage: all architectures provide cloud storage but OSWA and 
Sensor‐Cloud, which are based on stand‐alone databases, and SAaaS, which 
does not specify the use of persistent storage.

●● Decision‐Making Process: it is fully supported only by BodyCloud through a 
flexible and distributed workflow‐oriented model.



  Table 9.1    Architectures for the integration of wireless sensor networks with cloud computing: a comparison. 

CC‐WSN   [43]  OSWA   [44]  Sensor‐cloud   [45]  SAaaS   [46]      

Sensor data collection WSN gateway based on HTTP/
AJAX

Static gateway based 
on WSDL/SOAP

WSN gateway based 
on TCP/IP

Gateway node based on the 
Hypervisor framework  

Sensor data 
management

Pipes, filters, and filter chain 
paradigm

Rule‐based planning Virtual sensors N/A  

Processing framework Pipe, filters, and filter chain 
run‐time engine at the SaaS level 
(GAE or MsA is the PaaS level)

Scheduler for plan 
execution

Workflow engine for 
service provisioning

Runtime split between the 
Hypervisor and the Cloud 
side  

Persistent storage Bigtables (provided by GAE) or 
BLOBs (provided by MsA)

Stand‐alone database Stand‐alone database N/A  

Decision‐making 
process

Not supported, delegated to 
external tools

N/A N/A N/A  

Visualization service User‐defined views on sensor 
data and analysis results

Raw data 
visualization

N/A N/A  

Security N/A N/A N/A N/A



  Table 9.2    Architectures for the integration of body area networks with cloud computing: a comparison. 

ECGaaS   [47]  Cloud BAN e‐Health   [48]  Cloud‐assisted WBAN   [49]  BodyCloud   [51]      

Sensor data collection Internet‐based mobile 
BSN coordinator

Internet‐based static/
mobile gateway

Internet‐based static/
mobile gateway

Mobile Android BSN coordinator 
based on HTTP/REST  

Sensor data 
management

N/A N/A N/A Workflow‐oriented paradigm  

Processing framework Workflow engine 
based on the Aneka 
PaaS

N/A N/A Workflow engine at the SaaS level 
(GAE is the PaaS level)  

Persistent storage Cloud storage Cloud storage Cloud storage Bigtables (provided by GAE)  
Decision‐making 
process

N/A N/A N/A Workflow‐oriented process  

Visualization service Specific to the 
provided case study

N/A N/A XML‐based Views on sensor data 
and analysis results  

Security N/A RSK/ABE‐based 
encryption of data

Key management OAuth‐based authentication to 
access the cloud services  

SSL‐secured 
communications

Encrypted storage
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●● Visualization Service: a customizable visualization service is only provided by 
CC‐WSN and BodyCloud. Both architectures allow the implementation of 
user‐defined views on sensor data and analysis results. In particular, the 
BodyCloud architecture [51] proposes an approach that integrates XML‐based 
specifications for input data and for output data and their visualization.

●● Security: only Cloud BAN e‐Health, Cloud‐Assisted WBAN, and BodyCloud 
provide security mechanisms. BodyCloud is currently based only on the 
OAuth protocol supported by the GAE to access the cloud services. Cloud 
BAN e‐Health delivers an effective security framework centered on (i) data 
encryption based on a hybrid RSK (Randomly generated Symmetric Key) 
and ABE (Attribute‐Based Encryption) method supported by a Health 
Authority, which also enables fine‐grained access control to data and 
(ii) on SSL‐secured communications. Finally, Cloud‐Assisted WBAN is 
based on key management and encrypted storage.

9.6  BodyCloud: A Cloud‐based Platform for 
Community BSN Applications

The BodyCloud platform aims at integrating BSNs and cloud computing PaaS 
infrastructures.

In particular, the BodyCloud architecture, shown in Figure 9.3, consists of 
four main subsystems (or sides):

●● Body‐side: it is the subsystem that monitors the assisted living by means of a 
BSN and sends the collected data to the cloud through a Java‐enabled com­
puter (desktop, laptop, or nanocomputer like Raspberry Pi) and/or an 
Android‐enabled mobile device. In particular, data acquisition is currently 
based on SPINE [1] for computers and Android‐SPINE, the Android version 
of the SPINE middleware [1] (see Chapter 3), for mobile devices. In particu­
lar, Android‐SPINE allows Android‐enabled smartphones and tablets to be 
used as coordinators of the BSN. Data collected through SPINE or Android‐
SPINE are then streamed up to the cloud‐side by using the real‐time data 
feed modality (see Cloud‐side in next point). In Android‐SPINE, communi­
cation of wearable sensors with the BSN coordinator is based on Bluetooth, 
whereas in SPINE communication can be based either on IEEE 802.15.4 or 
Bluetooth. The following functionalities are provided by the application‐
level SPINE protocol [21]: sensor discovery, sensor configuration, in‐node 
processing, BSN activation/deactivation, data collection, and logging. Finally, 
the current SPINE implementation fully supports IEEE 802.15.4 TinyOS 
sensor nodes and the Bluetooth‐based Shimmer sensor nodes.

●● Cloud‐side: it is the subsystem that fully supports specific applications 
through data collection, processing/analysis, and visualization. In particular, 
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applications can be defined through four programming abstractions: Group, 
Modality, Workflow, and View.

Group is an HTTP resource formalizing an application manipulating a 
specific BSN data source. In particular, Group consists of three correlated 
subresources: (i) Collector, which is intended to collect BSN data that 
comply with the same data specification; (ii) Data, which represent the 
actual data collected by the Group and based on different formats (e.g. 
CSV, ARFF, and JSON); (iii) Contributor, which is a subresource contain­
ing the users who uploaded data to the Group. In particular, Data is 
grouped on a per user basis.

Cloud

Body Analyst Viewer

BSNs
Desktop

Device (OS)

Mobile Device
(Android)

Client Application
(send CSV files)

Desktop Device
(OS)

Client Application
(send XML/binary)

XML
Editor

Workflow
Engine API

Mobile
(Android)

Client Application
(receive XML&CSV)

jxReport
Library

HTML
Viewer

HTTP
TCP
IP

Group Modality ViewData Analysis

Result Framework

Persistence API Workflow Engine

HTTP
TCP
IP

Cloud PaaS (Google App Engine)

Terminal

Figure 9.3  The BodyCloud architecture.
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Modality is a HTTP resource specifying an interaction between Body‐, 
Cloud‐, and Viewer‐sides, within a Group. In particular, Modality encodes a 
Body–Cloud‐sides or a Viewer–Cloud‐sides interaction and can be interpreted 
and executed by a client application. Modality models a specific service, such 
as BSN data feeds (collected data from the Body‐side and transmitted onto 
the Cloud‐side), data analysis tasks, and single‐user or multi‐user applica­
tions. Modality defines the specifications of the input and output data 
formats, the data transfer protocols, the flow of processing tasks to trans­
form input data into output data, and the specifications of output data visu­
alization. Finally, Modality can be activated individually and in groups to 
provide a service to the user/s.

Workflow is a HTTP resource formalizing a data‐flow process that analyzes 
input data to generate output data. Workflow is composed of one or more 
Nodes usually organized in a directed acyclic graph. Nodes represent specific 
algorithms, which can be developed as Java code according to the Workflow 
Engine library (see Figure 9.3), and links between nodes are data flows. Once 
implemented, Node can be packed within a jar file and uploaded to the 
Cloud‐side where it can be exploited in different workflows.
View is a HTTP resource formalizing the visualization layout of the output 
data for users at the Viewer‐side.

●● Analyst‐side: it is the subsystem that supports the design and implemen­
tation of new BodyCloud application services. Specifically, users can cre­
ate new BodyCloud services through the definition of groups, modalities, 
workflows, and views. Each abstraction can be created through an HTTP 
PUT request issued to the corresponding cloud‐side resource. The 
method is straightforward, as it only requires a simple HTTP client tool 
as Analyst‐side supporting application. As the workflow abstraction may 
require new nodes to be developed, the Analyst‐side also demands a suit­
able development environment. After developing new nodes, they are 
also uploaded onto the Cloud‐side by an HTTP PUT request issued to 
the corresponding Cloud‐side resource. A predefined set of nodes can be 
easily made available, depending on the adopted implementation of the 
Workflow Engine.

●● Viewer‐side: it is the subsystem that visualizes the output produced by the 
data analysis through advanced graphical reporting facilities. The graphical 
view is automatically generated by applying the View specification (defined 
in the modality) to the output data. Specifically, as part of the current 
BodyCloud prototype, a Java library, named jxReport, was developed and 
integrated into the client application. The jxReport library provides func­
tionalities to generate HTML reports from an XML schema and a data 
model, thus allowing the desirable separation between the data model and 
the view. During the graphical report generation, jxReport reads the model, 
e.g. from a CSV file, and draws the graphical elements specified in the XML 
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document based on the model data. The jxReport library is highly portable 
and can be used in any Java‐based environment (e.g. mobile or desktop).

From an implementation viewpoint, Group, Modality, Workflow/Node, and 
View are supported by a RESTful web service (Server Servlet), implemented 
using the Restlet Framework, making the interaction with the Cloud‐side fully 
based on the HTTP methods get, put, post, and delete. The interactions are 
authenticated by the OAuth Verifier component based on OAuth 2.0. The 
Cloud‐side is supported by the GAE PaaS1 that provides the Datastore API, 
atop which the Persistence Layer managing the collected BSN data is built, and 
the Task Queue API, which enables asynchronous execution of tasks triggered 
by requests.

9.7  Engineering BodyCloud Applications

BodyCloud supports an effective approach for the rapid prototyping of large‐
scale applications based on BSNs. A BSN service definition based on the 
BodyCloud approach can be developed and deployed on the basis of the 
following five phases organized as a workflow‐based process in Figure 9.4:

1)	 Development and upload of the processing/analysis algorithms: design, imple­
mentation, and upload of any custom processing/analysis algorithms in terms of 
(processing/analysis) nodes. All uploaded nodes are stored into the Cloud‐side 
and can be exploited by any BodyCloud user. Of course, this phase is optional as 
users can directly use algorithms already existing in the Cloud‐side.

2)	 Definition of the Data Source (or Group): definition of a Group containing 
the specification of the data that can be gathered from the BSN and then 
possibly processed by algorithms defined in phase 1 or already available in 
the Cloud‐side.

3)	 Definition of the Analysis Workflow: definition of the data analysis process 
through the combination of the (uploaded and/or already uploaded) nodes 

Node Implementation
[yes]

[no]

Workflow Definition

Group Definition

View Definition

Modality Definition

Figure 9.4  Workflow schema of the BodyCloud approach for developing community 
BSN applications.

1  https://cloud.google.com/appengine/
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and their static parameters into a workflow. The starting node of the work­
flow should read the input data from the Data Source.

4)	 Definition of the View: definition of one or more graphical formats (or views) 
for the data produced by the processing/analysis workflow.

5)	 Definition of the Modalities: definition of at least a Body‐side specific 
modality and a Viewer‐side specific one. The Body‐side modality should 
have an input data specification similar to the Group definition, an action 
that will upload the data to the group defined in phase 2 and no output 
specification. The Viewer‐side modality should perform the workflow exe­
cution as action, the parameters of which must be defined accordingly to 
the node definition. Its output specification must match with the workflow 
output and contains the correlated reference to the view.

In the following subsections, we provide four BSN community applications 
supported by BodyCloud (ECGaaS, FEARaaS, REHABaaS, and ACTIVITYaaS).

9.7.1  ECGaaS: Cardiac Monitoring

The ECG as a Service (ECGaaS), which was developed by exploiting the 
BodyCloud approach, allows monitoring (collect, process, store, analyze, and 
visualize) ECG data coming from individuals or a group of people (e.g. assisted 
livings, athletes, and emergency teams). The ECG is the standard method for 
measuring the electrical and functional activity of the heart and is commonly 
used to diagnose cardiovascular diseases and cardiac abnormalities. In par­
ticular, in the developed application service, the ECG signal is captured by the 
Body‐side, through a Shimmer sensor node equipped with the ECG board, and 
sent to the Cloud‐side in which the R‐R intervals and heart rate (HR) [52] are 
extracted through QRS‐complex detector algorithms [53] deployed as nodes in 
the BodyCloud system.

The specific entities (group, modality, workflow, and view) defining the 
ECGaaS are:

●● The ECGMonitoring group, which represents the group of monitored users.
●● The modalities: DataFeed, SingleAnalysis, and GroupAnalysis. DataFeed 

allows transmitting ECG data from the Body‐side onto the Cloud‐side, 
whereas SingleAnalysis and GroupAnalysis, respectively, perform single and 
group analysis of the ECG data, specifically the extraction of the R‐R signals 
(from which the HR can also be straightforwardly computed). The specifica­
tion of the DataFeed modality is reported in Figure  9.5, whereas the 
GroupAnalysis modality is portrayed in Figure  9.6. The DataFeed is per­
formed every 60s. The GroupAnalysis gets all the contributors (i.e. the iden­
tifiers of the involving participants) and executes the workflow on their data, 
thus providing the tachogram of all participants.

●● The EcgToRR workflow (see Figure 9.7), which models a workflow composed 
of two sequential nodes able to read the collected ECG user data through the 



<modality>
<inputSpecification>

<data>
<name>ECGShimmerSample </name>
<type>INTEGER</type>
<source>ECGShimmerSensor</source>

</data>
</inputSpecification>
<init-action>

<uri>/group/ecg-monitoring/data</uri>
<method>DELETE</method>

</init-action>
<action>

<uri>/group/ecg-monitoring/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="60"/>

</action>
</modality>

Figure 9.5  ECGMonitoring DataFeed modality.

<modality>
<init-action>

<uri>/group/ecg-monitoring/contributors</uri>
<method>GET</method>

</init-action>
<action>

<uri>/engine/workflow/ecg</uri>
<method>POST</method>
<parameter>

<name>sourceUser</name>
<reference xpath="//users/user"/ type=”MAP”>

</parameter>
<parameter>

<name>sourceGroup</name>
<value>ecg-monitoring</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>

<data>
<name>rr</name>
<type>DOUBLE</type>

</data>
<view>/view/tachogram.xml</view>

</outputSpecification>
</modality>

Figure 9.6  ECGMonitoring GroupAnalysis modality.

<workflow>
<node>
<type>UserDataReader</type>

</node>
<node>
<type>RR</type>

</node>
</workflow>

Figure 9.7  EcgToRR workflow.
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data reader node and extract the R‐R signal from the ECG data through the 
RR node.

●● The Tachogram View, which is the graphical format through which the R‐R 
signal will be rendered at the Viewer‐side. The ECGaaS GUI, which is por­
trayed in Figure 9.8, allows visualizing the ECG plot and the HR ([bpm]) in 
real time.

9.7.2  FEARaaS: Basic Fear Detection

Apart from its common use in health care for the diagnosis of the cardiac 
status, the ECG signal can be exploited to detect emotions. The ECG is in 

(a)

(b)

Figure 9.8  GUI view. (a) ECG wave plotting and (b) beat per minute instantaneous value.
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fact very reactive to physiological responses due to emotions and other 
external factors. Other methods use facial recognition to detect/recognize 
emotions; however, they are invasive, as they require the placement of 
electrodes and cameras to detect subtle changes in the person’s face. The 
advantage of using the ECG signal for detecting basic emotions is that a 
person can be monitored using noninvasive wearable cardiac sensors such 
as smart watches, sport electronic chest bands, or even smart textiles. 
A basic fear status (which is not yet cognitive fear, i.e. the response when a 
person is in danger) could be detected by analyzing the ECG signal. The 
basic cardiac physiological response that could generate the state of fear is 
the Cardiac Defense Response (CDR) [54]. On the basis of the algorithm for 
the CDR detection proposed in Ref. [53], a basic fear detection service 
(FEARaaS) was easily developed on BodyCloud, by also reusing some sys­
tem components and entities defined for the ECGaaS.

The specific entities (group, modality, workflow, and view) defining the 
FEARaaS are: 

●● The CDRDetection group, which represents the group of monitored users.
●● The ECGDataFeed (see Figure  9.9), SingleCDRAnalysis (see Figure  9.10), 

and GroupFearDetectionAnalysis modalities. ECGDataFeed is the same 
modality as in ECGaaS (see Section 9.7.1). SingleCDRAnalysis performs the 
CDR detection on a single subject and provides true if the CDR is detected, 
false otherwise. GroupFearDetectionAnalysis performs the CDR detection 
on a group and provides a positive result if the number of people having a 
CDR in a given time period exceeds a given threshold.

●● The SingleCDR workflow (see Figure 9.11), which models a workflow based 
on three sequential nodes, is able to (i) read the collected ECG user data 

<modality>
<inputSpecification>

<column>
<name>heartbeat</name>
<type>DOUBLE</type>
<source>HEARTBEAT</source>

</column>
</inputSpecification>
<init-action>

<uri>/group/cdr</uri>
<method>DELETE</method>

</init-action>
<action>
<uri>/group/cdr</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="10" />

</action>
</modality>

Figure 9.9  CDRDetection DataFeed modality.
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through the data reader node, (ii) extract the R‐R signal from the ECG data 
through the RR node, and (iii) apply the CDR detection algorithm to the R‐R 
signal. An interesting enhancement is the GroupCDR workflow, which could 
be based on the SingleCDR workflow to which the node, which processes the 
group fear detection algorithm, has to be added.

●● The CDR View allows to display the results provided by the (single or group) 
CDR detection. In Figure 9.12 the GUI at the Viewer‐side, which displays the 
positive CDR detection, is portrayed.

<modality>
<init-action>

<uri>/group/fear-detection/contributors</uri>
<method>GET</method>

</init-action>
<action>

<uri>/engine/workflow/cdr</uri>
<method>POST</method>
<parameter>

<name>sourceUser</name>
<reference xpath="//users/user"/>

</parameter>
<parameter>

<name>sourceGroup</name>
<value>cdr-monitoring</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>

<data>
<name>cdr</name>
<type>BOOLEAN</type>

</data>
<view>/view/cdrplot.xml</view>

</outputSpecification>
</modality>

Figure 9.10  SingleCDRAnalysis modality.

<workflow>
<node>

<type>UserDataReader</type>
</node>
<node>

<type>RR</type>
</node>
<node>

<type>CDR</type>
</node>

</workflow>

Figure 9.11  SingleCDR workflow.
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9.7.3  REHABaaS: Remote Rehabilitation

The remote rehabilitation application service (REHABaaS) involves remote 
rehabilitation of the limbs of assisted livings. Currently, the involved joints are 
elbows and knees. The service is based, on the Body‐side, on two wearable 
sensor nodes equipped with 3‐axial accelerometers. Sensors are placed in spe­
cific positions of the limbs for collecting accelerometer data, which are then 
processed by the BSN coordinator to provide specific rehabilitation informa­
tion such as extension angles of elbows and knees [55].

The specific entities (group, modality, workflow, and view) defining the 
REHABaaS are:

●● The Rehab Group represents the group of monitored users to be 
rehabilitated.

●● The RehabDataFeed Modality (see Figure  9.13) allows transmitting the 
rehabilitation data from the Body‐side to the Cloud‐side.

●● The Single RehabDataAnalysis Modality (see Figure 9.14) performs analysis 
of the single subject based on the RehabDataAnalysis workflow (see 
Figure 9.15) and provides statistics about the progress of the rehabilitation.

●● The RehabData View, which is the graphical format through which the rehab 
data will be rendered at the Viewer‐side. Figure 9.16 shows the web‐based 
GUI for the knee rehabilitation: the exercise of the patient is compared with 
a reference exercise in terms of knee extension and inclination angles and 
thigh torsion.

Figure 9.12  GUI view: detection of a CDR.
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9.7.4  ACTIVITYaaS: Community Activity Monitoring

ACTIVITYaaS is a BodyCloud service supporting real‐time, noninvasive human 
activity recognition and monitoring. At the Body‐side, it uses two wearable 
motion sensors and a personal mobile device where a graphical application pro­
vides instantaneous feedback to the user; in addition, when Internet connectivity 
is available, data are also sent onto the Cloud‐side for long‐term, multiuser data 
storage and processing. Finally, the Viewer‐side allows for remote access to such 
information at authenticated and authorized users [56, 57].

<modality>
<inputSpecification>

<data>
<sensor1Data>
<name>AccXSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>
<name>AccYSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>
<name>AccZSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>

</sensor1Data>
<sensor2Data>
<name>AccXSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>
<name>AccYSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>
<name>AccZSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>

</sensor2Data>
<extensionAngle>
<name>AngleSample</name>
<type>INTEGER</type>
<source>BSN</source>

</extensionAngle >
</data>

</inputSpecification>
<init-action>

<uri>/group/rehab-monitoring/data</uri>
<method>DELETE</method>

</init-action>
<action>

<uri>/group/rehab-monitoring/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="1"/>

</action>
</modality>

Figure 9.13  RehabMonitoring DataFeed modality.
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The specific entities (group, modality, workflow, and view) defining 
ACTIVITYaaS are:

●● The ActivityMonitoring group represents the group of monitored users.
●● The RawAccelerationDataFeed (see Figure  9.17), FeatureDataFeed, and 

ActivityDataFeed modalities, respectively, implement the following three 
operating modes:

–– Full‐Cloud: the Body‐side will only collect the raw data and send this 
straight to the Cloud‐side. The Cloud‐side will then do all required pro­
cessing (i.e. feature extraction and classification).

<modality>
<inputSpecification>
<column>
<name>foreNode-accX</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>foreNode-accY</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>backNode-accY</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>backNode-accZ</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
</inputSpecification>
<action>
<uri>/group/rehab-aaservice/data</uri>
<method>PUT</method>
<repeat>true</repeat>

</action>
</modality>

Figure 9.14  Single RehabMonitoringAnalysis modality.

<workflow>
<node>

<type>UserDataReader</type>
</node>
<node>

<type>Stats</type>
</node>

</workflow>

Figure 9.15  RehabMonitoring workflow.
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Figure 9.16  GUI view: knee rehabilitation.
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–– Mix‐Cloud: the Body‐side will be responsible for raw data collection and 
feature extraction. These features will then be sent to the Cloud‐side for 
classification.

–– Full‐Local: all processing will be done at the Body‐side. Specifically, raw 
data collection, feature extraction, and feature classification. The 

<modality>
<inputSpecification>
<column>
<name>acc_x_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_y_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_z_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_x_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_y_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_z_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>geoLocation</name>
<type>STRING</type>
<source>GENERIC</source>

</column>
<column>
<name>timestamp</name>
<type>DOUBLE</type>
<source>CLOCK</source>

</column>
</inputSpecification>
<action>
<uri>/group/fullCloud/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="100" />

</action>
</modality>

Figure 9.17  RawAccelerationDataFeed modality.
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Cloud‐side is therefore used only for long‐term storage and graphical 
visualization of statistics.

●● The Single ActivityMonitoring Analysis modality (see Figure 9.18) implements 
the activity recognition of a single subject.

●● The ActivityMonitoring workflow (see Figure 9.19) models a three sequen­
tial node workflow able to (i) read body motion data collected by the reader 
node, (ii) extract the features from such data, and (iii) apply the activity 
classification algorithm. Such workflow is specifically activated when 
ACTIVITYaaS runs in Full‐Cloud mode.

●● The Activity View models the web‐based graphical representation of the 
various activities being performed by the user. Currently it uses a simple pie 
chart and table for statistics visualization (see Figure 9.20).

<modality>
<init-action>
<uri>/group/activity</uri>
<method>GET</method>

</init-action>
<action>
<uri>/engine/workflow/activity</uri>
<method>POST</method>
<parameter>
<name>sourceUser</name>
<reference xpath="//users/user" />

</parameter>
<parameter>
<name>sourceGroup</name>
<value>activity-recognition</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>
<column>
<name>activityID</name>
<type>INTEGER</type>

</column>
<view>/view/activities.xml</view>

</outputSpecification>
</modality>

Figure 9.18  Single ActivityMonitoring Analysis modality.

<workflow>
<node>
<type>UserDataReader</type>

</node>
<node>
<type>ACTSTATS</type>
<!-- <parameter days="1" /> -->

</node>
</workflow>

Figure 9.19  ActivityMonitoring workflow.
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9.8  Summary

This chapter has provided an overview of the integration between wearable 
computing platforms (based on BSNs) and cloud computing, named cloud‐
based BSNs. We have first introduced the motivations and challenges for cloud‐
based BSNs. We have then introduced an implementation‐neutral reference 
architecture for cloud‐based BSNs. Furthermore, we have compared the related 
work against the analyzed requirements. Finally, the chapter has focused pri­
marily on BodyCloud, a cloud‐based BSN platform for the development of 
community BAN applications. A set of cutting‐edge applications of BodyCloud 
have been also detailed to show the development effectiveness of BodyCloud.
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10.1  Introduction

Designing BSN systems is a complex task and formal methods should be 
adopted to obtain correct, efficient, and cost‐effective solutions. The most 
common approach is bottom‐up: hardware components are chosen “a priori,” 
followed by the communication protocols, and finally, applications are pro-
grammed atop the identified underlying infrastructure. The opposite design 
approach is top‐down: high‐level application requirements, driving the design 
process, are mapped to application‐level frameworks, i.e. a set of programming 
abstractions and libraries; protocol stacks and hardware platforms are defined 
subsequently.

This chapter describes a development methodology for BSN systems, based 
on the SPINE framework, that follows a hybrid hardware–software codesign 
approach inspired to the Platform‐Based Design (PBD).

10.2  Background

PBD [1] has been originally introduced as a methodology for the design of 
traditional embedded systems and more recently for WSNs. This methodology 
defines the design as a sequence of steps that lead from the initial high‐level 
system description down to the actual implementation. Each step is an iterative 
refinement process that translates a higher level description to a lower level 
one that is progressively closer to the final implementation. Each refinement 
step is obtained by mapping all the components of the higher level description 
with components (or composition of components) from a lower level descrip-
tion. The mapping results from solving a constrained optimization problem: 
the choice is a mapping that satisfies the higher level description constraints 
while optimizing according to a cost function defined by the designer. For each 
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layer of abstraction, these components, along with a description of their inter-
faces and performance, are stored in a library, called platform. The higher the 
initial level of abstraction, the easier is formulating functionalities and con-
straints, but the more difficult is to reach to a high‐quality translation due to 
the semantic gap between specification and implementation.

Each refinement step is performed with a hybrid approach, where applica-
tion constraints are refined in a top‐down fashion, architecture performance 
are abstracted in a bottom‐up fashion, and a meet‐in‐the‐middle phase decides 
the actual implementation as discussed above.

The formalization of the PBD methodology is based on the Agent Algebra [2], 
which represents a formal tool to describe the refinement process. The refine-
ment is the expression of a function in terms of the elements of a platform.

Three domains of agents are used to describe the mapping process and per-
formance evaluation: the first two represent, respectively, the platform and the 
function; the third, referred to as common semantic domain (CSD), is an inter-
mediate domain to map functions onto platform instances. A platform, 
depicted on the right in Figure 10.1, corresponds to the implementation search 
space. The function, on the left in Figure 10.1, corresponds to the specification 
domain. The function and the platform meet in the CSD. This domain plays 
the role of a common refinement and is used to combine the properties of both 
the platform and the specification domain that are relevant to the mapping 
process. The function is mapped onto the CSD as depicted in Figure 10.2. A 
platform instance is projected onto the CSD by considering the agents that can 
be implemented with that particular instance. This projection, represented by 
the arrows that originate from the platform in Figure 10.2, may or may not have 
a greatest element. If it does, the greatest element represents the nondetermin-
istic choice of the functions that are implementable by the instance.

Library elements

Architecture platform

Platform instance

Function domain

Function

Figure 10.1  Architecture and function platforms.



Library elements
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Best platform instance
mapping

Common semantic domain

Best function  
mapping

Best admissible
refinement
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Figure 10.2  Mapping of function and architecture.
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The CSD is partitioned into different areas: the useful one contains 
the Admissible Refinements and is determined by the intersection between the 
refinements of the function and the functions that are implementable by the 
platform instance. Each of the admissible refinements encodes a particular 
mapping of the components of the function onto the services offered by the 
selected platform instance. The vertex of this area corresponds to the Best 
Admissible Refinement and the implementation choice should ideally bring to 
that point. After an implementation is selected at a certain level, the same 
refinement process is iterated so to obtain a lower level of abstraction that is 
hence closer to the final implementation. The PBD shows its recursive nature, 
as the process is repeated at increasingly more detailed levels of abstraction, 
terminating once the final implementation is obtained.

10.3  Motivations and Challenges

Today the choice of an architecture platform for developing BSN systems is 
more an art than a science. In the application perspective, the requirements 
that lead this choice are typically wearability, size, cost, and performance. For a 
particular application, we require that, for instance, the platform should be 
able to handle (and preprocess) a minimum sensor sampling rate, which has 
both computational power and memory performance involvements. Since 
each application requires different sets of functions, the constraints identify 
different (embedded) platforms, where more advanced applications yield to 
harder architectural constraints.

In the IC manufacturers’ perspective, production and design costs also imply 
adding platform constraints. The intersection of the two sets of constraints 
defines the architecture platforms that can be used for the final product. It is 
worth noting that the result can be an overdesigned platform instance for a 
given application; in other words, the full potential of the platform is partially 
unexploited. Overdesign, to some degree, is not necessarily an issue, as it can 
reduce design costs and time‐to‐market of new products.

So, the “design” of a BSN system should be supported by a formal methodol-
ogy that is able to allow the designer exploring the possible choices looking for 
the most effective and efficient trade‐off solution.

10.4  SPINE‐Based Design Methodology

Through the experience gained by using SPINE for the development of several 
BSN applications (see Chapter 11), we identified a novel method to support 
rigorous BSN system design that helps the designer to obtain reliability, effi-
ciency, and true interoperability among different systems as well as differ-
ent  hw/sw implementation of the same system. The SPINE‐based Design 
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Methodology (SPINE‐based DM) is inspired by the well‐known PBD [1]. Here, 
however, the necessary platforms are opportunely semi‐instantiated.

Specifically, according to the PBD, and in particular following the indication 
of Ref. [3], three layers of abstraction and corresponding platforms have been 
defined: the Service Platform at the application layer, the Protocol Platform to 
formalize communication protocols, and the Implementation Platform to 
describe hardware devices. Each design integrates an instance of these layers. 
Specifically, at each given refinement step, the design consists of a complete 
instance of the BSN system under development. We identified three main 
refinement steps: high level, detailed design, and implementation.

However, our approach differentiates from the standard PBD methodology 
because, with the intent of guiding the designer during the development of a 
SPINE‐based efficient BSN system, some of the platforms we identified are 
semi‐instantiated. Specifically:

●● The Service Platform is bound to the high‐level API provided by the SPINE 
Framework (see Chapter  3). Application requirements and functionalities 
can be mapped freely to the flexible SPINE API and services.

●● The Implementation Platform includes many hardware. The designer has 
the opportunity to choose the most suitable one according to low‐level sys-
tem requirements. The Implementation platform is semi‐instantiated too, as 
we assume, at the sensor‐node level, the use of TinyOS‐based architectures 
onto which the node‐side of the SPINE Framework has been deployed, and, 
at the coordinator level, the use of Java‐ and Android‐powered personal 
devices/computers that will be used as SPINE‐based BSN coordinators.

●● The Protocol Platform allows choosing two protocol stacks: Bluetooth and 
IEEE 802.15.4. This platform is the last to be instantiated as the choice often 
depends on the mapping made at the Implementation Platform (particularly 
on the radio standard available on the target devices).

10.4.1  A Pattern‐Driven Application‐Level Design

The application‐level design of a SPINE‐based BSN application can be guided 
by pattern‐driven strategies. In the following, we describe two of such useful 
design patterns, both completely supported by SPINE:

●● Sensor Data Collection for Monitoring: The simplest pattern supports the 
development of BSN systems for data collection from a set of wearable sen-
sors into the coordinator which, in turn, visualize, store, and/or analyze such 
collected data. The pattern architectural schema is depicted in Figure 10.3a. 
Its main components are organized in two layers:

1)	 Sensing, in which data are collected from the sensor nodes.
2)	 Monitoring, in which data can be visualized, analyzed, and stored.
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Each layer can be implemented either at the sensor or coordinator level. At the 
Sensing layer, the sampling management component feeds the data preproc-
essing component with sensory data. At the monitoring layer, data can be 
stored by the data storing component, analyzed by the data analysis compo-
nent, and graphically visualized by the data visualization component. It is 
worth noting that none of these components are required; each of them can be 
optionally included.

●● Multisensor Data Fusion for Detection/Classification of Events: This pat-
tern extends the previous by introducing the detection and/or classifica-
tion of events of interest, such as accidental falls, physical activities, 

Sensing layer

Sampling management

Data preprocessing

Storage

Analysis Display

Monitoring layer

Sampling management

Feature extraction

Analysis layer

(a)

(b)

Feature selection

Feature fusion

Decision fusion

Dissemination layer

Event propagation

Sensing layer

Figure 10.3  Pattern architectural schemas: (a) Sensor Data Collection for Monitoring; 
(b) Multisensor Data Fusion for Detection/Classification of Events.
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posture or gestures, mental states, and so on (see Chapter 11). Its archi-
tectural schema is depicted in Figure  10.3b. The main components are 
organized in three layers:

1)	 Sensing, defined as for the previous pattern.
2)	 Analysis, in which decisions are inferred from available sensory data.
3)	 Dissemination, in which extracted information is provided to end‐user BSN 

applications.

Each layer can be implemented either at the sensor or coordinator level. At the 
Sensing layer, the sampling management component feeds the feature extrac-
tion component that, in turn, extracts features such as the maximum/mini-
mum values, signal energy, or average value. At the Analysis layer, (i) the feature 
selection component contains algorithms for the selection of the most signifi-
cant feature sets, (ii) the feature fusion component merges the different fea-
tures together, and (iii) the decision fusion component, on the basis of the 
incoming features set, performs decisions such as classification of human pos-
tures or gestures (see also Section 11.3). Finally, at the Dissemination layer, the 
event propagation component forwards such decisions to (local and/or remote) 
application‐level components.

10.4.2  System Parameters

According to the proposed method terminology, the main parameters affect-
ing BSN‐based applications can be classified as follows:

1)	 Application‐level parameters: system accuracy, reliability, and responsive-
ness. Accuracy is application‐specific and related to pattern recognition 
and event classification such as activity recognition or stress detection 
accuracy (see also Sections 11.2 and 11.3). Reliability is very relevant for 
life‐critical applications (e.g. early detection of cardiac attacks, epilepsy 
attacks, and fall detection). A fuzzy definition of responsiveness is the abil-
ity of a system to provide the necessary feedback to the user within accept-
able times; it is application‐specific too, as it depends on the processing load 
required to perform the main operations, e.g. computation of flexion/rota-
tion degrees in motor rehabilitation digital assistants (see also Section 11.5), 
or detection of a handshake in a handshake detection system (see also 
Section 11.4).

2)	 Protocol‐level parameters: bandwidth and delay that depend on sensor 
sampling frequency, sensor‐ and application‐specific generated data, and 
on communication protocols themselves. It is worth noting, however, that 
specific network synchronization requirements can be handled by the 
selected protocol (e.g. by using a TDMA technique), whereas more complex 
synchronization constraints must be handled at the Application level.



10  Development Methodology for BSN Systems184

3)	 Device‐level parameters: energy consumption, memory, and processing 
capabilities requirements. The energy consumption depends on duty cycle, 
sensor type and sampling frequency, radio usage, and application‐specific 
signal processing. Memory (system and mass memory) requirements 
depend on (i) software platform tailoring (i.e. specific to our design method, 
for which TinyOS and SPINE components are needed), (ii) sampling fre-
quency, (iii) buffering allocation parameters for sensor data storing and 
computation (e.g. buffer pool size, window, and shift size), and (iv) on appli-
cation‐specific signal filtering and data processing. Computing power is 
mostly determined by application‐specific signal processing.

10.4.3  Process Schema

The SPINE‐based Platform Design [4] process schema is depicted in Figure 10.4. 
The process is iterative and is composed of the following steps (carried out by 
Modeler, Designer, and Developer roles):

●● Requirements Analysis (RA): it produces a set of functional and nonfunctional 
requirements driving the design flow.

●● High‐Level Design (HLD): it produces a high‐level design of the BSN system 
on the basis of the identified requirements. In our methodology, a HLD is an 
instance of the SPINE framework integrated with selected protocols, sen-
sors, and platforms.

●● Performance Estimation of HLD: it produces estimation measurements of 
the HLD performance by using available analytical/simulation methods. 
Although the results cannot be detailed at this refinement level, they can still 
provide insights on the feasibility (or convenience) to translate the available 
HLD into a DD. If the requirements are not satisfied, the process must step 
back to the HLD step.

●● Detailed Design (DD): it produces the detailed design of the available HLD 
instance. The HLD is refined at each of the three layers of SPINE‐based DM 
by following the pattern‐driven design described previously.

●● Performance Estimation of DD: it provides analysis of the DD by testing 
or  estimating the DD performance through analytical and/or simulation 
methods and also by mapping selected DD components onto the device level 
for testing. The obtained results are more accurate than the Performance 
Estimation HLD output; they provide fine‐grained indications on the feasibil-
ity of obtaining an effective and efficient implementation of the DD instance. 
If the requirements are not satisfied, the process must go back to the DD or 
even the HLD step.

●● Implementation: it produces an implementation of the DD output; the BSN 
system can be finally deployed, executed, and tested.

●● Deployment: it defines deployment details of the BSN system.
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Figure 10.4  SPINE‐based Platform Design process schema.
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●● System Performance Evaluation: it provides detailed test cases of the BSN 
system and detailed performance measurements are extracted for its valida-
tion. The result of this analysis provides a full‐fledged test of the whole sys-
tem. If the requirements are not satisfied, the process must go back to the 
DD or even the HLD step.

10.5  Summary

This chapter has introduced a specialization of the PBD methodology for system‐
level design of BSN applications. First, the PBD approach has been briefly 
described. Then, a PBD methodology, previously proposed for the design of WSN 
systems, has been specialized for the more specific BSN domain. Finally, the 
methodology has been concretely shown in relation to the SPINE framework.
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11.1  Introduction

The worldwide trend of increasing average life expectancy and a more profound 
awareness of the importance of taking actions at different levels to keep a good 
health status are forcing the health system to significant renovation. Enabling 
technologies in this context are the current powerful personal mobile devices, 
such as smartphones and tablets, the body sensor networks (BSNs), i.e. wearable 
sensor units (smart watches, glasses, and wristbands) that are often able to 
monitor several health parameters, and the cloud computing infrastructures. The 
result is a great opportunity of providing very diverse and personalized smart‐
Health services that could be accessible to anyone, anywhere, and anytime.

11.2  Background

This chapter emphasizes how the SPINE framework is actually able to support 
the development of heterogeneous health‐care applications based on reusable 
subsystems. Indeed, one of the main goal of SPINE (see Chapter 3) is to provide 
a flexible architecture that can support a variety of practical applications without 
the need for costly redeployment of the code running on sensor nodes. This 
chapter therefore introduces some interesting research BSN systems that have 
been developed atop SPINE. Furthermore, each of the described applications 
improved the current state‐of‐the‐art, as described in the following sections.

11.3  Physical Activity Recognition

Physical activities play a fundamental role in human well‐being; however, 
although people are now fully aware of their importance, they still need regular 
motivational feedback to maintain an active life style. Thus, the automatic 
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recognition of activities and postures is the first step for providing the right 
feedback. To this extent, physical activity recognition is a basilar block of many 
wellness and smart medical applications. In addition, many human‐centric 
context‐aware real‐life applications need to assess user activities as they often 
heavily contribute at determining the context itself.

11.3.1  Related Work

Human activity recognition has attracted tremendous interest and the topic 
has been studied under very diversified point of views and the related issues 
addressed through different approaches in terms of types of sensory signals 
and recognition strategies. Research in physical activity monitoring is cur-
rently focused to support elderly people and patients with chronic diseases.

One of the most relevant and cited related work is by Bao and Intille [1]. 
In  this study, several supervised learning algorithms are used and evaluated 
to  detect physical activities using accelerometer data gathered from sensor 
nodes placed on different body locations. Acceleration data was collected from 
20 subjects without researcher supervision or observation.

The authors in Ref. [2] address the very interesting aspect of comparing the 
activity classification accuracy by varying the number and the location of sen-
sor nodes on the human body.

In Ref. [3], the authors propose an activity recognition system based on a 
single motion sensor node worn at the waist. Three axial acceleration signals 
are processed to extract significant features such as mean, standard deviation, 
energy, and correlation. A number of classifier algorithms (decision trees,  
K‐nearest neighbors, SVM, and Naive Bayes) have been evaluated to assess 
their performance in terms of recognition accuracy. Furthermore, meta‐level 
classifiers based on different approaches (voting, stacking, and cascading) have 
been taken into account too.

In Ref. [4], the focus is on the importance of designing power‐aware recogni-
tion algorithms as they are implemented on power‐constrained wearable 
devices. The authors investigate the benefits of dynamic sensor selection to 
achieve the best trade‐off among power consumption and activity recognition 
accuracy and propose an activity recognition method that is associated to an 
underlying runtime sensor selection scheme.

In the last year, thanks to the tremendous improvements of commercial 
smartphones, not only in terms of computational and storage capabilities, 
but in particular of sensing opportunities, many research projects and com-
mercial applications are highlighting the convenience of developing physical 
activity monitoring systems (as well as more generic smart‐Health applica-
tions) solely supported by smartphones, so to significantly improve user 
acceptance and reduce economic costs. For instance, Ref. [5] presents a 
daily  activity monitoring system designed for elderly people based on the 
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smartphone accelerometer. The authors take into account the energy limita-
tion and propose a power‐aware approach as an adaptation of the standard 
Support Vector Machine (SVM). In Ref. [6], along with the accelerometer, 
the gyroscope and the magnetometer (available in many current smart-
phones) are also used to detect physical activities. The authors notably 
evaluate the effect on classification performances of smartphone position 
and orientation on the body.

Excellent review works on human activity recognition have been published 
too. In Ref. [7], the authors provided a review of the most relevant approaches 
and methodologies related to sensor‐based activity monitoring, modeling, and 
recognition; advantages and weakness are discussed for each approach. An 
extensive survey [8] covers the state‐of‐the‐art in human activity recognition, 
specifically based on wearable sensors. The authors propose a two‐level tax-
onomy associated with the learning approach (supervised or semisupervised) 
and the response time (off‐line or online).

11.3.2  A SPINE‐Based Activity Recognition System

The human activity monitoring system presented here takes advantage of the 
past work aiming at finding the best trade‐off among accuracy, wearability, 
power requirements, and programming complexity. It is able to recognize pos-
tures (lying down, sitting, and standing still) and a few movements (walking 
and jumping); furthermore, it also includes a simple yet effective fall detection 
module that uses the activity classification to determine if a person is unable to 
stand up after the fall.

The system uses two wireless wearable nodes based on the Shimmer2R [9] 
platform, which includes a 3‐axis accelerometer and an Android‐based per-
sonal mobile device (e.g. a smartphone or tablet) that acts as a coordinator. The 
end‐user application (see Figure  11.1) runs on Android and is programmed 
atop the SPINE‐Android framework. The sensor nodes and the coordinator 
communicate over Bluetooth.

The activity recognition system uses a classifier algorithm that takes acceler-
ometer data gathered by the wearable units, placed on the waist and on the 
thigh of the assisted living, and recognizes gestures and activities defined dur-
ing an off‐line training step. Among the most popular classification algorithms 
used in the literature to this purpose, a K‐Nearest Neighbor [10] (k‐NN)‐based 
classifier has been modeled.

The proposed system includes a default training‐set to use the application 
without customization. However, a graphical wizard can be optionally used to 
improve recognition accuracy by creating a user‐specific training‐set. The 
most significant features for discriminating the different activities will be even-
tually computed online by the sensor devices but are initially identified with an 
off‐line sequential forward floating selection (SFFS) [11] algorithm.
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The k‐NN classifier requires the selection of two different parameters: the 
value of K and the metric distance. However, if the feature selection process is 
performed accurately, the result will lead to activities’ clusters that are inter-
nally very dense, and well separated among each other. This is particularly true 
on the specific set of activities targeted by the system. Therefore, the classifier 
accuracy is significantly influenced by its parameter values, which have been 
selected as follows, mainly to reduce classification execution time:

●● K = 1
●● Metric distance: Manhattan

The most significant feature set obtained with the SFFS algorithm is the 
following:

●● Waist node: (i) average value on the accelerometer axes XYZ, (ii) minimum 
value on the accelerometer axis X, and (iii) maximum value on the acceler-
ometer axis X.

●● Thigh node: minimum value on the accelerometer axis X.

As aforementioned, the proposed system also integrates a fall detection 
functionality, whose underlying algorithm is distributed since it is partially 

Figure 11.1  Two screenshots of the developed activity recognition Android app.
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running on the waist node and partially on the mobile coordinator. Specifically, 
the algorithm computes in real time on the waist node the total energy (i.e. the 
square root of the sum of squares) over the three accelerometer axes. The 
instantaneous total energy value is compared against an empirically estimated 
threshold and if this is exceeded, the node triggers a “potential‐fall” alarm 
message back to the coordinator. If such a preliminary alarm is received, the 
portion of the algorithm running on the coordinator starts monitoring the user 
postures for a certain period. If the user is detected as “lying down”, an emer-
gency message is reported to relatives and/or medical personnel via several 
channels (SMS and automated voice call to an emergency list of numbers, and 
even Facebook and Twitter posts). In particular, we differentiate two types of 
alarms: yellow if the user is able to stand up shortly after the fall, red if, after a 
few minutes, he/she is still lying down.

The classification accuracy performance achieved by the system, reported 
per each activity in Table 11.1, reaches an overall average score of 97%. The 
fall detection algorithm, instead, in a semicontrolled laboratory setting 
obtained an average accuracy of 90%, with a very low percentage of false 
alarms (less than 1%).

11.4  Step Counter

Human footstep detection refers to the automatic determination of the time 
moment at which steps occur. It is the basic block for the realization of step 
counters, also known as pedometers, which can be used to roughly assess in 
real‐time human activity levels, which in turn is one of the major goal of well-
ness applications. Step counters have also been used to assess elderly mobility 
and to improve physical activity in youth to reduce the risk of obesity.

11.4.1  Related Work

Step detection has been broadly addressed and many different methodological 
and technological approaches have been proposed in the literature. A compre-
hensive review on this topic is out of the present scope and the interested 
reader can refer to Refs. [12, 13] for a deeper analysis. In the following, only few 
significant works, addressing the human step detection by means of wearable 
devices and accelerometer sensors, will be introduced.

Table 11.1  Posture/movement recognition accuracy.

Sitting Standing Lying down Walking

96% 92% 98% 94%
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In Ref. [14], a method for online step detection using an embedded device 
based on the IMote2 platform and equipped with a 3‐axis accelerometer is 
presented. The device, which must be worn on the hip, samples the accelerom-
eter at a frequency of 512 Hz. The raw acceleration signals are initially used to 
extract a cross‐axial magnitude signal which is, in turn, smoothed with a low‐
pass filter. Then, the obtained signal is further processed to obtain its first 
derivative signal. Finally, threshold‐based peak detection is performed.

In Ref. [15], a system specifically designed to assess the number of steps 
taken during running is presented. It is based on the Nokia Wrist–Attached 
Sensor Platform equipped with a 3‐axis accelerometer. In this work, the accel-
eration signals are processed with a high‐pass filter with the intent of removing 
the gravity component. The three high‐pass filtered signals are then combined 
to generate a unique signal by taking the 1‐norm, obtained by summing up the 
three axes’ corresponding absolute sample values. Then, threshold‐based peak 
detection is performed. It is worth noting that in this work the threshold is 
dynamically adapted. The overall system performance reaches a 30% underes-
timation of the actual number of steps taken while running.

In Ref. [16], a pedometer based on a custom prototype device using the  
3‐axis accelerometer ADXL330 connected to the 8‐bit MPC82G516 micro-
controller is presented. The device is intended to be worn on the waist or in the 
pocket. The raw acceleration signals are first smoothed with a Hamming filter. 
The x, y, and z acceleration vectors are used to evaluate the initial spatial orien-
tation of the device so as to allow for an arbitrary placement of the device itself 
(particularly useful if it would be placed in the pocket). The filtered x, y, and 
z signals are also used to generate the acceleration signal in the direction of 
gravity. This latter signal is compared against a fixed, empirically evaluated, 
footstep threshold. The system has been evaluated in a laboratory setting on 
five subjects showing an average detection accuracy of about 90%.

11.4.2  A SPINE‐Based Step Counter

This section describes an innovative step‐counter algorithm that has been 
integrated into the previously described SPINE‐based activity recognition 
application as an optionally activated functionality. To provide an original 
contribution and improvement to the state‐of‐the‐art, we identified a number 
of key design requirements:

●● Use of accelerometer data.
●● Low sampling rate.
●● Energy‐ and computation‐efficient design to support embedded implementations.
●● Use of a single sensor node, placed on the waist (below the navel).
●● General‐purpose algorithm, to be used by healthy people as well as elderly 

and/or people with disabilities.
●● No need for “ad‐personam” calibration.
●● High average accuracy (robustness).
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Several real walk data on different subjects have been collected and studied 
before starting the algorithm design. The subjects were asked to walk naturally 
and to increase/decrease the walking speed occasionally. In particular, a single 
3‐axis accelerometer sensor node was placed on the waist while recording. The 
sensor has been sampled at 40 Hz. To simplify the development, debugging, 
and evaluation, the algorithm has been initially programmed in Matlab. Only 
integer‐math computations were used, thus allowing for a more straightfor-
ward embedded implementation (as the target embedded platform is based on 
a microcontroller with no hardware support for floating point operations).

It is worth noting that the frontal acceleration of the waist (i.e. parallel to the 
ground) presents a signal roughly sinusoidal while walking. The basic idea is, 
therefore, to detect steps by identifying the decreasing segment (falling edge), 
which corresponds to the last fraction of a step movement.

Furthermore, it is clear that a human step is characterized by time constraints 
(physically, it cannot be “too” fast or “too” slow). However, walk patterns 
change from people to people and even for the same person it might change 
from time to time; hence, the amplitude of the acquired signal can vary 
significantly.

To simplify recognition of the step pattern, the raw frontal acceleration is 
first processed with a smoothing filter, which removes the high‐frequency 
components. Then, the algorithm looks for local maximums. When a local 
maximum is found, it looks for a local minimum. After the local minimum is 
also found, the candidate segment is naturally identified.

Two features are then extracted and used to determine whether the candi-
date belongs to an actual step or to different body movements. Specifically, 
the candidate is classified as step (i) if they have an acceleration drop within 
a certain range (specified by a “tolerance” parameter around a threshold) and 
(ii) if the time elapsed is within a certain interval. The preprocessing is a  
9‐point windowed smoothing filter, which uses Gaussian kernels. Because they 
are applied to a digital signal, the sum of the kernels must be 1. Furthermore, 
because the algorithm works on integer‐math, they are scaled so that decimal 
factors are removed.

The threshold is coarsely initialized, but it is automatically adapted while steps 
are recognized. In particular, it is continuously updated with the average of the 
last 10 acceleration drops that are classified as steps. This is very useful to avoid 
custom training or a setup phase before the step‐counter functionality could 
work properly and accurately. Finally, to reduce “false positive” recognitions, e.g. 
due to sudden shocks or slow tilts of the sensor, the time elapsed between 
the  local max and min (which is simply determined as the product between 
the number of samples of the segment and the sampling time) must be longer 
than the “minimum step time” and shorter than the “maximum step time.” Both 
values have been determined empirically from the available observations.

The proposed algorithm has been initially evaluated on the computer 
and finally implemented on a wireless sensor node running SPINE. For this 
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application, the node‐side of SPINE has been extended with the proposed 
algorithm. Every time the node detects a step, it communicates to its coordinator 
the total number of steps taken so far, in order to avoid miscounting due to lost 
packets. On the SPINE coordinator, very minor additions have been made to 
the core framework, and a simple graphical gadget has been added to show in 
real time the number of steps being taken.

11.5  Emotion Recognition

Emotions play a fundamental and basilar role in daily life of each person, both 
at the individual and social level. The need and importance of automatic emo-
tion recognition is growing along with the increasing popularity of human–
computer interface (HCI) systems. Today, in fact, new forms of human‐centric 
interaction with digital media and devices have a disruptive potential of revo-
lutionizing many aspects of virtual and real life. Furthermore, automatic 
emotion recognition could provide helpful medical information and indices for 
the prevention or early detection of many psychophysiological disorders.

Among the many human emotions, being able to automatically recognize 
stress and fear, thus, becomes very useful, as it will be described in the follow-
ing two sections.

11.5.1  Stress Detection

The Heart Rate Variability (HRV) is based on the analysis of the R‐peak to  
R‐peak intervals (RR‐intervals – RRi) of the electrocardiogram (ECG) signal in 
the time and/or frequency domains. In recent years, the importance of the HRV 
for detecting mental and emotional states is being recognized by physician and 
psychologists, specifically for the sake of identifying stress and anxiety.

11.5.1.1  Related Work
Past medical studies have showed that patients with anxiety, phobias, and 
stress disorders consistently present lower HRV. It is worth noting that this 
relationship exists independently of gender, age, heart and respiratory rate, 
trait anxiety, or blood pressure.

Monitoring the mental stress is particularly important because studies 
showed that long‐term exposure to stress is a risk factor for cardiovascular 
diseases [17, 18]. Many industry research projects focus on HRV, looking for 
connections with related heart diseases. An interesting research [19] actually 
proves the existence of a relation between time‐domain HRV parameters and 
stressful car driving situation.

In Ref. [20], the authors present an activity‐aware mental stress detection 
approach using ECG, GSR, and accelerometer data. Specifically, the work is 
focused on sitting, standing, and walking.
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In Ref. [21], an interesting application of the stress detection to biometric 
security is proposed. Furthermore, the work reviews several methods for stress 
detection, to assess which one is most suitable for implementation in future 
biometric devices.

There are also a few commercial products for mental stress assessment. 
For instance, StressEraser [22] provides a biofeedback of the stress level look-
ing for the breathing pattern that maximizes Respiratory Sinus Arrhythmia. 
Stress Monitor [23] is another system designed for stress monitoring while 
working. It is composed of a USB ear‐clip device to be connected to a PC and 
a desktop application for real‐time and historical reports. Finally, the emWave 
Personal Stress Reliever [24] is a handheld device with audio and LED feed-
backs to monitor the stress level of the user. It is worth noting that none of 
these commercial products are suitable for continuous monitoring as they 
must be handled in hand to work or they cannot operate standalone.

11.5.1.2  SPINE‐HRV: A Wearable System for Real‐Time Stress Detection
In this section, we present a wearable system programmed atop SPINE (oppor-
tunely extended with a custom‐defined processing function) that uses time‐
domain HRV analysis to detect mental stress [25]. It is designed for continuous 
noninvasive use and consists of a wearable cardiac sensor node (we have two 
alternative implementations, one with a Shimmer2R node equipped with the 
add‐on ECG sensor board and the other with a Polar Electro [26] ECG wireless 
chest band), which extracts the RRi from the full ECG signal. The RRi are then 
processed using the SPINE framework with an application running on the 
coordinator (see Figure 11.2).

In particular, the system extracts common parameters known in the medical 
literature to perform an HRV analysis applied for continuous noninvasive 
mental stress detection of people during everyday activities.

The stress detection is computed at regular intervals (tunable from 10 to 
60 min). Our approach is based on a time‐domain analysis, which is sufficiently 
accurate to recognize the stress condition as shown in Ref. [27]. In particular, 
the analysis involves the computation of four significant indices:
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RRj denotes the value of the jth RR‐interval and N is the total number of 
successive intervals. RRj  is therefore the average value of 15 consecutive RRi. 
SDNN, the standard deviation of RRj, is the primary measure used to quantify 
HRV changes, since SDNN reflects all the cyclic components responsible 
for variability in the period of recording. RMSSD is the root mean square of 
successive differences. Finally, pNN50 is the ratio derived by dividing NN50 by 
the total number of RRj, where NN50 represents the number of successive 
intervals differing by more than 50 ms.

The proposed system aims at detecting whether the monitored person is 
mentally stressed. This decision problem has been solved with a threshold‐
based approach.

Table 11.2 reports the threshold values extracted from the results found in 
Ref. [27]. The RR signal is recorded for a certain time window, at the end of 
which the algorithm computes the features, and, if at least three out of the four 
of them exceed the values reported in Table 11.2, the persons’ mental state is 
classified as “stressed.” In synthesis, the novelty in the proposed system is that 
the ability of performing online emotional stress detection rather than through 
off‐line analysis.

Figure 11.2  The main monitoring window of the stress detection system.
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11.5.2  Fear Detection

Fear is the physiological reaction in response to a danger or threat. Among 
the other psychophysiological reactions preceding the emotion of fear, 
there is a specific event that can be observed in the cardiac activity known 
as Cardiac Defense Response (CDR) [28, 29]. This response is the first of 
an internal process sequence preparing a reaction to threats priming either 
for fighting or fleeing (this is known as “fight‐or‐flight”) [30]. In particular, 
right after a sudden situation perceived dangerous by the brain, the first 
basic reaction is the CDR activation. Then, if the stimulus is eventually 
classified as not actually dangerous, the organism goes back to a normal 
state and the heart rate (HR) stabilizes, otherwise a sense of fear will start 
to be perceived. Thus, the CDR has a protective and defensive role; never-
theless, if triggered too often and/or irrationally, it may represent a health 
risk and in the long term it could lead to several psychological disorders 
such as mental stress, phobia, anxiety, and depression [31]. Thus, being 
able to identify automatically the CDR activation is relevant, clinicians 
could be in fact aided by a valuable tool for studying the psychological 
state of the subject.

The ECG is being studied for emotion recognition and stress detection [25] 
as it has demonstrated the influence that psychological states due to emotions 
and other external conditions have on the ECG signal.

11.5.2.1  Related Work
The literature on the specific problem of automatic recognition of the human 
fear emotion is extremely limited. Mostly, past studies have investigated the 
broader problem of emotion recognition [32, 33] with controversial results. 
Some more related works focus instead on the arousal monitoring [34–36]. 
Arousal is a psychophysiological state of being awake or reactive to stimuli and 
plays a central role for motivating the fight‐or‐flight response, which in turn 
often precedes the emotion of fear.

Table 11.2  Stress threshold for HRV parameters.

Feature Threshold Unit

HR >85 1 min−1

pNN50 <7 %
SDNN <55 ms
RMSSD <45 ms
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11.5.2.2  A SPINE‐Based Startle Reflex Detection System
This section introduces a SPINE‐based mobile system that recognizes in real 
time basic emotional responses and in particular the CDR, which is triggered 
before the fear emotion itself [37, 38]. To the best of our knowledge, this is the 
first work aiming at recognizing automatically and in real time this physiological 
mechanism.

For the sake of realizing a portable noninvasive system, there are clear advan-
tages on using the ECG, as technologies based on lightweight wearable cardiac 
sensors can be used. In particular, detecting the CDR requires the extraction of 
the RRi, and consequently the HR, from the full ECG trace.

We proposed an algorithm for the detection of the QRS complex (i.e. the 
heartbeat) inside the ECG signal using a dynamically adapted threshold‐based 
approach. The algorithm looks for peaks in the ECG that are compared against 
an automatically estimated threshold; those exceeding the threshold are labeled 
as heartbeats and time stamped, hence leading to the RRi series, which are the 
input to the actual CDR detection algorithm. The proposed QRS detection 
algorithm runs on the personal mobile device and is part of the mobile applica-
tion running atop the SPINE‐Android coordinator.

In Figure 11.3, the schematic block diagram of the proposed adaptive QRS 
detection algorithm is shown. The algorithm consists of three main processing 
phases: a moving average‐based high‐pass filtering (HPF), a nonlinear low‐
pass filtering (LPF), and a decision‐making block [39]. More specifically:

1)	 First, an ECG recording is processed by the linear HPF to amplify the QRS 
complex, while suppressing the undesired waveforms (e.g. P or T waves) 
and the baseline wander. This step consists of a 5‐point moving average fil-
ter whose output is subtracted, point‐by‐point, from the delayed input sam-
ple so that the entire system becomes an FIR HPF with linear phase.

2)	 Then, the linear HPF output is then processed by a full‐wave rectification 
and nonlinear amplification followed by a sliding‐window summation, thus 
resulting in an envelope‐like feature waveform. These operations (a nonlinear 

ECG Linear HPF Nonlinear HPF

Decision-making
block

Figure 11.3  Block diagram of the proposed adaptive QRS detection algorithm.
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LPF process) aim at smoothing down the high‐frequency, low‐amplitude 
artifacts while leaving the QRS waveform intact.

3)	 Finally, an adaptive threshold is applied to the feature waveform to complete 
the QRS complex detection.

To detect the CDR, we proposed an algorithm based on the idea of detecting 
changes in signal stationary. The underlying ratio is that physiological signals, 
including the ECG and its derived RR signal, are highly stationary. Formally, 
a signal is stationary if the mean and standard deviation of the signal do not 
change during signal acquisition. In ECG and RR signals, in particular, nonsta-
tionary events are due to several factors (e.g. changes in posture and respira-
tion patterns).

Our intuition suggests that physiological changes and, more specifically, the 
effects of the CDR associated with responses to basic emotions such as the fear 
can also introduce nonstationary events in the ECG and consequently in the 
RR signal [28–31].

Thus, sudden changes in HR regulation due the CDR can be detected by 
looking at the nonstationary transitions from the normal HR regulation. 
The CDR algorithm adopts the cross‐correlation integral method to quantify 
the amount of stationary in the given RR signal [40]. It provides the probability 
that a particular signal is stationary: a value close to 1 indicates a stationary 
signal; conversely, a value closer to 0 refers to highly nonstationary signals. We 
propose to compute the cross‐correlation integral in a moving‐window fashion 
(10% of the signal length). This allows for the detection of transitions in non-
stationary in the RRi signal by running the CDR detection algorithm as a func-
tion of time. Finally, the cross‐correlation integral samples are converted to 
percentages; this feature is referred as nonstationary index (NSI).

The CDR algorithm has been validated on 40 subjects, evaluating the NSI to 
establish the occurrence of the CDR. Specifically, a change pattern is classified 
as a CDR event if a reduction in the NSI is less than or equal to 80%. This spe-
cific NSI threshold was empirically estimated by direct observation of the data 
from all 40 subjects. The proposed system includes original contributions:

●● It detects patterns in the HR signal, that is, it detects if the signal presents 
nonstationary transitions as they indicate changes in regulation of the HR 
signal.

●● In contrast to related work in the psychological literature [28, 29], the CDR 
activation is detected in real time.

●● By analyzing the CDR detection algorithm results, it is possible to locate the 
CDR event in the RR signal.

Figure 11.4 shows a portion of a real RR signal (top) and the corresponding 
NSI (bottom). The plot shows that a change in signal stationary can be observed 
when the subject experienced the CDR triggered by the external stimulus 
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prompted to the subject during our experimental protocol setup. In particular, 
it is worth noting the NSI exceeding the 80% threshold.

The CDR detection algorithm was implemented with the R scripting 
language for the availability of mathematical and statistical libraries useful for 
the algorithm.

In addition, we realized a mobile application (see Figure 11.5), for devices 
running the Android OS, that is able to monitor the cardiac activity and, in 
particular, for detecting the CDR mechanism activation.

This system is implemented atop SPINE and uses a Shimmer2R node, 
equipped with the ECG sensor board, placed on the chest with a dedicated 
elastic band. The Android application uses the “Rserve” [41] library to com-
municate with an R server responsible for the remote execution of the CDR 
algorithm. Furthermore, the application also displays the current BPM value, 
the full ECG signal, the RRi series, and the historical HR chart.

11.6  Handshake Detection

The handshake is a basic gesture in many cultures. It introduces many formal 
and informal social interactions such as exchanging greetings, offering congratu-
lations, or finalizing a deal. Thus, automatic handshake detection could enable 
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several pervasive computing scenarios; specifically, different types of informa-
tion can be exchanged and processed among the handshaking people, for 
instance based on the physical/logical contexts and on mutual acquaintance.

11.6.1  Related Work

Very few research works on automatic handshake detection have been 
published so far. The iBand [42] is probably the first system for information 
exchange specifically based on handshake detection. It is based on wearable 
wrist devices equipped with accelerometers and infrared (IR) transceivers. 
Specifically, the handshake is detected via a synchronized combination of IR 
alignment and an up‐and‐down motion on the two devices worn by each meet-
ing person. IR transmission is enabled when the user’s hand/wrist are in a pre‐
calibrated handshaking orientation. The pre‐calibration cannot be customized, 
thus leading, according to users participating in an experimentation of the 
system, to not always accurate behavior and unnatural gestures to let the iBand 
detect the handshake. Furthermore, a quantitative performance analysis of the 
system is not presented.

The Smart‐Its Friends [43] provides smart electronic devices that communi-
cate when they are within the communication range of each other and experi-
ence similar sensor readings. Although the proposed approach is more general, 
it could be applied in the context of handshake detection: handheld smart 
devices equipped with accelerometers (e.g. smartphones and augmented wrist 

Figure 11.5  A screenshot of the developed CDR detection mobile application.
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watches) can be exploited to recognize common shaking patterns between 
people when they are in proximity, even if this would be an indirect way of 
detecting handshakes as Smart‐Its Friends is not focused on the handshake 
gesture but only on generic interaction among smart objects close to each 
other.

11.6.2  A SPINE‐Based Handshake Detection System

To overcome the limitations of the aforementioned works, a further interesting 
application developed with SPINE, called E‐Shake (see Figure 11.6), has been 
proposed [44]. E‐Shake is a Collaborative BSN‐based system for the detection 
of emotions between people as they shake their hands when they meet. More 
correctly, the system is based on an enhancement of the SPINE framework 
called Collaborative‐SPINE (C‐SPINE, see Chapter  7) and integrates hand-
shake gesture detection with continuous beat‐to‐beat HR computation. This 
integrated information is useful for detecting emotional states of meeting 
people, when the meeting starts with a handshake.

The system architecture, depicted in Figure 11.7, is composed of two layers, 
located on the coordinator and on the wearable sensor devices. At the sensor 
level, the main components are:

●● The Heart Rate Sensor (HRSensor) component, running on a Shimmer2R 
node, is equipped with an ECG sensor‐board to extract the HR. The HR 
estimation uses a 5‐point moving average filter to smoothen the HR curve.

●● The Hand Shaking Sensor (HSSensor) component, running on a Shimmer2R 
node placed on the right wrist of the monitored subject, acquires accelerom-
eter data for handshake recognition. The HSSensor (i) samples at 100 Hz the 
3‐axial accelerometer included in the Shimmer2R, (ii) buffers the acquired 
data, (iii) performs on this data specific feature extraction (amplitude, stand-
ard deviation, zero crossing, average, total energy, and RMS), (iv) runs a 
decision tree‐based classifier for the detection of potential handshake ges-
tures, and (v) finally transmits the computed feature set when a potential 
handshake gesture is recognized. In particular, the features are calculated 
over a window of 32 samples with 50% overlap. Such parameters have been 
empirically estimated to trade‐off fast detection and good classification 
accuracy.

At the coordinator level, E‐Shake is developed for the Android OS and inte-
grates two application components: (i) a handshake detection component that 
uses C‐SPINE to recognize the handshake gesture and (ii) a heart‐rate compo-
nent providing beat‐to‐beat HR data. Specifically, the coordinator aligns the 
HR data with handshake classifications obtained from a joint classifier and 
keep tracks of the HR data (which will be input for the emotion detection 
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Figure 11.6  The E‐Shake application.
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subsystem) during the extended time window in which the handshakes have 
taken place. The extended time window depends on the handshake detection 
time and can be centered on it or configured for asymmetric window sizing.

The joint classifier is a J48 decision tree that uses the entire feature set from 
the two sensors worn by the meeting people (the two BSN coordinators com-
municate with the CIBO protocol, see Figure 11.7) and is activated only if the 
BSN coordinators receive potential handshake notifications by both the sensor 
nodes (note that the “intra‐BSN” communication is supported by the SIBO 
protocol, see Figure 11.7) within a short time interval.

We evaluated the E‐Shake in terms of emotion reaction detection by carry-
ing out an experimental scenario in a controlled environment, in which stu-
dents, tutors, and professors equipped with the system could meet. For each 
meeting, two people were asked to enter the room from two separate doors. 
Each pair has been selected so to have both subjects with mutual acquaintance 
relations and subjects without. Furthermore, while tutors and professors were 
informed of the experiment objective, students were completely unaware. 
Professors and tutors played an important role to facilitate social interactions 
among students and as enablers of student reactions due to the academic 
teacher–student hierarchy. By analyzing the HR chart, the system captured 
three reciprocal reactions: (a) no emotional reaction to the meeting by none of 
the subjects, (b) emotional reaction to the meeting by only one person, and 
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Figure 11.7  The E‐Shake system architecture.
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(c) emotional reaction to the meeting by both meeting people. Cases similar to 
(a) are the most frequent, while cases similar to (b) are mostly associated with 
meetings between a student and a tutor or professor, and occasionally recorder 
for meetings among students. Occurrences of cases similar to (c) were actually 
very rare throughout the whole experiment.

11.7  Physical Rehabilitation

It is quite common to require repetitive physical exercises, for instance, to 
recover from a muscle strain, a limb fracture, or a surgery. Having real‐time 
feedback about exercise performance quality would allow patients that are fol-
lowing a rehabilitation therapy to independently exercise correctly without the 
need of a continuous professional assistance.

11.7.1  Related Work

Although the literature on physical rehabilitation assistance supported by 
wearable sensors is still limited, a few interesting research studies have been 
published so far.

An early research [45] focuses on the therapist perspective aiming at deter-
mining the physical activity stress and the energy expenditure of therapists 
while practicing using a portable accelerometer sensor placed on their waist 
belts.

In Ref. [46], the authors propose the use of wearable accelerometer sensors 
for objectively assessing the motion capabilities and activity levels of patients 
affected by multiple sclerosis, so as not to rely uniquely on self‐reports and 
questionnaires.

However, the specific problem of supporting patients during rehabilitation 
exercises with the aid of wearable sensing devices and real‐time visual feed-
backs is being investigated only in more recent times. In Ref. [47], the authors 
describe a rehabilitation support system based on a smartphone and a bracelet 
to capture patient’s rehabilitation exercises. Dynamic Time Warping is used to 
train and recognize movements. The system is fully customizable so it allows 
the therapist to choose the position of the device and other parameters in order 
to adapt to different exercises. The proposed system, however, since relying on 
a single sensing device, suffers from the problem that a number of exercises 
cannot be monitored, and relevant parameters, such as elbow and knee flexion 
angles, cannot be measured.

RIABLO [48] is a game system realized to specifically support physical ortho-
pedic rehabilitation. The authors suggest the use of game elements to motivate 
and engage the patient, while providing feedback on the correctness of the per-
formed exercises. The system is based on five wearable devices equipped with a 
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3‐axis accelerometer and a gyroscope, placed on the body with elastic straps, 
and a pressure sensor tile connected via Bluetooth with the game station.

Another interesting project [49] uses two Shimmer motes [9] attached to 
the patient’s arm or leg and a commercial Android tablet where a graphical 
application provides with a visual real‐time feedback on the performed exer-
cises as well as an assessment on the practice quality with respect to a reference 
movement previously recorded.

In addition to purely academic research studies, there exist some pre‐
commercial solutions [50, 51] with similar functionalities to what described 
above.

For further literature study, readers can refer to interesting surveys [52, 53] 
recently published.

11.7.2  SPINE Motor Rehabilitation Assistant

In this section, we present a physical rehabilitation digital assistant (see 
Figure 11.8) that is implemented atop SPINE and uses two wearable nodes 
equipped with accelerometer sensors to monitor arm and leg movements. 
A  personal mobile application runs on the patient’s smartphone or tablet 
(Android‐based) and gives real‐time feedback on the performed exercise; 
furthermore, it interacts with a dedicated cloud computing backend to trans-
fer collected data for long‐term, off‐line analysis and for retrieving comments 

Figure 11.8  Two screenshots of the rehabilitation digital assistant.
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and updates from the therapist about the rehabilitation process (e.g. to 
download the exercises schedule for the week).

The application consists of monitoring leg and arm bending movements in 
real time and comparing them with the ones recorded during a setup phase. The 
application scenario, hence, consists of two steps, namely setup and exercise 
phases. During the setup phase, the user wears two sensors on either leg or arm 
that needs to be exercised and performs the correct exercise under the guidance 
of rehabilitation professional. Meanwhile, the system records the data and 
stores it as reference exercise. Then, during the exercise phase, the user repeats 
the bending movement and is provided with a real‐time feedback about how the 
movement is done with respect to the stored reference exercise.

Tele‐rehabilitation is a crucial aspect, concerning the possibility to monitor 
the patient remotely. This possibility addresses, in particular, certain types of 
rehabilitation. This aspect is crucial since the idea of tying the opportunity to 
follow and monitor the patient at all post‐admission stages through remote 
monitoring allows the substantial reduction of the costs associated with the 
process. As an example, we can consider the orthopedic rehabilitation of 
patients following violent trauma that are released from the hospital and pro-
ceed towards rehabilitation phases with low necessity of (constant) clinical 
doctor monitoring. In case of orthopedic trauma, the patient that can safely 
perform rehabilitation and can be remotely monitored will meet benefits both 
in physical stress and economic terms.

In addition, the system allows for the secure and authenticated collection via 
the Internet of data related to the management and control of rehabilitation by 
means of a dedicated cloud computing infrastructure. This cloud computing 
backend system is mainly intended to provide support to physicians. The doctors, 
through a web application are enabled to:

●● Management of patients and their program exercises.
●● Displaying data on the exercises performed by patients. The doctor must be 

able to analyze the exercises performed by his patients to be able to perceive the 
improvements that the prescribed therapy is expected to achieve. This greatly 
facilitates his work: thanks to the accuracy of the data, the therapist is “virtu-
ally” able to follow all his patients, just as if they were present in the rehabilita-
tion center. If necessary, he may request a new appointment when he considers 
appropriate to change or update the prescribed therapy, and the patient is noti-
fied through the application running on his personal mobile device.

●● Viewing statistics on the progress of patients. Doctors need quick and easy‐
to‐read information related to the progress of his patient throughout the 
therapy period. The doctor is supported in this sense by synthetic statistics 
such as maximum and minimum extension and flexion angles (of the elbow 
or the knee), torsion angles (of the leg or the arm), range of motion, and 
minutes of training per day.
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11.8  Summary

The main goal of SPINE is to provide BSN developers with support for rapid 
prototyping of signal‐processing applications. In SPINE, sensors and common 
processing blocks, such as math aggregators and threshold‐based alarms, can 
be configured independently and connected together arbitrarily at runtime 
based on external controls. One of the key advantages of SPINE is the ability to 
satisfy diverse application needs at runtime, avoiding, in most situations, the 
costly redeployment of the code running on the remote sensing devices.

Such an approach also allows heterogeneous applications to be built atop 
the  same basic software components, enhancing code reusability and, more 
importantly, removes the need for redeploying the node‐side code based on a 
particular application.

This property is very desirable especially in real‐world scenarios. For 
instance, a doctor could use SPINE nodes that are equipped with accelerome-
ters and a suitable coordinator device (e.g. a smartphone) to monitor weekly 
energy expenditure of a patient. The same nodes could be used later with 
another patient, for instance, in a rehabilitation scenario, as long as the proper 
application software is available on the doctor’s coordinator device. In this 
chapter, the SPINE framework has been showed to support heterogeneous 
health‐care applications without redeployment of the code running on the 
nodes. The flexibility of SPINE has been demonstrated by describing five dif-
ferent case studies (physical activity detection, step counting, emotional stress 
detection, handshake detection, and physical rehabilitation), which all exploit 
the same sensor node hardware and software. Obviously, in the general case, to 
support different applications, the wearable sensing node(s) must be equipped 
with all the required physical sensors.
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12

12.1  Introduction

This chapter provides a quick yet effective reference for BSN programmers 
interested in developing their applications using the SPINE framework. 
While a comprehensive developer guide can be freely downloaded from the 
website, in this chapter we will give the necessary information for setting up 
the SPINE environment so to start programming as well as insights on how 
the framework itself can be customized and extended.

12.2  SPINE 1.x

SPINE (Signal Processing In‐Node Environment) (see Chapter 3) is a framework 
for the distributed implementation of signal‐processing algorithms in wireless 
sensor networks.

It provides a set of on‐node services that can be tuned and activated by the 
user depending on application needs.

SPINE is released as an Open Source project under LGPL 1.2 license and is 
available online at http://spine.dimes.unical.it/.

The SPINE framework has two main components:

1)	 Sensor node side. It is developed in the TinyOS2.x environment and provides 
on‐node services such as sensor data sampling and storage, data processing, 
and much more.

2)	 Server side. It is developed in Java SE and acts as a coordinator of the sensor 
networks. Therefore, it manages the network, setups and activates on‐node 
services depending on the application requirements, and much more.

The framework has been redesigned and the newest release (1.3) provides 
many more levels of expansibility than the previous releases.

SPINE at Work
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The core framework is now organized into three main parts that take care of 
different aspects, namely the communication, the sensing, and the processing 
parts.
The source code of the node side is organized as follows:

Spine_nodes
|__apps
| |__SPINEApp
|__support
| |__make
|__tos
| |__interfaces
| | |__communication
| | |__processing
| | |__sensing
| | |__utils
| |__platforms
| |__sensorboards
| |__system
| | |__communication
| | |__processing
| | |__sensing
| | |__utils
| |__types

The Server side is organized as follows:

Spine_serverApp
|
|__src
| |
| |__jade.util
| |__spine
| | |
| | |__communication.emu
| | |__communication.tinyos
| | |
| | |__datamodel
| | |
| | |__datamodel.functions
| | |__datamodel.serviceMessages
| | |__exceptions
| | |__payload.codec.emu
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| | |__payload.codec.tinyos
| |
| |__test
|
|__lib
|
|__jar
|
|__doc
|
|__resources/defaults.properties
|
|__build.xml
|
|__build.prope rties

This structure reflects the need of having the framework logic not depending 
on the kind of network it is communicating with. In other words, the core 
implementation of SPINE does not use any TinyOS‐specific APIs and can be 
run independently on the underlying protocol stack (e.g. ZigBee networks). 
Platform‐independent code may be found in:

●● spine package, which contains SPINE core logic.
●● spine.datamodel package, which contains data entities used by the 

framework.
●● spine.datamodel.functions subpackage, which defines the structure 

of the function.
●● spine.datamodel.serviceMessages subpackage, which defines various 

types of service messages.
●● spine.exceptions subpackage, which contains exception classes that 

might be thrown by SPINE.

SPINE1.3 server side provides an implementation for the TinyOS2.x network 
and for the “virtual sensor node” network; therefore it provides the support for 
TinyOS low‐level communication:

●● spine.communication.tinyos contains TinyOS‐specific logic and low‐
level IEEE 802.15.4‐based communication procedures (called tinyos.jar APIs).

●● spine.payload.codec.tinyos subpackage contains the low‐level 
message codecs for the TinyOS platform.

●● spine.communication.bt contains low‐level Bluetooth‐based com­
munication procedures (using the open‐source BlueCove library on desktop 
computers and the native Bluetooth API on Android).

●● spine.payload.codec.bt subpackage contains the low‐level message 
codecs for Bluetooth serial transmission.
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For “SPINE Node Emulator” (each “Node Emulator” instance is a “virtual 
sensor node”; see Data Collector and SPINE Node Emulator) low‐level 
communication:

●● spine.communication.emu contains logic and low‐level communication 
procedures for virtual sensor node.

●● spine.payload.codec.emu subpackage contains the low‐level message 
codecs for the virtual sensor node message.

SPINE1.3 release provides also the SPINE.jar that can be imported in any 
project that uses SPINE APIs and the full javadoc documentation.

12.2.1  How to Install SPINE 1.x

Installing SPINE onto the target platforms is straightforward. The process consists 
of the following steps:

1)	 Download SPINE 1.3 from the SPINE website (http://spine.dimes.unical.it/). 
The unzipped spine folder contains:
a)	 Spine_nodes folder with TinyOS2.x code to be run on the motes.
b)	 Spine_serverApp folder with Java code to be run on a computer.
c)	 COPYING and License text files containing info about the licensing.
d)	 The SPINE manual.

2)	 Spine_nodes contains code to be compiled in TinyOS2.x and then flashed 
on sensor nodes. Spine_nodes 1.3 has been developed and tested with 
TinyOS version 2.1.0. Older TinyOS2.x versions have also been tested, and 
Makefile can be configured to support an older version, but the SPINE 
Team strongly suggests to use TinyOS2.1.0 release.
a)	 Copy Spine_nodes folder into your tinyos‐2.x‐contrib folder.
b)	 From the app/SPINEApp folder compile and install the SPINE1.3 frame­

work on your platform. Platforms currently supported by SPINE1.3 are:
i)	 Telosb motes with spine sensor board

SENSORBOARD=spine make telosb
ii)	 Telosb motes with biosensor sensor board

SENSORBOARD=biosensor make telosb
iii)	 Telosb motes with the moteiv sensor kit

SENSORBOARD=moteiv make telosb
iv)	 Micaz motes with mts300 board

SENSORBOARD=mts300 make micaz
v)	 Shimmer motes

SENSORBOARD=shimmer make shimmer
vi)	 Shimmer2 motes

SENSORBOARD=shimmer2 make shimmer2
vii)	Shimmer2r motes

SENSORBOARD=shimmer2r make shimmer2r
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Note that for each supported platform, a default SENSORBOARD has been 
defined. Therefore, unless differently specified (e.g. by defining the 
SENSORBOARD parameter in the make command):

●● telosb defaults to “spine” sensorboard.
●● tmote defaults to “moteiv” sensorboard.
●● micaz defaults to “mts300” sensorboard.
●● shimmer defaults to “shimmer” sensorboard.

To change these default values, the corresponding details can be found in the 
tos/types/spine.extra file.

3)	 Spine_serverApp contains the Java code for running the server side (e.g. 
coordinator) of a SPINE network.
a)	 src contains SPINE1.3 source code organized into:

●● spine
●● jade
●● test

b)	 defaults.properties contains the framework properties.
c)	 lib: contains a jar file that SPINE must include.
d)	 docs: contains SPINE1.3 javadoc documentation.
e)	 jar: contains the framework jar file.
f )	 build.properties and build.xml files for ant.

It is possible to compile and run the SPINE framework and its test applica­
tion either using textual ant commands or creating a java project using an 
IDE (such as Eclipse or NetBeans). An external jar (tinyos.jar) has to be 
manually added to the project. Due to different copyright regulations, this jar 
is not part of the SPINE distribution and can be found in the tinyos2.x\ 
support\sdk\java folder. tinyos.jar should be placed in the spine_serverApp/
ext‐lib folder.

12.2.2  How to Use SPINE

The SPINE framework provides, on the Server side, simple Java APIs to develop 
applications on the coordinator. Therefore, the main strength of the SPINE 
framework is to allow users to be ready to develop applications in sensor net­
works without bothering with node‐side programming.

Developers can easily form, manage, and collect data from the sensors in the 
network writing a simple Java program: no more firmware programming is 
needed!

On the Java side, the user can develop its own application that will have to 
implement the SPINEListener interface and can use any of the API provided by 
the SPINEManager.
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Since the application on the server side must implement the 
SPINEListener interface, it has to implement the following methods:

void received(Data data)
This method is invoked by the SPINEManager to its registered 
listeners when it receives new data from the specified node. 
The Node object that generated this data is embodied into the 
data object.

void discoveryCompleted(java.util.Vector 
activeNodes)
This method is invoked by the SPINEManager to its registered 
listeners when the discovery procedure timer fires.

void newNodeDiscovered(Node newNode)
This method is invoked by the SPINEManager to its registered 
listeners when it receives a ServiceAdvertisement message 
from a BSN node.

void received(ServiceMessage msg)
This method is invoked by the SPINEManager to its registered 
listeners when a ServiceMessage is received from a particular 
node. The Node object that generated this service message is 
embodied into the msg object.

Then, the application can use the following API exposed by the SPINEManager:

void activate(Node node, SpineFunctionReq 
functionReq)
Activates a function (or even only function subrou­
tines) on the given sensor.

void addListener(SPINEListener listener)
Registers a SPINEListener to the manager instance.

void deactivate(Node node, 
SpineFunctionReq functionReq)
Deactivates a function (or even only function subrou­
tines) on the given sensor.

void discoveryWsn()
Commands the SPINEManager to discover the sur­
rounding WSN nodes.

java.util.
Vector

getActiveNodes()
Returns the list of the discovered nodes as a Vector of 
spine.datamodel.Node objects.

spine.data 
model.Node

getBaseStation()
Returns the Node object representing the 
BaseStation.
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Jade.util.
Logger

static getLogger()
Returns the static Logger of the SPINE framework. 
The Logger can be used to set the logging level and to 
add custom log handlers (e.g. to log into a file).

spine.data 
model.Node

getNodeByLogicalID(spine.datamodel.
Address id)
Returns the node with the given logical address.

spine.data 
model.Node

getNodeByPhysicalID (spine.datamodel.
Address id)
Returns the node with the given physical address.

void getOneShotData(Node node, byte 
sensorCode)
Commands the given node to do an “immediate one‐
shot” sampling on the given sensor.

boolean isStarted()
Returns true if the manager has been asked to start 
the processing in the BSN.

void removeListener(SPINEListener 
listener)
Removes a SPINEListener from the manager instance.

void reset()
Commands a software reset of the whole WSN.

void setup(Node node, SpineSetupFunction 
setupFunction)
Setups a specific function of the 
given node.

void setup(Node node, SpineSetupSensor 
setupSensor)
Setups a specific sensor of the given node.

void start(boolean radioAlwaysOn, boolean 
enableTDMA)
Starts the BSN sensing and computing the previously 
requested functions.

It is worth noting that the SPINEManager instance can be retrieved only via 
the SPINEFactory:

SPINEManager createSPINEManager(String 
appPropertiesFile)
Initializes the SPINEManager. The SPINEManager 
instance is connected to the base station and platform 
obtained transparently from the app.properties file.
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Examples about which function can be set, which data can be received, and 
other details can be found in the SPINETest application, that is included in 
the latest release of the SPINE source code. More examples about how to use 
the Java side are given all through this document.

For further details about the Java side, the interested reader can refer to the 
Javadoc documentation that can be found in the release.

12.2.3  How to Run a Simple Desktop Application Using SPINE1.3

The SPINE1.3 release comes with a simple test application that can be easily 
run to experiment the framework basic functionalities. Take the following 
steps:

1)	 Compile and flash, on the available sensor node, the SPINE1.3 node‐side 
framework.

2)	 Compile and flash a TinyOS2.x BaseStation into another sensor node. It is 
important to check that sensor nodes and the base station are both working 
on the same radio channel, have been compiled with the same max message 
payload length, and the same TinyOS version has been used for flashing all 
the nodes.

3)	 Plug the BaseStation to a free USB port of the computer and type “motelist” 
from your shell: this will tell you your port number.

4)	 Create an application properties file (e.g. under MyApp/resources/app.
properties) and set the MOTECOM and the PLATFORM parameter according 
to one of the following options depending if you are using the serial for­
warder on a Linux or Windows machine (e.g. a.) or directly communicating 
with the serial port on your PC using a Windows machine (e.g. b.), or if you 
intend to emulate a sensor node network (e.g. c.).
a)	 MOTECOM=sf@127.0.0.1:9002
	 PLATFORM=sf
b)	 MOTECOM=serial@COM41:telosb
	 PLATFORM=tinyos
c)	 MOTECOM=4444
	 PLATFORM=emu

Option b may be used also on a Linux machine, but it is necessary to build 
libgetenv and libtoscomm library before being able to install and run any 
SPINE application. Also, MOTECOM value would look like “serial@/dev/
ttyS0:telosb.”
	 cd $TOSROOT/support/sdk/java && make 

sudo tos-install-jni

If needed, other application‐dependent properties can be stored in this 
property file without any side effect to the SPINE framework.
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5)	 edit Spine_serverApp/test/SPINETest.java and optionally go through 
the code to customize the test application. The code documentation 
helps to understand what functionalities SPINE exposes to the java 
developer.
  As mentioned before, SPINETest.java implements the 
SPINEListener interface (to get notified of SPINE‐related events) 
and uses the SPINEFactory to retrieve the SPINEManager, which, 
in turn, has the APIs for managing and communicating with the nodes 
in the network.

The SPINETest provided within the SPINE 1.3 release performs the 
following actions:

a)	 a discovery message is broadcasted to check how the PAN is composed:
manager.discoveryWsn();

b)	 when the discovery is completed, all the received info about nodes 
present in the PAN is displayed.

curr = (Node)activeNodes.elementAt(j);
// we print for each node its details (nodeID, 
sensors, and functions provided)
System.out.println(curr);

The information displayed at this point is:

i)	 node id
ii)	 supported sensors
iii)	 supported functionalities

c)	 if a node with an accelerometer is found:
i)	 the accelerometer is set with sampling time SAMPLING_TIME=50 ms.

SpineSetupSensor sss = new SpineSetupSensor();
sss.setSensor(sensor);
sss.setTimeScale(SPINESensorConstants.MILLISEC)
sss.setSamplingTime(SAMPLING_TIME);
manager.setup(curr, sss);

ii)	 the feature engine function is set on that node to work on data com­
ing from the accelerometer sensor with window WINDOW_
SIZE=40 and shift SHIFT_SIZE=20.

FeatureSpineSetupFunction ssf = new FeatureSpine
SetupFunction();
ssf.setSensor(sensor);
ssf.setWindowSize(WINDOW_SIZE);
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ssf.setShiftSize(SHIFT_SIZE);
manager.setup(curr, ssf);

iii)	 few features are activated on that node on the accelerometer data 
(MODE, MEDIAN, MAX, and MIN on all the accelerometer’s 
channels).

FeatureSpineFunctionReq sfr = new 
FeatureSpineFunctionReq();
sfr.setSensor(sensor);
sfr.add(new Feature(SPINEFunctionConstants.MODE,
((Sensor)curr.getSensorsList().elementAt(i))

.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MEDIAN,
((Sensor)curr.getSensorsList().elementAt(i))

.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MAX,
((Sensor)curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MIN,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
manager.activate(curr, sfr);

iv)	 more features are activated (MEAN, AMPLITUDE).

FeatureSpineFunctionReq sfr = new 
FeatureSpineFunctionReq();
sfr.setSensor(sensor);
sfr.add(new Feature(SPINEFunctionConstants.MEAN,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.
AMPLITUDE,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
manager.activate(curr, sfr);

v)	 the alarm engine function is set on the node to work on data coming 
from the accelerometer sensor with window WINDOW_SIZE=40 
and shift SHIFT_SIZE=20. Note that Feature and Alarm engines can 
be set with different settings, since they are two separate compo­
nents. However, in this test application, they have been set with the 
same value to better check the results.

AlarmSpineSetupFunction ssf2 = new 
AlarmSpineSetupFunction();
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ssf2.setSensor(sensor);
ssf2.setWindowSize(WINDOW_SIZE);
ssf2.setShiftSize(SHIFT_SIZE);
manager.setup(curr, ssf2);

vi)	 two alarms are set on the accelerometer sensor, so that an alarm 
message will be sent back when:
1)	 the MAX value on CH1 is greater than upperThreshold value = 40.

AlarmSpineFunctionReq sfr2 = new 
AlarmSpineFunctionReq();
sfr2.setDataType(SPINEFunctionConstants.MAX);
sfr2.setSensor(SPINESensorConstants.
ACC_SENSOR);
sfr2.setValueType((SPINESensorConstants.
CH1_ONLY));
sfr2.setLowerThreshold(lowerThreshold);
sfr2.setUpperThreshold(upperThreshold);
sfr2.setAlarmType(SPINEFunctionConstants.
ABOVE_THRESHOLD);
manager.activate(curr, sfr2);

2)	 the AMPLITUDE on CH2 is lower than lowerThreshold value = 
2000.

sfr2.setDataType(SPINEFunctionConstants.AMPLITUDE);
sfr2.setSensor(SPINESensorConstants.ACC_SENSOR);
sfr2.setValueType((SPINESensorConstants.
CH2_ONLY));
sfr2.setLowerThreshold(lowerThreshold);
sfr2.setUpperThreshold(upperThreshold);
sfr2.setAlarmType(SPINEFunctionConstants.
BELOW_THRESHOLD);
manager.activate(curr, sfr2);

d)	 if a node with internal CPU temperature sensor is found:
i)	 the temperature sensor is set with sampling time OTHER_ 

SAMPLING_TIME=100 ms.
ii)	 the feature engine function is set on that node to work on data 

coming from the temperature sensor with window OTHER_
WINDOW_SIZE=80 and shift OTHER_SHIFT_SIZE=40.

iii)	 few features are activated on that node on the temperature data 
(MODE, MEDIAN, MAX, and MIN).

iv)	 the alarm engine function is set on the node to work on data coming 
from the accelerometer sensor with window WINDOW_SIZE=40 
and shift SHIFT_SIZE=20.
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v)	 then one alarm is set on the internal CPU temperature sensor, so 
that an alarm message will be sent back when the MIN value on CH1 
is greater than 1000 and lower than 3000.

e)	 once all the requests are set, the network starts.

manager.startWsn(true, true);

f )	 on reception of the activated data (received(Data data)), data payload is 
displayed.

System.out.println(data);

g)	 during application runtime, functions can be deactivated and activated. 
Here for instance:
i)	 After receiving five feature packets, the first activated feature on that 

sensor is deactivated.

if(counter == 5) {
  // it's possible to deactivate functions computation
  at runtime (even when the radio on the node works
  in low-power mode)
  FeatureSpineFunctionReq sfr = new     
  FeatureSpineFunctionReq();
  sfr.setSensor(features[0].getSensorCode());
  sfr.remove(new Feature(features[0].
getFeatureCode(),
  SPINESensorConstants.ALL);
  manager.deactivate(data.getNode(), sfr));
}

ii)	 After receiving 10 feature packets a new feature (RANGE) is com­
puted on the first channel of that sensor.

if(counter 3== 10) {
  // and we can activate new functions at runtime
  FeatureSpineFunctionReq sfr = new   
  FeatureSpineFunctionReq();
  sfr.setSensor(features[0].getSensorCode());
  sfr.add(new Feature(SPINEFunctionConstants.
RANGE,
  SPINESensorConstants.CH1_ONLY);
  manager.activate(data.getNode(), sfr);

 }

iii)	 After 20 alarm packets the, the alarm – previously set to fire when 
the MAX value on CH1 is above the threshold value – is disabled.
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if(counter_alarm == 20) {
   AlarmSpineFunctionReq sfr2 = new    
   AlarmSpineFunctionReq();
   sfr2.setSensor(SPINESensorConstants.ACC_SENSOR);
sfr2.setAlarmType(SPINEFunctionConstants.
ABOVE_THRESHOLD);
sfr2.setDataType(SPINEFunctionConstants.MAX);
sfr2.setValueType((SPINESensorConstants.
CH1_ONLY));
manager.deactivate(data.getNode(), sfr2);

  }

12.2.4  SPINE Logging Capabilities

The SPINE framework uses a Logger to print info or warning messages, to 
notify of exceptions, and so on. This enables a convenient way to filter undesired 
messages, to forward logs to output files, and much more.

From a SPINE user point of view, it can be useful to use the SPINE­
Manager  static method getLogger(), e.g. to modify the default logging 
level (INFO):

SPINEManager.getLogger().setLevel(Level.WARNING);

From a SPINE developer point of view, it is worth to report the correct way 
to print using the logger:

if(SPINEManager.getLogger()
        .isLoggable(Logger.[SEVERE|WARNING|INFO]))
SPINEManager.getLogger().log(Logger.
[SEVERE|WARNING|INFO], “msg”);

Logging levels are hierarchical in terms of gravity. For instance, if the logging 
level has been set to WARNING, only the SEVERE and the WARNING 
messages will be logged, while INFO messages will not.

The interested reader can refer to the Jade Framework logging tutorial 
(http://jade.tilab.com/doc/tutorials/logging/JADELoggingService.html) and 
to the java.util.logging javadocs for further details.

12.3  SPINE2

SPINE2 (see Chapter 4) has not been conceived as a substitute of SPINE 1.x but 
is rather a parallel research effort aiming at (i) experimenting a different pro­
gramming abstraction based on a task‐oriented paradigm and (ii) designing a 
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node‐side software architecture for a quicker framework porting towards new 
sensor platforms.

Similar to SPINE, SPINE2 has two main components:

●● A (coordinator) server‐side management application (with GUI) and libraries 
providing functionalities and Java‐API for (i) interfacing with the sensor 
network, (ii) defining and managing the task‐based distributed application 
to be run on the sensor nodes, and (iii) feeding user‐defined customized 
tools with the gathered data from the network for further data processing.

●● A sensor node middleware providing sensing and distributed data processing 
functionalities by executing the tasks defined by the user. The middleware in 
turn is composed of two different sets of components: the core platform‐
independent modules, which can be in principle compiled for any C‐like 
embedded platform with very slight changes in the source code, and the 
platform‐dependent ones devoted to managing the physical resources and 
the lower level services provided by the specific platform. In this chapter, we 
specifically concentrate on the TinyOS port of SPINE2.

The platform‐independent source code, i.e. the common node‐side core 
framework, is organized as follows:

Spine2_common_c
|__actuating
|__communication
|__memory
|__sensing
|__task
|  |__task_list
|__timing
|__utils
|__SPINEManager.c
|__SPINEManager.h

In particular, the SPINEManager, placed in the root folder, is the central 
component of the core and is in charge of (i) system initialization and startup; (ii) 
orchestrating the other modules managing tasks, memory, sensors, actuators, 
and communication; and (iii) handling the SPINE2 application‐level protocol. 
In the “task” folder are the modules for managing the task‐graph representation 
and the scheduler for correctly instantiating and running the tasks allocated on 
the sensor node, whereas the “task_list” contains the library of tasks, i.e. the 
specifications of all the types of task supported by the framework. The “mem­
ory” folder has components in charge of dynamically allocating the task‐based 
application as well as the buffers required by each single allocated task. The 
other folders contain modules for managing actuators and sensors, timers, 
communication, and providing other utility functions.
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The TinyOS‐specific node‐side source code is organized as follows:

Spine2_tinyos‐2.x
|__apps
|    |__SPINEApp
|__support
|    |__make
|__tos
|    |__interfaces
|    |       |__communication
|    |__platforms
|    |        |__shimmer2r
|    |        |__telosb
|    |__sensorboards
|    |__system
|    |     |__actuating
|    |     |__communication
|    |     |__scheduling
|    |     |__sensing
|    |     |__timing

Differently from the SPINE (version 1.x) source code, most of the source 
files merely contain “glue code” (i.e. adaptation components) binding the 
previously described SPINE2 functionalities with the TinyOS‐specific sen­
sor platforms code, which is used to access the lower level mechanisms and 
services (i.e. physical sensor/actuator, timer, and radio drivers). In particular, 
the “system” and “interfaces” folders contain TinyOS components related to 
the SPINE2 architecture, whereas “platforms” and “sensorboards” contain 
code binding with more specific drivers for sensor platforms and sensor 
boards.

The structure of the server‐side management application (Java code) running 
on the coordinator of the sensor networks is organized as follows:

Spine2_coordinator
|__src
|    |__spine2
|    |      |__communication
|    |      |     |__tinyOS
|    |      |__message
|    |      |     |__message_list
|    |      |__support
|    |      |__task
|    |      |     |__task_list
|    |      |__utils
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|    |      |__wsn
|    |__test
|__lib
|__doc
|__resources

Spine2_console
|__src
|    |__spine2.console
|    |        |__gui
|    |        |__spine2wrapper
|    |        |__xml
|__lib
|__resources
|__xml

In particular, the “Spine2_coordinator” provides all necessary Java‐API, 
libraries, and functionalities for defining and deploying task‐based appli­
cations, whereas “Spine2_console” is the graphical user interface that 
facilitates SPINE2 application development without dealing with the Java 
code.

12.3.1  How to Install SPINE2

The process to setup the SPINE2 environment consists of the following steps:

1)	 Download SPINE2 from the SPINE project website (http://spine.dimes.
unical.it/). The folder contains:
a)	 Spine2_ common_c folder with the sensor‐side platform‐independent C 

code.
b)	 Spine2_tinyos‐2.x folder with TinyOS 2.x code to be run on the sensor 

nodes supporting TinyOS.
c)	 Spine2_coordinator folder with Java code to be run on the coordinator 

(i.e. a computer).
d)	 Spine2_console folder containing the Java code for the GUI.
e)	 COPYING and License text files containing info about the licensing.
f )	 the SPINE2 manual.

2)	 The sensor‐side folders have to be compiled in TinyOS 2.x and then flashed 
on sensor nodes. SPINE2 has been developed and tested with TinyOS 
version 2.1.0. Older TinyOS 2.x versions have also been tested, and the 
Makefile can be configured to support an older version, but the SPINE team 
strongly suggests to use TinyOS 2.1.0 release.
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a)	 Copy spine2_common_c and spine2_tinyos‐2.x folders into your tinyos‐
2.x‐contrib folder.

b)	 From the spine2_tinyos‐2.x/apps/SPINEApp folder compile and install 
SPINE2 framework on your TinyOS platform. For instance, if your plat­
form is TelosB:

make telosb install,1 bsl,/dev/ttyUSB1

where “1” is the sensor node ID (can be freely set by the user) and /dev/
ttyUSB1 is the serial port, on Linux machine, to which the sensor node 
is connected.

3)	 Configure the TinyOS Java JNI libraries. On Windows machine, copy 
toscomm.dll and getenv.dll to C:\WINDOWS\system32 or to your JRE/JDK 
bin subfolder (i.e. ..\jdk1.xx.xx\bin or ..\jreX\bin). These two files can be 
found in $TOSROOT/support/sdk/java/net/tinyos/util named as windows_
x86_toscomm.lib and windows_x86_getenv.lib. Since these libraries are for 
32‐bit systems, use a 32‐bit i586‐JRE version to run the SPINE2 Java apps. 
On Linux machine, both for 32‐bit and 64‐bit versions, run in the terminal 
the following:

cd $TOSROOT/support/sdk/java && make
sudo tos-install-jni

4)	 Spine2_coordinator and Spine2_console can both simply run as any Java 
application or can be imported as Java project using an IDE such as Eclipse 
or NetBeans. The console application needs the SPINE2 coordinator pro­
ject (or its JAR library SPINE2.jar) in order to be run. Moreover, for con­
venience, the lib subfolder in both projects already contains the necessary 
external libraries, like the TinyOS Java library tinyos.jar, which can also be 
found in the tinyos2.x\support\sdk\java folder of your TinyOS release. In 
addition, the Java Communications API is required to support the com­
munication with the sensor node acting as the base station over the serial 
port. Along with the Java comm.jar library, the native binary library needs 
to be integrated in your operating system:

a)	 On Windows machines, (i) copy the win32com.dll file into the  C:\
WINDOWS\system32 folder and (ii) move the  javax.comm.properties 
text file to the lib subfolder in your JRE folder, i.e. C:\Program Files\Java\
jre6\lib, by uncommenting the line with the following string: Driver=com.
sun.comm.Win32Driver.

b)	 On Linux machines, (i) copy the libLinuxSerialParallel.so file into the  /usr/ 
lib folder and (ii) move the  javax.comm.properties text file to the lib 
subfolder in your JRE folder, uncomment the line with the following 
string: driver=com.sun.comm.LinuxDriver.
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12.3.2  How to Use the SPINE2 API

Similar to SPINE 1.x, SPINE2 provides, on the server side, simple Java‐API 
through which a developer can easily develop its own Java application on the 
coordinator, without dealing with node‐side programming issues, for:

●● managing the sensor network.
●● defining the task‐oriented application to be deployed on the WSN.
●● managing the (preprocessed) data from the network.

Such a Java application will have to implement the SPINE2Listener interface 
and the following methods:

void discoveryCompleted(java.util.LinkedList<spine2.
wsn.WSNNode>nodes)
This method is invoked by the SPINE2Manager (through the 
EventDispatcher) to its registered listeners when the discovery 
procedure timer fires; it provides a LinkedList of WSNNode 
objects representing the discovered nodes.

void messageReceived(spine2.message.Message msg)
This method is invoked by the SPINE2Manager (through the 
EventDispatcher) to its registered listeners when a new SPINE2 
message has been received.

void nodeDiscovered(spine2.wsn.WSNNode node)
This method is invoked by the SPINE2Manager (through the 
EventDispatcher) to its registered listeners when it receives a 
NODE_ADVERTISEMENT_MSG message from a BSN node.

Then, through the SPINE2Manager, whose instance can be only retrieved via 
the SPINE2Factory, the application can use the following API:

void addListener(SPINE2Listener listener)
Registers a SPINE2Listener to the manager instance.

void deployApplication(spine2.task.
TaskGraph taskgraph, boolean 
automaticallyStartApp)
Deploys the task‐based application into the sensor 
network.

void discoveryWSN()
Commands the SPINE2Manager to discover the sur­
rounding sensor nodes within a timeout (2 s as default).

long getDiscoveryTimeout()
Gets the discovery procedure timeout.

spine2.wsn.
WSNNode

getNode(spine2.wsn.Address address)
Returns a specific sensor node by its address.
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spine2.wsn.
WSN

getWSN( )
Returns the object describing the discovered sensor 
network.

void initApplication(boolean 
automaticallyStartApp)
Initializes the deployed task‐based application.

boolean isStarted() Informs if the task‐based application has been 
started.

void removeListener(SPINE2Listener listener)
Removes a SPINE2Listener from the manager instance.

void resetApplication()
Removes the task‐based application deployed in the sen­
sor network.

void startApplication()
Starts the deployed task‐based application.

In the following, the API provided by the TaskGraph class for defining the 
task‐based application:

boolean addConnection(int sourceTaskCode, int 
destTaskCode)
Adds a connection to the task graph, by task codes.

boolean addConnection(Task sourceTask, Task 
destTask)
Adds a connection to the task graph.

boolean addConnections(Task sourceTask, Task[] 
destTasks)
Adds a set of connections to the task graph, from one 
source task to multiple destination tasks.

boolean addTask(Task task)
Adds a task instance to the task graph.

boolean connectionAlreadyExist(int sourceTaskCode, 
int destTaskCode)
Verifies if a connection has been instantiated.

java.util. 
LinkedList 
<Connection>

getAlllnputConnections(int taskCode)
Returns the list of input connections connected to a 
specific task.

java.util. 
LinkedList 
<Connection>

getAllOutputConnections(int taskCode)
Returns the list of output connections given a specific 
task.

Connection getConnection(int sourceTaskCode, int 
destTaskCode)
Returns the connection between two tasks given their 
codes.
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java.util. 
LinkedList 
<Connection>

getConnectionsList()
Returns the list of all connections.

Task getTask(int taskCode)
Returns a specific task instance given its code.

Task getTask(java.lang.String logicalName)
Returns a specific task instance from its logical name.

java.util.
LinkedList 
<Task>

getTaskList()
Returns the list of tasks in the task graph.

boolean removeConnection(Task sourceTask, Task 
destTask)
Removes a connection from the task graph.

boolean removeTask(Task task)
Removes a task instance from the task graph.

void reset()
Resets the application, i.e. all its related information (tasks 
and connections) is deleted.

boolean updatelask(Task task)
Updates a task instance already into the task graph.

12.3.3  How to Run a Simple Application Using SPINE2

The SPINE2 release comes with a simple test application (SPINE2SimpleTest.
java) that can be run to experiment the framework basic functionalities. 
Assuming the use of the TinyOS environment on the sensor nodes, running 
the application consists in the following steps:

1)	 Compile and flash, on an available sensor node, the SPINE2 TinyOS node‐side 
software.

2)	 Compile and flash a TinyOS2.x BaseStation onto another sensor node. It is 
important to check that sensor nodes and base station are both working on 
the same radio channel, have been compiled with the same max message 
payload length, and the same TinyOS version has been used for flashing all 
the nodes.

3)	 Plug the BaseStation to a free USB port of the computer and type motelist 
from your shell: this will return the USB port number.

4)	 Create an application properties file (e.g. under MyApp/resources/myapp.
properties) and set the “enabled_platforms” and the “platform_motecom” 
parameters according to one of the following options, depending if the base 
station is communicating with the USB serial port on a Linux (a) or Windows 
machine (b):
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a)	 enabled_platforms=tinyos
tinyos_motecom=serial@/dev/ttyUSB0:telosb

b)	 enabled_platforms=tinyos
tinyos_motecom=serial@COM0:telosb

	 SPINE2 currently fully supports TinyOS platforms, whereas support for  
Z‐Stack is under development.

5)	 Edit the Spine2_coordinator/test/SPINE2SimpleTest.java and go through 
the code if you want to customize the test application.

The SPINE2SimpleTest application in the current SPINE2 release has been 
created to show how to develop the task‐based application of Figure 12.1 over 
a BSN composed of three sensor nodes.

As mentioned before, SPINE2SimpleTest.java implements the SPINE2­
Listener interface (to get notified of SPINE2‐related events and messages) and 
uses the SPINE2Factory to retrieve the SPINE2Manager, which, in turn, has 
the APIs for managing and communicating with the nodes in the network. 
Moreover, a TaskGraph instance has been created and modeled to reflect the 
user‐defined task‐based application.

In particular, the sample application performs the following actions:

a)	 A discovery message is broadcast to discover the surrounding SPINE2‐
capable sensor nodes, after which the manager collects the reply messages 
sent by the nodes within DISCOVERY_TIMEOUT=3000 ms.

manager.setDiscoveryTimeout(DISCOVERY_TIMEOUT);
manager.discoveryWsn();

b)	 Once the discovery is completed, the application is notified by the manager 
through the discoveryCompleted(LinkedList<WSNNode>nodes) 
method, which returns the list of discovered sensor nodes, whose information 
is then displayed.

Node 1

Node 2

Node 3
Sensing Task

(Accelerometer)
Processing Task

(Mean)

Merge

Sensing Task
(Accelerometer)

Processing Task
(Max)

Transmission Task

Figure 12.1  The task‐oriented application defined and deployed in “SPINE2SimpleTest.java” 
application.
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currentNode = motes.get(j);
System.out.println(currentNode);

The information displayed at this point is:

i)	 node id/address.
ii)	 node software platform, e.g. TinyOS.
iii)	 the available onboard physical sensors.
iv)	 the available SPINE2 tasks that can be instantiated on the node.

The task‐based application of Figure 12.1 can now be defined by using a 
TaskGraph instance.

taskGraph= new TaskGraph();

The tasks to be instantiated on the first node are then created and added to 
the TaskGraph instance. The sensing task is configured to periodically 
acquire sensed data from the onboard accelerometer with sampling time 
SAMPLING_TIME=50 ms. The processing task is configured to compute 
the mean over the accelerometer raw data with WINDOW_SIZE=40 and 
SHIFT_SIZE=20.

//     SENSING TASK
SensingTask sensingTask1= new SensingTask(motes.
get(0));
sensingTask1.setLogicalName("Sensing_Task_1");
sensingTask1.setSensorType(Sensor.ACCELEROMETER);
sensingTask1.setPeriodicity(SensingTask.TIMER_PERIODIC);
sensingTask1.setTimeScale(SensingTask.TS_MILLISEC);
sensingTask1.setPeriod(SAMPLING_TIME);
sensingTask1.setDataSelection(SensingTask.DATA_ALL);
taskGraph.addTask(sensingTask1);          
//     PROCESSING TASK
ProcessingTask procTaskMean1= 

new ProcessingTask(motes.
get(0));

procTaskMean1.setLogicalName("Processing_Mean_1");
procTaskMean1.setFunctionType(FunctionConstants.F_MEAN);
procTaskMean1.setWindowSize(WINDOW_SIZE);
procTaskMean1.setShiftSize(SHIFT_SIZE);
procTaskMean1

.setOutputBuffering(PROCESSING_OUTPUT_ 
BUFFERING);

taskGraph.addTask(procTaskMean1);
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c)	 A similar configuration is defined for the second node.

//     SENSING TASK
SensingTask sensingTask2= new SensingTask(motes.get(1));
sensingTask1.setLogicalName("Sensing_Task_2");
sensingTask1.setSensorType(Sensor.ACCELEROMETER);
sensingTask1.setPeriodicity(SensingTask.
TIMER_PERIODIC);
sensingTask1.setTimeScale(SensingTask.TS_MILLISEC);
sensingTask1.setPeriod(SAMPLING_TIME);                    
sensingTask1.setDataSelection(SensingTask.DATA_ALL);
taskGraph.addTask(sensingTask2);          
//     PROCESSING TASK
ProcessingTask procTaskMean2= 

new ProcessingTask(motes.
get(1));

procTaskMean1.setLogicalName("Processing_Mean_2");
procTaskMean1.setFunctionType(FunctionConstants.F_MEAN);
procTaskMean1.setWindowSize(WINDOW_SIZE);
procTaskMean1.setShiftSize(SHIFT_SIZE);
procTaskMean1

.setOutputBuffering(PROCESSING_OUTPUT_ 
BUFFERING);

taskGraph.addTask(procTaskMean2);

d)	 Finally, the tasks for the third node.

//     MERGE TASK
MergeTask mergeTask= new MergeTask(motes.get(2));
mergeTask.setLogicalName("Merge_Task");
taskGraph.addTask(mergeTask);
//     TRASMISSION TASK
TransmissionTask transmTask = 

new TransmissionTask(motes.
get(2));

transmTask.setLogicalName("Transmission_Task");
transmTask.setDestinationAddr(

CommConstants.SPINE_BASE_STATION_ 
ADDR);

taskGraph.addTask(transmTask);
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e)	 Next, the connections between pair of tasks are created.

taskGraph.addConnection(sensingTask1, 
procTaskMean1);
taskGraph.addConnection(sensingTask2, procTaskMean2);
taskGraph.addConnection(procTaskMean1, mergeTask);
taskGraph.addConnection(procTaskMean2, mergeTask);
taskGraph.addConnection(mergeTask, transmTask);

f )	 Once the application task graph is defined, it can be deployed over the 
network. Moreover, the manager is instructed to automatically run the task 
application as soon as all the tasks are instantiated on the sensor nodes.

manager.deployApplication(taskGraph, 
                WSN.AUTOMATICALLY_START_APPLICATION);

g)	 As last operation of the discoveryCompleted(…) method, the 
MetaDataManager instance is used to build the metadata information 
related to the just‐defined task graph application. This component is neces­
sary to correctly extract the sensor data from the SensorDataMessage.

h)	 On the reception of a message from the sensor network, and specifi­
cally  from the TransmissionTask instance, the messageReceived 
(Message msg) method is triggered in order to handle such a mes­
sage  on the basis on its type (see “spine2.message.message_
list” package). In particular, in case of a SensorDataMessage, the 
Meta  DataManager instance is used to allow the developer to simply 
extract the data of interest, which can be identified by means of specific 
labels. Moreover, the check over the dataMsgChainID value can be use­
ful to differentiate data messages coming from different transmission tasks, 
which is not actually necessary in this case. Data are then simply displayed 
with no further computation.

if(msg instanceof SensorDataMessage){
SensorDataMessage dataMsg= 

(SensorDataMessage) msg;               
     metaDataManager.decodeSensorDataMsg 
(dataMsg);
     int dataMsgChainID= dataMsg

.getTransmissionTaskCode();  
     if(dataMsgChainID== transmTask.getCode()){          
          short[]streamMeanX= metaDataManager

.getDataStream(
"Mean_AccX_Sensing_Task_1");
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            if(streamMeanX!=null)
                printDataStream(

"Mean_AccX_Sensing_
Task_1",
streamMeanX);

          else
System.out.println("No data 
associated 

with the specified 
label");     

     }
}

i)	 Finally, in order for the developer to know the exact list of available sensor 
data labels, the MetaDataManager provides the following method:

MetaDataManager.getMetaDataLabelsListString(
TaskGraph 
taskgraph);
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