

Wearable Computing

Wearable Computing

From Modeling to Implementation of
Wearable Systems Based on Body
Sensor Networks

Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano

University of Calabria
Rende, Italy

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.

The right of Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano to be identified as the
authors of this work has been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and
the constant flow of information relating to the use of experimental reagents, equipment, and
devices, the reader is urged to review and evaluate the information provided in the package insert
or instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for added warnings and precautions.
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended
by sales representatives, written sales materials or promotional statements for this work. The
fact that an organization, website, or product is referred to in this work as a citation and/or
potential source of further information does not mean that the publisher and authors endorse the
information or services the organization, website, or product may provide or recommendations
it may make. This work is sold with the understanding that the publisher is not engaged in
rendering professional services. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a specialist where appropriate. Further, readers should
be aware that websites listed in this work may have changed or disappeared between when this
work was written and when it is read. Neither the publisher nor authors shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

Library of Congress Cataloging‐in‐Publication Data
Names: Fortino, Giancarlo, 1971– author. | Gravina, Raffaele, 1982– author. |

Galzarano, Stefano, 1984– author.
Title: Wearable computing : from modeling to implementation of wearable systems based on

body sensor networks / Giancarlo Fortino, Raffaele Gravina, Stefano Galzarano.
Description: 1st edition. | Hoboken, NJ : John Wiley & Sons, 2018. | Includes bibliographical

references and index. |
Identifiers: LCCN 2017053912 (print) | LCCN 2017059016 (ebook) |

ISBN 9781119078821 (pdf) | ISBN 9781119078838 (epub) | ISBN 9781118864579 (cloth)
Subjects: LCSH: Wearable computers. | Sensor networks.
Classification: LCC QA76.592 (ebook) | LCC QA76.592 .F67 2018 (print) | DDC 004.167–dc23
LC record available at https://lccn.loc.gov/2017053912

Cover design by Wiley
Cover images: © nopporn/Shutterstock; © Sergey Nivens/Shutterstock

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

v

Contents

Preface  xi
Acknowledgments  xvi

1	 Body Sensor Networks  1
1.1	 Introduction  1
1.2	 Background  1
1.3	 Typical m‐Health System Architecture  4
1.4	 Hardware Architecture of a Sensor Node  6
1.5	 Communication Medium  7
1.6	 Power Consumption Considerations  7
1.7	 Communication Standards  8
1.8	 Network Topologies  10
1.9	 Commercial Sensor Node Platforms  13
1.10	 Biophysiological Signals and Sensors  16
1.11	 BSN Application Domains  17
1.12	 Summary  20
	 References  20

2	 BSN Programming Frameworks  25
2.1	 Introduction  25
2.2	 Developing BSN Applications  25
2.2.1	 Application‐ and Platform‐Specific Programming  26
2.2.2	 Automatic Code Generation  28
2.2.3	 Middleware‐Based Programming  28
2.2.4	 Programming Approaches Comparison  30
2.3	 Programming Abstractions  31
2.4	 Requirements for BSN Frameworks  34
2.5	 BSN Programming Frameworks  37
2.5.1	 Titan  38
2.5.2	 CodeBlue  38

Contentsvi

2.5.3	 RehabSPOT  38
2.5.4	 SPINE  39
2.5.5	 SPINE2  39
2.5.6	 C‐SPINE  39
2.5.7	 MAPS  40
2.5.8	 DexterNet  40
2.6	 Summary  40
	 References  41

3	 Signal Processing In‐Node Environment  45
3.1	 Introduction  45
3.2	 Background  46
3.3	 Motivations and Challenges  46
3.4	 The SPINE Framework  46
3.4.1	 Architecture  47
3.4.2	 Programming Perspective  51
3.4.3	 Optional SPINE Modules  51
3.4.4	 High‐Level Data Processing  52
3.4.5	 Multiplatform Support  55
3.5	 Summary  56
	 References  57

4	 Task‐Oriented Programming in BSNs  59
4.1	 Introduction  59
4.2	 Background  60
4.3	 Motivations and Challenges  60
4.3.1	 Need for a Platform‐Independent Middleware  60
4.3.2	 Challenges in Designing a Task‐Oriented Framework  61
4.4	 SPINE2 Overview  62
4.5	 Task‐Oriented Programming in SPINE2  63
4.6	 SPINE2 Node‐Side Middleware  66
4.7	 SPINE2 Coordinator  68
4.8	 SPINE2 Communication Protocol  68
4.9	 Developing Application in SPINE2  70
4.10	 Summary  71
	 References  72

5	 Autonomic Body Sensor Networks  73
5.1	 Introduction  73
5.2	 Background  73
5.3	 Motivations and Challenges  74
5.4	 State‐of‐the‐Art  75
5.5	 SPINE‐*: Task‐Based Autonomic Architecture  76

Contents vii

5.6	 Autonomic Physical Activity Recognition  81
5.7	 Summary  84
	 References  85

6	 Agent‐Oriented Body Sensor Networks  89
6.1	 Introduction  89
6.2	 Background  89
6.2.1	 Agent‐Oriented Computing and Wireless Sensor Networks  89
6.2.2	 Mobile Agent Platform for Sun SPOT (MAPS)  91
6.3	 Motivations and Challenges  94
6.4	 State‐of‐the‐Art: Description and Comparison  95
6.5	 Agent‐Based Modeling and Implementation of BSNs  98
6.6	 Engineering Agent‐Based BSN Applications: A Case Study  98
6.7	 Summary  101
	 References  103

7	 Collaborative Body Sensor Networks  107
7.1	 Introduction  107
7.2	 Background  108
7.3	 Motivations and Challenges  109
7.4	 State‐of‐the‐Art  110
7.5	 A Reference Architecture for Collaborative BSNs  111
7.6	 C‐SPINE: A CBSN Architecture  114
7.6.1	 Inter‐BSN Communication  116
7.6.2	 BSN Proximity Detection  117
7.6.3	 BSN Service Discovery  118
7.6.4	 BSN Service Selection and Activation  118
7.7	 Summary  119
	 References  119

8	 Integration of Body Sensor Networks and Building Networks  121
8.1	 Introduction  121
8.2	 Background  121
8.2.1	 Building Sensor Networks and Systems  121
8.2.2	 Building Management Framework  124
8.3	 Motivations and Challenges  125
8.4	 Integration Layers  127
8.5	 State‐of‐the‐Art: Description and Comparison  129
8.6	 An Agent‐Oriented Integration Gateway  130
8.7	 Application Scenarios  133
8.7.1	 In‐Building Physical Activity Monitoring  133
8.8	 Summary  135
	 References  135

Contentsviii

9	 Integration of Wearable and Cloud Computing  139
9.1	 Introduction  139
9.2	 Background  140
9.2.1	 Cloud Computing  140
9.2.2	 Architectures for Sensor Stream Management  140
9.3	 Motivations and Challenges  142
9.3.1	 BSN Challenges  143
9.3.2	 BSN/Cloud Computing Integration Challenges  144
9.4	 Reference Architecture for Cloud‐Assisted BSNs  145
9.4.1	 Sensor Data Collection  145
9.4.2	 Sensor Data Management  147
9.4.3	 Scalable Processing Framework  147
9.4.4	 Persistent Storage  148
9.4.5	 Decision‐Making Process  149
9.4.6	 Open Standards and Advanced Visualization  149
9.4.7	 Security  150
9.5	 State‐of‐the‐Art: Description and Comparison  151
9.5.1	 Integration of WSNs and Cloud Computing  151
9.5.2	 Integration of BSNs and Cloud Computing  152
9.5.3	 A Comparison  153
9.6	� BodyCloud: A Cloud‐based Platform for Community

BSN Applications  156
9.7	 Engineering BodyCloud Applications  159
9.7.1	 ECGaaS: Cardiac Monitoring  160
9.7.2	 FEARaaS: Basic Fear Detection  162
9.7.3	 REHABaaS: Remote Rehabilitation  165
9.7.4	 ACTIVITYaaS: Community Activity Monitoring  166
9.8	 Summary  171
	 References  171

10	 Development Methodology for BSN Systems  177
10.1	 Introduction  177
10.2	 Background  177
10.3	 Motivations and Challenges  180
10.4	 SPINE‐Based Design Methodology  180
10.4.1	 A Pattern‐Driven Application‐Level Design  181
10.4.2	 System Parameters  183
10.4.3	 Process Schema  184
10.5	 Summary  186
	 References  186

Contents ix

11	 SPINE‐Based Body Sensor Network Applications  187
11.1	 Introduction  187
11.2	 Background  187
11.3	 Physical Activity Recognition  187
11.3.1	 Related Work  188
11.3.2	 A SPINE‐Based Activity Recognition System  189
11.4	 Step Counter  191
11.4.1	 Related Work  191
11.4.2	 A SPINE‐Based Step Counter  192
11.5	 Emotion Recognition  194
11.5.1	 Stress Detection  194
11.5.1.1	 Related Work  194
11.5.1.2	� SPINE‐HRV: A Wearable System for Real‐Time

Stress Detection  195
11.5.2	 Fear Detection  197
11.5.2.1	 Related Work  197
11.5.2.2	 A SPINE‐Based Startle Reflex Detection System  198
11.6	 Handshake Detection  200
11.6.1	 Related Work  201
11.6.2	 A SPINE‐Based Handshake Detection System  202
11.7	 Physical Rehabilitation  205
11.7.1	 Related Work  205
11.7.2	 SPINE Motor Rehabilitation Assistant  206
11.8	 Summary  208
	 References  208

12	 SPINE at Work  213
12.1	 Introduction  213
12.2	 SPINE 1.x  213
12.2.1	 How to Install SPINE 1.x  216
12.2.2	 How to Use SPINE  217
12.2.3	 How to Run a Simple Desktop Application Using SPINE1.3  220
12.2.4	 SPINE Logging Capabilities  225
12.3	 SPINE2  225
12.3.1	 How to Install SPINE2  228
12.3.2	 How to Use the SPINE2 API  230
12.3.3	 How to Run a Simple Application Using SPINE2  232

Index  239

xi

Preface

Wearable computing is a relatively new area of research and development that
aims at supporting people in different application domains: health care, fitness,
social interactions, video games, and smart factory. Wearable computing is
based on wearable sensor devices (e.g. to measure heart rate, temperature, or
blood oxygen), common life objects (e.g. watch, belt, or shoes), and personal
handheld devices (e.g. smartphones or tablets). Wearable computing has been
recently boosted by the introduction of body sensor networks (BSNs), i.e.
networks of wireless wearable sensor nodes coordinated by more capable coor­
dinators (smartphones, tablets, and PCs).

In particular, BSNs enable a very wide range of application scenarios in
different industry sectors. We can categorize them into different domains: e‐Health,
e‐Emergency, e‐Entertainment, e‐Sport, e‐Factory, and e‐Social.

e‐Health applications span from early detection or prevention of diseases,
elderly assistance at home, to post‐trauma rehabilitation after surgeries. e‐
Emergency applications include BSN systems to support fire fighters, response
teams in large‐scale disasters due to earthquakes, landslides, terrorist attacks,
etc. e‐Entertainment domain refers to human–computer interaction systems
typically based on BSNs for real‐time motion and gesture recognition. e‐Sport
applications are related to the e‐Health domain, although they have a non­
medical focus. Specifically, this domain includes personal e‐fitness applica­
tions for amateur and professional athletes, as well as enterprise systems for
fitness clubs and sport teams offering advanced performance monitoring
services for their athletes. e‐Factory is an emerging and very promising domain
involving industrial process management and monitoring, and workers’ safety
and collaboration support. Finally, e‐Social applications may use BSN tech­
nologies to recognize user emotions and cognitive states to enable new forms
of social interactions with friends and colleagues. An interesting example is
given by a system that involves the interaction between two people’s BSNs to
detect handshakes and, subsequently monitor their social and emotional
interactions.

Prefacexii

Although the basic elements (sensors, protocols, and coordinators) of a BSN
are available (already from a commercial point of view), developing BSN sys­
tems/applications is a complex task that requires design methods based on
effective and efficient programming frameworks. In this book, we will provide
programming approaches and methods to effectively develop efficient BSN
systems/applications. Moreover, we also provide new techniques to integrate
BSN‐based wearable systems with more general Wireless Sensor Network sys­
tems and with Cloud computing.

This book, entitled Wearable Computing: From Modeling to Implementation of
Wearable Systems Based on Body Sensor Networks, is based on an intense and
extensive basic and applied research activity driven by the SPINE project (http://
spine.deis.unical.it), whose authors are cofounders, responsible, and main devel­
opers. Thus, the book is connected to the SPINE website to provide readers with
software and tools for the development of their wearable computing systems.

This book is aimed at a large audience in the Wearable Computing domain,
that is gaining considerable research interest and momentum, and is expected
to be of increasing interest to academic researchers and particularly to com­
mercial developers. Upon reading this book the audiences will perceive the
following benefits:

●● Learn the state‐of‐the‐art in research and development on wearable com­
puting, wireless BSNs, wearable systems integrated with mobile computing,
wireless networking, and cloud computing.

●● Obtain a future roadmap by learning advanced technology and open research
issues.

●● Gather the background knowledge to tackle key problems, whose solutions
will enhance the evolution of next‐generation wearable systems.

●● Use the book as a valuable reference for a technical professional in a related
industry.

●● Use the book as a text book in the late undergraduate or the graduate level to
prepare students who intend to perform research in the field of the book or
intend to be employed in a related industry.

The main topics of the book are the following:

●● Wearable Computing, the study or practice of inventing, designing, building,
or using miniature body‐borne computational and sensory devices. Wearable
computers may be worn under, over, or in clothing, or may also be them­
selves clothes.

●● Wireless Sensor Networks (WSNs), collections of tiny devices capable of
sensing, computation, and wireless communication operating in a certain
environment to monitor and control events of interest in a distributed man­
ner and collectively react to critical situations. WSN applications span vari­
ous domains such as environmental and building monitoring and surveillance,

Preface xiii

pollution monitoring, agriculture, health care, home‐automation, energy
management, earthquake, and eruption monitoring.

●● Body Sensor Networks (BSNs), involving wireless wearable physiological sen­
sors applied to the human body for medical and nonmedical purposes. In
particular, they allow for the continuous measurement of body movements
and physiological parameters, such as heart rate, muscular tension, skin con­
ductivity, and breathing rate and volume, during the daily life of a user.

●● In‐node Signal Processing, a central computing method in advanced wireless
sensor platforms through which data processing is carried out directly on the
sensor node to preprocess data acquired from sensors, to fuse data coming
from other sensor nodes, and, notably, to perform higher level computation
such as classification and decision making.

●● Mobile Computing, human–computer interaction by which a computer is
expected to be transported during normal usage. Mobile computing involves
mobile communication, mobile hardware, and mobile software. Communica­
tion issues include ad‐hoc and infrastructure networks as well as communica­
tion properties, protocols, data formats, and concrete technologies. Hardware
includes mobile devices or device components. Mobile software deals with
the characteristics and requirements of mobile applications.

●● Cloud Computing, the use of computing resources (hardware and software)
that are delivered as a service over a network (typically the Internet). The
name comes from the use of a cloud‐shaped symbol as an abstraction for the
complex infrastructure it contains in system diagrams. Cloud computing
entrusts remote services with a user’s data, software, and computation.

●● Platform‐Based Design (PBD), an embedded computing design methodol­
ogy that consists of a sequence of design/development steps that leads the
initial high‐level description of a digital system to its final implementation.
Each step is a refinement process that transforms the design from a higher
level description to a lower level description that is progressively closer to
the final implementation.

●● Software Framework, an abstraction in which software providing generic
functionality can be selectively changed by user code, thus providing application‐
specific software. A software framework is a universal, reusable software
platform used to develop applications, products, and solutions. Software
Frameworks include support programs, compilers, code libraries, an applica­
tion programming interface (API), and tool sets that bring together all the
different components to enable development of a project or solution.

●● Autonomic Computing is a paradigm born as a response to the increasing
complexity of managing computing systems. It faces the problem by intro­
ducing a series of self‐* properties (self‐configuration, self‐healing, self‐
optimization, and self‐protection) into complex systems, through which
such systems can be capable of performing several self‐management actions
without any human intervention.

Prefacexiv

●● Activity Recognition aims to recognize the actions and goals of one or more
agents from a series of observations on the agents’ actions and the environ­
mental conditions. Since the 1980s, this research field has captured the
attention of several computer science communities due to its strength in
providing personalized support for many different applications and its con­
nection to many different fields of study such as medicine, human–computer
interaction, or sociology. Specifically, we are mainly interested in sensor‐
based single‐user and multiuser activity recognition that integrates the
emerging area of sensor networks with novel data mining and machine
learning techniques to model a wide range of human activities.

Specifically, this book is organized into 12 chapters:

●● Chapter 1, Body Sensor Networks (BSNs), covers the state‐of‐the‐art about
wearable sensor nodes, network architecture/protocols/standards, and appli­
cations/systems.

●● Chapter 2, BSN Programming Frameworks, analyzes the state‐of‐the‐art
about the most known software frameworks (CodeBlue, Titan, RehabSPOT,
and others) for programming BSN applications/systems.

●● Chapter 3, Signal Processing In‐Node Environment, describes in detail
the SPINE framework (http://spine.deis.unical.it) from architectural and
programming perspectives.

●● Chapter 4, Task‐Oriented Programming, discusses task‐oriented program­
ming of BSN applications through SPINE2.

●● Chapter 5, Autonomic BSNs, illustrates how to make BSNs autonomic, by
using SPINE*, an extension of SPINE2.

●● Chapter 6, Agent‐oriented BSNs, presents the use of the Agent paradigm for
programming BSN systems. Specifically, the MAPS (Mobile Agent Platform
for SunSPOT) framework is used to design and implement agent‐based BSNs.

●● Chapter 7, Collaborative BSNs, provides an introduction of methods
and architectures to make BSNs interact with each other for supporting
multiuser BSN applications.

●● Chapter 8, Integration of BSNs and Wireless Sensor Networks, covers gate­
way‐based solution for interoperability between BSNs and infrastructural
WSNs (e.g. building indoor sensor networks). This would enable “invisible”
interaction between BSN‐worn people and the surrounding environment.

●● Chapter 9, Integration of Wearable and Cloud Computing, presents an
architecture for the integration of BSNs and the Cloud, called BodyCloud,
based on Google App Engine. It is crucial now to move the data acquired or
preprocessed on the human body to the cloud for storing and nonreal‐time
analysis purposes.

●● Chapter 10, Development Methodology for BSN Systems, describes
a SPINE‐based methodology for the development of BSN systems.

Preface xv

The methodology guides the BSN system developer from requirement
analysis to implementation and deployment.

●● Chapter 11, SPINE‐based BSN Applications, presents several applications
developed through SPINE in different application domains (Activity
Recognition: recognition of human postures and movements, Emotion
Recognition: recognition of stress and fear, Handshake Detection: collabora­
tive recognition of two people’s handshake, and Rehabilitation: real‐time
computation of extension angles of elbow/knee).

●● Chapter 12, SPINE at Work, provides a quick yet effective reference for BSN
programmers interested in developing their applications using the SPINE
framework. The chapter provides the necessary information for setting up
the SPINE environment so as to start programming as well as insights on
how the framework itself can be customized and extended.

Acknowledgments

This book is the result of direct and indirect involvement of many researchers,
academics, and industry professionals.

We sincerely thank all the other members of the SPINE team: Fabio
Bellifemine, Roberta Giannantonio, Antonio Guerrieri, Roozbeh Jafari, and
Alessia Salmeri. Our gratitude also goes to all the international researchers and
internal alumni that contributed to the SPINE Project with studies, program-
ming efforts, and novel ideas; in particular let us remind Andrea Caligiuri,
Giuseppe Cristofaro, Philip Kuryloski, Vitali Loseu, Ville‐Pekka Seppa, Edmund
Seto, Marco Sgroi, and Filippo Tempia.

This work has been partially carried out under the framework of INTER‐IoT,
Research and Innovation action – Horizon 2020 European Project, Grant
Agreement 687283, financed by the European Union.

We thank Wiley’s publication staff for handling the book project and sup-
porting its publication.

We hope that this book will serve as a valuable text for academic researchers
and particularly to commercial developers working in the wearable computing
domain.

xvi

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

1

1

1.1  Introduction

This chapter provides an overview of the state‐of‐the‐art and technology in the
field of wireless body sensor networks (BSNs). After introducing the motiva­
tions and the potential applications of this emerging technology, the chapter
focuses on the analysis of the architecture of sensor nodes, communication
techniques, and energy issues. We will then present and compare some of the
programmable sensing platforms that are most commonly used in the context
of wireless sensor networks (WSNs), and in particular those applied to remote
monitoring of patients. The chapter also contains an analysis of relevant vital
human signals and physical sensors used for their recording. Finally, the chapter
presents the hardware/software characteristics that must be taken into con­
sideration during the design stages of a healthcare monitoring system based
on BSNs. For instance, important characteristics are sensor wearability,
biocompatibility, energy consumption, security, and privacy of the acquired
biophysical information.

1.2  Background

The widespread use of mobile applications for patient monitoring over the last
few years is radically changing the approach to the health care. In today’s soci­
ety, this is gaining an increasingly important role in the prevention of diseases;
the convenience, for instance in terms of health‐care costs, is significant. The
BSN technology makes often use of mobile applications that allow for the
transmission to a coordinator node, such as a smartphone or a tablet, informa­
tion about vital signs and physical activities (movements and gestures) [1, 2].
The miniaturization and the production cost reduction are leading to the realization
of extremely small‐sized sensing and computing devices with high processing
capacity thus giving a great impulse to the development of WSNs, and, as a

Body Sensor Networks

1  Body Sensor Networks2

direct consequence, of BSNs. Very heterogeneous information and diversified
physiological signals can be transmitted, possibly after the application of sen­
sor fusion techniques [3], by the sensor nodes to the coordinator device.

Figure 1.1 shows a number of wearable sensing devices and their typical loca­
tion on the body:

1)	 Electrocardiography (ECG): the ECG is used to record the electrical activity
(including the heart rate) of the heart over a period of time using electrodes
placed on the skin.

2)	 Blood pressure meter: also known as sphygmomanometer, it is a device used
to measure (typically, both diastolic and systolic) blood pressure.

EEG sensor node

ECG sensor node

Blood pressure
sensor node

Pulse oximetry
sensor node

EMG sensor node

Motion sensor node

Figure 1.1  Common wearable sensors
and their location on the human body.

1.2  Background 3

3)	 Pulse oximetry: the oximeter is a medical device that allows us to measure
noninvasively the amount of hemoglobin in the blood. Since hemoglobin
binds with oxygen, it is therefore possible to obtain an estimate of the
amount of oxygen present in the blood.

4)	 Electromyography (EMG): the EMG sensor is used to monitor muscle
activity, using a needle electrode inserted into the muscle for high accuracy,
or, more practical and noninvasive, with simple skin electrodes. It records
the activity of the muscle fibers under different conditions: at rest, during
voluntary contraction up to the maximum effort, and during a sustained
average contraction.

5)	 Electroencephalography (EEG): the EEG sensor uses electrodes placed on
the scalp to monitor the brain activity and capture different types of brain
waves.

6)	 Motion inertial sensors (e.g. accelerometers and gyroscopes) monitor
human movements and even gestures.

BSN systems are commonly characterized by a number of hardware and
software requirements:

1)	 Interoperability: it is necessary to ensure the continuous data transfer
through different standards (e.g. Bluetooth and ZigBee) to promote the
exchange of information and ensure interaction between devices. In addition,
it should provide an adequate level of scalability in relation to the number of
sensor nodes and the workload of the BSN.

2)	 System device: the sensors must be of low complexity, small size, lightweight,
energy efficient, easy to use, and reconfigurable. In addition, patient
biosignal storage, retrieval, visualization, and analysis must be facilitated.

3)	 Security at the device and system level: particular attention must be paid to
secure transmission and authenticated access to such sensible data.

4)	 Privacy: the BSN could be considered as a “threat” to the freedom of the
individual, if the purpose of the applications goes “beyond” the medical
purposes. Social acceptance to these systems is the key to their wider
dissemination.

5)	 Reliability: the whole system must be reliable at hardware, network, and
software levels. Reliability affects directly the quality of monitoring because,
in the worst case, the failure to observe and/or successfully notify a “critical
risk event” can be lethal for the patient. Because of the limitations and
requirements on communication and power consumption, the reliability
techniques used in traditional networks are not easily applicable in the BSN
domain and, both at the design and implementation phase, this must be
taken seriously.

6)	 Validation and accuracy of sensory data: sensing devices are subject to
hardware constraints that can affect the quality of the acquired data; both
wired and wireless connections are not always reliable; environmental

1  Body Sensor Networks4

interference and limited energy availability also affect this aspect. This can
cause inconsistencies in the transmitted data and might lead to critical
errors in their interpretation. It is very important that all data transmitted
from the sensor nodes to the coordinator are adequately “validated” either
in hardware or software, trying to identify the “critical points” of the
system.

7)	 Data consistency: for large-scale BSNs, with many and heterogeneous sen­
sors, a single biophysical phenomenon may be “fragmented” and only par­
tially detectable into individual signals. This aspect arises problems of
information consistency, which must be addressed through appropriate
synchronization strategies, data fusion techniques [3], and/or mutual exclu­
sion in the access to data.

8)	 Interference: wireless links used in the BSN should try to minimize the inter­
ference issues and favor the coexistence of sensor nodes with other network
devices available within the radio range.

9)	 Biological compatibility: the wearable sensors and skin electrodes must be
biocompatible and stable, as they might operate on the user for a long
period of time without interruptions.

In addition to the hardware and software features, we highlight some aspects
that could encourage the wide diffusion and exploitation of BSN systems:

1)	 Costs: users expect low costs for health monitoring, yet preserving high
performance of the devices used.

2)	 Different levels of monitoring: users may require different levels of monitor­
ing, for example, to control the risk of ischemic heart disease or of falling
during movements. Depending on the operating mode, the energy level
required for the power supply of the devices can also vary.

3)	 Noninvasive easy‐to‐use devices: the devices must be wearable, lightweight,
and noninvasive. They should not hinder users in their daily activities; their
operation must be “transparent” to users who should ignore the details of
the monitoring task.

4)	 Consistent performance: sensors must be calibrated and accurate, and
they should provide consistent measurements even if the BSN is stopped
and restarted several times. Wireless links should be as robust as possi­
ble and be able to operate correctly in different (noisy) working
environments.

1.3  Typical m‐Health System Architecture

Figure 1.2 shows the typical architecture of an m‐Health system based on BSN
technology. It usually consists of three different tiers communicating through
wireless (or sometimes wired) channels [4].

1.3  Typical m‐Health System Architecture 5

Tier 1 represents the Body Sensor Tier and includes a set of wireless wearable
medical sensor nodes composing the BSN. Each node is able to detect, sample,
and process one or more physiological signals. For example, a motion sensor for
discriminating postures, gestures, and activities; an electrocardiogram (ECG)
sensor can be used for monitoring cardiac activity; and an electroencepha­
logram (EEG) sensor for monitoring cerebral electrical activity, and so on.

Tier 2 is the Personal Area Network Tier and contains the personal coordina­
tor device (often a smartphone or a tablet, but possibly a PC) running an end‐
user application. This tier is responsible for a number of functions providing a
transparent interface to the BSN, to the user, and to the upper tier. The inter­
face to the BSN provides functionalities to configure and manage the network,
such as sensor discovery and activation, sensory data recording and process­
ing, and establishment of a secure communication with both Tier 1 and Tier 3.
When the BSN has been configured, the end‐user monitoring application
starts providing feedback through a user‐friendly graphical and/or audio inter­
face. Finally, if there is an active channel of communication with the upper tier,
it can report raw and processed data for off‐line analysis and long‐term storage.
Conversely, if Internet connectivity is temporary unavailable, the coordinator
device should be able to store the data locally and perform the data transfer as
soon as the connectivity is restored.

Tier 3 is the Global Network Tier and comprises one or more remote medical
servers or a Cloud computing platform. Tier 3 usually provides services to
medical personnel for off‐line analysis of a patient’s health status, real‐time
notification of life‐critical events and abnormal conditions, and scientific and
medical visualization of collected data. In addition, this tier can provide a web
interface for the patient itself and/or relatives too.

Tier 1 Tier 2 Tier 3

Figure 1.2  A three‐tier hierarchical BSN architecture: (1) body sensor tier, (2) personal area
network tier, and (3) global network tier.

1  Body Sensor Networks6

1.4  Hardware Architecture of a Sensor Node

A typical sensor node architecture is shown in Figure 1.3 and consists of the
following main components:

●● Sensing unit, each node usually includes one or multiple built‐in sensors and an
expansion bus through which it is possible to attach further sensors that might
be necessary for specific applications. A sensor is generally composed of a
transducer and an analog‐to‐digital converter (see next bullet point). The
transducers are realized by exploiting the characteristics of some materials that
vary their “electrical properties” to varying environmental conditions. Many
transducers used on wireless sensor nodes are based on MEMS (Micro‐
ElectroMechanical Systems) technology. MEMS sensors are more efficient and
require less power consumption with respect to piezoelectric sensors; further­
more, MEMS sensors are characterized by low production costs, although this
could lead to less precision if compared with piezoelectric sensors.

●● Analog‐to‐Digital Converter (ADC) converts the voltage value of a trans­
ducer into a digital value, which will then be used for post‐processing.

●● Processing unit, the Micro‐Controller Unit (MCU) of a sensor node is usually
associated with a built‐in limited memory unit to improve the processing
speed and enable local online sensory data processing. The sensor node is,
therefore, able to perform signal processing such as “background noise” filter­
ing, data fusion and aggregation, and feature extraction (e.g. mean, variance,
maximum/minimum value, entropy, and signal amplitude/energy). The MCU
is also responsible for the management of the other hardware resources.

●● Transceiver unit is the component that connects the node to the network. It
can be an optical or a radio frequency (RF) device. It is also possible, and
actually very useful, to use the radio with a low duty‐cycle, to help reducing
the power consumption.

Transceiver

Microcontroller (MCU)

External memory

ADC

Sensor 1

Sensor 2

P
ow

er supply

Sensor N

…

…

Figure 1.3  Typical hardware architecture of a sensor node.

1.6  Power Consumption Considerations 7

●● External memory is needed to store the binary code of the program running on
the sensor node. Some sensor platforms also include a further memory (usually
a microSD flash memory) as a mass storage unit for sensory data recording.

●● Power supply is the scarcest resource of a sensor node and must be preserved
as much as possible to prolong its lifetime; it could be notably supported by
a unit for energy harvesting (e.g. from solar light, heat, or vibration).

1.5  Communication Medium

In a multi‐hop sensor network the nodes can interact with each other via a
wireless communication medium. One choice is to use the ISM (industrial,
scientific, and medical) radio spectrum [5], i.e. a predefined set of frequency
bands that can be used freely in many countries. Most of the sensors currently
on the market do in fact make use of a RF circuit. Another option is given by
infrared (IR) communication. On the one hand, the IR communication does
not require permits or licenses, it is protected from interference, and IR trans­
ceivers are very cheap and easy to realize. On the other hand, however, IR
requires line‐of‐sight between the transmitter and the receiver, which makes it
hardly usable for WSNs and BSNs as nodes very often cannot be deployed in
such a way.

1.6  Power Consumption Considerations

A sensor node is normally equipped with a very limited energy source. The
lifecycle of a sensor node heavily depends on the battery dimensions and on
the processing and communication duty‐cycling. For these reasons, many
research efforts are focusing on the design of power‐aware communication
protocols and algorithms, with the aim of optimizing energy consumption.
While in traditional mobile networks and ad‐hoc networks energy consump­
tion is not the most important constraint, in the WSN domain it is a crucial
aspect. This is true even in the specific subdomain of the BSNs. Although it is
generally easier to recharge or replace the batteries of the wearable nodes, due
to wearability reasons, the battery dimension (and hence its capacity) is gener­
ally much smaller than in other WSN scenarios.

In a sensor node, the energy consumption is mainly due to three tasks:

●● Communication: it is the most affecting factor. Low‐power radios, strict
radio duty‐cycling, power‐aware WSN‐specific communication protocols
and standards, and on‐node data fusion and aggregation techniques are
critical design choices for reducing the activation of the transceiver module
as much as possible. It is worth noting that both transmission and listening/
reception time must be optimized.

1  Body Sensor Networks8

●● Sensing: the power required to carry out the sampling depends on the nature
of the application and, as a consequence, on the type of the physical trans­
ducers involved.

●● Data processing: it must be taken into account, even though the energy con­
sumed for processing a given amount of data is very small compared to the
energy requirements for transmitting the same amount of data. Experimental
studies showed that the energy cost for transmitting 1 kB of data is about the
same that would be obtained by performing 3–100 million instructions on
the sensor node microcontroller [6].

1.7  Communication Standards

The aforementioned requirements impose very tight restrictions on the type of
network protocols that can be used in WSNs. The short‐range wireless
technologies are a prerequisite, given the limited power budget available for
each node. The implementation of a wireless network communication proto­
col that must be robust, fault tolerant, and capable of self‐configuration even in
hostile environments represents a considerable technological challenge, which
required (and still requires) the efforts of several standardization bodies, such
as IEEE and IETF.

The IEEE 802.15.4 [7] is to date the most widely adopted standard in the
WSN domain. Indeed, it is intended to offer the fundamental lower network
layers (physical and MAC) of Wireless Personal Area Networks (WPANs)
focusing on low‐cost, low‐speed ubiquitous communication between
devices. The emphasis is on very low‐cost communication of nearby devices
with little to no underlying infrastructure. The basic protocol conceives a
10 m communication range with a transfer rate of 250 kbit/s. Tradeoffs are
possible to favor more radically embedded devices with even lower power
requirements, through the definition of several physical layers. Lower trans­
fer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s rate
being added later. Even lower rates can be considered with the resulting
effect on power consumption. The main identifying feature of 802.15.4 is
the importance of achieving extremely low manufacturing and operation
costs, and technological simplicity, without sacrificing flexibility or general­
ity. Important features include real‐time suitability by reservation of guar­
anteed time slots, collision avoidance through CSMA/CA, and integrated
support for secure communications. It operates on one of three possible
unlicensed frequency bands:

●● 868.0–868.6 MHz: Europe, allows 1 communication channel.
●● 902–928 MHz: North America, up to 30 channels.
●● 2400–2483.5 MHz: Worldwide use, up to 16 channels.

1.7  Communication Standards 9

To complete the IEEE 802.15.4 standard, the ZigBee [8] protocol has been
realized. ZigBee is a low‐cost, low‐power, wireless mesh network standard
built upon the physical layer and medium access control defined in the 802.15.4.
It is intended to be simpler and less expensive than, for instance, Bluetooth.
ZigBee chip vendors typically sell integrated radios and microcontrollers with
60 to 256 kB flash memory. The ZigBee network layer natively supports both
star and tree networks, and generic mesh networks. Every network must have
one coordinator device. In particular, within star networks, the coordinator
must be the central node. Specifically, the ZigBee specification completes the
802.15.4 standard by adding four main components:

●● Network layer, which enables the correct use of the MAC sublayer and pro­
vides a suitable interface for the application layer.

●● Application layer is the highest‐level layer defined by ZigBee and represents
the interface to the end users.

●● ZigBee device object (ZDO) is the protocol responsible for overall device
management, security keys, and policies. It is responsible for defining the
role of a device (i.e. coordinator or end device).

●● Manufacturer‐defined application objects, which allow for customization
and favor total integration.

Bluetooth [9] is a proprietary open wireless technology standard for exchang­
ing data over short distances (using short wavelength radio transmissions in the
ISM band from 2400 to 2480 MHz) from fixed and mobile devices, creating
WPANs with high levels of security. Bluetooth uses a radio technology called
frequency‐hopping spread spectrum, splitting the data being sent into portions
and transmitting the portions on up to 79 bands (1 MHz each). Bluetooth is a
packet‐based protocol with a master–slave structure. One master may com­
municate with up to seven slaves in a so‐called piconet; all devices share the
master’s clock. Packet exchange is based on the basic clock, defined by the mas­
ter. The specification also provides for the connection of two or more piconets
to form a scatternet, in which certain devices simultaneously play the master
role in one piconet and the slave role in another. Although being designed for
WPANs, the first versions of Bluetooth are actually suitable only for BSN sys­
tems that do not require long battery life before recharging. This is because the
Bluetooth power consumption profile is significantly higher compared with
802.15.4. Other factors limiting the use of Bluetooth in the BSN domain are the
high communication latency (typically around 100 ms) and the long setup time
(that, due to the discovery procedure, can take several seconds).

To overcome these limitations, Bluetooth released the 4.0 version that has
been called Bluetooth Low Energy (BLE) [10]. One of the BLE design driving
factors is the specific support for applications such as health care, sport, and
fitness. The promoter for such applications is the Bluetooth Special Interest

1  Body Sensor Networks10

Group in cooperation with the Continua Health Alliance. BLE operates in the
same spectrum range (2400–2480 MHz) as classic Bluetooth but uses a differ­
ent set of channels. Instead of 79 1‐MHz wide channels, BLE uses 40 2‐MHz
wide channels. BLE is designed with two implementation alternatives: Single
mode and dual mode. Small devices like watches and sport sensors based on a
single‐mode BLE implementation will take advantage of the low power con­
sumption and low production costs. However, pure BLE is not backward com­
patible with the classic Bluetooth protocol. In dual‐mode implementations,
instead, the new low‐energy functionality is integrated into classic Bluetooth
circuitry. The architecture will share classic Bluetooth technology radio and
antenna, enhancing current chips with the new low‐energy stack.

ANT [11] is an ultra‐low‐power wireless communications protocol stack
operating in the 2.4 GHz band. A typical ANT protocol transceiver comes
preloaded with the protocol software and must be controlled by an application
processor. It is characterized by a low computational overhead and high effi­
ciency, resulting in low power consumption by the radios supporting the pro­
tocol. Similar to BLE, ANT has been targeted for sport, wellness, and home
health monitoring, among other WSN application scenarios. To date, indeed,
ANT has been adopted in a number of commercial wrist‐mounted instrumen­
tation, heart rate monitoring, speed and distance monitoring, bike computers,
and health and wellness monitoring devices.

The IEEE 802.15 WPAN Task Group 6 (BAN) [12] is developing a com­
munication standard specifically optimized for low‐power devices operating
on, in, or around the human body to serve a variety of applications including
medical, consumer electronics, personal entertainment, and others. Compared
to IEEE 802.15.4, IEEE 802.15.6 focuses specifically on BSNs, addressing their
identifying characteristics such as shorter communication range (the stand­
ard supports a range of 2–5 m) and larger data rate (up to 10 Mbps), which
help in decreasing power consumption and meeting safety and biofriendly
requirements.

1.8  Network Topologies

The most common network topologies adopted in the BSN domain are the
following:

●● peer‐to‐peer
●● star
●● mesh
●● clustered

The peer‐to‐peer (P2P) topology (see Figure 1.4) reflects BSN systems that do
not rely on a coordinator station to operate. It is worth noting that a pure P2P
topology is never used in practice today. Even for systems where the sensor

1.8  Network Topologies 11

nodes adopt a decentralized communication para­
digm to reach a certain common goal, there is at
least one node that interfaces with the user to
receive commands and provide some sort of feed­
back for the events generated by the BSN.

The most common network topology for a BSN
system is actually the star (see Figure 1.5). Here, the
coordinator device acts as the center of the star and
it is in charge of configuring the remote sensor

nodes (which do not communicate
among each other directly), and
gathering the sensory information.

The P2P and star topologies are
used for personal BSN applications
(e.g. health monitoring, wellness, or
sport) that do not need to interact
with other BSNs.

The mesh topology (see Figure 1.6)
is an extension of the star, where mul­
tiple BSNs may interact, and even col­
laborate, through the existence of an
underlying infrastructure consisting of
gateway nodes necessary to enable the
communication among BSNs.

Acknowledged

Bidirectional

Figure 1.4  Peer‐to‐peer
topology.

Figure 1.5  Star topology.

Figure 1.6  Mesh topology.

1  Body Sensor Networks12

Somewhat similar to the mesh is the clustered topology (see Figure 1.7).
Here, however, different BSNs may communicate without necessarily relying
on a fixed infrastructure. In other words, the BSNs are able to communicate
directly, typically in a P2P fashion.

Mesh and clustered topologies are adopted in complex systems, which
involve different BSNs to communicate among each other. Depending on the
specific application, they are often referred to as Collaborative BSNs [13] (see
Chapter 7).

Figure 1.7  Clustered topology.

1.9  Commercial Sensor Node Platforms 13

1.9  Commercial Sensor Node Platforms

A comprehensive analysis on commercial sensor platforms for BSN applications
is out of the scope of this section. However, to provide a overview on their
current status, a brief list is summarized in Table 1.1. An interesting survey on
sensor network platforms can be found in Ref. [14].

In the following, we just briefly describe the main technical specifications of
some of the most popular sensor node architectures.

The Intel Mote [15] is among the first wireless sensor node platforms; built
on a motherboard of 3 × 3 cm and equipped with an Intel XScale PXA270
processor with 32 MB of flash memory and 32 MB of SDRAM, it allows for
high‐performance computing. It integrates an 802.15.4 radio, while additional
wireless standards, such as Bluetooth and 802.11b, are supported by means of
attachable boards.

The Mica Mote [16] (see Figure 1.8), developed at the University of California
at Berkeley, is used for research and development of networks with low‐power
consumption requirements. It is equipped with an Atmel ATMEGA128 micro­
controller at 4–16 MHz (on the MicaZ) with 128 kB of Flash and 4 kB of SRAM.
The radio module is based on an RF transmitter at 916.5 MHz on the Mica,
while on the CC2420 at 2.4 GHz on the MicaZ. The platform is distinguished
by the high number of additional plug‐in sensor boards.

The TelosB (also known as Tmote Sky) [17] (see Figure 1.9) is an open‐source
low‐power wireless sensor node platform designed by the University of
California, Berkeley, for pervasive monitoring applications and for rapid proto­
typing of WSN systems. It integrates an 8 MHz Texas Instruments MSP430
microcontroller, humidity, temperature and light sensors, and an IEEE 802.15.4
compliant Chipcon CC2420 radio module.

The Shimmer nodes [18] (see Figure 1.10) are specifically designed to sup­
port wearable medical applications and provide a highly extensible platform,
by means of plug‐in sensor boards, for real‐time detection of movements and
changes in physiological parameters. They are among the smaller nodes on the
market and have a plastic cover that protects the internal electronics and the
battery. Furthermore, the size and the wide availability of elastic straps (e.g. for
arms, chest, wrist, waist, and ankle) makes this platform probably the most
appropriate for developing BSN‐based m‐Health systems. Currently, there are
four commercial revisions of the platform: Shimmer, Shimmer2, Shimmer2R,
and Shimmer3. All of them have the same MCU (TI MSP430) and the same
radio chipset (CC2420), support local storage media microSD, are powered by
a rechargeable lithium battery, and support Bluetooth communication, thanks
to a second dedicated radio module. The Shimmer3 revision is slightly differ­
ent as it uses a more powerful 24 MHz MSP430 microcontroller and includes
natively only the Bluetooth radio, while offering an expansion interface for
connecting an additional radio or a coprocessor. The Bluetooth support is an

 Table 1.1 List of commercial sensor node platforms.

Sensor
platform MCU Transceiver

Code/data
memory

External
memory

Programming
language

BTNode ATmega 128L 8 MHz 802.15.4 (CC1000), Bluetooth 180/64 kB 128 kB C, nesC/TinyOS
Epic mote TI MSP430 8 MHz 802.15.4 (CC2420) 48/10 kB 2 MB Flash nesC/TinyOS
MicaZ ATMega 128 16 MHz 802.15.4 (CC2420) 128/4 kB 512 kB nesC/TinyOS
Shimmer3 TI MSP430 24 MHz Bluetooth 256/16 kB 2 GB microSD C, nesC/TinyOS
SunSPOT ARM920T 180 MHz 802.15.4 (CC2420) 512 kB 4 MB Flash JavaME
TelosB TI MSP430 8 MHz 802.15.4 (CC2420) 48/10 kB 1 MB Flash C, nesC/TinyOS
Waspmote ATMega 1281 8 MHz ZigBee or Bluetooth or Wifi 128/8 kB 2 GB microSD C
Intel Mote XScale PXA270

13–416 MHz
802.15.4 (CC2420), Bluetooth,
802.11b

32 MB/32 MB — C, TinyOS

1.9  Commercial Sensor Node Platforms 15

Figure 1.8  Mica Mote.

Figure 1.9  TelosB Tmote Sky.

Figure 1.10  Different revisions of the Shimmer platform.

1  Body Sensor Networks16

important aspect of this platform as it strengthens the motivation for its use in
market‐ready m‐Health systems, since current smartphones and tablets do
have Bluetooth connectivity, but do not support the IEEE 802.15.4 standard.

1.10  Biophysiological Signals and Sensors

There exist several and very different vital signs and biophysiological parame­
ters. Some of them are very useful for realizing effective smart‐Health systems.
Among the main parameters of interest, there are:

●● blood pressure
●● blood oxygenation
●● blood glucose concentration
●● body temperature
●● brain activity
●● thoracic impedance
●● breathing rate
●● breathing volume
●● cardiac electric activity
●● heart rate
●● skin conductivity
●● muscle activity
●● posture and physical activities

There exist wearable noninvasive sensors that can be used to measure,
directly or indirectly, each of the aforementioned parameters. One or multiple
sensors are typically included in the basic sensor platforms and additional
sensors may be integrated through expansion interfaces. In particular, the
following physical sensors have been commonly used in research and indus­
trial m‐Health systems:

●● Accelerometers for measuring body movements and gestures. In recent years,
the importance of these sensors increased significantly, as they perfectly fit
for several medical, sport, fitness, and wellness applications. The operating
principle is based on the detection of the inertia of a mass when subjected to
acceleration [19]. Popular accelerometer sensors are today able to detect
accelerations over the three axes, although there are also two‐axis and one‐
axis accelerometers.

●● Gyroscopes for measuring angular velocity. Three‐axis, two‐axis, and one‐
axis gyros are commonly available. Gyroscopes are relatively immune to
environmental interferences and, therefore, have been widely accepted in
medical devices [20].

●● Thermal sensors, a family of sensors that are used to measure temperatures
or heat fluxes [19].

1.11  BSN Application Domains 17

●● Electrodes for monitoring cardiac activity (ECG), brain activity (EEG),
respiratory activity (electrical impedance plethysmogram – EIP), muscle
activity (electromyogram – EMG), and emotions (galvanik skin response – GSR).
They must be applied directly on the skin, typically with disposable adhesive
leads that contain a drop of conductive gel.

●● Photoplethysmography (PPG) sensors, they are used as an indirect method to
measure cardiovascular parameters such as pulse rate, blood oxygenation,
and blood pressure [21]. They are realized as clips with a light emitting diode
(LED) and a photosensible sensor placed at the two terminals. The clip is
usually attached to the earlobe or the finger. The operating principle is based
on the fact that the blood absorbs or reflects part of the emitted light and the
variation of the blood volume caused by heart beats modulates the amount
of transmitted or reflected light.

1.11  BSN Application Domains

Comprehensive overviews of several BSN applications can be found in Refs.
[22–24]. A few surveys on wearable sensor‐based systems have been published
to date. For example, in Ref. [22] the focus of the survey is on the functional
perspective of the analyzed systems (i.e. what kind of applications they target).
In this work, systems are divided into commercial products and research
projects, and also grouped on the basis of hardware characteristics: Wired
electrode‐based, smart textiles, wireless mote‐based, and based on sensors
found in commercial smartphones. In another frequently cited survey work
[23], the attention is focused on the hardware components and the application
scenarios. Analyzed projects are classified into (i) in‐body (implantable),
(ii) on‐body medical, and (iii) on‐body nonmedical systems.

Hence, to provide a different point of view, in the following, we will introduce
a categorization on the main application domains in which the BSN technology
can play a critical role. Moreover, a summary of some literature BSN systems is
reported in Table 1.2.

As aforementioned, BSNs enable a very wide range of application scenarios.
We can categorize them into different application domains:

●● e‐Health
●● e‐Emergency
●● e‐Entertainment
●● e‐Sport
●● e‐Factory
●● e‐Sociality

e‐Health applications include physical activity recognition, gait analysis, post‐
trauma rehabilitation after surgeries, cardiac and respiratory diseases prevention

 Table 1.2 Summary of representative BSN systems.

Project title
Application
domain Sensors involved

Hardware
description Node platform

Communication
protocol

OS/programming
language

Real‐time Arousal
Monitor [25]

Emotion
recognition

ECG, respiration,
temp., GSR

Chest‐belt, skin
electrodes,
wearable monitor
station, USB dongle

Custom Sensors connected
through wires

n/a/C‐like

LifeGuard [26] Medical
monitoring in
space and extreme
environments

ECG, blood
pressure,
respiration, temp.,
accelerometer,
SpO 2

Custom
microcontroller
device, commercial
biosensors

XPod signal
conditioning unit

Bluetooth n/a

Fitbit® [27] Physical activity,
sleep quality, heart
monitoring

Accelerometer,
heart rate

Waist/wrist‐worn
device, PC USB
dongle

Fitbit® node RF proprietary n/a

VitalSense® [28] In‐ and on‐body
temperature,
physical activity,
heart monitoring

Temp., ECG,
respiration,
accelerometer

Custom wearable
monitor station,
wireless sensors,
skin electrodes,
ingestible capsule

VitalSense®
monitor

RF proprietary Windows mobile

LiveNet [29] Parkinson
symptom, epilepsy
seizure detection

ECG, Blood
pressure,
respiration, temp.,
EMG, GSR, SpO 2

PDA,
microcontroller
board

Custom
physiological
sensing board

Wires, 2.4 GHz
radio, GPRS

Linux (on PDA)

AMON [30] Cardiac‐
respiratory
diseases

ECG, blood
pressure, temp.,
accelerometer,
SpO 2

Wrist‐worn device Custom
wrist‐worn
device

Sensors connected
through wires
–GSM/UMTS

C‐like/JAVA (on
the server
station)

MyHeart [31] Prevention and
detection of cardio
vascular diseases

ECG, respiration,
accelerometer

PDA, textile
sensors, chest‐belt

Proprietary
monitoring
station

Conductive yarns,
Bluetooth, GSM

Windows mobile
(on the PDA)

Human++ [32] General health
monitoring

ECG, EMG, EEG Low‐power BSN
nodes

ASIC 2.4 GHz radio/
UWB modulation

n/a

HealthGear [33] Sleep apnea
detection

Heart rate, SpO 2 Custom sensing
board, commercial
sensors, cell phone

Custom wearable
station (includes
XPod signal
conditioning
unit)

Bluetooth Windows mobile
(on the mobile
phone)

TeleMuse® [34] Medical care and
research

ECG, EMG, GSR ZigBee wireless
motes

Proprietary IEEE 802.15.4/
ZigBee

C‐like

Polar® Heart Rate
Monitor [35]

Fitness and
exercise

Heart rate,
altimeter

Wireless chest‐belt,
watch monitor

Proprietary
watch monitor

Polar OwnCode®
(5 kHz) – coded
transmission

n/a

1  Body Sensor Networks20

and early detection, remote elderly assistance and monitoring, sleep quality
monitoring and sleep apnea detection, and even emotion recognition [36].

e‐Emergency refers to applications, e.g. for supporting firefighters and response
teams in large‐scale disasters due to earthquakes, landslides, and terrorist
attacks [37].

e‐Entertainment domain refers to human–computer interaction systems typi­
cally based on BSNs for real‐time motion and gesture recognition, eye track­
ing, and, more recently, mood and emotion recognition [38, 39].

e‐Sport applications are related to the e‐Health domain, although they have a
nonmedical focus. They include personal e‐fitness applications for amateur
and professional athletes as well as enterprise systems for professional fit­
ness clubs and sport teams offering advanced performance monitoring
services for their athletes [40].

e‐Factory is a slowly emerging domain involving industrial process manage­
ment and monitoring, and workers’ safety and collaboration support [41].

Finally, the e‐Sociality domain involves the recognition of human emotions and
cognitive states to enable new forms of social interactions. An interesting
example is a system for tracking interactions between two meeting people by
detecting, in a collaborative fashion, handshakes and, subsequently, monitor­
ing their social and emotional interactions [42].

1.12  Summary

This chapter has provided an overview of the current state‐of‐the‐art of the BSN
domain. We have first introduced the motivations for the BSN technology. We
then provided a description of the most important hardware and software
requirements of BSN systems, typical m‐Health system architecture and, more
in detail, the common schematic architecture of a wireless sensor node. In addi­
tion, most popular BSN network topologies, communication protocols and
standards, and commercial sensor platforms have been introduced. Furthermore,
particular attention has been given to the main biophysiological signals and the
corresponding physical sensors for their acquisition. Finally, the chapter has pro­
vided a categorization of the most relevant BSN application domains and sum­
marized a number of related commercial products and research projects.

References

1	 Movassaghi, S., Abolhasan, M., Lipman, J. et al. (2014). Wireless body area
networks: a survey. IEEE Communications Surveys & Tutorials 16 (3): 1658–1686.

2	 Yang, G.Z. ed. (2006). Body Sensor Networks. Springer‐Verlag.
3	 Gravina, R., Alinia, P., Ghasemzadeh, H., and Fortino, G. (2017). Multi‐sensor

fusion in body sensor networks: state‐of‐the‐art and research challenges.
Information Fusion 35: 68–80.

References ﻿ 21

	 4	 Kuryloski, P., Giani, A., Giannantonio, R. et al. (2009). DexterNet: an open
platform for heterogeneous body sensor networks and its applications.
Proceedings of the Int’l Conference on Body Sensor Networks (BSN 2009),
Berkeley, CA (3–5 June 2009).

	 5	 International Telecommunication Union (1992). “ARTICLE 1 – Terms and
Definitions” – “Industrial, scientific and medical (ISM) applications (of radio
frequency energy): operation of equipment or appliances designed to
generate and use locally radio frequency energy for industrial, scientific,
medical, domestic or similar purposes, excluding applications in the field of
telecommunications”. http://life.itu.int/radioclub/rr/art1.pdf (accessed 10
June 2017).

	 6	 Venkatesh, C. and Anandamurugan, S. (2010). Increasing the lifetime of
wireless sensor networks by using AR (aggregation routing) algorithm.
IJCA Special Issue on MANETs (4): 180–186.

	 7	 IEEE 802.15.4 Website. http://www.ieee802.org/15/pub/tg4.html (accessed 5
June 2017).

	 8	 ZigBee Website. www.zigbee.org (accessed 5 June 2017).
	 9	 Bluetooth Website. www.bluetooth.com (accessed 10 June 2017).
	10	 Bluetooth Low Energy Website. https://www.bluetooth.com/what‐is‐

bluetooth‐technology/how‐it‐works/le‐p2p (accessed 5 June 2017).
	11	 ANT Website. www.thisisant.com (accessed 7 June 2017).
	12	 IEEE 802.15 WPAN Task Group 6 Website. http://www.ieee802.org/15/pub/

TG6.html (accessed 8 June 2017).
	13	 Augimeri, A., Fortino, G., Galzarano, S., and Gravina, R. (2011). Collaborative

body sensor networks. Proceedings of the IEEE International Conference on
Systems, Man and Cybertnetics (SMC2011), Anchorage, AL (9–12 October 2011).

	14	 Narayanan, R., Sarath, T., and Vineeth, V. (2016). Survey on motes used in
wireless sensor networks: performance & parametric analysis. Wireless Sensor
Network 8: 51–60.

	15	 Levis, P., Gay, D., and Culler, D. (2004). Bridging the Gap: Programming
Sensor Networks with Application Specific Virtual Machines. UC Berkeley
Tech Rep. UCB//CSD‐04‐1343.

	16	 Mica2 Datasheet. https://www.eol.ucar.edu/isf/facilities/isa/internal/
CrossBow/DataSheets/mica2.pdf (accessed 10 October 2016).

	17	 TelosB Datasheet. http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb_datasheet.pdf (accessed 5 June 2017).

	18	 Shimmer Platform Website. www.shimmersensing.com (accessed 11 June
2017).

	19	 Lewis, F.L. (2004). Wireless sensor networks in smart environments:
technologies, protocols, applications. In: Smart Environments: Technologies,
Protocols, Applications (ed. D.J. Cook and S.K. Das). Wiley Blackwell.

	20	 Madni, A.M., Wan, L.A., and Hammons, S. (1996). A microelectromechanical
quartz rotational rate sensor for inertial applications. Proceedings of the IEEE
Aerospatial Applications Conference, Aspen, CO (3–10 February 1996).

1  Body Sensor Networks22

	21	 Fortino, G. and Giampà, V. (2010). PPG‐based methods for non invasive and
continuous blood pressure measurement: an overview and development issues
in body sensor networks. 2010 IEEE International Workshop on Medical
Measurements and Applications, MeMeA 2010 – Proceedings, Ottawa, ON
(30 April to 1 May 2010), Art. No. 5480201, pp. 10–13.

	22	 Pantelopoulos, A. and Bourbakis Nikolaos, G. (2010). A survey on wearable
sensor‐based systems for health monitoring and prognosis. IEEE Transactions
on Systems, Man and Cybernetics 40 (1): 1–12.

	23	 Ullah, S., Khan, P., Ullah, N. et al. (2009). A review of wireless body area
networks for medical applications. International Journal of Communications,
Network and System Sciences 2 (8): 797–803.

	24	 Hao, Y. and Foster, R. (2008). Wireless body sensor networks for health‐
monitoring applications. Physiological Measurement 29: 27–56.

	25	 Grundlehner, B., Brown, L., Penders, J., and Gyselinckx, G. (2009). The design
and analysis of a real‐time, continuous arousal monitor. Sixth International
Workshop on Wearable and Implantable Body Sensor Networks, Berkeley,
CA (3–5 June 2009), pp. 156–161.

	26	 Mundt, C.W., Montgomery, K.N., Udoh, U.E. et al. (2005). A multiparameter
wearable physiological monitoring system for space and terrestrial applications.
IEEE Transactions on Information Technology in Biomedicine 9 (3): 382–391.

	27	 Fitbit Website. www.fitbit.com (accessed 15 June 2017).
	28	 VitalSense Integrated Physiological Monitor Website. http://www.actigraphy.

com/solutions/vitalsense (accessed 8 June 2017).
	29	 Sung, M., Marci, C., and Pentland, A. (2005). Wearable feedback systems for

rehabilitation. Journal of NeuroEngineering and Rehabilitation 2: 17.
	30	 Anliker, U., Ward, J.A., Lukowicz, P. et al. (2004). AMON: a wearable

multiparameter medical monitoring and alert system. IEEE Transactions on
Information Technology in Biomedicine 8 (4): 415–427.

	31	 Luprano, J., Sola, J., Dasen, S. et al. (2006). Combination of body sensor networks
and on‐body signal processing algorithms: the practical case of MyHeart project.
Proceedings of the International Workshop Wearable Implantable Body Sensor
Networks, Cambridge, MA (3–5 April 2006), pp. 76–79.

	32	 Gyselinckx, B., Van Hoof, C., Ryckaert, J. et al. (2005). Human++: autonomous
wireless sensors for body area networks. Proceedings of the IEEE Custom
Integrated Circuits Conference, San Jose, CA (18–21 September 2005), pp. 13–19.

	33	 Oliver, N. and Flores‐Mangas, F. (2006). HealthGear: a real‐time wearable
system for monitoring and analyzing physiological signals. Microsoft
Research. Tech. Rep. MSR‐TR‐2005‐182.

	34	 Biocontrol Systems Website. www.biocontrol.com (accessed 12 June 2017).
	35	 Polar Electro Website. www.polar.com (accessed 12 June 2017).
	36	 Gravina, R., Andreoli, A., Salmeri, A. et al. (2010). Enabling multiple BSN

applications using the SPINE framework. Proceedings of the International
Conference on Body Sensor Networks, BSN 2010, Singapore, pp. 228–233 (7–9
June 2010). IEEE Computer Society.

References ﻿ 23

	37	 Lorincz, K., Malan, D.‐J., Fulford‐Jones, T. et al. (2004). Sensor networks for
emergency response: challenges and opportunities. IEEE Pervasive Computing
3 (4): 16–23.

	38	 Terada, T. and Tanaka, K. (2010). A framework for constructing entertainment
contents using flash and wearable sensors. Proceedings of the 9th International
Conference on Entertainment computing, ICEC’10, Seoul, Korea (8–11 September
2010), pp. 334–341. Springer‐Verlag.

	39	 Gravina, R. and Fortino, G. (2016). Automatic methods for the detection of
accelerative cardiac defense response. IEEE Transactions on Affective
Computing 7 (3): 286–298.

	40	 Coyle, S., Morris, D., Lau, K. et al. (2009). Textile‐based wearable sensors for
assisting sports performance. Proceedings of the International Conference on
Body Sensor Networks, BSN 2009, Berkeley, CA, USA (3-5 June 2009),
pp. 228–233. IEEE Computer Society.

	41	 Huang, J.‐Y. and Tsai, C.‐H. (2007). A wearable computing environment for
the security of a large‐scale factory. Proceedings of the 12th International
Conference on Human‐Computer Interaction: Interaction Platforms and
Techniques, HCI’07, Beijing, China (22–27 July 2007), pp. 1113–1122.
Springer‐Verlag.

	42	 Augimeri, A., Fortino, G., Rege, M. et al. (2010). A cooperative approach for
handshake detection based on body sensor networks. Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, SMC 2010,
Istanbul, Turkey (10–13 October 2010), pp. 281–288. IEEE Press.

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

25

2

2.1  Introduction

Beside the technological hardware developments in terms of system integration,
miniaturization, circuitry design, and energy efficiency, developing effective and
efficient software applications is the main key factor for wearable systems to
emerge and turn from research prototypes into powerful cutting‐edge real‐
world products.

However, building high quality and efficient applications is a hard task to be
accomplished without proper programming skills and flexible development
tools. This is a very limiting factor, especially in light of the fact that developers
of BSN applications may be expert in specific scientific fields (e.g. biology,
medicine, and fitness) rather than in networking or embedded programming.
As a result, there is an evident need for appropriate methodologies and abstrac-
tions capable of improving and simplifying the BSN system development,
deployment, and maintenance processes.

This chapter investigates problems and challenges involved in programming
BSNs and discusses the importance of adopting high‐level programming
abstractions and software tools through which developers are able to overcome
the difficulties in managing such distributed and resource‐constrained embed-
ded environments. Moreover, it provides the state‐of‐the‐art of middleware
and programming frameworks by focusing on both capabilities and lack of
proper functionalities needed for facing today’s and future challenges in BSN
application development.

2.2  Developing BSN Applications

Despite more than a decade of research in the BSN field, programming com-
plexity is still one of the challenging issues guilty of hindering a wider diffusion
of such systems in the real world.

BSN Programming Frameworks

2  BSN Programming Frameworks26

Implementing software on BSN‐based systems requires the developers to
face many different programming aspects ranging from efficiently managing
the very limited hardware resources (power, memory, and computational capa-
bility) of the sensor platforms to translating the global distributed in‐network
application behavior into a per‐node set of functions and interacting routines.
Dealing with platform‐level, network‐level, and application‐level implementa-
tion and debugging steps, without flexible development supporting tools, very
likely leads to time‐consuming and error‐prone tedious tasks prior to having
the end‐user application ready for deployment.

Unfortunately, a standard and common approach able to effectively fill the
gap between the complexity of the routines for managing sensor platforms and
network infrastructure, and the high‐level requirements of the desired user
applications has not been defined yet. Furthermore, with the ever‐increasing
application complexity due to the more and more advanced functionalities and
services provided to the users, the need for integrating different sensor archi-
tectures with other types of devices will lead to further challenges in terms of
platform interoperability in more heterogeneous and pervasive environments.

Some of the chapters will give a more in‐depth discussion of today’s scenarios
in which the typical single‐user BSN system is required to be integrated with
other computing paradigms and infrastructures in order to build smarter
human‐centered environments and enable more complex services for improv-
ing the human well‐being. To accommodate these new scenarios, the develop-
ment of such enhanced BSNs will entail the adoption of novel systematic design
approaches based on high level and preferable standardized abstractions
required to implement, for instance, agent‐oriented BSNs (see Chapter 6),
multi‐BSN collaborative systems (Chapter 7), BSN and building sensor net-
work integration (Chapter 8), and cloud‐enabled wearable systems (Chapter 9).

As of today, one of the following development methodologies can be adopted
to build BSN applications [1]: (i) application‐ and platform‐specific program-
ming, (ii) automatic code generation, and (iii) middleware‐based programming.

2.2.1  Application‐ and Platform‐Specific Programming

Application‐ and platform‐specific programming refers to developing appli-
cations that tend to be tailored for a specific purpose. Since they are expressly
coded to meet specific requirements and accomplish well‐defined tasks, they
can be optimized for achieving high performance once deployed. By means of
standard programming languages, like C, and by making use of platform‐spe-
cific Application Programming Interfaces (APIs), developers implement their
applications directly on top of a particular operating system or software stack.
In such a way, the final result is a single software program consisting of the
application logic tightly coupled with the network protocol routines and other
services because of direct interactions with the embedded operating system

2.2  Developing BSN Applications 27

and the hardware controlling components. Although such a design strategy
can lead to a highly optimized code in terms of energy consumption and com-
putational performance, the strong coupling between the application and the
underlying supporting software is a main issue. This leads to a monolithic
piece of code specifically conceived to accomplish a fixed task and usually
targeting a single sensor platform, thus resulting in a rigid and poorly reusable
infrastructure with no easy‐to‐reuse software component that could actually
be shared by different applications. Although this approach may still be a
viable solution for developing quite simple applications, today’s complex sys-
tems are hard to be implemented without proper versatile development tools.
Indeed, the currently available platform APIs tend to leave to the developers
many low‐level aspects related to the hardware control (e.g. the access to
onboard sensor drivers), event handling, as well as in‐node job scheduling
and code optimization for an efficient use of the scarce node resources. Also,
some operating system primitives do not make common BSN functionalities
(i.e. sensor configuration and sampling, multinode communication patterns,
or distributed data processing) available as ready‐to‐use and customizable
software components. As a result, coding the global application logic into
individual node’s behavior implies coping with cumbersome tasks like inter‐
node process synchronization and data integrity and explicitly interfacing
with the node‐supported network protocols to exchange and parse messages.
Therefore, BSN developers have to spend most of their development time in
implementing ad‐hoc routines dealing with low‐level details rather than
focusing on the application core logic. Since the implementation is bound to
a specific sensor node architecture and a specific set of sensor drivers, the
final code is not reusable or easily modifiable in case a different platform is
required to be used.

The difficulties and limits in developing platform‐specific applications
directly on top of a sensor platform’s operating system have also been investi-
gated in Ref. [2], which specifically takes into consideration TinyOS [3],
MANTIS [4], and the Ember ZigBee stack [5].

Early works on BSNs have focused on small and simple applications with no
relevant development issues. However, as already discussed, when application
complexity increases, the lack of proper high‐level programming tools
becomes a strong limiting factor. This is particularly true in light of the fact
that many recent application domains are demanding for multiple intercon-
nected Internet‐based sensor networks requiring more complex multiplat-
form applications enabling the claimed paradigm of the Internet of Things
(IoT) [6]. In this very near future scenario, broader and more powerful
programming interfaces are of paramount importance for better supporting
more pervasive computing systems. On the basis of these considerations,
there is a strong interest in using software instruments capable of simplifying
application development on BSNs.

2  BSN Programming Frameworks28

2.2.2  Automatic Code Generation

The automatic code generation approach aims at solving the problem of mak-
ing a certain application available for different sensor platforms without tack-
ling multiple manual porting procedures which, depending on the complexity
of the application, may be very time‐consuming. The technique consists in
specifying the application logic through a well‐defined platform‐independent
modeling language, which abstracts away any low‐level details related to both
hardware and operating system. Subsequently, starting from the defined high‐
level abstractions, a tailor‐made translator tool interprets the application
model and generates a source code that can only run on a specific hardware
platform and operating system. Thus, such an approach requires that each
platform has its own tool for translating the high‐level modeling constructs
into its low‐level programming language application. The most annoying
drawback with this approach is the need for recompiling and reflashing the
firmware into every single sensor node whenever a change is made in the
application model, unless over‐the‐air (OTA) programming is supported by
the platform.

2.2.3  Middleware‐Based Programming

Middleware‐based programming allows developers to speed‐up and ease the
application development tasks by benefiting from the use of (i) well‐defined high‐
level abstractions, representing the interface to developers, and (ii) a middleware
providing proper runtime mechanisms implementing such abstractions.

Programming frameworks based on middleware support the whole applica-
tion development (including deployment, execution, and maintenance) by hid-
ing the complexity and the heterogeneity of the sensor platforms, so that the
work of developers is facilitated leading to simpler programming, increased
code reuse, and easier maintenance. A typical framework solution usually
comes with the following components (see Figure 2.1):

1)	 Programming abstraction: it provides a programming interface to a specific
development paradigm and built‐in functionalities for an easier manage-
ment of physical and basic‐software resources (such as storage, sensing,
communication, and operating system). Since the final application is defined
in terms of well‐defined high‐level constructs representing the interface to
the BSN functionalities, the developer can focus on the application logic
rather than dealing with the implementation of lower level mechanisms.

2)	 Middleware services and functions: a set of reusable routines in charge of
providing the actual implementation of the high‐level constructs constitut-
ing the programming abstraction. They include the middleware common
core functionalities and networking mechanisms to perform the user‐
defined application execution.

2.2  Developing BSN Applications 29

3)	 Runtime support: serves as a specific execution environment for supporting
the services and functions. In practice, it performs the interaction between
the middleware layer and the sensor platforms, i.e. the embedded operating
systems and the hardware components.

The middleware‐based development approach is gaining more and more
attention in the BSN domain and is currently considered as the most effective
one in bridging the software gap between the complexity of the routines for
managing the hardware/operating system/network stack layers of the sensor
platforms and the requirements of the application logic. Therefore, a middle-
ware is generally designed as a distributed software layer running on each sen-
sor node and in charge of providing a set of interfaces and services to the upper
layers in order to hide low‐level details of the underlying system architecture
and the related networking protocols. In particular, it is responsible for the
actual execution of the user‐defined application by “translating” the high‐level
programming abstractions into real running functions aiming at, for instance,
extracting, collecting, processing, and transporting data within and across
nodes. At the same time, it may handle some low‐level management routines
for constantly controlling platform resources and network status to better

Programming Abstractions

Middleware services
and functions

Application 2 Application NApplication 1

Runtime support

Communication
Management

Network stack
support

Processing/Storage
support

Sensors/Actuators
support

Resources
Management

Domain-specific
Services

Data Processing
Management

Security
Management

Application Deployment
Management

WSN network infrastructure

Embedded Operating Systems HW components

Figure 2.1  Reference model of a middleware‐based programming framework.

2  BSN Programming Frameworks30

coordinate the operations or even to decide the best protocol to adopt, based
on the current application goals and requirements. Thanks to all these benefits,
the developer is alleviated from tedious and error‐prone tasks and can mainly
focus on the application logic, thus shortening the whole application develop-
ment process.

2.2.4  Programming Approaches Comparison

In Table 2.1, a summary of the characteristics of the above‐discussed application
development approaches is reported. In particular, the implementation‐time
features (i.e. from the application developers’ perspective) as well as the running‐
time features supported are considered.

As clearly shown, programming a framework based on middleware improves
application development under several aspects, with respect to using low‐level
programming languages and platform‐specific APIs. A highly efficient code is
the strength of custom applications at the cost of longer implementation and
debugging time. When faster and more flexible application development
and deployment are more important, developers tend to rely on middleware
and code generators which, if properly designed and implemented, are still
capable of ensuring very good runtime performance, thanks to little overhead.
The application maintenance efforts are also greatly reduced by using a
middleware layer, which usually supports user application reconfiguration

Table 2.1  BSN‐application development approaches comparison.

Application‐specific
and platform‐specific
programming

Automatic code
generation

Middleware‐based
programming

High‐level
application modeling

✓ ✓

Rapid prototyping ✓ ✓
Ease of debugging ✓ ✓
Quick application
development

✓ ✓

Application
reconfiguration at
runtime

✓

Code efficiency ✓ ✓ ✓
System
interoperability

✓

Software reusability ✓ ✓

2.3  Programming Abstractions 31

without the need for reflashing an updated firmware into each single node.
This is accomplished by means of proper messages interpreted by the
middleware running on the nodes, so as to prevent developers to physically
access the devices. On the contrary, both low‐level programming and code
generator‐based approaches do not provide such a feature, since they generate
new firmware, which need to be manually uploaded on each node, unless a
sensor platform providing an OTA programming functionality is employed.
Another important requirement in the BSN is system interoperability that is
the property of different applications to cooperate across heterogeneous
platforms. When developed in a middleware environment, the common
messaging protocol at the high level offers the best support to this purpose,
whereas in the other approaches, developers have to put much more efforts
and time in order to achieve similar results. Finally, the design strategy of
building systems targeting specific applications generates rigid software
architecture with no reuse of software components or infrastructure.

2.3  Programming Abstractions

As already mentioned, the programming abstractions provide the primary
interface for the developers and represent the basis for the programming para-
digm supported by the middleware running on the sensor network infrastruc-
ture. These mechanisms can include high‐level constructs for defining several
operations like sensing, sensor reading aggregation, and data‐flow control,
computation, and communication. If properly conceived, such abstractions
greatly relieve application developers from directly dealing with tedious low‐
level details such as resource management, network protocols, and power
management, among others. For addressing sensor network programming
issues and supporting developers in a fast and effective application develop-
ment, in the last decade, many frameworks for sensor networks have been
proposed, focusing on different application aspects. Depending on the specific
scope of applicability, each of them provides a well‐defined programming
paradigm along with its related high‐level abstractions. To some extent, most
of these high‐level approaches can also be employed for building BSN applica-
tions. However, as it will be discussed later in this chapter, a BSN system poses
different challenges and demands more specific requirements to be fulfilled.
Thus, appropriate programming paradigms and supporting tools specifically
designed to accommodate such peculiar needs are required to better exploit
the potentialities of BSNs.

In the following, a list of existing programming paradigms, and related sup-
porting frameworks, for sensor networks is reported.

Task‐oriented paradigm (SPINE2 [1, 7], Titan [8], and ATaG [9]): the task‐
oriented approach aims at providing an easy and effective way for

2  BSN Programming Frameworks32

developing distributed applications as a composition of basic functional
blocks, tasks. Each task usually performs a well‐specified operation such as
a data‐processing function or a sensor sampling. By means of such a data‐
flow‐oriented chain of interconnected tasks (data flow from sensors to pro-
cessing results), developers are able to quickly translate the application logic
into a high‐level, modular, and easily reconfigurable representation, which
is then automatically executed over the sensor network by means of a
proper runtime system, provided as a common middleware layer running
on every node. This intuitive programming model is particularly suitable for
distributed signal processing, which represents the main application in the
BSN context.

Agent‐based paradigm (MAPS [10–12], AFME [13], Agilla [14], SensorWare
[15], and actorNet [16]): the agent‐based programming model is associated
with the notion of multiple, desirable lightweight, agents migrating from node
to node performing part of a given task and collaborating each other to
implement a global distributed application. An agent could read sensor values,
actuate devices, and send radio packets. The users do not have to define a per‐
node logic, but an arbitrary number of agents and their behavior, specifying
how they collaborate to accomplish the needed tasks on the network. According
to this model, the programming paradigm provides users with high‐level con-
structs to define agents’ characteristics by hiding how communication and
mobility are actually implemented. Such a paradigm allows developers to build
distributed, modular applications that can be easily reconfigured and relocated
by means of a mobile code.

Function‐based paradigm (SPINE [17], C‐SPINE [18, 19], RehabSPOT [20],
and CodeBlue [21]): Not based on a specific formalism for abstracting data or
task, these frameworks provide developers with customizable functions as
main programming interfaces for data collection, processing, and displaying.
They come with easily reusable libraries and tools conceived to specifically
address and standardize the core challenges of sensor‐based system design
within a particular application domain. Moreover, since there is no complex
execution engine for “translating” high‐level abstractions, a very lightweight
and flexible middleware guarantees high runtime performance.

Macroprogramming paradigm (ATaG [9], Logical Neighborhoods [22],
Kairos [23], and Regiment [24]): this approach is for developing highly dis-
tributed applications since it easily allows the definition of the global behav-
ior of the whole sensor network, rather than single actions related to
individual nodes. This approach has been conceived for dealing with WSNs
constituted by a large number of nodes, such that the complexity in coordi-
nating their actions makes applications quite difficult to be designed in an
effective way. The same effectiveness cannot be considered when applied to
the BSNs. Macroprogramming generally has some language constructs
for abstracting embedded system’s details, communication protocols, node

2.3  Programming Abstractions 33

collaboration, and resource allocation. Moreover, it provides mechanisms
through which sensors can be divided into logical groups on the basis of their
locations, functionalities, or roles. Then, the programming task decreases in
complexity because programmers have only to specify what kind of collabo-
rations exist between groups, whereas the underlying execution environment
is in charge of translating these high‐level conceptual descriptions into actual
node‐level actions. Thanks to these high‐level concepts, any domain expert
not skilled in programming can develop their own application by simply
defining the whole system behavior through concepts and terms they are
familiar with.

Model‐based paradigm [2]: it allows developers to define proper models
representing the desired behavior of an application. Usually, such an approach
consists in making use of a well‐defined modeling language (such as finite
state machines and flow charts) and a tool capable of generating a low‐level
code for a specific target platform starting from the model. Although it
represents a standard methodology for several domains, such as automotive
electronics, its employment in the context of WSN/BSN has not been widely
investigated yet.

Application‐driven paradigm (MiLAN [25]): middlewares belonging to
this model aim to provide services to applications according to their needs
and requirements, especially for QoS and reliability of the collected data.
They allow programmers to directly access the communication protocol
stack for adjusting the network functions to support and satisfy the requested
requirements.

Database paradigm (TinyDB [26], Cougar [27], and SINA [28]): The data-
base model lets users view the whole sensor network as a virtual relational
distributed database system allowing a simple and easy communication scheme
between users and network. Through the adoption of easy‐to‐use languages,
the users have the ability to make intuitive queries for extracting the data of
interest from the sensors. The most common way for querying networks is
making use of a SQL‐like language, a simple semi‐declarative style language.
This paradigm is mainly designed to collect data streams, with the limitation of
providing only approximate results. Moreover, it is not suitable to support real‐
time applications (usually a must in BSNs) because it lacks a time–space rela-
tionship between events.

Virtual machine paradigm (Maté [29], DAViM [30], and DVM [31]): Virtual
machines (VMs) have been generally adopted for software emulating a guest
system running on top of a real host. In the WSN context, VMs are used for
allowing a broad range of applications to run on different platforms without
worrying about the underlying architecture characteristics. User applications
are coded with a simple set of instructions that are interpreted by the VM
execution environment. Unfortunately, this approach suffers from the perfor-
mance overhead that the instructions’ interpretation introduces.

2  BSN Programming Frameworks34

2.4  Requirements for BSN Frameworks

BSN applications, despite their diversification, share several common tasks on
top of which the application‐specific logic is implemented. A correct and clear
identification of such tasks is essential to realize an effective and usable BSN
programming framework.

Table 2.2 summarizes the results of an in‐depth analysis of research projects
and technological prototypes to identify the very essential set of tasks com-
monly needed by BSN applications.

The tasks reported in Table 2.2 should be provided by a framework for the
development of BSN applications, for instance by means of programming
abstractions and tools. In addition, such a framework should be designed to
meet specific (functional and nonfunctional) requirements in terms of effec-
tiveness, efficiency, and usability to be actually capable of facilitating the devel-
opment of well‐structured and resource‐efficient applications with less effort
in terms of development time and application programming complexity. The
resulting source code should be more reusable, easier to maintain, and sup-
ported by tools for application management. Supporting heterogeneous sensor
platforms is also relevant; hence, system interoperability is a desirable require-
ment, too. Finally, privacy and security are highly important requirements
because it is important to protect identifiable and sensitive data such as the
ones coming from physiological, possibly medical‐relevant signals. In Table 2.3
we have reported the aforementioned requirements that we deem fundamental
for a BSN‐specific software framework.

Programming Effectiveness is the ability of the framework to provide effective
and specific support for application programming, debugging, and testing. In
practice, it is realized by programming abstractions, software engineering
methods, and debugging and testing tools. More specifically:

●● Programming abstractions help developers to focus on core application
aspects by providing higher level functionalities, as already discussed. In the
domain of BSN development, it is particularly relevant to find (i) tunable
sensor drivers (to adjust, possibly at runtime, sampling rate, sensitivity, and
range, or to enable/disable only certain channels of a multichannel sensor),
(ii) flexible data structures (to handle different data types), (iii) flexible com-
munication APIs (different applications typically require different packet
lengths and structures in terms of data payload), and (iv) parameterized
processing functions (to set functions’ parameters without hard‐coding
their values).

●● Software engineering methods use component‐based (object‐like)
approaches to support rapid BSN application prototyping. A software
framework should provide predefined (ready to use) BSN‐specific compo-
nents that are common to most applications; this will help developers to
reach prototypes in shorter time. Examples of such common components

2.4  Requirements for BSN Frameworks 35

Table 2.2  Common tasks of BSN applications.

Task Description

Sensor sampling Sensor sampling is typically the first step of BSN
application development. Each application has different
requirements and each physiological signal has its own
characteristics, so it is strategic to properly tune the
sensor sampling rate, as it eventually influences the
amount of raw data generated and the quality of the
extracted information.

In‐node data processing Pattern recognition and data mining algorithms often
need preprocessing of raw data to increase its quality
and reduce its amount. Raw signals are typically filtered
(e.g. to mitigate the effect of noise sources) and features
are extracted in the processing workflow before inferring
higher level information. In‐node and real‐time feature
extraction is an important task to reduce wireless traffic
and computation workload on the coordinator.

Runtime sensor
configuration

Configuring at runtime each sensor node is useful
because application demand can change during its
execution, so as to allow for dynamic application
behavior. For example, under certain circumstances, it
might be convenient to reduce the sampling rate of a
specific sensor, or even disable its data transmission.

Node synchronization Many distributed signal‐processing algorithms require
multiple nodes to be sampled synchronously (i.e. at the
same actual time intervals), to ensure consistency of data
observation and underlying events. Nodes clocks in
these cases must be kept synchronized to preserve
synchronized sampling of individual sensor signals.

Duty‐cycling Duty‐cycling is a mechanism for controlling the
activation of hardware resources (typically radio, sensor
transducers, and microcontroller) only when actually
needed, to reduce power consumption and hence
increase battery lifetime of the sensor node.

Application‐level
communication protocol

As the application complexity increases, interactions
among sensor nodes and between sensor nodes and the
coordinator become diversified. For instance,
communication involves sensor node discovery/
advertisement, requests for sensing and processing
activation and configuration, raw and processed sensor
data transmission, and event delivery. In this scenario, a
flexible application‐level communication protocol would
better support the application development.

High‐level processing BSN application services often require pattern
recognition and classification algorithms to enable fine
interpretation of BSN‐generated asynchronous events
and periodic data to extract meaningful information and
mine high‐level knowledge.

2  BSN Programming Frameworks36

are signal filters (e.g. FIR filters) to clean or amplify a signal, feature extrac-
tors (e.g. average, variance, zero crossing, and signal slope) to reduce the
amount of transmitted data, classification algorithms (e.g. k‐NN, decision
trees) useful as decision support tools, and an application‐level communi-
cation protocol (e.g. for nodes/services discovery, failure notification, and
user data transmission).

●● Debugging and Testing tools are necessary to verify functional correctness of
the application under development. Debugger tools help in locating the
causes of known erroneous application behaviors, while testing tools help in
verifying the correctness of software components. They may be included
with the development environment and can consist of simulators or step‐by‐
step debuggers.

System Efficiency indicates qualitatively the performance of the system in
terms of energy, storage, and computational resource management. Built‐in
tunable power management schemes let adjusting the trade‐off between perfor-
mance, reliability, and system lifetime. Power management aims at improving
BSN lifetime, often by means of radio duty‐cycling, sensor down‐sampling, or
by disabling wireless data transmission in favor of local storage.

System Interoperability is the ability of enabling collaboration (i.e. communi-
cation, distributed sensing, and processing) among different devices in terms
of hardware/software technologies. To exemplify, interoperability scenarios
include (i) network formation and communication among devices based on
different hardware architecture but programmed using the same language,
(ii) interoperability among homogeneous BSN coordinators, and (iii) the
ultimate ability of a system to interoperate with fully heterogeneous devices
(e.g. Internet through sockets or XML RPC). In practice, it can be achieved
with an application‐level communication protocol and communication
adapters for supporting heterogeneous sensor and coordinator devices.

Table 2.3  Requirements for BSN frameworks.

Requirement High‐level techniques

Programming effectiveness Programming abstractions, software engineering
methods, debugging and testing tools

System efficiency Resource management optimization
System interoperability Application‐level communication protocol and

adapters for heterogeneous platform support
System usability User‐friendly BSN management, PC and mobile

device‐based coordinator
Privacy support Data encryption and authentication

2.5  BSN Programming Frameworks 37

System Usability is a (nonfunctional) property referring to systems that are
easy‐to‐use for designers, developers, and end users. It is often supported by
graphical or API‐based BSN management tools running on a remote coordina-
tor (a PC or a mobile device).

Privacy Support is the ability of a system to protect user’s confidential infor-
mation. Encryption and authentication functionalities allow the system to keep
such information secret and to ensure access only to authorized parties. Privacy
protection is a necessary requirement in every real‐world e‐Health applica-
tions and it can be effectively achieved only when all the system tiers use pri-
vacy policies.

As for the programming abstractions, on the basis of what was discussed in
Section 2.3, it emerges that none of them can be considered as the predomi-
nant one. Depending on specific tasks and/or contexts, a certain solution may
result as a better choice than others. Most of them have peculiar features spe-
cifically conceived for particular application contexts but lack in characteris-
tics useful for more general‐purpose uses. For instance, frameworks based on
a database approach provide high‐level services for data aggregation and
querying but not for defining a more general‐purpose computation. Hence,
the data‐centric model is not suitable in domains requiring more sophisti-
cated collaborative sensor data processing over the network. In the specific
context of BSN‐based systems, most of these frameworks do not allow a dis-
tributed data flow management and processing over the network. Fast appli-
cation reconfiguration and platform independence are two fundamental
requirements to be fulfilled by a BSN programming paradigm. Reprogramming
a network is a desirable feature for supporting rapid and efficient changes of
sensor node behavior. Systems like Deluge [32] and TinyCubus [33] provide
code updates by directly loading them over the radio. However, they require
the use of a homogeneous hardware/software platform; also, the code trans-
mission is a time‐ and energy‐consuming operation. VMs represent a typical
approach for achieving a platform‐independent behavior. They allow
the development of applications by means of proper instructions, which are
interpreted by the VM running on sensor nodes. Unfortunately, this approach
requires high computational and memory resources and suffers of poor per-
formance due to the overhead for interpreting the instructions. Moreover,
coding an application with the provided instructions is not fast and intuitive
(e.g. Maté provides more than a hundred instructions), especially if the appli-
cation needs frequent changes.

2.5  BSN Programming Frameworks

In the following, a brief description of the main current frameworks and archi-
tectures for developing BSN‐based systems is presented.

2  BSN Programming Frameworks38

2.5.1  Titan

Titan (Tiny task network) [8] is a programming framework conceived to specifi-
cally enable dynamic context recognition on the BSN. A Titan application is
represented by a task graph that is defined as a set of interconnected basic
blocks, tasks, which are executed over the sensor network by the framework
runtime system. In particular, once the whole application is defined, the task
network is split into a set of task subnetworks, each of which is assigned and
executed on a single node. In case of two tasks placed on different nodes, the
data transfer takes place through messages exchanged via an ad‐hoc communi-
cation protocol. Each task is mapped and executed only on a specific node,
unless it will become unavailable during execution, e.g. due to battery deple-
tion. In such a case, the Titan coordinator automatically performs a reallocation
of the task by picking one of the remaining running nodes that has sufficient
resources to handle that specific task. The middleware is also in charge of
accordingly readdressing the inter‐task communication based on the previously
defined task graph. Titan provides developers with a library of predefined tasks,
each representing a specific operation such as a sensor reading, a processing
function, or a classification algorithm.

2.5.2  CodeBlue

CodeBlue [21] is a sensor network infrastructure specifically conceived to sup-
port medical scenarios ranging from indoor monitoring of patients in medical
centers to outdoor disaster emergency management. The final aim is to effec-
tively support highly critical decision support systems by continuously feeding
patient information coming from a set of wearable medical sensors (based on
TelosB [34] and MicaZ [35]). The middleware platform, built atop TinyOS, is
designed to provide high‐level services, such as ad‐hoc routing, naming, dis-
covery, and security, and is capable of scaling across a wide range of network
densities, from sparse clinic environments to mass casualty sites. Mainly
focusing on communication services, CodeBlue is based on a flexible publish/
subscribe data delivery model in order to provide a common scalable and
robust (in case of the temporary loss of radio connectivity) information plane
for coordinating medical devices. In particular, sensors publish important data
to given channels and coordinator devices (hand‐handled or laptop) subscribe
to channels of interest.

2.5.3  RehabSPOT

RehabSPOT [20] is a BSN platform based on Sun SPOT sensor nodes [36]
designed for facilitating physical therapists’ work and improving patients’ limb
rehabilitation treatment. Based on a three‐tier customizable platform, it features

2.5  BSN Programming Frameworks 39

adaptive data collection, online processing, and display. In particular, the wear-
able nodes are organized as a standalone mesh network (first tier) and each of
them runs a client software. A coordinator (second tier, usually a PC) is in charge
of managing the nodes by forming a star‐topology network and performing
real‐time display and online processing. Finally, an Internet infrastructure
(third tier) is designed to upload data from the coordinator to remote servers for
off-line analysis.

2.5.4  SPINE

SPINE [17, 37] is an open‐source BSN framework for effective development of
distributed signal processing. It provides a variety of built‐in sensor drivers,
signal‐processing functions, and flexible data communication protocols. Also,
its architecture allows for easy integration of new customized sensor drivers
and processing functionalities. SPINE currently supports the most popular
programmable sensor node platforms running TinyOS, i.e. Tmote Sky/TelosB,
MicaZ, and Shimmer [38]. In addition, there exist SPINE implementations for
(i) ZigBee devices based on the TI Z‐Stack and (ii) the Java Sun SPOT sensors
[36]. A more in‐depth description of SPINE is presented in Chapter 3.

2.5.5  SPINE2

SPINE2 [1, 7], evolved from SPINE, is a platform‐independent framework
designed around a task‐oriented high‐level programming approach.
According to this paradigm, a signal‐processing application is defined in
terms of a network of tasks, where each task (available from a library of tasks)
represents a specific activity, like a sensing operation, a processing function,
or a data transfer. Designing applications with a set of basic building blocks
enables a more rapid system development, runtime re‐configuration, and
easier software maintenance. The software architecture of SPINE2, designed
by following a software layering approach, is composed of several platform‐
independent components and a set of platform‐dependent modules to access
the specific platform resources and services. This leads to an easier and faster
porting of SPINE2 to new C‐like sensor platforms. A more in‐depth descrip-
tion of SPINE2 is presented in Chapter 4.

2.5.6  C‐SPINE

C‐SPINE [18, 19] is a SPINE‐based programming framework specifically designed
to support the development of distributed applications over Collaborative
BSNs (CBSNs). The C‐SPINE architecture includes the SPINE sensor‐side and
the SPINE base station‐side software components, with the addition of specific
CBSN architectural components enabling several services providing Inter‐CBSN

2  BSN Programming Frameworks40

Communication, BSN Proximity Detection, BSN Service Discovery, BSN Service
Selection, and Application‐specific Protocols and Services, which specifically
support collaborative computing and multisensor data fusion among BSNs. C‐
SPINE is described in Chapter 7.

2.5.7  MAPS

MAPS [10–12] is a Java‐based programming framework enabling agent‐oriented
programming over sensor networks. It has been widely used for developing a
BSN‐specific system showing the versatility of such a programming approach.
MAPS provides developers a set of fundamental services for programming
agents including message transmission, agent creation, agent cloning, agent
migration, timer handling, and easy access to the sensor node resources, whereas
the agents’ behavior is modeled as a multiplane state machine. MAPS is pre-
sented in Chapter 6 along with a more general discussion about the benefits of
agent‐oriented programming approaches for developing BSN systems.

2.5.8  DexterNet

DexterNet [39] is an open‐source platform for BSN supporting scalable, real‐
time human monitoring in indoor and outdoor environments over heteroge-
neous wearable sensors. The software platform is designed as a three‐tier
architecture, which includes the following: (i) the body sensor layer (BSL),
(ii) the personal network layer (PNL), and (iii) the global network layer (GNL).
The first two layers are implemented by using the SPINE framework libraries
for managing a single BSN, whereas the third one allows a multiple‐PNL
communication over the Internet and supports higher level applications for
remote data logging and analysis.

2.6  Summary

This chapter discussed the programming issues in sensor networks, with par-
ticular regard to the methodologies for efficiently and effectively building
applications on BSNs. We have first introduced and compared the different
development approaches. We then focused on the most common program-
ming abstractions provided in the literature by highlighting their main peculi-
arities and features and their applicability in the BSN domain. Furthermore,
the requirements for designing effective BSN‐specific frameworks have been
discussed. Finally, the current available frameworks for developing BSN appli-
cations have been briefly described.

﻿  References 41

References

	 1	 Galzarano, S., Giannantonio, R., Liotta, A., and Fortino, G. (2016). A task‐
oriented framework for networked wearable computing. IEEE Transactions on
Automation Science and Engineering 13 (2): 621–638. doi: 10.1109/
TASE.2014.2365880.

	 2	 Mozumdar, M.M.R., Lavagno, L., Vanzago, L., and Sangiovanni‐Vincentelli,
A.L. (2010). HILAC: A framework for hardware in the loop simulation and
multi‐platform automatic code generation of WSN applications. 2010
International Symposium on Industrial Embedded Systems (SIES), Trento Italy
(7–9 July), pp. 88–97.

	 3	 Levis, P., Madden, S., Polastre, J. et al. (2005). TinyOS: an operating system for
sensor networks. Ambient Intelligence, (ed. W. Weber, J.M. Rabaey, and
E. Aarts), 115–148. Berlin/Heidelberg: Springer.

	 4	 Bhatti, S., Carlson, J., Dai, H. et al. (2005). MANTIS OS: an embedded
multithreaded operating system for wireless micro sensor platforms. Mobile
Network Application 10 (4): 563–579.

	 5	 EmberZ StackWebsite. http://www.silabs.com/products/development‐tools/
software/emberznet‐pro‐zigbee‐protocol‐stack‐software (accessed 6 June
2017).

	 6	 Kortuem, G., Kawsar, F., Fitton, D., and Sundramoorthy, V. (2010). Smart
objects as building blocks for the Internet of things. IEEE Internet Computing
14 (1): 44–51.

	 7	 Raveendranathan, N., Galzarano, S., Loseu, V. et al. (2012). From modeling to
implementation of virtual sensors in body sensor networks. IEEE Sensors
Journal 12 (3): 583–593.

	 8	 Lombriser, C., Roggen, D., Stager, M., and Troster, G. (2007). Titan: a tiny
task network for dynamically reconfigurable heterogeneous sensor
networks. In Kommunikation in Verteilten Systemen (KiVS), 127–138.
New York: Springer.

	 9	 Bakshi, A., Prasanna, V.K., Reich, J., and Larner, D. (2005). The abstract task
graph: a methodology for architecture‐independent programming of
networked sensor systems. Proceedings of the 2005 Workshop on End‐to‐End,
Sense‐and‐Respond Systems, Applications and Services, Seattle, WA (5 June
2005), pp. 19–24.

	10	 Aiello, F., Fortino, G., Gravina, R., and Guerrieri, A. (2011). A Java‐based agent
platform for programming wireless sensor networks. The Computer Journal
54 (3): 439–454.

	11	 Aiello, F., Bellifemine, F., Fortino, G. et al. (2011). An agent‐based signal
processing in‐node environment for real‐time human activity monitoring
based on wireless body sensor networks. Journal of Engineering Applications
of Artificial Intelligence 24: 1147–1161.

2  BSN Programming Frameworks42

	12	 Aiello, F., Fortino, G., Gravina, R., and Guerrieri, A. (2009). MAPS: a mobile
agent platform for Java Sun SPOTs. Proceedings of the 3rd International
Workshop on Agent Technology for Sensor Networks (ATSN‐09), jointly held
with the 8th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS‐09), Budapest, Hungary (12 May 2009).

	13	 Muldoon, C., O’Hare, G.M.P., Collier, R.W., and O’Grady, M.J. (2006). Agent
factory micro edition: a framework for ambient applications. Proceedings of
Intelligent Agents in Computing Systems, ser. Lecture Notes in Computer
Science, vol. 3993 (28–31 May 2006), pp. 727–734. Reading: Springer.

	14	 Fok, C.‐L., Roman, G.‐C., and Lu, C. (2009). Agilla: a mobile agent middleware
for self‐adaptive wireless sensor networks. ACM Transactions on Autonomous
and Adaptive Systems 4 (3): 16:1–16:26.

	15	 Boulis, A., Han, C.‐C., and Srivastava, M.B. (2003). Design and
implementation of a framework for efficient and programmable sensor
networks. Proceedings of the 1st International Conference on Mobile Systems,
Applications and Services, San Francisco, CA (5–8 May 2003), pp. 187–200.

	16	 Kwon, Y., Sundresh, S., Mechitov, K., and Agha, G. (2006). ActorNet: an actor
platform for wireless sensor networks. Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Hakodate, Japan (8–12 May 2006), pp. 1297–1300.

	17	 Fortino, G., Giannantonio, R., Gravina, R. et al. (2013). Enabling effective
programming and flexible management of efficient body sensor network
applications. IEEE Transactions on Human‐Machine Systems 43 (1): 115–133.

	18	 Fortino, G., Galzarano, S., Gravina, R., and Li, W. (2014). A framework for
collaborative computing and multi‐sensor data fusion in body sensor
networks. Information Fusion 22: 50–70.

	19	 Augimeri, A., Fortino, G., Galzarano, S., and Gravina, R. (2011). Collaborative
body sensor networks. Proceedings of the 2011 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Anchorage, AL (9–12 October
2011), pp. 3427–3432.

	20	 Zhang, M. and Sawchuk, A. (2009). A customizable framework of body area
sensor network for rehabilitation. Second International Symposium on Applied
Sciences in Biomedical and Communication Technologies (ISABEL) (24–27
November 2009), pp. 1–6.

	21	 Malan, D., Fulford‐Jones, T., Welsh, M., and Moulton, S. (2004). Codeblue: an
ad hoc sensor network infrastructure for emergency medical care. Proceedings
of the International Workshop on Wearable and Implantable Body Sensor
Networks, London, UK (6 and 7 April 2004).

	22	 Mottola, L. and Picco, G.P. (2006). Logical neighborhoods: a programming
abstraction for wireless sensor networks. In: Distributed Computing in Sensor
Systems (ed. P.B. Gibbons, T. Abdelzaher, J. Aspnes, and R. Rao), 150–168.
Berlin/Heidelberg: Springer.

﻿  References 43

	23	 Gummadi, R., Kothari, N., Govindan, R., and Millstein, T. (2005). Kairos: a
macro‐programming system for wireless sensor networks. Proceedings of the
twentieth ACM symposium on Operating Systems Principles, Brighton, UK
(23–26 October 2005), pp. 1–2.

	24	 Newton, R., Morrisett, G., and Welsh, M. (2007). The regiment
macroprogramming system. Proceedings of the 6th International Conference
on Information Processing in Sensor Networks, Cambridge, MA (25–27 April
2007), pp. 489–498.

	25	 Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., and Perillo, M.A.
(2004). Middleware to support sensor network applications. IEEE
Network 18 (1): 6–14.

	26	 Madden, S.R., Franklin, M.J., Hellerstein, J.M., and Hong, W. (2005). TinyDB:
an acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems 30 (1): 122–173.

	27	 Bonnet, P., Gehrke, J., and Seshadri, P. (2000). Querying the physical world.
IEEE Personal Communications 7 (5): 10–15.

	28	 Srisathapornphat, C., Jaikaeo, C., and Shen, C.‐C. (2000). Sensor information
networking architecture. Proceedings 2000. International Workshops on
Parallel Processing, Tokio, Japan (14 September 2000), pp. 23–30.

	29	 Levis, P. and Culler, D. (2002). Maté: a tiny virtual machine for sensor
networks. SIGOPS Operating Systems Review 36 (5): 85–95.

	30	 Michiels, S., Horré, W., Joosen, W., and Verbaeten, P. (2006). DAViM: a
dynamically adaptable virtual machine for sensor networks. Proceedings of
the International Workshop on Middleware for Sensor Networks, New York,
pp. 7–12.

	31	 Balani, R., Han, C.‐C., Rengaswamy, R.K. et al. (2006). Multi‐level software
reconfiguration for sensor networks. Proceedings of the 6th ACM & IEEE
International conference on Embedded Software, Seoul, Republic of Korea
(22–27 October 2006), pp. 112–121.

	32	 Hui, J.W. and Culler, D. (2004). The dynamic behavior of a data dissemination
protocol for network programming at scale. Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, Baltimore,
MD (3–5 November 2004), pp. 81–94.

	33	 Marron, P.J., Lachenmann, A., Minder, D. et al. (2005). TinyCubus: a flexible
and adaptive framework sensor networks. Proceeedings of the Second
European Workshop on Wireless Sensor Networks, 2005, Istanbul, Turkey
(31 January–2 February 2005), pp. 278–289.

	34	 TelosB Datasheet. http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb_datasheet.pdf (accessed 11 June 2017).

	35	 Mica2 Datasheet. https://www.eol.ucar.edu/isf/facilities/isa/internal/
CrossBow/DataSheets/mica2.pdf (accessed 5 June 2017).

	36	 Sun SPOT Website. www.sunspotdev.org (accessed 13 June 2017).

2  BSN Programming Frameworks44

	37	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐
specific framework for rapid prototyping of WBSN applications. Software:
Practice and Experience 41 (3): 237–265. doi: 10.1002/spe.998.

	38	 Shimmer Website. www.shimmersensing.com (accessed 14 June 2017)
	39	 Kuryloski, P., Giani, A., Giannantonio, R. et al. (2009). DexterNet: an open

platform for heterogeneous body sensor networks and its applications. Sixth
International Workshop on Wearable and Implantable Body Sensor Networks,
2009. BSN 2009, Berkeley, CA (3–5 June 2009), pp. 92–97.

45

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

3

3.1  Introduction

The analysis of the state‐of‐the‐art on the BSN domain has highlighted that the
development of BSN applications is to date a complex task also due to the lack
of programming frameworks with dedicated support to the distinctive require-
ments of BSN systems.

To support the programming of optimized BSN applications while minimiz-
ing the development time and effort, we have designed and realized SPINE
(Signal Processing In‐Node Environment) [1–3], an open‐source domain‐
specific programming framework for BSNs.

SPINE aims at boosting the prototyping of BSN applications. SPINE ena-
bles efficient implementations of signal‐processing algorithms for analysis
and classification of sensor data through libraries of processing functionali-
ties. It is organized into two interacting macro‐components, which are,
respectively, implemented on commercially available programmable sensor
devices and on the personal coordinator (Android smartphones and tablets,
or a personal computer). Communication among these devices is wireless,
using Bluetooth or IEEE 802.15.4 standards. The high‐level SPINE API (at
the coordinator level) allows for dynamic and flexible configuration of sens-
ing and processing functionalities available at the sensor node level. Many
biophysical sensors and signal‐processing tasks are natively implemented
and available to application developers. In addition, the SPINE framework
has been carefully designed to allow for very easy integration of new, custom‐
defined sensor drivers and processing tasks. A key advantage of adopting
SPINE is its ability to configure the BSN system based on specific sensing and
processing requirements; in this way, the same sensors can be used by differ-
ent applications without requiring off‐line reprogramming before switching
from an application to another.

Signal Processing In‐Node Environment

3  Signal Processing In‐Node Environment46

3.2  Background

TinyOS [4] is an event‐driven operating system, which provides a programming
environment for embedded systems. It has a component‐based execution model
implemented in the nesC language [5] with a very low memory footprint.

TinyOS concurrency model is based on commands, asynchronous events,
deferred computation called tasks, and split‐phase interfaces. The function
invocation (as command) and its completion (as event) are separated into two
phases in interfaces provided by TinyOS. Application user has to write the han-
dler, which is invoked upon the triggering of an event. Commands and event
handlers may post a task, which is executed by the TinyOS FIFO scheduler.
These tasks are non‐preemptive among each other and, thus, run to comple-
tion. Only an (asynchronous) event can preempt running tasks. Data race con-
flicts that arise due to preemption can be solved using atomic sections.

Radio communication in TinyOS follows the Active Messages [6] model, in
which each packet on the network specifies the ID of the handler that will be
invoked on the recipient nodes. The handler ID is an integer that is carried in
the header of the message. When a message is received, the event associated
with the handler ID is signaled. Different sensor nodes can associate different
receive events with the same handler ID.

3.3  Motivations and Challenges

The development of SPINE, as a domain‐specific BSN middleware (MW), is
motivated by the need of providing more effective solutions than naïve applica-
tion‐specific programming and a more efficient approach than general‐purpose
programming frameworks. It has been demonstrated that in the BSN domain,
domain‐specific frameworks contribute to reduce the development cycle and
maintenance since they provide high‐level abstractions of network protocols and
hardware details, allowing the programmer to focus mainly on the application
logic without the burden of carrying the overhead of general‐purpose functionali-
ties that are, in practice, not used in the BSN domain (e.g. multi‐hop support).

The main challenge during the design of SPINE was to find the most effec-
tive trade‐off between high‐level API definition (i.e. fulfillment of require-
ments in the BSN programming domain) and the limitations given by strongly
resource‐constrained sensing devices.

3.4  The SPINE Framework

SPINE is a full‐fledged and extensible solution that allows rapid prototyping of
BSN‐based applications and systems. It allows quick implementation of
distributed signal‐processing intensive applications by supporting several

3.4  The SPINE Framework 47

physiological sensors, in‐node and on‐coordinator signal‐processing utilities,
wireless transmission of biosignals, and built‐in optimized network and
resource management. SPINE is designed as a modular structure to simplify
the integration of additional sensor drivers and signal‐processing modules; in
addition, the framework itself can be tailored and customized by a simple
mechanism to combine all the sensing and processing modules altogether,
according to specific application requirements. A key advantage of adopting
SPINE is its ability to configure the BSN system based on specific sensing and
processing requirements; in this way the same sensors can be used by different
applications without requiring off‐line reprogramming before switching from
an application to another. SPINE supports BSN networks that are conceptually
organized in a star‐topology, with the sensor nodes representing the edges and
the coordinator unit the center of the star. Direct node‐to‐node communication
is also possible, although the predefined processing functionalities do not need
it. It is worth noting that SPINE devices communicate atop an application‐level
protocol, so it is in principle possible to use a multi‐hop network layer to realize
systems that are based on a physical network in which the coordinator and the
nodes are more than one hop distant.

In the following, we describe the software architecture of SPINE, its High‐
Level Data Processing module, and finally discuss its heterogeneous support of
sensor and coordinator device platforms.

3.4.1  Architecture

A high‐level representation of the SPINE architecture is shown in Figure 3.1.
The SPINE MW is partially located at the coordinator device and partially
on the wearable sensors. The MW provides an API both on the coordinator
and the sensor nodes to support the development of applications that finally
rely on the platform‐independent communication protocol layer. This protocol
represents an abstraction layer including diverse platform‐dependent com-
munication adapters that are dynamically loaded at the coordinator, whereas
are linked at compile time at the sensor‐node level.

Coordinator device

SPINE middleware

Sensor node
1

Sensor node
n

SPINE API

Platform-independent
SPINE Communication Protocol

Active Message
(on TINYOS)

Bluetooth
(Windows+Android)

Figure 3.1  The SPINE middleware architecture.

3  Signal Processing In‐Node Environment48

Figures 3.2 and 3.3 show, respectively, the architecture of the SPINE Node(s)
and SPINE Coordinator components. The former is implemented in the sensor
platform‐specific embedded programming language and is placed on each
BSN sensor node; the latter is implemented in Java and runs on the coordinator
device (an Android porting of the SPINE Coordinator has also been realized).

The SPINE Node (see Figure 3.2) consists of four main components:

●● Sensor Node Manager, which handles the interactions among the Sensing
Management, Signal Processing, and Communication modules; it dispatches
the requests from the remote coordinator to the appropriate module.

●● Communication, which handles message reception/transmission and con-
trols radio duty‐cycling. It consists of inbound packet decoders (i.e. service
discovery, start and reset computation requests, setup function request,
function (de)activation request, and setup sensor request) and outbound
packets encoders (i.e. service advertisement, buffered sensor readings, pro-
cessed data message, and acknowledgment packet). Any packet is initially
handled by the Radio Controller module, which provides a generic interface
independently from the specific underlying radio chip adapter.

●● Sensing Management (or SensorBoard controller), which is the component
providing a generic interface to the physical sensors available on the node. It
allows to perform one‐shot sensor readings and to setup timers for periodic
sensor sampling. This component provides easy hardware‐independent
access to all the supported sensor drivers (SPINE currently supports 3D
accelerometer, 2D gyroscope, 4‐leads ECG, respiration rate, GSR, EMG, vis-
ible and infrared light, humidity, and environmental temperature) through a
list of parameterized Sensor interfaces. This design choice is motivated by
the need for high modularity and efficient customization to support hetero-
geneous sensing resources in a convenient way. Sensor readings are stored in
the BufferPool, a data structure that is shared with the Signal Processing
module. The BufferPool, internally organized as multiple circular buffers,
provides two mechanisms to access the sensor data: (i) upon requests, using
getter functions, and (ii) through event listeners that must be registered by
interested components (e.g. Signal Processing module) to be notified when
new sensor data are available. The Sensing Management also features a
shared sensor registry to which each sensor driver self‐registers upon pro-
gram bootstrap. This registry is accessed at runtime by other components to
retrieve the list of sensors actually available on that specific node.

●● Signal Processing, which uses a block called Function Manager that is respon-
sible for handling a customizable and expansible set of signal‐processing
functionalities such as (i) math aggregators (features like maximum value,
minimum value, amplitude, average, standard deviation, signal energy, and
entropy), (ii) threshold‐based triggers (also known as alarms), and (iii) filters;
such processing functionalities can be arbitrarily applied to any sensor data
stream. The Function Manager engine uses an efficient design approach

Signal Processing Manager

SPINE Node Manager

Communication

Function Manager

Function
Interface

Function (1:n)

Sensing Management

Packet Manager

InBound
Interface

OutBound
Interface

Radio
Controller
Interface

I_P 802.15.4O_P BT

Sensor Board Controller

Sensor
Interface

Driver (1:n)

Sensor Registry

Buffer
Pool

Data Flow
Control Flow

1 1
nn

Figure 3.2  The SPINE Node software architecture. (Diagram source in Ref. [2]).

SPINE Coordinator Manager
Communication

SPINE
Manager

SPINE

OtA

Protocol

Bluetooth
MSG

CODEC

BT
Adapter

Emulator
MSG

CODEC

EMU
Adapter

TinyOS
802.14.5

MSG
CODEC

TinyOS
Active

Message
Adapter

Function
Data

Model

Sensor
Network
Control

API

Message
Data

Model

Event
Dispatcher

Optional ADD-ONS

High-Level
Data

Processing

SPINE
Management

GUI

Data Flow

Control Flow

Platform-
independent

Figure 3.3  The SPINE Coordinator software architecture. (Diagram source in Ref. [2]).

3.4  The SPINE Framework 51

based on a list of parameterized Function interfaces providing a general‐pur-
pose abstraction for any type of processing task. The Signal Processing mod-
ule retrieves sensor data from the BufferPool and, by interacting with the
Sensor Node Manager and the Packet Manager, it communicates the results
to the coordinator unit.

The SPINE Coordinator (see Figure 3.3) consists of two main components:

●● Communication, which has similar functionalities to its corresponding com-
ponent on the sensor node; it loads at runtime the proper radio module
adapter according to the required network stack. It abstracts the logical
interactions between the coordinator and the sensor nodes from the actual
network activity that depends on the selected platform. This abstraction
layer is realized by decoupling the communication interface from its plat-
form‐dependent implementation layer.

●● SPINE Coordinator Manager, which is the most superficial layer atop which
every SPINE applications will rely. It is composed of Sensor Network Control
API (see Table 3.1) and Event Dispatcher. The former is an interface used by
end‐user application developers for the management of the underlying BSN
(e.g. to configure the sensors and enable on‐node signal processing). The
latter is responsible for dispatching events, such as new node discovery and
data message arrival, to the registered listeners implemented by the SPINE
applications.

3.4.2  Programming Perspective

From a programming perspective, SPINE provides an intuitive Java API (docu-
mented in Chapter 12) for convenient BSN management to easily support node
discovery, sensing operations, signal processing, and data communication. In
addition to several sensor natively supported and pre‐defined processing func-
tions, SPINE is designed such that framework tailoring (i.e. customization and
extension) becomes very straightforward.

3.4.3  Optional SPINE Modules

The SPINE MW is completed with “optional add‐on” modules available only
on the coordinator node; they represent an important aspect, despite not being
part of its core architecture:

●● High‐Level Data Processing, which provides advanced signal processing and
pattern recognition functionalities. It supports the design and implementa-
tion of complex applications by means of highly generalized interfaces for
data preprocessing, feature extraction and selection, signal processing, and
pattern classification. It supports the integration of SPINE in analysis and
data mining environments with functionalities such as automatic network

3  Signal Processing In‐Node Environment52

configuration and aggregate data collection. It includes a predefined bridge
to WEKA [7] (an open‐source Data Mining toolkit) to allow the use of its
powerful algorithms directly within SPINE.

●● SPINE Management GUI, which consists of a visual programming tool to
configure a SPINE‐based BSN without manually coding. According to our
experience, it has been useful during initial system testing. Screenshots of
its PC and Android implementations are shown in Figures 3.4 and 3.5,
respectively.

3.4.4  High‐Level Data Processing

The High‐Level Data Processing module is an optional SPINE plug‐in that
empowers the core framework functionalities with additional signal process-
ing and decision‐support algorithms (e.g. signal filters, pattern recognition,
classification, etc.). This module is available at the coordinator level and

Table 3.1  API exposed by SPINE at the coordinator station.

Functionality Description

discoveryBsn Inquiry node discovery and supported sensing and
processing capabilities

setupSensor Allows individual specification of sampling rates for multiple
sensors

setupFunction Setup a preliminary configuration of available processing
functionalities

activateFunction Enables the execution of one or multiple in‐node (periodic
or trigger based) signal‐processing functionalities

startBsn Issues a broadcast message to the BSN to command a
synchronized start of sensing and processing functionalities
that have been previously setup and enabled

resetBsn Issues a broadcast message to the BSN to command a
synchronized reset of the nodes

Event Description
newNodeDiscovered Registered SPINE listeners are notified when a new BSN

node is discovered
discoveryCompleted Registered SPINE listeners are notified when the BSN

discovery procedure is terminated
dataReceived Registered SPINE listeners are notified when new user data

sent from a specified node are received by the coordinator
serviceMessageReceived Registered SPINE listeners are notified when a service

message (e.g. warning or error notifications) sent by a
specific node is received by the coordinator

Figure 3.4  Java desktop implementation of the SPINE Management GUI (sensor‐node
configuration dialog window).

Figure 3.5  Android implementation of the SPINE Management GUI (sensor and function
configuration dialog windows).

3  Signal Processing In‐Node Environment54

provides robust support throughout the typical signal‐processing workflow,
from sensor data acquisition up to classification (see Figure 3.6).

A layered representation of the High‐Level Data Processing component is
depicted in Figure 3.7. SPINE acts as a MW layer between this module and the
underlying BSN. On top of SPINE, a set of converters are placed to convert
SPINE data representations into more abstract objects, Datasets and Signals.
Data mining and machine learning tools can therefore transparently handle
BSN data, since the module can also generate WEKA‐compliant Comma
Separated Values (CSVs) and Attribute‐Relation File Format (ARFF) files.
Finally, a collection of functionality wrappers further support rapid implemen-
tation of common tasks needed during the development of SPINE applications.
A typical use of this module is described in detail in the following.

BSN sensory data are retrieved with SPINE and converted into more con-
venient data structures (Signal and Dataset objects, depending on application‐
specific requirements). Then, developers can optionally apply filtering and
segmentation to incoming signals. Feature Extraction algorithms are also avail-
able and they are useful when in‐node feature extraction functionalities pro-
vided by SPINE are not enabled (i.e. SPINE is used to acquire raw sensor
signals). To support the initial problem analysis, several feature selection

Sensor
Data Acquisition

Filtering
Signal Conditioning

Segmentation
Data Windowing

Feature
Extraction

Classification
Pattern Recognition

Feature Selection Training

Figure 3.6  Data processing chain supported by the SPINE High‐level Data Processing
plug‐in.

SPINE Coordinator

Data Converters

Signal Processing Machine Learning

Functionality Wrappers

SPINE Applications

Figure 3.7  High‐Level Data Processing layered software architecture.

3.4  The SPINE Framework 55

algorithms are provided to identify the most significant subset of extracted
features to reach satisfactory classification accuracy. Finally, the classification
phase is widely supported, including training. A few algorithms are imple-
mented and ready‐to‐use; in addition, developers may easily integrate further
classifiers, especially thanks to the choice of providing support for using
WEKA libraries.

3.4.5  Multiplatform Support

SPINE supports a heterogeneous plethora of hardware platforms, sensors,
programming languages, and operating systems; these make this framework
suitable for diverse application scenarios (such as smart‐Health and e‐Fitness),
in which, due to specific requirements, only certain hardware/software sensor
platforms might be used.

SPINE supports the most common sensor motes. The TinyOS implementation
runs on MicaZ, TelosB, and Shimmer/2/2R [8] (for the latter, SPINE supports
both IEEE 802.15.4 and Bluetooth radios). This implementation includes a
security function using hardware AES‐128 encryption of the CC2420 radio. In
addition, there exist SPINE implementations for ZigBee devices (like the
Telecom Italia “Bollino”, equipped with the CC2530 System‐on‐Chip) based on
Texas Instruments Z‐Stack and for Java‐based Sun SPOT nodes [9]. SPINE also
notably provides native support for several physical sensor transducers, including
accelerometers, gyroscopes, electrocardiogram, electro impedance plethys-
mography, temperature, humidity, and light.

In addition to sensors and platforms supported by default, SPINE is designed
in such a way that it is easy to integrate further drivers for other sensors and
even add support for new platforms. The same happens for the processing
functions: integrating additional feature extractors (and even simple classifier
algorithms) is straightforward.

At the coordinator level, SPINE supports heterogeneous mobile and desktop
devices, as depicted in Table 3.2. Originally, Windows‐ and Linux‐based com-
puters were supported through the SPINE Java SE implementation. However,
with the spread of smartphones and tablets having more than sufficient com-
putation and storage capabilities to support mobile‐health applications and
(almost) continuous Internet connectivity (through which it is possible to
transmit raw signals and high‐level information to remote servers or in the
cloud), we put significant efforts to obtain mobile SPINE coordinators since
their use is particularly useful (sometimes strictly necessary) when continuous,
outdoor mobility is required and is not possible to rely on fixed infrastructures.
A JavaME porting of the framework has been in fact realized. A limited QT
implementation is also available and runs on Symbian and Windows smartphones,
enabling Bluetooth communication with Shimmer nodes using the third‐party
QBluetooth library. Finally, and most significant, an Android implementation

3  Signal Processing In‐Node Environment56

of SPINE has been more recently developed. SPINE Android has been evaluated
on several devices (that have been connected to Shimmer nodes over
Bluetooth).

Finally, SPINE provides a Java‐based emulation environment that virtualizes
generic sensor nodes. With this tool, it is possible to emulate a SPINE‐based
BSN, provided that a dataset is available for each node. Hence, each emulated
node is equipped with emulated sensors defined by its given dataset. The
SPINE emulator is helpful in various situations; for example, to simplify testing
and debugging, processing functionalities can be initially implemented in the
emulated environment. In addition, the emulator, along with a simple dataset,
has been released in open‐source to allow interested developers for investigat-
ing the potential of the SPINE framework itself, even if they are not equipped
with real wireless sensor nodes.

3.5  Summary

In this chapter, SPINE, a domain‐specific programming framework, has been
presented. The main goal of SPINE is to provide BSN developers with support
for rapid prototyping of signal‐processing applications. In SPINE, sensors and

Table 3.2  SPINE‐tested mobile personal devices.

Device CPU RAM (MB) Miscellaneous

HTC Nexus
One

1 GHz, Snapdragon QSD
8250

512 Android 2.x., MicroSD, up
to 32 GB

Samsung
Galaxy S

1 GHz, ARM Cortex‐A8
Dual‐Core

512 Android 2.x., MicroSD, up
to 32 GB

Samsung
Galaxy S4

1.9 GHz, Snapdragon 600
Quad‐Core

2048 Android 4.4.2., MicroSD, up
to 64 GB

Huawei P8 Quad‐core 2.0 GHz
Cortex‐A53e+Quad‐core
1.5 GHz Cortex‐A53

3096 Android 6.0, MicroSD, up to
128 GB

Samsung
Tab2 10.1

1.0 GHz, ARM Cortex
A9 Dual‐Core

1024 Android 4.0.3., MicroSD, up
to 32 GB

Samsung
Note3

2.3 GHz, Snapdragon 800
Quad‐Core

3096 Android 4.4.2., MicroSD, up
to 64 GB

Nokia N95 332 MHz, TI OMAP
2420 (ARM11‐based)

128 Symbian OS v9.2, S60 rel. 3.,
MicroSD, up to 32 GB

Nokia 6120 369 MHz, ARM11 64 Symbian OS v9.2, S60 rel.
3.1., MicroSD, up to 8 GB

﻿  References 57

common processing functionalities, such as math aggregators and threshold‐based
alarms, can be configured independently and connected together arbitrarily at
runtime based on external controls.

Hence, one of the main achievements of SPINE is the reuse of software com-
ponents to allow different end‐user applications to configure sensor nodes at
runtime based on the application‐specific requirements without off‐line
reprogramming when switching from an application to another. Furthermore,
thanks to its modular component‐based design approach, SPINE enables a
great degree of heterogeneity: a wide variety of hardware platforms, sensors,
programming languages, and operating systems are supported. This allows for
a very flexible and usable framework in different BSN application scenarios,
where, due to specific requirements, only certain platforms or operating
systems might be used.

References

	1	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐
specific framework for rapid prototyping of WBSN applications. Software:
Practice & Experience 41 (3): 237–265.

	2	 Fortino, G., Giannantonio, R., Gravina, R. et al. (2013). Enabling effective
programming and flexible management of efficient body sensor network
applications. IEEE Transactions on Human‐Machine Systems 43 (1): 115–133.

	3	 SPINE Website. http://spine.deis.unical.it (accessed 8 June 2017).
	4	 Tinyos Website. www.tinyos.net (accessed 14 June 2017).
	5	 Gay, D., Levis, P., von Behren, R. et al. (2003). The NesC language: a holistic

approach to networked embedded systems. ACM SIGPLAN Notices 38 (5):
1–11.

	6	 Von Eicken, T., Culler, D., Goldstein, S.‐C., and Schauser, K.‐E. (1992). Active
messages: a mechanism for integrated communication and computation.
Proceedings of the 19th Annual International Symposium on Computer
Architecture, ISCA’92, Queensland, Australia (19–21 May 1992), pp. 256–266.
ACM Press.

	7	 Holmes, G., Donkin, A., and Witten, I., Weka: a machine learning workbench.
Proceedings of the 2nd Australia and New Zealand Conference on Intelligent
Information Systems, ANZIIS’94, Brisbane, Australia (29 November–2
December 1994), pp. 1269–1277. IEEE Press.

	8	 Shimmer Website. www.shimmersensing.com (accessed 5 June 2017).
	9	 SunSPOT Website. www.sunspotdev.org (accessed 10 June 2017).

59

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

4

4.1  Introduction

The SPINE framework described in Chapter 3 provides an effective solution
for easily and rapidly developing highly customizable signal‐processing appli-
cations for BSNs. The in‐node processing applications supported by SPINE are
usually defined as a three‐layer chain of tasks: (i) acquisition of raw data
streams from the sensors, (ii) computation of processing functions on the data
streams to extract specific features, and (iii) transmission of processed data to
the base station for further computation.

However, some signal‐processing applications require an extension of this
approach to fully satisfy the needs for a more complex composition of sensing
and processing tasks. Therefore, a task‐centric programming model has been
experimented in a new reengineering of the SPINE framework, dubbed SPINE2
[1]. Conceived not to be a replacement for SPINE 1.x versions, SPINE2 is actually
intended as an alternative application design tool exposing a different method-
ology to translate the high‐level intentions of the developers into actual execut-
able routines to be deployed on a BSN. The task‐oriented approach aims at
providing an easy and effective way for developing distributed signal‐process-
ing applications, thanks to its intuitive and graphical design model. It offers a
wide range of benefits to developers, like the advantage of abstracting away
low‐level details of the sensor platforms and their operating system as well as
the complexity of managing the communication among nodes. Moreover, a
platform‐independent middleware eases the reusability and portability of the
code and the interoperability of applications among heterogeneous embedded
environments, while not neglecting the stringent requirements in terms of
execution efficiency and stability.

In this chapter, the SPINE2 programming paradigm and the software architec-
ture of the underlying distributed middleware running on the sensor nodes are
presented. With SPINE2 we show how fairly sophisticated signal‐processing appli-
cations can be realized in the form of easy‐to‐implement embedded processes.

Task‐Oriented Programming in BSNs

4  Task‐Oriented Programming in BSNs60

4.2  Background

The main limitation in developing applications for BSN‐based systems is the
need for proper design and programming skills to successfully deal with the
low‐level aspects of embedded devices. Also, application development is even
more challenging and time‐consuming due to the very resource‐constrained
environments provided by the most commonly available sensor platforms.
Unfortunately, such a hard task prevents BSN‐domain experts, who may not
have a software development background, from directly contributing to the
building of applications. Therefore, a proper high‐level development paradigm
is highly desirable to hide the low‐level programming issues, so as to allow
anyone with poor or no skills in programming to autonomously prototype and
test their own applications by focusing on the desired algorithms. Such a
desired paradigm should come with a set of well‐defined constructs that lead
to a faster application definition as well as a more component reusability and a
minimized maintenance process.

That entails the adoption of abstract, easy‐to‐use, and fully configurable
functional blocks, which should allow to quickly implement the set of the most
common operations needed by BSN applications. Interoperability and inter-
connection among applications, possibly defined by different users, should
also be part of the features supported by a high‐level development framework.
This is usually achieved by defining a common higher level communication
protocol, which is independent from the actual underlying protocols supported
by a specific sensor platform. Moreover, its paradigm philosophy should
strongly promote the potential benefit of enabling an easier application recon-
figuration at runtime and thus providing built‐in mechanisms for dynamic
reprogramming without directly accessing the already deployed devices.

The idea of employing the well‐known task‐based paradigm in the BSN con-
text comes from the need of finding a better way to meet all these requirements
with an easy‐to‐understand high‐level paradigm able to (i) effectively and effi-
ciently abstract away from the hardware and the network‐specific details and
(ii) provide constructs particularly devoted to easily define distributed signal‐
processing applications.

4.3  Motivations and Challenges

4.3.1  Need for a Platform‐Independent Middleware

Applications’ interoperability is completely achieved when their interaction is
made possible even in the case of execution over different heterogeneous
sensor devices. This implies the need of a programming framework capable of
transparently supporting a diversified hardware and software environment. As

4.3  Motivations and Challenges 61

a consequence, the simplicity in making the entire middleware infrastructure
ported to a new sensor platform is a further desirable requirement and of cru-
cial relevance for a more widely use of the framework in complex real‐world
applications involving heterogeneous computing systems. Differently from a
platform‐specific software architecture, the desired middleware should not be
developed exclusively by using the library provided by a platform‐specific pro-
gramming environment. Conversely, by adopting a more generic programming
language for implementing the core functionalities of the middleware in charge
of executing the high‐level abstractions, this common software layer should be
able to run over different platforms (supporting such a generic language) with
little or no additional code.

4.3.2  Challenges in Designing a Task‐Oriented Framework

In the following, the challenges in developing a framework meeting the afore-
mentioned requirements are discussed. To summarize, it is of crucial impor-
tance to keep in mind the following desired requirements while designing a
BSN framework/middleware:

●● Proper easy‐to‐use high‐level programming paradigm: since the adoption of
programming methods based on high‐level models can greatly improve pro-
ductivity, a definition of good and easily understandable abstractions to hide
low‐level platform‐specific operations represents the main key factor for the
success of a programming framework. In particular, a major challenge is
finding a good adjustment of the generic task‐based approach for the specific
needs in the BSN domains, while fulfilling the nonfunctional requirements
(efficiency, portability, and interoperability).

●● Heterogeneity: the ability to deploy the same applications over different sen-
sor platforms in a transparent way for the developer should also be a must,
since it would allow for a holistic approach to managing diverse sensor net-
works and applications.

●● Portability: in order to prolong the framework lifetime and keep it up‐to‐
date over the time, the design of the node‐side middleware architecture
should be properly performed to support a seamless portability process
across new sensor platforms and embedded systems. However, this is not a
trivial problem.

●● Extensibility: the middleware should also rely on a modular architecture for an
easier introduction of new processes, functionalities, and communication capa-
bilities as well as the integration of new physical sensors and drivers. It is not
simple to design a middleware that guarantees an easy update of components.

●● Efficiency: the aforementioned features would be of little importance with a
resource‐hungry middleware. Good runtime performance should be achieved
despite the stringent resource constraints of the common sensor platforms.

4  Task‐Oriented Programming in BSNs62

4.4  SPINE2 Overview

The SPINE2 framework has been conceived to further increase simplicity and
effectiveness in developing distributed signal‐processing application atop
BSNs. Specifically, its peculiar feature is the adoption of a task‐oriented para-
digm, which allows developers to quickly make use of simple constructs to
translate the high‐level application logic (global behavior) into actual opera-
tions to be executed on each single sensor node of the networks. Moreover,
SPINE2 makes reconfigurability and reusability of applications easier than
other proposed programming frameworks for sensor networks.

SPINE2 comes with two main software components: the sensor node mid-
dleware running on the network and the management software running on
the coordinator side (typically a PC or a supported hand‐handled device).
The latter one, developed in Java, is the main interface to the BSN. In par-
ticular, it provides well‐defined APIs, thanks to which developers can easily
manage the network as well as the application, i.e. defining, deploying, and
running the defined set of interconnected tasks. Moreover, it gathers the
data preprocessed on the nodes, which can be further processed by more
complex and resource‐demanding user‐defined algorithms and visualiza-
tion tools. The node‐side middleware running on top of the sensor node
operating system has two main functions: (i) handling messages received
from the coordinator or any other node and (ii) managing and executing the
tasks the node is responsible for.

The key characteristics of the framework are discussed below.

●● Platform independence and quick portability: supporting a swift portability
across diverse sensor platforms was one of the primary motivations for
which SPINE2 has been designed. As such, the node‐side middleware archi-
tecture has been conceived for decoupling the task runtime execution engine
from any other services provided by specific operating systems, as depicted
in Figure 4.1. Based on the software layering approach, the whole runtime
system of the node is composed of two main set of components. The “core
modules,” which are implemented in C language, is developed to support any
C‐like sensor platform with any or little need for modifications. Underneath
the core, a set of “platform‐specific modules” are properly defined as adap-
tors for allowing the core to interact with the operating system services and
resources (sensors, timers, communication, etc.). Different adaptors inter-
face with specific sensor platforms and software environments, such as
TinyOS [2] and Z‐Stack [3] (the ZigBee‐compliant implementation provided
by Texas Instruments). The benefit of such an architecture is that a devel-
oper needs to implement just the necessary adaptation modules in order to
deploy the platform‐independent components and the applications onto
new sensor platforms.

4.5  Task‐Oriented Programming in SPINE2 63

●● Extensibility and customization: thanks to the task‐oriented approach, it is
possible to easily add new functionality when the need arises. This is done by
defining a new task implementing a user‐defined computing logic without
having to change the underlying runtime environment. New drivers for sen-
sors or actuators can also be added by simply developing proper adaptation
modules.

●● Modularity: the node‐side middleware architecture, described in Section 4.6,
includes independent modules interacting through well‐defined interfaces,
with the benefit of easier software maintenance and upgrade processes.

4.5  Task‐Oriented Programming in SPINE2

The task‐oriented programming paradigm provided by SPINE2 is specifi-
cally conceived to support the creation of data‐flow‐based task chains for
defining distributed signal‐processing applications. Less error‐prone with
respect to explicitly coding a low‐level code, this approach is more intuitive
as the user, according to the application requirements, has to specify a set of
interconnected tasks made available from a task library. Thus, the basic
abstract components constituting the high‐level application model are tasks
and task‐connections.

A task represents a specific activity or operation, e.g. a signal‐processing
function, a data transmission, or a sensor querying. Tasks are executed in an

Programming abstractions

Task-graph specifications

Adaptation modules
(TinyOS)

Core framework

Adaptation modules
(Z-Stack)

TinyOS environment Z-Stack environment

Task execution engine

Figure 4.1  The software layering approach in the SPINE2 middleware.

4  Task‐Oriented Programming in BSNs64

atomic way with respect to other tasks, whereas they can be interrupted by
triggered events. In fact, the event‐reactive nature of the sensor nodes implies
the need for a fast response to asynchronous events like a radio message recep-
tion or a timer expiration. Tasks are connected by means of task‐connection
representing temporal and data dependency between tasks.

In Figure 4.2, a typical (in this case rather simple) sensor data‐processing
application is shown. It basically consists of three phases: (i) gathering the sen-
sor readings, (ii) executing processing functions on the sensed data, and
(iii) sending results to other nodes of the network or to the coordinator for
further elaboration.

In order to achieve load‐balancing of resources and an efficient communica-
tion, SPINE2 allows to allocate specific subset of tasks to different nodes, thus
realizing a full distributed data processing over the network. Since the nodes
may have different features and capabilities, it is possible, for instance, to allo-
cate the most computational‐intensive tasks to more powerful nodes in the
network. Thus, the implemented task‐based paradigm gives developers full
control over data feed, control flows, and event scheduling for performance‐
balancing on multiple dimensions (e.g. CPU, memory, and energy). Moreover,
composing an application by means of basic functional blocks with well‐specified
inter‐task interface allows an easy and rapid application reconfiguration and a
simpler maintenance process. The library of reusable tasks includes two main
types of tasks:

●● Functional tasks: perform data processing/manipulation or execution
control.

●● Data‐routing tasks: provide data forwarding or replication.

Sensing task
(Accelerometer)

Node 1 Node 2

Sensing task
(Gyroscope)

Processing task
(Max)

Processing task
(Mean)

Merge Transmission task

Sensing task
(Accelerometer)

Merge

Figure 4.2  A task‐oriented application with tasks instantiated on different nodes.

4.5  Task‐Oriented Programming in SPINE2 65

Each task is defined as a triple of attributes: Input, Output, and Parameters.
Depending on the specific functionality for which a task has been defined and
implemented, the user can configure it by means of a set of pairs (parameter
and value). Also, there may be zero to multiple (usually in data‐routing tasks)
input or output connections. Each connection can handle a particular sensed
data, processed information, or even an empty data, intended to be used as a
simple “execution complete notification” for the connected task.

The main tasks constituting the currently available library are the following:

●● TimingTask: defines timer expiration and can be adopted for timing other
tasks. It has no input connection and does not have to process any data. It
signals a notification through its output when its inner timer expires depend-
ing on the following parameters: the periodicity (i.e. specifies if it is a peri-
odic timing or a one‐shot expiration), the period of expiration, and the
corresponding time scale/unit.

●● SensingTask: performs a reading from a particular onboard physical sensor.
It encloses an inner timer for scheduling the sensing operation. The data
output depends on the specific type of sensor it is configured to read data
from. Specifically, it can consist of a simple scalar reading value (e.g. when
linked to the luminosity sensor) or a vector of samples each coming from a
specific “sensor channel” (e.g. a triaxial accelerometer provides three differ-
ent samples).

●● ProcessingTask: provides the actual computing capabilities by performing
functions or algorithms to process data. Some set of functions are called
“feature extractors,” which are usually applied to temporal data series. Some
examples are mean, variance, max, and min.

●● TransmissionTask: is in charge of explicitly transmitting data coming from
other connected tasks to a specific destination node/device. It is usually
used for sending in‐network preprocessed data to the coordinator of the
BSN. In the case of interconnected tasks deployed on different nodes, the
SPINE2 middleware performs proper data transmission (encapsulated in
proper messages) without the need of a TransmissionTask.

●● StoringTask and LoadingTask: perform data (stream) storage and retrieval by
using the onboard flash memory, if available on the platform.

●● SplitTask: duplicates incoming data from its input connection to all its out-
put connections, so as to make it available to multiple tasks.

●● MergeTask: merges incoming data from its input connections and feeds its
single output connection; it first normalizes and/or uniformly formats the
collected data.

●● HistoricalMergeTask: performs a number (specified by a parameter) of
sequential merge operations over the time and makes the collected data
available to the output.

4  Task‐Oriented Programming in BSNs66

4.6  SPINE2 Node‐Side Middleware

The main purpose of the middleware running on the nodes of a SPINE2 sensor
network is to “interpret” and “execute” the high‐level application defined
through the task‐oriented paradigm. Figure 4.3 depicts its modular architec-
ture composed of a set of modules, each including interacting (but independ-
ent) software components intended to accomplish well‐defined operations.

The core framework of SPINE2 (see also Figure 4.1) is made up of all the com-
ponents in white blocks of Figure 4.3. Implemented in ANSI C language, they
can be compiled in any “C‐like” development environment with no changes in
their inner code. The core encloses all the unchangeable parts of the middle-
ware implementing the main runtime task execution logic, including task and
memory management, application‐level message handling, and abstract access
to onboard sensors and actuators. By contrast, the grey blocks are the architec-
ture‐dependent part of the middleware and are tailored for a specific sensor
platform in order to manage the lower level mechanisms and services. Some
adaptation components (or drivers) bridge the core with the platform by grant-
ing access to the physical resources through well‐defined interfaces.

The use of a common programming language, and its standard libraries,
along with a strong software decoupling between the core and the platform‐
related components are the key characteristics for the very high portability of
the SPINE2 middleware.

A more specific description of the modules shown in Figure 4.3 is provided
below.

●● SPINE2Manager: is the central component of the architecture. Its main
functionalities include (i) system initializing at startup, (ii) orchestrating the
modules managing the node resources (sensors, actuators, radio, and flash
memory), (iii) dispatching the necessary commands to the other compo-
nents to accomplish required operations (e.g. a new task creation or a buffer
allocation), and (iv) handling the SPINE2 application‐level protocol (see
Section 4.7) for communication with the coordinator and the other nodes,
which includes formatting of the SPINE2 outgoing messages before its
encapsulation into a low‐level packet by the Comm Module.

●● Comm Module: provides the basic services for exchanging messages with the
other sensor nodes and the BSN coordinator. It encapsulates the applica-
tion‐level messages into packets and performs the reverse operation, by also
handling the (de)fragmentation operations when required, depending on the
message length and on the maximum payload supported by the platform‐
specific communication protocol (see Section 4.7).

●● Task Module: is the middleware “task execution engine” in charge of (i) instan-
tiating the tasks allocated on the node by the coordinator, (ii) scheduling,
and (iii) terminating their executing based on the inter‐task connections.

●● Memory Module: handles the memory space by allocating the task‐based
application definitions as well as the buffers required both for the inter‐task

SPINE2 Manager

Library of tasks

Sensing task

Processing task

Split task

Transmission task

Merge task

.

.

.

Task module

Timer module

Timer Manager

Task Scheduler

TaskGraph Manager

Comm module

Radio Controller

Comm Manager

Flash module

Flash Manager

Flash Controller

Sensor module

Sensor Manager

Sensor 1 Sensor n. . .

Actuator module

Actuator Manager

Actuator 1 Actuator m. . .

Memory module

Memory Manager

Buffers Manager

Figure 4.3  Software architecture of the node‐side part of the framework.

4  Task‐Oriented Programming in BSNs68

data exchange and for the tasks’ inner operations (the user application may
require a variable number of buffers each of which having an arbitrary size).
It implements an ad‐hoc solution for allowing dynamic memory allocation
and thus providing other components with a simple interface for allocating
memory blocks on demand at runtime.

●● Timer Module: manages the dynamic allocation of timers requested by other
components. The allocation is based on a publish/subscribe mechanism:
when a SPINE2 component (the subscriber, e.g. the Sensor Manager) needs
a timer for its own purposes, it makes a request to the Timer Manager (the
publisher), which in turns provides a timer’s identification code to the sub-
scriber to be able to properly schedule it.

●● Sensing Module: provides a common interface for accessing the physical sen-
sors equipping the sensor node. Each sensor‐specific driver has to be com-
pliant to the common Sensing Module interface.

●● Actuating Module: similar to the Sensing Module, it provides a common
access point to the available actuators installed on a sensor node.

●● Flash Module: handles storing and loading of data to and from the flash
memory, if made available by the sensor platform.

4.7  SPINE2 Coordinator

A set of software components, the SPINE2 Coordinator, which comes with a
proper API, have been developed for running on the coordinator side and con-
ceived to provide a simple software interface to the developer to be able to
effectively manage a task‐based application over a sensor network.

In particular, on top of an intuitive API, the programmer can develop their
own application for (i) controlling the remote nodes of a BSN and getting the
high‐level event notifications issued by the nodes, (ii) defining, deploying,
and running the task‐based application, and (iii) collecting the in‐network
processed data for further off‐line analysis.

To favor portability, Java has been adopted to implement the SPINE2 Coordinator
software architecture. It is worth noting that a specific set of components have
been implemented to support some platform‐dependent base stations. These are
particular devices (a sensor node or a dongle) that need to be connected to the
Coordinator in order to properly get access to the common IEEE 802.15.4 wireless
communication interface and be able to communicate with the sensor nodes.

4.8  SPINE2 Communication Protocol

A two‐layer communication stack (see Figure 4.4a) has been defined in SPINE2
for handling the communication between sensor nodes and the coordinator
and is built atop the platform‐specific protocol supporting the available

4.8  SPINE2 Communication Protocol 69

onboard radio. The layer in the middle (Packet Layer) provides a point‐to‐point
communication interface, by also managing the fragmentation of the long
application‐level messages (split into multiple packets’ payload) coming from
the upper layer. In particular, the fields constituting the SPINE2 packet are
depicted in Figure 4.4b.

The upper layer is defined to handle a set of SPINE2 messages, which encap-
sulate the application‐level commands and information for interacting with
the BSN and more specifically with the deployed task‐oriented application.

The currently supported application‐level messages are summarized in
Table 4.1 along with some additional information about the communication
direction and the carried payload. The Init Application, Start Application, and
Reset Application Messages, which have no additional payload data, are
adopted for controlling the execution of the task‐based application once cor-
rectly deployed.

The Discovery Nodes initiates the communication scheme between the coor-
dinator and the BSN in order to get general information from the nodes
(through the Node Advertisement message), like the sensor platform, the avail-
able onboard sensors, and the list of supported tasks. Once the Discovery/
Advertisement phase has terminated, the user can complete modeling the
application, which is then deployed by mapping the task‐graph throughout the
network. The Create Task Message is issued to instantiate each single task on
the intended node. Similarly, the Create Connections message is sent to create
a connection or a set of connections between tasks. It therefore includes infor-
mation related to the destination task of a specific connection since a task
may be either local (i.e. instantiated on the same node) or remote. It also
includes information for allocating the needed buffers on the node. Once the
application has been deployed, the coordinator can broadcast the Init
Application to initialize the tasks instantiated over the network, after which

Application-level
Communication

Layer

(a) (b)

Packet-level
Communication

Layer

Platform-specific
Communication

Layer

Fragment Number

Sequence Number Total Fragments

Payload
(variable size)

Destination Addr

Source Addr

Group IDFuture useVersion

8 bit 8 bit

Figure 4.4  The two‐layer protocol stack (a) and the packet fields (b).

4  Task‐Oriented Programming in BSNs70

every node communicates that it is ready to run (part of) the application by
sending a Node Application Ready. The Start Application Message can now be
broadcast, causing the application to run. The Sensor Data message is for for-
warding data (either raw or preprocessed) from a node to the coordinator,
whereas the Sensor to Sensor Data message is for data that needs to be
exchanged between remote tasks. The Error and Status Info messages are
issued in case of unexpected errors at runtime (e.g. no further block can be
allocated in the dynamic memory) or for periodic node status advertisement
(e.g. for communicating the remaining battery charge).

4.9  Developing Application in SPINE2

A typical interaction between the SPINE2 environment and the Java‐based
user‐defined applications is depicted in Figure 4.5. It is worth noting that a
SPINE2 Console is made available along with the SPINE2 Coordinator compo-
nent. Specifically, it comes with a simple GUI that allows a user to immediately
interact with the BSN and define the task‐based application without having to
implement an application atop the SPINE2 API.

As a consequence of the presence of such GUI, a developer can actually
interface his own applications to the SPINE2 environment in two different
ways.

Table 4.1  SPINE2 application‐level messages.

Message type Source Destination Payload

Discovery Nodes Coordinator Node —
Create Task Coordinator Node Task configuration
Create Connections Coordinator Node Connection configuration
Init Application Coordinator Node —
Start Application Coordinator Node —
Reset Application Coordinator Node —
Node Advertising Node Coordinator Node info, sensors list, tasks list
Node Application ready Node Coordinator —
Sensor Data Node Coordinator Formatted data
Error Node Coordinator Error code, error info
Status Info Node Coordinator Status code, status info
Sensor to Sensor Data Node Node Formatted data

4.10  Summary 71

As a first example, since the SPINE2 Console can be adopted for managing
both the BSN and defining the task‐based application, the Java‐based
Application 1 needs just to register to the Console in order to get notified
of messages coming from the network, thus needing only to code the logic
for collecting information and data useful for off‐line analysis and
displaying.

By contrast, Application 2 directly makes use of the SPINE2 API and takes
care of both managing the BSN and the task‐based application, thus requiring
a greater effort by the developer.

4.10  Summary

This chapter has presented the SPINE2 programming framework, an easy‐to‐
use solution for rapidly and effectively developing distributed application on
BSNs. We have first provided motivations for needing different programming
abstractions, by explaining why the well‐known task‐based paradigm is able to
successfully meet the desired requirements of the BSN domains. Then, an
overview of the main features of SPINE2 has been presented, along with a
description of the supported task‐oriented programming approach and related
benefits: rapid prototyping and easy runtime reconfiguration of highly
customizable and flexible distributed signal‐processing applications.
Furthermore, its software architecture has been described by highlighting the
benefits in having a platform‐independent node‐side middleware in terms of
quick portability and extensibility.

Coordinator device

Sensor Node
device

Sensor Node
device

Sensor Node
device

<< notify events >>

<< uses >>

<< SPINE2 messages >>

SPINE2
Coordinator

<< notify events >> << notify events >>
API

<< uses >>

SPINE2
Console (GUI)

Base-station
device

Radio interface

Radio interface

Radio interface

Radio interface

Java-based
Application (2)

Java-based
Application (1)

Figure 4.5  The SPINE2 components interacting with the user applications.

4  Task‐Oriented Programming in BSNs72

References

	1	 Galzarano, S., Giannantonio, R., Liotta, A., and Fortino, G. (2016). A task‐oriented
framework for networked wearable computing. IEEE Transactions on
Automation Science and Engineering 13 (2): 621–638. doi: 10.1109/
TASE.2014.2365880.

	2	 Tinyos Website. www.tinyos.net (accessed 8 June 2017).
	3	 Z‐Stack Website. http://www.ti.com/tool/z‐stack (accessed 5 June 2017).

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

73

5

5.1  Introduction

High‐impact applications enabled by BSN‐based systems are required to be
secure, safe, and reliable, especially when dealing with the monitoring and con-
trolling of the physical and biochemical parameters of the human body.
Achieving correctness, accuracy, and efficiency at execution time by meeting
the strict requirements in terms of fault tolerance, adaptability, and reliability
is of crucial importance and a very challenging issue. In this regard, the auto-
nomic computing paradigm can perfectly fulfill such critical requirements of
BSN applications in which proper techniques can be incorporated to enable
specific self‐managing capabilities and successfully cope with unforeseen
changing conditions that may lead to unpredictable behaviors.

This chapter first introduces background concepts on the autonomic para-
digm and its application on the BSN context. Then, the needs for BSN‐specific
autonomic‐enabling development tools are discussed. Finally, a framework
conceived to support rapid design and implementation of applications having
autonomic properties, SPINE‐*, is presented. Implemented as an extension of
SPINE2, the autonomic elements are incorporated into the same high‐level
abstractions adopted for developing the BSN applications. Specifically, it aims
at easily integrating the autonomic behavior without affecting the applications,
thanks to the adopted task‐oriented paradigm, which allows for the required
separation of concerns between the user‐defined application business logic
and the autonomic‐related operations.

5.2  Background

The term Autonomic Computing (AC) was coined by researchers in IBM [1],
who advised the need for a management component acting in a similar fash-
ion to the autonomic nervous system of the human body, in response to the

Autonomic Body Sensor Networks

5  Autonomic Body Sensor Networks74

increasingly complexity of managing computing systems. The AC paradigm
was then conceived for dealing with the complexity of distributed software
systems and enabling mission‐critical applications to meet high reliability and
adaptability requirements. It faces the problem by introducing a series of self‐*
properties, thanks to systems that are able to perform several self‐management
actions with no direct human intervention. The main self‐* properties (usually
known as self‐CHOP properties) are the following:

●● Self‐configuration: depending on high‐level policies and objectives, a system
is able to effectively configure and adapt itself on the basis of the user’s needs
and environmental conditions by dynamically adding, replacing, or remov-
ing its components with no system outages.

●● Self‐healing: to guarantee an adequate level of reliability, the system should
autonomously prevent, detect, and possibly remedy malfunctions and errors.
The nature of possible problems that can be detected spans from low‐level
hardware failures to high‐level erroneous software configuration. However,
it is important that the operations related to the self‐healing process do not
affect other vital components in the system.

●● Self‐optimization: the system should perform its activities by proactively and
effectively targeting the maximum performance given the restricted available
resources. This optimization process should constantly seek performance
improvement without interfering with the system in achieving the user‐
defined goals.

●● Self‐protection: systems with such a property are able to guarantee an
adequate level of security in terms of detecting, and possibly preventing,
malicious attacks aimed at disrupting the normal planned system opera-
tions. Moreover, the system should also protect itself from user inputs
that may be inconsistent, implausible, and dangerous.

5.3  Motivations and Challenges

As discussed in the previous chapters, BSN developers can benefit from the
use of programming frameworks (e.g. SPINE, SPINE2, and MAPS), which tar-
get ease of development, fast prototyping, code reusability, efficiency, and
application interoperability. However, the global quality of the applications not
only derives from the use of a well‐defined programming approach and related
tools, but also on how good they are designed and implemented to deal with
the changing conditions and possible problems due to the interaction with the
environment and other interconnected systems. In fact, since unpredictable
conditions (e.g. sensing faults) may lead to unwanted behaviors at execution
time, it is not reasonable for a BSN system to be constantly supervised
and maintained by human operators once deployed. Therefore, despite usual

5.4  State‐of‐the‐Art 75

development issues are proven to be successfully addressed by the most com-
mon programming frameworks, the way in which the correctness of applica-
tions, during the post‐deployment stage, has to be defined is usually completely
up to the developers. And this is becoming a particularly challenging task in
view of the fact that evermore complex BSN applications will need a better
runtime support as a result of the immersion of people into more pervasive,
smarter, but also risky environments.

Providing an effective approach to allow developers providing self‐managing
capabilities and easily integrating them into applications, in order to improve
reliability and maintainability, is a major challenge. Unfortunately, most of the
currently available BSN programming frameworks represent trustworthy tools
for defining the high‐level application logic, but they do not provide an explicit
and clear way for designing an underlying autonomic structure capable of
addressing the application management requirements.

5.4  State‐of‐the‐Art

The integration of the autonomic principles into networking systems has been
studied and proposed in many research works [2, 3]. Also, real prototypes have
been developed, deployed, and tested as releases of several international pro-
jects: BISON [4], ANA [5], Haggle [6], CASCADAS [7], EFIPSANS [8], and
Autonomic Internet [9].

However, differently from traditional networks, the peculiar characteristics
of sensor networks make the design and implementation of the autonomic
management approaches even more challenging, and to date, this branch of
research has not been satisfactorily investigated yet. Examples of autonomic‐
oriented system architectures explicitly designed to support sensor networks
management are MANNA [10], BOSS [11], WinMS [12], and Starfish [13].

MANNA [10] is a generic architecture providing three different abstraction
planes, one for each management function: functional areas, management lev-
els, and WSN functionalities. The latter includes basic low‐level operations
like sensing, processing, and communication, whereas the management levels
represent the typical system’s layers, i.e. the business logic, the middleware
services, and the networking layer. Finally, the functional areas represent,
for each aforementioned system’s layer, the different perspective to which
autonomic actions can be applied, specifically configuration, maintenance,
performance, security, accounting, and fault management perspective.

Based on the standard UPnP protocol, the BOOS architecture [11] is
designed to support automatic discovery, configuration, and controlling of
devices over traditional networks, by avoiding any manual setup. Due to
the limited resources of sensor devices, to fully support UPnP functionality, a
mediator component running on the coordinator serves as a provider of the

5  Autonomic Body Sensor Networks76

required services for network management. The BOSS architecture is consti-
tuted of several functional components: control manager, service manager,
event handlers, and sensor network‐level management functions.

WinMS [12] is a network management system able to support dynamic
adaptation of nodes as a response to changing network conditions. Depending
on high‐level policies, WinMS is based on a local management scheme, which
works according to the neighborhood network state, and a decentralized
scheme, which depends on global network‐level knowledge. The low‐level
communication is provided by a lightweight TDMA protocol, FlexiMAC, sup-
porting a tree‐based gathering scheme, which is in charge of collecting and
disseminating network state data and management information.

Starfish [13] is a framework conceived to support the definition of self‐
adaptive behaviors in sensor networks. Specifically, a node‐side policy man-
agement system, called Finger2, is in charge of executing the adaptive
strategies dealing with the management of reconfigurations and failures.
Such strategies are specified by the developers through a desktop client tool,
which includes a set of libraries to facilitate the programming of nodes by
providing a high‐level language for defining both autonomic policies and
user’s application logic.

Although the previously described frameworks and architectures are exam-
ples of generic self‐management systems, most of the current research efforts
are mainly focused on self‐healing and fault management [14–24]. Moreover,
these studies are usually carried out by considering the WSN context, whereas
few efforts are devoted to BSNs. This is why we aim at addressing such a short-
coming by specifically exploring the viability and convenience of autonomic
computing in the BSN context.

5.5  SPINE‐*: Task‐Based Autonomic Architecture

Due to the intrinsic complexity of distributed computing systems, like BSNs,
there exist different approaches for integrating the autonomic properties,
which can be applied at different system’s perspectives: network‐level, com-
munication stack‐level, software layer‐level, service‐level, function‐level, or
component‐level.

However, we advise the practice of clearly and explicitly separating the
application business logic from the implemented autonomic management
operations. If well‐designed, the main benefit from using such separation of
concerns is that the application developer’s efforts can be focused on the
characteristics of the application and its primary goals, without being forced to
take care of any of the autonomic management components. In fact, the auto-
nomic behavior can be easily added afterwards, with no risk of affecting the
previously defined application logic.

5.5  SPINE‐*: Task‐Based Autonomic Architecture 77

In the following, an autonomic architecture fulfilling the aforementioned
requirements is presented. It has been designed and implemented around the
SPINE2 framework, whose task‐based abstractions provide the necessary
mechanisms for assuring the application isolation and composition properties.
The autonomic features have been added to SPINE2 without affecting the
original runtime engine but instead only involving its task library, which has
been enhanced with the introduction of a new set of autonomic‐specific tasks.
The way a SPINE‐* application can be defined is depicted in Figure 5.1. Such an
application is constituted by a multiplane architecture which, in its basic
configuration, is composed of two distinct planes, one representing the user
application logic and the other providing the autonomic operations. Since a
task is only aware of its input data, it is clearly possible to employ a generic
nonautonomic task in the autonomic plane on the basis of specific needs. Also,
it is worth noting that, differently from the application example provided in
Chapter 4 (see Figure 4.2), all tasks have been depicted with no assumption on
their specific types.

Different kinds of interactions can be established between the planes for per-
forming direct manipulation on the application data streams or reconfiguring the
application tasks. Despite such interactions, the degree of isolation in the execu-
tion of tasks guarantees that the separation of concerns’ property still holds, with
the application plane having no awareness of the presence of the autonomic plane.

The generic architecture of Figure 5.1 shows two specific autonomic
approaches. In the first case, the parameters of task T7 are tuned at runtime
so as to optimize its function and thus adapting its behavior depending on the

Application plane

Autonomic plane

T1

T4

T2

AT1

T5

T8

T6

T7

T3

AT3

AT2

Autonomic task

AT4

T9 T10

Application task

Figure 5.1  The multiplane autonomic architecture of a SPINE‐* application.

5  Autonomic Body Sensor Networks78

data originating from task T1. Specifically, the adaptation action is performed
by the autonomic task AT2 after a preprocessing made by AT1 on the source
data coming from T1. Since no data stream is injected to the application plane,
but rather a reconfiguration action is performed, such an interaction (configu-
ration connection) is represented with a dashed arrow from AT2. In the second
case, supposing that the aim of the autonomic tasks AT3 and AT4 is to improve
the quality of data, the output data stream from T5 is redirected to the auto-
nomic plane, specifically to T9. In turn, T9 provides AT3 and AT4 with the data
stream to be analyzed and manipulated prior to feed the aggregator task T10,
which is in charge of fusing the two data streams and sending the resulting
stream to T6. In such a configuration, the direct connection T5–T6 has been
removed and replaced with the subgraph of tasks in the autonomic plane.

The proposed task‐based multiplane autonomic architecture can be employed
in many common situations in which self‐* properties need to be satisfied. In
the following, some examples of task‐based application enhanced with the
SPINE‐* autonomic mechanisms are presented. In particular, we show the four
self‐CHOP properties: self‐configuration, self‐healing, self‐optimization, and
self‐protection.

As represented in the reference architecture of Figure 5.1, a useful property of
BSN applications is the ability of autonomously reconfiguring the parameters of
a task at runtime depending on the changing system and/or environmental con-
ditions. As shown in Figure 5.2, two different ways for triggering a reconfigura-
tion task can be adopted. In Figure 5.2a, the SensReconfig task of the autonomic
plane is driven by the output results of the Processing task (which performs
some kinds of analyses on raw sensed data). Specifically, the SensReconfig task
is able to modify the application behavior by acting on the Sensing task param-
eters, e.g. the sampling rate, or even disabling/enabling its execution. In a similar
way, the example depicted in Figure 5.2b shows a ReconfigTask acting on both
the Sensing task and the Processing task. However, the autonomic task execu-
tion is not triggered from inside the task application but instead the desktop
application running on the BSN coordinator (as well as on a remote computer)
is in charge of driving the autonomic action, for instance when a different sensor
data acquisition or processing is needed on the basis of new requirements or
some changing conditions recognized on the coordinator side.

Another important and critical issue for applications in the health‐care domain
is the ability of recovering from possible faults and errors occurring in data, algo-
rithms, or networking functionalities. Thus, the self‐healing property becomes a
crucial requirement to be fulfilled not least because reliability and correctness of
the provided services have to be autonomously and continuously guaranteed at
runtime by the system itself without requiring the intervention of the operators.
As an example, Figure 5.3 shows the autonomic tasks interposed between the
sensing layer and the processing layer so as to determine the quality of the raw
data from the sensors and thus to avoid that corrupted samples (when detectable)

5.5  SPINE‐*: Task‐Based Autonomic Architecture 79

could affect the computing functions and thus the whole application accuracy
and erroneous behavior. Specifically, the FaultsDetection task may be conceived
as an online detection process for specific faults in the data stream coming from
the Sensing task, which is also in charge of possibly redirecting the corrupted
stream to the FaultsFiltering task for the actual recovering process. As discussed
in Ref. [25], different kinds of data faults can heavily impact the application cor-
rectness. Moreover, it is also shown that not all of them can easily be treated with
proper recovery techniques in order to improve system’s tolerance to data faults
and then achieve better efficiency and reliability.

Sensor node

(a)

(b)

Sensing SplitProcessing

SensReconfig

<reconfiguration>

Sensor node

Sensing Processing

ReconfigTask

reconfiguration
actions

Transmission

Coordinator device

Coordinator-side
application

reconfiguration
message

data
message

Figure 5.2  Examples of application with self‐configuring property; (a) the reconfiguration
task is driven by the output results of the Processing task; (b) the reconfiguration task is
driven by the desktop application running on the BSN coordinator.

Sensing ProcessingFaultsDetection

FaultsFiltering

Figure 5.3  Example of application with self‐healing property.

5  Autonomic Body Sensor Networks80

As for the optimization of BSN applications, one of the most critical issue
is to determine the proper conditions that allow to extend the operating life
of the wearable devices. Since the radio data transmission and the sensing
process (depending on the type of the physical sensor in use) are the most
energy‐demanding operations, it is reasonable to extend the typical Sensing–
Processing–Transmission application pattern with proper autonomic tasks
for optimizing such operations depending on some specific conditions and
requirements. For instance, as shown in Figure 5.4, the sampling rate can be
adapted, at runtime, on the basis of the variability of the resulting output of
the processing task. In fact, such that it can be reduced when the data sam-
ples do not change so much for a certain period of time, i.e. when the sensor
data variability remains below a certain threshold. For the same reason, the
radio transmission of such data can be avoided when the application on the
coordinator‐side does not need to be continuously fed with slightly changing
data streams and thus saving energy on the battery‐operated sensor nodes by
optimizing the most power‐hungry operation.

Due to the distinct features of BSNs, like the sensitive nature of data man-
aged (biomedical and personal information), wireless communication, and
mobility of sensors, privacy and security represent major concerns for wearable
systems to play a significant role in the e‐health-care domain. Thus, enhancing
the monitoring of physical environment with proper security mechanisms is of
prominent importance. The task‐based autonomic architecture of SPINE‐*
does not aim at addressing such issues with specific self‐protection mecha-
nisms to contrast external attacks but is intended to provide a proper way to
encapsulate such security solutions in reusable components to be directly
plugged into the task application when required. As a very simple example,
the DataEncryption task of Figure 5.5, which usually demands a lot of

Sensing Processing Transmission

Variability
Detection

<reconfiguration>

SensReconfig

<reconfiguration>

Figure 5.4  Example of application with self‐optimization property.

Sensing Processing DataEncryption Transmission

Figure 5.5  Example of application with self‐protection property.

5.6  Autonomic Physical Activity Recognition 81

computation, can be activated during outdoor activities or when in public
untrusted environments but disabled when running at home and secure loca-
tions, so as to adapt the application to the execution context.

5.6  Autonomic Physical Activity Recognition

In the following, the benefits of SPINE‐* in a real BSN application are pre-
sented. Specifically, the existing physical activity recognition described in
Refs. [26, 27] is considered as testbed application, which has been turned
into an equivalent autonomic version. The whole system consists of a desk-
top application running on the coordinator and responsible for classifying
postures and movements through a k‐NN‐based classifier to be applied on
pre‐elaborated data gathered from waist‐worn and thigh‐worn sensors, both
equipped with a 3‐axis accelerometer. In particular, the node‐side applica-
tions consist of (i) sensing the accelerometer sensors, (ii) computing the
mean, max, and min features over specific accelerometer axes (also called
channels), and (iii) merging and transmitting the results to the coordinator.
In Figure 5.6, the two node‐side applications, designed through the task‐
based programming abstraction approach and with no autonomic tasks, are
depicted.

Even though such an implementation provides a core functionality for the sys-
tem to work, it does not include some important features that could be funda-
mental in case of unexpected conditions. In particular, it is completely unaware
of the quality of the data streams coming from the accelerometers and, as a con-
sequence, the activity recognition could provide incorrect detection results.
Hereafter, we show how the addition of an autonomic plane, and specifically the
integration of self‐healing tasks, is beneficial in case of corrupted data. In this
regard, the impact of sensed data faults on the activity recognition accuracy is
first reported. Then, the improved system fault tolerance and reliability is shown
by adopting a proper self‐healing layer able to detect and possibly recover such
data faults at runtime.

The evaluation approach that we consider consists in carrying out
a testbed on the specific predefined sequence of activities shown in
Figure 5.7, starting from the “Standing Still” state, and with each state
roughly lasting 30 s.

The accelerometer sampling time has been set to 25 ms, whereas the features
of the processing tasks (see Figure 5.6) are computed over 40 sampled raw data,
every new 20 acquired samples (shift). The k‐NN‐based classifier has the
parameter K set to 1, whereas the Manhattan distance has been adopted due to
its excellent performance on well‐separated classes (i.e. the states of Figure 5.7).
According to such setting and assuming lack of faults in the raw data streams,

5  Autonomic Body Sensor Networks82

the classification over the whole activities’ transition pattern of Figure 5.7 has
obtained an accuracy of 99.75%.

In order to evaluate the impact of erroneous sensor readings on the classifi-
cation accuracy, we have carried out several tests by considering the original
raw data streams and altering them with artificial injected faults before feeding
the processing layers of the applications of Figure 5.6. As data faults injection,
we consider the models identified in Ref. [22], and in the following, we focus on
short faults. Such faults consist in irregularities disseminated over a data stream
and are modeled as random spikes with parameters P and C, where P is the
percentage of raw data affected by spikes and C is the intensity factor, which
means that the value of a spike is determined by multiplying the original value
of a sensor sample by the C factor.

The results of how the classification accuracy significantly degrades due to
short faults are reported in Table 5.1. As a first example, by considering faults
affecting all the axes of both accelerometers (on waist and thigh) involved in
the preprocessing, the accuracy conspicuously drops to slightly more than 50%
with just 5% of the raw data samples affected by spikes.

Also, when considering only one single channel per time affected by faults,
the results of Table 5.2 clearly show that the recognition accuracy is more
influenced by the quality of the data stream coming from the sensor worn on
the thigh, rather than the ones from the waist node.

Hereafter, we show how the introduction of a self‐healing plane to the node‐
side applications of the activity recognition system is capable of improving the

Walking Standing
still

Sitting Lying
down

(1)

(2) (4)

(5)(6)

(3)

Figure 5.7  The tested activities’ sequence.

Sensing
(accelerometer) Split

Processing
(min)

Processing
(max)

Processing
(mean)

Merge Transmission

Sensing
(accelerometer)

Processing
(min)

Transmission

(a)

(b)

Acc_X

Acc_X

Acc_X

Acc_X
Acc_Y
Acc_Z

Figure 5.6  The task‐based applications on the waist node (a) and on the thigh node (b).

5.6  Autonomic Physical Activity Recognition 83

system accuracy by detecting and recovering short faults. The enhanced auto-
nomic version of the application in Figure 5.6a is shown in Figure 5.8. In a simi-
lar way, a self‐healing plane has also been applied on the accelerometer raw
data streams of the application running on the thigh node.

With specific reference to the short faults, the underlying approach of the
detection and recovery functionalities of the two autonomic tasks is analyzing
the variability in the accelerometer data streams. In particular, such streams
are split into consecutive data windows, each containing W sensor samples,
over which the mean and the standard deviation sd are computed. Then, every
single sample in the data window is compared to the standard deviation and, in
case its value is much greater than sd, the sample is marked as fault. Specifically,
a task parameter T is adopted to determine the threshold value thr T sd ,
against which the comparison is performed. If no corrupted data is detected,
samples are directly forwarded to the Split task, otherwise the FaultsFiltering
will be considered for the subsequent recovering phase. With regards to short

Table 5.2  Activity recognition accuracy affected by short faults over a specific
channel and C = 3.

Affected channel P (%) Accuracy (%)

Axis X – Waist sensor 1 98.25
Axis Y – Waist sensor 1 99.75
Axis Z – Waist sensor 1 99.75
Axis X – Thigh sensor 1 81.63
Axis X – Waist sensor 5 96.26
Axis Y – Waist sensor 5 99.75
Axis Z – Waist sensor 5 99.75
Axis X – Thigh sensor 5 44.91

Table 5.1  Activity recognition accuracy affected by short faults over all channels
and C = 3.

Affected channel P (%) Accuracy (%)

All (in both waist and thigh sensors) 1 79.90
All (in both waist and thigh sensors) 5 55.09
All (in both waist and thigh sensors) 10 51.86
All (in both waist and thigh sensors) 25 48.14
All (in both waist and thigh sensors) 50 46.65

5  Autonomic Body Sensor Networks84

faults, the adopted recovering method consists in replacing a corrupted sensor
reading with the previous sampled data. Although it appears as a very simple
approach, it actually shows its effectiveness in canceling the negative effects of
such outliers in the accelerometer streams and thus preventing inaccurate pro-
cessing leading to low recognition accuracy. A comparison of classification
accuracies without and with the self‐healing autonomic plane is reported in
Table 5.3. In particular, window W = 40 and threshold parameter T = 3 have
been adopted in our experiments.

With a frequency of short faults within 10%, the recovery operation demon-
strates to guarantee very highly accurate outcomes. Conversely, increasingly
lower improvements are obtained in the other cases. This is because when a data
stream has very recurrent faults, it would be impossible to establish if a specific
value is part of a correct data sequence or is a result of a failed sensing operation.

5.7  Summary

Incorporating fault tolerance, adaptability, and reliability into BSNs is a chal-
lenging task. In this regard, the autonomic computing is an effective paradigm
whose self‐* properties are able to fulfill such complex requirements. After hav-
ing introduced background concepts on the autonomic paradigm, this chapter

Sensing
(accelerometer)

Split

Processing
(min)

Processing
(max)

Processing
(mean)

Merge TransmissionFaultsDetection

FaultsFiltering

Figure 5.8  The autonomic application running on the waist node.

Table 5.3  Accuracy improvements over all channels and C = 3.

Affected channel P (%)
Accuracy (without
autonomic plane) (%)

Accuracy (with
recovery) (%)

All (in both waist and thigh sensors) 1 79.90 99.75
All (in both waist and thigh sensors) 5 55.09 99.75
All (in both waist and thigh sensors) 10 51.86 98.51
All (in both waist and thigh sensors) 25 48.14 59.55
All (in both waist and thigh sensors) 50 46.65 47.64

85References

has presented an architecture for rapid prototyping of BSN applications with
autonomic characteristics, SPINE‐*. It extends the SPINE2 programming frame-
work by means of an autonomic plane, a way for separating out the provision of
self‐* properties from the BSN application logic. Then, we have considered a
human activity recognition application as a test case by first analyzing how its
effectiveness can be heavily affected by data faults in the sensor readings. Finally,
we have shown how a self‐healing layer (capable of detecting and possibly
recovering such faults at runtime) can improve the recognition accuracy, thus
improving the quality of the application.

References

	 1	 Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the State of
Information Technology. Tech. Rep., IBM T.J. Watson Labs, New York.

	 2	 Samaan, N. and Karmouch, A. (2009). Towards autonomic network
management: an analysis of current and future research directions. IEEE
Communications Surveys Tutorials 11 (3): 22–36.

	 3	 Agoulmine, N. (2010). Autonomic Network Management Principles: From
Concepts to Applications. Ed. Academic Press.

	 4	 The BISON Project Website. http://www.cs.unibo.it/bison (accessed 11 June
2017).

	 5	 The ANA Project Website. www.ana‐project.org (accessed 5 June 2017).
	 6	 The Haggle Project Website. http://ica1www.epfl.ch/haggle (accessed 10 June

2017).
	 7	 The CASCADAS Project Website. http://acetoolkit.sourceforge.net/cascadas

(accessed 12 June 2017).
	 8	 The EFIPSANS Project Website. http://secan‐lab.uni.lu/efipsans‐web

(accessed 7 June 2017).
	 9	 The Autonomic Internet Project Website. http://www.autoi.ics.ece.upatras.gr/

autoi (accessed 8 June 2017).
	10	 Ruiz, L.B., Nogueira, J.M., and Loureiro, A.A.F. (2003). MANNA:

amanagement architecture for wireless sensor networks. IEEE
Communications Magazine 41 (2): 116–125.

	11	 Song, H., Kim, D., Lee, K., and Sung, J. (2005). UPnP‐based sensor network
management architecture. Second International Conference on Mobile
Computing and Ubiquitous Networking (ICMU 2005), Osaka, Japan (13–15
April 2005).

	12	 Lee, W.L., Datta, A., and Cardell‐Oliver, R. (2006). WinMS: wireless sensor
network‐management system, an adaptive policy‐based management for
wireless sensor networks, Tech. Rep.

	13	 Bourdenas, T. and Sloman, M. (2010). Starfish: policy driven self‐management
in wireless sensor networks. Proceedings of the 2010 ICSE Workshop on

5  Autonomic Body Sensor Networks86

Software Engineering for Adaptive and Self‐Managing Systems, ser. SEAMS’10,
Cape Town, South Africa (3–4 May 2010), pp. 75–83. New York: ACM.

	14	 Paradis, L. and Han, Q. (2007). A survey of fault management in wireless
sensor networks. Journal of Network and Systems Management 15: 171–190.

	15	 Boonma, P. and Suzuki, J. (2007). Bisnet: a biologically‐inspired middleware
architecture for self‐managing wireless sensor networks. Computer Networks
51 (16): 4599–4616, (1) Innovations in Web Communications Infrastructure;
(2) Middleware Challenges for Next Generation Networks and Services.

	16	 Yu, M., Mokhtar, H., and Merabti, M. (2008). Self‐managed fault management
in wireless sensor networks. Proceedings of the 2008 the Second International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies, ser. UBICOMM’08, Valencia, Spain (29 September–4 October),
pp. 13–18. Washington, DC: IEEE Computer Society.

	17	 Lee, M.‐H. and Choi, Y.‐H. (2008). Fault detection of wireless sensor networks.
Computer Communications 31: 3469–3475.

	18	 Turau, V. and Weyer, C. (2009). Fault tolerance in wireless sensor networks
through self‐stabilisation. International Journal of Communication Networks
and Distributed Systems 2: 78–98.

	19	 Choi, J.‐Y., Yim, S.‐J., Huh, Y.J., and Choi, Y.‐H. (2009). An adaptive fault
detection scheme for wireless sensor networks. Proceedings of the 8th WSEAS
International Conference on Software Engineering, Parallel and Distributed
Systems, Cambridge, UK (21–23 February 2009), pp. 106–110. Stevens Point,
WI: World Scientific and Engineering Academy and Society (WSEAS).

	20	 Jiang, P. (2009). A new method for node fault detection in wireless sensor
networks. Sensors 9 (2): 1282–1294.

	21	 Oh, H., Doh, I., and Chae, K. (2009). A fault management and monitoring
mechanism for secure medical sensor network. International Journal of
Computer Science and Applications 6: 43–56.

	22	 Bourdenas, T. and Sloman, M. (2009). Towards self‐healing in wireless sensor
networks. Proceedings of the 2009 Sixth International Workshop on Wearable
and Implantable Body Sensor Networks, ser. BSN’09, Berkeley, CA (3–5 June
2009), pp. 15–20. Washington, DC: IEEE Computer Society.

	23	 Asim, M., Mokhtar, H., and Merabti, M. (2010). A self‐managing fault
management mechanism for wireless sensor networks. International Journal
of Wireless Mobile Networks 2 (4): 14.

	24	 Ji, S., Yuan, S.‐F., Ma, T.‐H., and Tan, C. (2010). Distributed fault detection for
wireless sensor based on weighted average. Proceedings of the 2010 Second
International Conference on Networks Security, Wireless Communications and
Trusted Computing – Volume 01, ser. NSWCTC’10, Wuhan, Hubei, China
(24–25 April 2010), pp. 57–60. Washington, DC: IEEE Computer Society.

	25	 Galzarano, S., Fortino, G., and Liotta, A. (2012). Embedded self‐healing layer
for detecting and recovering sensor faults in body sensor networks.

87References

Proceedings of the 2012 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Seoul, Korea (14–17 October 2012), pp. 2377–2382.

	26	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐
specific framework for rapid prototyping of WBSN applications. Software:
Practice and Experience 41: 237–265.

	27	 Gravina, R., Guerrieri, A., Fortino, G. et al. (2008). Development of body
sensor network applications using SPINE. IEEE International Conference on
Systems, Man and Cybernetics, 2008. SMC 2008, Singapore (12–15 October
2008), pp. 2810–2815.

89

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

6

6.1  Introduction

Many computing paradigms have been to date exploited to support modeling
and implementation of wireless sensor networks (WSNs) and, more specifi-
cally, of body sensor networks (BSNs). As widely discussed in Chapter 2, different
kinds of paradigms, from low level to high level, can be used to develop WSN‐
based systems. Among such paradigms, the most notable ones are event‐driven
programming [1], data‐based models [2], service‐oriented programming [3],
macro‐programming [4], state‐based programming [5], and agent‐oriented
programming [6]. This chapter proposes the agent‐oriented paradigm for the
modeling and implementation of BSNs. After introducing background con-
cepts on the agent‐computing paradigm and, specifically, on software agents in
the WSN context, the chapter discusses motivations and challenges on the
exploitation of agents for BSNs and provides a description of the related state‐
of‐the‐art. We then present agent‐based modeling and implementation of
BSNs. A case study is finally proposed that uses two well‐known agent‐oriented
platforms (JADE and MAPS) to develop an agent‐based real‐time human
activity recognition system.

6.2  Background

6.2.1  Agent‐Oriented Computing and Wireless Sensor Networks

Software agents are defined as being networked software entities or programs
that can perform specific (even complex) tasks for a user and having a degree
of intelligence that allows them to carry out parts of their tasks/activities
autonomously and to interact with their environment in a useful manner. The
features of software agents perfectly fit those of the WSNs and their sensor
components [7, 8]; in fact, they mainly include [9]:

Agent‐Oriented Body Sensor Networks

6  Agent‐Oriented Body Sensor Networks90

●● Autonomy: agents (or sensor nodes) should be able to perform the majority
of their problem‐solving tasks without the direct intervention of humans,
and they should have a degree of control over their own actions and their
own internal state.

●● Social ability: agents (or sensor nodes) should be able to interact, when they
deem appropriate, with other software agents (or sensor nodes) and humans
in order to complete their own problem solving and to help others with their
activities where and when appropriate.

●● Responsiveness: agents (or sensor nodes) should perceive their environment,
in which they are situated and which may be the physical world, a user, a
collection of agents (or other sensors), the Internet, etc., and respond in a
timely fashion to changes which occur in it.

●● Proactiveness: agents (or sensor nodes) should not simply act in response to
their environment, but they should be able to exhibit opportunistic, goal‐
directed behavior and take the initiative where and when appropriate.

An interesting taxonomy about WSNs and their relationships with multia-
gent systems (MAS) can be found in Ref. [8]. In particular, the major motiva-
tion of using agents over such networks is that many WSN properties are
shared with and can be actually supported by agents and MAS: physical distri-
bution, resource boundedness, information uncertainty, large‐scale, decentral-
ized control, and adaptiveness. Moreover, as sensors in a WSN must typically
coordinate their actions to achieve system‐wide goals, coordination among
dynamic entities (or agents) is one of the main features of MAS. In the follow-
ing, the aforementioned common properties are discussed:

●● Physical distribution implies that sensors are situated in an environment
from which they can receive stimuli and act accordingly, also through con-
trol actions aiming at changing their environment. Situatedness is in fact a
main property of an agent, and several well‐known agent architectures were
defined to support such an important property.

●● Boundedness of resources (computing power, communication, and energy) is
a typical property both of sensor nodes as single units and of the WSN as a
whole. Agents and related infrastructures can support such limitation
through intelligent resource‐aware, single, and cooperative behaviors.

●● Information uncertainty is typical in large‐scale WSNs in which both the
status of the network and the data gathered to observe the monitored/con-
trolled phenomena could be incomplete. In this case, intelligent (mobile)
agents could recover inconsistent states and data through cooperation and
mobility.

●● Large‐scale is a property of WSNs either sparsely deployed on a wide area or
densely deployed on a restricted area. Agents in MAS usually cooperate in a
decentralized way through highly scalable interaction protocols and/or
time‐ and space‐decoupled coordination infrastructures.

6.2  Background 91

●● Centralized control is not feasible in large‐scale WSNs as nodes can have
intermittent connections and also can suddenly disappear due to energy
lack. Thus, decentralized control should be exploited. The multiagent
approach is usually based on control decentralization transferred either to
multiple agents dynamically elected among the available set of agents or to
the whole ensemble of agents coordinating as peers.

●● Adaptiveness is the main shared property between sensors and agents. An
agent is by definition adaptive in the environment in which it is situated.
Thus, modeling the sensor activity as an agent or a MAS and, consequently,
the whole WSN as a MAS could facilitate the implementation of the adap-
tiveness property.

6.2.2  Mobile Agent Platform for Sun SPOT (MAPS)

MAPS [10–12] is a Java‐based framework purposely developed on Sun SPOT
technology [13] for enabling agent‐oriented programming of WSN applica-
tions. MAPS has been developed according to the following requirements:

●● Component‐based lightweight agent server architecture to avoid heavy con-
currency by exploiting cooperative concurrency.

●● Lightweight agent architecture to efficiently execute and migrate agents.
●● Minimal core services involving agent migration, naming, communication,

activity timing, and access to sensor node resources, i.e. sensors, actuators,
flash memory, switches, and batteries.

●● Plug‐in‐based architecture on the basis of which any service can be defined
in terms of one or more dynamically installable components implemented as
single or cooperating (mobile) agent(s).

●● Java language for programming mobile agents.

The architecture of MAPS, shown in Figure 6.1, is based on components that
interact through (high level or internal) events and provide a set of services to
(mobile) agents including message transmission, agent creation, agent cloning,
agent migration, timer handling, and easy access to the sensor node resources.

The main components of the MAPS architecture are described as follows:

●● Mobile Agent (MA) is the basic high‐level component defined by the user for
developing agent‐based applications.

●● Mobile Agent Execution Engine (MAEE) controls the execution of MAs by
means of an event‐based scheduler enabling cooperative concurrency. MAEE
also interacts with the other service‐provider components (see Figure 6.1) to
fulfill service requests (e.g. message transmission, sensor reading, and timer
setting) issued by MAs.

●● Mobile Agent Migration Manager (MAMM) supports agents’ migration
through the Isolate (de)hibernation feature provided by the Sun SPOT

6  Agent‐Oriented Body Sensor Networks92

environment [13]. Such feature involves a data collection and execution
state, whereas the agent code should already be at the destination node. This
is a limitation of the Sun SPOTs, which do not support dynamic class loading
and code migration.

●● Mobile Agent Communication Channel (MACC) enables interagent commu-
nications based on asynchronous messages (unicast or broadcast) supported
by the radiogram protocol.

●● Mobile Agent Naming (MAN) provides agent naming based on proxies for
supporting MAMM and MACC in their operations. MAN also manages the
(dynamic) list of the neighbor sensor nodes that are updated through a bea-
coning mechanism based on broadcast messages.

●● Timer Manager (TM) manages the timer service for timing MA operations.
●● Resource Manager (RM) manages access to the resources of the Sun SPOT

node: sensors (3‐axial accelerometer, temperature, and light), switches,
LEDs, batteries, and flash memory.

The MAPS Mobile Agent model is depicted in Figure 6.2. Specifically, the
dynamic behavior of MA is modeled as a multiplane state machine (MPSM).

WSN

MAPS node MAPS node

Sun SPOT sensor node

MA MA MA

MAEE

RM

TM

MAN

MAMM

MACC

Inter-node communications
<<agent messaging and migration>>

Intra-node events

MAPS node

Figure 6.1  Architecture of MAPS.

6.2  Background 93

The GV block represents the global variables, namely, the data inside an MA,
whereas the GF is a set of global supporting functions. Each plane may repre-
sent the behavior of the MA in a specific role, thus enabling role‐based pro-
gramming [14], and is composed of local variables (LVs), local functions (LFs),
and an ECA‐based automaton (ECAA). This automaton is composed of states
and mutually exclusive transitions among states. Transitions are labeled by
Event–Condition–Action (E[C]/A) rules, where E is the event name, [C] is a
Boolean expression (or guard) based on global and local variables, and A is an
atomic action. A transition is triggered when E is received and C is true. When
a triggered transition is fired, A is first atomically executed and then the state
transition is completed. MAs interact through events that are asynchronously
delivered by the MAEE and dispatched, through the Event Dispatcher compo-
nent, to one or more planes according to the events that the planes are able to

Event Dispatcher

Agent behavior

MPSM

Plane_i

S1

Event1[Condition1]/Action1

S2

Event2[Condition2]/Action2

Internal events

<<LV, LF>>

<GV, GF>

Event2[!Condition2]/Action3

Figure 6.2  Agent behavior model of MAPS.

6  Agent‐Oriented Body Sensor Networks94

handle. It is worth noting that the MPSM‐based agent behavior programming
allows exploiting the benefits deriving from three main paradigms for WSN
programming: event‐driven programming, state‐based programming, and
mobile agent‐based programming.

6.3  Motivations and Challenges

In the context of highly dynamic distributed computing, mobile agents are a
suitable and effective computing paradigm for supporting the development of
distributed applications, services, and protocols [15]. A mobile agent is an
executing program that has the unique ability to transport itself from one sys-
tem in a network to another in the same network. Networks could be large‐
scale networks or even personal area networks like BSNs. Such ability allows
mobile agents to (i) move across a system containing objects, agents, services,
data, and devices with which the mobile agent wants to interact and to (ii) take
advantage of being in the same host or network as the elements with which
it interacts. Agent migration can be based on weak mobility (agent data and
code are migrated) or strong mobility (agent data, code, and execution state
are migrated) [16]. Mobile agents are supported by MASs [16] that basically
provide an API for developing agent‐based applications, and an agent server is
able to execute agents by providing them with basic services such as migration,
communication, and node resource access.

In their seminal paper [17], Lange and Oshima defined at least seven good
reasons for using mobile agents in generic distributed systems. In the follow-
ing, we customize them in the WSN context:

1)	 Network load reduction: mobile agents are able to access remote resources,
as well as communicate with any remote entity, by directly moving to their
physical locations and interacting with them locally to save bandwidth
resources. For instance, a mobile agent that incorporates data‐processing
algorithm/s can move to a sensor node (e.g. a wearable sensor node), per-
form the needed operations on the sensed data, and transmit the results to
a sink node. This is more desirable, rather than executing a periodic trans-
mission of raw sensed data from the sensor node to the sink node and the
data processing on the latter.

2)	 Network latency overcoming: an agent provided with proper control logic
may move to a sensor/actuator node to locally perform the required control
tasks. This overcomes the network latency that will not affect the real‐time
control operations also in case of lack of network connectivity with the base
station.

3)	 Protocol encapsulation: if a specific routing protocol supporting multi‐hop
paths should be deployed in a given zone of a WSN, a set of cooperating

6.4  State‐of‐the‐Art: Description and Comparison 95

mobile agents encapsulating this protocol can be dynamically created and
distributed into the proper sensor nodes without any regard for standardi-
zation matter. Also in case of protocol upgrading, a new set of mobile agents
can easily replace the old one at runtime.

4)	 Asynchronous and autonomous execution: these distinctive properties of
mobile agents are very important in dynamic environments like WSNs where
connections may not be stable and network topology may change rapidly. A
mobile agent, upon a request, can autonomously travel across the network to
gather required information “node by node” or to carry out the programmed
tasks and, finally, can asynchronously report the results to the requester.

5)	 Dynamic adaptation: mobile agents can perceive their execution environ-
ment and react autonomously to changes. This behavioral dynamic adapta-
tion is well suited for operating on long‐running systems like WSNs where
environment conditions are very likely to change over time.

6)	 Orientation to heterogeneity: mobile agents can act as wrappers among sys-
tems based on different hardware and software. This ability can fit well the
need for integrating heterogeneous WSNs supporting different sensor plat-
forms or connecting WSNs to other networks (like IP‐based networks). An
agent may be able to translate requests coming from a system into suitable
ones for another different system.

7)	 Robustness and fault tolerance: the ability of mobile agents to dynamically
react to unfavorable situations and events (e.g. low battery level) can lead to
better robust and fault‐tolerant distributed systems; e.g. the reaction to the
low battery level event can trigger a migration of all executing agents to an
equivalent sensor node to continue their activity without interruption.

6.4  State‐of‐the‐Art: Description and Comparison

Although many MASs [18] were developed for conventional distributed
platforms, a very few agent frameworks for WSNs have been to date proposed
and concretely implemented. In the following, we first describe Agilla and
actorNet, the most significant available research prototypes based on TinyOS
[19], and then, we overview AFME and MAPS, which are the most representa-
tive ones based on the Java language.

Agilla [6] is an agent‐based middleware developed on TinyOS and supporting
multiple agents on each node. It provides two fundamental resources on each node:

●● The tuplespace, which represents a shared memory space where structured
data (tuples) can be stored and retrieved, allowing agents to exchange infor-
mation through spatial and temporal decoupling. A tuplespace can be also
accessed remotely.

●● The neighbor list, which contains the address of all one‐hop nodes needed
when an agent has to migrate.

6  Agent‐Oriented Body Sensor Networks96

Agilla agents can migrate carrying their code and state, but they cannot carry
their tuples locally stored on a tuplespace. Packets used for node communica-
tion (e.g. for agent migration/cloning and remote tuple accessing) are very
small to minimize losses, whereas retransmission techniques are also adopted.

ActorNet [20] is an agent‐based platform specifically designed for Mica2/
TinyOS sensor nodes. To overcome the difficulties of code migration and
interoperability due to the strict coupling between applications and sensor
node architectures, actorNet exposes services like virtual memory, context
switching, and multitasking. Due to these features, actorNet effectively sup-
ports agent programming by providing a uniform computing environment for
all agents, regardless of hardware or operating system differences. The actor-
Net language used for high‐level agent programming has syntax and semantics
similar to those of Scheme with proper instruction extension.

Both Agilla and actorNet are designed for TinyOS that relies on the nesC
language.

The Java language, through which Sun SPOT [13] and Sentilla JCreate [21]
sensors can be programmed, due to its object‐oriented features, could provide
more flexibility and extendibility for an effective implementation of agent‐
based platforms. Currently, the main available Java‐based mobile agent plat-
forms for WSNs are MAPS [11] and AFME [22].

The AFME framework [22], a lightweight version of the Agent Factory frame-
work purposely designed for wireless pervasive systems and implemented in
J2ME, is also available on Sun SPOT and is used for exemplifying agent com-
munication and migration in WSNs. AFME is strongly based on the Belief–
Desire–Intention (BDI) paradigm, in which intentional agents follow a
sense–deliberate–act cycle. In AFME, agents are defined through a mixed
declarative and imperative programming model. The declarative Agent Factory
Agent Programming Language (AFAPL), based on a logical formalism of beliefs
and commitments, is used to encode an agent’s behavior by specifying rules that
define the conditions under which commitments are adopted. The imperative
Java code is instead used to encode perceptors and actuators. However, AFME
was not specifically designed for WSNs and, particularly, for Java Sun SPOT.

MAPS, the Java‐based agent platform overviewed in Section 6.2.2, is con-
versely specifically designed for WSNs and currently uses the release 4.0 (Blue)
of the Sun SPOT library to provide advanced functionality of communication,
migration, timing, sensing/actuation, and flash memory storage. MAPS allows
developers to program agent‐based applications in Java according to the rules
of the MAPS framework, and thus no translator and/or interpreter need to be
developed and no new language has to be learnt as in the case of Agilla,
ActorNet, and AFME. MAPS was also ported on the Sentilla JCreate sensor
platform and renamed TinyMAPS [21].

In Table 6.1 a comparison among the aforementioned agent platforms is
reported.

 Table 6.1 Comparison among agent‐oriented platforms (Agilla, ActorNet, AFME, and MAPS) for WSNs.

Agilla ActorNet AFME MAPS

Agent migration availability Yes Yes Yes Yes
Concurrent agents Yes Yes Yes Yes
Agent communications Tuple‐based Asynchronous messages Asynchronous messages Asynchronous messages
Agent programming language Proprietary ISA Scheme‐like Declarative + Java Java
Agent model Assembly‐like Functional BDI Finite state machine
Intentional agents availability No No Yes No
WSN‐supported platforms Mica2, MicaZ, TelosB Mica2 Sun SPOT Sun SPOT, Sentilla JCreate

6  Agent‐Oriented Body Sensor Networks98

6.5  Agent‐Based Modeling and Implementation
of BSNs

As widely discussed in Chapter 1, a BSN is basically composed of a coordinator
node or base station and one or more wearable sensor nodes connected with a
1‐hop wireless connection with the coordinator. According to the agent‐
oriented approach, each component of a system is agentified; therefore, both
the BSN coordinator and the BSN sensor nodes are modeled as agents. A BSN
system as a whole constitutes a MAS that is basically structured as a master/
slave system (see Figure 6.3a), where the coordinator is the master agent and
the sensor nodes are the slave agents. The slave agents can only interact with
the coordinator agent. A variant of the basic architecture (see Figure 6.3b) is a
mix of Master/Slave (M/S) and peer‐to‐peer (P2P): the coordinator agent can
interact with all slave agents and the slave agents can interact with each other.
Both basic M/S and advanced M/S + P2P can be used to structure a single BSN.
To model collaborative/interacting BSNs (see Chapter 7), the Super Peer model
(see Figure 6.3c) can be exploited: coordinator agents are super peers and can
interact with each other, whereas sensor nodes belonging to the same BSN can
only interact with each other and with their coordinator agent.

Agent‐based implementation of BSN systems should be based on real agent
platforms [23] supporting the programming of both the coordinator agent and
the application agents and the sensor agents. Specifically, we propose JADE [24]
to implement the application and coordinator agents and MAPS [11] to imple-
ment the sensor agents. Thus, agent programming follows the rules of JADE
and MAPS. Moreover, the application development of agent‐based applications
is also supported by an agent‐oriented software engineering methodology [25],
which usually covers the phases of requirement analysis, design, implementa-
tion, and deployment. In the next section, a case study is proposed to exemplify
the agent‐based engineering approach for BSN applications.

6.6  Engineering Agent‐Based BSN Applications:
A Case Study

In order to show the effectiveness of agent‐based platforms to support
programming of BSN applications, in Ref. [26] a MAPS‐based agent‐oriented
signal‐processing in‐node environment specialized for real‐time human activ-
ity monitoring has been proposed. In particular, the system is able to recognize
postures (e.g. lying down, sitting, and standing still) and movements (e.g. walk-
ing) of assisted livings. The architecture of the developed agent‐based system,
shown in Figure 6.4, is organized into three types of agents:

●● The Application‐level Agent (running on a PC or a handheld device) that
embeds the application logic, implemented with Java and JADE [24].

6.6  Engineering Agent‐Based BSN Applications: A Case Study 99

Coordinator
Agent

Sensor
Agent

Sensor
Agent

Sensor
Agent

Sensor
Agent

Sensor
Agent

Sensor
Agent

(a)

Coordinator
Agent

Coordinator
Agent

Coordinator
Agent

Coordinator
Agent

(b)

Sensor
Agent

Sensor
Agent

Sensor
Agent

(c)

Sensor
Agents

Sensor
Agents

Figure 6.3  Agent modeling of BSNs. (a) Master/slave model, (b) Master/slave + peer‐to‐peer
model, and (c) Super peer model.

●● The Coordinator Agent (running on a PC or a handheld device), implemented
with Java and JADE.

●● The Sensor Agent (running on the wearable sensor nodes), programmed with
MAPS [11].

6  Agent‐Oriented Body Sensor Networks100

The Coordinator Agent is based on JADE and incorporates several
modules of the Java‐based coordinator developed in the context of the
SPINE framework [27]. In particular, it is used by end‐user applications
(e.g. the agent‐based real‐time activity recognition application – ARTAR)
for managing BSNs by (i) sending commands to the sensor nodes and (ii)
capturing low‐level messages and events coming from the sensor nodes.
Moreover, the Coordinator Agent integrates an application‐specific logic to
keep the sensor agents synchronized. To recognize postures and move-
ments, the ARTAR application integrates a classifier based on the K‐Nearest
Neighbor (k‐NN) algorithm. Postures and movements are defined during
the training phase. ARTAR and the Coordinator Agent interact through
JADE ACL messages.

While the ARTAR and the Coordinator Agent are based on JADE, the two
sensor agents are based on MAPS. Thus, a communication adaptation module
between JADE and MAPS was developed to allow communication interoper-
ability. The two sensor nodes are, respectively, positioned on the waist and the
thigh of the monitored‐assisted living. Specifically, two sensor agents are

JADE-based Activity Recognition Agent

JADE-based Coordinator Agent

SPINE Modules JADE/MAPS
Communication

Module

WaistSensorAgent

MAPS/Sun SPOT

ThighSensorAgent

MAPS/Sun SPOT

ACL Messages

MAPS Events

Figure 6.4  Architecture of the agent‐based activity monitoring system.

6.7  Summary 101

defined: WaistSensorAgent and ThighSensorAgent. Their behaviors are
modeled through a 1‐plane MPSM (see Section 6.2.2) by executing the following
stepwise cycle:

1)	 Accelerometer Data Sensing: the 3‐axial accelerometer sensor collects raw
accelerometer data (<Acc_X, Acc_Y, and Acc_Z>) according to a given
sampling time.

2)	 Feature Computation: specific features are computed on the collected raw
accelerometer data. Features are calculated as follows: (i) Mean on all
accelerometer axes for the WaistSensorAgent, (ii) Max and Min on the X
accelerometer axis for the WaistSensorAgent, and (iii) Min on the X accel-
erometer axis for the ThighSensorAgent.

3)	 Feature Merging and Transmission: the computed features are merged into
a single message and transmitted to the Coordinator Agent.

4)	 Go to 1.

Figure 6.5 also shows how such elaboration cycle is actually programmed using
the MAPS finite state machine.

In Ref. [26], the entire BSN system has been analyzed in depth by considering
the following two aspects:

●● The performance evaluation of the timing granularity degree of the sensing
activity at the sensor node and the synchronization degree or skew of the
activities of the two sensor agents.

●● The recognition accuracy that shows how well the human postures and
movements are recognized by the overall agent system.

On the basis of the obtained performance results, it can be stated that MAPS
shows its great suitability for supporting efficient BSN applications, thus dem-
onstrating that the agent approach is not only effective during the design and
implementation phases of a BSN application but also during its execution.
Furthermore, the recognition accuracies are good and encouraging if com-
pared with other works in the literature that use more than two sensors on the
human body to recognize activities [28]. Finally, with reference to the program-
ming effectiveness of MAPS, the MAPS programming model based on the
finite state machine offers a very straightforward and intuitive tool for support-
ing BSN application development.

6.7  Summary

This chapter has provided an overview of the use of the agent‐oriented para-
digm to model and implement BSN systems. We have first introduced the
motivations and challenges for this exploitation. Then, we have introduced

6  Agent‐Oriented Body Sensor Networks102

MAPS for WSN‐based system development. Furthermore, related work and a
qualitative comparison among the most diffused (mobile) agent platforms for
WSNs have been discussed. Finally, the chapter has focused on agent‐oriented
BSN application development based on MAPS; specifically, a MAPS‐based
human activity recognition BSN system has been described.

WaitForSensing
AGN_Start/A0

ComputingFeatures

MSG.START/A1

MSG.RESYNCH/A0
MSG.RESTART/A3

MSG.STOP/A4

ACC_CURRENT_ALL_AXES/A2

AGN_Start: event to start the agent behavior plane
MSG.START: event to start the sensing activity
MSG.RESTART: event to restart the sensing activity
MSG.RESYNCH: event to resynchronize the agent timing
MSG.STOP: event to stop the agent activity
ACC_CURRENT_ALL_AXES: event including raw sensed data

A0: Initialize the local variables of the plane
A1: Initialize the buffers to store raw sensed data
 Create the timer for sensor sampling
 Launch the sensing activity
A2: Fill the buffer with the raw sensed data
 Compute the features after N sensor samplings and
 Transmit the features to the coordinator agent
 Create the timer for sensor sampling
 Launch the sensing activity
A3: Disable the sensing timer
 Initialize the local variables of the plane
 Execute action A1
A4: Disable the sensing timer

Figure 6.5  Finite state machine of the sensor agents: WaistSensorAgent and
ThighSensorAgent.

103References

References

	 1	 Gay, D., Levis, P., von Behren, R. et al. (2003). The nesC language: a holistic
approach to networked embedded systems. Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, San
Diego, CA (9–11 June 2003).

	 2	 Madden, S.R., Franklin, M.J., Hellerstein, J.M., and Hong, W. (2005). TinyDB:
an acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems (TODS) 30 (1): 122–173.

	 3	 Marin, C. and Desertot, M. (2005). Sensor bean: a component platform for
sensor‐based services. Proceedings of the 3rd International Workshop on
Middleware for Pervasive and Ad‐Hoc Computing, MPAC’05, Grenoble,
France (28 November–2 December 2005), pp. 1–8. ACM.

	 4	 Gummadi, R., Gnawali, O., and Govindan, R. (2005). Macroprogramming
wireless sensor networks using Kairos. Proceedings of the International
Conference on Distributed Computing in Sensor Systems (DCOSS), Fortaleza,
Brazil (10–12 June 2015).

	 5	 Kasten, O. and Römer, K. (2005). Beyond event handlers: programming
wireless sensors with attributed state machines. Proceedings of the 4th
International Symposium on Information Processing in Sensor Networks, Los
Angeles, CA (24–27 April 2005).

	 6	 Fok, C.‐L., Roman, G.‐C., and Lu, C. (2009). Agilla: a mobile agent middleware
for sensor networks. ACM Transactions on Autonomous and Adaptive Systems
4 (3): 1–26.

	 7	 Rogers, A., Corkill, D., and Jennings, N.R. (2009). Agent technologies for
sensor networks. IEEE Intelligent Systems 24: 13–17.

	 8	 Vinyals, M., Rodriguez‐Aguilar, J.A., and Cerquides, J. (2010). A survey on
sensor networks from a multiagent perspective. The Computer Journal 54
(3): 455–470.

	 9	 Wooldridge, M.J. and Jennings, N.R. (1995). Intelligent agents: theory and
practice. The Knowledge Engineering Review 10 (2): 115–152.

	10	 Aiello, F., Fortino, G., Gravina, R., and Guerrieri, A. (2009). MAPS: a
mobile agent platform for Java Sun SPOTs. Proceedings of the 3rd
International Workshop on Agent Technology for Sensor Networks
(ATSN‐09), jointly held with the 8th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS‐09), Budapest,
Hungary (12 May 2009).

	11	 Aiello, F., Fortino, G., Gravina, R., and Guerrieri, A. (2011). A Java‐based agent
platform for programming wireless sensor networks. The Computer Journal
54 (3): 439–454.

	12	 MAPS – Mobile Agent Platform for Sun SPOT. Documentation and software.
http://maps.deis.unical.it (accessed 23 August 2015).

	13	 Sun SPOT. Documentation and code. www.sunspotdev.org (accessed 14 June 2017).

6  Agent‐Oriented Body Sensor Networks104

	14	 Zhu, H. and Alkins, R. (2006). Towards role‐based programming. Proceedings
of CSCW’06, Banff, Alberta (4–8 November 2006).

	15	 Yoneki, E. and Bacon, J. (2005). A survey of Wireless Sensor Network
technologies: research trends and middleware’s role. Tech. Rep. UCAM‐CL‐
TR‐646, University of Cambridge.

	16	 Karnik, N.M. and Tripathi, A.R. (1998). Design issues in mobile‐agent
programming systems. IEEE Concurrency 6: 52–61.

	17	 Lange, D.B. and Oshima, M. (1999). Seven good reasons for mobile agents.
Communications of the ACM 42 (3): 88–90.

	18	 Fortino, G., Garro, A., and Russo, W. (2008). Achieving mobile agent systems
interoperability through software layering. Information & Software Technology
50 (4): 322–341.

	19	 TinyOS. Documentation and software. www.tinyos.net (accessed 9 June 2017).
	20	 Kwon, Y., Sundresh, S., Mechitov, K., and Agha, G. (2006). ActorNet:

an actor platform for wireless sensor networks. Proceedings of the
5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Hakodate, Japan (28 April 2006),
pp. 1297–1300.

	21	 Aiello, F., Fortino, G., Galzarano, S., and Vittorioso, A. (2012). TinyMAPS:
a lightweight Java‐based mobile agent system for wireless sensor
networks. In Fifth International Symposium on Intelligent Distributed
Computing (IDC2011) (5–7 October), Delft, the Netherlands. In
Intelligent Distributed Computing V, Studies in Computational
Intelligence, 2012, Vol. 382/2012, pp. 161–170. doi:
10.1007/978‐3‐642‐24013‐3_16.

	22	 Muldoon, C., O’Hare, G.M.P., O’Grady, M.J., and Tynan, R. (2008). Agent
migration and communication in WSNs. Proceedings of the 9th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, Dunedin, New Zealand (1–4 December 2008).

	23	 Luck, M., McBurney, P., and Preist, C. (2004). A manifesto for agent
technology: towards next generation computing. Autonomous Agents and
Multi‐Agent Systems 9 (3): 203–252.

	24	 Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing multi agent
systems with a FIPA‐compliant agent framework. Software Practice and
Experience 31: 103–128.

	25	 Fortino, G. and Russo, W. (2012). ELDAMeth: an agent‐oriented methodology
for simulation‐based prototyping of distributed agent systems. Information &
Software Technology 54 (6): 608–624.

	26	 Aiello, F., Bellifemine, F., Fortino, G. et al. (2011). An agent‐based signal
processing in‐node environment for real‐time human activity monitoring
based on wireless body sensor networks. Journal of Engineering Applications
of Artificial Intelligence 24: 1147–1161.

105References

	27	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐specific
framework for rapid prototyping of WBSN applications. Software: Practice
and Experience 41 (3): 237–265.

	28	 Maurer, U., Smailagic, A., Siewiorek, D.P., and Deisher, M. (2006). Activity
recognition and monitoring using multiple sensors on different body
positions. Proceedings of the International Workshop on Wearable and
Implantable Body Sensor Networks (BSN’06), Cambridge, MA (3–5 April
2006), pp. 113–116. IEEE Computer Society.

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

107

7

7.1  Introduction

The importance of wearable systems in facilitating and empowering many
human‐centered domains has been already widely proved and discussed.
However, despite their potential, the current BSN‐based systems are mostly
used for applications focusing on the monitoring of a single individual. Also,
the current BSN frameworks aim at providing effective programming supports
for easily and efficiently developing applications for remote, real‐time monitoring
of assisted livings over network based on a multisensors/single‐coordinator
configuration. Since more and more applications in several domains (health
care, entertainment, social interaction, sport, and emergency among others)
demand different and more complex BSN‐based architectures, the paradigm
centered on a single individual monitoring is not sufficient anymore to meet
these new applications’ requirements.

Thus, the need for new multi‐BSN infrastructures, henceforth indicated as
Collaborative Body Sensor Networks (CBSNs), is compelling to foster novel
applications based on the collaborative approach of groups of individuals,
where single BSNs have to cooperate with each other to properly monitor and
recognize group activities in order to fulfill a common goal.

In this chapter, a reference architecture for CBSN applications, thus enabling
interactions among single BSNs, is presented. Moreover, a new programming
framework, Collaborative SPINE (C‐SPINE) [1,2], specifically designed to fully
implement the proposed CBSN architecture, is also described. Proposed as an
enhancement of the SPINE framework [3,4] (see Chapter 3), it provides specific
data communication, multisensor data fusion, collaborative processing, and
joint data analysis capabilities to facilitate the development of novel smart
wearable systems for the current and future cyber‐physical pervasive computing
environments.

Collaborative Body Sensor Networks

7  Collaborative Body Sensor Networks108

7.2  Background

Most of the current applications using wearable systems rely on BSN infrastruc-
tures constituted of a collection of sensor nodes wirelessly connected to a single
coordinator device (the base station – BS), which usually makes the individual’s
information locally or remotely available.

However, today’s complex application scenarios require more dynamic and
flexible interacting components and thus new types of BSNs need to be defined
in order to offer further capabilities. In the following, the possible kinds of BSN
infrastructures are introduced. They are categorized on the basis of the “logical
interconnections” among the main communicating BSN components, i.e. the
individuals wearing the sensor nodes and the coordinators/BSs (depicted as
smartphones), with no assumption about the actual underlying physical net-
work topologies. As depicted in Figure 7.1, we have the following logical BSN
infrastructures:

a)	 Single Body–Single Base station (SBSB) (Figure 7.1a): the wearable devices of
a single individual communicate with a single BS. This is the most common
configuration for the current available body‐monitoring applications aimed
at acquiring, processing, and storing (locally or remotely) the biomedical
signals of individuals.

b)	 Single Body–Multiple BSs (SBMBs) (Figure 7.1b): such a configuration
enables communications between a single BSN with multiple BSs. A typical
scenario could be in the home automation context, where an individual may
interact with BSs located in different places of the environment.

c)	 Multiple Bodies–Single BS (MBSB) (Figure 7.1c): multiple BSNs can be
coordinated by a single BS, which allows for indirect interaction among
different individuals. An example is in the gaming context, where a device
(smart‐TV or a game console) enables an augmented social experience in a
group of people wearing sensors.

(a) (b) (c) (d)

Figure 7.1  BSN infrastructures based on the logical communications among individuals
and base stations.

7.3  Motivations and Challenges 109

d)	 Multiple Bodies–Multiple BSs (MBMBs) (Figure 7.1d): multiple BSNs can
interchangeably and dynamically communicate with multiple BSs. This
configuration is needed in more complex scenarios (e.g. during large‐scale
disaster), where the emergency intervention by a team of rescuers requires
a more efficient and automatic coordination and a better delivery of infor-
mation related to the victims’ conditions.

7.3  Motivations and Challenges

Based on the characteristics of the different BSN infrastructures, none of the
BSN‐specific solutions or programming frameworks developed and proposed
so far (discussed in Chapter 2) is specifically designed to straightforwardly
support multi‐BSN configuration. In fact, most of them are designed around
the basic needs to perform multisensor data fusion [5] in single‐BSN contexts
and are usually implemented by following a three‐layer architecture:

1)	 Sensing layer: this module provides sensor sample acquisition and signal
data gathering functionality from the on‐body sensors. Besides extracting
raw data, it usually also computes basic feature extraction functions such as
min, max, mean, variance, etc.

2)	 Analysis layer: starting from the set of extracted features, this layer is in
charge of selecting and joining the most significant ones by further providing
some decision algorithms, like a classifier.

3)	 Dissemination layer: high‐level information from the analysis layer is delivered
to some user‐applications, which can either be locally (i.e. on the coordinator/
BS device) or remotely executed.

Such a three‐layer architecture lacks fundamental capabilities to support inter‐
BSN communication and collaborative, distributed processing functionality,
which are needed to successfully support the Multiple Bodies–Multiple BS
configuration.

Hence, the novel reference architecture for CBSNs proposed in this chapter
has been purposely conceived to fully adhere to all the possible BSN configura-
tions. Such a general architecture has been later exploited as a guideline for
implementing a supporting framework aimed at facilitating the development
of collaborative BSN applications. In particular, the need for a CBSN infra-
structure can be better motivated by the fact that it is capable of easily enabling
new services allowing single BSNs to interact with each other (not addressed in
the other BSN configurations):

●● Client/Server services: a pair of BSNs can interact in a standard client/server
communication paradigm, where a server BSN (e.g. the monitored individ-
ual) provides services to let the client BSN issue (i) a continuous monitoring
request or (ii) a single data request. In the former, the server BSN continu-
ously pushes information to the client, whereas the latter works as a more
typical single‐reply‐upon‐request model.

7  Collaborative Body Sensor Networks110

●● Broadcast services: BSNs can broadcast (push) information without being
queried about (i) the individuals’ worn sensors or (ii) alarm/events triggered
by the individuals’ conditions (e.g. a critical status like a fall or a heartbreak).

●● Collaborative services: aimed at performing specific tasks upon direct inter-
actions between BSNs and based on a peer‐to‐peer model to exchange
information. They usually detect and recognize group activities and relevant
events based on the implicit or explicit multiuser interactions.

Despite their benefits, such services pose further challenges in implementing a
CBSN application framework, which needs to successfully fulfill new specific
requirements:

●● Inter‐BSN communication: all the aforementioned types of service models
require reliable and robust inter‐BSN communication mechanisms to be
implemented.

●● BSN proximity detection: providing proper proximity detection protocols is
of fundamental importance for managing the neighbor CBSNs.

●● Discovery of BSN services: complementary to the BSN proximity detection
system, a CBSN should rely on dynamic but well‐specified (possibly stand-
ard) service discovery methods.

●● Selection and activation of BSN services: in a similar way, selecting and
activating services need common mechanisms to be implemented according
to a specific protocol.

●● Collaborative multisensor data fusion: specific distributed algorithms for
group activities’ classification/detection represent major tasks (and challenges)
in the CBSN context.

7.4  State‐of‐the‐Art

As already discussed, most of the proposed BSN solutions or programming
frameworks developed so far are not conceived to straightforwardly support
multi‐BSN infrastructures, since they are basically designed around a multisensor
data fusion approach and implemented by following the three‐layer architecture
presented in the previous section.

In Ref. [6], a postures and activities recognition system by fusing data from
multiple two‐axial accelerometers is proposed. The angular velocity, and the
horizontal and vertical accelerations of sensors placed on different locations of
the human body are estimated by Kalman Filters (KFs) and the resulting flex-
ion angles of body parts, which are real‐time indicators of limbs and torso posi-
tion, are in turn processed (using statistical, temporal, and spectral features)
and identified, based on banks of trained Hidden Markov Models (HMMs),
and fused together to infer whole body posture or activity.

The authors in Refs. [4,7] propose a human activity recognition system using
two 3‐axial accelerometers placed on the right thigh and on the waist. Specific

7.5  A Reference Architecture for Collaborative BSNs 111

features are extracted from data collected on a fixed‐length periodic window
basis: max, min, average and total energy on all axes of the accelerometer on
the waist, and max on the x axis of the accelerometer of the thigh sensor. Such
features are then merged and classified by using a k‐NN‐based decision tree to
identify different activities, like standing still, sitting, lying down, walking, and
fall events along with the extent of the fall.

In Ref. [8], different human postures (sitting, squatting, standing still, and
lying down) are detected by using a multisensor data fusion method that relies
on the D‐S evidence theory. Empirical evidence is extracted from 3‐axial accel-
erometers placed on calf, thigh, arm, and waist so that ranges of the gravity
acceleration can be defined for each axis and related to each activity of interest.
The theory of evidence is exploited to first define basic trust functions, which
are then combined, on the basis of real‐time observations, to generate more
accurate functions to recognize the postures.

In Ref. [9], a novel multiobjective Bayesian Framework for Feature Selection
(BFFS) and a method for searching optimal solutions are proposed. It can be
used in BSN systems for reducing the number of relevant features by eliminat-
ing the redundant ones and thus identifying the sensors that do not considerably
influence the decision process. Moreover, a contextual multisensor data fusion
method, based on model learning and inferencing algorithms, is proposed to
recognize individual’s activities.

The authors in Ref. [10] propose self‐healing methods to detect data faults
from sensors. Specifically, it is shown how the accuracy of a BSN system for
human activity recognition is affected by different types of faulty data. Some
filtering methods are then proposed to improve sensor data quality and
enhance the recognition accuracy.

In Ref. [11], the authors aim at improving classification robustness against
sensor failures by proposing a formulation of a latent structure influence
model capable of capturing the correlation among (including noisy/faulty) dif-
ferent sensing processes. A BSN system able to recognize eight locations, six
speaking/non‐speaking states, six postures, and eight activities is considered
as a case study.

7.5  A Reference Architecture for Collaborative BSNs

The proposed reference architecture for supporting a CBSN infrastructure can
be described under two different perspectives, the networking perspective and
the functional one:

●● Network Architecture, which shows the communications among BSNs in
terms of basic and the application‐specific interaction protocols.

●● Functional Architecture, which defines the types and activities of the main
functional blocks in charge of managing the general system and executing
some specific tasks depending on the actual applications.

7  Collaborative Body Sensor Networks112

As depicted in Figure 7.2, the CBSN Network Architecture consists of different
sets of wearable sensors (the WSs) and base‐stations (BSs). In the picture, we
assume that every CBSN is controlled by a BS, which manages the sensor nodes
through an application‐level intra‐BSN communication, usually implemented
over a single‐hop protocol based on a physical star topology. The interaction
between a pair of BSs is made through an Inter‐BSN protocol. In the case of
absence of a BS, the set of WSs constituting the CBSN may be directly accessed
by other BSs through the Intra‐BSN protocol (IBP).

In the following, the list of functions offered by the IBP is provided:

●● Service discovery, for retrieving the available services (processing, sensing,
and actuating) for each of the WS composing the CBSN.

●● Service configuration, for setting the parameters of the discovered WS
services.

CBSN_j

WS_j_1 WS_j_m...........

BS_j

CBSN_i

WS_i_1 WS_i_n

BS_i

WS_k_1 WS_k_o

BS_k

CBSN_k

Inter-BSN interation

Intra-BSN interation

Figure 7.2  The reference CBSN Network Architecture.

7.5  A Reference Architecture for Collaborative BSNs 113

●● Service control, used to manage the operations on the WS services, i.e. acti-
vate/deactivate, monitor, and control a configured service.

●● Data transmission, for exchanging raw and/or processed data between the
BS and the WSs of the same CBSN.

The inter‐BSN interaction is enabled by some application‐specific protocols,
which support the collaboration among high‐level applications and services
running on each CBSN. In addition, in order to provide some basic common
operations, a set of protocols should be defined: Proximity Detection Protocol
(PDP), Service Discovery Protocol (SDP), and Service Selection and Activation
Protocol (SSAP). The activity diagram shown in Figure 7.3 represents the flow
of these basic inter‐BSN common operations. In particular, the PDP is
intended to detect and manage other CBSNs in the neighboring location by
means of a beaconing approach. When a CBSN is detected, the SDP is used for
sharing and managing the list of the available services that each CBSN can
provide to the others: at first, a service description request is broadcast, and
upon its reception, a reply containing services information is communicated.
The SSAP is in charge of actually controlling and managing calls to one or
more selected specific services required by a certain application. Once acti-
vated and executed, such collaborative services interact by exchanging some
service‐specific messages.

Figure 7.4 depicts the CBSN Functional Architecture, which includes the fol-
lowing components at BS side (some of them have been already previously
described):

Proximity
Detection

 Service
Discovery

 Service
Selection &
Activation

Service
Execution

[activated]

[!activated]

Figure 7.3  Activity diagram of basic CBSN operations.

Proximity
Detection
Protocol

Service
Discovery
Protocol

Service Selection &
Activation Protocol Intra-BSN Protocol

CBSN Manager BSN Manager Application-specific
Service Manager

Application-specific
Service Protocol

Functional Components

Protocol

Figure 7.4  CBSN Functional Architecture components.

7  Collaborative Body Sensor Networks114

●● CBSN Manager manages the first three basic operations, by using the PD,
SD, and SSA protocols. In particular, a service can be either automatically
activated upon a service discovery or activated on demand by the CBSN
owner. The former approach usually relies on some mutual knowledge
relationship among owners.

●● BSN Manager handles the WSs belonging to the CBSN through the IBP.
●● Application‐specific Service Manager manages and executes the application‐

level services through the Application‐specific Service Protocol (ASP, see the
next point).

●● Application‐specific Service Protocol (ASP) implements the communication
mechanisms for allowing the interaction among services related to the final
applications.

●● Proximity Detection Protocol, Service Discovery Protocol, Service Selection
and Activation Protocol implement the mechanisms for CBSN proximity
detection and service discovery, selection, and activation.

●● Intra‐BSN Protocol (IBP) is for coordinating the interaction between the
WSs and the BS.

7.6  C‐SPINE: A CBSN Architecture

A full‐fledged CBSN middleware, named Collaborative SPINE (C‐SPINE), has
been developed as an implementation of the reference architecture described
in Section 7.5. It includes the sensor‐side and BS‐side components of SPINE
(see Chapter 3) besides CBSN‐specific components. In particular, as shown in
Figure 7.5, C‐SPINE is composed of the following modules to support the
collaborative functionalities of the applications:

●● Inter‐CBSN Communication relies on the C‐SPINE Inter‐BSN OTA Protocol
(CIBOP) and provides an efficient communication layer to both basic and
application‐specific services and protocols.

●● BSN Proximity Detection implements the procedure for detecting neighbor
CBSNs.

●● BSN Service Discovery discovers the available services among the detected
CBSNs.

●● BSN Service Selection and Activation implements the mechanisms and rules
to select and activate discovered services among the surrounding CBSNs.

●● Application‐Specific Protocols and Services are a set of higher level function-
ality to support and implement collaborative applications.

In order to manage the sensor nodes, C‐SPINE reuses the SPINE coordinator
components at the BS side, which are implemented to support both Java‐based
and Android‐based devices:

7.6  C‐SPINE: A CBSN Architecture 115

●● Intra‐BSN Communication handles the message transmission and reception
according to the SPINE Intra‐BSN OTA Protocol (SIBOP). It abstracts away
from the specific WS platform‐related communication protocol by using the
proper radio module. It currently provides radio support for TinyOS motes
and Sun SPOT devices.

●● WS Commands and Events offers developers the interface to coordinate
the BSN by allowing to activate sensing and processing functions on the
nodes as well as handling BSN events (e.g. new discovered nodes, alarms,
and user data messages) and forwarding them to the registered applica-
tion‐level modules.

●● WS Discovery manages the discovery functionality of WS nodes.
●● Data‐Processing Functions module provides developers the interface for a

set of signal processing, feature extraction, pattern recognition, and data
classification functions in order to facilitate the development of new applica-
tions. The module also provides an adaptation with the WEKA Data Mining
toolkit [12].

Base station

Collaborative Applications

CBSN-specific components

SPINE components

Application-specific Protocols & Services

BSN Service
Selection & Activation

 BSN Proximity
Detection

 BSN Service
Discovery

Inter-BSN Communication

Data-Processing
Functions

WS
Commands & Events

 WS
Discovery

Intra-BSN Communication

Intra-BSN Communication

SIPOB

Node Manager

In-node Processing

Sensor Control

CIPOB

Wireless Sensor Nodes

WS

WS

WS

WS

WS

Other CSBNs

Figure 7.5  C‐SPINE Functional Architecture components.

7  Collaborative Body Sensor Networks116

Similar to the BS, the WSs are programmed by reusing the following SPINE
node‐side components:

●● Intra‐BSN Communication has a similar functionality of the counterpart on
the BS side by also managing the radio duty‐cycling.

●● Sensor Control is the interface to the onboard sensors by providing sam-
pling scheduling and buffering of sensor readings, which is supported by
circular buffers.

●● In‐Node Processing represents a customizable set of functions for signal pro-
cessing on sensor data streams along with filters, data aggregators, and
threshold‐based alarms.

●● Node Management supervises the interactions among the Sensor Control,
In‐Node Processing, and Intra‐BSN Communication modules, and handles
the requests coming from the BS.

In the following subsections, the collaborative‐enabling components of
C‐SPINE are described.

7.6.1  Inter‐BSN Communication

The Inter‐BSN Communication component provides an efficient communica-
tion mechanism to the upper‐layer components, i.e. the basic and the applica-
tion‐specific services of C‐SPINE. In particular, it relies on the subcomponents
of the interaction schema depicted in Figure 7.6. The Communication Provider
(CP) is in charge of managing the exchange of messages among CBSNs and
thus provides a set of methods for configuring a CBSN to receive and send
messages of specific types. Each different type of message requires a specific

Client
Message
Handler

<<implements>>

Communication
Provider

Platform-specific
Communication Protocols

<<uses>>

<<notifies messages>><<sends messages>>

<<registers handlers>>

Figure 7.6  Inter‐BSN component interaction.

7.6  C‐SPINE: A CBSN Architecture 117

Message Handler (MH) component in order to be correctly processed, and
every MH needs to be registered with the CP so as to be notified of new incom-
ing messages.

A specific CIBOP protocol, which depends on the upper‐level services and
application requirements, is defined and implemented according to such
design schema. In particular, the following steps have to be accomplished to
correctly define a new interaction protocol (IP):

1)	 Defining a new univocal message type identifying the new protocol.
2)	 Creating a set of IP‐specific messages, all belonging to the same previously

defined message type.
3)	 Implementing a MH, linked to the new message type, to handle and inter-

pret the new set of messages.
4)	 Registering the MH with the CP.

Since the Inter‐BSN Communication provides an abstract mechanism to sup-
port higher level communication layers, it includes a set of adapters in order to
use real platform‐specific lower level communication protocols. In particular,
C‐SPINE currently supports both the Bluetooth and the IEEE 802.15.4 proto-
cols, which are dynamically chosen depending on the actual physical platform
of the BS.

7.6.2  BSN Proximity Detection

Based on a beaconing mechanism, the Proximity Detection component is
designed around network‐driven adaptation approaches for controlling the
beacon rate and managing the neighbor cache (each CBSN handles a table con-
taining information about its neighbor CBSNs). The beacon rate, defined in
terms of frequency fhello, depends on the network conditions and specifically on
the turnover rate (rt) value, which is computed as:

	
r N

Nt
ndn

nc 	

where Nndn is the number of new discovered CBSNs, whereas Nnc is the total
amount of the currently cached CBSNs. In case the rt value is less than a spe-
cific threshold ropt, the fhello value is reduced (the beacon interval time is
increased by Δt, which is usually set equal to 500 ms), as a result of few changes
that occurred in the proximity. Conversely, if rt is greater than the threshold,
the beacon interval is incremented by Δt.

As for the cache of neighbors, the information regarding each neighboring
CBSN cb is stored in the history table as a tuple having the following structure:

	
beacon time cb T cb T cb Wait cb_ , , ,1 2 	

7  Collaborative Body Sensor Networks118

where beacon_time(cb) is the timestamp of the last beacon received from cb,
T1(cb) and T2(cb) are the reception intervals of the last two beacons, and
Wait(cb) is the amount of time after which the neighboring CBSN cb is removed
from the cached table if a new beacon is not received. In particular, Wait(cb) is
updated as follows:
	

Wait cb

k T cb if T cb T cb

T cb
T cb

T cb T cb

* 1 1 2

1
1

1 2
iif T cb T cb

T cb T cb T cb T cb if T cb

1 2

1 1 1 2 1

1

0* TT cb2 1
	

7.6.3  BSN Service Discovery

This component is in charge of discovering the set of available services between
pairs of interacting CBSNs. Specifically, C‐SPINE provides two different ser-
vice discovery mechanisms: on‐demand and advertisement‐driven. The former
approach allows to directly query one or more neighbor CBSNs, among the
ones detected by the Proximity Detection component, for obtaining the list of
the provided services. The advertisement‐driven service discovery relies on
the advertisement messages, containing the list of offered services, which are
periodically broadcast along with the beaconing messages.

7.6.4  BSN Service Selection and Activation

The Service Selection and Activation component allows pairs of CBSNs to
mutually make use of their respective discovered services in order to accom-
plish specific collaborative tasks required by the running applications. In par-
ticular, selecting and activating a service is performed through the specification
of well‐defined rules; it additionally depends on the mutual acquaintance
relation between interacting CBSNs and possibly on some contextual informa-
tion. A service‐selecting rule is defined by the following tuple:

	 ID CTXS A, ,R 	
where:

●● IDS is a numeric identification code specifying a certain service.
●● RA ⊆ IDn CBSN (with n ≥ 2) represents the relation among two or more CBSNs

on the basis of their mutual acquaintance. The following annotation are
examples of relations: <IDx, *> identifies public services, <IDx, IDy> indi-
cates a service that is enabled only between a pair of CBSNs, whereas <ID1,
ID2, …, IDn> enables a group of CBSNs to use the service. If the interacting
CBSN identifier is a component of such relation, RA holds.

﻿  References 119

●● CTX, which is an optional attribute, specifies a logical (e.g. walking) or physi-
cal context (e.g. home or hospital) in which the interaction takes place. If the
interacting CBSN has this attribute, CXT holds.

A rule holds if and only if both RA and CXT (if any) hold. Thus, the service can
be selected and activated. Moreover, according to the defined rules, selection
and activation of services can be manually (i.e. driven by the user) or automati-
cally configured.

7.7  Summary

Despite the BSN technology is of fundamental importance in enabling and
facilitating the development of many human‐centered applications, most of
the current systems have been designed and implemented for simply being
employed in the monitoring of single individuals. However, new application
scenarios are demanding different BSN‐based architectures requiring a novel
paradigm based on multi‐BSN cooperation in order to properly accomplish
more complex collaborative tasks. Thus, this chapter has focused on the
motivations and requirements for which the stand‐alone BSN approach is not
suitable anymore and a novel reference architecture for Collaborative BSNs
(CBSNs) has been described. Also, a new programming framework, called
C‐SPINE and evolved from the SPINE basic structure, has been presented as a
real implementation of the aforementioned CBSN reference architecture.

References

	1	 Fortino, G., Galzarano, S., Gravina, R., and Li, W. (2014). A framework for
collaborative computing and multi‐sensor data fusion in body sensor networks.
Information Fusion 22: 50–70.

	2	 Augimeri, A., Fortino, G., Galzarano, S., and Gravina, R. (2011). Collaborative
body sensor networks. Proceedings of the 2011 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Anchorage, AK (9–12 October),
pp. 3427–3432.

	3	 Fortino, G., Giannantonio, R., Gravina, R. et al. (2013). Enabling effective
programming and flexible management of efficient body sensor network
applications. IEEE Transactions on Human‐Machine Systems 43 (1): 115–133.

	4	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐
specific framework for rapid prototyping of WBSN applications. Software:
Practice & Experience 41 (3): 237–265. doi: 10.1002/spe.998.

	5	 Khaleghi, B., Khamis, A., Karray, F.O., and Razavi, S.N. (2013). Multisensor data
fusion: a review of the state‐of‐the‐art. Information Fusion 14 (1): 28–44. http://
dx.doi.org/10.1016/j.inffus.2011.08.001.

7  Collaborative Body Sensor Networks120

	 6	 Dong, L., Wu, J., and Chen, X. (2007). Real‐time physical activity monitoring
by data fusion in body sensor networks. 2007 10th International Conference
on Information Fusion, Quebec, Canada (9–12 July 2007), pp. 1–7.
doi: 10.1109/ICIF.2007.4408176.

	 7	 Gravina, R., Guerrieri, A., Fortino, G. et al. (2008). Development of body
sensor network applications using SPINE. IEEE International Conference on
Systems, Man and Cybernetics (SMC), Singapore (12–15 October),
pp. 2810–2815, doi: 10.1109/ICSMC.2008.4811722.

	 8	 Li, W., Bao, J., Fu, X. et al. (2012). Human postures recognition based on D–S
Evidence theory and multi‐sensor data fusion. Proceedings of the 12th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing,
ccGRID 2012, IEEE Computer Society, Ottawa, Canada (13–16 May),
pp. 912–917. doi: 10.1109/CCGrid.2012.144.

	 9	 Thiemjarus, S. (2007). A framework for contextual data fusion in body sensor
networks. PhD thesis. Imperial College London.

	10	 Bourdenas, T. and Sloman, M. (2009). Towards self‐healing in wireless sensor
networks. Proceedings of the 2009 Sixth International Workshop on Wearable
and Implantable Body Sensor Networks, BSN’09, Berkeley, CA (3–5 June
2009), pp. 15–20. Washington, DC: IEEE Computer Society. doi: 10.1109/
BSN.2009.14.

	11	 Dong, W. and Pentland, A. (2006). Multi‐sensor data fusion using the
influence model. Proceedings of the International Workshop on Wearable and
Implantable Body Sensor Networks, BSN’06, Cambridge, MA (3–5 April 2006),
pp. 72–75. Washington, DC: IEEE Computer Society. doi: 10.1109/
BSN.2006.41.

	12	 Witten, I.H., Frank, E., and Hall, M.A. (2011). Data Mining: Practical Machine
Learning Tools and Techniques. Boston, MA: Morgan Kaufmann Publishers.

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

121

8

8.1  Introduction

This chapter provides a research‐ and technical‐oriented perspective on the
integration of body sensor networks (BSNs) and Building Networks (BNs),
which are based on wireless sensor and actuator networks (WSANs). The aim
of this integration is twofold: (i) supporting indoor wearable computing based
on BSNs through a data collection and provision infrastructure offered by BNs
and (ii) seamlessly including data coming from BSNs into WSAN‐based infra-
structures like BNs. This integration would therefore enable the construction
of human‐centered smart environments ranging from smart buildings to fully
automated ambient‐assisted living contexts. After providing some fundamen-
tals on BNs, and presenting the motivations and challenges related to the BSN/
BN integration, the chapter focuses on the definition of the integration layers
according to a networking‐based approach. We will then discuss and compare
the state‐of‐the‐art about BSN/WSN integration with respect to the defined
layers. Finally, the chapter presents an agent‐oriented gateway for the integra-
tion of BSNs, based on SPINE (see Chapter 3), and BNs, based on the Building
Management Framework. Moreover, a set of diverse human‐centered smart
environments that can be supported through the proposed gateway and, more
generally, through BSN/WSN integration is also enumerated.

8.2  Background

8.2.1  Building Sensor Networks and Systems

A wireless sensor network (WSN) [1] is a collection of tiny devices capable of
sensing, computation, and wireless communication operating in a certain
environment to monitor and control events of interest in a distributed manner
and to collectively react to critical situations. WSN applications span various

Integration of Body Sensor Networks and
Building Networks

8  Integration of Body Sensor Networks and Building Networks122

domains such as environmental and building monitoring and surveillance,
pollution monitoring, agriculture, health care, home‐automation, energy
management, earthquake, and eruption monitoring. WSNs applied in the con-
text of buildings are typically referred as building sensor and actuator net-
works [2], or simply BNs. An example of BN environment is shown in
Figure 8.1. BNs aim at satisfying different needs of inhabitants of buildings
such as awareness regarding their structural health, control over the building
environment, actuation of specific policies in the energy management of build-
ings, trade‐off with respect to energy consumption and people comfort, sup-
port for context‐aware social and commercial activities, safety, and security.
Differently from pure WSNs, in BNs actuators are fundamental components
to regulate devices and thus control the building environment. Examples of
systems for BNs are described in Refs. [2–7]. In Ref. [8], the authors propose a
set of qualitative indicators that can be used for analyzing the above‐cited BN
systems and notably for developing new ones; indeed, they can also be consid-
ered requirements specifically elicited for building management systems based
on WSANs:

●● In‐node data processing: executing processing on the nodes in a BN allows to
create and send synthetic packets in the network and to reduce the amount
of raw data toward the base station, thus decreasing the energy consumption
on the nodes (the radio is the most energy‐consuming component of the
nodes). Moreover, reducing the amount of packets created by the BN nodes
allows more nodes to share the same radio channel.

HVAC Monitoring
Window status/blind control
Lamp control
Ambient Light Monitoring

Desk Presence Monitoring

Figure 8.1  An example of the Building Network environment.

8.2  Background 123

●● Multi‐hop network protocols: due to the short radio range that the BN nodes
can cover, a framework for the building management has to provide support
for multi‐hop networks relying, for example, on specific data‐centric or hier-
archical protocols [9].

●● Fast network (re)configuration: when BN nodes are already placed, it is too
onerous in terms of time, and sometimes difficult, reaching all the nodes to
reconfigure them. This means that a framework for BNs has to provide
mechanisms to quickly (re)configure BN nodes. This is usually done through
optimized configuration packets sent over the air.

●● Support for heterogeneous devices: the building management can require the
use of particular sensor boards available only for particular sensor platforms
or different computation power in different nodes of the BN. To provide this
flexibility, a framework for the building management should provide multi-
platform support for the inclusion of heterogeneous devices.

●● Support for actuators: managing actuators in a building is fundamental since
they allow to remotely control devices in order to apply particular policies to
achieve specific building‐wide goals such as comfort or energy saving.

●● Abstractions to model the building floor plan: since BN nodes can be
deployed everywhere in a building, it is useful that they are aware of their
position. Moreover, a coordinator should have the possibility to program/
query nodes on the basis of their physical and logical characteristics (either
if the node is in a specific position, such as a room or close to a window, or
if it has particular sensors/actuators, such as the temperature sensor). To
offer this service, a framework for the building management should provide
a set of programming abstractions to model the floor plan of a building.
Typically, to support these programming abstractions, nodes in a BN
are organized in sets of logical or physical groups that may also partially
overlap [2].

●● Decision delocalization: in a BN, an important feature that reduces the pack-
ets toward the base station is the delocalization of some functions. Specific
nodes in a building can have the capacity to take some decisions, controlling
actuators, or collecting data from their neighbors to make data aggregation.
For example, a node can collect temperature data in a room and send to the
base station only the mean temperature over all the nodes of that room or a
node can decide to switch a radiator on if the temperature in a room goes
below a certain threshold.

●● Deploy management through human–computer interface: a framework for
the building management should provide an extensible and user‐friendly
graphical interface to easily manage the BN. The GUI should allow to
effectively (re)configure the BN and visually present the data coming from
the network.

●● Multi‐base station organization for large‐scale BNs: when the scale of a
BN starts to be very large, like in skyscrapers, industrial warehouses, or

8  Integration of Body Sensor Networks and Building Networks124

multibuilding constructions, the tree depth of the network can become very
big and, consequently, every packet in the BN should follow too many hops
to reach the base station. This results in a big waste of batteries and conse-
quential reduction of the network lifetime. To reduce such a phenomenon, a
framework for the BN management should provide instruments to manage
large‐scale environments. A multi‐base station organization of the BN can
address this problem. In particular, every base station can have its independ-
ence and share with the other base stations only what is needed. Such base
stations can, for example, be developed as software agents as it has been
done in Ref. [4].

●● Remote management of the BN: not always a local and centralized manage-
ment is what BN users require. Often, especially for buildings that are large
or with more than one administrator, a remote control of the BN is needed.
To provide such functionalities, several approaches can be used. In Ref. [10],
for example, a gateway approach was used to allow the remote programming
of a BN and decouple the GUI from the BN base station.

8.2.2  Building Management Framework

The Building Management Framework [2, 11] is a domain‐specific frame-
work implemented for both WSAN nodes and more capable devices at the
coordinator (or base station) side such as PCs, plug computers, smartphones,
and PDAs. The BMF allows flexible and efficient distributed sensing and
actuation in buildings and in all other contexts in which sensors/actuators
can be deployed in environments and on physical objects. BMF provides fast
reconfiguration, in‐node processing algorithms, multi‐hop routing, hw/sw
multiplatform support, a building programming abstraction (named dynamic
groups) to dynamically model the morphology of buildings and physical
spaces, support for actuators, and an extensible application programming
interface. The BMF architecture, portrayed in Figure 8.2 consists of two‐
layered software components at coordinator side and sensor node side. The
coordinator and the sensor nodes interact through the application‐level
BMF communication protocol based on a multi‐hop network protocol.
Moreover, applications can use a high‐level interface (BMF API) to commu-
nicate with the coordinator. At the coordinator, the Request Scheduling layer
provides an API through which requests for programming sensing and actu-
ating operations can be easily created and scheduled. Requests can address
single nodes or groups of nodes that can be dynamically created. At the node
side, the Multi‐Request Scheduling layer is able to execute multiple requests
sent from the coordinator. Interested readers can find an in‐depth description
of all BMF components and protocols, along with application examples, in
Refs. [2, 11].

8.3  Motivations and Challenges 125

8.3  Motivations and Challenges

The integration of BNs and BSNs aims at facilitating the development of novel
smart environments, namely human‐aware smart buildings, effectively sup-
porting people while entering and moving inside (residential, commercial,
public, and private) buildings. Figure 8.3 shows a building floor environment
embedding wireless sensors and hosting people that wear BSNs.

Main provided services, which can be defined through the BN/BSN integra-
tion, could be categorized into basic and advanced:

●● Basic services
–– People identification, which is fundamental to identify people inside the

building.
–– People localization, which allows to trace the location of people inside the

building.
–– Information exchange, which enables the transfer of different kinds of

information between people and the smart building. For instance, the
smart building could monitor the vital parameters of people for health‐
care assistance.

●● Advanced services
–– Safety, which supports people in case of emergency. For example, this

service could suggest the safest pathway/s to exit the building in case of
a fire alarm.

Multi-hop-protocol-based WSN

Sensor Node Layer

Coordinator Layer

Application Layer

BMF API

BMF Protocol

Data Collected
DB

Figure 8.2  The overall BMF framework architecture.

BN Coordinator BN Node BN/BSN Gateway Person with BSN

BN Connection BN/BSN Gateway to BN Connection

Figure 8.3  BN/BSN integration: a scenario.

8.4  Integration Layers 127

–– Security, which supports the security of building by monitoring author-
ized/unauthorized people and enforcing space access.

–– Context‐aware personal support, which is based on the first three basic ser-
vices and provides specific services depending on the type of buildings and
context in which people are located. For instance, in a commercial building
such as a mall, the smart building could send advertisements to people
depending on their captured emotions while approaching and visiting shops.

8.4  Integration Layers

Different types of BN/BSN integration can be envisaged at different network-
ing layers (physical, MAC, network, and application) (see Figure 8.4):

●● BN and BSN use the same protocols: in this case, BN and BSN have to be
homogeneous (same physical, MAC, network, and application layers) so that
BSN nodes seamlessly become members of the BN.

●● BN and BSN only have different physical layers: in this case, BN and BSN
have to be homogeneous at the MAC, network, and application layers and
have to interact through hubs in the network that translate the data between
different physical media.

●● BN and BSN have different physical and MAC layers: in this case, BN and
BSN have to be homogeneous at the network and application layers and have
to interact through bridges in the network that translate the data between
different MAC layers. Moreover, bridges can apply filtering on the MAC
addresses of the packets that are not addressed to the subnet they manage.

MAC

Network

Application

Physical

MAC

Network

Application

Physical

Gateway

Router

Bridge

Hub

BN Sensor Node
Layers

BSN Sensor Node
Layers

Figure 8.4  BN/BSN integration layers.

8  Integration of Body Sensor Networks and Building Networks128

●● BN and BSN have different physical, MAC, and network layers: in this case,
BN and BSN have to be homogeneous only at the application layer and have
to interact through routers that merge networks running different network
protocols (usually BNs use multi‐hop network protocols while BSNs use
star‐topology single‐hop protocols). Routers can filter data based on desti-
nation addresses.

●● BN and BSN implement different physical, MAC, network, and application
layers: in this case, BSN and BN need to interact through an application gate-
way. So, BSN and BN are independent and share a node that acts as a gateway
between the two different networks. This node knows both the BSN and the
BN communication protocols at all layers and will translate data between the
networks at the application layer.

Among the discussed integration approaches, we believe that the application
gateway is the most suitable and viable one because it allows to use different
protocol stacks for BNs and BSNs and also different transmission media. This
also allows for a high degree of heterogeneity of the involved devices (coordi-
nators, sensors, and actuators) and avoids interoperability issues at different
layers. The most suitable node on which to install the gateway is represented
by the BSN coordinator as we can assume that each BSN has a powerful coor-
dinator (smartphone, tablet, and PDA) with (i) a specific node interfacing the
BN and actually being a (mobile) node of the BN and (ii) a specific node inter-
facing with the BSN nodes. A specific gateway‐based solution is shown in
Figure 8.5, where the application‐level gateway interfaces BMF‐based BNs
with SPINE‐based BSNs. Such a solution will be implemented in Section 8.6
through an agent‐oriented approach.

BMF-based BN SPINE-based BSN

BN Sensor/Actuator Node

BSN Sensor Node

BMF/SPINE
Gateway

CB

CB BMF Coordinator

CS

CS SPINE Coordinator

Gw

Gw BN/BSN Gateway

Figure 8.5  BMF‐BN/SPINE‐BSN integration based on the gateway approach.

8.5  State‐of‐the‐Art: Description and Comparison 129

8.5  State‐of‐the‐Art: Description and Comparison

The integration of heterogeneous networked systems is an important problem
that has been addressed in different research and industrial contexts so far.

In Ref. [12], the authors designed and implemented the NETA Monitoring
System, which is based on standard agents standing on different platforms.
NETA addressed the problem of integrating autonomous and heterogeneous
IT systems that are not correlated, thus allowing for automatic monitoring
across systems that would otherwise require manual intervention. These
agents report, in an asynchronous fashion, events to a System Engine, which is
the core of the NETA Monitoring System. It is in charge of correlating events
and managing any trouble for each platform.

Integration of different classes of networks is instead the aim of Buddhikot
et al. [13]. The development of the integration approach is based on the intro-
duction of two components in the system: a new network element called IOTA
(Integration Of Two Access technologies) gateway deployed in the network
and a new client software. In particular, the IOTA gateway cooperating with
the client software offers integrated 802.11/3G wireless data services that
support seamless inter‐technology mobility, Quality of Service (QoS) guaran-
tees, and multiprovider roaming agreements.

In Ref. [14], the authors design and implement a framework that uses mobile
agents to ensure information exchange between legacy network management
systems. Their aim is the realization of an evolutionary network redesign
that preserves the existing infrastructure and saves the operator’s existing
investments. The framework is based on layered decentralized management
architecture and implemented using agents on the network and subnet layers.

In Ref. [15], the authors present a novel agent‐based approach to data transla-
tion between WSNs and an existing agent‐based air condition monitoring system.
Their aim is to demonstrate that a multiagent approach combined with wireless
sensor networking can be used for a number of air condition monitoring applica-
tions. They designed and implemented a sensor network gateway that provides an
interface between the JADE FIPA‐based multiagent system and the WSN.

In Ref. [16], the authors present the design and implementation of the JADE/
MAPS gateway. It allows integration between two agent platforms, namely
JADE which is used for conventional distributed environments, and MAPS
(see Section 6.2.2), which is exploited in WSNs. Thus, the gateway enables also
the integration of distributed platforms and WSNs. The gateway has been
implemented as a JADE agent to provide a communication mechanism between
JADE and MAPS agents, thus facilitating bidirectional translation between
JADE ACL messages and MAPS events and supporting routing of communication
between the two agent platforms.

8  Integration of Body Sensor Networks and Building Networks130

In Ref. [17], an integrated communications framework for context‐aware
continuous monitoring with BSNs is proposed. This is the most representative
work, along with the one described in the next section, related to the integra-
tion of BSNs and WSNs. In particular, the paper proposes a wireless pervasive
communication system to support advanced health‐care applications. The
system is based on an ad‐hoc interaction of mobile BSNs with independent
WSNs already deployed within the environment to allow a continuous and
context‐aware health monitoring for assisted livings along their daily‐life sce-
narios. Specifically, the proposal is at the MAC level: a novel MAC layer proto-
col, namely MD‐STAR, is proposed, aiming at improving the capabilities of
synchronization/localization in a scenario in which a mobile BSN interacts
with fixed WSNs. However, the system is only evaluated through simulation,
so no real implementation exists.

8.6  An Agent‐Oriented Integration Gateway

The architecture of the gateway solution [18], shown in Figure 8.5, has been
developed through an agent‐oriented approach based on JADE [19]. In particu-
lar, the JADE‐based gateway is a multiagent system composed of two interacting
JADE agents: the BMFAgent and the SPINEAgent.

The BMFAgent interfaces the BMF network by encapsulating and enhancing
the behavior of a BMF node. From the BMF network perspective, the BMFAgent
is just a BMF node (see Section 8.2.2) interacting with the BMF coordinator by
using the BMF protocols.

The SPINEAgent interfaces the SPINE network by encapsulating the
SPINE coordinator (see Chapter 3). From the SPINE network perspective, the
SPINEAgent is just a SPINE coordinator interacting with the SPINE nodes
through the SPINE protocols.

The class diagram of the agent‐based gateway including the BMFAgent and
the SPINEAgent is reported in Figure 8.6.

The BMFAgent is composed of the following classes:

●● BMFAgent, which is the main BMFAgent class, extends the JADE Agent class
and keeps track of all the instantiated behaviors.

●● BMFInteraction, which is the component allowing the interaction with the
BMF‐based BN, implements the BMF communication protocol [2].

●● BMFBehavior, which interprets the requests sent from the BN and instanti-
ates new one shot or periodic behaviors, communicates with the SPINEAgent
through ACL‐based messages to get the list of the available sensors in the
SPINE‐based system.

●● OneShotBehavior, which is the behavior that allows managing one‐shot requests
(either threshold‐based or not), interacts with the SPINEAgent through ACL‐
based messages to receive data from sensors.

8.6  An Agent‐Oriented Integration Gateway 131

●● CyclicBehavior, which is the behavior managing Periodic requests (either
threshold‐based or not), interacts through ACL‐based messages with the
SPINEAgent to retrieve data from sensors.

The SPINEAgent consists of the following classes:

●● SPINEAgent, which is the main SPINEAgent class, extends the JADE Agent
class.

●● SPINEInteraction, which is the component allowing the interaction with the
SPINE‐based BSN system, implements the SPINE communication protocol
(see Chapter 3).

●● SPINEBehavior, which is the component allowing the interaction with the
BMFAgent through ACL‐based messages, provides the list of available
sensors, collects data from sensors, and sends sampled data to the BMFAgent.

The ACL‐based interaction between the pair <BMFAgent and SPINEAgent>
and the BMF Coordinator is reported in the interaction diagram of Figure 8.7.
Specifically, as soon as the gateway is activated, the BMFAgent sends a request
to the SPINEAgent for retrieving the list of available sensing services. A sens-
ing service is based on either real or virtual sensors. When the BMFAgent
receives the reply from the SPINEAgent, it sends the advertisement message
(AD‐PKT) to the BMF Coordinator, advertising the available sensing services.
Such message is indeed sent periodically. As soon as the BMF Coordinator
receives the advertisement message, it includes the agent‐based gateway in the

Agent (from JADE)

BMFAgent SPINEAgent

1

BMFBehavior

OneShotBehavior

1

CyclicBehavior

1

BMFInteraction
1

Behavior (from JADE)

SPINEInteraction
1

SPINEBehavior

1

Figure 8.6  Class diagram of the agent‐based gateway.

8  Integration of Body Sensor Networks and Building Networks132

BMF network as a real BMF node. From now on, the BMF Coordinator can
issue request messages (REQ‐PKT) targeting the BMFAgent that, in turn,
replies with an acknowledgment message (A‐PKT). The BMFAgent is able to
interpret three types of sensing requests:

●● One‐shot, which allows to request a single reading of raw or aggregated sensed
data from selected sensors.

●● Periodic, which allows to set up periodic readings of raw or aggregated sensed
data from selected sensors.

●● Threshold‐based, which allows to configure a single reading (or periodic
readings) of raw or aggregated sensed data from selected sensors when such
data are compliant with the defined threshold‐based operations (>t, <t, >=t,
<=t, =t, in [t1, t2]).

After request interpretation, the BMFAgent creates and adds a JADE
OneShotBehavior executing the simple or threshold‐based one‐shot request or
a JADE CyclicBehavior executing the simple or threshold‐based periodic
request. Such behaviors are able to request data to the SPINEAgent and,
according to the request logic, process received data and send data messages
(D‐PKT) to the BMF Coordinator. If the BMF Coordinator wants to stop any
data message from the BMFAgent, a reset message (RS‐PKT) can be sent to the
BMFAgent that will then start sending AD‐PKT to the BMF Coordinator.

BMFCoordinator BMFAgent SPINEAgent

GetListofAvailableSensors

ListofAvailableSensors
AD-PKT

REQ-PKT

GetDataA-PKT

Data

D-PKT

AD-PKT

REQ-PKT

Figure 8.7  Interaction between the agent‐based gateway (pair <BMFAgent, SPINEAgent>)
and the BMF Coordinator.

8.7  Application Scenarios 133

Finally, the gateway has a mechanism dealing with mobility [20]: a problem
which can arise in this kind of scenarios is that a gateway can be temporarily
off-line because it is far from any BN node or because the handoff procedure
(i.e. the gateway detaches from one BN node and attaches to another BN node)
is not instantaneous. In this case, some data packet from the gateway to the
BMF Coordinator can be lost. To overcome this problem, at the low level of the
gateway an intelligent buffer has been implemented; it stores the data to be
sent to the BMF Coordinator and, once online, sends all the buffered data to
the coordinator.

8.7  Application Scenarios

The BN/BSN integration promotes the development of diversified smart envi-
ronments such as AAL (Ambient Assisted Living) environments [21] and
human‐centered smart buildings [3]. Physical activity recognition and moni-
toring is a basic building block that enables both the aforementioned applica-
tion domains. Indeed, physical activity recognition is one of the fundamental
building blocks of many BSN applications [22]. It is often necessary to monitor
daily activity levels for wellness applications; it may help identifying abnormal
heart rate variations, e.g. by correlating the heart rate variations with the
current activity being performed, and it can be even applied in highly interac-
tive computer games, to cite a few scenarios. Smart environments can monitor
activities of their inhabitants to better support them for basic and customized
services (see Section 8.3). In the following subsection, an in‐building human
activity monitoring system is designed through the agent‐based approach
proposed in Section 8.6.

8.7.1  In‐Building Physical Activity Monitoring

The proposed in‐building human activity monitoring system architecture is
shown in Figure 8.8. The overall system consists of the BMF Coordinator, the
BMF WSAN network, and the BMF/SPINE agent‐based gateway connected to
a SPINE‐based BSN system. In particular, the SPINE‐based BSN system [23, 24]
uses only two wireless motion sensor nodes placed on the waist and on the thigh
of the assisted living, and a personal smart‐phone running an activity recogni-
tion application, which is able to detect the following four basic activities: lying
down, sitting, standing, and walking. This is achieved with or without an indi-
vidual training phase, and with an overall average accuracy of about 98% [23].
Furthermore, the BSN system may also report the number of steps performed
by the subject and detect the event of accidental falls that may potentially lead
to dangerous situations (e.g. after a detected fall, the system also recognizes how

8  Integration of Body Sensor Networks and Building Networks134

long the subject is lying down and, according to a given threshold, it can trigger
an alert message). The complete list of the sensing services provided by the BSN
system is reported in Table 8.1.

The BN system allows for different monitoring modes of the sensing services
that can be easily and dynamically programmed by the BMF Coordinator:

●● Continuous, which supports continuous acquisition of the sensing service
data according to a programmable sampling rate.

●● On‐demand, which allows to query the sensing service when needed.
●● Alert‐based, configures specific thresholds on the sensing service data; when

such thresholds are satisfied, a notification is sent from the sensing service.

It is worth noting that the BN system can not only simply monitor the activ-
ity of humans in the building but also detect specific transitions (e.g. sit‐to‐
stand) or critical events (e.g. falling) and, on their detection, send out
alerts. Such system feature is essential to configure personalized monitor-
ing on the basis of people identity and fulfill specific single and collective
objectives.

BMF network

BMF Coordinator
Human i

Figure 8.8  Architecture of the in‐building physical activity recognition system.

Table 8.1  Sensing services of the BSN system for human activity recognition

Sensing service Description Values

Activity Activity performed {“lying down”, “sitting”,
“standing”, “walking”}

Step counter Number of steps walked Integer
Fall Person falling True/false
AccWaist 3‐Axial acceleration of the

sensor worn on the waist
(AccX, AccY, AccZ)

AccThigh 3‐Axial acceleration of the
sensor worn on the thigh

(AccX, AccY, AccZ)

135References

8.8  Summary

This chapter has proposed the integration of BSNs and BNs, i.e. WSANs for
monitoring and automation of buildings. We have first introduced the motiva-
tions and challenges for such integration. We have then introduced a layered
architecture enabling integration at different network layers. Furthermore,
related works and their comparison according to this architecture have been
discussed. Then, the chapter has focused on an agent‐oriented integration
gateway, actually enabling the integration of SPINE‐based BSNs and BMF‐
based WSANs. Finally, a smart environment for physical activity recognition
featured by the proposed integration approach has been analyzed.

References

	1	 Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). Wireless
sensor networks: A survey. Computer Networks: The International Journal of
Computer and Telecommunications Networking 38 (4): 393–422.

	2	 Fortino, G., Guerrieri, A., O’Hare, G.M.P., and Ruzzelli, A.G. (2012). A flexible
building management framework based on wireless sensor and actuator
networks. Journal of Network and Computer Applications 35 (6): 1934–1952.

	3	 Snoonian, D. (2003). Smart buildings. IEEE Spectrum 40: 18–23.
	4	 Fortino, G. and Guerrieri, A. (2012). Decentralized management of building

indoors through embedded software agents. Computer Science and Information
Systems 9 (3): 1331–1359.

	5	 Davidsson, P. and Boman, M. (2000). A multi‐agent system for controlling
intelligent buildings. The Fourth International Conference on MultiAgent
Systems (ICMAS‐2000) (10–12 July 2000), p. 377. Boston, MA: IEEE
Computer Society.

	6	 Qiao, B., Liu, K., and Guy, C. (2006). A multi‐agent system for building control.
The IEEE/WIC/ACM international conference on Intelligent Agent Technology
(IAT’06), Hong Kong (18–22 December 2006), pp. 653–659. Hong Kong: IEEE
Computer Society.

	7	 de Farias, C.M., Soares, H., Pirmez, L. et al. (2014). A control and decision
system for smart buildings using wireless sensor and actuator networks.
Transactions on Emerging Telecommunications Technologies 25 (1): 120–135.

	8	 Guerrieri, A., Fortino, G., and Russo, W. (2014). An evaluation framework for
buildings‐oriented wireless sensor networks. Proceedings of the 14th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing,
Chicago, pp. 670–679 (26–29 May 2014).

	9	 Akkaya, K. and Younis, M. (2005). A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks 3: 325–349, 5.

8  Integration of Body Sensor Networks and Building Networks136

	10	 Guerrieri, A., Geretti, L., Fortino, G., and Abramo, A. (2013). A service‐
oriented gateway for remote monitoring of building sensor networks.
Proceedings of the 2013 IEEE 18th International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD 2013),
pp. 139–143 (September 2013).

	11	 Guerrieri, A., Fortino, G., Ruzzelli, A., and O’Hare, G. (2011). A WSN‐based
building management framework to support energy‐saving applications in
buildings. Advancements in Distributed Computing and Internet Technologies:
Trends and Issues. Ch. XII, pp. 1–14. Hershey, PA: IGI Global.

	12	 Best Practice: Integrating and monitoring heterogeneous technology systems. the
NYC Global Partners’ Innovation Exchange website. http://www.nyc.gov/html/
unccp/gprb/downloads/pdf/Tel%20Aviv_NETA.pdf (accessed 12 June 2017).

	13	 Buddhikot, M., Chandranmenon, G., Han, S. et al. (2003). Integration of
802.11 and third‐generation wireless data networks. The Twenty‐Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies (INFOCOM 2003), San Francisco, USA (30 March–3 April 2003).

	14	 Stanic, M., Mitic, D., and Lebla, A. (2012). A mobile agents framework for
integration of legacy telecommunications network management systems.
Przeglad Elektrotechniczny 88 (6), pp. 337–341.

	15	 Baker, P.C., Catterson, V.M., and McArthur, S.D.J. (2009). Integrating an agent‐
based wireless sensor network within an existing multi‐agent condition
monitoring system. 15th International Conference on Intelligent System
Applications to Power Systems (ISAP’09), Curitiba, Brazil (8–12 November 2009).

	16	 Mesjasz, M., Cimadoro, D., Galzarano, S. et al. (2012). Integrating Jade and
MAPS for the development of agent‐based WSN applications. The 6th
International Symposium on Intelligent Distributed Computing (IDC 2012),
Calabria, Italy (24–26 September 2012).

	17	 Chiti, F., Fantacci, R., Archetti, F. et al. (2009). An integrated communications
framework for context aware continuous monitoring with body sensor
networks. IEEE Journal on Selected Areas in Communications 27 (4): 379–386.

	18	 Fortino, G., Gravina, R., and Guerrieri, A. (2012). Agent‐oriented integration
of body sensor networks and building sensor networks. Proceedings of 2012
Federated Conference on Computer Science and Information Systems (FedCSIS
2012), Wroclaw, Poland (9–12 September 2012), pp. 1207–1214.

	19	 Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing multi agent
systems with a FIPA‐compliant agent framework. Software Practice and
Experience 31: 103–128.

	20	 Chipara, O., Lu, C., Bailey, H.C., and Roman, G.‐C. (2010). Reliable clinical
monitoring using wireless sensor networks: experience in a step‐down
hospital unit. 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2010), Zurich, Switzerland (3–5 November 2010).

	21	 Rashidi, P. and Mihailidis, A. (2013). A survey on ambient‐assisted living
tools for older adults. IEEE Journal of Biomedical and Health Informatics
17 (3): 579–590.

137References

	22	 Wang, L., Gu, T., Chen, H. et al. (2010). Real‐time activity recognition in
wireless body sensor networks: from simple gestures to complex activities.
The 16th International Conference on Embedded and Real‐Time Computing
Systems and Applications, ser. RTCSA’10, Macau, China (23–25 August 2010),
pp. 43–52. IEEE Computer Society.

	23	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2008). Development of
body sensor network applications using SPINE. The 2008 IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2008), Singapore, (12–15
October 2008).

	24	 Giannantonio, R., Gravina, R., Kuryloski, P. et al. (2009). Performance analysis
of an activity monitoring system using the SPINE framework. The 3rd
International Conference on Pervasive Computing Technologies for Healthcare,
ser. Pervasive Health 2009, London, UK (1–3 April 2009), pp. 1–8. IEEE Press.

139

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

9

9.1  Introduction

As widely discussed so far, wearable sensors and BSNs provide a platform
for many human‐centered applications, ranging from health care to gaming,
sports performance analysis, and social networking. There is currently an
enormous public interest in biomedical sensor‐based systems and wearable
consumer electronics that allow individuals, ranging from children to elders,
to monitor their health and control their fitness. In all BSN scenarios,
assisted livings are monitored by BSNs to gather data streams for processing
them in real time [1] and archiving them in remote data repositories for
off‐line analysis. Such scenarios imply that a huge amount of data could be
transmitted, stored, and analyzed. Thus, such huge amount of data gener­
ated by BSNs requires a powerful and scalable processing and storage plat­
form that is able to support both online and off‐line analysis of sensor data
streams. This chapter therefore provides a research‐oriented perspective on
the integration of wearable and cloud computing to fulfill the aforemen­
tioned requirement. After providing some basic elements on cloud comput­
ing and introducing the motivations and the challenges of integrating
wearable computing and cloud computing, the chapter focuses on the virtu­
alization of body sensor networks (BSNs) through a reference cloud‐based
architecture. We will then discuss and compare the state‐of‐the‐art about
WSN and BSN virtualization with respect to the features of such reference
architecture. Finally, the chapter presents BodyCloud, a cloud‐assisted BSN
architecture for the development of community BSN applications. A set of
diverse large‐scale community BSN applications that can be engineered
through BodyCloud is also discussed.

Integration of Wearable and Cloud Computing

9  Integration of Wearable and Cloud Computing140

9.2  Background

9.2.1  Cloud Computing

Cloud computing can be defined as a computing paradigm that is based on
sharing computing resources rather than having local servers or personal
devices to handle applications. Cloud computing is similar to grid computing
[2], a computing paradigm where unused processing cycles of all computers in
a network are harnessed to solve problems too intensive for any stand‐alone
machine. Cloud computing [3] thus provides flexible, robust, and powerful
storage and computing resources, which enables dynamic data integration
and fusion from multiple data sources. Moreover, a cloud computing‐based
approach can offer flexibility and adaptability in the management and deploy­
ment of data analysis workflows. The dynamic deployment of software compo­
nents as cloud computing‐based services removes the need for new client
applications to be developed and deployed when the user requirements change.
This also motivates and introduces an intrinsic competitive environment for
the development and deployment of better services.

Cloud computing layers (Infrastructure as a Service – IaaS, Platform as a
Service – PaaS, and Software as a Service – SaaS) and software components
(e.g. databases and data mining workflow tools) can be customized to support
a distributed (quasi) real‐time system for the monitoring and analysis of BSN
data streams.

Figure 9.1 shows the diagram of the cloud computing ecosystem. The cloud
computing Provider exports the IaaS integrated with a Data Mining develop­
ment environment as a PaaS to the Application Workflow Developer. The
Workflow Developer deploys a particular application as SaaS to the End User
(e.g. the cardiovascular doctor collecting sensor data from many patients or the
medical staff at the health‐care point gathers vital parameters from assisted liv­
ings). The front‐end of the application can be developed, for example, for a
mobile device to ensure mobility and portability. The approach can be based on
the customization of an open‐source cloud computing toolkit (e.g. Google App
Engine – GAE, MS Azure, and Amazon EC2) using cloud computing standards
[4] and integrated with well‐known data mining development tools and work­
flow management systems (e.g. KNIME [5], RapidMiner [6], and Weka [7]).

9.2.2  Architectures for Sensor Stream Management

Data stream management systems (DSMS) [8–10] are designed to provide
quick response time when managing large volumes of (time‐dependent) data
streams, e.g. sensor observations. DSMS employ window‐based data process­
ing combined with synopsis to process large volumes of time‐dependent data.
Using synopsis helps a DSMS in reducing the response time to queries. Global

9.2  Background 141

Sensor Network (GSN) [11], TelegraphCQ [12], Aurora [13], and Stream [14]
are some of the well‐known proposals in the DSMS domain.

There exist several research projects to provide access, query, streaming, and
management of WSN data. The Sensor Web project [15] provides a dynamic
infrastructure that allows users to access sensor networks and the data streams
generated from them. Sensor Information Networking Architecture (SINA)
[16] is a middleware for querying, monitoring, and tasking of sensor networks.
Tiny Application Sensor Kit (TASK) [17] is built on top of TinyDB, the well‐
known distributed database based on TinyOS [18], to provide high‐level meta­
data management, query configuration, monitoring, and data visualization.
These systems are appealing as they address the challenges related to large‐
scale (wireless) sensor resources and data sharing.

In recent years, there have been an increasing number of research studies to
design and implement distributed platforms based on BSNs for e‐Health applica­
tions. Many national and international research projects in academia, industry,
and government focus on the development and deployment of health‐care
platforms in which wearable sensors are attached to patients for enabling 24/7
monitoring of vital parameters. Examples of such projects include CodeBlue
[19], DexterNet [20], SPINE [1, 21, 22], SPINE2 [23–25], and Titan [26]. These
systems provide effective programming abstractions atop the low‐level TinyOS

End User

Developer–Data Analyst

Software as
a Service

Platform as a
Service

Infrastructure
as a Service

Cloud Provider

uses

uses

supportssupports

provides
provides provides

Uses application in the Cloud.
Submits data and gets results Develops applications,

workflows in the Cloud

Figure 9.1  The cloud computing ecosystem.

9  Integration of Wearable and Cloud Computing142

system programming; however, they do not address the issues of integrating a
cloud infrastructure to provide extended scalability, seamless data streaming,
and data analysis.

9.3  Motivations and Challenges

The huge amount of data that is expected to be generated by community BSNs,
i.e. a great number of (semi)coordinated BSNs, requires a powerful and scalable
infrastructure for storage and processing that is able to support both online
and off‐line analysis of data streams. Such requirements can be met by
integrated platforms based on cloud computing [3] having the following
characteristics:

1)	 Exploitation of heterogeneous sensors.
2)	 Scalability of data storage.
3)	 Scalability of processing power for different kinds of analysis.
4)	 Global and ubiquitous access to the processing and storage infrastructure.
5)	 Easy sharing of results.
6)	 Pay‐as‐you‐go pricing for using community BSN services.

The integration of BSNs with cloud computing can provide important benefits
in the following four main aspects:

●● Management: BSN data management deals with the fundamental task of
defining how BSN data streams are efficiently collected, managed, stored,
and conveyed for final processing. Activities associated with the collec­
tion and management of data feeds from BSNs in real time may be distrib­
uted in time and/or space [27]. Time distribution refers to activities taking
place at different times, while being coordinated to have a coordinated
effect, such as in a workflow. Space distribution implies that activities may
take place at different locations, while such activities are interconnected
by a network. A cloud computing infrastructure can ease the management
of distributed data and processes and support advanced functionalities
such as information fusion at different levels (sensor, processed data, and
decision) [28].

●● Processing: the data streams collected from BSNs are processed and (some­
times) combined into measurement composites, e.g. combining body tem­
perature readings and blood pressure into a health chart for given assisted
livings. In the presence of numerous incoming data streams from a set of
BSNs, in order to make critical decisions in real time, BSN data processing
requires fast processing that may be computing and/or resource intensive.
Harnessing the computational resources of a cloud computing infrastructure
can be performed for the required provisioning of computing resources [3].

9.3  Motivations and Challenges 143

●● Service composition and invocation: BSN‐processed data are usually associated
with meaning, confidence, and quality information. Specifically, the data are
associated with information on how they were processed (derivation), for
whom and why they were collected (agency), and how they may be distrib­
uted (rights). This process can be modeled and executed through automatic
formation of workflows and invocation of services. It can be fully supported
by a platform based on a cloud computing infrastructure.

●● Analysis: BSN datasets are imported into analysis tools and modeling is
further performed for the use in various applications and decision‐making
systems. The analysis activity depends on suitable storage and middleware
technologies to perform highly swift data processing. It can be fully sup­
ported by using the processing power of cloud computing infrastructures
that provide fast response times.

While there are main advantages of BSN adoption in various applications,
there are a number of associated challenges that need to be addressed [29].
Moreover, the integration of BSNs with a cloud computing infrastructure
raises additional challenges related to data management, system implementa­
tion, and real‐time computing.

In the following, we first list BSN‐related challenges and then we discuss
specific challenges regarding BSN‐Cloud computing systems that integrate
BSN with cloud computing to perform effective data stream processing.

9.3.1  BSN Challenges

●● Interference reduction: BSNs use wireless connectivity for communications.
The BSN system should be able to reduce/mitigate interference on the wire­
less link and increase the co‐existence of wearable sensor nodes with other
networked devices [30]. This is important to ensure that the functionalities
of BSN nodes (and the whole BSN system) do not degrade due to the pres­
ence of other devices capable of possible interruption/interference in the
data transmission.

●● Data validation and consistency: data collected from multiple sensor nodes
need to be collected and analyzed seamlessly. BSN sensors are subject to
inherent hardware, network, and communication failures that may result in
erroneous gathered datasets [31]. It is crucial that the sensed data are vali­
dated and data quality is maintained under control to reduce any noise in the
data and identify possible weaknesses in the BSN system.

●● Heterogeneity and interoperability: a BSN system should be capable of integrating
various different sensors in terms of complexity, power efficiency, storage, and
ease‐of‐use [20]. Moreover, it should provide a common interface between the
sensors and a storage service to facilitate remote storage and viewing of sensed
data as well as access to external processing and networked analysis tools [32].

9  Integration of Wearable and Cloud Computing144

Moreover, a BSN system requires ensuring seamless data transfer across dif­
ferent standards to promote information exchange, plug‐and‐play device
interaction and uninterrupted connectivity [33].

●● Security and privacy: transmission of BSN data streams should be secured to
prevent potential intruders [34]. Moreover, integrity of each assisted living’s
data has to be maintained with guarantee that one assisted living’s data is not
mixed with another assisted living’s data. Another key problem of BSN users
is to protect the privacy of personal data [35]. A BSN system should ensure
that assisted livings’ privacy is maintained even when data is being analyzed
using an external tool.

●● Programming: BSNs are usually programmed by using the low‐level APIs
provided by the adopted BSN sensor platforms (e.g. TinyOS and ZigBee).
However, to enable a more rapid and effective prototyping, higher level
programming abstractions offered by a BSN middleware are needed [1].

9.3.2  BSN/Cloud Computing Integration Challenges

●● Interfacing BSNs with cloud computing infrastructures: a well‐defined inter­
face between BSN resources and the cloud fabric needs to be established.
Communication interfaces are in fact required to manage network con­
nectivity between BSN and the cloud. BSN nodes could be exposed as
cloud services and indexed via indexing services according to functions/
services they are able to provide. Moreover, the presence of provision is
important to manage sensing jobs and data streams from the sensor net­
work. The key technology is therefore virtualization. Finally, an integra­
tion framework should provide various services for the underlying
wearable sensor resources such as power management, security, availabi­
lity, and QoS.

●● Data stream management: data management includes data format conver­
sion into standard formats (when available), data cleaning and aggregation to
improve data quality, and data transfer to storage clouds.

●● Complex event processing: real‐time data streams from single or multiple
BSNs may trigger certain events and services in the cloud. These data streams
are analyzed through complex event processing (CEP) algorithms and the
results are used in applications for decision making by identifying contextual
and situational information.

●● Massive scale and real‐time processing: integration of even heterogeneous
BSNs generating vast amounts of data is a challenge, especially in the presence
of real‐time requirements. BSNs generating real‐time multimedia content,
such as streaming video, audio, and images, pose additional issues in order to
accurately process and store the data in a cloud environment.

●● Large‐scale computing frameworks: the allocation of computational and stor­
age resources as well as data migration in the cloud is critical when BSN data

9.4  Reference Architecture for Cloud‐Assisted BSNs 145

sources are not colocated. This is particularly challenging when the datasets
and their corresponding access/search services are geographically distributed
within the cloud.

●● Harvesting collective intelligence: while heterogeneous and real‐time BSN
data feeds allow improving decision making by using data‐ and decision‐
level fusion techniques, maximizing the intelligence that can be exploited
from massively colocated information in the cloud is challenging.

●● Large‐scale application development: the development of large‐scale BSN
systems is a complex task that needs suitable and effective software engi­
neering methodologies and tools. Specifically, an application needs to be
designed at a high level of modeling abstraction, implemented according to
a given methodological approach, and then seamlessly deployed onto the
target cloud platform using suitable tools.

9.4  Reference Architecture for Cloud‐Assisted BSNs

A general reference architecture for the integration of BSNs and cloud com­
puting is portrayed in Figure 9.2.

This architecture is supported by the following requirements:

●● Efficient collection of sensor data streams from highly decentralized BSNs.
●● Effective management of sensor data streams.
●● Configuration of a scalable framework to support processing of multiple

sensor data streams for (even concurrent) application services.
●● Persistent storage and exchange of sensor data and analysis results to enable

further decision‐making.
●● Workflow‐oriented decision‐making applications dynamically developed

through distributed services/components’ mash‐up.
●● Advanced visualization services (both for raw and processed sensor data,

and for analysis results) that can be flexibly customized by the final users.
●● Multiple‐level security for at least sensor data collection (from sensors to the

coordinator), sensor data transmission (from the coordinator to the cloud),
and data analysis/visualization services (cloud access).

Each requirement is discussed in detail in Sections 9.4.1–9.4.7.

9.4.1  Sensor Data Collection

Sensor data collection allows for capturing sensor readings from the BSN sen­
sor nodes, converting the raw values to meaningful measurements, or directly
using the preprocessed data and store (annotated) data as necessary. A trans­
port layer is used to assist in collecting sensor data points across a large dimen­
sion in (quasi) real time. Usually such data acquisition is deployment dependent.

Sensor Data Management Application Execution
Result Processing,

Analysis, and Visualization

Cloud-based Middleware for Storage and Processing

East
West
North

Sensor Data Collection

Storage

Query Processing Engine

Transport Layer (Streaming Service)

Data Validation

Decision-Making Process

QAQC
Policy

Calibration
Parameters

Figure 9.2  Reference architecture for the integration of BSN and cloud computing.

9.4  Reference Architecture for Cloud‐Assisted BSNs 147

For TinyOS sensor platforms, TinyOS SerialForwarder (for TinyOS 1.x and 2.x
compatible motes) can be used to capture raw data directly from remote sen­
sors. There can also be hardware‐specific proprietary APIs to read raw sensor
readings directly from BSN sensors. Indeed, BSN middlewares are currently
available for such purpose: CodeBlue [19], Titan [26], RehabSPOT [36], and
particularly SPINE [1, 21, 22] and SPINE2 [23–25] provide high‐level abstrac­
tions and mechanisms to capture, (pre)elaborate, and transmit sensor data to
static and mobile base stations. In mobility scenarios, a mobile device (also
called mobile coordinator) is interposed between the BSN and the cloud plat­
form. The mobile coordinator collects sensor data from the BSN and transmits
them onto the cloud platform. For instance, Android‐SPINE, the Android ver­
sion of the SPINE middleware [1], can be used to enable Android‐based mobile
devices, such as smartphones and tablets, to be the BSN mobile coordinator. In
particular, data collected through Android‐SPINE can be easily streamed up to
the cloud side through an Internet‐based connection. In Android‐SPINE,
wearable sensors’ communication is currently based on Bluetooth.

9.4.2  Sensor Data Management

After data collection, data are passed through a data calibration process to
ensure the validity and consistency of the gathered sensor data stream.
A Quality Assurance Quality Control (QAQC) framework, comprising sta­
tistical models, can be applied to perform outlier detection, missing data han­
dling, aggregation, detection of measurement changes, automated data
correction, and, if needed, data compression in streaming sensor data [37]. In
particular, data calibration APIs should be provided to support the implemen­
tation of custom calibration functions or third‐party data calibration packages
should be reused. Indeed, data quality can also be checked at the sensor
data collection side, at the sensor node side [38] (see Chapter 5), and/or at the
BSN coordinator side. When a calibrated data stream is available, it is exposed
to the application services executing in the cloud and also stored (with
metadata annotation providing meaning of the sensor streams) in the storage
cloud resources for future use. Having such components to deal with a large
number of sensor streams arriving continuously from numerous sensors, the
cloud‐enabled system should provide full support to guarantee reliability and
robustness.

9.4.3  Scalable Processing Framework

Application services (e.g. ECG data analysis, health monitoring, sports perfor­
mance monitoring, and rehabilitation control) are hosted in the VM‐based
cloud computing infrastructure for application execution. The communi­
cation between calibrated data streams and the cloud infrastructure

9  Integration of Wearable and Cloud Computing148

(i.e. between sensor data management and application execution components)
should be done through the use of nonblocking callback APIs. These APIs
should allow application services to receive calibrated sensor data streams
as streams arrive into the system. As applications (or services) are executed
inside a VM, a data connection is required to transmit the results of the
experiment to the result‐processing component. The APIs should be able to
buffer data streams within a time window in case the application service
does not respond or the call back connection is lost. Thus, using persistent
buffers in the cloud system to communicate between the BSNs and the
hosted application services would ensure users from any potential data
loss. The output produced by the applications is transmitted to generate
continuous data streams incorporating the results and also stored in the
persistent storage.

9.4.4  Persistent Storage

The cloud‐enabled storage component is fundamental for a cloud‐assisted
BSN architecture in order to persistently store data coming from (i) the sensor
data collection process, (ii) the processed data streams, and (iii) the data
analysis results. Such time‐dependent datasets can be therefore reused either
online or off‐line.

The persistent storage component is characterized by the following elements:

●● Storage virtualization, which refers to thin provisioning of the storage cloud
infrastructure, with the assistance of a management software layer, to auto­
mate data availability and security management. Storage virtualization,
which can be encapsulated in an orchestrated workflow, assists in persis­
tency and optimization of existing storage, and in provision of new storage.

●● Enterprise resource management in order to reduce administrators’ efforts to
manage heterogeneous storage cloud infrastructures. Based on the adminis­
trator’s policies, the management software in the cloud‐based BSN gathers
information for managing the storage environment.

●● Hierarchical storage management through a tiered storage infrastructure to
manage growth and provide different levels of service to BSN users. It is used
for storage space management through automatic data migration and trans­
parent data restore in failure situations.

●● Archive management to provide BSN data retention over time as the stored
data grows. Storage archives copy data for a dedicated time frame, defined by
the cloud‐based BSN administrator’s policies.

●● Recovery management is the ability to recover backup/archived data, thus
ensuring effective operational continuance of sustained performance.
Recovery management assists in recoverability in a heterogeneous cloud
storage environment.

9.4  Reference Architecture for Cloud‐Assisted BSNs 149

●● Interfacing APIs to interact with different components of the cloud‐based
BSN architecture. The exposed APIs allow the abstraction of complex
functionalities, feed input to application execution, data transfer in and out
of storage, and runtime interactions.

Moreover, cloud‐based BSN architectures can use Google Bigtable [39] or
Azure BLOB [40] storage. These cloud storage services allow managing large‐scale
structured data across thousands of commodity servers, ensuring persistent
data management and fulfilling latency requirements.

9.4.5  Decision‐Making Process

Upon the availability of outputs from the processing stage, the result‐processing
service/component informs internal (user‐programmed) or external decision‐
making processes (by reusing existing tools) about specific situations. This
component can provide a set of user‐defined policies that are specific to par­
ticular BSN scenarios. Furthermore, a client decision‐making process applica­
tion can register with the result‐processing component to submit continuous
query for gathering continuous delivery of latest results. With the use of a
continuous query, a client application can specify the window size (i.e. the
amount of data used at the processing stage) and the sliding predicate (i.e. how
frequent a continuous query is to be evaluated). The decision‐making process
is usually workflow‐oriented: it is performed through automatic formation of
workflows and invocation of services. Such operational workflow requires a
platform to support automatic workflow formation and service invocation,
potentially through a cloud infrastructure.

9.4.6  Open Standards and Advanced Visualization

Open standards for data and for workflow definitions allow input and interme­
diary data to be propagated through processing elements in data analytics and
mining workflows. They also allow the workflow components to be exchanged
and executed in distributed environments. For example, the Attribute‐Relation
File Format (ARFF) [41] is an ASCII text file format that describes a list of
instances sharing a set of attributes. The data‐flow programming paradigm
adopted in KNIME workflows [5] is based on an XML‐based workflow speci­
fication format and on an intermediary data format that incorporates rich
metadata information about the data attributes. The Predictive Model Markup
Language (PMML) [42] is an XML‐based open standard for the description
and exchange of models produced by data‐mining algorithms and for data
manipulation and transformations.

However, there is no open standard for the representation and visualization
of the data analysis results. A powerful visualization service is necessary, as the

9  Integration of Wearable and Cloud Computing150

cloud computing environment stores and processes enormous amounts of
data. The visualization service should provide various predefined and user‐
defined views on the data and analysis results. The visualizations and views can
be implemented with heterogeneous languages like XML, OLAP/data ware­
house tools, and/or specific graphical languages/frameworks. Separating the
formal specifications of the visualization from the graphical primitives used to
generate the views in a given client application is an important aspect for a
cloud‐based distributed environment with a wide heterogeneity of supported
devices.

9.4.7  Security

Considering social, ethical, and legal aspects of human‐centered systems such
as BSN systems, data in cloud‐based BSNs (i.e. data collected from BSNs, and
stored and processed/analyzed in the cloud) are highly sensitive and should be
managed properly to guarantee people privacy [35].

It is therefore crucial to define system‐wide security mechanisms to guaran­
tee confidentiality, data integrity, as well as fine‐grained access control to data
and services.

We devise a three‐level security framework for cloud‐based BSNs:

●● Sensor data collection level: securing data communications from sensors
to the BSN coordinator through encryption. Wearable sensor nodes have
limited computing and energy resources, and encryption consumes time
and energy, so specialized in‐node hardware needs to be exploited (e.g.
128‐bit AES encryption hardware is included in the TelosB sensor
platform).

●● Sensor data transmission level: from the BSN coordinator to the cloud. Data
streams can be transferred onto the cloud through Transport Layer Security
(TLS)/Secure Sockets Layer (SSL), which is a proven technology. However,
new security mechanisms dealing with mobility need to be purposely
defined.

●● Sensor data management and access level: managing and accessing data and
services on the cloud. Data stored and processed in the cloud computing
infrastructure need to be protected by authentication and authorization
measures, and can also be encrypted, if needed. Moreover, the cloud services
used by different actors of the system need to be secured through specific
access control policies.

Finally, as cloud‐based BSNs can support different application domains
(from health care to crowdsourcing), specific national or transnational secu­
rity/privacy standards, e.g. normative on medical data treatment, processing,
and storing, should be introduced at the application level.

9.5  State‐of‐the‐Art: Description and Comparison 151

9.5  State‐of‐the‐Art: Description and Comparison

The integration of WSNs/BSNs with large‐scale distributed computing infra­
structures is a recent research area attracting both academia and industry
researchers. A few interesting works have been to date proposed. In the follow­
ing, we first describe solutions integrating WSNs and cloud computing; then,
we discuss specific infrastructures that integrate BSNs and cloud computing
towards cloud‐based BSNs.

9.5.1  Integration of WSNs and Cloud Computing

In Ref. [43], a SaaS architecture for sensor network analytical services is pro­
posed. It is implemented atop a PaaS layer (e.g. GAE and MS Azure) and is
organized in three layers: (i) sensor data management, which collect sensor
data streams coming from the WSN gateway; (ii) run‐time for filter analysis,
which supports the execution of processing workflows for sensor data accord­
ing to the pipe‐and‐filter paradigm; and (iii) filter management, visualization,
and notification, which are three components that respectively allow for the
definition and management of the processing filter chain, for the visualization
of analyzed data, and for the notification of events to external applications.

The authors in Ref. [44] propose the Open Sensor Web Architecture (OSWA).
OSWA is an OGC (Open Geospatial Consortium) Sensor Web Enablement
standard‐compliant software infrastructure for providing service‐oriented‐
based access to and management/integration of sensors. OSWA also integrates
emerging distributed computing platforms such as SOA and Grid Computing.
OSWA is designed around the conventional Grid layers: Fabric, Services,
Development, and Application. Specifically, the OSWA‐based platform pro­
vides a number of sensor services such as sensor notification, collection, and
observation; data collection, aggregation, and archive; sensor coordination and
data processing; faulty sensor data correction and management; and sensor
configuration and directory service.

In Ref. [45], the authors propose a new infrastructure, called Sensor‐Cloud,
which can manage physical sensors on an IT infrastructure for sensors’ virtu­
alization. The Sensor‐Cloud Infrastructure virtualizes a physical sensor as a
virtual sensor on the cloud computing platform. Dynamic grouped virtual sen­
sors on cloud computing can be automatically provisioned when the users
need them through a portal server interacting with the workflow‐oriented
provisioning server, performing resource management, and a monitoring
server, monitoring real/virtual sensors.

SAaaS [46] is a cloud‐enabled SaaS architecture aiming at the management
of wireless sensor and actuator networks (WSANs). SAaaS is a software stack
that implements the following main functionalities: involvement of (W)SNs,
smartphones, or other devices endowed with sensors and/or actuators, and

9  Integration of Wearable and Cloud Computing152

their enablement for interoperation and management in a cloud environment;
exploitation of volunteer‐based methods for node involvement; functions and
interfaces for federating SAaaS Clouds, either volunteer‐based or commercial/
institutional.

The aforementioned works mainly describe architectural models and/or
case studies and somehow identify related development issues. However, there
is still a gap to fill in order to develop a cloud‐based infrastructure that is tar­
geted to BSN applications as the one proposed in Section 9.4. The research
works discussed in Section 9.5.2 aim at the fulfillment of such a gap.

9.5.2  Integration of BSNs and Cloud Computing

In Ref. [47], the authors propose the development of an autonomic cloud envi­
ronment for hosting an ECG data analysis service. In particular, they propose
an autonomic cloud environment that collects people’s health data and stores
them to a cloud‐based information repository and facilitates analysis on the
data using software services hosted in the cloud. To evaluate the software
design, a prototype system is developed, which is used as an experimental test­
bed on a specific use case, namely, the collection of electrocardiogram (ECG)
data obtained at real time from volunteers to perform basic ECG beat analysis.
The ECG software is hosted as a web‐service such that any client‐side imple­
mentation can simply call the underlying functions (analyze, upload data, etc.)
without having to go through the complexities of the underlying application.
The PaaS layer controls the execution of the software using three major com­
ponents: (i) Container scaling manager, (ii) Workflow Engine, and (iii) Aneka
Cloud middleware.

In Ref. [48], a secure and scalable cloud‐based architecture for e‐Health
WSNs is proposed. The aim is to support (i) body sensor data collection
from patients both hospitalized and at home and (ii) medical data manage­
ment for e‐Health monitoring. Collection is based on BSNs worn by
patients and mobile/static devices working as Internet‐based gateways.
A cloud infrastructure is used for storing and retrieving the collected BSN
data. Security protocols and mechanisms are defined to provide data
security.

In Ref. [49], a cloud‐assisted WBAN is proposed, specifically designed for
pervasive health care in home, hospital, or outdoor environment. This system
is composed of four main components: WBANs, wired/wireless transmission,
cloud services, and users. WBANs can be based on fixed networks at home and
on mobile devices (smartphone/tablet) at hospital and outdoor. Data are sent
onto (public and private) cloud, providing several services (automatic diagno­
sis and alarm, location‐based services, GIS services, real‐time monitoring of
patients, and medical knowledge sharing). Users can access the cloud accord­
ing to their role and they are connected through social networks.

9.5  State‐of‐the‐Art: Description and Comparison 153

Finally, BodyCloud [50, 51] is a novel cloud‐enabled system architecture that
integrates BSNs’ services with a cloud computing infrastructure. In particular,
BodyCloud is a SaaS architecture that supports the storage and management of
sensor data streams generated by SPINE‐enabled mobile BSNs and the pro­
cessing and analysis of the stored data using software services hosted in the
cloud. BodyCloud endeavors to support several cross‐disciplinary applications
and specialized processing tasks. It enables large‐scale data sharing and col­
laborations among users and applications in the cloud and delivers cloud ser­
vices via sensor‐rich mobile devices. BodyCloud also offers workflow‐oriented
decision support services to take further actions based on the analyzed BSN
data. BodyCloud is fully compliant with the reference architecture described in
Section 9.4.

9.5.3  A Comparison

In Tables 9.1 and 9.2, the main available architectures integrating WSNs or
BSNs with a cloud computing platform are compared with respect to the
requirements identified in Section 9.4:

●● Sensor Data Collection: although, sensor data collection is provided by all
architectures and is based on a (static and/or mobile) gateway device that
gathers data from the body‐worn sensors and transmits them to the cloud
through an Internet‐based connection, the exploited technologies are differ­
ent at application, protocol, and system level. It is worth noting that SAaaS
uses a complex software framework at the gateway side called Hypervisor,
which is able to manage not only sensor reading collection but also to control
actuator devices.

●● Sensor Data Management: it is based on different paradigms (data‐driven
pipes and filters, rule‐based planning, virtual sensors, and workflow‐ori­
ented). However, SAaaS, ECGaaS, Cloud BAN e‐Health, and Cloud‐Assisted
WBAN do not specify any sensor data management paradigm.

●● Processing Framework: it is basically the execution engine of the sensor data
management paradigm carried out at the SaaS level or at the PaaS level. CC‐
WSN, SAaaS, Sensor‐Cloud, and BodyCloud provide a processing frame­
work at the SaaS level supported by a specific PaaS. The processing
framework of OSWA and ECGaaS are implemented at the PaaS level. Finally,
Cloud BAN e‐Health and Cloud‐Assisted WBAN do not support any spe­
cific processing framework.

●● Persistent Storage: all architectures provide cloud storage but OSWA and
Sensor‐Cloud, which are based on stand‐alone databases, and SAaaS, which
does not specify the use of persistent storage.

●● Decision‐Making Process: it is fully supported only by BodyCloud through a
flexible and distributed workflow‐oriented model.

 Table 9.1 Architectures for the integration of wireless sensor networks with cloud computing: a comparison.

CC‐WSN [43] OSWA [44] Sensor‐cloud [45] SAaaS [46]

Sensor data collection WSN gateway based on HTTP/
AJAX

Static gateway based
on WSDL/SOAP

WSN gateway based
on TCP/IP

Gateway node based on the
Hypervisor framework

Sensor data
management

Pipes, filters, and filter chain
paradigm

Rule‐based planning Virtual sensors N/A

Processing framework Pipe, filters, and filter chain
run‐time engine at the SaaS level
(GAE or MsA is the PaaS level)

Scheduler for plan
execution

Workflow engine for
service provisioning

Runtime split between the
Hypervisor and the Cloud
side

Persistent storage Bigtables (provided by GAE) or
BLOBs (provided by MsA)

Stand‐alone database Stand‐alone database N/A

Decision‐making
process

Not supported, delegated to
external tools

N/A N/A N/A

Visualization service User‐defined views on sensor
data and analysis results

Raw data
visualization

N/A N/A

Security N/A N/A N/A N/A

 Table 9.2 Architectures for the integration of body area networks with cloud computing: a comparison.

ECGaaS [47] Cloud BAN e‐Health [48] Cloud‐assisted WBAN [49] BodyCloud [51]

Sensor data collection Internet‐based mobile
BSN coordinator

Internet‐based static/
mobile gateway

Internet‐based static/
mobile gateway

Mobile Android BSN coordinator
based on HTTP/REST

Sensor data
management

N/A N/A N/A Workflow‐oriented paradigm

Processing framework Workflow engine
based on the Aneka
PaaS

N/A N/A Workflow engine at the SaaS level
(GAE is the PaaS level)

Persistent storage Cloud storage Cloud storage Cloud storage Bigtables (provided by GAE)
Decision‐making
process

N/A N/A N/A Workflow‐oriented process

Visualization service Specific to the
provided case study

N/A N/A XML‐based Views on sensor data
and analysis results

Security N/A RSK/ABE‐based
encryption of data

Key management OAuth‐based authentication to
access the cloud services

SSL‐secured
communications

Encrypted storage

9  Integration of Wearable and Cloud Computing156

●● Visualization Service: a customizable visualization service is only provided by
CC‐WSN and BodyCloud. Both architectures allow the implementation of
user‐defined views on sensor data and analysis results. In particular, the
BodyCloud architecture [51] proposes an approach that integrates XML‐based
specifications for input data and for output data and their visualization.

●● Security: only Cloud BAN e‐Health, Cloud‐Assisted WBAN, and BodyCloud
provide security mechanisms. BodyCloud is currently based only on the
OAuth protocol supported by the GAE to access the cloud services. Cloud
BAN e‐Health delivers an effective security framework centered on (i) data
encryption based on a hybrid RSK (Randomly generated Symmetric Key)
and ABE (Attribute‐Based Encryption) method supported by a Health
Authority, which also enables fine‐grained access control to data and
(ii) on SSL‐secured communications. Finally, Cloud‐Assisted WBAN is
based on key management and encrypted storage.

9.6  BodyCloud: A Cloud‐based Platform for
Community BSN Applications

The BodyCloud platform aims at integrating BSNs and cloud computing PaaS
infrastructures.

In particular, the BodyCloud architecture, shown in Figure 9.3, consists of
four main subsystems (or sides):

●● Body‐side: it is the subsystem that monitors the assisted living by means of a
BSN and sends the collected data to the cloud through a Java‐enabled com­
puter (desktop, laptop, or nanocomputer like Raspberry Pi) and/or an
Android‐enabled mobile device. In particular, data acquisition is currently
based on SPINE [1] for computers and Android‐SPINE, the Android version
of the SPINE middleware [1] (see Chapter 3), for mobile devices. In particu­
lar, Android‐SPINE allows Android‐enabled smartphones and tablets to be
used as coordinators of the BSN. Data collected through SPINE or Android‐
SPINE are then streamed up to the cloud‐side by using the real‐time data
feed modality (see Cloud‐side in next point). In Android‐SPINE, communi­
cation of wearable sensors with the BSN coordinator is based on Bluetooth,
whereas in SPINE communication can be based either on IEEE 802.15.4 or
Bluetooth. The following functionalities are provided by the application‐
level SPINE protocol [21]: sensor discovery, sensor configuration, in‐node
processing, BSN activation/deactivation, data collection, and logging. Finally,
the current SPINE implementation fully supports IEEE 802.15.4 TinyOS
sensor nodes and the Bluetooth‐based Shimmer sensor nodes.

●● Cloud‐side: it is the subsystem that fully supports specific applications
through data collection, processing/analysis, and visualization. In particular,

9.6  BodyCloud: A Cloud‐based Platform for Community BSN Applications 157

applications can be defined through four programming abstractions: Group,
Modality, Workflow, and View.

Group is an HTTP resource formalizing an application manipulating a
specific BSN data source. In particular, Group consists of three correlated
subresources: (i) Collector, which is intended to collect BSN data that
comply with the same data specification; (ii) Data, which represent the
actual data collected by the Group and based on different formats (e.g.
CSV, ARFF, and JSON); (iii) Contributor, which is a subresource contain­
ing the users who uploaded data to the Group. In particular, Data is
grouped on a per user basis.

Cloud

Body Analyst Viewer

BSNs
Desktop

Device (OS)

Mobile Device
(Android)

Client Application
(send CSV files)

Desktop Device
(OS)

Client Application
(send XML/binary)

XML
Editor

Workflow
Engine API

Mobile
(Android)

Client Application
(receive XML&CSV)

jxReport
Library

HTML
Viewer

HTTP
TCP
IP

Group Modality ViewData Analysis

Result Framework

Persistence API Workflow Engine

HTTP
TCP
IP

Cloud PaaS (Google App Engine)

Terminal

Figure 9.3  The BodyCloud architecture.

9  Integration of Wearable and Cloud Computing158

Modality is a HTTP resource specifying an interaction between Body‐,
Cloud‐, and Viewer‐sides, within a Group. In particular, Modality encodes a
Body–Cloud‐sides or a Viewer–Cloud‐sides interaction and can be interpreted
and executed by a client application. Modality models a specific service, such
as BSN data feeds (collected data from the Body‐side and transmitted onto
the Cloud‐side), data analysis tasks, and single‐user or multi‐user applica­
tions. Modality defines the specifications of the input and output data
formats, the data transfer protocols, the flow of processing tasks to trans­
form input data into output data, and the specifications of output data visu­
alization. Finally, Modality can be activated individually and in groups to
provide a service to the user/s.

Workflow is a HTTP resource formalizing a data‐flow process that analyzes
input data to generate output data. Workflow is composed of one or more
Nodes usually organized in a directed acyclic graph. Nodes represent specific
algorithms, which can be developed as Java code according to the Workflow
Engine library (see Figure 9.3), and links between nodes are data flows. Once
implemented, Node can be packed within a jar file and uploaded to the
Cloud‐side where it can be exploited in different workflows.
View is a HTTP resource formalizing the visualization layout of the output
data for users at the Viewer‐side.

●● Analyst‐side: it is the subsystem that supports the design and implemen­
tation of new BodyCloud application services. Specifically, users can cre­
ate new BodyCloud services through the definition of groups, modalities,
workflows, and views. Each abstraction can be created through an HTTP
PUT request issued to the corresponding cloud‐side resource. The
method is straightforward, as it only requires a simple HTTP client tool
as Analyst‐side supporting application. As the workflow abstraction may
require new nodes to be developed, the Analyst‐side also demands a suit­
able development environment. After developing new nodes, they are
also uploaded onto the Cloud‐side by an HTTP PUT request issued to
the corresponding Cloud‐side resource. A predefined set of nodes can be
easily made available, depending on the adopted implementation of the
Workflow Engine.

●● Viewer‐side: it is the subsystem that visualizes the output produced by the
data analysis through advanced graphical reporting facilities. The graphical
view is automatically generated by applying the View specification (defined
in the modality) to the output data. Specifically, as part of the current
BodyCloud prototype, a Java library, named jxReport, was developed and
integrated into the client application. The jxReport library provides func­
tionalities to generate HTML reports from an XML schema and a data
model, thus allowing the desirable separation between the data model and
the view. During the graphical report generation, jxReport reads the model,
e.g. from a CSV file, and draws the graphical elements specified in the XML

9.7  Engineering BodyCloud Applications 159

document based on the model data. The jxReport library is highly portable
and can be used in any Java‐based environment (e.g. mobile or desktop).

From an implementation viewpoint, Group, Modality, Workflow/Node, and
View are supported by a RESTful web service (Server Servlet), implemented
using the Restlet Framework, making the interaction with the Cloud‐side fully
based on the HTTP methods get, put, post, and delete. The interactions are
authenticated by the OAuth Verifier component based on OAuth 2.0. The
Cloud‐side is supported by the GAE PaaS1 that provides the Datastore API,
atop which the Persistence Layer managing the collected BSN data is built, and
the Task Queue API, which enables asynchronous execution of tasks triggered
by requests.

9.7  Engineering BodyCloud Applications

BodyCloud supports an effective approach for the rapid prototyping of large‐
scale applications based on BSNs. A BSN service definition based on the
BodyCloud approach can be developed and deployed on the basis of the
following five phases organized as a workflow‐based process in Figure 9.4:

1)	 Development and upload of the processing/analysis algorithms: design, imple­
mentation, and upload of any custom processing/analysis algorithms in terms of
(processing/analysis) nodes. All uploaded nodes are stored into the Cloud‐side
and can be exploited by any BodyCloud user. Of course, this phase is optional as
users can directly use algorithms already existing in the Cloud‐side.

2)	 Definition of the Data Source (or Group): definition of a Group containing
the specification of the data that can be gathered from the BSN and then
possibly processed by algorithms defined in phase 1 or already available in
the Cloud‐side.

3)	 Definition of the Analysis Workflow: definition of the data analysis process
through the combination of the (uploaded and/or already uploaded) nodes

Node Implementation
[yes]

[no]

Workflow Definition

Group Definition

View Definition

Modality Definition

Figure 9.4  Workflow schema of the BodyCloud approach for developing community
BSN applications.

1  https://cloud.google.com/appengine/

9  Integration of Wearable and Cloud Computing160

and their static parameters into a workflow. The starting node of the work­
flow should read the input data from the Data Source.

4)	 Definition of the View: definition of one or more graphical formats (or views)
for the data produced by the processing/analysis workflow.

5)	 Definition of the Modalities: definition of at least a Body‐side specific
modality and a Viewer‐side specific one. The Body‐side modality should
have an input data specification similar to the Group definition, an action
that will upload the data to the group defined in phase 2 and no output
specification. The Viewer‐side modality should perform the workflow exe­
cution as action, the parameters of which must be defined accordingly to
the node definition. Its output specification must match with the workflow
output and contains the correlated reference to the view.

In the following subsections, we provide four BSN community applications
supported by BodyCloud (ECGaaS, FEARaaS, REHABaaS, and ACTIVITYaaS).

9.7.1  ECGaaS: Cardiac Monitoring

The ECG as a Service (ECGaaS), which was developed by exploiting the
BodyCloud approach, allows monitoring (collect, process, store, analyze, and
visualize) ECG data coming from individuals or a group of people (e.g. assisted
livings, athletes, and emergency teams). The ECG is the standard method for
measuring the electrical and functional activity of the heart and is commonly
used to diagnose cardiovascular diseases and cardiac abnormalities. In par­
ticular, in the developed application service, the ECG signal is captured by the
Body‐side, through a Shimmer sensor node equipped with the ECG board, and
sent to the Cloud‐side in which the R‐R intervals and heart rate (HR) [52] are
extracted through QRS‐complex detector algorithms [53] deployed as nodes in
the BodyCloud system.

The specific entities (group, modality, workflow, and view) defining the
ECGaaS are:

●● The ECGMonitoring group, which represents the group of monitored users.
●● The modalities: DataFeed, SingleAnalysis, and GroupAnalysis. DataFeed

allows transmitting ECG data from the Body‐side onto the Cloud‐side,
whereas SingleAnalysis and GroupAnalysis, respectively, perform single and
group analysis of the ECG data, specifically the extraction of the R‐R signals
(from which the HR can also be straightforwardly computed). The specifica­
tion of the DataFeed modality is reported in Figure 9.5, whereas the
GroupAnalysis modality is portrayed in Figure 9.6. The DataFeed is per­
formed every 60s. The GroupAnalysis gets all the contributors (i.e. the iden­
tifiers of the involving participants) and executes the workflow on their data,
thus providing the tachogram of all participants.

●● The EcgToRR workflow (see Figure 9.7), which models a workflow composed
of two sequential nodes able to read the collected ECG user data through the

<modality>
<inputSpecification>

<data>
<name>ECGShimmerSample </name>
<type>INTEGER</type>
<source>ECGShimmerSensor</source>

</data>
</inputSpecification>
<init-action>

<uri>/group/ecg-monitoring/data</uri>
<method>DELETE</method>

</init-action>
<action>

<uri>/group/ecg-monitoring/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="60"/>

</action>
</modality>

Figure 9.5  ECGMonitoring DataFeed modality.

<modality>
<init-action>

<uri>/group/ecg-monitoring/contributors</uri>
<method>GET</method>

</init-action>
<action>

<uri>/engine/workflow/ecg</uri>
<method>POST</method>
<parameter>

<name>sourceUser</name>
<reference xpath="//users/user"/ type=”MAP”>

</parameter>
<parameter>

<name>sourceGroup</name>
<value>ecg-monitoring</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>

<data>
<name>rr</name>
<type>DOUBLE</type>

</data>
<view>/view/tachogram.xml</view>

</outputSpecification>
</modality>

Figure 9.6  ECGMonitoring GroupAnalysis modality.

<workflow>
<node>
<type>UserDataReader</type>

</node>
<node>
<type>RR</type>

</node>
</workflow>

Figure 9.7  EcgToRR workflow.

9  Integration of Wearable and Cloud Computing162

data reader node and extract the R‐R signal from the ECG data through the
RR node.

●● The Tachogram View, which is the graphical format through which the R‐R
signal will be rendered at the Viewer‐side. The ECGaaS GUI, which is por­
trayed in Figure 9.8, allows visualizing the ECG plot and the HR ([bpm]) in
real time.

9.7.2  FEARaaS: Basic Fear Detection

Apart from its common use in health care for the diagnosis of the cardiac
status, the ECG signal can be exploited to detect emotions. The ECG is in

(a)

(b)

Figure 9.8  GUI view. (a) ECG wave plotting and (b) beat per minute instantaneous value.

9.7  Engineering BodyCloud Applications 163

fact very reactive to physiological responses due to emotions and other
external factors. Other methods use facial recognition to detect/recognize
emotions; however, they are invasive, as they require the placement of
electrodes and cameras to detect subtle changes in the person’s face. The
advantage of using the ECG signal for detecting basic emotions is that a
person can be monitored using noninvasive wearable cardiac sensors such
as smart watches, sport electronic chest bands, or even smart textiles.
A basic fear status (which is not yet cognitive fear, i.e. the response when a
person is in danger) could be detected by analyzing the ECG signal. The
basic cardiac physiological response that could generate the state of fear is
the Cardiac Defense Response (CDR) [54]. On the basis of the algorithm for
the CDR detection proposed in Ref. [53], a basic fear detection service
(FEARaaS) was easily developed on BodyCloud, by also reusing some sys­
tem components and entities defined for the ECGaaS.

The specific entities (group, modality, workflow, and view) defining the
FEARaaS are:

●● The CDRDetection group, which represents the group of monitored users.
●● The ECGDataFeed (see Figure 9.9), SingleCDRAnalysis (see Figure 9.10),

and GroupFearDetectionAnalysis modalities. ECGDataFeed is the same
modality as in ECGaaS (see Section 9.7.1). SingleCDRAnalysis performs the
CDR detection on a single subject and provides true if the CDR is detected,
false otherwise. GroupFearDetectionAnalysis performs the CDR detection
on a group and provides a positive result if the number of people having a
CDR in a given time period exceeds a given threshold.

●● The SingleCDR workflow (see Figure 9.11), which models a workflow based
on three sequential nodes, is able to (i) read the collected ECG user data

<modality>
<inputSpecification>

<column>
<name>heartbeat</name>
<type>DOUBLE</type>
<source>HEARTBEAT</source>

</column>
</inputSpecification>
<init-action>

<uri>/group/cdr</uri>
<method>DELETE</method>

</init-action>
<action>
<uri>/group/cdr</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="10" />

</action>
</modality>

Figure 9.9  CDRDetection DataFeed modality.

9  Integration of Wearable and Cloud Computing164

through the data reader node, (ii) extract the R‐R signal from the ECG data
through the RR node, and (iii) apply the CDR detection algorithm to the R‐R
signal. An interesting enhancement is the GroupCDR workflow, which could
be based on the SingleCDR workflow to which the node, which processes the
group fear detection algorithm, has to be added.

●● The CDR View allows to display the results provided by the (single or group)
CDR detection. In Figure 9.12 the GUI at the Viewer‐side, which displays the
positive CDR detection, is portrayed.

<modality>
<init-action>

<uri>/group/fear-detection/contributors</uri>
<method>GET</method>

</init-action>
<action>

<uri>/engine/workflow/cdr</uri>
<method>POST</method>
<parameter>

<name>sourceUser</name>
<reference xpath="//users/user"/>

</parameter>
<parameter>

<name>sourceGroup</name>
<value>cdr-monitoring</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>

<data>
<name>cdr</name>
<type>BOOLEAN</type>

</data>
<view>/view/cdrplot.xml</view>

</outputSpecification>
</modality>

Figure 9.10  SingleCDRAnalysis modality.

<workflow>
<node>

<type>UserDataReader</type>
</node>
<node>

<type>RR</type>
</node>
<node>

<type>CDR</type>
</node>

</workflow>

Figure 9.11  SingleCDR workflow.

9.7  Engineering BodyCloud Applications 165

9.7.3  REHABaaS: Remote Rehabilitation

The remote rehabilitation application service (REHABaaS) involves remote
rehabilitation of the limbs of assisted livings. Currently, the involved joints are
elbows and knees. The service is based, on the Body‐side, on two wearable
sensor nodes equipped with 3‐axial accelerometers. Sensors are placed in spe­
cific positions of the limbs for collecting accelerometer data, which are then
processed by the BSN coordinator to provide specific rehabilitation informa­
tion such as extension angles of elbows and knees [55].

The specific entities (group, modality, workflow, and view) defining the
REHABaaS are:

●● The Rehab Group represents the group of monitored users to be
rehabilitated.

●● The RehabDataFeed Modality (see Figure 9.13) allows transmitting the
rehabilitation data from the Body‐side to the Cloud‐side.

●● The Single RehabDataAnalysis Modality (see Figure 9.14) performs analysis
of the single subject based on the RehabDataAnalysis workflow (see
Figure 9.15) and provides statistics about the progress of the rehabilitation.

●● The RehabData View, which is the graphical format through which the rehab
data will be rendered at the Viewer‐side. Figure 9.16 shows the web‐based
GUI for the knee rehabilitation: the exercise of the patient is compared with
a reference exercise in terms of knee extension and inclination angles and
thigh torsion.

Figure 9.12  GUI view: detection of a CDR.

9  Integration of Wearable and Cloud Computing166

9.7.4  ACTIVITYaaS: Community Activity Monitoring

ACTIVITYaaS is a BodyCloud service supporting real‐time, noninvasive human
activity recognition and monitoring. At the Body‐side, it uses two wearable
motion sensors and a personal mobile device where a graphical application pro­
vides instantaneous feedback to the user; in addition, when Internet connectivity
is available, data are also sent onto the Cloud‐side for long‐term, multiuser data
storage and processing. Finally, the Viewer‐side allows for remote access to such
information at authenticated and authorized users [56, 57].

<modality>
<inputSpecification>

<data>
<sensor1Data>
<name>AccXSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>
<name>AccYSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>
<name>AccZSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor1</source>

</sensor1Data>
<sensor2Data>
<name>AccXSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>
<name>AccYSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>
<name>AccZSample</name>
<type>INTEGER</type>
<source>ECGShimmerSensor2</source>

</sensor2Data>
<extensionAngle>
<name>AngleSample</name>
<type>INTEGER</type>
<source>BSN</source>

</extensionAngle >
</data>

</inputSpecification>
<init-action>

<uri>/group/rehab-monitoring/data</uri>
<method>DELETE</method>

</init-action>
<action>

<uri>/group/rehab-monitoring/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="1"/>

</action>
</modality>

Figure 9.13  RehabMonitoring DataFeed modality.

9.7  Engineering BodyCloud Applications 167

The specific entities (group, modality, workflow, and view) defining
ACTIVITYaaS are:

●● The ActivityMonitoring group represents the group of monitored users.
●● The RawAccelerationDataFeed (see Figure 9.17), FeatureDataFeed, and

ActivityDataFeed modalities, respectively, implement the following three
operating modes:

–– Full‐Cloud: the Body‐side will only collect the raw data and send this
straight to the Cloud‐side. The Cloud‐side will then do all required pro­
cessing (i.e. feature extraction and classification).

<modality>
<inputSpecification>
<column>
<name>foreNode-accX</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>foreNode-accY</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>backNode-accY</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>backNode-accZ</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
</inputSpecification>
<action>
<uri>/group/rehab-aaservice/data</uri>
<method>PUT</method>
<repeat>true</repeat>

</action>
</modality>

Figure 9.14  Single RehabMonitoringAnalysis modality.

<workflow>
<node>

<type>UserDataReader</type>
</node>
<node>

<type>Stats</type>
</node>

</workflow>

Figure 9.15  RehabMonitoring workflow.

160
120
80
40

0

–26
–28
–30
–32
–34

11
9
7
5
3

0 2

Thigh extension angle

Thigh inclination angle

Thigh torsion angle

4 6 8

Reference
Knee A...
Patient
Knee A...

Reference
Inclinati...
Patient
Inclinati...

Reference
Torsion...
Patient
Torsion...

0 2 4 6 8

0 2 4 6 8

Figure 9.16  GUI view: knee rehabilitation.

9.7  Engineering BodyCloud Applications 169

–– Mix‐Cloud: the Body‐side will be responsible for raw data collection and
feature extraction. These features will then be sent to the Cloud‐side for
classification.

–– Full‐Local: all processing will be done at the Body‐side. Specifically, raw
data collection, feature extraction, and feature classification. The

<modality>
<inputSpecification>
<column>
<name>acc_x_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_y_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_z_node1</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_x_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_y_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>acc_z_node2</name>
<type>INTEGER</type>
<source>GENERIC</source>

</column>
<column>
<name>geoLocation</name>
<type>STRING</type>
<source>GENERIC</source>

</column>
<column>
<name>timestamp</name>
<type>DOUBLE</type>
<source>CLOCK</source>

</column>
</inputSpecification>
<action>
<uri>/group/fullCloud/data</uri>
<method>PUT</method>
<repeat>true</repeat>
<trigger after="100" />

</action>
</modality>

Figure 9.17  RawAccelerationDataFeed modality.

9  Integration of Wearable and Cloud Computing170

Cloud‐side is therefore used only for long‐term storage and graphical
visualization of statistics.

●● The Single ActivityMonitoring Analysis modality (see Figure 9.18) implements
the activity recognition of a single subject.

●● The ActivityMonitoring workflow (see Figure 9.19) models a three sequen­
tial node workflow able to (i) read body motion data collected by the reader
node, (ii) extract the features from such data, and (iii) apply the activity
classification algorithm. Such workflow is specifically activated when
ACTIVITYaaS runs in Full‐Cloud mode.

●● The Activity View models the web‐based graphical representation of the
various activities being performed by the user. Currently it uses a simple pie
chart and table for statistics visualization (see Figure 9.20).

<modality>
<init-action>
<uri>/group/activity</uri>
<method>GET</method>

</init-action>
<action>
<uri>/engine/workflow/activity</uri>
<method>POST</method>
<parameter>
<name>sourceUser</name>
<reference xpath="//users/user" />

</parameter>
<parameter>
<name>sourceGroup</name>
<value>activity-recognition</value>

</parameter>
<repeat>false</repeat>

</action>
<outputSpecification>
<column>
<name>activityID</name>
<type>INTEGER</type>

</column>
<view>/view/activities.xml</view>

</outputSpecification>
</modality>

Figure 9.18  Single ActivityMonitoring Analysis modality.

<workflow>
<node>
<type>UserDataReader</type>

</node>
<node>
<type>ACTSTATS</type>
<!-- <parameter days="1" /> -->

</node>
</workflow>

Figure 9.19  ActivityMonitoring workflow.

﻿  References 171

9.8  Summary

This chapter has provided an overview of the integration between wearable
computing platforms (based on BSNs) and cloud computing, named cloud‐
based BSNs. We have first introduced the motivations and challenges for cloud‐
based BSNs. We have then introduced an implementation‐neutral reference
architecture for cloud‐based BSNs. Furthermore, we have compared the related
work against the analyzed requirements. Finally, the chapter has focused pri­
marily on BodyCloud, a cloud‐based BSN platform for the development of
community BAN applications. A set of cutting‐edge applications of BodyCloud
have been also detailed to show the development effectiveness of BodyCloud.

References

	1	 Fortino, G., Giannantonio, R., Gravina, R. et al. (2013). Enabling effective
programming and flexible management of efficient body sensor network
applications. IEEE Transactions on Human‐Machine Systems 43 (1): 115–133.
doi: 10.1109/TSMCC.2012.2215852.

	2	 Foster, I. and Kesselman, C. eds. (2004). The grid 2 (second edition) blueprint
for a new computing infrastructure. In: The Morgan Kaufmann Series in
Computer Architecture and Design. Burlington: Morgan Kaufmann. doi:
10.1016/B978‐155860933‐4/50000‐6.

	3	 Rimal, B.P., Choi, E., and Lumb, I. (2009). A taxonomy and survey of cloud
computing systems. Fifth International Joint Conference on INC, IMS and IDC,
2009. NCM’09, Seoul, Korea (25–27 August 2009), pp. 44–51.

Figure 9.20  GUI view: activity statistics.

9  Integration of Wearable and Cloud Computing172

	 4	 Badger, L., Bohn, R., Chu, S. et al. (2011). US Government cloud computing
technology roadmap. NIST Special Publication 500‐293, Release 1.0, Volume II.

	 5	 Berthold, M., Cebron, N., Dill, F. et al. (2006). KNIME: the Konstanz
Information Miner. Proceedings of Workshop on Multi‐Agent Systems and
Simulation (MAS&S), 4th Annual Industrial Simulation Conference (ISC),
Palermo, Italy (5–7 June 2006), pp. 58–61.

	 6	 Mierswa, I., Wurst, M., Klinkenberg, R. et al. (2006). YALE: rapid prototyping
for complex data mining tasks. Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’06).
Philadelphia, PA (20–23 August 2006), pp. 935–940. New York: ACM Press.

	 7	 Hall, M., Frank, E., Holmes, G. et al. (2009). The WEKA data mining software:
an update. SIGKDD Explorations 11 (1): 10–18.

	 8	 Babcock, B., Babu, S., Datar, M. et al. (2002). Models and issues in data stream
systems. Proceedings of 21st ACM SIGMOD‐SIGACT‐SIGART Symposium on
Principles of Database Systems, Santa Barbara, CA (21–24 May 2001), pp.
1–16. New York: ACM Press.

	 9	 Golab, L. and Özsu, M. (2003). Issues in data stream management. ACM
SIGMOD Record 32(2): 5–14.

	10	 Motwani, R., Widom, J., Arasu, A. et al. (2003). Query processing, resource
management and approximation in a data stream management system.
Proceedings of International Conference on Innovative Data Systems Research
(CIDR’03), Asilomar, CA (9–12 January 2003).

	11	 Aberer, K., Hauswirth, M. and Salehi, A. (2007). Infrastructure for data processing
in large‐scale interconnected sensor networks. Proceedings of Int’l Conference on
Mobile Data Management (MDM’07), Mannheim, Germany (7–11 May 2007).

	12	 Chandrasekaran, S., Cooper, O., Deshpande, A. et al. (2003). TelegraphCQ:
continuous dataflow processing. Proceedings of International Conference on
Innovative Data Systems Research (CIDR’03), Asilomar, CA (9–12 January 2003).

	13	 Abadi, D., Carney, D., Çetintemel, U. et al. (2003). Aurora: a new model and
architecture for data stream management. The VLDB Journal 12(2): 120–139.

	14	 Arvind, D., Arasu, A., Babcock, B. et al. (2003). STREAM: the Stanford stream
data manager. IEEE Data Engineering Bulletin 26.

	15	 Delin, K. and Jackson, S. (2001). The sensor web: a new instrument concept.
Proceedings of SPIE Symposium on Integrated Optics, San Jose, CA (20–26
January 2001).

	16	 Shen, C., Srisathapornphat, C., and Jaikaeo, C. (2001). Sensor information
networking architecture and applications. IEEE Wireless Communications
8(4): 52–59.

	17	 Buonadonna, P., Gay, D., Hellerstein, J. et al. (2005). Task: sensor network in a
box. Proceedings of 2nd European Conference on Wireless Sensor Networks,
Istanbul, Turkey (31 January–2 February 2005), pp. 133–144.

	18	 Gay, D., Levis, P., von Behren, R. et al. (2003). The nesC language: a holistic
approach to networked embedded systems. SIGPLAN Not 38(5): 1–11.
doi:10.1145/780822.781133.

﻿  References 173

	19	 Malan, D., Fulford‐Jones, T., Welsh, M., and Moulton, S. (2004). Codeblue: an
ad hoc sensor network infrastructure for emergency medical care. Proceedings
of Internationall Workshop on Wearable and Implantable Body Sensor
Networks, London, UK (6–7 April 2004).

	20	 Kuryloski, P., Giani, A., Giannantonio, R. et al. (2009). DexterNet: an open
platform for heterogeneous body sensor networks and its applications. Sixth
International Workshop on Wearable and Implantable Body Sensor Networks,
2009. BSN 2009, Berkeley, CA (3–5 June 2009), pp. 92, 97. doi: 10.1109/
BSN.2009.31.

	21	 Bellifemine, F., Fortino, G., Giannantonio, R. et al. (2011). SPINE: a domain‐
specific framework for rapid prototyping of WBSN applications. Software:
Practice and Experience 41 (3): 237–265. doi: 10.1002/spe.

	22	 Gravina, R., Guerrieri, A., Fortino, G. et al. (2008). Development of body
sensor network applications using SPINE. Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2008), Singapore (12–15
October 2008).

	23	 Raveendranathan, N., Galzarano, S., Loseu, V. et al. (2012). From modeling to
implementation of virtual sensors in body sensor networks. IEEE Sensors
Journal 12 (3): 583–593.

	24	 Fortino, G., Guerrieri, A., Giannantonio, R., and Bellifemine, F. (2009).
Platform‐independent development of collaborative WBSN applications:
SPINE2. Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2009), San Antonio, TX (11–14 October 2009).

	25	 Fortino, G., Guerrieri, A., Giannantonio, R., and Bellifemine, F. (2009).
SPINE2: developing BSN applications on heterogeneous sensor nodes.
Proceedings of IEEE Symposium on Industrial Embedded Systems (SIES’09),
special session on wireless health, Lausanne (8–10 July 2009).

	26	 Lombriser, C., Roggen, D., Stager, M., and Troster, G. (2007). Titan: a tiny
task network for dynamically reconfigurable heterogeneous sensor
networks. In Kommunikation in Verteilten Systemen (KiVS). Berlin
Heidelberg: Springer.

	27	 Dourish, P. (1995). The parting of the ways: divergence, data management and
collaborative work. Proceedings of 4th conference on European Conference on
Computer‐Supported Cooperative Work, Stockholm, Sweden (10–14
September 1995), p. 230.

	28	 Cuzzocrea, A., Fortino, G., and Rana, O.F. (2013). Managing data and processes
in cloud‐enabled large‐scale sensor networks: state‐of‐the‐art and future
research directions, 13th IEEE/ACM International Symposium on Cluster
(Cloud and Grid Computing), Delft, the Netherlands (13–16 May 2013).

	29	 Hanson, M.A., Powell, H., Barth, A.T. et al. (2009). Body area sensor networks:
challenges and opportunities. IEEE Computer 42 (1): 58–65.

	30	 Le, T.T. and Moh, S. (2015). Interference mitigation schemes for wireless body
area sensor networks: a comparative survey. Sensors 15: 13805–13838.
doi:10.3390/s150613805.

9  Integration of Wearable and Cloud Computing174

	31	 Sha, K. and Shi, W. (2008). Consistency‐driven data quality management of
networked sensor systems. Journal of Parallel and Distributed Computing 68:
1207–1221.

	32	 Fortino, G., Pathan, M., and Di Fatta, G. (2012). BodyCloud: integration of
cloud computing and body sensor networks. IEEE International Conference
and Workshops on Cloud Computing Technology and Science (CloudCom
2012), Taipei, Taiwan (3–6 December 2012).

	33	 Fortino, G., Di Fatta, G., Pathan, M., and Vasilakos, A.V. (2014). Cloud‐assisted
body area networks: state‐of‐the‐art and future challenges. Wireless Networks
20 (7): 1925–1938.

	34	 Tan, C.C., Wang, H., Zhong, S., and Li, Q. (2008). Body sensor network
security: an identity‐based cryptography approach. Proceedings of the First
ACM Conference on Wireless Network Security (WiSec’08), Alexandria, VA
(31 March–2 April 2008), pp. 148–153. New York: ACM Press.

	35	 Ming, L., Lou, W., and Ren, K. (2010). Data security and privacy in wireless
body area networks. IEEE Wireless Communications 17 (1): 51–58. doi:
10.1109/MWC.2010.5416350.

	36	 Zhang, M. and Sawchuk, A.A. (2009). A customizable framework of body area
sensor network for rehabilitation. Second International Symposium on Applied
Sciences in Biomedical and Communication Technologies, 2009. ISABEL 2009,
Bratislava, Slovak Republic (24–27 November 2009), pp. 1–6.

	37	 Klein, A. and Lehner, W. (2009). How to optimize the quality of sensor data
streams. Fourth International Multi‐Conference on Computing in the Global
Information Technology, 2009. ICCGI’09, Cannes/La Bocca, France (23–29
August 2009), pp. 13–19.

	38	 Galzarano, S., Fortino, G., and Liotta, A. (2012). Embedded self‐healing layer
for detecting and recovering sensor faults in body sensor networks. IEEE
International Conference on Systems, Man and Cybernetics (SMC 2012), Seoul,
South Korea (14–17 October 2012), pp. 2377–2382.

	39	 Chang, F., Dean, J., Ghemawat, S. et al. (2016). Bigtable: a distributed storage
system for structured data. 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2006), San Diego, CA (6–8 November
2006), pp. 205–218.

	40	 Calder, B., Wang, J., Ogus, A. et al. (2011). Windows Azure storage: a highly
available cloud storage service with strong consistency. 23rd ACM Symposium
on Operating Systems Principles (SOSP 2011), Cascais, Portugal (23–26
October 2011), pp. 143–157.

	41	 Holmes, G., Donkin, A., and Witten, I.H. (1994). Weka: a machine learning
workbench. Proceedings of the 2nd Australia and New Zealand Conference on
Intelligent Information Systems, Brisbane, Australia (29 November 1994–2
December 2 1994).

	42	 Guazzelli, A., Zeller, M., Chen, W., and Williams, G. (2009). PMML: an open
standard for sharing models. The R Journal 1 (1): 60–65.

﻿  References 175

	43	 Kurschl, W. and Beer, W. (2009). Combining cloud computing and wireless
sensor networks. Proceedings of 11th Int’l Conf. on Information Integration
and Web‐based Applications & Services, Kuala Lumpur, Malaysia (14–16
December 2009), pp. 512–518.

	44	 Chu, X. and Buyya, R. (2007). Service oriented sensor web. Sensor Networks
and Configuration, pp. 51–74. Secaucus, NJ: Springer‐Verlag New York, Inc.

	45	 Yuriyama, M. and Kushida, T. (2010). Sensor‐cloud infrastructure‐physical
sensor management with virtualized sensors on cloud computing. Proceedings
of International Conference on Network‐based Information Systems (NBiS’10),
Takayama, Gifu, Japan (14–16 September 2010), pp. 1–8.

	46	 Di Stefano, S., Merlino, G., Puliafito, A. (2012). SAaaS: a framework for
volunteer‐based sensing clouds. Parallel and Cloud Computing 1 (2): 21–23.

	47	 Pandey, S., Voorsluys, W., Niu, S. et al. (2011). An autonomic cloud
environment for hosting ECG data analysis services. Future Generation
Computer Systems 28 (1): 147–154.

	48	 Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y. (2012). "Secure and
scalable cloud‐based architecture for e‐Health wireless sensor networks. 21st
International Conference on Computer Communications and Networks
(ICCCN), 2012, Munich, Germany (30 July 2012–2 August 2012), pp. 1–7.

	49	 Wan, J., Zou, C., Ullah, S. et al. (2013). Cloud‐enabled wireless body area
networks for pervasive healthcare. IEEE Network 27 (5): 56–61.

	50	 Fortino, G., Gravina, R., Guerrieri, A., and Di Fatta, G. (2013). Engineering
large‐scale body area networks applications. Proceedings of 8th Int’l
Conference on Body Area Networks (BodyNets), Boston, MA (30 September–2
October 2013).

	51	 Fortino, G., Parisi, D., Pirrone, V., and Di Fatta, G. (2014). BodyCloud: a SaaS
approach for community body sensor networks. Future Generation Computer
Systems 35: 62–79.

	52	 Andreoli, A., Gravina, R., Giannantonio, R. et al. (2010). SPINE‐HRV: a
BSN‐based toolkit for heart rate variability analysis in the time‐domain.
Wearable and Autonomous Biomedical Devices and Systems for Smart
Environment, ser. Lecture Notes in Electrical Engineering, vol. 75, pp. 369–389.
Berlin/Heidelberg: Springer.

	53	 Covello, R., Fortino, G., Gravina, R. et al. (2013). Novel method and real‐time
system for detecting the Cardiac Defense Response based on the ECG. IEEE
International Symposium on Medical Measurements and Applications
(MeMeA 2013), Ottawa, Canada (4–5 May 2013).

	54	 Gravina, R., Fortino, G. (2016). Automatic methods for the detection of
accelerative cardiac defense response. IEEE Transactions on Affective
Computing 7 (3): 286–298.

	55	 Fortino, G. and Gravina, R. (2014). Rehab‐aaService: a cloud‐based motor
rehabilitation digital assistant. 2nd ICTs for improving Patient Rehabilitation
Research Techniques Workshop, Oldenburg, Germany (20 May 2014).

9  Integration of Wearable and Cloud Computing176

	56	 Fortino, G., Gravina, R., and Russo, W. (2015). Activity‐aaService: Cloud‐
assisted, BSN‐based system for physical activity monitoring. Proceedings of
IEEE CSCWD 2015, Calabria (6–8 May 2015).

	57	 Gravina, R., Ma, C., Pace, P. et al. (September 2016). Cloud‐based activity‐
aaService cyberphysical framework for human activity monitoring in mobility.
Future Generation Computer Systems 75: 158–171.

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

177

10

10.1  Introduction

Designing BSN systems is a complex task and formal methods should be
adopted to obtain correct, efficient, and cost‐effective solutions. The most
common approach is bottom‐up: hardware components are chosen “a priori,”
followed by the communication protocols, and finally, applications are pro-
grammed atop the identified underlying infrastructure. The opposite design
approach is top‐down: high‐level application requirements, driving the design
process, are mapped to application‐level frameworks, i.e. a set of programming
abstractions and libraries; protocol stacks and hardware platforms are defined
subsequently.

This chapter describes a development methodology for BSN systems, based
on the SPINE framework, that follows a hybrid hardware–software codesign
approach inspired to the Platform‐Based Design (PBD).

10.2  Background

PBD [1] has been originally introduced as a methodology for the design of
traditional embedded systems and more recently for WSNs. This methodology
defines the design as a sequence of steps that lead from the initial high‐level
system description down to the actual implementation. Each step is an iterative
refinement process that translates a higher level description to a lower level
one that is progressively closer to the final implementation. Each refinement
step is obtained by mapping all the components of the higher level description
with components (or composition of components) from a lower level descrip-
tion. The mapping results from solving a constrained optimization problem:
the choice is a mapping that satisfies the higher level description constraints
while optimizing according to a cost function defined by the designer. For each

Development Methodology for BSN Systems

10  Development Methodology for BSN Systems178

layer of abstraction, these components, along with a description of their inter-
faces and performance, are stored in a library, called platform. The higher the
initial level of abstraction, the easier is formulating functionalities and con-
straints, but the more difficult is to reach to a high‐quality translation due to
the semantic gap between specification and implementation.

Each refinement step is performed with a hybrid approach, where applica-
tion constraints are refined in a top‐down fashion, architecture performance
are abstracted in a bottom‐up fashion, and a meet‐in‐the‐middle phase decides
the actual implementation as discussed above.

The formalization of the PBD methodology is based on the Agent Algebra [2],
which represents a formal tool to describe the refinement process. The refine-
ment is the expression of a function in terms of the elements of a platform.

Three domains of agents are used to describe the mapping process and per-
formance evaluation: the first two represent, respectively, the platform and the
function; the third, referred to as common semantic domain (CSD), is an inter-
mediate domain to map functions onto platform instances. A platform,
depicted on the right in Figure 10.1, corresponds to the implementation search
space. The function, on the left in Figure 10.1, corresponds to the specification
domain. The function and the platform meet in the CSD. This domain plays
the role of a common refinement and is used to combine the properties of both
the platform and the specification domain that are relevant to the mapping
process. The function is mapped onto the CSD as depicted in Figure 10.2. A
platform instance is projected onto the CSD by considering the agents that can
be implemented with that particular instance. This projection, represented by
the arrows that originate from the platform in Figure 10.2, may or may not have
a greatest element. If it does, the greatest element represents the nondetermin-
istic choice of the functions that are implementable by the instance.

Library elements

Architecture platform

Platform instance

Function domain

Function

Figure 10.1  Architecture and function platforms.

Library elements

Architecture platform

Platform instance

Best platform instance
mapping

Common semantic domain

Best function
mapping

Best admissible
refinement

Function domain

Function

Figure 10.2  Mapping of function and architecture.

10  Development Methodology for BSN Systems180

The CSD is partitioned into different areas: the useful one contains
the Admissible Refinements and is determined by the intersection between the
refinements of the function and the functions that are implementable by the
platform instance. Each of the admissible refinements encodes a particular
mapping of the components of the function onto the services offered by the
selected platform instance. The vertex of this area corresponds to the Best
Admissible Refinement and the implementation choice should ideally bring to
that point. After an implementation is selected at a certain level, the same
refinement process is iterated so to obtain a lower level of abstraction that is
hence closer to the final implementation. The PBD shows its recursive nature,
as the process is repeated at increasingly more detailed levels of abstraction,
terminating once the final implementation is obtained.

10.3  Motivations and Challenges

Today the choice of an architecture platform for developing BSN systems is
more an art than a science. In the application perspective, the requirements
that lead this choice are typically wearability, size, cost, and performance. For a
particular application, we require that, for instance, the platform should be
able to handle (and preprocess) a minimum sensor sampling rate, which has
both computational power and memory performance involvements. Since
each application requires different sets of functions, the constraints identify
different (embedded) platforms, where more advanced applications yield to
harder architectural constraints.

In the IC manufacturers’ perspective, production and design costs also imply
adding platform constraints. The intersection of the two sets of constraints
defines the architecture platforms that can be used for the final product. It is
worth noting that the result can be an overdesigned platform instance for a
given application; in other words, the full potential of the platform is partially
unexploited. Overdesign, to some degree, is not necessarily an issue, as it can
reduce design costs and time‐to‐market of new products.

So, the “design” of a BSN system should be supported by a formal methodol-
ogy that is able to allow the designer exploring the possible choices looking for
the most effective and efficient trade‐off solution.

10.4  SPINE‐Based Design Methodology

Through the experience gained by using SPINE for the development of several
BSN applications (see Chapter 11), we identified a novel method to support
rigorous BSN system design that helps the designer to obtain reliability, effi-
ciency, and true interoperability among different systems as well as differ-
ent hw/sw implementation of the same system. The SPINE‐based Design

10.4  SPINE‐Based Design Methodology 181

Methodology (SPINE‐based DM) is inspired by the well‐known PBD [1]. Here,
however, the necessary platforms are opportunely semi‐instantiated.

Specifically, according to the PBD, and in particular following the indication
of Ref. [3], three layers of abstraction and corresponding platforms have been
defined: the Service Platform at the application layer, the Protocol Platform to
formalize communication protocols, and the Implementation Platform to
describe hardware devices. Each design integrates an instance of these layers.
Specifically, at each given refinement step, the design consists of a complete
instance of the BSN system under development. We identified three main
refinement steps: high level, detailed design, and implementation.

However, our approach differentiates from the standard PBD methodology
because, with the intent of guiding the designer during the development of a
SPINE‐based efficient BSN system, some of the platforms we identified are
semi‐instantiated. Specifically:

●● The Service Platform is bound to the high‐level API provided by the SPINE
Framework (see Chapter 3). Application requirements and functionalities
can be mapped freely to the flexible SPINE API and services.

●● The Implementation Platform includes many hardware. The designer has
the opportunity to choose the most suitable one according to low‐level sys-
tem requirements. The Implementation platform is semi‐instantiated too, as
we assume, at the sensor‐node level, the use of TinyOS‐based architectures
onto which the node‐side of the SPINE Framework has been deployed, and,
at the coordinator level, the use of Java‐ and Android‐powered personal
devices/computers that will be used as SPINE‐based BSN coordinators.

●● The Protocol Platform allows choosing two protocol stacks: Bluetooth and
IEEE 802.15.4. This platform is the last to be instantiated as the choice often
depends on the mapping made at the Implementation Platform (particularly
on the radio standard available on the target devices).

10.4.1  A Pattern‐Driven Application‐Level Design

The application‐level design of a SPINE‐based BSN application can be guided
by pattern‐driven strategies. In the following, we describe two of such useful
design patterns, both completely supported by SPINE:

●● Sensor Data Collection for Monitoring: The simplest pattern supports the
development of BSN systems for data collection from a set of wearable sen-
sors into the coordinator which, in turn, visualize, store, and/or analyze such
collected data. The pattern architectural schema is depicted in Figure 10.3a.
Its main components are organized in two layers:

1)	 Sensing, in which data are collected from the sensor nodes.
2)	 Monitoring, in which data can be visualized, analyzed, and stored.

10  Development Methodology for BSN Systems182

Each layer can be implemented either at the sensor or coordinator level. At the
Sensing layer, the sampling management component feeds the data preproc-
essing component with sensory data. At the monitoring layer, data can be
stored by the data storing component, analyzed by the data analysis compo-
nent, and graphically visualized by the data visualization component. It is
worth noting that none of these components are required; each of them can be
optionally included.

●● Multisensor Data Fusion for Detection/Classification of Events: This pat-
tern extends the previous by introducing the detection and/or classifica-
tion of events of interest, such as accidental falls, physical activities,

Sensing layer

Sampling management

Data preprocessing

Storage

Analysis Display

Monitoring layer

Sampling management

Feature extraction

Analysis layer

(a)

(b)

Feature selection

Feature fusion

Decision fusion

Dissemination layer

Event propagation

Sensing layer

Figure 10.3  Pattern architectural schemas: (a) Sensor Data Collection for Monitoring;
(b) Multisensor Data Fusion for Detection/Classification of Events.

10.4  SPINE‐Based Design Methodology 183

posture or gestures, mental states, and so on (see Chapter 11). Its archi-
tectural schema is depicted in Figure 10.3b. The main components are
organized in three layers:

1)	 Sensing, defined as for the previous pattern.
2)	 Analysis, in which decisions are inferred from available sensory data.
3)	 Dissemination, in which extracted information is provided to end‐user BSN

applications.

Each layer can be implemented either at the sensor or coordinator level. At the
Sensing layer, the sampling management component feeds the feature extrac-
tion component that, in turn, extracts features such as the maximum/mini-
mum values, signal energy, or average value. At the Analysis layer, (i) the feature
selection component contains algorithms for the selection of the most signifi-
cant feature sets, (ii) the feature fusion component merges the different fea-
tures together, and (iii) the decision fusion component, on the basis of the
incoming features set, performs decisions such as classification of human pos-
tures or gestures (see also Section 11.3). Finally, at the Dissemination layer, the
event propagation component forwards such decisions to (local and/or remote)
application‐level components.

10.4.2  System Parameters

According to the proposed method terminology, the main parameters affect-
ing BSN‐based applications can be classified as follows:

1)	 Application‐level parameters: system accuracy, reliability, and responsive-
ness. Accuracy is application‐specific and related to pattern recognition
and event classification such as activity recognition or stress detection
accuracy (see also Sections 11.2 and 11.3). Reliability is very relevant for
life‐critical applications (e.g. early detection of cardiac attacks, epilepsy
attacks, and fall detection). A fuzzy definition of responsiveness is the abil-
ity of a system to provide the necessary feedback to the user within accept-
able times; it is application‐specific too, as it depends on the processing load
required to perform the main operations, e.g. computation of flexion/rota-
tion degrees in motor rehabilitation digital assistants (see also Section 11.5),
or detection of a handshake in a handshake detection system (see also
Section 11.4).

2)	 Protocol‐level parameters: bandwidth and delay that depend on sensor
sampling frequency, sensor‐ and application‐specific generated data, and
on communication protocols themselves. It is worth noting, however, that
specific network synchronization requirements can be handled by the
selected protocol (e.g. by using a TDMA technique), whereas more complex
synchronization constraints must be handled at the Application level.

10  Development Methodology for BSN Systems184

3)	 Device‐level parameters: energy consumption, memory, and processing
capabilities requirements. The energy consumption depends on duty cycle,
sensor type and sampling frequency, radio usage, and application‐specific
signal processing. Memory (system and mass memory) requirements
depend on (i) software platform tailoring (i.e. specific to our design method,
for which TinyOS and SPINE components are needed), (ii) sampling fre-
quency, (iii) buffering allocation parameters for sensor data storing and
computation (e.g. buffer pool size, window, and shift size), and (iv) on appli-
cation‐specific signal filtering and data processing. Computing power is
mostly determined by application‐specific signal processing.

10.4.3  Process Schema

The SPINE‐based Platform Design [4] process schema is depicted in Figure 10.4.
The process is iterative and is composed of the following steps (carried out by
Modeler, Designer, and Developer roles):

●● Requirements Analysis (RA): it produces a set of functional and nonfunctional
requirements driving the design flow.

●● High‐Level Design (HLD): it produces a high‐level design of the BSN system
on the basis of the identified requirements. In our methodology, a HLD is an
instance of the SPINE framework integrated with selected protocols, sen-
sors, and platforms.

●● Performance Estimation of HLD: it produces estimation measurements of
the HLD performance by using available analytical/simulation methods.
Although the results cannot be detailed at this refinement level, they can still
provide insights on the feasibility (or convenience) to translate the available
HLD into a DD. If the requirements are not satisfied, the process must step
back to the HLD step.

●● Detailed Design (DD): it produces the detailed design of the available HLD
instance. The HLD is refined at each of the three layers of SPINE‐based DM
by following the pattern‐driven design described previously.

●● Performance Estimation of DD: it provides analysis of the DD by testing
or estimating the DD performance through analytical and/or simulation
methods and also by mapping selected DD components onto the device level
for testing. The obtained results are more accurate than the Performance
Estimation HLD output; they provide fine‐grained indications on the feasibil-
ity of obtaining an effective and efficient implementation of the DD instance.
If the requirements are not satisfied, the process must go back to the DD or
even the HLD step.

●● Implementation: it produces an implementation of the DD output; the BSN
system can be finally deployed, executed, and tested.

●● Deployment: it defines deployment details of the BSN system.

Requirement
analysis

Analyzer DeveloperDesigner

High-level
design

HDL performance
estimation

Detailed
design

DD performance
estimation

Implementation Deployment
System performance

evaluationStart End

Figure 10.4  SPINE‐based Platform Design process schema.

10  Development Methodology for BSN Systems186

●● System Performance Evaluation: it provides detailed test cases of the BSN
system and detailed performance measurements are extracted for its valida-
tion. The result of this analysis provides a full‐fledged test of the whole sys-
tem. If the requirements are not satisfied, the process must go back to the
DD or even the HLD step.

10.5  Summary

This chapter has introduced a specialization of the PBD methodology for system‐
level design of BSN applications. First, the PBD approach has been briefly
described. Then, a PBD methodology, previously proposed for the design of WSN
systems, has been specialized for the more specific BSN domain. Finally, the
methodology has been concretely shown in relation to the SPINE framework.

References

	1	 Keutzer, K., Newton, A.‐R., Rabaey, J.‐M., and Sangiovanni‐Vincentelli, A.
(2000). System‐level design: orthogonalization of concerns and platform‐based
design. IEEE Transactions on Computer‐Aided Design of Integrated Circuits
and Systems 9 (12): 1523–1543.

	2	 Passerone, R. (2004). Semantic foundations for heterogeneous systems. PhD
thesis. University of California.

	3	 Bonivento, A. (2007). Platform based design for wireless sensor networks. PhD
thesis. University of California.

	4	 Fortino, G., Giannantonio, R., Gravina, R. et al. (2013). Enabling effective
programming and flexible management of efficient body sensor network
applications. IEEE Transactions on Human‐Machine Systems 43 (1): 115–133.
doi: 10.1109/TSMCC.2012.2215852.

187

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

11

11.1  Introduction

The worldwide trend of increasing average life expectancy and a more profound
awareness of the importance of taking actions at different levels to keep a good
health status are forcing the health system to significant renovation. Enabling
technologies in this context are the current powerful personal mobile devices,
such as smartphones and tablets, the body sensor networks (BSNs), i.e. wearable
sensor units (smart watches, glasses, and wristbands) that are often able to
monitor several health parameters, and the cloud computing infrastructures. The
result is a great opportunity of providing very diverse and personalized smart‐
Health services that could be accessible to anyone, anywhere, and anytime.

11.2  Background

This chapter emphasizes how the SPINE framework is actually able to support
the development of heterogeneous health‐care applications based on reusable
subsystems. Indeed, one of the main goal of SPINE (see Chapter 3) is to provide
a flexible architecture that can support a variety of practical applications without
the need for costly redeployment of the code running on sensor nodes. This
chapter therefore introduces some interesting research BSN systems that have
been developed atop SPINE. Furthermore, each of the described applications
improved the current state‐of‐the‐art, as described in the following sections.

11.3  Physical Activity Recognition

Physical activities play a fundamental role in human well‐being; however,
although people are now fully aware of their importance, they still need regular
motivational feedback to maintain an active life style. Thus, the automatic

SPINE‐Based Body Sensor Network Applications

11  SPINE‐Based Body Sensor Network Applications188

recognition of activities and postures is the first step for providing the right
feedback. To this extent, physical activity recognition is a basilar block of many
wellness and smart medical applications. In addition, many human‐centric
context‐aware real‐life applications need to assess user activities as they often
heavily contribute at determining the context itself.

11.3.1  Related Work

Human activity recognition has attracted tremendous interest and the topic
has been studied under very diversified point of views and the related issues
addressed through different approaches in terms of types of sensory signals
and recognition strategies. Research in physical activity monitoring is cur-
rently focused to support elderly people and patients with chronic diseases.

One of the most relevant and cited related work is by Bao and Intille [1].
In this study, several supervised learning algorithms are used and evaluated
to detect physical activities using accelerometer data gathered from sensor
nodes placed on different body locations. Acceleration data was collected from
20 subjects without researcher supervision or observation.

The authors in Ref. [2] address the very interesting aspect of comparing the
activity classification accuracy by varying the number and the location of sen-
sor nodes on the human body.

In Ref. [3], the authors propose an activity recognition system based on a
single motion sensor node worn at the waist. Three axial acceleration signals
are processed to extract significant features such as mean, standard deviation,
energy, and correlation. A number of classifier algorithms (decision trees,
K‐nearest neighbors, SVM, and Naive Bayes) have been evaluated to assess
their performance in terms of recognition accuracy. Furthermore, meta‐level
classifiers based on different approaches (voting, stacking, and cascading) have
been taken into account too.

In Ref. [4], the focus is on the importance of designing power‐aware recogni-
tion algorithms as they are implemented on power‐constrained wearable
devices. The authors investigate the benefits of dynamic sensor selection to
achieve the best trade‐off among power consumption and activity recognition
accuracy and propose an activity recognition method that is associated to an
underlying runtime sensor selection scheme.

In the last year, thanks to the tremendous improvements of commercial
smartphones, not only in terms of computational and storage capabilities,
but in particular of sensing opportunities, many research projects and com-
mercial applications are highlighting the convenience of developing physical
activity monitoring systems (as well as more generic smart‐Health applica-
tions) solely supported by smartphones, so to significantly improve user
acceptance and reduce economic costs. For instance, Ref. [5] presents a
daily activity monitoring system designed for elderly people based on the

11.3  Physical Activity Recognition 189

smartphone accelerometer. The authors take into account the energy limita-
tion and propose a power‐aware approach as an adaptation of the standard
Support Vector Machine (SVM). In Ref. [6], along with the accelerometer,
the gyroscope and the magnetometer (available in many current smart-
phones) are also used to detect physical activities. The authors notably
evaluate the effect on classification performances of smartphone position
and orientation on the body.

Excellent review works on human activity recognition have been published
too. In Ref. [7], the authors provided a review of the most relevant approaches
and methodologies related to sensor‐based activity monitoring, modeling, and
recognition; advantages and weakness are discussed for each approach. An
extensive survey [8] covers the state‐of‐the‐art in human activity recognition,
specifically based on wearable sensors. The authors propose a two‐level tax-
onomy associated with the learning approach (supervised or semisupervised)
and the response time (off‐line or online).

11.3.2  A SPINE‐Based Activity Recognition System

The human activity monitoring system presented here takes advantage of the
past work aiming at finding the best trade‐off among accuracy, wearability,
power requirements, and programming complexity. It is able to recognize pos-
tures (lying down, sitting, and standing still) and a few movements (walking
and jumping); furthermore, it also includes a simple yet effective fall detection
module that uses the activity classification to determine if a person is unable to
stand up after the fall.

The system uses two wireless wearable nodes based on the Shimmer2R [9]
platform, which includes a 3‐axis accelerometer and an Android‐based per-
sonal mobile device (e.g. a smartphone or tablet) that acts as a coordinator. The
end‐user application (see Figure 11.1) runs on Android and is programmed
atop the SPINE‐Android framework. The sensor nodes and the coordinator
communicate over Bluetooth.

The activity recognition system uses a classifier algorithm that takes acceler-
ometer data gathered by the wearable units, placed on the waist and on the
thigh of the assisted living, and recognizes gestures and activities defined dur-
ing an off‐line training step. Among the most popular classification algorithms
used in the literature to this purpose, a K‐Nearest Neighbor [10] (k‐NN)‐based
classifier has been modeled.

The proposed system includes a default training‐set to use the application
without customization. However, a graphical wizard can be optionally used to
improve recognition accuracy by creating a user‐specific training‐set. The
most significant features for discriminating the different activities will be even-
tually computed online by the sensor devices but are initially identified with an
off‐line sequential forward floating selection (SFFS) [11] algorithm.

11  SPINE‐Based Body Sensor Network Applications190

The k‐NN classifier requires the selection of two different parameters: the
value of K and the metric distance. However, if the feature selection process is
performed accurately, the result will lead to activities’ clusters that are inter-
nally very dense, and well separated among each other. This is particularly true
on the specific set of activities targeted by the system. Therefore, the classifier
accuracy is significantly influenced by its parameter values, which have been
selected as follows, mainly to reduce classification execution time:

●● K = 1
●● Metric distance: Manhattan

The most significant feature set obtained with the SFFS algorithm is the
following:

●● Waist node: (i) average value on the accelerometer axes XYZ, (ii) minimum
value on the accelerometer axis X, and (iii) maximum value on the acceler-
ometer axis X.

●● Thigh node: minimum value on the accelerometer axis X.

As aforementioned, the proposed system also integrates a fall detection
functionality, whose underlying algorithm is distributed since it is partially

Figure 11.1  Two screenshots of the developed activity recognition Android app.

11.4  Step Counter 191

running on the waist node and partially on the mobile coordinator. Specifically,
the algorithm computes in real time on the waist node the total energy (i.e. the
square root of the sum of squares) over the three accelerometer axes. The
instantaneous total energy value is compared against an empirically estimated
threshold and if this is exceeded, the node triggers a “potential‐fall” alarm
message back to the coordinator. If such a preliminary alarm is received, the
portion of the algorithm running on the coordinator starts monitoring the user
postures for a certain period. If the user is detected as “lying down”, an emer-
gency message is reported to relatives and/or medical personnel via several
channels (SMS and automated voice call to an emergency list of numbers, and
even Facebook and Twitter posts). In particular, we differentiate two types of
alarms: yellow if the user is able to stand up shortly after the fall, red if, after a
few minutes, he/she is still lying down.

The classification accuracy performance achieved by the system, reported
per each activity in Table 11.1, reaches an overall average score of 97%. The
fall detection algorithm, instead, in a semicontrolled laboratory setting
obtained an average accuracy of 90%, with a very low percentage of false
alarms (less than 1%).

11.4  Step Counter

Human footstep detection refers to the automatic determination of the time
moment at which steps occur. It is the basic block for the realization of step
counters, also known as pedometers, which can be used to roughly assess in
real‐time human activity levels, which in turn is one of the major goal of well-
ness applications. Step counters have also been used to assess elderly mobility
and to improve physical activity in youth to reduce the risk of obesity.

11.4.1  Related Work

Step detection has been broadly addressed and many different methodological
and technological approaches have been proposed in the literature. A compre-
hensive review on this topic is out of the present scope and the interested
reader can refer to Refs. [12, 13] for a deeper analysis. In the following, only few
significant works, addressing the human step detection by means of wearable
devices and accelerometer sensors, will be introduced.

Table 11.1  Posture/movement recognition accuracy.

Sitting Standing Lying down Walking

96% 92% 98% 94%

11  SPINE‐Based Body Sensor Network Applications192

In Ref. [14], a method for online step detection using an embedded device
based on the IMote2 platform and equipped with a 3‐axis accelerometer is
presented. The device, which must be worn on the hip, samples the accelerom-
eter at a frequency of 512 Hz. The raw acceleration signals are initially used to
extract a cross‐axial magnitude signal which is, in turn, smoothed with a low‐
pass filter. Then, the obtained signal is further processed to obtain its first
derivative signal. Finally, threshold‐based peak detection is performed.

In Ref. [15], a system specifically designed to assess the number of steps
taken during running is presented. It is based on the Nokia Wrist–Attached
Sensor Platform equipped with a 3‐axis accelerometer. In this work, the accel-
eration signals are processed with a high‐pass filter with the intent of removing
the gravity component. The three high‐pass filtered signals are then combined
to generate a unique signal by taking the 1‐norm, obtained by summing up the
three axes’ corresponding absolute sample values. Then, threshold‐based peak
detection is performed. It is worth noting that in this work the threshold is
dynamically adapted. The overall system performance reaches a 30% underes-
timation of the actual number of steps taken while running.

In Ref. [16], a pedometer based on a custom prototype device using the
3‐axis accelerometer ADXL330 connected to the 8‐bit MPC82G516 micro-
controller is presented. The device is intended to be worn on the waist or in the
pocket. The raw acceleration signals are first smoothed with a Hamming filter.
The x, y, and z acceleration vectors are used to evaluate the initial spatial orien-
tation of the device so as to allow for an arbitrary placement of the device itself
(particularly useful if it would be placed in the pocket). The filtered x, y, and
z signals are also used to generate the acceleration signal in the direction of
gravity. This latter signal is compared against a fixed, empirically evaluated,
footstep threshold. The system has been evaluated in a laboratory setting on
five subjects showing an average detection accuracy of about 90%.

11.4.2  A SPINE‐Based Step Counter

This section describes an innovative step‐counter algorithm that has been
integrated into the previously described SPINE‐based activity recognition
application as an optionally activated functionality. To provide an original
contribution and improvement to the state‐of‐the‐art, we identified a number
of key design requirements:

●● Use of accelerometer data.
●● Low sampling rate.
●● Energy‐ and computation‐efficient design to support embedded implementations.
●● Use of a single sensor node, placed on the waist (below the navel).
●● General‐purpose algorithm, to be used by healthy people as well as elderly

and/or people with disabilities.
●● No need for “ad‐personam” calibration.
●● High average accuracy (robustness).

11.4  Step Counter 193

Several real walk data on different subjects have been collected and studied
before starting the algorithm design. The subjects were asked to walk naturally
and to increase/decrease the walking speed occasionally. In particular, a single
3‐axis accelerometer sensor node was placed on the waist while recording. The
sensor has been sampled at 40 Hz. To simplify the development, debugging,
and evaluation, the algorithm has been initially programmed in Matlab. Only
integer‐math computations were used, thus allowing for a more straightfor-
ward embedded implementation (as the target embedded platform is based on
a microcontroller with no hardware support for floating point operations).

It is worth noting that the frontal acceleration of the waist (i.e. parallel to the
ground) presents a signal roughly sinusoidal while walking. The basic idea is,
therefore, to detect steps by identifying the decreasing segment (falling edge),
which corresponds to the last fraction of a step movement.

Furthermore, it is clear that a human step is characterized by time constraints
(physically, it cannot be “too” fast or “too” slow). However, walk patterns
change from people to people and even for the same person it might change
from time to time; hence, the amplitude of the acquired signal can vary
significantly.

To simplify recognition of the step pattern, the raw frontal acceleration is
first processed with a smoothing filter, which removes the high‐frequency
components. Then, the algorithm looks for local maximums. When a local
maximum is found, it looks for a local minimum. After the local minimum is
also found, the candidate segment is naturally identified.

Two features are then extracted and used to determine whether the candi-
date belongs to an actual step or to different body movements. Specifically,
the candidate is classified as step (i) if they have an acceleration drop within
a certain range (specified by a “tolerance” parameter around a threshold) and
(ii) if the time elapsed is within a certain interval. The preprocessing is a
9‐point windowed smoothing filter, which uses Gaussian kernels. Because they
are applied to a digital signal, the sum of the kernels must be 1. Furthermore,
because the algorithm works on integer‐math, they are scaled so that decimal
factors are removed.

The threshold is coarsely initialized, but it is automatically adapted while steps
are recognized. In particular, it is continuously updated with the average of the
last 10 acceleration drops that are classified as steps. This is very useful to avoid
custom training or a setup phase before the step‐counter functionality could
work properly and accurately. Finally, to reduce “false positive” recognitions, e.g.
due to sudden shocks or slow tilts of the sensor, the time elapsed between
the local max and min (which is simply determined as the product between
the number of samples of the segment and the sampling time) must be longer
than the “minimum step time” and shorter than the “maximum step time.” Both
values have been determined empirically from the available observations.

The proposed algorithm has been initially evaluated on the computer
and finally implemented on a wireless sensor node running SPINE. For this

11  SPINE‐Based Body Sensor Network Applications194

application, the node‐side of SPINE has been extended with the proposed
algorithm. Every time the node detects a step, it communicates to its coordinator
the total number of steps taken so far, in order to avoid miscounting due to lost
packets. On the SPINE coordinator, very minor additions have been made to
the core framework, and a simple graphical gadget has been added to show in
real time the number of steps being taken.

11.5  Emotion Recognition

Emotions play a fundamental and basilar role in daily life of each person, both
at the individual and social level. The need and importance of automatic emo-
tion recognition is growing along with the increasing popularity of human–
computer interface (HCI) systems. Today, in fact, new forms of human‐centric
interaction with digital media and devices have a disruptive potential of revo-
lutionizing many aspects of virtual and real life. Furthermore, automatic
emotion recognition could provide helpful medical information and indices for
the prevention or early detection of many psychophysiological disorders.

Among the many human emotions, being able to automatically recognize
stress and fear, thus, becomes very useful, as it will be described in the follow-
ing two sections.

11.5.1  Stress Detection

The Heart Rate Variability (HRV) is based on the analysis of the R‐peak to
R‐peak intervals (RR‐intervals – RRi) of the electrocardiogram (ECG) signal in
the time and/or frequency domains. In recent years, the importance of the HRV
for detecting mental and emotional states is being recognized by physician and
psychologists, specifically for the sake of identifying stress and anxiety.

11.5.1.1  Related Work
Past medical studies have showed that patients with anxiety, phobias, and
stress disorders consistently present lower HRV. It is worth noting that this
relationship exists independently of gender, age, heart and respiratory rate,
trait anxiety, or blood pressure.

Monitoring the mental stress is particularly important because studies
showed that long‐term exposure to stress is a risk factor for cardiovascular
diseases [17, 18]. Many industry research projects focus on HRV, looking for
connections with related heart diseases. An interesting research [19] actually
proves the existence of a relation between time‐domain HRV parameters and
stressful car driving situation.

In Ref. [20], the authors present an activity‐aware mental stress detection
approach using ECG, GSR, and accelerometer data. Specifically, the work is
focused on sitting, standing, and walking.

11.5  Emotion Recognition 195

In Ref. [21], an interesting application of the stress detection to biometric
security is proposed. Furthermore, the work reviews several methods for stress
detection, to assess which one is most suitable for implementation in future
biometric devices.

There are also a few commercial products for mental stress assessment.
For instance, StressEraser [22] provides a biofeedback of the stress level look-
ing for the breathing pattern that maximizes Respiratory Sinus Arrhythmia.
Stress Monitor [23] is another system designed for stress monitoring while
working. It is composed of a USB ear‐clip device to be connected to a PC and
a desktop application for real‐time and historical reports. Finally, the emWave
Personal Stress Reliever [24] is a handheld device with audio and LED feed-
backs to monitor the stress level of the user. It is worth noting that none of
these commercial products are suitable for continuous monitoring as they
must be handled in hand to work or they cannot operate standalone.

11.5.1.2  SPINE‐HRV: A Wearable System for Real‐Time Stress Detection
In this section, we present a wearable system programmed atop SPINE (oppor-
tunely extended with a custom‐defined processing function) that uses time‐
domain HRV analysis to detect mental stress [25]. It is designed for continuous
noninvasive use and consists of a wearable cardiac sensor node (we have two
alternative implementations, one with a Shimmer2R node equipped with the
add‐on ECG sensor board and the other with a Polar Electro [26] ECG wireless
chest band), which extracts the RRi from the full ECG signal. The RRi are then
processed using the SPINE framework with an application running on the
coordinator (see Figure 11.2).

In particular, the system extracts common parameters known in the medical
literature to perform an HRV analysis applied for continuous noninvasive
mental stress detection of people during everyday activities.

The stress detection is computed at regular intervals (tunable from 10 to
60 min). Our approach is based on a time‐domain analysis, which is sufficiently
accurate to recognize the stress condition as shown in Ref. [27]. In particular,
the analysis involves the computation of four significant indices:

	

RR RR

SDNN RR RR

RMSSD RR RR

j

N j

N j j

J

1 15

15

1
1

2

1
1 1

1

1

j
j

N

2

50 50
1

100

1

1

J

N

N
pNN NN

	

11  SPINE‐Based Body Sensor Network Applications196

RRj denotes the value of the jth RR‐interval and N is the total number of
successive intervals. RRj is therefore the average value of 15 consecutive RRi.
SDNN, the standard deviation of RRj, is the primary measure used to quantify
HRV changes, since SDNN reflects all the cyclic components responsible
for variability in the period of recording. RMSSD is the root mean square of
successive differences. Finally, pNN50 is the ratio derived by dividing NN50 by
the total number of RRj, where NN50 represents the number of successive
intervals differing by more than 50 ms.

The proposed system aims at detecting whether the monitored person is
mentally stressed. This decision problem has been solved with a threshold‐
based approach.

Table 11.2 reports the threshold values extracted from the results found in
Ref. [27]. The RR signal is recorded for a certain time window, at the end of
which the algorithm computes the features, and, if at least three out of the four
of them exceed the values reported in Table 11.2, the persons’ mental state is
classified as “stressed.” In synthesis, the novelty in the proposed system is that
the ability of performing online emotional stress detection rather than through
off‐line analysis.

Figure 11.2  The main monitoring window of the stress detection system.

11.5  Emotion Recognition 197

11.5.2  Fear Detection

Fear is the physiological reaction in response to a danger or threat. Among
the other psychophysiological reactions preceding the emotion of fear,
there is a specific event that can be observed in the cardiac activity known
as Cardiac Defense Response (CDR) [28, 29]. This response is the first of
an internal process sequence preparing a reaction to threats priming either
for fighting or fleeing (this is known as “fight‐or‐flight”) [30]. In particular,
right after a sudden situation perceived dangerous by the brain, the first
basic reaction is the CDR activation. Then, if the stimulus is eventually
classified as not actually dangerous, the organism goes back to a normal
state and the heart rate (HR) stabilizes, otherwise a sense of fear will start
to be perceived. Thus, the CDR has a protective and defensive role; never-
theless, if triggered too often and/or irrationally, it may represent a health
risk and in the long term it could lead to several psychological disorders
such as mental stress, phobia, anxiety, and depression [31]. Thus, being
able to identify automatically the CDR activation is relevant, clinicians
could be in fact aided by a valuable tool for studying the psychological
state of the subject.

The ECG is being studied for emotion recognition and stress detection [25]
as it has demonstrated the influence that psychological states due to emotions
and other external conditions have on the ECG signal.

11.5.2.1  Related Work
The literature on the specific problem of automatic recognition of the human
fear emotion is extremely limited. Mostly, past studies have investigated the
broader problem of emotion recognition [32, 33] with controversial results.
Some more related works focus instead on the arousal monitoring [34–36].
Arousal is a psychophysiological state of being awake or reactive to stimuli and
plays a central role for motivating the fight‐or‐flight response, which in turn
often precedes the emotion of fear.

Table 11.2  Stress threshold for HRV parameters.

Feature Threshold Unit

HR >85 1 min−1

pNN50 <7 %
SDNN <55 ms
RMSSD <45 ms

11  SPINE‐Based Body Sensor Network Applications198

11.5.2.2  A SPINE‐Based Startle Reflex Detection System
This section introduces a SPINE‐based mobile system that recognizes in real
time basic emotional responses and in particular the CDR, which is triggered
before the fear emotion itself [37, 38]. To the best of our knowledge, this is the
first work aiming at recognizing automatically and in real time this physiological
mechanism.

For the sake of realizing a portable noninvasive system, there are clear advan-
tages on using the ECG, as technologies based on lightweight wearable cardiac
sensors can be used. In particular, detecting the CDR requires the extraction of
the RRi, and consequently the HR, from the full ECG trace.

We proposed an algorithm for the detection of the QRS complex (i.e. the
heartbeat) inside the ECG signal using a dynamically adapted threshold‐based
approach. The algorithm looks for peaks in the ECG that are compared against
an automatically estimated threshold; those exceeding the threshold are labeled
as heartbeats and time stamped, hence leading to the RRi series, which are the
input to the actual CDR detection algorithm. The proposed QRS detection
algorithm runs on the personal mobile device and is part of the mobile applica-
tion running atop the SPINE‐Android coordinator.

In Figure 11.3, the schematic block diagram of the proposed adaptive QRS
detection algorithm is shown. The algorithm consists of three main processing
phases: a moving average‐based high‐pass filtering (HPF), a nonlinear low‐
pass filtering (LPF), and a decision‐making block [39]. More specifically:

1)	 First, an ECG recording is processed by the linear HPF to amplify the QRS
complex, while suppressing the undesired waveforms (e.g. P or T waves)
and the baseline wander. This step consists of a 5‐point moving average fil-
ter whose output is subtracted, point‐by‐point, from the delayed input sam-
ple so that the entire system becomes an FIR HPF with linear phase.

2)	 Then, the linear HPF output is then processed by a full‐wave rectification
and nonlinear amplification followed by a sliding‐window summation, thus
resulting in an envelope‐like feature waveform. These operations (a nonlinear

ECG Linear HPF Nonlinear HPF

Decision-making
block

Figure 11.3  Block diagram of the proposed adaptive QRS detection algorithm.

11.5  Emotion Recognition 199

LPF process) aim at smoothing down the high‐frequency, low‐amplitude
artifacts while leaving the QRS waveform intact.

3)	 Finally, an adaptive threshold is applied to the feature waveform to complete
the QRS complex detection.

To detect the CDR, we proposed an algorithm based on the idea of detecting
changes in signal stationary. The underlying ratio is that physiological signals,
including the ECG and its derived RR signal, are highly stationary. Formally,
a signal is stationary if the mean and standard deviation of the signal do not
change during signal acquisition. In ECG and RR signals, in particular, nonsta-
tionary events are due to several factors (e.g. changes in posture and respira-
tion patterns).

Our intuition suggests that physiological changes and, more specifically, the
effects of the CDR associated with responses to basic emotions such as the fear
can also introduce nonstationary events in the ECG and consequently in the
RR signal [28–31].

Thus, sudden changes in HR regulation due the CDR can be detected by
looking at the nonstationary transitions from the normal HR regulation.
The CDR algorithm adopts the cross‐correlation integral method to quantify
the amount of stationary in the given RR signal [40]. It provides the probability
that a particular signal is stationary: a value close to 1 indicates a stationary
signal; conversely, a value closer to 0 refers to highly nonstationary signals. We
propose to compute the cross‐correlation integral in a moving‐window fashion
(10% of the signal length). This allows for the detection of transitions in non-
stationary in the RRi signal by running the CDR detection algorithm as a func-
tion of time. Finally, the cross‐correlation integral samples are converted to
percentages; this feature is referred as nonstationary index (NSI).

The CDR algorithm has been validated on 40 subjects, evaluating the NSI to
establish the occurrence of the CDR. Specifically, a change pattern is classified
as a CDR event if a reduction in the NSI is less than or equal to 80%. This spe-
cific NSI threshold was empirically estimated by direct observation of the data
from all 40 subjects. The proposed system includes original contributions:

●● It detects patterns in the HR signal, that is, it detects if the signal presents
nonstationary transitions as they indicate changes in regulation of the HR
signal.

●● In contrast to related work in the psychological literature [28, 29], the CDR
activation is detected in real time.

●● By analyzing the CDR detection algorithm results, it is possible to locate the
CDR event in the RR signal.

Figure 11.4 shows a portion of a real RR signal (top) and the corresponding
NSI (bottom). The plot shows that a change in signal stationary can be observed
when the subject experienced the CDR triggered by the external stimulus

11  SPINE‐Based Body Sensor Network Applications200

prompted to the subject during our experimental protocol setup. In particular,
it is worth noting the NSI exceeding the 80% threshold.

The CDR detection algorithm was implemented with the R scripting
language for the availability of mathematical and statistical libraries useful for
the algorithm.

In addition, we realized a mobile application (see Figure 11.5), for devices
running the Android OS, that is able to monitor the cardiac activity and, in
particular, for detecting the CDR mechanism activation.

This system is implemented atop SPINE and uses a Shimmer2R node,
equipped with the ECG sensor board, placed on the chest with a dedicated
elastic band. The Android application uses the “Rserve” [41] library to com-
municate with an R server responsible for the remote execution of the CDR
algorithm. Furthermore, the application also displays the current BPM value,
the full ECG signal, the RRi series, and the historical HR chart.

11.6  Handshake Detection

The handshake is a basic gesture in many cultures. It introduces many formal
and informal social interactions such as exchanging greetings, offering congratu-
lations, or finalizing a deal. Thus, automatic handshake detection could enable

0

Cardiac Defense Response

1.
1

0.
9

0.
7

R
-R

 in
te

rv
al

 (
m

se
c)

S
ta

tio
na

ry
 in

de
x

0.
5

10
0

60
20

0

100

Nonstationary signal change

SAMPLES

Threshold

SAMPLES

200 300 400 500 600

0 100 200 300 400 500 600

Figure 11.4  The proposed CDR detection algorithm applied to RRi series.

11.6  Handshake Detection 201

several pervasive computing scenarios; specifically, different types of informa-
tion can be exchanged and processed among the handshaking people, for
instance based on the physical/logical contexts and on mutual acquaintance.

11.6.1  Related Work

Very few research works on automatic handshake detection have been
published so far. The iBand [42] is probably the first system for information
exchange specifically based on handshake detection. It is based on wearable
wrist devices equipped with accelerometers and infrared (IR) transceivers.
Specifically, the handshake is detected via a synchronized combination of IR
alignment and an up‐and‐down motion on the two devices worn by each meet-
ing person. IR transmission is enabled when the user’s hand/wrist are in a pre‐
calibrated handshaking orientation. The pre‐calibration cannot be customized,
thus leading, according to users participating in an experimentation of the
system, to not always accurate behavior and unnatural gestures to let the iBand
detect the handshake. Furthermore, a quantitative performance analysis of the
system is not presented.

The Smart‐Its Friends [43] provides smart electronic devices that communi-
cate when they are within the communication range of each other and experi-
ence similar sensor readings. Although the proposed approach is more general,
it could be applied in the context of handshake detection: handheld smart
devices equipped with accelerometers (e.g. smartphones and augmented wrist

Figure 11.5  A screenshot of the developed CDR detection mobile application.

11  SPINE‐Based Body Sensor Network Applications202

watches) can be exploited to recognize common shaking patterns between
people when they are in proximity, even if this would be an indirect way of
detecting handshakes as Smart‐Its Friends is not focused on the handshake
gesture but only on generic interaction among smart objects close to each
other.

11.6.2  A SPINE‐Based Handshake Detection System

To overcome the limitations of the aforementioned works, a further interesting
application developed with SPINE, called E‐Shake (see Figure 11.6), has been
proposed [44]. E‐Shake is a Collaborative BSN‐based system for the detection
of emotions between people as they shake their hands when they meet. More
correctly, the system is based on an enhancement of the SPINE framework
called Collaborative‐SPINE (C‐SPINE, see Chapter 7) and integrates hand-
shake gesture detection with continuous beat‐to‐beat HR computation. This
integrated information is useful for detecting emotional states of meeting
people, when the meeting starts with a handshake.

The system architecture, depicted in Figure 11.7, is composed of two layers,
located on the coordinator and on the wearable sensor devices. At the sensor
level, the main components are:

●● The Heart Rate Sensor (HRSensor) component, running on a Shimmer2R
node, is equipped with an ECG sensor‐board to extract the HR. The HR
estimation uses a 5‐point moving average filter to smoothen the HR curve.

●● The Hand Shaking Sensor (HSSensor) component, running on a Shimmer2R
node placed on the right wrist of the monitored subject, acquires accelerom-
eter data for handshake recognition. The HSSensor (i) samples at 100 Hz the
3‐axial accelerometer included in the Shimmer2R, (ii) buffers the acquired
data, (iii) performs on this data specific feature extraction (amplitude, stand-
ard deviation, zero crossing, average, total energy, and RMS), (iv) runs a
decision tree‐based classifier for the detection of potential handshake ges-
tures, and (v) finally transmits the computed feature set when a potential
handshake gesture is recognized. In particular, the features are calculated
over a window of 32 samples with 50% overlap. Such parameters have been
empirically estimated to trade‐off fast detection and good classification
accuracy.

At the coordinator level, E‐Shake is developed for the Android OS and inte-
grates two application components: (i) a handshake detection component that
uses C‐SPINE to recognize the handshake gesture and (ii) a heart‐rate compo-
nent providing beat‐to‐beat HR data. Specifically, the coordinator aligns the
HR data with handshake classifications obtained from a joint classifier and
keep tracks of the HR data (which will be input for the emotion detection

11.6  Handshake Detection 203

Figure 11.6  The E‐Shake application.

11  SPINE‐Based Body Sensor Network Applications204

subsystem) during the extended time window in which the handshakes have
taken place. The extended time window depends on the handshake detection
time and can be centered on it or configured for asymmetric window sizing.

The joint classifier is a J48 decision tree that uses the entire feature set from
the two sensors worn by the meeting people (the two BSN coordinators com-
municate with the CIBO protocol, see Figure 11.7) and is activated only if the
BSN coordinators receive potential handshake notifications by both the sensor
nodes (note that the “intra‐BSN” communication is supported by the SIBO
protocol, see Figure 11.7) within a short time interval.

We evaluated the E‐Shake in terms of emotion reaction detection by carry-
ing out an experimental scenario in a controlled environment, in which stu-
dents, tutors, and professors equipped with the system could meet. For each
meeting, two people were asked to enter the room from two separate doors.
Each pair has been selected so to have both subjects with mutual acquaintance
relations and subjects without. Furthermore, while tutors and professors were
informed of the experiment objective, students were completely unaware.
Professors and tutors played an important role to facilitate social interactions
among students and as enablers of student reactions due to the academic
teacher–student hierarchy. By analyzing the HR chart, the system captured
three reciprocal reactions: (a) no emotional reaction to the meeting by none of
the subjects, (b) emotional reaction to the meeting by only one person, and

COORDINATOR

‘WAIST’ SENSOR NODE ‘POCKET’ SENSOR NODE

CIBO
Protocol

SIBO
Protocol

SHIMMER Platform

SPINE Library

HSSensor

SHIMMER Platform

SPINE Library

HRSensor

C-SPINE Library

Handshake Detection Heart Rate Calculation

Synchronized Data-Store & Forwarding

Figure 11.7  The E‐Shake system architecture.

11.7  Physical Rehabilitation 205

(c) emotional reaction to the meeting by both meeting people. Cases similar to
(a) are the most frequent, while cases similar to (b) are mostly associated with
meetings between a student and a tutor or professor, and occasionally recorder
for meetings among students. Occurrences of cases similar to (c) were actually
very rare throughout the whole experiment.

11.7  Physical Rehabilitation

It is quite common to require repetitive physical exercises, for instance, to
recover from a muscle strain, a limb fracture, or a surgery. Having real‐time
feedback about exercise performance quality would allow patients that are fol-
lowing a rehabilitation therapy to independently exercise correctly without the
need of a continuous professional assistance.

11.7.1  Related Work

Although the literature on physical rehabilitation assistance supported by
wearable sensors is still limited, a few interesting research studies have been
published so far.

An early research [45] focuses on the therapist perspective aiming at deter-
mining the physical activity stress and the energy expenditure of therapists
while practicing using a portable accelerometer sensor placed on their waist
belts.

In Ref. [46], the authors propose the use of wearable accelerometer sensors
for objectively assessing the motion capabilities and activity levels of patients
affected by multiple sclerosis, so as not to rely uniquely on self‐reports and
questionnaires.

However, the specific problem of supporting patients during rehabilitation
exercises with the aid of wearable sensing devices and real‐time visual feed-
backs is being investigated only in more recent times. In Ref. [47], the authors
describe a rehabilitation support system based on a smartphone and a bracelet
to capture patient’s rehabilitation exercises. Dynamic Time Warping is used to
train and recognize movements. The system is fully customizable so it allows
the therapist to choose the position of the device and other parameters in order
to adapt to different exercises. The proposed system, however, since relying on
a single sensing device, suffers from the problem that a number of exercises
cannot be monitored, and relevant parameters, such as elbow and knee flexion
angles, cannot be measured.

RIABLO [48] is a game system realized to specifically support physical ortho-
pedic rehabilitation. The authors suggest the use of game elements to motivate
and engage the patient, while providing feedback on the correctness of the per-
formed exercises. The system is based on five wearable devices equipped with a

11  SPINE‐Based Body Sensor Network Applications206

3‐axis accelerometer and a gyroscope, placed on the body with elastic straps,
and a pressure sensor tile connected via Bluetooth with the game station.

Another interesting project [49] uses two Shimmer motes [9] attached to
the patient’s arm or leg and a commercial Android tablet where a graphical
application provides with a visual real‐time feedback on the performed exer-
cises as well as an assessment on the practice quality with respect to a reference
movement previously recorded.

In addition to purely academic research studies, there exist some pre‐
commercial solutions [50, 51] with similar functionalities to what described
above.

For further literature study, readers can refer to interesting surveys [52, 53]
recently published.

11.7.2  SPINE Motor Rehabilitation Assistant

In this section, we present a physical rehabilitation digital assistant (see
Figure 11.8) that is implemented atop SPINE and uses two wearable nodes
equipped with accelerometer sensors to monitor arm and leg movements.
A personal mobile application runs on the patient’s smartphone or tablet
(Android‐based) and gives real‐time feedback on the performed exercise;
furthermore, it interacts with a dedicated cloud computing backend to trans-
fer collected data for long‐term, off‐line analysis and for retrieving comments

Figure 11.8  Two screenshots of the rehabilitation digital assistant.

11.7  Physical Rehabilitation 207

and updates from the therapist about the rehabilitation process (e.g. to
download the exercises schedule for the week).

The application consists of monitoring leg and arm bending movements in
real time and comparing them with the ones recorded during a setup phase. The
application scenario, hence, consists of two steps, namely setup and exercise
phases. During the setup phase, the user wears two sensors on either leg or arm
that needs to be exercised and performs the correct exercise under the guidance
of rehabilitation professional. Meanwhile, the system records the data and
stores it as reference exercise. Then, during the exercise phase, the user repeats
the bending movement and is provided with a real‐time feedback about how the
movement is done with respect to the stored reference exercise.

Tele‐rehabilitation is a crucial aspect, concerning the possibility to monitor
the patient remotely. This possibility addresses, in particular, certain types of
rehabilitation. This aspect is crucial since the idea of tying the opportunity to
follow and monitor the patient at all post‐admission stages through remote
monitoring allows the substantial reduction of the costs associated with the
process. As an example, we can consider the orthopedic rehabilitation of
patients following violent trauma that are released from the hospital and pro-
ceed towards rehabilitation phases with low necessity of (constant) clinical
doctor monitoring. In case of orthopedic trauma, the patient that can safely
perform rehabilitation and can be remotely monitored will meet benefits both
in physical stress and economic terms.

In addition, the system allows for the secure and authenticated collection via
the Internet of data related to the management and control of rehabilitation by
means of a dedicated cloud computing infrastructure. This cloud computing
backend system is mainly intended to provide support to physicians. The doctors,
through a web application are enabled to:

●● Management of patients and their program exercises.
●● Displaying data on the exercises performed by patients. The doctor must be

able to analyze the exercises performed by his patients to be able to perceive the
improvements that the prescribed therapy is expected to achieve. This greatly
facilitates his work: thanks to the accuracy of the data, the therapist is “virtu-
ally” able to follow all his patients, just as if they were present in the rehabilita-
tion center. If necessary, he may request a new appointment when he considers
appropriate to change or update the prescribed therapy, and the patient is noti-
fied through the application running on his personal mobile device.

●● Viewing statistics on the progress of patients. Doctors need quick and easy‐
to‐read information related to the progress of his patient throughout the
therapy period. The doctor is supported in this sense by synthetic statistics
such as maximum and minimum extension and flexion angles (of the elbow
or the knee), torsion angles (of the leg or the arm), range of motion, and
minutes of training per day.

11  SPINE‐Based Body Sensor Network Applications208

11.8  Summary

The main goal of SPINE is to provide BSN developers with support for rapid
prototyping of signal‐processing applications. In SPINE, sensors and common
processing blocks, such as math aggregators and threshold‐based alarms, can
be configured independently and connected together arbitrarily at runtime
based on external controls. One of the key advantages of SPINE is the ability to
satisfy diverse application needs at runtime, avoiding, in most situations, the
costly redeployment of the code running on the remote sensing devices.

Such an approach also allows heterogeneous applications to be built atop
the same basic software components, enhancing code reusability and, more
importantly, removes the need for redeploying the node‐side code based on a
particular application.

This property is very desirable especially in real‐world scenarios. For
instance, a doctor could use SPINE nodes that are equipped with accelerome-
ters and a suitable coordinator device (e.g. a smartphone) to monitor weekly
energy expenditure of a patient. The same nodes could be used later with
another patient, for instance, in a rehabilitation scenario, as long as the proper
application software is available on the doctor’s coordinator device. In this
chapter, the SPINE framework has been showed to support heterogeneous
health‐care applications without redeployment of the code running on the
nodes. The flexibility of SPINE has been demonstrated by describing five dif-
ferent case studies (physical activity detection, step counting, emotional stress
detection, handshake detection, and physical rehabilitation), which all exploit
the same sensor node hardware and software. Obviously, in the general case, to
support different applications, the wearable sensing node(s) must be equipped
with all the required physical sensors.

References

	1	 Bao, L. and Intille, S.S. (2004). Activity recognition from user‐annotated
acceleration data. Pervasive 2004, LNCS 3001, Linz/Vienna, Austria (18–23
April), pp. 1–17.

	2	 Maurer, U., Smailagic, A., Siewiorek, D., and Deisher, M. (2006). Activity
recognition and monitoring using multiple sensors on different body positions.
Proceedings of the International Workshop on Wearable and Implantable Body
Sensor Networks, Cambridge, MA (3–5 April 2006), pp. 99–102.

	3	 Ravi, N., Preetham Mysore, N.D., and Littman, M.L. (2005). Activity
recognition from accelerometer data. Proceedings of the 17th Conference on
Innovative Applications of Artificial Intelligence, Pittsburgh, PA (9–13 July
2005), pp. 1541–1546.

	4	 Zappi, P., Lombriser, C., Stiefmeier, T. et al. (2008). Activity recognition from
on‐body sensors: accuracy‐power trade‐off by dynamic sensor selection.

﻿  References 209

Proceedings of the European Conference on Wireless Sensor Networks, Bologna,
Italy (30 January–1 February 2008), pp. 17–33.

	5	 Anguita, D., Ghio, A., Oneto, L. et al. (2012). Human activity recognition on
smartphones using a multiclass hardware‐friendly support vector machine.
Proceedings of the 4th international conference on Ambient Assisted Living and
Home Care, Vitoria‐Gasteiz, Spain, 3–5 December 2012, pp. 216–223.

	6	 Shoaib, M. (2013). Human activity recognition using heterogeneous sensors.
Proceedings of ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Zurich, Switzerland (8–12 September 2013).

	7	 Chen, L., Hoey, J., and Nugent, C.D. (2012). Sensor‐based activity recognition.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Review 42 (6): 790–808.

	8	 Lara, O.D. and Labrador, M.A. (2013). A survey on human activity recognition
using wearable sensors. IEEE Communications Surveys & Tutorials 15 (3):
1192–1209.

	9	 Shimmer Website. www.shimmersensing.com (accessed 15 June 2017).
	10	 Cover, T. and Hart, P. (1997). Nearest neighbor pattern classification.

IEEE Transactions on Information Theory 13: 21–27.
	11	 Pudil, P., Novovicova, J., and Kittler, J. (1994). Floating search methods in

feature selection. Pattern Recognition Letters 15 (11): 1119–1125.
	12	 Carter, B.C., Vershinin, M., and Gross, S.P. (2008). A comparison of

step‐detection methods: how well can you do? Biophysical Journal 94 (1):
306–319.

	13	 Oliver, M., Badland, H.M., Shepherd, J., and Schofield, G.M. (2011). Counting
steps in research: a comparison of accelerometry and pedometry. Open
Journal of Preventive Medicine 1: 1–7.

	14	 Libby, R. (2008). A simple method for reliable footstep detection on embedded
sensor platforms. https://www.scribd.com/document/136324023/Libby‐Peak‐
Detection (accessed 6 December 2017).

	15	 Ahola, T.M. (2010). Pedometer for running activity using accelerometer
sensors on the wrist. Medical Equipment Insights 2010 (3): 1–8.

	16	 Wu, L.‐M., Sheu, J.‐S., Jheng, W.‐C., and Hsiao, Y.‐T. (2013). Pedometer
development utilizing an accelerometer sensor. World Academy of Science,
Engineering and Technology 79: 35–40.

	17	 McEwen, B.S. (1998). Protective and damaging effects of stress mediators.
The New England Journal of Medicine 338 (3): 171–179.

	18	 Segerstrom, S.‐C. and Miller, G.‐E. (2004). Psychological stress and the human
immune system: a meta‐analytic study of 30 years of inquiry. Psychological
Bulletin 130 (4): 601–630.

	19	 Lee, H.B., Kim, J.S., Kim, Y.S. et al. (2007). The relationship between HRV
parameters and stressful driving situation in the real road. Proceedings of the
6th International Special Topic Conference on Information Technology
Applications in Biomedicine, Tokyo, Japan (8–11 November 2007),
pp. 198–200.

11  SPINE‐Based Body Sensor Network Applications210

	20	 Sun, F.‐T., Kuo, C., Cheng, H.‐T. et al. (2012). Activity‐aware mental stress
detection using physiological sensors. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering
76, 211–230.

	21	 de Santos Sierra, A., Sánchez Ávila, C., Guerra Casanova, J., and del Pozo, G.B.
(2011). Real‐time stress detection by means of physiological signals. In: Recent
Application in Biometrics (ed. J. Yang and N. Poh), 23–44. London: Intech.

	22	 Stress Eraser Website. www.stresseraser.com (accessed 15 June 2017).
	23	 Health Reviser Stress Monitor. http://www.healthreviser.com/content/

stress‐sweeper (accessed 6 December 2017).
	24	 emWave Personal Stress Reliever. https://store.heartmath.com/emwave2

(accessed 15 June 2017).
	25	 Andreoli, A., Gravina, R., Giannantonio, R. et al. (2010). SPINE‐HRV:

a BSN‐based toolkit for heart rate variability analysis in the time‐domain.
Wearable and Autonomous Biomedical Devices and Systems: New Issues and
Characterization – Lecture Notes on Electrical Engineering 75: 369–389.

	26	 Polar Website. www.polar.com (accessed 15 June 2017).
	27	 Yang, H.‐K., Lee, J.‐W., Lee, K.‐H. et al. (2008). Application for the wearable

heart activity monitoring system: analysis of the autonomic function of HRV.
Proceedings of the 30th Annual International Conference on Engineering in
Medicine and Biology Society (EMBS 2008), Vancouver, Canada (20–25
August 2008), pp. 1258–1261. IEEE Press.

	28	 Bauer, R. (1998). Physiologic measures of emotion. Journal of Clinical
Neurophysiology 15 (5): 388–396.

	29	 Lopez, R., Poy, R., Pastor, M. et al. (2009). Cardiac defense response as a
predictor of fear learning. International Journal of Psychophysiology 74 (3):
229–235.

	30	 Zimbardo, P.G., Weber, A.L., and Johnson, R.L. (1999). Psychology, 3e.
Boston, MA: Addison Wesley Longman, Ed.

	31	 Vila, J., Fernandez, M.C., Pegalajar, J. et al. (2003). A new look at cardiac
defense: attention or emotion? The Spanish Journal of Psychology 6 (1): 60–78.

	32	 Sebe, N., Cohen, I., Gevers, T., and Huang, T.S. (2004). Multimodal
approaches for emotion recognition: a survey. Internet Imaging VI 5670:
56–67.

	33	 Cowie, R., Douglas‐Cowie, E., Tsapatsoulis, N. et al. (2001). Emotion
recognition in human‐computer interaction. IEEE Signal Processing Magazine
18 (1): 32–80.

	34	 Martyn Jones, C. and Troen, T. (2007). Biometric valence and arousal
recognition. Proceedings of the 2007 Conference of the Computer‐Human
Interaction Special Interest Group (CHISIG) of Australia on Computer‐Human
Interaction, Adelaide, Australia (28–30 November 2007).

	35	 Grundlehner, B., Brown, L., Penders, J., and Gyselinckx, G. (2009). The design
and analysis of a real‐time, continuous arousal monitor. Sixth International

﻿  References 211

Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA
(3–5 June 2009), pp. 156–161.

	36	 Valenza, G., Lanatà, A, Scilingo, E.P., and De Rossi, D. (2010). Towards a smart
glove: arousal recognition based on textile electrodermal response. 2010
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Buenos Aires, Argentina (31 August 2010–4 September 2010),
pp. 3598–3601.

	37	 Covello, R., Fortino, G., Gravina, R. et al. (2013). Novel method and real‐time
system for detecting the Cardiac Defense Response based on the ECG.
Proceedings of the IEEE International Symposium on Medical Measurement
and Applications (MeMeA2013), Trento, Italy (16–20 September 2013).

	38	 Gravina, R. and Fortino, G. (2016). Automatic methods for the detection of
accelerative cardiac defense response. IEEE Transactions on Affective
Computing 7 (3): 286–298.

	39	 Chen, H. and Chen, S. (2003). A moving average based filtering system with its
application to real‐time QRS detection. Proceedings of Computers in
Cardiology, ser. CinC 2003, Thessaloniki Chalkidiki, Greece (21–24 September
2003), pp. 585–588.

	40	 Kiremire, B. and Marwala, T. (2008). Nonstationarity detection: the use of
the cross correlation integral in ECG, and EEG profile analysis. Proceedings
of the Congress on Image and Signal Processing, ser. CISP’08, Singapore
(27–30 May 2008), pp. 373–378.

	41	 Rserve Website. http://www.rforge.net/Rserve (accessed 15 June 2017).
	42	 Kanis, M., Winters, N., Agamanolis, S. et al. (2005). Toward wearable social

networking with iband. Proceedings of Computer‐Human Interaction
(CHI) – Extended abstracts on Human factors incomputing systems, Portland,
OR (2–7 April 2005), pp. 1521–1524. ACM.

	43	 Holmquist, L.E., Mattern, F., Schiele, B. et al. (2001). Smart‐its friends: a
technique for users to easily establish connections between smart artefacts.
Proceedings of the 3rd International Conference on Ubiquitous Computing
(UbiComp), Atlanta, GA (30 September–2 October 2001), pp. 116–122.
Springer‐Verlag.

	44	 Augimeri, A., Fortino, G., Galzarano, S., and Gravina, R. (2011). Collaborative
body sensor networks. Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (SMC2011), Anchorage, AL (9–12 October
2011).

	45	 Balogun, J.A., Farina, N.T., Fay, E. et al. (1986). Energy cost determination
using a portable accelerometer. Physical Therapy 66: 1102–1107.

	46	 Hale, L., Williams, K., Ashton, C. et al. (2007). Reliability of RT3 accelerometer
for measuring mobility in people with multiple sclerosis: pilot study. Journal of
Rehabilitation Research & Development 44 (4): 619–628.

	47	 Raso, I., Hervás, R., and Bravo, J. (2010). m‐Physio: personalized
accelerometer‐based physical rehabilitation platform. Proceedings of the 4th

11  SPINE‐Based Body Sensor Network Applications212

International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies, Florence, Italy (25–30 October 2010).

	48	 Costa, C., Tacconi, D., Tomasi, R. et al. (2013). RIABLO: a game system for
supporting orthopedic rehabilitation. CHItaly 2013, the Biannual Conference
of the Italian SIGCHI Chapter, Trento, Italy (16–20 September 2013).

	49	 Nerino, R., Contin, L., Gonçalves da Silva Pinto, W.J. et al. (2013). A BSN
based service for post‐surgical knee rehabilitation at home. Proceedings
of the 8th International Conference on Body Area Networks, Boston, MA
(30 September–2 October 2013).

	50	 Rehabitic Whitepaper. http://www.imim.es/media/upload/arxius/oferta%
20tecnologica/REHABITICwebIMIM_EN.pdf (accessed 15 June 2017).

	51	 PamSys Website. www.biosensics.com (accessed 15 June 2017).
	52	 Patel, S., Park, H., Bonato, P. et al. (2012). A review of wearable sensors and

systems with application in rehabilitation. Journal of NeuroEngineering and
Rehabilitation 9: 21.

	53	 Hadjidj, A., Souil, M., Bouabdallaha, A. et al. (2013). Wireless sensor networks
for rehabilitation applications: challenges and opportunities. Journal of
Network and Computer Applications 36: 1–5.

213

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

12

12.1  Introduction

This chapter provides a quick yet effective reference for BSN programmers
interested in developing their applications using the SPINE framework.
While a comprehensive developer guide can be freely downloaded from the
website, in this chapter we will give the necessary information for setting up
the SPINE environment so to start programming as well as insights on how
the framework itself can be customized and extended.

12.2  SPINE 1.x

SPINE (Signal Processing In‐Node Environment) (see Chapter 3) is a framework
for the distributed implementation of signal‐processing algorithms in wireless
sensor networks.

It provides a set of on‐node services that can be tuned and activated by the
user depending on application needs.

SPINE is released as an Open Source project under LGPL 1.2 license and is
available online at http://spine.dimes.unical.it/.

The SPINE framework has two main components:

1)	 Sensor node side. It is developed in the TinyOS2.x environment and provides
on‐node services such as sensor data sampling and storage, data processing,
and much more.

2)	 Server side. It is developed in Java SE and acts as a coordinator of the sensor
networks. Therefore, it manages the network, setups and activates on‐node
services depending on the application requirements, and much more.

The framework has been redesigned and the newest release (1.3) provides
many more levels of expansibility than the previous releases.

SPINE at Work

12  SPINE at Work214

The core framework is now organized into three main parts that take care of
different aspects, namely the communication, the sensing, and the processing
parts.
The source code of the node side is organized as follows:

Spine_nodes
|__apps
| |__SPINEApp
|__support
| |__make
|__tos
| |__interfaces
| | |__communication
| | |__processing
| | |__sensing
| | |__utils
| |__platforms
| |__sensorboards
| |__system
| | |__communication
| | |__processing
| | |__sensing
| | |__utils
| |__types

The Server side is organized as follows:

Spine_serverApp
|
|__src
| |
| |__jade.util
| |__spine
| | |
| | |__communication.emu
| | |__communication.tinyos
| | |
| | |__datamodel
| | |
| | |__datamodel.functions
| | |__datamodel.serviceMessages
| | |__exceptions
| | |__payload.codec.emu

12.2  SPINE 1.x 215

| | |__payload.codec.tinyos
| |
| |__test
|
|__lib
|
|__jar
|
|__doc
|
|__resources/defaults.properties
|
|__build.xml
|
|__build.prope rties

This structure reflects the need of having the framework logic not depending
on the kind of network it is communicating with. In other words, the core
implementation of SPINE does not use any TinyOS‐specific APIs and can be
run independently on the underlying protocol stack (e.g. ZigBee networks).
Platform‐independent code may be found in:

●● spine package, which contains SPINE core logic.
●● spine.datamodel package, which contains data entities used by the

framework.
●● spine.datamodel.functions subpackage, which defines the structure

of the function.
●● spine.datamodel.serviceMessages subpackage, which defines various

types of service messages.
●● spine.exceptions subpackage, which contains exception classes that

might be thrown by SPINE.

SPINE1.3 server side provides an implementation for the TinyOS2.x network
and for the “virtual sensor node” network; therefore it provides the support for
TinyOS low‐level communication:

●● spine.communication.tinyos contains TinyOS‐specific logic and low‐
level IEEE 802.15.4‐based communication procedures (called tinyos.jar APIs).

●● spine.payload.codec.tinyos subpackage contains the low‐level
message codecs for the TinyOS platform.

●● spine.communication.bt contains low‐level Bluetooth‐based com­
munication procedures (using the open‐source BlueCove library on desktop
computers and the native Bluetooth API on Android).

●● spine.payload.codec.bt subpackage contains the low‐level message
codecs for Bluetooth serial transmission.

12  SPINE at Work216

For “SPINE Node Emulator” (each “Node Emulator” instance is a “virtual
sensor node”; see Data Collector and SPINE Node Emulator) low‐level
communication:

●● spine.communication.emu contains logic and low‐level communication
procedures for virtual sensor node.

●● spine.payload.codec.emu subpackage contains the low‐level message
codecs for the virtual sensor node message.

SPINE1.3 release provides also the SPINE.jar that can be imported in any
project that uses SPINE APIs and the full javadoc documentation.

12.2.1  How to Install SPINE 1.x

Installing SPINE onto the target platforms is straightforward. The process consists
of the following steps:

1)	 Download SPINE 1.3 from the SPINE website (http://spine.dimes.unical.it/).
The unzipped spine folder contains:
a)	 Spine_nodes folder with TinyOS2.x code to be run on the motes.
b)	 Spine_serverApp folder with Java code to be run on a computer.
c)	 COPYING and License text files containing info about the licensing.
d)	 The SPINE manual.

2)	 Spine_nodes contains code to be compiled in TinyOS2.x and then flashed
on sensor nodes. Spine_nodes 1.3 has been developed and tested with
TinyOS version 2.1.0. Older TinyOS2.x versions have also been tested, and
Makefile can be configured to support an older version, but the SPINE
Team strongly suggests to use TinyOS2.1.0 release.
a)	 Copy Spine_nodes folder into your tinyos‐2.x‐contrib folder.
b)	 From the app/SPINEApp folder compile and install the SPINE1.3 frame­

work on your platform. Platforms currently supported by SPINE1.3 are:
i)	 Telosb motes with spine sensor board

SENSORBOARD=spine make telosb
ii)	 Telosb motes with biosensor sensor board

SENSORBOARD=biosensor make telosb
iii)	 Telosb motes with the moteiv sensor kit

SENSORBOARD=moteiv make telosb
iv)	 Micaz motes with mts300 board

SENSORBOARD=mts300 make micaz
v)	 Shimmer motes

SENSORBOARD=shimmer make shimmer
vi)	 Shimmer2 motes

SENSORBOARD=shimmer2 make shimmer2
vii)	Shimmer2r motes

SENSORBOARD=shimmer2r make shimmer2r

12.2  SPINE 1.x 217

Note that for each supported platform, a default SENSORBOARD has been
defined. Therefore, unless differently specified (e.g. by defining the
SENSORBOARD parameter in the make command):

●● telosb defaults to “spine” sensorboard.
●● tmote defaults to “moteiv” sensorboard.
●● micaz defaults to “mts300” sensorboard.
●● shimmer defaults to “shimmer” sensorboard.

To change these default values, the corresponding details can be found in the
tos/types/spine.extra file.

3)	 Spine_serverApp contains the Java code for running the server side (e.g.
coordinator) of a SPINE network.
a)	 src contains SPINE1.3 source code organized into:

●● spine
●● jade
●● test

b)	 defaults.properties contains the framework properties.
c)	 lib: contains a jar file that SPINE must include.
d)	 docs: contains SPINE1.3 javadoc documentation.
e)	 jar: contains the framework jar file.
f)	 build.properties and build.xml files for ant.

It is possible to compile and run the SPINE framework and its test applica­
tion either using textual ant commands or creating a java project using an
IDE (such as Eclipse or NetBeans). An external jar (tinyos.jar) has to be
manually added to the project. Due to different copyright regulations, this jar
is not part of the SPINE distribution and can be found in the tinyos2.x\
support\sdk\java folder. tinyos.jar should be placed in the spine_serverApp/
ext‐lib folder.

12.2.2  How to Use SPINE

The SPINE framework provides, on the Server side, simple Java APIs to develop
applications on the coordinator. Therefore, the main strength of the SPINE
framework is to allow users to be ready to develop applications in sensor net­
works without bothering with node‐side programming.

Developers can easily form, manage, and collect data from the sensors in the
network writing a simple Java program: no more firmware programming is
needed!

On the Java side, the user can develop its own application that will have to
implement the SPINEListener interface and can use any of the API provided by
the SPINEManager.

12  SPINE at Work218

Since the application on the server side must implement the
SPINEListener interface, it has to implement the following methods:

void received(Data data)
This method is invoked by the SPINEManager to its registered
listeners when it receives new data from the specified node.
The Node object that generated this data is embodied into the
data object.

void discoveryCompleted(java.util.Vector
activeNodes)
This method is invoked by the SPINEManager to its registered
listeners when the discovery procedure timer fires.

void newNodeDiscovered(Node newNode)
This method is invoked by the SPINEManager to its registered
listeners when it receives a ServiceAdvertisement message
from a BSN node.

void received(ServiceMessage msg)
This method is invoked by the SPINEManager to its registered
listeners when a ServiceMessage is received from a particular
node. The Node object that generated this service message is
embodied into the msg object.

Then, the application can use the following API exposed by the SPINEManager:

void activate(Node node, SpineFunctionReq
functionReq)
Activates a function (or even only function subrou­
tines) on the given sensor.

void addListener(SPINEListener listener)
Registers a SPINEListener to the manager instance.

void deactivate(Node node,
SpineFunctionReq functionReq)
Deactivates a function (or even only function subrou­
tines) on the given sensor.

void discoveryWsn()
Commands the SPINEManager to discover the sur­
rounding WSN nodes.

java.util.
Vector

getActiveNodes()
Returns the list of the discovered nodes as a Vector of
spine.datamodel.Node objects.

spine.data
model.Node

getBaseStation()
Returns the Node object representing the
BaseStation.

12.2  SPINE 1.x 219

Jade.util.
Logger

static getLogger()
Returns the static Logger of the SPINE framework.
The Logger can be used to set the logging level and to
add custom log handlers (e.g. to log into a file).

spine.data
model.Node

getNodeByLogicalID(spine.datamodel.
Address id)
Returns the node with the given logical address.

spine.data
model.Node

getNodeByPhysicalID (spine.datamodel.
Address id)
Returns the node with the given physical address.

void getOneShotData(Node node, byte
sensorCode)
Commands the given node to do an “immediate one‐
shot” sampling on the given sensor.

boolean isStarted()
Returns true if the manager has been asked to start
the processing in the BSN.

void removeListener(SPINEListener
listener)
Removes a SPINEListener from the manager instance.

void reset()
Commands a software reset of the whole WSN.

void setup(Node node, SpineSetupFunction
setupFunction)
Setups a specific function of the
given node.

void setup(Node node, SpineSetupSensor
setupSensor)
Setups a specific sensor of the given node.

void start(boolean radioAlwaysOn, boolean
enableTDMA)
Starts the BSN sensing and computing the previously
requested functions.

It is worth noting that the SPINEManager instance can be retrieved only via
the SPINEFactory:

SPINEManager createSPINEManager(String
appPropertiesFile)
Initializes the SPINEManager. The SPINEManager
instance is connected to the base station and platform
obtained transparently from the app.properties file.

12  SPINE at Work220

Examples about which function can be set, which data can be received, and
other details can be found in the SPINETest application, that is included in
the latest release of the SPINE source code. More examples about how to use
the Java side are given all through this document.

For further details about the Java side, the interested reader can refer to the
Javadoc documentation that can be found in the release.

12.2.3  How to Run a Simple Desktop Application Using SPINE1.3

The SPINE1.3 release comes with a simple test application that can be easily
run to experiment the framework basic functionalities. Take the following
steps:

1)	 Compile and flash, on the available sensor node, the SPINE1.3 node‐side
framework.

2)	 Compile and flash a TinyOS2.x BaseStation into another sensor node. It is
important to check that sensor nodes and the base station are both working
on the same radio channel, have been compiled with the same max message
payload length, and the same TinyOS version has been used for flashing all
the nodes.

3)	 Plug the BaseStation to a free USB port of the computer and type “motelist”
from your shell: this will tell you your port number.

4)	 Create an application properties file (e.g. under MyApp/resources/app.
properties) and set the MOTECOM and the PLATFORM parameter according
to one of the following options depending if you are using the serial for­
warder on a Linux or Windows machine (e.g. a.) or directly communicating
with the serial port on your PC using a Windows machine (e.g. b.), or if you
intend to emulate a sensor node network (e.g. c.).
a)	 MOTECOM=sf@127.0.0.1:9002
	 PLATFORM=sf
b)	 MOTECOM=serial@COM41:telosb
	 PLATFORM=tinyos
c)	 MOTECOM=4444
	 PLATFORM=emu

Option b may be used also on a Linux machine, but it is necessary to build
libgetenv and libtoscomm library before being able to install and run any
SPINE application. Also, MOTECOM value would look like “serial@/dev/
ttyS0:telosb.”
	 cd $TOSROOT/support/sdk/java && make

sudo tos-install-jni

If needed, other application‐dependent properties can be stored in this
property file without any side effect to the SPINE framework.

12.2  SPINE 1.x 221

5)	 edit Spine_serverApp/test/SPINETest.java and optionally go through
the code to customize the test application. The code documentation
helps to understand what functionalities SPINE exposes to the java
developer.
  As mentioned before, SPINETest.java implements the
SPINEListener interface (to get notified of SPINE‐related events)
and uses the SPINEFactory to retrieve the SPINEManager, which,
in turn, has the APIs for managing and communicating with the nodes
in the network.

The SPINETest provided within the SPINE 1.3 release performs the
following actions:

a)	 a discovery message is broadcasted to check how the PAN is composed:
manager.discoveryWsn();

b)	 when the discovery is completed, all the received info about nodes
present in the PAN is displayed.

curr = (Node)activeNodes.elementAt(j);
// we print for each node its details (nodeID,
sensors, and functions provided)
System.out.println(curr);

The information displayed at this point is:

i)	 node id
ii)	 supported sensors
iii)	 supported functionalities

c)	 if a node with an accelerometer is found:
i)	 the accelerometer is set with sampling time SAMPLING_TIME=50 ms.

SpineSetupSensor sss = new SpineSetupSensor();
sss.setSensor(sensor);
sss.setTimeScale(SPINESensorConstants.MILLISEC)
sss.setSamplingTime(SAMPLING_TIME);
manager.setup(curr, sss);

ii)	 the feature engine function is set on that node to work on data com­
ing from the accelerometer sensor with window WINDOW_
SIZE=40 and shift SHIFT_SIZE=20.

FeatureSpineSetupFunction ssf = new FeatureSpine
SetupFunction();
ssf.setSensor(sensor);
ssf.setWindowSize(WINDOW_SIZE);

12  SPINE at Work222

ssf.setShiftSize(SHIFT_SIZE);
manager.setup(curr, ssf);

iii)	 few features are activated on that node on the accelerometer data
(MODE, MEDIAN, MAX, and MIN on all the accelerometer’s
channels).

FeatureSpineFunctionReq sfr = new
FeatureSpineFunctionReq();
sfr.setSensor(sensor);
sfr.add(new Feature(SPINEFunctionConstants.MODE,
((Sensor)curr.getSensorsList().elementAt(i))

.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MEDIAN,
((Sensor)curr.getSensorsList().elementAt(i))

.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MAX,
((Sensor)curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.MIN,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
manager.activate(curr, sfr);

iv)	 more features are activated (MEAN, AMPLITUDE).

FeatureSpineFunctionReq sfr = new
FeatureSpineFunctionReq();
sfr.setSensor(sensor);
sfr.add(new Feature(SPINEFunctionConstants.MEAN,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
sfr.add(new Feature(SPINEFunctionConstants.
AMPLITUDE,
((Sensor) curr.getSensorsList().elementAt(i))
.getChannelBitmask()));
manager.activate(curr, sfr);

v)	 the alarm engine function is set on the node to work on data coming
from the accelerometer sensor with window WINDOW_SIZE=40
and shift SHIFT_SIZE=20. Note that Feature and Alarm engines can
be set with different settings, since they are two separate compo­
nents. However, in this test application, they have been set with the
same value to better check the results.

AlarmSpineSetupFunction ssf2 = new
AlarmSpineSetupFunction();

12.2  SPINE 1.x 223

ssf2.setSensor(sensor);
ssf2.setWindowSize(WINDOW_SIZE);
ssf2.setShiftSize(SHIFT_SIZE);
manager.setup(curr, ssf2);

vi)	 two alarms are set on the accelerometer sensor, so that an alarm
message will be sent back when:
1)	 the MAX value on CH1 is greater than upperThreshold value = 40.

AlarmSpineFunctionReq sfr2 = new
AlarmSpineFunctionReq();
sfr2.setDataType(SPINEFunctionConstants.MAX);
sfr2.setSensor(SPINESensorConstants.
ACC_SENSOR);
sfr2.setValueType((SPINESensorConstants.
CH1_ONLY));
sfr2.setLowerThreshold(lowerThreshold);
sfr2.setUpperThreshold(upperThreshold);
sfr2.setAlarmType(SPINEFunctionConstants.
ABOVE_THRESHOLD);
manager.activate(curr, sfr2);

2)	 the AMPLITUDE on CH2 is lower than lowerThreshold value =
2000.

sfr2.setDataType(SPINEFunctionConstants.AMPLITUDE);
sfr2.setSensor(SPINESensorConstants.ACC_SENSOR);
sfr2.setValueType((SPINESensorConstants.
CH2_ONLY));
sfr2.setLowerThreshold(lowerThreshold);
sfr2.setUpperThreshold(upperThreshold);
sfr2.setAlarmType(SPINEFunctionConstants.
BELOW_THRESHOLD);
manager.activate(curr, sfr2);

d)	 if a node with internal CPU temperature sensor is found:
i)	 the temperature sensor is set with sampling time OTHER_

SAMPLING_TIME=100 ms.
ii)	 the feature engine function is set on that node to work on data

coming from the temperature sensor with window OTHER_
WINDOW_SIZE=80 and shift OTHER_SHIFT_SIZE=40.

iii)	 few features are activated on that node on the temperature data
(MODE, MEDIAN, MAX, and MIN).

iv)	 the alarm engine function is set on the node to work on data coming
from the accelerometer sensor with window WINDOW_SIZE=40
and shift SHIFT_SIZE=20.

12  SPINE at Work224

v)	 then one alarm is set on the internal CPU temperature sensor, so
that an alarm message will be sent back when the MIN value on CH1
is greater than 1000 and lower than 3000.

e)	 once all the requests are set, the network starts.

manager.startWsn(true, true);

f)	 on reception of the activated data (received(Data data)), data payload is
displayed.

System.out.println(data);

g)	 during application runtime, functions can be deactivated and activated.
Here for instance:
i)	 After receiving five feature packets, the first activated feature on that

sensor is deactivated.

if(counter == 5) {
 // it's possible to deactivate functions computation
 at runtime (even when the radio on the node works
 in low-power mode)
 FeatureSpineFunctionReq sfr = new
 FeatureSpineFunctionReq();
 sfr.setSensor(features[0].getSensorCode());
 sfr.remove(new Feature(features[0].
getFeatureCode(),
 SPINESensorConstants.ALL);
 manager.deactivate(data.getNode(), sfr));
}

ii)	 After receiving 10 feature packets a new feature (RANGE) is com­
puted on the first channel of that sensor.

if(counter 3== 10) {
 // and we can activate new functions at runtime
 FeatureSpineFunctionReq sfr = new
 FeatureSpineFunctionReq();
 sfr.setSensor(features[0].getSensorCode());
 sfr.add(new Feature(SPINEFunctionConstants.
RANGE,
 SPINESensorConstants.CH1_ONLY);
 manager.activate(data.getNode(), sfr);

 }

iii)	 After 20 alarm packets the, the alarm – previously set to fire when
the MAX value on CH1 is above the threshold value – is disabled.

12.3  SPINE2 225

if(counter_alarm == 20) {
 AlarmSpineFunctionReq sfr2 = new
 AlarmSpineFunctionReq();
 sfr2.setSensor(SPINESensorConstants.ACC_SENSOR);
sfr2.setAlarmType(SPINEFunctionConstants.
ABOVE_THRESHOLD);
sfr2.setDataType(SPINEFunctionConstants.MAX);
sfr2.setValueType((SPINESensorConstants.
CH1_ONLY));
manager.deactivate(data.getNode(), sfr2);

 }

12.2.4  SPINE Logging Capabilities

The SPINE framework uses a Logger to print info or warning messages, to
notify of exceptions, and so on. This enables a convenient way to filter undesired
messages, to forward logs to output files, and much more.

From a SPINE user point of view, it can be useful to use the SPINE­
Manager static method getLogger(), e.g. to modify the default logging
level (INFO):

SPINEManager.getLogger().setLevel(Level.WARNING);

From a SPINE developer point of view, it is worth to report the correct way
to print using the logger:

if(SPINEManager.getLogger()
 .isLoggable(Logger.[SEVERE|WARNING|INFO]))
SPINEManager.getLogger().log(Logger.
[SEVERE|WARNING|INFO], “msg”);

Logging levels are hierarchical in terms of gravity. For instance, if the logging
level has been set to WARNING, only the SEVERE and the WARNING
messages will be logged, while INFO messages will not.

The interested reader can refer to the Jade Framework logging tutorial
(http://jade.tilab.com/doc/tutorials/logging/JADELoggingService.html) and
to the java.util.logging javadocs for further details.

12.3  SPINE2

SPINE2 (see Chapter 4) has not been conceived as a substitute of SPINE 1.x but
is rather a parallel research effort aiming at (i) experimenting a different pro­
gramming abstraction based on a task‐oriented paradigm and (ii) designing a

12  SPINE at Work226

node‐side software architecture for a quicker framework porting towards new
sensor platforms.

Similar to SPINE, SPINE2 has two main components:

●● A (coordinator) server‐side management application (with GUI) and libraries
providing functionalities and Java‐API for (i) interfacing with the sensor
network, (ii) defining and managing the task‐based distributed application
to be run on the sensor nodes, and (iii) feeding user‐defined customized
tools with the gathered data from the network for further data processing.

●● A sensor node middleware providing sensing and distributed data processing
functionalities by executing the tasks defined by the user. The middleware in
turn is composed of two different sets of components: the core platform‐
independent modules, which can be in principle compiled for any C‐like
embedded platform with very slight changes in the source code, and the
platform‐dependent ones devoted to managing the physical resources and
the lower level services provided by the specific platform. In this chapter, we
specifically concentrate on the TinyOS port of SPINE2.

The platform‐independent source code, i.e. the common node‐side core
framework, is organized as follows:

Spine2_common_c
|__actuating
|__communication
|__memory
|__sensing
|__task
| |__task_list
|__timing
|__utils
|__SPINEManager.c
|__SPINEManager.h

In particular, the SPINEManager, placed in the root folder, is the central
component of the core and is in charge of (i) system initialization and startup; (ii)
orchestrating the other modules managing tasks, memory, sensors, actuators,
and communication; and (iii) handling the SPINE2 application‐level protocol.
In the “task” folder are the modules for managing the task‐graph representation
and the scheduler for correctly instantiating and running the tasks allocated on
the sensor node, whereas the “task_list” contains the library of tasks, i.e. the
specifications of all the types of task supported by the framework. The “mem­
ory” folder has components in charge of dynamically allocating the task‐based
application as well as the buffers required by each single allocated task. The
other folders contain modules for managing actuators and sensors, timers,
communication, and providing other utility functions.

12.3  SPINE2 227

The TinyOS‐specific node‐side source code is organized as follows:

Spine2_tinyos‐2.x
|__apps
| |__SPINEApp
|__support
| |__make
|__tos
| |__interfaces
| | |__communication
| |__platforms
| | |__shimmer2r
| | |__telosb
| |__sensorboards
| |__system
| | |__actuating
| | |__communication
| | |__scheduling
| | |__sensing
| | |__timing

Differently from the SPINE (version 1.x) source code, most of the source
files merely contain “glue code” (i.e. adaptation components) binding the
previously described SPINE2 functionalities with the TinyOS‐specific sen­
sor platforms code, which is used to access the lower level mechanisms and
services (i.e. physical sensor/actuator, timer, and radio drivers). In particular,
the “system” and “interfaces” folders contain TinyOS components related to
the SPINE2 architecture, whereas “platforms” and “sensorboards” contain
code binding with more specific drivers for sensor platforms and sensor
boards.

The structure of the server‐side management application (Java code) running
on the coordinator of the sensor networks is organized as follows:

Spine2_coordinator
|__src
| |__spine2
| | |__communication
| | | |__tinyOS
| | |__message
| | | |__message_list
| | |__support
| | |__task
| | | |__task_list
| | |__utils

12  SPINE at Work228

| | |__wsn
| |__test
|__lib
|__doc
|__resources

Spine2_console
|__src
| |__spine2.console
| | |__gui
| | |__spine2wrapper
| | |__xml
|__lib
|__resources
|__xml

In particular, the “Spine2_coordinator” provides all necessary Java‐API,
libraries, and functionalities for defining and deploying task‐based appli­
cations, whereas “Spine2_console” is the graphical user interface that
facilitates SPINE2 application development without dealing with the Java
code.

12.3.1  How to Install SPINE2

The process to setup the SPINE2 environment consists of the following steps:

1)	 Download SPINE2 from the SPINE project website (http://spine.dimes.
unical.it/). The folder contains:
a)	 Spine2_ common_c folder with the sensor‐side platform‐independent C

code.
b)	 Spine2_tinyos‐2.x folder with TinyOS 2.x code to be run on the sensor

nodes supporting TinyOS.
c)	 Spine2_coordinator folder with Java code to be run on the coordinator

(i.e. a computer).
d)	 Spine2_console folder containing the Java code for the GUI.
e)	 COPYING and License text files containing info about the licensing.
f)	 the SPINE2 manual.

2)	 The sensor‐side folders have to be compiled in TinyOS 2.x and then flashed
on sensor nodes. SPINE2 has been developed and tested with TinyOS
version 2.1.0. Older TinyOS 2.x versions have also been tested, and the
Makefile can be configured to support an older version, but the SPINE team
strongly suggests to use TinyOS 2.1.0 release.

12.3  SPINE2 229

a)	 Copy spine2_common_c and spine2_tinyos‐2.x folders into your tinyos‐
2.x‐contrib folder.

b)	 From the spine2_tinyos‐2.x/apps/SPINEApp folder compile and install
SPINE2 framework on your TinyOS platform. For instance, if your plat­
form is TelosB:

make telosb install,1 bsl,/dev/ttyUSB1

where “1” is the sensor node ID (can be freely set by the user) and /dev/
ttyUSB1 is the serial port, on Linux machine, to which the sensor node
is connected.

3)	 Configure the TinyOS Java JNI libraries. On Windows machine, copy
toscomm.dll and getenv.dll to C:\WINDOWS\system32 or to your JRE/JDK
bin subfolder (i.e. ..\jdk1.xx.xx\bin or ..\jreX\bin). These two files can be
found in $TOSROOT/support/sdk/java/net/tinyos/util named as windows_
x86_toscomm.lib and windows_x86_getenv.lib. Since these libraries are for
32‐bit systems, use a 32‐bit i586‐JRE version to run the SPINE2 Java apps.
On Linux machine, both for 32‐bit and 64‐bit versions, run in the terminal
the following:

cd $TOSROOT/support/sdk/java && make
sudo tos-install-jni

4)	 Spine2_coordinator and Spine2_console can both simply run as any Java
application or can be imported as Java project using an IDE such as Eclipse
or NetBeans. The console application needs the SPINE2 coordinator pro­
ject (or its JAR library SPINE2.jar) in order to be run. Moreover, for con­
venience, the lib subfolder in both projects already contains the necessary
external libraries, like the TinyOS Java library tinyos.jar, which can also be
found in the tinyos2.x\support\sdk\java folder of your TinyOS release. In
addition, the Java Communications API is required to support the com­
munication with the sensor node acting as the base station over the serial
port. Along with the Java comm.jar library, the native binary library needs
to be integrated in your operating system:

a)	 On Windows machines, (i) copy the win32com.dll file into the C:\
WINDOWS\system32 folder and (ii) move the javax.comm.properties
text file to the lib subfolder in your JRE folder, i.e. C:\Program Files\Java\
jre6\lib, by uncommenting the line with the following string: Driver=com.
sun.comm.Win32Driver.

b)	 On Linux machines, (i) copy the libLinuxSerialParallel.so file into the /usr/
lib folder and (ii) move the javax.comm.properties text file to the lib
subfolder in your JRE folder, uncomment the line with the following
string: driver=com.sun.comm.LinuxDriver.

12  SPINE at Work230

12.3.2  How to Use the SPINE2 API

Similar to SPINE 1.x, SPINE2 provides, on the server side, simple Java‐API
through which a developer can easily develop its own Java application on the
coordinator, without dealing with node‐side programming issues, for:

●● managing the sensor network.
●● defining the task‐oriented application to be deployed on the WSN.
●● managing the (preprocessed) data from the network.

Such a Java application will have to implement the SPINE2Listener interface
and the following methods:

void discoveryCompleted(java.util.LinkedList<spine2.
wsn.WSNNode>nodes)
This method is invoked by the SPINE2Manager (through the
EventDispatcher) to its registered listeners when the discovery
procedure timer fires; it provides a LinkedList of WSNNode
objects representing the discovered nodes.

void messageReceived(spine2.message.Message msg)
This method is invoked by the SPINE2Manager (through the
EventDispatcher) to its registered listeners when a new SPINE2
message has been received.

void nodeDiscovered(spine2.wsn.WSNNode node)
This method is invoked by the SPINE2Manager (through the
EventDispatcher) to its registered listeners when it receives a
NODE_ADVERTISEMENT_MSG message from a BSN node.

Then, through the SPINE2Manager, whose instance can be only retrieved via
the SPINE2Factory, the application can use the following API:

void addListener(SPINE2Listener listener)
Registers a SPINE2Listener to the manager instance.

void deployApplication(spine2.task.
TaskGraph taskgraph, boolean
automaticallyStartApp)
Deploys the task‐based application into the sensor
network.

void discoveryWSN()
Commands the SPINE2Manager to discover the sur­
rounding sensor nodes within a timeout (2 s as default).

long getDiscoveryTimeout()
Gets the discovery procedure timeout.

spine2.wsn.
WSNNode

getNode(spine2.wsn.Address address)
Returns a specific sensor node by its address.

12.3  SPINE2 231

spine2.wsn.
WSN

getWSN()
Returns the object describing the discovered sensor
network.

void initApplication(boolean
automaticallyStartApp)
Initializes the deployed task‐based application.

boolean isStarted() Informs if the task‐based application has been
started.

void removeListener(SPINE2Listener listener)
Removes a SPINE2Listener from the manager instance.

void resetApplication()
Removes the task‐based application deployed in the sen­
sor network.

void startApplication()
Starts the deployed task‐based application.

In the following, the API provided by the TaskGraph class for defining the
task‐based application:

boolean addConnection(int sourceTaskCode, int
destTaskCode)
Adds a connection to the task graph, by task codes.

boolean addConnection(Task sourceTask, Task
destTask)
Adds a connection to the task graph.

boolean addConnections(Task sourceTask, Task[]
destTasks)
Adds a set of connections to the task graph, from one
source task to multiple destination tasks.

boolean addTask(Task task)
Adds a task instance to the task graph.

boolean connectionAlreadyExist(int sourceTaskCode,
int destTaskCode)
Verifies if a connection has been instantiated.

java.util.
LinkedList
<Connection>

getAlllnputConnections(int taskCode)
Returns the list of input connections connected to a
specific task.

java.util.
LinkedList
<Connection>

getAllOutputConnections(int taskCode)
Returns the list of output connections given a specific
task.

Connection getConnection(int sourceTaskCode, int
destTaskCode)
Returns the connection between two tasks given their
codes.

12  SPINE at Work232

java.util.
LinkedList
<Connection>

getConnectionsList()
Returns the list of all connections.

Task getTask(int taskCode)
Returns a specific task instance given its code.

Task getTask(java.lang.String logicalName)
Returns a specific task instance from its logical name.

java.util.
LinkedList
<Task>

getTaskList()
Returns the list of tasks in the task graph.

boolean removeConnection(Task sourceTask, Task
destTask)
Removes a connection from the task graph.

boolean removeTask(Task task)
Removes a task instance from the task graph.

void reset()
Resets the application, i.e. all its related information (tasks
and connections) is deleted.

boolean updatelask(Task task)
Updates a task instance already into the task graph.

12.3.3  How to Run a Simple Application Using SPINE2

The SPINE2 release comes with a simple test application (SPINE2SimpleTest.
java) that can be run to experiment the framework basic functionalities.
Assuming the use of the TinyOS environment on the sensor nodes, running
the application consists in the following steps:

1)	 Compile and flash, on an available sensor node, the SPINE2 TinyOS node‐side
software.

2)	 Compile and flash a TinyOS2.x BaseStation onto another sensor node. It is
important to check that sensor nodes and base station are both working on
the same radio channel, have been compiled with the same max message
payload length, and the same TinyOS version has been used for flashing all
the nodes.

3)	 Plug the BaseStation to a free USB port of the computer and type motelist
from your shell: this will return the USB port number.

4)	 Create an application properties file (e.g. under MyApp/resources/myapp.
properties) and set the “enabled_platforms” and the “platform_motecom”
parameters according to one of the following options, depending if the base
station is communicating with the USB serial port on a Linux (a) or Windows
machine (b):

12.3  SPINE2 233

a)	 enabled_platforms=tinyos
tinyos_motecom=serial@/dev/ttyUSB0:telosb

b)	 enabled_platforms=tinyos
tinyos_motecom=serial@COM0:telosb

	 SPINE2 currently fully supports TinyOS platforms, whereas support for
Z‐Stack is under development.

5)	 Edit the Spine2_coordinator/test/SPINE2SimpleTest.java and go through
the code if you want to customize the test application.

The SPINE2SimpleTest application in the current SPINE2 release has been
created to show how to develop the task‐based application of Figure 12.1 over
a BSN composed of three sensor nodes.

As mentioned before, SPINE2SimpleTest.java implements the SPINE2­
Listener interface (to get notified of SPINE2‐related events and messages) and
uses the SPINE2Factory to retrieve the SPINE2Manager, which, in turn, has
the APIs for managing and communicating with the nodes in the network.
Moreover, a TaskGraph instance has been created and modeled to reflect the
user‐defined task‐based application.

In particular, the sample application performs the following actions:

a)	 A discovery message is broadcast to discover the surrounding SPINE2‐
capable sensor nodes, after which the manager collects the reply messages
sent by the nodes within DISCOVERY_TIMEOUT=3000 ms.

manager.setDiscoveryTimeout(DISCOVERY_TIMEOUT);
manager.discoveryWsn();

b)	 Once the discovery is completed, the application is notified by the manager
through the discoveryCompleted(LinkedList<WSNNode>nodes)
method, which returns the list of discovered sensor nodes, whose information
is then displayed.

Node 1

Node 2

Node 3
Sensing Task

(Accelerometer)
Processing Task

(Mean)

Merge

Sensing Task
(Accelerometer)

Processing Task
(Max)

Transmission Task

Figure 12.1  The task‐oriented application defined and deployed in “SPINE2SimpleTest.java”
application.

12  SPINE at Work234

currentNode = motes.get(j);
System.out.println(currentNode);

The information displayed at this point is:

i)	 node id/address.
ii)	 node software platform, e.g. TinyOS.
iii)	 the available onboard physical sensors.
iv)	 the available SPINE2 tasks that can be instantiated on the node.

The task‐based application of Figure 12.1 can now be defined by using a
TaskGraph instance.

taskGraph= new TaskGraph();

The tasks to be instantiated on the first node are then created and added to
the TaskGraph instance. The sensing task is configured to periodically
acquire sensed data from the onboard accelerometer with sampling time
SAMPLING_TIME=50 ms. The processing task is configured to compute
the mean over the accelerometer raw data with WINDOW_SIZE=40 and
SHIFT_SIZE=20.

// SENSING TASK
SensingTask sensingTask1= new SensingTask(motes.
get(0));
sensingTask1.setLogicalName("Sensing_Task_1");
sensingTask1.setSensorType(Sensor.ACCELEROMETER);
sensingTask1.setPeriodicity(SensingTask.TIMER_PERIODIC);
sensingTask1.setTimeScale(SensingTask.TS_MILLISEC);
sensingTask1.setPeriod(SAMPLING_TIME);
sensingTask1.setDataSelection(SensingTask.DATA_ALL);
taskGraph.addTask(sensingTask1);
// PROCESSING TASK
ProcessingTask procTaskMean1=

new ProcessingTask(motes.
get(0));

procTaskMean1.setLogicalName("Processing_Mean_1");
procTaskMean1.setFunctionType(FunctionConstants.F_MEAN);
procTaskMean1.setWindowSize(WINDOW_SIZE);
procTaskMean1.setShiftSize(SHIFT_SIZE);
procTaskMean1

.setOutputBuffering(PROCESSING_OUTPUT_
BUFFERING);

taskGraph.addTask(procTaskMean1);

12.3  SPINE2 235

c)	 A similar configuration is defined for the second node.

// SENSING TASK
SensingTask sensingTask2= new SensingTask(motes.get(1));
sensingTask1.setLogicalName("Sensing_Task_2");
sensingTask1.setSensorType(Sensor.ACCELEROMETER);
sensingTask1.setPeriodicity(SensingTask.
TIMER_PERIODIC);
sensingTask1.setTimeScale(SensingTask.TS_MILLISEC);
sensingTask1.setPeriod(SAMPLING_TIME);
sensingTask1.setDataSelection(SensingTask.DATA_ALL);
taskGraph.addTask(sensingTask2);
// PROCESSING TASK
ProcessingTask procTaskMean2=

new ProcessingTask(motes.
get(1));

procTaskMean1.setLogicalName("Processing_Mean_2");
procTaskMean1.setFunctionType(FunctionConstants.F_MEAN);
procTaskMean1.setWindowSize(WINDOW_SIZE);
procTaskMean1.setShiftSize(SHIFT_SIZE);
procTaskMean1

.setOutputBuffering(PROCESSING_OUTPUT_
BUFFERING);

taskGraph.addTask(procTaskMean2);

d)	 Finally, the tasks for the third node.

// MERGE TASK
MergeTask mergeTask= new MergeTask(motes.get(2));
mergeTask.setLogicalName("Merge_Task");
taskGraph.addTask(mergeTask);
// TRASMISSION TASK
TransmissionTask transmTask =

new TransmissionTask(motes.
get(2));

transmTask.setLogicalName("Transmission_Task");
transmTask.setDestinationAddr(

CommConstants.SPINE_BASE_STATION_
ADDR);

taskGraph.addTask(transmTask);

12  SPINE at Work236

e)	 Next, the connections between pair of tasks are created.

taskGraph.addConnection(sensingTask1,
procTaskMean1);
taskGraph.addConnection(sensingTask2, procTaskMean2);
taskGraph.addConnection(procTaskMean1, mergeTask);
taskGraph.addConnection(procTaskMean2, mergeTask);
taskGraph.addConnection(mergeTask, transmTask);

f)	 Once the application task graph is defined, it can be deployed over the
network. Moreover, the manager is instructed to automatically run the task
application as soon as all the tasks are instantiated on the sensor nodes.

manager.deployApplication(taskGraph,
 WSN.AUTOMATICALLY_START_APPLICATION);

g)	 As last operation of the discoveryCompleted(…) method, the
MetaDataManager instance is used to build the metadata information
related to the just‐defined task graph application. This component is neces­
sary to correctly extract the sensor data from the SensorDataMessage.

h)	 On the reception of a message from the sensor network, and specifi­
cally from the TransmissionTask instance, the messageReceived
(Message msg) method is triggered in order to handle such a mes­
sage on the basis on its type (see “spine2.message.message_
list” package). In particular, in case of a SensorDataMessage, the
Meta DataManager instance is used to allow the developer to simply
extract the data of interest, which can be identified by means of specific
labels. Moreover, the check over the dataMsgChainID value can be use­
ful to differentiate data messages coming from different transmission tasks,
which is not actually necessary in this case. Data are then simply displayed
with no further computation.

if(msg instanceof SensorDataMessage){
SensorDataMessage dataMsg=

(SensorDataMessage) msg;
 metaDataManager.decodeSensorDataMsg
(dataMsg);
 int dataMsgChainID= dataMsg

.getTransmissionTaskCode();
 if(dataMsgChainID== transmTask.getCode()){
 short[]streamMeanX= metaDataManager

.getDataStream(
"Mean_AccX_Sensing_Task_1");

12.3  SPINE2 237

 if(streamMeanX!=null)
 printDataStream(

"Mean_AccX_Sensing_
Task_1",
streamMeanX);

 else
System.out.println("No data
associated

with the specified
label");

 }
}

i)	 Finally, in order for the developer to know the exact list of available sensor
data labels, the MetaDataManager provides the following method:

MetaDataManager.getMetaDataLabelsListString(
TaskGraph
taskgraph);

239

Wearable Computing: From Modeling to Implementation of Wearable Systems Based on Body
Sensor Networks, First Edition. Giancarlo Fortino, Raffaele Gravina, and Stefano Galzarano.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Son, Inc.

Index

a
admissible refinement  180
agent algebra  178
agent‐based programming  32, 94
agent‐oriented programming  40,

89, 91
Ambient Assisted Living (AAL)  133
Analog to Digital Converter (ADC)  6
Android  45, 114, 147, 156, 200
ANT  10
arousal  18, 197
automatic code generation  26, 28
autonomic computing  73, 76, 84

b
Belief‐Desire‐Intention (BDI)  96
blood pressure  2, 16, 142, 194
Bluetooth  3, 9, 45, 147, 206
Bluetooth Low Energy (BLE)  9
BodyCloud  139, 153, 159, 166

c
Cardiac Defense Response

(CDR)  163, 197, 201
cloud computing  5, 139, 144
collaborative BSNs  109, 202

d
data fusion  4, 40, 107, 182
data mining  35, 51, 115, 140

data processing  6, 27, 37, 51, 122
development tools  25, 73, 140
domain‐specific programming

framework  45, 56

e
e‐Health  17, 37, 141, 152
Electrocardiography (ECG)  2, 17, 48,

152, 160
Electroencephalography (EEG)  3, 17
Electromyography (EMG)  3, 17, 48
emotion recognition  20, 194
emulator  56

f
fall detection  183, 189
fear detection  162, 197
feature extraction  6, 35, 51, 109, 202

g
Google App Engine  140, 157

h
handshake detection  183, 200
heart rate variability  194

i
IEEE 802.15.4, 8, 13, 45, 117, 181
Industrial, Scientific and Medical

(ISM)  7

Index240

Infrastructure as a Service (IaaS)  140
Internet of Things (IoT)  27
interoperability  3, 26, 59, 96, 143, 180

j
Java  39, 55, 70, 158, 217

k
K‐nearest Neighbor  36, 81, 100, 189

m
macroprogramming  32
m‐Health  4, 13
Micaz  13, 38, 55, 216
Micro‐ElectroMechanical Systems

(MEMS)  6
mobile coordinator  147, 191
multiagent system  90, 98

n
network topology  11, 95

o
operating system  26, 46, 96, 229

p
pattern recognition  35, 51, 115, 183
Photoplethysmography (PPG)  35
physical activity recognition  17, 81,

133, 188
physical rehabilitation  205, 208
Platform as a Service (PaaS)  140, 151
Platform‐Based Design (PBD) 

177, 180
privacy  3, 34, 80, 144
programming abstraction  28, 81,

124, 225
programming frameworks  25, 74, 109

q
QRS complex  160, 198

r
radio duty‐cycling  7, 36, 48, 116
rapid prototyping  13, 46, 159, 208

s
security  3, 34, 150, 156, 195
self‐*  74, 78, 84
sensor configuration  27, 151
sensor fusion  2
Shimmer  13, 39, 55, 156, 206
signal processing  6, 32, 39, 116,

184, 213
smart environments  121, 133
smart‐Health  16, 55, 187
Software as a Service (SaaS)  140, 151
startle reflex  198
step counter  191
stress detection  183, 194, 208
Support Vector Machine (SVM)  188

t
task‐oriented paradigm  31, 62,

73, 225
task‐oriented programming  59
TelosB  13, 38, 55, 150, 216
three‐tier architecture  40
TinyOS  27, 38, 46, 95, 141, 181, 220

v
virtualization  139, 148
Virtual Machine (VM)  33, 147

w
wearable computing  121, 139, 171
wearable sensing  2, 205
WEKA  54, 115, 140
Wireless Sensor and Actuator Network

(WSAN)  121, 124, 133

z
ZigBee  3, 9, 39, 55, 215

