
Using AVR-GDB and AVaRICE Together – Rev 20031007

Using AVR-GDB and AVaRICE Together
Using the JTAG ICE without AVR Studio

Colin O'Flynn

Introduction

This guide is intended to get you to use the GNU De-Bugger (GDB) for Atmel AVR
microcontrollers. It will walk you through what it is and how to use it.

What is AVR-GDB

AVR-GDB is the GDB for the Atmel AVR line of microcontrollers. A de-bugger is a great tool,
it lets you view the source code as it executes, view variables, change around information,
and a whole wack of other things.

Perhaps your wondering why not just use AVR Studio, a free product from Atmel. However
there are a number of reasons why AVR Studio may not be of preference to you. First, AVR-
GDB can be run under Linux perfectly, which the newer versions of Studio have trouble doing
at all.

Secondly, the GDB is a huge project that was originally design for use in computers. The
GDB is used by many people for debugging computer programs that would run on PC's. This
means it has a massive feature list as it has been developed by many people over a great
deal of time, a few of these features will be shown in this document. Of course not every
feature will work on the AVR platform that you have on a normal computer, but there is still a
nice set of them.

Finally, AVR-GDB has a very large support group; most questions asked on the avr-gdb mail
list will get answered quickly.

In case your wondering, yes AVR-GDB is free.

What is AVaRICE?

AVaRICE is the tool that talks to the JTAG ICE from Atmel, and passes this information onto
AVR-GDB. This is done using GDB's serial debug protocol, so the de-bugger is running on a
different target than the program being de-bugged. Also its worth nothing that this is done
with a TCP socket, so in theory if you wanted you could have the JTAG ICE connected to
one computer with AVaRICE on it, then another computer at some distant point on the
network could connect to AVaRICE and de-bug the program from there!

Using AVR-GDB and AVaRICE Together – Rev 20031007

A Quick GDB Tutorial

For now just pretend you already have the GDB set up and running, as it will be better to first
understand about GDB and how it will work.

Natively, GDB has no graphical user interface (GUI). It is purely text based, but is very well
designed so you don't even need a graphical interface. You can add on a graphical interface
is you so desire, but its important to understand the console interface to GDB. Later on this
document will shown you how to use a GUI. So if you are a bit lost for this beginning part –
don't worry about it yet. It will be easier to understand when you are using the debugger.

Kick off the GDB by typing gdb at the console, and the screen then looks something like
figure 1 (this is using Cygwin, so unless you have installed that you probably won't have
normal GDB on a Windows machine). If you want to follow along, you can type avr-gdb
instead at a MS-DOS prompt. If you can't get to one, goto Start...Run and type
command.com then click OK.

The line that says (gdb) is the GDB prompt, and this is where you type commands. GDB
has a very useful built-in help. To access it, just type help at the GDB prompt and hit enter.
With the GDB prompt there is a number of speed-savers you can use. First, to repeat the last
command just hit <Enter>, there is no need to re-type the command again. Also you don't
have to type out the entire command name. For example instead of typing out help you can
just enter hel which will work exactly the same. As long as GDB knows what you are going
to type you can shorten the command as much as you want.

Using help you can get a list of all the commands. The first time you used help it should
come up with a screen like that in figure 2.

Figure 1 Main screen of GDB

Using AVR-GDB and AVaRICE Together – Rev 20031007

Now select what topic you want more help on. So for example type help breakpoints to
see a list of the commands that relate to breakpoints. Now your screen should look like figure
3.

Finally, get the documentation on the command you are interested for. So in this case try
help break and you will get a blurb on what this command is and what it does.

From now on some of the commands will be discussed, but you won't be able to try them out
yet as there is no program loaded on GDB. This will have to wait for later.

Figure 2 The GDB help sub-menu options

Figure 3 The Breakpoints sub-menu

Using AVR-GDB and AVaRICE Together – Rev 20031007

Viewing Variables
Viewing the values of variables is an essential part of debugging. So it stands that GDB has
some nice facilites to view and access variables. Listing XX shows some examples of this
(bolded text is where the user has entered information):
(gdb) print count
$1 = 34
(gdb) print $1-10
$2 = 24
(gdb) print my_array[0]@2
$3 = {12, 123, -19, 3, 20}
(gdb) whatis count
type = int
(gdb) whatis my_struct
type = struct my_struct_def *
(gdb) ptype my_struct
type = struct my_struct_def {

int member1;
char * address_char;
} *

The first command prints the value of a variable in the program. Also note that it is assigned
an identifier, $1. This can be used in other expressions as shown when 10 is subtracted from
the value.

For printing arrays, you specify the array, followed be the array index (in [] brackets just line
in C), followed by @x where x is how many elements to print.

Finally the whatis command can tell you the type of variable you are looking at. The ptype
command is used to examine structures, as otherwise you are just told it is a structure.

Changing Variables
Changing variables in a running program (of course you will have to pause it before changing
the value) is very easy.

To do this, use the GDB set command:
(gdb) set variable my_var = 10

This will set the variable my_var to the value 10.

Changing and Viewing Program Flow
Viewing and adjusting the program flow is an essential part of debugging, and like other
funtions GDB gives you a variety of commands.

Using AVR-GDB and AVaRICE Together – Rev 20031007

The step and next commands are the equivalent of 'step into' and 'step over', respectively.
So the step command will step one instruction at a time, and if it encounters a subroutine
will step 'into' it, calling it and allowing you to step through it. The next command on the
other case will execute the entire sub-routine when it comes across it.

If you are in a subroutine and want to just finish it without single-stepping, use the finish
command. The finish command finishes the current routine and prints its return value,
stopping execution when it returns as well.

If at any time you want to call another subroutine, that can be done using the call
command. It is just like calling it from a C routine, except for no trailing semi-colon. For
example to call the routine 'send_string(“Test of UART”, counter_var1)' you would do this:
(gdb) call send_string(“Test of UART”, counter_var1)

So this will call the routine send_string with the string “Test of UART” as the first argument
and the variable counter_var1 as the second.

At this point you may be wondering one thing: sure I know how to single-step through the
code, and view its variables, and call routines, but how do I see what the code is!? That is
where the list command comes in. The list command shows you a few lines of code
around the currently executing block.

If you want to let the program run full-speed, and continue until it hits a break-point, you
would use the run command normally. However this is NOT the case with avr-gdb, instead
the program will already be running, but paused, when you start it up. For this reason you
use the continue command. The continue command starts program execution from
where it is currently paused.

Now the other problem is how do you stop the program flow? This is where breakpoints come
in. You can set them on any line of code in any file, and before that line executes the
program execution is stopped. Note however that the current version of avarice only supports
hardware breakpoints, of which there are only three. So you cannot set more than three
breakpoints yet, although perhaps by the time you read this avarice will support software
breakpoints as well.

To set a breakpoint, use the break command (what a suprise). Here are some examples of
using the command:

(gdb) break 100
(gdb) break putchar
(gdb) break uart.c:45

Using AVR-GDB and AVaRICE Together – Rev 20031007

(gdb) break uart.c:outch
You can specify to break at a certain line number (the case with break 100), at a certain
function (the case with putchar), and you can specify to put the breakpoints in another file
than the current one being executed.

To get information on what breakpoints are set, use the info breakpoints command.
Then you can delete or disable them with the delete or disable command, as such:
(gdb) info breakpoints
(gdb) delete 2
(gdb) disable 1
(gdb) info breakpoints

Running AVaRICE and AVR-GDB Together
Now that you know how to use GDB, its time to get it running with AVaRICE for your JTAG
use.

First connect your JTAG ICE to the serial
port, and open a terminal. In Windows
you can do this by selecting “MS-DOS
Shell” from somewhere on the Start
Menu, or lacking that open the “Run”
dialog on the Start Menu and type in
command.com and hit OK as shown in
figure 4.

Now you will want to make sure you actually have avarice installed correctly, and your path
set up as well. If you have not installed WinAVR already, now would be a good time to do
that! Type avarice at the command prompt, and hit enter. Hopefully you get some sort of
response indicating avarice is working. Pretty much anything besides “File Not Found” is a
good sign.
Now you can get more information by running avarice --help which will bring up a huge
list of all the options for avarice, you should read through this list to get an idea of what to do.

Figure 4 - Run Dialog

Using AVR-GDB and AVaRICE Together – Rev 20031007

Go to the directory with your project file in it, and make sure you have compiled it recently. In
this example the project is called main, with the elf file being main.elf. At the command
prompt type:
avarice --program --file main.elf --part atmega128 --jtag com1 :4242

There may be a newer version of avarice with more options by the time you read this, which
is why you should examine the --help output to see what is new. This example will use the file
main.elf, program the flash, with the JTAG ICE connected to com1, then listen for a
connection on port 4242.
This port is how avr-gdb communicates with avarice – and since it is the TCP/IP protocol this
means you could actually run avarice on one computer, then connect to that computer with
another computer running avr-gdb.

You may want to get the latest info on where avarice and avr-gdb stand, so see what
documents come with your version. For example if you are using WinAVR check the
WinAVR\doc\avarice directory, and read the files to see what they say.

Open up a new terminal, go to the directory with your project in it, and start up avr-gdb
specifing your elf file on the command line. For example I would type:
avr-gdb main.elf

And you should be greeted with a message from avr-gdb, and the gdb prompt should come
up. Now you have to connect to avarice, to do so type this at the gdb prompt:
(gdb) target remote localhost:4242

Remote debugging using localhost:4242

0x00000000 in __vectors ()

Figure 5 - Running avarice for the first time

Using AVR-GDB and AVaRICE Together – Rev 20031007

Now try a few commands, first try list. Then start playing around with avr-gdb. Note that if
you type continue without breakpoints set, the program will never stop executing. To break
it hit <Ctrl> + C (hold down Ctrl and tap the C key, then release both). To exit avr-gdb type
quit, and not that this will close the connection to avarice so to restart avr-gdb you will first
have to restart avarice.

A Graphical Interface to GDB
At this point you might not be thinking to kindly of GDB, with its text interface. Luckily
WinAVR comes with Insight, which is a graphical front-end for GDB that is very easy to use.

First you have to run avarice as described before, for example type:
avarice --program --file main.elf --part atmega128 --jtag com1 :4242

Now you have to start up Insight. WinAVR may have put an icon on your desktop,
it will look something like figure 6. If that is not present, then directly run the
program, its default location being: C:\WinAVR\bin\avr-insight.exe.

When AVR Insight loads, go to the “File” menu and select “Open”, and find your elf file as
shown in figure 7.

Figure 6

Figure 7 - Loading the elf file in Insight

Using AVR-GDB and AVaRICE Together – Rev 20031007

Now the Insight Window should be looking like a debugger! However you can't run anything
yet, you still have to connect to avarice. Go to the “File” menu and select “Target Settings”,
and a dialog like figure 8 should appear.

It is important you set this dialog up properly. First, select “Remote/TCP” as the “Target:”
type. The “Hostname” will normally be “localhost” (as long as the JTAG ICE is connected to
the same computer Insight is running on), and the “Port” should be what it is set to in avarice,
which is “4242” for this example.

Then move to the check-boxs, make sure “Set breakpoint at 'main'” is checked. Then hit the
“More Options” arrow, and more options should appear (if they weren't already there).

Make sure “Attach to Target” is checked, and “Download Program” is NOT checked. The
“Run Method” should be “Continue from Last Stop”. Then hit the OK button.

Now go to the “Run” menu and hit “Connect to Target”. A message should come up saying
the connection was made OK, and your Insight screen should change. Likely it will be
displaying the first line of code, which will just be interrupt vectors.

Now you should be able to hit the run button, and the code will run until it hits the first
breakpoint, which should be set at main because you checked the box in the “Target
Settings” window. This doesn't always seem to work though, so you should manually check it.
First select the source file with the main() routine in it, as shown in figure 9.

Figure 8 - Target Settings

Using AVR-GDB and AVaRICE Together – Rev 20031007

Next scroll down to your main routine, or select it from the routine list as shown in figure 10.
Figure 9 - Selectin the main source file

Figure 10 - Selecting the main() routine

Using AVR-GDB and AVaRICE Together – Rev 20031007

Now you should see a '–' on the left of the line numbers, right around your main() decleration.
Anywhere there is a dash you can click to set a breakpoint. See figure 11 for an example of
what this looks like, the red arrow points to the dash. If you have a red box instead of a dash,
the main() breakpoint was properly set.

Then click on it with your cursor, when your cursor is over the dash it should change shape.
After you click a red box will be there instead, this means a breakpoint is set. This is shown
in figure 12.

Now you can go ahead and hit the “run” button, which is on the top toolbar. If you hover the
cursor over a button it will give its name as well as the keyboard shortcut (ie: for Run it is the
'R' key).

When the code hits that breakpoint, execution will be stopped. You may then want to remove
the breakpoint by clicking on it again, as it will not be hit again and just takes up one of the
available breakpoints.

With the top toolbar (which is shown in figure 13) you can run, stop, step into ('step'), step
over ('next), step out ('finish'), and even just step assembly-level instructions.

Also you can view register contents, memory contents, view all local variables, and access
the GDB prompt (for executing commands that aren't in the graphical interface) as well as a

Figure 11 - This dash means a breakpoint could be set, but currently isn't

Figure 12 - A breakpoint is set at this location

Figure 13 - The Toolbar

Using AVR-GDB and AVaRICE Together – Rev 20031007

few other things.

A final note of interest is the pull-down menu in the right-corner that will likely say “SOURCE”
lets you change what is being viewed. You can view the high-level source code, the low-level
assembly code, or even view the two mixed together in the same or separate windows.

Closing Notes

This document will hopefully have shown you how to use AVaRICE and AVR-GDB together.
By the nature of these tools they are always evolving, and new features will be added.

You should always expore what it looks like the current tools can do, read the documentation
that comes with them, and even read some of the latest postings on the various mailing lists
to see if there is talk of new features.

If you have trouble related to AVaRICE, you should contact the avarice mailing list, look for it
on its homepage at http://avarice.sourceforge.net.

If you have other trouble you should post either to the AVRFreaks.net avr-gcc forum or the
avr-gcc mailing list, see http://www.openavr.org for a link to the mailing list.

