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Editorial Foreword

Variational principles have a long history of providing insight and practical
solutions to problems in a wide range of scienti�c and engineering disciplines.
In particular, their substantial contribution toward the development of high
frequency technologies during and after World War II, by underpinning the
equivalent network approach for the design and analysis of microwave circuits,
is clearly recognised. At a time before modern computers, variational princi-
ples provided solutions to immediate engineering problems with unparalleled
accuracy. However, even in the modern era, as the power of computers has in-
creased at an astonishing pace, variational methods have evolved and remain
an invaluably elegant and powerful tool for researchers in a variety of �elds.
Therefore, we are very pleased to welcome this book, which provides both a
comprehensive and in-depth treatment of all aspects of variational principles
applied to microwave, millimetre-wave and optical circuits, to this series.

Starting with a thorough review of the �eld, the book clearly establishes
the form and physical signi�cance of variational principles as well as their
relationship with other approaches. A detailed discussion of the application
of variational principles to planar microwave geometries is followed by the
establishment of a general variational principle for electromagnetics and its
application to a wide variety of practically important con�gurations, including
transmission lines, cavities, junction problems as well as gyrotropic devices.

Throughout, the mathematical basis and practical implementation of the
variational approaches is clearly and elegantly presented and evidently ben-
e�ts from the authors' extensive knowledge and original contributions to the
�eld. Therefore, this book is likely to be of interest both to experienced re-
searchers in the �eld as well as those wishing to explore the stimulating and
practically valuable topic of variational principles for the �rst time.

TM Benson
P Sewell

University of Nottingham
July, 2001
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Preface

When, in 1888, Hertz deduced the concept of propagation from Maxwell's
theories and when, a few years later, in 1895, Marconi made his �rst propa-
gation experiments, nobody would have expected the extraordinary develop-
ment of radio that was to come. In those days, transmission lines were already
present, such as one or two wires above the ground, transmitting telegraphy.
Consideration at the time and distance dependence of the signal resulted into
what was called the telegraphist's equations. It did not take long to establish
the link between these two-variable equations and the four-variable Maxwell's
equations. Simultaneously, circuit theory evolved from lumped circuits to dis-
tributed circuits. The two developments merged, and transmission line theory
was born.

The �rst transmission lines were analyzed using a quasi-static approach.
Homogeneously �lled waveguides necessitated the use of transverse electric
(TE) and transverse magnetic (TM) waves which were solutions developed in
the 19th century. It is quite surprising to see how much scienti�c material was
already available at that time, with solutions developed by Laplace, Poisson,
Helmholtz, Bessel, Legendre, Lam�e, Floquet, Hill, Mathieu, and others.

During World War II, microwave network theory became an recognized
subject, mainly due to the e�orts developed at the Massachusetts Institute
of Technology (MIT) Radiation Laboratory, USA. Computers were not avail-
able, fortunately one might say, enabling e�orts to be concentrated on theory.
It is extremely interesting to observe that advances came out of the fruitful in-
teraction of di�erent scienti�c disciplines: methods characteristic of quantum
mechanics and nuclear physics were focused on the application of electro-
magnetic theory to practical microwave radar problems. Out of these rather
special circumstances emerged a strategic lesson. In seeking to apply a fun-
damental theory at the observational level, it was found very advantageous to
construct an intermediate theoretical structure, a phenomenological theory,
capable of organizing the body of experimental data into a set of relatively
few numerical parameters, and using concepts that facilitate contact with the
fundamental theory. The task of the latter then became the explanation of
the parameters of the phenomenological theory, rather than the direct con-
frontation with raw data. Right after the war came the wonderful scattering
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matrix tool, simultaneously adapted to microwave circuits from scattering in
physics, by Belevitch in Belgium and Carlin in the US.

Schwinger played a central role in the development of microwave net-
work theory at the MIT Radiation Laboratory. He was interested in develop-
ing \a systematic analytical procedure for reducing complicated problems to
the fundamental elements of which they are composed by the application of
generalized transmission line theory, symmetry considerations, and Babinet's
principle". He used essentially two methods. One is the Integral Equation
Method, in which imposing the boundary conditions on a discontinuity in a
waveguide leads directly to integral equations from which the �eld is deter-
mined. He replaced the discontinuity by a lumped parameter network in a
set of transmission lines. The circuit parameters were expressed directly in
terms of the �elds, so that the solution of the equations leads to the elements
of the equivalent circuit.

The other method he called the Variational Method, where the impedance
elements are expressed in such a form that they are stationary with respect to
arbitrary variations of the �eld about its true value. By judiciously choosing
a trial �eld, he obtained remarkably accurate results. Moreover, these could
be improved by a systematic process of improving the trial �eld, which, if
carried far enough, will lead to a rigorous result. Furthermore, in solving a
given problem, several methods can be used in conjunction. For example, one
might solve an integral equation approximately by a static method and then
use this approximate solution as a good trial �eld in the variational expression.
These developments resulted in a rigorous and general theory of microwave
structures in which conventional low-frequency electrical circuits appeared as
a special case. Particular use was made of the distinction made between the
theoretical evaluation of microwave network parameters, which entails the
solution of three-dimensional boundary-value problems and belongs to elec-
tromagnetic theory, and, on the other hand, the network calculations of power
distribution, frequency response, resonance properties, etc., characteristic of
the \far-�eld" behavior in microwave structures, involving mostly algebraic
problems and belonging to microwave network theory.

In the 1950s, there was a tremendous breakthrough in transmission line
technology. It started with the request for higher bandwidth and hence higher
frequencies. The stripline, and more obviously the microstrip line, opened the
era of planar hybrid distributed electronics. They brought up a new prob-
lem, that of an inhomogeneous transverse section. Stripline and microstrip
were rapidly followed by the slot-line, the electromagnetic complement of mi-
crostrip. Then came the coplanar waveguide.

At the lowest frequencies, a quasi-static approach was still usable although
not at the higher frequencies, and new approaches and methods became neces-
sary. Quite naturally, quasi-static methods led to full-wave dynamic methods.
New approaches were developed, such as the moment method. Old strategies
were improved, among which were the Rayleigh-Ritz and Galerkin proce-
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dures. With the increasing use and capabilities of the computer, discretized
formulations were developed, such as �nite-di�erences, �nite-elements, and
time-domain �nite-di�erences.

Technology continuously evolved, not only in terms of topologies, but also
toward smaller size and higher frequencies, with microwave integrated circuits,
both hybrid and monolithic. Today the variety of structures is quite large: mi-
crostrip, microslot, and coplanar wave guide, on dielectric substrates possibly
with ferromagnetic inserts, as well as on semiconducting substrates. The fre-
quency range is enormous: it goes from the lowest range of microwaves, with
mobile telephony circuits at 900 MHz as a main application, up to millimeter
waves, with a view to automotive applications at 100 GHz. Communications
with optical carriers, in particular for ultra-high bandwidth data transmission,
require solutions for optomicrowave devices.

Today, the practicing engineer has at his disposal a number of methods
for analyzing lines and resonators, as well as professional software. So, his
question is: what method shall I use?

The purpose of this book explore the methods for calculating circuit pa-
rameters, complex propagation constants and resonant frequencies, for the
whole variety of con�gurations and over the whole frequency range. We will
show that variational methods can do that. They are analytical methods and
we strongly believe in the value of pushing analytical methods as far as pos-
sible when calculating circuit parameters. The reason is simple. In general,
we are not interested in calculating the parameters of just one con�guration.
What we are mostly interested in is circuit synthesis and, with this in mind,
we are eager to know how changes in geometrical and physical parameters can
a�ect the circuit's performance. This is precisely what analytical methods can
do.

Perturbational methods have also been used for decades. The variational
approach, however, can be applied to a wider variety of problems. Indeed it is
not necessary, as with perturbation theory, that the departure from a simple
known case is small. The variational approach can be used successfully even
when the departure is large. As an example, it can be applied to deformed
lines and resonators, possibly inhomogeneously loaded, and to singularities
such as corners of re-entrant conducting surfaces or of blocks of dielectric or
magnetic material.

So, the main subject of the present book is clearly that of microwave net-
work theory. It is interesting to observe that the general variational principle
developed in Chapter 4, for solving problems of shielded and open multi-
layered lines with gyrotropic non-Hermitian lossy media, exactly follows the
guidelines described by Schwinger: the proof of the principle is established;
an equation is solved by a static method, using conformal mapping; the ap-
proximate solution is used as a good trial �eld in the variational expression;
the trial �eld is improved by a systematic process, and very accurate results
are obtained with a remarkably small number of iterations.
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However, the �eld used to obtain results, may not be a good approxi-
mation of the �eld in the exact structure; in particular this is the case near
abrupt discontinuities. It is however, important that the integral of the �eld
is stationary. These �eld values are an excellent starting point for iterative
procedures in which the �eld is the quantity of interest.

The reader will �nd in Chapter 1 a review of the areas in which variational
methods have been used, in some cases for centuries. The importance of
variational methods and principles for solving microwave engineering problems
is also highlighted.

In Chapter 2, variational principles are introduced in general terms, for
calculating impedances and propagation constants. They are �rst developed
so that the value of the variational quantity has a direct physical signi�cance,
such as energy and eigenvalues. Then, by re-arranging Maxwell's equations, it
is shown that explicit expressions can be obtained as well as implicit expres-
sions. Variational principles are �nally compared with the reaction concept,
moment method, Galerkin procedure, Rayleigh-Ritz method, mode matching
technique, and perturbational methods.

Quasi-static and full-wave dynamic methods for analyzing planar lines are
reviewed in Chapter 3. The quasi-static methods usually provide a straight-
forward expression for a line parameter. On the other hand, full-wave methods
do not provide a simple explicit description of the behaviour of a line param-
eter over a range of frequencies. The main part of the chapter is devoted
to detailed variational formulations, applicable to a variety of con�gurations,
including anisotropic media. Discretized formulations are compared with an-
alytical formulations. The combination of variational principles with other
methods is also discussed.

The eÆciency of variational principles is illustrated in Chapter 4 by a gen-
eral principle developed by the authors. It is applicable to planar multilayered
lossy lines, including those involving gyrotropic lossy materials. In combina-
tion with conformal mapping, it drastically reduces the complexity and dura-
tion of numerical calculations. Both spatial and spectral domain approaches
are derived. The mathematical and numerical eÆciency are demonstrated,
while the choice of the method for deriving trial quantities is discussed. Math-
ieu functions are shown to be very eÆcient expressions for trial �elds in slots.
The method is validated by measurements on topologies such as slot-lines,
coupled slot-lines, �nlines, and coplanar waveguides, with YIG-layers.

Finally, Chapter 5 is devoted to applications operating up to optical fre-
quencies, including multilayered lines with dielectric and semiconducting lay-
ers, lines coupled to gyrotropic resonators, uniplanar and microstrip-to-slot-
line junctions, and optomicrowave devices. It describes an original measure-
ment method, applicable to a variety of substances, including bioliquids such
as blood and axoplasm, for investigating microwave bioelectromagnetics, and
soil characteristics for demining operations. Combined with a variational prin-
ciple, it is used for determining the complex permittivity of a planar substrate.
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chapter 1

Fundamentals

1.1 Historical background

Calculus of variations, variational equations, variational methods, variational
principles, variational systems, least action, minimum energy, stability - all
these concepts relate to the subject of this book. They have been used for
years, and some for centuries. They have not the same meaning, however, and
we shall clarify at least some of those concepts to better de�ne our central
topics. With this in view, some historical background is necessary.

Plato, describing the creation of the cosmos, said that the creator \made
it spherical, equidistant from center to end, the most perfect and uniform of all
forms; because he found uniformity immensely better than its opposite" [1.1].
Aristotle made another comment, about the alleged circular character of the
planetary movements: \if the sky movement is the measure of all movements
because it is the only one to be continuous and regular and eternal, and if,
for any species, the measure is the minimum, and the minimum motion is the
fastest, then, clearly, the sky movement must be the fastest of all. Among
the lines which close themselves however, the circle line is the shortest, and
the fastest movement is that which follows the shortest curve. Hence, if the
sky moves itself into a circle and is fastest than any other, then it must be
necessarily spherical" [1.1].

As we see, the concept of maximum and minimum was already present in
mechanics at the time of Plato and Aristotle. In the �rst century A.D., Hero of
Alexandria described the �rst minimum principle, in geometrical optics:\all
what moves with no velocity change, moves along a straight line, (: : :) the
object tries to move along the shortest distance, because it has no time for a
slower movement, i.e. for a movement along a longest path. And the shortest
line between two points is the straight line" [1.1].

Hence, the concept of extremum in science was already present 2000 years
ago. Much later, in the 17th century, Pierre de Fermat expressed the law of
refraction as a consequence of a minimum principle, assuming that the veloc-
ity of light decreases when the density of the medium increases. Descartes,
in contrast, had proposed as \conforming to experiment" the law based on
the assumption that light propagates easier and faster in media with higher
density. Fermat writes: \Our postulate is based on the fact that nature op-
erates by the easiest ways"; contrary to Descartes, \we do not consider the
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shortest spaces or lines, we do consider those which can be followed the most
easily and in the shortest time" [1.2]. Hence Fermat used a minimum time
principle.

Fermat's questions were extended to the investigation of functions maxi-
mizing or minimizing a quantity, in general an integral, like establishing the
minimum length of a curve joining two points on a surface, the minimum time
required for a mass to shift from one point to another, the minimum value of
an area limited by a given curve, etc.

In 1744, Maupertuis wrote: \Light, when propagating through di�erent
media, does not use either the shortest path or the smallest time, (: : :) it
follows a path which has a more actual advantage: the path on which the
quantity of action is smallest. (: : :) When a body is shifted from one point
to another, a certain action is needed: it depends on the velocity of the body
and of the space it describes, it is however neither velocity nor space taken
independently. The quantity of action is the larger as the speed is high and
the path is long; it is proportional to the sum of the spaces each multiplied by
the velocity at which the body describes them. This quantity of action is the
actual expense of nature, which reduces it as far as possible in the movement
of light" [1.1]. The theory, however, was approximate and su�ering from an
unnecessary metaphysical background.

At about the same time, the concept of maximum and minimum was
extended by the Swiss mathematician Euler, under the name of calculus of
variations, to a much more advanced level. The principle of least action was
de�ned with accuracy. Theoretical and conceptual developments then con-
tinued, with the work of d'Alembert, Lagrange, Hamilton, Jacobi, Gauss,
Thompson, Kelvin, Weierstrass, Hilbert, Sommerfeld, Schr�odinger, Dirac,
Feynman, Volterra, and others.

Extrema were of course directly linked with stability and, with no surprise,
one discovers that the subject of stability has grown considerably over the
years. Some bases are the variational equations of Poincar�e and the methods
of Liapounov. The analytical approach to the theory of stability develops from
the so-called variational equations of Poincar�e, with some ambiguity, however,
between variationality and perturbation theory [1.3]: variational equations,
variational equations of singular points, variational systems with constant co-
eÆcients, etc. Various methods were developed to reduce variational systems
based on di�erential equations with periodic coeÆcients to those based on the
di�erential equations with constants coeÆcients.

Sommerfeld extended the theory of Bohr's atom by observing that there
had to be a certain connection between Planck's constant and the action inte-
gral of Hamilton's principle. De Broglie was in
uenced by the principle of least
action in establishing the basis of wave mechanics, and he brought together
optics and mechanics through variational principles. Schr�odinger wrote his
equation of quantum mechanics as an extremum of an integral obtained from
Hamilton-Jacobi's theory. Dirac wondered about the link between quantum
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mechanics and the Lagrangian formalism, and the doctoral thesis of Feynman
in 1942 was entitled \The principle of least action in quantum mechanics",
paving the road towards his contributions in quantum electrodynamics for
which he obtained the Nobel prize.

1.2 Extremum principle

To the best of our knowledge, the �rst time a variational approach was used
in engineering was by the Bernoulli brothers, in the middle of the 18th cen-
tury, in hydraulics. There had been quite a correspondence between them and
Euler on the subject. A number of problems however, in the area common
to mathematics and mechanics, were solved using the calculus of variations.
The core of the methods using such calculus is based on variations, which
means investigating an extremum by attributing variations to the arguments.
The local aspect is dominant. We shall point out later in this chapter that
this subject is not to be confused with variational principles in general. The
ambiguity, however, is present in many books, such as [1.4], which states:
\Many variational problems do appear because the laws of nature allow inter-
pretations as variational principles". It must be observed that the examples
cited in those references are, strictly speaking, related to the stationarity of
one integral around a given point, yielding an extremum, either a maximum
or a minimum, for that integral. We shall come back to this later.

Many problems receive their initial formulation directly in the domain of
the calculus of variations. A number of examples of the stationarity of an
integral can be found, such as the evaluation of:

- the shortest path from one point to another (geometrical optics), or
from a point to a curve, or between two curves

- the fastest descent of a particle in movement, submitted to frictionless
gravitation (brachystochrone)

- the minimum area described by a curve rotating around an axis (isoperi-
metric problem and geodesy).

The problem we are confronted with bears some resemblance to the one
of �nding the minimum or the maximum of a simple function. The problem
encountered in the calculus of variations, however, is much more diÆcult,
because instead of �nding a point where a simple function f(x) has a min-
imum, we are required to determine an argument function y(x), out of an
in�nity of possible functions de�ned over an interval of x, which makes a
de�nite integral J of the functional F (y) a minimum. A further very fun-
damental di�erence between the maximum and minimum problem and the
calculus of variations problem lies in the fact that a theorem (attributed to
Weierstrass) always ensures the solution of the straight maximum-minimum
problem, while no such general fundamental existence theorem exists for the
variational calculus problem. Consequently, in the calculus of variations, the
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existence of a solution to any given extremum problem requires a special proof.
In those cases where a solution exists, it turns out that a necessary condition
for an extremum is that the �rst variation ÆJ of the functional must be zero.
This requirement is formally analogous to the requirement for the straight
minimum problem that the di�erential df vanish. Hence the meaning of the
�rst variation of an integral has to be de�ned carefully. An Euler di�erential
equation is obtained when the total derivative d=dx of the partial derivative
@F=@y is taken [1.5]. That this equation must be satis�ed by y(x) constitutes
a necessary condition for the existence of an extremum. The di�erential equa-
tion arising out of the �rst variation of the functional J plays the same role
in the calculus of variations minimum problem, as the ordinary di�erential
quotient plays in the simple minimum problem in ordinary calculus. There
are several circumstances in which it is simple to obtain the solution of the
Euler equation.

So called variational methods have been used abundantly in physics [1.6],
because many laws of physics can be expressed in terms of variationality.
For example, in classical mechanics, it has been shown that the motion of a
mechanized system is always such that the time integral of the Lagrangian
function taken between two con�gurations of the system has an extreme value,
actually a minimum. This principle is today widely known as that of least
action. In its present form, another such principle is that of Fermat, which
states that the propagation of light always takes place in such a way that the
actual optical path, i.e. the length of geometric path multiplied by the index
of refraction of the medium, is an extreme value, usually a minimum. If the
index of refraction varies continuously from point to point in the medium, the
appropriate integral must be applied.

In the case of automatic control [1.7], the names of Pontrjagin and his
colleagues are well known for what is called the principle of Pontrjagin, which
is a principle for determining a maximum [1.8]. They investigated the control
problem, which involves �nding an extremum for a functional where the func-
tion is submitted to a constraint, by determining which aspects, characterizing
the simpler problem of �nding an extremum for the functional, remain valid
for the control problem and can be used as a basis for solving it.

For many boundary-value problems of even order, it is possible to spec-
ify an integral expression which can be formed for all functions of a certain
class and which has a minimum value for just that function which solves the
boundary-value problem [1.9]. Consequently, solution of the boundary-value
problem is equivalent to minimizing the integral. In the Ritz method the so-
lution of this variational problem is approximated by a linear combination of
suitably chosen functions. This method shares, along with the �nite-di�erence
and the �nite-element methods, a very favored position among the methods
for the approximate solution of boundary-value problems. An appropriate
expression for the integral can be obtained by trying to write the di�erential
equation of the given boundary-value problem as the Euler equation of some
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variational problem.
In the above discussion, the problem involving only one unknown function

of a single independent variable was considered. The required generalization
to cover problems wherein more than one function of a single independent
variable is involved can readily be made [1.4]. The same is true for the many
physical problems requiring the determination of a function of several in-
dependent variables, giving rise to an extremum in the case of a multiple
integral. In this case, the Euler partial di�erential equation is found for the
problem involving several independent variables. A necessary condition for an
extremum of J is that the function of the variables satis�es this equation. If
the function is required by conditions of the original problem to have speci�ed
values on a boundary, a solution of Euler's equation must be obtained which
satis�es the given boundary conditions. Instances of physical examples which
can be replaced by a variational problem are:

- the vibrating string, by using the principle of least action

- potential problems involving Laplace equation, for which the potential
function makes an integral an extremum.

For variational problems in which it is required to determine the function u(x)
of a variable which makes a speci�c integral F an extremum subject to an
auxiliary condition, it may be shown that the problem is generally, but not
always, equivalent to �nding another function y(x) of the same variable. The
result will yield an extremum for the same integral, of a modi�ed function
F �, without regard to the auxiliary condition. The modi�ed function F � is
a speci�c linear combination of the function F and of the auxiliary condition
[1.5].

As the reader can see, the above presentation is limited to �nding func-
tions which make one integral extremum. By doing so, a stationary value is
obtained which is insensitive to a �rst-order variation of the variables, because
such a �rst-order variation induces a second-order variation, which is negligi-
ble, in the extremum value of the integral. Variational problems, variational
methods, variational principles, stationarity, least action, and perturbation
methods are expressions which have been used extensively in the literature.
From now on, we shall address those problems as depending upon an extremum
principle [1.10].

1.3 Variational principle

Throughout this book, we intend to reserve the appellation variational prin-
ciple to problems where the unknown quantity is expressed as a ratio of in-
tegrals. The value of the ratio will be said to be variational if there exists an
extremum value for this ratio, as for the cases illustrated in the �rst part of
this chapter. There is a fundamental di�erence, however, between them. If
indeed the numerator and the denominator of the ratio are both variational
for the same value of the function or if they both vary in the same way around
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the value yielding stationarity, then one feels that the stationarity might be
better than in the other cases.

To illustrate our point, let us consider variational principles for eigenvalue
problems. The eigenvalue equation relates di�erential or integral operators
acting on the function:

L(	) = �M(	) (1.1)

and it can be proved [1.6] that the following expression is a variational prin-
ciple for �:

Æ[

R
�L(	)dSR
�M(	)dS

] = Æ[�] = 0 (1.2)

where the function � is also determined by the variational principle. It sat-
is�es indeed the equation and boundary conditions which are the adjoints of
those satis�ed by the function 	: it is the adjoint solution. When the oper-
ators L and M are self-adjoint, one has � = 	 and the variational principle
assumes the simpler form

Æ[�] = Æ[

R
	L(	)dSR
	M(	)dS

] = 0; L and M self-adjoint (1.3)

The important point here is to observe that indeed variational principle (1.2)
is expressed as the ratio of two integrals.

This is the case for a number of eigenvalue problems, like Schr�odinger's
equation and the vibration of a membrane, subject to the Helmholtz equation.
These are problems for which the energy eigenvalues form a discrete spectrum.
They deal with either a �nite domain upon whose surface the wave equation
satis�es boundary conditions, or an in�nite domain in which case the wave
function must go to zero at in�nity.

There are also situations in which the eigenvalues form a continuous spec-
trum. Solutions satisfying the appropriate boundary conditions exist for all
values of the eigenvalue within some range of values. The variational princi-
ples described above are not directly applicable in this case, because the wave
functions are no longer quadratically integrable, and suitable modi�cations
must be introduced. In such cases variational principles can be found, for
instance, for phase shift, transmission and re
ection of waves by a potential
barrier, scattering of waves by variations of index of refraction, scattering from
surfaces, radiation problems, and variation-iteration schemes [1.6],[1.11].

1.4 Microwave network theory

One feature brought to the fore by World War II was the necessity to solve
rapidly new and diÆcult engineering problems. The MIT Radiation Labora-
tory grouped a number of scientists and engineers, from various disciplines
of science and technology. The group was very prestigious indeed and nine
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members of the Laboratory later obtained a Nobel prize. In the �eld of varia-
tional principles, members of the group started using such principles to solve
engineering microwave problems. This really was a breakthrough. One should
remember that computers were not available at that time, and analytical me-
thods, even approximate, were essential.

After World War II, Prof J. Schwinger, future Nobel prize winner, used to
lecture to a small group of colleagues at the MIT Radiation Laboratory. Notes
were duplicated after each lecture and handed out to the participants. The
war ended before the series had �nished, leaving lectures undelivered and some
lecture notes unwritten. By the end of 1945, the notes were duplicated again
and sent out to an accumulated mailing list. Interest in these lectures has
never waned. Some of the notes were �nally published more than twenty years
later. They concern waveguide discontinuities [1.12]. It is quite appropriate
to quote the authors' preface.

\These notes are an interesting document of the fruitful interaction of dif-
ferent scienti�c disciplines. Attitudes and methods characteristic of quantum
mechanics and nuclear physics were focused on the application of electromag-
netic theory to practical microwave radar problems. And out of these rather
special circumstances emerged a strategic lesson of wide impact. In seeking to
apply a fundamental theory at the observational level, it is very advantageous
to construct an intermediate theoretical structure, a phenomenological theory,
which is capable on the one hand of organizing the body of experimental data
into a relatively few numerical parameters, and on the other hand employs
concepts that facilitate contact with the fundamental theory. The task of
the latter becomes the explanation of the parameters of the phenomenologi-
cal theory, rather than the direct confrontation with raw data. The e�ective
range formulation of low energy nuclear physics was an early postwar appli-
cation of this lesson. It was a substantial return on the initial investment, for
now mathematical techniques developed for waveguide problems were applied
to nuclear physics. There have been other applications of these methods, to
neutron transport phenomena, to sound scattering problems. And it may be
that there is still fertile ground for applying the basic lesson in high energy
particles physics".

Schwinger was interested in developing sound \engineering methods",
which he de�ned as \a systematic analytical procedure for reducing com-
plicated problems to the fundamental elements of which they are composed
by the application of generalized transmission line theory, symmetry consider-
ations, and the principle of Babinet". He used essentially two methods. One
is the Integral Equation Method, in which the imposition of the particular
boundary conditions which the electromagnetic �eld must satisfy - because
of the existence of the discontinuity - leads directly to one or more integral
equations for the determination of the �eld. He therefore obtains equivalent
circuits, by means of which a discontinuity in a waveguide is replaced by a
lumped parameter network in a set of transmission lines. These circuit pa-
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rameters can be expressed directly in terms of the �elds, so that the solution
of the integral equations leads almost at once to the impedance (or admit-
tance) elements of the equivalent circuit. He points out that a static method,
with the help of conformal mapping, can solve many dynamic problems.

Schwinger called the Variational Method the means of solution in which
\the impedance elements are expressed in such a form that they are sta-
tionary with respect to arbitrary small variations of the �eld about its true
value. With the aid of such a method, one can, by judiciously choosing a
trial �eld, obtain remarkably accurate results. Moreover, these results can
be improved by a systematic process of improving the trial �eld, which, if
carried far enough, will lead to a rigorous result. Furthermore, in solving a
given problem one often uses two or more of these methods in conjunction.
For example, one might solve an integral equation approximately by a static
method and then use this approximate solution as a good trial �eld in the
variational expression"[1.12].

In his well-known Waveguide Handbook [1.13], one of the twenty-eight
volumes describing the research developed by the MIT Radiation Laboratory
and published after World War II, Marcuvitz mentions the dominant role
played by Schwinger in formulating �eld problems using the integral equation
approach, pointing the way forward both in the setting up and the solution
of a wide variety of microwave problems. These developments resulted in a
rigorous and general theory of microwave structures in which conventional
low-frequency electrical circuits appeared as a special case. One extremely
useful aspect was the distinction made between the theoretical evaluation of
microwave network parameters, which usually entails in general the solution
of three-dimensional boundary-value problems and belongs in the domain of
electromagnetic theory and, on the other hand, the network calculations of
power distribution, frequency response, resonance properties, etc., charac-
teristic of the \far-�eld" behavior in microwave structures, involving mostly
algebraic problems and belonging in the domain of microwave network theory.

The main subject of the present book is clearly that of microwave network
theory. It is interesting to observe that the very general variational princi-
ple demonstrated in Chapter 4 in view of solving problems of shielded and
open multilayered transmission lines with gyrotropic non-Hermitian lossy me-
dia and lossless conductors [1.14] exactly follows the guidelines described by
Schwinger: the proof of the variational principle is established; an equation
is solved by a static method, using conformal mapping; the approximate so-
lution is used as a good trial �eld in the variational expression; the trial �eld
is improved by a systematic process, and very accurate results are obtained
with a remarkably small number of iterations. Hence the necessary computing
time is drastically reduced, as will be shown.

The variational approach can be applied to a wider variety of problems
than can perturbation theory. It is indeed not necessary, as it is with pertur-
bation theory, for the departure from a simple known case to be small. As
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an example, the variational approach can be applied to deformed waveguides
and cavities, and to cavities and waveguides containing various dielectrics. It
can be used successfully, unlike perturbation theory, even when the departure
from a simple case is large [1.15]. Complicated waveguides and cavities can be
treated, and singularities such as those occurring at the corners of re-entrant
conducting surfaces, or at corners of blocks of dielectric, can be dealt with.

The variational approach does have its limitations. It can only be ap-
plied to the evaluation of one eigenvalue at a time, unlike an exact method
yielding a characteristic equation giving implicitly all the eigenvalues, or the
perturbation method which can give general formulae for eigenvalue shifts
applicable to all the modes, or at least to all the modes pertaining to a given
class. Furthermore, it should never be forgotten that, precisely because of the
variationality of the eigenvalue, which is a variationality with respect to the
�elds, the values of the �elds in the integrals whose ratio is variational can be
rather di�erent from the unknown actual values, at least in some parts of the
domain of interest.

It is now time to show the di�erence between perturbation theory and
variational theory. Perturbation theory is valid only when a small change
is introduced in a system. It evaluates the modi�cation in the parameter of
interest due to the perturbation with respect to the value of that parameter in
the absence of perturbation. Taking cavities as an example, and considering
the resonant frequency as the parameter of interest, perturbation theory can
be used to calculate the resonant frequency of a cavity �lled with gas compared
to that of an empty cavity, which implies a very small change over a large
volume. It can also be used to calculate the variation in resonance frequency
when a small solid body is introduced, which is a large change over a small
volume, or when part of a perfect conductor is replaced by a metal with a
large but �nite conductivity, which means a change not over a volume but
over a surface, or when the cavity boundary is slightly modi�ed [1.16].

The reason why perturbation theory can be applied only for small changes,
which is not the case for variation theory, is a fundamental question. In
perturbation theory an approximation is always made: a term is neglected,
because it is small due to the fact that the change is small. This term would
not be small if the change was not just a perturbation. Usually the neglected
term is the integral of a quantity which may be of importance only in a
small part of the domain of interest, so that its integration over the whole
domain is small and can be neglected to the �rst order. As an example,
when establishing the value of the �rst-order variation Æ!=! of the resonant
frequency of a cavity [1.15], the neglected term is an integral over the whole
volume of the cavity of a quantity which is signi�cant only in the vicinity of, for
instance, a small solid sample introduced in the cavity, or a small deformation
of the surface of the cavity. As a consequence, the equation which is solved
for calculating the parameter of interest is not exact : it is valid only to the
�rst-order. Hence the small size of the change is essential for the practical use
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of perturbational methods. The perturbation method yields adequate values
because it calculates the e�ect of a perturbation on the unperturbed known
system.

This is not the case when using a variational approach: the equation solved
for calculating the parameter of interest is exact. Only the exact values of
the �elds throughout the surface or the volume are unknown. The variation-
ality ensures a very accurate value for a circuit parameter, like the complex
propagation constant and impedance of a transmission line, or the complex
resonant frequency of a cavity. This high degree of accuracy is obtained by
using �eld values which may be inaccurate; this is due to two reasons. One
is because the integrations are made over the whole surface, or volume, or
contour. The other is because the result is expressed as a ratio of integrals,
with numerator and denominator varying the same way under the in
uence
of a change of the �elds, for a rather wide variation of those �elds. There is a
very fundamental reason why the quality of the two methods di�er: there is
an energy relation underneath the variational approach, which is not the case
for the perturbation method.

Rumsey, another member of the MIT Radiation Laboratory who later
obtained a Nobel prize, de�ned in 1954 a physical observable, the reaction,
to simplify the formulation of boundary value problems in electromagnetic
problems [1.17]. To illustrate the value of this new concept, he used it to
obtain formulas for scattering coeÆcients, transmission coeÆcients, and aper-
ture impedances. The formulas so obtained have a stationary character and
thus the results could also be obtained from a variational approach. Rumsey
pointed out that this physical approach, conceptually simple, is general while
the variational approach has to be worked out for each problem. His point of
view is that of an experimenter, whose objective is to use the theory to corre-
late his measurements. He pointed out the fact that an expression is stationary
for variations of an assumed distribution about the correct distribution does
not justify the assumption that it will yield the best approximation when the
assumed distribution is completely arbitrary. It should be noted however that
there is no way of deciding which approximation is \best". Harrington [1.18]
showed that many of the parameters of interest in electromagnetic engineer-
ing are proportional to reactions, for instance, the impedance parameters of
a multiport network. The paper by Rumsey limits the reaction concept to
isotropic media and �elds contained in a �nite volume. In the last part of
his paper, however, and in an addendum published a little later, he shows
that the reaction concept can be extended to anisotropic media by using a
more general form of the reciprocity theorem. An argument developed later,
however, [1.19] questions the use of the reaction method for gyrotropic media
such as magnetized ferrites, and magneto-ionic media, but states it is well
suited to isotropic materials and materials with crystalline anisotropy, lossy
or lossless. The dielectric constant and the permeability are, at most, sym-
metric tensors. Today, there is still place for research on the limitations of
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the reaction concept.

1.5 Variational expressions for waveguides and cavities

The next milestone is the excellent paper published by Berk in 1956 [1.19].
The author presented variational expressions for propagation constants of a
waveguide and for resonant frequencies of a cavity, directly in terms of the
�eld vectors. Those situations occur when the electromagnetic problem can-
not depend from a scalar formulation satisfying Helmholtz equation and are
typi�ed by the presence of inhomogeneous or anisotropic matter. In these
cases the need for vector variational principles is apparent. Such variational
formulas are presented and derived directly in terms of the �eld vectors. They
are valid for media whose dielectric constant and permeability are Hermitian
tensors, restricted, however, to lossless media. It should be underlined that
the practical use of a formula developed for lossless gyroptropic media is quite
limited, because gyrotropy implies losses, except in very narrowband circum-
stances. Furthermore, all the formulations are limited to closed waveguides
and resonators. Several examples illustrated the advantages of approximations
based on the variational expressions of the paper. They included the cut-o�
frequency of the fundamental mode of a rectangular waveguide in which a
vertical dielectric slab is placed respectively adjacent to one of the walls and
symmetrically in the middle of the guide, as well as a vertical ferrite slab
placed o� center.

In 1971, Gardiol and Vander Vorst [1.20], analyzing E-plane resonance
isolators, used a variational principle for the propagation constant in lossy
gyrotropic ferrites derived by Eidson in an internal report. The formulation
involves six scalar quantities corresponding to the electric and magnetic �eld
components in the structure.

In 1994, a general variational principle had been established by Huynen
and Vander Vorst, valid for planar lines, open or shielded, containing an ar-
bitrary number of layers and of conducting sheets [1.14]. It yields an explicit
variational expression for the propagation constant as a function of the three
scalar components of only one �eld. The materials may be gyrotropic and
lossy. The formulation is general enough to characterize, for instance, mag-
netostatic modes in Yttrium-Iron-Garnet (YIG) �lms used as gyrotropic sub-
strates. The eÆciency of the method is due to both the explicit formulation
and the fact that the error made on the trial �eld is compensated by an exact
analytical integration of the �elds over the whole space. It yields results which
agree very well with new experimental data on slot-lines and YIG-resonators
in a microstrip con�guration. The conductors, however, do have to be loss-
less. The e�ect of conductor losses must be calculated by another method,
such as a perturbation method. A spectral domain formulation of the prin-
ciple [1.14] has also been established [1.21]. In combination with conformal
mapping, it drastically reduces the complexity of the numerical computation
and leads to rapidly convergent results even when higher order modes are
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considered. The formulation applies to open and shielded multilayered lines
with coplanar conductors lying at di�erent interfaces between the layers. It
is also valid for gyrotropic non-Hermitian lossy media. Results are shown
to be in excellent agreement with previously published results, calculated by
other methods, as well as with new measurements made by the authors. The
propagation constant is variational with respect to the �elds and not to the
material properties. Hence, a new method for characterizing the properties of
planar materials with a very good accuracy, over a broad frequency range at
frequencies up to 100 GHz, was established [1.22]. Chapter 4 is essentially de-
voted to the demonstration of this principle, validated by some applications,
while Chapter 5 describes a number of variational applications.

Finally, in 1998, Huynen et al. proved the stationary character of the mag-
netic energy in the case of a resonator containing lossy gyrotropic media and
supporting microwave magnetostatic waves [1.23]. A variational expression
is obtained for the input impedance of the circuit. It is used for calculating
the input re
ection coeÆcient of a planar multilayered magnetostatic wave
straight-edge resonator. The model is an eÆcient tool for designing low-noise
wide-band YIG-tuned oscillators.

1.6 New theoretical developments

Applications of the variational approach are numerous. A number of them can
be found in the two editions of the book by Collin [1.24][1.25], with new mate-
rial in the second edition. They essentially relate to waveguide discontinuities,
such as diaphragms, various discontinuities, junctions, dielectric steps, input
impedance of waveguide, inductive posts, ferrite slabs, etc. The author uses
the Hertzian potential approach, leading to just two scalar �eld components,
applicable only to the most elementary problems. For more complicated prob-
lems, the resulting eigenvalue equations are not of the standard type, because
the eigenvalue either does not appear in a linear form or is present in the
boundary or interface conditions. The author also o�ers an excellent outline
of the method for that class of problems.

For microstrip-like transmission lines, the �rst explicit variational prin-
ciples, developed by Yamashita, were quasi-static ones, providing values for
quasi-transverse-electromagnetic (TEM) capacitances [1.26].

In 1971, English and Young [1.27] obtained a variational formulation for
waveguide problems in terms of three scalar �eld components (the E formal-
ism), while the expressions developed by Berk [1.19] were in terms of six scalar
�eld components (the EH formalism). Because the parameter of interest - the
propagation constant � - appears in their functional equation in quadratic
form with �rst- and second-order powers, they have to apply the variational
method in a reverse way: solve for the frequency, which is normally known,
in terms of the propagation factor, which is normally unknown.

Lindell [1.28] de�ned the eigenvalue problem in a less restrictive manner
so that di�erent parameters involved in the problem can be interpreted as
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eigenvalues. These general eigenvalues are called non-standard eigenvalues.
Speci�cally, the basis of the method is that it uses any existing stationary
functional for a standard eigenvalue, solves it for any parameter in the func-
tional, and obtains a stationary functional for that parameter, which is by
de�nition a non-standard eigenvalue of the problem. A uni�ed theory for ob-
taining stationary functionals for di�erent non-standard eigenvalue problems,
based on a mathematical principle, is presented. The problems are classi�ed in
terms of the complexity of their functional equation. Because there may exist
many parameters each recognizable as a nonstandard eigenvalue of the prob-
lem, there may exist di�erent functionals giving a choice of methods of di�er-
ent complexity in solving the same problem. Several examples are presented,
like the cuto� frequency problem of a waveguide with reactance boundaries,
comparing di�erent formulations of the problem, the azimuthally magnetized
ferrite-�lled waveguide propagation problem, the corrugated waveguide, and
the cavity with a homogeneous insert. (A correspondence on the possible
fallacy of the proposed principle lasted for two years in the IEEE Transac-
tions of the Society Microwave Theory and Techniques (MTT), in September
1983 and April 1984). Later, the method was applied to the calculation of
attenuation in optical �bers [1.29].

In 1990, Baldomir and Hammond [1.30] showed that a geometrical ap-
proach to electromagnetics uni�es the subject of using methods which are
coordinate-free and based on geometry rather than algebraic equations, o�er-
ing guidance in the choice of simple numerical methods of calculation. They
show that the principle of least action is a particular case of the geometrical
symmetry of the con�guration space. Applications are illustrated in electro-
statics, magnetostatics, and electrodynamics.

Richmond discussed the interesting subject of the variational aspects of
the moment method [1.31]. Variational techniques were in use prior to the in-
troduction of the moment method. Since then, the moment method has been
widely adopted for solving electromagnetic problems via the integral-equation
approach. At the same time, interest in variational methods almost vanished.
Richmond raises several very good questions. Under what conditions does the
moment method possess the variational property? When the moment method
is variational, precisely which quantities are stationary? Do the variational
moment methods o�er any signi�cant advantage over the non-variational mo-
ment methods? A limitation of the paper is that it is restricted to time-
harmonic problems involving perfectly conducting antennas and scatterers,
formulated with the electric �eld integral equation. The author also points
out that his paper does not consider other important techniques such as �nite-
di�erences, �nite-elements, T-matrix, conjugate gradient, or least squares. He
uses the terms \moment method" and \Galerkin's method" as they are de-
�ned by Harrington [1.32]. Richmond shows that admittance, impedance,
gain and radar cross section can be expressed in terms of the self-reaction
or the mutual reaction, in Rumsey's sense [1.17], of the electric current dis-
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tribution(s) induced on the body. Thus the question of the stationarity of
these important quantities reduces to the question of the stationarity of the
reaction. Subject to the above restrictions and assuming the usual reciprocity
theorems are applicable, it is shown that the reaction is stationary with Ga-
lerkin's method, while it is not when the non-Galerkin moment method is
applied in the customary manner. A few numerical results are included to
compare the performance of the variational and non-variational moment me-
thods. A simple example is that of a two-dimensional problem involving a
perfectly conducting circular cylinder with transverse-magnetic polarization.
The self-reaction per unit length is calculated as a function of a parameter p
which vanishes for the exact solution, via the Galerkin and the non-Galerkin
moment method, respectively. Both methods yield precisely the correct reac-
tion when parameter p is zero. The Galerkin result, however, displays zero
slope at p = 0 and thus maintains good accuracy even when the basis func-
tion takes on a rather large error. On the other hand, the non-Galerkin result
displays a large nonzero slope when p = 0, and therefore quickly loses ac-
curacy as the basis function departs from the correct function. Furthermore
Wandzura [1.33] proved that the Galerkin method, when applied to scattering
problems, gives more rapid solution convergence than more general moment
methods.

As said before, most of the results obtained when using a variational ap-
proach are based on a microwave network point of view, for quantities such
as propagation constant, resonant frequency, and input impedance. Few con-
sider �eld computations, and this is particularly true for problems involving
anisotropic media. Jin and Chew [1.34] have presented a formulation with
speci�c functionals for general electromagnetic problems involving anisotro-
pic media. Such a formulation provides a foundation for the development of
the �nite-element method for the analysis of such problems. Speci�c func-
tionals are stated and their validity is proven, rather than constructing them
from the original boundary-value problems. The property of the associated
numerical system is discussed for the following three cases: (i) lossy problems
involving anisotropic media having symmetric permittivity and permeability;
the resultant numerical system obtained from the �nite-element discretiza-
tion is symmetric (ii) lossless problems involving anisotropic media having
Hermitian permittivity and permeability; the resulting numerical system is
Hermitian (iii) general problems involving general anisotropic problems; the
resulting numerical system is neither symmetric nor Hermitian.

The variational aspects of the reaction in the method of moments have
been discussed again by Mautz in 1994 [1.35]. He refers to Richmond [1.31],
who pointed out that the reaction between two electric surface current den-
sities J1 and J2 (the integral of the dot product of J1 with the electric �eld
produced by J2) is variational with Galerkin's method but is not necessarily
variational when the non-Galerkin moment method is applied in the manner
where one set of functions is used to expand both J1 and J2 and another
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set of functions is used to test both the integral equation for J1 and that for
J2. Mautz shows that the same reaction is variational when the non-Galerkin
method is applied in the manner of operation where the set of functions used
to expand J2 is the set of functions used to test the integral equation for J1,
and the set of functions used to test the integral equation for J2 is the set of
functions used to expand J1. Hence a non-Galerkin formulation may be varia-
tional, which is illustrated by calculating the reaction with four non-Galerkin
methods, including two variational and two non-variational results. This op-
erating way may be more appropriate than Richmond's if a variational result
is desired. The paper establishes the conditions under which a symmetric
product is variational.

Liu and Webb derived a variational formulation for the propagation con-
stant satisfying the divergence-free condition in lossy inhomogeneous anisotro-
pic reciprocal or nonreciprocal waveguides whose media tensors have all nine
components [1.36]. Their formulation is implemented using the �nite-element
method. The variational expressions are in the form of standard generalized
eigenvalue equations, where the propagation constant appears explicitly as the
eigenvalue. It is also shown that for a general lossy nonreciprocal problem the
variational functional exists only if the original and adjoint waveguide are mu-
tually bi-directional, i.e., for each mode with the propagation constant 
 in the
original waveguide there exists a mode with propagation constant �
 for the
adjoint waveguide. On the other hand, for a general lossy reciprocal problem
the variational functional exists only if the waveguide is bi-directional, i.e., if
modes with propagation constant 
 and �
 exist simultaneously for the same
waveguide.

Finally, Huynen and Raida recently compared �nite-element methods with
variational analytical methods for planar guiding structures [1.37]. They com-
pared an explicit variational principle for the propagation constant of guiding
structures with the �nite-element method using a functional involved in the
explicit variational principle formalism. They show that combining the �nite-
element method with this functional provides stationary values of the prop-
agation constant with respect to trial-discretized �elds, provided, however,
that the media are either isotropic or lossless gyrotropic. Comparative results
show how the convergence is in
uenced by the di�ering nature of the explicit
unknown (�eld for �nite elements, propagation constant for the explicit varia-
tional principle). The performances of both methods are compared in terms of
CPU time, and accuracy. It is concluded that the variational principle has to
be preferred for conventional conductor shapes, when analytical expressions
in the spatial or the spectral can be derived a priori for trial quantities. Exact
�elds can be derived by using the stationarity of the propagation constant to
obtain successive improvements of �eld expressions.
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1.7 Conclusions

From all those considerations, it appears wise to consider that a resolution
method should be formulated using one of the two approaches: the varia-
tional approach and Galerkin's approach. Although Galerkin's approach is
conceptually simpler, the authors recommend using the variational approach
because, as well as yielding a more elegant formulation, it has a solid foun-
dation in physics and mathematics and can provide physical insights to some
diÆcult concepts such as essential and natural conditions or the choice of ex-
pansion (basis) functions. However, unlike Galerkin's approach, which starts
directly with di�erential equations, the variational approach starts from a
variational formulation. The applicability of the approach depends, of course,
directly on the availability of such a variational formulation. On the other
hand, the link between the use of a variational principle based on an ana-
lytical function and the use of a direct numerical calculation still o�ers some
unexplored �elds of investigation.
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chapter 2

Variational principles in

electromagnetics

2.1 Basic variational quantities

2.1.1 Introduction

It is well known that exact solutions of the equations of physics may be ob-
tained only for a limited class of problems. This is true whether the formula-
tion of the equation is di�erential or integral. So, we are faced with the task of
developing approximate techniques of suÆcient power to handle most of the
problems. In this book, we are interested with distributed circuits, operating
mostly at centimeter and millimeter wavelength. These circuits are found in
high frequency or high speed electronic circuits used in communications and
in computer systems, where they need to be synthesized. Hence, the approx-
imate techniques have to be powerful indeed, with respect to both accuracy
and speed of calculation.

Perturbation methods are commonly used. The general theory is well de-
scribed in the literature, as well as a variety of its applications. Perturbations
are deviations from exactly soluble situations. They may be surface perturba-
tions, referring to deviations in the boundary surface or boundary conditions,
or both, from the exactly soluble case. Such techniques may obviously be
used to solve a number of transmission line or cavity problems. They may
also be volume perturbations, which destroy the separability of the problem.
In the perturbation method, the volume or surface perturbations are assumed
to be small and expansions in powers of a parameter measuring the size of
the perturbation may be made, the leading term being the solution in the
absence of any perturbation.

Perturbation methods are especially appropriate when the problem closely
resembles one which is exactly solvable. It presumes that one may change from
the exactly solvable situation to the problem under consideration in a gradual
fashion - the di�erence is not singular in character. This requires the pertur-
bation to be a continuous function of a parameter, measuring the importance
of the perturbation. When this is the case, it is possible to develop formulas
which describe the change in the physical situation as the parameter varies
from zero. Perturbation formulas may be shown to be the consequence of
the application of an iterative procedure to the integral formulation of the
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problem. They have been developed for the determination of eigenvalues and
eigenfunctions, and for problems in which the eigenvalues form a continu-
ous spectrum, which is typical of scattering and di�raction, in a variety of
situations [2.1].

When the perturbation is large, perturbation methods become tedious
and the expressions which are developed so complex that the results lose
their physical meaning. It this case the variational method may be more
appropriate [2.2]. For this method, the equations have to be put in a vari-
ational form, usually a variational integral, which implies �nding a quantity
involving the unknown function which is to be stationary upon variation of
the function. This quantity is a scalar number and is given by the ratio of
two integrals. In practice, a function will be used - called the trial function
- involving one or more parameters. It is inserted for the unknown function
into the variational principle. The function may be varied by changing the
value of the parameters and the procedure may be improved by introducing
additional parameters. Also, the original trial function may be improved by
making the trial function the �rst term in an expansion in a complete set of
functions which are not necessarily mutually orthogonal.

When the trial function di�ers from the correct function by a given quan-
tity, the variational form of the equations di�ers from the true value by an
amount proportional to the second-order, and, in the neighborhood of the
stationary values, the variational form is less sensitive to the details of the
trial function than it is elsewhere. Because of the stationary character of the
variational expression and its �rst-order insensitivity to the errors in the trial
functions, it is often possible to obtain excellent estimates of the unknown with
a relatively crude trial function. This property is of great practical impor-
tance. The quantity of interest will be, in our case, the propagation constant
of a transmission line, the re
ection coeÆcient of a circuit or the resonant
frequency of a cavity. In electromagnetics, there are essentially two physical
quantities which can be extremely useful as variational entities: energy and
eigenvalues. In this section we shall introduce their variational properties in
general terms. Details will be available later in this chapter, and especially in
Chapter 3 and 4.

2.1.2 Energy

In this book, we are essentially interested with transmission lines and res-
onators. They are indeed the basic elements of distributed circuits. Hence,
we are going to develop variational methods to calculate complex impedances
and propagation constants, in a variety of con�gurations. It is often possible
to arrange the form of a variational principle so that the value of the varia-
tional quantity for the exact unknown has a physical signi�cance, for instance
energy. This will be illustrated by the very simple example of the capacitance
of a transmission line per unit length [2.3].

The electrostatic energy per unit length stored in the �eld surrounding



2.1. BASIC VARIATIONAL QUANTITIES 21

the two conducting surfaces of a two-conductor transmission line is given by
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where V is the potential di�erence between the two conductors and " is as-
sumed to be constant. It can easily be proved that, when calculating the
�rst-order variation in We to a �rst-order variation in the functional form
of �, subject to the condition that the potential di�erence between the two
conductors is V , the �rst-order variation vanishes, provided � satis�es the
equation
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Since we know that � is a solution of Laplace's equation, we obtain the
following variational expression for the capacitance:

C0 =
1

"V 2

Z Z
rt� � rt� dx dy (2.3)

The integral is always positive and, hence, the stationary value is an absolute
minimum. So, if we substitute an approximate value forrt� into the integral,
the calculated value C for the capacitance will always be too large, and the
value for the characteristic impedance, equal to 1=C0v where v is the speed
of light in ", will always be too small. In practice, if the capacitance is a
function of a number of variational parameters, the best possible solution for
C is obtained by choosing the minimum value of C that can be produced
by varying the parameters. This is obtained by treating the parameters as
independent variables and equating all the derivatives of C with respect to
the parameters to zero. This yields a set of homogeneous equations which,
together with the boundary conditions, gives a solution for the parameters
and, as a consequence, for the minimum value of C. In this way, what has been
demonstrated is a variational principle for an upper bound on the capacitance
and, hence, a lower bound for the characteristic impedance.

For the same con�guration, energetic considerations can also yield a vari-
ational principle for the lower bound of the capacitance and, hence, an upper
bound for the characteristic impedance. As a matter of fact, a variational
principle is easily developed for an upper bound of 1=C, which yields a lower
bound for the capacitance. To do so, instead of calculating directly the energy,
one solves the problem in terms of the unknown charge distribution on the
conductors. The problem is then to �nd the potential function which satis-
�es Poisson's equation. The method utilizes the Green's function technique
for solving boundary-value problems, by solving the particular expression of
Poisson's equation for a unit charge located on a conductor, in such a way
that the boundary conditions for the potential are satis�ed. It can be shown
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[2.4], as detailed in Chapter 3, that a variational principle is obtained for 1=C
by multiplying the solution of Poisson's equation, expressed as a function of
the Green's function integrated over one conductor, by the unknown charge
density and integrating over the conductor. This is easily done. It yields a
variational principle for 1=C, in the form of a ratio of integrals in which both
numerator and denominator are always positive, and the stationary value is
an absolute minimum. Hence it is an upper bound for the capacitance and a
lower bound for the characteristic impedance.

Obtaining a variational principle for an upper bound of a physical quantity
and one for a lower bound for the same quantity is extremely interesting:
comparing the upper and lower bounds yields the maximum possible error in
the approximate values.

2.1.3 Eigenvalues

The general operator notation will be used here, because it reveals most clearly
the technique employed in forming the variational principle. As said in Chap-
ter 1, the eigenvalue equation relates di�erential or integral operators acting
on the function:

L(	) = �M(	) (1.1)

We shall now prove that the following expression is a variational principle
for � [2.5]:

Æ[

R
�L(	)dSR
�M(	)dS

] = Æ[�] = 0 (1.2)

where function � is also determined by the variational principle. It will be
de�ned in Subsection 2.1.4. A square bracket is placed around � to indicate
that the quantity to be varied is not �, which is the unknown exact eigen-
value. The integration is over all the volume determined by the independent
variable upon which 	 and also � depend. Equation (1.2) is easily obtained
by multiplying (1.1) by �, as yet arbitrary, integrating and solving for �. It
is obvious that, if the exact � is inserted into (1.2), the exact � is obtained.

To show that (1.1) follows from (1.2), we consider the equation

[�]

Z
�M(	) dV =

Z Z
�L(	) dV (2.4)

Varying � and �, i.e. performing the variation, yields

Æ[�]

Z
�M(	) dV + [�]

Z
Æ�M(	) dV =

Z
Æ�L(	) dV (2.5)

Inserting the condition Æ[�] = 0 and replacing [�] by � elsewhere, since the
e�ect of the variation is only calculated to �rst-order, we obtainZ

Æ� [L(	)� �M(	)] dV = 0 (2.6)
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Since Æ� is arbitrary, equation (1.1) follows.
One may then wonder about the equation satis�ed by �, which is also

determined by the variational principle. It may be shown easily [2.2] that �
satis�es the equation and boundary conditions which are the adjoints of those
satis�ed by 	, hence � is the solution adjoint to 	. When the operators L
and M are self-adjoint, one has � = 	 and the variational principle assumes
the simpler form

Æ[�] = Æ[

R
	L(	)dSR
	M(	)dS

] = 0 (1.3)

One important point here is to observe that the variational principle (1.2)
is a ratio of two integrals.

Other variational principles for � may be obtained: there may indeed be
many ways to formulate a problem. A number of examples are given in [2.2],
to be used in a variety of physical problems. The formulation used here, as
well as in the reference just mentioned, is very abstract. The advantage is that
it reveals the technique from which variational principles are formed. Speci�c
examples will follow later in this chapter, and in Chapter 3.

2.1.4 Iterating for improving the trial function

Generally, for estimating the accuracy of the results obtained by a variational
method, the user simply inserts additional variational parameters and ob-
serves the convergence of the quantity of interest with the number of such
parameters. In principle, such a method must involve an in�nite number
of parameters, for one is certain of the answer only when all of a complete
set of functions has been employed as trial functions in the variational in-
tegrals. The variation-iteration method, developed by Morse and Feshbach
[2.5], is a superb technique which not only provides an estimate of the error,
by giving both an upper and a lower bound to quantities being varied, but
also results in a method for systematically improving upon the trial function.
We have used the method with success in the past, for calculating modes,
including higher-order modes, of propagation in waveguides loaded with two-
dimensional inserts, as well as for resonant frequencies in cavities loaded with
three-dimensional inserts, lossy or not [2.6]-[2.8]. Our �rst presentation al-
ready illustrated the fact that the method was quite powerful. Indeed the
chairman of the session at which we presented our method [2.6], A. Wexler,
pointed out that this was the �rst numerical solution for the vector second-
order eigenvalue equation with partial derivatives, in a two-dimensional in-
homogeneous medium. It should be noticed that those results were obtained
more than 30 years ago, at a time when computers were not at all as powerful
and friendly as they are today. A reviewer of one of our papers at that time
mentioned that he believed that Schwinger had used the method at the MIT
Radiation Laboratory, during World War II.

The method can be rapidly outlined. We limit ourselves to positive-
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de�nite self-adjoint operators. Using a formal operator language, the eigen-
value problem is characterized by

L�p = �pM�p (p = 0; 1; 2; : : :) (2.7)

where L and M are positive-de�nite self-adjoint operators
�p is an unknown eigenfunction
�p is the corresponding unknown eigenvalue (�0 � �1 � �2 � : : :)

When the operators are not positive-de�nite, the method may still be used
after some adjustments are made, however with a slower convergence.

To solve the eigenvalue equation, a method like the Rayleigh-Ritz proce-
dure (see Section 2.4) uses a limited series expansion in terms of the known
eigenfunctions of another eigenvalue equation. When the di�erence between
the two equations is not too signi�cant, the Rayleigh-Ritz method shows a
reasonable convergence. However it is often used in other cases, where the
di�erence is quite signi�cant. The convergence of this method is then very
slow, which is a major drawback.

On the other hand, starting with an initial trial function, the variation-
iteration method provides a process of iteration, which improves this function
until the required accuracy is obtained. The accuracy is checked by comparing
the upper and lower bounds of the eigenvalue until they are close enough. We
assume here non-degenerate eigenvalues. Let �0 be the initial trial wave
function which, of course, does not satisfy (2.7). The unknown eigenfunctions
form a complete, orthogonal set in terms of which the trial function can be
expanded:

�0 =

1X
p=0

ap�p (2.8)

We then de�ne the nth iterate (n is an integer) �n by

�n = L�1M�n�1 (2.9)

Hence, from (2.7) to (2.9)

�n =

1X
p=0

ap
�np

�p (2.10)

which shows that the set �n converges to �0 by elimination of the unwanted
components contained in the trial function, if �0 is smaller than �p+1. When
L and M are self-adjoint, the eigenfunctions are given by

�p =

R
�pL�p dVR
�pM�p dV

(2.11)
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which can also be written

�p =

R
�pM�p dVR

�pML�1M�p dV
(2.12)

by noting that

�p = �pL�1M�p (2.13)

It is shown in [2.5] that (2.12) and (2.13) express a variational principle for
�. Inserting the iterates into (2.12) and (2.13) leads to the following approx-
imations for �0, the lowest eigenvalue:

�
n�1=2
0 =

R
�n�1M�n�1 dVR

�n�1ML�1M�n�1 dV

=

R
�n�1M�n�1 dVR
�n�1M�n dV

(2.14)

�n0 =

R
�nL�n dVR
�nM�n dV

=

R
�nM�n�1 dVR
�nM�n dV

(2.15)

The half-integral value of the superscript is made clear when noting that
the set of approximate eigenvalues, including both integral and half-integral
superscripts, forms a monotonic decreasing sequence, approaching the exact
value �0 from above, if some amount of �0 was present in the trial functions:

�
n�1=2
0 � �n0 � �

n+1=2
0 � : : : � �0 (2.16)

and

�n0 ; �
n+1=2
0

n!1����! �0; if

Z
�0M�0 dV 6= 0 (2.17)

The formal proof of this statement has been given earlier [2.7]. It should
be noticed here that one iterate leads to the evaluation of two successive ap-
proximate eigenvalues: one (half-integral superscript) by introducing once the
new iterate into the second expression (2.15), and one (integral superscript)
by introducing it three times into the same second expression (2.15). An ex-
trapolation method can be used even after only one iterate from a given trial
function.

Furthermore a lower bound can also be found for �0. If the iterations have
proceeded far enough so that �n+10 � �1 then the following inequality holds:

�n+10 � �0 � �n+10

"
1� �

n+1=2
0 � �n+10

�1 � �n+10

#
(2.18)
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Only two successive iterates are required for this lower bound. If three suc-

cessive iterates are calculated and if �n+10 �
n+3=2
0 � �21, then

�0 � �
n+3=2
0

"
1� �n+10

�
n+1=2
0 � �

n+3=2
0

�21 � �
n+3=2
0 �n+10

#
(2.19)

For this method to be used, an estimation of �1 is necessary. In many trans-
mission lines and cavities problems, this estimation is available. Otherwise, a
procedure for �nding an approximate value of �1 is outlined in [2.5].

As mentioned, an extrapolation method is available to obtain a more ac-
curate estimation of the exact answer. Assuming that, after some iterations,
the only contamination of the eigenfunctions �0 is the next eigenfunction �1,
one lets

�n = �0 + b�1 (2.20)

where b2 is small. Hence, one has

�n+1 =
�0
�0

+ b
�1
�1

and �n+2 =
�0
�20

+ b
�1
�21

(2.21)

These three iterates lead to expressions of �
n+1=2
0 , �n+10 , and �

n+3=2
0 in terms

of the unknown quantities �0, b
2, and �0=�1. Hence, calculating three succes-

sive approximate eigenvalues by (2.14) and (2.15), the extrapolated value �0
(together with b2, and �0=�1) can be calculated. It has been shown [2.5] that
the condition b2 << 1 is not diÆcult to satisfy if the trial function is prop-
erly chosen (in view of the geometry of the problem). It was our experience
that the computation time, including iteration, calculation of the approximate
eigenfunctions, extrapolation, and calculation of the lower bound, was much
lower than when using the Rayleigh-Ritz method.

2.2 Methods for establishing variational principles

2.2.1 Adequate rearrangement of Maxwell's equations

In the preceding section, we have used a formal operator language. It is ad-
vantageous because it is compact and clearly illustrates the principles involved
in the method. In practice, variational expressions for resonant cavities and
propagation constants can be obtained directly in terms of the �eld vectors,
by rearranging Maxwell's equations. In Chapter 4, we shall develop in de-
tail a very general variational principle for multilayered planar transmission
lines on lossy gyrotropic or dielectric substrates. In this section, however,
we intend to show how this can be done, in general terms, for the resonant
frequency of a cavity as well as for the propagation constant of a transmission
line. We follow the excellent presentation by Berk [2.9] for a resonator and
a waveguide, for simplicity, bearing in mind that the variational principles
which will be demonstrated here are valid for lossless cases only. The general
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variational principle, to be developed in Chapter 4, is valid for multilayered
planar transmission lines on lossy gyrotropic or dielectric substrates.

We consider a resonator with perfectly conducting walls enclosing a
medium of permittivity " and permeability �. Both " and � may be ten-
sors, noted " and � respectively, and functions of position. We call ! the
resonant angular frequency. The following is asserted to be a variational ex-
pression for !, provided " and � are Hermitian, i.e. provided that no losses
are present, so that !2 is a real scalar:

!2 =

Z
V

(r�E
�
) � (��1 � r �E) dVZ

V

E
� � (" � E) dV

(2.22)

The integrals are over the volume V of the resonator, �
�1

is the inverse of
�, and E

�
is the conjugate of E. To prove this assertion, we must show that

those �eld con�gurations E and E
�
which render !2 stationary are solutions

of

r� ���1 � (r� E)
�� !2" �E = 0 (2.23)

and of its complex conjugate, and have vanishing tangential components at
the boundary. This is indeed the case, because, when varying E and E

�
in

(2.22) we obtain, utilizing the Hermitian character of " and �, the following
expression for the variation of !2

h Z
V

E
��(" � E)dV

i
Æ!2

=

Z
V

ÆE
� �
�
r� ���1 � (r�E)

�� !2" �E
�
dV

�
I
S

ÆE
� �
�
n� ���1 � (r�E)

�� � dS
+

Z
V

ÆE �
n
r� ���1 � (r�E)

�� !2" � E
o�
dV

�
I
S

ÆE �
�
n� ���1 � (r�E)

��� � dS

(2.24)

The second and fourth integrals are over the boundary of the cavity. They
were obtained after using a vector identity. The variation of !2 vanishes,
provided E satis�es (2.23), E

�
satis�es the complex conjugate of (2.23), and

the surface integrals in (2.24) vanish. Equation (2.22) is thus a variational
formulation of the problem de�ned by (2.23) and the boundary condition
n�E = 0. Admissible trial �elds must have vanishing tangential components
at the boundary, be continuous together with their �rst derivatives and possess
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�nite second derivatives everywhere in the cavity except at surfaces where "
and � are discontinuous. Equation (2.22) can be modi�ed so that trial vectors
E are not required to satisfy the boundary condition n � E = 0 at the wall
of the resonator. This can be achieved by adding appropriate terms to the
numerator of (2.22) [2.9]. In this section, however, we do not enter into details,
we only illustrate the main guidelines.

λg

az

∆znplane of
reactive load

(a)

∆zn

Perfect Electric
or
Magnetic Wall

(b)

Fig. 2.1 Geometry of transmission line modeled as equivalent resonators

As an example of the eÆciency of a formula like (2.22), we consider a
planar transmission line, bound by a purely reactive load (Fig. 2.1a). Under
these conditions, we know that the longitudinal dependence of �elds along
the line is periodical (Fig. 2.1), with maxima and zeros located at speci�c
abscissas zn given by

zn = n
�g
2

= n
�

�
= n�

c0p
"eff!

(2.25)

where � is the propagation constant of the transmission line
c0 the light velocity in vacuum
c0=

p
"eff is the e�ective light velocity in the line

Hence, the structure can be divided into stubs of �nite length, bound by either
perfect electric walls (PEW) or perfect magnetic walls (PMW) (Fig. 2.1b).
Fixing the length of each stub equal to L, there is a relationship, derived from
(2.25), between L and the operating frequency:

L = �zn =
�g
2

= �
c0p
"eff!

(2.26)

Applying formula (2.22) in the volume between two successive PEWs or
PMWs, we expect to get a value for the resonant frequency of this equivalent
resonator, which approaches the exact value satisfying (2.26).

Figure 2.2 shows, for a slot-line, and for di�erent lengths of resonator
considered, the resonant frequency obtained by the variational formula (2.22)
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(the e�ective dielectric constant of the slot-line has been computed by another
method) and by the formula (2.26). An excellent agreement is observed, which
illustrates the eÆciency of such a variational formula. A similar result, not
shown here, is also observed for other line topologies.
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Fig. 2.2 Resonant frequency of equivalent resonators, computed using respec-
tively variational principle (2.22) and formula (2.26) (a) comparison; (b) rel-
ative di�erence

When the distribution of matter within the cavity is discontinuous, (2.22)
can be further modi�ed so that trial �elds will not be required to have con-

tinuous tangential components of E and of �
�1 � (r� E). The modi�cation

consists of adding to the numerator of (2.22) the term [2.9]

�
I
S

n �
�
E
�
+ �

�
�
�1 � (r�E+)

��E
�
� �

�
�
�1 � (r�E�)

��
dS

�
I
S

n �
�
E+ �

�
�
�1 � (r�E+)

�� �E� �
�
�
�1 � (r�E�)

���
dS

(2.27)

where the subscripts +, - refer to values on opposite sides of the surface
of discontinuity, respectively, and the integrals are over such a surface. The
addition of such terms into (2.22) enables one to expand the class of admissible
trial functions. Similar variational expressions can be obtained in terms of the
magnetic �eld and of both �eld vectors. They can, of course, be reduced in
the special case when the electromagnetic problem can be expressed in terms
of a single scalar �eld. This will be the case for rectangular waveguides, as
illustrated in Section 2.5.

In contrast to the preceding formulas which are in terms of the electric
�eld, we shall now develop an expression in terms of mixed �elds, i.e., both
�eld vectors, valid for the propagation of a waveguide [2.9]. Consider a wave-
guide with perfectly conducting walls, possibly enclosing anisotropic matter,
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whose distribution may be a function of the transverse coordinates but not of
the coordinate along the direction of propagation. If z is this coordinate, the
�eld vectors may be expressed as e(x; y)e�
z and h(x; y)e�
z where 
 is the
propagation constant. Vectors e and h are three-dimensional, depending only
on x and y. They satisfy the following relations obtained by substituting the
�eld vectors in Maxwell's equations:

r� e+ j!� � h = 
az � e (2.28)

r� h� j!" � e = 
az � h (2.29)

where az is the unit vector in the z-direction. Pre-multiplying (2.28) by

h
�
, (2.29) by e�, integrating over the cross section of the waveguide, and

subtracting, we obtain the variational expression


 = j� =

j!

Z
S

e� � (" � e) dS + j!

Z
S

h
� � (� � h) dSZ

S

h
� � (az � e) dS �

Z
S

e� � (az � h) dS

�

Z
S

e� � (r� h) dS �
Z
S

h
� � (r� e) dSZ

S

h
� � (az � e )dS �

Z
S

e� � (az � h) dS

(2.30)

That it is indeed a variational expression can be shown by evaluating the
variation of 
 and observing that it vanishes, provided that e and h satisfy
(2.28) and (2.29) and the trial tangential component of e vanishes at the walls
of the waveguide. Thus, trial �elds e and h must be continuous and possess
�rst derivatives throughout the waveguide. At the boundary, the tangential
component of e must vanish, but h is arbitrary. When discontinuities are
present in the distribution of matter within the waveguide, the tangential
components of both e and h must be continuous at the surfaces of these
discontinuities. The variational expression (2.30) is in terms of mixed �elds.
Variational expressions in terms of only e, or of only h, can also be obtained,
by eliminating either h or e using (2.28) or (2.29).

Part of research, when developing a variational principle, is in �nding
attractive functionals [2.10]. In particular, the number of scalar �eld compo-
nents is of interest, and it may happen that an explicit expression requires
more scalar components than an implicit expression. We do not enter into de-
tails here and shall be happy by having shown that, in the two speci�c cases
of a resonant cavity and a waveguide, respectively, rearranging Maxwell's
equations may yield variational principles. These cases have been limited to
lossless situations.

2.2.2 Explicit versus implicit expressions

Expressions (2.22) and (2.30) provide a straightforward evaluation of the res-
onant frequency of a cavity and of the propagation constant of a waveguide,
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respectively. The expressions are explicit, and all that is needed is a calcula-
tion. This is, of course, simpler and faster than the classical extraction of the
root of the determinantal equation in the Spectral Domain Galerkin's method,
as will be shown in Chapter 4. Furthermore expressions (2.22) and (2.30) are
a dynamic formulation, while usual explicit variational formulations are quasi-
static, providing values for quasi-TEM parameters such as capacitances and
inductances.

Variational functionals have been developed for con�gurations other than
closed waveguides and cavities, for instance for calculating attenuation in an
optical �ber [2.11]. The analysis starts by deriving a stationary functional
for a lossy open waveguide. The functional is written in terms of longitudi-
nal electric and magnetic components. The theory is then applied to round
isotropic step-index and weakly-guiding �bers with various loss pro�le distri-
butions, which yields a variational expression for !2 as a function the prop-
agation constant 
. Hence, the obtained expression is implicit. In this case,
the variational process starts from a given propagation constant, for which an
approximation for the parameter !2 can be calculated through optimization
of trial complex electric and magnetic �elds. This may lead to a very compli-
cated treatment of the problem unless the functional can be simpli�ed, which
is the case for weakly-guiding optical �bers. Several other implicit expressions,
with the same defect, have been published in the literature [2.12]-[2.14]. The
optical �ber has been chosen here as an example only. It is worth noting
that implicit variational expressions are generally obtained from the reaction
concept, as will be shown in Section 2.3.

2.2.3 Fields

We have seen that excellent accuracy can be obtained when using a variational
expression to calculate a scalar quantity, like the resonant frequency of a
resonator or the propagation constant of a transmission line. One may then
wonder about the accuracy of the �elds (improved trial functions) used in the
functional. The answer is that these �elds can di�er quite substantially from
the actual (unknown) �elds, at least in some regions of the space of interest.
The reason is obvious. The variational principle is a ratio of integrals, and
the integrals average their integrands over the speci�c domain. Because the
ratio is variational, the integrals are not very sensitive to particular values of
the �elds, even when they are very distinct from the actual solution. Hence,
using the trial �elds in the functional, even improved, as an approximation of
the actual unknown �elds may be quite misleading, and one should be very
careful in doing so.

2.3 Comparison with other methods

2.3.1 Reaction

The reaction concept introduced by Rumsey [2.15] is eÆcient in obtaining
variational principles for a wide variety of electromagnetic parameters. Us-
ing Rumsey's notations, two sources located in di�erent areas of space and
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denoted by a and b generate their associated �elds, denoted by A and B
respectively. Hence, the reaction of �eld A on source b has the form

hA; bi =
Z
fEa � dJ b �H

a � dM bg (2.31a)

where �elds E
a;b

and H
a;b

generated by sources a, b respectively, satisfy

r�E
a;b

= �j!� �Ha;b
+M

a;b
(2.31b)

r�H
a;b

= j!" �Ea;b
+ J

a;b
(2.31c)

where M is a magnetic current (V=m2) and J is an electric current (A=m2).
Using the reaction concept, the Lorentz reciprocity principle is then rewritten
for isotropic media as

hA; bi = hB; ai (2.32)

Equation (2.32) states that the reaction of �eld A on source b is equivalent
to the reaction of �eld B on source a. When the medium is not isotropic,
Rumsey proposes a correction to (2.32):

hA; bi = hB̂; ai (2.33)

where hB̂; ai is written for the case corresponding to the same sources as hA; bi
but where the �elds generated by the b source are solutions of Maxwell's equa-
tions for a medium having transposed permittivity and permeability tensors:

hB̂; ai =
Z
fEb0 � dJa �H

b0 � dMag (2.34a)

with E
b0

and H
b0

satisfying

r�E
b0

= �j!�T �Hb0

+M
b

(2.34b)

r�H
b0

= j!"
T �Eb0

+ J
b

(2.34c)

while the �elds E
a
and H

a
generated by source a still satisfy (2.31b,c). This

formalism has been extensively used by Harrington and Villeneuve [2.16].
They derive equivalent circuit formulations based on reaction, which apply
in case of gyrotropic media. When the tensors are simply symmetric, they
satisfy

" = "
T

(2.35a)

� = �
T

(2.35b)
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and the �elds E
b0

and H
b0

are equal indeed to the �elds E
b
and H

b
satisfying

(2.31b,c). Hence (2.34a) reduces in this case to (2.31a) rewritten for the B
�eld.

The major interest in the reaction is that it is helpful to �nd approximate
�eld or source distribution (trials), which have almost the same e�ect as the
actual (correct) ones, on a portion of a surface or volume. As explained by
Rumsey, the e�ect of a test source x is compared to the e�ect of an exact
source c and of a trial source a, by forming the two reactions

hC; xi measuring the e�ect of the �eld generated by the test source x
on the true (unknown) current distribution c

hA; xi measuring the e�ect of the �eld generated by the test source x
on the trial (approximated) current distribution a.

It is obvious that the best trial source is the one which has the same e�ect
on the test source as the exact one, that is which satis�es

hA; xi = hC; xi (2.36)

Rumsey says that \a and c should look the same to an arbitrary test source
x".

Unfortunately, neither the test source x nor the true current distribution c
are known. The best choice is then to equate x to the trial source distribution
a and impose that the reaction of the �eld created by a on itself is the same as
the reaction of the �eld created by a on the actual correct source distribution
c:

hA; ai = hA; ci (2.37)

Such a condition will of course be of interest only if a particular behavior of
either the trial source or the exact one is known a priori in the portion of
space where the reaction is calculated. This is indeed the case for the Spectral
Domain Galerkin's procedure applied to planar lines, as will be shown in
Chapter 3. Assuming that the trial source is chosen such that it satis�es
(2.37):

hA; bi = hA0; bi = hA; b0i (2.38)

the reaction written for the approximate �eld is

hA; bi = hA0; b0i+ hÆA; b0i+ hA0; Æbi+ hÆA; Æbi (2.39)

where the subscript 0 denotes exact quantities.
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2.3.1.1 Variational behavior of reaction

Harrington demonstrates in [2.17] that (2.39) is variational about A and b.
Indeed using (2.38), the reaction hA; bi is rewritten as

hA; bi = hA0; bi = hA0; b0i+ hA0; Æbi (2.40a)

= hA; b0i = hA0; b0i+ hÆA; b0i (2.40b)

Introducing the right-hand sides of equation (2.40a,b) into (2.39) and recom-
bining we obtain

hA; bi = hA0; b0i � hÆA; Æbi (2.41)

which demonstrates the stationary character of reaction hA; bi about the exact
sources and �eld distributions:

hÆA; b0i = hA0; Æbi = 0 (2.42)

2.3.1.2 Self-reaction and implicit variational principles

When b is replaced by a in (2.31a) and (2.38), it covers the case where source
b is identical to source a and located at the same place (only one source is
present). The product hA; ai is then called \self-reaction". It has some ad-
ditional interesting properties. Assuming that the trial source and associated
�eld generated by the source are functions of an unknown parameter p, and
knowing a priori that the value of the actual reaction hA0; a0i is zero, it is
easy to demonstrate that making the trial reaction hA; ai vanish, renders the
parameter p stationary about the trial source and associated �eld. The trial
reaction hA; ai is imposed to be equal to the actual one:

hA; ai = hA0; a0i = 0 (2.43)

and is developed around the actual values of the parameter p as well as of the
�eld and sources (second-order variations are neglected):

hA; ai = hA0; a0i+ Æp
@hA0; a0i

@p

����
p=p0

+ hÆA; a0ijp=p0 + hA0; Æaijp=p0
(2.44)

Since the reaction has been demonstrated to be variational about the source
and �eld, whatever the sources a and b are, (2.42) is satis�ed for the self-
reaction case also, and (2.44) is �nally equivalent to

0 = Æp
@hA0; a0i

@p

����
p=p0

(2.45)

by virtue of (2.43).
It has to be noted that the stationary character of p is derived by Har-

rington, assuming reaction (2.43) vanishes. This assumption, however, is not
necessary, as shown by (2.44). It is suÆcient to ensure that hA; ai = hA0; a0i
and that the reaction is stationary.
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2.3.2 Method of moments

The method of moments (MoM) can be related to variational theory and the
reaction concept. It is widely used in electromagnetics and other engineering
areas for solving a variety of problems, such as: determining current distribu-
tions on antennas and obstacles, and �eld and current distributions on planar
transmission lines, by using the Galerkin variant of the MoM. The MoM usu-
ally searches for a �eld distribution solution of a given problem inside a given
domain, which satis�es speci�c conditions imposed on the boundaries of the
domain. The MoM and its application to basic electromagnetic problems was
�rst presented by Harrington [2.18]. A collection of papers covering various
applications of the method in electromagnetics is found in [2.19]. In this
section, we report on the main features of the MoM applied to scalar quan-
tities, as in [2.18], and point out the variational functionals associated with
the method.

The MoM usually solves integral equations over a given domain, subject
to known boundary conditions. This is in fact an alternate way to solve
an inhomogeneous problem in space Vx subject to inhomogeneous boundary
conditions on surface 
x. The linear integral equation to be considered is

L(f) = g on 
x (2.46)

where L is the linear operator associated with the linear integral equation
f is the spatial distribution of scalar or vector quantity to be deter-
mined
g is the scalar or vector condition imposed on the boundary

The unknown function f is expanded into a series of functions ffng which are
supposed to form a complete set for the problem. Hence the unknown solution
f can be described without error by an in�nite series expansion of those basis
functions:

f =

1X
n=1

�nfn (2.47)

Entering (2.47) into (2.46) yields

1X
n=1

L(�nfn) = g (2.48)

Assuming that a suitable inner product has been de�ned, the two sides of
(2.48) are multiplied by a set of known weighting functions fwkg and the inner
product is taken, which yields a system of linear equations for the unknowns
�n:

1X
n=1

�nhwk ;L(fn)i = hwk; gi with k = 1; : : : ;1 (2.49)
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The result obtained may obviously depend on the choice made for the expan-
sion functions ffng and the weighting functions fwkg. A particular choice is
fwkg = ffng. The MoM is then referred to as Galerkin's procedure with the
characteristic equations

1X
n=1

�nhfk;L(fn)i = hfk; gi with k = 1; : : : ;1 (2.50)

Up to this point, the solution of (2.49) is exact. It is indeed equivalent to
solving the equation

hw;L(f)i = hw; gi (2.51a)

which, using (2.47), can be rewritten as

1X
k=1

1X
n=1

!k�nhwk ;L(fn)i =
1X
k=1

!khwk ; gi (2.51b)

where we de�ne w similarly to (2.47) as

w =

1X
n=1

!nwn (2.51c)

It is obvious that a solution satisfying (2.48) will automatically satisfy (2.51b)
and, hence, can be viewed as the exact solution. This is true only because the
in�nite series is assumed to be formed by a complete set of basis functions.
In practice, however, the series expansion is limited to N terms, so that an
error is made on the description of the function f . After truncating (2.47)

ft =

NX
n=1

�nfn (2.52a)

the linear system of N equations resulting from (2.49) is solved for the N
unknowns �n:

NX
n=1

�nhwk;L(fn)i = hwk ; gi with k = 1; : : : ; N (2.52b)

2.3.2.1 Variational character of error made

First, it can be demonstrated that the solution of (2.52b) minimizes the error
made on the left-hand of equation (2.46) [2.20]. De�ning this error as

� = L(ft)� g (2.53a)
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and multiplying with w results in

hw;�i = hw;L(ft)� gi

=
NX
k=1

NX
n=1

!k�nhwk ;L(fn)i �
NX
k=1

!khwk ; gi
(2.53b)

Taking the �rst derivative of the right-hand side of (2.53b) with respect to
!k and cancelling the result, yields equation (2.52b). Hence solving (2.53b)
is equivalent to minimizing the error product hw;�i. It can then be demon-
strated [2.21] that the solution of (2.52b) minimizes the least-squares error
made on the left-hand of equation (2.46). De�ning this error as

� = hL(ft)� g;L(ft)� gi (2.54a)

results in

� =

NX
k=1

NX
n=1

!k�nhL(fk);L(fn)i �
NX
k=1

!khL(fk); gi

�
NX
n=1

�nhg;L(fn)i+ hg; gi
(2.54b)

Taking the �rst derivative of the right-hand side of (2.54b) with respect to
!k, �n and cancelling the result, yields both equations

NX
n=1

�nhL(fk);L(fn)i � hL(fk); gi = 0 (2.55a)

NX
k=1

!khL(fk);L(fn)i � hg;L(fn)i = 0 (2.55b)

This is equivalent to using the moment method with

wk = L(fk) (2.56)

Hence applying the moment method with the set of weighting functions (2.56)
is equivalent to minimizing the error functional de�ned by (2.54a).

2.3.2.2 Variational functionals associated with the MoM

A. Inner product

Assuming that f is the solution of the linear integral problem (2.46) with
associated L operator, the adjoint operator of L, noted La, is de�ned by the
property

hL(a); bi = ha;La(b)i (2.57)
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When the MoM is used to �nd f , a variational functional exists for the ex-
pression

� = hf; hi (2.58)

This is also a measure of the error made, since the distribution h is a priori
known. Harrington [2.18] states that the functional

� =
hf; hihfa; gi
hL(f); fai (2.59)

is a stationary formula for (2.58) provided that an adjoint function fa is
de�ned, which is a solution of the adjoint problem

La(fa) = h (2.60a)

and has the form

fa =

1X
n=1

�nwn (2.60b)

The MoM formulation of this adjoint problem is

NX
n=1

�nhfk;La(wn)i = hfk; hi with k = 1; : : : ; N (2.60c)

Taking the �rst-order derivative with respect to �n, �n in expression (2.59)
yields equation (2.51b). This means that the MoM cancels the �rst-order
error made on �, provided that � is calculated by (2.59). Since g is exact, this
also means that the error made on � is only due to f . This, however, does not
mean that the error made on the solution f is of the second-order. When the
operator is self-adjoint, the following identities are valid:

fa = f (2.61a)

La = L (2.61b)

h = g (2.61c)

and the variational functional simpli�es into

� =
hf; gihf; gi
hL(f); fi (2.62)

which �nally reduces to

� = hf;L(f)i (2.63)

because the solution of MoM using Galerkin procedure satis�es hf;L(f)i =
hf; gi, even when it is not the exact solution of problem (2.46).
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B. Functionals

Harrington [2.21] proposes other variational functionals. One is

J = hh; fi+ hfa; gi � hfa;L(f)i (2.64)

Inserting the expressions for fa and f given by (2.47) and (2.51c), respectively,
and taking the �rst-order derivative with respect to �k and �n, yields

@J

@�k
= hh; fki� h

1X
n=1

�nwn;L(fk)i = hh; fki�
1X
n=1

�nhLa(wn); fki (2.65a)

@J

@�n
= hwn; gi � hwn;L(

1X
k=1

�kfki = hwn; gi �
1X
k=1

�khwn;L(fk)i (2.65b)

Limiting the summations to N and requiring the right-hand side of (2.65a,b)
to be zero yields the system of equations (2.52b) and (2.60c) generated by
the MoM to solve respectively problem (2.46) and its adjoint (2.60a). Again,
solving problem (2.46) and its adjoint by using MoM is equivalent to mini-
mizing the functional (2.54). At the MoM solution, J is stationary about the
set of coeÆcients associated with the set of trial functions ffkg and fwng,
and hence about the distributions f and w.

C. Non self-adjoint operators and non-Galerkin method

Another generalization of the problem is given by Peterson et al. [2.22]. They
clarify the problem of the variationality of the MoM in the case of non self-
adjoint or adjoint operators, without using the Galerkin simpli�cation. They
prove that the inner product between the test function and the linear operator
applied to the trial solution is variational, in the sense that the error made is
of the second-order with respect to any variation of test and trial functions.
They assume that the solution f for the following scalar problem equivalent
to (2.46) is:

L(f) = g (2.66)

is approximated by the trial expansion ft

f � ft =
NX
n=1

�nfn (2.67a)

with as associated error

"f = f � ft (2.67b)

They then investigate the functional

I = hf; hi (2.68)
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which is identical to functional � of expression (2.58) de�ned by Harrington
[2.18], where h is a given function. De�ning w as the solution of the adjoint
problem:

La(w) = h (2.69a)

with as approximate solution

w � wt =

NX
n=1

�nwn (2.69b)

and associated error

"w = w � wt (2.69c)

the exact functional I can be expressed as

I = hf; hi = hf;La(w)i = hL(f); wi = hg; wi (2.70)

where (2.69a,b) and (2.57) and the scalar form of (2.46) have been used.
The solution of problems (2.66) and (2.69a) by the MoM can be formulated
adequately by choosing the weighting functions wt of the problem (2.66) as
trial functions fa for the adjoint problem (2.60a), and vice� versa.

This forms the two previous sets of equations (2.52b) and (2.60c). When
approximate solutions (2.67a) and (2.69b) are introduced into (2.70), an ap-
proximate value of the functional I , denoted by It , is obtained:

It = hft; hi = hft;La(wt)i = hL(ft); wti (2.71a)

= hft;La(w)i = hL(ft); wi (2.71b)

The identity hft; hi = hft;La(wt)i results from the fact that each function fk
satis�es the MoM equation (2.60c), so that the trial sum ft also satis�es this
equation. Using the identity between the right-hand sides of (2.71) yields the
error on I as

I � It = hL(f); wi � hL(ft); wti (2.72a)

= hL(f � ft); wi (2.72b)

= hL("f ); wti+ hL("f );L("w)i (2.72c)

The �rst term of (2.72c) vanishes, because it can be rewritten as

hL(f); wti � hL(ft); wti = hg; wti � hL(ft); wti (2.73)

which forms the equation satis�ed by solution ft of the MoM, since each trial
function wk satis�es (2.49).
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Hence, it is demonstrated that the error produced on I by the MoM is
second-order, since it is proportional to the product of the errors made on the
trial and weighting functions:

I � It = hL("f );L("w)i (2.74)

When the operator is self-adjoint, identities (2.61a,b,c) apply, with fa = w,
and the functional is shown to be stationary about any error made on the
solution f :

I � It = hL("f );L("f )i (2.75)

This equation is less restrictive than the statement made by others authors
that the error made on the functional I (or �) is second-order when the Ga-
lerkin method is applied together with a self-adjoint operator [2.23][2.24].

D. Comments

These developments lead to the following conclusions.
1. We have proven that the functional I (or �) is stationary, provided that the
trial distribution ffkg and associated adjoint distribution fwkg are solutions
of problems (2.66) and (2.69a,b) yielded by the MoM. This means that those
distributions possess, among all the possible sets of coeÆcients f�kgf�kg, one
set of coeÆcients which minimizes the functional under investigation and is
obtained as the solution of the MoM equations (2.52b) and (2.60c). This also
ensures that the following global equations, that we used as identities to prove
the stationarity, are satis�ed:

hg; wti = hL(ft); wti (2.76a)

hft; hi = hft;La(wt)i (2.76b)

2. At this stage of the discussion, we have no idea how the set of functions
fk in
uences the value of the functional. Stationarity is proven with respect
to the coeÆcients of the serial expansion, and not about the shape of the
distribution ffkg. One may, however, wonder about the in
uence of the shape
of ffkg, as it is assumed that ffkg forms a complete set of solutions. In fact
what is important is the in
uence on the functional � of the error made on the
global f . This error can indeed be reported on the sole coeÆcients f�kg, if
ffkg forms a complete set enabling to describe all possible �eld distributions.
3. As a conclusion of the discussion, it is clear that we did not prove that the
MoM minimizes the error made on the unknown function f solution of (2.46).
We only know that system (2.76a) is solved exactly. This does not guarantee
that problem (2.46) is solved exactly. Richmond [2.25], however, states that
the system (2.76a) will provide the exact solution if, and only if, the set of
truncated functions ffkg forming the expansion (2.67a) is able to represent it
exactly. This is usually not the case.



42 CHAPTER 2. VARIATIONAL PRINCIPLES IN ELECTROMAGNETICS

2.3.2.3 The MoM and the reaction concept

We are now going to show, keeping the above theory in mind, that the MoM
can be considered as a particular way to solve a reaction problem. Remember-
ing the de�nition (2.31) of Rumsey's reaction, and limiting the developments
for convenience to electric sources of current in isotropic media, yields

hA; bi =
Z
fEa � dJ bg (2.77a)

where the �elds E
a;b

and H
a;b

are generated by the sources a and b respec-
tively, satisfying

r�E
a;b

= �j!� �Ha;b
(2.77b)

r�H
a;b

= j!" �Ea;b
+ J

a;b
(2.77c)

Entering (2.77b) into (2.77c) yields a linear dyadic relation between the cur-
rent sources and the electric �eld:

r� f��1r�E
a;bg = !2" � Ea;b � j!J

a;b
(2.78)

which can be rewritten using a linear operator M as

M(E
a;b
) = �j!Ja;b (2.79)

Provided that the inverse of M exists, one has

E
a;b

= �j!M�1(J
a;b
)
�
= L(Ja;b) (2.80)

and the reaction (2.77a) has the form

hA; bi =
Z
fL(Ja) � dJbg (2.81a)

which is typical of a linear integral operator. Hence, if we want to calculate
the reaction (2.77a), subject to the fact that the electric �eld satis�es speci�c
conditions on a particular boundary, we formulate the problem as

E
a
= L(Ja) = g (2.81b)

which forms the moment equation to be solved. In (2.81a), J
a
is the unknown

current distribution to be solved for, while J
b
is the weighting function. Usu-

ally, condition (2.81b) is imposed on one component of the electric �eld only,
and the problem (2.81b) becomes scalar. According to Rumsey, the reac-
tion (2.81a) is variational if (2.38) is satis�ed, which implies the following
relationship between trial and exact quantities:

hL(Jta); Jtbi = hL(Ja); Jtbi = hL(Jta); Jbi (2.82)
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On the other hand, we know from (2.76a) that the MoM minimizes the func-
tional hL(f); wi and satis�es

hwt;L(ft)i = hwt; gi = hwt;L(f)i (2.83a)

while identities (2.71a,b) ensure that

hL(ft); wti = hL(ft); wi (2.83b)

Hence (2.83b) reproduces condition (2.82), to be satis�ed by trial distribu-
tion Jt for making reaction J stationary. The MoM is thus a way to �nd
adequate trial distributions satisfying (2.82). Other trial con�gurations can,
however, be used for computing reactions satisfying (2.82) and (2.83), without
necessarily applying the MoM. This will be illustrated in Section 2.5.

As a matter of fact, how to compute a reaction depends on its use. As will
be shown in Section 2.5, reaction in electromagnetics can be related to im-
portant circuit parameters, such as input impedance and radar cross-section.
As we are interested only in those circuit parameters, we do not need to solve
exactly the �eld distribution inside the structure, and the MoM formalism
may be avoided. On the other hand, when we need to solve problem (2.46),
we obtain the stationarity of product hL(ft); wti as a by-product of the MoM.
As we have shown, this inner product is equivalent to the reaction, and the
MoM yields trial quantities which match conditions (2.38) for a stationary
reaction.

To conclude this section, we will mention that the non-standard eigenvalue
formulation and problem introduced by Lindell [2.10] is a particular case of the
reaction method presented in Subsection 2.3.1.2. The non-standard eigenvalue
problem is formulated by equation

L(�)f = 0 (2.84)

meaning that what is looked at is the solution of a problem described by a
linear integral operator applied to an unknown distribution f , and involving
an unknown parameter �. Since the value of � depends on the solution f ,
the problem is an eigenvalue one. Lindell proposes to take the inner product
between the two sides of equation (2.84)

hf;L(�)fi = 0 (2.85)

When a trial function f is introduced in (2.85), we take advantage of the fact
that the right-hand side of (2.84) is known a priori. Developing (2.85) around
the exact solution f�0; f0g yields

hÆf;L(�0)f0i+ hf0;L(�0)Æfi+ hf0; @L(�)f0
@�

iÆ� = 0 (2.86)

Assuming that the operator is self-adjoint, yields

hf0; @L(�)
@�

f0iÆ� = �2hÆf;L(�0)f0i = 0 (2.87)
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since the exact solution f�0; f0g satis�es (2.84). The �nal result (2.87) is
identical to (2.45). However, it has to be noted that the assumptions made
are not the same. The non-standard eigenvalue problem starts with a homo-
geneous equation, yielding directly result (2.87) provided that the operator is
self-adjoint. The stationarity of p in (2.44) can be obtained from the assump-
tion that the self-reaction is stationary, regardless of the fact that it vanishes,
even if Harrington does assume it.

2.3.2.4 MoM and perturbation

MoM concepts can be used for solving problems in perturbed con�gurations,
because they propose an alternate way to the classical perturbation theory.
Harrington proposes a perturbational solution for the MoM as follows [2.18]:
solution f0 of the exact unperturbed con�guration (subscript 0) is supposed
to be known:

hL0(f0); w0i = hg; w0i (2.88a)

while the perturbed problem is described by operator L and associated equa-
tion:

hL(f); wi = hfL0 +Mg(f); wi = hg; wi (2.88b)

Limiting the case to self-adjoint operators and the Galerkin procedure, a �rst-
order perturbation solution is proposed by Harrington as

f = �f0 (2.89a)

w = f0 (2.89b)

which, introduced into (2.88) yields

�hfL0 +Mg(f0); f0i = � fhL0(f0); f0i+ hM(f0); f0ig
= hg; f0i = hL0(f0); f0i

(2.90)

and

� = 1� hM(f0); f0i
hL0(f0); f0i+ hM(f0); f0i (2.91)

If the perturbation is \truly small", then the second inner product in the
denominator is small compared to the �rst one, and the perturbed solution
has the (approximate) form

f =

�
1� hM(f0); f0i

hL0(f0); f0i
�
f0 (2.92)

This is indeed a perturbational formula for the unknown f .
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2.3.3 Variational principles for solving perturbation problems

Some authors [2.9],[2.26] mention that variational principles are useful for
solving perturbation problems. Berk solves the insertion of a small sample
into a cavity with the variational principle introduced in Section 2.2. When
the distribution of matter within the waveguide is discontinuous, (2.30) can
be further modi�ed so that both electric and magnetic trial �elds are arbitrary
at the boundary. The modi�cation is in adding to the numerator of (2.30)
the termI

C

n � (e� h
�
) dC (2.93)

where C is the boundary of the waveguide cross-section. Assuming that per-
meability and/or permittivity are modi�ed in a small area of the waveguide
cross-section in turns modi�es the �eld distribution. As (2.30) is variational,
however, trial �elds for the perturbed case can be taken equal to be to the
�elds obtained for the unperturbed case, since the formulation has been made
insensitive to boundary conditions by adding (2.93). Hence, a formulation
correct to second-order is obtained for the shift on the propagation constant:

j(�1 � �) =

j!

Z
S

fe1� � ("1 � e1) + h1
� � (�1 � h1)g dSZ

S

fh1� � (az � e1)� e1
� � (az � e1)g dS

�

Z
S

fe1� � (r� h1)� h1
� � (r� e1)g dSZ

S

fh1� � (az � e1)� e1
� � (az � e1)g dS

�
j!

Z
S

fe� � (" � e) + h
� � (� � h)g dSZ

S

fh� � (az � e)� e� � (az � h)g dS

+

Z
S

fe� � (r� h)� h
� � (r� e)g dSZ

S

fh� � (az � e)� e� � (az � e)g dS

+

I
C

n � (e1 � h1
�
) dCZ

S

fh1� � (az � e1)� e1
� � (az � e1)g dS

�

I
C

n � (e� h
�
) dCZ

S

fh� � (az � e)� e� � (az � e)g dS
(2.94a)
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�
j!

Z
S

fe� � (�" � e) + h
� � (�� � h)g dSZ

S

h
� � (az � e) dS �

Z
S

e� � (az � h) dS

(2.94b)

with �" = "1 � "
�� = �1 � �

The only approximation made is equating the �eld distribution fe1; h1g in
the presence of perturbing material f"1; �1g to the �eld distribution fe; hg in
the absence of perturbation. No assumption is made about the magnitude
of the perturbation and hence about the magnitude of the di�erence e1 � e,
and h1 � h. We require these di�erences to be zero, taking advantage of the
fact that formula (2.30) is insensitive to the �rst-order to any error made
on the perturbed �eld distribution fe1; h1g. This departs from traditional
perturbational solutions.

The eÆciency of formula (2.94a) for planar lines will be illustrated in
Chapter 5. To conclude this subsection, we note that (2.92) is a perturbational
expression for a �eld distribution solution of (2.46), while (2.94b) provides a
variational solution for a transmission line parameter.

z = 0

az

Fig. 2.3 Step discontinuity in planar waveguide

2.3.4 Mode-matching technique

The mode-matching technique is an eÆcient method for describing lumped-
circuit elements of discontinuities. It is extensively presented in [2.27] and
brie
y summarized here in a speci�c example. The method is typically applied
to the problem of scattering into waveguides on both sides of a discontinuity,
such as a step, represented in Figure 2.3.
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The �elds in the access waveguides on both sides of the step are expanded
into a set of orthogonal modes of the waveguide, with unknown coeÆcients.
CoeÆcients Ak are used for the input waveguide, and Bk for the output
waveguide. For TEn0 excitation for example, we expand the Ey and Hy �eld
in terms of the modal �eld in each waveguide. In the incident waveguide, we
assume a wave of magnitude A1 incident from the left of the junction. It is
scattered at the discontinuity, generating a re
ected wave of magnitude �1A1

and an in�nite number of higher order modes evanescent towards the left of
the discontinuity (z < 0):

Eyl =
�
A1e

�
1z + �1A1e

1z
�
�1 +

1X
n=2

Bn�ne

nz (2.95a)

Hyl = �Yl1
�
A1e

�
1z � �1A1e

1z
�
�1 +

1X
n=2

BnYln�ne

nz (2.95b)

while at the right of the discontinuity (z > 0), the �elds are described by

Eyr =
�
B1e

�
1z
�
	1 +

1X
m=2

Bm	me
�
mz (2.96a)

Hyr = �Yr1
�
B1e

�
1z
�
	1 �

1X
m=2

BmYrm	me
�
mz (2.96b)

Subscripts l and r refer to areas respectively to the left and right of the dis-
continuity, respectively, while Yln and Yrm denote the admittance of mode n
to the left of the discontinuity and m to the right of the discontinuity, respec-
tively. The next step is to impose the two fundamental continuity equations
in the plane of the discontinuity z = 0:

A1 (1 + �1) �1 +

1X
n=2

Bn�n = B1	1 +

1X
m=2

Bm	m (2.97a)

Yl1A1 (1� �1) �1 =

1X
n=2

BnYln�n + Yr1B1	1 +

1X
m=2

BmYrm	m (2.97b)

This is the exact solution. Next, we use the mode orthogonality in the two
waveguides. Multiplying the two sides of equations (2.97a,b) by the dominant
mode of input waveguide �1, and integrating over the cross-section we obtain

A1 (1 + �1) = B1

Z
S

	1�1 dS +
1X
m=2

Bm

Z
S

	m�1 dS (2.98a)

Yl1A1 (1� �1) = Yr1B1

Z
S

	1�1 dS +

1X
m=2

BmYrm

Z
S

	m�1 dS (2.98b)
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Use has been made of the fact that the functions f�ng form a set of orthog-
onal functions on the input waveguide aperture. The procedure leading to
equations (2.98a,b) is called the mode-matching technique. The problem is
now that we have to repeat the procedure several times (theoretically for a
double in�nity of modes) with all orthogonal modes �n and 	m in the two
waveguides, in order to generate a suÆcient number of equations relating the
Bm and Bn to �1, and then eliminate them to solve the problem for the
re
ection coeÆcient �1 of the dominant mode only.

A variational approach may be helpful to solve the problem [2.4]. As-
suming that in the junction aperture the electric �eld has the (unknown)
distribution E(x; y), equation (2.97a) can be rewritten as

A1 (1 + �1) �1 +

1X
n=2

Bn�n = B1	1 +

1X
m=2

Bm	m = E(x; y) (2.99)

This means that �rst, the unknown distribution can be expanded in terms
of the modal solutions in each of the two waveguides, and second, that each
coeÆcient of �eld expansions (2.95a,b) and (2.96a,b) can be derived from this
distribution, by applying the orthogonality relationship between modes:

Bn =

Z
S0
�nE(x

0; y0) dS0 (2.100a)

Bm =

Z
S0
	mE(x

0; y0) dS0 (2.100b)

A1 (1 + �1) =

Z
S0
�1E(x

0; y0) dS0 (2.100c)

When doing this, we perform a mode-matching between the waveguide modes
in the left and right areas and the unknown �eld distribution in the aperture.
The input admittance in presence of the discontinuity is

Yin =
1� �1
1 + �1

Yl1 (2.101)

Introducing (2.100a,b,c) into (2.97b), and combining the result with (2.100c)
yields

Yl1A1 (1� �1) �1

R
S0 �1E(x

0; y0) dS0

A1 (1 + �1)

=

1X
n=2

Yln�n

Z
S0
�nE(x

0; y0) dS0 +

1X
m=1

Yrm	m

Z
S0
	mE(x

0; y0) dS0

(2.102)
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which �nally provides a relationship for the input admittance of the disconti-
nuity

Yin�1

Z
S0
�1E(x

0; y0) dS0 =

Z
S0
E(x0; y0)G(x0; y0jx; y) dS0 (2.103a)

provided that the Green's function (Appendix A) is de�ned by

G(x; yjx0; y0) =
1X
n=2

Yln�n(x
0; y0)�n(x; y) +

1X
m=1

Yrm	m(x
0; y0)	m(x; y)

(2.103b)

To obtain a convenient expression for the input admittance, it is now suÆcient
to take the inner product of both sides of (2.103a) with the trial function
E(x; y):

Yin

Z
S

E(x; y)�1

Z
S0
�1E(x

0; y0) dS0 dS

=

Z
S

E(x; y)

Z
S0
E(x0; y0)G(x0; y0jx; y) dS0 dS

(2.104)

which �nally yields Yin as the ratio of two integrals. We �nally obtain for the
input admittance of the discontinuity

Yin =

Z
S

Z
S0
E(x; y)E(x0; y0)G(x0; y0jx; y) dS0 dSnZ

S

�1E(x; y) dS
o2 (2.105)

Comparing this expression with equation (1.2), it is obvious that it is an
eigenvalue problem, with Green's function (2.103b) as linear operator. Hence,
the eigenvalue Yin is variational about the �eld distribution E(x; y). This
mode-matching approach has been used by some authors [2.28] to calculate
the input admittance of a planar microstrip antenna, fed by a coaxial cable.

2.4 Trial �eld distribution

2.4.1 Rayleigh-Ritz procedure

For planar transmission lines, the quasi-static analysis is based on the com-
putation of a quasi-TEM lumped-circuit element, capacitance or inductance,
noted p. For a number of variational principles found in the literature, the
expression obtained for p is explicit, like

p =
L1[F i(x1; x2; : : : ; xn)F j(x1; x2; : : : ; xn)]

L2[F i(x1; x2; : : : ; xn)F j(x1; x2; : : : ; xn)]
(2.106)
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where x1; x2; : : : ; xn are the variables describing the domain of the problem
F i and F j the scalar or vector quantities associated to the problem
L1, L2 denote linear operators.

The variational behavior of the scalar quantity p holds only when speci�c
conditions are veri�ed by trial expressions F t. In electromagnetics, these
trials are potentials or �elds, and they have to satisfy Maxwell's equations
and boundary conditions. This is usually not suÆcient to determine eÆcient
shapes of the trial �eld, so that the stationarity of p is frequently used to
improve the description of trial quantities F t. Methods using the stationarity
of p, are referred to as variational methods in [2.29]. In these methods, the trial
expressions are expanded into a set of suitable functions weighted by unknown
coeÆcients. These coeÆcients, called variational parameters, are then found
as rendering p extremum. When the expansion is linear, the method is known
as the Rayleigh-Ritz method. Assuming that F t is described by

F t i;j = F
0

i;j +

NX
k=1

�ki;jF
k

i;j (2.107)

the Rayleigh-Ritz method imposes

@p

@�ki;j
= 0 for k = 1; : : : ; N (2.108)

The coeÆcient �0i;j has been normalized to 1, because p is calculated as a

ratio. Since only products of coeÆcients �ki;j appear in the expression of p,
by virtue of (2.106), we obtain from (2.108) a set of N linear equations to be
solved for the unknowns coeÆcients �ki;j . Hence, having obtained the values

of the coeÆcients �ki;j , we �nd p by using (2.107). It should be underlined
that the value obtained is the best one for the number N and set of functions
F
k

i;j that have been chosen. If we change either the number of terms in the

serial expansion or the shape of the functions F
k
i;j , we do not know a priori

if we �nd a better value for p (higher or lower, depending on whether we
are looking for a maximum or a minimum, respectively). So, with a given
expansion (2.107) we are never certain to have found the \best" extremum.

Finally, it is now obvious that solving equations (2.52b) and (2.60c) of
the MoM presented in Section 2.3, is equivalent to applying the Rayleigh-
Ritz method to the functional � (2.58) associated with the problem or to the
error functional (2.54a).

2.4.2 Accuracy on �elds

The fact that some functionals are stationary with respect to some �eld dis-
tributions or parameters gives an insight into the accuracy of the �elds. We
choose trial functions and adjust their parameters until the value of the func-
tional, expressed in terms of the trial function, is minimized (or maximized).
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Actually, by doing this, it is never possible to be sure that the estimate ob-
tained for the functional is the lowest (or the highest) one. All that can be
said is that it is the best estimate that can be obtained with such a class of
trial functions. It is not possible to determine whether the trial distribution
which minimizes (or maximizes) the functional approaches the exact solution
for the distribution. This will be true only if the trial distribution forms a
complete set of eigenfunctions capable of describing all distributions, and if
this is proven, when the functional is extremum, the corresponding trial func-
tions are solutions of the equation describing the problem. What can be said,
however, is that the exact value will always be lower (or higher) than the
best estimate found, and that, if the estimates of the eigenvalues appear to
converge to a limit when improving the trial functions, that limit is probably
an eigenvalue of the system [2.26].

Also, this suggests a way to solve for higher-order modes parameters,
using trial functions, trial �elds and variational principles. Once we have
identi�ed one modal solution (dominant mode, for example), with its own set
of trial functions obtained from the Rayleigh-Ritz method, it is suÆcient, for
solving for a higher-order mode, to remove from the set of trial functions used
those already involved in the description of the dominant mode. This will be
illustrated in an example in the next section.

2.5 Variational principles for circuit parameters

Various applications of variational principles to electromagnetic problems are
found in literature. Many authors provide a review of some typical problems
solvable with variational principles. They can be classi�ed as follows: vari-
ational principles based on energy, variational principles associated with an
eigenvalue problem (explicit or implicit), and variational expressions based
on a reaction. Some examples are presented in this section, with comments
based on the concepts reviewed throughout this chapter.

2.5.1 Based on electromagnetic energy

Electrostatic energy is a stationary quantity. Hence, expressions of circuit
parameters depending linearly on energy guarantee the stationarity of those
parameters. In Section 2.1.2, this was introduced for the case of the capaci-
tance per unit length of a transmission line. A rigorous proof will be presented
in Chapter 3, for the case of the capacitance per unit length, and for its dual
parameter, the inductance per unit length, that we will show to be related
to the magnetostatic energy. Baldomir and Hammond [2.30] present a ge-
ometrical formulation for variational electromagnetics based on energy, for
both static and dynamic cases. The stationarity of electrostatic energy is
helpful for solving in terms of electrostatic potential. It can be demonstrated
(Section 2.1.2) that under speci�c conditions the potential distribution which
minimizes the electrostatic energy is also the distribution which is the solu-
tion of Laplace's equation. This feature is similar to that observed for �eld
distributions, where the stationarity of a given functional is often used to de-
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rive the solution of a problem, instead of solving exactly the equations of this
problem.

2.5.2 Based on eigenvalue approach

Waldron [2.26] proposes a series of variational principles based on an eigen-
value approach for waveguide components, such as cut-o� frequency, propa-
gation constant, and resonant frequency of a waveguide resonator. He bases
his approach on the fact that \In the case of a system which is carrying waves,
the principle tells us that of all conceivable wave functions, the one actually
obtained will be the one which minimizes an appropriate eigenvalue". This
suggests of course the Rayleigh-Ritz method, which we have seen to be eÆ-
cient for choosing trial �eld expressions. Waldron, however, postulates that
the eigenvalue of a waveguide problem is stationary because he relates it to
the principle of least action. With this in mind, the resonant frequency of
an oscillating system, for example, will always be as low as possible. We will
show in this section that the proof of the stationarity of waveguide eigenvalues
is immediate.

For the resonant frequency of a waveguide resonator, Waldron starts from
Helmoltz equation:

r2	+ !2"0�0	 = 0 (2.109)

where ! is the unknown resonant frequency, and 	 is the z-component of
either the E or H �eld. Multiplying both sides of (2.109) by 	, integrating
on the volume of the cavity, and rearranging, yields

!2"0�0 = �

Z
V

	r2	 dVZ
V

	2 dV

(2.110)

which forms an eigenvalue problem similar to (1.1) and (2.4), with � = !2"0�0
as eigenfunction and 	 as eigensolution. Waldron does not prove this station-
arity. It is immediate however, since varying � and 	 in (2.110) and neglecting
second-order variations yields

Æ�

Z
V

	2 dV + 2�

Z
V

Æ		 dV +

Z
V

Æ	r2	 dV

+

Z
V

	r2Æ	 dV + �

Z
V

	2 dV +

Z
V

	r2	 dV = 0

(2.111)

The invariant terms are those of equation (2.110), which is satis�ed by the
exact �eld. Next, applying the Green's theorem (Appendix B)Z

V

Ar2B dV =

Z
V

Br2A dV +

Z
S

ArB � n dS �
Z
S

BrA � n dS (2.112)
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(2.111) becomes

Æ�

Z
V

	2 dV + 2

Z
V

Æ	f�	+r2	g dV

+

Z
S

	rÆ	 � n dS �
Z
S

Æ	r	 � n dS = 0

(2.113)

Since (2.109) is satis�ed, the only way to cancel the �rst-order error Æ� is to
assume that one hasZ

S

	rÆ	 � n dS �
Z
S

Æ	r	 � n dS = 0 (2.114)

On the boundary of the cross-section of an empty waveguide resonator, either
	 or the normal component of r	 vanishes. The only way to satisfy (2.114)
is to assume that the trial distribution (	 + Æ	) satis�es the same boundary
conditions on the surface S as the exact solution 	 does.

For the cut-o� frequency of a waveguide, noted !c, the formulas proposed
are similar to (2.109) and (2.110), but since a waveguide at cut-o� can be
viewed as a resonator having no variation along the z-axis, the integration is
limited to the cross-section S of the waveguide:

!2c"0�0 = �

Z
S

	r2	 dSZ
S

"r	
2 dS

(2.115)

Away from cut-o�, the wave equation becomes

r2	+ f!2"r"0�0 � �2g	 = 0 (2.116)

yielding directly the variational expression for the propagation constant �

�2 =

Z
S

	r2	 dS +

Z
S

!2"r"0�0	
2 dSZ

S

	2 dS

(2.117)

Equations (2.115) and (2.117) are valid even if the permittivity varies with
the position in the waveguide: the relative dielectric constant "r is left inside
the integrals. Applying such a formulation to waveguides is easy, because the
wave function 	 is not a�ected by medium inhomogeneities in the transverse
section: the function is related to the z-component of either the electric or the
magnetic �eld in the waveguide structure, which are not subject to dielectric-
dependent boundary conditions in the transverse section. Also, Green's the-
orem used for the proof does not involve the dielectric constants, so that the
derivation of the proof carried out for the resonant frequency of an empty
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waveguide resonator remains valid for the cut-o� frequency of the dielectric-
loaded waveguide. It can also be veri�ed that the proof for the propagation
constant, even for an inhomogeneous case, yields an equation very similar to
(2.113) with the same �nal constraint (2.114).

To conclude this subsection, we illustrate the eÆciency of the Rayleigh-
Ritz method, by calculating the cut-o� frequency of a hollow rectangular
waveguide of width 2a (a = 1 cm), using variational principle (2.115). We
assume as �rst estimate that the longitudinal component Hz x-dependence
has the general polynomial form

	 = Ax5 +Bx4 + Cx3 +Dx2 +Ex+ F (2.118)

From the general theory of rectangular waveguides, we know that the Hz

component of the dominant mode has an odd x-dependence, and that all
�eld components have no variation along the y-axis. Also, the boundary
conditions require that the Hz component vanishes at the lateral boundaries
of the waveguide. Hence, we may a priori simplify the trial function for the
dominant mode as

	dom = B0x5 +A0x3 + x (2.119a)

and impose for x = �a
@	dom

@x
= 5B0a4 + 3A0a2 + 1 = 0 (2.119b)

which yields

B0 = �1 + 3A0a2

5a4
(2.119c)

and the �nal form for the trial dominant mode as

	dom = �1 + 3A0a2

5a4
x5 +A0x3 + x (2.120)

Introducing this trial in the variational principle (2.115) provides an ex-
pression for cut-o� frequency fc as a function of the unknown parameter A0.
Figure 2.4a shows the dependence of the resulting cut-o� frequency on the
value of A0. It exhibits a minimum for A0 = �5000. For this particular value,
the resonant frequency yielded by the variational principle is 7.51 GHz, which
corresponds closely to the exact theoretical value (dashed line)

fc =
c0
2
2a = 7:5 GHz (2.121)

For this value of A0, Figure 2.4b compares the trial 	dom obtained from
(2.120) to the exact solution Hz = sin(�x2a ). The trial solution is a very good
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Fig. 2.4 Rayleigh-Ritz procedure for dominant mode of rectangular waveguide
of width 2a = 1 cm (a) functional (2.115) versus A0; (b) exact component Hz

and trial 	dom for A0 = �5000

approximation of the true �eld. Hence, applying the Rayleigh-Ritz proce-
dure to variational principle (2.115) expressed as a function of the unknown
parameter A0 provides the minimum value of 7.51 GHz for the resonant fre-
quency, located at the abscissa A0 = �5000. The resulting trial distribution
associated to this extremum is shown in Figure 2.4b.

A similar reasoning is made for the �rst higher-order mode, assuming that
its Hz x-dependence is even:

	higher = B00x4 +A00x2 + 1 (2.122a)

@	higher

@x
= 4B00a3 + 2A00a = 0 (2.122b)

yielding

	higher = � A00

2a2
x4 +A00x2 + 1 (2.122c)

Results similar to Figure 2.4 are obtained in Figure 2.5. The extremum value
of the cut-o� frequency is now about 15 GHz. It is obtained for A" = �42500,
while the associated trial distribution slightly di�ers from the exact one (Hz =
cos( 2�x2a )). The exact cut-o� frequency for this higher-order mode is fc =
15 GHz.
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Fig. 2.5 Rayleigh-Ritz procedure for �rst-higher order mode of rectangular
waveguide of width 2a = 1 cm (a) functional (2.115) versus A"; (b) exact
component Hz and trial 	higher for A" = �42500

Both �gures illustrate that accurate values of the functional !2c can be
obtained once di�erent distributions are chosen for the dominant (odd x-
dependence) and the higher-order modes (even x-dependence). We remove
the odd e�ect of the dominant mode from the general trial function (2.118)
when we search for the �rst-higher order mode, yielding accurate results for
this mode. In Chapters 3 and 4, other applications of the Rayleigh-Ritz
method will be given.

2.5.3 Based on reaction

There are numerous formulations for circuit and system parameters which are
based on reaction in electromagnetics. The reader will �nd in this section the
most popular ones: input impedance of an antenna, echo of an obstacle, and
transmission coeÆcient through an aperture.

2.5.3.1 Input impedance of an antenna

Harrington [2.17] proposes the following formula for the input impedance of
an antenna, supposed to be perfectly conducting:

Zin =
hA; ai
I2

= � 1

I2

Z
S

E
a �Ka

s dS (2.123)
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where Ks is a surface current (A=m). The antenna is fed by a current source
I , and the current distributes itself on the surface S in such a manner that the
resulting electric �eld has vanishing tangential components on the conductors
of the antenna. Hence, the product E

c �Kc
s is zero, except at the feeder point

on the surface of the antenna, where the total current I incident from the
feeding source spreads onto the conductor, while the voltage between the two
terminals of the feeder creates the electric �eld normal to the antenna con-
ductor at the feeding point. Hence, the reaction hA0; a0i between correct �eld
and source reduces to the integration of their product between the terminals
of the antenna, supposed to be close together, as shown by:

Zin c =
hA0; a0i

I2
= �V0I (2.124)

where V0 is the correct voltage across the terminals. When a trial surface
current K

a
s is assumed, it can be chosen such that its integration gives the

same value of feeding current I (this is just a matter of normalization). Hence,
the reaction hA0; ai (where a correct current distribution is assumed) is still
equal to the product �V0I , which validates the equality

hA0; ai = hA0; a0i (2.125)

Next, the nature of the problem (antenna con�guration in isotropic medium)
ensures that reciprocity occurs :

hA0; ai = hA; a0i (2.126)

Using the notations of Subsection 2.3.1, the reactions in (2.126) are rewritten
as

hA0; ai = hA0; a0i+ hA0; Æai (2.127a)

hA; a0i = hA0; a0i+ hÆA; a0i (2.127b)

which imposes

hA0; Æai = hÆA; a0i = 0 (2.128)

On the other hand, the trial self-reaction deduced from (2.39) is

hA; ai = hA0; a0i+ hÆA; a0i+ hA0; Æai+ hÆA; Æai (2.129)

which, using (2.128), reduces to

hA; ai = hA0; a0i+ hÆA; Æai (2.130)

It demonstrates that the impedance of a perfect conducting antenna computed
using (2.123) is variational about the current density and associated electric
�eld.
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The formula is widely used for antennas calculations. Again, it has to be
underlined that the trial current and �eld are not required to satisfy exact
boundary conditions on the conductor of the antenna. Identity (2.126) only
imposes that the product of the exact �eld by the trial current, integrated on
the surface of the antenna, is equal to the product of the trial �eld by the
exact current, integrated on the same surface. This indeed does not ensure
that the tangential component of the trial �eld vanishes on each point of the
surface, although it is the case for the exact �eld.

Obviously, it can be easily demonstrated that the following is a variational
formula for the mutual impedance between two antennas, supporting surface

current densities K
a

s and K
b

s:

Zm =
hB; ai
IaIb

= � 1

IaIb

Z
S

E
b �Ka

s dS (2.131)

2.5.3.2 Stationary formula for scattering

The electric �eld scattered by an obstacle is obtainable by a variational reac-
tion. We assume that the obstacle is a perfect electric conductor. Assuming

that the source is a current element I l, we denote by E
i
the �eld generated

by this current, and by E
s
the �eld scattered by the obstacle. The sum of

those two �elds form the total �eld in the whole space. The reaction of the
scattered �eld on the current element is noted hS; ii:

hS; ii = I lEs
l = �IV s (2.132)

where V s is the voltage appearing across l. The echo is then de�ned as the
ratio between Es

l and the current element I l:

echo
�
=
Es
l

I l
=
hS; ii
(I l)2

=
hI; si
(I l)2

(2.133a)

=
1

(I l)2

Z
S

E
i �Ks

s dS (2.133b)

= � 1

(I l)2

Z
S

E
s �Ks

s dS = �hS; si
(I l)2

(2.133c)

where reciprocity has been assumed, and K
s
s is the surface current induced

on the perfect conducting obstacle. On the surface, the total electric �eld
vanishes, yielding equation (2.133c), relating the echo to the self-reaction
hS; si. Equations (2.133) are valid for reactions written with the exact �elds,
so they must be written with the subscript 0. Replacing hS0; s0i by the trial
hS; si yields a variational formula for the echo, provided that (2.38) is satis�ed:

hS; si = hS0; si (2.134a)

= �hI0; si (2.134b)
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To render reaction hS; si insensitive to the unknown magnitude of Ks
s, the

reaction is �nally expressed, imposing (2.134b), as

hS; si = hI0; si2
hS; si (2.135)

yielding the �nal variational form for the echo as

echo = � hI0; si2
(I l)2hS; si =

�Z
S

E
i �Ks

s dS
�2

(I l)2
Z
S

E
s �Ks

s dS

(2.136)

It has to be noted that the incident �eld is assumed to be derived from the
current element, so that no error results on I .

2.5.3.3 Stationary formula for transmission through apertures

As shown in [2.31], the direct application of Babinet's principle to the problem
of transmission through apertures is illustrated in Figure 2.6: the �eld trans-
mitted by an aperture in a plane conducting screen is equal to the opposite
of the �eld scattered by the complementary obstacle. The complementary

electric conductor

y = 0

incident plane wave

E   ,t Ht

n

complete
electric

conductor

y = 0

incident plane wave

E   ,t Ht

n

x

x
x
x
x
x

K
m

(a) (b)

Fig. 2.6 Transmission through aperture (a) initial con�guration; (b) applica-
tion of Babinet's principle

obstacle is a sheet of perfect electric conductor, with a perfect surface mag-
netic current, denoted by Km, 
owing on it. The transmission coeÆcient T
of the aperture is commonly de�ned as the ratio between power transmitted
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through the aperture and power incident at the aperture:

Taperture
�
=

Re(Pt)

Re(Pi)
=

Re

�Z
aperture

E
t � (H

t
)� dS

�

Re

�Z
aperture

E
i � (H

i
)� dS

� (2.137)

The incident power is known, since it depends only on incident source �elds.
In the aperture, upon application of Babinet's principle, the transmitted mag-
netic �eld is related to the incident �eld by

n�H
t
= n�H

i
(2.138)

Assuming that the magnetic �eld is adjusted to be real in the aperture, then
the conjugate can be omitted in (2.137). The equivalent magnetic current in
Figure 2.6b is:

Km = �n�E
t

(2.139)

yielding the reaction formulation of the transmitted power:

Re(Pt) = �Re

�Z
aperture

Km �H i
dS

�
= Re(hI; ci) (2.140)

where c denotes that the correct magnetic current distribution is assumed.
We denote by a the reactions involving trial magnetic currents. By virtue of
(2.138), we also have

hI; ai = hA; ai (2.141)

and by reciprocity, hI; ai = hA; ii. Hence, we have the conditions for a station-
ary reaction. As for echo calculations, we normalize the reaction and obtain
the �nal variational principle for the real part of transmitted power as

Re(Pt) =
hI; ai2
hA; ai = �

�
Re

�Z
aperture

K
a
m �H i

dS

��2

Re

�Z
aperture

K
a

m �Ha
dS

� (2.142)

For a plane wave normally incident to the aperture, with a magnetic �eld
of unit magnitude oriented along direction u and a wave impedance �, the
incident power is given by the product

Re(Pi) = �Saperture (2.143)

and the �nal variational principle for the transmission coeÆcient is

Re(Pt) =
hI; ai2
hA; ai =

�
Re

�Z
aperture

u � n�E
a
dS

��2

�Saperture Re

�Z
aperture

H
a � n�E

a
dS

� (2.144)
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2.6 Summary

Variational principles have been introduced in this chapter in general terms
to calculate impedances and propagation constants as, in this book, we are
essentially interested with transmission lines and resonators. Variational prin-
ciples have �rst been developed so that the value of the variational quantity
for the exact unknown has a physical signi�cance, like energy and eigenvalues.
It has been shown that a method exists for systematically improving upon the
trial function by iteration, thus providing an estimate of the error, by giving
both an upper and a lower bound to those quantities which are being var-
ied. Then,we developed and illustrated methods for establishing variational
principles by adequately re-arranging Maxwell's equations. It has been shown
that explicit as well as implicit expressions can be obtained.

The main part of the chapter has been devoted to comparing variational
methods with other concepts and methods. The reaction concept has been
demonstrated to be eÆcient in obtaining variational principles for a wide va-
riety of electromagnetic parameters, and self-reaction has been shown to have
some additional interesting properties. The method of moments (MoM) has
been developed and widely commented upon and it has been shown that it is
possible to minimize the error made. Variational functionals associated with
the MoM have been discussed. The Galerkin method has also been discussed
in detail and we have presented where and when the MoM and Galerkin
method are variational or not. Links have been established between the MoM
and the reaction concept as well as with the perturbation method. The dif-
ferences between perturbational and variational methods have been carefully
detailed. The mode-matching technique has been brie
y summarized, as well
as the Rayleigh-Ritz method.

Finally, examples of variational principles for circuit parameters have been
presented and concepts reviewed throughout the chapter, such as waveguide
cut-o� frequencies as eigenvalues, input impedance of an antenna, echo from
an obstacle, and transmission coeÆcient through an aperture.
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chapter 3

Analysis of planar transmission lines

This chapter details the various forms of variational principles presented in
Chapter 2 for the analysis of planar transmission lines and circuits. The for-
malism is based on the use of Green's functions and Fourier transforms. After
a brief overview of the various analysis techniques, the emphasis is put on the
variational methods and their variants. They will be compared with a general
variational model in Chapter 4. First the three basic line topologies used in
microwave integrated circuits (MICs) are presented, namely the microstrip
line, the slot-line and the coplanar waveguide, as well as their shielded vari-
ants. Secondly, the various analysis methods of planar lines are described.
They are divided into two classes: approximate quasi-static methods and
full-wave methods. The advantages and drawbacks of each method are high-
lighted. Thirdly, an in-depth analysis of the variational behavior underlying
each method is proposed.

3.1 Topologies used in MICs

The analysis methods for planar lines at microwave and millimeter wave fre-
quencies can be divided into two classes: the approximate quasi-static me-
thods and the full-wave dynamic methods. The �rst category is based on
the assumption that the dominant mode, propagating along the z-axis of the
line, is well approximated by a TEM description. This is the case when the
actual mode is of a TM kind, with the TEM mode being a particular case of a
TM mode. The second category uses a hybrid TE+TM representation of the
�elds in the guiding structure [3.1], yielding an accurate frequency-dependent
description of the propagation characteristics. The basic line topologies used
in microwave integrated circuits are represented in Figure 3.1. They are re-
spectively: the microstrip line (a), the slot-line (c), and the coplanar wave-
guide (e). Various combinations of these lines may be considered with a view
to obtaining coupled structures. The basic con�gurations for coupled lines
are depicted in Figure 3.1b, d, and f. It should be noted that the coplanar
waveguide topology is in fact the odd-coupled version of the slot-line (with a
change of sign of the electric �eld component across the slot), while the even-
coupled version of the slot-line is referred to as coupled slots in the literature
(Fig. 3.1f). The basic line topologies of Figure 3.1 are open. The shielded
versions are used at high frequencies to avoid radiation losses: they consist in
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inserting the planar line into a metallic enclosure. In particular, the shielded
version of the slot-line, more commonly denoted �nline, is widely used for
applications at millimeter waves.
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Fig. 3.1 Basic line topologies for MICs (a) open microstrip; (b) coupled mi-
crostrips; (c) open slot-line; (d) coupled slot-lines; (e) open coplanar wave-
guide; (f) coupled coplanar waveguides

From these basic topologies a number of combinations are possible, involv-
ing structures having metallizations in di�erent planes and layers of di�erent
width. Two particular structures are shown in Figure 3.2a, b [3.2]. They are
the antipodal �nline and the p-i-n travelling wave photodetector respectively.
These two structures act like transmission lines at microwave and millimeter
wave frequencies. Hence, they can be analysed using conventional transmis-
sion lines analysis techniques.
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Fig. 3.2 Examples of combinations of basic line topologies (a) antipodal �n-
line; (b) p-i-n photodetector

3.2 Quasi-static methods

The quasi-static methods are based on the fact that the TEM approximation
holds. This is the case when the line has at least two conductors. Under
the TEM assumption, the transverse �elds are very close to the static electric
and magnetic �elds. They are derived from the electrostatic scalar or mag-
netostatic vector potentials respectively, which are both solution of Laplace's
equation. The main advantage of the quasi-static approach is that the equa-
tions for the electric and magnetic �elds are totally decoupled and hence much
simpler to handle: we are left with two static problems, electric and magnetic
respectively. The propagation constant and the characteristic impedance of
the line are expressed as [3.3][3.4]

� = !
p
LC (3.1a)

Zc =

r
L

C
(3.1b)

where L and C are the inductance and capacitance per unit length respec-
tively, deduced from the static �elds. When the two conductors of the line are
surrounded by a homogeneous medium having the constitutive parameters ",
�, the phase velocity on the line is given by

vph =
1p
LC

=
1p
"�

=
c0p
"r�r

(3.2)

with c0 phase velocity in vacuum
"r, �r relative permittivity and permeability respectively.

When the structure is multilayered, relations (3.2) are no longer valid, because
the constitutive parameters are di�erent in the two material layers. The
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main feature of the quasi-static method is that one can derive the equivalent
parameters of a unique e�ective homogeneous medium from the parameters
of the two layers. They provide a single e�ective phase velocity, which is
computed from the value of the e�ective static parameters L or C of the
multilayered structure:

vph =
1p
LC

=
1p

"eff�eff
=

c0p
"reff�reff

(3.3)

For multilayered dielectric structures, where all the layers have the same
relative magnetic permeability, the static capacitance C of the structure is
calculated and compared to the capacitance C0 of the same structure for
which all layers are assumed to have the parameters "0, �0 of vacuum. This
yields an e�ective relative permittivity

"reff =
C

C0
(3.4a)

L0 is obtained from C0 as

L0 =
1

C0c20
(3.4b)

and the line is described as an equivalent TEM-line having the parameters
L0, C. For multilayered magnetic structures, where all layers have the same
relative dielectric permittivity, the inductance L of the structure is calculated
and compared to the inductance L0 - the same structure for which all the
layers are assumed to have the parameters "0, �0 of vacuum. This yields an
e�ective relative permeability

�reff =
L

L0
(3.5a)

C0 is obtained from L0 as

C0 =
1

L0c20
(3.5b)

and the line is described as an equivalent TEM-line with parameters L, C0.
When the layers are both electrically and magnetically inhomogeneous, the
two previous methods are combined in the following manner: the inductance
L is computed for an electrically homogeneous medium using (3.5a) and the
capacitance C is computed for a magnetically homogeneous medium using
(3.4b). Those two static parameters are combined to form the quasi-TEM
transmission line parameters (3.1b). The quasi-static methods only di�er on
how the static capacitance C or inductance L are obtained. This is explained
below. It should be noted that quasi-static methods cannot be applied to slot
lines, because these support a dominant mode which is fundamentally TE.
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Fig. 3.3 Conformal mapping for microstrip line (a) original structure; (b)
rigorous mapping of right-hand side of original structure; (c) approximate
capacitive structure

3.2.1 Modi�ed conformal mapping

The modi�ed conformal mapping method has been widely used to calculate
the equivalent static capacitance of microstrip and coplanar waveguide lines.
It consists of a transformation of the original structure into a parallel plate
capacitor in a transformed domain, for which the calculation of the capaci-
tance or inductance is straightforward. Conformal mapping is applied �rst to
the homogeneous line, and then to the multilayered line. The application of
this method is illustrated in Figure 3.3 for microstrip lines and in Figure 3.4
for coplanar waveguides respectively.

In the case of original microstrip topologies (Fig. 3.3a), an exact and
simple analytical expression can always be found for the capacitance C0

("r1 = "r2 = 1). This is not true for the capacitance C, because the interface
y = 0 is transformed into an elliptical-looking curve (Fig. 3.3b). Wheeler
[3.5][3.6] proposed to approximate this transformed boundary by a rectangu-
lar boundary, as shown at Figure 3.3c. Hence, an equivalent �lling factor is
de�ned for the parallel plate capacitance, and an equivalent e�ective dielec-
tric constant is obtained for the line. Unfortunately, the transformation of the
dielectric-air boundary results in simple expressions only when this boundary
corresponds to a line of electric �eld, which is not the case for the microstrip
introduced in Figure 3.1a. Moreover the calculation of the conformal mapping
requires the evaluation of elliptic functions, which converge slowly.

In the case of coplanar lines (Fig. 3.1e), the conformal mapping is more
rigorous, since the electric �eld across the slot is tangential to the dielectric
interface. Hence, when layer 2 is of in�nite thickness, an exact solution for
the capacitance of the transformed structure of Figure 3.4b is obtained using
a Schwarz-Christo�el conformal mapping [3.7]. Due to the obvious symmetry
of the structure, the e�ective dielectric constant is the mean value of the
dielectric constants of the two layers as shown by:

"eff =
"1 + "2

2
(3.6)
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Fig. 3.4 Conformal mapping for coplanar waveguide (a) original two-layered
structure; (b) partial capacitances corresponding to two-layered structure;
(c) original three-layered structure; (d) partial capacitances corresponding to
three-layered structure

while the total capacitance C0 is obtained as a function of the complete elliptic
integral of the �rst kind K(k):

C0 = 4"0
K(k)

K(k0)
(3.7)

with k = S=(S + 2W ) k0 =
p
1� k2

When layer 2 has a �nite thickness (Fig. 3.4c), the structure in the transformed
domain has to be modi�ed as shown in Figure 3.4d: layer 3 is mapped into an
area of elliptic shape. In this case the capacitance has to be computed via a
distributed shunt-series capacitances modeling, as done by Davis et al. [3.8].

In addition to the static assumption made for the calculation of the �elds,
the conformal mapping method has important limitations. First, it is only
applicable to open structures (Fig. 3.1a, c and e). Secondly, the e�ect of the
�nite thickness of the metallization is never taken into account. Thirdly, the
�nite thickness of the layers has to be evaluated by numerical discretizations
or curve �ttings on a presumed transformed boundary, without any a priori
knowledge of the in
uence of the approximation on the result.

3.2.2 Planar waveguide model

The planar waveguide model is applicable to open microstrip lines. It has been
developed by Kompa [3.9] and Mehran [3.10]. It consists of a waveguide having
perfect conductive top and bottom shieldings, while lateral limits are perfect
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Fig. 3.5 Planar waveguide model (a) original microstrip structure; (b) equiv-
alent waveguide

magnetic walls. The guide is �lled by the e�ective dielectric constant of the
microstrip line (Fig. 3.5), calculated by another method [3.11]. The e�ective
dielectric constant and the width of the waveguide are frequency-dependent,
to ensure that the impedance of the TEM mode supported by this waveguide
is a good representation of the actual impedance of the dominant mode on
the microstrip. By extrapolation, this structure is expected to be eÆcient
for the calculation of the parameters of higher-order modes supported by
the microstrip line. The model is mainly applied to model planar microstrip
discontinuities. In this case, mode matching requires the knowledge of the
higher-order modes supported by the microstrip line.

3.2.3 Finite-di�erence method for solving Laplace's equation

The transverse dependence of the electric �eld of the TEM mode is derived
from the static potential �, which has to satisfy the two-dimensional Laplace's
equation

r2�(x; y) =
@2�

@x2
+
@2�

@y2
= 0 (3.8)

The equation is discretized by the �nite-di�erence method. Hence, the method
is only applicable to shielded lines [3.11], as illustrated in Figure 3.6. The
potential is assumed to be zero on one conductor and V0 on the other. The
application of the �nite-di�erence method, taking into account the boundary
condition at the dielectric interface, is detailed in [3.12]. Basically, the solution
for the potential in the neighborhood of point A (points B, C, D, E) is
expanded into a Taylor's series around the solution at point A, noted �A:

�B = �A + h
@�

@x

����
A

+
h2

2!

@2�

@x2

����
A

+
h3

3!

@3�

@x3

����
A

+O(h4) (3.9a)
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Fig. 3.6 Discretized domain for analysis of shielded microstrip line by using
the �nite-di�erence method
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�C = �A + h
@�
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����
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����
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h3
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����
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�E = �A � h
@�

@y

����
A

+
h2

2!

@2�

@y2

����
A

� h3

3!

@3�

@y3

����
A

+O(h4) (3.9d)

where subscript A means that quantities are evaluated at point A and where
O(h4) is a quantity proportional to h4. Adding these four equations yields:

�B +�C +�D +�E = 4�A + h2
�
@2�

@x2
+
@2�

@y2

�����
A

+O(h4) (3.10)

Since � has to satisfy (3.8) everywhere, the following is a good approximation
for the potential solution of (3.8):

�A =
�B +�C +�D +�E

4
(3.11)

which can be repeated at each mesh point. It has a somewhat di�erent form if
point A is located at the interface between two di�erent media. At the bound-
ary points, � or its derivative, or a linear combination of both, is speci�ed.
Hence, (3.11) written for each mesh point plus the set of boundary conditions
may be rewritten using a matrix formalism as

M � = b (3.12)
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where the right-hand side is a column vector containing information provided
by the boundary points, and � is a column vector for the unknown values of
potential at the various mesh points. Solving (3.12) for � is equivalent, to the
h4 order, to obtaining a solution for (3.8) satisfying some imposed boundary
conditions. Hence, the method is eÆcient for small values of h, which implies
that the mesh has to be suÆciently small.

Once the potential is obtained, the electric �eld normal to the strip con-
ductor of Figure 3.6 is calculated and the total charge Ql per unit length on
the strip is obtained as a line integral

Ql =

I
�

"iEi � dn (3.13)

where � is the contour of the strip. Hence, the capacitance per unit length of
the line is expressed as

C =
Ql

V0
(3.14)

The mathematical preprocessing is minimal, and the method can be applied
to a wide range of structures but a price to pay is its numerical ineÆciency.
Open structures have to be truncated to a �nite size, and the method requires
that mesh points lie on the boundary. The main drawback of the method is
that an accurate expression of the capacitance is obtained only when the
discretization of the domain of interest is small enough. This may require
considerable computation time and memory space. The method, however,
is used for characterizing transmission lines containing layers with highly in-
homogeneous constitutive parameters as is the case for interconnections on
doped semiconducting layers. The �nite-di�erence method is also used in the
time domain as a full-wave dynamic method.

What has been described is the original procedure for discretizing the
structure, where square - or cubic - mesh elements are used, with a uniform
mesh parameter throughout. This procedure has been modi�ed over the years
with the aim to reduce errors, memory requirements, and numerical expendi-
ture, as well as toward improving the eÆciency of programming techniques.
Regular and irregular graded meshes have been used, for adapting the den-
sity of the network to local non-uniformities of the �elds, resulting from sharp
corners of �ns, for instance. If di�erent mesh sizes are used along the di�erent
coordinate axes, then the inductance and capacitance per unit length as well
as the length of the branches, are di�erent according to the directions, and
the equations have to take these di�erences into account. So-called condensed
node schemes have led to considerable savings in computer resources, partic-
ularly when they are combined with a graded mesh technique in which the
density of the mesh can be adapted to the degree of �eld non-uniformity.

However, it is not our intent to give a thorough presentation of the nu-
merical methods used for solving electromagnetic problems. The interested
reader will �nd a number of good books on the subject.
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3.2.4 Integral formulations using Green's functions

The Green's formalism (Appendix A) is interesting for quasi-static formula-
tions, because it o�ers a elegant way to obtain solutions for Poisson's equation

r2�(x; y; z) = ��(x; y; z) (A.23)

This equation is the basis of most electrostatic problems, which usually
require �nding the charge and potential distributions present in a given struc-
ture in order to calculate the equivalent capacitance of the system. A previous
section illustrated this approach, when using Laplace's equation. Laplace's
equation is a particular case of the Poisson's equation, where the source charge
density � is assumed to be zero.
A. Equation (3.8) may also be solved using a Green's formalism which im-
poses boundary conditions on the two line contours modeling the surface of
the two conductors in the transverse section of the line (Fig. 3.6). The general
Green's function associated with Dirichlet boundary conditions on a surface
expressed as

P (r; t) =

Z

x

Z
Tx

@G(r; tjr0; t0)
@n

� �P (r0; t0)	��

x

dr0dt0 (A.20d)

is formulated in two dimensions. The potential is the solution of a homoge-
neous Poisson's equation which satis�es inhomogeneous boundary conditions
on the contours limiting the two conductors in the transverse section of the
transmission line (Fig. 3.6):

�(r) =

Z
�1

@GP

@n
(rjr1)�(r1)d�1 +

Z
�2

@GP

@n
(rjr2)�(r2)d�2 (3.15)

where the space vectors are two-dimensional, GP is the scalar Green's function
associated to the two-dimensional Poisson's equation derived from (A.23), and
n is the normal to the line contour considered. Assuming that �(r1) = 0
on �1 and �(r2) = V0 on �2, the �rst term of the sum vanishes. Then,
equations (3.13) and (3.14) with � = �2 yield the capacitance C.
B. Collin [3.13] has given another simple expression for the capacitance of a
TEM transmission line, also based on a Green's function. The formulation
relates the capacitance to the inner product between a charge distribution in
the cross-section of the line and the corresponding electrostatic potential:

1

C
=

1

Q2
l

I
�

�(x; y)�(x; y)d� (3.16)

where the line path � is taken on the surface of the inner conductor in the
transverse section
�(x; y) is the static potential solution of the two-dimensional Poisson's
equation
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�(x; y) is the distribution of charge density on the surface of the con-
ductor
Ql is the integral of the charge density on the inner conductor.

The potential is then related to the charge density through the two-dimensional
scalar Green's function associated to Poisson's equation, S being the cross-
section of the transmission line:

�(x; y) =

Z
S

GP (x; yjx0; y0)�(x0; y0)dx0dy0 (3.17)

This equation simpli�es when the inner conductor is assumed to be of zero
thickness in plane y = 0 and the charge density � is localized at its surface.
There is then a surface charge density �s(x) distributed on the conducting
strip only. The total charge on the inner conductor per unit length is given
by the line integral over the width Wc of the inner conductor

Ql =

Z Wc
2

�Wc
2

�s(x)dx (3.18)

Since the normal derivative of the potential is proportional to the charge den-
sity on the conductor, the Green's formalism associated to Neumann boundary
conditions is applicable:

P (r; t) =

Z

x

Z
Tx

G(r; tjr0; t0) � @P (r
0; t0)

@n

����

x

dr0dt0 (A.20b)

The potential can be rewritten as a function of �s(x) using the same
Green's function associated with Poisson's equation:

�(x; y) =

Z Wc
2

�Wc
2

GP (x; yjx0; 0)�s(x0)dx0 (3.19)

Equation (3.17) illustrates the practical use of two-dimensional Green's func-
tions. Since the transverse section of the line is not homogeneous, the correct
continuity has to be imposed between the solutions found for each layer. This
can be done either in the space or in the spectral domain along the x-variable.
The choice will depend on the complexity of the geometry and, in particu-
lar, the location of the interfaces between the di�erent layers, as explained in
Section 3.4.

The main problem in using (3.17) and (3.19) is that there is no a priori
knowledge of the charge distribution. The previous formalism requires the
knowledge of the source of excitation. The actual charge distribution, how-
ever, results from the boundary conditions for the potential on the strip and at
the interfaces between the layers. Hence, the problem seems to have no prac-
tical solution. The �rst way to solve this diÆculty is to assume a reasonably
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adequate distribution for the surface charge �s. Intuitively, the distribution
will be relevant if the variational behavior of expression (3.16) about �s has
been proven. The second way is to solve the integral equations (3.17) or (3.19)
using the moment method, applying a known boundary condition. This is in
fact an alternate way to solve an inhomogeneous problem subject to inho-
mogeneous boundary conditions. For our particular case, the linear integral
equation to be considered is

�(x; y)j(jxj�Wc
2
;y=0) = V0

=

Z Wc
2

�Wc
2

GP (x; yjx0; 0)�s(x0)dx0
�����
(jxj�Wc

2
;y=0)

(3.20)

It has to be solved for the line path describing the conducting strip, supposed
to be at potential V0. Once the Green's function has been found, it can be
considered as a linear integral operator for the boundary condition problem
(3.20). Using the notations of Chapter 2, the problem is formulated as

L(f) = g on � (3.21a)

with

f(x; y) = �(x; y) (3.21b)

L(f) =

Z
S

GP (x; yjx0; y0)�(x0; y0)dx0dy0 (3.21c)

g(x; y) = �(x; y)j(x;y)2� = V0 (3.21d)

which reduces in this case to a one-dimensional problem:

f(x) = �s(x) (3.22a)

L(f) =

Z Wc
2

�Wc
2

GP (x; 0jx0; 0)�s(x0)dx0 (3.22b)

g(x) = �(x; 0)jjxj�Wc
2

= V0 (3.22c)

The charge density is then expanded into a set of basis functions �sn weighted
by unknown coeÆcients an:

�s(x) =

NX
n=1

an�sn (3.23)

The basis functions are taken such as

�sn(x) = 0 for jxj > W

2
(3.24)
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Applying Galerkin's procedure, the coeÆcients can be determined. Equa-
tion (3.18) then yields the total charge Ql on the inner conductor, and the
capacitance is obtained from de�nition (3.14).

A third procedure has been presented by Gupta et al. [3.11]. Equa-
tions (3.22) are discretized in order to provide the corresponding matrix for-
mulation:

v = p q (3.25)

where v and q are column matrices representing the potential and the density
of surface charge on the conductors respectively, while p is a matrix containing
the e�ect of the Green's function. Since the potential is usually known on the
conductor, system (3.25) may be inverted to �nd the charge vector q. The
capacitance is then obtained using (3.14) as the integral of the charge density
on the conductor:

C =
X
j

X
k

p�1jk (3.26)

where p�1jk is the jkth-component of the inverse of matrix p.

To conclude this subsection, it has to be pointed out that the main ad-
vantage of the combination Green's function - integral formulation is that the
integration is usually performed on a reduced domain of the cross-section, as
is illustrated by the transformation of (3.21) into (3.22). Since the Green's
function contains information about the entire structure, the potential satis-
�es the physical laws describing the system (Poisson's equation, for instance).
Particular boundary conditions, necessary to ensure a complete determination
of the solution, are applied at speci�c interfaces only (surfaces or lines).

3.3 Full-wave dynamic methods

At high frequencies the quasi-static approximation is no longer valid for multi-
layered structures, because the electromagnetic �elds supported by the struc-
ture have longitudinal components which are no longer negligible. These com-
ponents are necessary to ensure that the boundary conditions are satis�ed at
the interfaces. The �elds cannot be derived anymore from static potential
solutions of Laplace's or Poisson's equation. The �elds must be expressed as
a combination of TE and TM modes whose parameters di�er from one layer
to the other, each mode being associated with a scalar potential solution of
Helmholtz equation [3.4]:

r2�TE
i + (k2i + 
2)�TE

i = 0 (3.27a)

r2�TM
i + (k2i + 
2)�TM

i = 0 (3.27b)

with ki = !
p
"i�i and where subscript i refers to layer i.
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A complex e�
z dependence is assumed along the propagation axis. The
propagation constant 
 is unknown and has to be calculated. Since the phys-
ical �elds in the structure are combinations of TE and TM modes, they are
usually associated with the concept of \hybrid modes".

The most popular method for the full-wave analysis of planar transmission
lines is the integral equation expressed as a line boundary condition and solved
by Galerkin's procedure. It has been widely used for many years and almost all
the methods found in the literature derive from it. It is described in the next
subsection. Another method is also presently used for the dynamic analysis
of planar lines: the transmission line matrix method (TLM), combined with
the �nite-di�erence time domain method (FDTD). It should be mentioned,
however, that a particular method has been developed by Cohn for slot-lines
[3.14], in order to obtain simple expressions for the parameters of these lines,
as has been done for microstrips and coplanar waveguides in the static case.
It will be presented in Section 3.3.6.

3.3.1 Formulation of integral equation for boundary conditions

As for the quasi-static applications based on an integral equation, the formu-
lation starts from a relationship involving a Green's function. The Green's
function may be derived in two ways, as mentioned by Itoh [3.15]. First it can
be derived from the Green's function established for the vector potential so-
lution of the vector wave equation introduced in Appendix A in the following
way. For strip-like problems, the strip is replaced by an in�nitely thin sheet
of current, hence removing the metallization. In each layer, the electric �eld
is derived from a vector wave potential satisfying the vector wave equation

r2A(r) + !2"�A(r) = ��J(r) (A.27)

The Green's function associated with this equation is

G0(rjr0) = I
e�jjkj�jr�r0j

jr � r0j (3.28)

It can be shown [3.16] that equation (A.27) for the potential has an equivalent
form for the electric �eld E:

r�r�E � jkj2E = �j!�0J (3.29)

A Green's function GE may be directly associated with the electric �eld solu-

tion of this equation, by replacing E by GE and �j!�0J by the space impulse
unit function

Æ(r0 � r0) = Æ(x0 � x0)Æ(y
0 � y0)Æ(z

0 � z0) (A.18d)
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The solution of (3.29) then becomes [3.16]

GE(rjr0) = (I +
1

k2i
rr)e

�jjkj�jr�r0j

jr � r0j (3.30)

from which a Green's relationship between E and J applies:

E(r) =

Z
V

GE(rjr0) � J(r0)dr0 (3.31)

where V is the volume wherein the electric �eld has to be determined. It
should be noted that expression (3.30) has to be modi�ed when the medium
is �nite; thus when speci�c boundary conditions apply to the electric �eld at
the boundary surface S enclosing the volume V . It has been demonstrated
that in this case a second term must be added to the solution [3.17]:

E(r) =

Z
V

GE(rjr0) � J(r0)dr0

+

Z
S

(n�r0 �E) �GEdS
0 +

Z
S

(r0 �GE) � (n�E)dS0
(3.32)

where r0 means derivatives with respect to the source coordinates r0. The
two surface integrals can be related to equivalent electric and magnetic \po-
larization" currents 
owing on the interface planes, taking into account the
boundary conditions at those interfaces. When the medium is multilayered,

particular solutions must be added to GE , so that the boundary conditions
at each interface are satis�ed [3.18]. For a general case, the solution becomes
quite intricate, because the spatial form of Green's functions for a strati�ed
medium is obtained as a serial expansion involving residues integrals. The
method is detailed in Wait [3.19].

The second way to derive the Green's function is more convenient to
use. It starts from the source-free Helmholtz equations (3.33a,b), for which a
general solution may be found in the spectral domain for both TE and TM
source-free Hertzian potentials:

r2�
E

i + (k2i + 
2)�
E

i = 0 (3.33a)

r2�
M
i + (k2i + 
2)�

M
i = 0 (3.33b)

Applying Maxwell's equations, the electric and magnetic �elds in each layer
of the structure (Fig. 3.1) are derived in the spectral domain from the general
solution of the respective potentials (3.33a,b). From the derivation of the
spectral form of Green's functions (Appendix A), it follows that the partial
derivatives in the spatial form of Maxwell's equations are replaced by a prod-
uct of the corresponding spectral components in the spectral domain. As a
result, simple algebraic expressions are obtained between �elds and potentials
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in the spectral domain. The details of the �elds derivation will be illustrated
in Chapter 4. As another result, electric and magnetic �elds do depend upon
each other since they derive from the same potentials. An equivalent tan-
gential current density J t is de�ned as the di�erence between the tangential
magnetic �elds at the interface between two layers where there is a planar
conductor (plane y = 0 in Figure 3.1). Using the dependence between the
electric and the magnetic �elds, the following equations are obtained in this
plane (subscript t holds for tangential), in spectral form:

~Et(kx; 0; z) =
~
Gst(kx; 0; 
) � ~J t(kx; 0; z) for strip-like problems (3.34a)

~J t(kx; 0; z) =
~
Gsl(kx; 0; 
) � ~Et(kx; 0; z) for slot-like problems (3.34b)

or, after inversion, in the space domain:

Et(x; 0; z) =

Z 1

�1

Gst(x; 0jx0; 0; 
) � J t(x0; 0; z0)dx0

= Lst(J t) for strip-like problems

(3.35a)

J t(x; 0; z) =

Z 1

�1

Gsl(x; 0jx0; 0; 
) �Et(x
0; 0; z0)dx0

= Lsl(Et) for slot-like problems

(3.35b)

In these expressions, G is the inverse Fourier-transform along the x-variable

in the space domain of the spectral dependence
~
G. The spectral quantities are

de�ned by the x-Fourier-transform (Appendix C). It should now be obvious

that the G functions are Green's functions in the sense of (3.31) and (3.32).
First, there is a correspondence between the algebraic dyadic relation (3.34)
and the spectral de�nition of the Green's function:

~P (kx; ky; kz; !) =
~
G(kx; ky; kz ; !) � ~X(kx; ky; kz)

Secondly, the potential forms satisfying (A.27) or (3.33a,b) are equivalent
since they both derive from Maxwell's equations. Thirdly, the linearity of
the Fourier-transform ensures that the homogeneous problem with inhomo-
geneous boundary conditions solved in the spectral domain for each layer is
equivalent to the spatial form (3.32). Equations (3.32) and (3.34a,b) derive
indeed from (A.27) and (3.33a,b), respectively.

The potentials are a function of the propagation constant by virtue of
(3.27) and (3.33a,b). Hence, the spectral and spatial notations of the Green's
functions involve the unknown 
 propagation constant along the z-axis. This
is in accordance with the general form for �elds and potentials having a prop-
agation dependence e�jkz0z

0

along the z0-direction:
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P (r; t) =

Z
Vx

Z
Tx

~
G(r; tjr0; t0; kz0) �X(r0; t0)dr0dt0 (A.40a)

with

~
G(r; tjr0; t0; kz0) =

Z
Vx

Z
Tx

G(x; y; z; tjx0; y0; z0; t0)e�jkz0(z0�z)d(z0 � z)

For a distributed structure, the z-dependence can be dropped in equations
(3.34a,b) and (3.35a,b), by de�ning the �elds and currents as

Et(x; y; z)
�
= et(x; y)e

�
z (3.36a)

J t(x; y; z)
�
= jt(x; y)e

�
z (3.36b)

Introducing (3.36) into (3.34) and (3.35) and dividing both sides of each equa-
tion by e�
z yields

~et(kx; 0) =
~
Gst(kx; 0; 
) � ~jt(kx; 0) for strip-like problems (3.37a)

~jt(kx; 0) =
~
Gsl(kx; 0; 
) � ~et(kx; 0) for slot-like problems (3.37b)

or, in the space domain,

et(x; 0) =

Z 1

�1

Gst(x; 0jx0; 0; 
) � jt(x0; 0)dx0

= Lst(jt) for strip-like problems

(3.38a)

jt(x; 0) =

Z 1

�1

Gsl(x; 0jx0; 0; 
) � et(x0; 0)dx0

= Lsl(et) for slot-like problems

(3.38b)

Expressions (3.35a,b) and (3.38a,b) are integral equations where the Green's
function is a linear integral operator L. They are basically obtained in a
similar way, only the choice of the �nal expression changes: for strip-like
problems, the Green's formulation yields the tangential electric �eld at the
interface of the strip as a function of the current on the strip, while for slot-like
problems it yields the current distribution at the interface of the metallization
as a function of the electric �eld in the slot. One may also say that the source
for strip-like problems is the current density 
owing on the strip, while for
slot-like problems it is the electric �eld in the plane of the slot. Throughout
this section, the term \source" will now be used for either Et or J t. Using
equations (3.33a,b) takes advantage from the fact that �elds are calculated
in the spectral domain for a homogeneous source-free equation (3.33a,b), and
that the integral equation involves the source at the interface only. This is
not the case when using (3.32), because sources have to be integrated on the
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surface limiting the volume of interest for adequately taking into account the
boundary conditions. One may also say that, when using equation (3.32),
the integral equation has to be applied to the whole space while, when using
equations (3.33a,b), source e�ects apply only in the metallic interface.

Formulation (3.35a,b) presents the same diÆculty as the quasi-static prob-
lem (3.19), since the source distribution is unknown. If the conductors are
perfect, however, it is known that the source has to vanish on the whole inter-
face y = 0, except on the line path describing the strip for strip-like problems
or the slot for slot-like problems. Hence, formulations (3.35a,b) are most
appropriate for an integral boundary condition formulation. The equivalent
source in the right-hand side of (3.35a,b) is indeed located on a reduced seg-
ment of the interface, which limits the integration on the strip or slot area
(Fig. 3.7):

Et(x) = 0 for jxj > W

2
for slot-like problems (3.39a)

J t(x) = 0 for jxj > W

2
for strip-like problems (3.39b)

As for the quasi-static boundary condition problem (3.19), conditions (3.39a,b)
can be used for selecting either an approximate expression for the equivalent
source, or some basis functions for the method of moment, solving for the
unknown source distribution while imposing the boundary condition

J t(x) = 0 for jxj < W

2
for slot-like problems (3.40a)

Et(x) = 0 for jxj < W

2
for strip-like problems (3.40b)

The user now either inverts the spectral Green's function in the right-hand
side of (3.34a,b) and solves in space domain, or inverts the obtained spectral
solution for the left-hand side of (3.34a,b). The two approaches are illustrated
in the next two sections.

3.3.2 Solution of the integral equation in space domain

Applying an inverse Fourier transform to the right-hand side of equations
(3.34a,b), Denlinger [3.20] obtains a pair of coupled integral equations to be
solved in space domain on the strip (slot) area. Reasonable expressions for the
x and z components of the sources at the interface are expressed as functions
of the x variable satisfying (3.39b):

Ju(x; 0; z) = Iuju(x)e
�
z for strip-like problems (3.41a)

Eu(x; 0; z) = Vueu(x)e
�
z for slot-like problems (3.41b)

with u = x; z and where Iu and Vu are unknown constants. Their x-Fourier
transform are then calculated, while keeping the amplitudes unknown, which
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Fig. 3.7 Shape of source and �eld quantities for integral formulation of bound-
ary conditions (a) slot case; (b) strip case

yields the Fourier transforms of the sources in the interface:

~J t(kx; 0; 
) =
�
Ix~jx(kx)ax + Iz~jz(kx)az

	
e�
z for strip-like problems

(3.42a)

~Et(kx; 0; 
) = fVx~ex(kx)ax + Vz~ez(kx)azg e�
z for slot-like problems

(3.42b)

The inverse Fourier-transform of the right-hand side of expressions (3.34a,b)
yields:

Et(x; 0; z) =

Z 1

�1

~
Gst(kx; 0; 
) � ~J t(kx; 0; 
)ejkxxdkx

�
= et(x; 0)e

�
z for strip-like problems

(3.43a)
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J t(x; 0; z) =

Z 1

�1

~
Gsl(kx; 0; 
) � ~Et(kx; 0; 
)e

jkxxdkx

�
= jt(x; 0)e

�
z for slot-like problems

(3.43b)

Introducing (3.42a,b) into (3.43a,b) and using (3.36a,b) yields the coupled
pairs of equations

ex(x; 0) =

Z 1

�1

~Gst;xx(kx; 0; 
)Ix~jx(kx)e
jkxxdkx

+

Z 1

�1

~Gst;xz(kx; 0; 
)Iz~jz(kx)e
jkxxdkx

= 0 for jxj < W

2

(3.44a)

ez(x; 0) =

Z 1

�1

~Gst;zx(kx; 0; 
)Ix~jx(kx)e
jkxxdkx

+

Z 1

�1

~Gst;zz(kx; 0; 
)Iz~jz(kx)e
jkxxdkx

= 0 for jxj < W

2

(3.44b)

for strip-like problems, while for slot-like problems one has

jx(x; 0) =

Z 1

�1

~Gsl;xx(kx; 0; 
)Vx~ex(kx)e
jkxxdkx

+

Z 1

�1

~Gsl;xz(kx; 0; 
)Vz~ez(kx)e
jkxxdkx

= 0 for jxj < W

2

(3.45a)

jz(x; 0) =

Z 1

�1

~Gsl;zx(kx; 0; 
)Vx~ex(kx)e
jkxxdkx

+

Z 1

�1

~Gsl;zz(kx; 0; 
)Vz~ez(kx)e
jkxxdkx

= 0 for jxj < W

2

(3.45b)

In (3.44) and (3.45), the unknowns are the amplitudes Ix, Iz for strips and
Vx, Vz for slots. Functions ~jx;k(kx) and ~ex;k(kx) are the Fourier-transforms
of the assumed source functions for strip- and slot-like problems, respectively.
A more convenient notation for each system of equations for strip-like lines is

Lst(x; 
)
�
Ix
Iz

�
= 0 for jxj < W

2
(3.46a)
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with

Lst;uv(x; 
) �
=

Z 1

�1

~Gst;uv(kx; 0; 
)~jv(kx)e
jkxxdkx for u; v = x; z (3.46b)

and for slot-like lines

Lsl(x; 
)
�
Vx
Vz

�
= 0 for jxj < W

2
(3.47a)

with

Lsl;uv(x; 
) �
=

Z 1

�1

~Gsl;uv(kx; 0; 
)~jv(kx)e
jkxxdkx for u; v = x; z (3.47b)

Denlinger solved (3.46a) for microstrips [3.20]. The systems (3.46a) and

(3.47a) have a non-trivial solution when the determinant of the L matrix
vanishes. Setting the determinant equal to zero yields an implicit equation
to be solved for the unknown propagation constant 
. Following Denlinger, a
good choice is to force the determinant to vanish for the value x = 0:

det(Lst(x; 
)) = 0 (3.48)

If the assumed sources are the actual ones, the characteristic implicit equation
provides the same solution for any particular value of x. If an error on 
,
however, originates from the approximation made on the sources, it is not
know how the choice of the x value in
uences this error. One may expect
that imposing the boundary condition at x = 0 is the \best choice", because
of the symmetry of the structure. It corresponds to the case of a source
current reduced to a �lament located in x = 0.

3.3.3 Moment method

Since the integral formulations (3.35a,b) and (3.38a,b) act as linear operators
for the problem, the method of moments can be used to solve the problem for
the unknown source term. Using the notations of Chapter 2 for the moment
method, the functional f is indeed the source term for each problem:

f = jt and g = et for strip-like problems (3.49a)

f = et and g = jt for slot-like problems (3.49b)

Notation (3.36a,b) for distributed structures is used from now on. As for the
scalar static case, the unknown is expanded into a series of functions. Since
the actual source only exists in the strip or slot area (3.39a,b), each component
of source jt is expanded for strip-like problems into the series

jt(x; 0) =

NX
n=1

anxjnx(x)ax +

NX
n=1

anzjnz(x)az (3.50a)
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where the basis functions are chosen such that jt satis�es (3.39b):

jnu(x) = 0 for jxj > W

2
and u = x; z (3.50b)

For slot-like problems, a similar formulation is applied to the source et:

et(x; 0) =

NX
n=1

anxenx(x)ax +

NX
n=1

anzenz(x)az (3.51a)

with

enu(x) = 0 for jxj > W

2
and u = x; z (3.51b)

Solutions et provided by (3.38a) and jt provided by (3.38b) have to satisfy
(3.40b) and (3.40a), respectively. This means that, for a given strip or slot
topology, jt and et at interface y = 0 may exist only on complementary areas
of the domain x of the structure. The pair of equations (3.50b) and (3.40b)
indeed have to be satis�ed simultaneously for strips, and the pair of equations
(3.51b) and (3.40a) for slots. Then the inner product hf; gi between jt(x; 0)
and et(x; 0) is taken. The main feature of the application of the moment
method in the case of planar circuits is that a zero boundary condition is
applied a priori, by virtue of the existing spatial complementarity of actual
tangential �elds at the partially metallized interface (Fig. 3.7). Instead of
imposing that the electric �eld vanishes on the strip for strip-like problems,
or the tangential magnetic �eld to be continuous on the slot aperture (which
is equivalent to saying that the current in the slot aperture is zero), the zero
condition is imposed on the inner product hf; gi and not on g itself. This
yields the �nal integral formulation of the boundary conditions:

hf; gi = hjt(x; 0); et(x; 0)i �
=

Z 1

�1

jt(x; 0) � et(x; 0)dx

=

Z 1

�1

jt(x; 0) � Lst(jt(x; 0))dx

=

Z 1

�1

jt(x; 0) � f
Z 1

�1

Gst(x; 0jx0; 0; 
) � jt(x0; 0)dx0gdx

= 0 for strip-like problems

(3.52a)

hf; gi =
Z 1

�1

Lsl(et(x; 0)) � et(x; 0)dx

=

Z 1

�1

f
Z 1

�1

Gsl(x; 0jx0; 0; 
) � et(x0; 0)dx0g � et(x; 0)dx

= 0 for slot-line problems

(3.52b)
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Because of (3.50b) or (3.51b), it is expected that setting the inner product
(3.52a,b) equal to zero ensures that the solution satis�es (3.40b) or (3.40a),
respectively. Equation (3.52a,b) is then solved by the moment method as
detailed in Chapter 2. Introducing (3.50a) or (3.51a) into (3.52a,b) and rear-
ranging, yields

NX
k=1

NX
n=1

akxanxhjkx; fLst(jnxax) � axgi

+
NX
k=1

NX
n=1

akxanzhjkx; fLst(jnzaz) � axgi

+

NX
k=1

NX
n=1

akzanxhjkz ; fLst(jnxax) � azgi

+

NX
k=1

NX
n=1

akzanzhjkz ; fLst(jnzaz) � azgi

= 0 for strip-like problems (3.53a)

NX
k=1

NX
n=1

akxanxhekx; fLsl(enxax) � axgi

+

NX
k=1

NX
n=1

akxanzhekx; fLsl(enzaz) � axgi

+
NX
k=1

NX
n=1

akzanxhekz ; fLsl(enxax) � azgi

+

NX
k=1

NX
n=1

akzanzhekz ; fLsl(enzaz) � azgi

= 0 for slot-like problems (3.53b)

In Chapter 2, it has been shown that this solution is equivalent to the following
systems, resulting from Galerkin's procedure:

NX
n=1

anxhjkx; fLst(jnxax) � axgi+
NX
n=1

anzhjkx; fLst(jnzaz) � axgi = 0

NX
n=1

anxhjkz ; fLst(jnxax) � azgi+
NX
n=1

anzhjkz ; fLst(jnzaz) � azgi = 0

(3.54a)

with k = 1; :::; N for strip-like problems
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and

NX
n=1

anxhekx; fLsl(enxax) � axgi+
NX
n=1

anzhekx; fLsl(enzaz) � axgi = 0

NX
n=1

anxhekz ; fLsl(enxax) � azgi+
NX
n=1

anzhekz; fLsl(enzaz) � azgi = 0

(3.54b)

with k = 1; :::; N for slot-like problems.
These systems can be formalized as

Lst(
)
�
aNx

aNz

�
= 0 for strip-like problems (3.55a)

Lsl(
)
�
aNx

aNz

�
= 0 for slot-like problems (3.55b)

where aNx and aNz are column vectors of size N having coeÆcients anx and
anz of the serial expansions as nth-component respectively, or

Lst;sl(
) =
"
Lst;sl(
)xxLst;sl(
)xz
Lst;sl(
)zxLst;sl(
)zz

#
(3.56)

where Lst;sl(
)uv are N �N matrices having the following uvth-component:

Lst(
)uv;kn = hjku; fLst(jnvav) � augi
for strip-like problems with k; n = 1; :::; N

Lsl(
)uv;kn = heku; fLsl(envav) � augi
for slot-like problems with k; n = 1; :::; N

They have a non-trivial solution if their determinant vanishes. Remembering
that Lst and Lsl are functions of the unknown 
, making the determinan-
tal equation to vanish provides a characteristic equation for the propagation
constant of planar lines:

det(Lst(
)) = 0 for strip-like problems (3.57a)

det(Lsl(
)) = 0 for slot-like problems (3.57b)

These are the characteristic equations usually referred to in literature as \solv-
ing the determinantal equation associated with Galerkin's procedure". In fact
equations (3.57a,b) are equivalent to the transcendental equations

hjt(x; 0);Lst(jt(x; 0); 
)i = 0 (3.58a)
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hLsl(et(x; 0); 
); et(x; 0)i = 0 (3.58b)

which are only more precise notations for (3.52a,b). An implicit equation is
thus obtained for the propagation constant, which is equivalent to an implicit
eigenvalue problem when using the moment method and Galerkin's proce-
dure: solving for the unknown coeÆcients of the basis functions provides
solutions for those coeÆcients which are only valid for a particular value of
the propagation constant. It is similar to an eigenvalue problem, except that
the characteristic equation for the eigenfunctions does not contain explicitly
the eigenvalue. Lindell introduces this concept as a \non-standard eigenvalue
problem" [3.21]. Galerkin's method has then been formulated in the spectral
domain, which has the advantage of replacing the integrals involving Green's
functions expressed by the integral operator Lst;sl in (3.52a,b) to (3.58a,b) by
algebraic relations.

3.3.4 Spectral domain Galerkin's method

The spectral formulation is based on the well-known Parseval's theorem (Ap-
pendix C), relating the product of two functions in the space domain to the
product of their corresponding transforms in the spectral domain. Hence, the
inner product (3.52a) satis�es

hjt(x; 0); et(x; 0)i =
Z 1

�1

jt(x; 0) � et(x; 0)dx =
Z 1

�1

~jt(kx) � ~et(kx)dkx
(3.59a)

=

Z 1

�1

~jt(kx) � f
~
Gst(kx; 0; 
) � ~jt(kx)gdkx (3.59b)

for strip-like problems

=

Z 1

�1

~et(kx) � f~Gsl(kx; 0; 
) � ~et(kx)gdkx (3.59c)

for slot-like problems

Equation (3.59a) results from the application of Parseval's theorem. Ex-
pressions (3.37a,b) have been introduced in relations (3.59b,c). Hence, the
characteristic implicit equation (3.57a,b) to be solved becomes:

det(
~Lst(
)) = 0 for strip-like problems (3.60a)

det(
~Lsl(
)) = 0 for slot-like problems (3.60b)

with

~Lst;sl(
) =
2
4 ~Lst;sl(
)xx~Lst;sl(
)xz

~Lst;sl(
)zx~Lst;sl(
)zz

3
5 (3.60c)
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where ~Lst;sl(
)uv are N �N matrices having the following uvth component:

~Lst(
)uv;kn =

Z 1

�1

~jku(kx) ~Gst;uv(kx; 0; 
)~jnv(kx)dkx

for strip-like problems

(3.60d)

~Lsl(
)uv;kn =
Z 1

�1

~eku(kx) ~Gsl;uv(kx; 0; 
)~env(kx)dkx

for slot-like problems

(3.60e)

with k; n = 1; :::; N and u; v = x; z. Each coeÆcient of the matrix is for-
mulated in the spectral domain as a single integral involving the Fourier-
transforms of the basis functions and of the Green's dyadic components.

The spectral domain use of Galerkin's procedure was �rst developed for
microstrip lines by Itoh and Mittra [3.22], and later extended to slot-lines and
coplanar waveguides by Knorr and Kuchler [3.23], Itoh [3.24], and Janaswamy
and Schaubert [3.25][3.26], and to shielded lines [3.27]-[3.29]. Galerkin's
method in the spectral domain is also applicable to generalized transmis-
sion lines containing several dielectric layers and conductors located at sev-
eral dielectric interfaces. This generalized method, known as the spectral
immittance approach, was developed by Itoh [3.30][3.31]. Using a suitable co-
ordinate transformation, TE and TM waves are separated in such a way that
the Green's function in the spectral domain is derived by simple transmission-
line theory. Using this approach, the spectral-domain analysis of generalized
printed transmission lines with conductors placed on di�erent layers requires
much less analytical e�ort and has therefore become quite feasible.

Galerkin's procedure may be tedious when on-line designs are needed,
in particular when lossy layers are present. For this reason, Kirschning and
Jansen have proposed �tted formulas for the characteristics of single and cou-
pled microstrips [3.32], obtained by intensive computations using Galerkin's
procedure in the spectral domain. The resulting closed-form expressions are
valid, however, for a speci�c range of values of the geometrical and physical
parameters of the lines. For slot-lines, Janaswamy and Schaubert have pro-
posed �tted formulas based on Galerkin's procedure [3.26], while Garg and
Gupta [3.33] developed �tted formulas based on an intensive use of the trans-
verse resonance method, described in a next section. The most simple use
of Galerkin's procedure for planar lines uses only one basis function for each
source component:

jt(x; 0) = alxjlx(x)ax + alzjlz(x)az (3.61a)

where the basis functions are chosen such that jt satis�es (3.39b):

jlu(x) = 0 for jxj > W

2
and u = x; z (3.61b)
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For slot-like problems, a similar formulation is applied to the source et:

et(x; 0) = alxelx(x)ax + alzelz(x)az (3.62a)

with

elu(x) = 0 for jxj > W

2
and u = x; z (3.62b)

In this case, notations (3.60a,b) become

det(
~Lst(
)) = 0 for strip-like problems (3.63a)

det(
~Lsl(
)) = 0 for slot-like problems (3.63b)

with

~Lst;sl(
) =
2
4 ~Lst;sl(
)xx~Lst;sl(
)xz

~Lst;sl(
)zx~Lst;sl(
)zz

3
5 (3.63c)

where ~Lst;sl(
)uv are now scalar integral expressions involving the Green's
operator:

~Lst(
)uv =
Z 1

�1

~jlu(kx) ~Gst;uv(kx; 0; 
)~jlv(kx)dkx

for strip-like problems

(3.63d)

~Lsl(
)uv =
Z 1

�1

~elu(kx) ~Gsl;uv(kx; 0; 
)~elv(kx)dkx

for slot-like problems

(3.63e)

with k; n = 1; :::; N and u; v = x; z. This simpli�cation is referred to, in the
literature, as the �rst-order approximation. The zero-order approximation
consists of neglecting the z-component of the source electric �eld in the case
of slot-like lines, or the x-component of the source current density for strip-like
lines. Under those assumptions, conditions (3.63d,e) simplify intoZ 1

�1

~jlz(kx) ~Gst;zz(kx; 0; 
)~jlz(kx)dkx = 0 for strip-like problems (3.64a)

Z 1

�1

~elx(kx) ~Gsl;xx(kx; 0; 
)~elx(kx)dkx = 0 for slot-like problems (3.64b)

since the matrix
~Lst;sl(
) now reduces to a scalar. The zero-order approxima-

tion has been widely used for computing the propagation constant of planar
transmission lines, because it is the less time consuming. However, it still
requires the solution of an implicit equation for the propagation constant 
.
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3.3.5 Approximate modeling for slot-lines: equivalent magnetic
current

In his famous paper Cohn [3.14] presented the �rst attempt to model the
transmission line behavior of a slot-line. His quasi-static approach is based on
the de�nition of an equivalent magnetic current deduced from the transverse
tangential electric �eld in the slot aperture. If the slot width W is much
smaller than the free-space wavelength, this approximation is valid. This
equivalent line current M is embedded in a equivalent homogeneous medium
with a permittivity equal to ("r + 1)=2. Then M is considered as a source in
Maxwell's equations, from which the magnetic �eld H is deduced. This model
is useful for evaluating the far-�eld behavior of the electric and magnetic �eld.
The line approximation made about the aperture current of course limits the
eÆciency of this model, which is relevant for narrow slots only.

3.3.6 Modeling slot-lines: transverse resonance method

The transverse resonance method was developed for slot-lines by Cohn [3.14]
and applied by Mariani et al. [3.34]. In this method the slot-line is modeled as
a rectangular waveguide, as illustrated in Figure 3.8. In Figure 3.8a the slot-
line is bounded by electric walls placed perpendicular to the z-propagation
axis, spaced by a distance a = �s=2. This combination will of course not
disturb the �elds of the structure. Next, in Figure 3.8b, electric or magnetic
walls are inserted in planes parallel to the slot and perpendicular to the sub-
strate at planes x = �b=2, where b is chosen large enough to assume that the
walls have no e�ect on the �elds. The introduction of electric walls generates
the con�guration of a capacitive iris (Figure 3.8c)in a waveguide having the
y-propagation axis and is usually preferred.

The transverse resonance method imposes the sum of the susceptances
along the y-axis to be zero. This sum includes the susceptances of the TE
mode looking in the +y and �y directions and the capacitive iris susceptance
due to higher order modes on both sides of the iris. >From this equation, the
value of a is extracted, which provides the slot-line wavelength. The main
drawbacks of the method are that the calculation of the susceptance involves
series expansions that converge slowly and are complicated functions of a, and
it is not valid for ratios W=H greater than unity.

3.3.7 Transmission Line Matrix (TLM) method

In the TLM method, invented by Johns and developed by Hoefer [3.35][3.36],
the �eld problem is converted into a three-dimensional network problem. In
its simplest form, the space is discretized into a three-dimensional lattice with
period �l, to describe six �eld components by a hybrid TLM cell obtained as a
combination of shunt and series nodes (Fig. 3.9a,c) and modeled as equivalent
transmission lines (Fig. 3.9b,d). Some equivalencies can be found between the
�eld components and the voltages, as well as currents and lumped elements
of the cell. This method has been developed for modeling time-domain prop-
agation. It has also been improved by a number of authors [3.15] and has
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Fig. 3.8 Equivalent waveguide for modeling slot-lines by transverse resonance
technique (a) limitation of slot along z-axis by using perfect electric walls; (b)
limitation of slot along x-axis by using perfect electric or magnetic walls; (c)
equivalent capacitive iris

become a subject in itself which we do not cover here in detail. Choi and
Hoefer [3.37] have shown that the eÆciency of the TLM method can be en-
hanced by using a �nite-di�erence method in the time domain (FDTD): the
combination of TLM and FDTD reduces by half the computation time and
memory space needed for the TLM method only. The time-domain response
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(c) (d)

L∆l/ 2

L∆l/ 2
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∆l/ 2

∆l/ 2

Fig. 3.9 Equivalent nodes for Transmission Line Matrix method [3.38] (a)
shunt node; (b) equivalent lumped element model of shunt node; (c) series
node; (d) equivalent lumped element model of series node

of the cell is computed, from which the frequency response is obtained by
Fourier transform. From our point of view, it is important to note that the
drawback of the TLM method is that a �ltering e�ect is introduced in the
frequency response, because of the spatial discretization. It is, however useful,
for analyzing planar discontinuities.

3.4 Analytical variational formulations

The previous sections have presented a wide variety of methods for analyzing
planar multilayered transmission lines. This section concentrates on varia-
tional methods. They are classi�ed as explicit or implicit variational forms
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(Chapter 2). As introduced in Chapter 1, a variational principle is usually
formulated as a ratio of integral forms, yielding an explicit expression for
a scalar parameter of an equivalent circuit or transmission line, while vari-
ational methods use the well-known variational character of a functional in
order to compute nearly exact functions or �eld distributions. Those �elds,
however, may be a function of the propagation constant 
, so that rendering
the functional extremum must also yield the actual value for the propagation
constant.

Hence, the possible variational character of the propagation constant has
to be investigated in connection with the possible variational character of
the characteristic equation in the case of non-standard, implicit, eigenvalues
problems described in the previous section. We �rst concentrate on varia-
tional principles providing an explicit expression for quasi-static equivalent
transmission line parameters. We shall then clarify the variational character
of Galerkin's procedure as implicit non-standard eigenvalue problem for the
propagation constant of planar lines.

3.4.1 Explicit variational form for a quasi-static analysis

For planar transmission lines, the quasi-static analysis is based on the compu-
tation of a quasi-TEM lumped-circuit component, capacitance or inductance.

3.4.1.1 Quasi-TEM capacitance based on Green's formalism

Formulations (3.16) to (3.19) presented in Section 3.3 is a well-known varia-
tional principle for the capacitance. Hence, the charge density on the conduc-
tor is considered as the trial quantity, and the trial potential is deduced via
(3.17) once the Green's function associated to the problem has been found.
For the present purpose, the variational principle is rewritten using (3.16) to
(3.19) and (3.22a) as

Y
�
=

1

C
=

1

Ql
2

I
�

�(x; y)�(x; y)d� (3.65)

which yields

Y f
Z Wc

2

�Wc
2

�s(x)dxg2 =
Z Wc

2

�Wc
2

�s(x)f
Z Wc

2

�Wc
2

GP (x; 0jx0; 0)�s(x0)dx0gdx

(3.66)

where GP is the scalar Green's function associated to the problem described
by Poisson's equation. The proof of the variational behavior of Y with respect
to distribution of surface charge �s(x) is given by Collin [3.39]. It is brie
y
reported here. We use a simpli�ed notation for the integration on the strip
conductor:Z Wc

2

�Wc
2

: : : dx =

Z
strip

: : : dx
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Varying Y and �s in (3.66) and neglecting second-order variations, we obtain

2Y f
Z
strip

Æ�s(x)dxgf
Z
strip

�s(x)dxg + ÆY f
Z
strip

�s(x)dxg2

=

Z
strip

Æ�s(x)f
Z
strip

GP (x; 0jx0; 0)�s(x0)dx0gdx

+

Z
strip

�s(x)f
Z
strip

GP (x; 0jx0; 0)Æ�s(x0)dx0gdx

(3.67)

Assuming that the Green's function is symmetrical in variables x and x0, so
that the reciprocity theorem holds, right-hand side of (3.67) is recombined
intoZ

strip

Æ�s(x)f
Z
strip

GP (x; 0jx0; 0)�s(x0)dx0gdx =
Z
strip

V0Æ�s(x)dx (3.68)

since the Green's integral in (3.68) is precisely the de�nition of (3.19), (3.20)
and (3.22b,c) of the actual potential on the strip which is equal to V0 :

V0 =

Z Wc
2

�Wc
2

GP (x; 0jx0; 0)�s(x0)dx0 (3.69)

Equation (3.67) is �nally written as

ÆY f
Z
strip

�s(x)dxg2 = 2f
Z
strip

Æ�s(x)dxg[V0�Y f
Z
strip

�s(x)dxg] (3.70a)

where Y and �s are the exact quantities. By virtue of (3.18), the right-hand
side of (3.70a) is transformed into

2f
Z
strip

Æ�s(x)dxg(V0 � Y Ql) (3.70b)

where (3.14) appears. Hence, expression (3.70a) vanishes. So, instead of
solving Poisson's equation for a particular charge distribution, it is possible
to obtain a value of the capacitance per unit length which is correct to the
second-order, by taking a trial charge distribution and combining it with the
exact Green's function associated to Poisson's equation. Since the Green's
function is assumed to be symmetrical, Collin states that the integral in (3.66)
is always positive and that the variational value obtained for the inverse of
the capacitance is a minimum [3.40]. Hence, the value provided by (3.66) is
always smaller than the actual one.

Section 3.3.4 brie
y outlined that the spectral domain formulation o�ers
an easy way to express Green's functions for planar circuits. Yamashita and
Mittra have investigated this approach when using variational principle (3.16)
applied to a multilayered microstrip line [3.41][3.42]. This is a good illustration
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Fig. 3.10 Microstrip line investigated by Yamashita and Mittra [3.41][3.42]

of various concepts and methods presented in Sections 3.2 and 3.3. It is
reported here as an example.

Yamashita and Mittra consider a multilayered microstrip (Fig. 3.10) and
assume that the metallizations have a zero thickness. The density of surface
charge on the strip satis�es (3.18) and (3.22a), is located at the interface
between layer 1 and 2, and can be described as a function of the x-variable
only. Hence, the static potential in the three layers satis�es the charge-free
Poisson's equation, namely the two-dimensional Laplace's equation. An in-
homogeneous boundary condition applies at interface between layers 1 and
2 to the normal component of the electric �eld. The x-Fourier transform of
Laplace's equation (3.8) yields a second-order ordinary di�erential equation
for the spectral form of the potential:

@2 ~�i(kx; y)

@y2
� k2x

~�i(kx; y) = 0 (3.71)

where the subscript i refers to layer i, layer 1 is the conductor-backed layer,
layer 3 the semi-in�nite air layer, and ~�i(kx; y) the spectral potential. Equa-
tion (3.71) has the well-known general solution in each layer i:

~�i(kx; y) = Ai(kx)e
kxy + Bi(kx)e

�kxy (3.72)

On the other hand, the transverse electrostatic �eld derives from the potential
in each layer:

[Exi(x; y); Eyi(x; y)] =

�
�@�i(x; y)

@x
;�@�i(x; y)

@y

�
(3.73a)

and transforms in the spectral kx-domain into

[ ~Exi(kx; y); ~Eyi(kx; y)] = �
�
jkx ~�i(kx; y); kxfAi(kx)e

kxy

�Bi(kx)e
�kxyg

� (3.73b)
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The knowledge of the six coeÆcients fAi(kx); Bi(kx)g is suÆcient to describe
the potential and the electric �eld. These �elds have to satisfy the following
Fourier-transformed boundary conditions at the various interfaces:
a. on the ground plane y = �H1 +H2

~Ex3
�
kx;�(H1 +H2)

�
= 0 (3.74a)

b. on the dielectric interface y = �H2

~Ex2(kx;�H2) = ~Ex3(kx;�H2) (3.74b)

"2 ~Ey2(kx;�H2) = "3 ~Ey3(kx;�H2) (3.74c)

c. on the dielectric interface y = 0

~Ex2(kx; 0) = ~Ex1(kx; 0) (3.74d)

"1 ~Ey1(kx; 0)� "2 ~Ey2(kx; 0) = �~�s(kx) (3.74e)

where ~�s(kx) is the x-Fourier transform of the charge distribution �s(x) mod-
eling the strip
d. at y =1 the electric �eld and potential have to vanish, which imposes

A1(kx) = 0 (3.74f)

The six equations (3.74a-f) form an inhomogeneous system of six linear equa-
tions to be solved for the six unknown coeÆcients fAi(kx); Bi(kx)g. Since
only the right-hand side of (3.74c) is di�erent from zero and equal to ~�s(kx),
each coeÆcient fAi(kx); Bi(kx)g is proportional to ~�s(kx):

Ai(kx) = KAi(kx)~�s(kx) (3.75a)

Bi(kx) = KBi(kx)~�s(kx) (3.75b)

with, of course, KA1
(kx) = 0. Hence, the potential in each layer is expressed

as

~�i(kx; y) = fKAi(kx)e
kxy +KBi(kx)e

�kxyg~�s(kx) (3.76)

which yields the spectral form of the Green's function relating the potential
to the charge in each layer:

~GP (kx; y) = fKAi(kx)e
kxy +KBi(kx)e

�kxyg (3.77)

As already mentioned, at this stage of the development the user has the
choice either to invert the spectral Green's function to obtain its corresponding
form in the space domain, or to complete the solution of the problem in
the spectral domain. Yamashita etal: has chosen the second approach. He
expresses the basic relation (3.16) in the spectral domain, using Parseval's
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theorem. Keeping in mind that the charge distribution �s(x) satis�es (3.65)
and vanishes outside the strip yields

1

C
=

1

Q2
l

Z
strip

�s(x)�(x; y)dx =
1

Q2
l

Z 1

�1

�s(x)�(x; y)dx (3.78a)

=
1

2�Q2
l

Z 1

�1

~�s(kx)~�2(kx; 0)dkx (3.78b)

Introducing (3.66) and (3.76) in (3.78b), then yields

1

C
=

1

2�Q2
l

Z 1

�1

~�s(kx)fKA2
(kx) +KB2

(kx)g~�s(kx)dkx (3.78c)

where Ql is obtained from (3.18). Expression (3.78c) has the advantage that
the tedious inversion of the Green's function (3.77) is avoided and that the
integrands result in a product of simple algebraic expressions.

Yamashita has also investigated various shapes for the trial charge density
and determined the most adequate by using the Rayleigh-Ritz method. His
results agree with experiments up to 4 GHz. Obviously the model fails at
higher frequencies because the static assumption is no longer valid.

3.4.1.2 Quasi-TEM inductance based on Green's formalism

Most of the quasi-static applications of variational principles for modeling
quasi-TEM planar lines are based on the computation of the capacitance per
unit length. This approach is not valid when magnetic materials are involved
in the cross-section of the line, because the inductance of the line is no longer
equal to the inductance in air. As shown in Section 3.2, instead of computing
the pair (C;C0) from which inductance L0 is deduced, the pair (L;L0) must be
computed which yields C0. Hence, a variational principle for the inductance is
useful. It is expected that, by duality, the variational form for the inductance
will be similar to (3.16).

In magnetostatics, the �elds are derived from a magnetic vector potential
A satisfying the vector equation

r2A(x; y) = ��0�r � J(x; y) (3.79)

The static electric and magnetic �elds and the magnetic 
ux density satisfy
respectively

r�A = B(x; y) (3.80a)

r�H = J(x; y) (3.80b)

r �B = 0 (3.80c)

B = �0�r �H (3.80d)
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By virtue of (3.80b) the magnetic �eld can be derived from a scalar potential
in the areas where the current density is zero. The �rst variational form
presented for the inductance is mentioned by Collin [3.43]:

L =
1

I2

Z
strip

Jz(x; 0)�0(x; 0)dx (3.81)

where Jz(x; 0) is the distribution of the longitudinal current density 
owing
on the strip:

I =

Z
strip

Jz(x; 0)dx
�
=

Z Wc
2

�Wc
2

Jz(x; 0)dx (3.82)

and �0(x) is the integrated induction 
ux per unit length between the ground
plane and the strip (Fig 3.11). Indeed one has

�0(x)�z =

Z z+�z

z

Z 0

�H

Bx(x; y)dydz (3.83a)

=

I
�

A � d� (3.83b)

= [Az(x; 0)�Az(x;�H)]�z (3.83c)

= �z

Z
strip

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0 (3.83d)

using Stoke's theorem and noting that the integrals on the two vertical paths
of � at z and z+�z cancel. The vector potential is de�ned to be zero on the
ground plane.

The proof of the variational behavior of (3.81) is similar to that of equation
(3.16) in the previous Section. Introducing (3.83d) in (3.81), varying L and
Jz, and neglecting second-order variations, we have

2Lf
Z
strip

ÆJz(x; 0)dxgf
Z
strip

Jz(x; 0)dxg+ ÆLf
Z
strip

Jz(x; 0)dxg2

=

Z
strip

ÆJz(x; 0)f
Z
strip

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0gdx

+

Z
strip

Jz(x; 0)f
Z
strip

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0gdx

(3.84)

Assuming again that the Green's function satis�es reciprocity, the right-hand
side of (3.84) is recombined intoZ

strip

f
Z
strip

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0gÆJz(x; 0)dx

=

Z
strip

�0(x)ÆJz(x; 0)dx

(3.85)
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Fig. 3.11 Microstrip line with integration paths for calculating quasi-TEM
inductance

Equation (3.84) is �nally written as

ÆLf
Z
strip

Jz(x; 0)dxg2 = 2

"Z
strip

�0(x)ÆJz(x; 0)dx

� Lf
Z
strip

ÆJz(x; 0)dxgf
Z
strip

Jz(x; 0)dxg
# (3.86)

As �0(x) remains constant on the strip area, it may be extracted from the
integral. Using (3.82), equation (3.86) �nally reduces to

ÆLf
Z
strip

Jz(x; 0)dxg2 = 2f
Z
strip

ÆJz(x; 0)dxg(�0 � LI) (3.87)

Since L and Jz in the right-hand side of equation (3.86) are exact quantities,
they satisfy the commonly stated de�nition for the inductance per unit length:

L =
�0

I
(3.88)

which causes the �rst-order error made on the inductance in (3.87) to vanish.
That �0 remains constant on the strip area is demonstrated by applying the
integral formulation of divergence equation (3.80c) on volume V (Fig. 3.11).
From the divergence theorem, the integral of the left-hand side of (3.80c) is
equal to the 
ux integral of the induction �eld on the surface enclosing volume
V . Since no variation of �elds occurs along the z-axis, the contribution to the
integral of the two planar faces perpendicular to this axis is canceled. On
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the other hand, the component of the actual magnetic 
ux density normal to
the conductor vanishes on the conductor, and the contributions to the surface
integral of the top and bottom faces of V are zero. The 
ux integrals between
the ground plane and the strip on the two planes x = x1 and x = x2 are
identical, because the integral of the right-hand side of (3.80c) remains equal
to zero.

Another particular choice for the integration of the 
ux per unit length
is depicted in Figure 3.12. Here �0(x) is the integrated induction 
ux per
unit length 
owing through the surface at plane y = 0 limited by contour �
(Fig. 3.12a,b):

�0(x)�z =

Z z+�z

z

Z 0

�H

By(x
0; 0)dx0dz (3.89a)

=

I
�

A � d� (3.89b)

= [Az(x; 0)�Az(�1; 0)]�z (3.89c)

= �z

Z
�

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0 (3.89d)

using Stoke's theorem, and noting that the integrals on two of the paths of �,
respectively BA in z + dz and DC in z, are zero, while the vector potential
vanishes at x = �1. For coplanar waveguides (CPW) (Fig. 3.12b), �0(x)
corresponds to the actual 
ux. For strips, it is equivalent to the previous def-
inition (3.83b), by applying the divergence theorem to volume V 0 (Fig. 3.12a)
where surface integrals vanish at in�nity. Hence, the contribution of surfaces
ABCD and BCFE to the integrals compensate themselves, which demon-
strates that the two contours of Figures 3.11 and 3.12a are equivalent for the
strip problem.

De�nition (3.89a) implies that no contribution to �0(x) occurs on the
strip, because the y-component of the magnetic 
ux density vanishes on a
perfect conductor. As a consequence, �0(x) remains constant during the
integration on the strip and can be extracted from the integral.

As for the quasi-TEM capacitance, the knowledge of the Green's function
on the strip area is required. Its derivation is very close to that discussed
when presenting Yamashita's method. Now it is only brie
y outlined. Since
the current distribution is located on a strip of zero-thickness, the various
layers are current source-free. Hence, a static magnetic scalar potential �Mi
is considered in each layer, from which the magnetic �eld:

Hi = �r�Mi (3.90)

When the media are isotropic, combining (3.90) with (3.80c) yields Laplace's
equation for �Mi and the general solution (3.72) is applicable in each layer:

~�Mi (kx; y) = AM
i (kx)e

kxy +BM
i (kx)e

�kxy (3.91)
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Fig. 3.12 Integration paths for energetic variational principle (a) microstrip;
(b) coplanar waveguide
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The spatial and spectral magnetic �elds in each layer are obtained by replacing
Ei and �i in (3.73a,b) by Hi and �Mi , respectively:

[Hxi(x; y); Hyi(x; y)] =

�
�@�

M
i (x; y)

@x
;�@�

M
i (x; y)

@y

�
(3.92a)

which transform in the spectral domain into

[ ~Hxi(kx; y); ~Hyi(kx; y)] = �
�
jkx ~�

M
i (kx; y); kxfAM

i (kx)e
kxy

�BM
i (kx)e

�kxyg
� (3.92b)

As previously for the electrostatic case, the superscript ~ holds for spectral
quantities.

When anisotropy or gyrotropy occurs, �Mi still remains the solution of a
second-order di�erential equation. The y dependent coeÆcients in the general
solution have a di�erent expression, provided as an example in the next chap-
ter. From the spectral magnetic �eld, the spatial and spectral magnetic 
ux
densities are calculated and the following boundary conditions are applied to
these spectral �elds:
a. on the ground plane y = �H

~By2(kx;�H) = 0 (3.93a)

b. on the interface y = 0

~By2(kx; 0) = ~By1(kx; 0) (3.93b)

~Hy1(kx; 0)� ~Hy2(kx; 0) = ~Jz(kx) (3.93c)

where ~Jz(kx) is the x-Fourier transform of the current density distribution
Jz(x; 0) modeling the strip
c. at y =1, the magnetic �eld and potential have to vanish, which provides
the same condition as (3.74f)

AM
1 (kx) = 0 (3.93d)

Four relations are obtained, relating the four coeÆcients fAM
i (kx); B

M
i (kx)

describing the magnetostatic potential in the two layers. Hence, the spec-
tral magnetostatic potential in each layer is related to the spectral current
distribution ~Jz(kx) when solving the resulting system. The spectral form of
magnetic 
ux density is derived from (3.80d) and yields the spectral form of
the induction 
ux per unit length

�0(kx) =
~By2(kx; y)

jkx
(3.94)
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The Fourier-transform of (3.89a) - equation (3.94) - yields the Green's function
relating the spectral vector potential ~Az(kx; 0) to ~Jz(kx). An alternate way
would be to express all �eld components from a scalar expression for the ~Az

component of the static vector potential.

The application of this variational principle mentioned by Collin has been
carried out for a microstrip line con�guration. Kitazawa [3.44] used expression
(3.81) to calculate the quasi-TEM parameters of coplanar waveguides and
microstrips on a magnetic substrate, possibly anisotropic. The derivation of
the Green's function in the CPW case follows the method presented above,
with the two integration contours � and � (Fig. 3.12). The results were
compared to those obtained theoretically [3.45] and experimentally [3.46] by
Pucel and Mass�e.

Kitazawa also proposed another variational principle, expressed as

1

L
=

Z U

Wc
2

By(x; 0)f
Z x

�U

Jz(x
0; 0)dx0gdx

f
Z U

Wc
2

By(x; 0)dxg2

=

Z U

Wc
2

By(x; 0)f
Z x

�U

Z 1

�1

GM;zy(x
0; 0jx00; 0)By(x

00; 0)dx00dx0gdx

f
Z U

Wc
2

By(x; 0)dxg2

(3.95)

where U = Wc=2 +Ws for coplanar waveguides, and U = 1 for microstrips.

Expression (3.95) assumes that a suitable Green's function GM can be de�ned
between the current density Jz 
owing on the strip and the magnetic 
ux

density B. The spectral 
ux density ~B can be directly related to the spectral
magnetic �eld via (3.80d). It is related to the spectral potential by (3.92b),
and �nally to the spectral coeÆcients fAM

i (kx); B
M
i (kx)g which have been

shown to be proportional to the current density. So, the required GM is
obtained by inverting the relation found between the spectral magnetic 
ux

density ~B and ~Jz. Varying (1=L) and By into (3.95) yields

Æ(
1

L
)f
Z U

Wc
2

By(x; 0)dxg2 + 2(
1

L
)f
Z U

Wc
2

By(x; 0)dxgf
Z U

Wc
2

ÆBy(x; 0)dxg

=

Z U

Wc
2

ÆBy(x; 0)f
Z x

�U

Z 1

�1

GM;zy(x
0; 0jx00; 0)By(x

00; 0)dx00dx0gdx

+

Z U

Wc
2

By(x; 0)f
Z x

�U

Z 1

�1

GM;zy(x
0; 0jx00; 0)ÆBy(x

00; 0)dx00dx0gdx
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(3.96)

Under the same assumptions of the Green's function used before, the �rst-
order error in (1=L) is

Æ(
1

L
)f
Z U

Wc
2

By(x; 0)dxg2

= 2

Z U

Wc
2

ÆBy(x; 0)f
Z x

�U

Z 1

�1

GM;zy(x
0; 0jx00; 0)By(x

00; 0)dx00dx0gdx

�2( 1
L
)f
Z U

Wc
2

By(x; 0)dxgf
Z U

Wc
2

ÆBy(x; 0)dxg (3.97a)

= 2

Z U

Wc
2

ÆBy(x; 0)f
Z x

�U

Jz(x
0; 0)dx0gdx

�2( 1
L
)f
Z U

Wc
2

By(x; 0)dxgf
Z U

Wc
2

ÆBy(x; 0)dxg (3.97b)

= 2

Z U

Wc
2

ÆBy(x; 0)Idx

�2( 1
L
)f
Z U

Wc
2

By(x; 0)dxgf
Z U

Wc
2

ÆBy(x; 0)dxg (3.97c)

The �rst term of the right-hand side of (3.97b) contains an integral over x0

which remains constant and equal to I during the integration over the speci�ed
domain for the x variable. Hence, (3.97c) is �nally equivalent to:

[I � 1

L
f
Z U

Wc
2

By(x; 0)dxg]f
Z U

Wc
2

ÆBy(x; 0)dxg

= [I � 1

L
�0]f

Z U

Wc
2

ÆBy(x; 0)dxg = 0

(3.98)

and by virtue of equation (3.88), equation (3.95) is indeed variational.

3.4.1.3 Capacitance based on energy

The other variational principle for a capacitance proposed by Collin provides
an upper bound for the capacitance. It is based on the assumption that the
electrostatic energy We stored in a length �z is stationary. It is

We =
�z

2

Z
A

E � ("E)dA (3.99a)

=
�z

2
"

Z
A

(�r�) � (�r�)dA (3.99b)
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Fig. 3.13 Integration paths over transverse section A for energetic variational
principle (a) microstrip; (b) coplanar waveguide

It is easily demonstrated that the �rst-order variation of We vanishes when �
satis�es Laplace's equation. Varying indeedWe and � in (3.99b) and applying
Green's �rst identity (Appendix B) we obtain

ÆWe = �z "

Z
A

(�r�) � (�rÆ�)dA

= �z "f
Z
A

Æ�(�r2�)dA+

I
�

Æ�(r�) � nd�g
(3.100)

Contour � may be chosen such that it surrounds the various boundaries of
transverse section A for a microstrip line (Fig. 3.13a) and for a coplanar wave-
guide (Fig. 3.13b). The line integrals at in�nity vanish because of the decay
of the �elds and potentials at in�nity. The contribution of the branch cuts
is canceled, because the same values of potential and �eld are integrated in
opposite directions and these branches are taken in�nitely close to each other.
On the conductor, only the tangential component of the exact electrostatic
�eld (�r�) vanishes. Hence, the only way to cancel the contribution of the
total �eld is to impose Æ� being zero on the conductors. This is equivalent to
imposing that the approximate solution satis�es the speci�ed boundary con-
ditions on the conductor. Under this assumption, the contribution of the line
integral on contour � in (3.100) is zero. On the other hand, the actual electro-
static potential satis�es Laplace's equation in each layer, which demonstrates
that the �rst-order error made on We vanishes, i.e. that We is stationary
about the electrostatic potential. This proof is valid only when all the layers
have the same permittivity, as assumed by Collin, who proposed the proof
for a homogeneous medium. It is, however, possible to extend the proof to
a non-homogeneous case, in the following manner. The electrostatic energy
and its variation are still given by (3.99b) and (3.100) rewritten for each layer.
Green's �rst identity is applied at the boundaries of each layer, for which a
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Fig. 3.14 Integration paths for inhomogeneous energetic variational principle
(a) microstrip; (b) coplanar waveguide

line contour �i is de�ned (Fig. 3.14):

Wei =
�z

2

Z
Ai

Ei � ("iEi)dAi (3.101a)

=
�z

2
"i

Z
Ai

(�r�i) � (�r�i)dAi (3.101b)

ÆWei = �z "if
Z
Ai

Æ�i(�r2�i)dAi +

I
�i

Æ�i(r�i) � nid�ig (3.101c)

The total variation of energy is the sum of the variations of energies contained
in each layer, which yields

ÆWe =
NX
i=1

ÆWei

=

NX
i=1

�z "i

Z
Ai

Æ�i(�r2�i)dAi +

NX
i=1

�z "i

I
�i

Æ�i(r�i) � nid�i

(3.102)

The line integrals at in�nity vanish because of the decay of the �elds and
potentials at in�nity. The contribution of the line integrals at the interface
between two adjacent layers i and i+1 may be rewritten as a line integral on
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this interface, with an associated line path denoted by �i:

ÆWe =
NX
i=1

ÆWei

=

NX
i=1

�z "i

Z
Ai

Æ�i(�r2�i)dAi

+

NX
i=1

�z

Z
�i

fÆ�i(x;Hi) "ir�i(x;Hi) � ni

+ Æ�i+1(x;Hi) "i+1r�i+1(x;Hi) � ni+1gd�i

=

NX
i=1

�z "i

Z
Ai

Æ�i(�r2�i)dAi

+

NX
i=1

�z

Z
�i

h
Æ�i(x;Hi)f"ir�i(x;Hi)g

� Æ�i+1(x;Hi)f"i+1r�i+1(x;Hi)g
i
� nid�i

(3.103)

The behavior of the integrands of the line integral has to be considered over
two di�erent areas. If no conductors are present between layers i and j, the
normal component of the exact displacement �eld and the exact electrostatic
potential are continuous on the two sides of this conductor-free area:

f"ir�i(x;Hi)g � ni = f"i+1r�i+1(x;Hi)g � ni (3.104a)

and

�i(x;Hi) = �i+1(x;Hi) (3.104b)

In this case the line integral is then rewritten as

NX
i=1

�z

Z
�i

[Æ�i(x;Hi)� Æ�i+1(x;Hi)] f"ir�i(x;Hi)g � nid�i (3.105)

If a conductor is present on a portion of the interface between layers i and j,
only the tangential component of the electrostatic �eld vanishes on it. Hence,
no simpli�cation of (3.103) occurs on the conductor. The only way to cancel
the error arising from the line integral is to impose

Æ�i(x;Hi) = Æ�i+1(x;Hi) (3.106)

which implies the continuity of the trial potential on the conductor-free part
of the interface. The exact value is continuous (3.104b). Equations. (3.105)
and (3.106) also imply that the trial solution has to be equal to the value
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of the exact potential on the conductor. Under these assumptions the con-
tribution of the line integral on contour � in (3.100) is equal to zero. On
the other hand, the exact electrostatic potential satis�es Laplace's equation
in each layer, which demonstrates that the �rst-order error made on We van-
ishes, i.e. that We is stationary about the electrostatic potential. It must be
emphasized that the stationary character of We is related to a fundamental
concept of electrostatics. Thomson's theorem [3.47] states, indeed, that the
charges present on conducting structures distribute themselves in such a way
that the electrostatic energy is minimal. Hence, in some cases the variational
principle is related to physical laws of the real world. One simply has to
�nd a trial distribution for the potential, imposing that it has the value V0
on one conductor and zero on the other, and that it is continuous at dielec-
tric interfaces. Using then (3.99) and (3.101), a variational principle for the
capacitance per unit length is obtained:

1

2
CV 2

0 =
1

2

NX
i=1

"i

Z
Ai

(�r�i) � (�r�i)dAi (3.107)

Since the integral of the electrostatic energy density is always positive, Collin
similarly states that (3.107) will always provide too large a value, i:e: an upper
bound for the capacitance [3.48]. When the medium is homogeneous, the trial
potential has only to be imposed equal to its exact value on the conductors.

3.4.1.4 Inductance based on energy

There is a duality between the equations of electrostatics and magnetostatics.
It is interesting to investigate under which assumptions an expression similar
to (3.99a) can be derived for the magnetostatic energy and proven to be
variational. It is well-known that the electromagnetic power 
owing into a
volume V is related to the di�erence between two fundamental quantities, the
time-average electric and magnetic energies contained in the volume:

We =
1

2

Z
V

E � (D)�dV (3.108a)

Wm =
1

2

Z
V

B � (H)�dV (3.108b)

Collin [3.47] states that these two quantities are positive functions, and proves
it for the case of the electrostatic energy in the case of an isotropic homoge-
neous medium. For isotropic media, the constitutive parameters are scalar:

D = "E (3.109a)

B = �H (3.109b)

Hence, the magnetostatic energy can be expressed either from a source-free
scalar potential (3.90) or using the z-directed magnetic vector potential Az

A = azAz(x; y) (3.110)
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yielding the magnetic 
ux density B via (3.80a). The magnetic 
ux density
B is rewritten as

B = �az �rAz (3.111)

and the magnetic energy Wm in a section of line having a length �z is

Wm = �z
1

2

Z
A

(�faz �rAzg) � f���1faz �rAzggdA (3.112a)

= �z
1

2

Z
A

(�rAz) � f��1(�rAz)gdA (3.112b)

where A is the cross-section of the line. Expression (3.112b) is valid because
the �elds and potentials are assumed to have no variation along the z-axis.
Hence, if the medium is isotropic, the proof of the variational behavior leads
to the following equation, obtained by replacing � by Az in (3.100):

ÆWm = �z��1
Z
A

(�rAz) � (�rÆAz)dA (3.113a)

= �z��1
Z
A

ÆAz(�r2Az)dA+

I
�

ÆAz(rAz) � nd� (3.113b)

Equation (3.111) is equivalent to

rAz = az �B (3.114)

Hence, the scalar product in (3.113b) is rewritten as

(rAz) � n = (az �B) � n = (n�B) � az (3.115)

The actual magnetostatic vector potential Az satis�es the source-free form of
(3.79), and the surface integral in (3.113b) vanishes. Contour � may again be
chosen as in Figure 3.13a,b, for a microstrip line and a coplanar waveguide.
The line integrals at in�nity vanish because of the decay of �elds and potential
at in�nity. The contribution of the branch cuts cancel, because the same
values of potential and �eld are integrated in opposite directions on branches
which are close to each other. On the conductor, the exact actual magnetic

ux density satis�es

n � B = 0 (3.116)

which implies that the only way to cancel the �rst-order error in the magnetic
energy is to impose that the magnetic vector potential is equal to its exact
value on the conductors. This is not a problem when remembering de�nition
(3.83c), which shows that the di�erence of magnetic vector potential between
the conductors is equal to the magnetic 
ux per unit length. Hence, since the
magnetic energy is contained in the inductance, a variational principle for the
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inverse of the inductance of the line is obtained by imposing a value for the

ux inside of the line:

Wm =
1

2
L�zI2 = �z

�2
0

2L
(3.117)

which �nally yields

1

L
=

Z
A

rAz � ��1rAzdA

�2
0

(3.118)

by virtue of (3.112b). Since the integral of the magnetic energyWm is always
positive, (3.118) provides a lower bound for the inductance per unit length.

When the medium is not magnetically homogeneous, the proof of station-
arity is obtained similarly to the electrostatic inhomogeneous case. It can
easily be shown that the variation (3.113b) of magnetic energy in each layer
becomes

ÆWm =

NX
i=1

ÆWmi

=
NX
i=1

�z��1i

Z
Ai

ÆAzi(�r2Azi)dAi

+

NX
i=1

�z

Z
�i

fÆAzi(x;Hi)�
�1
i rAzi(x;Hi) � ni

+ ÆAzi+1(x;Hi)�
�1
i+1rAzi+1(x;Hi) � ni+1gd�i

=

NX
i=1

�z��1i

Z
Ai

ÆAzi(�r2Azi)dAi

+
NX
i=1

�z

Z
�i

h
ÆAzi(x;Hi)�

�1
i fni �Bi(x;Hi)gz

� ÆAzi+1(x;Hi)�
�1
i+1fni �Bi+1(x;Hi)gz

i
d�i

(3.119)

where (3.115) has been used. Where no conductor exists, the tangential mag-
netic �eld is continuous:

��1i fni �Bi(x;Hi)g = ��1i+1fni �Bi+1(x;Hi)g (3.120)

and the line integral in (3.119) becomes

NX
i=1

�z

Z
�i

[ÆAzi(x;Hi)� ÆAzi+1(x;Hi)]�
�1
i fni�Bi(x;Hi)gzd�i (3.121)
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This integral vanishes when the Az-component of the trial vector potential
is continuous at the conductor-free part of the interface. On the conductive
part of the interface, the tangential magnetic �eld is no longer continuous.
The only way to cancel the error produced by the line integral in (3.119) is
to impose that the vector potential is constant and equal to its exact value
on the conductor. This is equivalent to imposing that the Az-component of
the trial vector is continuous at any interface between layers. Its value on a
conductor is put equal to a constant, which �xes again (by virtue of equation
3.83c) the value of the magnetic 
ux per unit length inside the line. Under
such constraints, and keeping in mind that the exact vector potential satis�es
Laplace's equation in each layer, the following variational principle is obtained
for the inhomogeneous case:

1

L
=

NX
i=1

Z
Ai

rAzi � ��1i rAzidAi

�2
0

(3.122)

3.4.1.5 Generalization to non-isotropic media

Up to now the various explicit quasi-static principles have been proven vari-
ational under the assumption that the materials are characterized by scalar
constitutive relations (3.109a,b). As a matter of fact, the various variational
principles developed in the literature for planar lines are usually restricted to
isotropic layers. More general constitutive relations, however, are

B = �0�r �H (3.123a)

D = "0"r �E (3.123b)

and the two static energetic formulations become, for homogeneous media:

We = "0
�z

2

Z
A

E � ("r � E)dA (3.124a)

= "0
�z

2

Z
A

(�r�) � f"r � (�r�)gdA (3.124b)

Wm =
�z

2�0

Z
A

B � (��1r �B)dA (3.125a)

= �0
�z

2

Z
A

(�r�M ) � f�r � (�r�M )gdA (3.125b)

Expression (3.125b) involves the scalar magnetic potential, because this is
more convenient for dealing with the dyadic formulation. It only holds in areas
with no current source. As in the previous examples, the various conductors
are assumed to be of zero thickness, so that any current 
ow reduces to a
current sheet at the interface between two layers. The layers are considered



114 CHAPTER 3. ANALYSIS OF PLANAR TRANSMISSION LINES

to be source-free. This is exactly the same concept as developed earlier for the
Green's formalism, for which the integral equation may be solved either for
a given source distribution and zero boundary conditions, or for a source-free
situation with inhomogeneous boundary conditions. In the present case, the
existence of current on the conductor is imposed as a boundary condition on
a source-free form of the magnetostatic potential �M . For both cases, the
�rst-order variation yields

ÆWe = "0
�z

2

Z
A

h
(�rÆ�) � f"r � (�r�)g

+ (�r�) � f"r � (�rÆ�)g
i
dA

(3.126)

ÆWm = �0
�z

2

Z
A

h
(�rÆ�M ) � f�r � (�r�M )g

+ (�r�M ) � f�r � (�rÆ�M )g
i
dA

(3.127)

In each case, there is a scalar product involving a tensor dyadic, which satis�es
the following identity:

a � (u � b) = b � (uT � a) (3.128)

where superscript T denotes the transpose of the dyadic. Using this identity,
(3.126) and (3.127) are rewritten as

ÆWe = "0
�z

2

Z
A

h
(�rÆ�) � f("r + "

T
r ) � (�r�)g

i
dA (3.129)

ÆWm = �0
�z

2

Z
A

h
(�rÆ�M ) � f(�r + �

T
r ) � (�r�M )g

i
dA (3.130)

Making use of identity

a � rf = r � (fa)� fr � a (3.131)

(3.129) and (3.130) transform respectively into

ÆWe = "0�z[

Z
A

(Æ�)r � f("r + "
T
r ) � (�r�)gdA

�
I
�

(Æ�)f("r + "
T
r ) � (�r�)g � nd�]

(3.132)

ÆWm = �0�z[

Z
A

(Æ�M )r � f(�r + �
T
r ) � (�r�M )gdA

�
I
�

(Æ�M )f(�r + �
T
r ) � (�r�M )g � nd�]

(3.133)
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When the tensors are simply symmetrical, that is anisotropy without gy-
rotropy, one has

u = u
T

(3.134)

and (3.132) and (3.133) respectively simplify into

ÆWe = 2"0�z[

Z
A

(Æ�)r � f"r � r�gdA

�
I
�

Æ�f"r � r�g � nd�]

= 2"0�z[

Z
A

(Æ�)(r �D)dA

�
I
�

Æ�D � nd�]

(3.135)

ÆWm = 2�0�z[

Z
A

(Æ�M )r � f�r(r�M )gdA

�
I
�

(Æ�M )f�r � r�Mg � nd�]

= 2�0�z[

Z
A

(Æ�M )r �BdA

�
I
�

(Æ�M )B � nd�]

(3.136)

where relationships (3.123a,b) have been used. The exact displacement �eld
D satis�es the charge-free divergence equation

r �D = 0 (3.137)

and its normal component does not vanish on the conductors. It is found again
that the only way to cancel the �rst-order error made onWe in the case of non-
gyrotropic anisotropic dielectric media is to impose an exact, constant value
for the potential on the conductor, as detailed previously. As a consequence,
the following expression is a variational principle for the capacitance per unit
length in the case of anisotropic media whose permittivity tensor satis�es
(3.134):

1

2
CV 2

0 =
"0
2

Z
A

(�r�) � f"r � (�r�)gdA (3.138)

For the magnetostatic energy, the magnetic 
ux density B satis�es the charge-
free divergence equation

r �B = 0 (3.139)
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and its normal component vanishes on the conductor. This is why the mag-
netostatic energy (3.125b) has been proven to be variational about the scalar
magnetic potential �M . Keeping in mind the previous development leading
to expressions (3.90) and (3.93c), it is possible to relate the potentials to an
equivalent current density Jz 
owing on the strip. Assuming a given cur-
rent I on the strip and using (3.82) makes Wm proportional to I . Hence, a
variational expression is deduced for the inductance per unit length:

L = �0

R
A
(�r�M ) � f�r � (�r�M )gdA

I2
(3.140)

This variational principle provides a lower bound for the inductance. Obvi-
ously, the two derivations (3.138) and (3.140) may be extended to the case of
multilayered anisotropic and inhomogeneous structures, following the reason-
ing of the previous subsection.

We conclude this discussion by underlining that variational principles can
usually be easily derived when symmetrical tensors characterize the materi-
als involved or when the Green's function has speci�c symmetry properties.
When this is not the case, that is when the medium is gyrotropic or non-
Hermitian, the derivation by assuming simple trial �elds or potentials may be
impossible. This has been observed by a number of authors. Formulas de-
rived from Rumsey [3.49] for closed waveguides are variational, provided the
permittivity and permeability are, at most, symmetric tensors. This means
that isotropic materials and materials with crystalline anisotropy, lossy or
lossless, are allowed while gyrotropic media such as magnetized devices and
magneto-ionic media are excluded. On the other hand, Berk [3.50] devel-
oped variational formulas applicable to gyrotropic media or, in general, media
whose dielectric constant and permeability are Hermitian tensors, restricted,
however, to lossless materials. All those formulations were limited to closed
waveguides and resonators. More recently, Jin and Chew [3.51] have stud-
ied the conditions required for a variational formulation of electromagnetic
boundary conditions involving anisotropic media. They found that the for-
mulation is variational and can be expressed as a function of electric �eld
and its complex conjugate. This is possible only in the presence of lossy ani-
sotropic media having symmetric permittivity and permeability tensors, or
in the presence of lossless anisotropic media having Hermitian permittivities
and permeabilities. The functional is interesting for the application of the
�nite-element method to structures containing anisotropic materials. When
the medium is non-Hermitian, however, the problem must be solved both for
the electric �eld and for an adjoint �eld satisfying Maxwell's equations involv-
ing the transpose conjugate of the constitutive tensors. This is because the
functional is a function of the �eld and of its adjoint. A similar conclusion
will be obtained in the following section when investigating the variational
behavior of implicit variational methods.
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3.4.1.6 Link with eigenvalue formalism

Expressions (3.16) and (3.66), and (3.81) and (3.95), are variational principles
for the capacitance and the inductance of the line, respectively. This can be
shown quite easily by observing that the problem they solve is in fact closely
related to a linear expression involving an integral operator. The de�nition
of capacitance is

Q = CV0 (3.141)

If charge density and potential are related by the Green's formalism (3.20),
(3.141) is rewritten using (3.20), (3.18) and (3.22b) as

Ql =

Z Wc
2

�Wc
2

�s(x)dx = C

Z Wc
2

�Wc
2

GP (x; 0jx0; 0)�s(x0)dx0 (3.142)

which is equivalent to the following eigenvalue formalism with two linear op-
erators L and M:

L(	) = �M(	) (3.143)

As introduced in Chapters 1 and 2, there is a general variational principle for
the eigenvalue � in the case of self-adjoint operators L and M [3.52]:

� =

R
	L(	)dSR M(	)	dS

(3.144)

Replacing M in this expression by integral (3.18) and L by the Green's for-
malism (3.20) and (3.22b), the result will yield the previous expressions (3.16)
and (3.66).

For the variational principles (3.81) and (3.95) for inductances, the cor-
responding eigenvalue problems are, respectively

�0 =

Z
�

GW;zz(x; 0jx0; 0)Jz(x0; 0)dx0

= �I = �

Z
�

Jz(x; 0)dx with � = L

(3.145)

I =

Z x

�A

Z 1

�1

GM;zy(x
0; 0jx00; 0)By(x

00; 0)dx00dx0

= ��0 = �

Z A

Wc
2

By(x; 0)dx

(3.146a)

with

� =
1

L
and x � W

2
(3.146b)
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3.4.2 Implicit variational methods for a full-wave analysis

The possible variational character of full-wave dynamic methods is closely re-
lated to their implicit nature. Most of them are implicit non-standard eigen-
value problems, related to the reaction concept and to the general theory
of eigenvalue problems. The discussion concentrates �rst on the moment
method, whose variational behavior may be studied using these three for-
malisms: implicit non-standard eigenvalue problems, reaction concept, and
general eigenvalue problems. Since the implicit method yields a transcenden-
tal equation to be solved for the unknown propagation constant, it can �rst be
studied following the non-standard eigenvalue formalism presented by Lindell
[3.21].

3.4.2.1 Galerkin's determinantal equation

The general presentation of the moment method in Chapter 2 established that
(3.54a,b) minimizes the error " made on Lst(jt(x; 0)) (3.54a) or Lsl(et(x; 0))
(3.54b). It is interesting to determine what error is made on 
 when the
determinantal equation (3.57a,b) is solved for a given set of basis functions
satisfying (3.50b) or (3.51b). The discussion is adapted to the case of the
slot-line (3.57b), a similar reasoning holding for other lines. Harrington [3.53]
states that using Galerkin's procedure is equivalent to applying the Rayleigh-
Ritz procedure to the error " caused by applying the linear integral operator
to the trial quantity instead of applying it to the exact quantity. Harrington
expresses this error as

" = hf;L(f)i � hf; gi (3.147)

where the inner product is de�ned according to (3.52a). Hence, applying
Galerkin's procedure is equivalent to minimizing the error, by virtue of the
de�nition of the Rayleigh-Ritz procedure. This means that when the exact
value f0 is replaced by a trial one, such as

f = f0 + Æf (3.148)

the �rst-order error made on " is zero. For the exact solution (f0; 
0) cor-
responding to the exact �elds, these �elds satisfy the boundary conditions
expressed as integral equation (3.52a,b):

hf0; gi = hf0;L0(f0)i = het0(x; 0);Lsl0 (et0(x; 0))i = 0 (3.149a)

so that the corresponding exact value for " is zero:

"0 = 0 (3.149b)

The subscript 0 for Lsl or L indicates that values of the Green's function are
taken for the exact value 
0. This is equivalent to the notation Lsl(et(x; 0); 
0)
in expressions (3.58a,b). Since the error " is made stationary about f by
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Galerkin's procedure, it also vanishes (to the second-order) in the presence of
the trial f , which imposes

" = hf;L0(f)i � hf; gi = hf;L0(f)i � hf;L0(f0)i
= het(x; 0);Lsl0(et(x; 0))i � het(x; 0);Lsl0(et0(x; 0))i = 0

(3.150a)

Expanding the trial �eld and neglecting second-order variations yields

" = het0(x; 0);Lsl0fÆet(x; 0)gi (3.150b)

So that (3.150a) �nally reduces to

het0(x; 0);Lsl0fÆet(x; 0)gi = 0 (3.151)

Considering the basis of Galerkin's procedure (3.52) applied to the integral
equation for the boundary conditions, and developing its left-hand side around
the exact solution, neglecting second-order variations, yields:

het(x; 0);Lsl(et(x; 0))i = het0(x; 0);Lsl0(et0(x; 0))i
+ hÆet(x; 0);Lsl0 (et0(x; 0))i + het0(x; 0);Lsl0(Æet(x; 0))i
+ (Æ
)het0(x; 0); @Lsl0

@

j
0(et0(x; 0))i = 0

(3.152)

If operator L is self-adjoint, one has

het0(x; 0);Lsl0 (Æet(x; 0))i = hÆet(x; 0);Lsl0 (et0(x; 0))i (3.153)

which, combined with (3.151), implies that only the term containing the �rst
variation (Æ
) is a priori non-zero in the right-hand side of (3.152). Since the
left-hand side of this equation is imposed to be zero by the formulation, it is
concluded that the �rst-order error made on 
 using Galerkin's procedure with
a self-adjoint operator is zero. This also means that, to the second-order, the
functional � that Harrington associates to the moment method and de�nes in
the case of a self-adjoint operator as [3.54]

� =
hf; gihf; gi
hL(f ); fi (3.154a)

vanishes, which means

het(x; 0);Lsl0 (et0(x; 0))i = 0 (3.154b)

This is equivalent to say that � is stationary about et(x; 0). Equation (3.154b)
also implies, by virtue of (3.150a),

het(x; 0);Lsl0 (et(x; 0))i = 0 (3.154c)
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Fig. 3.15 Possible behavior of determinantal equation as a function of prop-
agation constant 
 for various choices of trial quantity

The self-adjoint character of the integral operator L - see equations (3.38a,b)
- is closely related to the reciprocity and symmetry properties of the Green's
dyadic function used for formulating the integral equation for boundary con-
ditions. This concept will be clari�ed in Section 3.4.2.3.

It should be underlined that the previous development is an attempt to
show that the solution found with Galerkin's procedure is variational about a
variation of the basis functions. The method, however, still needs to solve the
implicit equations (3.57a,b), which requires evaluation of the determinantal
equation several times. This is because the method provides no information
about the behavior of the implicit equation with respect to 
. At this stage of
the discussion, there is no explicit variational principle available which would
express 
 as a ratio of integrals. The only feature highlighted by the previous
discussion is that, whatever trial �elds are present in the line, the product
hf; gi crosses the 
 axis at about the value 
0 (which is the correct one, to the
second-order) (Fig. 3.15). This, however, does provide neither information
about the slope of the product hf; gi with respect to 
 nor a guideline about
the most eÆcient way to solve equation (3.58b):

hf; gi(
) = hLsl(et(x; 0); 
); et(x; 0)i = 0 (3.155)

Solving this kind of equation may be very diÆcult, as mentioned by Davies
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[3.55], particularly when spurious solutions may occur [3.56]. It requires spe-
ci�c numerical techniques, especially when losses are present and evanescent
modes are considered [3.57][3.58]. For these reasons, the method has usu-
ally been limited to lossless applications on dielectric multilayered media, as
mentioned by Jansen [3.59].

3.4.2.2 Equivalent approach based on reaction concept

In Chapter 2, the reaction concept introduced by Rumsey has been demon-
strated to be eÆcient for obtaining variational principles on a wide variety of
electromagnetic parameters. Using the notations of Chapter 2, two sources
located in di�erent areas of space and noted a and b generate their associated
�elds denoted by A and B, respectively. Hence, the reaction of �eld A on
source b has the form

hA; bi =
Z
fEa � dJb �H

a � dM bg (2.31a)

Lorentz reciprocity principle is then rewritten using the reaction concept
for isotropic media:

hA; bi = hB; ai (2.32)

Equation (2.32) states that the reaction of �eld A on source b is equivalent
to the reaction of �eld B on source a. When the medium is anisotropic,
Rumsey proposes a correction to (2.32), attributed to Cohen [3.49]:

hA; bi = hB̂; ai (2.33)

where hB̂; ai is written for the case corresponding to the same sources as hA; bi
but where the �elds generated by source b are solution of Maxwell's equations
for a medium with transposed permittivity and permeability tensors.

It is demonstrated in Chapter 2 that the reaction hA; bi is variational
about A and b provided that

hA; bi = hA0; bi = hA; b0i (2.38)

In the case of self-reaction, assuming that the trial source and associated
�eld generated by the source are functions of a parameter p and knowing a
priori that the value of the actual reaction hA0; a0i is zero, it is demonstrated
that by removing the trial reaction hA; ai parameter p becomes stationary
about the trial source and associated �eld:

hA; ai = hA0; a0i = 0 (2.43)

Referring to the characteristic equations of the moment method using Ga-
lerkin's procedure, it is now obvious that the left-hand side of equations (3.52a,b)
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are indeed self-reactions of the trial source of current and associated electric
�eld, which are bounded by the Green's function. Since the exact value of the
reaction is known a priori to be zero, (2.43) is applicable: imposing (2.43)
on the trial reaction ensures that the �rst-order error made on the parameter
p = 
 is zero, provided that reactions formed using both trial and exact quan-
tities satisfy (2.38). In the case of Galerkin's procedure, cancelling (3.58b)
ensures �rst that (2.43) is satis�ed by the trials, while the exact �elds are
known to exist only on complementary areas of the domain x of the struc-
ture:

hA; ai = hLsl(et(x; 0); 
); et(x; 0)i = 0 (3.156a)

hA0; a0i = hLsl0 (et0(x; 0); 
0); et0(x; 0)i = 0 (3.156b)

Condition (2.38), rewritten for self-reaction, is partially ensured by the vari-
ational character of functional ", which induces (3.151) by virtue of (3.156b):

hA; ai = hA0; ai = het0(x; 0);Lsl0(et(x; 0))i = 0 (3.157)

To complete the relationship between the reaction formalism and Galerkin's
implicit procedure, Galerkin's formalism has to satisfy the right-hand part of
equation (2.38):

hA0; ai = het0(x; 0);Lsl0 (et(x; 0))i (3.158a)

= hA; a0i (3.158b)

= het(x; 0);Lsl0 (et0(x; 0))i (3.158c)

The right-hand sides of (3.158a) and (3.158c) are equal if the linear integral
operator is self-adjoint, as obtained in (3.153):

het(x; 0);Lsl0(et0(x; 0))i = het0(x; 0);Lsl0 (et(x; 0))i (3.159)

If conditions (3.40a) and (3.51b) for the trial �eld and associated source in
the case of slot-like lines are satis�ed by the exact �eld, the right-hand side
of (3.158c) vanishes. Hence, since the cancellation of the right-hand side of
(3.157) has been demonstrated to be equivalent to stating that error " is sta-
tionary, it follows that " is stationary if the operator is self-adjoint. This was
not explicitly stated by Harrington [3.53]. Equation (3.159) also means that
a reciprocity relationship must exist between the set fLsl0(et0(x; 0); et(x; 0))g
and the set fLsl0(et(x; 0); et0(x; 0))g. Hence, the symmetry and reciprocity
properties of the Green's function acting as an integral linear operator �nally
determines the possible variational character of the spectral domain Galer-
kin's procedure. This depends, of course, on the (non-)isotropic character of
the media. The properties of the Green's function are investigated in the next
section.
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3.4.2.3 Conditions for the Green's function

As we have seen, the variational character of both the propagation constant
obtained using Galerkin's procedure and of the quasi-static parameters de-
pends on the reciprocity properties of the Green's function relating the tan-
gential current to the electric �eld at an interface. An interesting review of
these properties is presented by Barkeshli and Pathak [3.60]. They report that
the free-space dyadic Green's function has been investigated by Collin [3.61],
Collin and Zucher [3.62], Tai [3.63] and others. It has been shown that the
free-space dyadic Green's function satis�es reciprocity as well as symmetry
relationships (Appendix A):

G(rjr0) = G(r0jr) (A.37a)

with

G = G
T (A.37b)

The additional symmetry property in free-space (i.e., free-space dyadic
equal to its transpose) derives from the fact that for an unbounded medium
interchanging the locations of source and �eld points does not modify any ex-
isting boundary condition problem, because of the symmetry of the vacuum
or free-space unbounded medium. In this simpli�ed case, relation (A.37a) is
valid. For other con�gurations, however, new boundary conditions problems
are introduced, generally when source and �eld locations are interchanged.
Overall, the Green's dyadic does not satisfy the symmetry relation (A.37a),
even if it satis�es certain reciprocity relations. One of them is derived by
Collin [3.64] from the reciprocity theorem (2.32) - in the case of a bounded
homogeneous medium (assuming that no magnetic sources are present). In-
troducing the Green's dyadic operator as

P (r; t) = GfX(r0; t0)g (A.17b)

with

Pu =
X
v

[GfX(r0; t0)g]uv (A.17c)

Pu =
X
v

Z
Vx

Z
Tx

Guv(r; tjr0; t0)Xv(r
0; t0)dr0dt0 (A.17d)
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into (2.32) yieldsZ
V

dJ
b
(r0) � [GfJa(r)g](r0)

=

Z
V

dJ
a
(r) � [GfJb(r0)g](r)

(3.160)

in which both sides are general forms for the right-hand sides of equations
(3.52a,b), for instance. This equation has to be satis�ed whatever sources a
and b are, but one particular case is for unit point sources a and b located
respectively at r0 and r00 and having an arbitrary orientation. Assuming the
presence of source points

J
a
(r) = j

a
Æ(r � r0)

J
b
(r) = j

b
Æ(r � r00)

(3.160) is rewritten as

j
a � fG(r0jr00) � jbg = j

b � fG(r00jr0) � jag (3.161)

which implies, by application of the dyadic identity (3.128),

G(r0jr00) = G
T
(r00jr0) (3.162)

Similarly Tai [3.63] presented reciprocity relations for the isotropic ho-
mogeneous half-space dyadic Green's function. On the other hand, Felsen
and Marcuvitz [3.65] have investigated the reciprocity relationships for time-
harmonic electromagnetic �elds in spatially varying anisotropic media: they
established a set of general reciprocity relationships for anisotropic and its as-
sociated transposed medium. Moreover Papayannakis et al. [3.66] have shown
a more general form of the Love equivalence theorem applied to a �nite-size
space. It can be expected that, for media with anisotropic properties, a simi-
lar development is applicable, starting from the modi�ed reciprocity theorem
(2.33):

j
a � fG(r0jr00) � jbg = j

b � fG0(r00jr0) � jag (3.163)

which implies

G(r0jr00) = G0
T
(r00jr0) (3.164)

where the prime notation for the dyadic on the right-hand side of (3.163) and
(3.164) refers to the Green's function established between the current source
and the electric �eld in the transposed medium.

Up to now, and to the best of our knowledge, there is no satisfactory
condition proving that the 2x2 dyadic Green's function involved in Galerkin's
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method used for planar line analysis satis�es the usual reciprocity theorem
for arbitrary vector �elds A and B:

hA;Lsl0(B)i = hB;Lsl0(A)i (3.165)

and for any medium involved in the planar layers. It is suspected that when
lossy gyrotropic media are involved, equation (3.162) may not be valid any-
more, because the Green's function acting as linear integral operator no longer
satis�es (A.37a) or (3.160), and the variational character of the solution 
 of
(3.52) with respect to trials in the partially metallized interface of the planar
lines disappears.

3.4.2.4 Link with explicit variational eigenvalue problems

The explicit quasi-static variational principles (3.16), (3.81) and (3.95) are
related to an explicit eigenvalue formalism. They have a corresponding de-
terminantal form, as explained by Schwinger [3.67]. Starting again from the
general form (3.144), the Rayleigh-Ritz procedure is applied to the function
	 expanded into

	 =

NX
n=1

�n	n

Then (3.144) is rewritten for the three cases:

� =

NX
n=1

MX
m=1

�n�m

Z
	nL(	m)dS

(

NX
n=1

�n

Z
	ndS)

2

(3.166)

Since � calculated by (3.144) is variational, taking the partial derivative with
respect to each �n and cancelling it yields a homogeneous system of N equa-
tions for the �m:

@�

@�k
= 2

MX
m=1

�m

Z
	kL(	m)dS � �(

Z
	kdS)(

NX
n=1

�n

Z
	ndS)

(

NX
n=1

�n

Z
	ndS)

2

= 0

(3.167)

for k = 1; : : : ; N . This system has a non-trivial solution if, and only if, the de-
terminant of its characteristic matrix vanishes, which yields the characteristic
determinantal equation associated to those explicit variational principles:

det
h Z

	nL(	m)dS � �(

Z
	ndS)(

Z
	mdS)

i
= 0
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which is equivalent to

det
h Z

	nL(	m)dS

(

Z
	ndS)(

Z
	mdS)

� �
i
= 0 (3.168)

Hence, it is possible to obtain a determinantal expression for the parameter
under consideration. As underlined by Schwinger [3.67], however, the equation
that is required is neither a polynomial expression of degree N in �, nor an
eigenvalue problem associated with the matrix. Indeed subtracting the �rst
row from all the rest yields a matrix with � present only in the �rst row.
Hence the result of the determinant computation is a linear expression in �.
\It is also evident", says Schwinger, \that one cannot solve (3.168) rigorously.
However, in view of the stationary nature of � we do know that the error
in the value of � produced by an incorrect �eld or current function will be
proportional not to the �rst power of the deviation of the �eld for the correct
value, but to the square of the deviation. Thus, if a �eld or current function
is chosen judiciously, the variational principle can yield remarkably accurate
results with relatively little labor. Unfortunately, the ability to choose good
trial functions generally comes only with experience" [3.67].

It is also to be pointed out that applying the Rayleigh-Ritz procedure to
the general eigenvalue variational principle for calculating quasi-static param-
eters is equivalent to applying Galerkin's procedure of the moment method
to the de�nitions (3.142), (3.145), and (3.146a) corresponding to these quasi-
static parameters. Multiplying both sides of these equations by the appro-
priate form of the function 	 and integrating the results is indeed applying
Galerkin's procedure, but the result of this operation precisely yields the gen-
eral variational principle (3.144). Hence, in the case of the standard explicit
eigenvalue problem, applying Galerkin's procedure to the de�nition of the pa-
rameter under consideration is a variational method, because it is equivalent
to applying the Rayleigh-Ritz procedure to a variational principle established
for this parameter. However, the determinantal equation to be solved will
provide a linear equation to be solved for the parameter, hence an explicit
form for this parameter. This point has been mentioned by Collin for the
quasi-static capacitance [3.43].

To conclude this section about quasi-static formulations, the comment
by Schwinger also implies that, when choosing a judicious in�nite series for
the trial quantity, the Rayleigh-Ritz procedure �nds an exact distribution for
the quantity, provided that the trial �elds derived from this trial quantity
ful�ll all the other boundary conditions satis�ed by the actual exact �elds
and potentials. Since the proof of the variational behavior of the quasi-static
formulations derived in the previous section usually does not imply speci�c
boundary conditions on the trials, the trial �elds used in the quasi-static
variational principles usually do not satisfy all the boundary conditions of the
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actual �eld, and even an in�nite summation for the trial quantity does not
guarantee that exact �elds are obtained.

3.4.3 Variational methods for obtaining accurate �elds

Galerkin's procedure minimizes the error functional " on the trial f with
respect to the actual distribution solution of the problem

L(f0) = g (3.169)

As seen previously, this is equivalent to saying that Gakerkin's procedure
minimizes the functional � (3.154) and the self-reaction (2.43). This has been
con�rmed by Richmond [3.68] and Harrington [3.53]. Peterson et al. [3.69],
however, have shown that non-Galerkin's moment methods are also able to
minimize this error, even when the linear integral operator is not self-adjoint.
This means that Galerkin's method may exhibit no signi�cant advantages
when compared to non-Galerkin's moment methods. Our attention, however,
is focused on the commonly used analysis techniques for planar lines, so we
start from Galerkin's procedure and the assumption of Richmond [3.68].

For planar lines, equation (3.169) has to be solved for a very reduced
portion of the space, namely the area of the strip or of the slot jxj � W

2 ,

where L(f) has to vanish. The proper choice of the basis functions ensures
that integrating the product f � L(f) on the area (jxj � W

2 ) and making it
vanish is equivalent to integrating it over the whole x-domain. In doing this,
however, the user is only certain, after solving for the approximate �eld or
current distribution f , that the integral of the product f � L(f) on the area
jxj � W

2 vanishes. Nothing guarantees that the quantity provided by the
Green's relationship vanishes, which means that (3.40) is satis�ed for every
value of x. It will in fact be the case if the Green's relationships (3.34a,b)
and (3.35a,b), yielding the electric �eld (for strip) or the current density (for
slot), preserve the symmetry about the x-variable of the source of current (for
strip) or of electric �eld (for slot). Since the Green's function contains the
unknown propagation constant 
, it is a priori possible that some particular
values of this propagation constant provide a Green's function such that the
integral of the resulting �eld (3.40a,b) vanishes on the aperture, while the
local value of the �eld varies in the aperture. This behavior is schematically
depicted in Figure 3.16 for the strip and slot cases. If a symmetric (even)
slot �eld or strip current distribution, noted f(x), is assumed over the area
of interest, and if for particular values or ranges of values for 
 the Green's
function generates an odd behavior for the resulting quantity, the product of
the two will of course vanish when integrated over the area. The local value
of the product, however, may not be zero. Hence, in this instance, the value
of 
 provided by the determinantal equation does not correspond to an actual
or physical �eld distribution.

On the other hand, it is quite obvious that actual physical solutions are
obtained if the basis functions chosen for expanding the unknown trial �eld
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f (x)

L1( γ1, f(x) ) L2( γ2,f(x) )

⇓ ⇓

⇓⇓

x

x x

x

L( γ,f(x) ) f (x).

Fig. 3.16 Possible behavior of product L(f) � f as a function of the value of
the propagation constant (even slot �eld or strip current distribution, noted
f)

represent rigorously the physical solution [3.68]. In this case, and in this case
only, it can be expected that considering an in�nite number of terms in the
expansion will provide a solution which corresponds to physical �elds, pro-
vided that all the boundary conditions for the �elds are satis�ed by a proper
expression of the Green's function. This also means that, if the trial and
Green's functions for the problem are such that all the conventional bound-
ary conditions are satis�ed - except the conditions in the slot or on the strip
(3.40) - then the problem is fully resolved once these conditions are satis�ed.
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As concluded before, some doubt may remain, since only an integral product
containing (3.40) is forced to vanish. Moreover, it is impossible to take an
in�nite number of terms in the expansion of the trial - a truncation error
will always be present. But as Schwinger mentioned for the Rayleigh-Ritz
procedure, because of the stationary character of Galerkin's procedure with
respect to 
 under the assumption (3.165), the truncation error will have no
e�ect to the �rst order on the value obtained for the propagation constant.

To conclude the discussion about the choice of the trial and test �elds, it
has to be underlined, following the theory presented in Chapter 2, that the
stationarity of " and �, and of the reaction calculated by the moment method,
is proven only when Galerkin's procedure is used - that is when the basis and
test functions belong to the same set. This has been con�rmed by Richmond
[3.68]. In the case of a mutual reaction, however, Mautz [3.70] has shown
that another choice of basis and test functions yields a stationary expression
for the mutual reaction hA; bi. It consists of: taking as test functions for the
integral dealing with the b source the basis functions used for expanding the
a source, while the test functions for the integral containing the a source are
the ones used for expanding the b source. This, however, is not directly part
of the present discussion, since the spectral domain Galerkin's method works
with a self-reaction only. As a matter of fact, Denlinger's method presented
in Section 3.3 is a moment method using a Dirac function as a test function
for a self-reaction. Taking indeed the inner product between the aperture
�eld (3.44) in the slot or the current density (3.45) on the strip and the
Dirac function in x-domain, is equivalent to system (3.46) and (3.47) or to
equation (3.48). Hence, this method will not, to the best of our knowledge,
provide a variational result for the propagation constant.

3.5 Discretized formulations

3.5.1 Finite-element method (FEM)

At the end of the previous section, the possibility of obtaining exact �eld dis-
tributions from variational principles has been discussed. The �nite-element
method (FEM) takes advantage of a variational quantity to solve di�eren-
tial equations for a speci�ed scalar or vector quantity. The purpose of this
subsection is not to describe extensively the FEM, but to point out where a
variational behavior is invoked and what exactly are the possible links with
our previous developments. An excellent review of the �nite-element method
is provided by Davies [3.55]. Basically, the FEM is used to �nd a scalar or
vector �eld distribution satisfying a given di�erential equation. It discretizes
a trial distribution and takes advantage of a variational form for adjusting the
coeÆcients of the distribution in order to satisfy the equation. The most sim-
ple example is the static Laplace's equation (3.8) that we previously used for
quasi-static applications. Instead of directly solving Laplace's equation, the
�nite-element method uses a functional of the unknown potential, denoted
by J(�), which has the interesting property of being stationary about the
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unknown quantity, provided that the exact unknown satis�es the equation to
be solved. Hence, the Rayleigh-Ritz procedure is applied: it imposes that
the �rst-order derivative of J(�) is zero. The resulting equation provides the
coeÆcients yielding an exact description of the unknown �.

As a �rst step, the domain of interest is discretized into cells (surfaces
for 2-D or volumes for 3-D problems). For 2-D problems, rectangles or tri-
angles are used. The quantity � is approximated in each of the N cells as a
polynomial expression of the coordinates. The simplest expression is a linear
function:

�(x; y) = p0 + pxx+ pyy (3.170)

which means that vector p may be expressed at each vertex of the triangle as
a function of the value of the potential at this vertex k (or node), denoted by
Uk:

�(xk; yk) = p0 + pxxk + pyyk = Uk with k = 1; 2; 3 (3.171)

Each cell n has its own vector

pn =

2
4 pn0
pnx
pny

3
5 (3.172)

From the set of three equations written at each vertex of each cell

pn0 + pnxxk + pnyyk = Uk (3.173)

the potential at the three nodes of the cell n is rewritten in matrix form.
Inverting the resulting system yields the set of coeÆcients pn associated with
each cell. Introducing them in (3.170) yields

�n(x; y) =

2
4 1
x
y

3
5
T

pn =

2
4 1
x
y

3
5
T

A
�1
U
k

(3.174)

where

A
�
=

2
4 1 x1 y1

1 x2 y2
1 x3 y3

3
5

Hence, the potential in each cell is considered as an interpolation polynomial
between the values at the three vertices of the cell. Finally the functional to be
minimized has to be computed. For Laplace's solution, it can be shown [3.71]
that minimizing the following functional x-domain J(�) yields the solution
�:

J(�) =

Z
S

�r2�dS =

Z
S

�(
@2�

@x2
+
@2�

@y2
)dS

= �
Z
S

[(
@�

@x
)2 + (

@�

@y
)2]dS

(3.175)
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The right-hand side is related to the electrostatic energy (3.99a), which has
been demonstrated to be variational with respect to trial �elds satisfying
Laplace's equation. As explained in [3.71], expression (3.100) also means that
when (� + Æ�) and � are two distributions satisfying the same boundary
conditions on the conductor, that is Æ� = 0 on the conductor, then the
function which cancels ÆWe is forced to satisfy Laplace's equation. Using
(3.174) the two partial derivatives are rewritten as

@�

@x
=

2
4 0

1
y

3
5
T

A
�1
U
k

(3.176a)

@�

@y
=

2
4 0
x
1

3
5
T

A
�1
U
k

(3.176b)

and their squared power has the matrix form

(
@�

@x
)2 =

�
U
k
�T

fA�1gT
2
4 0

1
y

3
5
2
4 0

1
y

3
5
T

A
�1
U
k

(3.177a)

(
@�

@y
)2 =

�
U
k
�T

fA�1gT
2
4 0
x
1

3
5
2
4 0
x
1

3
5
T

A
�1
U
k

(3.177b)

Introducing (3.177a,b) into (3.175) yields the �nal expression for J :

J(�) =
�
U
k
�T

GU
k

(3.178)

where G is a global matrix resulting from the integration over each cell of
the product of the coordinate matrices by their transpose, their summation
over all the cells, and a rearrangement as a function of the various products
UkU j . Equation (3.178) is then rewritten using as boundary conditions, those
nodes where the potential or its derivative is a priori known. These nodes
are de�ned by vector Uk0 , while nodes where the potential is unknown are in
vector Uku . The matrices are then rearranged and partitioned as

J(�) =

"
U
ku

U
k0

#T "
Guu Gu0

G0u G00

#"
U
ku

U
k0

#
(3.179)

Applying the Rayleigh-Ritz method to (3.179) is equivalent to taking its �rst-

derivative with respect to each component of U
ku
:

@J(�)

@Uku
= GuuU

ku
+Gu0U

k0
= 0 (3.180a)
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which yields the �nal equation for FEM

GuuU
ku

= �Gu0U
k0

(3.180b)

The above developments need some further comments.
First, the FEM is clearly most applicable to enclosed structures only,

since it requires description of the space or the transverse section by de�ning
a mesh and associated nodes. Open structures have to be approximated by
closed ones, with end boundaries located far away so that �elds and potentials
have a negligible value. Such boundaries are usually diÆcult to predict. At
these boundaries an arti�cial boundary condition has to be speci�ed. Initially
they were perfect magnetic or electric walls. Since then, however, various local
absorbing boundary conditions have been implemented in the TLM method.
As an example, for using the method in open problems, like antenna and
scattering problems, it is necessary to terminate the mesh in such a way that
it simulates free space. The perfect absorbing boundary condition should
perfectly absorb incident waves with arbitrary angles and at all frequencies.
Since such walls do not exist, a number of attempts have been made with a
reasonable success for de�ning very good absorbing walls.

Secondly, the potential or �eld is still in
uenced by the choice of the poly-
nomial expansion used to describe it in each cell. As we have previously seen,
however, an exact solution will be obtained by the Rayleigh-Ritz method if
the basis functions form a complete set. In the case of FEM, this is equivalent
to saying that the polynomial expansion (3.170) describes the exact �eld when
the order of the basis polynomial used for each cell goes to in�nity. It should
be noted that mesh re�nement techniques do presently exist in the FEM and
have already been successfully applied.

Thirdly, there is a crucial question after having solved equation (3.180b):
what can we do with the result? We hope to have obtained the exact po-
tential or �eld in the structure, but we have no idea about the way to use
it for transmission lines. The result has to be introduced in another formu-
lation yielding a parameter of interest (radar cross-section, characteristic or
input impedance, propagation constant, cut-o� frequency) as a function of
the potential or �eld that we have just calculated. A judicious solution is
to combine the FEM with a variational principle for a parameter of interest,
such as a quasi-static capacitance or inductance, or a propagation constant.
For example, we have seen in Chapter 2 that there is a variational principle
for the cut-o� frequency of a waveguide involved in the Helmholtz equation:

!2c"0�0 = �

Z
S

	r2	 dSZ
S

"r	
2 dS

(2.115)

Letting p2 = !2c"0�0, it can be shown [3.72] that equation (3.180b) has to
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be rewritten for this case as

X U
ku

= p2Y U
ku

(3.181)

which is a matrix formulation for an eigenvalue problem, discussed in Section
3.4.2.2 and characterized by the determinantal equation (3.168). In both
equations (3.168) and (3.181), the minimizing procedure makes the unknown
appear as an eigenvalue for the �nal matrix or as a determinantal equation
to be solved. This is a consequence of the formulation involving a ratio, and
not a speci�c feature of the variational theory. In fact � in (3.168) or p2

in (3.181) may be replaced by their expressions given by (2.115) or (3.166)
respectively. This yields a possibly more complicated equation. After solving
it, (2.115) or (3.166) should be used for obtaining the required parameter.
Hence, equations (3.168) and (3.181) are a shorter way for �nding the solution.

The example above shows that FEM just performs a discretization of
the trial �elds. The trial �elds are then adjusted using the Rayleigh-Ritz
procedure in order to possibly yield at the same time exact �elds associated
with a parameter of interest. To summarize, the interest of FEM combined
with a variational form is strongly related to the physical meaning of the
functional J to be minimized. In the �rst case, it is just used to �nd exact
�elds (their accuracy being subject to the interpolation approximation, hence
to the number of cells), while in the second case FEM is used to obtain a
parameter of interest.

To complete this brief outline of FEM, it has to be mentioned that the
method is also used to discretize equations for boundary conditions, such
as condition (3.40). It provides, for example, a matrix formulation of those
equations:

Z U
ku

= 0 (3.182a)

which yields a determinantal equation:

det(Z) = 0 (3.182b)

where each component of Z is a function of the unknown propagation con-
stant.

3.5.2 Finite-di�erence method (FDM)

The comments made about the FEM are also valid for the �nite-di�erence
method (FDM). At the start of this chapter, we have seen that �nite di�er-
ences may be useful for solving Laplace's equation for quasi-static problems.
Discretizing the potential by using a Taylor's expansion results in a system
(3.12) which yields a solution of Laplace's equation which is correct to the h4

order. The same discretization technique may be used for solving Helmholtz
equations (3.27) for TE and TM potentials. Rearranging (3.10) and neglecting
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O(h4) yields:

(
@2�
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)
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Using this approximation in (3.27) yields
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= 0 (3.185)

or in matrix form:

M i�
TE;TM
i = �h2(k2i + 
2)�

TE;TM
i (3.186)

Up to now, no variational assumption has been made. We obtain using the
�nite di�erences an eigenvalue problem in each layer. The quantity �h2(k2i +

2), however, has a di�erent value in each layer. Also, the resulting matrixM
is asymmetric. To overcome those drawbacks, Corr and Davies [3.73] propose
to use a variational expression suitable for the problem, which contains only
the longitudinal components of the electric and magnetic �elds:

J =

Z
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k20
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2
z + !�0H

2
zdA

(3.187)

Corr and Davies have rewritten this expression as a function of the Helmholtz
potentials, since the longitudinal components of the �elds are proportional to
these potentials:

J(�TM;�TE) =

Z
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(3.188)

where

A = (
�c0
!

)2

� =
!2"0�0 � �2

!2"0"r�0 � �2

Using then, for example, de�nitions (3.9a-d) yields an approximation for the
�rst derivative of the potential, correct to the h3 order:
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h
(3.189a)
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(3.189b)

Introducing those approximations into functional (3.188) yields a matrix for-
mulation similar to (3.182)

Z

"
�
TE

�
TM

#
= 0 (3.190)

where the eigenvalues of Z are functions of A and � , hence of the unknown
propagation constant. In the present case, we obtain an implicit eigenvalue
problem, by imposing the �rst-derivative of the variational form to be zero.
This approach is quite di�erent from the implicit determinantal equation as-
sociated to Galerkin's procedure, presented in the previous sections. In Ga-
lerkin's case, we have shown that the eigenvalue obtained is variational about
the trial potentials or �elds, but this is obtained because we know a priori
the exact value of the variational form, which was zero for our case. In the
present case, we do not know the exact value of the functional J and we only
impose its �rst-order derivative to be zero. Hence, we cannot conclude about
any variational behavior of the obtained eigenvalue with respect to the TE
and TM discretized potentials.

For homogeneously-�lled waveguides, it is clear that simpler forms like

J(�) = k2 + 
2 =

Z
A

�r2�dAZ
A

�2dA

(3.191)

may be used, in combination with (3.10) where the O(h4) term is neglected.
The obtained matrix equation is then similar to (3.181).

As illustrated by the abundant literature, FDM and FEM are very pow-
erful general purpose methods in their own right. In this context, however,
we consider them mainly useful for obtaining trial �elds. We do not wish to
underrate them, we are simply limiting their application. With this in mind,
it can be concluded that FDM and FEM are indeed eÆcient variational me-
thods when combined with a variational principle yielding a circuit parameter
of interest for the analysis of distributed circuits. In this case, applying one of
these two methods is equivalent to discretizing in the space domain the trial
�eld to put in the variational principle. They are of great interest for �nding
trial �eld distributions for structures which have an intricate geometry.

3.6 Summary

In the �rst two sections in this chapter we have reviewed quasi-static methods
and full-wave dynamic methods. The quasi-static methods usually provide a
straightforward expression for a line parameter. They are valid, however, in
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the low frequency range only, typically below 5 GHz. On the other hand,
full-wave methods have as their main drawback that they provide no simple
explicit behavior of a line parameter, despite their wider band application.
The search for the root of the implicit equation is usually tedious, so that
the use of those methods is preferably limited to lossless lines. The third
section was devoted to detailed analytical formulations based on variational
principles, applicable to a variety of con�gurations.

A general variational principle will be presented in detail in Chapter 4,
and compared with the other methods. Chapter 5 will be devoted to various
applications of the variational principle. They will include theoretical and
experimental characterizations of multilayered lossy planar lines parameters,
gyrotropic planar devices, and planar junctions and transitions involved in
the design of MICs and monolithic microwave integrated circuits (MMICs)
subsystems.
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chapter 4

General variational principle

4.1 Generalized topology

Variational principles were used by Schwinger to solve discontinuity problems
in waveguides [4.1]. Formulas from Rumsey [4.2] were shown to be variational
for closed waveguides provided that the permittitivity and permeability are,
at most, symmetric tensors. As a result, isotropic materials and materials
with crystalline anisotropy, lossy or lossless, are allowed while gyrotropic me-
dia such as magnetized devices and magneto-ionic media are excluded. On the
other hand, Berk [4.3] developed variational formulas applicable to gyrotropic
media or, in general, media whose dielectric constant and permeability are
Hermitian tensors, restricted to lossless substances. The practical use, how-
ever, of a formula developed for lossless gyrotropic media is quite limited,
because gyrotropy implies losses, except in very narrow-band circumstances.
All these formulations were limited to closed waveguides and resonators.

The general variational formulation developed here is applicable to closed
as well as open planar and coplanar line structures, which can be multilayered,
with gyrotropic lossy inhomogeneous media. The conductors must be lossless.
The validity of the formulation is demonstrated by original measurements on
transmission lines, as well as on more complicated structures. Figure 4.1
shows a schematic representation of a general transmission line analyzed by
using this variational principle [4.4]. It consists of plane conductive layers
inserted between planar layers, each of them characterized by permittivity
and permeability tensors. There are no limitations on the tensors.

Furthermore, each conductive layer may have several conductors. It should
be noted that a distinction is usually made between slot-like conductors and
strip-like conductors, based on the amount of metallization extending in the x-
direction. For strip-like conductors, the metal is con�ned to �nite areas along
the x-axis, while slot-like conductors contain semi-in�nite metal sheets and
can be viewed as conductive layers with slots of �nite extent. This distinction
is of prime interest for the choice of trial �elds, because their formulation is
based on a trial quantity which is non-zero only on an area of �nite extent
along the x-axis, namely a current for strip-like problems and an electric �eld
for slot-like problems. This will be detailed in Section 4.5. The whole multi-
layered structure may be fully open, or enclosed in a waveguide, or partially
bounded by electric or magnetic shielding. When using the moment method,
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Fig. 4.1 Geometry of transmission line analyzed by using general variational
principle (0 � H;HN ; HM ; T; S;W1;W2 � 1 with H + HM + HN + T 6=
0;W1 +W2 + S �Wg � 1 and W1 +W2 6= 0)
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fully open structures are usually considered as shielded lines whose shielding
are far away from the active part of the line [4.5][4.6], but not at in�nity. By
doing so, advantage is taken of the simpli�cation of integrations into sum-
mations resulting from the particular formulation of the problem for shielded
lines. This artefact is not required with the formulation developed here, be-
cause of its convenient convergence properties even for fully open lines, as has
been shown in [4.7], and will be explained in Section 4.6. The particular case
of dielectric [4.8] or gyrotropic-loaded waveguides may also be calculated. It
consists of a multilayered structure, without planar conductive layers, and
enclosed into a waveguide.

In this chapter, the general form of a variational principle is derived in
the spatial domain in Section 4.2 and in the spectral domain in Section 4.3.
In Section 4.4, the methodology for formulating suitable expressions for trial
�elds is developed. Constraints, degrees of freedom, and formulations in terms
of Hertzian potentials and of electric �eld components are presented and dis-
cussed. The choice of adequate trial components at discontinuous conductive
interfaces is developed in Section 4.5, like conformal mapping for slot- and
strip-like structures. The Rayleigh-Ritz procedure is shown to be compatible
with the general variational principle, while Mathieu functions are demon-
strated to be extremely eÆcient as trial components. The importance of the
in
uence of the ratio between the longitudinal and transverse components of
the trials is discussed. The advantages of the variational behavior are demon-
strated and illustrated in Section 4.6. The in
uence of the value chosen for the
propagation constant in the trial �elds, the shape of trial components, and the
number of Mathieu functions are calculated, as well as the truncation error of
integrations in the spectral domain. Some illustrative cases are calculated in
Section 4.7 where the eÆciency of the variational calculation is demonstrated.
On-line results are obtained with a regular PC, in a few seconds for the whole
frequency range, in the case of lossy multilayered planar transmission lines.
The spectral domain approach using Galerkin's procedure is compared with
the variational principle. It will be shown that the numerical complexity of
the �rst procedure is much larger than that induced by the variational prin-
ciple. Finite-elements solvers are also compared, with the same advantage in
favor of the variational procedure, with an extra-advantage in the case of very
lossy structures.

4.2 Derivation in the spatial domain

The �elds in the general structure of Figure 4.1 are de�ned as

E(x; y; z)
�
= e(x; y)e�
z (4.1a)

H(x; y; z)
�
= h(x; y)e�
z (4.1b)

with 
 = �+j� and where a complex e�
z dependence along the propagation
axis az is assumed. It will now be shown that the solution of the following
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complex equation is a variational formulation of the complex propagation
constant 
 [4.9]:


2
Z
A

(az � e�) � [��1 � (az � e)] dA

+ 


Z
A

f(r� e�) � [��1 � (az � e)]� (az � e�) � (��1 � r � e)g dA

�
Z
A

(r� e�) � (��1 � r � e) dA+ !2
Z
A

e� � (" � e) dA = 0

(4.2)

In this notation e(x; y) and h(x; y) have both transverse and longitudinal
components, while e� denotes the complex conjugate of e, A is the area of the
cross-section, and r is the classical 3-dimensional del-operator.

4.2.1 Derivation

Using the notation of (4.1), Maxwell's equations are written as

r� e+ j!� � h = 
az � e (4.3)

r� h = j!" � e+ 
az � h (4.4)

with no assumptions about the permittivity and permeability tensors. Enter-
ing (4.3) into (4.4) yields the second-order equation for the �elds

r� [�
�1 � (
az � e�r� e)]

= 
2az � [�
�1 � (az � e)]� 
az � (�

�1 � r � e)� !2" � e
(4.5)

Multiplying by the complex conjugate e� and rearranging yields


r� [�
�1 � (az � e)] � e� �r� (�

�1 � r � e) � e�

= 
2
�
az � [�

�1 � (az � e)]

�
� e�

� 
az � (�
�1 � r � e) � e� � !2(" � e) � e�

(4.6)

written for convenience as


A�B = 
2C � 
D �E (4.7)

where coeÆcients A, B, C, D, and E are obtained by identi�cation with (4.6).
Using vector identity

X � r � Y = Y � r �X �r � (X � Y ) (4.8)

the coeÆcients can be written as

A
�
= [�

�1 � (az � e)] � r � e� �r � fe� � [�
�1 � (az � e)]g
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B
�
= (r� e�) � [��1 � (r� e)]�r � [e� � (�

�1 � r � e)]

C
�
= �(az � e�) � [��1 � (az � e)]

D
�
= �(az � e�) � (��1 � r � e)

After introducing into (4.7) and rearranging, the equation becomes


2(az � e�) � [��1 � (az � e)]

� 
f(az � e�) � (��1 � r � e)� [�
�1 � (az � e)] � r � e�g

� (r� e�) � (��1 � r � e) + !2(" � e) � e�

+r � fe� � [�
�1 � r � e� 
 �

�1 � (az � e�)]g = 0

(4.9)

Integrating in the transverse plane yields surface integrals for each medium
and line integrals at the boundaries:


2
Z
A

(az � e�) � [��1 � (az � e)] dA

+ 


Z
A

f(r� e�) � [��1 � (az � e)]� (az � e�) � (��1 � r � e)g dA

�
Z
A

(r� e�) � (��1 � r � e) dA+ !2
Z
A

e� � (" � e) dA

+

I
�

fe� � [�
�1 � r � e� 
 �

�1 � (az � e)]g � n d� = 0

(4.10)

The line integral can be written as

I
�

(n� e�) � [��1 � r � e� 
 �
�1 � (az � e)] d� (4.11)

It vanishes when e is the exact �eld and if there are no losses at the conductive
boundaries, because:

� at conducting planes n � e vanishes provided no losses are present in
the conductor

� at interfaces between media e and h have continuous tangential com-
ponents, and the e�ect of integration on both sides of the interface
vanishes.

So (4.10) reduces to (4.2) and is satis�ed by the exact �eld.
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4.2.2 Proof of variational behavior

Replacing the exact �eld into equations (4.2) and (4.10) by a trial �eld

etrial = e+ Æe (4.12)

induces a variation on 
. Neglecting the second-order variations, the equation
becomes

(
2 + 2
Æ
)

�Z
A

(az � e�) � [��1 � (az � e)] dA

+

Z
A

(az � Æe�) � [��1 � (az � e)] dA+

Z
A

(az � e�) � [��1 � (az � Æe)] dA

�

+ (
 + Æ
)

�Z
A

�
(r� e�) � [��1 � (az � e)]� (az � e�) � (��1 � r � e)

	
dA

+

Z
A

�
(r� e�) � [��1 � (az � Æe)]� (az � Æe�) � (��1 � r � e)

	
dA

+

Z
A

�
(r� Æe�) � [��1 � (az � e)]� (az � e�) � (��1 � r � Æe)

	
dA

�

+ !2f
Z
A

e� � (" � e) dA+

Z
A

Æe� � (" � e) dA+

Z
A

e� � (" � Æe) dAg

�
Z
A

[(r� e�) � (��1 � r � e)

+ (r� Æe�) � (��1 � r � e) + (r� e�) � (��1 � r � Æe)] dA = 0

(4.13)

It can easily be seen that the terms without variation form the left-hand side of
equation (4.10), hence the sum of those terms vanishes. The �rst-order vari-
ations also vanish, under speci�c conditions. Re-arranging equation (4.13)
yields indeed the following results.

1. The term containing the �rst-order variation Æe of the �eld is


2
Z
A

(az � e�) � [��1 � (az � Æe)] dA

+ 


Z
A

f(r� e�) � [��1 � (az � Æe)]� (az � e�) � (��1 � r � Æe)g dA

+ !2
Z
A

e� � (" � Æe) dA�
Z
A

(r� e�) � (��1 � r � Æe) dA
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which can be written as

� 
2
Z
A

e� �
n
az � [�

�1 � (az � Æe)]
o
dA

+ 


�Z
A

e� �
n
r� [�

�1 � (az � Æe)]
o
dA

+

I
�

n
e� � [�

�1 � (az � Æe)]
o
� n d�

+

Z
A

e� � [az � (�
�1 � r � Æe)] dA

�

+ !2
Z
A

e� � (" � Æe) dA�
Z
A

e� � [r� (�
�1 � r � Æe)] dA

�
I
e� � [�

�1 � (r� Æe)] � n d�

(4.14)

where vector identity (4.8) has been used. Recombining the integrands of
the various surface integrals yields the surface integral of e� dot-multiplied by
equation (4.5), written in terms of Æe instead of the exact �eld. It vanishes if
Æe satis�es Maxwell's equations (4.3) and (4.4). Hence, the trial �elds have to
be chosen such that they satisfy those two equations. On the other hand, the
condition to cancel the sum of the line integrals in (4.14) is that the quantity

�
�1 � [
az � Æe�r� Æe]

has continuous tangential components so that the e�ect of integration on both
sides of an interface vanishes. This is equivalent to saying that the trial mag-
netic �eld has continuous tangential components at any interface. Finally, on
conducting planes, n� e vanishes provided the conductor is lossless.

2. Similarly, it can be shown that the term containing the conjugate of the
�rst-order �eld variation vanishes provided the tangential components of the
trial electric �eld are made to vanish at the perfect conducting boundaries,
and are continuous at any interface. The term containing Æe� is


2
Z
A

(az � Æe�) � [��1 � (az � e)] dA

+ 


Z
A

f(r� Æe�) � [��1 � (az � e)]� (az � Æe�) � (��1 � r � e)g dA

+ !2
Z
A

Æe� � (" � e) dA�
Z
A

(r� Æe�) � (��1 � r � e) dA
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which can be written as

� 
2
Z
A

Æe� �
n
az � [�

�1 � (az � e)]
o
dA
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�Z
A

Æe� � [az � (�
�1 � r � e)] dA

+

I
�

n
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�1 � (az � e)]
o
� n d�

+

Z
A

Æe� � r � [�
�1 � (az � e)] dA

�

+ !2
Z
A

Æe� � (" � e) dA�
Z
A

Æe� � [r� (�
�1 � r � e)] dA

�
I
Æe� � [�

�1 � (r� e)] � n d�

(4.15)

where vector identity (4.8) has been used again. Recombining the integrands
of the various surface integrals yields the surface integral of Æe� dot-multiplied
by equation (4.5), written in terms of the exact �eld so that the sum of the
surface integrals vanishes. Similarly, the condition suÆcient to cancel the sum
of the line integrals in the term in Æe� is that the tangential components of
etrial are continuous at any interface and vanish at conducting planes, so that
Æe also vanishes with e.

Hence the error Æ
 vanishes, because:

1. the term without variation has been shown to vanish

2. the terms containing variations of Æe and Æe� have also been shown to
vanish too, by equations (4.14) and (4.15),

so that the remaining term of the left hand of equation (4.13) containing Æ

is forced to vanish.

4.2.3 Speci�cities of the general variational principle

The solution of equation (4.2) has been proved to be variational with respect to
the electric �eld e and to its complex conjugate e�. From the proof just given,
it is concluded that, when the exact electric �eld in expression (4.2) is replaced
by a trial �eld denoted etrial, no �rst-order error is made on the solution 
 of
equation (4.2), provided the trial �elds meet the following conditions:

1. etrial satis�es Maxwell's equations (4.3) and (4.4)

2. etrial and htrial have continuous tangential components at any surface
of discontinuity of the media in the transverse plane

3. etrial has vanishing tangential components at conducting planes,
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and provided the conductors are lossless. It should be emphasized that, in the
derivation, no assumption is made on the dielectric and magnetic properties of
the materials of the line. The derivation does not require complex conjugates
of the constitutive tensors of the layers. Hence the Hermitian nature of " and
� is not required here. Furthermore, the expression is variational even when
losses are present in the media.

Formulation (4.2) has a number of advantages.

1. It implies that the error on the value of 
 calculated by the equation is
small if the trial electric �eld is an adequate approximation. Its eÆciency
is due to the fact that the error made on any component of the �eld is
compensated by an exact analytical spatial integration performed over
the whole cross-section, and not only over a line boundary at an interface
containing conductive layers, as was the case for the integral equation
approach introduced in Chapters 2 and 3.

2. It is a dynamic formulation, whilst usually explicit variational formula-
tions are quasi-static [4.10], providing values for quasi-TEM parameters
such as capacitances or inductances.

3. It provides a straightforward evaluation of the complex propagation con-
stant by solving a second-order equation, which is much simpler and
faster than the classical extraction of the root of the determinantal
equation in the Galerkin's procedure [4.11][4.12]. Davies mentions in
[4.13] that the solution of the determinantal equation is usually diÆcult
to obtain.

4. The solution is variational even when the medium is inhomogeneous,
lossy, and gyrotropic. Only the conductors have to be lossless. This is
a major advantage when compared to the moment method used in the
spectral domain. Indeed in this case, the problem is usually simpli�ed
by assuming lossless dielectric layers with a view to searching for a real
root, as mentioned by Jansen [4.14]. The variational formulation will
also be useful for modeling structures supporting leaky modes or slow
waves, characterized by non-negligible values of both real and imaginary
parts of the propagation constant. These structures are usually only
calculated by using perturbational methods, as discussed by Das and
Pozar [4.15].

5. The constitutive tensors of the layers are involved in the surface integrals
so that non-uniformities in a layer, if any, can be taken into account.
Those advantages will be illustrated by examples in Sections 4.6 and
4.7.

4.3 Derivation in the spectral domain

The spatial form of equation (4.2) is diÆcult to use for open and shielded
planar lines. These present discontinuities of the function describing the �eld
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components along the x-axis at the interfaces including the slots. The major
consequence is that the x- and y-dependencies of the �eld cannot be easily
separated, and the integration over the cross-sections in (4.2) becomes diÆ-
cult. The spectral domain technique overcomes this problem, as will now be
shown.

4.3.1 De�nition of spectral domain and spectral �elds

The spectral domain technique simply consists of a Fourier transform per-
formed along the x-axis on each component of the electric and magnetic �elds
supported by the multilayered structure (Appendix C):

~ev(kx; y) =

Z 1

�1

ev(x; y)e
�jkxx dx (4.16a)

~hv(kx; y) =

Z 1

�1

hv(x; y)e
�jkxx dx where v = x; y; z (4.16b)

In all future discussions, these Fourier transforms of the spatial �elds will be
referred to as spectral �elds. Trial quantities (electric �eld for slot-like lines
and di�erence of magnetic �elds for strip-like lines) are then chosen such that
their Fourier transform is a continuous function of the spectral variable kx.

The Fourier transform of Maxwell's equations (4.3) and (4.4) provides a
general solution for the electromagnetic �elds. These are usually separable
into a hyperbolic y-dependence multiplied by spectral coeÆcients, functions
of the spectral variable kx. Hence, the Fourier transform of the boundary
conditions speci�ed in Section 2 provides boundary conditions at the y-plane
interfaces which result in a set of simple algebraic relations between the spec-
tral coeÆcients a�ecting the y-dependence and the trial spectral quantities.
Because of the linearity properties of the Fourier transform, this is equivalent
to saying that the solutions of the Fourier-transformed Maxwell's equations
are the Fourier transform of the trial �elds, namely the trial spectral �elds.
Di�erent ways to obtain the trial spectral �elds will be illustrated in the next
section.

4.3.2 Formulation of variational principle in spectral domain

The basic variational equation (4.2) can be rewritten in the spectral domain
as a function of the spectral trial �elds. It is rewritten for convenience as

�
2
X
i

Ai � 

X
i

(Bi � Ci) +
X
i

Di � !2
X
i

Ei = 0 (4.17a)

with

Ai
�
=

Z
Ai

(az � e�) � [��1 � (az � e)] dA (4.17b)

Bi
�
=

Z
Ai

(r� e�) � [��1 � (az � e)] dA (4.17c)



4.3. DERIVATION IN THE SPECTRAL DOMAIN 153

Ci
�
=

Z
Ai

(az � e�) � [��1 � (r� e)] dA (4.17d)

Di
�
=

Z
Ai

(r� e�) � [��1 � (r� e)] dA (4.17e)

Ei
�
=

Z
Ai

e� � ("i � e) dA (4.17f)

where subscript i holds for layer i. Use is made of Parseval's theorem [4.16]
(Appendix C), which establishes the equalityZ 1

�1

f1(x)f
�
2 (x)dx =

1

2�

Z 1

�1

~f1(kx) ~f
�
2 (kx)dkx (4.18)

where the functions in the integrands are related by the Fourier transform
(4.16). Hence, assuming that the media of each layer is uniform, a new set of
coeÆcients is de�ned, each of them being equal to the corresponding coeÆcient
in set (4.17) by virtue of (4.18):

~Ai
�
=

1

2�

Z
yi

Z 1

�1

[az � ~ei(kx; y)
�] � ���1i � [az � ~ei(kx; y)]

	
dkxdy (4.19a)

~Bi
�
=

1

2�

Z
yi

Z 1

�1

[ ~curli(kx; y)
�] � ���1i � [az � ~ei(kx; y)]

	
dkxdy (4.19b)

~Ci
�
=

1

2�

Z
yi

Z 1

�1

[�
�1
i � ~curli(kx; y)] � [az � ~ei(kx; y)

�] dkxdy (4.19c)

~Di
�
=

1

2�

Z
yi

Z 1

�1

[ ~curli(kx; y)
�] � [��1i � ~curli(kx; y)] dkxdy (4.19d)

~Ei
�
=

1

2�

Z
yi

Z 1

�1

~ei(kx; y)
� � ["i � ~ei(kx; y)] dkxdy (4.19e)

with ~Ai = Ai; ~Bi = Bi; ~Ci = Ci; ~Di = Di; ~Ei = Ei, and where ~curli(kx; y),
de�ned as the Fourier transform of r� e, is expressed as

~curli(kx; y) =
@~ez(kx; y)

@y
ax � jkx~ezay + (jkx~ey � @~ex(kx; y)

@y
)az (4.20)

The integrals along the y-axis can be performed analytically, before the in-
tegration along the kx variable, because the trial spectral �elds are usually
chosen to have a hyperbolic y-dependence, as will be shown later. Because of
the equality between each of the coeÆcients in set (4.19) with the correspond-
ing coeÆcients in set (4.17), the variational equation (4.17a) can be written
as

�
2
X
i

~Ai � 

X
i

( ~Bi � ~Ci) +
X
i

~Di � !2
X
i

~Ei = 0 (4.21)

which is the variational spectral equation, used as the basis of the method in
the spectral domain.



154 CHAPTER 4. GENERAL VARIATIONAL PRINCIPLE

4.4 Methodology for the choice of trial �elds

4.4.1 Constraints and degrees of freedom

It has been shown in Section 4.2 that adequate spatial trial �elds must satisfy
Maxwell's equations (4.3) and (4.4) and have continuous tangential compo-
nents at interfaces between layers, except on conducting parts where only the
trial tangential electric �eld has to vanish. By virtue of the linearity properties
of the Fourier transform, the spectral trial �elds are a solution of the Fourier
transform of Maxwell's equations, and satisfy the Fourier transforms of the
spatial boundary conditions at y-planes corresponding to interfaces between
two layers.

There are two degrees of freedom for determining the trial �eld. First,
trials may be expressed in the spatial or spectral domain. Secondly, adequate
trial �elds may be composed either from a well-known solution of Maxwell's
equations in each layer of the structure under consideration, or from a rea-
sonable guess at a solution to Maxwell's equations. In the �rst case, it will be
shown that �eld solutions of Helmoltz equations rewritten in each layer are
adequate trials satisfying (4.3) and (4.4), so that one only has to impose the
continuity constraint on those �elds. In the second case, the reasonable guess
is deduced from physical considerations and a rigorous application of (4.3)
and (4.4), and of the boundary conditions. In the following subsection, the
two approaches are developed extensively in the spectral domain. The same
reasoning, however, may be applied to trial �elds in the spatial domain, as
exempli�ed in the next subsection, where the �elds in a YIG-�lm are obtained
from a scalar potential.

4.4.2 Choice of integration domain

In Sections 4.2 and 4.3 the spatial and spectral forms of the variational princi-
ple were introduced. They di�er with regard to the integration domain related
to the x-axis, respectively over the x-domain or over its Fourier transform,
the spectral kx-domain. The choice depends essentially on the topology of the
structure (presence or absence of discontinuous conductive layers in y-planes),
and on the x-dependence of the constitutive parameters of each layer. The
spectral form may indeed be diÆcult to use when the constitutive parameters
of one of the layers are functions of the x-variable. Parseval's identity (4.18)
must be applied with care for each term of the scalar product of �elds ap-
pearing in coeÆcients (4.17b-f) when the constitutive permeability tensor is
a function of the position. For coeÆcient Ai for instance, holds:

f1(x; y) = [az � e(x; y)�]v (4.22a)

~f1(kx; y) = [az � ~ei(kx; y)
�]v (4.22b)

f2(x; y) = f��1i (x; y) � [az � ei(x; y)]gv (4.22c)
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~f2(kx; y) =

Z 1

�1

f��1i (x; y) � [az � ei(x; y)]gve�jkxx dx (4.22d)

=

Z 1

�1

f~��1i (kx � u; y) � [az � ~ei(u; y)]gv du (4.22e)

where subscript i is for layer i and where v = x; y; z. As is well known, the
Fourier transform of the product of two functions is not equal to the product
of the Fourier transforms of the two functions, but to its convolution product.
Hence, triple integrals appear in the expression of

~Ai =
1

2�

Z
yi

Z 1

�1

[az � ~ei(kx; y)
�]

� � Z 1

�1

�
�1
i (kx � u; y) � [az � ~ei(u; y)] du

	
dkxdy

(4.23)

The same remark is valid for the calculation of ~Bi; ~Ci; ~Di respectively, and for
coeÆcient ~Ei if the constitutive permittivity tensor is also a function of the
position. As a conclusion, the spatial form (4.2) is preferred when layer i is
described by a non-uniform permeability or permittivity constitutive tensor.

Various applications covering the spatial- and spectral-domain use of the
variational formulation will be illustrated in Chapter 5. The next sections,
devoted to the choice of spectral trial �elds, will extensively evaluate two
topologies in the spectral domain, illustrating the use of the spectral form
of the variational formulation. Before using the spectral domain technique
however, the choice of a spatial formulation will be illustrated for the trial
�elds by an example requiring the use of the spatial form of the variational
formulation. The methodology used for the search of trial �elds is similar in
the spatial and spectral domains.

4.4.3 Spatial domain: propagation in YIG-�lm of �nite width

Yttrium-Iron-Garnet (YIG) is considered in the �lm con�guration illustrated
in Figure 4.2. The magnet poles generate a DC-magnetic �eld along the y-
axis. The �lm is assumed to be in�nite along the z-axis and has a �nite width
W along the x-axis. Taking advantage of the ferrite nature of the �lm, the
propagation constant of this guiding structure can be modi�ed by varying the
applied DC magnetic �eld. These �lms �nd applications in planar microwave
devices operating in the magnetostatic wave range. The reader will �nd a
description of these waves in Appendix D as well as a rigorous derivation of
the approximations. A simpli�ed analysis of the structure of Figure 4.2 is
available [4.17][4.18], based on the following assumptions:

1. The DC-magnetic �eld inside of the �lm is uniform, which implies that
the demagnetizing e�ect and the external DC-magnetic �eld are uni-
form.

2. The edges of the �lm can be approximated by Perfect Magnetic Walls
(PMW).



156 CHAPTER 4. GENERAL VARIATIONAL PRINCIPLE

layer 2

H1

H

upper pole

microstrip dielectric substrate

layer 3

layer 1

.

lower pole

W

right area left area 

planar dielectric 
layer

magnet polesYIG film

az

ax

ay

H2

metal

Fig. 4.2 Con�guration of YIG-�lm for YIG-tuned devices

3. Low losses occur in the �lm, so that they can be obtained by a pertur-
bational method.

These hypotheses are usually made for the practical design of Magneto-
Static Waves (MSW) devices, because of the lack of simple models taking into
account the non-uniformity of the internal �eld, the losses in the �lm, and the
�nite width e�ect. For the present example only, the second assumption is
retained. The purpose is to show that the variational equation (4.2) is eÆcient
for the calculation of the propagation constant of MSW in YIG-�lms in the
presence of losses and of a non-uniform DC-magnetic �eld.

The following parameters are de�ned (Fig. 4.2):

x horizontal coordinate, centered at one edge of YIG-�lm
y vertical coordinate, centered at interface between YIG and

layer 2
H thickness of substrate, called layer 3
Hi distance between the interface layer i - layer 3 and the metallic

housing, if any
W width of YIG-�lm.

Maxwell's equations are rewritten under the magnetostatic assumption in
all the three media of Figure 4.2:

r�Ei + j!�i �Hi = 0 (4.24)

r�H i � 0 (magnetostatic assumption) (4.25)

r � Bi = 0 (4.26)
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where �i is the permeability tensor of layer i, de�ned as

�i =

2
4�11;i 0 �21;i

0 �0 0
�12;i 0 �22;i

3
5 (4.27)

The expressions for �11;3, �21;3, �12;3 in layer 3 are given in Appendix D,
which describes the permeability tensor of a YIG-�lm. They depend on the
value of the internal DC magnetic �eld. As detailed in the appendix the
internal DC magnetic �eld in a YIG-�lm having a �nite width is spatially
non-uniform, because of a non-uniform demagnetizing e�ect [4.19]. Hence,
the permeability tensor �3 is spatially non-uniform.

In layers 1 and 2, the medium is assumed to be isotropic :

�11;i = �22;i = �0 and �12;i = �21;i = 0 for i = 1; 2 (4.28)

Using the notations of (4.1), equations (4.24) and (4.25) may be rewritten as
the corresponding magnetostatic form of equations (4.3) and (4.4):

r� ei + j!�i � hi = 
az � ei (4.29a)

r� hi = 
az � hi (4.29b)

From (4.25), it can be stated that the magnetic �eld is derived from a scalar
potential �:

H i = �r�i (4.30)

The magnetic 
ux density B is easily deduced in each layer from the magnetic
�eld as

Bi = �iH i

i.e.:

B1;2 = �0H1;2 (4.31a)

By3 = �0Hy3 (4.31b)

Bx3 = �11;3Hx3 + �21;3Hz3 (4.31c)

Bz3 = �12;3Hx3 + �11;3Hz3 (4.31d)

Combining (4.30) and (4.31a-d) into (4.26) yields in each region after simpli-
�cation

�11;i[
@2�i
@x2

+
@2�i
@z2

] + �0
@2�i
@y2

= 0 (4.32)
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which has the following general solution, obtained by separating the three
variables x, y and z:

�i(x; y; z) = [A sin kxx+B cos kxx][Cie
s0iy +Die

�s0iy]e�
z (4.33a)

with

s0i =
q
(�11;i=�0)(k2x � 
2) wavenumber along y-axis (4.33b)

kx wavenumber along x-axis

MagnetoStatic Forward Volume Waves (MSFVW) occur in the ferrite �lm
when �11;3 is negative, i.e. when s03 is purely imaginary (no losses are con-
sidered) [4.20]. The next step is the determination of magnetic �elds and
magnetic 
uxes in each layer. Equation (4.30) is used in each layer to obtain

Hxi = �kx[A cos kxx�B sin kxx][Cie
s0iy +Die

�s0iy]e�
z

= hxie
�
z

(4.34a)

Hyi = �s0i[A sin kxx+B cos kxx][Cie
s0iy �Die

�s0iy]e�
z

= hyie
�
z

(4.34b)

Hzi = 
[A sin kxx+B cos kxx][Cie
s0iy +Die

�s0iy]e�
z

= hzie
�
z

(4.34c)

The electric �eld in each layer is obtained by a straightforward application
of equations (4.24) and (4.29a). Taking into account (4.25), MSFVW are
modeled as TE-waves with respect to the z-axis, which implies

Ezi = ezie
�
z = 0 for i = 1; 2; 3 (4.35)

This assumption is con�rmed in the literature [4.20][4.21]. Hence, entering
(4.35) and de�nition (4.1) into equation (4.29a) results in

eyi = �(j!


)[�11;ihxi + �21;ihzi] (4.36a)

exi = +(
j!



)�0hyi (4.36b)

ezi = 0 (4.36c)

Up to now, the electric �eld e obtained by (4.36a-c) and the magnetic �eld
h de�ned by (4.34a-c) satisfy the magnetostatic form (4.29a,b) of Maxwell's
equations (4.3) and (4.4), since (4.32) is derived from (4.25), which is equiv-
alent to (4.29b).

The x-dependence of the �elds is governed by the edge boundary con-
dition at planes x = 0 and x = W . The perfect magnetic wall assumption
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(PMW), introduced by O'Keefe and Paterson [4.22], is widely used for the
analysis of MSW devices [4.23][4.24], and will be used here for simplicity. In
the next chapter however, a signi�cant theoretical improvement of this ap-
proximation will be developed which, combined with variational formulation
(4.2), provides a better agreement with experiment. As a matter of fact, the
structure of Figure 4.2 analyzed here under the PMW assumption consists of
a gyrotropic-loaded waveguide with lateral PMW shielding, as was introduced
in Section 4.1. The PMW condition is expressed as

Hyi(0; y; z) = Hzi(0; y; z) = 0 8 y; z (4.37a)

Hyi(W; y; z) = Hzi(W; y; z) = 0 8 y; z (4.37b)

which, combined with (4.34b-c), results in

B = 0 (4.37c)

kx =
m�

W
with m arbitrary (4.37d)

Hence, the structure supports an in�nite number of propagating modes, char-
acterized by their width-harmonic number m.

CoeÆcients Ci and Di of (4.34a-c) can now be calculated in each layer.
They are obtained by applying the following boundary conditions at respec-
tive interfaces y = �H2, y = 0, y = H and y = H1 +H .

1. In the plane y = �H2.
The tangential electric �eld has to vanish:

ex2(x; y) = 0 8 x (4.38a)

ez2 = 0 is satis�ed by virtue of (4.36c).
Equations (4.34b), (4.36b), and (4.38a) yield

D2 = e�2s02H2C2 (4.38b)

2. In the plane y = H1 +H .
The tangential electric �eld has to vanish:

ex1(x; y) = 0 8 x (4.39a)

ez1 = 0 is satis�ed by virtue of (4.36c).
Equations (4.34b), (4.36b), and (4.39a) yield

D1 = e2s01(H1+H)C1 (4.39b)

3. In the plane y = 0.
The continuity of hx and hz is imposed:

hx2 = hx3 8 x (4.40a)
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hz2 = hz3 8 x (4.40b)

Equations (4.34a) and (4.40a) yield after simpli�cation

C3 +D3 = C2 +D2 (4.40c)

The continuity of ex is imposed:

ex2 = ex3 8 x (4.41a)

Equations (4.34b), (4.36b), and (4.41a) yield after simpli�cation

s02(C2 �D2) = s03(C3 �D3) (4.41b)

4. In the plane y = H .
The continuity of hx and hz is imposed:

hx1 = hx3 8 x (4.42a)

hz1 = hz3 8 x (4.42b)

Equations (4.34a) and (4.42a) yield after simpli�cation

C3e
s03H +D3e

�s03H = C1e
s01H +D1e

�s01H (4.42c)

The continuity of ex is imposed:

ex1 = ex3 8 x (4.43a)

Equations (4.34b), (4.36b), and (4.43a) yield after simpli�cation

s01(C1e
s01H �D1e

�s01H) = s03(C3e
s03H �D3e

�s03H) (4.43b)

Finally, the variational equation (4.2) is used. The solution is based on a
ratio of �eld quantities, so that the knowledge of the absolute value of the
electric �eld to put in the equation is not required. From the whole set of
equations (4.38) to (4.43), relationships between C1, C2, C3, D1, D2, and D3

are obtained. They can be expressed as

D3 =
j� � tanh s02H2

j� + tanh s02H2
C3 (4.44a)

C1 =
C3e

s03H +D3e
�s03H

es01H + es01(2H1+H)
(4.44b)

C2 =
C3 +D3

e�2s02H2 + 1
(4.44c)

with

� =
q
��11;3=�0 (4.44d)
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while introducing (4.44) in (4.38) and (4.39) yields D1 and D2.
Using the same equations, the unknown coeÆcients Ci and Di can be

eliminated, which yields a transcendental equation containing the required
propagation exponent

tanh s01H1 = jn
Ke�s03H � es03H

Ke�s03H � es03H
(4.45)

with

K =
j� � tanh s02H2

j� + tanh s02H2

This is the usual simple equation widely used for the analysis of MSFVW in
YIG-�lms [4.17]. Its solution, however, is only valid for a uniform permeability
tensor, which is not the case here. However, inserting this solution in the
trial �eld expressions (4.33a,b), (4.34a-c), and (4.36a-c), provides trial �elds
which satisfy all the boundary conditions and are therefore acceptable for the
variational equation (4.2).

The trial electric �eld in each layer is �nally expressed as the product of an
x-dependence, obtained by combining relations (4.34) and (4.36), by a hyper-
bolic y-dependence whose coeÆcients are given by (4.44) and are proportional
to the same undetermined factor expressed as the product

AC3 (4.46)

Once the x- and y-dependence of the trial �elds have been determined, the
various integrands of coeÆcients (4.17) are expressed using expressions (4.36)
for the trial electric �eld. The resulting formulations are

(az � e�) � ��1i (az � e)

= e2�z
����!

����
2 �

��111;i j�11;ihxi + �21;ihzij2 + �0 jhyij2
� (4.47a)

r�e� � (��1i az � e)

= �e2�z !
2



��121;i[�11;ihzi + �12;ihxi]

�[�11;ihxi + �21;ihzi]
(4.47b)

(az � e�) � (��1i r� e)

= �e2�z !
2


�
��112;i[�11;ihxi + �21;ihzi]

�[�11;ihzi + �12;ihxi]
(4.47c)

r� e� � (��1i r� e) = e2�z!2��111;i j�11;ihzi + �12;ihxij2 (4.47d)

e�"i � e = "ie
2�z

����!

����
2 �
j�11;ihxi + �21;ihzij2 + �20 jhyij2

�
(4.47e)
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because the following conditions are satis�ed:

az � e = (�eyi; exi; 0) (4.48a)

r� e = (0; 0;
�j!Bzi

e�
z
) (4.48b)

�
�1
i � (az � e) = (���111;i eyi; exi;���121;i eyi) (4.48c)

�
�1
i � r � e = (

�j!��112;iBzi

e�
z
; 0;

�j!��111;iBzi

e�
z
) (4.48d)

The last step is to evaluate the integrals in (4.17b-f). The y-dependence
of the �elds consists of simple exponentials and the integration along the y-
axis can be performed analytically. The x-dependence of the integrands is the
product of the x-dependence of the inverted non-uniform permeability tensor
by simple sinusoidal functions. This integral is evaluated numerically by a
simple trapezoidal rule algorithm.

Figure 4.3 shows the results obtained when combining the spatial trial
�elds obtained in this paragraph with variational equation (4.2). The real and
imaginary parts of the propagation constant solution of (4.2) are calculated for
the �rst width-harmonic mode (solid line) - non-uniform case - and compared
to the solution provided by equation (4.45) (dashed line), valid under the
assumption of a uniform internal �eld. A signi�cant shift of the dispersion
relation is observed when the non-uniformity of the internal �eld is taken into
account. This is of prime interest for the design of YIG-tuned devices, for
which the center operating frequency is a function of the size of the YIG-
�lm used as resonator. Since magnetostatic waves are slow waves, the size
of the resonator to be used may be considerably reduced. For sizes of the
order of 1 mm along the z-axis, the propagation constant at the resonance
is �103 rad/m. Figure 4.3 shows that neglecting the non-uniformity of the
�eld in the sample yields an error of about 1 % in the resonant frequency.
It can be seen that variational equation (4.2) in the spatial domain yields
better results when modeling propagation e�ects in a non-uniformly biased
gyrotropic YIG-�lm.

Two methods for deriving the trial �elds will now be described in the spec-
tral domain. The �rst deals with Hertzian potentials obtained from Maxwell's
equations. The second deduces the �elds from physical considerations and rig-
orous application of the boundary conditions required by the application of
variational formulation (4.2). The two approaches are developed extensively
in the spectral domain. The same reasoning, however, may be applied to trial
�elds in the spatial domain. This is exempli�ed for the last example, where
the �elds in a YIG-�lm are obtained from a scalar potential. Each approach
will be illustrated by a practical example.
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Fig. 4.3 Propagation constant of YIG-�lm calculated for non-uniform inter-
nal DC-�eld with variational principle (solid line) and for uniform DC-�eld
(dashed line) (a) attenuation coeÆcient; (b) propagation coeÆcient

4.4.4 Trial �elds in terms of Hertzian potentials

The classical electric and magnetic Hertzian potentials, solutions of Helmoltz
equation in the various layers, are derived from the source-free formulation
of Maxwell's equations [4.25]. For classical waveguides, they are expressed in
each layer as a function of modes which are respectively TE (or H) and TM
(or E) with respect to the z-axis of propagation:

�
H
i (x; y; z) = �Hi (x; y)e

�
zaz (4.49a)

�
E
i (x; y; z) = �Ei (x; y)e

�
zaz (4.49b)

where �Hi and �Ei are scalar potentials. Hence the electric and magnetic �elds
in (4.1) can be derived in each layer from expressions in [4.25] as

Ei = e�
z[�
r�Ei + (k2i + 
2)�Ei az + j!�iaz �r�Hi ] (4.50a)

H i = e�
z[�
r�Hi + (k2i + 
2)�Hi az � j!"iaz �r�Ei ] (4.50b)

with k2i = !2�i"i. The potentials are solutions of the following Helmoltz
equations, obtained from Maxwell's equations (4.3) and (4.4):

r2�Hi + (k2i + 
2)�Hi = 0 (4.51a)

r2�Ei + (k2i + 
2)�Ei = 0 (4.51b)
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The electric and magnetic �elds can be deduced in each layer from the scalar
potentials �Hi (x; y) and �Ei (x; y):

exi = �
 @�
E
i

@x
� j!�i

@�Hi
@y

(4.52a)

eyi = �
 @�
E
i

@y
+ j!�i

@�Hi
@x

(4.52b)

ezi = (k2i + 
2)�Ei (4.52c)

hxi = �
 @�
H
i

@x
+ j!"i

@�Ei
@y

(4.53a)

hyi = �
 @�
H
i

@y
� j!"i

@�Ei
@x

(4.53b)

hzi = (k2i + 
2)�Hi (4.53c)

The x-Fourier transform of equations (4.51a,b) results in the spectral equation

@2 ~�H;Ei (kx; y)

@2y
+ (
2 � k2x + k2i )~�

H;E
i (kx; y) = 0 (4.54a)

which has the general solution

~�H;Ei (kx; y) = ~XH;E
i (kx) sinh(s0iy) + ~Y H;E

i (kx) cosh(s0iy) (4.54b)

with

s0i =
q
k2x � 
2 � k2i = jkyi (4.54c)

kyi wavenumber along y-axis

~XH;E
i and ~Y H;E

i spectral coeÆcients (4.54d)

In the following discussion the coeÆcients ~XH;E
i and ~Y H;E

i a�ecting the
hyperbolic dependencies of the spectral potentials will be referred to as spec-
tral coeÆcients. The spectral �elds associated with the spectral potentials
are:

~exi(kx; y) = �
jkx ~�Ei (kx; y)� j!�i
@ ~�Hi (kx; y)

@y
(4.55a)

~eyi(kx; y) = �
 @
~�Ei (kx; y)

@y
+ j!�ijkx ~�

H
i (kx; y) (4.55b)

~ezi = (k2i + 
2)~�Ei (kx; y) (4.55c)

~hxi(kx; y) = �
jkx~�Hi (kx; y) + j!"i
@ ~�Ei (kx; y)

@y
(4.56a)
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~hyi(kx; y) = �
 @
~�Hi (kx; y)

@y
� j!"ijkx ~�

E
i (kx; y) (4.56b)

~hzi = (k2i + 
2)~�Hi (kx; y) (4.56c)

Considering the (m+n) layer structure of Figure 4.1, and looking for simpli-
�cations of the general solution of equation (4.54) in the case of shielded and
open lines, one de�nes (Fig. 4.1):

x horizontal coordinate, centered in middle of the waveguide
in case of shielded lines

y vertical coordinate, centered in the plane containing the
conducting layer between two layers, called respectively layer
N1 and layer M1

HMi;Ni thickness of layer Mi, Ni

Wg width of waveguide in the case of shielded lines

HM
�
=
Pm

j=1HMj

HN
�
=
Pn

j=1HNj

The general form of solution (4.54) in layer Mi (y positive) is

~�H;EMi
(kx; y) = ~XH;E

Mi
(kx) sinh[s0Mi(y� ai)] + ~Y H;E

Mi
(kx) cosh[sM0i(y� ai)]

(4.57a)

with

ai =
i�1X
j=1

HMj
(4.57b)

The general form of solution (4.54) in layer Ni (y negative) is

~�H;ENi
(kx; y) = ~XH;E

Ni
(kx) sinh[s0Ni(y + bi)] + ~Y H;E

Ni
(kx) cosh[sN0i(y + bi)]

(4.58a)

with

bi =

i�1X
j=1

HNj (4.58b)

This general solution may be customized to various topologies in the following
manner.

1. Covered lines are de�ned by 0 < HNn <1 and 0 < HMm
<1

The tangential electric �eld has to vanish in planes y = HM and y = �HN ,
and one deduces from (4.55a) and (4.55c) the equivalent conditions

~�EMm
(kxn; HM ) = 0 and ~�ENn(kxn;�HN ) = 0 (4.59a)
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@ ~�HMm
(kxn; y)

@y

�����
y=HM

= 0 and
@ ~�HNn(kxn; y)

@y

�����
y=�HN

= 0 (4.59b)

which yield the particular solution for the spectral scalar potentials in layers
Mm and Nn:

~�EMm
(kx; y) = ~XE

Mm
(kx) sinh[s0Mm(y �HM )] (4.60a)

~�HMm
(kx; y) = ~Y H

Mm
(kx) cosh[s0Mm(y �HM )] (4.60b)

~�ENn(kx; y) =
~XE
Nn(kx) sinh[s0Nn(y +HN )] (4.61a)

~�HNn(kx; y) =
~Y H
Nn(kx) cosh[s0Nn(y +HN )] (4.61b)

2. Open lines are de�ned by HMm
!1 and HNn !1.

All the �elds have to vanish at in�nity, so that the particular solution for the
spectral scalar potentials in layers Mm and Nn is

~�EMm
(kx; y) = ~XE

Mm
(kx)e

�[s0Mm(y�am)] (4.62a)

~�HMm
(kx; y) = ~Y H

Mm
(kx)e

�[s0Mm(y�am)] (4.62b)

~�ENn(kx; y) =
~XE
Nn(kx)e

[s0Nn(y+bn)] (4.63a)

~�HNn(kx; y) =
~Y H
Nn(kx)e

[s0Nn(y+bn)] (4.63b)

3. Shielded lines are characterized by electric or magnetic lateral shielding at
planes x = �Wg=2. Some particularities in the formulations of these lines are
used in the literature, without any satisfactory mention of their origin. In the
following discussion, a rigorous derivation of the simpli�cations is presented.
In the case of perfect electric shielding, the tangential electric �eld has to
vanish on lateral planes, while for perfect magnetic shielding, the tangential
magnetic �eld has to vanish at those planes. Hence, the spatial �eld may
be described as a summation of periodic functions of period n�=Wg . As a
consequence, the spectral �elds and potentials exist only for discrete values
kxn of the kx variable

kxn =
n�

Wg

The choice of n is related to the symmetry of the scalar potentials describing
the particular mode under investigation, the nature of shielding and the re-
lations existing between �elds and potentials by virtue of equations (4.52a-c)
and (4.53a-c). The odd part of �Hi (x; y) is described by sine functions of x
while the even part of �Ei (x; y) is described by cosine functions of x. Both
parts contribute to the sine component of the tangential magnetic �eld and
the cosine component of the tangential electric �eld. On the other hand, the
even part of �Hi (x; y) is described by cosine functions of x while the odd part
of �Ei (x; y) is described by sine functions of x. Both parts contribute to the
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cosine component of the tangential magnetic �eld and the sine component of
the tangential electric �eld. Hence, when looking for a particular mode having
an even symmetry of eyi and hxi, we impose �

H
i (x; y) even and �Ei (x; y) odd

with

kxn = (2n+ 1)�=Wg for perfect electric lateral shieldings
kxn = 2n�=Wg for perfect magnetic lateral shielding

while, when looking for a particular mode having an odd symmetry of eyi and
hxi, we impose �

H
i (x; y) odd and �Ei (x; y) even with

kxn = (2n+ 1)�=Wg for perfect magnetic lateral shieldings
kxn = 2n�=Wg for perfect electric lateral shielding

The fundamentals of the spectral domain technique have been described.
The method has been widely used many years. It originated in a paper by
Yamashita [4.10]. Itoh and Mittra combined it with Galerkin's procedure to
solve an integral equation by the moment method [4.5],[4.26], as introduced in
Chapter 2 and developed in Chapter 3 for planar lines. As seen in Chapter 3,
the main advantage of the method is that the Green's function relating the
currents and the electric �elds in the structure is an algebraic expression in
the spectral domain. The next example will illustrate the point in the case of
the variational principle. An important feature of this new formulation is that
the spectral potentials, hence the spectral �elds, are expressed as the product
of a simple hyperbolic y-dependence with spectral coeÆcients as described in
Section 4.3. Hence the integrations (4.19a-e) along the y-axis are performed
analytically before the integration along the spectral kx-axis.

A comment is necessary about the variational spectral equation (4.21)
when shielded lines are considered. The analysis of shielded lines is character-
ized by the use of values of spectral potentials associated with discrete values
of the spectral variable kx, as explained above. Moreover, these potentials
have a physical meaning only over the area of the waveguide. As a conse-
quence, the integrals based on Parseval's equality (4.18) are replaced by an
in�nite summation over the integrands evaluated in kx = kxn. From now on,
the distinction between shielded and open lines will be omitted in the text.
In the case of open or covered lines, integrals over the whole kx spectrum are
considered in expressions (4.19), while the integrals are replaced by discrete
summations in the case of shielded lines. Two structures di�ering only by the
absence or presence of lateral shielding will have exactly the same expressions
for the potentials, �elds and integrands of (4.19). Those quantities will sim-
ply be evaluated respectively over the whole spectrum kx or at discrete values
kxn.

As discussed at the beginning of this section, the development will now
be centered on an example, to ensure a better illustration of the method. A
microstrip line is considered, as illustrated in Figure 4.4 [4.4]. Since the line
has discontinuities at its conductive layer in plane y = 0, the spectral domain
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Fig. 4.4 Geometry of shielded microstrip line analyzed by general variational
principle (Reprinted by kind permission of GET/Hermes-Science [4.4])

formulation of the variational principle will be used here. According to the
above notations, the following parameters are de�ned:

H thickness of substrate, called layer 2
H1 distance between interface layer 1 - layer 2 and metallic housing
Wg width of waveguide
W width of strip

The structure of Figure 4.4 has only two layers and is fully shielded. The
dominant mode of this shielded stripline obviously has an even x-symmetry
of the ey and hx �eld components. So, the following particular solution is
considered for the potentials, derived from (4.60a,b) and (4.61a,b):

~�E2 (kx; y) = ~XE
2 (kx) sinh[s02(y �H)] (4.64a)

~�H2 (kx; y) =
~Y H
2 (kx) cosh[s02(y �H)] (4.64b)

~�E1 (kx; y) = ~XE
1 (kx) sinh[s01(y +H1)] (4.64c)

~�H1 (kx; y) =
~Y H
1 (kx) cosh[s01(y +H1)] (4.64d)

with

kx = kxn =
(2n+ 1)�

Wg
(4.64e)
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The spectral �elds satisfy Maxwell's equations (4.3) and (4.4), rewritten in
the spectral domain in terms of Helmoltz equations applied to the spectral
scalar potentials (4.54b).

The next step is the application of the boundary conditions at the var-
ious y-interfaces, as for the preceding example. Because of the linearity of
the Fourier transform and of the required boundary conditions on the trial
�elds, the boundary conditions on the spatial �elds are equivalent to the same
boundary conditions expressed on the spectral �elds.

1. In the plane y = �H1.
The tangential electric �eld has to vanish. Combining the spectral de�nition
(4.55a-c) for the spectral electric �eld with expressions (4.64a-e) yields

~ex1(kx; y) = [�
jkx ~XE
1 (kx)� j!�1 ~Y

H
1 (kx)s01] sinh[s01(y +H1)] (4.65a)

~ez1(kx; y) = (k21 + 
2) ~XE
1 (kx) sinh[s01(y +H1)] (4.65b)

The two expressions vanish for y = �H1.
2. In the plane y = H .
The tangential electric �eld has to vanish. Combining again the spectral
de�nition (4.55a-e) for the spectral electric �eld with expressions (4.64a,b)
yields

~ex2(kx; y) = [�
jkx ~XE
2 (kx)� j!�2 ~Y

H
2 (kx)s02] sinh[s02(y �H)] (4.66a)

~ez2(kx; y) = (k22 + 
2) ~XE
2 (kx) sinh[s02(y �H)] (4.66b)

These two expressions vanish for y = H .
3. In the plane y = 0.
The continuity of ex and ez is imposed. Using expressions (4.65a,b) and
(4.66a,b) for the trial electric �eld in each layer, the boundary conditions are
rewritten as

[�
jkx ~XE
1 (kx)� j!�1 ~Y

H
1 (kx)s01] sinh(s01H1)

= [
jkx ~X
E
2 (kx) + j!�2 ~Y

H
2 (kx)s02] sinh(s02H)

(4.67)

(k21 + 
2) ~XE
1 (kx) sinh(s01H1) = �(k22 + 
2) ~XE

2 (kx) sinh(s02H) (4.68)

The hx and hz components of the magnetic �eld are related to the current
densities 
owing on the strip in the x- and z-directions:

hx1(x; 0)� hx2(x; 0) = Jz(x; 0) 8 x
m

~hx1(kxn; 0)� ~hx2(kxn; 0) = ~Jz(kxn; 0) 8 n
(4.69a)

hz2(x; 0)� hz1(x; 0) = Jx(x; 0) 8 x
m

~hz2(kxn; 0)� ~hz1(kxn; 0) = ~Jx(kxn; 0) 8 n
(4.69b)
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with Jz(x; 0) and Jx(x; 0) non-zero only in the range x = �W=2; x =W=2.
Combining the spectral de�nition (4.56a-c) for the spectral magnetic �eld
with expressions (4.64a-d) yields in layers 1 and 2

~hx1(kx; y) = [�
jkx ~Y H
1 (kx) + j!"1s01 ~X

E
1 (kx)] cosh[s01(y +H1)] (4.70a)

~hz1(kx; y) = (k21 + 
2) ~Y H
1 (kx) cosh[s01(y +H1)] (4.70b)

~hx2(kx; y) = [�
jkx ~Y H
2 (kx) + j!"2s02 ~X

E
2 (kx)] cosh[s02(y �H)] (4.70c)

~hz2(kx; y) = (k22 + 
2) ~Y H
2 (kx) cosh[s02(y �H)] (4.70d)

Hence the boundary conditions (4.69a,b) are rewritten as

[�
jkx ~Y H
1 (kx) + j!"1s01 ~X

E
1 (kx)] cosh(s01H1)

� [�
jkx ~Y H
2 (kx) + j!"2s02 ~X

E
2 (kx)] cosh(s02H) = ~Jz(kx)

(4.71)

(k22 + 
2) ~Y H
2 (kx) cosh(s02H)� (k21 + 
2) ~Y H

1 (kx) cosh(s01H1)

= ~Jx(kxn; 0)
(4.72)

Equations (4.67), (4.68), (4.71), and (4.72) form a set of four linear equations
in terms of the spectral coeÆcients ~XE

1 (kx),
~XE
2 (kx),

~Y H
1 (kx) and ~Y H

2 . This
set can easily be solved for these coeÆcients, which are �nally expressed as
algebraic expressions of the spectral variable kx and a linear combination of
the spectral quantities ~Jz(kxn; 0) and ~Jx(kxn; 0):

~Y H
1 (kx) =

[a22 ~Jz(kxn; 0)� a21 ~Jx(kxn; 0)]

(a11a22 � a12a21)
(4.73a)

~Y H
2 (kx) =

[a11 ~Jz(kxn; 0)� a12 ~Jx(kxn; 0)]

(a11a22 � a12a21)
(4.73b)

~XE
1 (kx) = a1 ~Y

H
1 (kx) + a2 ~Y

H
2 (kx) (4.73c)

~XE
2 (kx) = K ~XE

1 (kx) (4.73d)

with

K = � (k21 + 
2) sinh(s01H1)

(k22 + 
2) sinh(s02H)
(4.73e)

a1 =
j!�1s01 sinh(s01H1)

�
jkx[sinh(s01H1) +K sinh(s02H)]
(4.73f)

a2 =
j!�2s02 sinh(s02H)

�
jkx[sinh(s01H1) +K sinh(s02H)]
(4.73g)

a11 = [(�
jkx + j!"1s01a1) cosh(s01H1)

+ j!"2s02a1K cosh(s02H)]
(4.73h)
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a12 = �[(�
jkx + j!"2s02Ka2) cosh(s02H)

+ j!"1s01a2K cosh(s01H1)]
(4.73i)

a21 = �(k21 + 
2) cosh(s01H1) (4.73j)

a22 = (k22 + 
2) cosh(s02H) (4.73k)

Hence the potentials and the �elds are readily expressed as a linear combina-
tion of the spectral current density. The shape of the various components of
the current density remains to be determined. As a �rst test, the transverse
current density is neglected:

Jx(x; 0) = 0 8 x which yields ~Jx(kxn; 0) = 0 8 n
Because of the variational nature of the solution, only an approximation of the
current density on the strip is needed. The error made on the current induces
an error on the trial electric �eld (4.65a,b) and (4.66a,b), because this �eld
is obtained from the potential (4.64a-d) whose spectral coeÆcients (4.73a-d)
are linear combinations of the spectral current density. But, as a result of the
variational character, this trial spectral �eld introduced in expressions (4.19a-
e) does not induce a �rst-order error on the propagation constant obtained
with (4.21). The longitudinal component of the current density is assumed
to be constant on the strip, and imposed to be zero outside of the strip (unit
step function):

Jz(z; 0) = I0=W for �W=2 < x < W=2 (4.74a)

Jz(z; 0) = 0 for x < �W=2 or x > W=2 (4.74b)

The Fourier transform of this function is well known. It is

~Jz(kxn; 0) = I02
sin(kxnW=2)

(kxnW )
(4.74c)

The validity of the variational spectral equation (4.21) combined with
the spectral �elds derived from (4.64a-d) and satisfying boundary conditions
(4.67) to (4.69a,b) is illustrated in Figure 4.5, where results obtained by Mittra
and Itoh (circles) [4.27] are compared with results obtained with this formu-
lation (solid line). They agree very well. It should be underlined, however,
that the model of Mittra and Itoh solves the integral equation by Galerkin's
method in the spectral domain. They report a solution at one frequency in
3 seconds on an IBM 360 computer. However, when the variational formula-
tion is implemented on a regular PC, the calculation does not exceed a few
seconds for the total of twenty frequency points involved in Figure 4.5. This
comparison illustrates the validity of the variational formulation as well as its
numerical eÆciency.

Hence, the variational method can be used for on-line designs up to mil-
limeter waves. As an example, the propagation constant of a millimeter wave
shielded line was calculated up to 200 GHz [4.28]. Results are presented in
Figure 4.6. The computation time is also of a few seconds on a regular PC.
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Fig. 4.5 Propagation coeÆcient of shielded microstrip (Fig. 4.4) calculated
with variational formulation (|) and by Mittra and Itoh [4.27] (o o o) (W =
1:27 mm, H1 = 11:43 mm, H = 1:27 mm, Wg = 12:7 mm, "r1 = 1, "r2 = 4:2)

4.4.5 Trial �elds in terms of electric �eld components

The variational formulation (4.21) only involves the spectral electric �elds
components. Hence, using a suitable form for the electric �eld components
and applying the conditions required by the variational formulation, it is pos-
sible to determine the unknown amplitude coeÆcients. This is applied to the
open slot-line represented in Figure 4.7, with the de�nitions

x horizontal coordinate, centered in middle of slot
y vertical coordinate, centered in plane of interface containing

the slot
H thickness of substrate, called layer 2
W width of slot
layer 1 in�nite area corresponding to y < 0
layer 3 in�nite area corresponding to y > H .

Only simple y-dependencies of the �elds are of interest because of the
integration along the y-axis in (4.19a-e). Hence the following expressions are
chosen for the spectral trial electric �eld in the three layers:

~ev1(kx; y) = ~Av(kx)e
s01y (4.75a)

~ev2(kx; y) = ~Bv(kx) sinh(s02y) + ~Cv(kx) cosh(s02y) (4.75b)
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Fig. 4.6 Propagation coeÆcient of shielded microstrip (Fig. 4.4) at millimeter
waves, calculated with variational formulation (W = 0:5 mm, H1 = 10:43mm,
H = 0:254 mm, Wg = 2:0 mm, "r1 = 1, "r2 = 25)
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Fig. 4.7 Geometry of open slot-line analyzed by using the variational principle
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~ev3(kx; y) = ~Dv(kx)e
�s01(y�H) (4.75c)

The continuity of the electric �eld at the interfaces is �rst imposed. Then,
the spectral trial magnetic �elds are deduced from Maxwell's equation (4.3)
rewritten in the spectral domain and the continuity of the magnetic �eld at
the interfaces is imposed. By doing so, six equations are obtained, in terms
of the 14 unknowns, which are

~Av; ~Bv ; ~Cv and ~Dv where v = x; y; z (12 unknowns) (4.76a)

s01 and s02 (2 unknowns) (4.76b)

The variational character of equation (4.21) only holds when Maxwell's equa-
tion (4.4) is satis�ed. Rewriting (4.4) in each layer in terms of the trial
spectral electric �eld (4.75) and spectral magnetic �eld obtained from the
spectral form of (4.3) provides a set of 9 equations which must be ful�lled
for each value of y. It can easily be shown that this transforms the set of 9
equations into a homogeneous system of 12 equations to be solved for the 14
unknowns. With the particular choice

s01 =
q
k2x � 
2 � k21 (4.77a)

s02 =
q
k2x � 
2 � k22 (4.77b)

only four of them are independent. They are given by

s01[jkx ~Ay(kx)� s01 ~Ax(kx)] + 
[�jkx ~Az(kx)� 
 ~Ax(kx)] = k21
~Ax(kx)

(4.78a)

�s01[jkx ~Dy(kx) + s01 ~Dx(kx)] + 
[�jkx ~Dz(kx)� 
 ~Dx(kx)] = k21 ~Dx(kx)

(4.78b)

s02[jkx ~By(kx)�s02 ~Cx(kx)]�
[jkx ~Cz(kx)+
 ~Cx(kx)] = k22
~Bx(kx) (4.78c)

s02[jkx ~Cy(kx)�s02 ~Bx(kx)]�
[jkx ~Bz(kx)+
 ~Bx(kx)] = k22
~Bx(kx) (4.78d)

These four independent homogeneous equations relate the 14 unknowns.
Hence, combining equations (4.77a,b) with the six equations (4.65a,b), (4.66
a,b), (4.67), and (4.68) resulting from boundary conditions, into the equations
(4.78a-d) yields 10 equations in terms of the 12 spectral coeÆcients involved in
(4.75a-c). Assuming a trial tangential electric �eld at the interface containing
the slot, two additional equations may be used:

~Ax(kx) = ~ex(kx; 0) (4.79)

~Az(kx) = ~ez(kx; 0) (4.80)
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where ~ex(kx; 0) and ~ez(kx; 0) are the known trial electric �eld components at
the interface. Finally, a system of 12 linear equations is obtained: the six
equations resulting from boundary conditions, (4.78a-d), (4.79) and (4.80), to
be solved for the 12 spectral coeÆcients ~Av ; ~Bv; ~Cv ; ~Dv. As for the microstrip
case treated in the former subsection, the spectral coeÆcients - hence the spec-
tral trial �elds - are related to the trial quantities at the interface containing a
discontinuous conductive layer, namely for slot-like lines the tangential com-
ponents of the electric �eld at this interface.

The shape of the electric �eld components at the interface remains to be
determined. Because of the variational nature of the solution, only approx-
imations of these components are needed. As a �rst test, the longitudinal
component is neglected:

ez(x; 0) = 0 8 x which yields ~ez(kx; 0) = 0 (4.81)

The transverse component of the electric �eld is assumed to be constant across
the slot, and imposed to be zero outside of the slot:

ex(x; 0) = V0=W for �W=2 < x < W=2 (4.82a)

ex(x; 0) = 0 for x < �W=2 or x > W=2 (4.82b)

which yields

~ex(kx; 0) = V02
sin(kxW=2)

(kxW )
(4.83)

Hence, the problem is totally characterized and can be solved.

4.4.6 Link with the Green's formalism

Two ways for obtaining trial �elds, for strip-like and slot-like lines respec-
tively, have been described in the spectral domain. It is underlined that both
formulations, in terms of potentials or �elds, respectively, can be used for
either slot-like or strip-like structures. As an example, Table 4.1 compares
results obtained with the second formulation for narrow and wide open slot-
lines to results obtained by Janaswamy and Schaubert [4.29]. It appears that
the di�erence is negligible. The formulation in terms of �elds, however, o�ers
some advantages when the in
uence of each component of the electric �eld
has to be investigated.

Green's functions are present in the variational formalism, because the
spectral �elds are written as a function of spectral coeÆcients (4.54d) or
(4.76a), expressed as linear combinations of the spectral current density or
tangential electric �eld in the aperture. As a consequence, the spectral elec-
tric and magnetic �elds can be written as linear algebraic combinations of the
spectral current density for striplines, and of the spectral tangential electric
�eld in the slot for slot-lines, respectively. Hence, in these cases the spec-
tral domain formalism transforms the spatial integral de�nition of Green's
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W=H Frequency in GHz (�0=�0) [Jan.-Schaub.] (�0=�0) [Huynen]

1.335 2.0 0.8885 0.8890

2.5 0.8834 0.8841

3.0 0.879 0.8798

3.5 0.875 0.8758

4.0 0.871 0.8708

10.71 2.0 0.958 0.9581

2.5 0.954 0.9545

3.0 0.951 0.9515

3.5 0.948 0.9488

4.0 0.943 0.9460

5.0 0.939 0.9409

6.0 0.933 0.9360

Table 4.1 Comparison of results obtained with variational formulation (Huy-
nen) and by Janaswamy and Schaubert [4.29], for narrow and wide slots

function [4.30][4.31] into a set of algebraic linear equations in the spectral
domain. This algebraic formulation is a major advantage of the spectral do-
main method. As explained in Chapter 3, Green's functions are frequently
involved as an operator in the linear integral equation being solved by the
moment method. In this case, however, they are only used to �nd suitable
trial �elds to introduce into coeÆcients (4.19a-e) of the variational spectral
equation (4.21). Green's functions appear in a quadratic form in equation
(4.21) where squared powers of the �elds are required.

For slot-like problems, the current density is obtained as the di�erence
between the tangential magnetic �elds in plane y = 0. Using the dependence
between the electric �eld and the magnetic �eld given by Maxwell's equations,
it is possible to express the electric �eld in the whole structure as a function
of the tangential electric �eld in the slot, via the spectral coeÆcients, common
to both �elds. A new Green's function is then established between the electric
�elds in the whole space and in the slot.

Hence, for both formulations, potentials or �elds, the �nal result is an
expression of the electric �eld in terms of trial quantities at an interface with a
discontinuous conductive layer. The trial quantities are the tangential current
density 
owing on the conducting layer for strip-like lines and the tangential
electric �eld across the interface for slot-like lines. Since the trial �elds satisfy
Maxwell's equations, they di�er from the exact (unknown) �elds only by their
shape. This is discussed in the next section.



4.5. TRIAL FIELDS AT DISCONTINUOUS CONDUCTIVE INTERFACES 177

4.5 Trial �elds at discontinuous conductive interfaces

It has been shown that Mathieu functions (Appendix E), eigenfunctions of
Laplace's equation in elliptical and hyperbolic coordinates, form a very eÆ-
cient set of trial expressions for the tangential trial electric �eld components
for slot-like structures [4.7]. In this section, the fundamentals of the deriva-
tion of these functions for slot-like structures are detailed. It will be shown
that the same functions may be used to describe the current densities 
owing
on the strips in strip-like problems.

Due to the formulation developed in Section 4.4, the trial quantity reduces
to components of the electric �eld or current density, tangential to the inter-
face containing the discontinuous metallization. The analytical expression of
the trial quantity is determined here by conformal mapping.

4.5.1 Conformal mapping

The change of coordinates

x = a cosu coshv

y = a sinu sinh v
(4.84)

where a =W=2
transforms the (x; y) plane of Figures 4.1, 4.4 and 4.7 into the (u; v) plane. The
con�guration will be detailed when examining strip-like structures in Section
4.5.3. It is considered that the slot is placed in a homogenous medium of
permittivity ("1 + "2)=2, which is the mean value of the permittivities of the
two layers adjacent to the slot. The Helmoltz equations (4.51a,b) to be solved
in the (x; y) plane for TE/TM modes can be transformed into the (u; v) plane
as

r2�H;E(u; v) + (k2eff + 
2)(
a2

2
)(cosh 2v � cos 2u)�H;E(u; v) = 0 (4.85)

where k2eff = !2�0
("1+"2)

2
by using the following relations, derived from the change of coordinates:

@�H;E

@u
= �a sinu cosh v @�

H;E

@x
� a cosu sinh v

@�H;E

@y

@�H;E

@v
= a cosu sinh v

@�H;E

@x
� a sinu cosh v

@�H;E

@y

(4.86)

Letting 2q = (k2eff + 
2)(a2=2) yields Mathieu's equation

r2�H;E(u; v) + 2q(cosh 2v � cos 2u)�H;E(u; v) = 0 (4.87)

whose general solutions are obtained by separating the variables:

�H;E(u; v) = UH;E(u)V H;E(v) (4.88)
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The solutions of UH;E(u) are called Mathieu functions, while those of V H;E(v)
are called the modi�ed Mathieu functions. Only the solutions of UH;E(u)
will be of interest here. Those solutions are classically noted cen(q; u) and
sen(q; u), respectively. They can be simply developed into cosine functions
weighted by a power expansion of the q parameter as

cen(q; u) =
1X
i=1

ani(q) cos(iu) (4.89)

sem(q; u) =

1X
i=1

bmi(q) sin(iu) (4.90)

where n andm are arbitrary integers, except thatm 6= 0. Suitable expressions
for the coeÆcients ani(q) and bmi(q) can be found in Appendix E and in [4.32].

4.5.2 Adequate trial components for slot-like structures

Because of this formulation, the trial quantity for slot-like structures reduces
to components of the electric �eld, tangential to the interface between two
dielectric layers adjacent to a discontinuous conductive interface. Due to the
boundary condition, it must have the same x-variation across the slot on
the two sides of the interface, and vanish on the metallization. The analyti-
cal expression of this trial tangential �eld is determined here from conformal
mapping (4.84), for which it is considered that the slot is placed in a ho-
mogenous medium of permittivity ("1+ "2)=2, which is the mean value of the
permittivities of the two layers adjacent to the slot.

Searching for a solution in plane y = 0 and for �1 < x=a < 1, the
equivalent domain to be considered in the (u; v) plane is de�ned by

0 < u < � and v = 0

which yields

u = arccos(
2x

W
) (4.91)

For the slot-line in the homogeneous medium considered in Figure 4.8, the
arccosine conformal mapping (4.91) transforms the conducting planes of the
slot into a parallel plate waveguide (structure 3, Fig. 4.8).

The transverse component of the tangential electric �eld across the slot
under TE assumption can be expressed as

ex � �j!�0 @�
H

@y

����
y=v=0

=
j!�0
a sinu

UH(u)
dV H

dv

����
v=0

(4.92)

It can be seen that only the solutions for UH;E(u) are needed, because the
x-dependence of the �eld across the slot is entirely determined by UH;E(u) at
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Fig. 4.8 Transformation of conductors of slot-line when applying arccosine
conformal mapping, from the conducting planes of the slot (1) to the parallel
plate waveguide (3)

v = y = 0. For v = 0, and to properly describe the ex component in the slot,
the potential �H may not vanish in planes u = 0 and u = �. Hence, sen(q; u)
are avoided here. The even (n even) and odd (n odd) x-dependencies of ex
across the slot can be expressed, using (4.89) to (4.92), as

exn(x; 0) =
KxU

H(u)

sinu

= Kx
cen[q; arccos(2x=W )]p

1� (2x=W )2

= Kx

X
i

ani(q)
cos[i arccos(2x=W )]p

1� (2x=W )2

(4.93)

with i even for n even and i odd for n odd. It appears that this equation
combine Mathieu functions with the correct singularity in the �eld at the edge
of an in�nitesimally thin metal sheet known to be of order �1=2, because of
equation (4.91), due to the conformal mapping. Hence, one may expect a
rapid convergence.

On the other hand, the longitudinal component ez tangential to the in-
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terface is obtained from equations (4.52c) as

ez = (k2 + 
2)�E
��
y=v=0

= (k2 + 
2)UE(u)V E(v)
(4.94)

Similarly, for v = 0, the potential �E has to vanish in planes u = 0 and u = �
to properly describe the ez component in the slot. Hence, cei(q; u) have to
be avoided here. The even (m odd) and odd (m even) x-dependencies of ez
across the slot are �nally expressed, using (4.90), (4.91), and (4.94), as

ezm(x; 0) = KzU
E(u)

= Kz sem[q; arccos(2x=W )]

= Kz

X
i

bmi(q) sin[i arccos(2x=W )]
(4.95)

with i odd for m odd and i even for m even.
The reader recognizes in expansions (4.93) and (4.95) the Tchebyche�

polynomial basis functions modi�ed by an edge condition, used by some au-
thors [4.33][4.34] as basis functions in Galerkin's procedure. Because of the
physical point of view (conformal mapping of the structure) adopted here,
the series expansion obtained is a very good formulation of the �eld across
the slot: the coeÆcients a�ecting the basis functions are determined directly
from physical considerations without solving any eigenvalue problem. The
Fourier transform of any desired mode can be found as the Fourier transform
of expressions (4.93) and (4.95) [4.35]:

~exn(kx) = Kx

X
i

ani(q)(j)
iJi(kxW=2) (4.96a)

~ezm(kx) = Kz

X
i

bmi(q)(j)
i�1(i)

Ji(kxW=2)

(kxW=2)
(4.96b)

where Ji is the Bessel function of �rst kind and order i. Any term ~exn and
~ezm can be taken as a useful expression for higher order modes in slot-like
structures.

The relationship between n andm is readily deduced from (4.52a-c) where
it is shown that the x-dependence of the ex component is proportional to
the �rst x-derivative of the ez component. Hence, if an even dependence of
the ex component is imposed by the choice of n even, ez must have an odd
dependence, which means that m is even. It is therefore concluded that n and
m in expressions (4.93) to (4.96a,b) have the same even or odd parity.

For the dominant mode in the parallel plate waveguide (structure 3,
Fig. 4.8), the x-component of the potential does not depend on the u-variable.
Hence, a reasonable assumption for ex in the slot is obtained by considering
the image of expressions (4.89) and (4.90) taken for n = 0 and m = 2 when
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applying the arccosine conformal mapping, which yields (4.93) to (4.96a,b)
rewritten for n = 0 and m = 2. Moreover, for moderate slot widths, the
value of q remains negligible, so that only the �rst term in the serial expan-
sions (4.93) to (4.96a,b) has to be considered. Hence the components of the
dominant mode may be approximated by

ex0 =

8><
>:

Kx
1p

1� (2x=W )2
if 0 < jxj < W

2

0 otherwise

(4.97a)

and

ez2(x; 0) = Kz sin[2 arccos(
2x

W
)] (4.97b)

which respectively have the Fourier transforms [4.36]

~ex(kx) = Kx
�W

2
J0(kx

W

2
) (4.97c)

and

~ez(kx) = Kzj2
J2(kxW=2)

(kxW=2)
(4.97d)

It should be noted that the x-component of the electric �eld across the slot
is easily related to an equivalent voltage V0 across the line, which is obtained
when integrating the ex-�eld over the slot area 0 < jxj < W=2. Hence,
coeÆcient Kx is related to V0 as

Kx =
2V0
�W

(4.97e)

The same dependence of the electric �eld can be used to describe coupled slot-
lines (Fig. 4.9), by modifying the Fourier transform of the electric �eld to take
into account the presence of two slots centered at planes x = �(W1 + S)=2
and x = (W2 + S)=2:

~ex(kx) = 2�[J0(kxW1=2)e
jkx(W1+S)=2 + CvJ0(kxW2=2)e

�jkx(W2+S)=2]

(4.98)

where Cv describes the ratio of voltages across the two slots of respective
widths W1 and W2 and S is the spacing between the slots. In the case of
symmetric lines, ratio Cv is made equal to �1 for odd coupled slot-lines or
coplanar waveguide, and to +1 for even coupled slot-lines. In the case of
asymmetric lines, ratio Cv is calculated by the Rayleigh-Ritz procedure, as
mentioned for higher order modes in a next paragraph.
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Fig. 4.9 Geometry of coupled slot-lines for determining trial quantities

General Mathieu functions (Appendix E), with no restriction on the value
of q or m and n, are quite adequate functions as trial quantities for the higher
order modes �elds in slot-lines. The general expression for the transverse
tangential electric �eld in the slot is therefore developed as a series expansion
of Mathieu functions cen:

ex(x; 0) =

8>><
>>:

N1+2NX
n=N1

Rn
cen[q; arccos(

2x
W )]q

1� ( x
W=2 )

2
if 0 < jxj < W

2

0 otherwise

(4.99a)

while the longitudinal component is obtained from Mathieu functions sem:

ez(x; 0) =

8>><
>>:

M1+2MX
m=M1

Zm sem[q; arccos(
2x

W
)] if 0 < jxj < W

2

0 otherwise

(4.99b)

where Rn and Zm are the unknown coeÆcients. The Fourier transform of
those expressions are

~ex(kx) =

N1+2NX
n=N1

Rn[
1X
r=1

anr(q)(j)
rJr(kxW=2)] (4.99c)

~ez(kx) =

M1+2MX
m=M1

Zm[
1X
r=1

bmr(q)(j)
r�1r

Jr(kxW=2)

(kxW=2)
] (4.99d)

with

q = (k2eff + 
2)
W 2

16
(4.99e)
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k2eff = !2�0
("1 + "2)

2
(4.99f)

The expression is valid for a single slot. For coupled slot-lines a formulation
similar to (4.98) established for the dominant mode may be derived. The
coeÆcients Rn and Zm are obtained by applying the Rayleigh-Ritz procedure.
The advantages of the formulation using Mathieu functions are twofold. First,
the combination of the basis functions is known a priori, since q depends only
on the geometrical and physical parameters of the line, and on the frequency.
This is not the case for Galerkin's procedure where the coeÆcients weighting
the basis functions are the eigenvectors associated with an eigenvalue problem.
Secondly, the combination of basis functions is frequency-dependent, which
ensures a dynamic formulation of the trial quantities counterbalancing the
quasi-static hypothesis underlying the use of a conformal mapping. This is
because the Helmoltz equation (4.85) being solved in the transformed domain
involves the in
uence of frequency.

4.5.3 Adequate trial components for strip-like structures

Because of the formulation, the trial electric �eld for strip-like structures is re-
lated to the components of the current density 
owing on strips in the interface
between two dielectric medias. The analytical expression of these components
is determined here by the same conformal mapping (4.84) as for slot-like lines,
for which it is considered that the strip is placed in a homogenous medium of
permittivity ("1 + "2)=2. The conducting strip in the homogeneous medium
is shown on Figure 4.10. Solving (4.85) for the potential around the strip
is equivalent to solving for the potential between two homofocal elliptical
cylinders, when the inner cylinder has bi = 0 and the outer cylinder goes to
in�nity.

The change of coordinates of (4.84) transforms the (x; y) plane of Fig-
ure 4.10a into the (u; v) plane. Looking for a solution in the whole space
bounded by the two homofocal elliptical cylinders of parameters (ai; bi) and
(ae; be), the equivalent domain to be considered in the (u; v) plane is de�ned
by

�� < u < � and cosh�1(ai) < v < cosh�1(ae)

When the inner cylinder is degenerate and the outer cylinder goes to in�nity
(Fig. 4.10b), the area between the two cylinders is transformed into a semi-
in�nite space bounded in the u-direction by the planes u = �� (Fig. 4.10c):

�� < u < � and 0 < v <1 (4.100)

The strip area corresponds to v = 0, so that equation (4.91) still holds. The
general solution (4.88) of Mathieu's equation (4.87) is chosen in the domain
given in (4.100) so that V H;E(v) vanishes at in�nity, taking advantage of the
serial expansion of the modi�ed Mathieu functions into hyperbolic functions of
the v-variable [4.32]. Only solutions of UH;E(u) are considered here, because
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Fig. 4.10 Transformation of conductors of microstrip when applying arccosine
conformal mapping (a) original elliptical cylinders; (b) microstrip con�gura-
tion; (c) equivalent structure in transformed domain
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one is looking for the surface charge density on the strip, which is proportional
to the ey-component of the �eld, normal to the strip at plane y = v = 0. The
component of the electric �eld normal to the strip under the TM assumption
can be expressed (4.52) as

ey � �
 @�E

@y

����
y=v=0

=



a sinu
UE(u)

dV E

dv

����
v=0

(4.101)

From this ey-component, the even (n even) and odd (n odd) x-dependence of
the surface charge density �s using (4.89), (4.91), and (4.101) is

�sn(x; 0) = eyn(x; 0)

=
KsU

E(u)

sinu

= Ks
cen[q; arccos(2x=W )]p

1� (2x=W )2

= Ks

X
i

ani(q)
cos[i arccos(2x=W )]p

1� (2x=W )2

(4.102)

with i even for n even and i odd for n odd.
Following the static approximation of Denlinger [4.37], the longitudinal

current density on the strip is related to the surface charge density by

jz =
!�s
�

(4.103a)

Hence, the even and odd x-dependencies of the longitudinal current density
on the strip are obtained as

jzn(x; 0) = K 0
s

X
i

ani(q)
cos[i arccos(2x=W )]p

1� (2x=W )2
(4.103b)

As for slot-like structures, the shape of the transverse current component
is deduced from the relationship between the potential and the hz component
responsible for the jx current. Equations (4.53a-c) yield indeed

jx = hz1 � hz2

= (k2 + 
2) [�H1 ��H2 ]
��
y=v=0

= (k2 + 
2) [UH
2 (u)V H

2 (0)� UH
1 (u)V H

1 (0)]
��
y=v=0

(4.104)

UH(u) is a Mathieu function, because it is a solution of (4.87). Hence, jx has
the form

jxm(x; 0) = K 00
sU

H(u)

= K 00
s sem[q; arccos(2x=W )]

= K 00
s

X
i

bmi(q) sin[i arccos(2x=W )]
(4.105)
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with i odd for m odd and i even for m even. Because at v = 0, jxm has to
vanish at planes u = 0 and u = � to describe properly the �nite width of the
strip, all cei(q; u) are avoided in (4.105). The Fourier transform of the current
densities (4.103b) and (4.105) are of course similar to those of (4.96a,b):

~jzn(kx) = K 0
s

X
i

ani(q)(j)
iJi(kxW=2) (4.106a)

~jxm(kx) = K 00
z

X
i

bmi(q)(j)
i�1(i)

Ji(kxW=2)

(kxW=2)
(4.106b)

Similarly, the relation between n and m is obtained as for slot-like lines by in-
spection of equations (4.53a-c), which imply that the x-dependence of the hx-
component is proportional to the �rst x-derivative of hz . The jz-component
is related to the transverse tangential magnetic �eld by

jz = hx1 � hx2 (4.107)

and equation (4.104) provides a similar relationship between jx and hz . It
can therefore be concluded that jx must have an even/odd x-dependence to
preserve the odd/even dependence of jz, so that m and n must have the same
even or odd parity. Any term ~jxn and ~jzm can be taken as a useful expression
for higher-order modes in strip-like structures. Hence, it has been demon-
strated that Mathieu functions used as trial expressions for the tangential ex
and ez-components are also adequate trial expressions for the current densities
jz and jx, respectively.

As for slot-lines, the potential corresponding to the dominant mode in
the parallel plate structure of Figure 4.10 does not depend on the u-variable.
Hence, by virtue of (4.101) to (4.103b), a reasonable assumption for jz on the
strip is the image of expressions (4.89) and (4.90) taken for n = 0 and m = 2
when applying the conformal mapping of (4.84), namely (4.103b) with n = 0
and m = 2. The approximations made for moderate slot width are readily
rewritten for moderate strip width, which yields the following approximations
for the components of the dominant mode

jz(x; 0) =

8><
>:

K 0
s

1p
1� (2x=W )2

if 0 < jxj < W
2

0 elsewhere

(4.108a)

and

jx(x; 0) = K 00
s sin[2 arccos(

2x

W
)] (4.108b)

which, respectively, have as Fourier transform

~jz(kx) = K 0
s

�W

2
J0(kxW=2) (4.108c)



4.5. TRIAL FIELDS AT DISCONTINUOUS CONDUCTIVE INTERFACES 187

and

~jx(kx) = K 00
s 2j

J2(kxW=2)

(kxW=2)
(4.108d)

Of course, the z-component of the current density can be related to the total
current I0 
owing on the strip by integrating jz over the strip area, which
yields

K 0
s = 2

I0
�W

(4.108e)

As for slot-like lines, the dependence of the longitudinal current density can
be used to describe coupled strip-lines (Fig. 4.11), by modifying the Fourier
transform of the longitudinal current to take into account the presence of two
strips, centered at planes x = �(W1+S)=2 and x = (W2+S)=2, respectively:

~jz(kx) = 2�[J0(kxW1=2)e
jkx(W1+S)=2 + CiJ0(kxW2=2)e

�jkx(W2+S)=2]

(4.109)

where Ci describes the ratio of longitudinal currents 
owing on the two strips
of respective widths W1 and W2 and S is the spacing between the strips. In
the case of symmetric lines, the ratio Ci is made equal to �1 for odd coupled
strip lines, and to +1 for even coupled strip-lines. In the case of asymmetric
lines, the ratio Ci is calculated by the Rayleigh-Ritz procedure, as mentioned
before for slot-like lines.

W1

W2
S

layer N1

layer M1ay

az ax

Fig. 4.11 Geometry of coupled microstrip lines for determining trial quanti-
ties

It has been seen that the trial expressions obtained for the jx- and jz-
components 
owing on a strip are similar to those obtained respectively for
the trial ez- and ex-components in slot-like structures. The general expressions
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for the trial current densities on a strip for higher-order modes are therefore
readily deduced from equations (4.99a,b) as

jz(x; 0) =

8>><
>>:

N1+2NX
n=N1

Sn
cen[q; arccos(

2x
W )]q

1� ( x
W=2 )

2
if 0 < jxj < W

2

0 elsewhere

(4.110a)

and

jx(x; 0) =

M1+2MX
m=M1

Tm sem[q; arccos(
2x

W
)] (4.110b)

where Sn and Tm are the unknown coeÆcients. The Fourier transform of
these expressions are:

~jz(kx) =

N1+2NX
n=N1

Sn[
1X
r=1

anr(q)(j)
rJr(kxW=2)] (4.110c)

~jx(kx) =

M1+2MX
m=M1

Tm[
1X
r=1

bmr(q)(j)
r�1r

Jr(kxW=2)

(kxW=2)
] (4.110d)

with q and k2eff given by (4.99e,f). For coupled strip-lines, it can be modi-
�ed as for the dominant mode. The advantages resulting from the a priori
expression of the coeÆcient q have been mentioned above and are still valid.
Similarly, coeÆcients Sn and Tm are obtained from Rayleigh-Ritz procedure,
which will be applied in the following section.

4.5.4 Rayleigh-Ritz procedure for general variational formulation

Since a variational principle is the basis of the calculation, the Rayleigh-Ritz
procedure [4.1] and [4.38] can be applied to obtain the values of coeÆcients Rn

and Zm in (4.99a,c), or Sn and Tm in (4.110a-d). This method simply makes
use of the variational nature of equation (4.21): because it is variational,
coeÆcients Rn are determined by imposing the condition that the value of 

extracted from (4.21) is extremum.

When evanescent modes are considered, namely when 
 is real, equa-
tion (4.21) simpli�es because in this case the calculation of (4.19b,c) shows
that one has ~Bi = ~Ci, and can be rewritten as


2 =

�X
i

~Di � !2
X
i

~Ei

�
X
i

~Ai

(4.111)
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For convenience it is assumed that the trial �elds are described by the series
expansion

~ex(kx) =

N1+2NX
n=N1

Rn~exn(kx) (4.112)

Expression (4.112) is a simpli�ed notation of the series expansion (4.99c)
where the left-hand side of expression (4.96a) has been used. For slot-like
structures the integrand of each term of (4.111) is proportional to j~ex(kx)j2
when ~ez(kx) is neglected, so that each term can be rewritten when N = 1 as

~Yi =

2X
m=1

2X
n=1

RmRn
~Yimn (4.113)

with ~Yi = ~Ai; ~Bi; ~Ci; ~Di, and ~Ei, and where ~Yimn is calculated as in (4.19a-e),
with j~ex(kx)j2 replaced by [~exm(kx)~exn(kx)]

�. Entering (4.113) into (4.111)
yields


2 =
R2
1
~N11 + 2R1R2

~N12 +R2
2
~N22

R2
1
~D11 + 2R1R2

~D12 +R2
2
~D22

(4.114a)

with

~Nmn =
X
i

~Dimn � !2
X
i

~Eimn (4.114b)

~Dmn =
X
i

~Aimn (4.114c)

Taking advantage of the variational nature of (4.111) and (4.114a), the Ray-
leigh-Ritz procedure imposes that the solution is extremum. Normalizing the
numerator and denominator of (4.114a) to R2

1 and de�ning X = R2=R1 yields


2 =
~N11 + 2X ~N12 +X2 ~N22

~D11 + 2X ~D12 +X2 ~D22

(4.115)

Taking then the �rst derivative of the right-hand side of this equation with
respect to X , the second-order equation in (R2=R1) is obtained:

(2X ~N22 + 2 ~N12)( ~D11 + 2X ~D12 +X2 ~D22)

� (2X ~D22 + 2 ~D12)( ~N11 + 2X ~N12 +X2 ~N22) = 0
(4.116)

Only the solution for X = (R2=R1) yielding a positive value for 

2 is used.

It must be emphasized that the use of the Rayleigh-Ritz procedure for
more than one term in development (4.99a-d) requires the solution of a de-
terminantal equation, which leads to a set of linear equations in terms of the
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ratios Rn=RN1
. In this case, the method results in solving a system of equa-

tions related to an eigenvalue problem [4.1], having about the same complexity
as the Galerkin's procedure. Mathieu functions, however, are eÆcient enough
to provide accurate trial �elds when expansion (4.99) is limited to N = 0.
This will be illustrated in the next subsection.
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Fig. 4.12 Real and imaginary parts of propagation constant calculated with
N = 0 for �nline (H�elard et al. [4.33]), for two di�erent slot widths (|
1 mm, - - - 2 mm ) (numbering refers to order of mode, 0 denoting dominant
propagating mode)

4.5.5 EÆciency of Mathieu functions as trial components

Mathieu functions have been used as trial �elds in [4.7] for calculating higher-
order modes in a shielded slot-like line, namely a �nline operating in the
Ku-band. The eÆciency of the method combined with the series expansion of
(4.99c,d) limited to only one Mathieu function (N = 0) is highlighted when
calculating the propagation constant of several higher-order modes of the
�nline analyzed by H�elard et al. in Figure 3 of [4.33]. The advantage of the
formulation of (4.99c,d) limited to one term, however, is that the combination
of the basis functions is known a priori. This is not the case for the results
presented at Figure 3 of H�elard et al., where Galerkin's procedure is used
with at least two basis functions and requires the solution of a determinantal
eigenvalue equation.

Figure 4.12 shows the real (�) and imaginary (�) part of the propagation
constant in the 
 � ! plane for the dominant mode (curve 0), and for the
�rst �ve higher order modes (curves 1 to 5), calculated with only one term in
(4.99c,d) in the range 26 to 44 GHz, for two di�erent slots as considered by
H�elard et al. The comparison with their results shows a very good agreement,
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and the behavior of the dominant and �rst higher-order modes is correctly
predicted by our model. The reduced mathematical complexity of expression
(4.99a-d) combined with the explicit formulation (4.21) is obvious: it does
not require the solution of an eigenvalue problem to obtain the amplitude of
the basis functions and the value of 
 which sets the determinantal equation
equal to zero.

4.5.6 Ratio between longitudinal and transverse components

It has been shown that one Mathieu function is suÆcient for describing the
shape of any component of the trial quantity. The ratio between the magni-
tudes of the transverse and longitudinal components, however, remains un-
known. For all the results presented up to now, only the transverse component
of the trial electric �eld was considered for slot-like lines, while for strip-like
lines the transverse current density was neglected. It has been observed, how-
ever, that both the transverse and longitudinal components are important
when modeling higher-order modes in open lines. The knowledge of these
modes is necessary for modeling planar discontinuities, for example when us-
ing a mode matching technique. For microstrip lines, it is possible to deduce
the characteristics of higher-order modes from a planar equivalent waveguide
[4.39]-[4.41] modeling the microstrip. For slot-like lines, the moment method
is usually applied to determine the ratio between the transverse and the lon-
gitudinal components.

It will now be shown that a fairly good estimate of this ratio can be
obtained by imposing an additional boundary condition on the electric �eld
at the dielectric interface. This is of prime interest, since the variational
equation involves the electric �eld. One simply imposes the continuity of the
mean value of the displacement �eld at the interface between two dielectric
layers. For the slot-line of the previous section, this is equivalent to imposing

"2~ey2(kx; H) = "1~ey3(kx; H) (4.117)

Because the case is lossless, we do not need to care about the phase, so
that the previous condition is equivalent to imposing the continuity of the
squared magnitude of the displacement �eld

j"2~ey2(kx; H)j2 = j"1~ey3(kx; H)j2 (4.118)

Integrating over the whole kx-spectrum yields:Z 1

�1

j"2~ey2(kx; H)j2dkx =
Z 1

�1

j"1~ey3(kx; H)j2dkx (4.119)

Since it has been shown that the trial �elds in each layer are linear combina-
tions of the components of the trial quantity, a simple analytical expression
for the ratio Rn=Zm may be obtained from (4.119).

Few explicit results are found in the literature for higher-order modes on
open slot-like lines. They are usually computed for shielded lines. To our
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knowledge, only Fedorov et al. [4.42] provide such results for wide slots. Fig-
ure 4.13 compares their results (symbols � and o), for the �rst higher-order
mode, with those obtained by the variational formulation (4.21) (lines), used
with one Mathieu function and both ~ex- and ~ez-components in the slot. The
comparison is made for two con�gurations on the same substrate correspond-
ing to two di�erent slot widths, W = 4 mm and 8 mm. The agreement
between the two results is excellent for each of the two slot widths consid-
ered. It must be emphasized, however, that Fedorov et al. use the Galerkin's
procedure and several basis functions, so that the order of the system to be
solved is important. Since the formulation used here is explicit and analyti-
cal, no tedious iterations are necessary, except for the integration along the
kx-axis. So, the variational method is an eÆcient tool for calculating planar
discontinuities by mode-matching methods.

3.52.51.50.5
1.0

1.5

2.0

2.5

β/ko

λo  [cm]

Fig. 4.13 Propagation coeÆcient for �rst higher-order mode of open slot-line
(Fig. 4.7, with H = 1 mm, "r1 = "r2 = 1; "r3 = 9), calculated respectively with
variational principle (4.21) (lines) and by Fedorov et al. [4.42] (symbols), for
two di�erent slot widths (� � � : W = 8 mm; o o o: W = 4 mm)

4.6 Resulting advantages of variational behavior

To start the calculations, trials have to be introduced for the complex prop-
agation constant as well as for the �elds. The choice made for the trials,
especially for the �elds, may strongly a�ect the accuracy of the result, and
the computation time.
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1. The unknown value 
 appears in variational equations (4.2) and (4.21)
which are solved for 
. It may also appear in the spatial or spectral for-
mulation of the trial �elds, as shown for instance by (4.55a,b), (4.56a,b)
and (4.78a-d). A reasonable initial value for 
, noted 
0, is introduced
in the expression of the �elds.

2. Applying the boundary conditions to the trial �elds results in a set of
homogeneous linear equations relating the spectral coeÆcients (4.54d)
or (4.76a) to the tangential electric �eld across the slot for slot-like
lines, and to the current densities 
owing on the strip for strip-like lines.
Only an approximation of these quantities is necessary because of the
variational character.

3. The integration over the kx spectrum for open lines, or the in�nite sum-
mation for shielded lines, is stopped when the convergence is considered
as satisfactory; that is when the addition of the last term of the sum-
mation or of the contribution of the last subinterval of integration does
not signi�cantly modify the solution of (4.21). Because of the linearity
of the Fourier transform, any truncation of the x-Fourier transform of
the �elds yields an error over the �eld in the spatial domain. However,
due to the variational formulation, this error may also exist in the trial
�eld used in (4.19a-e), without signi�cantly a�ecting the result.

The variational nature of equation (4.2) yields rapidly convergent results
once a trial �eld has been chosen. It can also improve the quality of the ap-
proximation made on the trial �eld. Three major advantages of variational
formulation (4.2) are summarized here. Each of them is detailed in the fol-
lowing subsections.

1. The calculation of the propagation constant does not require solving
either a determinantal equation or a high number of iterations, as in
other procedures [4.1],[4.5],[4.14] The propagation constant is simply
obtained by solving a second-order equation, with an approximate value
of 
 inserted in the trial �elds if necessary.

2. The tangential spectral quantity required at an interface containing a
discontinuous conductive layer can be approximated with a strongly
reduced number of basis functions. These are best derived by a confor-
mal mapping and adequate boundary conditions at the interface. The
Rayleigh-Ritz procedure may be applied in case of asymmetric coupled
lines for which the actual ratio between the spectral quantities on the
two lines is unknown.

3. The integration or series expansion is limited to a small number of terms
because the integrands of expressions (4.19a-e) for calculating the coeÆ-
cients of the second-order equation (4.2) or (4.21) are rapidly decreasing
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functions of the spectral variable kx, as will be shown in a further subsec-
tion. Moreover, the propagation constant is explicit in equation (4.21).
It is calculated at each step of the summation, which directly indicates
when the convergence is considered satisfactory, that is when the addi-
tion of one more term does not modify the value of the solution.

4.6.1 Error due to approximation made on 
 in trial �elds

A suitable approximation of 
 is necessary in the expression of the trial �elds.
It is denoted 
t = �t + j�t in the following discussion. A good choice for 
t
is [4.7]


t = j�t = j

r
("1 + "2)

2
k0 (4.120)

The solution of variational equation (4.21), obtained using approximation
(4.120), is introduced as a new value for 
t in the spectral �elds, which yields
a new solution for the equation. The quality of the approximation is then
evaluated, and improved if necessary. Iterations are stopped when the di�er-
ence between 
 and 
t is found negligible. Since the formulation is variational
with respect to the �eld, the error introduced by an approximation made on
the value 
t involved in the �eld expression is only of the second-order, which
strongly reduces the number of iterations. This is illustrated in Figure 4.14
for a lossless slot-line on a dielectric substrate [4.4]. The solid line depicts the
solution of equation (4.21) obtained for a wide range of values of the imaginary
part �t. Since there are no losses, purely imaginary 
 and 
t are considered
for the solution of (4.21) and for the approximation for the �eld are consid-
ered. Starting with the value provided by (4.120) for �t in the trial �elds (A
in Fig. 4.14), the �rst solution (denoted by �0) of (4.21) is point B. This value
is then used as a new approximation, denoted by �t1, for the trial �elds (point
C). After solving again (4.21), it leads to an updated value for �, denoted by
�1 (point D). It is observed that this solution is within 0.067 % of the �nal so-
lution, which is reached when �n = �n�1 = �tn = 527 rad/m (point E). This
explains why the results of Figures 4.3, 4.5, and 4.6, as well as other results
presented earlier [4.7], have necessitated no more that 3 iterations (n = 2) to
obtain a �nal value of � within a 0.05 % uncertainty.

The convergence scheme may thus be formalized as follows.

1. Equation (4.21) is rewritten as


2
X
i

~Ai[~ut] + 

X
i

~Bi[~ut]�
X
i

~Di[~ut] + !2
X
i

"i�i ~Ei[~ut] = 0 (4.121)



4.6. RESULTING ADVANTAGES OF VARIATIONAL BEHAVIOR 195

trial propagation coefficient  βt  [rad/m]

pr
op

ag
at

io
n 

co
ef

fi
ci

en
t β

 [
ra

d/
m

]

500

510

520

530

540

550

600550500450400

βt1 βt0 

β = βt 

A

B

C

D E

β0 

β1 

so
lu

tio
n 

of
 (

4.
21

) 
(4

.1
28

c)

Fig. 4.14 Convergence properties of variational principle for lossless open
slot-line

where ~ut = ~ei(
t). It has the general solution


 = �+ j� =
�Pi
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(4.122)

For a lossless case, in (4.121) one has 
 = j� and 
t = j�t. The imaginary
part of solution (4.122) is represented by the solid curve in Figure 4.14.
2. The solution at iteration n is obtained by solving (4.21) with �tn equal to
the solution obtained at iteration n� 1, that is with

�tn = �n�1 (4.123)

in the coeÆcients of (4.121) and in (4.122). For n = 0, �t0 is given by (4.120).
3. The convergence is obtained when the relative di�erence between results
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after two successive iterations is lower than a given value x, that is�����n � �n�1
�n

���� < x% (4.124)

which, by virtue of (4.123), yields approximately

�n = �n�1 = �tn (4.125)

With convergence criterion (4.124), the �nal solution is located at the inter-
section between the solid curve depicting solution (4.122) as a function of the
trial value 
t and the linear function


(
t) = 
t (4.126)

represented by the dashed line in Figure 4.14.
It is underlined that the variational behavior of (4.21) is related to a

stationarity concept. Indeed starting with an approximate value �t0 of about
600 rad/m (point A) corresponding to an error of about 14 % on �, point
B yields a value of 522 for �0 corresponding to an error of about 1 % on
�. Hence, the �rst-order error is reduced to a second-order one. So, a very
limited number of iterations is necessary. It has also to be observed that the
solution de�ned by (4.124) is located exactly at the extremum value of the
curve representing the solution (4.122).

When lossy layers are considered, a most important feature of the varia-
tional character is that the solution obtained with equation (4.21) is complex,
corresponding to a stationary value for both the real and imaginary parts of
the propagation constant. This is observed at Figure 4.15, where the real (a)
and imaginary (b) parts of the solution for a coplanar waveguide lying on a
doped semiconductor substrate is represented as a function of a wide range
of values for (�t; �t) (�t in the range 100-300 Np/m, �t in the range 300-
700 rad/m). The resistivity of the substrate, due to the presence of carriers
in the doped semiconductor, is introduced in the variational formulation via a
frequency-dependent loss tangent associated with each layer and yielding the
imaginary part of its relative permittivity. A frequency-dependent complex
value of the permittivity is thus considered, in the trial �elds as well. The
real and imaginary parts of solution (4.122) written as a function of the real
and imaginary parts of the trial 
t are each represented by a surface above
the plane (�t; �t). A number of features may be pointed out in Figure 4.15.

First, the variational behavior of the solution is obvious: the real and
imaginary parts of the solution remain quite constant over a very wide range
of values for both the real and imaginary parts of 
t. For a relative variation
of 300 % for �t and of 230 % for �t, the variations of the real part � and of
the imaginary part � of the solution from (4.122) remain within 10 % and
5 %, respectively.

Next, in the case of iterations carried out to improve the trial �elds and
hence the results on 
, the convergence is quite immediate. As a �rst step,
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Fig. 4.15 Variational solution as a function of real and imaginary parts of
trial propagation constant introduced in trial �elds for a CPW (20 
cm resis-
tivity substrate) (a) real part; (b) imaginary part

�t is kept constant. Again solving equation (4.121) yields a new value for
� noted �0. The process is repeated n times with �t kept constant, until
the imaginary part of the solution (4.122) becomes equal to the imaginary
part of the trial �t, that is when criterion (4.124) is satis�ed. Practically, as
said before, iterations are stopped when the relative di�erence between results
obtained after two successive iterations is lower than a given value x, that is�����n � �n�1

�n

���� < x% (4.124)

Because of the very small variation of the solution � with respect to
�t which is observed, (Fig. 4.15b), a very limited number of iterations is
necessary. This number of iterations is noted NI . The convergence condition
(4.124) written for every value of �t forms the intersection of the surface
representing the imaginary part of solution (4.122) (Fig. 4.15b) with plane
�(�t; �t) = �t . This intersection is obtained for the set of values in plane
(�t; �t) which are represented by the dashed curve. Using in a second step a
similar convergence criterion for the real part of solution (4.122), that is, for
a �xed value of �t

�n = �n�1 = �tn (4.127)

and writing the convergence condition (4.127) for every value of �t yields the
solid curve in Fig. 4.15. It corresponds to the intersection between the sur-
face representing the real part of the solution (4.122) (Fig. 4.15a) and plane
�(�t; �t) = �t. The solid and dashed curves are each parallel to a coordinate
axis. This property expresses the fact that the real and imaginary parts of the
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solution of (4.122), obtained after some iterations, become independent of the
imaginary and real parts of the trial propagation constant introduced in the
trial �elds, respectively. Hence, iterating on the imaginary part while �xing
the real part at an arbitrary value, then iterating on the real part while retain-
ing the solution found for the imaginary part, converges towards a solution
located at the intersection between the solid and dashed curves (Fig. 4.15).
Moreover, at each step of the iterative process, the real and imaginary parts
of the trial can be simultaneously updated without a�ecting the convergence,
because of the orthogonality of the two curves. Hence, when new iterations are
necessary, updating at the same iteration the values of �t and �t also reduces
the numerical complexity without signi�cantly damaging the convergence. The
convergence scheme is �nally equivalent to solving equation (4.121) n times
with, at iteration n, 
n obtained as solution of (4.121)


tn = 
n�1 (4.128a)

which means

�tn = �n�1 (4.128b)

�tn = �n�1 (4.128c)

The convergence is obtained when the two conditions (4.124) and (4.127)
are satis�ed at the same iteration. The number of iterations is very limited,
because of the 
atness of the surfaces representing both the real and imaginary
parts of the solution.

It has been observed that the two dashed and solid curves intersect each
other, so that a solution exists. The same property is found for gyrotropic
layers. The formulation is also eÆcient in the case of leaky planar lines or slow-
wave devices. The propagation constants of these lines indeed exhibit both
real and imaginary parts, even in the case of lossless media, and a solution
is diÆcult to obtain from an implicit method, as mentioned by Das [4.15].
Moreover, the results in Figure 4.15 are computed for a high-loss case, and
the solution found exhibits this feature, because the real and imaginary parts
of the solution are of the same order. Such a case is thus particularly suitable
for comparing the eÆciency of the variational solution (4.122) with that of
the implicit Galerkin's procedure. This will be presented in the next section.

4.6.2 In
uence of shape of trial �elds at interfaces

The formulation is variational with respect to the electric �eld introduced in
equation (4.2). This has particular applications in the case of coupled lines,
where the ratio between the trial quantities considered for each line has to be
determined. A ratio of voltages Cv has been de�ned for coupled slot-like lines
(4.98), while a ratio of currents Ci is considered for strip-like lines (4.109).
Figure 4.16 shows, for lossless coupled symmetrical slot-lines having a width
ratio W2=W1 equal to 1, the value of � obtained from equation (4.21) as a
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Fig. 4.16 Propagation coeÆcient of coupled slot-lines (Fig. 4.9) calculated
with variational formulation for di�erent values of ratio between trial electric
�elds in the two slots (W1 =W2 = 1 mm, H = 1:2 mm)
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Fig. 4.17 Propagation coeÆcient of lossless coupled slot-lines calculated with
variational formulation as a function of ratio between trial electric �elds in
the two slots, with ratio W2=W1 = 0:5 (1), 0.75 (2), 1.0 (3), 1.25 (4), 1.5
(5), and 2.0 (6)
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function of ratio Cv . It is observed that two extrema of � occur, respectively
a maximum for Cv = �1, and a minimum for Cv = +1. This con�rms that
equation (4.2), rewritten in the spectral domain as (4.21), is variational with
respect to the electric �eld, since the solution exhibits extrema for values of Cv
which are indeed the actual ratios of the transverse tangential electric �elds
in this symmetrical structure. Hence, the application of the Rayleigh-Ritz
procedure in this case will provide the actual ratios, since they correspond to
extrema of the solution.

In the case of asymmetric lines, the ratio Cv or Ci cannot be determined
a priori, because of the lack of x-symmetry of the tangential electric �eld in
the structure. However, according to the theory of asymmetric coupled lines
[4.43], there are two solutions for �, corresponding to two values of Cv or
Ci. The �rst is associated with the in-phase behavior of the trial quantity
on the two lines (Cv , Ci positive) and is called the �-mode. The second
is associated with the out-of-phase behavior of the trial quantity (Cv , Ci
negative) and is called the C-mode. One can expect that the Rayleigh-Ritz
procedure in the case of asymmetric lines will determine the actual value of
� by searching the values of Cv which render � extremum. Figure 4.17 shows
the variation of the solution of (4.21) as a function of Cv for coupled slot
lines having di�erent widths (W2=W1 varying between 0.5 and 2.0). In this
asymmetric case, extrema now occur for values of Cv which vary with ratio
W2=W1. Applying the Rayleigh-Ritz procedure, as explained for the higher-
order modes in a preceding section, yields the value of Cv which maximizes
the solution of (4.21), as well as the value of this extremum.

The variational procedure is applied to the lossless asymmetrical cou-
pled slot-like line previously studied with Galerkin's method by Kitlinski and
Janisacz [4.44]. Results are compared in Tables 4.2 (C-mode) and 4.3 (�-
mode) for the case W2=W1 = 2. The values of the normalized propagation
constant obtained with this variational formulation (Huynen) are compared
to results obtained by Kitlinski et al. over the frequency range 2-20 GHz. The
corresponding values obtained for the ratio Cv are also given. The agreement
between the two methods is better than one percent over the whole frequency
range.

4.6.3 Truncation error of the integration over spectral domain

Figure 4.18 shows a typical variation of the integrands of the coeÆcients
de�ned by (4.19) as a function of the spectral variable kx, for a slot-line at x-
band. As explained in Section 4, these integrands are similar for laterally-open
or - shielded slot-lines, because the spectral �elds are the same for a given value
of kx. If the line has lateral shielding, the integration is simply replaced by
a summation over discrete values of the integrands corresponding to discrete
values of kx. The �gure shows that all the integrands are rapidly decreasing
as the spectral variable kx increases. In this case it indicates clearly that the
integration or summation can be stopped when kx equals about 8000 m�1.
If the slot-line is shielded at least in the x-direction, and for Wg taken 10
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C-mode

Frequency Cv (�0=�
0) (�0=�

0)

(GHz) [Huynen] [Kit.-Jan.] [Huynen]

2 -0.975 1.970 1.9436

4 -0.975 1.960 1.9542

6 -0.975 1.978 1.9680

8 -0.925 1.985 1.9842

10 -0.925 2.007 2.0031

12 -0.925 2.025 2.0200

14 -0.925 2.040 2.0376

16 -0.925 2.066 2.0604

18 -0.925 2.093 2.0829

20 -0.925 2.120 2.1000

Table 4.2 Comparison of results obtained with this formulation (Huynen) and
by Kitlinski and Janisacz [4.44] for C-mode of asymmetrical coupled slot-lines

�-mode

Frequency Cv (�0=�
0) (�0=�

0)

(GHz) [Huynen] [Kit.-Jan.] [Huynen]

2 1.700 1.330 1.2350

4 1.725 1.370 1.3650

6 1.725 1.425 1.4226

8 1.775 1.470 1.4731

10 1.775 1.540 1.5447

12 1.725 1.580 1.5838

14 1.825 1.640 1.6349

16 1.725 1.690 1.6810

18 1.775 1.730 1.7255

20 1.875 1.775 1.7709

Table 4.3 Comparison of results obtained with this formulation (Huynen) and
by Kitlinski and Janisacz [4.44] for �-mode of asymmetrical coupled slot-lines
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Fig. 4.18 Integrands of set of the coeÆcients (4.19) for a slot-line (RTduroid
6010, thickness 0.635 mm, manufacturer's relative dielectric constant 10.8,
slot width = 0.390 mm); curve 1: k20

~A1; curve 2: k20
~A3; curve 3 : ~C1 + ~C3;

curve 4: ~D1 + ~D3 ; curve 5: k20
~E1 (indistinguishable from curve 1); curve 6:

k20 ~E3 (indistinguishable from curve 2)

times larger than the slot width (W = 0.390 mm in the present case), then
the maximum number nmax of terms needed for the summation is obtained
from relationship kxn = 2nmax�=Wg which yields

nmax =
8000 � 10 � 0:39 10�3

2�
= 5 (4.129)

If the slot-line is open, then the Romberg integration method [4.45] is
successfully applied to the integrands, because a large integration step size
is suÆcient for most part of the integration range (interval 2000-8000 in this
case). Hence, only a few evaluations of the integrands are needed in this inter-
val. Only the interval 0-2000 has to be strongly discretized by the Romberg
algorithm to take into account the presence of a maximum in the integrands.
A reduced number of evaluations of the integrands is needed when they have
a monotonic behavior in some subintervals, which ensures a rapid convergence
of the Romberg algorithm in these subintervals. Hence, the integration along
kx can be performed with a very few number of terms in the case of shielded
lines, or very few steps in the case of open lines. This is a major advantage
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Fig. 4.19 Characteristic impedance of the dominant mode (curve 1), and
e�ective dielectric constant of the dominant mode (curve 2) and �rst higher-
order mode (curve 3) of �nline with 20 spectral terms

of the formulation: the spectral �elds, hence the integrands of (4.19), have to
be evaluated for a very limited number of values for kx.

Figure 4.19 shows results obtained when calculating the parameters of
the dominant and �rst higher-order mode of the shielded line analyzed by
Schmidt and Itoh (Fig. 3b of [4.46]). They report that 200 spectral terms
and appropriate basis functions led to a convergence within 0.2 % for the
ratio (�=k0)

2. Using the variational approach, however, the characteristic
impedance (curve 1) and the propagation constant (curve 2) of the dominant
mode are calculated with equation (4.21) while expression (4.111) is used for
the propagation constant of the �rst higher-order mode (curve 3). The num-
ber of spectral terms used in (4.19) never exceeds 20. Hence, the numerical
complexity is strongly reduced, although the comparison with Figure 3b of
[4.46] shows such a perfect agreement that it is impossible to see the di�erence
between the two results on a �gure of normal size.

Applying Galerkin's procedure in the spectral domain results in a deter-
minantal equation involving 
 and the spectral variable kx, which is therefore
an implicit equation for 
. As reported by Jansen [4.14], a typical number of
spectral terms necessary to obtain a good convergence is between 100 and 500
terms for each calculation. Moreover, a number of evaluations of the determi-
nantal equation is necessary to �nd the roots. According to Jansen, a typical



204 CHAPTER 4. GENERAL VARIATIONAL PRINCIPLE

number of evaluations is 10. As a rule of thumb, the numerical complexity of
Galerkin's procedure can be evaluated by multiplying the number of terms by
the number of evaluations, the result being of the order of a few thousands.
Since no explicit formulation of 
 exists in this case, the tedious procedure
for �nding the root of the determinantal equation requires that a number of
integrations over the whole kx-spectrum have to be performed each time the
determinantal equation is solved. Hence, to evaluate the improvement in ac-
curacy when increasing the integration domain, the determinantal equation
has to be solved each time the integration domain is changed. Moreover, the
number of terms necessary may vary with the geometry of the structure and
the physical parameters of the layers. Hence, an a priori knowledge of an
upper limit for the integration is not available. For this reason, some authors
[4.6] choose an arbitrary very large limiting value for the integration, to ensure
suÆciently accurate results for a wide variety of topologies. They also assume
a virtual lateral shielding placed at a distance of about 10 times the slot
width and transform the integration process into a discrete summation [4.5].
Choosing a large limit of integration, they increase the computation time for
most of the cases of practical interest. On the contrary, the explicit varia-
tional formulation directly evaluates the e�ect of a modi�cation of the size of
the integration domain on the result: the integration can be stopped when
the convergence is found to be satisfactory, which minimizes the computation
time for each speci�c topology.

4.7 Characterization of the calculation e�ort

All the results presented in this chapter were obtained on a 25 MHz IBM
PC 80386. The propagation constant (a), attenuation (b), and characteristic
impedance (c) of a slot-line are represented in Figure 4.20, in the frequency
range 4-24 GHz. At each frequency, the calculation is stopped when the val-
ues of the three parameters computed from the solution of (4.21) each remain
within 0.1 % , when the size of the integration domain is increased. Fig-
ure 4.20d shows that this result is achieved in less than 1 second for each
frequency point. It illustrates that on-line results can be obtained with this
explicit variational formulation in the case of lossy multilayered planar trans-
mission lines.

In the following discussion, results provided by the variational principle
are compared with those from other methods, in terms of number of iterations,
accuracy of the results obtained, and computation time, taking into account
the computational environment.

4.7.1 Comparison with Spectral Galerkin's procedure

As already discussed in Chapter 3, the Spectral Domain Approach (SDA) uses
the Galerkin's procedure in the Fourier-transform domain in order to �nd the
propagation constant. A review of this technique is presented in [4.14] and
[4.47]. The SDA can be tedious for on-line designs of planar lines [4.14]. When
compared with variational equation (4.121), Galerkin's procedure searches for
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Fig. 4.20 Calculation of line parameters of slot-line (a) e�ective dielectric
constant; (b) attenuation coeÆcient; (c) characteristic impedance, (d) com-
putation time at each frequency

the complex root of the following implicit determinantal equation, obtained
in Chapter 3 (3.60):

det(
~Lst(
)) = 0 for strip-like problems (4.130a)

det(
~Lsl(
)) = 0 for slot-like problems (4.130b)

Solving the second-order variational equation for 
 di�ers from Galerkin's pro-
cedure. The general solution (4.122) of the equation is indeed known a priori
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while Galerkin's method replaces the equation by the implicit determinantal
equation (4.130a,b) to be solved for 
. Solving this equation requires the eval-
uation of the determinantal equation several times, and may be very diÆcult,
as mentioned by a number of authors [4.48]. This is because the method pro-
vides no information about the behavior of the implicit equation (4.130a,b)
with respect to 
. In particular spurious solutions may occur [4.11]. Solv-
ing (4.130a,b) requires speci�c numerical techniques, especially when losses
are present and evanescent modes are considered [4.12] and [4.15]. For these
reasons, the method is usually limited to lossless applications on dielectric
multilayered media, as mentioned by Jansen [4.14]. Under low-loss assump-
tions, Das and Pozar [4.15] propose to use \the spectral-domain perturbation
method" but, as they mention, it is only valid for small loss applications.
Such a method is not suited for general uses. Indeed Figure 4.15 shows val-
ues of the attenuation and propagation coeÆcients having the same order of
magnitude. When using the SDA, the number NS of spectral terms necessary
to obtain a good accuracy for each calculation of the determinant is typically
between 100 and 500 [4.12]. It has already been commented that a number
of evaluations of the determinant are necessary to �nd the complex roots. A
typical number of evaluations is NE = 10. The numerical complexity of SDA
can be quanti�ed by NS�NE, which is of the order of a few thousands [4.12].

On the other hand, for the variational equation (4.21), the coeÆcients
~Ai, ~Bi, ~Di, and ~Ei are obtained by summing NS spectral terms, while NE

has to be replaced by NI , the number of iterations necessary to obtain a
satisfactory convergence on 
. More precisely, NI is de�ned as the number
of iterations, carried out simultaneously on the real and imaginary parts of
(4.21) or (4.121), which are necessary to obtain successive values within x %
for both the real and imaginary parts of the solution:�����n � �n�1

�n

���� < x% (4.131a)

�����n � �n�1
�n

���� < x% (4.131b)

Figure 4.21 shows several parameters comparing the eÆciency of the vari-
ational principle (VP) (4.21), with that of the SDA using Galerkin's proce-
dure, on a coplanar waveguide up to 20 GHz. Both methods are applied to
the same low-resistivity Silicon-on-Insulator (SOI) structure as shown in Fig-
ure 4.15 (resistivity 20 
cm). When computing the propagation coeÆcient,
the iteration procedure is stopped when the convergence to x = 0:5 % is si-
multaneously obtained on both the real and imaginary parts of the solution.
Figure 4.21a shows that VP (-) agrees very well with SDA (o). From Fig-
ure 4.21b,d, it is concluded that the spectral variational principle is much
more eÆcient than SDA. It needs far fewer spectral terms and iterations per
frequency point: the numerical complexity of the SDA (NS �NE) is between
8000 and 12000 whilst that of the VP (NS � NI) is between 100 and 200.
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Fig. 4.21 Comparison of the eÆciency of the variational formulation (VP)
and of the SDA for a CPW transmission line (standard 20 
cm resistivity) (a)
real and imaginary parts of the propagation constant; (b) number of spectral
terms needed; (c) CPU times; (d) number of iterations for VP (+) and number
of evaluations of the determinantal equation for the SDA (o)

The very low values of NI are explained by the properties of the variational
solution, pointed out in the comments dealing with Figure 4.15. The reduced
number of spectral terms NS is due �rst to the variational nature of the so-
lution, which ensures that truncation e�ects on the spectral �eld have only
a small in
uence on the result. Secondly, it is also due to the fact that a
ratio of spectral terms is used in the variational expression (4.122), so that
errors made on terms involved in the numerator and denominator vanish. It
has to be underlined that the results provided by (4.21) and by Galerkin's
method, respectively, have been obtained using the same computer and pro-
gramming language (Matlab 4.0). As a consequence, the comparison between
CPU times is valid (Figure 4.21c). Hence, the variational principle (4.21) is



208 CHAPTER 4. GENERAL VARIATIONAL PRINCIPLE

much less time-consuming: it is less than 50 s for VP, while it is of the order
of 1,000 s for the SDA using Galerkin.

4.7.2 Comparison with �nite-elements solvers

The High Frequency Structure Simulator (HFSS) from Hewlett-Packard is
a 3-D electromagnetic wave simulator, computing electromagnetic �elds and
scattering parameters of a 3-D structure, geometrically and physically de�ned
by the user and enclosed in a box. The ports of the equivalent N -port are
speci�ed as limiting plane surfaces of the box. The user has to specify all
the materials inside the box, and boundary conditions on its surfaces. The
3-D mesh to be solved by the �nite-element method is built from a 2-D port
analysis: the vector wave equation is �rst solved in 2-D for each port using a
triangular adaptive mesh (iterative scheme) and yields the transmission line
parameters of the considered mode in each port. Hence, the 2-D port analysis
provides the transmission line parameters of any structure having the same
transverse section as the port.

Figure 4.22 compares results obtained from Version 3.0 of HFSS and from
the variational spectral form, for the same coplanar waveguide shown in Fig-
ures 4.15 and 4.21, whose transmission line parameters have been measured
[4.49]. The VP transmission line parameters (- - -) agree perfectly with the
experiment (|), while the results obtained with HFSS (o) are less accurate.
HFSS seems unable to take into account materials having high-loss frequency
dependent constitutive parameters. Furthermore, a 2-D computation with
HFSS takes about 7 minutes per frequency point, whereas only a few seconds
per frequency are needed using (4.21) on the same computer. Hence, the
variational principle (4.21) proves to be more eÆcient for high-loss structures
than this example of a popular 3-D tool.

Similar results are observed on strip lines, as shown in Figure 4.23. The
variational principle (4.21) and the �nite-element method are applied to the
shielded microstrip line investigated both in Section 4.4 and by Itoh and Mit-
tra [4.5],[4.26]. Attention is drawn to the fact that the structure is now lossy.
Figure 4.23a,b shows the e�ective dielectric constant and attenuation coeÆ-
cient, obtained using the variational principle (solid line) and a �nite-element
algorithm (circled line). In these �gures, it is observed that even after re�n-
ing the mesh from 180 elements to 448 elements (crossed line) discrepancies
remain between VP and FEM values. Figure 4.23c illustrates once more the
very limited numerical complexity of the VP in terms of number of spectral
terms and iterations, while Figure 4.23d compares the computation time for
FEM (in minutes) with that of the VP (in seconds). Applying FEM code
to the structure of Figure 4.4 requires about 3 and 9 minutes per frequency
for a 180 and 448 element-mesh respectively, while only a few seconds are
necessary when using the VP on the same computer. The CPU time in FEM
is crucially in
uenced by the number of elements of the mesh and by the eÆ-
ciency of the eigenvalue solver required by the FEM algorithm, which in turn
strongly a�ects the accuracy of the solution obtained [4.50].
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Fig. 4.22 Measured results (|), simulated with (VP) (- - -), and simulated
with HFSS (o) for transmission line parameters of multilayered lossy CPW
(a) attenuation coeÆcient; (b) e�ective dielectric constant; (c) real part of
impedance; (d) imaginary part of impedance (Reproduced from Proc. NUM-
ELEC'97 [4.49])

4.8 Summary

A general variational formulation for planar multilayered lossy transmission
lines has been established in this chapter. The formulation is very general.
It has a number of advantages, related to its variational character and the
explicit formulation. It can be used in both the spatial and the spectral do-
main, depending upon the e�ects it is sought to highlight. In combination
with conformal mapping, it drastically reduces the complexity and the time
of numerical computation. It leads to rapidly convergent results even when
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Fig. 4.23 Comparative results using variational principle (VP) and �nite-
element method (FEM) for shielded microstrip (a) e�ective dielectric constant;
(b) attenuation coeÆcient; (c) number of spectral terms (NS) and of iterations
(NI) required by VP; (d) CPU time in seconds for VP (|), and in minutes
for FEM

higher-order modes are considered. Mathieu functions are shown to be very ef-
�cient expressions for trial �elds of the dominant and the higher-order modes
in slots. The calculation is fast: it is performed on-line on a regular PC.
Results obtained on open and shielded lines have been successfully compared
with previously published data. The method is general enough to accomodate
gyrotropic lossy substrates. The method has been validated by actual mea-
surements on various types of lines like slot-lines, coupled slot-lines, �nlines,
and coplanar waveguides, in which YIG-layers may be included. It has also
been validated on various structures involving lines and transitions between
them. These experimental results are presented in the next chapter.
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chapter 5

Applications

5.1 Transmission lines

5.1.1 Transmission line parameters

Transmission line theory usually uses three parameters to describe the propa-
gation along a guiding structure [5.1]: the propagation constant � taking into
account the velocity of propagation, the attenuation coeÆcient � describing
the attenuation along the line, and the characteristic impedance Zc, the ratio
between the forward voltage and current waves. The impedance is usually
chosen in such a way that the power 
ow on the equivalent line equals the
power 
ow on the physical guiding structure, obtained by integrating the
Poynting vector over the cross-section of the structure. De�ning the z-axis as
propagation axis, the transmission line equations are

V (z) = V+e
�
z + V�e

+
z (5.1a)

I(z) =
1

Zc

h
V+e

�
z � V�e
+
z

i
(5.1b)

where we have de�ned 
 as in (4.1):


 = �+ j� (5.1c)

The power 
ow along the z-axis is expressed as

P (z) =
1

2
Re
�
V (z)I(z)�

�
= P0e

�2�z (5.2a)

with the de�nition

P0 =
jV+j2
2Zc

=
jV0j2
2Zc

=
ZcjI0j2

2
(5.2b)

Requiring P0 to equal the electromagnetic power 
ow yields:

P0 =
1

2

Z
S

�
e� h

�� � dS (5.3)
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5.1.1.1 Propagation constant

In Chapter 4 we derived spatial and spectral forms of an explicit variational
principle for the propagation constant 
. They consist of second-order equa-
tions for 


�
2
X
i

Ai � 

X
i

(Bi � Ci) +
X
i

Di � !2
X
i

Ei = 0 (4.17a)

in the spatial domain, and

�
2
X
i

~Ai � 

X
i

( ~Bi � ~Ci) +
X
i

~Di � !2
X
i

~Ei = 0 (4.21)

in the spectral domain, equivalent to (4.2), where the spatial or spectral coef-
�cients are functions of the spatial or spectral transverse dependencies of the
trial electric �eld components, as shown by expressions (4.17b-f) and (4.19a-
e), respectively.

5.1.1.2 Power 
ow

A simple calculation directly shows that P0 (5.3) can be expressed as a func-
tion of coeÆcients involved in the variational equations of (4.17a-f) and (4.21):

P0 =
�1
j!�0

h


X
i

Ai �
X
i

Ci

i�
for spatial trial �elds (5.4a)

=
�1
j!�0

h


X
i

~Ai �
X
i

~Ci

i�
for spectral trial �elds (5.4b)

where the coeÆcients Ai, Ci, ~Ai , ~Ci are de�ned, respectively, by expressions
(4.17b,d) and (4.19a,c).

Once the propagation constant has been calculated by (4.17a) or (4.21),
we directly obtain the value of P0 without any additional computation, since
(5.4a,b) only uses coeÆcients already calculated for obtaining 
. This is
another major advantage of our formulation. The power lost per unit length
on the equivalent line is then obtained as the �rst derivative of the power 
ow
along the z-axis:

Pdiss = �@P (z)
@z

= 2�P0e
�2�z (5.5)

5.1.1.3 Attenuation coeÆcient

A number of phenomena contribute to a non-zero value for the attenuation
coeÆcient �. Two of them have already been considered when using (4.17a).

A. Evanescent modes

These are readily obtained by solving the variational equation (4.17a), since
this equation may yield a complex solution, depending on the choice of trial
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�elds. If the trial �elds associated with a mode are properly chosen, then
the behavior of the propagation constant 
 will give the correct evanescent
behavior. This has already been illustrated in Chapter 4 where higher-order
mode propagation constants were calculated for shielded lines below cut-o�,
yielding a real value for the propagation constant 
 (Figs. 4.12 and 4.19).

B. Losses in the layers

As has been shown in Chapter 4, substrate losses are calculated by using
complex expressions for " and � in the variational equation, yielding a complex
solution for equations (4.2) and (4.21):


 = �s + j� where �s takes into account substrate losses.

Hence the substrate loss constant is directly obtained from the solution of
(4.2) calculated when " and � are lossy. This has already been illustrated
for a gyrotropic YIG-�lm, where real and imaginary parts of the propagation
constant were found simultaneously.

Two other categories of losses may also be present on planar lines, namely
conductor losses and radiation losses. The modeling of conductor losses is
performed as follows. Since equation (4.17a) is variational in the absence of
conductor losses, these are calculated by using a perturbational expression,
based on a skin-e�ect formulation [5.2]. Indeed in Chapter 4, we have devel-
oped expressions for trial �elds, assuming that the thickness of the perfectly
conducting layer is negligible, so that surface current densities are 
owing
on these layers. The perturbational approach that will now be used is valid
when the conductors are good, although not perfect, in other words under a
low loss assumption. The perturbational approach considers that the value of
the tangential magnetic �eld at the conducting interfaces under low loss does
not di�er much from its lossless value. This lossless value may be combined
with a skin-e�ect formulation to obtain an estimation of the conductor losses.
The skin-e�ect formulation has already been used for planar lines analyzed in
the spatial domain by Rozzi et al. [5.3]. In [5.4] we presented a new spectral
domain formulation of the skin e�ect, taking into account the variation along
the x- and z-axis of the magnetic �eld. It is summarized below.

A good conductor is characterized by the condition

� >> !"0 (5.6)

Under this assumption, Maxwell's equations result in di�usion equations in
terms of spectral electric �eld, magnetic �eld or current density. They have
as a general spectral solution

~x(kx; y) = ~x(kx; 0) e
�Ky (5.7)

where K =
p
j!�0�

x = e; h; j for the electric �eld, magnetic �eld, and current density,
respectively.
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By virtue of the perturbational approach, ~h(kx; 0) is equal to the magnetic
�eld at the conducting interface assuming losslessness. Hence it can be calcu-
lated as shown in Chapter 4. The surface impedance Zm of the conductor is
related to the tangential electric �eld at the surface of the conductor to the
tangential magnetic �eld as:

~e(kx; 0) = Zm
~h(kx; 0) (5.8a)

where

Zm =

r
j!�0
�

(5.8b)

Using Parseval's relations (Appendix C), the power dissipated on the two sides
of any conductive layer of thickness t is obtained as a function of the spectral
�elds as

Pdiss = e�2�z
Z +1

�1

Z t

0

~e(x; y) ~j�(x; y) dy dx

= e�2�z
Z +1

�1

Z t

0

~e(kx; y)
~j�(kx; y) dy dkx

=
�jZmj2

2

�
IN1 + IM1

�
e�2�z

with

Ii =

Z +1

�1

Z t

0

�
j ~hxi(kx; 0)j2 + j ~hzi(kx; 0)j2

�
e�2Re(K)y dy dkx (5.9)

where the subscript i = N1;M1 refers to the two layers adjacent to the
conductor, according to a previous de�nition (Chapter 4, Fig. 4.1).

The attenuation constant due to conductor losses is then obtained from
(5.5) as

�c =
Pdissj�=0
2P0j�=0

(5.10)

It should be noted that (5.10) is equivalent to (5.5) rewritten using the per-
turbational approach, that is for Pdiss, P and P0 calculated for � = 0 using
(5.9), (5.2a) and (5.4) respectively.

An important comment has to be made about the shape of the �eld used
for the skin-depth e�ect. This �eld is calculated not only without losses
but also for zero-thickness conductors: it is not the actual �eld for the lossless
�nite thickness case. However, the error made on the conductor losses due to a
�nite thickness of conducting layer is assumed to be small. Some authors have
studied theoretically [5.5]-[5.7] and experimentally [5.8]-[5.10] the limitations
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of existing modeling techniques when a �nite thickness is considered. In fact,
as mentioned by Itoh [5.11], the simplicity of the spectral domain technique
related to a Green's formalism fails when the zero-thickness assumption is not
valid. For these reasons, the zero-thickness assumption is usually maintained
but corrected by a perturbational calculation of conductor losses, based on a
skin-e�ect formulation which involves the thickness of the conductor.

Hence the total attenuation coeÆcient is the sum of two terms; �s due
to the substrate, obtained by the variational procedure, and �c due to the
conductors, obtained by a skin-depth perturbational formulation.

5.1.1.4 Characteristic impedance

When the guiding structure supports a pure TEM propagation mode, a unique
correspondence is found between the current and voltage of the equivalent line
and the physical magnetic and electric �elds existing in the structure [5.2] and
[5.12]. In the case of TEM lines, the characteristic impedance is equal to the
wave impedance, which depends only on the constitutive parameters of the
homogeneous medium surrounding the conductors of the TEM line.

The de�nition of a characteristic impedance for a multilayered guiding
structure (Fig. 4.1), supporting TE or TM modes is not unique, since a wave
impedance is de�ned for each TE or TM mode considered and also for each of
the layers considered. We only may use a relation between V+ and Zc when
the power 
ow P0 is assumed to be known.

Hence we have to relate the electromagnetic �elds in (5.3) to the voltage
or current waves of the equivalent transmission line. Using (5.2b) we relate
V+ to either a current or a voltage, as:

ZcPV =
V 2
0

2P0
Power-Voltage de�nition (5.11)

ZcPI =
2P0
I20

Power-Current de�nition (5.12)

A. Characteristic impedance for slot-like lines

As many authors [5.13]-[5.15], we choose for the characteristic impedance
of the dominant mode of slot-like lines the de�nition (5.11). It is easy to
relate the transverse component of the trial quantity de�ned in Chapter 4
for slot-like lines to a voltage concept, by integration over the �nite area of
the slot. The normalization factor for the trial transverse electric �eld across
the slot is chosen such that its integral across the slot is equal to the voltage
V0 arbitrarily imposed across the slot. As a consequence, the spectral �elds
and hence the spectral quantities in (4.19a-e), are proportional to V0. When
introduced into (5.4), the power 
ow P0 becomes proportional to the squared
power of V0, which renders expression (5.11) for the impedance independent
of V0.

This illustrates another advantage of the method presented here: no ad-
ditional computation is necessary to calculate the characteristic impedance of



220 CHAPTER 5. APPLICATIONS

the structure, because the power 
ow and hence the impedance, is directly
expressed as a function of the coeÆcients already used in the calculation of
the propagation constant.

B. Characteristic impedance for strip-like lines

The longitudinal component of the current density de�ned as the trial quantity
for strip-like problems is related to the total current I0 
owing on the strip,
using de�nition (5.12). This current is simply obtained as the integration
of the longitudinal current density over the strip area. Some authors [5.16],
however, propose another de�nition of the characteristic impedance, based
on a power-voltage de�nition, where the voltage is obtained from the line
integration of the electric �eld between the center of the strip and the ground
plane. Jansen and Kirschning have pointed out in [5.17] that the power current
de�nition has various theoretical advantages, because it is related to a current,
hence to a magnetic �eld, which is not responsible for the dispersion due to the
dielectric interface. As a consequence, the behavior of a calculation based on
a power-current de�nition will be less frequency-dependent than that with a
power-voltage de�nition, as observed from results presented in [5.16]. Hence,
the power-current de�nition of the characteristic impedance will better agree
with the pure TEM de�nition of Zc.

C. Other de�nitions for the characteristic impedance

It is important to note that the problem of a correct de�nition of characteristic
impedance remains unsolved, and is still the subject of discussions in the
literature. Williams, for example, attempts to present a uniform de�nition
for planar lines, based on causality considerations [5.18]. Also, measuring
this parameter is particularly diÆcult [5.19]. It requires speci�c calibration
techniques, such as those developed by the National Institute of Standards
and Technology (NIST) [5.20].

On the other hand, to the best of our knowledge, it is not proven that
expression (5.4) combined with either de�nition (5.11) or (5.12) yields a varia-
tional expression for the characteristic impedance and hence that the resulting
value of Zc is correct to the second-order.

We will nevertheless illustrate in this chapter that de�nitions (5.11) (5.12)
are very well validated by experiments carried out on a number of con�gura-
tions, because they are calculated using the solution of variational principle
(4.17a) and (4.21) for the propagation constant involved in their expressions
[5.21].

5.1.2 Microstrip

The validity of the variational approach (4.21) is �rst tested on a quasi-TEM
microstrip line, etched on a dielectric substrate with a complex permittivity
2:36(1� j:0038). The line width is 1.5 mm and has been designed to present
a 50 
 characteristic impedance on the substrate considered in this example .
Figure 5.1a shows the losses per unit length, obtained as the real part of the
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complex propagation constant 
, while Figure 5.1b shows the real part of the
complex e�ective dielectric constant, obtained from the imaginary part � of

 as

"eff =
�c0�
!

�2
(5.13)

Solid lines are for parameters extracted from measurements, while dashed ones
show values of parameters calculated using the variational principle (4.21).
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Fig. 5.1 Transmission parameters of microstrip line etched on a substrate
plate of thickness 0.508 mm and relative permittivity 2:36(1 � j0:0038) (a)
losses; (b) e�ective dielectric constant; solid lines are for measurements,
dashed ones for variational principle (4.21)

A good agreement is obtained for both losses and e�ective dielectric con-
stant. The measurement method is accurate and will be described in Sec-
tion 5.5.

5.1.3 Slot-line

Next, the validation is extended to a slot-line, whose dominant mode is of TE-
type. The line considered is etched on the same substrate as for the microstrip
in Figure 5.1, but its width is designed to be 0.37 mm in order to obtain a
good matching with the slot-to-microstrip transitions used for the measure-
ment. Such transitions will be described in Section 5.2. After measurements
and calibration, the e�ects of the microstrip transition to the slot-line are
removed, and the experimental values for the transmission parameters pre-
sented in Figure 5.2 are only those of the slot-line. Again, a good agreement
is observed for both losses and e�ective dielectric constant. This illustrates
that our formulation is eÆcient for dynamic (non quasi-TEM) situations. It
has to be noted, however, that the measuring frequency range is limited by
the bandwidth of the microstrip-to-slot-line transition (2-25 GHz). The out-
of-band mismatch is too high and the calibration procedure can no longer
compensate for the transition.
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Fig. 5.2 Transmission parameters of slot-line etched on a substrate plate of
thickness 0.508 mm and relative permittivity 2:36(1� j0:0038) (a) losses; (b)
e�ective dielectric constant; solid lines are for measurements, dashed ones for
variational principle (4.21)

5.1.4 Coplanar waveguide

As another example, Figure 5.3 compares the measured and calculated terms
of the scattering matrix of a coplanar waveguide impedance step. The sim-
ulation for this structure involves the attenuation coeÆcient, the propaga-
tion constant, and the characteristic impedance of the lines. Only the dom-
inant modes on the two lines are considered. The characteristic impedance
of the access line is taken as reference impedance for the scattering matrix
of the junction, as the measurement technique uses a de-embedding algo-
rithm which moves the reference planes for junctions between the two lines of
di�erent width. It can be seen in Fig. (5.2a,b) that a good agreement is ob-
tained for both the re
ection and transmission parameters. Hence, calculated
impedance agrees with measurement. Measured and computed phases also
agree very well, especially in the case of transmission coeÆcient (Fig. 5.3d).
This validates the calculated propagation constant. The calculated dielectric
and conductor losses also agree with the measured ones: calculated and mea-
sured transmission curves are indeed in coincidence when the electric length
of the step line is a multiple of a half wavelength. The degradation of the
measured scattering terms around 18 GHz for the coplanar line is attributed
to surface wave losses due to a mismatch of the coaxial-to-coplanar launcher
used for de-embedding.

5.1.5 Finline

Finally, a validation is performed for a boxed (or shielded) line, namely a �n-
line. It can be viewed as a slot-line on a dielectric substrate, surrounded by a
waveguide enclosure. Hence, the variational principle (4.21) can be used, but
the spectral integrals yielding the coeÆcients of its second-order equation have
to be replaced by discrete summations over spectral variable kx. The slot-line
inside the waveguide is etched on a substrate having a thickness and permit-
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Fig. 5.3 Modeled (- -) and measured (|) scattering terms of coplanar wave-
guide step (a) magnitude of re
ection coeÆcient; (b) magnitude of transmis-
sion coeÆcient; (c) phase of re
ection coeÆcient; (d) phase of transmission
coeÆcient

tivity di�erent from Figure 5.2; its width is designed to be 0.45 mm in order
to obtain a good matching with the slot-to-waveguide transitions used for the
measurement. The particular measurement method is described in Section 4.5
[5.22]. Figure 5.4 shows results obtained for the e�ective dielectric constant.
Again, a very good agreement is observed between the experimental values
(lines) and the calculations using the variational principle (4.21) (circles).

5.1.6 Planar lines on lossy semiconductor substrates

Planar transmission lines are frequently used as interconnects on multilay-
ered low-resistivity substrates in high-frequency MMICs, such as bulk silicon
wafers, doped areas in gallium arsenide (GaAs), or photo-illuminated layers
in optoelectronics. These substrates are modeled by using an equivalent loss
tangent, obtained from their resistivity �:

j!" = j!"0"r + 1=� (5.14a)

= j!"0"r

�
1� j

�!"0"r

�
(5.14b)

= j!"0"r
�
1� j tan Æequ

�
(5.14c)

Figure 4.22 compares the transmission line parameters obtained from the
variational spectral forms (4.21), (5.4) and (5.11), with measured transmis-
sion line parameters, for the same coplanar waveguide as in Figures 4.15 and
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Fig. 5.4 E�ective dielectric constant of �nline etched on a substrate plate
of thickness 0.272 mm and relative permittivity 2:22(1� j0:0018), waveguide
section 2a2 with a = 3:556 mm; solid lines are for measurements, symbols o
for the variational principle (4.21)
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Fig. 5.5 Results measured (solid), simulated with (VP) (- -), for transmis-
sion line parameters of microstrip line on low-resistivity silicon substrate of
resistivity 225 
cm (a) propagation constant; (b) real part of impedance; (c)
attenuation coeÆcient; (d) imaginary part of impedance
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Fig. 5.6 Results measured (solid), simulated with (VP) (- -), for transmis-
sion line parameters of coplanar waveguide on low-resistivity SOI substrate of
resistivity 20 
cm (a) attenuation coeÆcient; (b) propagation constant; (c)
real part of impedance; (d) e�ective dielectric constant

4.21. The VP transmission line parameters (- - -) perfectly agree with ex-
perimental results (|). It should be observed that propagation on high-loss
substrates is highly-dispersive in the low frequency range. A slow-wave mode
of propagation occurs, typical of integrated circuits (ICs) on low resistivity
substrates.

The variational principle (4.21) yields a similar agreement in the case of
stripline topologies on low-resistivity substrates. As an example, Figure 5.5
shows the transmission line parameters of a microstrip line on a lossy silicon
substrate, using (4.21). Again, perfect agreement occurs between the VP
transmission line parameters (- -) and measured ones (|) [5.23].

At higher frequencies, substrate losses have no e�ect on dispersion, but
the variational modeling still holds, as shown in Figure 5.6. Values of attenua-
tion, e�ective dielectric constant and characteristic impedance extracted from
measurements agree with simulated ones (Fig. 5.6a,c,d) in the millimeter wave
frequency range (50-75 GHz). The peaks observed in the measurement around
70 GHz are due to a problem during calibration and not to the device.

5.1.7 Planar lines on magnetic nanostructured substrates

Variational formulas established for perturbation problems are particularly
eÆcient for modeling the behavior of magnetically-nanostructured planar cir-
cuits and devices over a wide frequency range, as shown in Figure 5.7. The
device consists of an array of magnetic metallic nanowires embedded in a
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Fig. 5.7 Microstrip line on nanostructured substrate, including nanowires
(Reproduced from Proc. PIERS'2000 [5.25])

porous dielectric substrate of thickness H [5.24][5.25]. The metallic wires are
perpendicular to the dielectric plate, all with diameter D. Typical values of D
are in the nanometer range, i.e. between 50 and 500 nm. This substrate was
�rst developed for microstrip applications: a microstrip is deposited on the
top side of the composite substrate, while the bottom is metallized to serve
as ground plane. The magnetic wire is made of cobalt, nickel or iron.

The experimental results presented in Figure 5.8 (solid lines) show that
the device has interesting tuning properties at microwave frequencies. Trans-
mission measurements between the input and output of microstrip exhibit a
stopband behavior in a certain frequency range, which is shifted to higher fre-
quencies when a DC-magnetic �eld is applied parallel to the nickel nanowires
(Fig. 5.8a,c). A similar shifting behavior is obtained with the other ferromag-
netic metals considered (cobalt and iron), but at �xed or zero DC-�eld the
center frequency of stopband di�ers with the kind of wire material.

We have successfully related these experimental relationships to ferrimag-
netic theory [5.24][5.25]. This theory predicts a resonance behavior at mi-
crowaves for ferrimagnetic materials, tunable when applying a DC-magnetic
�eld. Hence, ferromagnetic nanowires act like thin ferrite implants in the di-
electric substrate, and can be treated by variational principles particularized
for material perturbation problems. In Chapter 2, a formulation correct to
second-order is obtained for the shift induced on the propagation constant, in
the case of material perturbation:

j(�1 � �) �
j!

Z
S

fe� � (�" � e) + h
� � (�� � h)g dSZ

S

h
� � (az � e) dS �

Z
S

e� � (az � h) dS

(2.94b)

with �" = "1 � "
�� = �1 � �
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Fig. 5.8 Transmission model (2.94a) (dashed line) and experiment(solid line)
on microstrip on nanostructured substrate (D = 500 nm, H = 20 �m), with
cobalt nanowires; magnitude [dB] and phase [radians] for (a) Hdc = 350 Oe;
(b) Hdc = 3650 Oe

Based on the ferromagnetic resonance hypothesis, a full analytic model is
derived using the variational principle (2.94a,b). We take as trial �elds the
electric and magnetic �elds between the two conductors of a parallel plate
transmission line, assuming that a uniform current density is 
owing on each
conductor. This assumption is valid for a wide microstrip line, that is for
geometries with high W=H ratios (typical values for Fig. 5.7: W=H = 20).
The permeability tensor �1 is taken equal to the gyrotropic tensor model-
ing the ferromagnetic resonance e�ect, as introduced in Appendix D. Other
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permeabilities and permittivities are scalar. Assuming that the propagation
constant in the absence of nanowires is calculated exactly, formula (2.94a)
yields the propagation constant of the microstrip line represented in Fig-
ure 5.7. The dashed curves in Figure 5.8 are calculated with the resulting
model, obtained by computing the transmission factor e�
L where L is the
length of the microstrip. An excellent agreement with experiment is observed,
for both magnitude and phase and for each value of magnetic �eld considered.

5.2 Junctions

5.2.1 Microstrip-to-slot-line transition

Simple transitions between slot lines and measuring equipment are necessary
for testing and designing slot-line circuits. The �rst attempt to measure slot-
line characteristics was made by Cohn [5.26], followed by Mariani et al. [5.27]
and Robinson and Allen [5.28]. They used a direct transition between a coax-
ial cable and the slot-line. The drawbacks of this transition are the poor
agreement between modeling and experiment, and the diÆculty of manufac-
turing repeatable transitions. The transition has, however, been used by Lee
[5.29] to check the validity of his slot-line impedance model.

The microstrip-to-slot-line transition shown in Figure 5.9 o�ers an ele-
gant way to measure and characterize slot-like devices. The frequency range
over which this characterization is eÆcient is related to the bandwidth of the
microstrip-to-slot-line transition. Thus we need an accurate model for this
transition, in order to optimize its design for wideband applications. This
transition was introduced by Cohn [5.26] and used by Mariani et al. [5.27],
and Robinson and Allen [5.28]. It has been used for the propagation constant
measurements presented in the previous section.

We model the transition as two transmission lines ended by quarter-
wavelength stubs (Fig. 5.9a) and interconnected via a coupling network (Fig.
5.9b). The network represents the coupling area shown in Figure 5.9c. It
consists of:
1. a transformer of ratio [5.5],[5.26], where n is a function of frequency: it
depends on the con�guration of the magnetic �elds around the strip and slot,
whose shape is a function of wavelength and hence of frequency (Fig. 5.9c)
2. two fringing capacitances C1 modeling the interaction of the electric �eld
between the strip and slot in the coupling area
3. an equivalent capacitance C2 describing the electric �eld across the slot in
coupling area
4. a series inductance L modeling the strip crossing the slot in coupling area.

5.2.1.1 Inductance

The value of L is taken equal to the internal inductance of a wire of length
equal to the width Ws of the slot in the coupling area:

L =
10�7Ws

2
[H]
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Fig. 5.9 Microstrip-to-slot-line transition (a) topology; (b) equivalent circuit
for modeling coupling area; (c) coupling area

5.2.1.2 Capacitances C1 and C2

We deduce the equivalent capacitances C1 and C2 from the line parameters of
the mode propagating along the piece of conductor-backed slot-line (Fig. 5.10).
It is obvious that the electric �eld behavior in this structure induces a capac-
itive e�ect.

5.2.1.3 The ratio n of the transformer

Knorr [5.30] proposes the following formulas for the transformer ratio n:

V 0
1 = nV 0

2 (5.15a)
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Fig. 5.10 Conductor-backed slot-line

I 02 = nI 01 (5.15b)

where

n =
1

cos(�) � sin�
tan q

(5.15c)

� =
2Huf

3
(5.15d)

q = �+ arctan
�u
v

�
(5.15e)

v =
p
"eff s � 1 (5.15f)

u =
p
"r � "eff s (5.15g)

Since the slot-line is conductor-backed in the coupling area, we improve Knorr's
formula by introducing into v and u the e�ective dielectric constant of the
conductor-backed slot-line of Figure 5.10 computed using variational princi-
ple (4.21) instead of the value corresponding to a simple slot-line.

5.2.1.4 VSWR of junction

The input impedances of the quarter-wavelength stubs are

Zs = Zcs tanh(
sLs) (5.16a)

for the slot stub, where Ls is the e�ective length of the stub, taking end e�ects
into account, and 
s the propagation constant of slot, and

Zm = Zcm coth(
mLm) (5.16b)

for the microstrip stub, where Lm is the e�ective length of the stub, taking end
e�ects into account, and 
m is the propagation constant of microstrip. Zs and
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Fig. 5.11 Characterization of the microstrip-to-slot-line transition (a) com-
parison between Knorr's model and measured re
ection coeÆcient; (b) com-
parison between conductor-backed slot-line model and measured re
ection co-
eÆcient

Zm are calculated using (5.11) and (5.12) for the characteristic impedances
and variational principle (4.21) for the complex propagation constants. Using
the intermediate variables

Y = j!C2 +
1

Zs
+

1

Zcs
(5.17a)

A1 = 1� 2

!2LC1
(5.17b)

A2 =
1� nA1

Y A1

n + 1
nj!L

(5.17c)

A3 = Zm + (1� n+
2Y

j!C1
)A2 +

2n

j!C1
(5.17d)

the VSWR of the equivalent circuit of Figure 5.9b is de�ned as

VSWR =
1+ �1
1� �1

(5.18a)

where

�1 =
A3 � Zcm
A3 + Zcm

(5.18b)
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Fig. 5.12 Topology of planar hybrid T-junction

5.2.1.5 Results

Figure 5.11a compares our measurement of the re
ection coeÆcient of a
microstrip-to-slot-line junction and Knorr's model evaluated with only a trans-
former ratio. It is observed that the bandwidth of the measured and simu-
lated re
ection coeÆcients do not match well. A signi�cant improvement is
obtained when introducing the modi�ed value for the transformer ratio, ca-
pacitances C1 and C2 and inductance L, as observed at Figure 5.11b. In
particular, the location of the zeros and the magnitude of the re
ection co-
eÆcient in the bandpass agree well. The observed improvement is due to
accurate modeling of the e�ective dielectric constant formula (5.15a-g).

5.2.2 Planar hybrid T-junction

Figure 5.12 shows a planar hybrid T-junction. It has the following phase-shift
properties:
1. When port IV is fed, the waves at ports I and II are in phase.
2. When port III is fed, the waves at ports I and II are out-of-phase.

The structure of Figure 5.12 has been designed at 25 GHz by using the
frequency-dependent models developed for:
a. propagation coeÆcient and impedance of single (1) and coupled (3) slot-
lines, including dielectric and ohmic losses
b. uniplanar junctions (4)(5)
c. microstrip-to-coupled slot-line junction (2).

All junctions were optimized to be as wide-band as possible. Figure 5.13
shows the phases measured at the di�erent ports. A good behavior is observed,
since paths I-IV and II-IV are in phase (Fig. 5.13a,b), while paths I-III and
II-III are out-of-phase (Fig. 5.13c). This illustrates that variational models
are accurate, especially for the line parameters and the slot-line-to-microstrip
transition.
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Fig. 5.13 Phase measurements on planar hybrid T-junction (a) phase of path
I-IV; (b) phase of path II-IV; (c) phases of paths I-III and II-III

5.3 Gyrotropic devices

5.3.1 State-of-the-art

Because of the increasing development of wideband communication systems,
there is a growing need for tunable components compatible with planar in-
tegrated con�gurations. Such elements are used as phase-shifters or tunable
resonators and �lters in oscillators and frequency synthesizers, for on-board
and automotive systems operating at microwave and millimetre-wave frequen-
cies.

For this reason, research involving planar lines on anisotropic or gyrotropic
substrates for the 20 past years has concentrated on two areas: the �rst is
modeling and designing planar lines on magnetic substrates that may serve
as ferrite phase shifters or planar circulators. The second is designing mag-
netostatic wave (MSW, Appendix D) devices, including YIG-�lms operating
as frequency-tunable devices in frequency synthesizers, channel-�lters, delay
lines, and tuned oscillators. In the �rst category, the DC-biasing magnetic
�eld is usually kept constant, while tuned devices use the variation of DC-�eld
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to modify the operating frequency.

5.3.1.1 Planar lines on magnetic and anisotropic substrates

Various con�gurations have been investigated for planar phase shifters. In all
cases, the propagation constant has to be calculated. Wen [5.31] proposed us-
ing a coplanar waveguide supporting a piece of YIG-�lm and experimentally
tested the phase-shift properties of the structure. No attempt to calculate
this phase-shift was made. The same year, Robinson and Allen [5.28] exper-
imentally tested a slot-line phase shifter in the same con�guration as Wen.
A number of quasi-TEM modeling methods have been developed, based on
variational formulas for inductance or capacitance per unit length. Mass�e
and Pucel [5.32][5.33] de�ned an equivalent �lling factor for the e�ective per-
meability of the line and calculated the capacitance per unit length of a mi-
crostrip on a magnetic substrate to deduce its dispersion and phase behavior.
Other con�gurations supporting quasi-TEM modes on magnetic substrates
were investigated with a similar approach by Kitazawa [5.34] and Horno et
al. [5.35].

On the other hand, lines supporting non-TEM modes are usually analyzed
by the moment method, and the implicit Galerkin procedure is used to �nd the
dispersion of the gyrotropic layer. This was done by Jackson for slot-lines and
coplanar waveguides [5.36], and by Mesa et al. [5.37] for coplanar multistrip
lines. Usually, the magnetostatic range is never taken into account when
calculating propagation constants, and the losses of the layer are neglected
[5.38].

5.3.1.2 YIG-tuned planar MSW devices

For many years, gyrotropic passive planar components have been used as
wide-band tunable resonators or phase-shifters for space quali�ed YIG-tuned
oscillators. They compare advantageously with YIG-sphere resonators and
�lters, because of their planar geometry and two-dimensional coupling mech-
anism, yielding a reduction of mass and size. The desired e�ect results from
a judicious combination of planar transmission lines with planar gyrotropic
YIG-ferrite �lms which operate in their magnetostatic wave frequency range
[5.39]. Various con�gurations are summarized in Figure 5.14. They all consist
of planar YIG-ferrite layers cut as resonators and coupled to planar transduc-
ers etched on a dielectric substrate. The magnet poles generate a DC-magnetic
�eld. Taking advantage of the ferrite nature of the �lm, the resonant frequency
of the structure is varied by changing the applied DC-magnetic �eld. The
most signi�cant part of the theoretical work performed on planar MSW de-
vices deals with MSW delay-lines (Fig. 5.14f). It consists of a planar YIG-�lm
epitaxially grown on a Gadolinium-Gallium-Garnet (GGG) crystal, coupled
to microstrip transducers. The insertion loss and delay between ports 1 and
2 are varied with frequency by changing the applied DC-magnetic �eld. The
model is based on the following assumptions:
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1. magnetostatic approximation
2. non-linear e�ects are neglected
3. uniformity of �elds along the length of conduction strips
4. good conductors are assumed and thickness of strips is small
5. �nite length (along z-axis) of YIG-�lm is not considered
6. non-uniformity of DC-magnetic �eld is not considered.

The theoretical model evaluates the part of power which is \radiated" from the
microstrip into the YIG-�lm. The result is an equivalent radiation impedance
loading the microstrip transducer. It is obtained by integrating over the con-
tinuous spectrum of the various propagating modes along the z-axis in the
YIG-�lm. As a consequence, tedious integrations in the complex plane us-
ing the residue method are necessary [5.40]. This technique has been applied
by a number of authors [5.41]-[5.44]. Then, a rough evaluation of the power
transmitted between ports 1 and 2 is obtained.

To our knowledge, no attempt has been made to model the various YIG-
resonator con�gurations for magnetostatic forward volume waves (MSFVW)
depicted in Figure 5.14b-e, used for YIG-tuned oscillators. In particular,
the con�gurations for which no physical contact exists between the planar
transducer and the YIG-�lm have never been modeled. Also, the structures
of Figure 5.14 cannot be easily analyzed by conventional variational principles
[5.45] or transmission line analysis techniques, since these methods only are
valid provided the present media are either isotropic or lossless.

The following section illustrates the eÆciency of various variational for-
mulations that we have developed for planar multilayered lossy gyrotropic
structures used for MSW devices. The approach departs from the implicit
full-wave methods for modeling multilayered magnetic planar lines, and from
the radiation impedance concept, because we consider the resonator as a res-
onant transmission line whose parameters are calculated from explicit vari-
ational formulations. Hence, this approach advantageously compares with
implicit methods since on-line results can be obtained with a regular PC in
a few seconds. The formulation includes any spatial non-uniformity of the
non-Hermitian tensor describing the gyrotropic layer. It can be used both in
the spatial and the spectral domains. This will be illustrated when calculating
an undercoupled MSW-resonator modeled with the spatial domain formula-
tion, and an overcoupled MSW-resonator modeled with the spectral domain
formulation. In both cases, trial potentials and �elds are derived under the
magnetostatic assumption (Appendix D, Chapter 4).

5.3.2 Undercoupled topologies

The con�gurations depicted in Figure 5.14 can be divided into two classes:
under- and overcoupled topologies, depending on the proximity between the
YIG sample and the coupling planar transducer.

Con�gurations b,c,d involve microstrip transducers. A schematic repre-
sentation of the magnetic �eld patterns inside the YIG-�lm is shown for each
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con�guration in Figure 5.14b-d. These should be compared with the �eld
representation in an isolated YIG-�lm of �nite width (Fig. 5.14a). As we see,
con�gurations b and c, for which the microstrip has no contact with the YIG-
layer (side-coupling), exhibit a magnetic �eld pattern which slightly di�ers
from the pattern of an isolated �lm. As a consequence, the �eld con�gura-
tion in the YIG-�lm can be approximated by that of the isolated YIG-�lm of
Chapter 4. We model the �lm as an equivalent transmission line (Fig. 5.15a,b)
along the z-axis (Fig. 5.14a), with forward and reverse propagation constants
computed from MSW assumption as follows. In Chapter 4, the Perfect Mag-
netic Wall (PMW) assumption was used to derive the dispersion relationship
for MSW inside the planar YIG-�lm. We have shown in [5.46] that a more
suitable description, taking into account the non-uniform demagnetizing e�ect
(Appendix D), is obtained when trial magnetostatic potential (4.33) inside the
YIG-�lm is replaced by the following:

	YIG
3 (x; y; z) =

�
A sin kxx+B cos kxx

�
Y3(y)e

�
z for 0 � x �W (5.19a)

	L
3 (x; y; z) = Le+
nxY3(y)e

�
z for x � 0 (5.19b)

	R
3 (x; y; z) = Re+
n(x�W )Y3(y)e

�
z for x �W (5.19c)

where W is the width of the YIG-�lm and Y3 the y-dependence (Chapter 4).
The x-dependence of the potential is left unknown in (5.19a-c) in order to
allow use of a more rigorous boundary condition than the PMW-condition.
On the left- and right-sides of the YIG-�lm in layer 3 the potential is assumed
to exponentially decrease from the edges (5.19b,c). Imposing boundary con-
ditions at planes x = 0 and x = W yields a relationship between kx and 
,
involving values at the edge of the �lm because of the non-uniform demagne-
tizing e�ect, and an expression for the ratio B=A:

tan kxW =
�2
n�0�xx;3kx

(�0
n)2 �
�
�zx;3


�2 � ��xx;3kx�2 (5.20)

B=A =
�xx;3kx


�zx;3 + 
n�0
(5.21)

Assuming that kx is the unknown in (5.20), the kx-solution is independent
of the sign of 
, that is from the forward or reverse nature of propagation.
However, this is not the case for coeÆcient B whose value di�ers with the sign
of 
, as shown by (5.21). Hence, we have theoretically demonstrated that when
taking into account an edge e�ect related to a non-uniform demagnetizing
e�ect for a �nite-width YIG-�lm, it is impossible, with the same pattern of
�eld, to obtain identical forward and reverse propagation coeÆcients for a
unique physical value of kx. This is only possible for isotropic layers, having
no zx tensor components.

Having obtained these dependencies, the various integrands of coeÆcients
of equation (4.2) are expressed using (4.34a-c) and (4.36a-c) for the trial
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Fig. 5.15 Equivalent circuits modeling various YIG-devices topologies (a)
one-port undercoupled YIG-to-microstrip con�guration; (b) two-port under-
coupled YIG-to-microstrip con�guration

electric �eld, derived from the magnetostatic potential. The x-dependence
of the integrands is the product of the x-dependence of the inverted non-
uniform permeability tensor with simple sinusoidal functions. This integral is
evaluated numerically by a simple trapezoidal rule algorithm. CoeÆcients A,
B, C, and E in each layer are summed and equation (4.2) is solved for 
.

The �nal result consists of two complex propagation constants noted 
f
and 
r, associated respectively with a forward and reverse propagation direc-
tion. They are obtained when solving equation (4.2) with the set of values
(kx; B) from (5.20) (5.21) which best matches the outside source �eld on the
microstrip transducer.

Figure 5.16 (con�guration of Fig. 5.14a) shows the results obtained for

f and 
r. A signi�cant di�erence is observed between the forward (solid)
and reverse (dashed) propagation coeÆcients at the same frequency. Hence
non-reciprocal e�ects are possible. This is in contradiction with the asser-
tions found in literature [5.47][5.48], where the propagation of magnetostatic
forward volume waves (MSFVW) is stated to be reciprocal. This is because
the analysis methods found in literature are based on the PMW-assumption,
and do not take into account the edge e�ect due to the demagnetizing e�ect.
In our formulation, we involve the constitutive parameters �xx;3 and �zx;3 in
calculating the kx-constant.

Undercoupled resonators are hence described by an equivalent transmis-
sion line modeling the YIG-�lm, having di�erent forward and reverse propa-
gation constants, and coupled to microstrip-transducers by coupling networks
K (Fig. 5.15). The z-dependence of the magnetostatic magnetic �elds inside
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Fig. 5.16 Forward (solid line) and reverse (dashed line) propagation constants
in YIG-�lm calculated with variational principle using non-uniform internal
DC-�eld and rigorous boundary conditions at edge of �lm

the YIG-�lm thus has the general form:

Zx;y(z) = Vfe
�
fz � Vre

+
rz for x- and y-components (5.22a)

Zz(z) = 
fVfe
�
fz + 
rVre

+
rz for z-component (5.22b)

5.3.3 One-port undercoupled topology

For a one-port con�guration, the calculation of the input impedance is suÆ-
cient. We consider port 1 (Fig. 5.14b). From Poynting's theorem, the one-port
equivalent impedance Zr1 of the resonator is related to the energy contained
in volume V [5.49]:

1

2
jV1j2

� 1

Zr1

��
= 2j!

Z
V

�
B �H� �E � "�E��

dV (5.23)

The �elds in (5.23) are derived from the magnetostatic assumptions (Chap-
ter 4), but with a z-dependence (5.22a,b) and transverse dependencies (5.19a-
c) for the magnetostatic potential in the YIG-�lm. The boundary condi-
tions at z = 0 and z = �L are approximated by a PMW, together with
an exponentially-decaying Bz2 �eld in the left and right areas outside the
YIG-sample, yielding

Vr
Vf

= e(
f+
r)L (5.24)



240 CHAPTER 5. APPLICATIONS

11.4 11.5 11.6
−6

−4

−2

0

Frequency in GHz

dB

(a)

11.4 11.5 11.6
−130

−120

−110

−100

−90

Frequency in GHz

de
gr

ee
s

(b)

Fig. 5.17 Comparison between modeled (dashed) and measured (solid) re
ec-
tion coeÆcient of one-port undercoupled microstrip-to-YIG con�guration (a)
magnitude; (b) phase

and the voltage induced on the microstrip line

V1 = �j!
Z W

0

Z 0

�H2

BL
z2(x; y; S + L+Wmic=2) dy dx (5.25)

where Wmic is the width of microstrip transducer and S the spacer between
transducer and YIG-�lm. Equation (5.24) combined with �eld descriptions
(5.19a-c) to (5.22a,b) yield electric trial �elds under magnetostatic assump-
tion, with a z-dependence derived from (5.22a,b). These trials are introduced
in expression (5.23) for the input impedance. The modeled re
ection co-
eÆcient (dashed) is compared with the measured one (solid) in Figure 5.17.
Model and experiment agree very well. This demonstrates the eÆciency of the
formulation for lossy gyrotropic media. As expected, the con�guration is un-
dercoupled, as can be seen from the phase of re
ection coeÆcient (Fig. 5.17b):
the phase variation does not exceed 180 degrees in the resonant range.

5.3.4 Two-port undercoupled topology

The scattering matrix of the two-port con�guration is obtained from its

impedance matrix. We de�ne two impedance matrices Zr and Zm associated
respectively with the YIG-resonator and the coupled microstrip transducers
(without YIG-sample). Terms Z11r and Z22r have already been calculated:

Z11r = Zr1 (5.26a)

Z22r = Zr2 (5.26b)

The two mutual terms are deduced from the self-impedances as follows. Look-
ing at port 1 (Fig. 5.14c), the total ratio V2=V1 derived from (5.22b) and (5.24)
must preserve the phase delay from one port to the other, so that the mean
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delay factor Im 0:5(
f + 
r)L is added:

V2
V1

= e0:5 Im(
f+
r)L

fe


fL + 
re
�
rL


fe�
fL + 
re
rL
(5.27)

From ratio V2=V1 we easily deduce the coupled terms of the impedance matrix
of the resonator:

Z21r =
V2
V1
Zr1 (5.28a)

Z12r =
Zr1
V2=V1

(5.28b)

The impedance matrix of the YIG-microstrip transducer con�guration is the
sum of the two impedance matrices

Z = Zr + Zm (5.29)

where Zm is the impedance of the coupled microstrip transducers without

the YIG-�lm. De�ning a reference impedance ZR, the scattering matrix S is

derived from the impedance matrix Z.
We validate the model by designing a two-port microstrip-to-YIG MS-

FVW Stray-Edge Resonator (SER) (Fig. 5.14c). The phases of the re
ec-
tion terms, not shown here, exhibit an undercoupled behavior similar to Fig-
ure 5.17b. Hence, the modal propagation constants are calculated without
taking into account the vicinity e�ect of the transducers, because of the weak
coupling. Due to demagnetizing e�ects, the internal �eld is not uniform along
the width of the sample, and the permeability tensor is not uniform over the
cross-section. As a consequence, the two forward and reverse solutions com-
puted for the propagation constant are applicable. The measured and modeled
magnitudes of both the reverse and forward transmission terms show a good
agreement (Fig. 5.18a,b). However, Figure 5.18c,d highlight a signi�cant non-
reciprocal e�ect: the modeled phase (dashed line) of the reverse and forward
transmission terms are markedly di�erent. This disparity has also been con-
�rmed experimentally (solid lines) [5.46],[5.50][5.51]. It should be noted that
the designs of tunable oscillators using MSFVW SERs found in the literature
use one-port con�gurations [5.52][5.53].

5.3.5 One-port overcoupled topology

A large strip located between the YIG-sample and the dielectric layer strongly
modi�es the pattern of the magnetic �eld, since the current 
owing on the
microstrip forces the magnetic �eld to surround the strip. Hence, the mag-
netostatic �elds in the resonator have to be calculated in the presence of the
conducting strip. We expect the resonator in con�guration Figure 5.14d to
be overcoupled.
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Fig. 5.18 Comparison between modeled (dashed) and measured (solid) trans-
mission scattering terms of two-port undercoupled microstrip-to-YIG con�g-
uration at 6 GHz (a) magnitude of reverse transmission; (b) magnitude of
forward transmission; (c) phase of reverse transmission; (d) phase of forward
transmission

Two models have been tested for the one-port overcoupled topology. The
�rst is the transmission-line approach depicted in Figure 5.19, showing a top
view of the topology (a), its equivalent circuit (b) and the cross-section of
its equivalent transmisson line (c). One simply calculates the propagation
constant and characteristic impedance of a boxed microstrip line in the pres-
ence of a YIG-layer and with lateral perfect magnetic walls. Hence, the input
impedance of the line and the resulting re
ection coeÆcient are obtained, for
a particular reactive load at the end of the microstrip transducer. The cal-
culations use the variational principle (4.21) in the spectral domain, because
of the presence of a strip conductor of �nite extent in the close vicinity of
the YIG-layer. As a consequence, trial spectral �elds are derived from the
spectral magnetostatic potential solution of a Fourier-transformed magneto-
static equation [5.54]. The spectral �eld components are related to surface
current densities on the strip, as previously done in Chapter 4 for the boxed
microstrip line. This enables the computation the trial spectral �eld in the
whole transverse section.

The second approach uses the fact that the following expression for the
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Fig. 5.19 Equivalent transmission line model of one-port overcoupled YIG-to-
microstrip con�guration (a) top view; (b) equivalent circuit; (c) cross-section
in z = L/2 of equivalent line

impedance, similar to (5.23), is based on squared powers of �elds, hence on
energy, so that it can be expected that its right-hand side exhibits a stationary
behavior:

1

2
Zr1jI1j2 = 2j!

Z
V

�
B �H� �E � "�E��

dV (5.30)

Davies [5.55] mentions the use of the stationarity of the right-hand of equation
(5.30) to deduce some variational expressions for the resonant frequency of
cavities. Collin [5.56] makes use of the same stationarity assumption to deduce
stationary formulas for the equivalent reactive load of dielectric obstacles in
waveguides. We have proven [5.54] the stationarity of the right-hand side
of equation (5.30) under magnetostatic wave assumption when the volume
of integration contains gyrotropic lossy media. We applied it to the top-
overcoupled con�guration of Figure 5.14d, modeled as an equivalent cavity
instead of a transmission line. Basically, the trial transverse magnetostatic
�eld con�gurations are identical for the two approaches, but their integration
is made in a transverse section only for transmission line formulation (4.21)
while it is computed in the whole cavity volume for the energetic formulations
(5.30). Hence, the total trial �eld for the second approach involves a trial
longitudinal z-dependence similar to (5.24) but with 
f = 
r and PMW-
boundary conditions at z = 0 and z = �L. Figure 5.20a,b compares the
two variational approaches, i.e. the equivalent transmission line modeled by
(4.21) (solid), and the cavity model using energetic formula (5.30) (dashed).
Both formulations predict the overcoupled behavior which is experimentally
observed [5.54]. The calculated magnitudes of re
ection coeÆcient di�er by
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5.4 Optoelectronic devices

Multilayered p-i-n photonic devices are developed for ultra wideband opto-
electronic applications, with several advantages. First, ultra-large intrinsic
bandwidths can be obtained by reducing the thickness of the intrinsic layer
and hence the carrier transit times inside the device. Secondly, suitable val-
ues for the thickness and dielectric constant of some layers can be selected
in order to con�ne the optical beam in the vicinity of the absorbing intrinsic
layer, and to guide it in the case of travelling wave operation. Finally, high-
doping levels are imposed on some layers to obtain the desired opto-electrical
(O/E) conversion, implying that the propagation mechanism is usually of a
slow wave type. This means that even for very short guiding structures the
propagation e�ects are important at microwave frequencies.

Several papers have been published about modeling slow wave propaga-
tion in multilayered semiconductor transmission lines. To our best knowledge
they deal with metal-insulator-semiconductor structures studied by Guckel et
al. [5.57], or Schottky structures on Si or GaAs semiconducting layers, as
presented by J�ager [5.58]-[5.60]. The methods found in literature for analyz-
ing such structures (quasi-TEM or spectral domain analysis, mode-matching
method) assume that the semiconductor is divided into several homogeneous
layers of in�nite extent [5.61]-[5.63].

This section presents a variational approach for modeling the transmis-
sion line behavior in Travelling Wave Photodetectors (TWPDs). Excellent
reviews of the TWPD concept are given in [5.61] and [5.64]. Waveguide pho-
todetectors are devices where the electrodes collecting the photogenerated
current act as a transmission line. Hence, the photogenerated carriers act as
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a distributed radio-frequency (RF) source of current inducing voltages and
currents travelling on the electrodes towards their ends. TWPDs are wave-
guide photodetectors in which the optical signal is guided along the length
of the device as well as the RF photogenerated signal, so that the RF mod-
ulating envelope of the optical carrier travels towards the matched output of
the device at the group velocity, undergoing no re
ections. Also, the trade-o�
between maximal internal eÆciency and transit-time bandwidth limitation
is avoided, because the directions of optical beam propagation and carrier
drift are orthogonal. Under such conditions, and when the group velocity
of the optical signal matches the velocity of the microwave signal, the band-
width of TWPDs is limited only by the �nite carrier transit times, and by
microwave losses and the resulting unwanted mismatch of its electrical ports
[5.65]. Hence, it is of prime interest to have accurate transmission line models
in order to optimize the TWPD bandwidth.

5.4.1 Topologies

Most of TWPDs presented in literature use mesa-type p-i-n structures (strip-
like transmission line as in Fig. 5.21a), in which the electrodes collecting the
microwave photocurrents lay on a multilayered substrate with each layer hav-
ing a uniform carrier concentration. Hence, both the optical and RF propa-
gation can be modeled by simple equivalent transmission lines having a TEM
behavior. In [5.66] a coplanar waveguide TWPD topology is proposed for
Silicon-on-Insulator (SOI) technology, where CPW electrodes lay on P and
N di�usion areas (Fig. 5.21b). Both mesa and CPW topologies presented in
Figure 5.21 exhibit two particular features: some of the layers have a sig-
ni�cant conductivity due to the high doping, responsible for the slow-wave
phenomena, and some of the layers are not homogeneous or of �nite extent
along the x-axis. The variational approach proposed in this section takes
these two features into account simultaneously. The eÆciency of the varia-
tional principle (4.21) for slow wave phenomena has already been illustrated
in Section 5.1, where CPW and microstrips on low resistivity substrates have
been successfully modeled in the slow wave range.

5.4.2 Modeling mesa p-i-n structures

The geometry of the transverse section of the mesa p-i-n photodetector is
shown in Figure 5.21a. Microwave and optical propagation occurs along the
z-axis. The p-i-n junction is reverse biased with an adequate saturating volt-
age between top strip conductor and bottom grounding plane (Au), in such a
manner that the intrinsic layer (third layer) is fully depleted, with an equiva-
lent conductivity equal to zero. The RF-modulated part of the optical power
intensity induces an RF-variation of the photogenerated current in the intrin-
sic area, which is collected at the top and bottom electrodes and propagates
on the equivalent RF-transmission line. The optical beam is con�ned between
the layers having the highest dielectric constants. In order to obtain a pho-
todetector device, the doping of the third layer (n-InGaAs) is designed to
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Fig. 5.21 Travelling wave photodetectors topologies (a) mesa p-i-n GaAs
structure (layer 1: p+ InGaAs, "r = 15, H = 0:1 �m, � = 13:4 S/mm;
layer 2: p+ InP, "r = 14:5, H = 1 �m, � = 6:4 S/mm; layer 3: n- InGaAs,
"r = 14:5, H = 2 �m, � = 0:0 S/mm; layer 4: n+ InP, "r = 15, H = 2 �m,
� = 128:0 S/mm; layer 5: InP, "r = 14:5, H = 500 �m, � = 0:0 S/mm); (b)
coplanar p-i-n SOI structure
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Fig. 5.22 Approximate topologies for mesa p-i-n (a) parallel plate; (b) mi-
crostrip; (c) hybrid model

absorb the light. The highest doping level occurs in the fourth layer which is
neither a good conductor nor a good dielectric.

5.4.2.1 Simulation using a parallel plate model

The geometry of Figure 5.21a is �rst simpli�ed into a parallel plate waveguide
(Fig. 5.22a), by J�ager [5.67] and Guckel et al. [5.57]. For this TEM structure,
however, a speci�c numerical algorithm is required because the propagation
constant is the complex root of a determinantal equation associated with the
corresponding eigenvalue problem. Tedious numerical iterations are necessary
because of the multilayered character and the high conductivity of some layers.
Curves marked � in Figure 5.23a,b represent the results obtained using this
model. A slow wave phenomenon is clearly predicted, which illustrates the
importance of a good model for designing broadband TWPDs.

5.4.2.2 Measured transmission line parameters

We have measured the complex propagation constant of the structure shown
in Figure 5.21a, applying a two-line calibration technique [5.68] for planar
lines, described in the next section. It yields the complex propagation con-
stant without using the inverse Fourier transforms proposed by Giboney et
al. [5.65], because the measurement is carried out in the frequency domain.
Measured results are reported in Figure 5.23a,b (solid lines). The results ob-
tained using the parallel plate model (�) of Figure 5.22a do not agree with the
measurements. The parallel plate model indeed does not take into account
the air area above the strip and the �nite width of the strip.

5.4.2.3 Simulation using a microstrip model

Hence, we introduce the e�ect of the strip by using the variational approach
(4.21) applied to the microstrip con�guration shown in Figure 5.22b: the var-
ious layers are in�nite in the x-direction, and a strip conductor of �nite width
lies between the air and �rst layer. Each layer i is characterized by its com-
plex permittivity. The imaginary part of the complex permittivity is derived
from the layer conductivity �i using formula (5.14a). The application of the
variational principle (4.21) is similar to that performed for the microstrip line
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on low-resistivity silicon, except for the number of layers and strip geometry.
Simulated results using the microstrip structure of Figure 5.22b are reported
on Figure 5.23 (curves marked o). The simulated slow wave phenomenon
is still more important than the measured e�ect: the microstrip quasi-TEM
structure does not take into account the �nite width of some layers.

5.4.2.4 Simulation using extended formulation

Keeping in mind the high dielectric constant in the layers (values between 14
and 15 in Fig. 5.21a), we assume that Perfect Magnetic Walls (PMW) limit
the layers of �nite extent at planes x = W=2, to �nd trials in those layers
(Fig. 5.22c) [5.69]. According to the spectral domain technique, applying this
PMW-boundary condition means that the spatial �eld may be described by
a summation of periodic functions of period n�=W . As a consequence, only
the values of the spectral �elds for discrete values kxn of the kx-variable are
added up:

~ei(kx; y) =

1X
n=�1

~ei(kxn; y)Æ(kx � kxn) (5.31a)

and

ei(x; y) =
1X

n=�1

~ei(kxn; y)e
�jkxnx (5.31b)

where

kxn =
n�

W
(5.31c)

whereW is the width of layers of �nite extent. The choice of n is related to the
symmetry of trial �elds describing the particular mode under investigation,
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and to the nature of the shielding. For the dominant mode of a shielded
stripline with PMW as considered here, n is taken as even. Since all the
other boundary conditions imposed on the �elds in a layer of �nite extent
are identical to those applied in the same layer of in�nite extent along the x-
axis, the kx- and y-dependencies of function ~ei(kx; y) are taken to be identical
for a layer of �nite or in�nite extent. Adequate trial functions ~ei(kx; y) for
each layer are thus calculated as in the previous section, following the method
detailed in Chapter 4. Simply, the whole kx-spectrum is considered for in�nite
layers, while only a set of discrete values (5.31c) is taken in layers of �nite
extent along the x-axis.

As a result, applying Parseval's theorem together with the spectral form
(5.31a) yields expressions for the spectral coeÆcients of equation (4.21), which
are summations of discrete values of their integrands, evaluated at discrete
values of the in�nite set (5.31c). For example, coeÆcient ~Ai for layer i of
�nite extent becomes

~Ai(~e) =
1

2�

1X
n=�1

Z
yi

�
az � ~ei(kxn; y)

�
� � �az � ~ei(kxn; y)

�
kx1 dy (5.32)

A similar expression is easily deduced for coeÆcients B to E.
To summarize, we determine �rst trial spectral �elds in each layer for

the structure having all layers of in�nite extent along the x-axis (identical
to those found in the previous section). Next, we impose a PMW-boundary
condition at the left- and right-hand sides of the layers of �nite extent. We
express this condition by extending the formulation of the spectral coeÆcients
for each layer i in equation (4.21): for in�nite layers of the mesa structure in
Figure 5.22c, expressions (4.19b) to (4.19e) are used, while for layers of �nite
extent, only discrete values (5.31a) of the spectral trial �eld are considered,
leading to the series expression (5.32).

The Spectral Index method was introduced in 1989 for �nding the guided
modes of semiconductor rib waveguides [5.70]. The transcendental equations
developed by the authors are variational in nature. The method posseses
the useful variational property that each value of \beta" is a lower bound.
It improves the calculation by compensating the penetration into the air by
slightly displacing the boundaries, taking advantage of the fact that guided
waves in semiconductors have a low penetration depth into air. The concept
of e�ective depth is used to accomodate the large jump in dielectric constant
at the air/semiconductor interface.

Figure 5.23 shows that this extended variational formulation signi�cantly
improves the agreement between theory (curves �) and experiment (solid). We
demonstrate with this analysis the possibility of using variational formulation
(4.21) for structures combining layers of various conductivity and of �nite and
in�nite extent, while considering simple trial �elds. It has to be mentioned
that simulation (�) is obtained on-line on a regular PC.

With our approach, we totally neglect the in
uence of the air regions to
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the left and right of the layers of �nite extent. To validate this assumption, the
method of lines [5.71][5.72] was used for computing the shape of the transverse
electric �eld in the various layers of Figure 5.21a. Results presented in [5.71]
show that in the three top layers, and in particular in the intrinsic area, the
�eld is con�ned in the layers and vanishes rapidly in air, so that neglecting
the �elds in the air areas x < W=2 and x > W=2 outside of the layers of
�nite extent is relevant. On the other hand, in the fourth layer having a high
conductivity (n+InP), the longitudinal current density is spread outside the
area under the strip, so that �elds and currents cannot be considered con�ned
in area jxj �W=2. Those e�ects are observed at relatively low (15 GHz) and
high frequencies (50 GHz).

5.4.3 Modeling coplanar p-i-n structures

The layout of the SOI p-i-n photodetector is shown in Figure 5.21b. Values
of resistivity are in 
m. Figure 5.24a shows the basic p-i-n structure, which
consists of highly doped P+ and N+ zones, separated by an intrinsic zone.
Ohmic contacts are considered to exist between the P+ and N+ zones and
the two metal electrodes. The structure is reverse biased with an adequate
saturating voltage, so that the intrinsic zone is depleted. The transmission
line parameters along the z-axis are obtained by generalizing the previous
approach, which has already successfully been applied to mesa InP/GaAs
p-i-n photodetectors. The structures of Figure 5.21b are divided into n layers
(perpendicular to y-axis). In each layer i; j(i) sub-layers are de�ned, with their
number depending on the variation of carrier concentrations along the x-axis.
For instance, the p-i-n layers of Fig. 5.24a and of Fig. 5.21b contain j(2) = 3
sub-layers. Each sub-layer is characterized by its complex permittivity. The
imaginary part of the complex permittivity of the sub-layer is derived from
its resistivity, while the oxide layers have of course a purely real permittivity:

"i;j(i) = "ri

h
1� j

2!"ri�i;j(i)

i
(5.33a)

"SiO2
= "rSiO2 (5.33b)

"Si4N3
= "rSi4N3

(5.33c)

where j(i) is the number of sub-layers in layer i. The present case consists of
a new application of the method, since for the �rst time planar layers having
a strong variation of resistivity along the x-axis are treated. In the p-i-n layer,
we have

�pin;1 = �pin;3 = 3 10�4 
m

�pin;2 = 3 10�8 
m
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Fig. 5.24 CPW SOI p-i-n structure (a) simpli�ed p-i-n junction; (b) mod-
eling p-i-n conductance; (c) modeling p-i-n capacitance; solid curves are for
variational principles and symbols o for MEDICI simulations

Hence, the variational principle yielding the complex propagation constant

 of the structure along the z-axis is rewritten as


2
X
i;j(i)

~Ai;j(i)(~e) + 

X
i;j(i)

~Ci;j(i)(~e)�
X
i;j(i)

~Bi;j(i)(~e)

+ !2"0�0
X
i;j(i)

"i;j(i) ~Ei;j(i)(~e) = 0
(5.34)

where the trial �eld (5.31b) can be used in each sub-layer. For the character-
istic impedance, a power-current de�nition (5.12) is used:

ZcPI
�
=

P

I2
=

�1
2j!I2

� X
i;j(i)

~Ci;j(i)(~e)� 

X
i;j(i)

~Ai;j(i)(~e)

��
(5.35)
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where I is the magnitude of the current 
owing on one of the electrodes, and
P is the power 
owing through the cross-section of the p-i-n structure.

Results are compared with simulations using MEDICI software [5.66].
Figure 5.24b,c shows the frequency response of the conductance and capaci-
tance per unit length of the p-i-n structure, computed using MEDICI software
(curve o) and our variational approach (curve |). From the complex propa-
gation constant and characteristic impedance, the equivalent conductance G
and capacitance C per unit line length are derived as

G = Re
� 


Zc

�
(5.36a)

C = Im
� 


!Zc

�
(5.36b)

The agreement is excellent up to optical frequencies. The advantage of the
variational approach is that results can be obtained for the whole frequency
range (about 21 frequencies) within a few seconds, while several minutes are
necessary when using MEDICI Version 4.0 with the same number of frequency
points. Also, our model yields electromagnetic parameters such as propaga-
tion constant and characteristic impedance, while MEDICI solves equations
involving electric charges, potentials and �elds, with no access to magnetic
parameters and propagation characteristics. Hence, the eÆciency of the vari-
ational approach yields an accurate model of TWPD equivalent transmission
line parameters for both RF and optical frequency ranges. Based on this for-
malism, an extensive comparative study of the bandwidth of SOI p-i-n TWPD
structures has been presented, in terms of load matching, velocity matching,
type of semiconductor material used, and a helpful scattering matrix formal-
ism has been established [5.73].

5.5 Measurement methods using distributed circuits

In [5.74] an accurate method is presented for determining the complex per-
mittivity of planar substrates, at frequencies up to 40 GHz. It is based on the
comparison between calculated and measured values of the e�ective dielectric
constant and losses on two complementary geometries, namely a microstrip
and a slot-line. The complex permittivity is determined with an accuracy of
1 %, over the whole frequency range. A major advantage of the method is
that, as it is based upon transmission lines and not on resonant structures,
it o�ers a wideband characterization with a reduced number of test boards.
The method requires an accurate measurement of the complex propagation
constant of transmission lines. The measurement procedure is described in
Subsections 5.5.1 to 5.5.3, while Subsections 5.5.4 and 5.5.5 discuss dielec-
trometric standards and present a new standard based on the measurement
procedure, for a wide variety of substances.



5.5. MEASUREMENT METHODS USING DISTRIBUTED CIRCUITS 253

5.5.1 L-R-L calibration method

The measurement method for the propagation constant is derived from a
simpli�cation of the Line-Return-Line (L-R-L) calibration method. Mea-
surements on planar lines can indeed be achieved with the classical L-R-L
calibration method described extensively in [5.75]-[5.80]. It requires two iden-
tical lines of di�erent length and a re
ective device (short or open circuit)
(Fig. 5.25a). The magnitude and phase of the scattering parameters of these
elements are measured, using a Vector Network Analyzer (VNA). This method
allows the movement of the reference plane after calibration to the middle
plane of the shortest line (plane PP', Fig. 5.25b). This is of signi�cant in-
terest for characterizing a transmission line which does not have simple and
good transitions to the coaxial connectors of the measurement setup, such as
a slot-line, for example. A simple explanation of the method can be found
when looking at the schematic representation of the device to be measured
and of its two-ports A' and B', with the following de�nitions:
- X: two-port device to be measured
- A' and B': two-ports characterizing the transition between the two-port and
coaxial ports of VNA
- A and B: two-port networks characterizing the transition between reference
plane PP' and the coaxial ports of VNA, for each element to be measured.

The method assumes that two-port networks A' and B' are the same for
all the measurements illustrated in Figure 5.25a,b, and that the two lines are
identical, except for their length. This is the case if the transition between
coaxial ports and lines allows reproducible measurements (using the VNA's
broadband test �xture) and if the etching of the planar lines can be well
reproduced. Under these assumptions, the scattering matrices of two-port
networks characterizing the transition between the left-hand side coaxial port
of VNA and reference plane PP' are identical, as well as those of two-port
networks characterizing the transition between the reference plane PP' and
right-hand side coaxial port of VNA. As a consequence, the same two-ports
A and B are considered for each element to be measured. Hence, only two-
ports A and B have to be characterized. Considering the set of measurements
illustrated in Figure 5.25b, we have as unknowns the two scattering matrices

of the two-port networks S
A
, S

B
, and the complex terms e�
�L and �react,

yielding 10 complex unknowns. On the other hand, the measurement of the
four con�gurations (Fig. 5.25b) provides the two scattering matrices of the
short and long lines, and the two re
ection coeÆcients of con�gurations 3 and
4, resulting in 10 complex quantities. The real and imaginary parts of the
scattering matrices and re
ection coeÆcients of the four con�gurations are
expressed as a function of the real and imaginary parts of the four complex
unknowns, providing a system of 20 equations for 20 real unknowns.

Hence, the scattering matrices of two-ports A and B may be determined
and introduced as correcting two-ports in processing the measurement setup.
Finally, the measurement of the device X (Fig. 5.25a) provides a scattering
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matrix which can be expressed as a function of scattering matrix S
X

of X

and of scattering matrices S
A
and S

B
which have been determined from the

calibration measurements, from which S
X

is extracted. This method has
been used for measuring the coplanar waveguide impedance step presented in
Figure 5.3.

An important comment has to be made about the L-R-L algorithm. The
�L line is modeled as a single transmission term, which implies that the ref-
erence impedance at plane PP' for the scattering matrices is the characteristic

impedance of the line. Hence, the reference impedance for S
X
is the charac-

teristic impedance of the line, which still remains unknown after calibration
because it is not needed in the calibration algorithm. As a consequence, mea-
surements of characteristic impedance are possible after calibration if, and
only if, the line calibration standards are precisely known over the whole
calibrating frequency range.
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Fig. 5.25 Measurement procedure using the Line-Return-Line calibration
method (a) measurement of the unknown device; (b) calibration procedure
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5.5.2 L-L calibration method

When looking into the algorithm of the L-R-L calibration method, there is
one piece of information involved in the process which is never extracted and
used: the transmission line matrix corresponding to the length di�erence �L
between the two calibration lines. This matrix could be used as a �rst step for
the extraction of the propagation constant from the measurement of the two
calibration lines [5.81]. The major problem, however, is the instability when
the phase of the �L line approaches 0 or 180 degrees. Usually this phase has
to be kept around 90 degrees (a di�erence of a quarter-wavelength) to ensure
computational stability of the L-R-L calibration. Such an electrical length
is not suÆcient to extract insertion losses with an acceptable precision. A
third line of suÆcient length, typically three or four wavelengths at the lowest
frequency of the operating band, must be used to obtain accurate results.
Hence, four elements (two lines and one re
ective device for calibration, and
a very long line used as device X for wavelength and losses measurements) are
required to characterize the propagation constant of one line with the classical
L-R-L calibration method.

The method we proposed in [5.68] reduces the number of necessary ele-
ments to only two. It is based on the assumption that the two-ports describing
the transition from each coaxial connector to the measured �L line are iden-
tical from mechanical and electrical points of view (Fig. 5.25b). Two-ports A
and B are identical and have reciprocity properties, i.e.

SAii = SBii for i = 1; 2 (5.37a)

SX12 = SY21 for X;Y = A;B (5.37b)

Hence only four complex variables have to be determined:

S11; S22; S12(= S21) and e�
�L (5.37c)

From the two line circuits, one can measure eight complex quantities (the
four scattering parameters provided by the VNA for each circuit), but owing
to the symmetry properties of these circuits, only four of them are signi�cant.
These measurements are performed after a coaxial calibration (using through-
line and matched, short and open circuit loads) of the VNA, because the two-
ports modeling the internal behavior of VNA from its source to its coaxial
connectors do not satisfy (5.37a,b). The measured S-parameters of the two
lines are expressed as a function of the 4 complex unknowns, yielding a system
of 4 non-linear equations. Solving this system yields the term e�
�L, hence
the wavelength and losses corresponding to the length di�erence �L between
the two lines. The Line-Line (L-L) method has been used for extracting
the measured complex propagation constant for all transmission line results
presented in Section 5.1.

It has to be mentioned that Janezic [5.82] has proposed an equivalent L-L
procedure which does not assume that two-ports A and B are identical. The
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disadvantage of this procedure is that eight complex quantities have to be
measured and manipulated for each characterization.

5.5.3 Reduction to one-line calibration method

One can achieve a calibration with a single line if the two-port networks
are not only symmetric but also lossless. Lossless two-ports satisfy 4 scalar
equations relating their 3 unknown S-parameters (reciprocity is assumed), so
that �nally one of these complex S-parameters remains unknown. Hence, only
two complex quantities, provided by re
ection and transmission measurements
on a single line, are needed to determine one of the S-parameters of the two-
port networks and the unknown term e�
�L. This has been investigated by
T. Kezai et al. [5.22] for shielded low-loss lines (�nlines). They extracted the
losses and propagation constant of a �nline from a single line measurement.
This measurement method has been used for the experimental results on
�nline presented in Section 5.1 (Fig. 5.4).

5.5.4 Extraction method of constitutive parameters

5.5.4.1 Overview of the existing standards

At low frequencies (up to 300 MHz), the complex permittivity of a planar sub-
strate used in MIC structures is deduced from the measurement of the complex
capacitance of concentric electrodes etched on the dielectric test sample [5.83].

At microwave frequencies, the methods are divided into two classes: metal
waveguide or cavity methods, and stripline resonator methods. In the �rst
one, the complex permittivity is derived from the measured variation of the
re
ection coeÆcient at the input of a short-circuited waveguide [5.84] or of
a resonant cavity [5.85], loaded by a dielectric sample. The drawbacks of
this method is the amount of time necessary to prepare, adjust and make
measurements, as well as the rather extreme precision with which the position
or frequency changes have to be measured.

For these reasons, the stripline resonator method seems more attractive
for MICs designers : the complex permittivity of a planar substrate is derived
from the measured resonant frequency and loaded-Q of four boards etched on
the substrate, each of them consisting of a stripline or microstrip line resonator
loosely coupled to two access lines. The stripline resonator method, however,
presents some disadvantages related to the use of a measured resonant curve
for determining the unknown permittivity: allowance should be made for the
radiation losses, shape e�ects of the resonator, insertion losses of the coaxial
launching connectors [5.86], and that the dimensions of the resonator become
too large below 3 GHz. Finally, manufacturing and measuring four circuits is
necessary at each frequency where the characterization is needed, because a
linear regression is performed over the measured four resonant frequencies to
eliminate the shape e�ect of the resonator at the frequency of interest.

The method we present in the next section extracts the complex permit-
tivity of the planar substrate by comparing measurements carried out on two
lines with very di�erent topologies etched on the plate and calculations of the
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e�ective dielectric constant and the losses of the lines, based on our varia-
tional model. It is valid up to 40 GHz. The main advantage is that it o�ers
a wideband characterization, because transmission lines are used instead of
resonant elements and discontinuities and radiating sources are removed by
the two-line calibration method. Only three circuits are needed to obtain
a characterization valid over the frequency range 0 to 40 GHz, because we
make use of the broadband two-line calibration method for measuring losses
and e�ective dielectric constants.

5.5.4.2 Description of L-L planar dielectrometer

Previous sections have demonstrated the eÆciency of the variational model
developed for planar lines on dielectric or gyrotropic lossy substrates. It
takes into account the geometrical parameters of the line and the substrate,
together with the electrical parameters of the structure: conductivity of the
metallization, and complex permittivity and/or permeability of the substrate.
The complex propagation constant 
 of the dominant mode of a planar line is
obtained on-line as a result of the variational formulation: the real part of the
propagation constant provides the losses per unit length, while the imaginary
part yields the e�ective dielectric constant expressed as (Im(
)c0=!)

2. It
should be emphasized again that equation (4.21) has not been proven to be
variational with respect to the constitutive parameters of the layers. The
sensitivity of the value of the propagation constant to a variation of these
parameters is preserved.

Upon performing the experimental validation of the variational formula-
tion for planar lines on dielectric substrates, a signi�cant di�erence was ob-
served between the measured (Fig. 5.26a, c curve |) and calculated (Fig. 5.26
a,c curve - -) values of the e�ective dielectric constant and losses of a slot-line
when using the value of the complex permittivity given by the manufacturer.
A signi�cant di�erence was also observed between the measured (Fig. 5.26b,d
curve |) and calculated (Fig. 5.26b,d curve - -) values of the e�ective di-
electric constant and losses of a microstrip etched on the same substrate
when using the same manufacturer's value. It is observed on Figure 5.26
that the relative di�erence between curves - - and | is of the same order for
the microstrip (b,d) and the slot-line (a,c). The two topologies are electro-
magnetically complementary of each other, which ensures that the observed
discrepancy between modeling and measurement in the two cases is mainly
due to a di�erence on a parameter which is common to the two topologies,
i:e: the complex permittivity of the substrate. Furthermore it is well known
that manufacturer's values have to be used with care: at X-band and higher
one cannot guarantee an accuracy better than 10 % for permittivity obtained
with the existing standards. Hence, adjusting the value of the permittivity
to eliminate the di�erence between calculations and measurements seems a
pertinent way to obtain an improved value. When increasing the real part
of the complex permittivity by 5 % above the manufacturer's value and the
dielectric loss tangent from 0.0028 to 0.0038, the calculated curves (Fig. 5.26
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Fig. 5.26 Comparison of measured and calculated e�ective dielectric con-
stant and losses of two complementary geometries etched on a RT duroid
6010 dielectric substrate plate of thickness 0.635 mm (a),(c) slot-line (width
0.389 mm); (b),(d) microstrip line (width 0.580 mm): curve - -: calcu-
lated with manufacturer's complex relative permittivity 10:8(1 � j0:0028);
curve |: measured; curve -�-: calculated with modi�ed complex relative per-
mittivity 11:4(1� j0:0038)

curve -�-) yield excellent agreement with the measured values over the wide
frequency range for the two lines. The resulting uncertainty on the permit-
tivity is less than 1 %, yielding 11:4(1 � j0:0038) over the frequency range
0-40 GHz, instead of 10:8(1� j0:0028) given by the manufacturer at X-band.

5.5.4.3 Proposed new standard

The relative permittivity of a planar substrate is obtained as the complex value
which, when using accurate wideband models, provides the best agreement over
the 0-40 GHz band between calculated and measured e�ective dielectric con-
stant and losses of two lines with very di�erent topologies (one microstrip line
and one slot-line), etched on the same substrate.

The two-line calibration method is used to measure e
�L, i:e: the e�ective
dielectric constant and the losses of the lines. Hence, only two lines of di�erent
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lengths are needed for each of the two topologies considered. Three topologies
are in competition to serve as a standard: microstrip, slot-line and coplanar
waveguide. The microstrip-slot-line combination is the best choice for the
following reason: the coplanar waveguide is too similar to the microstrip,
with a quasi-TEM propagation on both topologies. This reduces its eÆciency
with respect to the microstrip-slot-line combination.

Hence, three circuits have to be etched, respectively two slot-lines, with
their transitions to microstrip lines, and one microstrip line. Using this ar-
rangement, the complex permittivity of a layer is determined with only three
circuits over the whole band, and not only at discrete frequencies.

The proposed method combines rapidity and accuracy of both theoretical
and experimental characterization of any planar line. Because planar lines are
used instead of resonators, a number of spurious limiting e�ects are avoided.
Also, the method removes the e�ects of the connectors and of the transitions
between the coaxial plane of measurement of the VNA and each of the access
planes of the �L line, provided that two-port networks A and B (Fig. 5.25a,b)
are identical (reproducible), for each line and from line to line. Hence, a high
accuracy is obtained over a wide frequency range with a reduced number of
measurements. Such results have been obtained for a wide variety of pla-
nar substrates, with a dielectric permittivity range from 2.33 to 10.8 and a
substrate thickness from 0.254 mm to 2 mm.

5.5.5 Other dielectrometric applications of the L-L method

5.5.5.1 Soils

The L-L dielectrometric method is also applicable to the electromagnetic char-
acterization of soils. We have extensively developed the method in the fre-
quency range 0-18 GHz in order to extract the complex permittivity, from
which the equivalent conductivity is obtained. This is necessary to evaluate
the performances of microwave technologies in landmine detection for human-
itarian purposes [5.87], like ground penetrating radars and radiometers.

Measurements of various soils, both sandy and silty, have been carried out,
using the L-L measurement method with two rectangular waveguides of width
a, di�ering only by their length, and homogeneously �lled with the soil to be
characterized. Assuming, as previously, that the mechanical and electrical
identity of the transitions between the VNA coaxial output and the lines, and
an identical material distribution in the two guides, the propagation constant
related to length �L of �lled waveguide is extracted. Then, instead of using
a variational principle as for planar lines, the complex dielectric constant
extracted from measured propagation constant 
 is given by

"0r = Re
n c20
!2

�� 
2 + (�=a)2
�o

(5.38a)

"00r = Im
n c20
!2

�� 
2 + (�=a)2
�o

(5.38b)
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Measurements were carried out at room temperature on four soils with dif-
ferent textural compositions: two pure sands and two silty soils. For each
soil, measurements were done for di�erent water contents, up to 20 %. From
the extracted permittivities of those soils, a model has been elaborated by
Storme etal: [5.88], yielding the expression of the complex permittivity as a
function of easily available soil parameters such as textural composition and
density. Using volume fractions and permittivities of bound water, free water,
air and dry soil, the formula obtained for the dielectric constant of a water-soil
mixture is

"m =
3"s + 2Vfw("fw � "s) + Vbw("bw � "s) + 2Va("a � "s)

3 + Vfw
�
"s
"fw

� 1
�
+ Vbw

�
"s
"bw

� 1
�
+ Va

�
"s
"a
� 1

� (5.38c)

where subscripts bw, fw, a, and s refer to bound water, free water, air and
dry soil, respectively, and the following hypotheses have been made:

1. Vbw = 0:06774� 0:00064� SAND + 0:00478�CLAY
where CLAY and SAND are clay and sand contents, respectively, in
percent of weight of dry soil

2. Permittivity of bound water is put equal to 35� j15
3. Contribution of bulk water takes into account the dielectric constant

of pure water, Debye model [5.89] at room temperature
4. Volume of free water Vfw is taken as the di�erence between total

water volume and Vbw .

5.5.5.2 Bioliquids

A good knowledge of the complex permittivity of biological media is necessary
for adequately determining their response to electromagnetic �elds, both for
the study of biological e�ects as well as for medical applications. Based on the
L-L method, we have set up a new procedure for measuring the permittivity of
liquids [5.89]. The measurement procedure uses waveguide spacers of di�erent
thickness, placed between the two waveguide ports of VNA. A synthetic �lm
(Para�lm), is placed at both ends between waveguides and spacer, containing
the liquid in a known volume. Because of the L-L method, the �lm has
no e�ect on the measurements, provided that the transition is reproducible
when using both spacers. A preliminary measurement on dioxane, having
a known constant permittivity, is used to validate the measurement set-up.
Measurements have been carried out for the complex permittivity of biological
and organic liquids at frequencies above 20 GHz up to 110 GHz, on methanol,
axoplasm, and beef blood. The values obtained have been compared with
Debye's law. We observed, as presented in [5.90], that for biological liquids
the �rst-order Debye model using only one relaxation time is not suÆcient.
Several relaxation phenomena occur, requiring the recalculation of higher-
order relaxation terms. Finally, we found that the Cole-Cole diagram [5.91],
representing "00 as a function of "0 with frequency as a parameter, is very
eÆcient for improving models for dielectric relaxation.
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5.6 Summary

Chapter 5 is devoted to a number of applications of the variational principle
to calculate transmission line parameters. First, expressions for the param-
eters are recalled. Then, they are calculated for simple line con�gurations
on dielectric substrates: microstrip, slot-line, coplanar waveguide, and �nline.
Lossy semiconducting substrates are considered for microstrip and coplanar
waveguide. A recent application has been described: the calculation of pa-
rameters of a microstrip on a magnetic nanostructured substrate, consisting of
an array of magnetic metallic nanowires embedded in a thin porous dielectric
substrate. Another class of examples were junctions: microstrip-to-slot-line
junction and planar T-junction. Gyrotropic devices were also considered,
such as YIG-tuned planar MSW devices, undercoupled as well as overcou-
pled, for one-port and two-port con�gurations. Optomicrowave devices have
also been analyzed, using a variational principle, illustrating how to model
mesa p-i-n structures and how important the di�erences can be when using
di�erent topology models, and coplanar p-i-n structures. The chapter ends
with the description of a measurement method based on a variational principle
to determine the complex permittivity of a planar substrate with an excel-
lent accuracy. The measurement method is then illustrated with examples
for characterizing soils for demining operations, and bioliquids for medical
purposes (blood and axoplasm).
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appendix A

Green's formalism

A.1 De�nition and physical interpretation

Green's functions have been used for many years in electromagnetics and
physics. A review of the most useful applications of Green's functions is given
in Morse and Feshbach [A.1]. Only the fundamentals are summarized in this
appendix, referring �rst to an analogy with ordinary di�erential equations.

A linear system is described by an ordinary di�erential equation with
constant coeÆcients. As an example, the general form of the equation for a
second-order system is

A
d2f(t)

dt2
+B

df(t)

dt
+ Cf(t) = x(t) (A.1)

where the unknown response f(t) is, for instance, a voltage or a current,
while the excitation x(t) comes from independent sources. The equation is
often solved using a transformation. Using the Fourier transformation (Ap-
pendix C) yields

(j!)2AF (!) + j!BF (!) + CF (!) = X(!) (A.2)

from which is obtained

F (!) = H(!)X(!) (A.3)

with

H(!) =
�
(j!)2A+ j!B + C

��1
(A.4)

The functionH(!) is called the transfer function of the system. It is obviously
the response of the system to an excitation with uniform spectrum:

F (!) = H(!) if X(!) = 1 (A.5)

Noting that the inverse transform of the function with uniform spectrum is the
Dirac impulse Æ(t), the inverse transform h(t) of the transfer function H(!)
is obviously the impulse response of the system. Hence, the solution of (A.1)
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is obtained by calculating the inverse transform of the product H(!)X(!). It
is well known that this transform is the convolution integral

f(t) =

Z +1

�1

x(t� �)h(�)d� (A.6)

This physically means that the response f(t) to an excitation x(t) is the
superposition of a continuous sequence of weighted impulse responses. In
practice, however, the integral can only be calculated in a rather small number
of cases.

What has been presented for ordinary di�erential equations can be ex-
tended to equations involving partial derivatives, such as Maxwell's equations
in electromagnetics, with their boundary conditions and constitutive relations,
and where sources are in general charge and current densities. In this case,
scalar and vector potentials satisfy an equation such as

r2F + a
@2F
@t2

+ b
@F
@t

= X (A.7)

which is the case for Poisson's equation, the wave equation, and the di�usion
equation for instance. The multi-dimensional Fourier transformation (C.7)
is applied to this vector equation, transforming the space domain into the
spectral domain:

F (k) =

Z
V

F(r)e�jk�r dV (r) (A.8a)

F(r) = 1

(2�)3

Z
V

F (k)ejk�r dV (k) (A.8b)

When the problem is time-variant, the corresponding equations have, of
course, to be extended to 4 dimensions:

F (k; !) =

Z
V (r)

Z
t

F(r; t)e�j(k�r+!t) dV (r)dt (A.9a)

F(r; t) = 1

(2�)4

Z
V (k)

Z
!

F (k; !)ej(k�r+!t) dV (k)d! (A.9b)

We can now extend to partial derivative equations what has been shown
to be valid for ordinary di�erential equations. To simplify the notation, we
assume that there is no time dependency. By doing so, we shall illustrate
the correspondence from the time-to-frequency transformation in problems
described by ordinary di�erential equations, and the space-to-state space
(spectral domain) transformation in problems described by partial deriva-
tive equations. There should be no diÆculty in writing this transformation
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in 4 dimensions, transforming the equation from a space-time volume into a
state space-frequency volume. Assuming that the equation is

L(r)F(r) = X (r) (A.10)

where L is a di�erential operator and F the system response to the excitation
X , its 3-D Fourier transform is

L(k)F (k) = X(k) (A.11)

where L, F , and X are the transforms of operator, response, and excitation,
respectively. The solution is

F (k) = G(k)X(k) with G(k) = 1=L(k) (A.12)

where G(k) is the \transfer function", i:e: the Fourier-transform of the \im-
pulse response" of the system. It is indeed the response of the system sub-
mitted to an excitation with \uniform spectrum":

F (k) = G(k) if X(k) = 1 (A.13)

The inverse transform of the uniform spectrum function is the generalization
of the Dirac impulseZ

V

Æ(r)e�jk�r dV (r) = 1 (A.14)

Hence, the solution of (A.11) is the inverse transform of product (A.12), which
is obviously the generalization of the convolution integral:

L(r) =
Z
V

G(r � s)p(s) dV (s) (A.15)

The function G(r� s), the inverse transform of the \transfer function", is the
impulse response of the system, so that

L(r)G(r) = Æ(r) (A.16)

It is the response at observation point r of a point source located at the center
of coordinates. It is called the Green's function.

Extending this 3-D transformation result into the corresponding 4-D trans-
formation result shows that Green's functions describe basically the space and
time response of a physical system at point r at time t when a point source
of excitation is applied to the system at point r0 at time t0. By response, one
means the space and time-description of a particular scalar or vector quantity
P characterizing the system. A general excitation X can be either a scalar or
a vector. There are eight variables involved in the description of the physical
system: the six space coordinates x, y, z, x0, y0, z0 represented by the vectors
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r and r0, and the time variables t, t0. The response of the system to a given

excitation X is totally determined once Green's dyadic G has been found for
each pair of points (r; r0) of domain Vx. De�ning Vx and Tx as the space and
time domains of the excitation, respectively, Green's dyadic notation yields
response

P (r; t) =

Z
Vx

Z
Tx

G(r; tjr0; t0) �X(r0; t0)dr0dt0 (A.17a)

Intuitively, the response of the system to excitation X at any observation
point is obtained by superimposing the contributions at the observation point
of in�nitesimal unit point sources of excitation located at the various points
(r0; t0) of domain (Vx; Tx) and having the magnitude and orientation of X at
these points.

From de�nition (A.17a), the Green's function can also be viewed as a
linear integral dyadic operator applied to excitationX with the view of �nding

the corresponding distribution of the parameter P . It is denoted by G:
P (r; t) = GfX(r0; t0)g (A.17b)

with

Pu =
X
v

h
GfX(r0; t0)g

i
uv

(A.17c)

=
X
v

Z
Vx

Z
Tx

Guv(r; tjr0; t0)Xv(r
0; t0)dr0dt0 (A.17d)

For a unit point source oriented along the u-axis and applied at (r0; t0)

X(r; t) = Æ(r � r0)Æ(t� t0)au(u = x; y; z) (A.18a)

the three components of the u-th column of Green's dyadic are obtained as
the three components of vector when an excitation Æ(r0 � r0)Æ(t

0 � t0)au is
applied:

P (r; t) =

Z
Vx

Z
Tx

G(r; tjr0; t0) � fÆ(r0 � r0)Æ(t
0 � t0)augdr0dt0 (A.18b)

= Gxu(r; tjr0; t0)ax +Gyu(r; tjr0; t0)ay +Gzu(r; tjr0; t0)az
(A.18c)

In expressions (A.18a,b), the notation Æ(r0�r0) represents for the triple prod-
uct

Æ(x0 � x0)Æ(y
0 � y0)Æ(z

0 � z0) (A.18d)

expressing the presence of a point source with unit magnitude, located at
point r0 at time t0. The same formalism can also be used for applying spe-
ci�c boundary conditions to a system, that is searching for the space and
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time distribution of the response P associated with the system which satis�es
speci�c boundary conditions on a surface 
x. A suitable expression for the

Green's dyadic Gs is obtained by calculating P at the points of Vx which
are not on the boundary 
x while imposing a homogeneous zero boundary
condition at every point located on 
x, except for one point r0 on 
x where a
unit boundary condition is imposed. The boundary condition is imposed on
P (Dirichlet condition) or on its gradient (Neumann condition). Hence, the
required solution is obtained when summing over 
x the partial solutions cor-
responding to a point boundary condition imposed on an in�nitesimal portion
of 
x around r

0:

P (r; t) =

Z

x

Z
Tx

Gs(r; tjr0; t0) �X(r0; t0)dr0dt0 (A.19)

An important feature of the Green's formalism is that the Green's function

G, providing for a given system the distribution P of corresponding to any

source distribution (A.17), is essentially the same as Green's function Gs

(A.19) yielding speci�c boundary conditions on a surface for the same system:

1. for Neumann boundary conditions

Gs = G and X(r0; t0) =
@P

@n

����

x

(A.20a)

yielding

P (r; t) =

Z

x

Z
Tx

G(r; tjr0; t0) � @P (r
0; t0)

@n

����

x

dr0dt0 (A.20b)

2. for Dirichlet boundary conditions

Gs =
@G

@n
and X(r0; t0) = P

��

x

(A.20c)

yielding

P (x; y; z; t) =

Z

x

Z
Tx

@G(r; tjr0; t0)
@n

� P (r0; t0)��

x

dr0dt0 (A.20d)

where n is the normal at the surface [A.1]. The Green's function is in fact the
solution for a situation which is homogeneous everywhere except at one point.
The solution of a homogeneous equation satisfying inhomogeneous boundary
conditions is equivalent, using the Green's formalism, to the solution of an
inhomogeneous equation satisfying homogeneous boundary conditions, with
the inhomogeneous part being a surface layer of charge. More complicated
situations are then handled as linear combinations of the solutions of a homo-
geneous problem with inhomogeneous boundary conditions, and of an inhomo-
geneous problem with homogeneous boundary conditions, which is equivalent
to inhomogeneous problems with homogeneous boundary conditions.
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A.2 Simpli�ed notations

Generally speaking, the notation G(r; tjr0; t0) holds for a 3 � 3 tensor whose
elements are functions of the variables r, t, r0, t0. Simpler Green's functions
may be de�ned when the geometry of the problem yields a constant or a a
priori-known dependence of the problem along a particular direction, or when
its time-dependence is well known or equal to a constant (steady-state sys-
tems). For instance, 2-D Green's formulations similar to (A.18b) are de�ned
as

P (x; y; t) =

Z
G(x; y; tjx0; y0; t0)Æ(x0 � x0)Æ(y

0 � y0)Æ(t
0 � t0)dr

0dt0

= G(x; y; tjx0; y0; t0)
(A.21a)

when no variation of the quantities of interest occurs along the z-axis. The
2-D Green's function is then denoted by

G(r; tjr0; t0) = G(x; y; tjx0; y0; t0) (A.21b)

with

r = xax + yay (A.21c)

r0 = x0ax + y0ay (A.21d)

r0 = x0ax + y0ay (A.21e)

The one-dimensional Green's function is similarly noted

G(x; tjx0; t0) (A.21f)

When the excitation X is described by a scalar, the dyadic reduces to a vector
Green's function of the eight variables (r; r0; t; t0), and denoted by G(r; tjr0; t0).
When both P and X are scalar, the dyadic reduces to an algebraic Green's
function of the eight variables (r; r0; t; t0), noted G(r; tjr0; t0). For vector and
algebraic Green's formulations, 1- and 2-D forms are readily deduced by sub-
stituting respectively the adequate scalar coordinate or r vector to the 3-D
vector in the previous notations.

A.3 Green's functions and partial di�erential equations

The Green's formalism has been developed in connection with problems which
can be described by inhomogeneous partial di�erential equations and suitable
boundary conditions. It o�ers an elegant way of handling these problems,
because instead of solving the partial di�erential equation for the quantity
P in the presence of excitation X or for speci�c boundary conditions, the
corresponding equation for the Green's function is solved in the presence of
the unit point source of excitation, and (A.17) or (A.20) is then applied. It is
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expected that solving the equation for G is much easier than solving it for P
in the presence of X and/or speci�c boundary conditions.

Denoting L the di�erential operator associated with the partial di�erential
equation, the problem becomes

LfG(r; tjr0; t0)g � au = Æ(r � r0)Æ(t� t0)au (A.22a)

instead of

LfP (r; t)g = X(r; t) (A.22b)

In electromagnetics, �ve equations are of main interest.

1. Poisson's equation:

r2�(r) = ��(r) where LP = r2 (A.23)

The electrostatic �eld distribution is obtained as the gradient of electrostatic
potential �.
2. Homogeneous Helmholtz equation:

r2�(r) + k2�(r) = 0 where LH = r2 + k2 (A.24)

The harmonic TE and TM �elds are obtained as particular combinations of
potential � solution of the Helmholtz equation and its partial derivatives. A
time dependence ej!t is assumed for both potentials and �elds, so that one
has

k2 = !2"� (A.25)

3. Scalar wave equation:

r2�(r)�(1=c)2@
2�(r)

@t2
= ��(r; t) where L0 = r2�(1=c)2 @

2

@t2
(A.26)

4. Vector wave equation:

r2A(r) + !2"�A(r) = ��J(r) where Ld = r2 + !2"� (A.27)

5. Di�usion equation:

r2�(r)� a2
@�(r)

@t
= 0 where Ld = r2 � a2

@

@t
(A.28)

For a vector wave equation, a Green's function can also be derived, which
relates the vector �eld to the vector source. Usually, those Green's functions
are derived from the Green's functions relating the source to a scalar or vector
potential.
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A.4 Green's formulation in the spectral domain

The Green's formulation in the spectral domain (Appendix C) is obtained
by taking the Fourier transform along the three space variables, yielding the
spectral domain, and along the time variable, yielding the harmonic domain.
When the medium is multilayered, particular solutions must be taken into
account, so that the boundary conditions at each interface are satis�ed. This
has been considered in Subsection 3.3.1. The di�erential operator r is trans-
formed into jk and the partial time derivative into j!t, which yields

~P (kx; ky; kz; !) =
1

(2�)4

ZZZZ
P (x; y; z; t)ej!tejk�rdkd! (A.29)

and the corresponding forms of the various equations in the spectral domain,
for homogeneous layers. We obtain for Poisson's equation:

�jkj2 ~�(kx; ky; kz) = �~�(kx; ky; kz) where ~Ld = �jkj2 (A.30)

The corresponding spectral scalar Green's function ~GP satis�es

�jkj2 ~GP (kx; ky; kz) = 1 (A.31)

and the general form of the spectral Green's function associated with Poisson's
equation is

~GP (kx; ky; kz) = � 1

jkj2 (A.32)

Equation (A.30) combined with (A.32) provides the spectral form of the po-
tential

~�(kx; ky; kz) = ~GP (kx; ky; kz)~�(kx; ky; kz) (A.33)

Its inverse Fourier-transform is

�(r; t) =

Z
Vx

Z
Tx

GP (r � r0; t� t0)�(r0; t0)dr0dt0 (A.34)

The Green's formulation in the spectral domain has the advantage that the
di�erential or integral operators are replaced by simple algebraic expressions,
so that the derivation of the spectral Green's function is very simple (A.31).
Also, the solution is obtained by taking the product of the spectral Green's
function by the Fourier-transform of the excitation (A.33), instead of using the
Green's function as a linear integral operator for elaborating the solution. The
user has the choice either to invert the spectral Green's function and apply
(A.17) in the space domain, or to invert the obtained spectral solution (A.33).
A Green's function may of course be deduced for relating the electrostatic �eld
gradient of the potential to the excitation distribution �(r).
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Green's functions o�er an elegant way of characterizing a physical system,
for any source or boundary conditions, since the knowledge of the Green's
function is suÆcient to calculate the response of the system to any excitation.
Hence, only the Green's function is usually mentioned for the �ve categories
of equations introduced above. For example, we have:

a. for the Helmholtz equation:

~GH(kx; ky; kz; !) =
1

�jkj2 + !2"�
(A.35)

b. for the di�usion equation:

~GD(kx; ky; kz; !) =
�1

jkj2 + j!a2
(A.36)

A.5 Reciprocity

Green's functions are subject to the fundamental theorems of electromagnet-
ics. The most important for the present purpose is the reciprocity theorem:
for steady-state systems in an unbounded free-space, the e�ect at the obser-
vation point r of a source located at point r0 is identical to the e�ect observed
at point r0 when the same source is located at point r:

G(rjr0) = G(r0jr) (A.37a)

with

G = G
T

(A.37b)

This property is satis�ed by the scalar Green's function associated to Poisson's
equation for quasi-static electromagnetic problems and by the Green's dyadic
associated with the vector Helmoltz equation solved in free-space [A.2]. Reci-
procity in a free-space unbounded medium is thus expressed by a symmetry
property of the corresponding Green function in the position vectors r0 and
r. Property (A.37a,b) is valid for most electromagnetic problems, provided
they are described in a unbounded free-space medium. For more practical
situations (inhomogeneous and/or bounded media), Green's functions satisfy
some reciprocity properties, however they are no longer symmetrical dyadics.

When time is introduced, identity (A.37a) is no longer valid. It has to be
replaced by

G(r; tjr0; t0) = G(r0;�t0jr;�t) (A.38)

The sign inversion for the time variable ensures the causality of the physical
system described by the Green's function.
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A.6 Distributed systems

This review of the main characteristics of the Green's formalism is now adapted
to distributed systems, where propagation occurs along a particular direction,
taken as the z-axis. Assuming kzo as the propagation constant, the source
distribution can be written

X(r0; t0) = x(x0; y0; t0)e�jkz0z
0

(A.39)

where the lower case x holds for transverse dependence of �elds for which
dependence along the longitudinal direction may be separated. Introducing
this expression into general de�nition (A.18) yields the relationship between
the response P and the transverse dependence of the excitation:

P (r; t) =

Z
Vx

Z
Tx

G(r; tjr0; t0) � x(x0; y0; t0)e�jkz0z0dr0dt0 (A.40a)

=

Z
Vx

Z
Tx

G(r; tjr0; t0) � x(x0; y0; t0)e�jkz0(z0�z)

e�jkz0zdx0dy0d(z0 � z)dt0
(A.40b)

= e�jkz0z
Z
Vx

Z
Tx

~
G(x; y; tjx0; y0; t0; kz0) � x(x0; y0; t0)dx0dy0dt0

(A.40c)

which is a Green's formulation with six variables.
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Green's identities and theorem

B.1 Scalar identities and theorem

Let V be a closed region of space bounded by a regular surface S, and let
a and b be two scalar functions of position which together with their �rst
and second derivative are continuous throughout V and on surface S. (It is
mentioned by Stratton that this condition is more stringent than is necessary,
and that the second derivative of one function b need not be continuous [B.1]).
Then the divergence theorem applied to the vector bra givesZ

V

r � (bra) dV =

Z
S

(bra) � n dS (B.1)

Expanding the divergence to

r � (bra) = rb � ra+ br � ra = rb � ra+ br2a (B.2)

and noting that

ra � n =
@a

@n
(B.3)

where @a=@n is the derivative in the direction of the positive normal, yields
what is known as Green's �rst scalar identity [B.1][B.2]:Z

V

rb � ra dV +

Z
V

br2a dV =

Z
S

b
@a

@n
dS (B.4)

If, in particular, we place b = a and let a be a solution of Laplace's equation,
(B.4) reduces toZ

V

(ra)2 dV =

Z
S

a
@a

@n
dS (B.5)

If the roles of the functions a and b are interchanged, i.e. applying the diver-
gence theorem to the vector arb, one obtainsZ

V

ra � rb dV +

Z
V

ar2b dV =

Z
S

a
@b

@n
dS (B.6)
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Upon subtracting (B.6) from (B.4) a relation between a volume integral and
a surface integral is obtained of the formZ

V

�
br2a� ar2b

�
dV =

Z
S

�
b
@a

@n
� a

@b

@n

�
dS (B.7)

known as Green's second scalar identity or also frequently as Green's theorem
[B.1].

B.2 Vector identities

It is possible to establish a set of vector identities wholly analogous to those
of Green for scalar functions. Let P and Q be two functions of position which
together with their �rst and second derivatives are continuous throughout V
and on the surface S. Then, if the divergence theorem is applied to the vector
P �r�Q , one hasZ

V

r � (P �r�Q) dV =

Z
S

(P �r�Q) � n dS (B.8)

Upon expanding the integrand of the volume integral one obtains the vector
analogue of Green's �rst identityZ

V

(r� P � r �Q� P � r �r�Q) dV =

Z
S

(P �r�Q) � n dS (B.9)

The analogue of Green's vector second identity is obtained by an interchange
of the roles of P and Q in (B.9) followed by subtracting from (B.9). As a
resultZ

V

(Q � r �r� P � P � r �r�Q) dV

=

Z
S

(P �r�Q�Q�r� P ) � n dS
(B.10)
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[B.2] E. Roubine, Mathematics applied to physics, 1970. Berlin: Springer-
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appendix C

Fourier transformation and Parseval's

theorem

C.1 Fourier transformation into spectral domain

A number of mathematical texts have been published on the Fourier trans-
formation. Some others, like [C.1], are intended for those who are concerned
with applying Fourier transforms to physical situations rather than with fur-
thering the mathematical subject as such. The purpose of this appendix is not
to review or summarize the subject. Quite speci�cally, it is intended to show
how to extend the classical Fourier transform, relating time and frequency
domain, to the relation between space and spectral domain, for scalar as for
vector quantities. Most usually, the Fourier transformation is applied to a
function f(t), described in the time domain. It is de�ned by

F (!) =

Z +1

�1

f(t)e�j!t dt (C.1)

which is a function described in what is called the frequency domain. Using
a similar transformation, which is called the inverse transformation, yields

f(t) =
1

2�

Z +1

�1

F (!)ej!t d! (C.2)

Calculating the Fourier transform of an ordinary di�erential equation o�ers
the enormous advantage of transforming the operators contained in the equa-
tion into terms of a polynomial expression. It must be observed that the
second transformation (C.2) is not exactly the same as the �rst.

On the other hand, the Fourier transformation can be applied to any pair
of quantities, relating the �rst quantity to its spectral transform. Regarding
(x, s) as such a pair, and applying the Fourier transformation twice yields

F (s) =

Z +1

�1

f(x)e�j2�xs dx (C.3)

and

f(w) =

Z +1

�1

F (s)e�j2�ws ds (C.4)
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This time, the same transformation has been applied twice. When f(x) is
an even function of x, that is when f(x) = f(�x), the repeated transforma-
tion yields the initial function. This is the cyclical property of the Fourier
transformation, and since the cycle is in two steps, the reciprocal property
is implied: if F (s) is the Fourier transform of f(x), then f(x) is the Fourier
transform of F (s). The cyclical and reciprocal properties are imperfect, how-
ever, because when the initial function is odd, the repeated transformation
yields f(�w). When f(x) is neither even nor odd, the imperfection is still
more pronounced. The customary formulas exhibiting the reversibility of the
Fourier transformation are

F (s) =

Z +1

�1

f(x)e�j2�xs dx (C.5)

f(x) =

Z +1

�1

F (s)ej2�xs ds (C.6)

When variable x is time t, then variable 2�s is frequency !, which yields
expressions (C.1) and (C.2). Factor 2� is often taken out of the integral in
the expressions.

Fourier transformation can easily be applied to functions with several
variables. In electromagnetics, the pairs of variables will often be the space
variables (x, y, z) on one side and the spectral variables (kx, ky, kz) on the
other, to obtain

F (kx; ky; kz) =

Z +1

�1

Z +1

�1

Z +1

�1

f(x; y; z)e�j(xkx+yky+zkz)dxdydz (C.7)

f(x; y; z) =
1

(2�)3

Z +1

�1

Z +1

�1

Z +1

�1

F (kx; ky; kz)e
j(xkx+yky+zkz)dkxdkydkz

(C.8)

Similarly, the Fourier transformation can be used to transform the four vari-
ables of space-time domain into the four spectral variables kx, ky, kz and !.
The extension to vector �elds is immediate: the component of the transform is
the transform of the corresponding component, and the transform of a vector
�eld is also a vector �eld. Transforming, for instance, from the time domain
into the frequency domain for an electric �eld, yields

E(r; !)
�
=

Z +1

�1

E(r; t)e�j!t dt (C.9)

E(r; t) �
=

1

2�

Z +1

�1

E(r; !)ej!t d! (C.10)
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while transforming from the space domain into the spectral domain yields
expressions which are identical to (C.7)(C.8) except for replacing F (kx; ky; kz)
and f(x; y; z) by the correspondent vector �elds.

It is interesting to observe that the sum xkx + yky + zkz is the scalar
product of the vectors position in space domain and in spectral domain, re-
spectively. It is rather customary to express this sum as a dot product in the
integrals, which renders the expressions more compact. A further improve-
ment is to express dxdy dz and dkx dky dkz as unit volumes dV (r) and dV (k)
in space domain and spectral domain, respectively.

C.2 Parseval's theorem

There is some ambiguity about what is called Parseval's theorem. Rigorously
speaking, Parseval's theorem is related to Fourier series, while its equivalent
for Fourier transforms is sometimes called Rayleigh's theorem [C.1].

Calling F (u; v) the two-dimensional Fourier transform of the two-dimen-
sional function f(x; y), Parseval's theorem for Fourier series is written [C.1]

Z +1

�1

Z +1

�1

jf(x; y)j2 =
XX

a2mn (C.11)

where��F (u; v)��2 =XX
a2mn[Æ(u�m; v � n)]

When related to Fourier transforms, Parseval's theorem is sometimes called
Rayleigh's theorem. The reason, reported in [C.1], is that the theorem was
�rst used by Rayleigh in his study of black-body radiation, published in 1899.
It states that the integral of the squared modulus of a function is equal to the
integral of the squared modulus of its spectrum; that isZ +1

�1

jf(x)j2 dx = 1

2�

Z +1

�1

jF (s)j2 ds (C.12)

or Z +1

�1

f(x)f�(x) dx =

Z +1

�1

f(x)f�(x)e�j2�xs
0

dx s0 = 0

= F (s0) � F �(�s0) s0 = 0

=

Z +1

�1

F (s)F �(s� s0) ds s0 = 0

=

Z +1

�1

F (s)F �(s) ds

(C.13)

Each integral represents the amount of energy in a system, one integral being
taken over all values of a coordinate, the other over all spectral components.
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The theorem is true if one of the integrals exists. Form (C.13) is used in
Chapters 3 and 4 of this book.

It has become customary to replace continuous Fourier transforms by an
equivalent discrete Fourier transform (DFT) and then evaluate the DFT using
the discrete data. Parseval's theorem is then usually written as [C.2]:

N�1X
n=0

f2(n) =
1

N

N�1X
k=0

jF (k)j2 (C.14)

where

jF (k)j2 = F (k)F �(k)

C.3 References

[C.1] R.N. Bracewell, The Fourier Transform and Its Applications. New
York: McGraw-Hill, 1965.

[C.2] R.A. Dorf, The Electrical Engineering Handbook. Boca Raton: CRC
Press, 1993.



appendix D

Ferrites and Magnetostatic Waves

D.1 Permeability tensor of a Ferrite YIG-�lm

Assuming a DC �eld along the y-axis, the magnetic permeability tensor of a
YIG-�lm is de�ned as [D.1]

� =

2
4�11 0 �21

0 1 0
�12 0 �11

3
5 (D.1a)

where

�11 = �0

�
1 +

(f=!0)(!hgMs + jfa)

(!hgMs + jfa)2 � f2

�
(D.1b)

�12 = �0

�
j

f2=!0
(!hgMs + jfa)2 � f2

�
(D.1c)

= ��21 (D.1d)

with

a = �H=(2Hint)
!h = Hint=Ms

!0 = f=(gMs)
H thickness of �lm [m]
Hint DC-magnetic �eld inside YIG-�lm [Oe]

when a �eld H0 is created by magnetic poles
Ms saturation magnetization of the �lm [G]

(usually noted 4�Ms in data sheets)
�H linewidth of YIG-�lm [G]
g gyromagnetic ratio = 2.8 [MHz/Oe]

D.2 Demagnetizing e�ect

The YIG-�lm is placed in a uniform DC-magnetic �eld applied along the y-
axis (Fig. 4.2). The demagnetizing e�ect exists because a YIG-sample placed
into a uniform DC-magnetic �eld H0, generates an internal component of
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�eld necessary to ensure the boundary conditions at the interfaces between
YIG and air. The result is that the total internal magnetic �eld inside the
YIG-sample, denoted by Hint, is lower than the external applied �eld, hence
a demagnetizing e�ect occurs. It is usually expressed via a demagnetizing
factor Ny:

Hint = H0 �NyMs (D.2)

For ellipsoidal bodies, the demagnetizing e�ect is easy to calculate [D.2]. For
a YIG-�lm in�nite along the x- and z-axis, one has

Ny = 1 (D.3a)

so that

Hint = H0 �Ms (D.3b)

For a YIG-�lm of �nite width, the exact calculation of the demagnetizing
factor is diÆcult. One solution proposed by Joseph and Schlomann [D.3]
develops the total internal magnetic �eld as a series of ascending powers in
(H0=Ms). The �rst-order term is used in our models and is suÆcient to predict
the internal magnetic �eld. The main characteristics of the demagnetizing
e�ect obtained when using those expressions is that the resulting internal
�eld is nonuniform over the sample width. The demagnetizing factor is about
1 at the center of the �lm, while it decreases to 1=2 at its edges.

Hence, the permeability tensor to be considered in the �lm varies with the
x-position in the sample, since the internal �eld varies. The edge values of
the permeability tensor are calculated by using the value of Hint at the edges
of the �lm. The position-dependent inverted permeability tensor required in
(4.2) is calculated for each x-position and the integral of each term of (4.2)
over the �lm width is performed numerically (simple trapezoidal method).

D.3 Magnetostatic Wave Theory

D.3.1 Magnetostatic assumption

Magnetostatic waves are derived from the solution of Maxwell's equations for
magnetically ordered matter, completed with the constitutive equations:

r�E = �j!B
r�H = J� + j!D

r �B = 0

r �D = ��
(D.4a)

D = " �E B = � �H J� = �E (D.4b)

In this appendix we only deal with magnetic dielectrics ( ferrites) in which free
charge carriers do not exist and the current density is negligible. In addition,
we assume that this matter is electrically isotropic, so that the permittivity
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tensor reduces to the scalar ". If we separate the quantities in (D.4a) into DC
and RF components:

H = H0 + h ej!t E = E0 + e ej!t

B = B0 + b ej!t D = D0 + d ej!t

we obtain

r� e = �j!b
r� h = j!d

r � b = 0

r � d = 0
(D.5a)

d = "e b = � � h (D.5b)

We now simplify system (D.5a) [D.4], taking advantage of the fact that we
are only interested in slow electromagnetic waves in ferrimagnetic media (i.e.
k >> k0

p
"="0), so that the following condition is met:

2�

�
>>

!

c
or ! <<

2�c

�
(D.6)

where � is the wavelength of the slow electromagnetic wave in the medium and
c is the light velocity in a medium of permittivity ". Form (D.6) is valid when
! is small (quasi-stationary approximation) or when the wavelength of the
excitation in medium � is much smaller than the wavelength in vacuum, i.e.
� << 2�c

! (quasi-static approximation). Taking this into account, then system
(D.5a) can be split into two independent systems for electric and magnetic
�elds:

r� e = 0

r� h = 0

r � �� � h� = 0

r � ("e) = 0
(D.7)

System (D.7) is similar to the equations of statics, the only di�erence be-
ing that the permeability is frequency-dependent. For this reason slow elec-
tromagnetic waves in magnetically ordered matter are called magnetostatic
waves. There is, however, a comment to be made. System (D.4a) can be solved
for special cases, yielding expressions for the components of high-frequency
electric and magnetic �elds [D.5]. If condition (D.6) is applied to those solu-
tions, i.e. quasi-static approximation, we see that the magnetic �elds obtained
satisfy the magnetostatic equations (r � h = 0) while the electric �elds do
not satisfy equation r� e = 0, except in the limit when the high-frequency
electric �eld vanishes. This requirement is not realized since magnetostatic
waves, although slow, are electromagnetic waves: they have to contain both
magnetic and electric components of the high-frequency �eld. That is why
system (D.7) for magnetostatic waves has no physical basis and has to be
replaced by system (D.4a). Maxwell's equations can then be written for mag-
netostatic approximation:

r� e = �j!� � h
r� h = 0

r � �� � h� = 0

r � ("e) = 0
(D.8)
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D.3.2 Types of Magnetostatic Waves

The Damon-Eshbach study [D.6] establishes that one can distinguish between
three MSW-types: magnetostatic surface waves (MSSW), magnetostatic for-
ward volume waves (MSFVW) and magnetostatic backward volume waves
(MSBVW), with the orientation of the internal bias �eld relative to the YIG-
�lm and the propagation direction determining which particular wave-type
can exist. We assume that the propagation occurs along the z-axis. A wave
having its phase and group velocities in the same direction propagates in a
perpendicularly magnetized chain of magnetic dipoles. This wave is anal-
ogous to a slow electromagnetic wave in perpendiculary magnetized ferrite
slabs (Hdc y-directed). It is a MSFVW. A wave having its phase and group
velocities in opposite directions propagates in a longitudinally magnetized
chain of magnetic dipoles. This wave is analogous to a slow electromagnetic
wave in the longitudinally magnetized ferrite slabs (Hdc z-directed). It is a
MSBVW. Magnetostatic surface waves are the most common and well in-
vestigated magnetostatic waves. They propagate in ferromagnetic materials
magnetized in the layer plane perpendicularly to the direction of the magnetic
�eld (Hdc x-directed).

D.4 Perfect Magnetic Wall Assumption

The physical phenomenon giving the boundary condition at the �lm edges is
described as follows by O'Kee�e and Patterson [D.7]: \In most experimental
situations the sample edges are de�ned either by slicing or chemical etching.
The combination of the edge roughness produced by the sample preparation
and demagnetizing �elds is suÆcient to pin the spins at the sample edges.
We shall approximate the pinning condition by assuming the microwave �elds
[tangential] Bx = By = 0, at z = 0, w." A number of authors refer to this
explanation.
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appendix E

Floquet's theorem and Mathieu

functions

E.1 Floquet's theorem

Wave propagation in a periodic medium has always received much interest,
largely because of the importance of cristalline media [E.1] and periodically
loaded structures, such as waveguides for example [E.2]. The resolution of
those problems is based on Floquet's theorem [E.3], applicable to linear di�er-
ential equations with periodic coeÆcients. When applied to wave propagation
in periodic structures its main result is that, for a certain oscillation mode of
the structure at a given frequency, the wave function, i.e. the electromagnetic
�eld, is multiplied by a complex constant when moving one period along the
structure. Floquet's theorem applies to equations of the form

y00 + p(x) y0 + q(x) y = 0 (E.1)

where p(x) and q(x) are periodical, with a period D, which are parametric
linear equations. Hill's and Mathieu's equations are particular cases of (E.1),
with Mathieu's equation being a particular case of Hill's equation. We de-
scribe brie
y the main results [E.4]. If y(x) is a solution of (E.1) then y(x+D)
is of course also a solution, as well as the expressions

y1(x+D) = a y1(x) + b y2(x) (E.2)

y2(x+D) = c y1(x) + d y2(x) (E.3)

Writing these expressions in matrix form yields����y1(x+D)
y2(x+D)

���� = A

����y1(x)y2(x)

���� (E.4)

with

A =

����a b
c d

���� (E.5)

whereA is independent of x. It appears that for most cases in electromagnetics

det(A) = 1 (E.6)
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From solution y1 and y2 of equation (E.4) one can derive other solutions, Y1
and Y2, for instance. These have also to satisfy (E.4). It can be shown that
it is possible to diagonalize the relation between Yi(x+D) and Yi, yielding

Y1(x+D) = a Y1(x)

Y2(x+D) = b Y2(x)
(E.7)

The diagonalization leads to ab = 1, with as general solution

a = e�� ; b = e� (E.8)

where � is complex. Relations (E.6) can then be written

Y1(x+D) = e�� Y1(x)

Y2(x+D) = e� Y2(x)
(E.9)

which form Floquet's theorem.

E.2 Mathieu's equation and functions

When written in elliptical and hyperbolic coordinates, Laplace's equation be-
comes

d2y

dz2
+ (a� 2q cos 2z)y = 0

which is called Mathieu's di�erential equation [E.4]-[E.7]. It is obviously a
particular case of (E.1). Here, we limit ourselves to the situation where vari-
able z and parameters a and q are real. When the observation point is able
to move freely along a complete ellipse, the solutions of (E.1) are periodic of
period 2�; they are the Mathieu functions of integer order. They exist only
when parameters a and q are linked by a rather intricate relationship. If q
goes to zero, the equation becomes

d2y

dz2
+ a(0)y = 0 (E.10)

with periodic solutions when a(0) is the square of an integer m. These solu-
tions are cosmz and sinmz. The functions of period 2� becoming cosmz and
sinmz when q goes to zero are called Mathieu functions of index m. Math-
ieu functions are usually described in an elliptical system. (They can also
be transformed into modi�ed Mathieu functions, to be described in an hyper-
bolic system.) By denoting ce and se the elliptical cosine and sine respectively,
those functions are designated respectively by

cem(z; q) and sem(z; q) (E.11)

When m = 0, the limit of ce0 is unity. The relation between a and q is called
the characteristic equation. It can be written

Fm(a; q) = 0 with Fm(m
2; 0) = 0 for cem

�m(a; q) = 0 with �m(m
2; 0) = 0 for sem

(E.12)
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Equation (E.11) shows that Mathieu functions of integer order are functions
of the two variables z and q which depend on the index m, with a 2� period
for variable z. The functions (E.12) are represented in the space (a; q) [E.5]
which yields a set of curves characterizing Mathieu functions of integer order.
These curves have no point in common, except on the a-axis: it is impossible
to �nd a pair a; q satisfying simultaneously both equations (E.12). Hence
solutions cem and sem cannot co-exist, except when a = 0. So, the general
solution of (E.10) cannot be a linear combination of two Mathieu functions
of integer order. This leads to the de�nition of Mathieu functions of second
kind, solution linearly independent of cem and sem.

Mathieu functions have properties similar to those of the other eigenfunc-
tions of Laplace's equation, described in other coordinate systems. They are
orthogonal, in the sense that the integrals over 2� of the products cem cep,
sem sep, and cem sep are zero if m di�ers from p. They can be decomposed
into Fourier series and into Bessel functions. In addition, Mathieu functions
can be obtained for any a and q.
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