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xxiii

PREFACE

The field of hobby robotics has many parallels to personal computing. If you wanted
to own a computer in the 1970s, you had to build it yourself. Less than a decade later,
you could buy a fully assembled computer and people quickly discovered that pro-
gramming a computer led to far more enjoyment, satisfaction, and productivity than
constructing one.

In the 1980s robot hobbyists spent most of their time building robots from wood and
sheet metal. They powered their creations with surplus parts like windshield wiper
motors salvaged from car junkyards. So much time was spent in the construction phase
that minimal thought was given to the electronic aspects of the project—many of the
early robots were controlled with doorbell buttons and relays.

As the personal computer became more powerful a more sophisticated robotics hob-
byist began to evolve. They learned more about electronics and started building crude
sensors and motor control circuitry that, along with a personal computer, gave their
robots, at least, the potential to interact with their environments. These new hobbyists
renewed the dream that intelligent robots could actually be built. Unfortunately, most of
the people interested in robotics still lacked the required electronics skills and knowledge.

In the years that followed, many books and magazines were published that promised
to help robot enthusiasts create circuitry to give their robots more intelligence. However,
often, due to complexity and lack of experience, many people had trouble duplicating
the authors’ works.

Despite all these difficulties, the desire to build personal robots did not diminish. New
companies emerged offering robot kits that required minimal experience to build and
actuate. These early kits were not programmable, and thus did not satisfy the hobbyists’
desire to create intelligent machines. Nowadays there are many companies that offer
sophisticated sensors and embedded computers that make it possible to build intelligent,
capable and useful robots. 

Today, you can buy electronic compasses, ultrasonic rangefinders, GPS systems,
infrared perimeter sensors, line and drop-off detectors, color detectors, electronic
accelerometers, and even cameras. Reasonable knowledge and often a lot of time are
still required to interface these devices to a robot’s microcontroller, but the abundance of
manuals and books make details available to any hobbyist willing to expend the effort.
With sophisticated hardware available to everyone, hobby robotics is now able to turn its
attention to programming, finally making it possible to create truly intelligent machines.

Considering these developments, it is easy to feel like all the hard work has been
done, when in fact, the real work is just beginning. Remember, personal computers
were just a curiosity until the emphasis shifted from building them to programming

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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them. This paradigm shift enabled innovative hobbyists and entrepreneurs to create
word processors, spreadsheets, and graphical user interfaces (GUIs) that changed the
world. The world of hobby robotics is now entering such an era. Today’s robot enthu-
siasts no longer need a degree in electronics and a machine shop in their garage to
create robots that are ready to be programmed. They do, however, need to understand
programming, because it is software that truly creates a useful robot.

Sophisticated kits and fully assembled robots are available from many vendors.
Numerous companies offer off-the-shelf hardware modules that enable a typical hobbyist
to assemble a custom robot with capabilities that were only a dream a few years ago. A
hobbyist that understands the concepts of robot programming can use these new plat-
forms to create the projects robot builders have been seeking for years.

Unfortunately learning to program a robot can be very frustrating, even if you have
the appropriate hardware. Sensors often need adjusting and realigning and batteries
always seem to need recharging. When the robot fails to respond properly you run the
risk of damaging it or even your home or furniture. Because you can’t see why the robot
is failing, the task of debugging the code can often be exasperating. With the world of
robotics entering its new era, there has to be a better way for hobbyists to learn about
programming their machines.

This book is aimed at the new hobbyist who is interested in programming robots.
Today there are numerous microcontrollers that can be used to control robots.
These controllers can be programmed using a variety of programming languages
(Assembly, C, BASIC, and others). This lack of homogeneity in hardware and software
tools make it hard to learn how to program a robot, even if you have previous pro-
gramming experience.

In reality, the details of the implementation using a specific combination of software
and hardware are of secondary concern. What is important in programming a robot
to do useful tasks is the algorithm that achieves the desired logic. Once the algorithm
is determined it can be easily translated into any programming language to work on
any appropriate microcontroller. 

RobotBASIC is a full-featured, interpreted programming language with an integrated
robot simulator that can be used to prototype projects. The simulator allows you to
research various combinations of sensors and environments. You can change the
types and arrangements of sensors in seconds, making it possible to experiment with
numerous software ideas. You can test your algorithms in environments that would be
impractical to create in real life.

The simulated mobile robot is two-dimensional, but programming it lets you learn
how to use all the sensors you would expect to find installed on robots costing hun-
dreds if not thousands of dollars. And you will soon discover that programming the
simulation is so much like programming the real thing (less all the frustrating aspects)
that you will soon forget it is just a circle moving on your screen.

RobotBASIC has capabilities far beyond the robot simulator. It is a powerful pro-
gramming language with functions that support graphics, animation, advanced math-
ematics, and access to everything from I/O ports to Bluetooth communication so that
you can even use it to control a real-world robot if you choose. When you learn about
robot programming with RobotBASIC you won’t have to spend months building a
robot. You will be able to start programming immediately and never have to worry
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about charging batteries or damaging furniture, although you can simulate those
events too.

The book is divided into four parts. Part 1 explores the advantages of using a simu-
lator and teaches how to use the simulated robot and its sensors. It also introduces the
RobotBASIC language and programming concepts in general. By the time you finish
Part 1, you will be able to write and debug simple programs that move the robot around
a simulated environment while avoiding objects that block its path. 

Part 2 examines everything you typically find hobbyists doing at robot clubs. You
will learn ways to make the robot follow a line on the floor, hug a wall, or stay away
from a drop-off such as a stairway. All of these topics (and more) are examined with
simple easy-to-understand approaches. The simulation is then used to expose prob-
lems and deficiencies with the initial approaches. New and better algorithms are then
developed and explained. Learning about robotics using this building blocks approach
can be very motivational because it is exciting and relevant. As you proceed through
the book you will gain more knowledge about programming and problem solving prin-
ciples. This makes RobotBASIC an ideal first language for teaching students about pro-
gramming, mathematics, logical thinking, and robotics.

The chapters in Part 3 combine the behaviors developed in Part 2 into compound
complex behaviors, that enable the robot to solve real-world projects such as charging
the robot’s battery, mowing a lawn, solving a maze, locating a goal, and negotiating a
home or office environment. As in Part 2, the projects are first explored with simple
approaches before introducing more complex concepts. The advanced reader will find
this part of the book interesting because many behaviors are evolved using mathemat-
ics and computer science topics. 

Part 4 explores advanced topics such as adaptive behavior and how RobotBASIC
programs can be used to control real-world robots using wireless links. Additionally,
ideas are forwarded for why RobotBASIC can be useful in robotic contests and as a
teaching tool in the classroom.

The RobotBASIC program along with all the programs in this book can be down-
loaded from www.RobotBASIC.com. The language is subject to change as alterations
and upgrades are implemented. The help files accessible from the latest IDE will have
the most valid up-to-date descriptions of all the functionalities of the language. Make
sure to always download the latest version and to consult the help files for any new and
modified features. Also make sure to check the site for:

• Updated listings of all the programs in the book.
• Solutions for some of the exercises in the book.
• Any corrections to errors that may have slipped into the book.
• Other information and news.

www.RobotBASIC.com
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P A R T1
BUILDING BLOCKS

1

In Part 1, besides exploring the advantages and utility of simulators, we introduce the
RobotBASIC IDE (integrated development environment) and language along with the robot
simulator. Initially we develop simple programs to illustrate the mechanisms for creating and
animating a robot. Later chapters introduce the available sensory systems and show how to
use them to avoid obstacles while the robot is roaming around its environment. The
RobotBASIC programming language is introduced in stages in Chaps. 2 to 5. Flow-control
statements, conditional execution, binary math, bitwise operators, and subroutines are intro-
duced with application to the simulator. Many commands, along with some mathematical
functions and concepts, are introduced while writing programs to control the robot. 

Each chapter introduces pertinent new skills while building upon previous knowledge
to accumulate the expertise necessary for building the toolbox of behaviors that will be
developed in Part 2. 

Upon completing Part 1 you will be able to:

� Create, edit, open, and save programs using the IDE.
� Write programs using the language to a good level of proficiency:
� Get input from a user using the mouse and keyboard.
� Display output and graphics on the screen.
� Do conditional execution. 
� Use looping constructs.
� Understand and utilize commands and functions.
� Use binary numbers and bitwise operations.
� Apply modularity and utilize subroutines.

� Manipulate the robot and utilize most of its sensory systems: 
� Move the robot in a simulated environment.
� Interrogate and interpret the infrared and bumper sensors.
� Be aware of other sensors and instrumentation.

� Use the Debugger to debug programs.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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3

C H A P T E R1
WHY SIMULATIONS

Since you are reading this book, you must be interested in robotics to a certain extent.
Perhaps you are a member of a robot club or attend a technical school and have a

little experience building your own robots. Maybe you have purchased a robot kit and want
to learn how to customize it. Maybe you want to learn about robotics but don’t have the
funds to buy or build a robot of your own. If you fall into any of these categories, a robot
simulator is a very effective way to learn about robotics and robotic algorithms. A robot
simulator is also a valuable tool for experimenting with various possibilities and combina-
tions of hardware and software arrangements without the time delay and expense incurred
when building an actual robot.

1.1 What Is RobotBASIC?
In general, this book is about a computer language called RobotBASIC. More specifically,
this book is about how you can use RobotBASIC to prototype algorithms that enable a
robot to interact with its environment. The advantage of a simulator is that you can do
this without having to buy or build an actual robot.

RobotBASIC allows you to create a simulated robot on your computer screen. As we
progress through the algorithms in this book you will find that the simulated robot is very
much like the real thing. It can be placed in rooms with furniture, or outside so that it can
mow a yard. You can program the simulator to do nearly anything a real robot can do.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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After studying this book you will be able to program a robot to, for example, navigate
throughout the rooms in your home to find and plug itself into a battery charging station.

That last statement was very important. Notice that we did not say that you would be
able to program the simulated robot—We said you would be able to program a robot. The
robot in RobotBASIC is so realistic and accurate in its ability to mimic a real robot, that
the very same algorithms and principles you use to program the simulated robot can be
used to control a real one. Chapter 17 shows how to build a real world equivalent of the
robot simulated in RobotBASIC and shows how you can utilize the algorithms developed
in this book to program an actual robot.

1.2 Flight Simulators
The fact that a simulation can truly mimic the real world may be unfamiliar to you if you
are not acquainted with how simulations are used nowadays. Pilots, for example, are
trained on flight simulators that are so accurate and realistic that they can be used for
certification purposes. Simulators have economic advantages over using a real airplane
for training purposes, but there are other advantages too. A simulator allows situations to
be tested that would otherwise be difficult or dangerous to implement. We want, for example,
commercial pilots to be able to land a plane even if one engine fails because several geese
were sucked into it during approach to the runway. Simulating such an emergency on a
real airplane by shutting down one of the engines is dangerous and expensive. Using a
realistic simulator would be much safer and cost efficient.

Obviously, if flight simulators are going to be effective they have to feel real to the pilot
being trained. They have to respond to the pilot’s commands exactly like the real airplane
would. In order to be useful, they have to make the pilot forget the fact that he is com-
manding a simulator. Flight simulators today have cockpits mounted on hydraulic actua-
tors where the windows are actually computer screens that display what would be seen
out of a real window. It is not unusual for the simulation to be so detailed that you can
feel the plane bump as it rolls over the tar-filled cracks on the runway.

1.3 Comparing RobotBASIC
with Other Simulators
If you search today you can find programs that allow you to create simulated robots of
various shapes and sizes with sensors tailored to your specifications. Some simulators
will display your creations in three dimensions on your computer screen, perhaps even
complete with the appropriate shading and shadows. Unfortunately such programs are
often expensive, complex to learn and use, and slow if not being run on a very fast
system.

RobotBASIC was developed to address all these issues. RobotBASIC is free for every-
one to use. This includes individuals, clubs, schools, or any other organization. Give it to
your friends, distribute it to your students, tell your club members to download it—our aim
is for RobotBASIC to be of utility to people of various skills and ages. The only thing you
are not allowed to do with RobotBASIC is sell it.
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RobotBASIC does not display the simulated robot in three-dimensional graphics, how-
ever, you will find that the robot has all of the sensors you would expect to find on a hobby
robot as well as a few that most people wish they had the means to implement. Other
simulators may have sophisticated graphics but displaying the robot in three dimensions
does not enhance the functionality of simulations for a robot that moves in two
dimensions.

RobotBASIC is easy to use. It is a BASIC-like language that is easy to learn, even for
people who have never programmed before. A teacher can utilize RobotBASIC to make
even sixth graders excited and productive in only a few hours, and they won’t just be learn-
ing to play with a robot, they will be developing significant problem solving skills and learn-
ing the principles needed to program a computer in any language. RobotBASIC can be
used to create challenges appropriate to various age groups.

Even though RobotBASIC is easy enough for beginners, you will find it is also power-
ful enough to be used by sophisticated hobbyists and experienced programmers. It has all
the standard flow-control structures and a virtually unlimited space for variables and arrays.
As a RobotBASIC programmer you have a full complement of graphics commands and
functions for manipulating strings. The mathematic functions available include the ones
you would expect in any powerful scientific calculator, but you will also find matrix oper-
ations seldom found in any language.

1.4 Developing Robot Behaviors
The debugging tools in RobotBASIC are both powerful and easy to use. They let you watch
the value of variables in your program while you observe the robot’s behavior. You can
even see the areas around the robot’s perimeter where the infrared sensors are checking
for objects. These features help you understand how your robot is seeing its environment,
which in turn helps you develop algorithms that give your robot intelligent behaviors.

RobotBASIC lets you easily and quickly simulate a wide variety of environments and
situations for testing your algorithms. Testing a real robot can often be extremely time-
consuming. Typically, when programming a real robot, you have to edit a file, compile it,
plug the robot into the computer, download the program to the robot’s memory, unplug
the robot, position the robot in the testing environment, switch it on, and then observe
its behavior while making sure it does not damage itself or the environment. It is often dif-
ficult if not impossible to see why the robot is not responding as you expected. You often
have to repeat this cycle many times until you get the required result. The inconvenience
of this iterative process can lead you to compromise and accept a working algorithm rather
than an optimal one you could have developed had you persevered in trying to optimize
your algorithm.

With the simulator, you can make changes in seconds, not only to your algorithm, but
to the environment as well. And during testing, you don’t have to guess what your robot
is seeing. With the debugging tools you can step through sections of your code, watching
exactly what the robot is detecting and how it is reacting to obstacles in its path. We can’t
emphasize enough how important this ability is. When you develop an algorithm to con-
trol your robot’s behavior it is crucial to be able to view the environment from the robot’s
perspective. A simulator is by far, the best way to achieve this.
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1.5 Simulation Can Improve 
Hardware Choices
When you design a robot, you need to make many decisions. What type of sensors should
it have, how many of each should there be, and how should they be mounted. For exam-
ple, you might want to have infrared sensors around the perimeter of your robot so that
it can detect objects before bumping into them. (Infrared sensors work by emitting infrared
light and detecting if any of that light is reflected back to the robot.) You may choose to
have only one sensor facing the front of your robot, or you might want one on each side
in addition to the front one. The correct choice will be influenced by the type of environ-
ment in which you expect your robot to operate.

RobotBASIC’s robot has five infrared sensors, one directly in the front, two more offset
45� to the sides, and two more directly to the left and right of the robot. When program-
ming the simulator you may use any or all of these sensors. You also have the capability
of creating as many custom sensors as you might need for special situations (see Chap. 9).
Imagine how this can help in designing your robot.

Without a simulator you would have to mount and remount your sensors while going
through numerous programming alterations and tests to see how your robot would react
to your choices. With the simulator you can do all of this in a fraction of the time. The
simulator also lets you easily test your sensor placements and programming algorithms
under a wide range of conditions, such as extremely crowded environments or objects with
sharp points and so on.

If you use a simulator to test your ideas you can make decisions about what sensors your
robot should have and how they should be placed before you actually construct the robot.

1.6 Robots Are Not Just Hardware
Many people may feel discouraged by the previous discussion because it means they have
to do a lot of programming. Some may say: “I just want to build a robot—I don’t want to
sit and program all day”. Without software and sensors a robot is nothing more than a
motorized toy. An autonomous mobile robot needs to be able to make its own decisions
about how to react to its environment. Autonomous robots are more challenging to design,
but are much more versatile and useful. 

Imagine if the Mars Rover was not autonomous. Controllers on Earth trying to manip-
ulate it would be very frustrated due to the fact that signals from Earth take nearly 10 min-
utes (depending on orbital positions) to reach Mars and vice versa. So a human trying to
remote control the robot would have to wait a considerable time to see the results of the
most recent control input and a considerable time to be able to command a correction.
The robot can fall off a ledge, or collide with a rock by the time a corrective command
reaches it. The only way to have an effective Mars Rover is to build it with a collection of
intelligent algorithms to autonomously achieve the desired tasks.

An algorithm that controls a robot’s behavior is basically a set of rules that tell it how
to respond to various situations as defined by the state of its sensors. As these rules
become more numerous and more complex you will start to see the robot behave in ways
you never expected. The robot may appear to deal intelligently with situations you never
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even considered when you wrote the program. At the other extreme, your robot might
look really unintelligent when it encounters some situations. 

Programming your robot, or your simulator, is how you give it life. It is how you create
its personality and how you determine its behavior. Once you appreciate this concept your
experience with building robots will be enhanced and enriched. The RobotBASIC simu-
lator will help you learn to program a real robot, and you will soon find that it can be just
as challenging as programming the real thing. You may also be surprised to find that it
can be just as exciting and rewarding too. You may not believe that a simulator can make
you feel this way, but trust us, RobotBASIC can.

1.7 RobotBASIC Teaches Programming
Novice programmers learn programming much faster when they are writing programs to
solve real-world problems (like programming a robot). A simulator helps them see flaws
in their programs because they get immediate and useful feedback on the effectiveness of
their algorithms. This feedback alone is a compelling reason for using a language such as
RobotBASIC to teach programming, but there are additional advantages.

Typically, students in a programming class write small programs that only demonstrate
some concept or syntax. Unfortunately, these initial programs are often extremely boring
to students because there is little relevance to real-world problems. 

It has been our experience that programming a robot is a valuable teaching tool for every-
one from young children to college students. When introduced to the robot properly, students
find controlling it enjoyably challenging and viewing its responses helpful in their under-
standing of programming principles. Furthermore, since the programs being written address
real situations, the students learn problem-solving skills that are hard to obtain by other means.

Above all, students who learn programming with a simulator have fun. They enjoy learn-
ing how to make their creation smarter. They want to learn about new concepts, new syntax,
and new techniques to improve their programs. Teachers know this makes a big difference.

1.8 Summary
In this chapter you have learned that:

� RobotBASIC is a programming language that allows you to simulate a robot with real-
istic behavior.

� Simulators are used in many fields, and are a valuable training and prototyping tool. 
� RobotBASIC is easy to use yet full of powerful features. Both the novice and the expe-

rienced programmer can create realistic, enjoyable, and effective simulations.
� RobotBASIC’s debugger gives you insight into the robot’s view of the environment,

which aids in developing more effective algorithms.
� Building simulations with RobotBASIC enables you to make better choices when it is

time to design and build a real robot.
� Robots without a well-designed controller program are no more than a toy.
� Learning to program with RobotBASIC is more fun and more effective than traditional

methods.
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C H A P T E R2
INTRODUCTION TO

ROBOTBASIC

RobotBASIC is a fully featured programming language similar to the standard BASIC
language, but with major enhancements, additional flow-control structures and other

features; all of which help you create powerful structured programs with ease.
RobotBASIC has an integrated development environment (IDE) that enables you to

create and edit programs and then run them instantly on a terminal screen. The IDE will
indicate any syntactical errors in your program and point out the nature and location of
the error. Additionally, there is a debugger that can help in figuring out logical errors that
might otherwise be hard to locate.

RobotBASIC has tools, commands, and functions to help you write programs that:

➢ Create realistic and effective robot simulations.
➢ Create graphical displays. 
➢ Interact with the user with input and output commands.
➢ Perform mathematical, trigonometrical, and statistical calculations.
➢ Create and manipulate strings, and convert between strings and numbers.
➢ Create and manipulate matrices with a set of functions and commands that allow for

many of the matrix operations that are encountered in advanced mathematical courses.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Most of the features above will be discussed as the need arises in later chapters. This
chapter will show you how to download and run RobotBASIC including how to create,
save, load, edit, and run programs. You will also be introduced to the robot simulator, where
you will write simple simulations that make a robot come to life.

2.1 Running RobotBASIC
You can download a zip file that has RobotBASIC.exe and all the programs in this book
from www.RobotBASIC.com. Open the zip file using Windows Explorer and drag-and-
drop the RobotBASIC folder onto your desktop. You can now close the zip folder and open
the newly created RobotBASIC folder. This folder contains the RobotBAISC.exe and a
subfolder called RobotProgrammersBonanza. This subfolder contains subfolders for each
chapter in the book that has programs. There are also subfolders for other demo programs.
If you wish, you can create a shortcut to the RobotBASIC.exe on your desktop. This makes
it easier to run the interpreter on a regular basis. 

You will now be able to run RobotBASIC and execute programs from the
RobotProgramersBonanza subfolder. If you create new programs you can save them in
this subfolder or you may create another folder from within the IDE.

2.2 The RobotBASIC IDE
The RobotBASIC IDE consists of an Editor Screen, a Terminal Screen, a Help Screen,
and a Debugger Screen. Each screen has various buttons and menus that facilitate the
numerous actions required in each one. This section will discuss the Editor Screen, Terminal
Screen, and Help Screen. The Debugger Screen will be discussed in Chap. 6. Only the
features required in this chapter will be described for each screen. For a more detailed
description of all the actions available refer to App. A.

2.2.1 THE EDITOR SCREEN

The Editor Screen (Fig. 2.1) has a number of buttons and menu items that facilitate the
creation, editing, and running of programs. If you place the mouse cursor on a button and
wait for a second, a description will pop-up showing the button’s intended action (Fig. 2.2).
In addition, each button has an icon that is helpful in remembering the button’s func-
tionality. It is also possible to achieve all the buttons’ functionalities by using drop-down
menus or keyboard shortcuts.

NOTE: The language is subject to change as alterations and upgrades are imple-
mented. The help files accessible from the latest IDE will have the most valid up-to-
date descriptions of all the functionalities of the language. Make sure to always

download the latest version and to consult the help files for any new and modified features.
Also make sure to check the site for updated listings of all the programs in the book, solutions
for some of the exercises in the book, corrections to errors that may have slipped into the book,
and any other information and news.

www.RobotBASIC.com
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To run the program currently being edited either, click the Run menu and the Run
Program submenu, or press the button, or use the Ctrl+R key combination on
the keyboard. Running a program will open the Terminal Screen window and display any
program interaction on this screen.

2.2.2 THE TERMINAL SCREEN

The Terminal Screen (Fig. 2.3) is where the program’s input and output take place. This
screen has many features. For complete details on these features and how to utilize them,
refer to App. A. 

2.2.3 THE HELP SCREEN

The Help Screen (Fig. 2.4) provides explanations and details of the RobotBASIC language
and other aspects of the entire system. The screen has a drop-down combo-box that allows
you to choose the desired Help Screen from a list of topics. Information given in this screen
is discussed in Apps. A, B, C, and D. Having all the information available on this screen
is convenient while writing programs and provides the most up-to-date details.

Any help text can be selected and copied to the Windows Clipboard using the 
button or Ctrl+C key combination. The button or Ctrl+F allows you to search the
text in the currently displayed section for easy location of the topics relating to your query.

FIGURE 2.1 The Editor Screen.

FIGURE 2.2 Button hints.
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2.3 Creating, Running, and Saving a Program
The Editor Screen (Fig. 2.1) is where you create your programs. The editor is very simi-
lar to the Windows Notepad program. You can type text, cut, paste, copy, search, search
and replace, print, save to a file, and load from a file.

To create a new file, press the button. There is a button for each of the actions
listed above. If your program has been previously created and saved you can load the

FIGURE 2.3 The Terminal Screen.

FIGURE 2.4 The Help Screen.
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program using the button, which will bring up a dialog box that allows you to select
the file required. Pressing the button brings up another dialog box that allows you to save
the text currently in the editor to any file you name, or overwrite an existing file if required.

Once you are ready to test your program press the button to run the program
currently in the text editor. This will show the Terminal Screen (Fig. 2.3) and the program’s
output will be displayed on this screen.

2.4 The Robot Simulator
RobotBASIC makes it easy to simulate a robot on the Terminal Screen. There are many
aspects to the simulated robot that will be described in later chapters. Here we will show
you how to create a robot and make it move around the screen. 

The Terminal Screen simulates a room with four walls that normally measures
800 � 600 pixels. The robot’s world is limited by the confines of this room. Given a robot
diameter of 40 pixels, we can get a feel for the scale of things. Assuming a real robot of
12-in diameter we can calculate the room dimensions to be 800 � 12/40 � 240 in, that
is, 20 ft and 600 � 12/40 � 180 in, that is, 15 ft. So the default simulated robot rep-
resents a 1-ft diameter robot in a room measuring 20 � 15 ft. These proportions can be
altered, if needed, by changing the size of the robot. The room can be empty or filled with
objects like sofas, tables, chairs, toys, and so on. You can even divide it up into further
rooms or partitions such as in an office environment. 

For some simulations, discussed in the coming chapters, you will need to draw lines on
the floor and hang lights from the ceiling to act as homing beacons. RobotBASIC has many
commands for drawing graphics on the screen that can be used to simulate all of the above.
See Sec. C.7 for details on these drawing commands.

2.4.1 INITIALIZING THE ROBOT

Before you can use the robot in any simulations you must initialize the robot and place it
in the environment. The environment has to be created before placing the robot in it. The
command to initialize and place the robot on the screen is:

rLocate X,Y,Heading,Size,Color

X and Y are required parameters that define the position on the screen to place the
robot. Both X and Y have to be whole numbers and must be within the limits of the screen
(800 � 600 pixels). If you try to place the robot off the screen it will be placed at the limit
of the screen.

Heading is optional and if it is not specified, 0 will be the default. Heading specifies
the direction the robot will be facing (0� to 359�) 0� is north, 90� is east, 180� is south
and 270� is west. Intermediate headings like northwest would be 315�, and so on. If you
need to specify the next parameter Size you must also specify the Heading.

Size is optional and if it is not specified 20 pixels will be the default. You can specify
a maximum of 50 pixels and a minimum of 5 pixels. If you try to specify a number for
Size outside these limits the closest limit will be assumed. You must specify Heading and
Size if you want to specify the next parameter Color.
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Color is also optional and if it is not defined the color blue will be the default. You can
specify any of the colors listed in Sec. B.7.6. When you specify a color consider the floor
color the robot is being drawn over. If you specify the same color as the floor color
RobotBASIC will select the next color up to avoid making the robot invisible.

Let us write a program to place the robot on the screen. The room will be empty. Type
the lines of code shown in Fig. 2.5 in a new editor screen and then press the run button
to execute the program. You will see the screen in Fig. 2.6 (notice the color, heading, and
size of the robot).

That’s all; you have just created a program to create a robot. But you will, of course,
need to make the robot move and turn. Remember that you need to always rLocate the
robot before you do any further robot manipulations. If you do not do so, an error will be
issued and the program will be halted.

2.4.2 ANIMATING THE ROBOT

There are two commands to make the robot move around:

rForward nPixels

rLocate 300,300,45,40,Red
End

FIGURE 2.5 Program to initialize the robot.

NOTE: The rLocate command and the End statement use capitalization to make them
easier to read. RobotBASIC does not care what combination of lower and uppercase
lettering you use in writing the commands. However, there are situations where the

combination matters. These will be detailed in the appropriate sections.

FIGURE 2.6 Locating the robot. (Note: The screen has been rescaled to fit here.)



INTRODUCTION TO ROBOTBASIC 15

This command makes the robot move nPixels forward or backward in the direction it is
facing. The parameter nPixels is a positive or negative whole number. If nPixels is pos-
itive the robot will move forward, if it is negative the robot will move backward, maintaining
the same heading.

rTurn nDegrees

This command will make the robot turn nDegrees clockwise or counter-clockwise.
nDegrees is a whole number. If nDegrees is negative the robot will turn counter-clockwise.
If it is positive it will turn clockwise. If the number is 0 no turning will happen. Turning
occurs around the center of the robot, so no forward or backward motion will occur while
turning.

Let us write a program to make the robot move around. Type the lines of code in
Fig. 2.7 in a new editor file and press the Run button. This program causes the robot
to move and turn. This shows how easy it is to animate the robot.

You might wonder what would happen if the robot tries to move beyond the room’s
boundaries (run into walls), or what if there were objects in the room. Type the program
in Fig. 2.8 and run it.

The following screen will be the result:

NOTE: All the commands and functions that relate to the robot in the RobotBASIC
language start with an “r.” See Sec. C.9 for a list of the commands and functions
relating to the robot simulator.

 rLocate 100,100 
 rTurn 90 
 rForward 300 
 rTurn 45 
 rForward 50 
 rTurn −90
 rForward −200
 End 

FIGURE 2.7 Program to make the robot move around.

rLocate 100,100 
rTurn 90 
rForward 300 
rTurn 45 
rForward −50
rTurn −90
rForward 200 
End

FIGURE 2.8 Program that causes the robot to crash into a wall.
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The program in Fig. 2.8 causes the robot to crash into the north wall and Fig. 2.9 is
displayed. The error message indicates this fact, after which the program is halted. A
similar situation occurs if the robot collides with an object in the room. 

Perhaps you are wondering how we can make the robot avoid crashing into objects and
walls. In order for the robot to avoid obstacles it has to be able to detect them. This is achieved
by giving the robot the ability to sense objects in the environment. We will study various sen-
sory systems in Chap. 3, but for now, we will make the robot avoid objects manually. 

2.4.3 MOVING AROUND OBSTACLES

Let us place some objects in the room and see if we can make the robot move around
them. We will do this by telling the robot how to move. This is not the most effective way,
since objects in the room can change position. If we build into the robot how to avoid
objects and make assumptions about where these objects are, then, when the environment
changes, the robot may crash because it does not have an up-to-date plan. 

A better method would be to have the robot avoid any objects it encounters automat-
ically by sensing its way around the environment. We will learn how to do this in
Chap. 5 and other chapters. For now we will only use the commands we have learned
so far, albeit the robot won’t be as intelligent as it could be if it had senses and could decide
on its own how to move around and avoid objects. Without autonomous decision-making,
a robot is really just a remote controlled vehicle.

To simulate objects in the room we are going to use RobotBASIC’s graphics commands
to draw on the screen circles and rectangles. The two commands are:

Circle X1,Y1,X2,Y2,PenColor,FillColor

Rectangle X1,Y1,X2,Y2,PenColor,FillColor

These commands will draw a circle or rectangle bounded by the coordinates X1, Y1,
X2, and Y2 with the outline being PenColor and the inside filled with the FillColor. For
more detailed information on these and other graphics commands see Sec. C.7. Type the

FIGURE 2.9 Robot crash.
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program in Fig. 2.10 and run it. The line numbers are not needed they are in the figure
for the purpose of the following discussion.

In Lines 01 to 03 we create the obstacles. In Line 05 we locate the robot at the top
left-hand corner. We aim to make the robot reach the bottom right-hand corner. Notice
how the commands in Lines 06 to 09 achieve this. 

What will happen if we change the number 700 in Line 03 to 770? Change the number
and see the result. You can now appreciate the problem of telling the robot how to move.
It is not as versatile as automatically deciding on a moving strategy. A program that tells
the robot how to move to get from one place to another will have to be modified every
time the environment changes. Imagine if we could write a program that enables the robot
to move around regardless of the details of the environment. This is what autonomous mobile
robot programming is all about, and RobotBASIC simulations help you develop algorithms
that achieve this goal. We will see many examples of this in later chapters.

2.5 Summary
In this chapter you have learned:

� How to obtain a copy of RobotBASIC and how to install and run it. 
� About the various IDE screens and their functionalities.
� How to create, save, edit, and run programs.
� How to initialize a robot simulation and locate the robot on the screen.
� How to move the robot around the screen.
� What happens if the robot crashes into walls or objects.
� How to draw graphics on the screen to simulate objects in a room.

Now, try to do the exercises in the next section. If you have difficulty read the hints.

2.6 Exercises
1. Use Lines 01 to 03 from the program in Fig. 2.10 and then add your own lines to

locate the robot at position (250, 250). Make the robot move all the way around the
red rectangle and back to where it was but facing north-west (315�).

01 rectangle 300,300,500,500,red,red 
02 circle 100,100,200,200,blue,blue 
03 circle 600,500,700,550,magenta,magenta 
04
05 rlocate 50,50 
06 rturn 90 
07 rforward 700 
08 rturn 90 
09 rforward 500 
10 End 

FIGURE 2.10 Program to manually negotiate around obstacles.
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2. From where you ended up in the previous exercise, what would happen if you add
one more line with the command rForward 100?

3. Create a program (no obstacles) that makes the robot move from location 100, 100
to location 300, 300, then location 500, 100 then back to 100, 100.

HINT: Do four sets of turning 90� and forwarding 300 and then turn �45�.

HINT: Locate the robot at 100, 100 facing 135�, then forward 283, turn �90�,
forward 283, turn �135� and finally forward 400. Can you explain the numbers?

HINT: There is an obstacle in the robot’s path, will it crash?
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C H A P T E R3
ROBOTBASIC SENSORS

In Chap. 2 we made the robot move around the screen but we had to be careful when
specifying the commands to avoid making the robot crash into walls or objects in the

room. This method of making the robot move around is not very effective when:

➢ The robot must be able to function in various environments.
➢ The positions and shapes of obstacles are not known in advance.
➢ The environment changes dynamically.

The robot in RobotBASIC has a collection of sensors that enable it to feel and see its
environment. Algorithms use sensors to analyze the environment and then allow the robot
to take action to avoid crashing into objects and to be able to find and locate objectives.
In this chapter we will examine some of the sensors on the robot and explore how we can
use data from these sensors to program effective behaviors for the robot. The objective
is to introduce the standard sensors and explain how to gather information from them.
Later chapters will use the sensors in simulations to do useful and interesting work and
will show how to use customizable sensors.

3.1 Some Programming Constructs
Many programming constructs will be introduced throughout Part 1 as the need for them
arises. These constructs are necessary to be able to create useful simulations using the Robot
Simulator and the RobotBASIC language.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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3.1.1 COMMENTS

Comments are an indispensable programming construct. They are used to annotate and
document a program with information to readers of the code who may find it hard to under-
stand exactly what the code achieves.

Comments are also used to make the code easy to scan so a reader can quickly pick out
pertinent sections. Even the writer of the code may appreciate her/his own comments. When
you go back to read your code, after some time has passed since you have written it, you
will appreciate the fact that you have a reminder of the intent of certain sections of code
with explanations of the harder to grasp aspects of the algorithm and other details. 

Comments are not executable code and RobotBASIC ignores them. They are there only
for human readers of the code. A comment in RobotBASIC is designated as such with a
// which makes any text that follows, including the // itself, a comment. You can put com-
ments on a separate line or on a line following an executable statement. Anything on the
line after the // becomes a comment.

You may also want to make certain parts of your code not execute to test something
or another. Rather than actually deleting the lines of code, you can comment them out
by putting // before each line. If you later determine that you actually need the code simply
remove the // to make the code executable again.

You will see examples of comments in the programs throughout the book. (Refer to
Sec. B.2 for more details.)

3.1.2 CONDITIONAL STATEMENTS

It is often necessary to perform certain actions only if a condition is true. Sometimes you
need to perform a set of actions if a condition is true but if it is not true perform other actions.

This is achieved by using the if-then and the if-else-endif programming con-
structs. if-then is used when you need to do one action only if a condition is true. if-
else-endif allows you to do as many actions as needed, and also allows for doing other
actions if the condition is not true. 

The first construct looks like this:

if some condition then do an action

Only one action is allowed after the then, which will be executed only if the condition
is true. If the condition is false the program will skip the action after the then and pro-
ceed to the next line.

The second construct can be used like this:

if some condition
Do some action

NOTE: In general, RobotBASIC is not case-sensitive. You can write most of the con-
structs in the language using any upper- and lower-case letter combinations. So IF,
if, and If are all the same. There are three constructs where RobotBASIC is case

sensitive. These are variable names, array names, and labels and will be made clear when we
discuss them later.
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Do another
Do yet another
And so on

endif

Notice here we do not use the then. The statements between the if and the endif will
be executed if the condition is true. If the condition is false the program will skip them
and go on to the statement right after the endif.

Another way to use this construct is:

if some condition
Do some action
Do another
And so on

else
Do some action
Do another
And so on

endif

In this construct the statements between the if and else will be executed if the con-
dition is true but not the statements between the else and endif. If the condition is false
the statements between the else and endif will be executed but not the ones between
the if and else.

You will see examples of these three constructs in programs throughout the book. Refer
to Apps. B.6 and C.6 for more details and additional ways to use this construct.

3.1.3 COMPARISON OPERATORS

In RobotBASIC you can compare if something is greater than another (�), is equal to
another (�), is less than another (�), if it is less than or equal to another (��), if it is greater
than or equal to another (��), and finally if it is not equal to another (� �).

All these operations are achieved with comparison operators. In the above section we
test for conditions using these operators. See Sec. B.7.5 for further details.

3.1.4 LOOPS

It is often necessary to repeat a section of code a certain number of times or while a cer-
tain condition is true. We will discuss these looping constructs in detail in Chap. 4. In this
chapter we will use this construct in a simple way. 

The for-next and while-wend looping constructs are used here to move the
robot forward a fixed number of steps in the first example and while it is not bumping
into objects in the second example. For now, study the use of these constructs in the light
of the programs given. 

3.1.5 BINARY NUMBERS

In order to understand how most of the sensory data is organized you will need a basic
knowledge of binary numbers.
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In a decimal number like 234 the convention is that the first digit (going right to left) is
the ones digit, the second is the tens digit, the third is the hundreds digit, and so on (1000,
10000, etc.). You will notice this is the same as saying 1, 10, 10 � 10, 10 � 10 � 10,
and so on or in more mathematical language 100, 101, 102, 103, and so on. So the number
234 can be understood to mean 2 � 102 	 3 � 101 	 4 � 100 � 200 	 30 	 4 � 234.
Notice that we have ten digits 0 to 9. We do not have a symbol for ten. Since ten is 10, that
is 1 in the 101 place and 0 in the 100 place which means 1 � 10 	 0 � 1 � 10 	 0 � 10.
The decimal system is referred to as base-10.

Computers are made up of switches that can be either on or off. We can represent the
on state by a 1 and the off state by a 0. This means that computers are binary systems
(binary means two). This means that there are only two possible numbers 0 and 1. Just as
each digit in a base-10 number is based on ten raised to a power, a binary or base-2 system
is based on two raised to a power. So the number 1010 in base-2 is 1 � 23 	 0 � 22 	

1 � 21 	 0 � 20 � 1 � 8 	 0 � 4 	 1 � 2 	 0 � 1 � 10 (in base-10). 
The binary (base-2) system is how numbers are represented in computers. If we put a set

of five switches in a row we can represent numbers from 0 to 31. The maximum value of
the number can be made up of the sum of the numbers 16, 8, 4, 2, and 1. Look at the exam-
ple 5-bit binary number (11001) in Fig. 3.1. Only three positions in the original number have
1’s in them. The weights of these positions are 16, 8, and 1. The sum of these weights is
25 thus 25 base-10 is the same as 11001 base-2 (the number 25 is 11001 in binary).

Many of the sensors on the robot are made up of switches arranged in groups as
described above. These groups can be read as numbers in base-10 or we can examine
them a bit at a time. As you use the sensors available in RobotBASIC, you will see why
binary numbers are important.

3.2 Avoiding Collisions Using Bumpers
The first type of sensor we will consider is a set of collision detectors around the perime-
ter of the robot. In the real world these sensors could be bumpers mounted on simple leaf-
switches. When the robot collides with an object, the pressure causes one or more

24 × 1 = 16 × 1 = 16

23 × 1 = 8 × 1 = 8

22 × 0 = 4 × 0 = 0

21 × 0 = 2 × 0 = 0

20 × 1 = 1 × 1 = (LSB-Least Significant Bit)
25

1 1 0 0 1

1

FIGURE 3.1 The value for each digit in a binary number is a
power of 2.
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leaf-switches to close. The electronics of a real bumper system sends a logical 1 (collision
detected) or 0 (no collision) for each sensor to its corresponding bits on a computer input
port. The combination of these 1s and 0s form a binary number that indicates the state
of the bumpers. This number can be obtained by using a function in the programming
language controlling the robot and can be analyzed as a binary number or its equivalent
in decimal to determine which bumpers have been activated.

3.2.1 BUMPER SENSORS

The robot in RobotBASIC has four bumpers of the type described above. The front and
rear bumpers each compose a 130� arc making them larger than the side bumpers, which
are only 50�. Figure 3.2 shows how the bumpers are arranged.

The number indicating the status of all four of the bumpers can be obtained using the
function rBumper(). As you know from Chap. 2, all robot-related statements in
RobotBASIC start with the letter “r”. Each of the four bits in the number obtained rep-
resents the state of one of the bumpers as indicated in Fig. 3.3.

If, for example, the robot bumped into something directly ahead of it (pressing the front
bumper) the binary number generated would be 0100 or 4 in base-10. If the robot was
backing up and wedged itself into a corner where the back bumper and the left bumper
were both pressed, then the number formed would be 1001, or 9 in base-10. 

Bumper Bit position Value
Rear bumper 20 (LSB) 1
Right bumper 21 2
Front bumper 22   4
Left bumper 23   8

FIGURE 3.3 The conditions of the robot’s bumpers
form a binary number.

Bumper # 4
100 = 8

–25 to 25
From Left

Bumper # 1 
0001 = 1 
–65 to 65 

From Back

Bumper # 2 
0010 = 2 
–25 to 25 

From Right

Bumper # 3 
0100 = 4 
–65 to 65 

From Front

FIGURE 3.2 Four perimeter
bumpers are used to detect collisions.
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3.2.2 AVOIDING COLLISIONS

Let’s see how you can use this information to control the behavior of the robot. We will
start by locating the robot near the center of the screen and making it move upward (north)
using the program in Fig. 3.4.

Since the robot will be pointed north when it is created, this program will make it
move forward until it hits the north wall and causes an error. One way to avoid this
error is to monitor the bumpers and stop moving the robot forward when they indi-
cate that an object has been touched. The program in Fig. 3.5 shows how this can
be done. If you are unfamiliar with any of the programming statements used here,
refer to Sec. C.9.

Instead of just telling the robot to move forward 500 times (as in Fig. 3.4), the
program of Fig. 3.5 uses a for-next loop to make the robot consider moving for-
ward 500 times. The if-then statement inside the loop checks the bumpers and
if none of them are on (the value returned is 0) then the robot moves forward one
position. Notice that when using a program to move the robot you will usually
move the robot only one position at a time so we can monitor the environment before
moving again.

Figure 3.6 shows two example programs that perform similar actions to the program
in Fig. 3.5, but using different RobotBASIC statements.

rLocate 400,300 //position the robot on the screen
rForward  500 //--make the robot go forward 500 pixels
End

FIGURE 3.4 This short program will cause a collision with the north wall.

rLocate 400,300 
for a = 1 to 500 
    //--only go forward if bumpers are free 
    if rBumper() = 0 then rForward 1 
next
End

FIGURE 3.5 This program checks 500 times to see if it can move
forward and only moves if nothing is in the way.

rLocate 400,300 rLocate 400,300 
for a = 1 to 500 while rBumper() = 0 
   if rBumper() = 0   rForward 1 

rForward 1           //more statements can 
// more statements           // be placed here too 
// can be placed here    wend 

endif     End 
next
End

FIGURE 3.6 These two programs perform similar functions to the one in Fig. 3.5.
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The program on the left in Fig. 3.6 still uses a for-next loop, but it shows how to
use an if-endif statement. The if-endif should be used when there are several things
that need to be done when the if-condition is true.

3.2.3 IMPROVING EFFICIENCY

The program on the right side of Fig. 3.6 does not use an if-statement at all. Instead it
uses a while-wend loop that executes all of the statements inside the loop as long as
the condition specified is true. Notice that the program in Fig. 3.5 and the one on the left
of Fig. 3.6 both continue to attempt to move the robot even after a bumper has closed.
The program’s logic will not move the robot if the bumpers are closed but it will continue
to try to do so 500 times. The program on the right of Fig. 3.6, however, will stop
attempting to move the robot as soon as any bumper is closed. This implies that the
algorithm on the right of Fig. 3.6 is more efficient than the other two (on the left of
Fig. 3.6 and in Fig. 3.5).

These example programs bring up an important point that is especially pertinent to
novice programmers. There is no right way to create a program. If you ask ten people
to write a story about a particular incident, they might all tell the same story but each would
have their own style and would use their own words. Programming is the same. Different
people will use different statements and different approaches to solving the same prob-
lem. You could argue that some approaches may be more efficient (such as the program
on the right side of Fig. 3.6) but if a program accomplishes its goal, you can’t say it is wrong.
Of course you should always strive to design programs that are as efficient as possible.
However, sometimes you may have to compromise to make the program faster or sim-
pler or even, easier to read and maintain.

3.2.4 MAKING BETTER DECISIONS

In all the example programs above, a decision was made about what to do based on the
value of the bumpers being 0, meaning none of them was pressed. In more realistic pro-
gramming, we might want to do different things depending on which bumpers are pressed.
For example, if we know that the left bumper is being pressed we might want our robot
to turn right to avoid the obstacle. Figure 3.7 shows some example expressions that can
help analyze what the bumper data are indicating.

All the expressions in Fig. 3.7 can be used as conditions for if and while statements.
In the chapters that follow, you will learn more about how to write programs that analyze
sensor information and how to use the information to control the robot.

    Expression Situation that makes it true
   rBumper( ) = 0 if all bumpers are not pressed 
   rBumper( ) =15 if all bumpers are pressed 
   rBumper( ) if any bumper is pressed
   rBumper( ) = 4 if only the front bumper is pressed 
   rBumper( ) = 12 if both the front and the left are pressed 

FIGURE 3.7 Example expressions for testing bumper conditions.
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3.3 Other Sensors for Object Detection
In the previous examples we used the robot’s bumpers to avoid collisions, however, it took
a collision (although a very minor one) to activate one of the bumpers. Bumpers are very
important because they are a reliable means of making sure the robot does not try to push
furniture around the room. Nevertheless, it would be better if the robot could detect an
object in its path before actually touching the object. 

3.3.1 INFRARED SENSORS

One method for enabling the robot to detect obstacles without touching them is to use infrared
sensors. The principle is to use an infrared LED (light emitting diode) to shine light away
from the robot. A phototransistor circuit detects if that light is reflected back to the robot.
If the light is reflected back then we can assume that some object is close by. The robot in
RobotBASIC has five infrared sensors mounted 45� apart as shown in the Fig. 3.8. 

As with the bumper sensors, the state of the infrared sensors is encoded into a number
that can be obtained using the function rFeel(). The sensor on the right side of the robot
is the least significant binary (LSB) position in the number. Each sensor, moving counter-
clockwise, corresponds with the next bit position. The information obtained from
rFeel() can be used in a similar manner to that from rBumper().

The program in Fig. 3.9 is very similar to the one on the right of Fig. 3.6 but it uses
rFeel() in place of rBumper(). Run this program and compare where the robot stops
in comparison to the one in Fig. 3.6. 

In general, it is better to detect objects with rFeel() rather than rBumper() because
it is best not to have any collision, no matter how small. The disadvantage of infrared

rLocate 400,300 
while rFeel() = 0 

rForward 1 
wend
End

FIGURE 3.9 This program uses rFeel() to detect an obstacle.

00100 = 4

0100 = 8

10000 = 16

00010 = 2

00001 = 1

FIGURE 3.8 The robot can feel objects without
touching them using five infrared sensors.
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sensors is that it is possible for a small object (or perhaps the corner of a large object) to
slip between the sensors and cause a collision (refer to Fig. 3.8). For this reason it is rec-
ommended that you analyze the data from both the infrared sensors and the bumpers when
trying to avoid a collision. This principle will be discussed in detail in later chapters.

3.3.2 ULTRASONIC AND INFRARED RANGING

One limitation of the infrared and bumper sensors is that they only detect objects that
are very close to the robot. It may be advantageous for the robot to detect distant objects
along its path so it could take action before it becomes too late to act. You can buy sen-
sors that report not only the presence of objects in the path, but also the distance to the
objects. Some of these sensors use ultrasonic technology (sound waves) and others use
infrared or laser. 

Our robot has a single ranging sensor mounted so that it faces in the same direction as
the robot. You can get the data from that sensor using the function rRange(). If, for
example, rRange() returns a value of 27 it is telling you there is some object 27 pixels
away. The rRange() function simulates laser technology, which makes it very directional.

The program in Fig. 3.10 makes the robot approach the north wall stopping 20 pixels
away from it.

3.3.3 ROBOT VISION

Another sensor that the robot can use to detect objects at a distance is a camera pointed
in the direction the robot is facing. This camera is not intended to provide full pictures to
analyze, which is the subject of an interesting field in robotics called robotic vision. Rather,
the RobotBASIC camera returns a number to indicate what color it is seeing. The func-
tion for the camera is rLook(). The program in Fig. 3.11 shows how the robot can use
the camera to determine when it is facing an object of a particular color. In this case, the
robot will turn until it sees the red circle.

rLocate 400,300 
while rRange() > 20 

rForward 1 
wend
End

Circle 600,500,620,520,red,red  // draw a red circle 
rLocate 400,300 
while rLook() < > RED  // turn until red is seen 

rTurn 1 
wend
End

FIGURE 3.10 The function rRange() allows the robot to determine how
far objects are in front of it.

FIGURE 3.11 The function rLook() allows the robot to determine what
color is seen straight ahead.
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3.3.4 BEACON DETECTION

One way of locating a desired location is to hang a sign above it indicating the location
below the sign. Before electronic compasses and global positioning systems (GPS) were
available at affordable prices lighthouses served as beacons for ships at sea and radio auto-
matic direction finder (ADF) beacons provided navigational data to aircrafts. These sys-
tems are still in use today, though they are being gradually replaced by newer technologies. 

If we want the robot to find a location in a room, we could hang a flashing light (either
visible or infrared) above the location. Since this flashing “beacon” is high in the room it
can be seen at all times even if other objects are in the way between the robot and the
location. Like the camera and ranger sensors, the beacon detection sensor faces directly
ahead of the robot.

The function rBeacon (Color) returns a non-zero value (true) which indicates that the
robot is facing a beacon of that color, or zero (false) which indicates that the robot is not
facing the beacon. If the number returned by the function is not zero then there is a beacon
ahead of the robot but this number is actually the distance in pixels to the beacon. This
functionality simulates more complex beacon detection. If you do not wish to use the dis-
tance data then just use the returned number as a true or false indicator. The program in
Fig. 3.12 shows how the robot can turn to face a beacon. We must tell the function what
color beacon to search for by passing it the color of the beacon. This function is very simi-
lar to the camera function, but the beacon function can see over objects that might be in
the way (because the beacon is assumed to be hanging high in the air). 

3.3.5 CUSTOMIZABLE SENSORS

There are several other sensors available on the robot, some of which can be customized
so that you can create the exact type and configuration of sensors you need to allow your
robot to achieve a desired behavior. Some of the sensors described above can be config-
ured in other ways that will be discussed in subsequent chapters. Additionally, there are
alternate ways of interrogating the sensory data as will be described in Chap. 5. Refer to
Sec. C.9 for more information.

3.4 Other Instruments
The robot in RobotBASIC has navigational instruments that enable it to determine its posi-
tion and orientation. There is also a self-diagnosis instrument that enables it to check the
condition of its battery.

Circle 600,500,620,520,red,red  // draw a red circle 
rLocate 400,300 
while rBeacon(RED) = false  //while the beacon is not seen 

rTurn 1 
wend
End

FIGURE 3.12 The function rBeacon (Color) allows the robot to determine
when a specified beacon is ahead, even if the path is blocked.
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3.4.1 COMPASS

RobotBASIC has a compass function, rCompass(), that returns the current direction,
in degrees, the robot is facing. In the chapters that follow you will see how this function
can be used to help our robot make better decisions about where it is and how it should
move to get to a desired location. The program in Fig. 3.13 uses the compass to make
the robot turn due east. Remember that north is up on the screen, south is down, east is
to the right, and west is to the left.

The compass in RobotBASIC is accurate to 1�. Inexpensive electronic compasses can
rarely be this accurate. If you wish to simulate a compass that is accurate to 3�, for exam-
ple, you can divide the value returned by rCompass() with the number 3 (forcing an inte-
ger divide) and then multiply the result by three as in the formula:

3*(rCompass()/3)

3.4.2 GLOBAL POSITIONING

Nearly everyone nowadays is familiar with GPS systems in vehicles that display exactly
where you are on a map. Our robot has two GPS functions, rGpsX() and rGpsY() that
return the x and y values for the robot’s position. The GPS in RobotBASIC is accurate to
a single pixel. Standard real-world GPS systems are not this accurate, but the later chap-
ters will discuss a variety of ways to circumvent this limitation. You can simulate a less accu-
rate GPS system in the same way described to simulate a less accurate compass.

The program in Fig. 3.14 shows how the robot can avoid the north wall by keeping
track of its position and stopping when it is 10 pixels from the wall. It uses the function
rGpsY() to find its position on the screen (an x, y of 0, 0 is the upper-left corner). It moves
while its y-coordinate is greater than 30. Remember the robot’s default radius is 20 pixels;
also the GPS functions report the position of the center of the robot; therefore we use
the number 30 which means that the edge of the robot will be 10 pixels away from the
north wall which has a y-coordinate of 0.

rLocate 400,300 
while rCompass() < > 90 //east is 90 degrees 

rTurn 1 
wend
End

rLocate 400,300 
while rGPSy() >30 

rForward 1 
wend
End

FIGURE 3.13 The function rCompass() allows the robot to determine
what direction it is facing.

FIGURE 3.14 The function rGpsY() allows the robot to determine its vertical
position on the screen.
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3.4.3 BATTERY CHARGE LEVEL

A reasonable requirement of any real mobile robot is that it should be able to monitor
its battery condition and determine when a recharge is required. The function
rChargeLevel() returns the percentage of battery life left. In Chap. 13 we will use this
function as well as other sensors to teach our robot how to find and utilize a charging sta-
tion when the battery charge level is low. 

3.5 Summary
In this chapter you were introduced to:

� Different programming structures (if-then, if-else-endif, while-wend, and
for-next) and how they can be used to control the robot more effectively.

� Binary numbers in preparation for more powerful sensor manipulation.
� rBumper() and rFeel() and how they can be used to avoid crashing into objects in

the robot’s environment.
� Detecting objects at a distance with rRange(), rLook(), and rBeacon().
� Navigational instruments with rCompass(), rGpsX(), and rGpsY().
� Battery charge level information with rChargeLevel().

In subsequent chapters we will explore how to use sensors to solve realistic problems. For
now try to solve the exercises in the next section. Try to do so without reading the hints,
but by all means use the hints if you need to.

3.6 Exercises
1. Write a program to place a gray object at position 100, 200 on the screen and the

robot at 400, 300. The program should then make the robot face that object and report
the distance to it. Can you predict what the value will be? How accurate was your pre-
diction? Can you explain the difference?

2. Enhance the program in Exercise 1 to make the robot go to the object.

3. Write a program that places the robot at 400, 300, then make the robot move to a
point that is in the direction 135� and 350 pixels away. Can you predict the coordi-
nates of this point? How accurate was your prediction?

HINT: Draw a circle to simulate the object and then use rBeacon() or rLook() in
a loop to face the object. Use rRange() to find the distance. Use the Print com-
mand to report the distance (see Sec. C.7).

HINT: Use rRange() and a while-wend loop to go to the object. Did the robot
crash into the object? Can you make it not do so? Use rBumper() or rFeel() and
an if-endif to avoid the object.
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4. Modify the program in Exercise 3. At the top of the program, before the line that ini-
tializes the robot, place this line:

rectangle 450,400,500,500,black,black 

Now run the program. What happens? Can you avoid this?

HINT: Use rCompass() to face the robot then a for-next loop to move. Use
rGpsX() and rGpsY() to get the position when on that point and use Print to
report the values.

HINT: Use the same method to avoid the object as discussed in this chapter. Do not
attempt to go round the object to continue reaching the goal. You will see how to
do this in Chap. 12.
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C H A P T E R4
REMOTE CONTROL

ALGORITHMS

For many robot hobbyists, their first project is building a mobile platform that can be
manipulated using some form of remote control. The ultimate goal, of course, is to

create a robot that can make its own decisions on how to move around based on sensory
data obtained from its environment. However, before we can make the robot decide on
its own how to move and turn we need to gain some experience with programming it and
controlling it. In subsequent chapters you will learn many methods for giving the robot
the ability to think autonomously. In this chapter we will explore methods of moving the
robot manually by remote control.

As you have seen in Chaps. 2 and 3 you can make the robot move and turn easily enough
with a program that gives the robot a set of instructions on how to move and how much to
move. If you want the robot to move in a different direction or distance you would have to
reprogram it with the new data. This is not a convenient way of making the robot move wher-
ever we want. A more efficient way is to have a program that can receive instructions from
us on how to move and then execute the right commands to move the robot as we indicated.

There are a variety of ways to remote control a real-life robot. Whether you use a wired
or wireless (radio or infrared) controller, the principle is the same: The controller sends
signals to the robot to make it move or turn. There may also be other actions the robot
can accomplish so there usually are additional buttons on the remote controller to tell the
robot to perform the additional functions.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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There are three general styles of remote control:

➢ As long as a button is pushed the robot will move. When the button is released the
robot stops.

➢ You push the button to make the robot move and release it. The robot will continue
moving until you push the button again to stop it. The button is used to toggle the action.

➢ Given an instruction, the robot executes certain actions to complete the instruction
then waits for the next instruction.

We will develop algorithms for each of the above styles. To control the simulated robot
we will use the keyboard and the mouse to simulate a remote controller. Sometimes it may
be desirable to display information about the robot’s condition, so we will explore some
display commands.

The third style of control is a little more complex than the other two. To accomplish
the necessary programming, some mathematics will be required. RobotBASIC has many
mathematical functions that will help in designing this style of control.

4.1 Some Programming Constructs
The algorithms in this chapter will use programming constructs that allow for repeating
a section of code many times. We will discuss the various constructs to achieve this. Also,
RobotBASIC has commands to obtain input from the user and to display output back. The
two devices for accepting input are the Keyboard and the Mouse. The device for display-
ing output is the Screen. 

4.1.1 VARIABLES

A variable is a storage space for holding a number or a string (text). A variable name is
assigned to the storage space for use in a program. A variable name must start with a letter
followed by any combination of letters and numbers. A variable can be used anywhere a
number (or string) is needed. Of course you must assign the variable a value before using it. 

In most computer languages variables have to be assigned a type and cannot be used
to store values of different types. So, for example, in the standard BASIC language you
have to name a variable with a $ at the end of the name to indicate that it is to hold a
string value. If you try to store an integer in it you will get an error. The variables in
RobotBASIC are more versatile than this. When you name a variable you are not restricted
as to what to name it and you can store values of any type in it. Furthermore, you can
change the type and value of the data stored in a variable at any time. This is a very pow-
erful feature. You can read all about variables in Secs. B.7.3 and C.4. Also you can read
further about data types in Secs. B.7.1 and B.7.2.

NOTE: Variable names are case sensitive, so Distance, DISTANCE, and distance are
not the same variable. RobotBASIC is generally not case sensitive. Variable names,
array names and labels are the exceptions to this rule.
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4.1.2 THE KEYBOARD

There are various commands to obtain input from the user using the keyboard. We will
only use two of them here. See Sec. C.7 for details.

4.1.2.1 GetKey Var This command is useful in loops like for-loops, or while-
loops (see later) where you want something done repeatedly but want the user to be able
to affect the action by pressing a key. You do not want the repeated action to pause until
the user presses a key, but you want it to change if she/he does press a key.

This command checks if any key is pressed on the keyboard. If there is a key pressed its
code value is placed in the variable Var. If no key is pressed the value 0 is placed in the variable. 

The program flow is not paused until the user presses a key. If the user presses a key
when the command is executed the key will be reported, but if the user does not press
any key by that time, the program will report a 0 and go on to the next command and
proceed with the rest of the program. (See also the command GetKeyE Var.)

4.1.2.2 WaitKey {ExprS }, Var This command pauses the program flow until the
user presses a key. This command is useful for allowing the user to press buttons on the
keyboard to achieve various actions, where each action is assigned a key value. 

Once the user presses a key, the key code is placed in the variable Var and then the
program continues with the next command. Read Sec. C.7 for more information on this
command.

The two commands above obtain input from the user but only one key press at a time.
The information obtained is a number that represents the key the user pressed. This
number is a standard code for computers called the ASCII code. You can convert this code
back to a letter by using the Char() function. You can also convert a letter to its code by
using the Ascii() function. So Ascii(“A”) gives the numeric code 65 and Char (66)
gives “ B”. See Sec. C.8 for details of these functions.

There is another way to obtain input from the user. This way allows the user to input
any combination of keystrokes to form a sentence or a number. The user then presses
Enter to indicate completing the entry. The command is Input ExprS,Var. Read more
about this command in Sec. C.7.

4.1.3 THE MOUSE

The Mouse is a very useful input device. In RobotBASIC there is a function that enables
you to obtain the information a mouse provides. The command looks like this:

ReadMouse Var1,Var2,Var3

When the command is executed Var1 and Var2 are filled with the screen coordinates
of where the mouse cursor is when the command is executed (0, 0 is the top left corner).
Var3 will be filled with a value that specifies which mouse button was pressed and in what
combination with the Shift, Alt, or Ctrl keys. Read Sec. C.7 for details of these codes.

When the command executes it does not pause the program or wait for the user to press
anything. If the user happens to be pressing the mouse buttons then Var3 will be set to the
code, if not then it is set to 0. If the cursor is inside the terminal screen then Var1 and Var2
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will be filled with the cursor’s position. If the cursor is outside the terminal screen when this
command executes, the values in Var1 and Var2 will be the last valid values obtained from
the mouse. This information can be useful for knowing how the mouse exited the screen.

4.1.4 OUTPUT TO THE SCREEN 

There are many commands for sending output text and numbers to the user. In this sec-
tion we will only be concerned with two of them (see Secs. B.7 and C.3 for details on
expressions):

4.1.4.1 Print {Expr,Expr;...} This command writes out to the screen the results
of the expressions. The first time you issue a Print the first line on the screen will
be used, the next time will use the second line, and so on. Once the last line is reached
the next time a Print command is executed the screen will scroll one line up and the
data is printed on the last line. The comma (,) is used to display the output using no
spaces between the expressions and the semicolon (;) puts a tab space between them.
Read Sec. C.7 for more details.

4.1.4.2 XYString X,Y, Expr{,Expr;...} This command writes out to the screen the
results of the expressions. Values X, Y are screen coordinates in pixels where the output
will be printed. Read Sec. C.7 for more details. This command is just like Print but it
puts the text on a particular screen coordinate. No scrolling occurs.

4.1.5 LOOPS

In programs it is often necessary to repeat execution of some lines of code a certain number
of times or while a certain condition is true or until a certain condition becomes true.
For example, if you want to print the numbers 1 through to 10, you can have 10 sepa-
rate print statements like Print 1, then Print 2, and so on. Or you could write:

for I = 1 to 10
Print I

next

In this method you have written 3 lines instead of 10. Imagine if you wanted to print
1 to 100. You can appreciate the savings in time and space.

Imagine you want to print a random number every time the user presses a key but if
she/he presses the key “q” you want to stop. You cannot use the above since you do not
know how many numbers the user needs. You can use this:

K = 0
while K < >  Ascii(“q”)

Print Random(1000)
Waitkey K

wend

This way the program keeps repeating the printing and waiting for a key until the user
presses the “q” button. The function Random (n) is used to generate a random number from
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0 to n�1. Also the function Ascii() is used to get the code value of the letter “q” which
is the value returned by the WaitKey command inside the variable K when the user
presses the “q” button.

Notice how the variable K had to be initialized before entering the loop. This is
because the condition for the loop checks to see if K is not equal to the code for “q,”
and if K has not been defined yet you would get an error. Another way to do exactly
the same thing is:

repeat
Print random(1000)
WaitKey K

until K = Ascii(“q”)

Notice that K did not have to be initialized this time. This is because K is not used until
after it has been assigned a value by the command WaitKey. Otherwise this flow-control
structure is very similar to the one above. Notice the condition for the while-wend is
exactly opposite to the one in the repeat-until.

Here is another way to do the same as above but this time instead of checking for the
condition to exit out of the loop, in the loop itself we will use an if-statement to decide
when to break out of the loop. This has an advantage if the condition for exiting the loop
is one that is not easily testable in one place in the program or is not suitable to be tested
only once at the top (or bottom) of the loop. Let’s say we want the loop to finish if the
user presses “Q” or “q.” We can do this:

while True repeat
Print Random(1000) Print Random(1000)
Waitkey K Waitkey K
if K=Ascii(“q”) then break if K=Ascii(“q”) then break

if K=Ascii(“Q”) then break if K=Ascii(“Q”) then break
wend until False

The Break command causes the program flow to go to the line right after the wend
(or until) statement, effectively ending the loop. Notice that you do not need to assign
a value for K before entering the while-loop since you do not use the variable before it
is defined. Also, notice that the condition for ending the loop is True (False for the
repeat-until), which means that the loop will never end unless a Break is executed. 

The above is just an example. A better way to accomplish the same action would be:

K = “ ”
while K<>“Q” AND K<>“q” repeat

Print Random(1000) Print Random(1000)
Waitkey K Waitkey K
K = char(K) K = char(K)

wend until K=“Q” OR K=“q”

Notice the condition for the while-wend loop and the repeat-until loop. They
are exactly opposite. As a matter of fact, in Boolean algebra (the mathematics of logic)
we know that:

Not(X ) AND Not(Y ) = Not(X OR Y )
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This might be confusing but in English the while condition in the above example is
the equivalent to “keep looping while the user has not pressed the ‘q’ button and not
pressed the ‘Q’ button.” For the repeat loop the meaning is “keep looping until the user
presses ‘q’ or ‘Q’.”

The method used for creating a loop depends on the logic of the algorithm you are
using. You have seen, above, various methods, but there are many ways you can create
a loop. It all depends on the logic you are trying to achieve. Refer to Secs. B.6 and C.6
for flow-control structures and Sec. B.7.5 for logical operators.

4.1.6 FUNCTIONS

There are two ways to obtain a value in RobotBASIC, commands and functions.
Commands tell the system to perform some action and given a variable name, the com-
mand will assign the variable a value depending on the action of the command (as you
have seen in the WaitKey command above). 

Functions perform an action too, but after performing the action they act like a vari-
able, taking on the value generated by the action. As you have seen in the discussion above
the function Ascii(“A”) returns the value 65 and you can use this number as if you have
typed 65 in the statement. You can say 

y = Ascii(“A”)+3

this will cause the number 68 to be stored in y just as if you typed 

y = 65+3.

In RobotBASIC there are functions to obtain the length of a string, to convert a number
to a string, to get the sine of an angle, and more. There are math functions, string func-
tions, functions relating to the robot, and so on. Read Sec. B.7.7 for details about func-
tions and Sec. C.8 for a list of functions. Some functions will be used in this chapter and
many more throughout the book.

4.2 Simple Remote Control
The first two styles discussed in the beginning of the chapter will be implemented
below. The advantage of the first style is that you can easily control the robot accurately,
but it is slow. The advantage of the second style is that the robot will move quickly and
you do not have to keep the button pressed, but it is hard to control the robot with
accuracy.

4.2.1 FIRST STYLE OF REMOTE CONTROL

In this style the user will press

“f” or “F” to go forward     “b” or “B” to go backward

“l” or “L” to turn left          “r” or “R” to turn right
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The robot will move as required as long as the key is pressed. If the key is released the
robot will stop moving. The robot will use data from its sensors and not go forward or
backward if there are obstacles blocking the direction of travel even if you try to make it
do so.

In order to display the robot’s current position and heading we will use the GPS and
compass instruments described in Chap. 3. See Sec. C.9 if you need more details on the
rGpsX(), rGpsY(), and rCompass() functions. The algorithm is in Fig. 4.1 (don’t type
the line numbers; they are only there for the discussion that follows).

As you have seen from the previous section the WaitKey command is ideal here. We
use the XYString command to display the data. We also use the drawing commands you
saw in Chap. 2 to place some obstacles in the robot’s environment. 

The function Char() used on Line 10 converts the key code to a character so that
we can compare it to the characters used to control the robot. Notice how the values
returned by the functions Char() and rBumper() are stored and then used in the if-
statements. This is more efficient than if we were to call the function in each if-statement
by saying:

if Char(k) and not(rBumper() & 4) then rForward 1

Calling functions is a little slower than accessing a variable. We would be calling func-
tions eight times, each time we loop, if we use the function in each statement directly. It
is important to realize that we can only use the stored data because the robot is not
moving after the rBumper() statement is executed. Lines 12 to 15 use if-statements
to determine what key was pressed and execute the right action. Line 11 gets the state
of the bumpers using rBumper() as in Chap. 3. We use this value (B) to test to see if
the front bumper (Line 12) or the back bumper (Line 13) is pressed before moving for-
ward or backward, respectively. You will learn more about this action in Chap. 5. In this
chapter just accept that the statement not(B & 4) means that the front bumper is not
pressed and not(B & 1) means the back bumper is not pressed [remember B =
rBumper()].

01 rectangle 300,300,500,500,red,red 
02 circle 100,100,200,200,blue,blue 
03 circle 600,500,700,550,magenta,magenta 
04 rectangle 0,0,130,22,blue,blue 
05 rlocate 400,200,270 
06 //--style 1 
07 while true 
08   XYString 2,2,rGpsX(),",",rGpsY(),",",rCompass(),"   " 
09   waitkey "Press l,r,f, or b", k 
10   C = char(k) 
11   B = rBumper() 
12   if (C="f" or C=“F”) and not(B & 4) then rForward 1 
13   if (C="b" or C=“B”) and not(B & 1) then rForward -1 
14   if (C="l" or C=“L”) then rTurn -1 
15   if (C="r" or C=“R”) then rTurn 1 
16 wend
17 End

FIGURE 4.1 First style of remote control.
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In Line 08 the robot’s position and heading are displayed. Notice the use of the commas
to make the display look nice. The box around the text was drawn on Line 04. The box
is needed to stop the robot from going into the text area.

4.2.2 SECOND STYLE OF REMOTE CONTROL

In this style we do similar actions as in the previous program. The difference is that we
don’t wait for the user to press a key. The algorithm was designed so that the last key
pressed is saved and used to make the robot move continuously until the user presses
another key. If the new key pressed is the same as the last one then the last movement
is turned off. If it is a different command then the new command will be executed. The
new algorithm is shown in Fig. 4.2 (do not type the line numbers).

In Line 07 the variable LC is initialized to 0. This variable will hold the value of the last
command issued. In Lines 11 to 15 we check if a key is pressed, and if so, we check if it
is the same as the last one pressed. If it is then we make it 0 to cancel the last command.
The new command is then stored in LC. Notice Line 16, the LC value is converted in
place of k as in Fig. 4.1. This (and the use of GetKey instead of WaitKey) is what makes
the program continue doing the last command until the same key or a new key is pressed. 

To summarize, Lines 07 and 10 to 16 make the program continue to execute the last
command until a new one or the same one is issued. This makes the command style a toggle
action. The rest of the program is similar to the one in Fig. 4.1. The delay of 200 millisec-
onds in Line 14 is necessary to give the user time to release the button before the program
checks again for a button press. Without this delay the user may not have time to release
the button before the next check and the program will consider that the user has pushed
the button again. Without this delay it would be very difficult for the user to signal the pro-
gram correctly. Try removing (or commenting out) Line 15 and see what happens.

01 rectangle 300,300,500,500,red,red 
02 circle 100,100,200,200,blue,blue 
03 circle 600,500,700,550,magenta,magenta 
04 rectangle 0,0,130,22,blue,blue 
05 rlocate 400,200,270 
06 //---style 2 
07 LC = 0 
08 while true 
09    XYString 2,2,rGpsX(),",",rGpsY(),",",rCompass(),"   " 
10    getkey k 
11    if k <> 0 
12       if k = LC then k = 0 
13       LC = k 
14       Delay 200 
15    endif 
16    C = char(LC) 
17    B = rBumper() 
18    if (C="f" or C=“F”) and not(B & 4) then rForward 1 
19    if (C="b" or C=“B”) and not(B & 1) then rForward -1 
20    if (C="l" or C=“L”) then rTurn -1 
21    if (C="r" or C=“R”) then rTurn 1 
22 wend 
23 End 

FIGURE 4.2 Second style of remote control.
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4.3 Complex Remote Control
In this style of remote control the robot carries out a series of actions to accomplish a task
specified by the user. For this simulation the mouse will be used as a laser designator. If
you are familiar with laser targeting devices used by the military you will recognize this
style of remote control. The device uses a laser to designate a target for a missile. The
missile locks onto the target and moves there. We will emulate this by using the mouse to
designate the target we want the robot to go to. The robot will lock onto the mouse posi-
tion and go there. The robot will also be able to draw on the screen while moving to help
you see the actions that took place (this can also make the robot act as a sketcher).

The robot will use its GPS and compass to calculate the difference between its current
position and heading and the target’s position and direction. 

4.3.1 THE MATHEMATICS

Figure 4.3 shows a representation of the calculations that are necessary for this algorithm.
The robot’s location is represented by the coordinates Rx, Ry. Rx is the robot’s horizon-
tal position on the screen in relation to the top left-hand corner which is position 0, 0. Ry
is the vertical position. The target is located at Tx, Ty. The difference between the x-coordinates
of the robot and target is dX. The difference in their y-coordinates is dY.

As you can see from Fig. 4.3, the two values can be used to calculate the distance R
between the robot and the target. This is an application of the pythagorean theorem.

dY

dX

R

CHdA

TA

R = dX 2 + dY2

CH = Robot's compass heading

dA = Angle to tum
TA = Target's angle from x-axis

dY = Ty − Ry
dX = Tx − Rx

TA = π−Tan−1 (dY/dX)

Robot (Rx, Ry)

Target (Tx, Ty)

North

FIGURE 4.3 Laser targeting with the robot.
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RobotBASIC has a function that can do this calculation for us, PolarR (dX, dY) which
returns the value for R.

The function PolarA (dX, dY) returns the angle in relation to the horizontal axis that
is formed by the line between the robot’s center and the target’s center, as shown in
Fig. 4.3 (angle TA). This angle can be used to calculate a turn direction and amount so
the robot can face the target. As you can see in Fig. 4.3 this is the angle dA. However,
there are two complications.

The first problem is that angle TA is measured from the east direction (this is common
in computer languages). That is, east is 0�, not 90�, as our robot (and humans) normally
think of it. This angle, which is the value returned by PolarA() is not a 360� angle like
in a compass; it is 
180. The positive angles are measured counter-clockwise from east
and negative ones are clockwise from east. So north is 90�, south is �90� and west is
	180�. We will have to convert the angle reported by PolarA() to a compass heading
so that the robot can be turned to that heading. Adding 90� to the angle reported by
PolarA() will solve this problem, but before doing this another issue has to be resolved. 

The angle value returned by PolarA() is given in radians, not degrees (again, this is
common practice in computer languages). It is simple to convert between degrees and radi-
ans in this manner:

1� � �/180 radians

So, when you want to convert an angle in degrees to radians you do

Angle_In_Radians = Angle_In_Degrees * pi()/180

To convert from radians to degrees you do:

Angle_In_Degrees = Angle_In_Radians * 180/pi()

Refer to Sec. C.8 for the function Pi(), it essentially returns the value �.
This means we can calculate TA in degrees using:

TA = PolarA (dX,dY)*180/pi()

Remember, we also need to convert TA relative to north instead of east. Since east is
0� in relationship to the x-axis, but it is 90� in relationship to north, we must add 90 to
convert TA to a compass heading. So, the equation becomes:

TA = PolarA (dX,dY)*180/pi() + 90

We can now calculate dA (the angle to turn) as TA � CH, which results in the follow-
ing formula:

dA = PolarA (dX,dY)*180/pi() + 90-CH

Since dA will be a number from 0 to 360, the robot may have to turn to face the target
in the longer direction. To make the turning more efficient we need to check to see if the
turn is larger than 180� and if so make the robot turn the other way which would be the
shorter angle and thus more efficient (see this later on Lines 40–41 of the code in Fig. 4.4).
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01 MainProgram: 
02   gosub Draw_Obstacles 
03   rlocate 400,200 
04   rInvisible DarkGray 
05   gosub RemoteControl 
06 End 
//======================================================
07 RemoteControl: 
08   rectangle 0,0,150,23,blue,blue 
09   s = " "+rGpsX()+","+rGpsY()+","+rCompass()+" UP" 
10   s = s+spaces(16-length(s)) 
11   xystring 2,2,s  //--display the data 
12   p = up 
13   repeat 
14     readmouse x,y,b 
15     if b = 1 then Gosub GotoPoint  //left mouse button 
16     if b = 2 //--right mouse button 
17        p = not p 
18        rpen p 
19        delay(300) //--edge detect the mouse button 
20     endif 
21     if b <> 0  //--any buttons pressed, update display 
22        s = " "+rGpsX()+","+rGpsY()+","+rCompass() 
23        if p = Up   then s = s+" UP" 
24        if p = Down then s = s+" Dn" 
25        s = s+spaces(16-length(s)) 
26        xystring 2,2,s  //--display the data 
27     endif 
28   until false 
29 Return 
//======================================================
30 Draw_Obstacles: 
31   rectangle 300,300,500,500,red,red 
32   circle 100,100,200,200,blue,blue 
33   circle 600,500,700,550,magenta,magenta 
34 Return 
//======================================================
35 GotoPoint: 
36    dx = x-rGpsX() 
37    dy = y-rGpsY() 
38    if dx=0 AND dy = 0 then return 
39    Theta = PolarA(dx,dy)*180/pi()+90-rCompass() 
40    if Theta > 180 then Theta = Theta-360 
41    if Theta < -180 Then Theta = Theta+360 
42    rTurn Theta 
43    Distance = Round(PolarR(dx,dy)) 
44    for I = 1 to Distance 
45      if rBumper() & 4 then break 
46      rForward 1 
47    next 
48 Return 
//======================================================

FIGURE 4.4 Complex remote control.
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4.3.2 THE PEN

The robot has a pen at its center that can be lowered to leave a trace on the floor. The
command to lower and raise the pen is:

rPen Up/Down, Color

You would type rPen Up to raise the pen and thus stop drawing and rPen Down,Cyan
to lower the pen and draw with the color cyan. 

We will discuss this feature and many uses for it in Chap. 10 and it will be used in
Chaps. 8 and 9. For now we will use the pen during our remote control to make the
robot draw while it is moving. This effectively converts the robot into a sketcher that
can be used to sketch line drawings of any shape. One of the mouse buttons will be ded-
icated to raising and lowering the pen.

The robot considers any color drawn on the screen to be an obstacle and will report
an error if you try to make it move forward into the object. However, there are times
when you want certain colors to be considered as nonobstacles. For example, you may
have a beacon hanging from the ceiling above the room, or you may have a line drawn
on the floor. These colors are not to be considered as objects and we need a way of telling
the robot to ignore these colors if it encounters them. Additionally, as you have seen in
Chap. 3, sensors like rBumper(), rFeel(), and rLook() will report the presence
of obstacles, so if we designate some colors as invisible these sensors will ignore these
colors. We do this by using the command:

rInvisible Color{,Color...}

This command tells the robot to consider the list of colors given as either, lines on the
floor, or as beacons up in the air. In effect they become invisible to the robot and its sen-
sors. Some sensors will override this and look for a specified color. We will discuss these
sensors later. You can specify a minimum of 1 color or a maximum of 15. You can use
the color names as described in Sec. B7.6 or the number corresponding to the color. Using
the name is a lot clearer and easier to remember.

When the robot draws with the pen it will leave a trace on the floor in the specified
color. If you do not tell the robot to consider this color as invisible it will report a crash
error if it encounters the color later. Thus in this simulation we will use the rInvisible
command to tell the robot to ignore the color drawn by the pen.

Also, as you may notice from reading the description of the rPen command in
Sec. C.9 you do not need to specify a color when you issue the rPen command. If you
do not specify a color then the first color on the list given to the rInvisible command
will be used as the color to draw when the pen is down.

4.3.3 SUBROUTINES

The algorithm in Fig. 4.4 uses a programming construct called a subroutine. Think of a
subroutine as a tool that completes a task. When you use a tool you usually do not care
how the tool accomplishes its task. In this case the tool is the subroutine. We will discuss
subroutines in detail in Chap. 5. 
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The program in Fig. 4.4 uses three subroutines, one to do the actual remote control
tasks and a subroutine that will be used to calculate the distance and heading as discussed
above and also make the robot go there. The third one is to place obstacles in the
environment.

In a program you invoke a subroutine by saying: gosub Subroutine_Name. Once the
subroutine finishes its work the program will continue with the next line after the line where
the subroutine was invoked. See Secs. B.6 and C.6 for details on gosub and other flow-
control structures.

4.3.3.1 The Implementation The algorithm is shown in Fig. 4.4 (don’t type the line
numbers). The result of the algorithm in Fig. 4.4 is shown in Fig. 4.5.

4.3.3.2 The MainProgram (Lines 01–06) The main routine calls the subroutine
Draw_Obstacles then sets up the robot and then calls the RemoteControl subroutine.
Once there, the subroutine will not end until you halt the program by closing the termi-
nal window. The rInvisible command is issued to tell the robot to not consider the
color “dark gray” as an obstacle. This color will also be used as a pen color when the pen
is lowered since the command on Line 18 does not specify a color and thus the first color
in the invisible colors list will be used to draw with the pen by default. 

FIGURE 4.5 Result from running the program in Fig. 4.4. Notice the line trailing behind the
robot. This is due to the pen being down when the robot moved.
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4.3.3.3 The RemoteControl Subroutine (Lines 07–29) This subroutine does all
the work. It sets up an area at the top of the screen for displaying the current position
and heading of the robot and also the state of the pen (Lines 08–11). Then it enters an
endless loop (Lines 13–29). The loop is endless because the condition for the until is
set to false, the loop never halts. Of course some condition inside the loop may call a
Break command and cause a halt, but this does not happen in this program (see
Secs. B.6 and C.6).

Line 14 causes the mouse coordinates and button state to be saved in the variables x,
y, and b. (See previous section or Sec. C.7 for the ReadMouse command).

If you click the left mouse button the statement on Line 15 calls the GotoPoint sub-
routine to cause the robot to move to the point where the mouse was clicked.

If you press the right mouse button the if-endif statement on Lines 16 to 20 causes
the robot’s pen to be toggled up or down just like a switch, if it is up it is put down, and
if it is down it is put up (Line 17). The statement on Line 19 causes a Delay of 300 mil-
liseconds. This is necessary due to the fact that you may press the mouse button for too
long and the toggling will occur too fast for you to be able to maintain the desired state.
This is the equivalent of making an edge detector.

Lines 21 to 27 are executed if any mouse button is pressed. These lines read the
robot’s position and orientation using rGpsX(), rGpsY(), and rCompass(). Also the
pen state (saved in the variable P) is already known. These data are put together in a string,
which is printed at the top-left corner of the screen (Line 26).

4.3.3.2 The GotoPoint Subroutine (Lines 35–48) This subroutine is very impor-
tant for the action of the program. The subroutine causes the robot to turn in the direc-
tion of the point indicated by the user, and then calculates the distance from the robot to
that point then makes the robot move to that point. The robot will move as long as no
obstacle causes the bumper to be closed.

Lines 36 and 37 calculate x and y difference between the selected point and the robot’s
current position. Line 38 exits the subroutine if there is no difference.

In Lines 39 to 42 the angle to turn is calculated and then the robot is turned by that
angle. This calculation makes use of the function PolarA() discussed previously. This is
then used to calculate the difference between the robot’s heading and the heading to the
point (Lines 39–41). Notice the formula on Line 39. We first convert the angle reported
by the PolarA() function to degrees using the conversion discussed above. Then we add
90 to it. This is (as discussed) to convert from 0� being east and thus 0 � 90 so we
add 90. Then we subtract the robot’s heading to get the difference between the heading
to the point and the robot’s heading. The next Lines 40 and 41 convert this to the smallest
angle for the robot to turn intelligently to the required heading. Comment out these two
lines and observe the effect on the way the robot turns toward the target.

In Line 43 the distance to the point is calculated using the PolarR() function. The
Round() function is used to make the distance an integer instead of a float, so that it can
be used as the limit for the for-next loop in the next line.

Lines 44 to 47 cause the robot to go forward one pixel at a time while checking to see
that the front bumper is not closed. If the bumper ever closes the loop is exited.

If there are any commands or functions that are not clear to you, refer to Secs. C.7
and C.8 for details on how they are used and what parameters and options are available.
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Also refer to the program in Fig. 4.4 to see how the function or command is used in light
of the discussion above and the details in the appendix.

4.4 Remote Controlled Test Bench
In this section the first style remote control is used to test all the sensors of the robot
while moving it around with the remote controller. This will help in understanding how
the robot “sees” its environment. We will combine the keyboard and mouse as a
remote controller. Study the program code to see how this is done. Essentially, with-
out considering the mouse, the remote controller is similar to what we developed in
Fig. 4.1.

You saw in Chap. 3 that the robot has many sensors. The program in Fig. 4.6 will show
the status of many of these sensors while the robot moves around. Using this program
you can maneuver the robot over lines and in the vicinity of obstacles and observe how
all the sensors are affected (see Fig. 4.7). This can help in understanding what the robot
sees and can be very valuable while developing algorithms that use sensors to allow the
robot to move autonomously.

The program will not be discussed in detail. Many of the techniques used in it will be
seen in programs in future chapters and will be discussed then. However, do notice the way
the display text is formatted to appear appealing on the screen. Also notice the use of the
string manipulation functions Instring(), Length(), and sRepeat() and how the
function Bin() is used to convert a number to its binary representation. 

4.5 Summary
In this chapter you have:

� Seen various methods for remote controlling the robot.
� Explored I/O commands to accept input from the user and display data to the user.
WaitKey, GetKey, ReadMouse, Print, and XYString.

� Examined some mathematical functions and used them in combination with the GPS
and compass instruments of the robot. PolarA(), PolarR(), and Pi().

� Been introduced to the rPen feature on the robot. You will use this feature in more
interesting projects in Chaps. 8, 10, and 11.

� Learned about flow-control Structures like the for-next, while-wend, and
repeat-until loops, and how they can be used to make the program repeat sec-
tions of code in a controlled manner.

� Been introduced to the gosub command and subroutines and how they can make
writing programs easier by dividing the tasks into smaller and easier subtasks. This
principle will be discussed in much more details in Chap. 5 and will be used through-
out the book.

Now, try to do the exercises in the next section. If you have difficulty read the hints.
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MainProgram:
  gosub Environment 
  rlocate 50,200,90 
  rInvisible Cyan
  while true 
     getkey k 
     readmouse x,y,b 
     B = rBumper() 
     K = char(k) 
     if (k="a" or b = 1) and (not(B & 1)) then rForward -1 
     if (k="s" or b = 2) and (not(B & 4)) then rForward 1 
     if  k="w" or b = 11 then rTurn -1 
     if  k="z" or b = 3 or b = 12 then rTurn 1 
     if InString("aswz",k) or b <> 0 then gosub DisplayData 
  wend 
End
//=============================================================
DisplayData:
   xystring 300,0 ,rChargeLevel(),"%     "
   xystring 300,20,rPoints(),"        " 
   xystring 300,40,rCompass(),"        " 
   xystring 300,60,rGpsX(),",",rGpsY(),"       " 
   B = rBumper() 
   Bb = sRepeat("0",4-Length(Bin(B)))+Bin(B)+"     " 
   xystring 140,100,"rLook()     = ",rLook();"rBumper()    = ",B,":",Bb 
   F = rFeel() 
   Fb = sRepeat("0",5-Length(Bin(F)))+Bin(F)+"       " 
   xystring 140,120,"rRange()    = ",rRange();"rFeel()      = ",F,":",Fb 
   S = rSense() 
   Sb =sRepeat("0",3-Length(Bin(S)))+Bin(S)+"     " 
   xystring 140,140,"rBeacon(red)= ",rBeacon(red);"rSense()     = ",S,":",Sb 

return
//=============================================================
Environment:
  LineWidth 1 
  rectangle 100,80,120,500,red,red 
  linewidth 3 
  setcolor cyan 
  gotoxy 10,200 
  lineto 99,200 
  gotoxy 50,100 
  lineto 50,300 
  linewidth 1 
  xystring 140,500,"Press 'a' to go backwards     's' to go forwards" 
  xystring 140,520,"Press 'w' to turn left        'z' to turn right" 
  xystring 140,540,"Red = ",red,"   White = ",white,"  Cyan = ",cyan 
  xystring 140,0 ,"rChargeLevel() = " 
  xystring 140,20,"rPoints()      = " 
  xystring 140,40,"rCompass()     = " 
  xystring 140,60,"rGpsX(),rGpsY()= " 
Return
//=============================================================

FIGURE 4.6 Remote controlled test bench.
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4.6 Exercises
1. Rewrite the programs in Figs. 4.1 and 4.2 to use mouse control as well as keyboard

control. Also, see if you can change the keyboard commands from using letters to move
the robot to using the arrow keys [see the command GetKeyE and the function
KeyDown()].

2. Experiment with the program in Fig. 4.6. Can you predict the sensory data as you are
moving the robot around? Why doesn’t the robot move forward if you command it to
do so when it is next to the red object? Can you point to the lines of code in the pro-
gram that achieve this?

3. In the program of Fig. 4.4 comment out Line 02 by using //. What will this action
achieve? Now run the program and use the robot as a sketching tool to sketch your name
for instance. You may need to toggle the pen up or down. Can you think of a way to
make the robot draw different colors? What would be needed to achieve this?

FIGURE 4.7 Result of running the program of Fig. 4.6.

HINT: See how it is done in Fig. 4.6 and also study the GetKeyE command in Sec. C.7.
Also see if you can improve on the program using GetKeyE and KeyDown().

HINT: Use the keyboard to specify different colors maybe by using numbers or letters.
Also you will need to increase the list of invisible colors to allow for the additional colors
so as not to cause a crash.
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C H A P T E R5
RANDOM ROAMING

In Chap. 3 we learned about some of the sensors the robot can use to become aware of
its environment. You saw some programs that utilized the sensors to make the robot stop

before it crashed into walls. However, we often do not want the robot to just stop when
it encounters an obstacle. We want it to be able to avoid the obstacle in some manner and
continue moving. In Chap. 4 we manually controlled the robot so when the obstacles
stopped the robot we were able to decide on how to circumvent them and commanded
the robot on what to do to go around the object (by remote control).

The aim of this book is to create an autonomous mobile robot. To be autonomous the
robot has to be able to decide for itself how to circumvent obstacles. The robot has to be
able to avoid or go around obstacles and continue along its route accomplishing the tasks
it is supposed to complete all by itself. This chapter is the first one where we will start giving
the robot the ability to make decisions. Subsequent chapters will greatly enhance the
robot’s artificial intelligence (AI) capabilities.

There are various approaches to making the robot avoid obstacles:

➢ Turn around and travel in a direction away from the obstacle.
➢ Turn sufficiently to avoid the obstacle but not completely around.
➢ Negotiate around the obstacle until it clears it and then continue traveling in the same

direction as before.
➢ Wait for the obstacle to move away; assuming the obstacle is a mobile object itself.
➢ A combination of all or some of the above.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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This chapter will consider the first two options. We will develop algorithms for the other
options in later chapters.

5.1 What Is Random Roaming?
Before we can make a robot tackle any challenges, it has to be able to move around its
environment without any specified knowledge of the locations of objects. The robot has
to be able to avoid obstacles and escape out of corners and tight spots in an intelligent
manner. Here we will develop some algorithms that enable our robot to handle moving
aimlessly around whatever environment we care to challenge it with. We say aimlessly
because in this chapter the robot will have no specific goal to achieve other than mean-
dering around its world without getting stuck in one place for too long or crashing into
obstacles. Type the program in Fig. 5.1 and run it.

The inner (second) while-loop in the program checks to see if an object in the
robot’s path has triggered any of the robot’s infrared sensors. If no objects are detected,
the robot moves forward one pixel. This movement occurs as long as the loop contin-
ues to detect no objects in the robot’s vicinity. Once an object is encountered, the while-
loop ends and the program flow continues to the next statement. This statement causes
the robot to turn. The number of degrees the robot turns is formed by adding 150 and a
random number between 0 and 60. This produces a turn that is between 150� and 210�

or 180� 
 30° [see Sec. C.8 for details on Random()].
The outer (first) while-loop ensures that the two behaviors are repeated endlessly.

The condition for the loop is while true. This means that the loop will always repeat
since true is always true and will never become false to end the loop.

When you run this program you will see the robot move around the room. Each time
it encounters a wall, the robot will turn away using a random angle and then move for-
ward again until another wall is encountered. This process will continue until you termi-
nate the program by closing the terminal screen window.

5.2 Some Programming Constructs
In this chapter we use some more programming principles. The following explains these
principles to allow for easier comprehension of the programs that will be developed.

rLocate 400,300 
while true  // roam forever 
   // forward until an object is found 
   while rFeel( )=0 
      rForward 1 
   wend 
   // turn 180 degrees plus or minus 30 degrees 
   rTurn 150 + random (60) 
wend
End

FIGURE 5.1 This program causes the robot to roam randomly around the screen.
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5.2.1 LABELS AND SUBROUTINES

The next program we will develop will be divided into sections. Each section will achieve
a specific task. The main program will call each section as it becomes needed. 

This principle is a powerful strategy; divide a complex task into a set of simpler tasks.
Each simpler task can also be divided further. This process makes it easier to complete
the project as a series of simple tasks that can be easily accomplished. Some tasks may
have been previously accomplished in other projects and can be used again in the current
project with only minor modifications. Also you can assign different people to work on
each subtask; this way a large project can be finished in less time than if one person was
working on it. 

The main program acts as a manager program calling the subtasks as they become
needed. An example program organized in this manner is shown in Fig. 5.2.

In RobotBASIC you can achieve this kind of structure with subroutines. Think of a sub-
routine as a tool that you use to do a certain task. Usually when you use a tool you do
not care how it accomplishes its work as long as you know how to use it. To achieve a
big project you will use many tools together. You come to a point where you need the tool,
so you pick it up and use it. When you finish you put it down and proceed (maybe use
another tool). When a project becomes too complex you can summon the aide of spe-
cialists and divide the overall project among these specialists who then use tools to do their
work. The specialists may utilize additional specialists and so on.

This is exactly how programs should be developed. Programs should have a main rou-
tine that calls on subroutines that act as tools or specialists. In RobotBASIC a subroutine
is marked as such by surrounding some lines of code with a Label and a Return state-
ment (see Fig. 5.2). The label is the name of the subroutine.

A label has to start with a letter followed by any combination of letters and numbers
and has to end with a colon (:) (see Secs. B.5 and C.1). As you can see in Fig. 5.2 we
have the labels Task_1 and Task_2, which are markers for subroutines surrounded by
the label and the command Return.

MainProgram:
   //--setup some initial stuff here 
   //--do the various tasks 
   gosub Task_1 
   gosub Task_2 
   //Etc. Etc. 
   //--do some closing up stuff here 
End  //--this is needed to stop the program 
//----------
Task_1:
   //do stuff here 
Return
//----------
Task_2:
   //do stuff here 
Return
//----------
//Etc. etc. 

FIGURE 5.2 Well structured program.
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You invoke a subroutine (use the tool) by using the command Gosub followed by the
name of the subroutine which is the label that you have given it (without the colon [:] )
such as Gosub Task_1. Once the program issues this statement it will jump to the label
and start executing the subroutine from that label until it encounters the command Return.
The Return command ends the subroutine and causes the program flow to go back to
the line immediately following the line where the subroutine was called. See Secs. B.5,
B.6, C.1, and C.6 for more details on flow-control structures.

The more you program the more you will find that you may have already designed a rou-
tine in some previous project to achieve what you are trying to do in the current project. If
you have designed the routine as a subroutine, then all you have to do in the current project
is cut and paste the previously created routine. As your toolbox of routines becomes more
extensive, you will find that you can develop programs more quickly and more easily.

You will see how all this applies in practice with the program we will develop in the
next section for testing various random roaming algorithms.

5.2.2 COMMANDS

RobotBASIC has commands to accomplish many tasks. You have seen in Chap. 4 that
there are commands to perform I/O (input and output) with the user. In this chapter you
will use commands to do various actions on the screen. 

There are commands to clear the screen (ClearScr), set the color for drawing on the
screen (SetColor), position the initial point to start drawing (GotoXY), to draw lines on
the screen (LineTo), and to set the width of the lines being drawn (LineWidth).

RobotBASIC has a multitude of commands to help you deal with many different types
of programming situations. See Secs. B.4, C.7, and C.10. Remember, commands are not
case sensitive.

5.2.3 OPERATORS 

Operators are symbols that operate on numbers or strings. There are math operators to
do things like add (	) and multiply (*). There are comparison (or relational) operators to
see if two things are equal (�) or if one thing is less than another (�). There are logical
operators that enable you to test if some condition is true AND another is true, or if another
condition is true OR another is true. There are bitwise operators that will operate on the
individual bits of a number (binary e.g., bAnd). 

NOTE: Labels are case sensitive, so Task:, TASK:, and task: are not the same.
RobotBASIC is generally not case sensitive. Variable names, array names, and labels
are the exceptions to this rule.

NOTE: The End statement is necessary to stop the program from continuing on to
the area of the subroutines.

NOTE: Many operators in RobotBASIC have more than one form. 
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The utility of all these operators will become clear as we proceed with developing pro-
grams throughout the book. See Sec. B.7.5 for detailed information on all operators avail-
able in RobotBASIC and how they can be used.

5.3 Adding Objects to the Roaming
Environment
How will the algorithm in Fig. 5.1 cope when we introduce obstacles into the room? To
test this we will develop a subroutine that enables us to place objects of any shape in the
room.

Figure 5.4 shows a modification of the program in Fig. 5.1. This new program allows
you to draw on the screen with the mouse to simulate placing objects in the robot’s envi-
ronment. Figure 5.3 shows a sample screen with objects that were drawn using the
program in Fig. 5.4 (remember, do not type the line numbers).

The sections below explain the details of how the commands, functions, and looping
structures work together to achieve the program’s action. The details may become challenging,

FIGURE 5.3 The program in Fig. 5.4 allows you to draw objects on the screen.
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but study them carefully because the principles in this program will be utilized many times
as you progress through the book. To put things in perspective we will explain the pro-
gram’s action in words and thus give an overall look at the program. Keep this in mind
and refer to it as often as you need while reading the discussions in the next sections.

The program is an implementation of the principles discussed in Sec. 5.2. There is a
main program that calls subroutines as they become needed. This means that the main
program, besides being self-documenting and easy to understand, is a manager for the
overall program action.

01 MainProgram: 
02    gosub DrawObjects  // let the user draw objects on the screen 
03    gosub RoamAround 
04 End 
   //=============================================================== 
06 RoamAround: 
07    while true  // roam forever 
08       // move forward until an object is found 
09       while rFeel( )=0 
10          rForward 1 
11       wend 
12       // turn 180 degrees plus or minus 30 degrees 
13       rTurn 150 + random (60) 
14    wend 
15 Return 
   //=============================================================== 
17 DrawObjects:  // beginning of subroutine to draw objects 
18   rLocate 400,300 // show robot so they know where to draw 
19   print "Press the mouse key and hold it while you draw." 
20   print "Release when you have completed drawing an object." 
21   print "Repeat until you have drawn all the objects you want." 
22   Print "Right click anywhere on the screen when finished" 
23   Print "The robot will roam randomly while avoiding objects." 
24   SetColor GREEN 
25   LineWidth 3 
26   FirstTime = true
27   while true 
28      // wait till the user presses a mouse button 
29      repeat 
30         ReadMouse x,y,m 
31      until m=1 or m=2 
32      if FirstTime 
33         ClearScr  // clear the screen (remove the text) 
34         rLocate 400,300  // put the robot back on the screen 
35         FirstTime = false  // only clear screen the first time 
36      endif 
37      if m = 2 then return 
38      gotoxy x,y  // set starting point for drawing 
39      while m  // as long as the mouse button is pressed
40         ReadMouse x,y,m  // read a new position 
41         LineTo x,y       // and draw a line to it 
42      wend 
43   wend 
44 Return // end of subroutine 

FIGURE 5.4 This program lets the robot roam around a room, avoiding objects drawn on
the screen with the mouse.
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The first action of the main program is to call the subroutine DrawObjects, which allows
the user to draw on the screen to simulate objects in the robot’s environment. Once the
user finishes drawing, the subroutine returns to the main program. The main program then
calls the RoamAround subroutine, which enters an endless loop that makes the robot move
around the room while avoiding obstacles and walls. 

The DrawObjects subroutine accomplishes the following:

1. Display instructions and the initial location of the robot to the user.
2. The program will then repeatedly do the following things until the user clicks the right

mouse button:
(a) Wait for the user to left-click the mouse. If this is the first click, the program clears

the screen (to get rid of the instructions) and then replaces the robot at the center
of the screen. 

(b) As the mouse moves, the routine draws a line from the mouse’s previous position
to the new one until the user releases the left mouse button.

3. Once the user presses the right mouse button the program will exit the subroutine and
return to the line that follows the line where the subroutine was called.

Now with all the above in mind proceed to the next sections to learn how all this is
achieved with the functions and commands available in RobotBASIC.

5.3.1 DrawObjects SUBROUTINE

This subroutine allows the user to draw on the screen to simulate objects in the robot’s
environment. It achieves its action by printing instructions to the user of the program then
keeps checking the mouse to see what buttons are being clicked. This subroutine also ini-
tializes the robot and locates it on the screen (Line 34). 

5.3.1.1 Printing on the Screen The first portion of the subroutine (Lines 19–23) con-
sists of Print statements that display instructions to the user so that she/he knows what to
do. Refer to Sec. C.7 to find out about printing options. Also see the discussion in Chap. 4.

5.3.1.2 Drawing on the Screen Lines 24 and 25 specify the color and width of
the lines that will be drawn. On Line 26 a variable FirstTime is set to true. We will see
how this variable is used shortly. The while-loop on Line 27 ending on Line 43 surrounds
the remainder of the routine causing that code to be repeatedly executed (once for every
object that is drawn) until a Return statement is executed.

5.3.1.3 Reading Mouse Data The next section of code (Lines 29 to 31) is a
repeat-until loop that executes the ReadMouse command until the user clicks the
left or right mouse button. In this example, ReadMouse places the current coordinates
of the mouse into the variables x and y and assigns a number to the variable m that spec-
ifies if and which buttons were pressed on the mouse. A value of 1 indicates the left
button was clicked. A value of 2 means the right button was clicked. Notice the use of the
logical OR in the until-statement. It causes the loop to wait until either of these events
occurs and then execution continues with the if-statement on Line 32.
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The if-statement (Line 32) examines the variable FirstTime that was mentioned ear-
lier. Remember, it was given a value of true to indicate that this is the first time execution
has found its way to this point in the program. Since FirstTime is true, the if-statement
will execute the lines inside its block (between the if and the endif, Lines 33–37).
These lines clear the screen (to erase the instructions previously printed) and locate the
robot again in the middle of the screen so that the user can draw objects in relation to the
robot. It also accomplishes another important action. It sets the value of FirstTime to false.
This ensures that the next time through this section of code the program knows it is not
the first time and will not clear the screen again.

The next if-statement (Line 37) checks the value of m to see if the last mouse event
was a right-click. If it was, (indicating the user is finished with drawing objects) the pro-
gram returns to the line following the Gosub-statement (Line 03). If m is not equal
to 2, execution continues on to Line 38. Once we are on Line 38 we know two facts.
First, the last mouse event was a click on the left mouse button. How do we know this?
If the button had been right-clicked we would have returned to the main program. If it
had not been clicked at all, the program would still be in the repeat-until loop dis-
cussed earlier. The second fact we know is that the variables x and y contain the coor-
dinates for the mouse at the time the button was clicked. The program uses these
variables and the GotoXY command to establish a starting point for drawing the next
object.

The while-loop (Lines 39–42) executes as long as the user does not release the left
mouse button. Inside this loop, a LineTo statement draws a line from the last point used
to the current mouse position. This simply means that a line will be drawn wherever the
user moves the mouse so long as the left button is pressed. As soon as the button is released
the program will return to the beginning of the main while-loop (Line 27) and either get
a new starting point for a new object (if the user clicks the left mouse button) or terminate
the subroutine (because the user clicked the right mouse button).

5.3.2 RoamAround SUBROUTINE

This subroutine (Lines 06–15) causes the robot to roam around. It is exactly the same as
the code in Fig. 5.1; the only difference is that it is now in a subroutine. The outcome of
combining this subroutine with the drawing subroutine is that the robot will now make
random turns whenever it encounters randomly placed obstacles or walls.

Most of the time this algorithm for roaming around works properly. Occasionally,
especially if you draw objects with sharp points, the robot will cause an error by colliding
with an object. This can happen because, as explained in Chap. 3, there are gaps (blind
spots) between the infrared sensors. 

It might seem strange that the simulator is designed to have blind spots. If you build a
real robot it is unlikely that you would purchase enough infrared sensors to completely cover
its perimeter and even if you did, the large number of sensors to analyze would make it
more difficult to determine what actions should be taken when the sensors are triggered.
Programming in RobotBASIC forces you to solve the same problems and face the same
challenges you would face while programming a real robot because the robot’s sensors
simulate realistic ones. These thoughts lead to the next section of this chapter where the
robot is enabled to avoid objects in a more effective manner.
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5.4 More Intelligent Roaming
In previous programs, the robot simply turned away from objects it encountered. In order
to give the robot some sort of personality, we added some randomness to the turns, but
we can hardly claim that it is intelligent in its decisions. In fact, if you run the program
you will observe behaviors that appear unintelligent, especially if there are a lot of obsta-
cles. One such behavior is that the robot will occasionally make its random turn into
objects and not away from them. There are several ways the robot can make better
decisions.

5.4.1 USING SENSORY INFORMATION MORE EFFECTIVELY

One way of improving the behavior of our robot is to make it decide which is the best
way to turn, instead of just turning a random amount. It may not be clear what is the best
way, but there is a simple idea that produces a very acceptable behavior. If the robot
encounters an object and the sensors show it to be on its right side, then the robot should
turn left. If the object is on the left side it should turn right. If the object is straight ahead
the robot should turn completely around. In all these cases, we will add a little random-
ness to improve the robot’s ability to cope with unforeseen circumstances. However,
because the decisions are more intelligent to begin with, we won’t need near as much ran-
domness to be effective. In order to implement this improvement we need to be able to
examine the status of individual sensors more efficiently. Let’s look at some techniques
that can help.

5.4.1.1 Making Better Decisions To know if an object the robot encounters is on
the left or right we must analyze the value of the individual bits in the sensory data.
Figure 5.5 shows some example expressions that can help us analyze the infrared data.
All of these expressions can be used as conditions in if and while statements.

5.4.1.2 Logical Operations The expressions in Fig. 5.5 are valuable, but are lim-
ited. RobotBASIC allows you to manipulate expressions using logical conditions. For
example, you could test to see if either of the two right-hand sensors is triggered individ-
ually with a logical OR operation as shown in the following expression. 

rFeel()=2 OR rFeel()=1 

     Expression Situation that makes it true
rFeel() = 0 No sensors triggered 
rFeel() Any sensor triggered 
rFeel() = 4 Only the front sensor is triggered 
rFeel() = 3 Only the two right-hand sensors are triggered 

(both must be trigger together) 

FIGURE 5.5 Example expressions for testing data from the
infrared sensors.
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Notice this is very different from checking to see if rFeel() is equal to 3, which
means both of the right-hand sensors must be triggered together and none of the
others can be triggered. Logical operations are a great help when analyzing sensory
data, but there are other ways that can be more efficient or more appropriate in cer-
tain situations. 

5.4.1.3 Bitwise Operations Below are two expressions that will perform almost
the same test as the one in the previous section. That statement was true if either of the
right infrared sensors were pressed alone. Both statements below will be true if either or
both bumpers are pressed. Let’s see how they work.

rFeel() bAND 3
rFeel()   &  3

In the above two statements, the RobotBASIC operators & and bAND (two options
for doing the same operation) cause the infrared values to be bitwise ANDed with the
number 3 (binary 0011). Bitwise simply means the values of each bit position of the
two numbers are ANDed together. This means the answer for each position will be a
one, only if that bit position in the first number and the same bit position in the second
number, are both ones. Lets look at some examples in Fig. 5.6 to make this clearer.
The number we are bANDing with the sensor value is referred to as a mask because
it hides some positions (using zeros in the mask) while allowing some to go through
unchanged (using ones). As you can see from Fig. 5.6 the expression will be true when
either or both of the positions specified by the mask is a one because the only bit posi-
tions in the sensor value that are not masked are those where the mask is a one. In
this example, the output will be false only if neither of the specified sensor positions
is triggered. 

As we proceed through the text, you will see how the use of bitwise and logical oper-
ations can help in analyzing the meaning of all sensory data so that the robot can make
decisions on its own. Refer to Sec. B.7.5 for complete information on all the logical and
bitwise operations available in RobotBASIC.

NOTE: This expression will not be true if both sensors are triggered together because
in that case the sensor value will equal 3. In a complex expression like this one it is
often important to use parenthesis to make sure certain portions of the expression

are evaluated before others. See Sec. B.7.5 for more information on operator precedence.

 Infrared value 0001 1000
The mask (3) 0011
Answer when bANDed 0001 0010 0011 0001 0000
True or False condition true true true true false

0011 0011 0011
00110010 1001

0011

FIGURE 5.6 Results when various bumper conditions
are bitwise ANDed with the number 3 (0011).



RANDOM ROAMING 61

5.5 Improved Obstacle Avoidance
Armed with more tools for analyzing the infrared data, lets improve the robot’s ability to
react to objects in its environment. All the improvements will be in the subroutine
RoamAround. All the algorithms given from now on will be a replacement for this sub-
routine. In order to test the algorithm, replace the old subroutine in Fig. 5.4 with the new
one given and run the program.

5.5.1 A FIRST IMPROVEMENT

Let’s see how the robot can use bitwise operations to make better decisions. Look at the
subroutine in Fig. 5.7. The first thing you will notice in Fig. 5.7 is the rTurn statement
near the end. Instead of turning 150� plus a random amount as we did earlier, the pro-
gram now turns an amount specified by the variable Ta plus a random amount. The key
to the robot’s new intelligence is choosing a proper value for Ta.

Inside the main while-loop, after an object is encountered, three if-statements decide
on an appropriate value for Ta. If there is an object on the right (if either of the right-side
sensors are triggered) a left turn of 45� is specified. Similarly if either of the left-side sen-
sors are triggered a right turn of 45° is used. If the front sensor alone, or in combination
with other sensors is triggered, Ta is given a value of 160 to make the robot turn almost
completely around (180� 
 20�). A random value is still added when the robot turns, but
it is much lower than before because the robot is always turning in a reasonable direction
anyway. Notice the use of the function Sign(Ta) to ensure that the random number is in
the same direction as the turn.

5.5.2 A SECOND IMPROVEMENT

The algorithm in Fig. 5.7 will turn the robot between 45� and 85� when it encounters an
object on its left or right. If the turn causes the robot to still be facing an obstacle it will
turn again a random amount. This will be repeated until the robot eventually finds a clear

RoamAround:
  while true 
     // forward until an object is found 
     while rFeel( )=0 
        rForward 1 
     wend 
     // try to intelligently turn away from the object 
     if rFeel()&3 then Ta = -45 // object on right,turn left 
     if rFeel()&24 then Ta = 45 // object on left,turn right 
     if rFeel()&4 then Ta = 160 // object infront,turn around 
     // turn Ta deg. plus a random amount no more than 40 deg. 
     rTurn Ta+random(40)*sign(Ta) 
  wend 
Return

FIGURE 5.7 This subroutine shows one method for making our robot more
intelligent as it roams the screen.
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path. However, the robot would be a lot more intelligent if, while turning, it had a way of
stopping as soon as it senses a possible clear path. This way instead of turning a fixed
amount, which may cause it to miss an opening while it is turning, we can make the robot
stop turning when it sees an opening. 

One way to do this is to have the robot use its range-sensor to measure the distance
to objects as it turns. Generally, the distance should get larger as the robot turns away
from the object it has just encountered. If we stop the robot turning as soon as the dis-
tance starts to decrease, indicating a possible new obstacle, the robot will be able to turn
until it avoids the obstacle, but not until it encounters another. This allows the robot to
make more intelligent turning decisions. The routine in Fig. 5.8 shows how this can be
accomplished.

The algorithm in Fig. 5.8 assigns a value of 90� left or right instead of 45� to the vari-
able Ta. We can allow more turn because we are going to stop when the robot sees an
opening anyway.

The for-loop allows the robot to try and turn the designated number of degrees. The
for-loop will count up if Ta is positive or down if it is negative. The loop keeps track of
the last distance read by the range-sensor in the variable OldDist. When the new distance
read is smaller than the old distance the Break statement is used to exit the for-loop.
Notice the robot is made to turn the value returned by the function Sign(Ta). This value
will be �1 if Ta is less than zero, 1 if it is greater than zero and 0 if it is equal to zero. 

5.5.3 FURTHER IMPROVEMENTS

The improvements made in this chapter are only suggestions. The robot’s behavior should
be based on the environment in which it is expected to operate. The programs above can
fail, for example, if you draw objects that have sharp points because they can be missed
by blind spots in the infrared sensors. It is also possible for the robot to become stuck
between two objects that are spaced close enough together to trigger the sensors on both
sides of the robot at the same time.

RoamAround:
  while true 
    while rFeel( )=0 // forward until an object is found 
        rForward 1 
    wend 
    // try to intelligently turn away from the object 
    if rFeel()&3 then Ta = -90 //object on right,turn left 
    if rFeel()&24 then Ta = 90 //object on left,turn right 
    if rFeel()&4 then Ta = 180 //object ahead turnaround 
    OldDist=0 
    for i=0 to Ta 
      rTurn sign(Ta) 
      NewDist = rRange() 
      if NewDist < OldDist then break 
      OldDist = NewDist 
    next 
  wend 
Return

FIGURE 5.8 This subroutine turns the robot toward an open space.
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Part of the enjoyment in robotics is finding problems that a robot cannot handle given
simple algorithms and trying to design more sophisticated solutions to impart the robot
with the intelligence to tackle baffling situations. The exercises below offer ideas for
improving the programs in this chapter.

5.6 Summary
In this chapter you have:

� Written programs to roam around while avoiding objects in the environment.
� Learned about subroutines and the Gosub statement.
� Learned about the Print, GotoXY, LineTo, ClearScr, ReadMouse, LineWidth,

and SetColor commands.
� Learned how to develop progressively more complex algorithms that allow the robot

to deal with complex situations more intelligently.
� Learned about bitwise operators and how to combine them with logical operators to

interrogate the sensors more efficiently.
� Seen how adding some randomness with the Random() function can improve the

robot’s responses in certain situations.
� Learned that the robot in RobotBASIC has limitations, just like a real robot, and that

overcoming these limitations can be challenging, yet rewarding and fun.

5.7 Exercises
1. Modify the program in Fig. 5.4 so that it also uses the bumper sensors. The new pro-

gram eliminates blind spots that could allow sharp objects to cause errors.
2. The program in Fig. 5.4 currently turns 180� (
30�) if the front sensor is triggered

even if other sensors are also triggered. Modify the program so that it will turn 180�

(
30�) if only the front sensor is triggered. Consider the differences in the behavior
you see between the two programs.

3. Modify the program in Fig. 5.7 so that it will not get stuck between two objects.

4. Experiment with different amounts to turn when the program in Fig. 5.7 encounters
an object and note what effect larger and smaller angles have on the robot’s behavior.
Note the effect of changing or eliminating the random amount.

5. Develop an algorithm to create your own behavior for the robot. Test it in a variety
of situations to see how it compares with the behaviors studied in this chapter.

HINT: Use bitwise and logical operations to detect such a condition and turn 180�.



This page intentionally left blank 



65

C H A P T E R6
DEBUGGING

Previous chapters introduced RobotBASIC and some of its capabilities through simple
programming examples. As the book progresses, programs will become increasingly

more complicated making it harder to find errors, not only in the typed code, but also in
the logic of the algorithms.

There are three types of errors that can cause problems in a program:

➢ Syntax errors. These are errors in the typed words of the code. For example, you
type the command Prnit when you actually mean Print. RobotBASIC will detect
these types of errors and issue a message indicating their nature and location. It will
also highlight the error location within the editor.

➢ Semantic errors. These are errors that occur during the running of the program
when an illegal operation takes place such as division by zero. For example, you may
have a statement like Speed = Distance/TimeTaken. If the variable TimeTaken
becomes 0 some time during the program’s execution an error will occur. RobotBASIC
will indicate the nature and location of such errors and will highlight the line that
caused the error in the editor.

➢ Logic errors. These are errors that cause the program to run in a fashion that you
do not expect even though the program is syntactically and semantically correct.
This kind of error is usually easy to detect if it affects the program in an obvious
manner. Unfortunately, more often, this type of error can be quite subtle and hard
to detect or trace to a particular location in the code. For example, you may write

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Speed = Distance * TimeTaken. This is the incorrect formula for the cal-
culation desired (you should divide not multiply). However, RobotBASIC will not
know this and will run anyway since there is no syntactic or semantic error. 

Logic errors can only be detected by meticulous testing and analysis of the program.
This process is called debugging. The term comes from the days when computers were
huge machines with electrical and mechanical components as well as a few electronic ones.
Real live bugs used to crawl inside some of the electrical and mechanical devices of these
machines causing failures. Operators used to go inside these computers to find the bugs
and replace the burnt out or jammed component to make the computer run again. Thus
the term debugging was coined. 

Debugging can be a frustrating process, but RobotBASIC has some unique and pow-
erful debugging features to help ease and facilitate the process. However, before we look
at these features, let us explore some of the principles of debugging in general. 

6.1 Before You Program
Before you begin writing a program to control a robot, you should consider the problems
and situations the robot will face. You must take into account what sensors you want the
robot to have and what data you will be able to acquire. Finally, you must decide how the
robot will analyze the data it obtains. This means that you have to determine what data
patterns are meaningful and what you want the robot to do when it encounters those pat-
terns. This is not always easy.

When a robot navigates through the environment it is likely to produce some unexpected
sensory data. Consider the random-roaming programs in Chap. 5. One of the basic
behaviors introduced (Fig. 5.7) was that the robot turned right if sensory data showed an
object on the left and vice versa. This seems like an algorithm that should work all the time.
However, if the environment contains two objects that are just far enough apart to allow
the robot to pass between them and, during its random roaming, the robot tries to pass
between the two objects in a manner that causes both the left and the right sensors to acti-
vate simultaneously, the algorithm will fail. 

If you inspect the routine in Fig. 5.7 you may notice that none of the three conditions
being tested by the if-statements address the situation when the infrared sensors are detect-
ing objects on both the left and right sides of the robot simultaneously. When environmental
situations are not anticipated, the robot is likely to react unpredictably at best. The pro-
gram may sometimes respond with an adequate action, but this only adds to the difficulty
of determining the reason for the failure when it occurs.

6.2 Plan Plan Plan
The best way to deal with these situations is to plan ahead so you can anticipate the predica-
ments the robot may face. One way to do this is to use the remote control program from
Fig. 4.6 in Chap. 4. Substitute the environmental situations you want to explore and use
the remote control features of the program to move the robot into difficult situations and
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observe the displayed sensory data. Knowledge of how the robot sees its environment will
help you choose the sensors you need and what data patterns to program for.

In a complex or changing environment you might miss some critical situations no
matter how much you plan. When this happens you need a way to discover exactly why
your robot is getting baffled and what actions it should invoke to deal with these situations
when they are encountered.

6.3 Debugging Philosophy 
The basic philosophy of debugging a program is composed of a few steps. First, you need
to isolate the general area of the code where the fault is occurring. Next you need to deter-
mine why that portion of the code is not performing as expected (locating the specific
source of the problem). Finally, you have to correct the faulty lines or logic that causes
the problem. Let’s see how each of these can be accomplished.

6.3.1 ISOLATING THE FAULT

Assume you have a 200-line program that stalls or hangs when it is run. It would be inef-
ficient to look through the entire program hoping to find the problem. Often the reason
a program hangs is because it is stuck in a loop, doing the same thing over and over—
but appearing to be doing nothing at all to the observer. This means you have already nar-
rowed the problem down to code that lies within a loop. For example, let’s assume there
are four major loops in the program. Our next goal would be to determine if one of
these loops contains the problem and if so, which one. An easy way to do this would be
to place some Print-statements before and after each loop. These would display some-
thing like “Entering loop 1” or “Exiting loop 3” so that when the program is run, you will
be able to see how the program is progressing. This procedure should allow you to deter-
mine which loop contains the problem. If your program is very large, perhaps containing
dozens of loops, you could place similar print statements at the beginning and ending
of subroutines to initially isolate the problem to a portion of your code. Once you are down
to a manageable size, you could then add more Print-statements to that area to fur-
ther isolate the problem.

6.3.2 LOCATING THE FAULT

Once you have the fault isolated to a manageable area, you need to get information that
can help determine why the problem is occurring. Without such information you are only
guessing at the source of the problem. Typically, the information you need is the value of
a variable or sensor. You can use more Print-statements to obtain this information.

Ideally, you would like to get this data each time an action occurs in the program. If
you can analyze the values of variables and sensors in the isolated area you should be able
to determine why the fault is occurring (perhaps an if-statement is not showing true when
you expect it to). The reason for the fault could be that you typed the name of a variable
incorrectly or the problem could be with the logic used for dealing with an unanticipated
situation in the environment.
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6.3.3 CORRECTING THE PROBLEM

How you correct the problem depends on its nature. Sometimes correcting a typing error
is all that is necessary. At other times you may have to admit that your initial plan or algo-
rithm was inadequate for the situation. In such cases, the information you obtained during
the debugging phase will help you formulate a better algorithm.

6.3.4 PATIENCE PATIENCE PATIENCE

Debugging can often take much longer than you might expect—sometimes much longer
than the initial writing of the code; just be patient. The insight gained during debugging
is valuable not only for correcting errors in this program, but also in developing this and
other programs further and even in improving your problem-solving skills in general. As
you gain experience, you will discover that time spent in a careful and systematic design
process as well as meticulous coding can save many hours of debugging.

6.4 Debugging with RobotBASIC
You can debug programs with Print-statements as discussed in the previous section, but
RobotBASIC offers alternatives that are far more efficient. There are several techniques
available to you, some of which are similar to those in other languages and some that are
unique. Consider again the random roaming subroutine from Chap. 5 (Fig. 5.7). It is shown
here in Fig. 6.1 with a Debug statement inserted that will be discussed later.

The code shown in Fig. 6.1 works in most situations, but there are environmental con-
ditions that can cause it to fail. The problem is that the infrared sensors that feel around
the robot have blind spots as discussed in Chap. 3. If the objects drawn to test the sub-
routine are really small or have very sharp points, the potential for a fault exists. When
the robot approaches such an object the point may slip between the sensor detection areas
and cause a collision before it can be detected.

RoamAround:
  while true 
     // forward until an object is found 
     while rFeel( )=0 
        rForward 1 
Debug "An object was detected   ", rFeel() 
     wend 
     // try to intelligently turn away from the object 
     if rFeel()&3 then Ta = -45 // object on right,turn left 
     if rFeel()&24 then Ta = 45 // object on left,turn right 
     if rFeel()=4 then Ta = 160 // object infront,turn around 
     // turn Ta degrees plus or minus 20 degrees 
     rTurn Ta+random(40)*sign(Ta) 
  wend 
Return

FIGURE 6.1 This subroutine moves the robot randomly around the screen (see
Chap. 5 for the complete program).
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If this problem occurs during the process of developing a program, you may be puz-
zled as to why the robot collides with objects that you believe should have been detected
by the code. This could certainly be true if you were unfamiliar with the blind spots asso-
ciated with infrared sensors. If you could obtain the value of the sensors immediately
before, during, and after the collision you would have the data needed to discover the
problem.

6.4.1 THE Debug COMMAND

In RobotBASIC there is a special form of the Print-statement called Debug. This com-
mand can be used just like a Print-statement, but it differs in several important ways.
Instead of printing on the terminal screen like the Print-statement, the Debug-statement
prints in a special window that opens the first time it is used. However, it does not just
print, it also causes the program to pause execution so that you can see what the robot
is doing to cause the data being displayed. Insert the following statement right after the
first wend in Fig. 6.1 (comment out the other debug statement already there):

Debug “An object was detected  ”, rFeel()

You also need to place the statement DebugON at the beginning of the main program.
When the program is run (and you draw some objects) the program will stop and the debug
window will appear when an object is encountered and show a screen similar to Fig. 6.2.
The fact that the program stops is important. It gives you the opportunity to analyze the
robot’s situation at the instant the Debug-statement was executed.

FIGURE 6.2 This Debug screen is typical for the example in the text.
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The size of the debug window will probably be larger than what is shown in Fig. 6.2.
You may resize it and reposition it as you wish. Notice that the debug window shows that
an object has been encountered and that the infrared sensor data is 8. This means that
the object activated the sensor at 45� left of the robot’s heading. You can also view the
terminal screen and see the position of the robot compared to its environment. This
allows you to better analyze the sensory data being displayed.

If, while in the process of debugging, you happen to lose the debug window behind other
windows, you can bring it back up to the top of all windows by going to the Editor Screen
and either pressing Ctrl	D or selecting the menu option Bring Up Debug from the Run
menu. These actions have no effect if there is no active debugging session going on.

6.4.2 STEPPING THROUGH A PROGRAM

If the mouse is used to click the Step button on the Debug Screen (or pressed Enter
on the keyboard), the program will proceed where it left off and continue executing
until it encounters the Debug-statement again. When it does it will stop and show the
new sensory data in the window immediately below the old data. If you continue
pressing Step (or Enter) you can continue to gather data each time an object is encoun-
tered. When the window becomes full you can clear it with the Clear button or just let
it scroll upward as new data is added. You can also view a table of all the variables in
your program, all in one screen, if you press the View Variables Table button. This
table can also be viewed even after the program terminates by pressing Ctrl+B from
within the Editor Screen or by selecting the View Variables Table menu option from
the Run menu.

Although this example is a good introduction to debugging it really won’t help us
find the problem discussed earlier. This is because the program stops only after the
infrared sensors have detected an object meaning that a collision will stop the program
before you get a chance to view the sensory data. 

If we move the Debug-statement just before the wend statement instead of after it
(as shown in Fig. 6.1), we can obtain the necessary information. If you try it, you will
see that the program will stop and display the debug window after every move. As long
as an object has not been encountered, the sensor data will be 0. It can take some time
before the robot reaches an object because you have to press Step each time the robot
moves forward one pixel. One solution to this problem is to draw the object you want
to test very close to the robot so that it does not have to move far before indicating the
sensory information. There is a better solution to the problem of having to press the
Step button too many times before the robot arrives at the point of interest where we
would like to analyze the data in detail. If you press the Debug Off button on the Debug
Screen, the robot will move around as it would if there were no debug statements in
the program. This allows you to let the program proceed at normal speed until the robot
approaches a situation you want to analyze in more detail. When this happens press the
Debug On button on the Terminal Screen. This will cause the program to again
display the debug window and allow you to step through the code as before. This is a
powerful feature because it lets the robot move around at normal speed until you
decide you want to examine something that is about to happen. 
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6.4.3 VIEWING THE INFRARED BEAMS

Because of the blind spots inherently associated with infrared sensors, RobotBASIC has
a special feature to aid with their debugging. If you replace each occurrence of rFeel() in
a section of code you wish to analyze, with rDFeel(red) you will see a very versatile fea-
ture when the program is run.

Each time the sensors are read by rDFeel(color) the robot will display the area being
observed by the infrared sensors using beams of a color specified by the value color. If
you do not pass the function a color by saying rDFeel() (notice no color is specified)
then the second color on the list of colors given to the rInvisible command will be
used. This feature allows you to easily see where the blind spots are and helps you make
better decisions when you are designing a new algorithm. If you have not specified an invis-
ible colors set then you must use rDFeel (color) not rDFeel().

6.4.4 VIEWING BUMPER LEDS

If you use rDBumper (color) in place of rBumper() while trying to debug a program, you
will see the robot illuminate an LED in the vicinity of where the bumper was touched by
an object. This LED will have the color specified by the value color. This feature can help
in visualizing where crashes are occurring. As in the rDFeel (color) function you need to
specify the color. If you do not specify a color the function will use the second color
passed to the rInvisible command. If you have not specified an invisible colors set then
you must use rDBumper (color) not rDBumper().

6.5 Summary
In the chapters that follow you will see other ways to use the debug features of RobotBASIC.
In this chapter you have:

� Been introduced to the basic principles of debugging.
� Learned how to use the Debug statement to step through a program while displaying

the value of variables and/or sensor data.
� Learned how to turn the debug feature on and off while the program is executing.
� Learned how rDFeel (color) and rDBumper (color) can help visualize where objects

are causing problems while the robot is moving around its environment.

Now, try to do the exercises in the next section.

NOTE: If you are familiar with the break-point system used by other language debug-
gers, you will find that this method, while unfamiliar at first, can be a better alterna-
tive for debugging a robotic algorithm.
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6.6 Exercises
1. Add the debug features discussed in this chapter to the random roaming programs

discussed in Chap. 5. It is not necessary that you find any real faults. The goal is to
understand how to use the features. Later chapters will help you develop your debug-
ging skills.

2. In the programs of Exercise 1, try to draw objects that will cause collisions or other
problems and use the debug system to find out exactly why the errors occur. Make cor-
rections if you can. Later chapters will offer more opportunities for more intricate
debugging.
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In Part 2 we develop a toolbox of utility programs. The programs impart the robot with
a collection of behaviors that enable it to handle specific tasks. Each chapter focuses on
a single behavior, evolving algorithms that can work in a variety of situations of increas-
ing complexity. In Part 3 we will utilize combinations of these behaviors to create solu-
tions to real-world problems.

We build on the programming skills developed in Part 1 by utilizing new commands
and functions from the language as well as show how to use arrays to manipulate data
more efficiently. Additional robot commands and functions are introduced along with
more sophisticated interrogation and manipulation of the standard sensors on the robot.
We also utilize customizable sensors to handle more demanding situations and show how
to use advanced features of the standard sensors.

Upon completing Part 2 you will be able to: 

� Create complicated programs and employ advanced programming techniques. 
� Utilize all the sensors on the robot and analyze their data more intricately.
� Utilize arrays and array commands and functions along with looping constructs to

manipulate large amounts of data.
� Improve on the behaviors introduced in this part as well as create new ones of your own.
� Appreciate the advantages of using RobotBASIC as a research and development tool

so as to minimize abortive efforts in a real-world project.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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C H A P T E R7
FOLLOWING A LINE

In Chap. 5 we made the robot move around the screen freely while avoiding objects
in the environment. A robot is a device that can be made to do useful work. To be

able to achieve its assigned tasks the robot will usually need to move to specific loca-
tions where it will perform the required work. There are various ways we can move the
robot around:

➢ Move along a prescribed path defined by a line
➢ Freely move along a path that the robot determines for itself 
➢ Move to a specific destination while keeping within a specified limited boundary

In subsequent chapters we will explore the second and third options. This chapter will
explore the first option. The advantage of having the robot move along a designated path
is that we can ensure where the robot will be all the time as it progresses from one loca-
tion to another. It is also easy to make sure that the robot will have no obstacles along its
path or at least avoid having to program it with a sophisticated obstacle avoidance behavior.

An example application for a robot of this kind is an automated waiter that carries food
items along a continuous loop starting at the kitchen, winding around and between the
tables, and returning to the kitchen. It would not be desirable to have a track that pro-
trudes above the ground due to the risk of customers tripping over the exposed tracks. A
robot that can follow a line painted on the ground would be preferable. The line does not
have to be visible to humans. Only the robot’s sensors need to see it.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Developing a robot that can follow a line on the floor (perhaps black tape on a white
floor) is a common activity at many robotics clubs. The project is straightforward enough
that it usually can be understood and accomplished by novice robot enthusiasts, yet it is
complex enough to introduce them to many aspects of robotics. 

7.1 The Base Program
In this chapter we will develop a few algorithms to perform line following, but before
we can do this we need to develop a base program in which we will place the code that
implements the various algorithms. The base program sets up the robot and the
environment and then starts the robot on its way to follow the line using the algorithm
that we want to test.

The first thing we need to do is to draw a line on the screen for the robot to follow.
Next we need to create and place the robot on the screen. Finally we want the robot to
start executing the line-following algorithm we are trying to test. 

The code in Fig. 7.1a contains three subroutines called InitializeRobot, DrawLine, and
FollowLine. All the MainProgram does is call each of these in turn. The third line after
the MainProgram label makes the robot move forward 10 pixels. The purpose of this will
be discussed below.

Notice how the use of subroutines makes it easier to understand what the program
accomplishes. The subroutine names indicate what the subroutines do. The main program
becomes an overall manager. Of course the actual details of each subroutine’s actions may
need further explanation, but if you keep this policy of modularization throughout your
programs, whenever possible, the programs become self-documenting.

The subroutine DrawLine creates a line for the robot to follow. The first statement sets
the width of the lines (in pixels). The next sets their color and the one that follows, posi-
tions the cursor on the screen. A series of LineTo commands draw the line one segment
at a time. Refer to Sec. C.7 for details of these commands. Also see Sec. 7.4 for a better
way to implement this routine.

The IntitializeRobot subroutine positions the robot. The command rLocate x,y,head-
ing creates the robot and places it on the screen at the specified location and heading.
Since the robot’s default radius is 20 pixels and this routine places the center of the robot
30 pixels to the right of the start of the line, the front edge of the robot will be 10 pixels
away from the line. This is why we need to forward the robot 10 pixels before we start
the line following routine. This action brings the front of the robot to the beginning of the
line in preparation for following it. In a later improvement (Sec. 7.5) this action will not
be necessary. RobotBASIC normally issues an error if the robot bumps into a color on
the screen (collision with some obstacle). Since the robot must be able to move over the
line, we must tell the system the color of the line so that it can differentiate it from an obsta-
cle. We do this with the rInvisible Green command. Green is used here because the
line color was set to green in the DrawLine subroutine. Refer to Sec. C.9 for a detailed
discussion on the rInvisible command.

The final action of the MainProgram is to call the FollowLine subroutine. This sub-
routine is the code that actually performs the task of following the line. All the routines
we will develop in this chapter will be replacements for this subroutine. Figure 7.1b shows
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the output screen when the program in Fig. 7.1a is run. For now FollowLine is left empty
so no line following will occur.

7.2 An Initial Algorithm
RobotBASIC’s robot has three line sensors. One is mounted directly in front of the robot,
and the other two are spaced 10° left and right of the front sensor. Figure 7.2 shows this
setup. The scale has been enlarged to make the setup obvious. Refer to this diagram to
visualize the action of the algorithms that will be developed.

MainProgram:
  gosub DrawLine 
  goSub InitializeRobot 
  rForward 10   // move the robot over to the line 
  goSub FollowLine 
End
//========================================================
InitializeRobot:
  //-- place the robot at the beginning of the line
  //-- and face it left 90 degrees 
  rLocate  200, 71, -90
  rInvisible Green   //-- Green is a line not an object 
Return
//========================================================
DrawLine:
  linewidth 4 
  setcolor Green 
  gotoxy 170,71 
  lineto 160,72 
  lineto 145,80 
  lineto 140,90 
  lineto 130,100 
  lineto 125,110 
  lineto 120,140 
  lineto 130,200 
  lineto 140,250 
  lineto 130,270 
  lineto 145,300 
  lineto 200,350 
  lineto 300,325 
  lineto 450,375 
  lineto 450,450 
  lineto 600,450 
  lineto 600,400 
  lineto 650,200 
lineto 500,350 

return
//========================================================
FollowLine:
  //-----Line Following algorithm 
  //--we will put code here to make the robot follow a line 
Return

FIGURE 7.1a This code draws a line on the screen and places the robot at its
start.
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With three sensors there are many choices for how to develop a line-following robot.
You could, for example, use only the front sensor and have the robot constantly swing left
and right as it attempts to keep the sensor on the line. Such an algorithm can work, but
the robot follows the line with an oscillating snaking sort of motion that is far from efficient.

On deeper analysis, you might decide that a better implementation would be to use the
two outside sensors. In this case, the robot should try to keep the line between the two

FIGURE 7.1b The robot is ready to approach the line.

FIGURE 7.2 The line-sensors
setup in RobotBASIC.
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outside sensors. It can do this by turning a little to the right every time the sensor on the
right detects the line and turning left when the left sensor is triggered. 

7.2.1 READING THE LINE SENSORS

All three line sensors are accessed simultaneously with the single function rSense(Color).
If you do not specify a color by using rSense(), the first color in the list of invisible colors
passed to the command rInvisible will be considered as the line color to be sensed.
You must specify a list of invisible colors before you do any line sensing, and the color of
the line must be in the list (preferably the first one on the list). If you do not do this, the
robot will not be able to sense the line since it will consider it an obstacle and will report
an error if you make the robot move over the line.

The rSense() function returns a number from 0 to 7. This number represents the
sensory condition (on/off) with the least significant bit being the right-most sensor. Each
sensor is on if it senses a line underneath it and is off otherwise. In the situation of
Fig. 7.2, rSense() would return a value of 2 (010 in binary) because only the center
sensor is seeing the line. A value of 6 (110 in binary) means that the left and front sen-
sors are sensing the line while the right sensor is off the line. This could happen if the line
made a sharp turn to the left as shown in Fig. 7.2.

We can determine the status of a specific sensor by using a binary AND (&) operator
as shown in the examples of Fig. 7.3. 

7.2.2 A FIRST ATTEMPT

Figure 7.4 shows a subroutine that can follow a line using the above logic. The routine
simply turns right or left depending on where it sees the line. The while-loop creates a
loop that, in this case, continues forever (or until the user stops the program). To test

Example
if rSense( ) & 1 true if right sensor sees the line 
If rSense( ) = 4 true if only the left sensor sees the line  
if rSense( ) & 6 true if left OR middle OR both sensors see the line  
if rSense( ) true if any sensor sees the line 
a = rSense( )
if (a = 2)  true if only the middle sensor sees the line 
if a & 7 true if any sensor sees the line 
if a = 7 true only if ALL the sensors see the line  

Action

FIGURE 7.3 The rSense() function reads the three line sensors.

FollowLine:
  while true 
    if rSense() & 1 then rTurn 1 
    if rSense() & 4 then rTurn -1 
    rForward 1 
  wend 
Return

FIGURE 7.4 This subroutine will follow a relatively straight line.
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FollowLine:
  c=0 
  while c<50    //exit loop if line is not seen for 50 tries 
    if rSense() & 1 then rTurn 1 
    if rSense() & 4 then rTurn -1 
    rForward 1 
    if rSense()    // if any sensor sees the line 
       c = 0       // start the counter over 
    else 
       c = c + 1   // increment counter if no line is seen 
    endif 
  wend 
Return

FIGURE 7.5 This subroutine knows when the end of the line has been reached.

any of the routines given from now onwards, replace the FollowLine subroutine in the
base program of Fig. 7.1, with the new figures given (Fig. 7.4 in this case). If you test
this subroutine you will see that it fails if the line turns too sharply. We will address this
problem shortly.

7.2.3 AN IMPROVEMENT

One problem with the routine in Fig. 7.4 is that the robot does not know when it loses
the line and continues moving until it crashes into a wall. Figure 7.5 shows how the robot
can determine when it is no longer on the line. The robot constantly checks to see if any
of the sensors are seeing the line. Since it is possible that a thin line could be between two
of the sensors (and thus make the robot incorrectly assume it has lost the line), the algo-
rithm will continue trying to follow the line until the sensors have not seen the line 50 times
in a row. If you substitute this code into the base program, you will see that the robot stops
shortly after losing the line. This is an improvement, but we still need to find a way to keep
the robot on the line. 

7.3 Sharp Turns Cause a Problem
As mentioned earlier, the algorithms in Figs. 7.4 and 7.5 fail if the line turns sharply. The
robot will do just fine if the line is relatively straight, but it will lose the line when there is
a sharp turn in it. 

7.3.1 POSSIBLE SOLUTIONS

In order to solve this problem, we need to understand exactly why it is happening. The
robot fails to follow the line when the line turns faster than the robot is turning—in this
case more than about a 45� change because the algorithm makes the robot turn about
1 pixel left or right for each pixel that it moves forward. When this happens the robot moves
past the turn and will not see the line on any of the sensors. It continues moving forward
and loses the line.
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There are relatively straightforward approaches to solving this problem. We can, for
example, make sure the robot stays on the line by ensuring that it does not move forward
past a turn in the line. This can be done by continuing to turn until it is safe to move forward.
Another solution would be to let the robot move past the turn in the line, but give it a means
of finding its way back to the line. 

Either of the above strategies can provide a possible solution for the robot, but they do
it in a very different manner. The differences will be reflected in the behavior you see as
the robot attempts to follow a line using the above methodologies. In the first case, the
robot will appear to slow down when it sees a sharp turn because it executes more turn-
ing than forwarding. In the second algorithm, the robot will constantly move forward, but
try to make its way back to the line after it has lost it due to a sharp curve. 

You might think that the second strategy is better. After all, it should allow the robot
to reach the end of the line more quickly if we can implement it properly. However, con-
sider for a moment that the robot in question could be a car driving down a road and not
just following a line on the screen. The second algorithm would indeed let the car take a
shorter path to the end of the road, but it does so by letting the car take short-cuts by driv-
ing off the road when the road makes a sharp turn and then getting back on the road a
little further on.

It is important to realize that neither of these strategies is necessarily better than the
other. Each one has advantages and disadvantages depending on the situation and the
environment.

One of the advantages of using a simulator is that you can test and improve a variety
of algorithms very quickly and test them in various environments just as easily. We will
develop two algorithms to implement both strategies discussed above.

7.3.2 A FIRST STRATEGY

Figure 7.6 shows a subroutine that implements the first strategy discussed above. If you
run the program, you will see the robot behaving exactly as predicted. For simplicity the
code does not check if the end of the line has been reached.

Compare Figs. 7.4 and 7.6, the subroutine in Fig. 7.4 lost the line in a fast turn
because the robot only checks once (with an if-statement) to see if it needs to turn, and
only turns once (if needed) before proceeding forward. This means that the robot can lose
the line if the line turns faster than the robot can turn.

FollowLine:
  while true 
    rForward 1 
    while rSense() & 1 
      rTurn 1 
    wend 
    while rSense() & 4 
      rturn -1 
    wend 
  wend 
Return

FIGURE 7.6 This routine keeps the robot on the line even at sharp turns.
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In Fig. 7.6, the robot uses a while-wend loop to continue to turn as much as is necessary
to stay on the turning line before moving forward. This means that the robot will not move
forward until it has turned sufficiently to remain on the line. Extremely sharp turns, such as
the last one in Fig. 7.1b, still present a problem, but the robot performs well in most situations.

7.3.3 A SECOND STRATEGY

The second strategy is implemented in Fig. 7.7. The routine allows the robot to leave the
line when it turns sharply and then reacquire it a short distance later. 

Once the robot loses the line it cannot use the line sensors to determine which way to
turn. To solve this problem, we need a way for the robot to remember which way it
was turning the last time it saw the line. This will normally be the direction the robot should
turn if it has lost the line. Each time the robot makes a normal turn (the if-decisions in
Fig. 7.7) the subroutine stores the turn direction in the variable LastTurn to remember
which direction the robot was turning. Later in the routine, if none of the sensors are on
(indicating we probably have lost the line), the robot will be able to head back toward the
line. Extremely sharp turns are still a problem even for this algorithm.

In this algorithm, since it is acceptable to lose the line, we can speed up the robot’s progress
by moving it forward 2 pixels at a time. While the robot is still over the line it will turn only
1� at a time to stay on it, but if the line is lost, the robot will take a 3� turns to help it get
back on course. Notice that these choices for how much to move or turn are somewhat arbi-
trary. With a little experimentation, you can determine the optimum values for your situa-
tion. This reminds us again of the advantage of using a simulation. With RobotBASIC you
can change the values and see how the robot responds to your changes very quickly. 

7.3.4 VERY SHARP TURNS

The routine in Fig. 7.6 stays on the line nicely and even handles 90� turns. However, if
the line turns much more than 90�, the robot can still lose the line. There are many ways
to solve this problem. Figure 7.8 shows a potential solution. 

FollowLine:
  while true 
    if rSense() & 1
      rTurn 1 
      LastTurn = 1 //remember which direction we WERE turning 
    endif 
    if rSense() & 4 
      rTurn -1 
      LastTurn = -1 // remember which direction we WERE turning 
    endif 
    rForward 2  // since we don't care if we lose the line, 
                // move forward twice 
    if rSense()=0
      rTurn 3*LastTurn // if we lose the line make a BIG
    endif              // turn back towards it 
  wend 
Return

FIGURE 7.7 This routine lets the robot find the line after it has lost it in a turn.
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The principle is that when one of the outside sensors and the middle sensor are on
simultaneously, the robot assumes that the line must be making a sharp turn. When this
situation is detected, the robot moves forward so that its center is near the point where
the line turns. The robot then turns until its outside sensor finds the line again. Having
done all this, the routine proceeds as before with the while-loops keeping the robot on
the line in the same manner as in Fig. 7.6.

When you run the program you will see that the new algorithm does in fact handle very
sharp turns. You will also see that this new turning behavior happens even on moderately
sharp turns, making the robot correctly follow more complex lines. However, the robot’s
movement is now somewhat erratic which may not be acceptable in some situations.

There are many factors that can cause an algorithm to fail. The above algorithm, for exam-
ple, will not work properly if the line width is reduced from 4 to 3 pixels. Any algorithm is
only a potential solution until it has been thoroughly tested in a variety of expected environ-
ments. A robot’s ability to perform properly depends on the programmer’s ability to predict
the situations the robot is likely to face. Subsequent chapters will explore this idea further.

7.4 Random Roaming with 
Line-Following (Racetrack)
In the previous sections we assumed that the robot is already over the line before starting
the line-following procedure. What if the robot is not over the line? You can test for such a
situation by commenting out the rForward 10 statement in the MainProgram in Fig. 7.1a.

FollowLine:
  while true 
    rForward 1 
    if rSense() = 3 
      rForward 20   //move the centre over the corner 
      while rSense() = 0
        rTurn 1    //turn back to the line 
      wend 
    endif 
    if rSense() = 6 
      rForward 20   //move the centre over the corner 
      while rSense() = 0 
        rTurn -1   //turn back to the line 
      wend 
    endif 
    //-- reposition over the line 
    while rSense() & 1 
      rTurn 1 
    wend 
    while rSense() & 4 
      rturn -1 
    wend 
  wend 
Return

FIGURE 7.8 This routine deals with sharp turns in a unique way, allowing it to
not only handle very sharp turns, but also acquire the line if it finds it while
roaming randomly.
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A better algorithm would allow the robot to roam around until it finds the line and then com-
mence the line-following routine. In this section we are going to combine random roaming
as you have seen in Chap. 5 with the line following algorithm developed in Fig. 7.7. 

The requirement is to have the robot roam around until it encounters the line.
Once it encounters the line it will acquire the line and follow it. The random-roaming
algorithm developed in Chap. 5 (Fig. 5.3) will be modified slightly to allow for check-
ing if a line is being sensed and stop roaming when it is. This way the robot can be
placed anywhere and it will roam around until it encounters the line after which it starts
following the line.

The new program in Fig. 7.9 is a complete program except that it does not have the
line-following subroutine (add one of your choice from those previously discussed). It is a
modification of the base program in Fig. 7.1a. The changes are as follows:

MainProgram:
  gosub DrawLine 
  goSub InitializeRobot 
  goSub RoamAround 
  goSub FollowLine 
End
//=============================================================
InitializeRobot:
  repeat 
     readmouse X,Y,b 
  until b = 1 
  rLocate  X,Y //locate the robot where the user clicked the mouse 
  while b = 1 
     readmouse X,Y,b 
     rTurn 1 //turn the robot while the mouse is being clicked 
     delay 50 
  wend 
  rInvisible Green   //-- Green is a line not an object 
Return
//=============================================================
RoamAround:
 while True
   // move forward until an object is found 
   while (rFeel( )=0) and (rBumper( )=0) and !rSense() 
      rForward 1 
   wend 
   if rSense() then Break 
   // turn 180 degrees plus or minus 30 degrees 
   rTurn 150 + random (60) 
 wend 
Return
//=============================================================

//=============================================================

DrawLine:
  linewidth 4 
  setcolor Green 
  Data Coord;-257, 158,  492, 166,  591, 249,  616, 401 
  Data Coord; 565, 506,  345, 515,  257, 364,  118, 413 
  Data Coord;  62, 243,  185, 217,  256, 157 
  MPolygon Coord 
return

FIGURE 7.9 Roaming around to acquire the line then follow it. 
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• In the MainProgram a line is added just before calling the FollowLine, to call the sub-
routine RoamAround, and the line that caused the robot to move forward 10 pixels is
removed.

• The InitializeRobot subroutine has been changed to allow the user of the program to
place the robot anywhere and give it an initial heading by using the mouse. This allows
for good testing of the roaming and line acquisition. 

• A new subroutine RoamAround has been added to do the work of roaming.
• The LineFollow subroutine is exactly the same as the one in Fig. 7.8 and is not repeated

here. You will need to incorporate Fig. 7.8 (or another from the ones developed earlier)
with Fig. 7.9 to make the program work.

• The DrawLine subroutine is modified to draw using the mPolygon command. This is
a much more compact way of drawing lines and shapes on the screen. We will discuss
this in detail later.

7.4.1 THE ROAMAROUND SUBROUTINE

The RoamAround subroutine is very similar to the one given in Fig. 5.3 of Chap. 5. The
only change is an added check to see if any line sensors are on. If there are any active
line sensors, the roaming is abandoned by using the Break statement to break out of
the while-loop. This of course causes the Return statement to be executed, which
causes the subroutine to return back to the main program, which then calls the FollowLine
subroutine.

7.4.2 THE InitializeRobot SUBROUTINE

The InitializeRobot subroutine allows the user to place the robot at any position on the
screen and to give it an initial heading. 

The Repeat-Until loop keeps tracking the mouse until the user presses the left button
(b�1). The robot is then placed at the position indicated with the default heading of
North. If the user keeps the left mouse button clicked the while-loop will keep rotating
the robot as long as the button is pressed. The Delay 50 statement is necessary to avoid
turning the robot too rapidly for accurate control. Finally the rInvisible command is
used to set the color of the line as a nonobstacle.

7.4.3 THE Data STATEMENT AND mPolygon COMMAND

The original DrawLine subroutine of Fig. 7.1a used a series of LineTo statements fol-
lowing a GotoXY statement to draw the desired line. This works, but the program can
become quite long if we have a substantial shape with many points. 

The RobotBASIC command, mPolygon can draw any number of consecutive lines in
one command. This makes specifying the points compact and the execution is much
faster than the LineTo-method. We are going to use this construct to draw a racetrack
for our robot to follow. (Refer to Sec. C.7 for all the commands used below. Also refer to
Sec. B.7.4 for more information about arrays.) 



86 DEVELOPING A TOOLBOX OF BEHAVIORS

To use mPolygon you have to create a one-dimensional array that contains the coor-
dinates of the points that will form the lines to be drawn. You do this in RobotBASIC with
a series of Data statements. The Data command creates an array and puts the data that
follows it into successive elements of the array. An array is a collection of data elements.
Let’s say we have five numbers that we want to use in a program. We could use five dif-
ferent variable names in this manner:

Num_1 = 9
Num_2 = 8
Etc., etc.

This can become quite tedious if we have a lot of numbers to specify. Also later on in
the program it can be quite hard to refer to the numbers since each has a distinct name.
A better way to do all this is:

Data Nums; 9,8, etc., etc.

Nums is the name of the array (of course, you can use any name you want here). The
semicolon (;) is necessary after the name of the array. The comma (,) is necessary to sep-
arate the various data elements. You can have as many elements as you desire. If the data
is too long to fit on one line you can have as many Data statements as you need on as
many lines as you need. So long as they all have the same array name the elements will
be put in the same array.

Later on in the program you can refer to the nth element by saying Nums[n-1]. The
reason you use n-1 and not n is because the counting of element numbers starts at 0 not
at 1. So the first element is element number 0, the second element is element number 1
and so on. So the nth element would be element number n-1.

For an example, let’s convert the data in the DrawLine subroutine of Fig. 7.1 to an
array. We would use the statements you see in Fig. 7.10. This is much more efficient
than before. 

The for-loop draws the line, but instead of using many LineTo statements we now
use only one inside the loop to draw the line. The function MaxDim() is used to find out
the number of elements in the array. Of course we could have counted these by hand and

DrawLine:
  Data Points; 170, 71, 160, 72, 145, 80, 140, 90, 130,100 
  Data Points; 125,110, 120,140, 130,200, 140,250, 130,270 
  Data Points; 145,300, 200,350, 300,325, 450,375, 450,450 
  Data Points; 600,450, 600,400, 650,200, 500,350 
  LineWidth 4 
  SetColor Green 
  GotoXY Points[0],Points[1] 
  for I = 2 to MaxDim(Points,1)-1 Step 2 
    LineTo Points[I],Points[I+1] 
  next 
Return

FIGURE 7.10 A better line drawing method.
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DrawLine:
  Data Points;-170, 71, 160, 72, 145, 80, 140, 90, 130,100 
  Data Points; 125,110, 120,140, 130,200, 140,250, 130,270 
  Data Points; 145,300, 200,350, 300,325, 450,375, 450,450 
  Data Points; 600,450, 600,400, 650,200, 500,350 
  LineWidth 4 
  SetColor Green 
  mPolygon Points 
Return

FIGURE 7.11 Using mPolygon to draw polygons.

put the number (38) instead of using the function. The MaxDim() function eliminates the
inconvenience of having to recount every time we add or remove points.

You might be wondering why the loop count started at 2 not 1. This is because we used
the first pair of elements to GotoXY to the start of the line. Also notice the use of Step 2
in the for-loop. This is because the elements are in pairs of point coordinates (x, y). Notice
the count goes up to one less than the number of elements. This is (as discussed above)
because the element number counting starts at 0 not 1. Put the subroutine in Fig. 7.10
in place of the DrawLine subroutine in the base program of Fig. 7.1a and verify that it
performs the same action. The routine is now only 12 lines, much smaller than the orig-
inal 23-line program. 

We can do even more saving. In Fig. 7.11 there is no for-loop to draw the lines, no
GotoXY or LineTo commands. There is only one command after defining the data,
mPolygon. This one command does the same action as the code in Fig. 7.10. Actually,
this command does a lot more; see Sec. C.7 for details. Try this new subroutine by placing
it into the base program of Fig. 7.1a in place of the old DrawLine subroutine.

Notice that the first data element in the routine of Fig. 7.11. is now a negative number.
This is to designate it as a GotoXY point not a LineTo point for the purposes of the
mPolygon command. Read all about this in Sec. C.7.

Now that you are familiar with the mPolygon command, refer back to Fig. 7.9 to see
how it is utilized there.

7.5 Summary
In this chapter you have:

� Been introduced to several algorithms for following a line.
� Seen how proper interpretation of the sensory data can improve the robot’s perform-

ance while carrying out complex tasks.
� Learned how arrays, Data, and mPolygon can be used to draw more efficiently. 
� Seen how an array is a more efficient way to store and manipulate data.
� Learned that some algorithms may work properly under certain environmental condi-

tions but fail if these conditions are modified. 

Now, try to do the exercises in the next section.
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7.6 Exercises
1. Run the programs in this chapter to see how they perform. Add debugging statements

to help analyze the robot’s behavior, and find out why some of the algorithms fail on
sharp turns.

2. Try to determine the optimum values for the rForward and rTurn commands
(as discussed in Sec. 7.3) for the routine in Fig. 7.7.

3. Choose your favorite algorithm from this chapter (or develop one of your own) and
combine it with the DrawObjects subroutine in Fig. 5.2 of Chap. 5 so that your robot
can follow any line that the user draws.

4. The routine in Fig. 7.8 is particularly sensitive to the width of the line being followed.
It works great if the line has a width of 4 pixels. Try other line widths and explain the
behavior that occurs. Check to see if the line width affects any of the other algorithms
in this chapter.

5. Modify the line-following algorithm of your choice so that the robot will check for
objects that might block its path. When one is found, the robot should turn 180° and
follow the line in the reverse direction. Try out the algorithm you develop with obstacles
on the line.

6. The line following algorithm given in Fig. 7.9 works most of the time but it does not
guarantee that the robot will keep going around the racetrack in the same direction.
The way the algorithm works may cause the robot to back track. Can you write a new
algorithm to prevent this?

7. The new main program in Fig. 7.9 calls RoamAround then calls FollowLine. If
FollowLine ever finishes as in Fig. 7.5, then the main program will go to the next line,
which is End. Convert the main program so that it will not end, but keep roaming then
following a line then roaming and so on endlessly.

HINT: Use a while-loop.

HINT: Some memory of the direction of travel may be necessary.
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C H A P T E R8
FOLLOWING A WALL

There are occasions when it may become necessary for the robot to follow the contour
of an object:

➢ If a robot encounters an object while moving along an intended path, it might go around
the object by navigating around the perimeter of the object.

➢ A robot that delivers mail in an office environment, for example, might follow a wall
down a hallway, visiting each office in turn to deposit its cargo and collect new mail. 

➢ A strategy for solving a maze of corridors is to keep following the walls around in one
direction (left or right).

In this chapter you will learn various strategies for enabling the robot to follow the perime-
ter of an object while staying close to it but not crashing into it or moving too far away.

8.1 Constructing a Wall
Before we can examine the algorithms we will need a relatively complex contour with which
to test our strategies. Also we will need a base program, which we will use throughout with
only a few changes to accommodate the various algorithms.

The robot will start by moving forward until it encounters an obstacle. When it
encounters an obstacle the robot will abandon the forward-moving behavior and start
the wall-following behavior. 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Figure 8.1 shows a template with a main program and three subroutines. The main
program calls the subroutines in order as they become needed and locates the robot on
the screen. The line that sets the variable TurnDir will be needed in later sections and will
be discussed there. We set the list of invisible colors and put the pen down. We put the
pen down in order to leave a trail behind the robot while it is following the wall. This helps
in observing the robot’s behavior and gauging the algorithms’ effectiveness (or lack thereof),
as you will notice later. You have seen the pen feature in Chap. 4 and will learn more about
it in Chaps. 10 and 11 (see Sec. C.9 for more details).

The first color on the list of invisible colors will be used by the pen to draw when it is
lowered since no color was specified when the rPen command was issued. Similarly the
second color will be the default color used by the rDFeel() function. We will use
rDFeel() later in the chapter.

The subroutine DrawWall does exactly that using mPolygon and the array Wall
created by the series of Data statements, as in Chap. 7.

The subroutine RoamAround makes the robot move forward until it encounters an
obstacle. When the robot encounters an obstacle the routine is terminated, which causes
the program flow to go back to the main program, which then starts FollowWall. This
subroutine is left empty for now. We will develop various wall following algorithms that
will be substitutions for this routine.

MainProgram:
   gosub DrawWall 
   rLocate 100,300,50 
   rInvisible Cyan,Red 
   rPen Down 
   gosub RoamAround 
   TurnDir = -1 
   gosub FollowWall 
End
//==========================================================
DrawWall:
    ClearScr 
    LineWidth 4
    Data Wall;-161, 177,  220, 124,  375, 155,  485, 275 
    Data Wall; 624, 300,  668, 370,  517, 412,  499, 320 
    Data Wall; 499, 321,  389, 387,  361, 311,  369, 283 
    Data Wall; 348, 235,  334, 275,  318, 223,  251, 319 
    Data Wall; 161, 177,  247,-193 
    MPolygon Wall,Blue 
Return
//==========================================================
RoamAround:
  while not(rBumper()&4) 
    rForward 1 
  wend 
Return
//==========================================================
FollowWall:
   //we will develop this later 
Return
//==========================================================

FIGURE 8.1 This code draws a wall for the robot to follow and starts moving it
forward.
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8.2 A Basic Algorithm
In order to understand how the robot can follow a wall, imagine that you are blindfolded
and are asked to stay close to a wall as you follow it to a desired destination. You would
probably put out one hand (your right hand if the wall was on your right) to help you know
that the wall is still there. As the distance between you and the wall becomes larger your
hand will eventually stop touching the wall. You would then need to turn to your right and
move forward to get closer to the wall again. If you find yourself getting closer to the wall
you would have to bend your arm. To maintain your arm stretched out you will need to
turn away from the wall to avoid running into it. 

Figure 8.2 shows one method for telling the robot how to achieve the above logic.
Replace the FollowWall subroutine of Fig. 8.1 with the one in Fig. 8.2.

The outer while-loop makes the robot follow the wall forever. The inner while-
loop turns the robot away from the wall as long as either of the infrared sensors on the
right side of the robot can detect the wall. The robot then moves forward and turns back
toward the wall.

8.2.1 PROBLEMS WITH THE BASIC ALGORITHM

There are two shortcomings with this algorithm. If you look at Fig. 8.3 you will see both
of them. The first problem is that the robot tends to move in arcs around the wall rather
than following it in a parallel line. The second problem is that the robot crashes into the
first hard turn it encounters. 

Let us analyze why the logic failed. However, before we can do this let’s observe the
infrared sensors while the algorithm is running. If you replace the rFeel() function with
the rDFeel() function you will be able to observe the infrared beams while the robot is
moving. Since no color is specified the second color on the invisible colors list (red) will
be used to display the infrared beams [read about rDFeel() in Sec. C.9].

Observing the infrared beams is a great help in analyzing what the robot sees, and
can give real insight into why it fails in situations you think should work. Combining
rDFeel() with Debug statements can help you figure out many complicated and puz-
zling situations.

You will notice that the robot is moving in arcs due to the way infrared beams are tested.
We are testing for either or both of the right beams [rFeel() & 3, 3 = 00011 in binary].
This means that the robot will turn away from the wall until the right-hand beam is not

FollowWall:
  while true 
     // anything on right makes you turn left 
     while rFeel() & 3 
       rTurn -1 
     wend 
     rForward 1 
     rTurn 1 
  wend 
Return

FIGURE 8.2 This code is a basic algorithm for following a wall.
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sensing the wall, which is almost 90�. The robot then moves forward and turns. This for-
warding and turning is the reason we get the arcs. The robot will move in an arc until it
encounters the wall again and turn away 90� and so on.

The reason for the crash is that the 90� and 45� right sensors did not sense the wall at
the angle in the wall you can see in Fig. 8.3. This means that the robot will continue for-
warding. Unfortunately there is no way for the robot to know that there is still part of the
wall ahead and thus will crash into it.

8.2.2 IMPROVING THE ALGORITHM

To prevent the robot from turning too far away from the wall we will ignore the 90� sensor.
Also to give the robot the ability to see ahead of it we will test the front sensor. So instead
of testing for rFeel() & 3 we will test for rFeel() & 6. Replace the value 3 with 6
(binary 00110) in Fig. 8.2 and run the program again. 

As you can see from Fig. 8.4, the robot does indeed follow the wall in a straight line.
However, if you look closely, you will notice that the robot still tends to loop around sharp
corners. This happens because the robot cannot turn fast enough to follow the sharp turn
because it only turns 1� for every 1 pixel forward move. We will solve this problem shortly,
but first let’s examine a more critical problem.

FIGURE 8.3 Simple algorithm fails.
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The robot does not crash at the first sharp bend in the wall but it does crash later on.
The front infrared sensor failed to detect the sharp protrusion in the wall. If you use
rDFeel() you will see that it just misses detecting the sharp v in the wall. So, even though
testing the front sensor helped, it still fails to catch all situations. 

You already know how to solve this problem from previous chapters. If you test for the
bumper sensor along with the front sensor you should be able to catch most of the awk-
ward situations.

8.2.3 USING THE BUMPERS

We will show how to use the bumpers with the infrared sensors to follow a wall, but before
we give the new code, let us consider what modifications are needed to change the behav-
ior from following a wall on the right to following it on the left.

First we will need to change the sensors used. Second, we need to turn in the oppo-
site direction. If the wall is too close to the left we turn right and we turn left if the robot
is too far from the wall. 

However, we want to be able to change between turning left or right easily without chang-
ing more than a variable in the program. This is why we have the line TurnDir = -1 in

FIGURE 8.4 An improved simple algorithm.
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FollowWall:
  if TurnDir > 0
     FN = 6 
  else 
     FN = 12 
  endif 
  while true 
     while (rFeel()&FN) or (rBumper()&4) 
       rTurn -TurnDir 
     wend 
     rForward 1 
     rTurn TurnDir 
  wend 
Return

FIGURE 8.5 This program turns away if the wall is seen by either the infrared
sensor or the bumper sensor.

the main program in Fig. 8.1. This variable acts as a switch. If it is �1 the robot will follow
the wall to the left and if it is 1 the robot will follow the wall to the right.

We will also have to add some code to allow for this switch. Figure 8.5 shows the algo-
rithm that achieves all this. Notice that we now check to see if the front bumper is closed
as well as checking for the infrared sensors. Also notice how we set the variable FN to be
used in the rFeel() & FN statement. Remember if you are following the wall to the right
then the right 45� and front infrared sensors need to be considered (i.e., 00110 � 6), and
if you follow the wall to the left then the left 45� and front sensors are to be tested (i.e.,
01100 � 12).

Run the program and try changing TurnDir to 1 and see how the robot now follows
the wall to the right instead of to the left.

The program in Fig. 8.5 performs reasonably well. As mentioned earlier though, the
robot still arcs far away from the wall when it rounds a sharp corner. The algorithm can
still be improved further.

8.3 Staying Close on Sharp Corners
The reason the robot arcs too far away from the wall on sharp corners is due to the wall
angling away from the robot at a sharp angle, and since the robot only turns 1� as it moves
forward 1 pixel, it will not be able to turn fast enough to catch up with the sharply turn-
ing wall. 

8.3.1 INITIAL ALGORITHM

The algorithm in Fig. 8.6 is a first attempt at solving this problem. The code makes the
robot turn more degrees while it is forwarding. This needs to be done only if the wall is
turning sharply away. If we do it all the time the robot will go back to moving in arcs. We
need a way for determining if the wall is turning away from the robot too sharply. 

This is exactly what Lines 13 to 21 in Fig. 8.6 do. We test to see if none of the infrared
sensors are seeing the wall or if only the 90� sensor in the direction of the turn is sensing
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the wall. This is the purpose of the variable SFN, it is set to indicate which 90� sensor
needs to be tested depending on the direction of the turn (Lines 04 and 07). Also notice
in Line 18 the robot turns 5� at a time as set by the variable TurnAmount on Line 01
(you can experiment with this value).

If you test this new algorithm turning to the left (TurnDir � �1) the robot will work
and turn around the corners a little tighter than before. However, if you try the program
turning to the right (TurnDir = 1) the robot will stall.

8.3.2 FINDING THE PROBLEM

To determine why the robot stalls we will use the debugging feature in RobotBASIC. Add
the following statement to Fig. 8.6 immediately before Line 13.

Debug rFeel()

Run the program and let the robot go to the point where it stalls. Press the button
on the terminal screen when the robot stalls. Step the program a step at a time and note
the values of the sensors at the stall point. Notice that the value returned by rFeel() is
5 (00101) meaning that the front and right sensors are triggered, but not the 45� sensor.

Since the code in Fig. 8.6 uses the 45� sensor to decide when to turn away from the
wall it is easy to see why it fails to turn. The question now becomes “Why doesn’t the
program in Fig. 8.5 also fail?” Closer examination of the program in Fig. 8.5 provides
the answer. In Fig. 8.5 the robot always moves forward 1 pixel each time it goes through
the outer while-loop. This forward movement causes the 45� sensor to trigger and the
robot turns as desired.

00 FollowWall:
01   TurnAmount = 5 
02   if TurnDir > 0
03      FN = 6 
04      SFN = 1 
05   else 
06     FN  = 12 
07     SFN = 16 
08   endif 
09   while true 
10     while (rFeel() & FN) or (rBumper() &4) 
11       rTurn -TurnDir 
12     wend 
13     if rFeel()=SFN or rFeel()=0
14       // too far from wall or no wall 
15       rForward 1  // forward always to prevent stall 
16       while not rFeel()
17           // turn back quickly to find wall again 
18           rTurn TurnAmount*TurnDir 
19           rForward 1 
20       wend 
21     endif 
22   wend 
23 Return

FIGURE 8.6 Staying close on sharp corners.
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8.3.3 SOLVING THE PROBLEM

In the program of Fig. 8.6 the robot does not move forward because neither of the
rForward commands will execute when rFeel() returns a value of 5. To solve the prob-
lem we need to remove Line 15 and place it before Line 13. This ensures that forward-
ing always occurs, just as before. 

This is exactly the kind of error that creeps into a program as you develop an algo-
rithm. It is important that you keep this fact in mind when debugging your programs. In
fact, let’s examine the program a little further.

Once we move the rForward statement, it becomes obvious that the if-statement is
deciding when the while-loop will execute. The while-loop, however, already makes
its own decision as to whether to loop or not and the decision used in our example is more
restrictive than the one in the if-statement. This implies that the if-statement could have
only checked for rFeel()=0. Since rFeel()=0 is exactly the same as NOT rFeel(),
it becomes apparent that the if-statement and its associated endif (Lines 13 and 21) are
not needed and should be eliminated. Additionally, since the if-statement is removed there
will no longer be a need for the variable SFN, so Lines 4 and 7 can also be removed. You
should analyze the above discussion carefully because understanding it can help you
become a better programmer.

As the tasks you want a robot to achieve become progressively more complex, situa-
tions will arise that are hard to predict. Without the debugging capabilities of a simulator
many of these situations are nearly impossible to find. Often many programmers randomly
change lines of code trying to resolve problems that have no apparent logical reasons for
why they occur. This is surely not a good strategy for problem solving. The development
cycle using a real robot is extremely unavailing for solving intricate problems. Without seeing
the environment from the point of view of the robot it becomes very difficult to under-
stand its behavior and program against problematic situations.

With a real-world robot it is often hard to test algorithms comprehensively due to the
difficulty of constructing various environments that may cause problems. A robot that seems
to work well in the limited testing environments will often fail when it is faced with an unan-
ticipated situation. With a simulator you can construct random environments. You can con-
struct numerous varieties of environments. You can test the robot inside these environments
for many hours or days. This helps ensure that your algorithms have been well exercised
and the possibilities of failure are reduced, but as we have seen above, the debugger
cannot substitute for thorough reasoning. 

8.4 A Different Approach
All of the algorithms so far have used the infrared sensors as the primary means of feel-
ing for the wall. While these sensors are very effective and may be the only type of sen-
sors available in a real-robot situation, they are lacking in two ways. First they leave gaps
that can cause problems. You can use more sensors, placed closer together, but this can
get expensive. The second problem is that the range of the sensors is not easily adjustable
and you cannot control how far the robot stays away from the wall. You can adjust the
power (or even the frequency in some cases) applied to the infrared emitters to make the
detectors sense shorter or longer distances, but this requires more complex electronics.
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Using a ranging sensor instead of infrared sensors can eliminate both of the above short-
comings. The rRange() function in RobotBASIC can be used in two ways. If you use
rRange() without an argument, it assumes you want to measure the distance to objects
directly in front of the robot. If you give rRange() an angle, however, it will measure the
distance to objects at the angle you specify.

Figure 8.7 shows how the measurement of the distance is in reference to the front of
the robot and how the angle pivots around the front of the robot. You can give the func-
tion any angle from 	90� to �90�. The distance to an object is relative to the front of the
robot along the direction given.

In real life such a sensor can be easily built by mounting a distance-measuring device
on a stepper-motor (or servo-motor) turret so that the software can turn the ranging hard-
ware without turning the entire robot. However, if you are going to measure only one or
two angles then instead of a motor to turn the single sensor, it might be cheaper and more
convenient to just mount one or two sensors at the angles required. If you need to adjust
the sensors to tweak the robot’s behavior just turn them by hand to the proper angles.
The advantage of using the range sensor is that you can make the robot stay at a speci-
fied distance from the wall. Also you can use only one sensor and you do not need to worry
about gaps since the ranger can be turned to any angle needed. In the algorithm devel-
oped below only three angles are necessary. It is a lot easier to maintain the robot paral-
lel to the wall using a ranger than using infrared sensors.

The first action of the algorithm in Fig. 8.8 is to set some parameters that define the
behavior and response of the robot. These parameters are crucial and you should exper-
iment with different values to see how the robot may stay closer or further away from the
wall. If the robot gets too close to the wall, however, it may still run the risk of crashing
into real sharp corners despite the use of the rBumper() sensors. Also, when you get
too close to the wall the robot seems to rely more on its bumpers to avoid the wall. This
means that the robot would be scraping along the wall.

Lines 6 to 14 ensure that the robot is angled parallel to the wall in the direction as
defined by the variable TurnDir. The robot will have the wall to its left (TurnDir � �1)
or to its right (TurnDir � 1). Also, Lines 12 to 14 ensure that the ranger will be sensing
the wall at the required value (RangeLimit).

We will follow a different strategy around corners than we have done before. We will
conclude that the robot is at a corner if the ranger returns a value greater than a certain

rRange(45)

rRange(90)

rRange(0)rRange(−45)

rRange(−90)

FIGURE 8.7 rRange (Angle).
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limit set by NoWallLimit (Line 16). If it is on a corner the robot will forward until it is clear
of the corner (Lines 17–20) then turn 90� toward the wall (Line 21) then forward half a
robot diameter (Lines 22–25). This ensures that the ranger is sensing the wall again. All
the forwarding will only be done so long as there is no obstacle in the way. This allows
for awkwardly turning walls (we shall see this later).

Lines 27 to 29 check for a wall ahead of the robot. Lines 30 to 32 turn the robot away
from the wall if it is getting too close. Lines 33 to 35 turn the robot towards the wall if it
is getting too far. Lines 36 to 40 forward the robot if there is no obstruction. If there is
an obstruction we exit out of the inner while-loop so as to renegotiate the wall as if
the robot was approaching it anew.

01 FollowWall:
02   RangeLimit  = 30 
03   NoWallLimit = 35 
04   RangerAngle = TurnDir*90 
05   while True 
06      while rBumper()&4 
07         rTurn -TurnDir 
08      wend 
09      rTurn -2*TurnDir 
10      rForward 1 
12      while rRange(RangerAngle) > RangeLimit 
13         rTurn TurnDir 
14      wend 
15      while true 
16        if rRange(RangerAngle) >= NoWallLimit 
17           for WF_I = 1 to 45 
18              if rBumper()&4 then break 
19              rForward 1 
20           next 
21           rTurn TurnDir*90
22           for WF_I = 1 to 20 
23              if rBumper()&4 then break 
24              rForward 1 
25           next 
26        endif 
27        while rRange() <=5 
28          rTurn TurnDir 
29        wend 
30        while rRange(RangerAngle) < RangeLimit 
31          rTurn -TurnDir 
32        wend 
33        while rRange(RangerAngle) > RangeLimit 
34          rTurn TurnDir 
35        wend 
36        if not (rBumper()&4) 
37          rForward 1 
38        else 
39          Break 
40        endif 
41      wend 
42   wend 
43 Return

FIGURE 8.8 This program follows a wall using only the rRange() sensor.
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This algorithm will work with ease around the example wall considered so far. However,
we shall test this algorithm by giving it a horrendously difficult environment.

If you look at Fig. 8.9, you will see various types of corners that we would like to con-
sider for rigorous testing of the algorithm. Also there will be various combinations of tight
valleys and protrusions to task the sensing and logic of the robot.

The replacement DrawWall subroutine given in Fig. 8.10 draws a very complex envi-
ronment that should be used to test any wall following algorithm to see if it can cope with
all the baffling situations that the robot may encounter.

Use this new wall with all the algorithms we have developed and see which ones per-
form best. Do not forget to try both right and left following. Some algorithms may be suc-
cessful when following left but not when following right or vice versa.

Figure 8.11 shows the result of running the algorithm in Fig. 8.8 with the new wall.
Notice that the robot stays close to the walls and visits all tight spots that can accommo-
date the size of the robot. Also note how well it stays close to sharp corners.

Try the algorithm in Fig. 8.8 with simple objects like circles, rectangles, and triangles.
Vary the parameters and notice how easy it can be for the robot to follow these simple
contours very closely when there are no hard corners to negotiate.

FIGURE 8.9 Various corner types. The arrows indicate the robot’s travel
direction.

DrawWall:
    ClearScr 
    LineWidth 2 
    Data Wall;-666, 555,  664, 493,  705, 490,  702, 461 
    Data Wall; 667, 462,  668, 431,  701, 428,  699, 400 
    Data Wall; 631, 402,  630, 358,  686, 359,  683, 289 
    Data Wall; 651, 291,  644, 231,  693, 228,  693, 169 
    Data Wall; 583, 166,  665, 101,  666,  35,  547,  30 
    Data Wall; 461,  85,  466, 166,  404, 163,  383, 125 
    Data Wall; 368, 162,  332, 159,  316, 205,  296, 160 
    Data Wall; 266, 159,  222,  65,  167, 147,  101, 146 
    Data Wall; 146, 254,   56, 211,   60, 316,   56, 366 
    Data Wall; 202, 369,  202, 370,  203, 387,  202, 388 
    Data Wall; 121, 385,  122, 402,  169, 402,  170, 411 
    Data Wall; 125, 414,  125, 440,  255, 442,  317, 337 
    Data Wall; 308, 434,  395, 401,  401, 310,  464, 315 
    Data Wall; 457, 408,  456, 408,  456, 409,  286, 482 
    Data Wall; 127, 475,  135, 551,  270, 558,  359, 520 
    Data Wall; 391, 558,  479, 485,  524, 489,  540, 559 
    Data Wall; 666, 556, -734, 580,   87, 570,   33, 371 
    Data Wall;  32, 178,  185,  40,  517,  10,  691,  17 
    Data Wall; 718, 162,  720, 392,  736, 579,  313, -95 
    MPolygon Wall,Blue 
Return

FIGURE 8.10 A hard wall to follow.
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8.5 Summary
In this chapter you have:

� Learned how to make the robot follow a wall using a variety of algorithms and sensors.
� Seen the process of developing and debugging an algorithm.
� Discovered how unpredictable situations can arise and be difficult to analyze.
� Learned that programming a robot requires not only an understanding of the sensors

but also the ability to deal with them using both logical and bitwise operators.
� Learned about the extended rRange() function.
� Seen further uses for arrays, mPolygon, and Data commands.

Now, try to do the exercises in the next section.

FIGURE 8.11 Hard wall-following with ranging sensor.
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8.6 Exercises
1. Run the subroutines in this chapter to see how they perform. Try adding debugging

statements to help you analyze the robot’s behavior. 
2. Try all the algorithms in this chapter with the wall given in Fig. 8.10. Can you deter-

mine why some algorithms fail? If an algorithm does not fail can you see why it may
be considered better or worse than another that also did not fail?

3. In the algorithms of Figs. 8.8 and 8.6 (modified as discussed) try changing the param-
eters to see how they affect the robot’s behavior. In Fig. 8.8 how would you make the
robot stay closer to the wall? What would be the minimum number to give RangeLimit?
Why?

4. Draw circles, rectangles, and triangles and then test the algorithms with these types
of simple objects. Which algorithms follow the contour faithfully (i.e., the robot draws
a circle around a circle, a rectangle around a rectangle, etc.)? With the algorithm of
Fig. 8.8 you can specify exactly how far the robot will be. Try following the objects at
various distances (closer and further).

HINT: The rRange() function returns a value relative to the front. The front is in
line with the robot’s center. So an rRange(90) value of 20 will mean that the object
is almost touching the robot at its right side.
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C H A P T E R9
AVOIDING DROP OFFS

AND RESTRICTED AREAS

In previous chapters, our robot was programmed to roam anywhere it could. In this chapter
we will discuss ways of confining the robot to a certain area (or out of an area) but without

erecting walls, fences, or other barriers that protrude out of the ground. The robot should be
able to move anywhere while avoiding obstacles but should not be allowed to move out of (or
into) a specified area. There are various ways to delimit such a confinement for a robot:

➢ Draw lines around the boundary or use infrared beams, or bury an electric wire in the
ground around the perimeter, or any other means where the robot can use sensors
to know the limit has been reached and take action to stay away from the boundary.

➢ If the area is surrounded by a drop off, such as a table or the passageway of the second
floor of a house, we give the robot the ability to detect a drop off to enable it to stay
away from cliff edges.

➢ Give the robot a set of coordinates defining the prohibited/allowed areas and then have
the robot use a GPS (global positioning systems) to calculate if it is allowed to enter/exit
an area.

In this chapter we will develop some algorithms that simulate a means of confining the
robot using the standard sensors that our robot has, but we will also explore the possibil-
ities that more advanced sensors can provide.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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9.1 Good Robot
Most people are familiar with the electronic fence systems that confine dogs to a yard. A
perimeter is defined by some means (usually a radio signal) and a device on the dog’s collar
triggers some kind of pain to the dog (how cruel) that makes the dog shy away from the
perimeter effectively confining the dog to the yard and house. We are not going to be so
mean to our robot.

We will surround the desired perimeter with a red line and tell the robot not to move
beyond the line. This line simulates a buried wire carrying a very low power radio frequency
(RF) signal. A real robot would need a small radio receiver whose antenna is placed so
that it can detect the wire. The simulated robot senses the line with the rSense() function
we have explored in Chap. 7, simulating the ability to sense the RF signal. The details of
the physical mechanism are not important to developing the algorithm for the behavior.
Once the algorithm for teaching the robot the required behavior has been established, the
actual mechanism for marking the boundary can be whatever is suitable. The aim is to
explore how to make the robot recognize a boundary and stay within it.

9.1.1 AN INITIAL ALGORITHM

The program in Fig. 9.1 is an attempt at achieving the requirement discussed above. The
idea is to use rSense() to detect when the robot is approaching the boundary and then
turn away. The turning direction depends on which sensor combination is triggered:

• If the right sensor is triggered or the right and front together then turn left.
• If the left sensor is triggered or the left and front together then turn right. 
• If all the sensors or just the front one are triggered, the robot turns around. To prevent

the possibility of repeating a behavior endlessly, we will give the robot some random-
ness by turning 180� 
 30�.

Let the program run for a while. Does the robot behave?

MainProgram:
  linewidth 7 
  rectangle 50,50,650,550,red 
  rlocate 100,100,90 
  rInvisible red 
  goSub Confine 
End
//========================================================
Confine:
   while true 
      while not rSense() 
         rforward 1 
      wend 
      S = rSense() 
      if S = 4 OR S = 6 then rTurn 1 
      if S = 1 OR S = 3 then rTurn -1 
      if S = 2 OR S = 7 then rTurn 150 + random(60) 
   wend 
Return

FIGURE 9.1 The robot does not behave quite right.
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Notice the use of the line S = rSense(). This saves the sensors’ condition in the
variable S. We then use this variable to test for various situations. We could have written
each if-statement like this:

if rSense() = 4 OR rSense() = 6 then rTurn 1

There are three if-statements where the sensory data is read twice. This means that
if the style above is used, the function rSense() would be called six times. This is very
wasteful and slow. The sensory data is not changing between executing each of the if-
statements. If we save the value returned by rSense() in a variable there is no need to
call the function more than once. 

In real life the rSense() function would be implemented by the use of electronics and
some way of communicating between the electronics and the microprocessor. The action
of calling and interrogating the sensor is time consuming and battery utilization would be
higher than needed. In this manner of calling the sensor only once (since its data is not
changing), we save time and battery life. 

Notice that rSense() is used without specifying a color. This means that the first color
on the invisible colors list (red) will be redeemed as the line color for the sensors.

Notice the condition of the if-statements. We use S = 4 OR S = 6, this means that
we are checking if the left sensor is on by itself or both the left and front sensors are on
simultaneously. We cannot use S & 6 because this condition would be true if either the
left or the front sensor is on. This is not what we want. We want to turn if the left sensor
is triggered by itself or if it is triggered along with the front sensor. So the condition S = 4
OR S=6 is not the same as S & 6.

The algorithm in this program is not completely effective. The robot sometimes steps
over the line and given enough time it will eventually escape completely from the confined
area. This is due to a combination of hardware and software deficiencies.

The hardware is not sufficient for the situation, the three sensors of rSense() do not
sense the line early enough to check if the robot is approaching the line at too shallow an
angle. By the time the sensors trigger, part of the robot’s body has already passed over
the confining line.

The second problem is a software problem in combination with the hardware limita-
tion. The random turn of 180� 
 30� can cause the robot to turn in a direction that puts
the sensors away from the line but also outside the area. This is due to the body of the
robot being on top of the boundary line. When the robot turns it is possible for the front
of the robot to be outside the boundary and so the sensors would be outside the bound-
ary and unable to sense the boundary line. The problem is the robot will not know that it
is facing outside the area and since the sensors are not triggered, it will happily go for-
ward until it escapes the confinement area altogether. 

If we are willing to accept that some of the body of the robot can go over the line, so long
as the robot never escapes totally, can we adjust the algorithm to make the robot behave better?

9.1.2 IMPROVING THE ALGORITHM

We are willing to accept the robot going over the line a little but we do not want it to escape,
ever. Replace the third if-statement in the program of Fig. 9.1 with this line and run the
program to see what the new behavior is.

if S = 2 OR S = 7 then rTurn 170+random(20)
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The difference is the amount of randomness in the turn around. The turn is now
180� 
 10� instead of 30�. The reasoning is that since the sensors are 10� on either side
of the front, if we turn the robot around and keep it within this limit (10� ) of where it came
from (if it is over the line) it will still sense the line and turn back in.

Another way the same effect can be achieved is by widening the line. If you change
the number in the statement LineWidth 7 to 20 the boundary would become too wide
for the robot’s front to be outside the line when it turns the 180� 
 30�.

There is still a problem. The robot seems to spend most of its time around the perime-
ter straddling the line. This is predictable. If the turning around is almost 180� whenever
it senses the line with all or just the front sensor, then it will almost always go back to where
it came from, and if that happens to be from a long run while straddling the line until it
comes to the corner, then it will just turn around and go back to the other corner.

This is not very effective behavior. The robot should cover more of the inside area, espe-
cially if it is supposed to be doing some useful work in that area. Therefore, even though
we have solved the problem of escaping, we have not solved it in a satisfactory manner.
The algorithm needs further refinement.

There is also another problem. If the robot approaches a corner at exactly 45� to it,
then the left and right sensors would trigger together, but not the front one. rSense()would
return a value of 5. Have we handled the value 5 in our algorithm? There is no code in
the algorithm that handles this situation. What is the result of this? Since the sensors are
triggered, no forwarding can occur, and since the situation is not handled, no turning occurs
either. This means that the robot will stay where it is without turning or forwarding; it is
stalled. How should this situation be handled? Can it be included in the third if-
statement? The answer to these questions depends on what action we would like the robot
to take in the situation.

9.1.3 A BETTER ALGORITHM

The program in Fig. 9.2 solves most of the problems mentioned above, except for the
tendency of the robot to protrude outside the line limit. In the situation being simulated
this is not a problem. It is tolerable that some of the robot’s body exits the area as long
as most of it stays confined.

The algorithm in Fig. 9.2 is very acceptable in that the robot does not get stuck in a
corner, nor does it escape. The robot also covers the inside area more efficiently because
it tends to spend more time inside the area than around the periphery. 

The reason this algorithm works better than the previous one is the use of random num-
bers. The robot does not just forward, it also turns on occasion (10% of the time as set
by the variable F_RandomTurn_Percent). This causes the robot to cover more of the inside
area. Additionally when it is turning to avoid the line it turns more of an angle with an
additional random value. This makes the robot turn away from the line at a greater angle,
minimizing the possibility of approaching the line at too shallow an angle, which causes
the problem of some of the body going outside the line due to hardware limitations.

The set of constants defined at the top of the program are very important. The value
for F_RandomTurn_Percent defines what percent of time the robot will turn in addition
to forwarding. The amount of turn is defined in F_RandomTurn. The constant LineAvoidA
defines the amount the robot turns to avoid the line. In addition, a random amount is added
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to this, which is defined in LA_RandomTurn. The turn amount to avoid the line when it
is approached head on is 180� 
 an amount set by the value in TurnAroundA. Experiment
with these values to see the effect on the effectiveness of the algorithm. These numbers
can make the robot behave quite differently. 

Lines 19 to 21 determine if the robot should turn in addition to forwarding. Turning
occurs only F_RandomTurn_Percent of the time. The amount of turn is random up to
F_RandomTurn degrees.

00 //-----Constants 
01   F_RandomTurn          = 3 
02   F_RandomTurn_Percent  = 10 
03   LineAvoidA            = 3 
04   LA_RandomTurn         = 3 
05   TurnAroundA           = 60
06 //======================================================= 
07 MainProgram: 
08   linewidth 7 
09   rectangle 50,50,650,550,red 
10   rlocate 100,100,90 
11   rInvisible red 
12   GoSub Confine 
13 End 
14 //======================================================= 
15 Confine: 
16    while true 
17       while not rSense() 
18          rforward 1 
19          if random(10000) < 10000%F_RandomTurn_Percent 
20              rTurn random(F_RandomTurn) 
21          endif 
22       wend 
23       S = rSense() 
24       if S = 4 OR S = 6
25          C_Ta = (LineAvoidA+random(LA_RandomTurn)) 
26          SN = 1 
27       elseif S = 1 OR S = 3
28          C_Ta = -(LineAvoidA+random(LA_RandomTurn)) 
29          SN = 4 
30       elseif S = 2 or S = 7
31          C_Ta = 180-TurnAroundA/2+random(TurnAroundA) 
32          SN = 1 
33       elseif S = 5
34          rTurn 180-TurnAroundA/2+random(TurnAroundA)
35          continue 
36       endif 
37       for i=0 to C_Ta 
38          rTurn sign(C_Ta) 
39          if rSense()& SN
40             rTurn 180 
41             break 
42          endif 
43       next 
44    wend 
45 Return 
46 //======================================================= 

FIGURE 9.2 A better behaving robot.
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In Lines 24 to 32 the amount of turn is set in the variable C_Ta but no actual turning
occurs until later. The amount of turn is a fixed amount plus an additional random amount
as set by the variables.

On Lines 26, 29, and 32 the variable SN is set to indicate which sensor will be used to
test in Line 39 (see later for explanation). If turning to the left is to be done then the left sensor
will be used (SN � 4) and if turning to the right then the right sensor (SN � 1) will be used.

The actual turning is carried out by the for-loop (Lines 37–43). This loop turns the
robot as indicated by the variable C_Ta a degree at a time. Notice the use of the function
Sign() to make sure the turn direction is the correct one. The loop tests to see if the
sensor in the direction of the turn ever touches the line. If it does then there is a possibil-
ity of the robot’s front ending up outside the line. In this case the robot is made to turn
180� (turn around) and the loop is abandoned.

In Lines 33 to 36 the stalling situation discussed at the end of the previous section is
handled. This situation does not cause the robot’s front to turn outside the line and the
actual turning is carried out on Line 34. On Line 35 a Continue statement is used to
make the program flow go back to the top of the while-loop and avoid going into Lines
37 to 43, which are only needed in the other situations.

In the next section we will see what we can do to avoid the robot’s body protruding
outside the line as much as it does in this section.

9.2 Cliff Hanger
In the previous section we developed an acceptable algorithm that was adequate for the
situation it was designed to tackle. However, the algorithm did allow a portion of the robot’s
body to briefly move outside the confinement area. This would be unacceptable if the area
was a table for instance, or a landing on the second floor. The robot would just topple over
the moment its center of gravity went over the table. Even if its center of gravity remained
on the table, if one of its wheels goes beyond the edge of the table it would cease creat-
ing traction while the other wheel would continue doing so, which would turn the robot
toward the ledge eventually causing it to fall over the edge.

In the table top situation it would not be acceptable for the robot to have more than a
very small fraction of its body protrude over the edge of the table (never any of its wheels).
In this section we will explore how to achieve this. Obstacle avoidance will also be added
to the behavior so the robot can avoid obstacles at the same time that it is avoiding the
edge of the table or landing.

To detect an edge in a real life situation there are many sensors that can detect a
change in light intensity or color variation, which indicates that there is a change in the
surface that is being sensed. This can tell us that the floor is dropping. Such sensors
require a constant color and reflectivity surface. Another method is to have a sonar or
infrared sensor that can measure the distance to the floor. An increase in the distance
indicates that the floor is dropping away. The problem with this method is that many
of the available sensors do not measure small distances accurately, which is necessary
for this application. 

This simulation will make use of specialized ground sensors. RobotBASIC has
downward-facing color sensors accessed with the function rGroundA() that returns the
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color the sensors are sensing. With these sensors you can look at the ground around the
robot’s perimeter and see what color it is. The function enables you to create almost any
combination of sensors you wish around the perimeter of the robot. We are going to
create 5. Read about this function in Sec. C.9 before proceeding.

We are going to set up a sensor at 90� to the left, another at 45� to the left, one on
the front and one on the right at 45� and a final one at 90� to the right. We will write code
to make the sensors return a value of 0 if the sensor is seeing the table and a value of 1
if it is not (i.e., over the edge). 

It is necessary to be familiar with binary numbers and bitwise operators to appreciate
the actions of the program being developed here. Review Chaps. 3, 4, and 5 if you need
a refresher in these concepts.

As you have seen in Chap. 3, the rFeel() function returns a number where the first
five bits from the right represent the state of each of the five infrared sensors on the robot.
We are going to set up the special ground sensors to return a number in exactly the same
manner. To summarize: 

• Each sensor looks at the ground just at the perimeter of the robot and is redeemed to
be on if there is no table underneath it (returns a color not equal to the table color).

• There are five sensors 90� and 45� to the left and right and one at the front.
• The sensors are combined in one number that ranges from 0 to 31, where the most

significant bit (MSB) is 90� degrees to the left. The least significant bit (LSB) is 90� to
the right.

• The number 14 (01110) means that the sensors at the front and at 45� to the left
and right do not sense a table underneath them, while the others are still sensing
the table.

The subroutine TestSensors in the listing in Fig. 9.3 (Lines 52–59) shows how this is
achieved. Notice the use of the | (bOR) operator to create the final number. Also notice
how the for-loop creates the five sensors at the correct angle. The subroutine will set up
the variable Sensors to have the required value.

So in place of using rSense() we call the subroutine TestSensors. Then we use the
same kind of checking on the variable Sensors as described in the previous section.

To allow the sensors to work correctly we will make the table white and the floor
gray. But we will need to issue an rInvisible Gray command as you will see on
Line 12. This is due to the fact that the robot will think that the gray color is an obsta-
cle (see Sec. C.9 for a detailed discussion on the Robot color arrangement). If the gray
color is set as an invisible color the robot will not consider it an obstacle and will be
able to move into that area (dropping off the table). This way we would not be cheating
in the simulation. 

Review the program in Fig. 9.3 and run it before proceeding with the following dis-
cussion. The program’s main routine sets up the environment (SetTable), locates the
robot, sets the required color parameters, and then calls the TableRoam subroutine (Lines
17–45) which will be executed continuously due to the while-loop.

The TableRoam subroutine is not very different from the Confine subroutine in Fig. 9.2.
The action is very similar except for using Sensors [not rSense()] and the added
obstacle avoidance. The elseif-statements (Lines 32 and 36) reflect the fact that there
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01 //-----Constants 
02   TableColor            = White 
03   F_RandomTurn          = 3 
04   F_RandomTurn_Percent  = 10 
05   LineAvoidA            = 20 
06   LA_RandomTurn         = 30 
07   TurnAroundA           = 60
08 //==================================================== 
09 MainProgram: 
10   goSub SetTable 
11   rlocate 100,100,90 
12   rInvisible Gray  //---no cheating 
13   goSub TableRoam 
14 End 
15 //==================================================== 
16 //--  Roam On Table for ever 
17 TableRoam: 
18   while true 
19     goSub TestSensors 
20     S = Sensors 
21     if not S 
22       if not(rBumper() & 4)
23         //---only forward if no obstacles 
24         rForward 1 
25         if random(10000) < 10000%F_RandomTurn_Percent 
26           //--add a bit of turning for better coverage 
27           rTurn random(F_RandomTurn) 
28         endif 
29       else 
30         gosub Reverse  //--avoid obstacle 
31       endif 
32     elseif ((S & 24) AND not(S & 3))
33       //-- only left sensors and not right sensors 
34       //-- don't care about front sensor 
35       rTurn LineAvoidA+random(LA_RandomTurn) 
36     elseif ((S & 3) AND not(S & 24))
37       //-- only right sensors and not left sensors 
38       //-- don't care about front sensor 
39       rTurn -(LineAvoidA+random(LA_RandomTurn)) 
40     else 
41        //---catch all other conditions 
42        rTurn 180-TurnAroundA/2+random(TurnAroundA) 
43     endif 
44   wend 
45 Return 
50 //===================================================== 
51 //-- Creates 5 ground sensors 
52 TestSensors: 
53   Sensors = 0 
54   for i = 0 to 4 
55      if rGroundA(90-i*45) <> TableColor
56         Sensors = Sensors | (2^i) 
57      endif 
58   next 
59 Return 
60 //===================================================== 
61 //-- Makes a random reverse and turn 
62 Reverse: 

FIGURE 9.3 Effective table roaming.
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are now five sensors and thus the numbers being compared are a little different. Here is
the logic:

• Turn right to avoid the edge if either of the left sensors reports a drop off but not any
of the right sensors. We do not care about the front sensor, it can be on or off, no matter
if we still want to turn right.

• Turn left to avoid the edge if either of the right sensors reports a drop off but not any
of the left sensors. We do not care about the front sensor, it can be on or off, no matter
if we still want to turn left.

• If neither of the above conditions is true, but there are sensors that are detecting an edge
in a combination that has not been covered above, we will execute an about face. The
amount of turning will be 180� 
 an amount that is set by the parameters at the top of
the program.

If you are familiar with other programming languages, the construct used in this sub-
routine is similar to a Case statement, which we do not have in RobotBASIC but can be
easily emulated with the if-elseif-else-endif construct (see Sec. C.6 for more
details on emulating the Case construct).

The algorithm implements obstacle avoidance with rBumper(), if there are no obsta-
cles it moves forward and turns in the same manner as described in the previous section.
If there is an obstacle it calls the Reverse subroutine (Lines 62–77). This subroutine causes
the robot to backup a distance specified by a random number between 20 and 10 pixels
but only if there is no object behind it. After backing up, the robot turns a random amount
in a random direction between 45� and 90�.

63   for i = 1 to (random(10)+10)
64     //--reverse so long no object on the
65     //--back and only max 20 pixels 
66     if rBumper() & 1 then break 
68     rForward -1 
69   next
70   //-- urn min 45t  degrees max 90 
71   //-- in a random direction 
72   if random(1000) >= 500 
73     rTurn 90-random(45) 
74   else 
75     rTurn -90+random(45) 
76   endif 
77 Return
78 //==================================================== 
79 //--Sets the table environment
80 SetTable: 
81   rectangle 0,0,800,600,gray,gray 
82   rectangle 50,50,650,550,TableColor,TableColor 
83   circle 200,200,250,250,black,black 
84   circle 400,400,450,450,blue,blue 
85   rectangle 250,400,300,480,magenta,magenta 
86   rectangle 450,300,480,410,cyan,cyan 
87 Return 

FIGURE 9.3 (Continued)
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Run the program and notice how the robot never protrudes over the table edge. It covers
the table quite effectively, roaming around almost everywhere while avoiding obstacles in
a well behaved manner. Remember not to type the line numbers.

9.3 GPS Confinement
In this section we will explore a method that uses the GPS feature on the robot to con-
fine it to a particular area. Some algebra will be necessary to develop this algorithm. The
principles are not complex and all the calculations will be explained in detail.

The GPS system on the simulated robot is accurate to a pixel. Assuming that the robot
is 40 pixels in diameter, simulating a real robot of about 1 ft in diameter, then one pixel
would be 0.6 in. This means that the simulated GPS system is far more accurate than is
possible with a real world GPS. The resolution of a GPS affects the accuracy with which
an algorithm can control a robot. The algorithm developed below is not affected greatly
by this fact, however, there are solutions for the problem.

The U.S. GPS system relies on satellites in geosynchronous orbits around the earth that
send microwave signals to any terrestrial receiver that knows how to read the encoded data.
The receivers use the data from three or more satellites to triangulate a position on the sur-
face of earth. This process is accurate to hundreds of feet (more or less depending on the
receiver). This means that if you use this system you would be limited by this resolution.

One way to increase accuracy is to use an augmentation system that supplements the
satellite data with local position references that enable some receivers to be accurate
down to feet. Such systems are used by some airports to enable aircrafts to land precisely
on the centerline of a runway without the pilot ever seeing the runway. These systems
can be expensive and may still not be as precise as might be needed in some situations. 

Another way to have a very accurate PS (positioning system) is to create one that imple-
ments an LPS (local PS). This system uses the same principles as the GPS but uses local
radio transmitters and receivers to calculate positions in reference to a local grid. These
systems can be accurate down to inches or centimeters and are not overly costly and can
be used effectively over a wide area.

The following algorithm will concentrate on developing the principles of using a PS and
how to utilize the information to control the robot. Later chapters will explore solutions
around accuracy and even how to eliminate the need for a PS altogether.

9.3.1 THE SPECIFICATIONS

We will develop an algorithm that allows the robot to roam around an area as in Fig. 9.3,
but we will use the GPS to obtain the robot’s position and use the information in combi-
nation with an array of coordinates that delimit the border of the area in which the robot
must stay. The algorithm will determine if the robot is about to cross any of the imaginary
borders and turn away.

To achieve this goal, we have to specify a few things:

• We will assume the array of coordinates defines a fully enclosed area if all of the points
are connected together with lines. The coordinate points are consecutive points. There
is a line from the first point to the second, then from the second to the third and so on.
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• The GPS reports the robot’s center, so we will allow for the robot’s radius in calculat-
ing the condition of crossing the boundary line (with a buffer zone).

• The boundary lines are imaginary, but we would like to have some indication of where
they are for display purposes. Therefore, we will draw the lines on the screen to show
where they are. We will designate these lines as invisible using the rInvisible com-
mand. This prevents the robot from seeing the imaginary drawn boundary as an obstacle.
The algorithm will not use these lines in any other way to ascertain the boundary posi-
tion; only the array of coordinates will designate the boundaries.

• We will have obstacles in the area and therefore we will incorporate obstacle avoidance
in the algorithm.

• To simplify the math, we will not consider in what way the robot is about to cross the
boundary. We will design an algorithm to make the robot think that the boundary lines
are walls. The robot will avoid these virtual walls as if they were obstacles. 

• The above means that the algorithm for obstacle avoidance and boundary avoidance
are the same (subroutine Reverse of Fig. 9.3). However, the way of determining the
boundary crossing (as opposed to object detection) is different and will rely on the GPS
to determine if the robot is about to violate the boundary limits. The secret for the new
algorithm will be the subroutine TestViolation and the array of coordinates (we will call
it Boundary).

Figure 9.4 is the first part of the program to be discussed below. Figure 9.6 holds
the second part, which will be discussed later. To run the program you need to combine
Figs. 9.4 and 9.6.

9.3.2 MAIN PROGRAM

The main program (Fig. 9.4) calls the subroutine DrawBoundary (Line 10) to allow us to
see the boundary, but, as you will see later, this subroutine also sets up the boundary array.
We designate the BoundaryColor constant (Line 13) as an invisible color so as to pre-
vent the robot from seeing the border as an obstacle. If you do not do so then the robot
will avoid the boundary as an obstacle and we would not be testing our GPS avoidance
algorithm (cheating).

The SetEnvironment subroutine is exactly the same as the one you have seen in the
previous section.

9.3.3 RoamAround SUBROUTINE

This subroutine in Fig. 9.4 is very similar to the one you have seen in Fig. 9.3. The dif-
ferences are in:

• Lines 21 to 22, where we call the TestViolation subroutine. We will discuss this rou-
tine later but for now just accept that it sets the variable Violation as true if the robot
is about to cross the virtual boundary.

• Line 36 where instead of using if-statements we just call the Reverse routine as if the
boundary was an obstacle as we have done in previous examples. This is due to a lim-
itation of the TestViolation subroutine that will be discussed later. The Reverse subroutine
is exactly the same as before.
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01 //-----Constants 
02   F_RandomTurn          = 3 
03   F_RandomTurn_Percent  = 5 
04   LA_RandomTurn         = 30 
05   LineAvoidA            = 20 
06   TurnAround            = 60
07   BoundaryColor         = Gray 
08 //====================================================== 
09 MainProgram: 
10   goSub DrawBoundary 
11   goSub SetEnvironment 
12   rlocate 330,200 
13   rInvisible BoundaryColor  //---no cheating 
14   goSub RoamAround 
15 End 
18 //====================================================== 
19 RoamAround: 
20  while true 
21   goSub TestViolation 
22   S = Violation 
23   if not S 
24     if not(rBumper() & 4)
25       //---only forward if no obstacles 
26       rForward 1 
27       if random(10000) < 10000%F_RandomTurn_Percent 
28         //--add a bit of turning for better coverage 
29         rTurn random(F_RandomTurn) 
30       endif 
31     else 
32       gosub Reverse  //--avoid obstacle 
33     endif 
34     continue  //--go back to top of loop 
35   endif 
36   gosub Reverse 
37  wend 
38 Return 
39 //====================================================== 
40 //-- Makes a random reverse and turn 
41 //====================================================== 
42 Reverse: 
43   for i = 1 to (random(10)+10)
44     //--reverse so long no object on the
45     //--back and only max 20 pixels 
46     if rBumper() & 1 then break 
47     rForward -1 
48   next 
49   //--turn min 45 degrees max 90 
50   //-- in a random direction 
51   if random(1000) >= 500 
52     rTurn 90-random(45) 
53   else 
54     rTurn -90+random(45) 
55   endif 
56 Return 
57 //====================================================== 
58 //--Sets the environment
59 //====================================================== 

FIGURE 9.4 GPS confinement part I.
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9.3.4 DrawBoundary SUBROUTINE

This subroutine (Fig. 9.4) carries out two actions. It draws the boundary lines so that they
can be seen for the purpose of observing the robot as it avoids them. The boundary lines
are there only to help us see what is happening. The robot cannot see them, since they
are designated as an invisible color (Line 13).

This routine also creates the boundary array called Boundary using the Data command
(Sec. C.7). The array will contain a set of number pairs. Each pair is a coordinate (x, y) of a
boundary corner. These points, when connected with lines, define the boundary to be avoided.
The points are considered to be a sequence, where there is a line between the first and second
point, and between the second and third and so on. The shape can be any shape you desire. 

The first point in the array must have a negative x value because the mPolygon com-
mand is used to draw the connecting lines. See Sec. C.7 for details on this command. This
negative value must be changed back to positive so it can be used correctly in the calcu-
lations performed later in the program. This is the purpose of Line 79. 

To have a closed boundary, the last point in the array has to be the same coordinates as
the first point. This ensures that a closed boundary is created. The algorithm could have elim-
inated the need for respecifying the first point and assume a closed polygon, but this way is
more versatile since you may need to specify an open boundary. This is an example of a
design consideration. Either the code assumes things and thus it will be less versatile but the
user has less work, or the user has more work and the code assumes less things but is more
general and can be applied to more situations. Here we opt for the latter policy.

9.3.5 TestViolation SUBROUTINE

This subroutine (Fig. 9.6) is the secret of the algorithm. This subroutine checks to see if
the robot is about to cross a boundary line and sets the variable Violation to true if that
is the case or false if it is not.

61   circle 200,200,250,250,black,black 
62   circle 400,400,450,450,blue,blue 
63   rectangle 250,400,300,480,magenta,magenta 
64   rectangle 450,300,480,410,cyan,cyan 
65 return 
66 //====================================================== 

============

81 //====================================================== 

68 //==========================================
67 //-- define & draw the boundary 

69 DrawBoundary: 
70     LineWidth 1
71     setcolor BoundaryColor 
72     Data Boundary; -89,  77,  255,  34,  685,  64 
73     Data Boundary; 766, 210,  665, 333,  721, 451 
74     Data Boundary; 740, 565,  341, 566,   28, 495 
75     Data Boundary; 125, 313,   39, 242,  105, 194 
76     Data Boundary;  46, 111,   89,  77 
77     MPolygon Boundary 
78     setcolor black 
79     Boundary [0] = -Boundary[0] 
80 Return 

60 SetEnvironment: 

FIGURE 9.4 (Continued)



116 DEVELOPING A TOOLBOX OF BEHAVIORS

To simplify the math we will not calculate where on the robot’s body the collision with
the boundary line occurs. This limitation means that we will not have the ability (as in
Figs. 9.3 or 9.2) of knowing whether to turn left or right for more intelligent boundary
avoidance. But we can consider the boundary line as if it is a wall and avoid it like we would
avoid an obstacle. 

The algorithm is not perfect but it is a good balance between complexity and effec-
tiveness. The algorithm is effective in that the robot never exits the boundary and is rea-
sonably fast.

The principle is easy to understand even though the implementation is a little complex.
If you are not familiar with the mathematical concepts, do not worry. You can read through
to get an idea about the actions that the subroutine accomplishes. You can always use a
tool if you know what it does without necessarily knowing how it does it. Just think of this
subroutine as a tool that you can use. You don’t need to know the details of how it works
as long as you are able to utilize it when you need to.

The basis for this routine is the fact that the robot’s perimeter is a circle and we test
each boundary line for intersection with this circle. A line can intersect a circle either at
two points or one point (tangent to the circle). If no boundary lines intersect the extended
circle around the robot then there is no violation and Violation is set to false. If any of
the lines intersect (at either one or two points) Violation is set to true. The intersection
is not a physical one since the lines do not actually exist. The intersections are mathe-
matically calculated as we show below.

In order to implement this idea we need to know about quadratic equations, slopes,
intercepts, and circle formulas. The equation of a line is 

Y � mX 	 b

where m is the slope of the line and b is the y-axis intercept. The equation of a circle is 

(X � Cx )2 	 (Y � Cy )2 � R2

where Cx and Cy are the coordinates of the circle’s center and R is its radius.
When we calculate algebraically the points where a line intersects a circle we get a

quadratic equation. This equation either has no solution, which means that the line
cannot intersect the circle (Line A in Fig. 9.5a), one solution, which means the line just

Line D

Line C

Line B
Line A

FIGURE 9.5a Circle-line intersection.
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touches the circle (Line D), or two solutions, which means the line intersects the circle
fully (Line B or C).

The equation is derived as follows: a point that is an intercept between a circle and a
line must satisfy both the line and the circle equation. We know from the line equation
that Y � mX 	 b. So we substitute the value of Y in the circle equation by mX 	 b. So
we now have

(X � Cx)2 	 (mX 	 b � Cy)2 � R2

This equation can be manipulated to give the following:

(1 	 m2)X2 	 [2m (b � Cy) � 2Cx]X 	 [Cx
2 	 (b � Cy )2 � R2] � 0

This is a quadratic equation like AX2 	 BX 	 C � 0 where the solution is

In the above equation we substitute

A with 1 	 m2

B with 2m(b � Cy) � 2Cx

C with Cx
2 	 (b � Cy)2 � R2

If B2 � 4AC is greater than or equal to zero then there is a solution. The line touches
the circle if it is zero (Line D) or fully intersects the circle at two points (Line B or C) if it
is a positive number.

In the above calculations the circle’s radius and center coordinates will be the robot’s
radius (plus a buffer) and GPS coordinates. The line’s equation will be calculated from the
coordinates that define each line in the border as follows:

The two points that define each line-segment at the border are X1, Y1 and X2, Y2. We
calculate the slope of the line m = (Y2 − Y1)/(X2 − X1) and the intercept b � Y1 � mX1.
So now we have the equation for the line and can do the calculations to determine if
any boundary line-segment intersects the extended circle around the robot. However
there is a problem. 

If you observe Fig. 9.5b you will see that it is possible to have some boundary lines
appear to be crossing the robot’s path. 

X
B B AC

A
�

� 
 �2 4
2

FIGURE 9.5b The robot is about to
approach the extended borderline. 
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A line defined by the previous equation has infinite length. When we derived the
equation for the boundary lines we did so to enable the above calculation, however,
even though the infinite line may intersect the circle (Line B in Fig. 9.5a and also as
in Fig. 9.5b), the segment that we are interested in (the actual boundary line) may not
do so. 

It is necessary to check further to see if the intercept between the line and the circle is
actually within the segment being considered. This is accomplished by checking to see if
the calculated intercept x-coordinates are within the x-coordinates of the two points that
define the line-segment. If both calculated intercept x-coordinates are outside the boundary
line-segment then the boundary line does not intersect the circle even though its infinite
extension does, as is about to occur in Fig. 9.5b (see the Line 47 in Fig. 9.6). 

Figure 9.6 shows how all of the above can be implemented in code. The math can be
a little complex, but once the final equations have been developed, the implementation is
fairly straightforward.

15 //====================================================== 
18 TestViolation: 
19   Violation = false 
20   rGPS Rx,Ry 
22   for j = 1 to MaxDim(Boundary,1)/2 -1 //--for each line 
24     mm = (j-1)*2 
25     X1 = Boundary[mm] 
26     Y1 = Boundary[mm+1] 
27     X2 = Boundary[mm+2] 
28     Y2 = Boundary[mm+3] 
29     If j=1 then X1 = -X1 //due to MPolygon specs 
30     //--Line formula Y = mX+b 
31     m = 1.0*(Y2-Y1)/(X2-X1) 
32     b = Y1-m*X1 
33     //--quadratic X=(-B+Sqrt(B*B-4*A*c))/2/A 
34     //--          X=(-B-Sqrt(B*B-4*A*c))/2/A 
35     //--if there is a solution then the 
36     //--circle and line intersect (possibly) 
37     A = 1+m^2 
38     B = 2*m*(b-Ry)-2*Rx 
39     C = Rx^2+(b-Ry)^2-625 //625=(20+5)^2 
40     BB = B^2-4*A*C 
41     if (BB) >= 0
42       BB = Sqrt(BB) 
43       XX1 = (-B+BB)/2/A  //--first intercept 
44       XX2 = (-B-BB)/2/A  //--second intercept 
45       //--check if intercept is actual 
46       //--not on extended line 
47       if Within(XX1,X1,X2) OR Within(XX2,X1,X2) 
48         Violation  = true 
49         break //no need to check any more boundary lines 
50       endif 
51     endif 
52   next 
53 Return 
54 //====================================================== 

FIGURE 9.6 GPS confinement part II (line numbering starts at 15 there is no
missing code).
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• Lines 25 to 28 are where we obtain the x, y coordinates of both ends of the line (this
will be done for each line that defines the boundary).

• Lines 31 to 32 are where we calculate the values m and b.
• Lines 37 to 39 are where we set the quadratic equation coefficients that will be used to

solve the formula. Notice (Line 39) that the value 625 � 25^2. 25 is the robot’s radius
(20) plus an added buffer of 5. We write 625 directly so as to save time. This algorithm
is very calculations intensive and any time saving we can do (such as this one) would
help make the algorithm faster. This is an example of compromise between efficiency
and good programming practice. In good practice we ought to have set a constant for
the robot’s radius (e.g., R_Radius � 20) and a constant for the buffer (e.g., Buffer � 5)
then we would write Line 39 as:

C � Rx^2 	 (b �Ry)^2�(R_Radius 	 Buffer)^2 

Unfortunately this requires a lot more time to execute than just writing the number as
a literal. Also since this line of code will be executed many times (for each boundary-
line and every time the robot moves) the time penalty would be high. 

• Line 41 determines if the formula has a solution. If it does, the program enters the inside
of the if-block (Lines 42–55). If it does not, the next boundary is considered (using the
for-next loop).

• Lines 42 to 44 are where the equation is solved to obtain the x-coordinate of the two
possible intercept points (they could be equal which means the same point i.e., one point).

• Lines 47 to 50 are where we check to see if the intercept points are within the bound-
ary line-segment and not just part of the extended infinite line. If either point is, then
there is a violation and we abort any further checking by exiting out of the for-next
loop using the Break statement. Otherwise we proceed with checking the other lines
[see Sec. C.8 for details on the Within() function].

Combine the code from Figs. 9.4 and 9.6 (without the line numbers) then run the pro-
gram. Remember, the robot does not see the boundary lines except through the mathe-
matics described in this chapter. It may appear that the robot is avoiding the boundary as
if it was an object but this is only because we made boundary avoidance the same as obsta-
cle avoidance. Convince yourself of this by commenting out Line 77 in Fig. 9.4. This pre-
vents the boundary plotting and you will see the robot avoiding an invisible wall.

9.4 Summary
In this chapter we have explored:

� Various methods for keeping the robot within or outside of an area.
� The advanced ground sensor capability of the robot.
� How to use the GPS to confine the robot within an area.
� Mathematical concepts for calculations involving circles and lines.

Now, try to do the exercises in the next section. If you have difficulty read the hints.



120 DEVELOPING A TOOLBOX OF BEHAVIORS

9.5 Exercises
1. Add obstacle avoidance to the program in Fig. 9.2, include obstacles and see the results.

2. Write an algorithm that enables the robot to roam around a table while avoiding obsta-
cles (as in Fig. 9.3), but also not entering a zone on the table designated by a border
as in the program of Fig. 9.2.

3. Change the data in the DrawBoundary subroutine to create different boundaries.
Does the robot always stay inside? Does it ever exit the area? What if you try a set of
data where there is a break in the virtual wall?

4. Line 31 in Fig. 9.6 has a formula that says: m � 1.0*(Y2�Y1)/(X2�X1), why not just
say: m � (Y2�Y1)/(X2�X1)? What is the reason for using 1.0 in the formula?

5. In Fig. 9.6, comment out Line 47 and Lines 49 to 50. Now run the program and see
what happens. Can you explain the reason for the robot’s behavior?

6. The subroutine TestViolation does not consider where the boundary line touches
or crosses the robot’s perimeter. If it had done so we could have used a better avoid-
ance mechanism such as the one in Fig. 9.3. Can you modify the subroutine to give
the Violation a value that indicates the place where the robot’s body is touching
the boundary line (instead of just true or false)?

HINT: Study the routines in Fig. 9.3; you can use the same logic.

HINT: Try combining the two algorithms of Figs. 9.2 and 9.3.

HINT: See Secs. B.7.1 and B.7.5 for details of on integer and floating-point num-
bers and operations on these numbers.

HINT: Calculate the angle an intercept point makes in relation to the robot’s center
point and its center line (left [�] and right [	]) and set Violation to that value
[you can use PolarA() with additional calculations]. However, this will slow the

program appreciably.

HINT: It seems to be avoiding boundaries that are not there. Why?
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C H A P T E R10
VECTOR GRAPHICS ROBOT

The robot in RobotBASIC has a feature that facilitates many possibilities for innovation.
This feature is a pen at its center that can be lowered to allow the robot to leave a trace

on the floor as it moves (you have seen some uses of this feature in previous chapters).
With the proper program we can convert the robot into a device for drawing vector graph-
ics (meaning we specify a line to be drawn with a starting point, an angle, and a length).

This feature can be used for a variety of projects:

➢ Draw and write on the floor.
➢ Show area covered by the robot for a sweeper simulation.
➢ Display the effectiveness of an algorithm by showing the path taken.
➢ Solve mazes by leaving a breadcrumbs trail.

In this chapter we will develop a few applications utilizing this feature to draw and write
on the floor. In Chap. 8 we used the pen feature to observe the effectiveness of the algo-
rithms and in Chap. 4 we used it to observe the trajectory of the robot and could have
used the robot as a remote controlled sketching tool. The other options will be explored
in subsequent chapters.

There are many industrial applications for a robot that can draw on a surface. A robot
could cut intricate and complex designs out of metal sheets if a laser cutter is substituted
for the pen. Imagine a robot that can draw the yard lines and other messages and designs
on a football field once the desired data has been given to it.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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10.1 DrawBot
The command to lower and raise the pen is:

rPen ExprN1 {,ExprN2}

If ExprN1 is 0, the pen will be raised and, if it is any number other than 0 the pen will
be lowered. You can also use the constants Up and Down (see Sec. B.7.6). ExprN1 has
to be a number. The pen is up when you first initialize and rLocate the robot. ExprN2
is optional. If it is specified then the color of the pen will be set to ExprN2. If it is not
specified then the color of the pen will be set to the first color on the invisible colors list.
If you have not specified an invisible colors list then the pen color will be black. ExprN2
should be a valid color number (see Sec. B.7.6).

If you don’t place the pen’s color in the list of invisible colors the robot will crash if it
ever encounters its own trace. You must specify any colors you are likely to draw on the
floor with the pen as invisible colors so the robot will be able to drive over them. You can
reissue the rPen command with a different color to draw as many colors as you desire. 

The command LineWidth will set the pen’s width. This command was discussed in
Chaps. 5 and 7. If you are unfamiliar with these commands refer to Secs. C.7 and C.9
for details.

The pen is exactly at the center of the robot and, when lowered, will draw a line trail-
ing behind the robot whenever an rForward command causes the robot to move.
Obviously, since the pen is at the center, an rTurn will not create any trail, but as you
turn and forward the trail will display the path the robot has taken.

Let us see how these commands can be used to make the robot draw a square on the
floor. Type the program in Fig. 10.2 and run it. You will observe the result shown in
Fig. 10.1. As you can see, it is very simple to make the robot draw. The robot can be
made to behave like a vector plotter. You may not have seen these devices before, but they
are used in many engineering offices. They can draw using a pen and instructions to move
to specified X, Y coordinates on a flat surface and to lower or raise pens of various colors.
These devices are aptly called xy-plotters. Our robot can behave as an xy-plotter with pro-
grams like the one in Fig. 10.2.

10.1.1 DRAWING CIRCLES

The program in Fig. 10.3 makes the robot draw a circle. Type it and see the result.
The subroutine DrawCircle is what makes the circle. Notice the line rForward

fStep. Rather than forwarding a fixed distance, the subroutine forwards a distance
defined by the variable fStep. This variable must be assigned a value prior to calling the
subroutine. The same thing is done in the line rTurn tStep and in the for-next loop.
Here the rate of turn is specified by tStep and again has to be assigned prior to calling
the routine. The limit of the loop is 360/tStep rather than 360 so that if the rate of
turn is changed the routine still continues to turn 360� and no more. What will happen
if tStep is set to �1?

Experiment with changing these numbers and try to predict the results. First try chang-
ing only fStep and see the outcome. Then only change tStep and observe the action.
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Finally try changing both. You may have to change the initial position of the robot. Also
experiment with making the numbers negative.

10.1.2 DRAWING RECTANGLES

The program in Fig. 10.4 causes the robot to draw rectangles. Type it and observe the
results. As in the previous section, there are two variables RectWidth and RectHeight that
define the shape of the rectangle. Additionally, the initial position and heading of the robot
determine the orientation of the rectangle. Experiment with changing these variables and
observe the results.

FIGURE 10.1 The robot can draw.

//---Pen test 
rLocate 300,300,90  //--Initialize the robot facing East 
rInvisible Magenta  //--magenta color for the pen 
LineWidth 4         //--line width of 4 is good here 
rPen Down           //--start drawing 
for i = 1 to 4      //--draw a square (4 sides) 
  rForward 100 
  rturn 90 
next
rPen Up             //--stop drawing 
rTurn 45            //--move out of the way 
rForward 50 
End

FIGURE 10.2 Program using the pen to draw a square as shown above.
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10.1.3 DRAWING TRIANGLES

So far we have not had to use much math to draw rectangles or circles. However, draw-
ing triangles will require a little math. If you find some of the math here to be too com-
plex, do not worry. Do try to understand it, but more importantly you should understand
the overall algorithm. The math details are not as important as the final outcome.

In Chap. 4 we introduced some of the math functions in RobotBASIC, and also intro-
duced the concept of converting from angles in radians to angles in degrees. Review that
information if necessary (Sec. 4.2, Chap. 4).

To draw a triangle we need to know the angles and sides of the triangles. You can define
a triangle by two sides and their included angle, or by all the angles, or by all the sides, or
by two angles and a side, and so on. You can see where this is going. You need three param-
eters that can be any combination of sides and angles. This implies that there are eight
possible combinations. The ultimate outcome though, is to be able to calculate the lengths
of the three sides and the corresponding three angles. 

Once the lengths of the sides and angles are known the robot can draw a triangle by
moving the length of the first side, turning 180� minus the angle, then moving the length
of the next side, turning again 180� minus the angle, and then finally moving the last length.
The subroutine (Lines 21–28) in Fig. 10.5 shows this.

Remember, line numbers are only for the purpose of reference during the coming
discussion.

//---Draw Circles 
MainProgram:
  //---Change these values to change the position of the circle 
  R_Init_X = 100 
  R_Init_Y = 300 
  R_Init_Heading = 0 

  rLocate R_Init_X,R_Init_Y,R_Init_Heading 
  rInvisible Magenta 
  LineWidth 4 

  //---Change these values to change the size of the circle 
  fStep = 1 
  tStep = 1 

  gosub DrawCircle 

  rTurn 90    //--move out of the way 
  rForward 40 
End
//======================================================

DrawCircle:
  rPen Down //--start drawing 
  for i = 1 to 360/tStep 
     rForward fStep 
     rturn tStep 
  next 
  rPen Up //--stop drawing 
Return
//======================================================

FIGURE 10.3 Drawing circles.
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//---Draw Rectangles 
MainProgram:
  //----change these to make the rectangle have
  //----different orientation and position 
  R_Init_X = 100 
  R_Init_Y = 300 
  R_Init_Heading = -45 
  rLocate R_Init_X,R_Init_Y,R_Init_Heading
  rInvisible Magenta
  LineWidth 4 
  //---change these variables to change size of the rectangle
  RectWidth = 100 
  RectHeight = 50 
  gosub DrawRectangle 
  rTurn -45    //--move out of the way 
  rForward 40 
End
//======================================================
DrawRectangle: 
  rPen Down //--start drawing 
  for I = 1 to 2 
     rturn 90 
     rForward RectWidth 
     rTurn 90 
     rForward RectHeight
  next 
  rPen Up //--stop drawing 
Return
//======================================================

FIGURE 10.4 Drawing rectangles.

02 MainProgram: 
03   //----change these to make the triangle have
04   //----different orientation and position 
05   R_Init_X = 400 
06   R_Init_Y = 300 
07   R_Init_Heading = -90 
08   rLocate R_Init_X,R_Init_Y,R_Init_Heading
09   rInvisible Magenta 
10   LineWidth 4 
11   //---change these values 
12   Side = 150 
13   Angle = 50 
14   Data Sides;2*Side*cos(Angle*pi(1)/180),Side,Side 
15   Data Angles;Angle,180-2*Angle,Angle 
16   gosub Draw Triangle 
17   rTurn -45    //--move out of the way 
18   rForward 40 
19 End 
20 //====================================================== 
21 Draw Triangle: 
22   rPen Down //--start drawing 
23   For i = 1 to 3 
24      rForward Sides[i-1] 
25      rTurn 180-Angles[i-1] 
26   next 
27   rPen Up //--stop drawing 
28 Return 
29 //====================================================== 

FIGURE 10.5 Drawing an isosceles triangle.
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The Data statements on Lines 14 and 15 create two arrays that hold the sides and
angles. See Secs. B.7.4 and C.7 for details on arrays and on the Data command.

Arrays are an efficient method of storing and referring to a collection of data. Instead
of referring to the three sides of the triangle as Side_1, Side_2, and Side_3 we can say
Sides[n], where n is the side number. Except, n has to start with 0 not 1 so Side_1 is the
same as Sides[0] and Side_2 is the same as Sides[1] and so on. For a small collection like
this one it might not be too tedious to refer to each element of the collection by its own
name. For a large collection it is better to use an array because you can iterate through
the data using for-next or other looping constructs.

If you look at Lines 24 and 25, this is exactly what is happening. The for-next loop
refers to each side and angle as Sides[i-1] and Angles[i-1]. The reason for the subtraction
is because the for-loop counts from 1 to 3 and we need 0 to 2, as discussed above.

Now let’s go back to Lines 14 and 15. The Data statement creates the arrays Sides
and Angles with three sets of data each as specified. How is this data determined? 

Observe Fig. 10.6, all the details of how to calculate the lengths and angles are given.
In Lines 12 and 13 we specify the Angle (A or B) and Side (a or b). The angle C is cal-
culated as shown and so is the side c. However, you still have to convert to radians to be
able to use the Cos() function. All the trigonometric functions in RobotBASIC use and
return angles in radians. See Sec. 4.3 (Chap. 4) for an explanation on how to convert
between degrees and radians.

This program allows you to draw any isosceles triangle if you know the angles and sides
that are equal. Also by changing the parameter for the robot location and heading you
can draw the triangle at any orientation and position. Try experimenting with the various
variables and note the results.

What is needed to draw a different type of triangle? The program in Fig. 10.5 can be
modified to calculate the three sides and angles so that the same DrawTriangle subrou-
tine can still be used. All you need is to put the correct data in the Sides and Angles array.
How should the lengths and angles be calculated? Refer to your math textbooks, all the
formulas are there, they are similar to the formulas given in Fig. 10.6. 

10.1.4 DRAWING ANY SHAPE

As you may have noticed from the previous sections, all that is needed to draw any shape
is the correct set of instructions to make the robot turn and move. Combining this with
the ability to put the pen up and down you can make the robot draw any shape.

One way to achieve this easily is to use the Data command to create an array of data
pairs where each pair represents a command for the robot. The first element of the pair

a = b b = a

B = A A = B

C = 180 − 2∗A c = 2∗a∗cos(A)
c

C

FIGURE 10.6 Isosceles triangle
angle A � B and side a � b.
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specifies an action to be taken. The second element provides a parameter associated with
the action. Let’s look at some examples.

We can use the pair “f”, 20 to tell the robot to move forward 20 pixels. The pair “t”,
40 means turn 40� and “p”, Up tells the robot to put the pen Up. Based on these com-
mands, what shape would this set of data draw?

Data SomeShape; “p”,Down, “f”,165, “t”,-120, “f”,58
Data SomeShape; “t”,-60,   “f”,50, “t”,-30,  “f”,100
Data SomeShape; “p”,Up,    “f”,40

Type the program in Fig. 10.7 and see what happens (don’t type the line numbers).
In Line 15 we calculate an index into the array SomeShape to retrieve the right pair

of data. The outcome is that we can now say SomeShape[J] to obtain the command ele-
ment of the pair and SomeShape[J	1] to retrieve the value element of the pair. Why this
formula for J? Remember that the first element of the array is 0. So the elements 0 and
1 are the first pair, 2 and 3 the second, 4 and 5 the third, and so on. Can you see a pat-
tern? We have 0, 2, 4, 6,... for the first element of the pairs and 0 	 1, 2 	 1, 4 	 1,
6 	 1,... for the second. So if we are counting using a for-next loop using 1, 2, 3,
4,... then to get 0, 2, 4, 6,... we use the formula in Line 15. The if-then statements
(Lines 16–18) are to make sure that the right command is executed.

The limit for the for-next loop in Line 14 uses the function MaxDim() allowing
the program to determine how many elements there are in the SomeShape array
(see Sec. C.8). Since the data is in pairs, we divide the number of elements by two to cal-
culate the number of pairs.

If you replace the data in the Data statements on Lines 11 to 13 you can create any
shape. You can have as many Data statements as you need to draw the shape, you are
not limited to just the three in the program.

01 //---Draw Any Shape 
02 MainProgram: 
03   //----change these to make the shape have
04   //----different orientation and position 
05   R_Init_X = 400 
06   R_Init_Y = 300 
07   R_Init_Heading = 90 
08   rLocate R_Init_X,R_Init_Y,R_Init_Heading 
09   rInvisible Magenta 
10   LineWidth 4 
11   Data SomeShape; "p",Down, "f",165, "t",-120, "f",58 
12   Data SomeShape; "t",-60,   "f",50,  "t",-30,  "f",100 
13   Data SomeShape; "p",Up,   "f",40 
14   for I = 1 to MaxDim(SomeShape,1)/2 
15      J = (I-1)*2 
16      if SomeShape[J] = "f" then rForward SomeShape[J+1] 
17      if SomeShape[J] = "t" then rTurn    SomeShape[J+1] 
18      if SomeShape[J] = "p" then rPen     SomeShape[J+1] 
19   next 
20 End 

FIGURE 10.7 Drawing any shape.
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10.2 ABC Robot
In the program of Fig. 10.7 we developed a program that draws any shape given an array
of data pairs. If we create shapes that are letters, we can give the robot the ability to write
words. Remove Lines 11 to 13 from the program in Fig. 10.7 and in their place put the
lines in Fig. 10.8 then run the program. 

The principles used in this program will be extended to develop a program that is able
to accept a string and write it on the screen. The size of the font will be scalable and the
robot will write the string at any angle. But before we can do any of this, we need to develop
a font array and a way of making the robot write any letter individually. See Fig. 10.9 for
a sample output of such a program.

10.2.1 THE SPECIFICATIONS

First we will need an array of fonts. This array should be two-dimensional. For example
we can have Dim Letters[27,100] (see Sec. C.7 for the Dim command). Why 27? We
have 26 letters and we will allow for the space character (you can expand this to include
other symbols like numbers if you wish). Why 100? This number is arbitrary for now. The
number of instructions that will be needed to create each letter might be smaller than 50
or more. This number is set to the maximum likely to be needed. Remember the instruc-
tions are a pair of data (the command and its value) so we will need double the amount
of instructions for the limit of the number of elements in the row. Once we have designed
our fonts array we would have a better idea what limit will be necessary, and we will change
the 100 to whatever is appropriate.

Once the array Letters[ ] is created we can access the commands to draw the letter by
indexing into the array in this manner: Letters[Letter_Number,n]. So how do we obtain
the Letter_Number value? In computers each letter has a code number called the ASCII
code. We can obtain any character’s ASCII code in RobotBASIC using the function

t = "t" 
f = "f" 
p = "p" 
d = 10*sqrt(2) 
//--A
data SomeShape; p,down, t,-90, f,50, t,45, f,d, t,45 
data SomeShape; f,40, t,45, f,d, t,45, f,20, t,90, f,60 
data SomeShape; f,-60, t,-90, f,30, t,-90, p, up, f,15 
//--B
data SomeShape; p,down, t,-90, f,60,t,90, f,50, t,45, f,d/2 
data SomeShape; t,45, f,15, t,45, f,d/2, t,45, f,50, f,-50 
data SomeShape; t,-135, f,d, t,45, f,20, t,45, f,d/2, t,45 
data SomeShape; f,55, p,up, f,-60, t,180, f,15 
//--C
data SomeShape; t,-90, f,10, p,down, f,40, t,45, f,d, t,45, f,40 
data SomeShape; t,45, f,d, t,45, p,up, f,40, t,45, p,down, f,d 
data SomeShape; t,45, f,40, t,45, f,d, p,up, f,-d, t,-45 
data SomeShape; t,180, f,80 

FIGURE 10.8 The robot can write (well, only three letters so far).
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Ascii(). The ASCII code for “A” is 65, for “B” is 66, and so on, but we need to index
into the array of letters at 0 for “A”, 1 for “B”, and so on. Can you see a pattern?

Letter_Number of any letter = Ascii(of the letter) -Ascii(“A”)

The index position of any letter into the array of letter fonts can now be calculated.
This array will have only capital letters. What if the message to be printed has lower case
letters? We will use the function Upper() to convert all the letters in a string to upper
case letters. What if the message contains unsupported characters? We will test to see if
the character about to be printed is within the limits Ascii(“A”) to Ascii(“Z”) and
if it is not, a space will be printed in its place.

The number of instructions to draw each letter will vary from one letter to another.
This means that we will need a way of knowing how many instructions there are in each
row in the letters array. We could do this by having the number inside the array, or create
another array that has this number for each letter. Here is a better method. The data
pairs will have a number telling us the instruction whether to move, turn, or raise/lower
the pen. We can add one more instruction to indicate the end of instructions. So, for
example, we can have Forward � 1, Turn � 2, Pen � 3, and End � �1000. Now a
set of instructions can look like this:

Data Temp_Letter; “A”,3,up, 1,20, 2,45,..........,-1000

FIGURE 10.9 Writing robot.
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Notice the �1000 at the end of the data. It is to indicate the end of instructions for
this letter. We chose �1000 because we want a number that cannot possibly be used in
the normal instructions.

Unfortunately the above is not very readable, you might confuse the instruction with
its quantity and will have to constantly keep referring to the codes table to know what
instruction is what. A better solution would be to do this:

Data Temp_Letter; “A”,p,up, f,20, t,45,..........,e

Notice the use of variables p, f, t, and e. This is a lot easier to understand. All we need
is to add a few statements that set a variable f � 1, t � 2, p � 3, and e � �1000. This
is the same as using the constant red to stand for the number 4 (see Sec. B.7.6). 

We need to establish a convention for the fonts. We will assume that the letter prints
starting at where the robot happens to be and at �90� orientation to the current robot
heading, also that the pen is up. The drawing instructions will create the font for the letter
and position the robot at the end of the letter facing the same direction it was before, and
the pen in the up position. The font will occupy a 6 � 6 pixels area in its base scale, so
a scale of five will make it 30 � 30 and so on.

To summarize; if the robot is at position 100, 100 facing east (90�) and a scale of 10:

• The letter printed will occupy the area bounded by the square 40, 40, 160, 100 and
be oriented vertically (90 � 90 � 0).

• The robot will end up at position 160, 100 facing east at the end of the printing of the
letter and the pen will be up. 

Figure 10.10 shows a program that makes use of all the principles discussed above.
The subroutine Create_Font is not shown because it will be discussed later.

The main program sets up the robot and sets the colors, scale, and message to be
printed (the orientation is defined by the robot’s initial heading). Then it calls the subrou-
tine Print_Message. This subroutine makes use of all the conventions discussed so far.

10.2.1.1 Print_Message Subroutine Look at Fig. 10.10 carefully. You should be
able to recognize most of what we have discussed in this routine. You cannot run this pro-
gram without combining it with the code given in Fig. 10.11.

First the message is converted to upper case. Then we iterate for each letter in the mes-
sage with the for-loop. Notice how we use the function Substring() to obtain each
letter from the message string. 

We find the index into the array of letters by the same formula we discussed above.
Any character that is not from A to Z will be made into the last letter in the array, which
is the space character. This means that the routine will write a space for any character in
the message that is not a valid letter. The while-loop will execute each instruction for
printing the letter until it finds the instruction code of �1000, which is, by the above con-
vention, the indicator of the end of the drawing instructions.

Notice that no for-next loop is used to obtain the instructions since it is not known ahead
of time how many there are. Also, notice the formula for indexing to obtain the instruction:

Letters[L,Inst_No*2 	 1]



VECTOR GRAPHICS ROBOT 131

We multiply by two because we have pairs of elements that are retrieved two at a
time. The one is added because we need to allow for the fact that the first element
in the font array is not an instruction (see Fig. 10.11), rather it is the letter itself. This
will be explained below.

Finally after drawing the letter the robot is forwarded to make a slight gap (Scale)
between the letters. When you combine this program with the code for the Create_Font
subroutine (Fig. 10.11) and run it you will see the result shown in Fig. 10.9.

10.2.1.2 Create_Font Subroutine This subroutine populates the array Letters[ ]
with the data for creating each letter as per the specifications in the preceding
discussion.

There are a lot of Data statements to create one-dimensional array letters[ ] that
contains all the letters in one long row. This is because it is a lot easier to enter the data
in this manner than having a separate statement for each element of Letters[ ].
Remember, that array and variable names are case sensitive, so letters[ ] and Letters[ ]
are not the same. After the data is loaded into letters[ ] we reformat it as a two-
dimensional array by copying it into Letters[ ] using the code that follows the Data
statements.

MainProgram:
   goSub Create_Font 
   Scale = 5 
   rLocate 100,500,30 
   rInvisible DarkGray 
   Message = "Hello World" 
   gosub Print_Message 
   rForward 30 
End
//======================================================

Print_Message:

  Message = upper(Message) 
  for i = 1 to Length(Message) 
     L = Ascii(SubString(Message,i,1))-Ascii("A") 
     if L < 0  or L > 26 then L = 26 
     Inst_No = 0

     while true 

       Inst = Letters[L,Inst_No*2+1] 
       if Inst = f then rForward Scale*Letters[L,Inst_No*2+2] 
       if Inst = t then rTurn    Letters[L,Inst_No*2+2] 
       if Inst = p then rPen     Letters[L,Inst_No*2+2] 
       if Inst = e then break 
       Inst_No = Inst_No+1
     wend 
     rForward Scale 
  next 
Return

FIGURE 10.10 Letter-writing program.
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  data letters; "D", p,down, t,-90, f,6, t,90, f,4, t,45, f,d*2 
  data letters; t,45, f,2, t,45, f,d*2, t,45, f,4, t,180, p,up 
  data letters; f,6, e 
  data letters; "E", p,down, f,6, f,-6, t,-90, f,3, t,90, f,4 
  data letters; f,-4, t,-90, f,3, t,90, f,6, t,90, p,up, f,6 
  data letters; t,-90,  e 
  data letters; "F", p,down, t,-90, f,3, t,90, f,4, f,-4 
  data letters; t,-90, f,3, t,90, f,6, t,90, p,up, f,6, t,-90, e 
  data letters; "G", t,-90, f,1, p,down, f,4, t,45, f,d, t,45 
  data letters; f,3, t,45, f,d, p,up, f,d, t,45, f,2, t,90 
  data letters; p,down, f,2, f,-1,  t,-90, f,1, t,45, f,d, t,45 
  data letters; f,3, t,45, f,d, p,up, f,-d, t,135, f,5, e 
  data letters; "H", p,down, t,-90, f,6, f,-3, t,90, f,6, t,-90 
  data letters; f,3, f,-6, t,90, p,up, e 
  data letters; "I", p,down, f,3, t,-90, f,6, t,-90, f,3, f,-6 
  data letters; t,-90, p,up, f,6, t,90, p,down, f,3, f,-3, p,up 
  data letters; t,180, e 
  data letters; "J", t,-90, f,1, t,135, p,down, f,d, t,-45 
  data letters; f,2, t,-45, f,d, t,-45, f,5, t,-90, f,2, f,-4 
  data letters; p,up, t,-90, f,6, t,-90, e 
  data letters; "K", p,down, t,-90, f,6, f,-3, t,63, f,6.6 
  data letters; f,-4.6, t,90, f,4.5, f,-4.5, p,up, t,-90 
  data letters; f,-2, t,-63, f,-3, t,90, f,6, e 
  data letters; "L", t,-90, f,1, p,down, f,5, f,-5, t,135 
  data letters; f,d, t,-45, f,4, t,-45, f,d, t,135, p,up 
  data letters; f,1, t,-90,  e 
  data letters; "M", t,-90, p,down, f,6, t,135, f,3*d, t,-90 
  data letters; f,3*d, t,135, f,6, t,-90, p,up, e 
  data letters; "N", t,-90, p,down, f,6, t,135, f,6*d, t,-135 
  data letters; f,6, p,up, f,-6, t,90,  e 
  data letters; "O", t,-90, f,1, p,down, f,4, t,45, f,d, t,45 
  data letters; f,4, t,45, f,d, t,45, f,4, t,45,  f,d,  t,45 
  data letters; f,4, t,45, f,d, f,-d, p,up, t,135, f,5,  e 
  data letters; "P", t,-90, p,down, f,6, t,90, f,4, t,45, f,d 
  data letters; t,45, f,1, t,45, f,d, t,45, f,4, p,up, f,-6 
  data letters; t,-90, f,3, t,-90,  e 
  data letters; "Q", t,-90, f,1, p,down, f,4, t,45, f,d, t,45 
  data letters; f,4, t,45, f,d, t,45, f,4, t,45,  f,d,  t,45 
  data letters; f,4, t,45, f,d, f,-d, p,up, t,135, f,5, t,-135 
  data letters; p,down, f,d, p,up, f,-d, t,135, e 
  data letters; "R", t,-90, p,down, f,6, t,90, f,4, t,45, f,d 

Create_Font:
  f = 1 
  t = 2 
  p = 3 
  e = -1000 
  d = sqrt(2) 
  //------------Fonts 
  data letters; Char(Ascii("A")+26), f,6,  e 
  data letters; "A", p,down, t,-90, f,5, t,45, f,d, t,45 
  data letters; f,4, t,45, f,d, t,45, f,2, t,90, f,6 
  data letters; f,-6, t,-90, f,3, t,-90, p,up, e 
  data letters; "B", p,down, t,-90, f,6, t,90, f,4, t,45, f,d 
  data letters; t,45, f,1, t,90, f,5, f,-5 
  data letters; t,-135, f,d, t,45, f,2, t,45, f,d, t,45 
  data letters; f,5, p,up, f,-6, t,180, e 
  data letters; "C", t,-90, f,1, p,down, f,4, t,45, f,d, t,45 
  data letters; f,4, t,45, f,d, t,45, p,up, f,4, t,45, p,down 
  data letters; f,d, t,45, f,4, t,45, f,d, p,up, f,-d, t,135 
  data letters; f,5, e 

FIGURE 10.11 Create_Font subroutine.
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In the array of fonts the first element in each row is the letter itself. This is useful
for two reasons. First it is a good self-documenting practice. Second we can use the
ASCII code of the letter to be able to put the data in the correct row in the array
Letters[ ].

The code iterates into the letters[ ] array until it finds an end of instruction command
(e), and then looks for the next letter to calculate the row into which to put the data that
follows.

  data letters; t,90, p,down, f,5, t,45, f,d, t,45, f,4, t,45 
  data letters; f,d, p,up, f,-d, t,-45, f,-5, t,45, p,down 
  data letters; f,d, p,up, f,-d, t,135, e 
  data letters;  "V", t,90, f,-6, p,down, f,3, t,-45, f,3*d 
  data letters; t,-90, f,3*d, t,-45, f,3, p,up, f,-6, t,90, e 
  data letters;  "W", t,90, f,-6, p,down, f,6, t,-135, f,3*d 
  data letters; t,90, f,3*d, t,-135, f,6, p,up, f,-6, t,90, e 
  data letters;  "X", t,90, f,-6, p,down, t,-45, f,6*d, t,45 
  data letters; p,up, f,-6, t,45, p,down, f,6*d, p,up, t,-135 
  data letters; f,6,  e 
  data letters;  "Y", f,3, p,down, t,-90, f,3, t,-45, f,3*d 
  data letters; t,-45, p,up, f,-6, t,-45, p,down, f,3*d, p,up 
  data letters; t,-45, f,3, t,-90, f,3, e 
  data letters;  "Z", t,-90, f,6, t,-90, p,down, f,-6, t,-45
  data letters; f,6*d, t,45, f,-6, t,180, p,up, e 

  //------------Fonts 

  Letter_No = 0 

  Dim Letters[27,100] 

  Inst_Count = 0 

  for i = 0 to MaxDim(letters,1)-1 
      if Inst_Count=0

        Letter_No = Ascii(upper(letters[i]))-Ascii("A")
        Letters[Letter_No,Inst_Count] = letters[i] 

        Inst_Count = Inst_Count+1 

        continue 
      endif 

      Letters[Letter_No,Inst_Count] = letters[i] 
      Inst_Count = Inst_Count+1 
      if letters[i] = e 

        Inst_Count = 0 
      endif 
  next 
Return

  data letters; t,45, f,1, t,45, f,d, t,45, f,4, f,-3, t,-135 
  data letters; f,3*d, t,-45, p,up,  e 
  data letters; "S", t,-90, f,1, t,135, p,down, f,d, t,-45, f,4 
  data letters; t,-45, f,d, t,-45, f,1, t,-45, f,d, t,-45, f,4 
  data letters; t,45, f,d, t,45, f,1, t,45, f,d, t,45, f,4, t,45 
  data letters; f,d, p,up, t,45, f,5, t,-90, e 
  data letters; "T", f,3, t,-90, p,down, f,6, t,-90, f,3, f,-6 
  data letters; t,-90, p,up, f,6, t,-90, e 
  data letters; "U", t,-90, f,1, p,down, f,5, p,up, t,90, f,6 

FIGURE 10.11 (Continued)
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10.3 Summary
In this chapter you have learned:

� How to draw on the screen with the robot using rPen.
� How to draw shapes such as circles, rectangles, triangles, or any other shape.
� About the trigonometric and other mathematic functions in RobotBASIC.
� About string manipulation and formatting functions like Substring(), Ascii(),
Upper(), and Length().

� How to utilize arrays, the Data and Dim commands, and the MaxDim() function.
� How to make the robot write messages.

Now, try to do the exercises in the next section. If you have difficulty read the hints.

10.4 Exercises
1. Most of the programs in this chapter do not avoid obstacles while doing the drawing

action. Can you combine obstacle avoidance with the programs in Sec. 10.1?

2. The program in Fig. 10.3 draws a circle starting at the robots position rather than
a circle whose center is the robot position. Can you write a program that makes the
robot draw a circle (or an arc of a circle) given the radius and centre coordinates of
the circle?

3. Modify the main program in Fig. 10.10 to accept a message from the user then allow
the user to place the robot on the screen at any heading.

4. Modify the program of Fig. 10.10 to write a message in a circle. See Fig. 10.12 for
a sample output.

HINT: See Chaps 4 and 5.

HINT: Use the Input command. For placing the robot you can either use the Input
command or you can make use of the mouse as in Fig. 7.9 (Chap. 7). 

HINT: The formula for a circle is:

X � R Sin � 	 Cy

Y � R Cos � 	 Cx

Where R is the circle’s radius, Cx and Cy are the circle’s center coordinates, � goes from 0 to
360 (or any part of 0 to 360 for a partial circle).
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5. The array of fonts (Fig. 10.11) does not define the numerals 0–9. Add the required
code to achieve this. You will need to change some of the code in the Print_Message
subroutine to allow for the new fonts. Notice that the ASCII code for 0–9 is not con-
tiguous with the ASCII code for the letters.

FIGURE 10.12 Sample output desired in Exercise 3.

HINT: You will need to reposition the robot for each letter at the right position and
at the right heading (see Exercise 2).
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Part 3 capitalizes on all the skills and experiences gained in Parts 1 and 2 to build com-
plete, useful, and interesting projects. The reader, at this point in the text, is expected
to be fully competent with the language and simulator. Single behaviors are combined
to create compound complex behaviors. Many of the programs developed in previous
chapters are modified to function in combination, allowing for smooth transitions from
one behavior to another, creating an overall behavior that achieves a multifaceted and
realistic job.

We acquaint the reader with more advanced ideas in computer science by introducing
topics such as graphs, lists, stacks, queues, and simple databases. We also explore the
software-engineering skills required to proficiently handle the process of conceiving, spec-
ifying, designing, and building a complete practical project.

Each chapter evolves the project by considering initial designs and then improving on
the designs up to a certain level. Possible additional improvements are discussed and sug-
gested for the readers to accomplish on their own.

Upon completing Part 3 you will

� Have full ability in utilizing all the features of the robot simulator.
� Have advanced knowledge of the RobotBASIC language.
� Have the skills to program complex and realistic projects.
� Be familiar with some software engineering skills required during the life cycle of a robot-

ics project. 
� Appreciate the concepts of some computer science topics related to the field of artifi-

cial intelligence (AI).

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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C H A P T E R11
MOWING AND 

SWEEPING ROBOT

In previous chapters the robot roamed around an area in a random manner while intel-
ligently avoiding obstacles and staying within the confines of a specified area. If the robot

is equipped with a vacuum cleaner or a mowing blade it could vacuum the floor or mow
the lawn while it is doing the roaming. This makes our robot a very useful device.

In this chapter you will learn how to make the robot:

➢ Vacuum an office area with partitions, desks, cabinets, and chairs.
➢ Mow a lawn with trees and flowerbeds. The lawn will not necessarily be surrounded

by a physical barrier.

11.1 Sweeper Robot
In this section we want to use the robot to vacuum an office floor. An office area can be
cluttered with many obstacles, but the problem of confining the robot is not an issue since
the area is walled. Confinement becomes a matter of obstacle avoidance rather than actively
checking for confining devices.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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11.1.1 THE BASE PROGRAM

To test our algorithms we will use the same office throughout. Figure 11.1 shows code
for a base program where the MoveRobot subroutine is left blank for now. This subrou-
tine will be developed in the subsequent sections.

The subroutine DrawOffice uses the Data command to create an array of locations
and types of furniture (cabinets and desks). We then use a for-next loop to draw the
furniture at the required location. The command DrawShape VarS,X,Y,Scale is used to
draw a shape defined in a variable VarS at a location X, Y and with a scaling factor Scale.
The variable VarS contains a string, which is a set of instructions for moving up, down,
left, right, and so on. (See Sec. C.7 for details.) We also use more Data statements along
with the mPolygon command to shade the furniture and to draw the office partitions.
Notice that all objects are drawn as they would be seen by the robot. This is as if we have
taken a slice through the room at a few inches above the floor and parallel to the floor.
Thus chairs, for example, appear as four little circles, which are the legs (see Fig.11.3).

The InitRobot subroutine locates the robot and puts the pen down. To indicate the effec-
tiveness of the vacuuming, the pen feature on the robot will be used to leave a trail show-
ing where the robot has cleaned. In this manner we will have a visual indication of the
amount of coverage and a way of gauging the effectiveness of the algorithm.

The robot’s size is set to 11 pixels so that we can establish a scale for the office area.
If the robot’s radius is 1 ft then the office would have a 4628 ft2 area. This is a realistic
size for the robot and office.

11.1.2 A FIRST ATTEMPT

The first algorithm we will try is a simple one where we will make the robot roam ran-
domly around the area (as in Chap. 5) while avoiding obstacles. Figure 11.2 shows the
code for the subroutine MoveRobot. This subroutine replaces the one in the base program
of Fig. 11.1. 

The code of this subroutine makes the robot move around while avoiding obstacles,
using a combination of the infrared sensors and the bumper sensors. This combination
will work in most cases and will enable the robot to avoid small objects such as chair legs.
Also the use of random numbers allows for avoiding a situation where the robot becomes
stuck repeating the same sequence of moves.

Notice that instead of using rForward 1 directly inside MoveRobot we call a subrou-
tine ForwardRobot. For now this code forwards the robot one pixel, but this routine will
accomplish more complicated actions with later improvements of the algorithm.

When you run the program you will notice that this algorithm does not prevent the robot
from going over an area that has already been vacuumed. You will also notice that the
robot may eventually get in a situation where it is repeatedly vacuuming the same area.

11.1.3 AN IMPROVEMENT

A possible improvement for the algorithm of Fig. 11.2 is to minimize the possibility of
going over an area that has already been vacuumed. With a real robot this might be diffi-
cult to achieve with simple sensors. One possible way is to have a method of monitoring
the level of dirt being sucked by the vacuum pump. Another, less desirable way, is to spray
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MainProgram:
  gosub DrawOffice 
  gosub InitRobot 
  gosub MoveRobot 
End
//===============================================================
InitRobot:
  RR = 11 
  LnClr = Cyan  //Line Color 
  rlocate 400,300,random(360),RR 
  rInvisible LnClr 
  rpen down 
  linewidth (RR-3)*2 
Return
//===============================================================
DrawOffice:
  LineWidth 15
  Data Walls;-165,140,165,0,-357,245,0,245,-590,513,590,600 
  Data Walls;-165,140,255,140,-360,140,517,140 
  Data Walls;-644,140,797,140,-517,140,517,0,-474,245,699,245 
  Data Walls;-474,246,474,419,797,419,-357,247,357,470,113,470 
  MPolygon Walls 
  Cabinet_H = "rrrddddllluuuu" 
  Cabinet_V = "dddlllluuurrrr" 
  Desk_H    = "rrrrrrrrrrdddddlllluuuulllllddddluuuuu" 
  Desk_V    = "ddddddddddllllluuuurrrruuuuullllurrrrr" 
  LineWidth 1 
  //Desks & Cabinets Locations 
  Data Furniture; "CH",478,0,"CH",597,559,"CH",769,370 
  Data Furniture; "CH",0,252,"CH",551,559,"CH",0,0 
  Data Furniture; "CV",564,0,"CV",40,569,"CV",214,569 
  Data Furniture; "CV",548,569,"CV",169,569,"CV",156,0 
  Data Furniture; "DV",348,300,"DV",800,496,"DV",800,0 
  Data Furniture; "DH",481,252,"DH",259,0 
  //Draw them 
  for I = 0 to MaxDim(Furniture,1)-1 step 3 
    if Furniture[I] = "CH" then ss = Cabinet_H 
    if Furniture[I] = "DH" then ss = Desk_H 
    if Furniture[I] = "CV" then ss = Cabinet_V 
    if Furniture[I] = "DV" then ss = Desk_V 
    DrawShape ss,Furniture[I+1],Furniture[I+2],10 
  next 

  //Shade them 
  Data FF_Furniture;10,-17,10,-271,488,-21,573,-579,782,-395
  Data FF_Furniture; 612,-585,140,-19,544,-24,22,-584,151 
  Data FF_Furniture; -586,198,-580,530,-591,337,-34,776,-80 
  Data FF_Furniture; 323,-388, 565,-274, 772,-580 
  MPolygon FF_Furniture,gray 
  //Tables 
  Circle 59,69,109,119,darkgray,darkgray 
  Circle 118,329,168,379,darkgray,darkgray 
  //Chairs 
  Data Chairs;275,67,699,16,500,319,245,316,693,512,75,279 
  for I = 0 to MaxDim(Chairs,1)-1 step 2 
     X = Chairs[I] 
     Y = Chairs[I+1] 
     Sp = 35  //leg spacing 
     LD = 4   //leg diameter 

FIGURE 11.1 Base program.
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the ground with a disinfectant powder that can also be sensed by the robot (perhaps with
ultraviolet light). 

We will simulate the ability of the robot to sense an already cleaned area by sensing
the line drawn by the robot. The method used in real life is immaterial so long as the robot
is given the ability to decide if it has already vacuumed the area it is currently over.

You have seen in Chap. 9 how to build a specialized ground sensor system to sense a
drop off. In this chapter we will do exactly the same arrangement but instead of looking
for a drop off the robot will be sensing for the color drawn by the pen. The value returned
by the subroutine will be used to decide whether to do a left or right turn while moving
forward, in order to move away from an already vacuumed area. This algorithm modifies

     Cl = Brown  //color for legs 
     Circle X,Y,X+LD,Y+LD,Cl,Cl 
     Circle X+Sp,Y,X+Sp+LD,Y+LD,Cl,Cl 
     Circle X,Y+Sp,X+LD,Y+Sp+LD,Cl,Cl 
     Circle X+Sp,Y+Sp,X+Sp+LD,Y+Sp+LD,Cl,Cl 
  next 
Return
//===============================================================
MoveRobot:
   //left blank for now 
Return
//===============================================================

MoveRobot:
  m =1 
  while true 
     F = rFeel() 
     if F 
       if F&3 and not(F&24)
            m = -1 
       elseif F&24 and not(F&3) 
             m = 1 
       elseif F=4
           m = -1 
           if random(10000) < 5000 then m = 1 
       endif 
       rTurn m*(random(4000)/1000+1) 
     endif 
     while rBumper()&4
        rturn m 
     wend 
     gosub ForwardRobot 
  wend 
return
//===========================================================
ForwardRobot:
   rForward 1 
Return
//===========================================================

FIGURE 11.1 (Continued )

FIGURE 11.2 First-attempt algorithm.
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the ForwardRobot subroutine to use the TestSensors subroutine. The idea is to test to
see if the robot is over an area painted by the pen (using color LnClr). When the sensors
give an indication of where there is color, we make the robot turn a percentage of the
time away from a painted area and toward a nonpainted area. This percentage of time
will be increased the more time the robot spends over a partially or fully painted area but
only up to some maximum amount. 

The turn quantity will be increased every time the robot is totally surrounded by a
painted area up to some maximum value. If the robot is totally surrounded by a nonpainted
area the turn direction will be set to 0. Also, the turn amount will be set back to 1.
Additionally the percent of time to do a turn will be reset back to 0.

If the robot is partially surrounded by a painted area the turn direction is set to turn
away from the painted area. If the painted area is straight ahead of the robot, or the robot
is totally surrounded by a painted area, the turn direction is randomized.

For additional randomness and effectiveness, the percent of time to turn is reset to 0
at a certain percentage of time. This avoids turning in circles forever if the area becomes
almost fully covered.

FIGURE 11.3 Result of running the program in Figs. 11.1 and 11.2 combined. Notice the
Robot under the desk. It has managed to enter between the chair legs to clean under the desk.
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To summarize:

• The robot will test to see if and how it is surrounded by a previously vacuumed area.
• The robot will turn in a direction away from the painted area or in a random direction

if it is fully surrounded or the area is straight ahead.
• Turning will only occur a certain percentage of the time. This percentage will increase

the more time the robot spends over painted areas, but only to a maximum amount.
This value will be reset to 0 on occasion and when the robot is fully surrounded by an
unvacuumed area.

• The turn amount will increase every time the robot is completely surrounded by a vac-
uumed area, but only to a maximum amount. Also this value will be reset to 1 every
time the robot is surrounded by an unvacuumed area.

• No turning will occur if an unvacuumed area surrounds the robot.

Place the code in Fig. 11.4a at the top of the base program in Fig. 11.1, just before
the label MainProgram. These values will greatly affect the behavior of the algorithm
described above and implemented by Fig. 11.4b. Try experimenting with them.

Figure 11.4b shows the replacement subroutine ForwardRobot that should replace the
one in Fig. 11.2. The subroutine TestSensors is new. Combine Figs. 11.1, 11.2, 11.4a,
and 11.4b (replacing the old subroutines) and run the program (see Fig. 11.5). Notice how
the robot turns away from a vacuumed area. Compare the effectiveness of this algorithm
to the previous one.

11.1.4 FURTHER IMPROVEMENTS

A possible improvement to this algorithm is to follow the contour of the objects it encoun-
ters instead of just avoiding them. We will explore this possibility in the next section on
mowing with the robot.

Currently in the MoveRobot subroutine (Fig. 11.2) when the robot encounters an
obstacle head on it turns in a random direction. If we change this behavior in such a way
as to turn away from a covered area instead of a random direction, the robot would be
turning to cover more area in less time. Unfortunately, this may cause the robot to get
stuck endlessly repeating the same behavior. Some means of detecting the situation will
be needed to trigger a different behavior to free the robot (you will see an example of this
in Chap. 12).

//---Variables
   TurnDirection = 0 
   TurnAmount    = 1 
   MaxTurnAmount = 3 

   ResetPercentTime   = 1 
   MaxTurnPercentTime = 30 
   TurnPercentTime    = 0 

FIGURE 11.4a Place this code at the top of the base program of Fig. 11.1.
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ForwardRobot:
  rForward 1 
  //now see if we need to turn too 
  gosub TestSensors 
  if Sensors = 0  //fully new area 
    TurnPercentTime = 0 //recent %time 
    TurnDirection = 0  //no turn 
    TurnAmount = 1     //reset amount 
  else 
    //increment %time but to a maximum 
    TurnPercentTime = TurnPercentTime+1 
    if TurnPercentTime > MaxTurnPercentTime 
       TurnPercentTime = MaxTurnPercentTime 
    endif
    //turn right unless we need to turn left 
    TurnDirection = 1 
    if Sensors = 31   //fully old area 
      //increment turn amount but to a maximum 
      TurnAmount = TurnAmount+1 
      if TurnAmount > MaxTurnAmount 
         TurnAmount = MaxTurnAmount 
      endif 
      //random turn direction 
      if random(10000) < 5000 then TurnDirection = -1 
    elseif Sensors&3 and not(Sensors&24) 
      //if painted area on right turn left 
      //no need to check for left since turndir is set to 
      //right by default 
      TurnDirection = -1 
    elseif Sensors = 4
      //if painted area is only straight ahead 
      //randomize the direction 
      if random(10000) < 5000 then TurnDirection = -1
    endif 
  endif 
  //if not correct percent of time
  //turn off turning 
  if random(100000) > 100000%TurnPercentTime 
     TurnDirection = 0 
  endif 
  //reset the %time for turning on occasion 
  if random(100000) < 100000%ResetPercentTime 
     TurnPercentTime = 0 
  endif 
  //make the turn if required 
  if TurnDirection <> 0 
     rTurn sign(TurnDirection)*TurnAmount 
  endif 
Return
//===========================================================
//-- Creates 5 ground sensors 
//-- at +/-90, +/-45 and 0 degrees 
TestSensors:
  Sensors = 0 
  for TS_i = 0 to 4 
     if rGroundA(90-TS_i*45) = LnClr 
        Sensors = Sensors | (2^TS_i) 
     endif 
  next 
Return
//===========================================================

FIGURE 11.4b A better-coverage algorithm.
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11.2 Mowing Robot
In this section we want to use the robot to mow a lawn. As you have seen in Chap. 9,
there are a variety of techniques to confine the robot to an area. We will use the confin-
ing method proposed in Sec. 9.1 to limit the robot to the area of the lawn.

We will also use the method in the previous section of this chapter to reduce the like-
lihood of the robot covering over an already mowed area. Additionally, the methods in
Chap. 8 will be used to make the robot cover the perimeter around trees and flowerbeds
more efficiently.

With a real lawn-mowing robot there are a variety of methods to test if the robot is over
an area that has already been mowed. Sensing the grass height is one way. Another method
is to check the load on the mowing motor. If the current being drawn is higher than a thresh-
old value then the grass is still being mowed, but if it is lower, then the blades are not find-
ing resistance while rotating indicating the grass is already cut. A third method might be
to measure the amount of clippings going through a discharge system. Whatever method
is used in real life, the outcome is that the robot can gauge if it is over an already cut area
or not. This will be simulated by using the pen on the robot to leave a trace behind it (using
the color LnClr) and then sense for this color as we did in the previous section.

FIGURE 11.5 Nearly full coverage in a much shorter time.
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11.2.1 THE SPECIFICATIONS

In order to create an effective lawn-mowing algorithm we need the following:

• A confinement algorithm
• A roaming algorithm
• Obstacle avoidance
• Obstacle contour following
• Minimum visiting of already covered areas

We have already covered all of the above behaviors in this and previous chapters. All
that is needed in this algorithm is to combine all the behaviors into one program. However,
the combination is not a simple matter of placing the routines in the same program.
Some of the routines will have to be modified slightly to accommodate the others. Also,
the conditions for changing from one behavior to another must be considered carefully.

11.2.2 THE PROGRAM

Notice that the program in Fig. 11.6 has many subroutines that look familiar. Many of
the subroutines are ones you have seen before without any change. Others have been mod-
ified. We will discuss each routine in turn.

11.2.2.1 MainProgram, IntitRobot, and DrawLawn The MainProgram calls
each routine in turn. Since the lawn is light green in color, the robot needs to know that
this color is not an obstacle. This is done with the rInvisible command.

The variables assigned above the MainProgram label should look familiar. The only new
value is the variable BrdrClr, which is used to assign the color used by the border avoid-
ance logic discussed later. InitRobot is the same as in Sec. 11.2, but some variables have
been moved up above the main program. This is done to put all variables that you might
want to modify (in order to tweak the algorithm) in one place.

The DrawLawn routine is simple enough. We make use of the Data and mPolygon
commands to draw the lawn and some tree beds and a flowerbed. The tree beds and
flowerbeds will be considered as objects to be avoided.

11.2.2.2 ForwardRobot and TestSensors These two subroutines are exactly the
same as seen in Sec. 11.2. They perform the same actions and are used in the same way
as before, study them to review the details.

11.2.2.3 CheckBorder This subroutine uses the TestSensors routine to check for
the border color. First, we swap LnClr with BrdrClr so that we can check for the border,
then the result of the operation is saved in the Borders variable. We then swap the colors
again to restore the original LnClr to what it should be. The variable Borders, indicates
how the robot is approaching the border. This is similar to the way the robot avoided a
drop off in Chap. 9. This subroutine will be used in the routine MoveRobot (discussed
below). The reason for swapping colors is so that we can use TestSensors, which, as you
see from the listing, is using LnClr as a color to check for. Thus we need to swap LnClr
with BrdrClr so that we can check for the BrdrClr. We need to swap back so that the
routine will check for LnClr again when used by other routines.
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//---Variables
   TurnDirection      = 0 
   TurnAmount         = 1 
   MaxTurnAmount      = 3 
   ResetPercentTime   = 1 
   MaxTurnPercentTime = 30 
   TurnPercentTime    = 0 
   RR      = 15    //robot's radius 
   LnClr   = Cyan  //pen color 
   BrdrClr = white //border color 
//==========================================================
MainProgram:
  gosub DrawLawn 
  gosub InitRobot 
  gosub MoveRobot 
End
//==========================================================
InitRobot:
  rlocate 400,300,30,RR 
  rInvisible LnClr,LightGreen 
  rpen down 
  linewidth (RR-2)*2 
Return
//==========================================================
DrawLawn:
    ClearScr Red 
    LineWidth 4 
    SetColor white 
    Data Lawn; -44,  58,  173,  28,  534,  45 
    Data Lawn; 753, 182,  744, 516,  520, 510 
    Data Lawn; 402, 574,  401, 574,   60, 552 
    Data Lawn;  35, 406,   43,  59,  589, -255 
    MPolygon Lawn,lightgreen 
    FloodFill 0,0,white 

    LineWidth 2 
    SetColor black 
    Data FlowerBed; -589, 255,  566, 228,  510, 209 
    Data FlowerBed;  442, 218,  424, 245,  426, 284 
    Data FlowerBed;  459, 296,  500, 281,  519, 280 
    Data FlowerBed;  534, 290,  550, 305,  577, 306 
    Data FlowerBed;  602, 283,  589, 256,  521,-271 
    MPolygon FlowerBed,brown 

    Data Trees; 129, 453,  257, 280,  90, 245 
    Data Trees; 182, 134,  600, 400, 316, 450 
    Data Trees; 391,  94 
    DP_D = 50 
    for DP_I = 0 to MaxDim(Trees,1)-1  Step 2 
         DP_X = Trees[DP_I] 
         DP_Y = Trees[DP_I+1] 
         Circle DP_X,DP_Y,DP_X+DP_D,DP_Y+DP_D,black,brown 
    next
Return
//==========================================================
01 MoveRobot: 
02   m =1 
03   while true 

FIGURE 11.6 Lawn-mowing program.
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04     gosub CheckBorder 
05     if Borders 
06       if Borders & 24 and not(Borders & 3) 
07          rTurn (45+random(45)) 
08       elseif Borders & 3 and not(Borders & 24) 
09          rTurn -(45+random(45)) 
10       else
11          gosub Reverse 
12       endif 
13     else 
14       F = rFeel() 
15       if F 
16         if F&3 and not(F&24)
17            m = -1 
18         elseif F&24 and not(F&3) 
19            m = 1 
20         else
21            m = -1 
22            if random(10000) < 5000 then m = 1 
23         endif 
24         rTurn m*(random(4000)/1000+1) 
25       endif
26     endif 
27     if (rBumper()&4) or (rFeel()&12) 
28         TurnDir = -1  //left 
29         gosub WallFollow 
30     elseif (rBumper()&4) or (rFeel()&6) 
31         TurnDir = 1  //right 
32         gosub WallFollow 
33     endif 
34     while rBumper()&4
35       rturn m 
36     wend 
37     gosub ForwardRobot 
38   wend 
39 return 
//==========================================================
ForwardRobot:
  rForward 1 
  //now see if we need to turn too 
  gosub TestSensors 
  if Sensors = 0  //fully new area 
    TurnPercentTime = 0 //recent %time 
    TurnDirection = 0  //no turn 
    TurnAmount = 1     //reset amount 
  else 
    //increment %time but to a maximum 
    TurnPercentTime = TurnPercentTime+1 
    if TurnPercentTime > MaxTurnPercentTime 
       TurnPercentTime = MaxTurnPercentTime 
    endif 
    //turn right unless we need to turn left 
    TurnDirection = 1 
    if Sensors = 31   //fully old area 
      //increment turn amount but to a maximum 
      TurnAmount = TurnAmount+1 

FIGURE 11.6 (Continued )
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      if TurnAmount > MaxTurnAmount 
         TurnAmount = MaxTurnAmount 
      endif
      //random turn direction 
      if random(10000) < 5000 then TurnDirection = -1 
    elseif Sensors&3 and not(Sensors&24) 
      //if painted area on right turn left 
      //no need to check for left since turndir is set to 
      //right by default 
      TurnDirection = -1 
    elseif Sensors = 4
      //if painted area is only straight ahead 
      //randomize the direction 
      if random(10000) < 5000 then TurnDirection = -1
    endif 
  endif 
  //if not correct percent of time
  //turn off turning 
  if random(100000) > 100000%TurnPercentTime 
     TurnDirection = 0 
  endif 
  //reset the %time for turning on occasion 
  if random(100000) < 100000%ResetPercentTime 
     TurnPercentTime = 0 
  endif 
  //make the turn if required 
  if TurnDirection <> 0 
     rTurn sign(TurnDirection)*TurnAmount 
  endif 
Return
//==========================================================
//-- Creates 5 ground sensors 
//-- at +/-90, +/-45 and 0 degrees 
TestSensors:
  Sensors = 0 
  for i = 0 to 4 
     if rGroundA(90-i*45) = LnClr 
        Sensors = Sensors | (2^i) 
     endif 
  next 
return
//==========================================================
CheckBorder:
   Swap BrdrClr,LnClr
   gosub TestSensors 
   Swap BrdrClr,LnClr
   Borders = Sensors 
return
//==========================================================
Reverse:
  for i = 1 to (random(10)+10)
    if rBumper() & 1 then break 
    rForward -1 
  next 
  if random(1000) >= 500 
    rTurn 90-random(45) 
  else 

FIGURE 11.6 (Continued )
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11.2.2.4 Reverse This subroutine is exactly the same as the one in Chap. 9. It is used
to avoid the border if the robot approaches the border head on. You will see how it is used
in the MoveRobot subroutine.

11.2.2.5 WallFollow This routine is similar to what you have seen in Chap. 8. It will
be used to follow around the contour of flowerbeds and tree beds. The contours can be
followed to the left or to the right depending on the variable TurnDir (negative is to the
left and positive is to the right). You will see how this is done in the discussion about the
MoveRobot routine.

The wall-following behavior can go on forever if we do not have a way of stopping.
We do this by using the rSense() function to see if the robot is going over a painted
(already mowed) area. If so, the wall-following behavior will be abandoned. Also the rou-
tine is terminated if the robot encounters an obstacle while it is following the contour (a
dead end). 

11.2.2.6 MoveRobot This is the overall coordinating behavior that controls the
robot’s movement and triggers what other behaviors ought to take place. The idea is to
roam around forever. If a border is encountered then avoid it. If an obstacle is encoun-
tered then follow its contour. 

As in Sec. 11.2 we try to minimize going over a previously mowed area. This is done
in the same manner as before with the aide of the ForwardRobot and TestSensors sub-
routines (Line 35). Lines 4 to 13 test to see if there is a border violation. If there is no
border violation then we test to see if there is an obstacle (the else block). The call to
the CheckBorder subroutine (Line 4) assigns a value to the variable Borders that indicates
how the border is being approached. If the border is to the left of the robot then it turns
to the right and if it is to the right it turns left. The amount of turn is randomized, but no

WallFollow:
  rTurn TurnDir*random(150) 
  while not rSense() 
    while (rFeel() & 6) or (rBumper() &6) 
      rTurn TurnDir 
    wend 
    if rBumper() &4 then return 
    rForward 1  // forward always to prevent stall 
    if rFeel()=1 or rFeel()=0  // too far from wall or no wall 
      while not rFeel() // turn back quickly to find wall again 
        rTurn -TurnDir*5 
        rForward 1 
      wend 
    endif 
  wend 
return
//==========================================================

    rTurn -90+random(45) 
  endif 
return

//==========================================================

FIGURE 11.6 (Continued )
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less than 45� and no more than 90�. In any other border combination the robot reverses
away from the border and executes a turn of a random amount and direction. This is
achieved by using the Reverse subroutine.

If the robot does not see a border it will test for an obstacle (Lines 14–25). If an obsta-
cle is to the right it turns left or if it is to the left it turns right, otherwise it turns in a random
direction. The amount of turn is randomized, but no more than 4�.

If the robot ever encounters an obstacle head on with the bumpers or the three front
infrared (0� and 
45�) sensors (Lines 27–33), then the wall-following behavior is triggered.
We decide on how to follow the contour of the obstacle (left or right) depending on which
infrared sensors are being triggered. The variable TurnDir is set to 	1 if a right turn is to
be performed or �1 if left, then the WallFollow subroutine is called to do the wall-
following action. The subroutine WallFollow will end if the robot sees that it is going over
a painted area while following around the obstacle. This brings the program flow back to
Line 34. The routine then tests to see if there is an obstacle still causing the front bumper
to close. If so, the robot turns to avoid the obstacle. The turn direction is the same as the
last time it was turning to avoid any obstacle detected by the infrared sensors (Lines
34–36). Figure 11.7 shows the result of the program in Fig. 11.6.

FIGURE 11.7 Lawn-mowing robot.
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11.2.3 A SHORTCOMING 

In the DrawLawn subroutine right after the last Data statement add this statement:

Data Trees; 600, 450

Now run the program and see what happens when the robot encounters a tree. You
may have to wait a little while. The robot will try to follow the contour of the new tree
bed. However, while it is doing so it will exit the boundary of the lawn. If you notice the
tree is right at the border. The robot does not seem to heed the boundary (see Fig. 11.8).
Why is that?

The wall-following subroutine does not have any code to prevent the robot from exit-
ing the boundary and if the contour following causes the robot to exit the boundary it will
not be stopped from doing so. We need to incorporate boundary checking in the wall-
following behavior. Can you do this with all the routines at your disposal? This is an excel-
lent example of how a reasonably well thought out algorithm can fail in an unanticipated
situation. Additionally, this situation illustrates the vital role a simulator can play in the
research and development stage. The simulator facilitates changing the environment to
make it as complex and as varied as possible. Many variations can be tested with ease.

FIGURE 11.8 Notice the robot has exited the boundary on the bottom right hand.
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11.3 Further Thoughts
You may have observed certain limitations in the algorithms we have developed, and you
may even have pondered certain questions. In this section we will discuss some issues and
philosophize about possible solutions.

11.3.1 CONSIDERING THE BATTERIES

In this chapter we have not paid any attention to the battery charge level while the robot
was doing its task. This, of course, is not possible in real life. In Chap. 13 we will explore
methods for charging the robot’s batteries.

Consider the office-sweeping situation. The robot has finally managed to work its way
into a section where it has not yet vacuumed effectively. Suddenly, it has to abandon its
work and seek a charging station. The station is located in the area that has been effec-
tively vacuumed. The robot goes there and recharges itself. After it gets a full charge, it
starts the vacuuming behavior, which now has to start in the already vacuumed area until
the algorithm causes it to go to the unvacuumed area. If this takes awhile, the robot may
need to recharge again.

You can see that this situation leaves a lot to be desired. One solution is to have mul-
tiple recharging stations and allow the robot to recharge itself at the station that is within
the area that still has to be vacuumed. This way when it finishes recharging it can start its
work in the same area that needs vacuuming.

Another solution is to enable the robot to save the position where it stopped vacuum-
ing. Also it needs to save the path it took to the recharging point. Once it finishes charg-
ing it will retrace its path back to the saved position before it starts the sweeping behavior
again. This way the time spent outside the uncovered area is minimized.

The algorithms given in this chapter will require some modification to make them work
in the situation described above. In later chapters you will see many algorithms that can
be used to achieve solutions for the above dilemmas.

11.3.2 LIMITED COVERAGE AROUND OBSTACLES

In both the office and lawn examples you can see that it is hard for the robot to cover areas
close to walls and around the contours of obstacles. If you look at Fig. 11.5 you will notice
that the robot has vacuumed under the desk on the bottom left, but has left a lot of white
space. This is a limitation of the apparatus used to do the vacuuming. We could equip the
robot with a specialized nozzle to vacuum in corners and around skirting, but this would
be difficult to manage.

Also in Fig. 11.7 you will notice that around flowerbeds and trees the robot was not
able to mow the grass effectively. This is also a limitation of real lawn mowers and is why
humans use specialized devices for doing the work around such places. The robot could
be equipped with such a device, or even a specialized robot could be used to go around
behind the first robot to do this job. Notice how using the simulator can help you under-
stand the problems you would face if you actually built a real robot mower.
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11.3.3 USING GPS GRIDS

In the algorithms above we tried to minimize time spent over previously covered areas and
we employed randomness and some programming techniques to do so. Nevertheless, the
robot did spend a lot of its time over previously visited areas. The possibility of this hap-
pening becomes progressively higher as more of the area is covered. This means that an
increasing percentage of the robot’s time is wasted and battery utilization becomes less
efficient.

One way to alleviate this problem is to employ multiple robots and assign each a smaller
area. However, this would be expensive in hardware. Another way is to use the same robot
but divide the entire area into grids. The robot then sweeps each grid in turn, moving from
one grid to another after it has finished the work for the one it is currently in.

The grid system does not need to be delineated by any kind of physical devices or bar-
riers. Rather, it would be a set of coordinates saved in the robot’s memory. The robot would
use its GPS (or LPS) to decide how to navigate from one grid to another and which grids
still require visiting. The problem of finding the battery charger when needed would
become trivial, since the robot can be given the coordinates of the charging station. 

Another approach is to divide the area into small square grids delimited by RFIDs
(radio frequency identification devices). The robot can then note in its memory that it is
within grid N and know that this grid has or has not been vacuumed. Also the robot can
have a preplanned procedure for how to move among the grids. RobotBASIC’s
rSense() function (line sensors) can be used to simulate RFID detectors.

11.3.4 A REALITY CHECK

The algorithms in this chapter are experiments and not real solutions. Robots that mow
and vacuum are on the frontiers of technology. Certainly, they are a very good idea, but
in a real home or office environment there are numerous obstacles that can hinder any
robot from effectively vacuuming the floor.

In lawn mowing we have not considered safety issues such as children or animals run-
ning in front of the robot. We did not consider the issues of a steep sloped garden, nor
gardens with pathways.

There are a multitude of issues to consider in a real world robot that has to tackle such
tasks. Some of these problems may be very hard to resolve, but the ideas in this chapter
and the simulator can be used to experiment with possibilities.

11.4 Summary
In this chapter you have learned:

� How to combine routines and methodologies from previous chapters to allow the robot
to perform useful work.

� How the rPen feature can be used to provide visual feedback on the effectiveness of an
algorithm. You have also seen how the pen can be used to simulate further functionalities.
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� How the utilization of randomization can improve the effectiveness of algorithms.
� How the DrawShape command can be used to easily draw complex objects on the

screen.
� Further uses of arrays and the Data command.

Now, try to do the exercises in the next section. If you have difficulty read the hints.

11.5 Exercises
1. In the algorithm of Sec. 11.1 we did not implement wall following. Add wall-following

to the program.

2. The wall-following subroutine in Fig. 11.6 uses the rFeel() function to sense the
walls. This causes the robot to stay further away from the walls than might be desir-
able in this application. In Chap. 8 (Sec. 8.4) the rRange(ExprN) function was used
to control the distance from the wall. Change the WallFollow subroutine in this chap-
ter to use the one in Fig. 8.8 of Chap. 8.

3. Try to modify WallFollow as discussed in Sec. 11.2.3.

4. After studying the problems and solutions in this chapter, try to design your own algo-
rithm for handling a mowing or sweeping problem. Perhaps your algorithm could try
to mow each new path while slightly overlapping a previous path. Maybe your robot
could work in spirals to cover a selected area efficiently. Or perhaps you have a unique
idea of your own.

HINT: See Sec. 11.2.

HINT: Remember you will need to use a method to abort wall-following once the robot
has gone around the object.

HINT: You will need to use the CheckBorder subroutine to abandon the routine if
Borders is not zero.
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C H A P T E R12
LOCATING A GOAL

In the preceding chapters we had no fixed destination for the robot to go to. The robot
just moved around whether randomly, or following a line drawn on the floor, or around

an object, but with no final destination in mind. This kind of behavior has been useful in
applications such as mowing or sweeping areas that the robot can visit.

There are many applications where the robot will need to go from one point to another.
It would be simple enough to make the robot go to a point, as you have seen in Chap. 4,
if there are no obstacles in the way. However, if there are obstructions between the robot
and its target destination it will become necessary for the robot to circumnavigate the
obstructions while making headway toward the target. 

In this chapter, we will address two general methods for indicating to the robot where
to go:

➢ Using a marker beacon that hangs over the target position. The robot can see and
home in on this beacon.

➢ Giving the robot a GPS (global positioning system) unit and a compass along with
destination coordinates so it can calculate a path to the target and follow it.

Once the robot knows its path it will proceed toward the goal. When it encounters obsta-
cles it will have to momentarily abandon progress toward its destination and deal with the
obstruction. We will assume that there is at least one path that can lead from where the
robot is to the goal position. We will deal with situations where there might be no path in

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Chap. 14. Chapter 15 will deal with the more complex situation of moving from room
to room in a typical home or office. 

12.1 Using a Beacon
In this section, we are going to mark the desired destination by hanging a beacon above
it. Since the beacon is high in the air, the robot is able to see it even if there are objects
on the floor between the robot and the goal point. If the beacon is a flashing light, either
visible or infrared, a real robot could use circuitry capable of recognizing a particular fre-
quency to detect it. 

A robot with a camera aimed slightly upward could detect a beacon of a specified color
and even use triangulation to estimate how far it is from the robot. In our simulation, we
will assume the robot has a means of detecting a beacon of a specific color using a direc-
tional sensor aimed along the robot’s heading.

12.1.1 THE ALGORITHM

In order to develop the algorithm, imagine you are the robot. Assume you are in a clut-
tered room and have limited senses. To make you feel more like the robot, imagine that
the beacon is a bright-flashing light. Your eyes are closed so you can’t really see, but you
can detect the bright-flashing light when it is in front of you.

Your first action would be to turn around slowly until you face the flashing light. You
would then move forward toward the light, feeling ahead of you with your hands to make
sure you don’t bump into something (remember your eyes are closed).

If you bump into an object you try to go around it. Since you can’t actually see, this
is not a simple task. You could follow around the edge of the object until you think
you are around it (you don’t have any idea of how big the object is) and then try to
face the beacon again. If you repeat these steps over and over, you should eventually
arrive at the goal.

The subroutine in Fig. 12.1 shows the implementation of the algorithm discussed
above. The routine assumes there are subroutines that can accomplish the required tasks.
Each subroutine executes until its task is complete (or the robot has reached the beacon)
and then terminates. The loop ensures that the tasks are executed in turn, one after the
other repeatedly, until the beacon is found. We will discuss each routine in the following
sections.

FindBeacon:
  repeat 
    gosub FaceBeacon 
    gosub ForwardTillBlocked 
    TurnDir = 1 
    gosub GoAround 
  until BeaconFound 
Return

FIGURE 12.1 This subroutine locates and finds the beacon.
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12.1.2 THE MAIN PROGRAM

The main program sets up an environment with obstacles and then starts the goal-seeking
behavior (Fig. 12.2). The subroutine SetEnvironment (see below) sets the environment
and places the robot and beacon at random positions.

In order to test the algorithm we need to run the program several times to see if any
obstacle arrangement can baffle the code and cause the robot to fail to reach the goal.
We could do this by manually running the program many times. A better way, though, is
to have the main program repeat the sequence of creating a random environment and
locating the goal in an endless loop.

12.1.3 CREATING A CLUTTERED ROOM

The subroutine in Fig. 12.3 clears the screen then draws three circles and three squares (exper-
iment with more or less). The size and location of each object is chosen randomly. This makes
the environment full of obstacles at random positions that can be hard to circumnavigate. 

The robot is located at a random position on the left side of the screen and the beacon
(a red circle) at a random position on the right side.

MainProgram:
  while true 
    gosub SetEnvironment 
    gosub FindBeacon 
  wend 
End

SetEnvironment:
  ClearScr 
  // Draw three circles and three squares 
  for i=1 to 3 
    SetColor Black 
    LineWidth 4 
    x = random(450) + 100 
    y = random(300)+100 
    size = random(50)+50 
    Circle x,y,x+size,y+size 
    x = Random(450)+100 
    y = Random(300)+100 
    size = random(100)+50 
    Rectangle x,y,x+size,y+size 
  next 
  // place robot 
  rLocate 25,Random(350)+100 
  rInvisible Red 
  // place beacon 
  bx =750 
  by = Random(350)+100 
  Circle bx-10,by-10,bx+10,by+10,red,red 
Return

FIGURE 12.2 A while-loop causes the program to test the algorithm repeatedly.

FIGURE 12.3 Creates a cluttered room and places the robot and beacon at
random positions.
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12.1.4 FACING THE BEACON

The rBeacon(color) function in RobotBASIC is used to locate a beacon of a specified color.
It returns zero (false) if the beacon is not directly in front of the robot. If the beacon is
directly ahead of the robot, the function returns the distance to the beacon. You can con-
sider the number returned as a nonzero number and therefore is equivalent to being true.
This means that you can use the function to test if the beacon is directly ahead of the robot
or not. However the function can also be used to return the distance to the beacon. This
can be useful in many situations, especially to determine when the robot has reached the
point under the beacon (see later). 

The function is usable to look for any color you specify as a parameter. Normally, the
robot will see colors on the screen as objects to be avoided. If you want the robot to assume
that objects of the beacon color are in the air and thus cannot cause collisions, you need
to issue the rInvisible color statement listing the appropriate color. This statement
tells the robot that the color being used as a beacon is not an obstacle. Figure 12.4 shows
how to create a function that turns the robot until the beacon is directly in front of it. The
expression not rBeacon(Red) is the same as saying:

rBeacon(Red) = false or rBeacon(Red) = 0

12.1.5 MOVING TOWARD THE BEACON

The subroutine ForwardTillBlocked, shown in Fig. 12.5, moves the robot forward until
it encounters an object or it reaches the beacon. The expression in the while-loop checks
for an obstacle with the three front infrared sensors and the front and side bumpers. The
subroutine CheckFound determines if the robot has reached the beacon and sets the vari-
able BeaconFound to true or false to indicate the current status. If the beacon has been
found the while-loop is exited with a Break statement. 

FaceBeacon:
  while not rBeacon(Red) 
    rTurn 1 
  wend 
Return

FIGURE 12.4 This subroutine turns the robot toward the beacon.

ForwardTillBlocked:
  while not (rFeel() & 14) AND not (rBumper() & 14) 
    rForward 1 
    gosub CheckFound 
    if BeaconFound Then break 
  wend 
Return

FIGURE 12.5 This code moves the robot forward until it reaches an object or
the beacon.
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12.1.6 GOING AROUND AN OBSTACLE

If the robot encounters an object, it needs to go around it. It is certainly possible to
develop many different ways to go around an object, but we already have one from
Chap. 8. All our robot needs to do is follow the edge of the object as if it were a wall.
However, if the code from Chap. 8 is used as it was written the robot would just con-
tinue to follow around the object forever. We need a way to tell it to stop when it has
reached the other side.

The robot has no easy way to determine when it has reached the other side of the
object. In fact, if there are other objects close by, the robot might not even be able to
get to the other side without causing a collision. An easy solution is to simply let the
robot follow the wall for a little while and stop. If you study Fig. 12.1 you will see that
if the robot stops too early it will just try to face the beacon again and start over.
Obviously, the robot does not have to follow the wall until it gets to the other side;
it only has to follow it for a reasonable length of time. The question is “How long is
reasonable?”

If the object is small, then a short time is best because we don’t want to go all the way
around the object. If we always use a short time though it is conceivable that some com-
bination of objects could occur that would trap the robot. This might happen if the robot
does not go far enough around the object to get a clear (or at least clearer) path to the
beacon. In such situations, the robot might simply continue to retrace its steps repeatedly
moving toward the goal until blocked, following the wall but not far enough, moving
toward the goal again, but essentially in the same situation as before.

One way to solve such a problem is to introduce some randomness into the robot’s
behavior. If you examine the code in Fig. 12.6 you will notice that it is the same as the
code in Chap. 8, but in place of a while-loop we are now using a for-loop. The
while-loop in Chap. 8 caused the robot to follow the wall forever. The for-loop
causes this code to be executed between 20 and 270 times. These numbers were

GoAround:
  If BeaconFound Then return 
  rTurn -random(150) 
  if TurnDir > 0
     FN  = 6 
  else 
     FN  = 12 
  endif 
  for i=1 to 20 + random(250) 
    while (rFeel() & FN) or (rBumper() &4) 
      rTurn -TurnDir 
    wend 
    rForward 1
    while not rFeel() 
      rTurn 5*TurnDir 
      rForward 1 
    wend 
  next 
Return

FIGURE 12.6 This code follows the contour of an obstacle for a random amount.
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chosen experimentally based on the general size and number of objects expected to be
in the room.

An if-statement at the beginning of the subroutine causes the routine to exit and not
attempt to follow a wall if the beacon has already been found. The line after the if-statement
is very important. It causes the robot to turn away from the wall a random amount
(0�–150�). This single statement prevents the robot from being stuck in many situations
because the random turning of the robot eventually puts it into an orientation where the
sensors allow it to move. Remove the line when you test this algorithm and you will see
the robot eventually encounter a situation where it cannot free itself. 

12.1.7 DETERMINING IF THE BEACON IS FOUND

The routine in Fig. 12.7 determines if the robot has reached the beacon. Remember the
rBeacon() function returns the distance to the beacon if it is directly ahead of the robot.
If the robot has just faced the beacon and the beacon is less than 20 pixels away then the
robot has reached the goal. Notice the use of the function Within(). We need to check
if the returned value from rBeacon() is not zero and also less than or equal to 20, so
the parameters for Within() are 1 and 20. The variable BeaconFound is then set to
true or false, depending on whether the beacon value is within 1 to 20 pixels from the
robot. Remember a value of 0 means the robot is not facing the beacon.

12.1.8 A POTENTIAL PROBLEM

Combine all the code from Figs. 12.1 to 12.7 into one file and run the program. The pro-
gram is almost perfect and executes properly nearly all the time. However, if you let it run
for an extended period, eventually the obstacles may be placed in such a combination where
it is possible for the robot to find its way into a cavity where it cannot escape. One possible
solution to this is shown in Fig. 12.8.

Replace the old FindBeacon routine with the new one in Fig. 12.8 and also add the
new routine UnStick as shown in Fig. 12.8 then run the new program. 

The basic premise of these additions to the algorithm is randomness. The new routine
FindBeacon counts the number of attempts to locate the beacon and after 20 attempts
it assumes it must be stuck and executes the subroutine UnStick, which executes a series
of random turns and moves. Notice that when this happens, the counter is reset to zero
so that after another 20 failed attempts the robot will again call UnStick. When you run
the new program long enough, the robot will appear to get stuck, but if you wait long
enough, it eventually frees itself by using this routine.

If a robot must deal with a totally unknown environment, especially if that environment
itself is randomly changing, the robot needs to have some randomness built into its behav-
ior. Without randomness there is no way to absolutely ensure that your algorithm will be
able to handle the infinite number of possible situations that can occur.

CheckFound:
  BeaconFound = Within(rBeacon(Red),1,20)
Return

FIGURE 12.7 This code determines if the robot has reached the beacon.
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12.2 Using a Beacon and Camera
Adding randomness to the code is an effective way to handle unknown situations (i.e., try
something new). We can improve the algorithm further if we use the rLook() function.
If you recall, in Fig. 12.6 we used a for-loop to make the robot follow the wall a random
distance before trying to face the beacon again. If you run the program you will see that
sometimes, when the robot has chosen to follow the wall for a long distance, it will actu-
ally pass by the beacon without noticing it. This happens because the robot does not check
to see if it has a free path to the goal point while it is following the contour of the obstacle.

If after finishing the wall-following, the robot happens to end up on the same side as
the goal (cleared the object), the robot is able to look around, see the beacon, and go to
it. Unfortunately, sometimes the robot goes too far around the object and ends up with
the object still between it and the goal. If the robot had the means to check for a clear
path to the goal point while it was going around the object, it could proceed to the goal
at the first opportunity. 

The original algorithm worked due to the randomness built into the code and the fact
that the code repeats until it succeeds, but the robot does not look very intelligent when
the robot goes past the goal without noticing it.

Adding a camera to the robot’s sensory input can solve this problem. (The camera sensor
differs from the beacon sensor in that it cannot see the goal if there are objects blocking
its view). The idea is that while the robot is executing the GoAround subroutine, we use

FindBeacon:
  cnt=0 
  repeat 
    cnt=cnt+1 
    gosub FaceBeacon 
    if cnt <20 
      gosub ForwardTillBlocked 
      if (cnt=1) and (rFeel()&8) Then cnt=10 
      TurnDir = 1 
      gosub GoAround 
    else 
      gosub UnStick 
      cnt=0 
    endif 
  until BeaconFound 
Return
//===========================================================
UnStick:
  if Random(100)<50 Then rTurn 180 
  for i=0 to 100+random(200) 
    while not(rbumper()&14)
      rForward 1 
    wend
    rTurn Random(8)-3 
  next 
Return

FIGURE 12.8 This FindBeacon subroutine replaces the original and adds a
new subroutine called UnStick.
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the camera to constantly look for the goal. If the goal is seen, the GoAround subroutine
is terminated and the program flow returns to the FindBeacon routine where it will imme-
diately face the beacon and try to move to it. The robot will try but it may not succeed
because there could be an object partially blocking the path to the goal, even if there is a
clear line of sight to it. When this happens the robot simply resumes the wall-following
behavior. 

Figure 12.9 shows how the rLook() function can be incorporated to achieve the above
solution. Notice that the camera is looking for a blue object. It cannot look for the beacon
directly because the beacon is supposed to be up in the air. The rLook() function also
cannot see the beacon color (red) since it has been designated as invisible. Also it is use-
less to look for the beacon anyway since it can always be seen even if there are obstruc-
tions between the robot and the position directly below the beacon. 

What has to be done is to place a blue object below the beacon (marking the goal).
The camera (which faces straight ahead instead of being angled upward like the beacon
detector) can then be used to look for this object and if there is a clear line of sight (no
objects in the way) the rLook() function will see it. Adding the following line to the
very end of the SetEnvironment subroutine (Fig. 12.3 just before the Return statement)
achieves this: 

circle bx-7,by-7,bx+7,by+7,blue,blue

There is another improvement that can be made that may give the robot a little more
effectiveness. In the code so far we programmed the robot to always follow an object
clockwise (TurnDir � 1). We can allow the robot to follow the object counter-clockwise by
changing TurnDir to �1. But how should we decide to do this? We could do it on a

GoAround:
  If BeaconFound Then return 
  rTurn -random(150) 
  if TurnDir > 0
     FN  = 6 
  else 
     FN  = 12 
  endif 
  for i=1 to 20 + random(250) 
    while (rFeel() & FN) or (rBumper() &4) 
      if rLook()=Blue then Return 
      rTurn -TurnDir 
    wend 
    rForward 1 
    while not rFeel() 
      rTurn 5*TurnDir 
      rForward 1 
      if rLook()=Blue then Return 
    wend 
  next 
Return

FIGURE 12.9 This new routine watches for an object under the beacon as it
follows the wall.
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random basis, but it is important that the robot continues to follow the wall using the same
direction for a reasonable amount of time. See Exercise 2 below for more discussion on
how to achieve this.

12.3 Using a GPS and Compass
Using a beacon in the previous section was one way to indicate the desired destination to
the robot. Adding a GPS and a compass to the robot’s sensory capabilities opens up many
additional possibilities for effective navigation of the robot’s environment. We have seen
this approach in Chaps. 4 and 9 and we will use the GPS in coming chapters.

In this section we will investigate how to use the GPS to seek the goal rather than a
beacon. The two routines that will be changed are FaceBeacon and CheckFound.
Previously these routines used the beacon to do their work. They will be changed to use
the GPS to accomplish the same action. We will not rename the first routine so as not to
have to rewrite all the other code in the other routines. This means that to use the GPS
we only have to replace these two routines with the ones listed in Fig. 12.10. 

You have seen the code in Fig. 12.10 before in Chap. 4 and it was explained there so no
further explanation will be given here. The improvement given in Sec. 12.2 is still possible
without change. Also there is no need to change the subroutine SetEnvironment because
even though the beacon is no longer needed, there will be no harm in drawing it.

It might not be obvious why the number 50 was used in the subroutine CheckFound.
Remember that the GPS returns the position of the robot’s center. The robot has a radius
of 20 (by default), and if you look at the code in Fig. 12.3 you will see that we have given
the beacon a radius of 10. Additionally, remember that the rFeel() “function checks
for objects in a robot’s radius, away from the perimeter of the robot”. In order to prevent
the robot from colliding with the blue object at the goal point we assume that the robot
has reached the goal if it is 20 	 20 	 10 pixels away. 

FaceBeacon:
   dx = bx-rGpsX() 
   dy = by-rGpsY() 
   If dx=0 AND dy = 0 Then Return 
   Theta = PolarA(dx,dy)*180/pi()+90-rCompass() 
   if Theta > 180 then Theta = Theta-360 
   if Theta < -180 then Theta = Theta+360 
   rTurn Theta 
Return
//==========================================================
CheckFound:
  rGPS x,y 
  // remember beacon is at bx,by 
  if PolarR(x-bx,y-by)<50 
    BeaconFound = true 
  else 
    BeaconFound = false 
  endif 
Return

FIGURE 12.10 Using the GPS to face the goal and check if the robot is close.
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12.4 Summary
In this chapter you have:

� Learned how to make the robot reach a goal despite obstacles in the way.
� Learned that navigating from one place to another can be achieved by the use of

simple instruments and methods [rBeacon()] or by the use of more sophisticated
devices (rGps)

� Learned how simple behaviors can be linked together to form more complex
behaviors.

� Seen how previously developed routines can be slightly modified and incorporated with
other routines to achieve new behaviors and solve new challenges.

� Seen how randomness can be used to create unusual environments.
� Learned why randomness should play a role in many robot behaviors.

Now, try to do the exercises in the next section.

12.5 Exercises
1. The routine in Fig. 12.4 makes the robot always rotate clockwise when trying to face

the beacon. As we have set up the simulation, we know that the beacon should gen-
erally be east of the robot. The robot would look much more intelligent if it could decide
which way to turn based on its current compass heading. For example, if the robot’s
current heading is between 0� and 180� it should turn left when looking for the beacon.
Otherwise it should turn right. Even if you implement this idea successfully, the robot
may still turn the wrong way sometimes, but it will work better most of the time. Add
this behavior to the routine in Fig. 12.4.

2. Change the subroutine FindBeacon in Figs. 12.1 or 12.8 so that it reflects the algo-
rithm suggested at the beginning of Sec. 12.2. Decide through experimentation if
the robot should perform a fixed number of attempts in succession using the same
wall-following direction and then switch direction for the next set of attempts, or
if it should decide randomly which way to follow every time its movement is
blocked. Another way to decide on the direction is to consider how the robot is
approaching the object. If it is to the right then follow to the right and vice versa.
Another alternative would be to use the relative position of the beacon as a decid-
ing factor.

3. In the code of this chapter there was a lot of use of the color of the beacon (red) in
many lines of the code. If we desire to change the color of the beacon to, say yellow,
how many lines would have to be changed? Using the editor you can find and replace
all occurrences of red with yellow to accomplish the task. However, it is much better
programming practice to set a variable at the top of the program to say BeaconColor �

Red, and then instead of using the word red in the program code use this variable.
This way when you want to change the color you just change one line of code in one
place to assure that all lines are changed as desired. This concept applies to any other
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usage of constants in your programs. Change the code in this chapter to do this.
Parameters that affect the algorithm’s responses should be placed in variables at the
top of the program. Use these variables in the body of the program in place of the lit-
eral numbers. This way you can experiment with different parameters without having
to search for them in the body of the program. Do this with the various parameters
used in this chapter (an example is the parameters in CheckFound).
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C H A P T E R13
CHARGING THE BATTERY

No mechanical or electrical device can function without some form of energy to power
it. The sensors, motors, and computers in robots are mechanical, electrical, and elec-

tronic devices that need power to function. There are many ways an autonomous mobile
robot can be powered to be able to do its work:

➢ An engine that runs on some form of fuel (gasoline, hydrogen, propane, etc.) can gen-
erate the mechanical motive force to propel the robot, and also generate electricity
for powering the numerous electronics. This kind of robot would only be suitable out-
doors where the noise and exhaust fumes would do no harm. However, the fuel supply
would have to be replenished sooner or later.

➢ An umbilical cord that connects the robot to a power source and even a central com-
puter is a possible solution, however, this limits the robot’s ability to be autonomous
and the cord can create problems.

➢ Solar energy, in combination with a battery to provide the power for electrical motors
and all the electronics, is definitely an ideal solution. This solution is used on robots
like the Mars Rover. With this powering method the robot is able to move around for-
ever and would never need to seek a recharging station. However, this solution can
become expensive and we may need a hefty solar panel and access to effective light
energy (the sun or bright lights). 

➢ The standard method for most cases is a rechargeable battery that powers all the motors
and electronics. This battery may be lead-acid, lithium-ion, or any other type that pro-
vides a high energy to weight ratio. No matter how efficient these battery types are, they
still need to be recharged sooner or later from a source of electrical energy.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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In order for the robot in RobotBASIC to simulate a real robot we gave it a method for
simulating a battery that discharges and can be recharged. In this chapter we will exam-
ine ways of making our robot seek a recharging station whenever it senses that its battery
is in need of replenishing.

13.1 The Robot’s Battery
By default, our simulated robot does not care about the battery level. It will function
regardless of the battery’s charge condition. This enables us to not worry about the bat-
tery while developing and prototyping solutions for certain problems. However, to make
the simulation more realistic, we should consider the battery sooner or later. This is accom-
plished by ordering the simulated robot to not ignore the battery condition.

Every time you use a sensor [rBumper(), rFeel(), etc.] or when you issue commands
to make the robot move (rForward, rTurn) the robot’s battery discharges a little (motors
use twice as much power as sensors in the simulation). To oblige the robot to heed the
battery’s condition you have to issue the command:

rIgnoreCharge false

What happens if the robot runs out of battery charge and the command above has been
issued? Any commands to make the robot move or turn will cause an error and any func-
tions returning values from sensors will return useless data (see Sec. C.9). If you want the
robot to stop heeding the battery level execute the command again with the value true.

There are many ways to enable a robot in real life to detect the charge level on its bat-
tery. You could, for example, use a digital voltmeter to determine how much the battery
voltage drops when the battery is supplying current. Our robot has this ability by using a
function that returns the percentage of battery charge remaining. The statement below
assigns the remaining percentage charge to a variable B.

B = rChargeLevel()

If the battery is 70 percent depleted, B will have the value 30, indicating that there is
30 percent capacity remaining. 

Run the program in Fig. 13.1 and leave it running for a while. The program makes
the robot move back and forth on the screen and reports its battery charge level. Once

MainProgram:
   rLocate 50,200,90 
   rIgnoreCharge false 
   while true 
      XYString 3,3,"Charge=",rChargeLevel(),"%   " 
      rForward 700 
      rTurn 180 
   wend 
End

FIGURE 13.1 Discharging the battery.
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the battery is depleted the next statement that tries to make the robot move will cause an
error as shown in Fig. 13.2.

Real robots will have to connect themselves (or be connected) to a terminal to recharge
the battery, and the process may take hours. It serves no purpose for a simulator to sim-
ulate hours of recharging. Our robot can be recharged with the command:

rCharge ExprN

ExprN is an expression that results in a value between 1 and 100. If you pass a value
outside these limits RobotBASIC will assume the closer limit. 

This command instantaneously recharges the battery to the level you specify. Simulating
time delays or having to be at a particular place and orientation can be done program-
matically. The following sections will explore methods to accomplish this.

13.2 Real-World Charging
The battery must be removed from many robots in order to charge it. However, it would
be more convenient if the robot’s battery could be charged by just plugging the robot into
some mechanism without having to remove the battery at all. 

There are many situations where it would be desirable for the robot to be self-charging.
If the robot is to be fully autonomous it certainly ought to be able to:

1. Recognize that its battery needs a charge.
2. Abandon any action it is currently performing to seek a recharging station.
3. Reach the charging station promptly.
4. Orient it self correctly and dock with the charging outlet.
5. Monitor the charge level and wait until the battery is fully recharged.
6. Go back to performing its duties.

FIGURE 13.2 Battery depletion error.
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13.2.1 FINDING THE STATION

To enable the robot to find the charging station it can be marked with a beacon that is
visible to the robot from wherever it is likely to be while performing its duties. Another
way is to give the robot the GPS (global positioning system) coordinates of the station.
The robot can then use its GPS system to reach the station. In either case, the robot may
have to negotiate around obstacles and avoid objects while it is making progress toward
the station. 

Going from one spot to another while avoiding obstacles and objects was covered in
Chap. 12, and we will see how to negotiate around a complicated environment, such as
a house or office in Chap. 15. In this chapter we will assume that the robot is in the same
general area as the station and will only handle moving around obstacles.

13.2.2 THE CHARGING STATION

There can be many schemes to couple a robot to a charging station; the variety of methods
is only limited by your ingenuity. A simple method is to place electrodes on the back of
the robot at the same height as corresponding terminals on a battery charging station. In
order to make it easy for the robot to make contact with the terminals you could make
each terminal a 1-in2 copper or aluminum plate mounted on a spring. The spring ensures
a good connection when the robot backs into the charging station until its rear bumper
triggers, letting the spring-tension hold the terminals together.

The 1-in2 sized terminals would allow the robot a reasonable tolerance when approach-
ing the station. However, it is important that the robot approaches the charger at the cor-
rect angle otherwise a proper connection with the charger will not be possible.

13.2.3 ENSURING A PROPER APPROACH ANGLE

There are many ways to make sure the robot approaches the charger at the correct angle.
If the robot is equipped with a GPS and a compass it can approach the charging station
and orient it self using the GPS and compass. In this chapter however, we are going to
assume there is a line on the floor as shown in Fig. 13.3. A beacon is placed over the line
so the robot can locate it. Once it reaches the line, the robot follows it until it reaches the
charger. Notice how the line is shaped so that the robot will reach the charger regardless
of which direction it follows the line.

13.3 The Simulation
In the simulation we are going to let the robot randomly roam around the room (as in
Chap. 5). While roaming it will constantly monitor its battery charge level. If the battery
level drops below a specified threshold, the robot will abandon roaming to immediately
seek a charging station by triggering a goal following behavior (as in Chap. 12). The goal-
following behavior locates a beacon serving as a marker for the station. As you have seen
in Chap. 12, the robot homes in on the beacon avoiding obstacles by going around them
while it is making progress toward the beacon.
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As the robot approaches the beacon, it needs to check for the line on the floor.
When the line is acquired, the robot follows it (Chap. 7) until the charger is reached.
Upon reaching the charger, the robot turns around and backs into the charging sta-
tion for a proper docking procedure and charges the battery. Once the battery is
charged, the robot returns to randomly roaming the environment until it needs to find
the charger again.

13.3.1 SUBROUTINES HIERARCHY CHART

To achieve the behavior sequence described above we will use many of the subroutines
developed in earlier chapters. These routines will be changed slightly to allow for the cor-
rect flow of control from one behavior to another. The changes in the routines will be to
give them two additional abilities:

1. To recognize when to abort the behavior.
2. To check and/or display the battery charge level.

As your programs become progressively more complicated and subroutines become
numerous, the calling sequence becomes intertwined and harder to follow. A diagram of
the subroutines hierarchy is an indispensable aide to understanding the overall structure
of a program. The chart in Fig. 13.4 is such a diagram.

FIGURE 13.3 A line on the floor helps the robot approach the battery-charger at a proper
angle.
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13.3.2 THE PROGRAM

The program is shown in Fig. 13.5. Refer to Fig. 13.4 to see how the subroutines call
each other. The chart is not a calling order; rather it is hierarchy diagram. The chart shows
which routine calls which, but not the order in which they are called. For this information
you will either need a flowchart or pseudocode. The language of RobotBASIC can be self-
documenting if you use proper names for variables and subroutines so it is almost its own
pseudocode. This means that the program is its own documentation. 

Refer to the program listing in Fig. 13.5 and review the chart in Fig. 13.4 to under-
stand the program well. You have seen most of the routines in previous chapters. The only
new routines are ChargeBattery, SimulateCharging, and BatteryMeter.

The BatteryMeter subroutine erases (by drawing a white line) a little of the meter level
drawn previously by SimulateCharging, which draws a progressively rising colored rec-
tangle to simulate a charge level meter. This is of course to simulate the robot being
charged. The actual charging (as explained before) is done by the rCharge command and
occurs instantaneously. The ChargeBattery routine is invoked after the robot has followed
the line into the charging station (FollowLine). The routine makes the robot turn around
so it can back into the charging station and then reverses until its rear bumper closes. The
routine then invokes the charging simulation.

At the top of the main program there is a set of constants and variables. The constant
MAX_CHARGE is set to 100 percent but you can change this number to allow for
recharging to a lower level if you want to test the program and do not want to have to
wait too long. You can also achieve the same action by raising the LOW_LEVEL value.
This value is the level at which the robot will start seeking a charging station. The variable
Battery holds the value of the batteries current charge level. Notice how it is set by the
BatteryMeter routine. This value will be compared to the LOW_LEVEL constant while
roaming to determine if it is time to abandon roaming and look for the charger. Most of
the subroutines call BatteryMeter to update the display and the value Battery.

The FindBeacon subroutine and its subordinate routines are almost identical to those
in Chap. 12. The only difference is that now they call the BatteryMeter subroutine to

MainProgram

FollowLine ChargeBattery

GoAroundForwardTillBlocked

BatteryMeter

FaceBeacon

RoamAround

PlaceRobot

SetEnvironment FindBeacon

SimulateCharging

UnStick

FIGURE 13.4 Subroutine hierarchy chart.
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//---Variables & Constants 
  LOW_LEVEL   = 65 
  MAX_CHARGE  = 100 
  BeaconX     = 600 
  BeaconY     = 520 
  Battery     = 0 

//========================================
MainProgram:
  GoSub SetEnvironment 
  While true 
    gosub RoamAround 
    gosub FindBeacon 
    gosub FollowLine 
    gosub ChargeBattery 
  wend 
End
//========================================
SetEnvironment:
  // Draw four circles and four squares 
  for i=1 to 4 
     SetColor Black 
     LineWidth 4 
     x = random(420) + 120 
     y = random(250)+60 
     size = random(50)+50 
     circle x,y,x+size,y+size 
     x = random(450)+100 
     y = random(250)+100 
     size = random(100)+50 
     rectangle x,y,x+size,y+size 
  next 
  //--draw docking line 
  SetColor Green 
  LineWidth 2 
  gotoxy BeaconX+100,BeaconY 
  lineto BeaconX+50,BeaconY 
  Lineto BeaconX,BeaconY-20 
  Lineto BeaconX-50,BeaconY-20 
  Line BeaconX-50,BeaconY+20,BeaconX,BeaconY+20 
  Lineto BeaconX+50,BeaconY 
  Arc BeaconX-70,BeaconY-20,BeaconX-
30,BeaconY+20,DtoR(90),DtoR(180)

  //draw beacon 
  circle BeaconX-30,BeaconY-10,BeaconX-10,BeaconY+10,red,red 
  //draw charging station 
  Rectangle BeaconX+105,BeaconY-
12,BeaconX+180,BeaconY+12,blue,blue
  SetColor White,Blue 
  xyString BeaconX+110,BeaconY-10,"CHARGER" 
  //--Battery meter 
  SetColor Black,White 

FIGURE 13.5 This program shows how the robot can charge its own battery
when it becomes depleted.
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  LineWidth 3 
  Rectangle 0,0,76,130,black 
  gotoxy 1,123-LOW_LEVEL 
  LineTo 75,123-LOW_LEVEL,3,Brown 
  SetColor Black,White 
  xyString 5,2, "BATTERY" 
  //--charge the robot initially 
  GoSub PlaceRobot 
  GoSub SimulateCharging 
return
//========================================
PlaceRobot:
  rLocate BeaconX+80,BeaconY,-90 
  // designate the beacon and line colors as non-objects 
  rInvisible Green,Red 
  rIgnoreCharge False 
Return
//========================================
RoamAround:
  while true 
    GoSub BatteryMeter 
    if Battery < LOW_LEVEL then return 
    // forward until an object is found 
    while not (rFeel( )&14) AND not (rBumper()&14)) 
       rForward 1 
    wend 
    D=random(100) 
    for i=0 to random(50)+50 
      if D>50 
        rTurn 1 
      else 
        rTurn -1 
      endif 
    next
  wend 
return
//========================================
FindBeacon:
  cnt=0 
  Repeat 
    GoSub BatteryMeter 
    cnt=cnt+1 
    gosub FaceBeacon 
    if cnt <20 
      gosub ForwardTillBlocked 
      // decide to follow left or right 
      if (cnt=1) and (rFeel()&8) then cnt=10 
      if (cnt<10) or (random(20)<2)
        TurnDir = -1 
      else 
        TurnDir = 1 
      endif

FIGURE 13.5 (Continued )
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      GoSub GoAround 
    else 
      gosub UnStick 
      cnt=0 
    endif 
  Until rSense()&2 // Line Found 
Return
//========================================
FaceBeacon:
  while not rBeacon(Red) 
    rTurn 1 
  wend 
  // Show battery condition 
  GoSub BatteryMeter 
return
//========================================
ForwardTillBlocked:
  while not (rFeel() & 14) AND not (rBumper() & 14) 
    rForward 1 
    if rSense() then break 
  wend
  GoSub BatteryMeter 
return
//========================================
GoAround:
  if rSense() then return 
  If TurnDir > 0
     FN = 6 
  Else 
     FN = 12 
  Endif 
  for i=1 to 20 + random(250) 
     While (rFeel()&FN) or (rBumper()&4) 
       rTurn -TurnDir 
     Wend 
     rForward 1 
     rTurn TurnDir 
  Next 
Return
//========================================
UnStick:
  if random(100)<50 then rTurn 180 
  for i=0 to 100+random(200) 
     while not(rbumper()&14)
        rForward 1 
     wend
     rTurn random(8)-3 
  next 
Return
//========================================

FIGURE 13.5 (Continued )
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update the meter display, and also they are made to abandon the behavior once the line
on the floor is sensed by the rSense() function.

RoamAround is the same as discussed in Chap. 5 but with the added call to
BatteryMeter to update the display and the value Battery. There is also a check to see if
the battery charge level is below the LOW_LEVEL threshold to be able to abandon the
behavior.

FollowLine:
  while rFeel()=0 
    rForward 1 
    while rSense() & 1 
      rTurn 1 
    wend 
    while rSense() & 4 
      rTurn -1 
    wend 
  wend 
Return
//========================================
ChargeBattery:
  rTurn 180 
  while not rBumper() 
    rForward -1 
  wend 
  GoSub SimulateCharging 
Return
//========================================
SimulateCharging:
  SetColor LightMagenta 
  for i= Battery to MAX_CHARGE 
   gotoxy 5,125-i 
   lineto 70,125-i 
   Delay 100 
   gotoxy 1,123-LOW_LEVEL 
   LineTo 75,123-LOW_LEVEL,3,Brown 
  next 
  rCharge MAX_CHARGE 
  Battery = MAX_CHARGE 
Return
//========================================
BatteryMeter:
   // Show battery condition 
   Battery=rChargeLevel() 
   SetColor White 
   gotoxy 5,120-Battery 
   lineto 70,120-Battery 
   gotoxy 1,123-LOW_LEVEL 
   LineTo 75,123-LOW_LEVEL,3,Brown 
Return
//========================================

FIGURE 13.5 (Continued )
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13.4 Summary
In this chapter you have:

� Learned about RobotBASIC’s simulated battery and how to use it in a program.
� Seen how several of the algorithms from previous chapters can be combined to give

the robot the ability to locate a charging station, dock with it, and replenish its battery.
� Seen how to organize a program using a subroutines hierarchy chart.
� Learned how to use programming to simulate real-time actions.
� Seen more examples of how to reuse previously developed behaviors and algorithms

with slight changes to achieve new behaviors.

Now, try to do the exercises in the next section.

13.5 Exercises
1. Run the program in Fig. 13.5 to see how it performs. Study the code to see how the

algorithms from previous chapters have been modified to work together, passing con-
trol from one behavior to another, and how the main program acts as a sequencing
manager to invoke the appropriate routines in the correct sequence once a behavior
terminates. You may want to change the value in MAX_CHARGE to allow for a
shorter wait before the battery is depleted.

2. Think of other ways to locate and home in on a charging station. Write a program to
demonstrate your ideas.

3. The subroutines FollowWall and FollowLine in Fig. 13.5 do not call the subroutine
BatteryMeter. This means that the meter display will not be updated while these rou-
tines are running. Change these routines to correct this.

4. What happens if you set LOW_LEVEL to a low number (say 10 precent)? If the robot
cannot reach the charging station before its battery is fully depleted what happens? If
the low-level value is set too low and the robot happens to be in a place where it cannot
reach the station without having to go around objects, what situation may occur?
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C H A P T E R14
NEGOTIATING A MAZE

Solving mazes is a popular pastime for many people. There are mazes in puzzle books
and magazines, and even on placemats in some family restaurants. People love mazes

so much that many parks and gardens around the world have hedge mazes. People even
build mazes for rats and mice so that they can conduct behavioral experiments. Making
our robot solve a maze is an enjoyable challenge. Navigating mazes is also a popular contest
in many robotic clubs.

All mazes have a common feature. You start at one point in the maze then try to follow
a path that leads to a goal point elsewhere in the maze. The challenge is to reach the goal
point without encountering too many dead-ends that oblige us to retrace paths already
taken.

There are many types of mazes:

➢ Line mazes, where you follow a line that has branches that can lead to dead ends.
➢ Corridor mazes, where you trace a path in the center of a labyrinth of corridors that

can lead to dead ends.
➢ Offices, homes, cities, and highways are also mazes that we negotiate on a regular

basis without even realizing it. Every time we travel from one place to another during
our daily activities we are actually solving a maze.

In this chapter we will develop algorithms for solving the first two types of mazes. We
will only consider mazes with vertical and horizontal lines. In the next chapter we will tackle
the more general situations of office and home mazes.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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14.1 A Random Solution
If you place a mouse in a maze for the first time, the mouse will have no knowledge of
how to exit the maze. It will scurry around taking random turns at junctions. It may
encounter many dead ends before it finally happens upon the exit by pure chance. In this
section we will develop a simple algorithm that relies on random chance to solve the maze.
In the subsequent sections more complicated routines will be developed. This first simple
algorithm can be useful in indicating how we can proceed to more intelligent attempts.
Additionally, the base program in this section will be used throughout the chapter with
changes made only to the routines that need modification to improve the behavior of the
robot.

14.1.1 THE PROGRAM

The program of Fig. 14.1 allows the user to place the robot anywhere in a randomly gen-
erated line maze, but it has to be over a line. Also, the user is allowed to give the robot
an initial heading, but this heading can only be north, south, east, or west. If the robot is
placed where its front is not on a line the program will turn the robot to put its front on
a line. After placing the robot the user then chooses a goal location. The location must
be on a line, but it can be anywhere the user wishes.

After placing the robot and positioning the goal, the program initiates the search.
Once the goal is reached the program displays a message and waits for the user to press
a key or the right mouse button before repeating the whole action with the same maze
as before (see Fig. 14.3). The maze is randomly generated only the first time the pro-
gram starts. Throughout the program messages are displayed indicating what is
happening.

14.1.1.1 MainProgram The MainProgram is self-documenting and requires no
explanation. It also indicates the sequence of actions taken to accomplish the entire
process.

The variable FirstTime is used by the PlotMaze routine to determine whether to gen-
erate the maze or use the one previously generated.

14.1.1.2 DisplayInstructions This routine displays instructions to the user within
a dialog box and then waits for a left mouse click on the OK or Cancel button or press-
ing the Enter or the Esc key. The subroutine makes use of the MsgBox() function. This
function will return the key pressed (OK or Cancel) but no use is made of that information.
Read about this function in the IDE help pages.

14.1.1.3 WaitForMouseOrKey As the name of the subroutine implies it waits for
the user to press any key on the keyboard or the right mouse button.

14.1.1.4 PlotMaze This routine generates and plots the line maze. It creates a grid
of junctions from which radiate a maximum of four lines. The combination of lines is
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//-----Variables
    GoalClr = Red 
    LnClr = Cyan 
//=============================================================
MainProgram:
   FirstTime = true 
   gosub DisplayInstructions 
   while true 
     gosub PlotMaze 
     gosub PlaceRobot 
     gosub SelectGoal 
     gosub SolveMaze 
     FirstTime = false 
     Message = "Goal Found---Press Any-Key or Right-Mouse" 
     Message = Message + "-Button to repeat with same maze" 
     gosub DisplayMessage 
     Beep 
     gosub WaitForKeyOrMouse 
   wend 
end
//=============================================================
WaitForKeyOrMouse:
  repeat 
    readmouse x,y,b 
    getkey k 
  until k <>0 Or b = 2 
return
//=============================================================
DisplayInstructions:
  data IM;"Figure14.01.Bas" 
  data IM;"This program creates a random Line-Maze then allows" 
  data IM;"you to place the robot anywhere on the maze by" 
  data IM;"clicking the Left-Mouse-Button on that position.","" 
  data IM;"Keep the mouse button down to make the robot rotate" 
  data IM;"to the desired direction. Always make sure the robot" 
  data IM;"is facing a line not empty space.","" 
  data IM;"Then select any position on the maze to place the" 
  data IM;"goal to be found.","" 
  data IM;"If there is no connection between the place where" 
  data IM;"the robot is and where the goal is then it will not" 
  data IM;"be possible for the robot to reach the goal." 
  n = MsgBox(IM) 
return
//=============================================================
PlotMaze:
  SetColor Black,White 
  ClearScr 
  if FirstTime then Dim Maze[5,7]
  For i = 0 to 4 
    for j = 0 to 6 
      S = 0 
      If not FirstTime then S=Maze[i,j] 

  X =(j+1)*100 
  Y =(i+1)*100 
  for k = 0 to 3 
    if FirstTime and (random(10000)<8000) then S=S|(2^k) 

FIGURE 14.1 Randomly negotiating a line maze.
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FIGURE 14.1 (Continued)

        if S & (2^k) 
          GotoXY X,Y
          dX = 55*round(cos(Pi(k)/2)) 
          dY = -55*round(sin(Pi(k)/2)) 
          LineTo X+dX,Y+dY,4,LnClr 
        endif 
      next
      if FirstTime then Maze[i,j] = S 
    next 
  next 
return
//=============================================================
PlaceRobot:
   Message ="Place Robot" 
   gosub DisplayMessage 
   while true 
     readmouse x,y,b 
     if b = 1 
       ReadPixel x,y,pc 
       if pc = LnClr then break
     endif 
   wend 
01 //make sure is on center of line 
02 xx = x#100 
03 if within(xx,96,104)
04     x = (x/100+1)*100 
05 endif 
06 //make sure is on center of line 
07 yy = y#100 
08 if within(yy,96,104)
09     y = (y/100+1)*100 
10 endif 
11 Rx = x 
12 Ry = y 
13 rLocate Rx,Ry,90 
14 rInvisible LnClr 
15 repeat 
16   delay 400 //allow for too long press 
17   readmouse x,y,b 
18   if b = 1 then rTurn 90 
19 until b <> 1 
20 while not rSense() 
21    rTurn 90 
22 wend 
Return
//=============================================================
SelectGoal:
   Message = "Select Goal" 
   gosub DisplayMessage 
   while true 
     readmouse x,y,b 
     if b = 1 
       ReadPixel x,y,pc 
       if pc = LnClr then break
     endif 
   wend 
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   Gx = x 
   Gy = y 
   Circle Gx-6,Gy-6,Gx+6,Gy+6,GoalClr,GoalClr 
return
//=============================================================
DisplayMessage:
  Rectangle 0,0,800,20,white,white 
  Rectangle 0,0,Length(Message)*10,20,Blue,Blue 
  SetColor Yellow,blue 
  xystring 2,2,Message 
  SetColor black,White 
Return
//=============================================================
SolveMaze:
  Message ="Searching" 
  gosub DisplayMessage 
  while true 
    S= rSense() 
    if S = 0 
       rTurn 180 
    elseif S &5 
       gosub MakeATurn 
       rTurn m 
    endif 
    if rBumper() then break 
    rForward 1 
  wend 
Return
//=============================================================
21 MakeATurn: 
22   for MT_i=1 to 20
23     if not (rBumper()&4) 
24       rForward 1 
25     else 
26       m=0 
27       return 
28     endif 
29   next 
30   m = 90 
31   if rSense() <> 0 
32     if random(10000) < 5000 
33       m = 0 
34       return 
35     endif 
36   endif
37   if S = 7 
38     if random(10000) < 5000 then m = -m 
39   elseif S = 6 
40     m = -m 
41   endif
42 Return 
//=============================================================

FIGURE 14.1 (Continued)



186 COMPLEX COMPOUND BEHAVIORS

determined randomly. If two adjacent junctions have lines toward each other then the
junctions would be connected. We save the maze characteristics in an array Maze[ ] to
be able to use the maze again. The array holds a binary number (4 bits) to indicate which
lines are to be plotted.

The code also takes consideration of whether it is the first time the program is being
run which means that the maze should be generated. If it is not the first time the program
is run, the maze is plotted from the array Maze[ ]. 

Think of this maze as a city with north-south and east-west streets. Some streets inter-
sect, some are dead ends, and parts of the city may not be reachable from some starting
points.

14.1.1.5 PlaceRobot This subroutine allows the user to indicate a location (using the
mouse) where the robot will be placed. Once the left mouse button is clicked over a posi-
tion on the screen that also has the color of the line (i.e., it is part of the maze) the robot
is placed at that location. If the user keeps the mouse button clicked the robot is rotated
(90� at a time) until the user releases the mouse button.

The routine also uses rInvisible to set the line color so the robot can use the
rSense() function to move over the line. The initial robot position is saved in the vari-
ables Rx and Ry. We will not make any use of these in this program, but they will be
useful later.

If you review the routine you will notice some lines are numbered. These numbers are
used only for the purposes of this discussion. The code in Lines 1 to 22 ensures that the
robot center is at the center of the line. Since the line is four pixels wide it is possible for
the mouse to have been placed slightly off the center of the line when the user selected
the position to place the robot. We need to ensure that the robot is at the center of the
line because of the line following routine, which is discussed later.

You should be familiar with the use of the Delay command; we use it to make it pos-
sible to control the rotation of the robot. Without the delay the mouse input will be too
fast for the user to control.

Lines 20 to 22 ensure that the robot’s front is over a line. If it is not, the robot is turned
until its front is over a line. This ensures that when it starts following the line it will not fail.

14.1.1.6 SelectGoal The mouse is used to allow the user to indicate a location on
the maze where the goal is to be placed. Once the user clicks the left mouse button a small
circle is drawn in red to create an obstacle at the indicated position. This obstacle is used
to indicate the final goal of the maze. Once the robot senses this object (think of it as a
red cone on the ground) it will have solved the maze.

The position of the goal is saved in the variables Gx and Gy. These variables are not
used in this program, but will be used in later improvements of the algorithm.

14.1.1.7 DisplayMessage Most of the subroutines in this program will display a
message to the user at the top left corner of the screen. These messages help the user
understand what is going on and what is required. 

The calling routine sets a variable Message with the required text and then calls
DisplayMessage, which clears the top of the screen and displays the message inside a blue
rectangle.
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14.1.1.8 SolveMaze This routine executes the logic for solving the maze. The
robot moves along the lines or turns depending on the result of rSense(). The value
of rSense() is saved in the variable S for multiple usage. If the line sensors do not
see the line (S � 0) the robot has reached a dead-end and has to execute an about face
(180� turn).

If only the front sensor senses the line, the robot goes forward unless it has bumped
into the goal. If the goal is found the routine returns back to the main program. If any
of the outer sensors are triggered, a junction has been encountered and a turn may have
to be made based on the logic in the MakeATurn subroutine. No active line following
is performed as we did in Chap. 7 because the robot is placed squarely over the center
of the line. Since the lines are straight and the robot moves only horizontally or verti-
cally there is no need to check if the robot is coming off the line. The only considera-
tion is to see if the robot is sensing a junction or a dead end. This simplifies the program
so we can concentrate on how to solve the maze. Once we understand how to solve
mazes the robot can be programmed for a more complicated line-following behavior
if you wish.

The algorithm in this initial attempt is simple because the robot simply makes random
turns when it encounters a fork in the road.

14.1.1.9 MakeATurn At the beginning of this routine the robot is moved forward
so that its center is over the junction (Lines 22–29). If, while moving forward, the goal is
encountered then the routine terminates and returns to SolveMaze, which then returns
to the main program. 

Once over the junction we have to decide what kind of junction it is. The possible types
are shown in Fig. 14.2.

If it is type (2), (4), or (6) then the center line sensor will still detect the line after
moving over the junction (Lines 31–36) and rSense() will return a nonzero value. In
this case we decide whether to continue going forward or turn by random chance
(50 percent). If no turn is to be made then the variable m is set to 0 and the routine
is terminated.

If a turn is to be made instead of going forward, or if it is a junction of type (1), (3), or
(5) [i.e., rSense() returns a zero] then we proceed to Lines 37 onward.

The if-statements use the S variable to decide what kind of turn it was. S is used
because the robot has already moved and the old value of sensors is needed not the cur-
rent value.

If S equals seven then the junction was either type (1) or (2) and we need to decide
whether to turn left or right. A random number is used to make each turn 50 percent of
the time (Line 38). If S equals six then the junction is type (3) or (4) and the robot needs

FIGURE 14.2 Types of junctions.

(1) (2) (3) (4) (5) (6)
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to turn left (Line 40). If S is none of these values then the junction is type (5) or (6) and
nothing needs to be done since m is set to a right turn by default (Line 30).

14.1.2 OBSERVATIONS

This algorithm works, but is unsatisfactory because the robot is no smarter than a mouse
wondering aimlessly through a maze. Given the same initial position and goal, the robot
may find the goal quickly sometimes and very slowly at others. This inconsistency is due
to the robot making totally arbitrary decisions on how to turn.

We will explore various means of improving this algorithm. However, for now, run the
program and try various goal and robot positions with different mazes. Observe the
behavior of the robot and see if you can think of ways to make the robot act more
intelligently.

FIGURE 14.3 Solving a line maze.

NOTE: It is possible to place the goal in a section of the maze that the robot
cannot reach. Obviously, if you do this, the robot will never be able to solve the
maze.
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14.2 A Directed Random Solution
If the robot were a mouse and the final goal a block of cheese then we would expect that
the mouse would be able to smell the cheese and tend to take turns that are more toward
the direction of the cheese. This may enable the mouse to make luckier turns that lead to the
goal faster or, depending on the maze, it may cause problems. 

The above strategy could get the mouse stuck in a dead-ended section of the maze
because it is favoring a direction toward the cheese that has no path to the goal. In prac-
tice this simply means that the mouse should generally move toward the smell of the cheese,
but it must occasionally make some random choices to prevent getting stuck in a dead-
end that faces the cheese.

We can give our robot the same strategy. We will give the robot the ability to look for the
goal when it is trying to decide how to turn at a junction. Its decision of how to turn will be
influenced by the relative direction of the goal and the possible turns that can be made.

The subroutine MakeATurn in Fig. 14.4 is a replacement for the one in Fig. 14.1.
This new routine implements the logic discussed above. Replace the routine and run

FIGURE 14.4 A directed random solution.

01 MakeATurn: 
02   for MT_i = 1 to 20
03     if not (rBumper()&4) 
04       rForward 1 
05     else 
06       m=0 
07       return 
08     endif 
09   next 
10   m = 90 
11   if rSense() <> 0 
12      Prcnt = 5000 
13      for MT_i = -45 to 45 
14          if rLook(MT_i) = GoalClr 
15             Prcnt = 500 
16             break 
17          endif 
18      next 
19      if random(10000) > Prcnt
20         m = 0 
21         return 
22      endif 
23   endif
24   if S = 7 
25     Prcnt = 5000 
26     for MT_i = -135 to -45 
27        if rLook(MT_i) = GoalClr 
28           m = -90 
29           Prcnt = 500 
30           break 
31        endif 
32     next 
33     if random(10000) < Prcnt then m = -m 
34   elseif S = 6 
35     m = -m 
36   endif
37 Return
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the program and notice how the robot behaves. There is a definite improvement in
its ability to seek the goal. The robot does appear to be a lot more intelligent most of
the time.

The logic is that we look in the direction of the turn before deciding whether to turn
or not. If the goal is in that direction we favor the turn 95 percent of the time. If the goal
is not in that direction then we make the turn only 50 percent of the time. The 5 percent
randomization prevents the robot from getting stuck in a dead-end that faces the goal. We
only take the goal into consideration when trying to decide to turn, no other time.
Additionally, we only look for the goal 
45� from the direction of the turn. This means
that the goal will not influence the robot’s decisions to turn when it is behind the robot,
which prevents the robot from getting stuck.

Lines 1 to 10 are exactly as before. Lines 13 to 18 look for the goal ahead of the robot
(
45�). Notice that this version of the rLook() function is given an angle relative to the
robot’s heading, otherwise it is the same as you have seen in previous chapters. Read Sec.
C.9 for details on this function. If the goal is seen then the robot continues ahead (no turn),
but Lines 19 to 22 force a turn anyway 5 percent of the time due to Line 14. If the goal
is not seen then the decision to continue ahead or turn is made on a 50 percent basis by
Line 12.

In Lines 24 to 33 we decide whether to make a left or right turn on a T or 	 junction.
Lines 26 to 32 look for the goal on the left. If it is found then a left turn is made, but
Line 33 forces a right turn 5 percent of the time due to Line 29. Notice that if the goal
is not there then 50 percent of the time the turn is changed from right to left due to
Line 25.

If the junction is of type (3) or (5) (see Fig. 14.2) then we have to make a turn regard-
less of the goal. If it is a left we make a left turn, otherwise a right turn is made by default
and no further action is required. Notice that the randomness given to the robot to stop
it from getting stuck can also cause it to make a wrong turn (5 percent of the time). Also
since the randomness is 50 percent if the goal is not a consideration, the algorithm will
perform no worse than the fully random one in Fig. 14.1. 

Run the program and try out different mazes and different combinations of robot and
goal positions. Can you think of ways to improve the algorithm further? We will explore
one improvement in the next section.

14.3 A Minimized Randomness Solution
In the previous sections the robot was not given any ability to decide if it has already tried
a certain path. When a decision to turn was made, no consideration was given to whether
that direction had already been tried. Without this kind of decision-making ability the
robot will sometimes retrace the same dead-end route repeatedly; only chance would
make it take the correct path (which may take a long time).

An array can be used to store the coordinates of the position of the robot every time it
makes a turning decision along with a cumulative value to indicate what decisions it has made.
This array can be used every time the robot is over the same spot so that the robot can give
more preference to the direction not tried previously. This increases the possibility that the
robot will take the correct path. This section presents an implementation of this strategy.
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14.3.1 A CORRIDOR MAZE

As mentioned at the beginning of the chapter, there are many types of mazes, so in order
to experience how to program the robot in a different kind of maze we will implement
the behavior discussed above using a randomly generated corridor maze. Different sen-
sors will have to be used, and different logic for moving the robot will be applied, but the
principles involved in solving the maze and the logic of handling the elimination of the
previously tried paths will be the same regardless of the type of maze used.

The algorithm developed in this section will negotiate the maze the first time taking
turns and trying paths while keeping track of which paths lead to dead ends. Once the
robot finds the exit, it will be placed back at the beginning to try again. However, this
time through the maze, the robot will utilize the information obtained on its first run to
avoid all the dead-ends.

A program that implements this strategy is shown in Fig. 14.5. A sample screen shot
of the programs output is shown in Fig. 14.6.

14.3.2 THE PROGRAM

The main program calls all the subroutines in turn as needed. The subroutine
DisplayInstructions is the same as seen before, but with different instruction strings. All
the other routines are discussed below.

14.3.3 GENERATING THE MAZE

The PlotMaze subroutine in Fig. 14.5 generates a maze with only one path to the goal.
Unlike many maze algorithms, it creates cells that are potentially open on all four sides,
which results in a more challenging maze. This routine makes use of the DrawPiece sub-
routine to draw a four-cell combination with a random wall. These four-cell combinations
are then connected by randomly created doors.

14.3.4 SOLVING THE MAZE

Each time the robot moves to a new cell in the maze, it will first count the number of exits
it senses from that cell. There are a maximum of three ways: left, forward, and right (we
don’t count the way the robot entered). The dimensions of the maze were selected so that
the infrared sensors can be easily used to determine where the walls are.

In addition to counting the number of exits in the cell (the variable cnt), the robot will
also fill the variable dir with a value that indicates the direction of the exits. Figure 14.7
shows how the exits are indicated.

Once the values for dir and cnt are formed the robot has some choices to make. If
there is only one exit from the cell, then it takes that exit. If the cell has multiple exits then
the robot will check to see if it has visited this cell before (how this is done will be discussed
below). If this cell has not been visited, then we save all the information needed later if
the cell is revisited (how this is done will be discussed shortly). After saving the data, the
robot will try one of the exits. It will always try left first, then forward, and finally right (assum-
ing each are available).
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// Debugon 
// uncomment the above line if you wish to see the robot's 
//      "thoughts" as it moves through the maze 
//=============================================================
MainProgram:
   gosub DisplayInstructions 
   gosub PlotMaze 
   gosub SolveMaze 
   gosub RetraceMaze 
End
//=============================================================
DisplayInstructions:
  data IM;"Figure14.05.Bas" 
  data IM;"This program creates a random Corridor-Maze then puts" 
  data IM;"the robot at one end. The robot will move through the" 
  data IM;"maze until it sees the red wall at the other end.","" 
  data IM;"The robot saves all its moves and remembers the ones" 
  data IM;"that work. ","" 
  data IM;"The second time through, the robot will negotiate the" 
  data IM;"the maze perfectly leaving a trail behind it showing" 
  data IM;"the path it took." 
  n = MsgBox(IM) 
Return
//=============================================================
PlotMaze:
  ClearScr 
  LineWidth 3 
  // draw basic blocks 
  y=60 
  for j=0 to 3 
    x=80 
    for i=0 to 4 
      gosub DrawPiece 
      x=x+119 
    next
    y=y+119 
  next 
  gotoxy 678,536 
  lineto 740,536 
  lineto 740,362 
  SetColor Red 
  lineto 678,362 
  SetColor White 
  LineWidth 4 
  // open doors between blocks 
  y=60 
  for j=0 to 3 
    x= 200 

 for i=0 to 4 
 nn=random(10) 
 if (nn<5 and i<4) or j=3 
  gotoxy x,y+60 
  n=random(10) 
  if n<5 then lineto x,y+3 
 if n>=5 then lineto x,y+120-3 

else

FIGURE 14.5 Reduced randomness solution to a corridor maze.
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          gotoxy x-60,y+120 
          n=random(10) 
          if n<5 then lineto x-120,y+120 
          if n>=5 then lineto x,y+120 
      endif 
      x=x+119 
    next 
    y=y+119 
  next 
  gotoxy 80,60 
  lineto 80,120 
  rLocate 108-60,90 
  rTurn 90 
Return
//=============================================================
DrawPiece:
  // draw 4 cell piece at x,y 
  rectangle x,y,x+120,y+120 
  // draw a random line 
  gotoxy x+60,y+60 
  n=Random (4) 
  if n=0 then lineto x+60,y 
  if n=1 then lineto x+60,y+120 
  if n=2 then lineto x,y+60 
  if n=3 then lineto x+120,y+60 
Return
//=============================================================
SolveMaze:
  Dim Stack[100,4] //100 records of Compass,Turn,gpsX,gpsY 
  StackPtr = 0 
  rForward 60 
  while rLook() <> Red 
    // determine if current cell has more than one exit 
    numExits = 0 
    dir = 0 
    cnt = 0 
    if not(rFeel()& 16) 
       cnt = cnt+1 
       dir = 4 // left side 
    endif 
    if not(rFeel() & 4) 
       cnt = cnt+1 
       dir = dir+2 // straight ahead 
    endif 
    if not(rFeel() & 1) 
       cnt = cnt+1 
       dir = dir+1 // right side 
    endif 
    // if there is only one exit, take it 
    if cnt = 1 

 if dir=4 then rTurn -90 
 if dir=1 then  rTurn  90 
 rForward 60 
 continue 

  endif 
  if cnt = 0 // no exit, turn around and go back 

FIGURE 14.5 (Continued )



194 COMPLEX COMPOUND BEHAVIORS

       rTurn 180 
       rForward 60 
       continue 
    endif 
    // there are multiple exits to this cell 
    // see if we have been here before 
    gosub CheckBefore 
    if yep
debug "been here before" 
      // been here before so take the other route 
      // first face the saved direction 
      while rCompass() <> Stack[StackPtr-1,0] 
        rTurn 90 
      wend 
debug "now facing original direction" 
      // must get and resave stack data to elminate wrong turns 
      // get original dir 
      dir = Stack[StackPtr-1,1] 
      // check to see if multiple choices still exist 
      if dir=3 or dir=5 or dir=6 or dir=7 
         if dir & 4 // left was the first choice taken 
            dir =dir & 3  // eliminate first choice
                          // could still be straight or right 
         else // check to see if straight was a possibility 
            dir = 1 // orig. dir had to be 3 
         endif 
         Stack[StackPtr-1,1]=dir // save it again 
debug "data resaved with last choice removed ",dir 
         // now make the next move 
         if dir&2   // 2nd choice must be straight
            rForward 60 
         else   // or a right turn 
            rTurn 90 
            rForward 60 
         endif 
      else // this is at least the second time back here 
           // but only one choice remains 
           // means we have taken all paths and came back 
debug "no choices left" 
         // get original heading 
         while rCompass() <> Stack[StackPtr-1,0] 
           rTurn 90 
         wend 
         rTurn 180 // go back 
         rForward 60 
         // remove this node 
         StackPtr = StackPtr - 1 
debug "bad path - choice romoved from stack" 
      endif
   else 
     // never been here before and multiple exits 

   // Save compass, possible turns, gpsX, gpsY 
   Stack[StackPtr,0] = rCompass() 
   Stack[StackPtr,1] = dir 
   Stack[StackPtr,2] = rGPSx() 

FIGURE 14.5 (Continued )



NEGOTIATING A MAZE 195

    Stack[StackPtr,3] = rGPSy() 
      StackPtr = StackPtr+1 
      // assume two exits so take first one
      //(start with left, then CW) 
      if dir & 4 
        rTurn -90 
        rForward 60 
      else // forward MUST be first option 
        rForward 60 
      endif 
    endif 
  wend 
Return
//=============================================================
CheckBefore:
  yep = false 
  if StackPtr = 0 then return 
  dX = rGPSx()-Stack[StackPtr-1,2] 
  dY = rGPSy()-Stack[StackPtr-1,3] 
  if PolarR(dX,dY) < 10 then yep = true 
Return
//=============================================================
RetraceMaze:
  // now do it again - but no mistakes 
  x=rGPSx()  // save current position 
  y=rGPSy() 
  rLocate 108-60,90 // put robot back in the beginning 
  rTurn 90 
  SetColor White // and erase old one 
  circle x-20,y-20,x+20,y+20 
  rPen Down,LightGreen 
  rForward 60 
  StackPtr = 0 
  while rLook()<>Red 
    // determine if current cell has more than one exit 
    numExits = 0 
    dir = 0 
    cnt = 0 
    if not(rFeel()& 16) 
      cnt = cnt+1 
      dir = 4 // left side 
    endif 
    if not(rFeel() & 4) 
      cnt = cnt+1 
      dir = dir+2 // straight ahead 
    endif 
    if not(rFeel() & 1) 
      cnt = cnt+1 
      dir = dir+1 // right side 
    endif 
    // if there is only one exit, take it 
    if cnt = 1 
       if dir=4 then rTurn -90 
       if dir=1 then  rTurn  90 
       rForward 60 
       continue 
    else 

FIGURE 14.5 (Continued )



       // take the exit on the stack 
       dir = Stack[StackPtr,1] 
       if dir & 4 
          rTurn -90 
       elseif dir&2 
          // do nothing 
       else 
          rTurn 90 
       endif 
       rForward 60 
       StackPtr = StackPtr+1 
    endif 
  wend 
Return
//=============================================================

FIGURE 14.6 Corridor maze solving.

FIGURE 14.5 (Continued )
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If the robot determines that it has been to this cell before, it will retrieve the saved infor-
mation. There are four items that are saved: 

1. The GPS (global positioning system) coordinates of the cell, which will be used to deter-
mine if the cell has been previously visited (two values the X and the Y coordinates).

2. The compass heading the robot had when it entered the cell.
3. The value dir discussed earlier.

Once it has retrieved the saved data, the robot orients itself so it has the same head-
ing that it did when it originally entered the cell. It then looks at the value of dir to see
what the possible exits are. The robot knows (since it is revisiting this cell) that the exit it
took did not work (or it would not be back to this cell). The robot needs to mark this exit
as not usable, and it can do so by simply removing the first one bit (starting at the left
most bit) in the binary number dir. Remember, the exits are tried starting from the left,
which is why the first one in dir represents the choice last made. After the bit is removed,
all of the data is resaved to be used again if the cell is revisited.

The robot then looks at the new value of dir and uses the first one bit found to decide
which path to try this time. If the value of dir is 0, then the robot knows that all the pos-
sible paths have been tried (and all have failed). When this happens, the robot turns
around and goes back from where it came. It also needs to forget the information about
this cell since it will not be coming back here again. It might not be obvious that the robot
will not be back here again so let’s examine this idea.

The whole premise of this algorithm is that the robot methodically tries every possible
option available to it when it visits a cell that has multiple exits. Each failed try eliminates
that option from the future choices available to the robot. When all exits have failed, the
robot returns to the last cell with multiple exits and tries the next exit available there. Either
one of the choices in that cell will work, or the robot will go backward again until it even-
tually finds a cell that has an exit that does work.

If the robot repeatedly executes the above logic, it will eventually get out of the maze.
In our example a red line is placed at the end so the robot can use the camera to deter-
mine when it has completed its task. The data saved by the robot is placed in an array
called Stack. To better understand the principle of a computer stack, think of a stack of dinner
plates. When you want to add a new plate to the stack, you place it on the top of the stack.
When you want to get a plate from the stack, you take the one at the top of the stack.
This structure can be implemented in our program using an array. A variable is used to
point to the array position currently being used. This variable (StackPtr) starts with a value

dir (decimal) Binary equivalent Meaning 
 0 000 no exits 

1 001 exit only to right 
2 010 exit only forward 
3 011 exit forward or right 
4 100 exit only left 
5 101 exit left or right 
6 110 exit left or forward 
7 111 all three exits available 

FIGURE 14.7 The variable dir holds a code for the possible
exits from the current cell.
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of zero. Each time data needs to be put on the stack it should be stored at the position
indicated by StackPtr. After the data is stored, the pointer is incremented so that it always
points to the next available position in the array.

When the last data stored in the array is needed, we retrieve it from position StackPtr-
1. When all the exits have failed, we discard the data for the cell by decrementing the value
of StackPtr.

Once the maze has been solved, the array Stack will contain only the data (the choices)
that worked for each of the multi-exit cells in the correct path through the maze. If the
robot tries to run the maze again, it simply has to pull the next piece of data from the Stack
each time a cell with multiple exits is encountered. The data pulled will indicate which
choices are left in the variable dir. The first choice indicated is the last choice the robot
made for this cell, and consequently must be the correct choice.

The subroutine SolveMaze in Fig. 14.5 accomplishes all the above logic. The code is
well documented and follows the algorithm described above.

The subroutine CheckBefore in Fig. 14.5, determines if the current cell has been previ-
ously visited. This is accomplished by saving the robot’s GPS coordinates the first time a cell
with multiple exits is visited. Later when the robot wishes to see if it has been here previ-
ously, it uses this subroutine to compare its current GPS coordinates with the ones saved.
Since the robot may not be in exactly the same place as it was previously, the distance between
the two points is calculated using the pythagorean theorem [using the PolarR() function].
If this distance is less than 10 pixels, we assume that the cell has been visited before.

14.3.5 RENEGOTIATING THE MAZE

As mentioned earlier, once the robot solves the maze, the program uses the subroutine
RetraceMaze to place the robot back at its original starting position so it can try again.
On the second attempt, the robot uses the saved data to make the correct turn each time
it encounters a cell with multiple exits. Also, on the second run through the maze, the robot
uses its pen to highlight the path it takes.

14.3.6 EMBEDDED DEBUG COMMANDS

If you examine the code in Fig. 14.5 you will see that there are numerous Debug com-
mands inside the code. None of these commands will execute unless you remove the
comment symbols from the first line in the program. Do this and then execute the 
program. As the robot progresses through the maze the debug window will pop-up at
appropriate situations and tell you what the robot is doing. When this happens analyze
the displayed information and click Step to proceed. Hopefully you will find this debug-
ging exercise helpful in understanding the algorithm discussed in this section.

14.4 A Mapped Solution
When we decide to go from one place to another on the highways, we do not just get
in the car and drive in the general direction of our destination taking roads that might lead
there. Rather we consult a map and plan a route through the maze of roads and then follow
that route.
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Our robot can be programmed to do the same thing if it is given a map of the maze.
The robot can then consult the map to plan a route from the start position to the goal
position. The robot would then follow the planned route. This way the robot can deter-
mine ahead of time if it is impossible to reach the goal from where it is and not waste time
if it cannot.

14.4.1 MAPPING THE MAZE

In order to achieve this algorithm a GPS and a map will be needed. How can we repre-
sent this map in the most efficient way for the robot? Since the computer generates the
maze randomly, the computer must generate the map as well. Highway and road maps
are represented on computers and GPS devices as a list of junctions and a connectivity
list showing how the junctions are connected. In computer science this type of data struc-
ture is called a graph.

There are various types of graphs that differ in how the connection information is repre-
sented. Directional graphs represent one-way connections. Weighted graphs represent the
distance of connections. Simple graphs are just a connection list where a connection does
not have a weight and is bidirectional. This is the type of graph we will use for our maze map.

The array in Fig. 14.8 is a representation of the graph shown below it. A 1 in the array
means that there is a connection. A 0 means no connection. Notice that the matrix is
symmetrical, which means that if junction 1 is connected to junction 2 then there is also
a connection from junction 2 to junction 1. If the graph is not bidirectional then it is not
necessarily symmetrical. Also, notice that all the numbers are 1. If the graph is weighted
then the numbers represent the length of the connections (like in roads).

We will do the same and represent our maze as an array of connections. This will allow
the algorithm to figure out how to go from one place to another using this connectivity
array. The graph array will be generated automatically from the array Maze[ ].

The elements in each row of the array represent the nodes that have a direct connec-
tion to the node with the same number as the row. So, for instance, if you look at row 2
you know that from node 2 you can go directly to nodes 1 and 3, but not node 4. In this
example there is no connection from the node to itself (in other scenarios this may not
be the case). You can see that the array is a true representation of the diagram below it.
In summary, if Graph[I,J] � 1 we know there is a direct path from node I to node J, if it
is 0 it means that there is no direct path. 

Destination Node Number
4321

Start Node Number

4

4

1

3

2

3

2

1

0101

1011

0101

1110

FIGURE 14.8 The graph shown describes
the maze below it.
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If you look at the diagram (or array), you can see that there is no direct path between
2 and 4. However it is still possible to go from 2 to 4 by following a path 2, 1, then 4 or
2, 3, then 4. In a much more complex graph it might not be so obvious if there is a path,
and whether it is the shortest.

Humans are amazing at being able to glance at diagrams like the mazes you saw in the
previous sections (see Fig. 14.6 and 14.3) and figuring out in seconds if there is a possi-
ble pathway between two points on the maze. We are also very adept at finding a path
(not always the shortest) just by looking. A robot is not so fortunate.

Using the above setup, computer routines can be developed to traverse the array of
connections to determine a path, or even the optimal path. We will see how to do this
in the routines we will develop in the following sections.

14.4.2 THE PROGRAM

The base program in Fig. 14.1 will be used to demonstrate how maps can improve the robot’s
navigational abilities. We will give only the new and modified subroutines in Fig. 14.9. 

The new main program section is not very different from before, except the messages
are changed to reflect the fact that the robot now knows if it cannot reach the goal. The
variable Found is set to true or false by the SolveMaze subroutine.

All subroutines not listed in Fig. 14.9 are the same as in Fig. 14.1.

14.4.3 CREATING THE MAP’S GRAPH

The routine BuildMapGraph creates the graph of the maze as discussed above. The
array MapGraph[ ] will hold a 35 � 35 grid of numbers allowing it to represent a maze
with up to 35 junctions. Each junction in the maze is given a number (0–34). The array
will have the value 0 at the position [i, j] if there is no connection between junctions i and
j. If there is a connection then the value will be 1. As you can see, since the maze is a
two-way maze the position, [i, j] is the same as [j, i] (i.e., the matrix is symmetrical). 

The way to check if a junction is connected to another is by using the values stored in
the Maze[ ] array which was created by the PlotMaze subroutine.

If-statements are used to determine if a line radiates from the junction (north, south,
east, and/or west) and if there are lines emanating from any adjacent junction at the same
time. If there are, then the junctions are connected, otherwise they are not.

14.4.4 SOLVING THE MAZE

The routine SolveMaze calculates the junction nearest to the goal (GoalNode) and the junc-
tion nearest to the robot (RobotNode) using calls to the subroutine CalcNodeNumber.
The procedure for calculating the nearest node takes into account that there must be a
road between the goal or robot and that nearest node. BuildMapGraph is called when
the program is run for the first time. The routine then calls the FindPath subroutine
(discussed below) which creates a path (if one is possible) in the array Stack[ ] starting at
the RobotNode and ending at the GoalNode showing what intermediate nodes to take
to create the path. 
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MainProgram:
   FirstTime = true 
   gosub DisplayInstructions 
   while true 
     gosub PlotMaze 
     gosub PlaceRobot 
     gosub SelectGoal 
     gosub SolveMaze 
     FirstTime = false 
     if Found 
        Message = "Goal Is Found" 
     else 
        Message = "Goal Is Unreachable" 
     endif 
     Message = Message+"---Press Any-Key or Right-Mouse" 
     Message = Message + "-Button to repeat with same maze" 
     gosub DisplayMessage 
     Beep 
     gosub WaitForKeyOrMouse 
   wend 
End
//=============================================================
BuildMapGraph:
  Dim MapGraph[35,35] 
  MConstant MapGraph,0 
  for i = 0 to 4 
     for j = 0 to 6 
        S = Maze[i,j] 
        NN = i*7+j 
        if (S&1) and (j<6) 
           if Maze[i,j+1]&4 
              MapGraph[NN,NN+1] = 1 
           endif 
        endif
        if (S&2) and (i>0) 
           if Maze[i-1,j]&8 
              MapGraph[NN,NN-7] = 1 
           endif 
        endif
        if (S&4) and (j>0) 
           if Maze[i,j-1]&1 
              MapGraph[NN,NN-1] = 1 
           endif 
        endif
        if (S&8) and (i<4) 
           if Maze[i+1,j]&2 
              MapGraph[NN,NN+7] = 1 
           endif 
        endif
     next 
  next 
Return
//=============================================================
SolveMaze:
   //get Node Nearest to Goal 
   Tx = Gx 
   Ty = Gy 
   gosub CalcNodeNumber 
   GoalNode  = NodeNumber 

FIGURE 14.9 Negotiating a mapped maze.
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   //Get Node Nearest to Robot 
   rGPS Tx,Ty 
   gosub CalcNodeNumber 
   RobotNode = NodeNumber 
   if FirstTime then gosub BuildMapGraph //Build Graph 
   if RobotNode <> GoalNode 
      gosub FindPath //Search Graph 
   else 
      Found = True 
      Sp = 0 
   endif 

   if Found
     if Sp > 0 
        For I = 0 to Sp  //for each node on path 
           Dnn = Stack[I,0] //destination node number 
           x = (Dnn#7 + 1)*100 
           y = (Dnn/7 + 1)*100 
           gosub GotoPoint 
        next 
     else 
         x = (RobotNode#7+1)*100 
         y = (RobotNode/7+1)*100 
         gosub GotoPoint 
     endif 
     // go to the actual goal after reaching its
     // nearest junction 
     x = Gx 
     y = Gy 
     if not rBumper() then gosub GotoPoint 
   endif 
Return
//=============================================================
CalcNodeNumber:
   //Input----Tx and Ty
   //Output---NodeNumber 
   Tj=Tx/100+Round(frac(Tx/100.0)) 
   if Tj = 0 then Tj = 1 
   if Tj > 7 then Tj = 7 
   Ti=Ty/100+Round(frac(Ty/100.0)) 
   if Ti = 0 then Ti = 1 
   if Ti > 5 then Ti = 5 
   NodeNumber = (Ti-1)*7+Tj-1 //Node Number 
   NodeX      = Tj*100 
   NodeY      = Ti*100 
   dX = NodeX-Tx 
   dY = NodeY-Ty 
   if abs(dX) > 35 
      ReadPixel NodeX-sign(dX)*12,NodeY,Pc 
      if Pc <> LnClr then NodeNumber = NodeNumber-sign(dX) 
   endif 
   if abs(dY) > 35 
      ReadPixel NodeX,NodeY-sign(dY)*12,Pc 
      if Pc <> LnClr then NodeNumber = NodeNumber-sign(dY)*7 
   endif 
Return
//=============================================================
FindPath:
   Dim Stack[35,2] 

FIGURE 14.9 (Continued )
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If a path is found the routine uses the information in the created Stack[ ] array to follow
the path. The goal may not be exactly over a junction and thus the routine causes the robot
to make the extra moves necessary to reach the goal from the closest junction.

If the robot’s junction and goal’s junction are the same then there is no need to call the
FindPath routine and we bypass following a path, but we do forward the robot toward the
nearest junction and then to the goal which may be a little further than the actual junction.

   Dim Visited[50] 
   MConstant Visited,0 
   //push on the stack
   Sp = 0 
   Stack[Sp,0] = RobotNode 
   Stack[Sp,1] = 0 
   Found = false 
   while true 
     i = Stack[Sp,0]
     j = Stack[Sp,1] 
     Visited[i] = 1 
     if MapGraph[i,j] = 1 and not Visited[j] 
        Sp = Sp+1  //push on the stack 
        Stack[Sp,0] = j 
        Stack[Sp,1] = 0 
        If j = GoalNode //Goal found 
           Found = true 
           Break 
        endif 
     else 
        while true 
           Stack[Sp,1] = Stack[Sp,1]+1 
           if Stack[Sp,1] > 34 
               Sp = Sp-1 //pop the stack 
               if Sp >= 0 then continue 
           endif 
           break 
        wend 
        If Sp < 0 then break //no more nodes on the stack 
     endif 
   wend 
Return
//=============================================================
GotoPoint:
   dx = x-rGpsX() 
   dy = y-rGpsY() 
   if dx=0 AND dy = 0 then return 
   Theta = PolarA(dx,dy)*180/pi()+90-rCompass() 
   if Theta > 180 then Theta = Theta-360 
   if Theta < -180 Then Theta = Theta+360 
   rTurn Theta 
   Distance = Round(PolarR(dx,dy)) 
   For GP_I = 1 to Distance 
     if rBumper() & 4 then break 
     rForward 1 
   next 
Return

FIGURE 14.9 (Continued )
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Moving the robot to any point is achieved using the GotoPoint subroutine. You have
encountered this routine in Chap. 4 and other chapters; it has not been modified.

14.4.5 FINDING A PATH

The routine FindPath analyzes the array MapGraph[ ] to search for a path from the
RobotNode to the GoalNode. Upon returning from the routine, if a path exists, the array
Stack[ ] will hold the path. Also the variable Sp will hold the length of the path and the
variable Found will be true if a path was found (false otherwise).

The algorithm of this routine does not find the shortest path; rather it finds a path.
This path may not be the optimal path or even the most intelligent one. However the algo-
rithm is simple to follow, so we examine it first.

In computer science this principle is called a depth-first search. There are other ways
to traverse a graph (like a breadth-first search), but depth-first is easier to understand. The
idea is to begin at the start node and look in the graph array for the first node that has a
connection, then search that node for connecting nodes and so on until the end of nodes
or the goal node is reached. If the goal node is not yet reached, we go back one node up
to search for the next connected node and so on.

This algorithm will find a path if one exists. However, you can see that the path found
may not be optimal due to the method of depth-first searching. If breadth-first searching (with
some more logic) is used we would be able to find the optimal path (see next section).

14.4.6 THE OPTIMAL PATH

This algorithm simulates a real-life situation where a GPS system holds a map of the city
and knowing where you are and your destination it tells you the shortest path through
the city to your destination. Many of these GPS devices can also calculate the fastest path
and can reroute you if there is a traffic accident. If you think of our maze as a plan view
of a city with north-south and east-west roads then our robot looks like it is traveling
through the city.

Figure 14.10 shows a replacement for the FindPath subroutine in Fig. 14.9. This new
routine implements a breadth-first search through the graph. This method will find the short-
est path. The strategy is to look at the start node and then look at all the nodes that have
a direct connection to it. These nodes are put in a queue to be considered in the same
manner as the start node. This process is repeated until we reach the last reachable node
of the last reachable node and so on. While doing this we build a list of immediate pred-
ecessors for all the nodes. 

Think of a queue as a line of people waiting to be served by a teller operator. The first
person at the head of the queue will be processed, while a new person joins the queue at
its tail. A queue is a first-in-first-out structure, while a stack is a last-in-first-out structure.
You can see how the different structures enable the breadth-first and the depth-first
searches of the graph.

At the end of the traversal of the graph, we have a list showing what is the immediate
predecessor for each node. A predecessor to a node is the node that leads to the node
with only one hop while going from the start node to the goal node. You can see how this
list can be useful in building a shortest path. All that is needed is to start at the goal node,
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go to its predecessor, then the predecessor’s predecessor, and so on until we reach the
start node. The path from the start node will be the reverse of this list, and it will be the
shortest path. The proof of this assertion is a subject in computer science and is too com-
plex to be considered here, but you will be able to see for yourself that it is a true asser-
tion when you run the program. We wrote the new FindPath to use the same variables
as before. In the routine of Fig. 14.9 a stack was used during the Depth-First search and
the array Stack[ ] and its pointer Sp were set with the required path and its length as a
result of the search. In this algorithm we do not use a stack and we end up creating a path
list by reversing the travel from the goal node to the start node, visiting the predecessor
of each node. This list should be called, for example, PathList. However this means we
would have to change too many routines. Therefore we will maintain the same naming
as before and use the array Stack[ ] to hold the path and Sp will be the length of that path,
and both will be usable in SolveMaze as before along with Found. The routine also
expects GoalNode and RobotNode to be set as before.

FindPath:
   Dim Queue[35] 
   QHead = 0 
   QTail = 0 
   Dim Visited[35,3] 
   MConstant Visited,999999 
   Queue[QTail] = RobotNode //add to queue 
   QTail = QTail+1 
   Visited[RobotNode,0] = 1  //visited 
   Visited[RobotNode,1] = 0  //distance 
   Visited[RobotNode,2] = -1 //predecessor 
   while Visited[GoalNode,0]<>1 and QHead < QTail 
      v = Queue[QHead]  //deque 
      QHead = QHead+1 
      for w = 0 to 34 
        if MapGraph[v,w] = 1 and Visited[w,0] <> 1 
           Visited[w,0]=1 
           Visited[w,1] = Visited[v,1]+1 
           Visited[w,2] = v 
           Queue[QTail] = w //add to queue 
           QTail = QTail+1 
        endif 
      next 
   wend 
   if Visited[GoalNode,0]  = 1 
      Found = true 
      dim Stack[35] 
      Sp = Visited[GoalNode,1] 
      Stack[Sp] = GoalNode 
      For FP_i = Sp-1 to 0 
        Stack[FP_i] = Visited[Stack[FP_i+1],2] 
      next 
   else 
      Found = false 
   endif 
Return
//=============================================================

FIGURE 14.10 Shortest path-finding routine.
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14.5 Final Thoughts
In this chapter the mazes were vertical and horizontal lines or tight corridors; this sim-
plified the techniques for controlling the robot’s movement. We concentrated more on
the strategies for negotiating the maze. What if the lines were not straight north/
south-east/west lines? What if the corridors were wide enough that the robot could not
see all the exits at once with its infrared sensors? What if the forks in the lines were
not 90� turns, rather more or less, so instead of T(or 	) junctions we have Y junctions,
or N junctions, and so on? These are problems that must be solved in many real-world
situations.

In the next chapter we will devise techniques for negotiating a home or office environ-
ment. You can think of these environments as corridor mazes, but the corridors are too
wide and the robot has to avoid obstacles and find the doorways.

The techniques of this chapter have applications in many situations other than maze
solving. The world is a maze. We humans are so adept at negotiating mazes that we don’t
even know when we are doing it. It is very satisfying to gain insight into our own thought
processes. Trying to program a robot to do what we take for granted gives us an intro-
spective view into our intelligence.

The mapping and path-searching techniques we have introduced here are applicable
to many situations with real-world significance such as:

Airline scheduling
Delivery truck routing
Process management
Communications networks
GPS systems
Cartography
Artificial intelligence (AI)
Database systems

As you can see, robotics is a very useful as well as entertaining pursuit.

14.6 Summary
In this chapter you have:

� Learned how to randomly generate line and corridor mazes.
� Explored various strategies for solving a maze.
� Seen how directed randomness can improve a totally random behavior.
� Seen how arrays can be used to store a history of actions, enabling the robot to learn

from its past attempts.
� Learned to use arrays to generate a map for the robot to consult before trying to solve

the maze.
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� Learned how to use some advanced computer science structures to give the robot
better artificial-intelligence capabilities.

� Seen how debugging statements can be used to trace the “thought-processes” of
the robot.

Now, try to do the exercises in the next section. If you have difficulty read the hints.

14.7 Exercises
1. Devise or research different methods to generate random mazes and incorporate them

in the programs of this chapter. 
2. In this chapter a line maze is generated the first time the program runs. Modify the

program to allow the user the option of generating a new maze, or using a maze
that has already been saved (giving the file name), or to save the current maze (giving
a file name). 

3. In this chapter we developed four methods for solving the line maze. Write a pro-
gram that allows the user to select which strategy to use. This way the user can
try all strategies on the same maze and can compare and contrast the strategies
against a common reference maze. Combine this and the result of Exercise 2 in a
single program.

4. In Sec. 14.3 an algorithm was devised to check if a path has been taken so as not to
go down that path again. Combine this logic with the logic of the routine given in
Fig. 14.4 to make the robot rLook() for the goal while avoiding dead-ends.

5. The algorithms in this chapter made the robot move in straight lines and forwarded
or turned fixed amounts. With real-life robots it is difficult to have the robot turn or
move accurately. There are two ways to solve this problem. One way is to use advanced
electronic sensors and motors. The other way is to use software to ensure that the robot
did indeed execute the required action. 

To simulate this, RobotBASIC has a command rSlip to allow the simulated robot
to behave in a random fashion. Study this command in Sec. C.9 and use it in any of
the programs of this chapter. Observe how this causes havoc to the robot’s behavior.
You need to modify all the forwarding and turning commands to allow for this.
Implement the required code.

HINT: Study the commands Mwrite, Mread, and Input in Sec. C.7. Use these
along with a means of presenting the options to the user and accepting a choice from
the user.

HINT: Present the user with a menu within the main program loop. See the
AddButton, and GetButton commands.
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6. When the program in Fig. 14.5 executes, you will notice that the robot makes a lot
of seemingly unnecessary turns. It does this because the robot turns to the same head-
ing that it had when it originally visited a cell. After that turn it then makes the cor-
rect turn relative to that position. Instead of doing all this turning, it would make more
sense to use a little mathematics to determine the proper direction and then turn to
that position directly (and turning either left or right based on which would be shorter).
Letting the robot “think” about a problem rather than solving it with brute force not
only makes the robot look smarter, it uses less battery power and speeds the robot’s
travel through the maze. This concept is discussed in much more detail in Chap. 16.
Modify the program to make it more efficient as described above.

7. The logic of the routine FindPath in Figs. 14.9 and 14.10 can be hard to follow. If
you place some Debug statements at the right places you will be able to observe how
the program traverses the graph to find a path from the start node to the goal node.
Do you know where to place these statements and what their contents should be?

HINT: See the GotoPoint routine in Fig. 14.9.

HINT: See the program in Fig. 14.5 for an example of how this is achieved.

HINT: Think about this. For more ideas and example programs see Chap. 15.
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C H A P T E R15
NEGOTIATING A 

HOME OR OFFICE

In previous chapters you learned about RobotBASIC’s programming environment and
its internal commands and functions, which we used to give our robot a repertoire of

useful behaviors. Later chapters combined many behaviors to achieve more complex
compound behaviors.

We now have enough tools and experience to be able to design a large project. We
will show the necessary steps for designing a useful robot. Many of the skills we have devel-
oped so far, along with the toolbox of routines and behaviors we have implemented will
be used. We will also show how to organize code so that other programmers can under-
stand and modify it if we wish to share it with others.

Here are a few examples of how an autonomous mobile robot can be used to convey
a load from point to point:

➢ Mail, documents, or other articles (e.g., a coffee machine) can be carried from one
room to another in an office or home environment.

➢ Food items and trays can be carted back and forth between the kitchen and customer
tables in a restaurant.

➢ Boxes or crates in a warehouse or depot can be transferred to and from trucks.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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➢ A robotic arm or other form of manipulator can be transported to where it can per-
form useful work.

➢ A laboratory of instruments and analyzers can be moved around hostile or inaccessible
environments.

All of these examples have one thing in common: the robot must move from point A
to point B (perhaps via point C) and wait for further commands. In this chapter we will design
a robot to simulate an office messenger that navigates between rooms on the office floor
according to user requests.

15.1 The Design Process
Before doing any coding the specifications of the project should be outlined. Once the
requirements are known, we analyze what tools and processes are needed to achieve the
specified requirements. Often the tools needed to create a project have been designed in
previous projects. These tools may have to be adapted to work together and/or made to
function in a slightly different manner. The process of determining what tools need to be
developed from scratch and which ones can be adapted from previous projects is an
essential step in the design process.

A complex task should be divided into a set of less complex subtasks. If these subtasks
are complex, then they too should be divided. This process is repeated until you end up
with a set of sub and sub-sub tasks that are easy to tackle and design. Some tasks have
inputs and no outputs, some have outputs and no inputs, but more often they have both
inputs and outputs. The task operates on the inputs in a certain fashion and generates
outputs. It is extremely important to be absolutely clear as to what inputs a task requires
and what outputs it is going to generate. Knowing the inputs and outputs of a task is part
of understanding how it achieves its functionality.

In fact you can consider each subtask as a project in its own right and apply the entire
design process to it as you would the main project. Design is an iterative recursive
process where you may have to repeat the same process on subtasks and repeat the
entire process multiple times until you arrive at a working design. When the design
process appears to be complete and you start coding, flaws in the design that cause you
to repeat the entire process will become apparent. The final product is influenced as much
by the designer’s experience and preferences as by the tools available to achieve the
requirements.

15.2 An Office Messenger Robot
We will develop a program that allows a user to command the robot to move from one
room to another in an office environment. When it arrives at its destination, the robot waits
for further commands. If the robot does not receive any further commands within a cer-
tain time it will go to a charging station and dock with the outlet. The robot will also return
to this station when its battery discharges below a certain threshold.
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15.2.1 THE OFFICE SPECIFICATIONS

In an office environment it is reasonable to assume that there is a network of computers
that allow each employee to communicate with the robot when required. For this project
we will assume that the office is a single floor and robot friendly (i.e., no stairs or steps).
We will also assume that the doors are always open or that they open automatically when
the robot approaches (see Exercise 1). 

We will limit the robot to moving around the office, along a network of paths that guar-
antees access to all rooms in the office. Also, we assume that any obstacles in the robot’s
path will be transient objects (such as people) that will eventually move out of the way.
Additionally, when the robot is instructed to move to a room it will move to a predeter-
mined spot in that room (see Exercise 2).

The office will have an area designated for the robot’s maintenance and recharging. This
area will not be available as a destination point in the command program. The robot will
go there on its own whenever it requires a charge or has no pending tasks to accomplish.

To maintain simplicity, the command system will not allow a user to issue a request if
the robot is still obeying a previous command (see Exercise 3).

Further specifications may arise while designing the individual subroutines and will be
discussed as they become needed. Remember, the design of each subroutine should be
approached as if it were a project on its own except that consideration must be made for
how it will interact with the overall system. We will discuss what tools are to be used and
limitations to be tackled in the design of each subroutine. The entire project will be a set
of subroutines (as you have seen before).

15.2.2 THE MAIN PROGRAM AND SUBROUTINES HIERARCHY CHART

As an overall procedure for achieving the above requirements we will display instructions
to the user, then draw a simulation of the office environment, initialize and place the robot
in the office. Finally, we will use an endless loop to wait for a command from a user and
execute it. Figure 15.1 shows this process in code. The set of variables above the

FIGURE 15.1 The MainProgram. All subroutines will be listed in separate figures.

//---Variables
   TimeOutLimit   = 60 
   LowChargeLimit = 20 
   ChargeDelay    = 2000 
   RobotSize      = 15 
   LnClr          = Cyan 
   BcnClr         = Red 
   SlipValue      = 0 
//===========================================================
MainProgrm:
  gosub DisplayInstructions 
  gosub DrawOffice 
  gosub MapOffice 
  gosub PlaceRobot 
  while true 
    gosub WaitForCommand 
    gosub MoveToRoom 
  wend 
End



212 COMPLEX COMPOUND BEHAVIORS

MainProgram label are parameters that affect the operations of the various subroutines
and will be discussed as they become needed. They are placed here so they can be easily
located for modification. 

In order for the robot to move around the office efficiently and effectively a map of the
office is needed. This is achieved by the subroutine MapOffice, which will be discussed in
its own section later.

A subroutines hierarchy chart can be extremely useful for documenting programs that
may have to be modified in the future. The chart in Fig. 15.2 resulted when the design
process discussed in Sec. 15.1 was applied. Notice that the subroutine CheckObstacles
is dotted. This routine is not implemented in the first version of the program. However,
the routine is required for later improvements of the system. To avoid drawing a new dia-
gram later, it is incorporated here for completeness.

The placement of the subroutines’ names is made to minimize crossing lines and to
emphasize the hierarchy of calling. When you study Fig. 15.2 carefully, along with the
program’s listing, you will find that the program’s actions are easier to follow. A well doc-
umented and annotated listing shows the order of calling the subroutines, and the hierar-
chy chart keeps you from becoming lost in the depths of nested calls.

Another thing to look for when you study a hierarchy chart is helper routines. For exam-
ple, the subroutine MoveToRoom is used by two subroutines. This means that this rou-
tine is a utility routine and can be considered as part of a library of utilities. GotoPoint is
not used by more than one routine but you know from previous chapters that this utility
routine has been used many times in various programs.

15.2.3 THE USER INTERFACE

The subroutine DisplayInstructions in Fig. 15.3 displays a screen with instructions detail-
ing the actions of the simulation. It makes use of the MsgBox() function to display the
text in a dialog box and wait for a left mouse click on the OK or Cancel buttons or press-
ing the Esc or Return keys. No use is made of the information returned by the function
indicating which key or button was pressed.

The DisplayInstructions routine could have been a simple set of Print statements as
you have seen in other chapters. However, it is time, at this advanced stage, to start using

MainProgram

PlaceRobot WaitForCommand

GetTimeInSecsChooseRoomPlotNodesFindNode

DrawOffice MapOfficeDisplayInstructions

DockWithCharger

MoveToRoom

FindPath GoToPoint

CheckObstacles

FIGURE 15.2 Subroutines hierarchy chart.
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FIGURE 15.3 User interface subroutines.

//===========================================================
//--- Subroutine DisplayInstructions 
//--- Inputs  : none 
//--- Outputs : none 
//--- Calls To: none 
//---
//--- displays the instructions in a window and an OK and Cancel
//--- buttons and waits for mouse click on the button or the 
//--- Space bar or Enter or Esc 
//-------------------------------------------------------------
DisplayInstructions:
   data IM;"Office Messnger" 
   data IM;"This program simulates an office messenger robot." 
   data IM;"Pressing ""m"" or ""M"" or right-mouse-button brings" 
   data IM;"up a command menu.","" 
   data IM;"The menu allows you to command the robot to go to" 
   data IM;"any room in the office. It also shows stats on the" 
   data IM;"robot's current position and the battery level.","" 
   data IM;"The robot will go to that room and await further" 
   data IM;"instructions. If you do not command it with a new" 
   data IM;"room to go to within 60 seconds, or if the battery" 
   data IM;"charge level goes too low, the robot will go to" 
   data IM;"the charging station and wait for more instructions" 
   data IM;"while charging." 
   n = MsgBox(IM) 
Return
//=============================================================
//=============================================================
//--- Subroutine ChooseRoom 
//--- Inputs  : Nodes[], RobotNode 
//--- Outputs : GoalNode 
//--- Calls To: none 
//---
//--- this routine displays a menu of rooms to choose from 
//--- once the user selects a room number it sets GoalNode
//--- to the number chosen. 
//--- The routine also displays the battery charge level and 
//--- the name of the room where the robot is currently
//--- situated when the routine is called. It uses the Nodes[] 
//--- array to get the name of the node. 
//-------------------------------------------------------------
ChooseRoom:
  if not VType(CR_t) 
     CR_t = true 
     data CR_btns;"&Cancel","&BreakRoom","Office &1" 
     data CR_btns;"Office &2","Office &3","Office &4" 
     data CR_btns;"Office &5","&HallWay 1","Hall&Way 2" 
  endif
  SaveScr 
  Rectangle 55,55,755,555,black,black 
  Rectangle 50,50,750,550,cyan,cyan 
  ERectangle 52,52,750,550,2,white 
  setcolor white,cyan 
  xytext 160,80,"Select the Room To Go To:","",15,fs_Bold 
  xytext 140,400,"Battery =        Robot is at:","",15,fs_Bold 
  setcolor black,white 
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FIGURE 15.3 (Continued)

  xytext 260,400,Format(rChargeLevel(),"##0%"),"",15,fs_Bold 
  xytext 493,400," "+Nodes[RobotNode,0]+" ","",15,fs_Bold 
  for CR_I = 0 to MaxDim(CR_btns,1)-1 
     AddButton CR_btns[CR_I],300,110+CR_I*25,150 
  next
  while true 
    GetButton CR_btn 
    if keydown(kc_Esc) then break 
    if CR_btn <> "" then break 
  wend 
  RestoreScr 
  for CR_I = 0 to MaxDim(CR_btns,1)-1 
    RemoveButton CR_btns[CR_I] 
  next 
  GoalNode = RobotNode 
  if CR_btn <> "" and CR_btn <> CR_btns[0] 
    for GoalNode=1 to MaxDim(CR_btns,1)-1 
      if CR_btn = CR_btns[GoalNode] then break 
    next
    GoalNode = GoalNode-1 
  endif
Return
//============================================================

the additional functions and commands that RobotBASIC provides. The subroutine
ChooseRoom in Fig. 15.3 demonstrates the use of many powerful commands to create
an advanced user interface as you can see in Fig. 15.4. You should always refer to the
Appendices and IDE help pages for more in-depth information regarding new functions
and commands.

In a real-life system we would need a program that runs on a computer network that
allows office workers to command the robot. The user interacts with the robot through a
PC program and chooses the room to which the robot must go. The PC would have a
wireless connection (perhaps through the network) to the robot to specify the desired action.
This functionality is simulated by the subroutines WaitForCommand (discussed later) and
ChooseRoom.

The ChooseRoom subroutine uses user-interface functions and commands to create a
menu for the user to choose which room the robot must go to. The routine also displays
the status of the battery and the room where the robot is currently located.

The routine makes use of the command xyText to display the text in a bigger bolded
font. Also notice the use of the command ERectangle. The function KeyDown() is
another way to check for a keypress. In this case it is used to check for the Esc key. The
commands AddButton, GetButton, and RemoveButton are used to create a set of
buttons that act as a menu for the user to choose the room to go to. The buttons are acti-
vated with the AddButton command and deactivated (when no longer needed) using the
RemoveButton command.

Notice the use of the VType() function. It is used to create a little trick. The first time
through the routine the variable CR_t would not have been created yet and the function
will return 0. This makes the flow enter within the if-block and the first action taken is
to assign a true to CR_t, which effectively creates the variable. Thus the second time
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through the subroutine the function will return 105 which is not 0 and thus the if-block
will not be entered. This prevents the array CR_btns from being defined again.

Notice that the routine saves the screen by using the command SaveScr and then
restores it by using RestoreScr. The user interface window is drawn over the office sim-
ulation screen. Thus, if we save the screen before we draw the command menu and then
restore it after the user chooses a room, the screen will be the same as it was before the
command menu window was drawn over it. This makes the command menu appear as if
it was a window that opened and closed without affecting the graphics on the screen under-
neath it.

The routine also displays the robot’s current location in the window. The robot’s cur-
rent node number is kept in the variable RobotNode. The routine can display this number;
however, it is more user-friendly if this number is translated to words displaying the name
of the room the robot is in. This is achieved by indexing into an array containing the names
of the rooms. This is the array Nodes[ ] created in the subroutine MapOffice.

The action of the subroutine is to wait for the user to select a button using the mouse or
by pressing Alt	 the underlined character in the button’s title. The user is also allowed to
press the Esc key. The routine will stay in a loop waiting for one of the buttons to be pressed

FIGURE 15.4 Choosing a room to go to.



216 COMPLEX COMPOUND BEHAVIORS

or the Esc key. Pressing the Esc key or the Cancel button keeps the robot where it is (i.e.,
the GoalNode variable is made to be equal to the RobotNode variable). Pressing any of 
the other buttons will set the GoalNode to the node number of the room chosen. Since these
rooms have been arranged to be the first eight rooms in the array of nodes and since the
array indexing starts at 0 (not 1) then the button’s position in the array of button names less
one will be the node number of that room. Of course, if the room chosen is the same as
the robot’s current location, then the robot will remain where it is.

The ultimate outcome of the ChooseRoom subroutine is that the value GoalNode is
set to the desired destination in the office layout. 

If you look at the listing in Fig. 15.3 you will see that above the subroutine name there
is a set of comment lines that summarize:

1. The inputs the routine requires.
2. The outputs the routine gives.
3. The subroutines the routine calls.
4. The action of the routine.

This method of documenting your work is vital if you are developing nontrivial systems.
You will be thankful you spent the time and effort documenting your work in this manner
if you ever need to modify the system after the elapse of some time, or if other people
will be doing so. Also, if you are going to collect your routines into a library of tools to be
reused, the information presented in these comments will be indispensable.

Notice how temporary variables within the routines are named. For example, in the
subroutine ChooseRoom the variable CR_I is used in the for-loop instead of I or i (CR_
is used due to the fact that the routines initials are CR). 

All variables in RobotBASIC are global. This means that all variables are available any-
where in the code. If you have a subroutine that uses a temporary variable (e.g., i) and
then it calls another subroutine that also uses a variable with the same name (i again), then
all sorts of problems will arise. 

If you are going to set any temporary variables privately within a routine use this
naming convention to make it unlikely that the above problem will occur. This is vital when
your programs become complicated with subroutines calling other subroutines and so on.

15.2.4 DRAWING THE OFFICE AND PLACING THE ROBOT

The DrawOffice subroutine in Fig. 15.5 is similar to the one seen in Chap. 11. The office
has been modified a little to have an area dedicated to the robot’s charging station (see
Fig. 15.6). The various rooms in the office are labeled for the convenience of knowing
which room is which, when choosing the room to go to. 

The PlaceRobot subroutine (Fig 15.5) places the robot so that it is already docked with
the charging station. Also, it sets the list of invisible colors and makes the robot heed the
battery charge level. The command rSlip will be explained later in the chapter. 

The last line initializes the variable RobotNode. This variable is important for the opera-
tions of the system. The robot’s initial position is at the charging station. This is designed to
be the last node in the array of nodes (see later sections). Thus we set the value to
NodesCount � 1. NodesCount is a variable that holds the number of nodes in the office map
(see later sections). The reason we subtract 1 is due to array indexing, as you already know.
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//===========================================================
//--- Subroutine PlaceRobot 
//--- Inputs  : BcnClr,LnClr,RobotSize,SlipValue,NodesCount 
//--- Outputs : RobotNode 
//--- Calls To: none 
//-----------------------------------------------------------
PlaceRobot:
  rLocate 558,565,0,RobotSize 
  rInvisible LnClr 
  rSlip SlipValue 
  rIgnoreCharge false 
  RobotNode = NodesCount-1 
Return
//===========================================================
//===========================================================
//--- Subroutine DrawOffice 
//--- Inputs  : none 
//--- Outputs : none 
//--- Calls To: none 
//-----------------------------------------------------------
DrawOffice:
  ClearScr 
  LineWidth 15
  Data Walls;-165,140,165,0,-357,245,0,245,-590,513,590,600 
  Data Walls;-165,140,255,140,-360,140,517,140,-530,513,530,600 
  Data Walls;-644,140,797,140,-517,140,517,0,-474,245,699,245 
  Data Walls;-474,246,474,419,797,419,-357,247,357,470,113,470 
  MPolygon Walls 

  Cabinet_H = "rrrddddllluuuu" 
  Cabinet_V = "dddlllluuurrrr" 
  Desk_H    = "rrrrrrrrrrdddddlllluuuulllllddddluuuuu" 
  Desk_V    = "ddddddddddllllluuuurrrruuuuullllurrrrr" 
  linewidth 1 
  //Desks & Cabinets Locations 
  Data Furniture; "CH",478,0,"CH",597,559,"CH",769,370 
  Data Furniture; "CH",0,252,"CH",0,0 
  Data Furniture; "CV",564,0,"CV",40,569,"CV",214,569 
  Data Furniture; "CV",169,569,"CV",156,0 
  Data Furniture; "DV",348,300,"DV",800,496,"DV",800,0 
  Data Furniture; "DH",481,252,"DH",259,0 
  //Draw them 
  for I = 0 to MaxDim(Furniture,1)-1 step 3 
     if Furniture[I] = "CH" then ss = Cabinet_H 
     if Furniture[I] = "DH" then ss = Desk_H 
     if Furniture[I] = "CV" then ss = Cabinet_V 
     if Furniture[I] = "DV" then ss = Desk_V 
     DrawShape ss,Furniture[I+1],Furniture[I+2],10 
  next 
  //Shade them 
  Data FF_Cabinets; 10,-17, 10,-271, 488,-21 
  Data FF_Cabinets;782,-395, 612,-585, 140,-19, 544,-24 
  Data FF_Cabinets; 22,-584, 151,-586, 198,-580 
  MPolygon FF_Cabinets,darkgray 
  Data FF_Desks;337,-34, 776,-80, 323,-388, 565,-274 
  Data FF_Desks;772,-580 
  MPolygon FF_Desks,gray 
  //Tables 
  Circle 59,69,109,119,darkgray,darkgray 
  Circle 118,329,168,379,darkgray,darkgray 

FIGURE 15.5 DrawOffice and PlaceRobot.
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  //Charger Station 
  Rectangle 558-10,554+35-10,558+10,554+35+10,blue,blue 
  //Chairs 
  Data Chairs;275,27,699,16,500,319,245,316,723,512,75,279 
  for I = 0 to MaxDim(Chairs,1)-1 step 2 
     X = Chairs[I] 
     Y = Chairs[I+1] 
     Sp = 35  //leg spacing 
     LD = 4   //leg diameter 
     Cl = Brown  //color for legs 
     Circle X,Y,X+LD,Y+LD,Cl,Cl 
     Circle X+Sp,Y,X+Sp+LD,Y+LD,Cl,Cl 
     Circle X,Y+Sp,X+LD,Y+Sp+LD,Cl,Cl 
     Circle X+Sp,Y+Sp,X+Sp+LD,Y+Sp+LD,Cl,Cl 
  next 
  data labels; 34,  0,"1=Break Room", 370,  0,"2=Office 1" 
  data labels;579,  0,"3=Office 2"  , 590,253,"4=Office 3" 
  data labels;241,253,"5=Office 4"  , 652,584,"6=Office 5" 
  data labels;224,584,"7=HallWay 1" ,  50,584,"8=HallWay 2" 
  setcolor LnClr 
  for I=0 to MaxDim(labels,1)-1 step 3 
     xystring labels[I],labels[I+1],labels[I+2] 
  next 
Return
//===========================================================

FIGURE 15.5 (Continued)

FIGURE 15.6 The office plan.



The parameters LnClr, BcnClr, SlipValue, and RobotSize are set at the top of the pro-
gram. They are placed there for easy changing if it becomes necessary, as you will see in
the case of SlipValue in later sections. NodesCount is set by the subroutine MapOffice
(see later sections).

15.2.5 MAPPING THE OFFICE

If you look at Fig. 15.6 you will see that the office plan is complex enough to baffle the
robot if it did not have a planned route from one room to another. It would be impossi-
ble to make the robot go to a desired room if it did not have a means of knowing which
room is which and how to get there. One solution is to give our robot a map of the office.

You have seen how to do this in Chap. 14, where we used a graph to represent the
interconnectivity of the various junctions in the maze. The office environment is really a
type of maze. The only difference is that there are no lines to follow and the robot can
move in any direction, not just horizontally and vertically as before.

Once the map of the office is created (in the form of a graph—see Chap. 14) the
process of making the robot move around the map should be similar to what we have seen
in Chap. 14. The trick is in how we create the graph.

If you examine Fig. 15.7 you will see that we have drawn a network of virtual paths
that guarantees the robot access to all the areas of the office. Notice the nodes are not
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FIGURE 15.7 A virtual highway.
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just at intersection points. Some nodes are required as intermediary positions that guar-
antee the robot the ability to reach the next node without having to negotiate around walls.
Also, some nodes are added to minimize the distance between nodes for reasons that will
become clear in later sections.

In each room there is a designated spot that the robot will reach and wait for the office
employee to interact with it. The robot will not move around the office to any other point.
However, if you desire the robot to be able to reach more spots in a room you can design
more nodes for it to be able to navigate to (see Exercises).

You can now see how we can map the office. We give each of the nodes in Fig. 15.7
a number and then create an array showing which node is connected to which, just as we
have done in Chap. 14. The robot will always move from one node to another. In the com-
mand program, simulated by the ChooseRoom subroutine, we only allow the user to spec-
ify certain nodes that happen to be within each of the rooms. There is no way in our
program for the user to command the robot to go to any of the intermediate nodes but
we could have done so if we wished. In this example though, there is no logical reason
for the robot to stop at any of the intermediate nodes.

Notice that the charging room is not on the list of destinations that the user can com-
mand. However, the charging room is a node that the robot will want to go to by itself
whenever it is idle for an extended time or when the battery charge drops below a cer-
tain level.

We could give each node a number, but it would be better to label them with meaning-
ful names such as “Office 1” or “Office1_D” (for the door) so we can modify and add nodes
without having to worry about their positions in the array. This effectively creates a data-
base of nodes. Each entry in the array of nodes (Nodes[ ]) will hold the name of the node
and its x, y coordinate in the office (see Fig. 15.8). In a real office there would be a ref-
erence point and the x, y coordinate would be in reference to that point in inches or
centimeters.

The array Nodes[ ] is created indirectly via the array OF [ ]. We use a set of Data state-
ments to specify the data for all the nodes. It is a lot easier to use Data statements to do
this work than individually assigning the value of each array element in Nodes[ ]. We then
use the command MCopy to copy the contents of OF[ ] into the previously dimensioned
(to the correct dimensions) array Nodes[ ]. 

Remember, the Data command creates a one-dimensional array. This is conven-
ient when entering the data but is not convenient for accessing the data later on. For
this reason we create the two-dimensional array Nodes[ ] and copy the data from the
single-dimensional array OF[ ] into it. The MCopy command ensures that the correct
elements from OF [ ] are copied to the correct position of Nodes[ ]. So long as the data
is in sets of three, MCopy will copy the first three elements from OF[ ] into the first row
in Nodes[ ] and then the next three elements into the next row, and so on until all the
NodesCount rows of Nodes[ ] are filled. Notice how the variable NodesCount is
calculated. As mentioned before in Chap. 9, this is a more versatile way to do this than
actually counting by hand. If we later modify the list of nodes we won’t have to worry
about the count.

Two constraints are imposed on the array. First, all the nodes at the beginning are nodes
that will be on the list of nodes that can be commanded. Second, the last two nodes are
the nodes for the charging room. The reasons for the second constraint will be discussed
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//=============================================================
//--- Subroutine MapOffice 
//--- Inputs  : none 
//--- Outputs : MapGraph[], Nodes[], NodesCount 
//--- Calls To: FindNode 
//---
//--- The Nodes[]array is a data base with name of the
//--- node and the x,y coordinates of it. 
//-------------------------------------------------------------
MapOffice:
  //Rooms
  Data OF;"BreakRoom" , 35, 99, "Office1" ,345, 83 
  Data OF;"Office2"   ,641, 44, "Office3" ,685,346 
  Data OF;"Office4"   , 45,351, "Office5" ,660,500 
  Data OF;"HallWay1"  ,343,570, "HallWay2", 82,570 
  //Doors 
  Data OF;"BreakRoom_D", 35, 139, "Office1_D",305, 141 
  Data OF;"Office2_D"  ,585, 142, "Office3_D",757, 240 
  Data OF;"Office4_D"  , 45, 468, "Office5_D",597, 455 
  //Corridors
  Data OF;"Corridor1" , 35, 186, "Corridor2" ,305, 186 
  Data OF;"Corridor3" ,420, 186, "Corridor4" ,585, 186 
  Data OF;"Corridor5" ,757, 186, "Corridor6" ,420, 515 
  Data OF;"Corridor7" , 45, 515, "Corridor8" ,420, 455 
  Data OF;"Corridor9" ,558, 455, "Corridor10",420, 316 
  Data OF;"Corridor11",155, 515 
  //Charging Station 
  Data OF;"ChargeRoom_D",558, 508, "ChargeRoom",558,554 

  NodesCount = MaxDim(OF,1)/3 
  Dim Nodes[NodesCount,3] 

  MCopy OF,Nodes 
  Data Edges;"BreakRoom","BreakRoom_D","Corridor1","Corridor2" 
  Data Edges;"Office1_D","Office1",-1 
  Data Edges;"Office2","Office2_D","Corridor4","Corridor5" 
  Data Edges;"Office3_D","Office3",-1 
  Data Edges;"Corridor3","Corridor10","Corridor8","Corridor6" 
  Data Edges;"HallWay1","Corridor11","Corridor7",-1 
  Data Edges;"Office4","Office4_D","Corridor7","HallWay2",-1 
  Data Edges;"Office5","Office5_D","Corridor9","ChargeRoom_D" 
  Data Edges;"ChargeRoom",-1 
  Data Edges;"Corridor2","Corridor3","Corridor4",-1 
  Data Edges;"HallWay2","Corridor11","Corridor6","Corridor9" 
  Data Edges;"Corridor8",-1 

  Dim MapGraph[NodesCount,NodesCount] 
  MConstant MapGraph,0 
  NName = Edges[0] 
  gosub FindNode 
  FNode = NodeNumber 
  for MO_I = 1 to MaxDim(Edges,1)-2 
    if IsNumber(Edges[MO_I]) 
       NName = Edges[MO_I+1] 
       gosub FindNode 
       FNode = NodeNumber 
       MO_I = MO_I+2 
    endif 
    NName = Edges[MO_I] 
    gosub FindNode 
    TNode = NodeNumber 
    if FNode >= 0 and TNode >= 0

FIGURE 15.8 Mapping the office.
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       MapGraph[FNode,TNode] = 1 
       MapGraph[TNode,FNode] = 1 
    endif 
    FNode = TNode 
  next 
  //gosub PlotNodes 
Return
//=============================================================
//=============================================================
//--- Subroutine FindNode 
//--- Inputs  : NName, NodesCount, Nodes[] 
//--- Outputs : NodeNumber 
//--- Calls To: none 
//---
//--- If Node is not found the NodeNumber will be -1 
//--- otherwise it will be the number of the node in the array. 
//-------------------------------------------------------------
FindNode:
   NodeNumber = -1 
   for FN_I = 0 to NodesCount-1 
      if NName = Nodes[FN_I,0] 
        NodeNumber = FN_I 
        Return 
      endif 
   next 
Return
//=============================================================
//=============================================================
//--- Subroutine PlotNodes 
//--- Inputs  : MapGraph[], Nodes[] 
//--- Outputs : none 
//--- Calls To: none 
//---
//--- Uses the arrays Nodes[] and MapGraph[] 
//--- to plot a network of the nodes and their connections 
//--- using the line color. 
//-------------------------------------------------------------
PlotNodes:
  for PN_I =0 to NodesCount-1 
    SN_X = Nodes[PN_I,1] 
    SN_Y = Nodes[PN_I,2] 
    Circle SN_X-5,SN_Y-5,SN_X+5,SN_Y+5,LnClr,LnClr 
    for PN_J = 0 to NodesCount-1 
       if MapGraph[PN_I,PN_J]=1
         Gotoxy SN_X,SN_Y 
         LineTo Nodes[PN_J,1],Nodes[PN_J,2],3,LnClr 
       endif 
    next 
  next 
Return
//=============================================================

FIGURE 15.8 (Continued)

later in the chapter. The reason for the first constraint is to make it easy to find the nodes
that will be used on a regular basis. Also, the way we designed the user interface
(ChooseRoom), assumed that the button number �1 is the node number. This could not
have been possible without the first constraint. 
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The first constraint can be removed if we allow the user to choose the room by name.
We then search the database for that name to determine what node number it is. However,
the user interface as designed is easy and functional. You will see that we do search the
database for a different reason. The subroutine FindNode facilitates this. This subroutine
goes through the array Nodes[ ] looking for the name set in the variable NName. If it is
found the variable NodeNumber is set to the position in the array where that node name
is, otherwise it is set to �1. The routine also needs to know the number of nodes in the
array; this is the value NodesCount set by the MapOffice routine.

The reason we search the database is due to the way we specify how the nodes are
connected. Rather than saying that node n is connected to node m and repeating this for
all nodes. We create an array (Edges[ ] using Data statements) that specifies paths by list-
ing the nodes on the paths by name. This makes it easy to modify this connectivity list
and we won’t have to remember which node is which number since the names are used.
Notice how the list of paths is terminated by the number �1 indicating the end of the list.
Each list is a path from the first node to the last node in the list. This means that the first
node is connected to the next and the next to the one after that and so forth. Notice how
some nodes are members of multiple lists.

Edges[ ] along with Nodes[ ] are used to create MapGraph[ ]. This array is, as described
in Chap. 14, a two-dimensional square array of 1s and 0s. A 1 at position [I, J] implies
that node I is connected to node J and since we have a bidirectional network we will also
expect to have a 1 at position [J, I]. A 0 at the position implies that there is no connection
between these nodes.

Notice that the last line before the Return statement is commented out. This line is
a call to the subroutine PlotNodes. This subroutine uses Nodes[ ] and MapGraph[ ] to plot
the nodes (as little circles) and the paths between them using the color defined in LnClr.
In normal usage of the simulation you won’t need to see this plot, but it may become nec-
essary in debugging or visualizing the system. Figure 15.7 was generated by uncomment-
ing the line.

The number of nodes was chosen to make the robot’s job of moving between them
easy, without the possibility of getting close to walls or being obstructed by corners and
doorframes. Experiment with less or more intermediate nodes and see how the system
fairs. Also you may want to see what happens if you remove some of the multiple paths
between the “Hallways” and “Offices 4 and 5.” These paths ensure that the robot will take
the shortest route depending on which direction it is coming from. If you remove these
redundant paths the robot will look less intelligent in the way it goes from one point to
another in that area. We have chosen to make the robot move in the center of the cor-
ridors. This can be easily modified by changing the placement of the nodes. This kind
of interaction demonstrates the value of a good design. Had we not designed the
mapping process to be so generic we would not have been able to change such things
without a great deal of work.

Notice how the FindNode routine is designed to return a meaningful value if the node
name is not found in the database. This value is utilized in the MapOffice routine while it
is creating MapGraph[ ] from the list of edges (Edges[ ]). If you mistype the name of a node
while specifying the edges the routine will not fail, it will just ignore that edge. Of course
this means that the graph will not be correct but you will soon find this out when you run
the system or if you examine the graph’s data.
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15.2.6 WAITING FOR A COMMAND

As we have specified, the robot will wait until a user commands it to a particular room.
The subroutine WaitForCommand (Fig. 15.9) will wait until the user presses the right
mouse button anywhere on the screen or the “m” or “M” button on the keyboard. This
indicates to the routine that the user desires to command the robot. The routine will then

//=============================================================
//--- Subroutine WaitForCommand 
//--- Inputs  : LowChargeLimit 
//--- Outputs : GoalNode 
//--- Calls To: GetTimeInSecs,DockWithCharger,ChooseRoom 
//---
//--- this routine uses ChooseRoom to set the variable 
//--- GoalNode which indicates what room the robot is to go. 
//-------------------------------------------------------------
WaitForCommand:
   if rChargeLevel()<LowChargeLimit
     StartTime=-TimeOutLimit 
   else 
     gosub GetTimeInSecs 
     StartTime = Tm 
   endif 
   repeat 
     gosub GetTimeInSecs 
     if Tm-StartTime > TimeOutLimit 
        gosub DockWithCharger 
        StartTime = 99999 
     endif 
     readmouse xx,yy,b 
     getkey k 
     k = char(k) 
     if b = 2 or k="m" or k="M" 
       gosub ChooseRoom 
       break 
     endif 
   until false 
Return
//=============================================================
//=============================================================
//--- Subroutine GetTimeInSecs 
//--- Inputs  : none 
//--- Outputs : Tm 
//--- Calls To: none 
//---
//--- this routine sets Tm to the current minutes and seconds 
//--- in seconds. It is used like a stop watch. 
//-------------------------------------------------------------
GetTimeInSecs:
  Tm  = Time(1) 
  TmH = ToNumber(Substring(Tm,1,2)) 
  TmM = ToNumber(Substring(Tm,4,2)) 
  TmS = ToNumber(SubString(Tm,7,2)) 
  Tm  = TmH*3600+TmM*60+TmS
Return
//=============================================================

FIGURE 15.9 Waiting for commands.
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invoke the ChooseRoom routine we have discussed before and then return to the main
program. The outcome of all this is that the variable GoalNode is set according to the
user’s command. The main program will then cause the robot to move to the indicated
node, as we will see later.

The routine will also execute two other important tasks. The first task makes the robot
move to the docking station if there is no user command within a certain period of time.
This is achieved by calling the subroutine GetTimeInSecs that starts a timer and initiates
a stopwatch action. When the time period elapses without any user input the routine calls
DockWithCharger (see later section).

The second task causes the robot to move to the charging station if the battery
charge level is below a certain threshold. This is done by checking the charge level using
the rChargeLevel() function. When the value drops below a predefined threshold the
StartTime is set to a value that causes an immediate time out. This causes a call to
the subroutine DockWithCharger as above. 

The routine GetTimeInSecs sets the variable Tm to the value of the current time con-
verted to seconds. So if the time is 11:23:30 the variable Tm will be set to the value
11 � 3600 	23 � 60 	 30 (41010). This is achieved by dissecting the string value
returned by the function Time(1) and converting it to numbers and applying the formula.
The outcome is the same as noting the time but the value is in seconds. If you save the
value Tm in a variable StartTime and then call the subroutine again at a later time and
subtract StartTime from the new Tm value you will get the elapsed time in between calls.
This is the same action as using a stopwatch.

WaitForCommand does the above and compares the time to a specified value
TimeOutLimit. If the elapsed time exceeds the time out limit the routine invokes
DockWithCharger and sets the start time to a value that will not cause a time out again,
until the subroutine is called again.

15.2.7 EXECUTING THE COMMAND

The command process culminates in specifying a GoalNode to go to. The node where
the robot is situated is specified as the charge room node upon starting the program, and
is always maintained in the variable RobotNode as the robot moves. These two variables
are necessary for the actions of the subroutine FindPath. This subroutine is called by the
routine MoveToRoom (Fig. 15.10) to find a path of nodes to move from the RobotNode
to the GoalNode.

The subroutine MoveToRoom calls FindPath (Fig. 15.10) to create PathList[ ] and its
length PathLength. This action is only performed if the destination node and the robot’s
node are different (i.e., the robot is not at the destination). Once PathList[ ] is created and
is a valid list (PathLength > 0) the routine iterates through the list to make the robot
GotoPoint to the nodes one at a time. You have seen the GotoPoint subroutine many times
already in various chapters. It assumes that the robot has a compass and GPS system. 

In this section it is assumed that the robot has an accurate compass and GPS (global
positioning system) or even better an LPS (localized positioning system). Later sections
will discuss how to move the robot without the use of these two specialized and sometimes
limiting instruments. 

The FindPath subroutine is the same as the one discussed in Chap. 14 for finding
the shortest path between two nodes. The routine is modified slightly from the listing in
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//=============================================================
//--- Subroutine MoveToRoom 
//--- Inputs  : RobotNode,GoalNode 
//--- Outputs : none 
//--- Calls To: FindPath,GotoPoint 
//---
//--- causes the robot to move to the goal node from where
//--- it is. It calls FindPath to get the shortest path. 
//-------------------------------------------------------------
MoveToRoom:
   if RobotNode <> GoalNode 
      gosub FindPath 
      if Found and PathLength > 0 
         for MTR_I = 1 to PathLength  //for each node on path 
            Dnn = PathList[MTR_I,0] //destination node number 
            x = Nodes[Dnn,1] 
            y = Nodes[Dnn,2] 
            gosub GotoPoint 
         next 
         RobotNode = GoalNode 
      endif 
   endif 
Return
//=============================================================
//=============================================================
//--- Subroutine FindPath 
//--- Inputs  : RobotNode,GoalNode,MapGraph[],NodesCount 
//--- Outputs : PathList[],PathLength 
//--- Calls To: none 
//---
//--- this routine searches the MapGraph[] for a shortest path 
//--- between the RobotNode and GoalNode. 
//-------------------------------------------------------------
FindPath:
   Dim Queue[NodesCount] 
   QHead = 0 
   QTail = 0 
   Dim Visited[NodesCount,3] 
   MConstant Visited,999999 
   Queue[QTail] = RobotNode //add to queue 
   QTail = QTail+1 
   Visited[RobotNode,0] = 1  //visited 
   Visited[RobotNode,1] = 0  //distance 
   Visited[RobotNode,2] = -1 //predecessor 
   while Visited[GoalNode,0]<>1 and QHead < QTail 
      v = Queue[QHead]  //deque 
      QHead = QHead+1 
      for w = 0 to NodesCount-1 
        if MapGraph[v,w] = 1 and Visited[w,0] <> 1 
           Visited[w,0]=1 
           Visited[w,1] = Visited[v,1]+1 
           Visited[w,2] = v 
           Queue[QTail] = w //add to queue 
           QTail = QTail+1 
        endif 
      next 
   wend 

FIGURE 15.10 Moving the robot.
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   if Visited[GoalNode,0]  = 1 
      Found = true 
      Dim PathList[NodesCount] 
      PathLength = Visited[GoalNode,1] 
      PathList[PathLength] = GoalNode 
      For FP_I = PathLength-1 to 0 
        PathList[FP_I] = Visited[PathList[FP_I+1],2] 
      next 
   else 
      Found = false 
   endif 
Return
//=============================================================
//=============================================================
//--- Subroutine GotoPoint 
//--- Inputs  : x,y 
//--- Outputs : none 
//--- Calls To: none 
//---
//--- this routine turns the robot towards the location x,y 
//--- and then moves the robot there. If there is an object 
//--- in the way it terminates before reaching the point. 
//-------------------------------------------------------------
GotoPoint:
   dx = x-rGpsX() 
   dy = y-rGpsY() 
   if dx=0 AND dy = 0 then return 
   Theta = PolarA(dx,dy)*180/pi()+90-rCompass() 
   if Theta > 180 then Theta = Theta-360 
   if Theta < -180 Then Theta = Theta+360 
   rTurn Theta 
   Distance = Round(PolarR(dx,dy)) 
   For GP_I = 1 to Distance 
     if rBumper() & 4 then break 
     rForward 1 
   next 
Return
//=============================================================

FIGURE 15.10 (Continued)

Chap. 14. The change is only in naming. In Chap. 14 we returned the path list in the
array Stack[ ] and its length in SP. This was to maintain compatibility with the naming
in the previously developed any-path search. Here we do not have to do this and the
name of Stack[ ] has been changed to PathList[ ] and SP to PathLength, for more appro-
priate names. Otherwise the subroutine executes exactly the same logic as in Sec. 14.4.
As a summary, the routine carries out a breadth-first search through MapGraph[ ] to find
the shortest path between the RobotNode and GoalNode.

15.2.8 RECHARGING THE BATTERY

The DockWithCharger subroutine (Fig. 15.11) causes the robot to move to the charging
room by calling MoveToRoom, with GoalNode set to the node number of the charging
room, which is the value NodesCount � 1. Remember we made the charge room node
and its door node the last two nodes in the Nodes[ ] array for precisely this purpose. Of
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course, we could have used the subroutine FindNode to locate the node if it was not known
to be the last node.

Once at the charge room node, the robot turns around 180� and reverses until the back
bumper is closed. This is the same docking procedure we used in Chap. 13 but without
the use of a line to follow. This is because we use the GPS and compass to situate the
robot at the proper position and orientation to achieve a docking. This is accomplished
by locating the charge room node and the node before it (the door) at the correct posi-
tions to lead the robot straight into the charging station where all that is needed for dock-
ing is to turn 180� and reverse a short distance.

Finally the robot simulates charging by delaying ChargeDelay milliseconds and using
the rCharge command.

15.3 A Reality Check
When you combine Figs. 15.1, 15.3, and 15.5 with 15.8 to 15.11 and run the program
you will see the system working perfectly well. The robot goes from room to room as com-
manded and the recharge docking procedure works as expected. However, this is not a
real situation. The simulation in Sec. 15.2 is unrealistic in two ways:

1. Rarely do robots go forward the amount commanded without slipping or turning.
Most robots use gears that have play due to manufacturing tolerances and wear and
tear. Also wheels tend to slip and motors tend to behave differently, all resulting in inac-
curate movement of the robot. So the movement you expect is not what you get.

2. Compasses and GPSs are relatively expensive and generally not as accurate as desired.
Affordable electronic compasses are often only accurate to 
5° not 1° as we would

//=============================================================
//--- Subroutine DockWithCharger 
//--- Inputs  : NodesCount,ChargeDelay 
//--- Outputs : none 
//--- Calls To: MoveToRoom 
//---
//--- makes the robot move to the charge room. Once there it 
//--- turns around and docks with the charging station with 
//--- its back. 
//-------------------------------------------------------------
DockWithCharger:
    GoalNode = NodesCount-1 
    gosub MoveToRoom 
    rTurn 180 
    while not(rBumper()&1) 
      rForward -1 
    wend 
    delay ChargeDelay 
    rCharge 100 
Return
//=============================================================

FIGURE 15.11 Charging the robot.
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like. Most GPS systems are accurate to a few yards at best, not inches as we would like,
and most GPS receivers will not work indoors.

You can use encoders and feedback control to help ensure that the robot moves as
expected, and there are ways to make an LPS that can be accurate to very small resolu-
tions and work indoors. However, these solutions can be expensive and difficult to
implement.

Can we devise solutions in software rather than hardware (or just simple hardware) that
would make our algorithm resilient to these deficiencies? We will explore three potential
solutions in the next section and discuss further possibilities in the section after that.

15.3.1 COUNTERACTING MOTOR SLIP WITH A GPS AND COMPASS

A real robot has a certain amount of randomness inherent in its movement. Wheels slip
slightly on the floor. The friction associated with wheel-bearings and gears varies with tem-
perature, wear, grease quantity, and so on. No two motors have exactly the same speci-
fications. This means that no matter how precise you try to make a real robot, it will never
be able to repeat its actions exactly unless you use sophisticated electronics and control
methods to counteract the problem. 

RobotBASIC has the ability to simulate the above limitations. If you issue the com-
mand rSlip the robot will add a 2 percent error when turning and forwarding. If you
include an argument for this statement, you can specify the percent of error you want.
You can specify a 10 percent error, for example, if you use rSlip 10. See Sec. C.9
for more information.

To examine how this problem affects the algorithm in Sec. 15.2, a variable at the top
of Fig. 15.1 called SlipValue has been set. We also have the statement rSlip SlipValue
in the PlaceRobot subroutine in Fig. 15.5. Notice that SlipValue is set to 0. Try changing
this value to 5, 10, 20, 50, and 70 to see how it affects the robot.

The algorithm in Sec. 15.2 assumed an ideal robot that moves as commanded. When
we simulate a real robot though, the algorithm fails. Can the algorithm be modified to
resolve this issue?

In order to resolve the problem we need to understand why the algorithm fails. Of
course it failed because the robot did not move as expected, but this is not the direct
reason for failure. If you do a search on the code of the entire program you will find that
the commands rTurn and rForward are used in only two subroutines: GotoPoint and
DockWithCharger.

The direct reason the algorithm fails is due to the fact that the robot does not arrive at
the expected intermediate node. The GotoPoint subroutine calculates the heading to
turn then turns the robot to that heading. It does not check that the robot actually turned
to exactly that heading. Also the algorithm calculates the distance to the point and for-
wards the robot that amount. It again does not check that the robot actually moved that
distance without turning or slipping.

The indirect reason for the failure is motor/wheel slip, but the direct reason is that the
algorithm does not verify that the robot actually arrived at the desired coordinates. So all
we need to do is modify the algorithm of GotoPoint to ensure that the robot actually arrives
at the desired point.
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If you study the code in Fig. 15.12 you will see the required modification. The idea is
to stay in a loop that turns the robot toward the destination and then forwarding one pixel,
repeating the action until it actually gets there. The robot may turn and move more or
less than the required amount, but the loop will ensure that eventually it gets there by
constantly turning and forwarding toward the goal point. The above actions counteract
any slip in the robot’s movements, but they still require an accurate GPS and compass.
We will address this in the next section.

Another shortcoming in the previous algorithm is that if an obstacle is encountered the
robot will never get to the point because it abandons the routine. We shall simulate tran-
sient obstacles that move into the robots path by using the mouse. If you press the left
mouse button with the cursor in front of the robot, the code in the subroutine
CheckObstacles will make the robot think that there is an obstacle. This routine also sim-
ulates the robot flashing a beacon (you can also make it beep see Exercise 8). The robot
will not move until the obstacle moves out of the way and then it will continue on its way.
Try this by clicking the mouse and keeping it clicked in front of the robot.

The other routine that must be changed is DockWithCharger. The old routine assumed
that by turning 180� the robot would have its back facing the charging station. However,
the robot may not turn 180�. If there is an error of a few degrees there would be no
problem, but this cannot be guaranteed unless we modify the code to ensure that the robot
actually turns to face north. This is achieved by making the robot continue to turn in a
loop until it actually faces north. The final reversing may still cause problems but if we design
the charging room node to be close to the station then the likely error will be within allow-
able tolerances. Remember that reversing is done until the rear bumper is closed so the
robot will always get there.

The routines in Fig. 15.12 are replacements for the ones in Figs. 15.10 and 15.11.
CheckObstacles is a new routine.

15.3.2 NO GPS OR COMPASS (SLIP IS CORRECTED BY HARDWARE)

Can we still know the robot’s position and heading if we had no compass or GPS? If the
robot has no slip or any slip is removed by hardware using feedback control and good wheel
encoders ensuring that the robot moves as expected, we can effectively create a software
GPS and compass system.

This is actually the principle behind a navigation system used by aircrafts, ships, and
even spaceships. This system is called inertial navigation system (INS). INSs rely on gyro-
scopes oriented in the three axes of movement. The gyroscopes give a method for the
system to measure forces on all three axes. Using calculus and mathematics the transla-
tion of the craft can be calculated quite accurately. If you keep track of these translations
you are able to calculate the craft’s position in three dimensions at all times. The system
generates small errors that can accumulate over time but if the reported position is checked
against a known reference occasionally, a correction can be applied to maintain the
system within acceptable tolerances. 

We can simulate an INS system using software. If instead of calling rForward or
rTurn we call a subroutine that simulates keeping track of all translations, we can simu-
late an INS which can return the robot’s heading and x, y coordinates.
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//=============================================================
//--- Subroutine GotoPoint 
//--- Inputs  : x,y 
//--- Outputs : none 
//--- Calls To: CheckObstacles 
//---
//--- this routine turns the robot towards the location x,y 
//--- and then moves the robot there. If there is an object 
//--- it waits in a loop until the object goes away. Also the 
//--- routine keeps trying to turn and move the robot until it 
//--- definitely reaches the goal point. 
//-------------------------------------------------------------
GotoPoint:
  while true 
    dx = x-rGpsX() 
    dy = y-rGpsY() 
    if dx=0 AND dy = 0 then return 
    Theta = PolarA(dx,dy)*180/pi()+90-rCompass() 
    if Theta > 180 then Theta = Theta-360 
    if Theta < -180 Then Theta = Theta+360 
    rTurn Theta 
    gosub CheckObstacles 
    if not Obstructed then rForward 1 
  wend
Return
//=============================================================
//=============================================================
//--- Subroutine CheckObstacles 
//--- Inputs  : none 
//--- Outputs : Obstructed 
//--- Calls To: none 
//---
//--- checks for obstacles, also allows for simulated transient 
//--- obstacles indicated by the left mouse button kept pushed 
//--- down in front of the robot. 
//--- sets Obstructed to true or false. 
//-------------------------------------------------------------
CheckObstacles:
    Obstructed = true 
    CO_B = rBumper()&4 
    readmouse xx,yy,bb 
    if bb=1 or CO_B 
       rGPS Rx,Ry 
       if PolarR(xx-Rx,yy-Ry) <= RobotSize+2  or CO_B 
          //flash a beacon on the robot 
          circle Rx-3,Ry-3,Rx+3,Ry+3,BcnClr,BcnClr  //on 
          delay 60 
          circle Rx-3,Ry-3,Rx+3,Ry+3,white,white    //off 
          delay 40 
          return 
       endif 
    endif 
    Obstructed = false 
Return
//=============================================================
//=============================================================
//--- Subroutine DockWithCharger 
//--- Inputs  : NodesCount,ChargeDelay 

FIGURE 15.12 Slip resilient moving.
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FIGURE 15.12 (Continued)

      if dA > 180 then dA = 360-dA 
      if dA < -180 then dA = 360+dA 
      rTurn dA 
    wend 
    while not (rBumper()&1) 
      rForward -1 
    wend 
    delay ChargeDelay 
    rCharge 100 
Return
//=============================================================

//--- Outputs : none 
//--- Calls To: MoveToRoom 
//---
//--- makes the robot move to the charge room. Once there it 
//--- turns around and docks with the charging station with 
//--- its back. It keeps turning until the robotís heading is
//--- definitely north. 
//-------------------------------------------------------------
DockWithCharger:
    GoalNode = NodesCount-1 
    gosub MoveToRoom 
    while true 
      dA = -rCompass() 
      if dA = 0 then break 

You do not need gyroscopes or much mathematics if you have a very good encoder
system on the robot’s wheels that accurately records the amount the robot has moved and
turned. This would result in a simpler INS that relies only on encoding the amount of turns
on each of the wheels of the robot. 

We will do this in this section, however, we will not be able to do this simulation if there
is any slip. Similarly, in the real world we would need accurate wheel encoders to mini-
mize slip to near zero if we wished to use this method for keeping track of our robot’s
location. Also there are electronic 3-axis accelerometers that can be used in a similar fash-
ion to the 3-axis gyroscopes mentioned above. See Sec. 15.4 for other ideas on how to
counteract slip using this method.

Figure 15.13 has two new subroutines ForwardRobot and TurnRobot that do the work
of moving the robot and maintaining the simulated INS parameters. The PlaceRobot rou-
tine is a replacement for the one in Fig. 15.5. It has a few extra lines to initialize the sim-
ulated INS parameters. DockWithCharger and GotoPoint are replacements for the ones
in Fig. 15.12. These new routines now use the INS rather than rCompass() and rGPS.
Do not forget to set the variable SlipValue to zero.

Note that the subroutine CheckObstacles (Fig. 15.12) uses the GPS to find the
distance from the mouse pointer to the robot. This is only to simulate obstacles in 
the robots way. Using the GPS in this routine can still be done because it does not 
impact real-life movement or position determination and therefore does not need to
be changed.
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//=============================================================
//--- Subroutine PlaceRobot 
//--- Inputs  : BcnClr,LnClr,RobotSize,SlipValue,NodesCount 
//--- Outputs : RobotNode,RobotX,RobotY,RobotHeading 
//--- Calls To: none 
//-------------------------------------------------------------
PlaceRobot:
  rLocate 558,565,0,RobotSize 
  rInvisible LnClr 
  rSlip SlipValue 
  rIgnoreCharge false 
  RobotNode    = NodesCount-1 
  RobotX       = 558 
  RobotY       = 565 
  RobotHeading = 0 
Return
//=============================================================
//=============================================================
//--- Subroutine GotoPoint 
//--- Inputs  : x,y 
//--- Outputs : none 
//--- Calls To: CheckObstacles, ForwardRobot, TurnRobot 
//---
//--- this routine turns the robot towards the location x,y 
//--- and then moves the robot there. If there is an object 
//--- in the way it continues to wait until the obstacle moves 
//--- away then resumes moving towards the point. It also uses 
//--- the new subroutines ForwardRobot and TurnRobot inplace 
//--- of rForward and rTurn to maintain an INS position. 
//-------------------------------------------------------------
GotoPoint:
    dx = x-RobotX 
    dy = y-RobotY 
    if dx=0 AND dy = 0 then return 
    Theta = PolarA(dx,dy)*180/pi()+90-RobotHeading 
    if Theta > 180 then Theta = Theta-360 
    if Theta < -180 Then Theta = Theta+360 
    TurnAmount =  Theta 
    gosub TurnRobot 
    for i=1 to round(PolarR(dx,dy)) 
       gosub CheckObstacles 
       if not Obstructed
          ForwardAmount = 1
          gosub ForwardRobot 
       else 
          i = i-1 
       endif 
    next 
Return
//=============================================================
//=============================================================
//--- Subroutine DockWithCharger 
//--- Inputs  : NodesCount,ChargeDelay 
//--- Outputs : none 
//--- Calls To: MoveToRoom, ForwardRobot, TurnRobot 
//---
//--- makes the robot move to the charge room. Once there it 
//--- turns around and docks with the charging station with 
//--- its back. It keeps looping to ensure a North heading 
//--- Also it uses ForwardRobot and TurnRobot inplace of
//--- rForward and rTurn to maintain an INS position
//-------------------------------------------------------------

FIGURE 15.13 Simulating an INS but no slip is allowed.
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    GoalNode = NodesCount-1 
    gosub MoveToRoom 
    TurnAmount = 180 
    gosub TurnRobot 
    while not (rBumper()&1) 
      ForwardAmount = -1 
      gosub ForwardRobot 
    wend 
    delay ChargeDelay 
    rCharge 100 
Return
//=============================================================
//=============================================================
//--- Subroutine ForwardRobot 
//--- Inputs  : ForwardAmount,RobotHeading,RobotX,RobotY 
//--- Outputs : RobotX,RobotY 
//--- Calls To: none 
//---
//--- Moves the robot the ForwardAmount (+ or -) and
//--- maintains track of the robot's INS position 
//-------------------------------------------------------------

ForwardRobot:
   rForward ForwardAmount 
   Angle = 90-RobotHeading 
   if ForwardAmount < 0
     Angle = Angle-180 
     ForwardAmount = abs(ForwardAmount) 
   endif 
   if Angle <= -180 then Angle = Angle+360 
   if Angle > 180 then Angle = Angle -360 
   Angle = Angle*pi()/180 
   dX = CartX(ForwardAmount,Angle) 
   dY = CartY(ForwardAmount,Angle) 
   RobotX = RobotX+dX 
   RobotY = RobotY-dY 
Return
//=============================================================
//=============================================================
//--- Subroutine TurnRobot 
//--- Inputs  : TurnAmount,RobotHeading 
//--- Outputs : RobotHeading 
//--- Calls To: none 
//---
//--- Turns the robot the TurnAmount (+ or -) and
//--- maintains track of the robot's INS heading 
//-------------------------------------------------------------

TurnRobot:
   rTurn TurnAmount 
   RobotHeading = RobotHeading+rounddn(TurnAmount) 
   if RobotHeading < 0 then RobotHeading = RobotHeading+360 
   if RobotHeading > 359 then RobotHeading = RobotHeading-360 
Return
//=============================================================

DockWithCharger:

FIGURE 15.13 (Continued)
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15.3.3 RESILIENCE AGAINST SLIP USING BEACONS

The two previous algorithms showed how to make the robot more practical, but as seen,
even these techniques have their limitations. Let’s look at an entirely different way for the
robot to deal with its environment. 

We need a means of knowing when the robot arrives at the desired commanded point.
If we install a collection of beacons in the ceiling of the office above each node (see Fig. 15.7)
and we give the robot a remote control that can switch individual beacons on and off (using
a coded signal), we can have a means for the robot to be able to home in on a desired loca-
tion as in Chap. 12. The robot moves along a designated path by switching the beacons on
one at a time along the path. After locating and moving to a beacon, it switches the beacon
off and turns on the next one and continues doing this in sequence until the final goal is
reached. The robot is always guaranteed to reach the beacon by this homing algorithm. The
overall behavior of the robot (moving to each node) is the same as before but the robot
responds correctly without a compass or GPS and with no expensive slip counteracting hard-
ware. This idea is implemented with the code in Fig. 15.14.

In the DockWithCharger routine we use the beacon at the door of the charging room
to orient the robot to north. Set SlipValue to some number other than zero (20 is a good
test) and replace the subroutines in Fig. 15.12 with the ones in Fig. 15.14. Note that
the subroutine CheckObstacles (Fig. 15.12) uses the GPS to find the distance from the
mouse pointer to the robot. This is only to simulate obstacles in the robots way. We
continue to use the GPS in this routine because it does not impact our goal of creating
a practical robot.

15.4 Further Thoughts
The office or home robot discussed in this chapter is a very practical and useful applica-
tion and is definitely achievable. All the hardware required by the simulated system can
be implemented with current technology. Some of this technology can be expensive, but
the beacon algorithm proposed in Fig. 15.14 is easily attainable with a modest budget.
Those with a larger budget and access to more sophisticated electronics can implement
the more complex but more robust alternatives using a GPS or INS. Perhaps some com-
pany will realize the value of the beacon system described in this chapter. We suspect many
hobbyists would purchase a set of remote controlled beacons (or beacons that emit a coded
identifier) if they were available at a reasonable price. Such a product would make a useful
home/office robot very feasible.

The INS alternative required no slip as implemented in Fig. 15.13. However, we can
achieve some tolerance for slip if we could ensure a method for updating the robot with
a corrected position and heading at, say, each node in the path network (see Fig. 15.7).
We also may have to redesign the path network to include more nodes and thus more fre-
quent updates and less distance during which the robot can incur errors. We can place
some form of identifying device at the nodes [perhaps magnetic encoded pulses or radio
frequency identification tags (RFID)], which the robot can use to identify the node it is cur-
rently at. Combined with the Nodes[ ] array the robot can update its x, y position. To update
the heading the node can be given a way of telling the robot where north is and the robot
can correct its assumed heading value. If you look at Fig. 15.7 you may get an idea of
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//=============================================================
//--- Subroutine GotoPoint 
//--- Inputs  : x,y 
//--- Outputs : none 
//--- Calls To: CheckObstacles 
//---
//--- this routine turns the robot towards a beacon 
//--- and then moves the robot there. If there is an object 
//--- in the way it waits until the obstacles moves away and
//--- then resumes moving. The routine will continue to try to
//--- move and turn towards the beacon until it gets there
//--- regardless of errors that may occur due to slip.. 
//-------------------------------------------------------------
GotoPoint:
  circle x-5,y-5,x+5,y+5,BcnClr,BcnClr //turn beacon on 
  while true 
    dA = 0 
    if not rBeacon(BcnClr) 
      for dA = -90 to 90 
        if rLook(dA) = BcnClr then break 
      next 
      dA = dA+sign(dA)*2 
    Endif 
    rTurn dA 
    if within(rBeacon(BcnClr),1,10) then break 
    gosub CheckObstacles 
    If not Obstructed then rForward 1 
  wend
  circle x-5,y-5,x+5,y+5,white,white //turn beacon off 
  rForward RobotSize+15 
Return
//=============================================================
//=============================================================
//--- Subroutine DockWithCharger 
//--- Inputs  : NodesCount,ChargeDelay 
//--- Outputs : none 
//--- Calls To: MoveToRoom 
//---
//--- makes the robot move to the charge room. Once there it 
//--- turns around and docks with the charging station with 
//--- its back. The routine guarantees a North heading by 
//--- continuing to orient itself toward the beacon at the 
//--- door of the charging station room. 
//-------------------------------------------------------------
DockWithCharger:
    GoalNode = NodesCount-1 
    gosub MoveToRoom 
    x = Nodes[GoalNode-1,1] 
    y = Nodes[GoalNode-1,2] 
    circle x-5,y-5,x+5,y+5,BcnClr,BcnClr //turn beacon on 
    while not rBeacon(BcnClr) 
      rturn 1 
    wend 
    circle x-5,y-5,x+5,y+5,white,white //turn beacon off 
    rturn 4    //turn to the center of the beacon 
    while not (rBumper()&1) 
      rForward -1 
    wend 
    delay ChargeDelay 
    rCharge 100 
Return
//=============================================================

FIGURE 15.14 Counteracting slip using beacons.
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making the robot follow lines to counteract any slip and the need for using a GPS. This
is definitely achievable and with some encoding at each node, the robot can always know
at which node it is, and thus be able to navigate around the office. However, a line on the
floor of the office may not be desirable. One way to resolve this is to have an electric wire
in the floor that replaces the visible line, or a line painted with invisible paint that can only
be seen by specialized sensors.

The ideas presented in this chapter are aimed at achieving a realistic project but also
at invoking a thought process for tackling limitations in hardware and how to counteract
these limitations with software. The design process is a very important step in achieving
a versatile robust system that can be easily modified, and adapted to various environments.
You saw how the overall project needed only minor changes and/or additions to be able
to handle quite disparate hardware limitations. With a little effort up front you can save
major headaches later in the lifespan of the project.

15.5 Summary
In this chapter you have:

� Learned how to design an ambitious project using all the tools and skills developed in
this book.

� Explored various strategies for achieving the same objective with varied hardware limitations.
� Seen how software can be used to circumvent the physical limitations of the robot.
� Learned how the rSlip command can add realism to a simulation.
� Seen how specialized commands can be used to achieve a nice GUI.
� Seen the value of commenting and annotating your code to make it reusable and sup-

portable by others.
� Learned how using a database of information can be a more versatile means of defin-

ing a system than hard coding cryptic information.
� Seen more examples using graphs, queues, and arrays.

Now, try to do the exercises in the next section. If you have difficulty read the hints.

15.6 Exercises
1. You saw how in Fig. 15.14 the robot could command beacons to turn on and off. In

the project of this chapter we assumed the doors were either open or would open auto-
matically when the robot approaches. Modify the code to make simulated doors open
and close based on commands from the robot.

2. When we designed the network of nodes we made each room have a node inside the
room and a node at the door. If you give each room multiple nodes the robot would
be able to reach more spots in the room. Change the subroutine MapOffice to have
more nodes in all or some rooms and then change ChooseRoom to allow the user to
choose these new locations. This could be useful if, for example, there are several
people sharing an office and you want the robot to deliver a package to one of them. 



238 COMPLEX COMPOUND BEHAVIORS

3. We designed the project so that the robot could not accept new commands while exe-
cuting a current one. In real life this can be achieved by giving the user a message when
trying to command the robot. However, it would be a lot more versatile if the robot
could accept multiple commands. These commands can be placed in a queue and the
robot can execute them one at a time. Modify the system to allow for this.

4. In Fig. 15.12 we developed a simulated transient obstacle and made the robot flash a
warning beacon while waiting forever for the obstacle to go away. This is actually quite
a satisfactory behavior in this type of application, but it would not be acceptable in other
scenarios (e.g., mobile laboratory). Develop other ways the robot can be made to
behave when obstacles are encountered and implement this new behavior.

5. In the subroutines DockWithCharger in Fig. 15.14 we ensured that the robot faced
north, then we reversed the robot until it docked with the station. However, we did
not allow for slip while doing so. We assumed that the distance was short by ensuring
the charge room node is close enough to the station. Develop other ways to make the
docking procedure more slip resilient. 

6. In the subroutine GetTimeInSecs (Fig. 15.9) we start a stopwatch by saving the cur-
rent time value in seconds and then subtracting it from a later time value in seconds.
What may occur if the time happens to be 23:59:59 when we start the timer and we
check the elapsed time say 30 seconds later? Can you allow for this with a more robust
subroutine?

7. Study the commands Mwrite, MRead, WriteScr, and ReadScr in Sec. C.7. Can
you share your office plan and graph with other users without having to give them all
the code that creates the office and graph? Write modifications to DrawOffice and
MapOffice to allow for using an already created file. Also change them to allow for
saving all the necessary arrays and screen.

HINT: Refer to wall-following in Chap. 12. 

HINT: See Chap. 13. 

HINT: Thirty seconds later the time would be 00:00:29. How does this affect the new
time value? Check out the functions Date() and Timer(). Why is it that the use
of the command Delay would not work?

HINT: Mwrite/WriteScr save your arrays and screen files to give them to a user
who then uses MRead/ReadScr to recreate the arrays and screen without having
to know the details of how they were created. The arrays of importance are Nodes[ ]

and MapGraph[ ], also the counter NodesCount has to be recreated after reading the arrays
from the files. 
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8. In the subroutine CheckObstacles in Fig. 15.12 we made the robot flash a beacon to
warn that it is being obstructed. The command Sound in RobotBASIC allows you to
make a sound of a certain frequency for a certain duration using the speaker of the
PC. Implement a siren sound along with the flashing beacon in the subroutine
CheckObstacles. See App. C.

HINT: Replace the two Delay commands with Sound commands, each with a
different frequency.
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P A R T4
GOING FURTHER

241

Part 4 explores the exciting fields of artificial intelligence and adaptive control. We intro-
duce some of the concepts and offer a thought-provoking program that creates a robot
mimicking a living creature with biological needs. The program uses an interesting varia-
tion on adaptive behavioral control where there is no direct instruction to the robot as to
where to seek satisfaction for its biological needs. Nevertheless, due to the use of the con-
cept of learning and adapting through association, the robot soon learns how to seek a
quick path to locations where it can satisfy its needs.

Part 4 also shows how to translate the algorithms developed through simulation so they
can execute on a real-world robot built with affordable parts from Parallax, Inc. and other
vendors. We also show how to utilize Bluetooth transceivers to allow RobotBASIC pro-
grams running on a PC to communicate directly with and control real-world robots and
other computers.

One chapter discusses the issues involved in creating and participating in contests and
proposes that RobotBASIC can provide an exciting new concept for contest organizers
and contestants.

Another chapter explores why using RobotBASIC and this book in the classroom can
be of value for both the teacher and student during the teaching and learning processes.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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C H A P T E R16
TRUE INTELLIGENCE:

ADAPTIVE BEHAVIOR

In all the chapters so far, we have developed algorithms to make our robot react to its
environment while achieving specific tasks. The approach used was to give the robot

specified parameters for how to react to specific sensory inputs. On many occasions the
robot was given randomness so it could vary its behavior sufficiently to avoid getting stuck
in unanticipated dead-end situations.

When the robot became stuck in a situation where it could not continue doing its work,
randomness eventually created the right combination of parameters to enable the robot
to escape. However, the robot had no way of learning from its experience. If the robot
encountered a similar situation at a later time it had no means to recall and reapply the
same parameters.

If we give the robot a memory and the ability to record the parameters that made it
succeed as well as the ones that led to it becoming stuck, the robot should be able to adapt
its future behavior so that it can avoid the bad situations and favor the good ones. An exam-
ple of this kind of behavior was seen in Chap. 14, where the robot learned from the first
pass through the corridor maze, how to negotiate the maze perfectly the second time. To
achieve this we used memory (array) to save past behavior in order to influence future
behavior. 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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16.1 Adaptive Behavior
In a normal control algorithm the robot observes the environmental conditions using sen-
sors. These values are compared to a set of desired values that have been fixed by the
programmer. Depending on the deviations of the sensory values from the desired ones,
the algorithm will determine a course of action that is translated into a set of commands
to actuators (e.g., motors) that manipulate the robot and/or environment (see Fig. 16.1).

The above would result in an environmental change, which then affects the sensory
inputs. The algorithm continues in a loop, responding to changes due to the actuators of
the robot and/or external environmental factors. The outcome is that the robot will get
progressively closer to the desired state. How quickly and how efficiently the robot reaches
the desired state, and how quickly it responds to a disturbance in the conditions depends
on the control algorithms used.

The field of control is a specialized and exciting field of study and can be very mathe-
matical. The methods for determining the parameters of the algorithm are the subject of
a well-established discipline in engineering that uses complex mathematics and calculus
to optimize these parameters. The analysis to determine the parameters usually takes into
account a certain range of environmental criteria but this range is often fixed and limited.

If, instead of fixing the parameters forever, the robot is given another feedback loop
mechanism that serves to automatically modify the parameters in memory (and keep the
parameters that work best), the robot would be able to adapt to a wider range of chang-
ing environmental situations.

The diagram in Fig. 16.2 shows the modified adaptive feedback loop. Inputs from the
decoded sensory data are stored in memory along with the actions that the robot took in
response to those inputs. The memory is then consulted whenever the robot is to take
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action to determine if a favorable or detrimental actuation was experienced in the past,
and thus modify the parameters and logic of the algorithm if needed.

A programmer can also affect the robot’s behavior by filling the memory with appro-
priate data, effectively teaching the robot certain responses and behaviors. An example
of this was given in Chap. 15 where a map was provided to enable the robot to plan an
optimal path through the office. 

Let us consider how adaptive behavior algorithms can be applied to two algorithms we
have encountered in previous chapters.

16.1.1 ADAPTIVE WALL-FOLLOWING

In Chap. 8 a contour-following algorithm used a ranging sensor to determine how far the
robot was from the wall. The robot turned toward the wall when it got too far from it and
away from the wall when it became too close. Various parameters affected the perform-
ance of the algorithm.

One of the important parameters was the distance (RangeLimit) we wanted the robot
to stay from the wall. In another algorithm the parameter TurnAmount defined how
many degrees to turn when the robot became too close or too far.

If we want the robot to be able to adjust the values of these variables by itself, it would
need a means for evaluating how the changes affect its performance. Generally, we want
the robot to try to keep as close to the wall as possible without hitting it. An adaptive pro-
gram might try smaller and smaller values for RangeLimit until the bumper sensors indi-
cate that it is getting too close. 

When a working value for RangeLimit is found, the value is only valid for the current
wall. If the contour of the wall changes, the value for RangeLimit will need to change to
maintain an optimum performance. The robot would periodically try to lower the value
of RangeLimit to see if the current wall can be followed more closely. Anytime collisions
occur the robot would increase the value of RangeLimit.

If the wall being followed has sudden turns and protrusions, the distance to the wall
would change quickly. The robot would detect such situations and adjust the value of
TurnAmount thus turning toward (or away from) the wall more to keep up with the
sharper turns. If the value becomes too high (or low) causing collisions, the robot would
adjust the value (and perhaps RangeLimit too) accordingly. 

The algorithm may have to keep changing the values mentioned above at a constant
rate, or may consider a varying rate depending on parameters such as the amount and rate
of change of the distance to the wall, and/or the accumulated error amount in the distance.
This is called an adaptive-proportional-integral-differential control (APID).

16.1.2 ADAPTIVE LINE-FOLLOWING

In Chap. 7 we developed several algorithms for following a line. In general, all of the algo-
rithms moved the robot along a line at a steady pace. This is not necessarily the most effi-
cient approach.

A car driving along a winding road, for example, may speed up in the straight sections and
slowdown when the road curves. Slowing down allows for more time to read the sensory data
and analyzing it in more detail before responding becomes required. Regardless of what we
want the robot to do when the road curves, it has to be able to determine when the road curves.
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One way to detect if a line is curving is to equip the robot with more than three line
sensors [see Sec. C.9 for details on rGroundA()]. When following a relatively straight
line, only sensors near the robot’s current heading would detect the line. As the line
curves, the outer sensors start to trigger. We need to specify how the robot should react
when the outer sensors are triggered. There are many options for how we can make the
robot react. One possibility is to make the robot turn more sharply. Another is to make
the robot slowdown.

Instead of specifying what the robot should do when the line curves, imagine a robot
that can decide on its own how much to turn when it is in such situations. Previously,
we simply guessed the required turn amount when sensor data showed that the robot
was veering from the line. If the guess was too high the robot turned too much and
lost the line. If the guess was too low the robot was not able to stay on the line when
the line turned sharply. Our solution has been to test the program on a typical line from
the expected environment and manually adjust the amount of turn until the robot per-
forms satisfactorily.

Instead of programming the robot to turn 2�, for example, we could tell it to turn
TurnAmount degrees where TurnAmount is a variable. The robot could be programmed
to automatically try different values for TurnAmount and see what happens. The robot
would have to be able to detect when it loses the line and then adjust TurnAmount and
try again. Once the robot finds an acceptable value for TurnAmount it would use this value
from then on, but this concept can be improved further.

We can program the robot to continually alter the value of TurnAmount based on its
situation. Of course, a robot that can, in essence, program itself, needs a way to evaluate
its own performance. This means that the robot must be given the means to determine
when it has lost the line, and a way to find the line again so that it can try again with the
adjusted parameters.

16.2 How to Define Intelligence?
Robots that adapt their behavioral rules and parameters are definitely more intelligent
than those that behave in a predetermined manner. The question is, are they truly intel-
ligent? The answer depends on how you define intelligence. Most people would argue
that the robot is not truly intelligent because it is not making decisions the way human
beings make them.

16.2.1 HUMAN INTELLIGENCE

Many factors affect how humans make decisions. Certainly memories affect the decision
process. If an action causes pain it is less likely to be repeated in the future. On the other
hand, actions that create pleasurable outcomes are more likely to be repeated.

The environment also affects the decision-making process. At the very least, the envi-
ronment limits the range of choices. Even the food you eat affects your actions. It is
obvious that normal body chemistry would make you less likely to eat something sweet
if you have just eaten a large bowl of ice-cream, but other effects might be less obvious.
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Sugar in your blood stream, for example, might make you choose to nap instead of
exercising.

16.2.2 INTELLIGENCE THROUGH ASSOCIATION

Actions that create pleasurable outcomes are more likely to be repeated. One question
that should come to mind is how do humans determine what is pleasurable. Certainly,
human biology imposes many factors. All newborn babies find cold and hunger an unpleas-
ant experience. Conversely, food and warmth are deemed pleasurable. The brain com-
mits to memory many associations with these biological factors as a baby grows to
adulthood.

There are also indirect associations. If a mother provides warmth and food for her baby,
she will be associated with pleasure and thus is placed on the baby’s good list. It is not
hard to imagine that things that are associated with the mother would also be considered
pleasurable. The behavior described above is deceptively simple, yet amazingly effective.
In general, it means that a baby learns to achieve pleasure not only from things that
directly give pleasure, but also from things that are associated with things that give pleas-
ure. These associations, along with the current environmental conditions, control our
behaviors. Early associations are straightforward but as the baby matures, creating the lists
becomes more complicated. New situations and actions are often associated with things
on both the good and bad lists. This means that many situations are not interpreted as
strictly pleasurable or painful. Consequently, future choices are not just black or white, right
or wrong. When our brain tries to analyze the choices of this nature we refer to the
process as making a value-judgment.

The diagram in Fig. 16.3 shows a feedback loop that depicts how humans react
and behave. Notice the loop is not really that different from the one in Fig. 16.2. The
real difference is in the way that memory affects the sensory comparison process.
Human perception is affected by memory as well as by the actual state of the envi-
ronment and sensory organs. This is why we often perceive erroneously even when
we sense correctly. This concept also explains why some people make some poor deci-
sions in life.
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16.3 Adaptation through Association
A robot can be programmed to make choices using associations as described in the pre-
vious section. Rigorously addressing this problem would certainly result in a reasonably
intelligent machine, but a rigorous approach could easily be the subject of an entire book.
For now, we will be satisfied to create a relatively simple program to demonstrate that the
principles in fact work.

As with biological life-forms, our mechanical creature must have some innate tendencies
and abilities. These instincts will be used to evaluate situations in order to build the asso-
ciation memories that directly affect the choices made by the robot. The following discussion
describes the general algorithm.

The robot must have some built-in desire to roam its environment. It should have some
natural curiosity to make it tend to try to go to places it has not visited recently. The robot’s
initial movements have to be random, but there should be some tendency to keep moving
in the same direction once a direction has been chosen.

16.3.1 I FEEL PLEASURE I FEEL PAIN

The robot must have some built-in way to differentiate between pain and pleasure. Our
robot will encounter pain in several ways. Areas in its environment will contain briars where
entering them will be interpreted as pain by the robot. The environment will also have a
fireplace. Getting too close to the fire will cause the robot pain. Finally, if the robot’s move-
ment causes it to collide with objects it will feel pain. One of our goals is to make the robot
learn on its own to avoid the fire, the briars, and collisions.

Defining pleasure is a little more complicated. Our robot will need to eat because it gets
hungry, need to sleep because it gets sleepy, and need to play because it gets bored.
Satisfying these needs will create pleasure. Roaming through the environment takes
energy so the robot will become hungrier. Roaming without purpose will increasingly
bore the robot making it want to play, which increases the robot’s need for food and sleep.
Eating also makes the robot sleepy. In the program, counters will keep track of each of
these needs and will be incremented based on the robot’s actions. These counters simu-
late a living creature’s biological needs.

When a need exceeds a threshold value, the need becomes a motivator that affects the
robot’s choices. The need with the largest value will be the only one that currently affects
the robot’s behavior. This will cause the robot to make choices to attempt to satisfy the
current motivator. Once a need is satisfied the next need will become the motivator. If two
or more needs exceed the threshold simultaneously, the one with the largest value will be
applied. If two or more needs reach the maximum, a priority will be applied. Hunger will
have the highest priority followed by sleepiness and then boredom.

Humans don’t exactly behave this way. We do prioritize objectives, but sometimes we
may make use of an opportunity that presents itself even though we were not seeking it.
For instance if you are sleepy and are on the way home to go to sleep when a friend calls
and invites you to an interesting party, with some nice people, you may postpone the sleep
drive to go and play. Of course, if the need to sleep is large enough, it will overshadow
other needs and desires. See Exercise 5 for a discussion on how this concept may be imple-
mented in the simulation of this chapter. 
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16.3.2 ENVIRONMENTAL FACTORS

The robot will not be able to get satisfying sleep unless it is near the fire to stay warm but
not so near that it feels pain. There will be a garden area in the environment that pro-
vides food if the robot finds it. There will also be an activity area that provides some form
of stimulation to relieve boredom. When our robot is “born” it will know nothing about
these areas.

In the beginning of the robot’s life it will roam aimlessly around the environment.
Whenever an action causes it pain, the robot will save that action and the related situa-
tion in its memory so that it can avoid the pain in the future. Likewise, whenever the robot
feels pleasure (needs are satisfied) it will save the action and the situation that led to the
pleasure.

Furthermore, once an action/situation has been associated with pleasure, then
actions that lead to that situation will also be saved as being associated with pleasure.
This is very similar to the scenario described earlier where objects associated with a
baby’s mother are considered to be pleasurable because she was associated with food
and warmth.

16.4 Implementing the Algorithm
Figure 16.4 shows a program that implements the algorithm described in the previous sec-
tion. If you are running the program for the first time read the instructions and press Enter
or click the OK button to continue. You will see the environment shown in Fig. 16.5. Do
not press the Cancel button (or Esc key) if you have never run the program before, since
there are no memories for the robot to reload. However, once there are memories you
can always stop the program and run it at a later date and have the robot recall its previ-
ous experiences (by pressing the Cancel button or Esc key). Notice how the
RestoreMemory subroutine uses the FilExists() function to avoid loading the memory
files if they do not exist.

The robot starts out with all of its needs at maximum value as indicated by the bar graphs
on the right side of the screen in Fig. 16.5. The robot begins exploring its environment
and if it bumps into objects, gets too close to the fire, or wanders into a briar patch, the
appropriate information will be saved to the bad memory list. Eventually, the robot will
find the garden and eat. This will satisfy the hunger need, which will be indicated by the
meter on the right of the screen gradually reducing to zero as the robot eats. The action
and the environmental conditions that led to the food will be saved in the good memory.
Notice that when the program is running, two counters at the top of the screen show the
number of items stored in the good and bad memory lists.

In the beginning, the bad memory will fill quickly. The good memory, on the other
hand, will expand very slowly because the robot will have a hard time finding situations
that satisfy its needs. Remember, the robot has no knowledge of how to go to places
that cause it to be happy. The situations it randomly encounters in the environment,
along with the built-in biological factors and previous memories, determine what is 
stored in the robot’s memory. Ultimately, this memory will control the robot’s behavior
and its personality.
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//---Constants
  //--Action
  NOACTION = 0
  EAT      = 1
  SLEEP    = 2
  PLAY     = 3
  EXPLORE  = 4
  SAVE     = 5
  RETREAT  = 6
  RESPOND  = 7

  //--Status
  HUNGRY   = 0
  SLEEPY   = 1
  BORED    = 2

  //--Feeling
  PAIN     = 1
  PLEASURE = 2

  //--Headings
  NORTH    = 0
  EAST     = 1
  SOUTH    = 2
  WEST     = 3

  NEEDS_THRESHOLD = 85
  EAT_AREA        = 8
  SLEEP_AREA_1    = 20
  SLEEP_AREA_2    = 26
  PLAY_AREA       = 0
  PAIN_AREA_1     = 11
  PAIN_AREA_2     = 29
  PAIN_AREA_3     = 25
//===============================================================
//=============================================================
MainProgram:
  GoSub DisplayInstructions
  GoSub InitializeSimulation
  if not Key then  GoSub RestoreMemory
  GoSub ComeToLife
End
//=============================================================
//=============================================================

//--- Subroutine RestoreMemory
//--- Inputs  : none
//--- Outputs : Memory[],BadList[],MemPtr,BadPtr
//--- Calls To: none
//---
//--- Reads the arrays Memory[] and BadList[] from files
//--- created by previous runs.

//-------------------------------------------------------------
RestoreMemory:

   if FilExists("MemoryGood") and FilExists("MemoryBad")
      MRead Memory,"MemoryGood"

FIGURE 16.4 This program creates a robot with biological needs and the ability to
learn how to satisfy them.
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      MRead BadList,"MemoryBad"
      MemPtr = Memory[99,0]
      BadPtr = BadList[99,0]
   endif
Return
//=============================================================
//=============================================================
//--- Subroutine ComeToLife
//--- Inputs  : none
//--- Outputs : none
//--- Calls To: CheckMemory,DisplayAction,DoMovement
//---           CheckBadList
//--- Makes the robot do SOMETHING either based on memory of
//--- past experiences or some new random choice. The robot's
//--- memory is altered as the robot encounters pain and
//--- pleasure.
//-------------------------------------------------------------
ComeToLife:
  while true
   gosub CheckMemory
   if HaveResponse
     Action = RESPOND
     gosub DisplayAction
     Movement = Memory[HaveResponse,2]
     gosub DoMovement
   else
     if random(50)>=20 then Movement = Random(4)
     gosub CheckBadList
     if not Bad
       Action=EXPLORE
       gosub DisplayAction
       gosub DoMovement
       if Status = PAIN
         // Save to bad list
         BadList[BadPtr,0]=LastCell
         BadList[BadPtr,1]=Movement
         BadPtr = BadPtr+1
       elseif Status = PLEASURE
         //Save to Memory if NOT there already
         AddIt = True
         if MemPtr>0
           for i=0 to MemPtr-1
            if Memory[i,0]=CurNeed and Memory[i,1]=LastCell
              AddIt = False
              break
            endif
           next
         endif
         if AddIt
           Memory[MemPtr, 0] = CurNeed
           Memory[MemPtr, 1] = LastCell
           Memory[MemPtr, 2] = Movement
           if (MemPtr=25) or (MemPtr=50) or (MemPtr=75)
             Memory[99,0]=MemPtr+1
             BadList[99,0]=BadPtr
             MWrite Memory,"MemoryGood"
             MWrite BadList,"MemoryBad"

FIGURE 16.4 (Continued )
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           endif
           MemPtr = MemPtr+1
         endif
       endif
     else
       Action=RESPOND
       gosub DisplayAction
       Delay 200
     endif
   endif
  wend
Return
//=============================================================
//=============================================================
//--- Subroutine DoMovement
//--- Inputs  : Movement,MemPtr,BadPtr,CurCell,Needs[],Rx,Ry
//--- Outputs : Needs[],LastCell,Action,Status,CurCell
//--- Calls To: DispStatusMeter,DisplayAction,CheckStatus
//---
//--- Moves the robot based on the variable Movement the
//--- robot retreats from painful events, which are reported
//--- through the variable Status
//-------------------------------------------------------------
DoMovement:
  SetColor LightGreen
  xyString 150,15,"# Good Mem ",MemPtr
  xyString 300,15,"# Bad Mem ",BadPtr
  Status=0
  LastCell = CurCell // save where we came from
  // Increase Needs
  Needs[HUNGRY] = Needs[HUNGRY]+1
  if random (50)>25 then Needs[SLEEPY] = Needs[SLEEPY] + 1
  Needs[BORED] = Needs[BORED] + 1
  For DM_Which = 0 to 2
    gosub DispStatusMeter
  Next
  while rCompass() <> 90*Movement
    rTurn 90
  wend
  for i=1 to 120
    rForward 1
    if rBumper()
      Action = RETREAT
      Gosub DisplayAction
      rForward -i
      Status = PAIN
      return
    endif
  next
  dRx = 0 \ dRy = 0
  if Movement = EAST  then dRx = 1
  if Movement = WEST  then dRx = -1
  if Movement = NORTH then dRy = -1
  if Movement = SOUTH then dRy = 1
  Rx = Rx+dRx \ Ry = Ry+dRy
  CurCell = 5*Rx+Ry
  if CurCell=PAIN_AREA_1 or CurCell=PAIN_AREA_2 or CurCell=PAIN_AREA_3

FIGURE 16.4 (Continued )
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    Status = PAIN
    Action = RETREAT
    Gosub DisplayAction
    rForward -120
    Rx = Rx-dRx \ Ry = Ry-dRy
  endif
  gosub CheckStatus
return
//=============================================================
//=============================================================
//--- Subroutine DisplayAction
//--- Inputs  : Action,ACTIONS[]
//--- Outputs : none
//--- Calls To: none
//---
//--- Displays the current action in the actions list
//-------------------------------------------------------------
DisplayAction:
  SetColor Black
  xyString 735,440,"ACTION"
  line 733,457,790,457
  SetColor Yellow
  For DA_I = 1 to 7
     xystring 728,450+15*DA_I,ACTIONS[DA_I]
  next
  if Action <> NOACTION
    Setcolor Blue
    xyString 728,450+15*Action,ACTIONS[Action]
  endif
return
//=============================================================
//=============================================================
//--- Subroutine DispStatusMeter
//--- Inputs  : DM_Which,Needs[]
//--- Outputs : none
//--- Calls To: none
//---
//--- Updates the meters display
//-------------------------------------------------------------
DispStatusMeter:
  DM_Incr = DM_Which*140
  if Needs[DM_Which] > 100 then Needs[DM_Which] = 100
  DM_Value = 100-Needs[DM_Which]
  rectangle 732,50+DM_Incr,793,149+DM_Incr,white,white
  rectangle 732,50+DM_Value+DM_Incr,793,149+DM_Incr,Cyan,Cyan
  line 732,65+DM_Incr,793,65+DM_Incr,3,Red
return
//=============================================================
//=============================================================
//--- Subroutine CheckStatus
//--- Inputs  : Status,CurCell,Memory[],MemPtr,CurNeed,Needs[]
//--- Outputs : Status
//--- Calls To: DispStatusMeter,DisplayAction
//---
//--- Updates the status of the robot and displays the action
//--- being taken
//-------------------------------------------------------------

FIGURE 16.4 (Continued )
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CheckStatus:
  if Status = PAIN then return
  // Sets Status if Pleasure
  Status = 0
  DM_Which = -1
  if (CurCell=EAT_AREA) and (CurNeed=EAT)
    Action = EAT
    gosub DisplayAction
    Needs[SLEEPY] = Needs[SLEEPY] + 15
    Needs[BORED]  = Needs[BORED]  + 10
    DM_Which = HUNGRY
  elseif (CurCell=SLEEP_AREA_1 or CurCell=SLEEP_AREA_2) and
CurNeed=SLEEP
    Action = SLEEP
    gosub DisplayAction
    Needs[HUNGRY] = Needs[HUNGRY]+5
    Needs[BORED]  = Needs[BORED]+20
    DM_Which = SLEEPY
  elseif (CurCell=PLAY_AREA) and (CurNeed=PLAY)
    Action = PLAY
    gosub DisplayAction
    Needs[HUNGRY] = Needs[HUNGRY]+20
    Needs[SLEEPY] = Needs[SLEEPY] + 20
    DM_Which = BORED
  elseif MemPtr>0
    for i=0 to MemPtr-1
      if (Memory[i,0]=CurNeed) and (Memory[i,1]=CurCell)
        // this cell is on the good list
        Status = PLEASURE
        return
      endif
    next
  endif
  if DM_Which < 0 then return
  for CS_I=Needs[DM_Which] to 0 step -1
    Needs[DM_Which] = CS_I
    gosub DispStatusMeter
    delay 50
  next
  Status = PLEASURE
  For DM_Which = 0 to 2
     gosub DispStatusMeter
  Next
return
//=============================================================
//=============================================================
//--- Subroutine CheckMemory
//--- Inputs  : Memory[],MemPtr,Needs[],CurCell
//--- Outputs : CurNeed,HaveResponse
//--- Calls To: none
//---
//--- Uses the biological needs to cause reflexive actions
//--- such as eating and sleeping. Other needs are affected by
//--- these actions.
//-------------------------------------------------------------
CheckMemory:
  // First Establish Current Need

FIGURE 16.4 (Continued )
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  CurNeed = 0
  Maximum = Needs[HUNGRY]
  for CM_I = SLEEPY to BORED
     if Needs[CM_I] > Maximum then Maximum=Needs[CM_I]
  next
  if Maximum > NEEDS_THRESHOLD
     if Maximum = Needs[BORED]  then CurNeed = PLAY
     if Maximum = Needs[SLEEPY] then CurNeed = SLEEP
     if Maximum = Needs[HUNGRY] then CurNeed = EAT
     //Hunger is higher order priority than sleep and
     //sleep is higher order than play
  endif
  // sets variable HaveResponse to position of match
  // in memory or zero (false) if no match is found
  HaveResponse = 0
  if MemPtr=0 then return
  for i=0 to MemPtr-1
    if (CurNeed=Memory[i,0]) and (CurCell=Memory[i,1])
      HaveResponse=i // shows where found
      break
    endif
  next
return
//=============================================================
//=============================================================
//--- Subroutine CheckBadList
//--- Inputs  : BadPtr,BadList[],CurCell,Movement
//--- Outputs : Bad
//--- Calls To: none
//---
//--- Checks to see if a proposed move from a cell is in the
//--- bad move memory
//-------------------------------------------------------------
CheckBadList:
  // sets variable BAD
  Bad=false
  if BadPtr=0 then return
  for i=0 to BadPtr-1
    if (BadList[i,0]=CurCell) and (BadList[i,1]=Movement)
      Bad = True
      break
    endif
  next
return
//=============================================================
//=============================================================
//--- Subroutine DisplayInstructions
//--- Inputs  : none
//--- Outputs : Key
//--- Calls To: none
//---
//--- Displays instruction and waits for a key press then
//--- returns the character pressed in the variable Key
//-------------------------------------------------------------
DisplayInstructions:
  data MI;"Figure16.04.Bas"
  data MI;"This program transforms the robot into a 'living' creature."

FIGURE 16.4 (Continued )
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  data MI;"It has needs as hunger, boredom, and even the need to sleep."
  data MI;"These needs have priorities and only the largest current need"
  data MI;"is a motivator.  Like a biological creature, there are inborn"
  data MI;"characteristics such as curiosity and a goal to satisfy the "
  data MI;"internal needs.",""
  data MI;"When a creature is born, all of the needs are present. The"
  data MI;"creature will explore and if a need is satisfied (by accident)"
  data MI;"the meters will reflect the fact.  The creature will also"
  data MI;"remember things that give it pain or pleasure and act differently"
  data MI;"in the future because of its memory."
  data MI;"In the beginning the creature seems to roam aimlessly. However,"
  data MI;"after an hour or so, the creature will have explored enough to "
  data MI;"have a good amount of memory.  At that time you will see that "
  data MI;"the creature has learned how to satisfy needs that motivate it."
  data MI;"At that time, it will only roam when all the needs are low as"
  data MI;"indicated by the graphs.  See the text for more information.",""
  data MI;"You can save and retrieve the memory if you wish. Currently, "
  data MI;"the program will automatically save its memory (in the files "
  data MI;"MEMORYGOOD and MEMORYBAD) when the memory size is 25, 50, and 75.",""
  data MI;"If memory has been saved, you can now load it by pressing the"
  data MI;"'Cancel' button or Esc key. Pressing 'OK' or Enter key will start"
  data MI;"the program with no initial memory and will build a new memory."
  Key = MsgBox(MI)

return
//=============================================================
//=============================================================
//--- Subroutine InitializeSimulation
//--- Inputs  : none
//--- Outputs : Needs[],BadPtr,MemPtr,CurNeed,
//---           CurCell,LastCell,Rx,Ry
//--- Calls To: none
//---
//--- Draws the environment and initializes all variables
//--- and arrays.
//-------------------------------------------------------------
InitializeSimulation:
  //--- Initialize system variables
  Data ACTIONS;"NO ACTION","  EAT"," SLEEP"," PLAY","EXPLORE"
  Data ACTIONS;" SAVE","RETREAT","RESPOND"
  Dim Needs[3]
  MConstant Needs,100 //all needs are maximum
  Dim Memory[100,3] // Memory saves CurNeed,CurCell,Movement
  MemPtr=0
  Dim BadList[100,2]  // BadList does not include needs
  Action = NOACTION \ Status = HUNGRY\ Movement = NORTH
  BadPtr=0 \ CurNeed=0 \ CurCell=0 \ LastCell=0

  //---Draw Environment
  //----outside border
  SetColor Black
  LineWidth 3
  rectangle 0,0,720,595

  //----Sleep area
  LineWidth 5
  circle 500,-220,940,220,LightGreen,LightGreen
  circle 580,-140,860,140,LightGreen
  SetColor Black,LightGreen
  xyString 520,2, "SLEEP"
  xyString 525,16,"AREA"
  LineWidth 3
  Rectangle 720,0,800,595,black,white

FIGURE 16.4 (Continued )
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  SetColor Black
  line 0,0,720,0
  //---- Activity Area
  SetColor Black,Yellow
  rectangle 3,3,120,120,Yellow,Yellow
  xyString 3,2,"ACTIVITY AREA"
  //---- Fire area
  LineWidth 5
  SetColor Red
  data FirePlace;-600,0, 720,0, 720,120, 690,30, 600,0, 670,-3
  MPolygon FirePlace,Red
  SetColor Black,Red
  xyString 670,3,"FIRE"
  //----Walls
  SetColor Black,White
  data FoodArea; -240,360, 240,480, 120,480, 120,240, 360,240
  data FoodArea;  360,360, 480,360, 480,480, -360,480, 360,600
  MPolygon FoodArea
  xyString 127,460," FOOD AREA"
  //----Briar areas
  SetColor Black,LightGreen
  rectangle 240,120,360,236,LightGreen,LightGreen
  xyString 262,218," BRIARS "
  rectangle 600,480,716,591,LightGreen,LightGreen
  xyString 622,573," BRIARS "
  //----meters
  LineWidth 2
  SetColor Black,White
  xyString 740,4,"NEEDS"
  line 735,22,786,22
  rectangle 730,30,795,150
  xyString 735,32,"Hungry"
  rectangle 730,170,795,290
  xyString 735,172,"Sleepy"
  rectangle 730,310,795,430
  xyString 740,315,"Bored"
  rectangle 732,50,793,149,Cyan,Cyan // Hungry
  rectangle 732,190,793,289,Cyan,Cyan // Sleepy
  rectangle 732,330,793,429,Cyan,Cyan // Bored
  //---Place the Robot
  rLocate 420,300
  Rx = 3 \ Ry = 2 \ CurCell = 17
  rInvisible LightGreen,Yellow
return
//=============================================================

16.4.1 DEVELOPING A PERSONALITY

The first time you run the program the robot has to begin its development as if it were
a baby. It can take an hour or more for the robot to store enough associations in its
good memory to make it start behaving intelligently. When this happens, the robot
begins to take on distinct characteristics that can be considered its personality. Some
robots will select a single favorite path to food while other robots will have two
favorite paths. In such cases the robot will choose the path that is closest to where

FIGURE 16.4 (Continued )
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FIGURE 16.5 The program in Fig. 16.4 creates this environment.

it is when hunger becomes a motivating factor. Sometimes a robot develops the habit
of pacing back and forth a few times before it actually eats (I am still unsure how this
behavior develops).

The important point here is that the robot does learn, and the more it learns the faster
it learns. It takes a relatively long time before the robot starts to look remotely intelligent.
After the good memory has expanded to 40 or 50 items, though, you will see an amazing
difference.

As long as no needs have reached their threshold (the red line), the robot will be con-
tent to explore its environment. However, when a need becomes a motivator, the mature
robot shows its intelligence and quickly makes its way to the area in the environment that
can satisfy that need.

16.4.2 DISPLAYING THE ROBOT’S ACTIONS

The area on the lower-right side of the screen shows what basic action the robot is exe-
cuting as summarized in Fig. 16.6.
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16.4.3 UNDERSTANDING THE CODE

The subroutines hierarchy chart is shown in Fig. 16.7. The MainProgram displays instruc-
tions to the user by calling the DisplayInstructions subroutine then sets up the environ-
ment by calling the InitializeSimulation routine. If the user has indicated that the memory
accumulated and saved from the last time the simulation was executed is to be used (by
pressing Cancel or Esc instead of OK or Enter), the subroutine RestoreMemory is called
to reload the robot’s memory. Finally, ComeToLife is executed to initiate the simulation.

Above the MainProgram label there is a set of definitions for constants and variables
that are used throughout the program.

16.4.3.1 DisplayInstructions This subroutine is similar to what you have seen
in previous chapters. The only point to note is the fact that the variable Key is assigned
the return value from the function MsgBox(). The value will be zero if Cancel or Esc
was pressed and one if OK or Enter was pressed. Key is checked in the MainProgram
to decide whether or not to load the memory from previous runs (it is loaded if Cancel
or Esc is pressed). 

16.4.3.2 InitializeSimulation This subroutine draws the environment and sets up the
necessary arrays and other variables. The only point of note in this subroutine is the use 
of the multiple assignment construct. Notice the use of the character \ to allow for placing

Action Significance 
Eat Robot eats if it finds food when hungry.
Sleep Robot sleeps if it finds a warm spot when sleepy.
Play Robot plays if it finds the activity area when bored. 
Explore Robot randomly explores when needs are low. 
Save The robot is saving something to its memory. 
Retreat The robot has felt pain and is backing away from the source. 
Respond The robot is searching its memory or responding to what was found.  

FIGURE 16.6 The robot has seven basic actions it can take.

DisplayInstructions InitializeSimulation

MainProgram

RestoreMemory ComeToLife

CheckBadListCheckMemoryDoMovement

CheckStatus

DispStatusMeterDisplayAction

FIGURE 16.7 Subroutines hierarchy chart.
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multiple assignment statements on the same line. This makes for more compact code.
There is no other advantage (see Sec. B.3 for more details). 

16.4.3.3 ComeToLife This routine calls CheckMemory to compare the robot’s current
need and position against its good memory. If a match is found, the variable HaveResponse
points to the matching memory position. If HaveResponse is non-zero, the display will show
that the robot is responding to memory and the desired movement is retrieved from memory
and stored in the variable Movement. The subroutine DoMovement is then called to actu-
ally perform the movement. DoMovement will be discussed later.

If there are no good memories associated with the robot’s current state, the software
chooses a random movement (0 to 3 for north to west). The if-statement associated with
this random choice is only performed 60 percent of the time. This means that 40 percent
of the time the robot repeats its last movement creating a tendency to continue in the same
direction.

The software checks to see if the random movement chosen is in the bad memory. If
it is not, DoMovement is called to actually perform the movement and set the variable
Status to PAIN or PLEASURE if that situation occurred because of the movement.

If the robot experiences pain, the current state and movement are saved to the bad
memory. If the robot experiences pleasure, the current state and movement are saved to
the good memory if they have not been saved sometime in the past. Notice that no check
is made to see if the painful event is already in memory because the robot will never repeat
painful movements (contrast this fact with real human behavior, also see Exercise 4).

The format and content of the robot’s memory entries can be helpful when trying to under-
stand the overall operation of this program. A bad-list entry contains only two items, the
current cell number (specifying a region of the screen) and the action taken. For example,
lets assume the entry in the bad memory was 6, 0. This would mean that when the robot
was in cell six and made movement zero (north) it felt pain. If the robot is ever in cell six
again and randomly chooses to move north then it will choose some other action.

The entries for the good memory contain the current cell number, the action taken,
and the robot’s emotional state at the time the memory was recorded. This emotional state
consists of a single number specifying if the robot was being motivated by hunger, sleep,
or boredom. 

Let’s look at an example memory entry of 1, 3, 2. This would mean that at some point
in the past, the robot was in cell three and hungry (1 � eat). Furthermore we know that
under these circumstances, when the robot moved south (2), the robot felt pleasure.
Consequently, anytime the robot is hungry and in cell three it will know that moving south
will eventually lead to pleasure. The robot may not find food immediately when it moves
south because the memory entry may have been formed not because it found food but
because its action (in this example, moving south) caused it to encounter a previously mem-
orized situation that was associated with the pleasures of food. Let’s see how this com-
plex sounding situation controls the robot’s behavior.

The first time the hungry robot randomly finds food, the action it performed to get there
is recorded on the good list. Remember, this memory entry contains information about
the robot’s position (cell number) and its motivational need. Since this entry is on the good
list, if the robot is hungry in the future and randomly chooses an action that moves it into
this state, then the new action will also be interpreted as a pleasurable experience. Over time,
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the robot will learn how make its way through the environment to satisfy its need. The
robot’s behavior will make you think that a path has been stored in its memory, but this
is not the case. The movement along the apparent path takes place based on individual
associations not on a single memory of the entire path.

This algorithm is not unlike the way memory associations are formed in biological crea-
tures including humans. Our algorithm is much simpler than a human’s (it does not include
value judgments) but the finished program demonstrates that the algorithm does in fact
produce intelligent behavior. The use of cell numbers is just an easy way for the robot to
recognize where it is. Living creatures use senses such as vision and smell to link their mem-
ories to situations and places. Also we did not implement the opportunistic behavior dis-
cussed earlier (also see Exercise 5).

16.4.3.4 DoMovement This module starts by displaying the current memory sizes
on the screen and then saving the current position (CurCell) into the variable LastCell so
that it knows where it was before the movement is made. The internal needs (hunger, sleep,
and boredom) are increased appropriately and displayed on the screen meters.

The compass is used to turn the robot in the proper direction before the robot tries to
move to the next area of the screen (the robot’s environment is actually divided into 30
regions or cells. Each cell is given a numeric value and the current cell’s number is calcu-
lated from a formula and stored in the variables Rx and Ry, which keep track of the robot’s
cell position). If the robot bumps into something while moving, it sets Status to PAIN so
that it will learn not to do that movement again while in this cell. The robot automatically
moves back to its original position when it encounters a painful situation. Similar actions
occur when the robot moves into a briar patch or too close to the fire.

The last thing that happens in DoMovement is a call to CheckStatus, which causes
the robot to react based on its status. Essentially, the robot will eat if it is hungry and in
an area of food, sleep if it is sleepy and in the sleep area, and play if it is bored and in the
play area. During these processes, other needs are increased reasonably. If you eat, for
example, it tends to make you sleepy. If you modify the parameters in this routine you
can affect the personality your robot develops. A major contributor to the robot’s per-
sonality is the situations it encounters as it matures (just like living creatures).

16.5 Summary
In this chapter you have:

� Seen how adaptive behavior can be more effective in tackling a wider variety of unpre-
dictably changing environments.

� Been exposed to the basic principles for creating adaptive control algorithms.
� Seen an example program that attempts to use the robot to model the behavior of bio-

logical organisms.
� Been shown that even an artificially intelligent robot can develop a distinct personal-

ity and unique habits based on how it grows and develops in its environment.

Now, try to do the exercises in the next section.
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16.6 Exercises
1. Run the program in this chapter to see how it performs. Examine the code and try to

change some of the biological characteristics to see how they affect the robots even-
tual personality and habits.

2. Modify the program so the robot will try to move toward the mouse pointer when it
is exploring its environment. Help the robot learn faster by using the mouse to entice
the robot to move toward food, activity, and sleep areas when a need is active.
Compare this activity with teaching young children new things.

3. Modify some of the earlier programs in this book (such as, following a line or follow-
ing a wall) so that the algorithm includes some form of adaptive behavior. Compare
the performance of your programs with the original ones.

4. In the algorithm of this chapter, once an item was added to memory it stayed there
permanently. The robot cannot forget. To make the robot behave more like a biological
creature, it has to be made to forget. Implement a forgetting procedure to occasion-
ally delete the last entry (or perhaps a random entry) in the memory arrays on a
random basis. A more complicated, but more realistic simulation would be to have a
long-term memory and a short-term memory and have the robot transfer some (not
all) the short-term memory into long-term memory while sleeping. Also you may want
some mechanism for enforcing short-term memory the more times a situation is
encountered, and give preference to these reinforced items when transferring to long-
term memory.

5. In the algorithm discussed in this chapter, the robot was only motivated by a single need
based on biological priorities and thresholds. In other words, the robot does not
develop complex value judgments. This can be observed when the robot fails to play
when it enters the play area if hunger is the current motivator. Imagine how this
behavior could be altered so as to be more opportunistic. The robot could decide to
take advantage of being in the area and play now even though it is hungry. Some inter-
nal mechanism (perhaps opportunity thresholds) must control this behavior. The robot
should not play if there is not a reasonable need to do so. Likewise, the robot should
forego play and head for food if the hunger need is very large. Modify the algorithm
in this chapter to implement such an adaptation.
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C H A P T E R17
RELATING SIMULATIONS

TO THE REAL WORLD

Building a robot is an enjoyable challenge and programming it is a rewarding task.
Traditionally, you could not uncouple these two activities. In order to program a robot

you had to build one. Nowadays, many people are able to easily build a very capable robot
thanks to the plethora of kits and powerful components available at affordable prices.
However, despite being easier, building a robot can still be an obstacle for many due to
various factors. 

If you are interested in programming a robot but not building one, or you want to defer
building one until after you acquire more skills but want to experiment with programming
a robot, RobotBASIC and this book have shown you many projects and algorithms that
demonstrate the power and utility of a simulator. You may find that the simulator satis-
fies your curiosity about controlling a robot enough that you do not need to control a real
robot. However, if you do decide to control a real robot, the role of RobotBASIC is not
over. In fact, RobotBASIC can be a powerful tool in controlling a real robot, and all the
knowledge and experience you have gained from reading this book, is very much trans-
ferable to the real-world. RobotBASIC can help you in moving from the simulated realm
to the real one.

RobotBASIC’s simulated robot is a great prototyping tool for doing research and
development for robotic algorithms and ideas. You can use the simulations to demonstrate
the principles of an idea without the expense of actually creating the hardware to test out

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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the idea. Once the prototyping life cycle has run its course you will be ready to try out the
ideas that have been developed on an actual robot. The characteristics of the simulated
robot in RobotBASIC have been carefully designed to be achievable in a robot that can
be affordably built using kits or from readily available components. 

This chapter will show you how to construct a robot from an affordable kit (with some
additional modifications) that emulates the characteristics of our simulated robot. However,
just building the robot is not the end. You will need to port the algorithms to the robot’s
microcontroller. This chapter will show you four ways of achieving this.

17.1 A Historical Perspective
The field of hobby robotics has come a long way. A change in attitude toward the hobby
is occurring. People now are not satisfied with just building a robot; rather they want to
make it do useful things. The focus of the hobbyist is shifting from building a robot to pro-
gramming a robot.

17.1.1 EARLY HOBBY ROBOTICS

In the 1980s when hobby robotics was just starting, building a real robot was very diffi-
cult. If you wanted circuitry to drive your motors or needed any type of sensors you had
to build them yourself. This meant that you had to have a reasonable knowledge of elec-
tronics if you wanted to build a robot with even minimal capabilities.

While building everything from scratch was certainly an enjoyable challenge for the
skilled few, building a robot remained more of a dream than a reality for the majority
of people interested in the hobby. Most creations consisted of modified toys or crude
platforms powered by windshield wiper motors salvaged from junk cars. Many robots
had only one sensor—a front bumper mounted on a leaf switch. Of course, the skilled
hobbyist dabbled with infrared light-emitting diodes (LEDs), phototransistors, and other
such devices, to build obstacle-detection circuitry that enabled the robot to deal with its
environment without actual collisions—but such state-of-the-art sensors were often
unreliable.

The makeshift infrared sensors used in those days were easily blinded if the robot turned
toward a window. A robot that worked well at home often exhibited erratic behavior
when it was demonstrated at a club meeting where fluorescent bulbs illuminated the room.
In the years that followed, hobbyists learned to modulate the infrared emitters to solve these
problems but those without electronics experience often found it difficult to adjust their
oscillators and filters properly. 

More sophisticated sensors such as ultrasonic rangers and electronic compasses were
not even attempted until decades later and even then they had to be individually designed
and constructed. There were many how-to books that promised to guide you through the
hard stuff, but the average reader often had a difficult time duplicating the authors’ works.

People who managed to overcome the above difficulties faced a further challenge. A
robot without a central processor (a brain) cannot make effective use of external sensors.
In the early days there were no single chip microcontrollers and software development envi-
ronments were limited.



RELATING SIMULATIONS TO THE REAL WORLD 265

People could have used some of the (expensive) personal computers (PC) of the day,
but the size of these machines and the methods for powering them severely affected the
mobility and size of the robot. 

17.1.2 HOBBY ROBOTICS TODAY

In recent years hobby robotics has changed dramatically. Around the world, members of
robot clubs are building ever more sophisticated robots as they challenge each other to
expand their creativity and problem-solving skills. Certainly the low-cost and availability
of powerful microcontrollers has added to the interest in robotics. Schools are discover-
ing that adding robotics to their curriculum increases student interest, not only in robot-
ics, but in mathematics and science as well. Regardless of the reasons for the growth, the
results are a great number of people interested in hobby robotics and a booming industry
catering to a tremendous demand.

Robot kits are now available from many companies. You can buy robots with wheels
and robots with legs. You can get robots that balance and robots that climb. Even toy com-
panies like LEGO offer robot kits with amazing power and versatility.

17.1.3 THE PARADIGM SHIFT

The wide variety of ready-to-use robot components is changing the nature of hobby
robotics. In the past hobbyists needed to build a robot. Today they can buy the parts and
assemble one with minimal effort. Because of this, the hobbyist today can concentrate
on programming the robot. This means that now they can create a robot that can actu-
ally do something interesting and maybe even useful (a feat almost never accomplished
until recently).

The change that is taking place in the field of hobby robotics parallels the revolution
that took place in the PC industry. If you wanted a computer in the early 1970s, you had
to build it yourself, almost from scratch. Less than 10 years later computer hobbyists could
buy completely assembled systems from companies like Apple, Radio Shack, and IBM.
Almost overnight, the nature of the hobby turned from soldering and bread-boarding to
programming. The new hobby programmers were able to make the “toy” computers solve
real-world problems and everything changed.

Hobby robotics is poised to change the world in a similar manner. The progress to
intelligent machines will be hindered so long as robot hobbyists continue to give pri-
ority to constructing a robot and neglect the importance of programming it. It was the
intelligence of software that gave simple hobby computers capabilities and utility that
made many corporations prefer them over the giant mainframe systems they were using.
This quickly transformed personal computing from a hobby to a business that changed
the world.

The hardware needed to build a robot is now readily available, and creating a capable
robot is within the reach of anyone. If you visit a robot club today you will see many robots
that have been assembled from a variety of standard parts and sensors and you will observe
that the emphasis is shifting from building a robot to programming a robot.

Programming a robot is a crucial activity in robotics. Constructing the robot’s hardware
and electronics is a great deal of fun and can be very satisfying, but, the robot will not be
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able to achieve much without the right artificial intelligence (AI) algorithms that enable
it to autonomously carry out useful tasks.

The hardware and software on a robot should work together to achieve the task.
Nevertheless, the algorithm is what matters. The hardware required to achieve the task
and the details of how it is to be made to function is of importance ultimately. However,
the amount, type, and configuration of transducers (sensors), actuators (motors), and the
shape, size, and type of the robot itself are details worked out as a result of the algorithms
that are developed to solve the tasks the robot is meant to solve. 

Programming an actual robot can be a daunting task due to the development cycle that
has to be followed:

1. Build a robot and equip it with a microcontroller.
2. Mount and align the sensors. 
3. Connect the microcontroller to a PC running a software development environment.
4. Download a program to the robot.
5. Unplug the robot.
6. Place the robot in the test environment.
7. Turn the robot on and watch the results of your programming.

If the robot does not function properly, you will have to repeat steps 2 to 6 until you
arrive at a working program. Finally, when the robot functions you still need to test the
robot in other environments to ensure that the robot will function in all environments it is
likely to encounter. Devising and building test environments can be time-consuming and
costly. Additionally, the robot may get damaged if it does not function properly.
Furthermore, if the robot that is being used is not adequate for the task, you may have to
abandon the hardware and start from square one.

You can see that this cycle is cumbersome. If problems are encountered, the debug-
ging process can be unwieldy. Due to the awkwardness of the entire process, the pro-
grammer may tend to accept the first-working solution instead of continuing to hone the
program until it performs optimally.

RobotBASIC lets everyone get right to the heart of robotics. They don’t have to build
anything or even assemble anything. They can start learning how to program a robot right
away. There is no need to build environments for testing. There is no need to safeguard
the robot from damage. There is no reason why you cannot keep improving the algorithm
to the optimum point. There is no reason why you cannot test the robot exhaustively. You
can experiment with different configurations and combinations of sensors. You can exper-
iment with different algorithms and different situations. This is a major paradigm shift in
thinking about robotics.

Most hobbyists who use RobotBASIC to learn how software can give real intelligence
to a robot will eventually want to build an actual robot. After programming simulations,
hobbyists will have a much better appreciation of the type and configuration of hardware
their robot needs to achieve the target tasks. Knowing what type of hardware you need
and how to put it together can be a major cost- and time-saving. The remainder of this
chapter discusses a variety of ways to use the algorithms developed in RobotBASIC with
real-world robots.
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17.2 Constructing a Robot
Many companies offer a wide variety of hardware and kits that make building a robot easier
than ever before. Many hobbyists, however, often want to build their own robots, or at
the very least, significantly enhance the functionality of a basic kit. 

RobotBASIC’s robot has been designed to have sensors and instruments that simulate
ones that could actually be built or affordably purchased by a typical hobbyist. Nowadays,
there are many companies offering sensors, but many specialize in only a few items. One
company that we had purchased items from over the years truly stands out. This com-
pany is Parallax, Inc. Not only do they offer a wide variety of both robot kits and sensors,
they also share our educational views that students of all ages can benefit from courses
and projects involving robots. You can certainly use parts from any source to create a robot
that emulates RobotBASIC’s simulated robot, but since Parallax offers virtually all of the
sensors we have on our robot, we will discuss their kits and sensors as the primary basis
for constructing a real-world version of our simulated robot.

Another reason we chose Parallax is that they provide a wealth of documentation
(spec sheets, program listings, application notes, discussion forums, and more) on their
web site to help you utilize their products effectively. This allows the discussions in this
chapter to be general in nature. If you need more help, visit the Parallax web site
(www.parallax.com) and also refer to the list of resources at the end of this chapter.
Parallax offers an educational robot kit called Boe-Bot (see Fig. 17.1). It has two servo-
powered wheels and one caster, all mounted on a rectangular body. It comes with an easily
programmable microcontroller (BASIC Stamp 2 [BS2]) and enough parts to give anyone
a good introduction to robotics. A detailed manual outlines a series of experiments that

FIGURE 17.1 Boe-Bot educational robot kit.

www.parallax.com
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are very helpful and informative. The Boe-Bot can easily serve as the basis for our real-
world robot even though the basic kit does not have all the functions provided by our sim-
ulation. The photograph in Fig. 17.1 as well as others in this chapter that depict Parallax
products are courtesy of Parallax, Inc.

The discussions that follow, offer suggestions for customizing the Boe-Bot to enhance
its abilities. Remember, our simulated robot has all the sensory capability most hobbyists
would ever want on a mobile robot. Use the simulator to determine what you would like
the robot to do and to establish what capabilities it needs to accomplish your target project.
When you are ready to build a real robot you can purchase only the sensors you need for
the projects you wish to do. Furthermore, if you have utilized the simulator effectively, you
can feel confident that the money you spend on the hardware project will result in an oper-
ational robot with the desired capabilities.

17.2.1 WHEEL AND BASE ASSEMBLY

RobotBASIC’s simulated robot is a circular robot (no corners to hook things) that can turn
around its center. This movement has the advantage of allowing the robot to turn within
its footprint without having to worry about bumping objects around it. Since the robot is
round and rotates around its center, if it is not in contact with an object before it turns, it
will not hit an object as it turns.

The robot in the Boe-Bot kit has two side-by-side wheels and one caster to keep the
robot from tipping. If both wheels turn in the same direction at the same speed the robot
will move forward (or backward). If one wheel turns forward while the other turns back-
ward, the robot will rotate around its center. 

In order to generate the motions described above, each wheel has its own motor. We
could have successfully used DC motors, stepper motors, or servomotors but both DC and
stepper motors require external drive circuitry. Servomotors (similar to those used in
model airplanes) are easy to control with digital logic because the drive-circuitry is built into
the servo itself. This is the type of motor supplied with the kit.

The width of the pulses sent to Boe-Bot’s servo drive motors control the speed of each
wheel. You can control how far the robot moves or turns by controlling the number of
pulses sent to each wheel. This is an open-loop feedback system though, that does not
guarantee that the wheels have moved the desired amount. One servo, for example,
might be more efficient than the other and turn slightly more even when given the same
number of pulses. The Parallax documentation explains how to calibrate the servos so they
can operate together, but some error is to be expected.

You should consider adding Parallax’s wheel encoders (they easily mount on the Boe-
Bot chassis and provide pulses to the BS2 that indicate how far the wheels have turned)
so that the robot can be positioned more accurately. The stock encoders can only resolve
the robot’s movement to about 
 in of linear wheel travel, but adding a custom reflecting
disk to the wheels could improve on this limitation. 

NOTE: Standard servomotors have a fixed range of motion and are not suitable for
driving the wheels of a mobile robot. Servos that can rotate continuously can be pur-
chased from Parallax or standard servos can be modified.
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17.2.2 BUMPER SENSORS

When we built the real-world version of our simulated robot, we could have constructed
everything from scratch. As mentioned earlier, we decided to use the Boe-Bot kit because
it made the assembly a lot easier. The rectangular shape of the Boe-Bot did require some
modification to make it circular as in the simulation.

Our simulated robot has four bumper switches mounted around the front, back, and
sides of the base. There are many ways of building these bumpers for a real robot. They
could be made using leaf switches, for example, with a plastic or wire bumper glued to
the actuator lever. We decided to get really creative and design a custom bumper system
that is integrated into our robot’s body.

We used 
-in foam-board (found at many craft and office supply stores) and the inner
ring of a wooden embroidery hoop to construct the robot’s round body (see Fig. 17.2). 

The inner ring of the embroidery hoop is glued around the edge of the foam board.
This wooden edge is covered first with a thin layer of foam tape and then a layer of real
copper tape (also found at craft stores). Make sure you use real copper because the sur-
face must be conductive to electricity. 

The outer embroidery hoop is cut into four pieces (130� on the front and rear and 50� on
the sides) that will become the actual bumpers. Each of these pieces is also lined with copper
tape along the bottom edge as shown in Fig. 17.3. Also shown in the figure is the Boe-Bot
body from Parallax which was modified in several ways. First, the servos were mounted with
spacers to give a wider, more stable wheelbase for the new larger body. Second, the original

FIGURE 17.2 Foam-board can be easily cut to form the circular body of the
robot.
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hole (used to pass wires from the servos to the BS2) was enlarged (more on how this will be
used later). A second hole was added to accommodate the wiring. Notice also that another
piece of foam-board is used to build up the area where the Boe-Bot will be mounted, and
that recessed areas are used to ensure that the wheels will have sufficient clearance. This is
easily done because foam-board can be cut with a razor blade or hobby knife.

A piece of thin rubber was glued to the top of the foam-board body and allowed to stick
out an inch or so around the edges. The four bumpers were glued to the protruding
rubber around the edge of the robot as shown in Fig. 17.4. If the rubber is too stiff you
may have to make small cuts between the bumpers and the body so that the bumpers flex
easily. In our case, we also had to cut the front and rear bumpers in half so that they could
move more freely (the two pieces are wired in parallel so they still appear to be one
bumper electrically). After the glue that holds the bumpers to the foam has dried, the excess
foam should be trimmed away.

Figure 17.4 also shows how the Boe-Bot body mounts to the foam-board. Notice also
the brass tube that passes through the very center of the robot (originally used by
Parallax to feed wires to the top of the robot). A felt tip marker can be placed in this
tube if you want the robot to draw as it moves (see Chap. 10). A pen used in this way
cannot be raised and lowered as it does in our simulations, but this capability could be
added by the creative hobbyist using a solenoid (or servomotor). We raised the Boe-Bot’s
circuit board (see later figures) to make room for such a modification should it be desired
in the future.

FIGURE 17.3 Copper tape creates the conductive surfaces for the bumper
switches.



If you look closely at the bumpers in Fig. 17.4 you will see that thin strips of rubber
have been glued to the lower edge of the wooden embroidery hoop. These rubber strips
not only provide extra cushion during collisions, but they also help ensure good contact
of the copper surfaces because they ensure that the pressure from the contact will be
applied to the lower half of the bumper. When a collision occurs, the bumper bends
inward to make contact as shown in the diagram in Fig. 17.5.

17.2.3 INFRARED PERIMETER SENSORS

Even though our robot will have physical bumpers to indicate when a collision occurs, we
wanted our robot to detect objects in its path before a collision actually happens. One way
to do this is with light. The idea is simple. When we want to determine if there is an object
close to the robot we turn on a light source that will project its light away from the robot.
If an object is close by, some of that light will be reflected back. If no reflection is detected
with a phototransistor we can reasonably assume there is no object near that sensor.

FIGURE 17.4 The Boe-Bot mounts to the round foam-board body.

Copper
contacts

Thin rubber sheet glued to bumper and body

Rubber bumper
Foam board body

FIGURE 17.5 This diagram shows the operation of the bumper
switches.
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As stated earlier, this idea is easy to understand. Unfortunately, the practical imple-
mentation of it can be a little harder. To begin with, we can’t use normal light unless we
want our robot to operate in total darkness. An easy solution is to use infrared light and
place a luminance filter that blocks visible light, but passes infrared over the phototransistor.

The above solution works, but only if there are no other sources of infrared light in the
robot’s work area. Unfortunately, fluorescent lights generate a lot of infrared. Even sun-
light has enough infrared to cause problems. An easy solution to this is to modulate the
light source (i.e., have it pulse at a specified frequency). An electronic filter can then be
added to the phototransistor circuit to ensure that only the modulated light will be detected.

The above sounds (and is) complicated. Fortunately nowadays, you can buy phototransis-
tors that have an embedded electronic filter and an integrated luminance filter. The Boe-Bot
kit includes two of these parts and two infrared LEDs, and the manual gives detailed experi-
ments that show how to use them. Additional parts can be purchased separately.

RobotBASIC’s simulated robot has five sensors of this type to help it detect objects in
its path. Figure 17.6 shows how the real robot also has five sensors. The wiring for each

FIGURE 17.6 Infrared sensors are composed of an infrared LED (transmitter) and a
photo-sensitive detector (receiver).
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sensor travels through the foam-board body and to a breadboard so that the sensors can
be connected appropriately to the BS2. Different hobbyists will certainly connect things
differently (more on this later).

17.2.4 LINE SENSORS

The simulated robot has the ability to detect the presence of a line drawn on the floor. In
the real world, this would be done in much the same manner as the infrared perimeter
sensors described above. If the emitter and detector are mounted very close to the floor
though, we don’t really have to worry about other sources of infrared light, which means
that we don’t have to modulate the light source. The closeness of the line to the sensor
does mean that the physical orientation of the emitter to the detector must be just right
to get a reliable operation.

Parallax has a QTI sensor that integrates both the emitter and detector into one pack-
age so that the two components are always properly aligned for line-detection and drop-
off detection applications. Figure 17.7 shows both a picture of the sensor and its electrical
schematic. The black lead connects to ground and the white lead to 	5 V.

This sensor was designed to operate in an analog mode (allows reading a gray-scale)
where the microprocessor determines the time required for the capacitor to charge. For
our purposes, we only need a digital output so we placed a 10 k
 resistor between the
white and red leads as instructed in the Parallax documentation. The output (red lead) will
then be either a 0 or 1, depending on whether the surface is reflective (white) or not (black).
Making the sensor digital not only makes it easier to read (just read the value of the input
pin it is attached to), it also makes reading the sensor much faster.

We mounted three of the QTI sensors near the front of the robot very close to the floor
as shown in Fig. 17.11. We also mounted two more QTI sensors to be used as drop-off
detectors, which can be used in projects similar to the one in Chap. 9.

220 Ω

470 Ω
0.01 μF

White

Red

Black

QRD1114

FIGURE 17.7 The QTI sensor makes detecting a line on the floor easy.
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17.2.5 RANGING SENSOR

The infrared perimeter sensors detect objects that are close to the robot (hopefully before
the bumpers are engaged) but they have a very limited range—typically about 3 to 6 in.
A robot often needs to be able to sense objects much further away. Ideally, the robot should
be able to not only detect these objects, but determine how far away they are.

One method for implementing such a sensor is with ultrasonic transducers. When
the robot wants to check for a distant object (perhaps from 1 to 6 ft) it directs an ultra-
sonic wave (sound above the limits of human hearing) in the desired direction. If an
object is present, the sound will be reflected back to the robot and detected. The
amount of time it takes for the wave to reach the robot is directly proportional to the
distance from the object. Parallax offers an ultrasonic sensor called the Ping))) as
shown in Fig. 17.8.

Parallax also offers a motorized turret that can rotate the sensor so the robot can look
in different directions without actually rotating its body. The Ping))) sensor and its servo-
controlled turret are shown mounted on the real-world robot in Fig. 17.11.

17.2.6 THE COMPASS

The simulated robot has a compass accurate to 1�. Parallax offers a low-cost electronic
compass with an accuracy of about 6�. For many applications this is sufficient. Their doc-
umentation offers many ideas for dealing with sensor limitations. Figure 17.9 shows the
compass module. Electronic compasses accurate to 1� or less are available from other com-
panies, but at a higher cost.

FIGURE 17.8 The Ping))) ultrasonic sensor determines the distance to objects
in the robot’s path.
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17.2.7 THE GPS

The simulated robot has a global positioning system (GPS) capable of reporting the robot’s
location to within 1 screen pixel. Real-world GPS are often accurate to only 20 ft or so. Ways
for improving on this accuracy and alternative approaches for determining a robot’s location
have been discussed in Chap. 15. Figure 17.10 shows a GPS module from Parallax.

17.2.8 THE CAMERA

Digital cameras are an ideal way to give vision to a robot. In our simulation, the camera
is limited to detecting colors in its field of vision. This limitation makes sense for the sim-
ulation because there are no real objects of which to take pictures. Additionally, the dis-
cipline of robotic vision is a complicated field of study that requires a book in its own right.
To be able to analyze and make use of visual data, extensive mathematics and calculus is
required.

Parallax distributes a camera developed by the Seattle Robotics Club that can provide
all of the functions needed for our robot and much more. The camera is shown mounted
on our real-world robot in Fig. 17.11.

Version 2.0.1 (and later) of RobotBASIC has support for serial and Bluetooth com-
munication so that it is possible for a skilled hobbyist to download actual camera pictures

FIGURE 17.9 The compass module from Parallax is accurate to about 6°.
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from a real-world robot to a RobotBASIC array. Advanced users can then use the math-
ematical and matrix capabilities of RobotBASIC to analyze and react to pictures in ways
often only done at professional research and development laboratories. The skilled user
could easily create a color image on RobotBASIC’s terminal screen from the camera
data, allowing for remote observation of the robot’s environment.

17.2.9 BEACON DETECTION

To our knowledge no one currently offers a beacon detection system for hobby robots.
As you saw in Chap. 15, an appropriate beacon system can provide excellent navigational
capabilities for a home or office based robot.

Our simulated robot can detect a beacon mounted above other objects in the room,
meaning that it can be seen even if there are objects on the floor between the robot and
the beacon. The RobotBASIC simulation also provides the distance to the beacon if you
wish to use it. In the simulation, the beacon is just an object of a specified color. Our real-
world robot could actually use its camera to perform this function by looking for a spe-
cific color. The vertical position of the color on the camera’s image can be used to give
an approximate distance to the beacon (the beacon color should appear higher on the
image as the robot gets closer).

There are many options for beacon detection. For example, instead of making the
beacon a specific color, it could be a visible light flashing at a fixed frequency such as two
pulses per second. The microcontroller could detect the beacon with the camera by com-
paring two pictures taken 1/4 second apart.

FIGURE 17.10 The GPS module from Parallax is not nearly as accurate as the
one in our simulated robot.
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If you don’t want to use a camera for beacon detection, you could use circuitry similar
to that described for the infrared perimeter sensors described above. Both the emitter and
the detector would need some form of lens to make them more directional and to increase
the operating distance. You might even consider experimenting with an old television
remote control as the transmitter.

As you can see, even though you might have to create your own beacon detection
system there are many options. Perhaps Parallax or some other vendor will offer such a
sensor in the future. An ideal kit would come with a detector and several infrared beacons
that the robot can individually turn on and off by remote control. Such a system would
put realistic navigation within the budgets of most hobbyists.

Figures 17.11 and 17.12 show our prototype for a real-world robot with capabilities
similar to our simulation. Figure 17.11 shows a camera on top, the ultrasonic sensor and

Turret

Line sensors
Infrared sensor

Ultrasonic rangers

Camera Additional breadboards

FIGURE 17.11 A real-world robot emulating RobotBASIC’s
simulated robot.
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its turret on the front, and the line sensors underneath. Notice the breadboards for pro-
totyping circuits.

Figure 17.12 shows another view of the robot. In this case, the camera has been
replaced with Parallax’s EB500 Bluetooth transceiver to allow direct control from
RobotBASIC (more on this later).

17.2.10 PRACTICAL CONSIDERATION

Even though parts are available to allow you to create a real-world version of our simula-
tion there are potential problems that should be mentioned. Every motor and sensor
needs one or more input/output (I/O) pins on the robot’s microcontroller. Most con-
trollers have a very limited number of I/O pins available. 

You could use only a couple of sensors at a time and change them based on the exper-
iments or applications you are pursuing. This is relatively easy to do if you utilize bread-
boards like those shown on our robot. If you want to keep all of your sensors connected

EB500 Bluetooth tranceiver

FIGURE 17.12 Another view of a real world version of our
simulation.
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so they can be used together, you could multiplex the I/O pins (more on this later) or even
link several processors together, greatly increasing the number of I/O lines available.

Parallax’s BS2 microcontroller can easily exchange data with other BS2s using their
built-in serial communication capabilities. With multiple controllers available, each could
be given specific tasks such as controlling the motors, gathering sensory information, man-
aging a wireless link, and so on. Of course that complicates the programming required to
construct a real robot, which emphasizes just how valuable a simulation can be for those
wanting to learn how to program a robot. With RobotBASIC you have all of the sensors
most people could imagine, and they are available to be used and experimented with
immediately.

Another advantage of using a multiprocessor system on your robot is speed. Since each
processor is dedicated to specific tasks, they could constantly read data from the sensors
(instead of waiting for it to be requested by the main processor). When the distance to a
distant object is needed, the processor could use the most recent data available instead of
waiting for the ultrasonic sensor to perform its task. This technique would not be wise for
sensitive sensors such as bumpers, infrared, and line detection, but it can be very advan-
tageous for time-consuming sensors like the camera or ultrasonic ranging, especially since
the data obtained from these sensors changes relatively slowly over time.

Another problem with the Parallax hardware we used for our real-world prototype is
that both the camera and the EB-500 communication module are designed to fit into the
same socket on the Boe-Bot’s main BS2 carrier board (see Figs. 17.11 and 17.12). This
means that you can only use one of these items at a time unless you create a custom cable
or expansion board. If you do decide to utilize a multiprocessor system as described above,
you could use two carrier boards, thus giving you sockets for both the camera and the EB-
500. Both controllers could then communicate with each other and with other controllers,
should they be required for your sensory needs.

17.3 Controlling the Real Robot
There are various ways you can give a robot a brain:

1. You can program a microcontroller with all the necessary software to interrogate
transducers (sensors) and activate actuators (motors). The same microcontroller can
be used to implement the algorithms to create intelligence. However, unless your AI
tasks are simple, most microcontrollers lack the memory space and math engines to
be able to achieve a complex AI.

2. You can mount a PC (laptop) on top of the robot and use it to control the robot
through a combination of serial (USB or RS-232), parallel port, and ISA BUS based
hardware. This solution gives you all the power of a PC to execute effective AI pro-
grams. Also the software development cycle becomes easier, since there is no need
for cross-compilers and plugging and unplugging of hardware and wires. However,
unless your robot is quite large and is capable of supplying lots of AC or DC power,
this solution can be unwieldy.

3. You can use a microcontroller on the robot that has the ability of doing all the inter-
rogation of the transducers and activation of actuators. This microcontroller would need
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additional software to be able to communicate with a PC wirelessly (or wired but with
less mobility). In this case, the PC would have software to carry out the task of AI. The
PC receives from the microcontroller the status of the robot’s sensors and applies the AI
algorithms and then sends the desired actuations back to the microcontroller. The micro-
controller receives the commands from the PC and acts upon them.

This method has many advantages, one of which is distributed computing. This
way you can have one PC controlling many robots or many microcontrollers on the
same robot. Additionally, you can envisage projects where the PC receives data
from various widely distributed sites to be able to determine the appropriate com-
mand sequence for the robot’s situation. The robot’s microcontroller can be simple,
yet able to achieve a lot due to the distributed computing, and sensing power that
this option provides.

In the next section we will discuss how you can translate the algorithms you develop
using RobotBASIC’s simulated robot, to a real robot using each of the three methods above. 

17.3.1 CONTROL BY A MICROCONTROLLER

One of the easiest and most straightforward ways of using the algorithms developed in
this book with other robots is to translate the RobotBASIC programs into the native lan-
guage of the target robot’s microcontroller. We will use the PBASIC language used by
Parallax’s BS2 controller, but the principles shown here can be applied to any language
on any microcontroller.

Let’s look at a specific example to make the translation process easy to follow. If you
recall, Chap. 7 developed algorithms for following a line. Figure 17.13 shows one of the
algorithms from that chapter.

In order to follow a line, the code in Fig. 17.13 relies on the two RobotBASIC com-
mands, rForward and rTurn and the function rSense().

The command rForward moves the robot forward a specified amount. Likewise,
rTurn rotates the robot as requested. The function rSense() returns a number with the
lower three binary bits representing the line sensors as discussed in Chap. 7.

In order to convert the code in Fig. 17.13 to Parallax’s PBASIC, we need three sub-
routines to duplicate the functionality supplied by RobotBASIC. We will assume we have
these subroutines and three variables as described below. We are using PBASIC syntax
here to provide a concrete example, but the concepts (and even most of the syntax) apply
to many other microcontroller languages. If you are familiar with the language of the

FIGURE 17.13 This algorithm to follow a line was developed in Chap. 7.

  while true 
    rForward 1 
    while rSense() & 1 
      rTurn 1 
    wend 
    while rSense() & 4 
      rTurn -1 
    wend 
  wend 
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microcontroller you wish to use, you should be able to create programs for it that emu-
late most of the commands and functions in RobotBASIC.

We will develop the code for each of these subroutines in a moment, but for now just
assume that we have them. They are slightly harder to use than their RobotBASIC equiv-
alents. Instead of issuing the command rForward 6, for example we would have to do
the following:

DIST � 6
GOSUB FORWARD

Reacting to the line sensors is almost as easy. Compare the two code fragments below.
They demonstrate examples of the subroutines TURN and SENSE.

As you can see, it is very easy to create code that emulates the simulator’s capabilities
as long as we have subroutines that provide the functionality normally handled by
RobotBASIC.

Figure 17.14 shows the PBASIC version of the code in Fig. 17.13. The first three lines
in the figure are comments. The first two comments are directives to the compiler,
informing it which processor to generate code for (refer to Parallax’s documentation for
more information).

The PBASIC compiler requires that each variable be declared. The second section
of code in Fig. 17.13 establishes all three variables with a size of Nib (4 bits). PBASIC
also has a byte size (8 bits) and a word size (16 bits), but due to the small memory (often
typical on microcontrollers), you should never use more bits for variables than your pro-
gram needs.

As you proceed through the code, you reach the main portion of the program. PBASIC
has several types of loops, but in this example we are using a do-loop that loops contin-
uously until one of the if-statements forces it to exit. The PBASIC compiler can be
downloaded from the Parallax web site and contains extensive help.

The program in Fig. 17.14 should be easily compared to Fig. 17.13. You will notice
that the three subroutines that do all the work have been left blank (except for comments).

Each of these routines must access the controller’s I/O ports in order to turn on motors
or read data from the line sensors. These actions must be tailored to the processor you

RobotBASIC Code PBASIC Equivalent 
If rSense( ) = 6  GOSUB SENSE 

rTurn 2  IF SENSORS = 6 THEN 
endif     ANGLE = 2 

GOSUB TURN 
ENDIF

TURN

Subroutine      Variable      Action when the subroutine is called
FORWARD        DIST       Moves the robot forward by the amount 

             specified by the variable DIST. 
TURN                    ANGLE        Rotates the robot by the amount specified 

by the variable ANGLE. 
SENSE                   SENSORS       Places a value in the variable SENSORS 

indicating the status of the 3 line sensors. 
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' {$PBASIC 2.5} 
'==========================================================
' variables must be declared first 
DIST    VAR Nib 
SENSORS VAR Nib 
ANGLE   VAR Nib 
'==========================================================
DO
    DIST = 1 
    GOSUB FORWARD 
    DO 
        GOSUB SENSE 
        IF NOT(SENSORS & 1) THEN EXIT 
        ANGLE = 1 
        GOSUB TURN 
    LOOP 
    DO 
        GOSUB SENSE 
        IF NOT(SENSORS & 4) THEN EXIT 
        ANGLE = -1 
        GOSUB TURN 
    LOOP 
LOOP
'==========================================================
FORWARD:
    ' place code here to make the robot 
    ' move forward DIST units 
RETURN
'==========================================================
TURN:
    ' place code here to make the robot 
    ' rotate ANGLE units 
RETURN
'==========================================================
SENSE:
    ' place code here to read the line 
    ' sensors and give SENSORS the 
    ' appropriate value 
RETURN

' {$STAMP BS2} 

FIGURE 17.14 This code is the PBASIC equivalent to Fig. 17.13.

are using and to the specific I/O ports to which you have attached your motors and
sensors.

Parallax’s BS2 processor has 16 I/O pins. We will connect the two servo motors to
I/O pins 12 and 13. The connections for the three QTI line sensors (modified to operate
in a digital mode as described in Sec. 17.2) will use pins 7, 8, 9, and 4 as described later.

The servomotors are controlled by pulsing them with the PBASIC statement PULSOUT
12,750. This statement sends a pulse of 750 units (each unit on the BS2 is approximately
2 microseconds) to the device attached to I/O pin 12. Sending a series of pulses with a
duration of approximately 750 units will hold a continuous rotation servo motor (when
properly calibrated as described in the Boe-Bot manual) in its current position, as if brakes
are being applied. If the pulse is larger than 750 units then the motor will turn (lets say
forward, but the direction is relative). The longer the pulse, the faster the motor will turn,
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and it will keep turning as long as the pulses are periodically applied. If the pulse is less
than 750 units, then the motor will turn in reverse. The smaller the pulse, the faster the
motor will move.

The FORWARD subroutine in Fig. 17.15 is an application of these principles. If you
have limited experience with how to control a servomotor refer to the Boe-Bot’s manual
which has a lot of explanation on all this and many example programs for controlling the
servo motors. 

The code in Fig. 17.15 is complicated by the fact that Parallax’s PBASIC does not truly
handle negative numbers. Mathematical operations create the proper negative results
using two’s complement binary numbers. Unfortunately, the numbers are always treated
as positive so it is up to the programmer to interpret them properly. Many microcontrollers
often have many limitations such as this. 

The beginning of the subroutine sets the variable DIR equal to one to indicate move-
ment forward. The code then checks the sign bit of DIST and if it is negative it sets DIR
to zero (indicating reverse) then converts DIST to its two’s complement (effectively creat-
ing the absolute value of the original negative value).

A for-loop is used to move the robot the specified number of units. The code inside
the for-loop does all the work. Depending on whether the robot is to move forward or
backward, the servomotors are pulsed to make the robot move about 1/4 in. Note that
since the wheels are on opposite sides of the robot, one servo moves clockwise while the
other moves counter-clockwise.

This subroutine could have been made more accurate (and more complicated) if the code
monitored wheel counters (see Sec. 17.2) instead of just timing the robot’s movement.
Accurate movements are not really needed for this application though, because the robot
will constantly correct its movements based on the data from the line sensors. These cor-
rections counteract any errors made by the movement routines.

FORWARD:
    ' move the number of units specified 
    ' by the variable DIST 
    DIR = 1 
    IF DIST&128 THEN                        'is it negative 
       DIR = 0 
       DIST = (DIST^255)+1                  ' two's complement 
    ENDIF 
    FOR t = 1 TO DIST 
        ' This code moves the robot about 
        ' 1/4 inch on our prototype 
        IF DIR = 1 THEN 
            PULSOUT 12,775 
            PULSOUT 13,725 
        ELSE 
            PULSOUT 12,725 
            PULSOUT 13,775 
        ENDIF 
        PAUSE 10 
    NEXT 
RETURN

FIGURE 17.15 This code moves the robot forward or backward as specified by
the variable DIST.
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The subroutine TURN is nearly the same as FORWARD. The major difference is that
the two wheels move in opposite directions to cause the robot to rotate. Figure 17.16
shows the code for TURN. The numbers were chosen experimentally to make the robot
move a very small angle for each unit specified by the variable ANGLE. Wheel counters
(or even an accurate electronic compass) could have been used to increase the accuracy
of this routine too. 

In order to get the proper pulse duration, the subroutine TURN sets the variable DIR
to 30 for a right turn and to 0 for a left turn. The value of ANGLE is converted to its two’s
complement if the original value is negative. A for-loop then executes the code that turns
the robot the requested number of times.

The code inside the for-loop uses the value of DIR to control the pulses sent to the
servos making the robot turn in the proper direction. The robot moves about 1� each time
the for-loop is executed, but the actual amount is very inconsistent because the motors
are attempting to move in such tiny increments. Again, this presents no problem for this
example because the program is constantly adjusting positions based on the line sensors.
As mentioned earlier, if more accurate movement is needed, you might consider using
wheel counters or an electronic compass to monitor how far the robot actually turns (see
Sec. 17.2). You can certainly make a real robot as accurate as our simulation, but the more
accuracy you require, the more complicated and expensive your robot will be. This reminds
us again of the advantage of using a simulator. You can learn to program a very power-
ful and expensive robot without the cost or hassles of dealing with hardware.

Figure 17.17 shows the code to implement the SENSE subroutine. The power con-
nection (the white wire) for each of the QTI sensors connects to I/O pins 7, 8 and 9 on
the BS2. The output lines from all three sensors are connected to I/O pin 4. This may
seem a bit unusual until you see how these sensors are operated.

In order to get reliable operation it is important that the light from one sensor does not
affect the detector for another. The code in Fig. 17.7 solves this problem. The power to
each sensor is applied individually by forcing the appropriate pin high (5 V). After a short
pause, the data from that sensor is read on pin 4 and placed into its proper bit position

TURN:
    ' This subroutine will turn 
    ' the number of units specified 
    ' by the variable ANGLE 
    DIR = 30 
    IF ANGLE&128 THEN                    'is it negative 
        DIR = 0 
        ANGLE = (ANGLE^255)+1            ' two's complement 
    ENDIF 
    FOR T = 1 TO  ANGLE 
        ' The following code turns the 
        ' robot about 1 degrees 
        PULSOUT 12,735+DIR 
        PULSOUT 13,735+DIR 
        PAUSE 15 
    NEXT 
    PAUSE 10 
RETURN

FIGURE 17.16 This code rotates the robot in units specified by the variable ANGLE.
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in the variable SENSORS. All the sensors can be read on the same pin because only one
device is active at a time. After reading the data from a sensor, the power is removed by
making the controlling pin an input.

When the routines in Figs. 17.4 through 17.7 are combined and downloaded to the
BS2, the Boe-Bot is ready to follow a line. Figure 17.18 shows an environment created
with black electrical tape on white poster board. The real-world robot successfully followed
the line.

The movements generated by the FORWARD and TURN subroutines presented here
work fine, but there is a slight jerky action often associated with servos. The Boe-Bot

 SENSE: 
    ' This subroutine reads information 
    ' from the line sensors and places 
    ' the values into the variable SENSORS 
    HIGH 7: PAUSE 1: SENSORS.BIT0 = IN4: INPUT 7 
    HIGH 8: PAUSE 1: SENSORS.BIT1 = IN4: INPUT 8 
    HIGH 9: PAUSE 1: SENSORS.BIT2 = IN4: INPUT 9
 RETURN

FIGURE 17.17 The line sensor data is stored in the variable SENSORS.
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FIGURE 17.18 Black electrical tape is an easy way to make a line to follow.
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documentation shows ways of ramping the servos up to speed to limit the jerks. Perfect
routines that make a robot move forward and turn will depend on what microcontroller
is used and the type of motors used (you might choose to use stepper or DC motors). Also
you should consider adding additional sensors such as a compass and wheel counters to
make your controlling subroutines as accurate as possible. Since this book is really not about
hardware, the details of these functions are left as an exercise for the reader. 

The above examples will get you started if you desire to use RobotBASIC algorithms
on a real robot. The details are cursory explanations for how to make a real microcon-
troller read sensors and activate motors. For more power and effectiveness you have to
be familiar with your microcontroller of choice and you have to be familiar with many elec-
tronics principles too. 

Parallax’s BS2 controller is relatively easy to use and programming it is much easier
than programming many other microcontrollers. Also the PBASIC language is a very good
language that enables you to utilize the BS2 effectively and with relative ease. However,
you still need knowledge and skill in building and connecting electronic components.

Introducing people with minimal skills to robotics using a simulator is an effective and
motivating choice. The beginner gets to be skilled at devising robotic algorithms without
having the opportunity to destroy expensive components. Also, people can start playing
with a robot immediately without the frustration of having to build one before they truly
understand it.

Many readers will enjoy using the simulator and appreciate not having to deal with all
the quirks of a physical robot. For others, we hope the information provided in this section
helps you reach your goals. 

17.3.2 CONTROL BY AN ONBOARD PC

The approach used in the previous section works well for translating RobotBASIC algo-
rithms for use on many of the embedded controllers used in robotics. If you need more
memory or more processing power though, you might consider mounting a laptop com-
puter directly on your robot. Doing so can give you all the computational power you should
need for any project. It also means you won’t have to write your code on one machine
and download it to another.

There are some disadvantages with using the laptop approach though. Since laptops
are much larger than an embedded controller, the robot itself must be larger. This trans-
lates to bigger motors and larger batteries. In addition, you will need some way to inter-
face the computer to your motors and sensors. Version 2.0.1 (and later) of RobotBASIC
has built-in support for both serial and parallel ports. USB and Bluetooth are supported
via virtual serial ports.

You could use these ports to access sensors directly. The standard printer port on most
PCs is bidirectional and can be multiplexed easily into four 8-bit input and four 8-bit
output ports. In fact, RobotBASIC has special commands to handle the multiplexing hard-
ware for you so that it appears to the programmer to actually have eight ports (see the
RobotBASIC help files). These virtual-port commands assume you have the hardware
shown in Fig. 17.19 appropriately connected to a printer port. The techniques demon-
strated by this hardware could also be used to create multiple ports on a BS2 as mentioned
earlier in Section 17.2.



RELATING SIMULATIONS TO THE REAL WORLD 287

The circuit diagram shown in Fig. 17.19 is a schematic. The details of the necessary
connections are shown. However, the actual circuit will have to have filtering capacitors
across all integrated circuits (ICs) and the power supply. This is necessary since this cir-
cuit may have to switch at high clock speeds and without the appropriate capacitor values
to filter out spikes the circuit may not function properly.

The diagram shows the details for one input port and one output port. The other six
ports (three input and three output) will be connected in a similar manner. The Unconnected
pins Y1 to Y3 on the 74138 IC will be used to HighZ/Activate the three additional
74244 ICs, and pins Y5 to Y7 will be used to clock/latch the three additional 74273 ICs.
The data lines on the additional 74273 and 74244 ICs have to be connected as with those
shown in the schematic. The inverter between the output of the 74138 and the clock inputs
to the 74273 chips (4 total) can be from a 7404 IC or any other equivalent chip. The
control lines C0, C1, and C4 from the PC parallel port are normally inverted, but no invert-
ers are necessary in hardware since RobotBASIC already takes care of the inversion in
software.

FIGURE 17.19 This multiplexing circuit expands the standard printer port to four input and
four output ports.
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The intent of the circuit is to latch the data bus from the parallel port onto one of the
74273 registers for the output operation. For the input operation the circuit will activate
the correct buffer chip to allow the input data from the port to pass to the parallel port
data bus. When the reading operation is over the buffer will be deactivated (HiZ). 

The control lines C0 to C2 will indicate which chip is to be clocked or activated. The
control line C3 will activate the 74138 to decode the address and thus activate/clock the
right chip, once the data is present on the bus, or the software is ready to read the bus.
Once the read/write operation is over the 74138 chip is deactivated to make all buffers
HiZ. All the timing and control is handled by RobotBASIC’s virtual parallel port protocol
commands (see Sec. D.4). It is extremely important to ensure that no input buffer is ever
activated when the parallel port is in output mode.

You could write your entire programs using RobotBASIC and create subroutines to
do the actual work as described above. If you have a background in electronics, you could
build your own motor drivers and sensor interfaces and communicate with them using
the standard printer port as described above, or one of the many port systems available
for the PC. 

Many modern computers no longer have a parallel printer port, so we provided
other options. For example, if you are comfortable with interfacing to Parallax’s BS2,
you could attach it to your PC via a serial port or USB port and let the BS2 collect data
and control motors with its I/O pins. Hobbyists’ magazines such as Nuts and Volts,
Servo, and Robot have many articles and advertisements that can help you find appro-
priate solutions for your needs.

It is also worth mentioning that the port capabilities of RobotBASIC along with its rig-
orous mathematical functions make it an ideal tool for hobbyists experimenting in nearly
any area of electronics and control applications.

17.3.3 CONTROL BY A REMOTE PC WIRELESSLY

The above two options for controlling a robot can be very functional. However, there is
yet a better option. Writing complex AI programs to control a robot requires the power
of a PC because it provides lots of memory, floating-point math, matrix operations, and
much more. These capabilities are crucial for writing software that can control a robot to
do complex tasks. This means that most microcontrollers would not be very suitable and
controlling a robot directly with an onboard PC can be prohibitive too.

Imagine combining the advantages of both the options above and removing the dis-
advantages. This can be accomplished by having a microcontroller that controls the hard-
ware of the robot. The microcontroller reads sensors and activates motors. It will not be
required to think or devise strategies. This task is left up to a program running on the PC.
The PC sends commands to the microcontroller and receives status data back. All this is
done via a wireless link. This way the robot can be compact and not require lots of power
and the controller can be simple and cheap. Furthermore, as you will soon see, the robot’s
microcontroller only has to be programmed once.

The PC decides on what the robot has to do in terms of moving, turning, and reading
sensors. The PC program does not know the details of how the robot turns on motors or
how it interfaces with its sensors. The PC program tells the robot to move forward 2 units
and expects that the robot will perform the task properly. The PC program will decide
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why and when the robot has to move, but it delegates the details of actually making the
move to the robot itself.

Think of a manager and her secretary. The manager tells the secretary to type a letter,
but does not care how the task is accomplished. She does not care which word-processor
program the secretary uses nor does she know the details of how the secretary prints the
letter. All the manager cares about is that the command of printing a letter is achieved.

The secretary on the other hand does not care why the manager needed the letter
printed. The secretary however, has to be able to type the letter and print it using the avail-
able equipment. Together the manager and secretary can achieve a lot more than either
could alone. 

A similar cooperation as above can be achieved by combining the PC and microcon-
troller. The task of the hardware-level control is performed by a microcontroller mounted
on the physical robot. The microcontroller’s program recognizes the commands given to
it by the manager (the PC) and decides on what motors to activate and so on, to carry out
the requested task. The actions taken by the controller will depend on the types of motors
being used and how they are connected to the controller. The motors could simply be
turned on for some period of time or the duration might depend on the data obtained from
wheel counters or an electronic compass. These low-level tasks are the responsibility of
the robot’s controller and are concealed from the managing PC. 

Remember though, that these tasks are all simple ones. The controller program has
no decision-making ability as to why it should move. This way the controller program can
be simple. If the number of sensors and devices to be handled exceeds the capacity of the
controller you can use multiple controllers, as mentioned earlier. There are many inex-
pensive microcontrollers available, so using this option is not prohibitive, and in some cases
can be more effective than using individual electronic components. The PC takes the role
of the high-level manager that decides why a move is needed, but never has to worry about
the details of how it is made.

RobotBASIC (version 2.0.1 and up) provides commands that allow you to use wireless
communication devices such as a Bluetooth transceiver connected to a USB port. The com-
mands allow you to send and receive data between RobotBASIC and any device that can
communicate serially (wireless or wired). 

Using the serial commands you can control a microcontroller by sending command
sequences that specify motor movements or request data from a specified sensor. RobotBASIC
can provide all the communications required by the PC end of the link with its SerIn and
SerOut commands. Refer to App. D and the help files for more information.

The robot’s microcontroller must be programmed with subroutines that enable control
of actuators (motors) and interrogation of transducers (sensors). The main body of the
microcontroller program sits in a loop listening for commands from the PC via a wireless
serial communications medium. When the PC sends a valid command the controller’s main
program deciphers that command and calls the appropriate subroutine to carry out the
actual work. Some commands may require that the controller send some data back to
the PC. The controller program sends this data and then repeats the entire process of
waiting for the next command and so on (see next section and Fig. 17.21 for a specific
example).

The details of how the data is sent and how many bytes to send and receive can be
determined by you, if you wish, but you will need to devise a protocol to achieve this.
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Of course, you will have to create RobotBASIC subroutines that replace all the commands
and functions of the simulator in a manner similar to how we translated code for the BS2
earlier in this chapter. But, before you consider doing this, there is a better option still.

17.3.4 CONTROL BY A REMOTE PC WIRELESSLY 
USING AN INBUILT PROTOCOL

You have seen how easy it is to control our simulated robot using the commands and
functions of RobotBASIC. Wouldn’t it be great if you could use these very same com-
mands to control a real robot? You can do this with the built-in protocol provided in
RobotBASIC (version 2.0.1 and up). The protocol provided follows the same princi-
ples discussed in the previous section, but instead of having to use raw serial commu-
nication commands such as SerIn and SerOut, you can use the very same commands
the simulator uses. You can say rForward 10 and the command will generate the nec-
essary communications to make a properly prepared real robot execute the command
as discussed above. You do need to make the simulator know when to use the simu-
lated robot and when to use the real robot. This is easily achieved using a special
command.

When you issue the command rCommPort portNumber, the RobotBASIC program-
ming environment enters the nonsimulated mode and starts operating via the serial com-
munications medium to control a real robot. Once in the nonsimulated mode, the
commands rForward and rTurn no longer animate the on-screen simulation. Instead,
they automatically send data to the serial port (either real or virtual) identified by
portNumber (see the RobotBASIC help file or Sec. D.6 for more information). 

The data sent from the PC consists of an ID (identification) code indicating the action
to be taken and a second byte in the form of an integer, indicating the amount to move
or the amount to turn. 

You can connect the serial port specified to any radio transceiver with serial I/O or you
can use a Bluetooth adapter. Most Bluetooth USB adapters provide a virtual serial port
option so they can be an easy solution, especially since Parallax offers a Bluetooth Boe-
Bot that handles the wireless communication using their EB500 module.

The important point here is that this option is very flexible. You can create any type
of communication link using nearly any transceivers you wish. At the robot end, you will
need another compatible transceiver, of course, that is able to communicate with the
robot’s processor.

When the robot’s processor receives the data from RobotBASIC it needs to call appro-
priate subroutines based on the ID code. It is your responsibility to write these subroutines
so that they perform the requested functions. If the data received, for example, is the ID
for forward and the parameter was five, then your subroutine must command your robot’s
motors so that your robot moves forward 5 units.

It is important to realize that you must write these subroutines because they must be
custom designed for your hardware. Only you know what type of motors you have and
how they are interfaced to your robot’s controller. Of course, if you are a member of a
club or classroom and everyone is building the same robot, then you can share your rou-
tines. Typically though, the hardware-level subroutines for controlling your robot must be
designed specifically for your hardware.
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The subroutines you write for TURN and FORWARD have another responsibility
beyond that of moving the robot. After they have commanded the motors to create the
requested movement, they must read the line sensors, the infrared sensors, and the
bumpers. This data (3 bytes) must be sent back to RobotBASIC via the serial port or radio
link (again, see the help files for more information).

Actually the amount of data sent back to RobotBASIC is always 5 bytes in order to pro-
vide consistency. The additional 2 bytes are required in some commands [e.g., rLook()]
where data has to be returned in addition to the status of the above three sensors. When
these 2 bytes are not required, they must be set to 0 and sent anyway. The reason for this
is to make the number of bytes received and sent back the same for all the commands.
This makes for a simpler and faster communications protocol on both the microcontroller
and in RobotBASIC.

The protocol requires that the robot using this protocol always expects to get 2 bytes
from RobotBASIC and always send back 5 bytes. If your robot does not have bumpers or
infrared or line sensors, it must send 0 as values for the bytes.

RobotBASIC will store the sensor values received in a buffer and supply them to your
programs when requested by the functions, rSense(), rFeel(), and rBumper().
This gives you tremendous flexibility. Let’s look at an example. Assume for a moment that
a robot you are building does not have line sensors but does have some form of custom
sensor. You can implement your sensor and have your robot’s controller send the appro-
priate data back for that sensor in the proper position (the third byte) in the 5 bytes always
returned to RobotBASIC. Anytime you use the rSense() function it will return the value
for your custom sensor. Even though the simulated rSense() provides only 3 bits of data,
the real-world version provides all of the bits sent back from the robot when the function
is used. This is also true for rFeel() and rBumper(). This lets you provide many
custom features on your real-world robot. You could, for example, easily let your robot
have eight bumper sensors since the data returned is an 8-bit byte.

Notice that each time the robot is commanded to move, it sends back sensory data.
This back-and-forth handshaking is very important because the transceivers must know
when to transmit and when to listen or they can get out of sync. This methodology also
speeds the communication process because no additional transmissions are necessary to
request the standard sensory data (line, infrared, and bumper).

There are several more RobotBASIC statements that communicate over the serial link
when the rCommPort mode has been invoked. In order to make the communication effi-
cient, each of these commands will perform as requested and then return 5 bytes. If all
of the bytes are not needed, then 0s are sent in the unused bytes. Unless otherwise spec-
ified, the unused bytes are at the end of the transmission. These bytes cannot be omitted
even though they are unused because RobotBASIC will be expecting them. See Sec. D.6
for additional details on the protocol. 

The table in Fig. 17.20 shows the two commands discussed earlier as well as the
remaining sensory functions and summarizes their functionality. To create consistency, all
of these commands will send an ID and a second byte even if no parameters are required.
Some simulator commands such as rTurn are sent to the robot as two versions (turn left
and turn right). This allows a full range of 360� to be handled with a single byte of data.
If you use the command rTurn 350 in the simulator, RobotBASIC would automatically
order the robot to turn left 10�, and if you say rTurn –350 a 10� right turn is commanded.
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Figure 17.21 shows a sample skeleton control program. It is written for the BS2 in
PBASIC. Notice that the sending and receiving of the serial data is expected on pins 0
and 1 of the BS2. How this communication data arrives at these pins is immaterial. You
can use Parallax’s EB500 Bluetooth module to perform the communication or any other
wireless transceiver or even a direct wire, if you are doing some testing and don’t want
to commit to a specific transceiver. Even if you are using another controller or other hard-
ware, this structure should help you develop an appropriate control program for your
robot. Typical code has been given for several routines. All the others have been left as
an exercise for the reader. Remember, the example code here is only valid for the mod-
ified Boe-Bot robot built in Sec. 17.2. Use this code as a guide to preparing a program
for your system.

The capability described above puts RobotBASIC in a class of its own. Once you have
created a physical robot, and programmed it with control software that can receive and
execute the 2-byte commands and return the required 5-bytes sensory data, you have a
fantastic robot development system.

After you develop your algorithm using the simulator as we have done throughout this
text, you simply add the following line:

rCommPort portnum

to the program immediately before the rLocate statement. Then, when you run the pro-
gram it will automatically connect with your real-world robot and control it with the pro-
gram just used for the simulation. 

In general, the real-world robot should respond to objects in its environment in the same
manner as the simulated robot, but this of course depends on the quality of your algorithm.
Programs that perform open-loop movements (e.g., having the robot draw a triangle) may
have trouble emulating the simulator’s behavior exactly. If your algorithm uses sensors such
as wheel encoders and a compass to control the movement commands, the robot should
respond properly. Programs that utilize sensory data to control all movement should

         Command Bytes Sent     Bytes Received 
rLocate     3, 0 bumper, infrared, line, 0, 0 
rForward     6, units to move bumper, infrared, line, 0, 0 
 (backwards)                7, units to move bumper, infrared, line, 0, 0 
rTurn (right)   12, degrees to turn bumper, infrared, line, 0, 0 

                (left)   13, degrees to turn bumper, infrared, line, 0, 0 
rCompass   24, 0 bumper, infrared, line, degrees 
rLook (right)   48, 0 or angle bumper, infrared, line, color  

                 (left)   49, 0 or angle bumper, infrared, line, color 
rBeacon   96, Color number bumper, infrared, line, distance 
rRange (right) 192, 0 bumper, infrared, line, distance 
             (left) 193, 0 bumper, infrared, line, distance 
rPen 129, 0, 1 for up, down bumper, infrared, line, 0, 0 
rSpeed   36, speed bumper, infrared, line, 0, 0 
rGPS   66, 0 x, y, 0 
Note: Distance, degrees, color, x, and y are 2-byte integers (MSB first) 

 Refer to Appendix D for more details. 

FIGURE 17.20 Data sent and returned during communication.



' {$STAMP BS2} 
' {$PBASIC 2.5} 
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'========== assign pins
  ReceivePin PIN 0 
  SendPin PIN 1 

'==================Declare necessary variable 
  SENSORS     VAR Nib 
  Direction   VAR Byte 
  T           VAR Byte
  bData VAR Byte(2)    'Received data buffer from RobotBASIC 
                       'byte 0 is the command code and byte 1 
                       'is a parameter for the command. 
  bBuffer VAR Byte(5)  'Buffer of data to be sent to RobotBASIC 
                       'byte 0 is the bumper sensor. Byte 1 is the 
                 'infrared sensors. Byte 2 is the line sensors. 
                 'Byte 3 and 4 is a 16 bit integer for the data 
                 'to be returnd as the result of some commands. 
                 'Byte 3 is the MSB, byte 4 is the LSB. 
                 'See RobotBASIC help for more details. 
'=============================================================
'=============================================================
Main:
  PAUSE 1000   'WAIT FOR the eb500 radio TO be ready 
  DO 
    SERIN ReceivePin,84,[STR bData\2] 'receive command and its 
                                      'parameter from RobotBASIC 
    IF bData(0) = 3  THEN 
       GOSUB rLocate 
    ELSEIF bData(0) = 6 THEN 
       Direction = 1 
       GOSUB rForward 
    ELSEIF bData(0) = 7 THEN 
       Direction = 0 
       GOSUB rForward 
    ELSEIF bData(0) = 12 THEN 
       Direction = 1 
       GOSUB rTurn 
    ELSEIF bData(0) = 13 THEN 
       Direction = 0 
       GOSUB rTurn 
    ELSEIF bData(0) = 24 THEN 
       GOSUB rCompass 
    ELSEIF bData(0) = 48 THEN 
       Direction = 1 
       GOSUB rLook 
    ELSEIF bData(0) = 49 THEN 
       Direction = 0 
       GOSUB rLook 
    ELSEIF bData(0) = 96 THEN 
       GOSUB rBeacon 
    ELSEIF bData(0) = 192 THEN 
       Direction = 1 
       GOSUB rRange 
    ELSEIF bData(0) = 193 THEN 
       Direction = 0 
       GOSUB rRange 
    ELSEIF bData(0) = 129 THEN 
       GOSUB rPen 

FIGURE 17.21 This skeleton program shows the principles required for writing a
microcontroller-based program to act as a server for the RobotBASIC protocol.

293
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    ELSEIF bData(0) = 36 THEN 
       GOSUB rSpeed 
    ELSEIF bData(0) = 66 THEN 
       GOSUB rGPS 
    ELSE 
       GOSUB NotRecognized 
    ENDIF 
    SEROUT SendPin,84,[STR bBuffer\5] 'Send back 5 bytes
                                      'to RobotBASIC 
  LOOP 
END
'=============================================================
'=============================================================
rLocate:
     ' this routine initializes the sensor buffer so that 
     ' the functions rBumper, rFeel, and rSense will 
     ' work properly even if no movement has been made 
     GOSUB ReadSensors 
RETURN
'=============================================================
rForward:
    ' DEBUG "rForward ",DEC bData(1),CR 
    ' move the number of units specified 
    ' by the variable bData(1) 
    FOR T = 1 TO bData(1) 
        ' This code moves the robot about 
        ' 1/4 inch 
        IF Direction = 1 THEN 
            PULSOUT 12,775 
            PULSOUT 13,725 
        ELSE 
            PULSOUT 12,725 
            PULSOUT 13,775 
        ENDIF 
        PAUSE 10 
    NEXT 
    GOSUB ReadSensors 
RETURN
'=============================================================
rTurn:
    ' DEBUG "rTurn ",DEC bData(1),CR 
    ' This subroutine will turn 
    ' the number of units specified 
    ' by the variable bData(1) 
    IF Direction = 1 THEN Direction = 30 
    FOR T = 1 TO  bData(1) 
        ' The following code turns the 
        ' robot about 1 degrees 
        PULSOUT 12,735+Direction 
        PULSOUT 13,735+Direction 
        PAUSE 10 
    NEXT 
    GOSUB ReadSensors 
RETURN
'=============================================================
rCompass:
     ' place code here to read the compass sensor 
     ' and place the appropriate data in bytes 3 & 4 
     ' of the buffer (see below) 

FIGURE 17.21 (Continued )
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     GOSUB ReadSensors 
     bBuffer(3) = 0 
     bBuffer(4) = 0 
RETURN
'=============================================================
rLook:
     ' place code here to read the camera sensor 
     ' and place the appropriate data in bytes 3 & 4 
     ' of the buffer (see below) 
     GOSUB ReadSensors 
     bBuffer(3) = 0 
     bBuffer(4) = 0 
RETURN
'=============================================================
rBeacon:
     ' place code here to read the beacon sensor 
     ' and place the appropriate data in bytes 3 & 4 
     ' of the buffer (see below) 
     GOSUB ReadSensors 
     bBuffer(3) = 0 
     bBuffer(4) = 0 
RETURN
'=============================================================
rRange:
     ' place code here to read the ultrasonic sensor 
     ' and place the appropriate data in bytes 3 & 4 
     ' of the buffer (see below) 
     GOSUB ReadSensors 
     bBuffer(3) = 0 
     bBuffer(4) = 0 
RETURN
'=============================================================
rPen:
     ' place code here to lift or lower the pen based on 
     ' the value of bData(1) 
     GOSUB ReadSensors 
RETURN
'=============================================================
rGPS:
     ' place code here to read the GPS sensor and place 
     ' data in the buffer (not the zero's shown below)
     bBuffer(0) = 0 
     bBuffer(1) = 0 
     bBuffer(2) = 0 
     bBuffer(3) = 0 
     bBuffer(4) = 0 
RETURN
'=============================================================
rSpeed:
     ' place code here to control the speed of robot 
     ' for example, a value to control pulse width 
     ' bData(1) holds the parameter from RobotBASIC 
     GOSUB ReadSensors 
RETURN
'=============================================================
NotRecognized:
    DEBUG "Not A Command ",DEC bData(0),"  ",DEC bData(1),CR 
    bBuffer(0) = 255   'set all returned values to -1 
    bBuffer(1) = 255 
    bBuffer(2) = 255 

FIGURE 17.21 (Continued )
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    bBuffer(3) = 255 
    bBuffer(4) = 255 
RETURN
'=============================================================
ReadSensors:
   ' place code here to read bumpers and infrared sensors 
   ' example code is given for Parallax line sensors 

   'read bumper sensors 
   'none for now 
   bBuffer(0) = 0 

   'read infrared sensors 
   'none for now 
   bBuffer(1) = 0 

   'read line sensors 
   Right:  HIGH 7: PAUSE 1: SENSORS.BIT0 = IN4: INPUT 7 
   Center: HIGH 8: PAUSE 1: SENSORS.BIT1 = IN4: INPUT 8 
   Left:   HIGH 9: PAUSE 1: SENSORS.BIT2 = IN4: INPUT 9 
   bBuffer(2) = SENSORS 

   'set the last two bytes to zero 
   bBuffer(3) = 0 
   bBuffer(4) = 0 
RETURN
'=============================================================

respond very well, even if your real robot is not capable of moving as accurately as the
simulation.

Imagine the power! You don’t have to translate any programs. You don’t have to
download anything to the physical robot. You don’t even need a connection between the
PC running RobotBASIC and your robot. You just change one line and your robot imme-
diately responds to your algorithm. And if you find a situation that needs a more advanced
algorithm, just comment out the rCommPort statement (or set the port number to 0) and
use the simulator and all its debugging features to develop your improvements—then try
it again for real. This power and ease of use gives hobbyists capabilities never even dreamt
of only a short time ago.

We have tried to provide support for all the commands we expect most hobbyists
would want on a real-world robot. If your project needs additional commands, you can
use the SerIn and SerOut statements discussed earlier to meet your needs.

17.4 Resources
This is not a book about hardware, and it would be impossible to support all of the pos-
sible options and answer the many questions people are sure to have about their partic-
ular configuration. If you want to build a real robot, you are just going to have to do your
homework and prepare yourself for the challenge. 

There are many books and web resources that provide almost everything you need.
We have a few suggestions to enable you to locate the help you may require. Of course,

FIGURE 17.21 (Continued )
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the vendor where you purchased your hardware should be first on your list of resources.
In fact, it is a good idea to check out the online help and technical support available from
any company before you decide to make a huge purchase. 

Some of the resources we use are listed below:

• Robot Builder’s Bonanza, a hardware-oriented robot book for hobbyists published
by McGraw-Hill and available in bookstores everywhere.

• Parallax Inc (www.parallax.com), a supplier of microcontrollers and hobby robotics
items. They also carry numerous books that discuss and teach the use of the BASIC
Stamp.

• Servo Magazine (www.ServoMagazine.com), a magazine for robot enthusiasts with
many articles to assist you and many ads for companies that cater to the robot hobbyist.

• Robot (www.BotMag.com), another magazine for robot enthusiasts.
• Nuts and Volts (www.NutsVolts.com), a magazine that caters not only to robot enthu-

siasts but to all areas of electronics and computer technology.
• www.RobotBASIC.com for

° The latest version of RobotBASIC.exe.

° Updated listings of all the programs in the book.

° Solutions for some of the exercises in the book.

° Any corrections to errors that may have slipped into the book.

° Other information and news. 

17.5 Summary
In this chapter you have:

� Reviewed a brief history of hobby robotics.
� Seen that today’s hobbyists can build sophisticated robots with off-the-shelf technolo-

gies including motors, sensors, and complete kits.
� Seen several methods for using the algorithms developed with RobotBASIC on a real-

world robot including specific examples aimed at a modified Boe-Bot from Parallax Inc.
� Seen that RobotBASIC has a wide variety of I/O and communication options that can

be used in robotics, as well as other electronics and control applications.
� Seen how a special communication protocol can allow you to control a real-world

robot directly from RobotBASIC, using the same programs developed to control the
simulated robot without any change.

www.parallax.com
www.ServoMagazine.com
www.BotMag.com
www.NutsVolts.com
www.RobotBASIC.com
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C H A P T E R18
CONTESTS WITH

ROBOTBASIC

Competition is a great motivator for people to strive toward excellence. Contests can
be a great forum for people to compete against each other with a spirit of coopera-

tion and friendly rivalry, while sharing their innovations with others.
The robotics field is full of innovation, cutting-edge ideas, and inventions. Contests have

been the traditional way for hobbyists and even serious researchers to test their ideas and
inventions against the standards set by their peers.

Contests create a positive feedback mechanism for an increasingly improving standard.
People compete and find out that others have better ideas, so they go back and improve
theirs further. The cycle continues spiraling upward toward progressively more challeng-
ing improvements that benefit every one in the field.

18.1 RobotBASIC-Based Contests
A robotic contest often requires a tremendous amount of planning and effort on behalf
of the organizers of the event. Typically, a significant amount of open space is required.
Often mazes or other environmental items have to be constructed, stored, and transported. 

A contest imposes many demands on the participants as well. Considerable time and
resources are needed to turn an idea into a physical robot suitable for a contest entry. Often,

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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motors, sensors, and other parts have to be ordered. After delivery, the robot must be con-
structed, programmed, physically modified to account for unanticipated problems, and then
programmed again and again before it meets the standards for an acceptable entry into
the competition. This time-consuming process limits the frequency of events.

RobotBASIC alleviates all the above obstacles. In a RobotBASIC-based contest partic-
ipants can begin programming immediately—which is really the core of robot design. A
contest can easily be held at every club meeting, and since you can hold more contests,
you can have a greater variety of types and difficulty levels. This can encourage greater
attendance at meetings and as members learn how to program simulations they will gain
experience that will make them more likely to spend the time, effort, and expense needed
to build more sophisticated physical robots.

Competitions can even be held over a web site where the contest’s rules and parame-
ters are posted and the participants can post their entries. Members can participate with-
out ever attending a physical venue, which opens the contest to more participants. The
audience and judges can watch the various entries performing by downloading the pro-
grams and running them on their version of RobotBASIC.

When it is time to hold real-world contests, RobotBASIC can help because it makes design-
ing and programming a real robot easier and faster. After developing ideas with the simula-
tion software, you will have better insight into what sensors a real robot needs and how these
sensors should be situated and configured. As you have seen in preceding chapters, the type,
quantity, and placement of sensors greatly influence the algorithms needed to develop robots
that successfully solve the imposed challenges. Also, as you have seen, the simulator’s debug-
ging tools allow algorithms to be developed much faster than with a real robot.

18.2 Types of Contests
It is often important to hold contests with a wide range of difficulty levels. Challenges can
be straightforward, such as avoiding obstacles or drop offs, or more complex such as line-
or contour-following. If there are advanced participants you may consider more sophisticated
contests such as locating hidden objects, solving mazes, or navigating from point-to-point
around a cluttered environment. 

Variations on a theme can make a previously assigned contest a whole new challenge.
Consider line-following as an example. If the robot is only allowed to use one line sensor
instead of three, the contest will have a totally new flavor. Another variation would be to
make the line very wide, like a road, and require that the robot stay on the line simulat-
ing a car. Further variety may be achieved by varying the width of the line along the track,
requiring the robot to change the algorithm it uses for staying on route. You could also
make the line intermittent (made up of dots and dashes) forcing the robot to have to reac-
quire the line as it moves along the path.

The number of variations is limited only by the imagination. The goal is to induce the
participants to innovate and be enjoyably challenged. The level of difficulty of a contest
should be geared to the range of abilities of the expected participants. Contests within the
RobotBASIC environment can be as diverse in difficulty and variety as any real physical
robotic contest, and the experiences gained in meeting the challenges assigned in a sim-
ulated robotic contest are applicable on numerous levels to nonvirtual contests.
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18.3 Scoring a Contest
Determining the criteria for winning a contest is a crucial part of the planning process.
Using the line-following example again, the winner could be the robot that completes the
task in the least amount of time or maybe the one that exits the line the least number
of times before completing the course. The winner could also be the robot that performs
the task with the most efficiency. RobotBASIC provides a variety of methods for comparing
the performance of participating robots.

18.3.1 SCORING WITH THE POINTS SYSTEM

RobotBASIC has an internal point system that can provide a way to score a contest. Each
time the robot moves forward or turns, an internal counter is incremented by two points
and each time the robot interrogates any sensors the counter is incremented by one point
(see Sec. C.9 for more information). The winner of a contest could be the robot that accom-
plishes the task using the least amount of points. 

The efficiency of an algorithm is dependent upon a variety of design considerations.
Choosing the type and combination of sensors can be just as important as the frequency
and method of interrogating these sensors. Also the number of times the robot makes the
wheels turn and stop can be an indication of the effectiveness of the robot. In general, it
is better to analyze sensory data using mathematics and logic in order to minimize super-
fluous movements since movement generates more points than reading the sensors. 

Algorithms can be made more powerful and more efficient with movement and sen-
sory acquisitions in many ways. Proper planning with mathematics and logic can minimize
the trial and error approach to tackling challenges. This is a really important concept when
the robot is used as a teaching tool (see Chap. 19) because it helps students see real-life
relevance and application for many of the topics they study.

Another way of decreasing the points used by an algorithm is to utilize more effi-
cient code. Example 1 in Fig. 18.1 uses rFeel() to avoid a collision. If the value of
the sensors happens to be two then the sensors will be read three times. Example 2
makes the robot do exactly the same thing, but much more efficiently. The value of the
sensors is read only once and is stored in a variable. The value of that variable is used
in the if-statements to make the required decisions, thus avoiding reading the sensors
more than one time.

Example 1 Example 2
a = rFeel() 

if rFeel()&1 if a&1  
  rTurn -1    rTurn -1 
elseif rFeel()&4  elseif a&4  
   rTurn 1    rTurn 1 
elseif rFeel()&2 elseif a&2 
   rForward -5    rForward -5
endif   endif

FIGURE 18.1 The program fragment on the right generates
fewer points.
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18.3.2 SCORING WITH THE BATTERY

If you recall from Chap. 13, RobotBASIC has a simulated battery. The robot has the abil-
ity to determine the amount of charge left on the battery and to recharge the battery. If
the battery option is enabled by issuing an rIgnoreCharge false statement the robot
will cease to operate if the battery becomes depleted. This provides another method for
scoring contests. The winner could be the robot that accomplishes the most of whatever
the robot is supposed to achieve before the battery runs out.

Just like in car racing you could allow the contestants’ robots to pull into a pit to
recharge their batteries by docking with recharging stations. This would cause the robot
to abandon its tasks to seek a station, but that just adds more variety to the contest.
Robots that can find the charging station quicker have an advantage, and efficient algo-
rithms are rewarded because they allow the robot to work longer before having to charge
the battery.

18.3.3 SCORING WITH THE QUALITY OF CODE

Another way of judging the entries would be on the programmers’ coding style and effi-
ciency. With physical robots, contestants use a variety of microprocessors and program-
ming languages like C, BASIC, assembly, and so on. This makes it hard to have a standard
for judging the code since there is no homogeneity between programming languages. 

In RobotBASIC-based contests all the contestants are using the same programming lan-
guage. Since the code to achieve the simulations can be made readily available to judges,
the style and readability of code can be an element in the scoring standards. This would
encourage contestants to code more professionally. This method of comparing entries can
be more subjective rather than objective, but with a proper set of standards the subjectiv-
ity can be minimized. However, the field of robotics and programming is as much an art
as it is science and, like any art contest, the contestants’ creativity and style can be a valid
subject for judgment.

18.4 Constructing Contest Environments
Considerable time, effort, and expense are typically required by the contest organizers to
create a challenging and suitable contest environment (mazes for instance). Also the con-
testants themselves need to construct similar environments in the process of creating and
testing their robots. 

Organizers often have to post a complex description of the environment that will be
used in the contest. These specifications have to be very clear, precise, and understand-
able. On the day of the contest, if contestants have misinterpreted these specifications,
their robots and/or code may require a considerable amount of modification to adapt to
the unanticipated environment.

RobotBASIC allows many methods for contest organizers to distribute very precise spec-
ifications of their intended contest environment:

1. Subroutines can be distributed so as to be incorporated into the contestant’s code to
create a similar (or exactly the same) environment as the target environment.



CONTESTS WITH ROBOTBASIC 303

2. The WriteScr command can be used to create a bitmap file of the environment, which
can then be used by a contestant with the command ReadScr to create an environ-
ment similar to (or the same as) the intended environment.

3. Files created with the MWrite command can be given to contestants who then use
the MRead command to create an array that will be used to recreate (using mPolygon)
the contest environment.

Contestants write their code to use the distributed files and judges can run these pro-
grams using whatever file they desire to test and judge the entries. Using this method, judges
may wish to test the entries on various files that simulate environments of varying diffi-
culty or complexity, and thus can judge winners on various levels.

18.5 Summary
In this chapter you have seen that:

� RobotBASIC contests can be motivational and how they can be used to increase par-
ticipation in a club or classroom.

� Contests can be designed to appeal to contestants of various skills and abilities.
� The types of contests and scoring methods are limited only by the imagination.
� Contests can emphasize the utility of mathematics and logical thinking.
� Contest organizers and contestants can save time, effort, and expense when participating

in robotic competitions using RobotBASIC.

18.6 Suggested Activities
1. Design several contests that are appropriate for participants with different skill levels.

Revise your contests to give renewed enthusiasm to the participants.
2. Devise ways that RobotBASIC can be used to hold mini-contests on a regular basis at

club meetings or even over the internet.
3. Design an internet-based contest that encourages sharing of principles and ideas

among the participants. Explore the methods discussed in Sec. 18.4 to distribute con-
test environments to the participants.

4. Design a contest where the rules of judging are based on several criteria. Discuss how
you chose the weights to give each criterion.
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C H A P T E R19
ROBOTBASIC IN THE

CLASSROOM

RobotBASIC provides a platform that helps teachers create a building block approach
to teaching many subjects:

➢ Robotics and artificial intelligence (AI)
➢ Applied mathematics
➢ Computer programming
➢ Problem solving
➢ Logical thinking
➢ Engineering principles

In this chapter we propose that RobotBASIC can serve as a tool for teachers to pro-
vide an enjoyable and effective learning experience for students.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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19.1 RobotBASIC within the 
Learning Process
When RobotBASIC is used as a teaching tool the learning process will be filled with tan-
gible, memorable, and rewarding experiences with immediate feedback on what has been
learned in the lesson. This can result in desirable behavioral changes that are part of the
learning process.

When students use RobotBASIC they can realize an immediate and appreciable pur-
pose and utility in what they learn. This makes learning easier and the student is able to
retain the material longer. RobotBASIC gives students vivid sensory feedback to all the
actions they make within the environment. Students actively participate in the knowledge
acquisition process using many of their senses, allowing them to relate better to the knowl-
edge gained. 

RobotBASIC can be a valuable aide to teachers because it provides a means for com-
bining many facets of learning into one convenient medium. Assignments in RobotBASIC
are based on solving interesting and relevant problems. When student groups analyze prob-
lems and develop solutions, they improve their conceptual and perceptual abilities, all the
while developing problem-solving skills.

RobotBASIC promotes incidental learning where students learn about dry intangible
subjects while engaging in exciting and relevant activities. For example, as students learn
to make the robot’s pen draw shapes or maneuver within the screen environment, they
are exposed to many principles of algebra, geometry, and trigonometry. 

RobotBASIC provides many anchor points for relating multiple subjects to a meaningful,
tangible, and positive learning experience where students can appreciate personal gain
and rewards (material or social) as a return for their efforts.

A student’s first experience with learning a new subject can affect his or her future inter-
est in the subject. RobotBASIC makes the initial learning process an interesting and enjoy-
able experience so students will like and have positive feelings about the subject and will
be willing to pursue further studies.

RobotBASIC provides a medium that enhances perception. It encourages students to
perceive precisely and accurately and to group their perceptions into a meaningful whole
that leads to insight into the subjects learned. 

RobotBASIC makes learning an active process within an interesting environment where
simple specific exercises can evolve into complex open-ended projects. Each time a chal-
lenge is achieved a variation can be added to create renewed interests and challenges. This
makes students more disposed to learn because they can recognize clear well-defined
objectives for the material they are required to learn.

As students increase the robot’s abilities by using modules they have previously built,
they learn to correlate what they have learned and to apply that knowledge in new and
innovative ways.

A teacher can use RobotBASIC to demonstrate a skill using clear step-by-step exam-
ples, which then lead to the students performing the skill themselves. Students can use
their personal copies of RobotBASIC to practice until the skill is learned. Students can
have their own copy at school and at home giving them the opportunity to practice as
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often as they wish. Also, due to the fact that RobotBASIC provides an enjoyable experience,
students are more likely to practice. RobotBASIC provides the teacher with a means to
devise criteria for evaluating whether the students have learned the skill. 

19.2 RobotBASIC as a Motivator
RobotBASIC provides students with the satisfaction of displaying their abilities to their peers
which leads to self-fulfillment and satisfying a basic desire for esteem and status among
one’s peers.

Assignments beyond a student’s ability hinder motivation. RobotBASIC allows assign-
ments to be created for a wide variety of skill levels. This customization helps students feel
that they are valued individuals.

Using RobotBASIC, a teacher can create a forum where students are able to display
their abilities to the rest of the class during informal contests. The natural human desire
to compete drives many students to work hard in order to excel. Other students will be
inspired by the projects they see and strive to make theirs better. The teacher may reward
students by letting them assist groups that are having trouble. This fosters a spirit of coop-
eration and leadership. 

19.3 RobotBASIC within the 
Teaching Process
RobotBASIC provides concrete and clear communication between the teacher and stu-
dent with a shared experience, avoiding confusing abstractions and ambiguous informa-
tion content.

RobotBASIC is an aide to teachers in every step of the lesson-plan preparation.
Objectives, for example, are easily defined. Supplies, materials, and equipment are min-
imized since RobotBASIC provides a presentation platform that subsequently becomes the
application platform where the students can practice the required skills. When it is time
for evaluation and critique, RobotBASIC provides an objective, flexible, comprehensive,
constructive, and specific mechanism. Whether the teacher opts to use the instructor-
student, student led, group-guided, written, or self-guided methods for evaluation,
RobotBASIC can play a role.

RobotBASIC can be utilized in any of the teaching methods a teacher wishes to use as
the means for conveying the desired knowledge. Whether in lectures, guided discussions,
or demonstration-performance sessions, RobotBASIC can be a suitable platform for keep-
ing the material organized. 

Running a completed RobotBASIC program to introduce an assignment can provide
an effective attention grabber and provides clear motivations and objectives. The nature
of RobotBASIC allows you to capitalize on the students’ interest and develop their knowl-
edge from past to present, simple to complex, known to unknown, frequently used to less
frequently used, thus enhancing and enforcing the teaching process.
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19.4 RobotBASIC at 
Every Level of Education
RobotBASIC can be utilized at all levels of education with quantifiable and satisfactory
results.

19.4.1 GRADE SCHOOL

When teaching grade school students you may start by teaching the students how to move
the robot around an empty room. The goal might be to move the robot several times and
then return to its original position. After the students master this ability, they could be taught
how to draw some simple shapes on the screen to simulate obstacles and then tackle the
original objective within a cluttered room (at this level they should not be told about the
sensors). There is no need to introduce any form of loops or if-statements. It could be
motivational though, to increase the interest in graphics by showing the students how to
change line widths and colors. Young students can find basic graphics interesting and chal-
lenging. They also can learn about distance measurement, coordinate systems, and angles
by moving the robot around the screen.

If the robot’s pen system is explained to students they can be asked to draw rectangles or
triangles on the screen. The idea of variables can be introduced on a very rudimentary level
(such as to specify how far the robot moves or how much it turns). After the students master
these types of problems, they should be able to understand simple subroutine concepts.

19.4.2 MIDDLE SCHOOL

Middle school students can be introduced to RobotBASIC with many of the same exam-
ples used for younger students. They will master those tasks very quickly and will enjoy
tackling problems that require simple loops and decisions. In order to have problems that
are interesting, the student should be introduced to sensors, but in typical classrooms, it
is probably wise to only tell the student about the bumper sensors.

Because students at this level are generally familiar with algebra, you will be able to use
variables in more exciting ways. For example, subroutines can be created that draw shapes
at positions specified by the variables x and y. These subroutines can then be combined
to draw shapes throughout a room. At that point students are often ready to learn about
random numbers.

19.4.3 HIGH SCHOOL

High school students can typically master the previous concepts (which can serve as an
introduction to the language) very quickly. At that point they can tackle problems such as
following a line or wall. Advanced students might even tackle problems like goal-seeking. 

At this level you should consider using RobotBASIC to demonstrate the use of math-
ematical concepts such as the pythagorean theorem and other principles of geometry, alge-
bra, mathematics, and trigonometry.

Many high schools offer courses that use real educational robots. Often students have to
work in large groups or wait in line to try the programs they write because the school can
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only afford to buy a few robots. In such cases RobotBASIC provides the perfect solution.
Every student in the class can have their own free copy of RobotBASIC. Individual students
and groups can develop their own solutions to assignments and test their ideas with the sim-
ulator. When a group completes an assignment, they can move their program to a real robot
to see their programs operate in the real world (see Chap. 17 for more details).

19.4.4 COLLEGE LEVEL

At the college level, students should be able to deal with any subject in this book, which
can be used as a course text. RobotBASIC is an excellent first language for engineering
students. In keeping with the building block approach to teaching, the RobotBASIC lan-
guage provides a perfect stepping stone for engineering students to progress to more com-
plex languages such as C/C++.

RobotBASIC is a powerful yet easily learnable language that serves to introduce stu-
dents to programming without overwhelming them with extraneous knowledge that only
serves to confuse the beginner. 

Once students become adept at handling programming constructs such as looping, con-
ditional execution, modular design, and more complex principles such as arrays, they will
be better able to proceed to programming with more complicated languages.

RobotBASIC is a wonderful language for early engineering classes because it is an inter-
preter replete with powerful commands and functions including matrix operations such
as inverting, sorting, transposing, and regression analysis (to mention only a few). Using
RobotBASIC, students can easily write programs to help with their assignments.
RobotBASIC can serve as a versatile and powerful programmable scientific graphics cal-
culator that provides numerous set of functions and commands to complete many engi-
neering and mathematics projects.

RobotBASIC can also be used in hardware courses where the objective is to build an
actual robot. Simulations can be used to decide on the type, quantity, and placement of
sensors, and of course, the algorithm for achieving the specified goal. Additionally,
RobotBASIC’s port I/O commands and serial I/O commands help in creating programs
that use the PC as a hardware interface platform.

19.5 Summary
In this chapter you have seen that RobotBASIC:

� Helps make the learning process more effective, meaningful, and enjoyable.
� Can provide the means for motivating students to excel.
� Helps the teacher during the planning, delivery, practice, and evaluation of lessons

and skills.
� Can aid in teaching mathematics, engineering, problem-solving, logical-thinking, pro-

gramming, and robotics.
� Can be used as a tool for teaching students at any age level.

The following section contains a set of suggested teaching tasks at various levels of
education.



310 GOING FURTHER

19.6 Suggested Teaching Tasks
19.6.1 GRADE SCHOOL

1. After the students have been shown how to move the robot around the screen and
how to draw with the pen, they should be asked to make the robot draw a triangle or
rectangle on the screen. 

2. Students should organize earlier assignments (such as drawing a rectangle and draw-
ing a triangle) into subroutines and then create a program that calls the subroutines in
order to create several shapes on the screen.

3. Students should be asked to predict what shape would be drawn if the robot were to
move forward then turn, move forward and turn, over and over again. They should
try writing such a program (without loops) to see how the robot responds. At that point
they should be ready for a simple introduction to the for-loop.

19.6.2 MIDDLE SCHOOL

1. Students should make the robot roam randomly around an empty screen.
2. Students can be asked to create a subroutine that will draw a rectangle at the coordi-

nates specified by the variables x and y. Advanced students can be asked to make the
rectangle a random size. This can be done with the robot or with graphic statements.

3. Students should use a loop to draw 10 shapes at random positions on the screen.
4. Students should modify the roaming program above so that the robot avoids obsta-

cles placed randomly on the screen.

19.6.3 HIGH SCHOOL

1. Students should create a robot that follows a line.
2. Students should modify the above program so that the robot will roam randomly until

it finds a line. Once the line is found the robot should follow the line until the end and
then resume roaming. Use only line and bumper sensors.

3. Modify the line-following program so the robot reacts appropriately when it encoun-
ters an object that blocks its path along the line.

4. Complete the above assignments for wall-following using the infrared sensors.
5. Write a program that will cause the robot to locate a beacon in an empty room and

find its way to the beacon. Advanced students can add objects to the room.

19.6.4 COLLEGE STUDENTS

College students can complete all the exercises at the end of each chapter in this text.

NOTE: If the students are too young to understand coordinates, they can create the
shape using trial and error.
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The four appendices act as a user manual and reference for the RobotBASIC IDE and pro-
gramming language:

� Appendix A is a user manual for the IDE (integrated development environment). 
� Appendix B is an overview of the programming language structures and concepts. 
� Appendix C is a comprehensive listing of all the functions and commands in the lan-

guage, as well as the functions and commands for the robot simulator. 
� Appendix D lists commands that enable input and output to the parallel and serial

ports. Additionally, it details a protocol that facilitates control of a real robot using
the simulator commands and functions via a serial wireless communication medium
like Bluetooth.

The details of all the features in the language are subject to change as alterations
and upgrades are implemented. Check our web site www.RobotBASIC.com for the latest
version of the software. The help files accessible from the latest IDE will have the most
valid up-to-date descriptions of all the functionalities of the language. Make sure to
always download the latest version and to consult the help files for any new and modified
features.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 

www.RobotBASIC.com
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A P P E N D I X A
THE ROBOTBASIC IDE

The RobotBASIC IDE consists of an Editor Screen, a Terminal Screen, a Help Screen,
and a Debugger Screen. Each screen has many buttons and menus that facilitate the

various actions required in each one. This appendix will discuss each screen and what
actions can be achieved in each.

A.1 The Editor Screen
The Editor Screen (Fig. A.1) has various buttons and menu items that facilitate the cre-
ation, editing, and running of programs. If you place the mouse cursor on a button and
wait for a second, a hint will pop-up showing the button’s intended function (Fig. A.2). In
addition, each button has an icon that helps in remembering the button’s action.

It is also possible to perform any button’s action by using drop-down menus. Additionally,
each menu action has a keyboard combination (shortcut) that executes the action by press-
ing a function key or a combination of Ctrl or Alt and a key.

As you can see from Fig. A.3 the edit menu can be dropped down by clicking the Edit
option on the main menu, or by pressing Alt+E. Each sub-action in the menu can be
chosen by clicking that action or by pressing the correct Alt combination.

In many cases, as you can see to the right of each option, there is a shortcut key that
can invoke the menu action without accessing the menu. For example, to invoke the Find
option, you can press Ctrl+F.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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FIGURE A.1 The Editor Screen.

FIGURE A.2 Button hints.

FIGURE A.3 Menus.
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Another feature of the Editor Screen is the panel under the buttons. This panel con-
tains the name of the file currently being edited. If the file is a new one that has not been
previously saved and named, it will hold the name NoName.BAS, otherwise it will have
the file’s full name. 

On the far right of the buttons panel, you will see a line and column number field. This
indicates the line number where the cursor is currently positioned in the editor and the
number after the comma is the character number in the line.

To run the program currently loaded in the editor either, click the Run menu and the
Run Program submenu, or click the button, or use the Ctrl+R shortcut on the key-
board. While a program is running this button and its corresponding menus are disabled.
It will be enabled when you halt the program or the program ends, or an error occurs during
the program run.

Running a program will bring up the Terminal Screen and display any program inter-
action on this screen (see Sec. A.2).

The editor in RobotBASIC is very similar to Windows’ Notepad program. The menu
and speed buttons allow for many helpful features. You can save and open files. You can
search and “search and replace”. You can Cut, Paste, Copy, Undo, and Print. Additionally,
you can view a help file that contains information on all the features of the language. 

A.2 The Terminal Screen
The Terminal Screen (Fig. A.4) is where program input and output takes place. This
screen has various buttons, a prompt panel, an input box, and a display screen. 

The display screen is where all the output from the program is displayed. Commands
such as Print and Circle, display their results on the screen. The display screen is
800 � 600 pixels (width � height). If you are using a Windows system where the moni-
tor limits are less than 1024 � 768 resolution, the Terminal Screen will resize to a smaller
size. You can find the limits of the x, y coordinates by using the ScrLimits command
(see Sec. C.7).

If you get a runtime error or the program is ended the Terminal Screen will remain on
top of the editor. You can close it or move it to the background (see below). There is a
shortcut key (Ctrl+T ) while in the editor, to reopen the Terminal Screen, or you can use
the menu option or the speed button. The display from the previously run program will
not be cleared until the current program is executed again or a new program is run.

FIGURE A.4 The Terminal Screen.
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The bottom of the screen is where all input is done using the commands Input,
Waitkey, GetKey and GetkeyE (see Sec. C.7). The edit box will only be activated when
an Input command is issued. Any entry in the box must be terminated with an Enter.

The input box has a buffer that holds any previous inputs. To access a previous input,
press Ctrl+P or Ctrl+N to step through prior inputs. This facilitates easy repetition of
inputs.

When you issue an Input Expr,Var statement, the Expr will be printed just above the
edit box as a prompt. If Expr results in a zero length string then character > will be
printed as a prompt instead of the null string (see Sec. C.7). Input data is treated as a
number if it is a legal number otherwise it will be returned as a string. You can use func-
tions to manipulate inputs as needed (see Sec. C.8). The display shown in Fig. A.4 results
from the simple program in Fig. A.5.

Notice that the result i � 7 is shown in the screen area. The words “Enter a number”
are displayed in the prompting panel and the user input 456 is currently being shown in
the input box. 

The buttons on the bottom right allow certain actions to occur. Each button, just as in
the Editor Screen, shows a hint when you place the mouse cursor over it. 

The button allows you to abort the currently running program and return to the
Editor Screen. You can also abort a program by closing the Terminal Screen window. The
button allows you to view the Editor Screen. The Editor Screen has a button to dis-
play the Terminal Screen again. The program will continue to run when you swap between
the Terminal and the Editor Screen; it will not stop.

The button causes the screen area to be printed on the default printer. The screen
area is printed as a graphic. Only what is visible on the screen will be printed, any output
that has scrolled off the screen will not be printed, but see below for how to retrieve any
text that has scrolled off the screen.

The button will turn on the debugging feature. See the Debug command in

Sec. C.7. The buttons and facilitate the use of a special feature of the Terminal
Screen that can be a powerful tool.

Text printed with the Print command is stored in a buffer, regardless of whether it
has scrolled off the screen or not. Once the buffer is full (it holds 8 kb of text) it will clear
and start to fill again. If this occurs in the middle of your output the buffer will only be hold-
ing part of the output when you use the button. 

The buffer content can be sent to the Windows clipboard using the button. Once
you have done this, the text in the clipboard can be used in any Windows program. The

button is used to clear the buffer and the Windows clipboard at the same time. This
is needed if you do not want any output from previous program runs to be included when
you copy the buffer to the clipboard. Remember to clear the buffer between runs if you
desire, but before you start the run.

Print "i=",7 //display a string and number 
Input "Enter a number",j //prompt and wait for an input 
End

FIGURE A.5 Sample input/output program.
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A.3 The Help Screen
The Help Screen (Fig. A.6) provides explanations about the use of RobotBASIC’s com-
mands, functions, and various other aspects of the entire system. The screen has a drop-
down combo-box that contains a title heading for all the help pages from which you can
choose. These pages cover every aspect of the system and closely parallel Apps. A, B,
C, and D. The help text can be selected and copied to the Windows clipboard using the

button or Ctrl+C. The button (or Ctrl+F ) allows you to search the text in the
currently displayed section.

A.4 The Debugger Screen
The debugging feature of RobotBASIC is discussed in detail in Sec. C.7. The buttons
are self-explanatory. Refer to the Debug command in Sec. C.7 for more detailed
information.

The Debugger Screen (Fig. A.7) buffer will become full if there is too much output.
To prevent this from causing an error use the Clear button occasionally to clear the
buffer. 

FIGURE A.6 The Help Screen.
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You can resize and move the Debug Screen, and you can swap between it, the Terminal
Screen, and the Editor Screen. Be careful not to lose it behind other windows. You can
always drag it to the side while viewing other windows.

If you happen to lose the debugger window under other windows, you can bring it back
to the top by using the menu option Bring Up Debug from the Run menu on the Editor
Screen, or you can use Ctrl+D while in the Editor Screen.

FIGURE A.7 The Debug Screen.
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A P P E N D I X B
THE ROBOTBASIC

LANGUAGE

RobotBASIC is a line-oriented programming language. A program is a set of lines, where
each line is either a blank line or a program statement. A line ends at the end of the

line. In more technical jargon, a line ends with a CR+LF (Carriage Return + Line Feed).
So a program is a collection of statements as shown in Fig. B.1.

B.1 Statements
A statement is what makes a RobotBASIC program achieve the tasks it is designed to
accomplish. There are various types of statements:

• Assignment statements
• Command statements
• Flow-control statements

NOTE: Always refer to the help pages within the RobotBASIC IDE for the most up-
to-date information regarding material mentioned in this appendix.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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• Labels
• Comments

Labels and comments can be combined on the same line with other statements (see
below). A statement contains various other elements that help in achieving the function-
ality of the statement. These elements are:

• Simple variables
• Array variables
• Expressions, which contain further elements that constitute the expression. These

elements are:

° Simple variables

° Array variables

° Constants

° Strings

° Numbers, which are of the following types:
• Integer numbers
• Floating-point numbers

° Operators, which are of the following types:
• Parenthesis
• Mathematical operators
• Comparison (relational) operators
• Logical operators
• Bitwise operators

° Functions, which can contain expressions

B.2 Comments
Comments are an important part of any programming language. Without good com-
ments a program can be hard to understand. Without good comments, even the person
who wrote the program may not be able to follow the program’s logic when reading the
program at a later time. 

Comments are not executable statements. They are used to annotate a program
and format the text of the program to look nice and make the logic of the program

Statement
Statement

Statement
Statement
...

Statement

FIGURE B.1 A program is a collection of statements.
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understandable by someone trying to read the program. Comments can also divide the
program into sections, making it easy to see where the various operations begin and end.

Comments can be in a line of their own, or they can be inline with a statement. Any
text in a line after and including the comment indicator will be ignored and is not consid-
ered part of the statement.

RobotBASIC allows for two methods of indicating a comment. The character combi-
nation // is one and the character ’ is another. For example:

//this is a comment on a line by itself
’this too is another comment
d = 9     //this is a comment inline with a statement
b = d*2   ’so is this comment

B.3 Assignment Statements
An assignment statement is where you would assign a value to a variable. Variables are
storage spaces for values that will be used in the program logic. Variables can be simple
variables or array elements. See the sections on variables (Sec. B.7.3) and arrays
(Sec. B.7.4) for more detail on what a variable or array is and how to use it. In the dis-
cussion below Var means a simple variable and VarA[...] means an array element. See
the section on expressions for further details of what an expression is. Assignment state-
ments are like this:

Var = Expression
or
VarA[...] = Expression

For example:

Distance = 5.4  //—assigns the variable Distance the
//—value 5.4

TimeTaken = 2.1
Speed = Distance/TimeTaken //—Speed will be assigned 

//—the result of the 
//—expression

Dim MailBoxes[20,10] //—see later for what this means
MailBoxes[5,3] = 9   //—assign an array element

NOTE: You can place multiple assignment statements on the same line by using
the \ character. So instead of saying:

a = 1
b = 2
c = 3

you can say:

a = 1 \ b = 2 \ c = 3

This helps make more compact code.
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B.4 Command Statements
RobotBASIC has an extensive set of commands that achieve a variety of tasks like draw-
ing lines on the screen, accepting input from the user, printing results on the screen, and
so on. These commands are the heart of RobotBASIC and are what makes the language
achieve most of its actions.

Some commands have parameters and some do not. Some commands require a spe-
cific number of parameters and some have optional parameters. Parameters are how values
are passed to the command and results obtained from it. A comma must separate all param-
eters. Commands look like this

CommandName parmater1, parameter2...

If the parameter is a value passed to the command then it must be an expression that
results in the value (for details on expressions see Sec. B.7). Some parameters may have
to be numeric (fl oat or integer) and some may have to be strings. In either case the
expression must result in the appropriate data type.

If the parameter is a value to be obtained from the command, then the parameter must
be a simple variable (see Sec. B.7.3). 

The command will use the values (expressions) passed to it, perform its action and then
assign a value to the variables passed to it (when appropriate). 

Some commands act on an entire array, in that case the parameter must be an array
name (see Sec. B.7.4 for details on arrays). For a list of commands and a description of
their action see Sec. C.7.

Commands are not case sensitive, soo Print and print a re the same. Here
are some examples of commands in action:

rLocate 100,100,90 //initializes the robot and puts it
//at location 100,100 with heading 90

rForward 20 //make the robot go forward 20 pixels
rTrurn 40   //make the robot turn 40 degrees

B.5 Labels
A label is a marker to a certain location in the program. The marker is given a name and
can be used within certain statements to refer to that location. You will see how this is
done in the flow-control statements in Sec. B.6.

A label can be in a line by itself, or it can be inline with another statement, but it must
be the first thing in the line. A label must end with the colon (:) and must start with a letter
but after the first letter any combination of numbers and letters can be used (see Sec. C.1
for other label styles). 

Labels are case sensitive, so Label1: and label1: a re not the same. Here
are some examples of the use of labels:

ProgramStart:  //this is a label on its own
Input “Enter a number”,n
Print “You have entered “,n
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If n < 5 then goto ProgramStart //goes to the position
//marked by the label
//if input is less than 5

If n > 30 then goto Pos1 //so does this one if the 
//input is greater than 30

K = n*2
Print K

End   // stops the program here
Pos1: Print “Too high a number” // this shows a label in

// line with another statement

B.6 Flow-Control Statements
Flow-control statements make RobotBASIC:

• Take actions depending on a certain condition.
• Repeat actions a number of times.
• Repeat actions until a certain condition is fulfilled.
• Repeat actions while a certain condition is fulfilled.
• Go to a sub-part of the program, return from there, and continue execution from

where the program branched off.

Flow-control statements are not case sensitive, so While, WHILE, and while
a re the same.

Here is a simple program that shows three different flow-control structures:

for I = 1 to 5  //forward the robot 5 pixels
rForward 1

next
Input “Enter a number”,N
if N < 5 then print “too small”
if N > 30 then print “too large”
while N > 0 // make the robot turn N times

rTurn 1
N = N-1

wend
End

Refer to Sec. C.6 for detailed use of all the flow-control structures provided in
RobotBASIC.

Subroutines in RobotBASIC are created by surrounding a group of statements with a
label and the command Return like this:

SomeRoutineName:
Statement
Statement

...
Return

You can then, from anywhere in your program, branch off to the subroutine. The
subroutine’s statements will be executed and when Return is executed the program
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flow will go back to the line right after the line that called the subroutine. Here is an
example:

Statement
Statement

...
gosub SomeRoutineName
Statement
Statement
End
SomeRoutineName:

Statement
Statement
...

Return

See Sec. C.6 for more details on the Gosub statement and all the other flow-control
statements.

B.7 Expressions
If you have used a scientific calculator you know what expressions are. An expression is
a formula that manipulates numbers, strings, or other expressions and returns a result.

You can use numbers, strings, variables, constants, and/or functions in an expression
(see Secs. B.7.1, B.7.2, and B.7.3 for details on each of these elements). 

An expression results in any of the three basic elements of RobotBASIC, an integer
number, a floating-point number, or a string (see Sec. B.7.1 for details).

In many statements, parameters are needed for the statement to function. Anywhere
a parameter is needed, an expression can be used that would result in the correct data
type required by the statement.

Operators are used in an expression to manipulate the sub-parts of an expression. These
operators are parenthesis, comparison operators, math operators, logical operators, and
bitwise operators (for details see Sec. B.7.5).

There are many functions in RobotBASIC that accept parameters and return a value.
These functions can be used within expressions, are themselves expressions, and are
given expressions as parameters (for details see Sec. B.7.7).

B.7.1 NUMBERS

Numbers are used in all computer programs. There will hardly ever be a program that does
not use numbers. In RobotBASIC there are two types of numbers:

Integer Numbers These are whole numbers. The range for integer numbers is from
�2,147,483,648 to 	2,147,483,647

For example: 

Age = 46   //assigns the variable Age the
//integer value 46
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Floating-Point Numbers These are numbers with decimal fractions. The range for
floating-point numbers is from 
2.23 � 10�308 to 
1.79 � 10308

You can use the letter “e” or “E” with a 	 or � to indicate powers of 10 as shown in
the example below.

For example:

//assigns the variable Distance the floating
// point value 5.78
Distance = 5.78 
C = 3.1e+8      //speed of light is 310000000 m/s
Mass = 0.1E-6   // Mass is 1/10000000 grams 

RobotBASIC has many functions and commands that require and/or return numbers.
There are functions to convert numbers and manipulate them. When an integer number
is required if you pass a float instead, the system will truncate the number into an integer
by removing the decimal fraction.

When RobotBASIC evaluates mathematical operations with a mixture of floats and inte-
gers the result will be a float. However, if all the numbers involved in an expression are
integers then the result will be an integer. This is especially important when performing
division. For example:

A = 5 \ B = 6 \ C = 4.2 
Print A/B //prints 0
Print C/B //prints 0.7
Print 1.0*A/B //prints 0.83333

B.7.2 STRINGS

Strings are text and must be enclosed in quotes. In many programs strings are used to com-
municate with the user. Any time you need to display results to the user in a friendly fashion,
or prompt the user regarding what to do next or how to use your program, strings are required.

For example:

Print “Hello World” // Hello world is a string

RobotBASIC has many functions and commands that require and/or return strings.
There are functions to convert strings and manipulate them. Strings can be as long as
required, there is no limitation on the string size. 

You define a string within your program by using the quote (“) character. A string is
surrounded by a pair of quote characters. If you need to use the quote character within
the string as part of the string you must make it a double quote (““).

For example:

Print “Hello ““World””” // will print Hello “World”

B.7.3 SIMPLE VARIABLES

A variable is a named storage area to keep numbers or strings. Variable names must start
with a letter but then any combination of letters and numbers can be used. Variable names
are case sensitive, so Distance and distance a re different.
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The length of a variable name can be up to 255 characters, so you can use names like
DistanceToBeacon_1. It is important to use meaningful names in your programs because
this makes your programs easier to read and understand. 

A variable can be used anywhere a number or string is used. As long as the variable has
been assigned a value before using it, it can substitute for its value. A variable is assigned
a value in an assignment statement (see Sec. B.3) or by passing it as a parameter to a com-
mand that will assign it a value.

Unlike standard BASIC and many other programming languages, variables in
RobotBASIC do not have to be predefined as being of a specific type. Any variable can
store any value type (float, integer, or string). Additionally, you can reassign a value of a
different type to a variable that already holds a certain type. If a variable exists when it is
being assigned a value, it does not matter what the old value is or of what type it is, the
new value will replace the old one. If the original value is an integer and the new value is
a string the variable type will be changed to a string, and vice versa. The same is true for
floats and integers and floats and strings. 

In certain operations RobotBASIC will convert between variable types as necessary if
it can. For example, if you add an integer to a string the integer will be converted to its
string representation and concatenated to the string. If the operation cannot be per-
formed the system will return an error.

For example:

Message=”Hello World” //assigns a variable a value
Today=Date(1) //assigns a variable the value of a function
Print Message // will print Hello World
Print “Today is “,Today //will print Today is 2007/03/01
rGps X_Pos,Y_Pos //will assign X_Pos the robot’s x 

//position and Y_Pos the y position
Distance=PolarR(X_Pos,Y_Pos) //calculates using a 

//function using variables
Message = 8+4  //change Message to a number

B.7.4 ARRAYS

An array is a collection of variables given a single name. Each variable is an element in
the array. Each element in the array is referenced by its position in the array. Array names
are case sensitive, so Dist[ ] and dist[ ] are different.

Each element in an array can be of any data type (float, integer, or string). Additionally,
you can reassign a value of a different type to an element that already holds a certain type.
If an element has previously been assigned and it is being reassigned, it does not matter
what the current value is or of what type it is, the new value will replace the old one. If
the original value is an integer and the new value is a string the variable type will be changed
to a string, and vice versa. The same is true for floats and integers and floats and strings. 

Remember the elements of the array do not all have to be of the same type. Each ele-
ment can be of any type.

Think of an array of mailboxes. They are collectively called MailBoxes. To access
the third element from the left on the second row we would say MailBoxes[1,2]. The
reason we have 1, 2 and not 2, 3 is because the first element is 0, the second is 1, and
so on.



THE ROBOTBASIC LANGUAGE 327

RobotBASIC allows you to have arrays of any dimension with as many elements in each
dimension as you want. The dimension of the array is the number of indexes it has. For
example Array_1[5,7,8] is a three-dimensional array while Array_2[4,6,7,8] is four-
dimensional.

The dimensional constraints of an array are the extent of each dimension. For exam-
ple Array_3[5,7] is a two-dimensional array with constraints of five rows and seven ele-
ments in each row (or 7 columns). Remember that even though we have five rows, the
fifth row is row number four since the first row is row number zero.

Once an array is defined, each element in the array can be used as if it were a simple
variable. Anywhere a simple variable can be used an array element can be used. And just
like a simple variable, the array element needs to be assigned a value before it is used.

Some commands and functions in RobotBASIC act on an entire array at once. These
commands require the array name as a parameter. 

An array is created by using the Dim command or the Data command. See Sec. C.7
for details on these commands. Here are examples of array manipulations:

Dim Array1[3,4]
Array1[1,1] = “testing”
Array1[0,0] = 9
Array1[0,1] = 8.4
Print Array1[1,1];Array1[0,0]
Array1[2,2] = Array1[0,0]+Array1[0,1]*4

B.7.5 OPERATORS

Expressions are formulas that manipulate expressions. Expressions are manipulated using
operators. Some operators have precedence over other operators. For example multipli-
cation has precedence over addition. So if you write 4	5*3 the result is 19 not 27. That
is because the numbers 5 and 3 are multiplied first then the 4 is added. If you wanted to
do the addition first you must write (4	5)*3 which will result in 27. There are five types
of operators (listed in order of precedence):

NOTE: In commands that require a variable to be passed, so it can be assigned a value,
you cannot substitute an array element; you must use a simple variable. The simple
variable can be later stored in the array element if needed. 

NOTE: The following list of operators is in the order of their precedence

Parenthesis “( )” Any expression surrounded by parenthesis will be evaluated before
it is passed on for further evaluation outside the parenthesis. Thus, parenthesis are used
to trump any operator precedence rules (see above). You can think of any combina-
tion of expressions within the parenthesis as an expression in itself just as if it were a single
number or string.
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Use parenthesis around operations when you are not sure how they would evaluate due
to operator precedence, or to make the intent of the formula clear, or to override opera-
tor precedence. 

Examples:

Print 3*4+5   //prints 17
Print 3*(4+5) //prints 27

Math Operator (listed in order of precedence)
Unary Negate (–) Put in front of a numeric expression makes the result a negative if
it is positive and positive if it is negative. For example:

a = 5
print –a //print –5
print  -(a-7)  //prints 2

Raise to the Power (Exponentiation, ^) Raises an expression to the power by
another (the exponent).

For example:

Print 4^2+1       //prints 17
Print 4^(2+1)     //prints 64
Print (3+1)^(2+1) //prints 64
Print 4^-2.0      //prints 0.0625
Print 4^-2        //prints 0
Print 4.0^-2      //prints 0.0625

Divide (/), Multiply (*), Percentage (%), Modulus (#)

/ divides a number expression by another.

* multiplies a number expression by another.

% calculates the percentage of a number expression.

#  calculates the integer remainder after dividing an integer expression by another.

In all the above operations, if either expression is not a number an error will occur. All
these operators have the same precedence and will be evaluated from left to right if they
are in sequence.

When you divide two integers you will get the result of an integer division not a floating-
point division so 2/3 is 0 not 0.6666. If you want to make sure the result is a floating-
point number make sure that at least one of the expressions is a floating-point number:
2.0/3 results in 0.666

Modulus is an integer operation only. If any of the expressions is a float it will be trun-
cated to an integer. The percentage operation will yield a float result always.

Examples:

Print 5/6        //prints 0
Print 4/3        //prints 1
Print 4.0/3      //prints 1.333333
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Print 4*3        //prints 12
Print 400%3      //prints 1.2 notice the float result
Print 5* 8 # 5   //prints 0
Print 5* (8 # 5) //prints 15
Print 8.3 # 5.3  //prints 3
Print “ttt”/3    //ERROR

Add (+), Subtract (–)
+ adds an expression to another. If the two expressions are numbers then addition
will occur. If the two expressions are strings then concatenation will occur. If the
first expression is a string and the second is a number then the second expression
will be converted to a string and concatenated to the first expression. If the first
expression is a number and the second is a string an error will occur.

– subtracts an expression from another. If either value is not a number an error will
occur.

Both operators have equal precedence and are evaluated from left to right if they are
in sequence.

Examples:

Print “Test”+”ing”   //print Testing
Print “Test”+5       //prints Test5
Print 5+”test”       //ERROR
Print 7+5            //prints 12
Print 7-5            //prints 2
Print “Test” – ““ing”  //ERROR

Comparison (Relational) Operators Comparison operators compare one expres-
sion to another and return the value 0 if the result is false and 1 if the result is true. For
example 5 > 4 results in 1 (true) but 5 > 10 results in 0 (false). 

The result of this type of operation is often used in flow-control statements to deter-
mine whether to take action or not. But the result of a comparison operation can be used
anywhere an expression can be used, just as if it where a number (which it is, the number
0 or 1).

Comparison operators have equal precedence and are evaluated from left to right. But
it is very confusing if you combine comparison operators in an expression. If you need to
do so, use logical operators (see below) for better clarity and use parenthesis to clarify the
meaning.

Many operators have multiple forms that perform the same operation. This way you
can use any style you might be familiar with from other programming languages.

All operators operate on string or number expressions but both expressions must be
of the same type. Except, for the “$” operator where the expressions can only be strings.

If you compare two string expressions beware of lower and upper case letters. Letters
are compared in order of their ASCII codes. Upper case letters have less value than lower
case letters. Comparing strings may give a result you do not expect depending on the
length of strings and the letters in the strings. For example “Test” is not equal to “test”;
it is less. 
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In the following list true = 1 and false = 0 (see Sec. B.7.6).

$ To see if the left string expression is contained within the right
string expression. Both expressions must be strings or an error will
result. For example, “st” $ “testing” returns true.

> To see if the left expression is greater than the right expression.
For example, 5 > 4 returns true.

< To see if the left expression is less than the right expression. For
example, 4 < 3 returns false.

=   or  = = To see if the left expression equals the right expression. For
example, 4 = 7 returns false.

>=  or  => To see if the left expression is greater than or equal to the right
one. For example, 5 >= 7 returns false.

<=  or  =< To see if the left expression is less than or equal to the right one.
For example, 5 <= 7 returns true.

<>  or  ><  or  != To see if the left expression is not equal to the right one. For
example, 5 != 4 returns true.

Logical Operators Logical operators are usually used to combine results from com-
parison operators. A logical operator will consider the expressions it operates upon as false
if the expression results in a zero, or true if the expression results in other than zero (neg-
ative or positive). You can perform logical operations on any numerical expressions. If any
of the expressions results in a string an error occurs.

All logical operators have equal precedence and will be evaluated from left to right if
they occur in sequence. Use parenthesis if you are not sure how the combination will
perform. 

There are two forms for each operator. This way you can use the style you are famil-
iar with. The letter formats are not case sensitive. So AND, and, AnD are thhe
same.

Logical AND (AND, &&)
For example
(5 > 4) AND (4 < 3) results in false
(5 > 4) && (4 < 3) ressults in false
(5 > 4) AND (4 >= 3) results in true
(5 > 4) && (4 >= 3) results in true

Logical OR (ORR, ||)
For example
(5 < 4) OR (4 < 3) results in false
(5 < 4) || (4 < 3) results in false
(5 > 4) OR ((4 < 3) results in true
(5 > 4) || (4 < 3) results in true
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Logical XOR (XOR, @@)
For example
(5 < 4) XOR (4 < 3) results in false
(5 < 4) @@ (4 < 3) results in ffalse
(5 > 4) XOR (4 < 3) results in true
(5 > 4) @@ (4 < 3) results in true

Logical NOT (NOT, !)
For eexample
!(5 < 4) results in true
NOT(5 < 4) results in true
!(5 > 4) results in false
NOT(5 > 4) results in false

Here is a table of how the various operators will do the logic:

Operators Left expression Right expression Result

AND 0 0 0

0 1 0

1 0 0

1 1 1

OR 0 0 0

0 1 1

1 0 1

1 1 1

XOR 0 0 0

0 1 1

1 0 1

1 1 0

NOT 0 1

1 0

Bitwise Operators Bitwise operators only work with numeric expressions. If either
the right or left expression results in a string an error will be issued.

Bitwise operators perform the equivalent logical operation on each bit of the numbers that
result from the expressions. So for example if we do 9 bAND 4 then since 9 is 01001 and 4
is 00100 the result will be 00000 which is 0. If we do 9 bOR 4 the result will be 01101 which
is 13. Just remember that bAND, for instance is an AND but performed on a bit-by-bit basis.

All bitwise operators have the same precedence and are evaluated from left to right if
they are in sequence. There are two formats for each operator. This is so you can use the
format you are familiar with. The letter formats are not case sensitive so bAnd,
band, BAND are the same.
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Bitwise AND (bAND,&)
7 & 2 equals 2
7 bAND 2 equals 2

Bitwise OR (bOR, |)
6 | 1 equals 7
66 bOR 1 equals 7

Bitwise XOR (bXOR, @)
6 @ 2 equals 4
6 bXOR 2 equals 4

Bitwise NOT (bNOT, ~)
~ 1 equals �2
bNOT 1 equals �2
~ 0 equals �1
bNOT 0 equals �1
~ 5 equals �6
~ (�6 ) equals 5

Shift Right (bShhiftR, >>)
514 >> 1 equals 257
514 bShiftR 1 equals 257

Shift Left (bShiftL, <<)
5 << 4 equals 80
5 bbShiftL 4 equals 80

Rotate Right (bRotR)*
514 bRotR 1 equals 1

This bitwise operator operates only on a byte. If the number is greater than 255 the
lowest byte alone is used and all other bytes are zeroed.

Rotate Left:bRotL
5 bRotL 4 equals 80

This bitwise operator operates only on a byte. If the number is greater than 255 the
lowest byte alone is used and all other bytes are zeroed.

B.7.6 CONSTANTS

Constants are numerical values defined within RobotBASIC, but instead of using the
number you can use a name for the number. This is the same as using a simple variable.
The names have been defined within RobotBASIC and you can either use the number if
you can remember what it is or use the name anywhere the number is needed.

Constants can be used anywhere a numerical expression is required. Constant names
are not case sensitive so Red and red are the same.

There are constants that define  colors, there are constants to define things like true
and false, and many more. 

NOTE: Refer to the constants help page within the IDE for a list of all constant values
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B.7.7 FUNCTIONS

Functions are expressions that use expressions as parameters and return a number or
string. A function can be used anywhere a number or string resulting expression can be
used. The form of a function is as follows:

FunctionName(parameter,parmeter,...)

The parameters are expressions and can also be other functions, since a function is an
expression. If the function does not take parameters then you only have the parenthesis
and nothing in between them, for example rFeel().

RobotBASIC has many functions that return strings or numbers and accept strings or
numbers as parameters. There are functions to get the sine of an angle, to convert a string
to uppercase, to convert a float to an integer, to convert a number to string, and much more.

Some functions operate on an entire array. In those functions you pass the array name
as a parameter to the function.

For example:

Print sin(40*pi()/180)
B = ToUpper(“test”) + Spaces(30)
A = Left(B,20)+ “__”
If !(rFeel() & 2) then rTurn 3
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A P P E N D I X C
COMMANDS, FUNCTIONS,

AND OTHER DETAILS

Throughout this appendix there will be reference to the following items:

➢ ExprN implies that a numeric resulting expression is required.
➢ ExprS implies that a string resulting expression is required.
➢ Expr implies that either a numeric or string expression is acceptable.
➢ {Expr} or {Var} implies that it is optional and {Expr...} means many can be given.
➢ Var implies that a variable name must be given.
➢ VarA implies that an array name must be given. In some cases the array must exist

and must have been previously dimensioned using the Dim command or created using
the Data command.

➢ VarA[...] implies that an array element is required. The element specification [...] must
be valid within the array’s dimensional constraints.

➢ If a Var is expected in any of the commands, then if Var exists it will be assigned the
result otherwise it will be created and assigned the result.

➢ If VarA is expected then it must be a previously dimensioned array, but in some cases
where VarA is created by the command it does not have to be previously dimensioned.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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C.1 Labels
See Sec. B.5 for a detailed discussion of how labels fit within RobotBASIC’s language.
Here we give a few additional details. There are three styles for labels:

C.1.1 ALPHA-NUMERICAL STYLE 1

This is the clearest style of all the other styles and is the easiest to pick out while scanning
the source code of a program. In this style of labels you must begin the label with a letter
followed by any combination of digits and letters and finally ended with a colon (:). You
must end this label style with the colon (:) and commence with a letter. 

For example: 

//this is a label on its own
Label_1:

print 20
//a label inline with another statement 
Label_23: print 40 

goto Label_1
//when you refer to the label do not use the :

C.1.2 ALPHA-NUMERICAL STYLE 2

This style is similar to programming languages other than BASIC and is supported by
RobotBASIC for people who like this style. A label of this style must begin with the colon (:)
followed by any combination of digits and letters. For example:

//this is a label on its own
:Label_1

print 20
//a label inline with another statement
:2_Label print 40
//when you refer to the label do not use the :

goto Label_1

NOTE: Always refer to the help pages within the RobotBASIC IDE for the most up-
to-date information regarding material mentioned in this appendix.

NOTE:
• When referencing a label in a statement like Gosub or Goto do not include the

colon (:) character. The colon (:) is put as part of the label only at the label posi-
tion to define the label and is not used in statements referring to the label.

• Labels are case sensitive. So Loop:, loop:, and LOOp: are all different.
• Labels can be up to 255 characters long, so do use meaningful names for subroutines and

looping labels.
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C.1.3 NUMERICAL STYLE

This style supports the standard BASIC line numbers and is not a recommended style. You
can use any combination of digits that are the first thing in a line or the only thing in the
line. A variation to this style is supported where after the first digit you can use a combi-
nation of letters and digits, but you must start the label with a number. For example:

//10 is the numerical label inline with another statement
10   print 4
20   print 9
//4A2C is the other style inline with another statement 
4A2C print 100 
//200XYZ1 is the other style in a line on its own
200XYZ1

print “Hi there”
//30 is the numerical label in a line on its own
30

goto 10

C.2 Assignment Statement
See Sec. B.3 for detailed information about the assignment statement. A few more details
are provided here. 

In RobotBASIC you do not have to specify the data type of a variable. The type of the
variable is determined by the data that is stored in it. Also the type of a variable can change
if you reassign a different type value to it.

Variable names cannot include “%,” “$,” or “#” as in other BASIC implementations.
You cannot use these characters as part of variable names. These characters are used as
operators (see Sec. B.7.5).

RobotBASIC has a powerful array structure compared to other programming lan-
guages. In addition to a versatile Data command, you can have almost limitless (only lim-
ited by memory) dimensional arrays and limitless elements in each dimension. Additionally,
each element in the array can be any of the three types in RobotBASIC (strings, integers,
and floats). Any of the elements can be assigned and reassigned any of the types. You can
manipulate and perform operations on arrays that include inversion, multiplication, and
so on. There is also a set of statistical operations like variance, regression, and more.

The assignment statement is used to set the value of a variable or an array element like this:

Var = Expr (a variable name followed by an equal sign (=) then an
expression)

or

VarA[ExprN{,ExprN....] = Expr (an array name[element specification]
followed by an equal sign [=] then an expression)

A variable does not have to be specified prior to assignment, but if you use this format
a = a	4 then the variable must be previously specified because otherwise the interpreter
will not know what the original value was and an error will occur.
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If the resulting expression is a string, integer, or float the variable will be created and
assigned that value and type. If the variable already exists but is of a different type and/or
value it will be erased and assigned the new type and value.

The array must have been created using the Dim or Data command. The element spec-
ification must be legal for the array dimension specified in the Dim command (see array
commands in Sec. C.7). The array element is treated as if it is a variable name and the
above information regarding variables is applicable. 

C.3 Expressions
See Sec. B.7 for details on expressions and what constitutes an expression. A few addi-
tional details are given here.

Expressions can contain previously assigned variables and/or array elements. If an
array element is specified then it must have been assigned and be within the range of the
array’s dimensional constraints as specified in the Dim command. Expressions can also
contain functions (see Sec. C.8). Expressions can also contain bitwise, logical, compari-
son, and math operators (see Sec. B.7.5)

print sin(4+5/3.0)*(3|4)+ ((a>b)&(c < 5))
n = “this{“+b+”} = “+c

C.4 Strings
See Sec. B.7.2 for details about strings. A few more details are given here.
You can add two strings (concatenation) 

temp = “test” + “ing”   //temp will be “testing”

You can add a string and a variable that is string

temp = “test”
print “I’m “+temp+”ing”     //will print I’m testing

You can add a string and a number as long as the string resulting expression comes
before the number. The number will be converted to a string. Use the ToString() func-
tion to do the same thing regardless of order.

a = 12.3
b = “Result = “
c = b+a
print “The “+c //prints The Result = 12.3

NOTE: If all the numbers involved in an expression are integers the result will be an
integer. If any of the numbers is a float then the result will be float.

B = sin(pi(2*Theta^2))/(3+4*Acceleration)

Even though all the numbers are integer the result is still float because Sin() returns a float.
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print “The “,b,a //prints The Result = 12.3
print “The “,b+a //prints The Result = 12.3
print “The “,b+ToString(a) //prints The Result = 12.3
print a+b //Gives An Error

You can compare two strings for equality. But be careful about > and < since upper
and lower case letters will affect the result. You can also use the $ operator

if  “tin”  $ “testing” then print “yes”   //prints yes
//ExprS1 $ ExprS2 will test to see if ExprS1
//occurs within ExprS2

You can use the InString() function to do a similar action

if InString(“Testing”,”tin”) > 0 then print “yes”
//will print yes

C.5 Variables
See Sec. B.7.3 for a detailed discussion of variables. A few additional points are given here:

• All variables are global. This means that once a variable has been defined and assigned
a value it is accessible from any statement in the program from that time onward. So if
you use a counter inside a subroutine in a for/next statement like for I = 1 to 6
and I is being used in a counter in the calling section, unpredictable logical errors may
occur. So be careful in variable assignments and especially within subroutines.

• Variables are case sensitive. So Theta, theTa, and theta are all different. This can
cause logical errors if you mistype the names. Take care.

• Variable names can be up to 255 characters long so do use meaningful names to avoid
variable clashes. For example, for a counter in a subroutine called Delay use Del_1,
Del_2, etc.

• Do not use variables with the same name as commands, functions, constants, or labels.

C.6 Flow-Control Statements 
See Sec. B.6 for details on how flow-control statements fit in the syntax of the RobotBASIC
language. Here we will list the various flow-control constructs. Flow-control statements
a re not case sensitive, so While, WHILE, and while a re the same.

C.6.1 If-Then STATEMENT

if ExprN then statement

The in-line if-style. If ExprN results in a number not equal to zero (true), then the state-
ment after the then will be executed. Otherwise (false) the program flow will go to the
next line ignoring the statement after the then. ExprN can be any expression that results
in a number. If the result is zero then the condition is redeemed to be false. If the result
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is other than zero (positive or negative) then the condition will be redeemed as true. See
Sec. B.7.5 for comparison and logical operators.

a = 3 \ b = 4 \ c = 5 \ d = 1 \ e = 0
if a then print “true”  // prints true
if d then print “true”  // prints true
if e then print “true”  //will not print
if a > b then print “true”      // will not print
if !(a > b) then print “true”  // prints true
if  !(a > b) && (c < 9) then print “true” //prints true
if “es” $ “test” then print “true”  // prints true
if InString(“test”,”es”) then print “true”  // prints true

C.6.2 If-ElseIf STATEMENT

if ExprN1
statement
statement
...

{elseif ExprNn}
statement
statement
...
.
.
.

{else}
statement
statement
...

endif

This is the structured-if style. Notice that there is no then after the if. This is how
it should be. The interpreter will distinguish between the previous style and this style by
this one difference. The conditions are evaluated as above. 

This structured-if style is made up of blocks of lines. There is the if-block, the
elseif-block and the else-block. You can have multiple elseif-blocks or none. You
can have only one else-block or none and it must be the last block.

If ExprN1 evaluates to true then the if-block lines will be executed. All the other blocks
will be ignored.

If ExprN1 evaluates to false then the interpreter will evaluate the elseif conditions
(ExprNn) in sequence until the first one that evaluates to true. If none evaluate to true then
the else-block lines will be executed (if used).

The lines of the first elseif-block that evaluate to true (if ExprN1 is false) will be exe-
cuted and all other blocks (including the else-block) will be ignored.

This if-style can be nested in any combination. In-line-if does not count as a nested
one. You can nest other if/.../endif structures within any block of the structure.

C.6.3 For-Next LOOP

for Var = ExprN1 To ExprN2 {Step ExprN3}
statement
statement
...

next
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The interpreter will repeat the statements between the for/next a number of times equal-
ing Abs(ExprN2-ExprN1)/ExprN3+1. The interpreter will put ExprN1 result into Var.
The statements between the for/next structure will be executed. The interpreter will
then decrement Var by ExprN3 if given or 1 if not. The interpreter will then check if the
result is greater than ExprN2. If it is, program flow will continue with the statement after
the next (i.e., exit the for/next loop). If not, flow will go back to the statement right
after the for and repeat the whole process.

You can optionally give a Step size. Var must be a variable but it does need not be
previously defined. EprN1, EprN2, and EprN3 must result in integers. ExprN3 must be
greater than 0. If it is 0 then it will be made 1. If it is less than 0 then it will be made positive.

If ExprN1 is greater than ExprN2 the interpreter will decrement ExprN1 until it is less
than ExprN2. You can nest for-loops. An error will occur if you try to nest too deep.

Example:

For I = 0 to 10 step 2
Print I

Next //will print 0 2 4 6 8 10
For I=10 to 0 step 2

Print I
Next //will print 10 8 6 4 2 0

C.6.4 Repeat-Until LOOP

repeat
Statement
Statement
...

until ExprN

Will execute the statements between the repeat-until as long as ExprN evaluates to
zero. The lines within the loop will be executed at least one time, since ExprN will not be
evaluated until the loop has been executed the first time. 

You can use Break within the loop, which will force the loop to terminate immedi-
ately, ignoring any lines after the Break. You can use Continue within the loop, which
will force the loop to reloop immediately, ignoring any lines after the Continue.

Example:

I = 0
repeat

Print I
I = I+1
If I # 2 <> 0

I = I+1
If I > 10 then break
continue

Endif
until I > 20//will print 0 2 4 6 8 10

NOTE: You can modify the Var counter within a for/next loop, just as any other
variable. But beware of your logic. Use Break/Continue along with
if/else/endif or if/then to force an early abort or reloop of the loop (i.e.,

before reaching the end-count).
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C.6.5 While-Wend LOOP

while ExprN
Statement
Statement
...

wend

Will execute the statements between the while-wend as long as ExprN evaluates to other
than zero. The lines within the loop may never execute if ExprN evaluates to zero upon
entry into the loop.

You can use Break within the loop, which will force the loop to terminate immedi-
ately ignoring any lines after the Break. You can use Continue within the loop, which
will force the loop to reloop immediately ignoring any lines after the Continue.

Example:

I = 0
while I < 20

Print I
I = I+1
If I # 2 <> 0

I = I+1
If I > 10 then break
continue

Endif
wend //will print 0 2 4 6 8 10

C.6.6 Break STATEMENT

Used inside a for/next, repeat/until, and while/wend loops to break the loop
immediately. The lines beyond the Break statement will not execute and the current level
of the for/repeat/while loop will be abandoned to the line following
next/repeat/wend line associated with the current level. This is useful if a loop needs
to be abandoned before reaching the end of the loop.

C.6.7 Continue STATEMENT

Used inside a for/next, repeat/until, and while/wend loop to reloop the loop
immediately. The lines beyond the Continue statement will not execute. The program
flow will go to the end of the loop (next/until/wend). Execution will continue on that
statement. The loop will be executed as per normal. This is useful if a loop needs to be
repeated before reaching the end of the loop.

C.6.8 Case CONSTRUCT

The case construct is not implemented in the language. However, you can emulate a case
construct using the structured-if.

If ExprN //Case_1 condition here
//Do stuff

...
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ElseIf ExprN //Case_2 condition here
//Do stuff

...
ElseIf ExprN //Case_3 condition here

//Do stuff
...
.
.
.

Else
//Do Stuff that will be done if no case is true

...
Endif

C.6.9 GoSub STATEMENT

Gosub Label
Gosub Expr
Return

Flow will go to the statement immediately following the Label and will continue until a
Return statement is encountered after which the flow will return to the line following the
line that called the subroutine. A subroutine is marked by a Label and the Return state-
ment as the last line. You can use other Return statements within the logic of the sub-
routine, but always have the last line of the subroutine as a Return, just in case your logic
gets there. If you do not do so any program lines following the subroutine will be executed
as part of the subroutine.

You can call a subroutine from within another subroutine. An error will be issued if you
try to nest too deep. Be careful when you do this that you do not inadvertently create a
circular endless loop. Recursion can also cause trouble if you do not have the correct windup
conditions.

If you use the format Gosub Expr, then Expr must result in a number or string that is
a name of a valid label. If Expr results in a number then it will be converted to a string.
So saying Gosub 1000, Gosub 100*10, or Gosub “1000” are all equivalent and would
cause the program flow to branch to the label 1000.

The second format is useful if you want to branch to a subroutine name that will be
calculated depending on some logic. For example, you may have an array of labels and
you can make the program go to one of the labels depending on some number that is
used to index in the array. 

Example:

Data Labels; “L1”,100,”1000”
while true 

Input “Enter a number 0 to 2”,I
If !Within(I,0,2) then continue
Gosub Labels[I] 

wend
End
L1:

print “I am In L1”
Gosub Substring(“I’m going to Test_Sub, Bye”,14,8)
//notice the above line calculates the subroutine
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//name using functions
Return
100

print “I am In 100”
Gosub Labels[I]*10 
//notice the above line how it goes to a subroutine
// name that is mathematically calculated

Return
1000

print “I am In 1000”
a = “Test”+”_Sub”
Gosub a
//notice above goes to a subroutine name defined 
//by a variable

Return
Test_Sub:

print “I am in Test_Sub”
Return

C.6.10 OnErroR STATEMENT

OnError Label
OnError Expr
OnError

This is a special format of a GoSub. If an error occurs during the run of a program
the system will direct the flow to the subroutine defined by Label or the label defined in
the variable Expr (just as in the GoSub statement above). No error message will be issued
and the program will continue to run as if you have just issued a GoSub statement on
the line that caused the error. In the subroutine you can use the command GetError
VarN1{,VarS{,VarN2{,VarN3}}} to find out the error number, message, line number, and
character number. It is up to you to handle the error and how to redirect the program
flow accordingly. You can issue this statement with different labels at different times to
override the routine that will be used if an error occurs. You can also issue the statement
without a label (or Expr) to turn off the feature and have the interpreter handle errors as
normal

C.6.11 End COMMAND

Will cause the program flow to terminate and return to the editor. The Terminal Screen
will remain on top but you can close it or use the button on the bottom right corner to
switch to the editor window. Or use Windows methods to do so. You can review the ter-
minal screen if you close it, by using the menu or speed button on the editor window.

C.6.12 Goto STATEMENT

Goto Label

NOTE: Return statements within if-structures inside subroutines must be carefully
considered; be extra careful when using Return statements out of subroutines within
if-structures. Check your logic.
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Program flow will branch to the statement immediately following the Label. The label can
be on any line in the program.

Be very careful using this flow control. Most of the time you can avoid using Goto state-
ments by using good structured programming techniques with the help of the structured
flow-control constructs detailed above.

The main use for a Goto statement is to create loops, but it is more advisable to use
repeat/until, while/wend loops and for/next loops along with Break, Continue
and the appropriate if/else/endif combinations.

Certain precautions must be taken if you use Goto within if/else/endif,
repeat/until, while/wend, or subroutines.

• When a Goto statement is executed, the interpreter will reset any if nesting and any
for/next, repeat/until, or while/wend nesting. It would be as if there are no
pending if/else/endif any more and likewise no more for/next,
repeat/until, or while/wend loops. So if you use a Goto within an if to go
beyond the entire nested if structure you would be ok, but if you Goto within the next
if/else or else/endif, etc. you will get an error. Likewise if you are within a
for/next, repeat/until, or while/wend use a Goto to get out of the entire
nested structure, otherwise you will get an unbalanced next/wend/until error.

• It is not a good idea to use Goto within looping-structures. If you must do so, make
sure your program logic accounts for it.

• In a subroutine, try to use Goto only to branch within the subroutine. Make sure that
somewhere within the subroutine a Return is eventually issued. Using Goto to get
entirely out of the subroutine is legal, but beware of the logic of your program.

• You can use Goto to go beyond an End statement, but check your logic.
• Try to avoid using Goto. Use of Goto makes the program flow hard to understand,

hard to follow, hard to debug, and can cause logical and semantic errors that are hard
to locate. However, Goto can be useful in handling errors to redirect the program flow
to one place in the code to handle all errors (but also see the OnError statement). 

C.7 Command Statements
See Sec. B.4 for a discussion on how commands fit within the RobotBASIC language.
The commands are listed here in order of functionality. An alphabetic order can be found
in Sec. C.12. Commands are not case sensitive. ClearScr, clearscr, and
clearSCR a re all the same.

C.7.1 INPUT AND OUTPUT COMMANDS

Print {Expr,Expr;Expr...} Outputs the values of Expr.... to the screen. A comma (,)
between the expressions makes them print with no space between them and a semicolon (;)
prints them with a tab space between them. If there are no expressions then a line feed
is printed.

The first time Print is used the text will print at the top of the screen and then will
print on subsequent lines until the screen is filled. When this happens the screen will scroll
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upward and the last line will always be used to print the text. See Sec. A.2 for more on
this and a special feature for retrieving the text that scrolled off the screen.

The color of the text is according to the current default colors. If you desire to use dif-
ferent colors then use the SetColor and GetColor commands.

XYstring ExprN1,ExprN2,Expr3{;expr,expr;...} Outputs the result of Expr3,
and so on at ExprN1, ExprN2 position on screen. A comma (,) between expressions makes
them print with no spaces between them and semicolon (;) prints them with tab separation.

The color of the text is according to the current default colors. If you desire to use
different colors then use the SetColor command. See the GetColor and GetXY
command.

XYtext ExprN1,ExprN2,Expr{,ExprS{,ExprN3{,ExprN4}}} Outputs the result of
Expr at ExprN1,ExprN2 position on screen. ExprS specifies the font name of the font
to be assigned to the printed text. ExprN3 specifies a size and ExprN4 is a bitwise map
of the style. Expr can be any valid expression that results in a number or string. If it is a
number it will be converted to a string.

If either ExprN1 or ExprN2 is �1 then the current corresponding X or Y screen posi-
tion will be used. ExprS, ExprN3 and ExprN4 are optional. If ExprS is not specified or
is an empty string then the default font (Courier New) will be used. If ExprN3 (Size) is not
specified or is less than 1 then the default size will be 11. If ExprN4 (Style) is not speci-
fied or is 0 then no style is applied.

ExprN3 is a number that specifies the size of the font. You can specify any number
the system will apply the closest allowable size.

ExprN4 is a bitwise map of the desired styles to be applied. You can use bit wise OR
(bOr or |) the values given in the Constants help page to apply multiple styles. So for exam-
ple if you want bold and italic use fs_Bold | fs_Italic.

ExprS is a string that specifies the name of the font to be used. Different machines
may have different fonts and if the name you specify is invalid the system will apply a default
(not necessarily Courier New). To find out what names are available on your machine use
the Fonts menu option from within the Help menu on the Editor Screen. This will bring
up a dialog that shows all fonts available and what sizes are available for each. You can
select a font and when you exit the dialog the font’s name will be copied to the clipboard.
You can then use Ctlr+V to insert the name into your program. Remember different
machines may not have this font. So try to choose fonts that are universally available on
most machines.

Many fonts do not have all the characters of the same width. These fonts will not print
within a consistent width depending on the number of characters in the string, since dif-
ferent characters have different width. The font “Courier New” has all characters of the
same width. Text written with a font that does not have the same width characters will be
hard to line up from line to line.

The text will be printed with the currently set foreground and background colors. If you
desire to use different colors then use the SetColor command. Also see the GetColor
and GetXY command.

Beep {ExprN} Beeps the PC speaker ExprN times. If ExprN is not given only one beep
will be sounded.
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Sound ExprN1,ExprN2{,ExprN3} Makes the PC speaker create a sound at the fre-
quency ExprN1 for a duration of ExprN2 milliseconds. The optional parameter ExprN3
is either true or false. If it is true then the sound is made in the background and if it is false
the sound will stop the system for the duration of the note. Your program will still pause
until the note finishes but the Windows operating system will not be paused if ExprN3 is
true. The default for ExprN3, if you do not specify it, is true.

Speaker ExprN This will turn the speaker off if ExprN is zero (off) or on if ExprN is
other than zero (on). The notes played with the Sound command will play and will take
the time required but no sound will be heard if the speaker is turned off. The speaker is
on by default upon the start of the program.

PlaySong ExprS This will play a song defined by the string ExprS. The string will con-
tain notes and other specs as defined below:

• The notes are A, A#, B, C, C#, D, D#, E, F, F#, G, G#, also P which is a pause.
• You can use lower or upper case. The # must immediately follow a note or it will be

ignored.
• Immediately after defining the note you can specify a number to define the duration of

the note. This number can be any number greater than 0 and is usually 1, 2, 4, 8, 16,
32, or 64. But you can specify any number you desire. The number will be used to cal-
culate the duration of the note by dividing into the defined tempo (see later). The for-
mula is Duration = Tempo/Number. You do not need to define duration all the time.
If a note does not have a duration defined after it then the duration last defined will be
used. If you have not previously defined duration for a previous note then the duration
will be 8 by default.

• You define a tempo for the song and can change it at any time by specifying the letter
“T” followed by a number. The number will be in milliseconds. So if you say T1500 then
the tempo will be 1 and half seconds. If you never define a tempo then it will be 1000
(i.e., 1 second) by default.

• You can define a scale for the song and can change it any time by specifying the letter
“S” followed by a number. The number must be in the range 0 to 6. This means that
there are 7 scales and scale 3 is the middle C scale. If you never define a scale it will be
4 by default. If you define a number greater than 6 it will be made to be 6.

• The letter “P” is taken to be a pause of the duration defined as for the notes (see above).
• If the speaker is off (see the command Speaker ExprN) then the song will play but

no sound will be heard.

The following example will play a song with the scale being 4 to start with then it will
be changed to 3. Also the tempo will start as 1000 and will be changed to 1500 after-
ward. The notes A and B will play at 8th and then the rest will be played at 16th

PlaySong “abc16dc#T1500dgS3abdg#”

The following will play the song “Jingle Bells” followed by “La Cucaracha.” Notice how
you have versatility in defining and playing the songs. Also notice how the scale is changed
in the “La Cucaracha” song.
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data Jingles;”T1000S4E8EP32E4P32E8EP32E4P32E8GP32C4”
data Jingles;”D16P32E2P16F8FP32F8F16P32F8EP32E8”
data Jingles;”E16P32G8GFDP32C2”
Cucaracha = “T2500S4C16CCP64F8P64A7C16CCP64F8P64”
Cucaracha = Cucaracha+”A7F16F8P64E16EP64D16DP64C4”
Cucaracha = Cucaracha+”P32S4C16CCP64E8P64G7C16CCP64”
Cucaracha = Cucaracha+”E8P64G7S5C8D16P64C16S4A#16”
Cucaracha = Cucaracha+”AGP64F8P4”
playsong Jingles[0]
playsong Jingles[1]
playsong Jingles[2]
Delay 1000 \playsong Cucaracha

Input Expr,Var 
Input Expr,VarA[ExprN{,ExprN...}] Prints the text resulting from Expr and waits
for input that will be assigned to Var.

If Expr results in a blank string a > is printed as the prompt. If Expr results in a numeric
it will be converted to a string. In the second format an array element is specified and will
be assigned the input. The array element must be within the dimension of VarA.

WaitKey {ExprS,}Var Prints the text resulting from ExprS and waits for a key to be
pressed. The text is printed just above the input area at the bottom of the Terminal
Screen. When a key is pressed its ASCII code value is assigned to Var. If ExprS is not
given then “Press Any Key” is printed as a prompt. The code assigned to Var is the ASCII
code of the key pressed so if you press “a” then 97 will be assigned, while Shift+a (i.e.,
“A”) will assign 65. Other key combinations like Ctrl+a or Alt+a will return non-ASCII
codes if valid. Keys like Up-arrow, Home, and so on do not return any values. For these
keys see the command GetKeyE. Also see the functions Ascii() and Char() which
convert between the ASCII code and string characters.

GetKey Var Does not cause the program to pause and wait for a key, but if a key is pressed
then its ASCII code value is assigned to Var, otherwise a 0 is stored. This is useful in loops
that need to be exited if a key is pressed but without halting the loop until a key is pressed.
The code assigned to Var is the ASCII code of the key pressed so if you press “a” then 97
will be assigned, while Shift+a (i.e., “A”) will give 65. Other key combinations like Ctrl+a
or Alt+a will return non-ASCII codes if valid. Keys like Up-arrow, Home, and so on do not
return any values. For these keys see the command GetKeyE. Also see the functions
Ascii() and Char() which convert between the ASCII code and string characters.

If you use this command within a loop you may get too many repetitions of the key
due to the speed of the system not giving the user time to release the key before it is read
many times as being a new key press. This can be counteracted by using the Delay com-
mand to delay between successive reads of the key (150 to 200 milliseconds might be suf-
ficient). Or you can use looping to wait until the key is released (Var will be zero).

GetKeyE Var Does not cause the program to pause and wait for a key, but if a key is
pressed then a code value corresponding to the key is assigned to Var, otherwise a 0 is
stored. This is useful in loops that need to be exited if a key is pressed but without halt-
ing the loop until a key is pressed and also for detecting key presses of keys like up and
down arrows and so on.
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This command will return the code of the key pressed (not its ASCII code). The keys
Shift, Alt, and Ctrl have their own codes if pressed on their own. However, if these keys
are pressed in combination with another key then the code of the key alone is added to
1000 (Shift), 2000 (Alt), or 4000 (Ctrl). For example, if you press “a” alone you will get
65 inside Var (notice that this is the ASCII code for “A” not “a”). If you press Shift+a you
will get 1065, Alt+a will give 2065, Ctrl+a will give 4065, Alt+Shift+a will give 3065,
Ctrl+Alt+a will give 6065, and so on. 

This command allows you to examine more keys than in the command GetKey. Keys
like Up-arrow will return a value. The codes returned by this command must not be con-
verted to characters using the Char() function since they are not ASCII codes. Rather,
they are codes that represent the key inside the operating system (see the Constants help
page within the IDE). 

This command may not return a value for certain combinations of keys pressed if they
correspond to key combinations that have a meaning for the operating system. So for
example Ctrl+Esc will cause the Windows’ “Start” menu to fire up and will not be possi-
ble to detect within your program. Also certain function keys and Ctrl+ combinations have
a meaning within RobotBASIC and will not be passed to your program. So for example
the function key F1 will bring up the help window of RobotBASIC and thus will not return
a value for your program.

To find out what key code will be returned for a particular key you can experiment with
the keys using the program below (also see the Constants help page within the IDE):

while true
getkeyE k
if k <> 0 
xystring 1,2,”Extended Code=”,k;” “

endif
wend

If you use this command within a loop you may get too many repetitions of the key
due to the speed of the system not giving the user time to release the key before it is read
many times as being a new key press. This can be counteracted by using the Delay com-
mand to delay between successive reads of the key (150 to 200 milliseconds might be suf-
ficient). Or you can use looping to wait until the key is released (Var will be zero).

ReadMouse Var1,Var2{,Var3} Reads the current mouse position on the screen and
sets Var1=x and Var2=y Var3 is set to a number that indicates a variety of things as follows:

Two digit integer where the ones digit is:

1  if left mouse button is down
2  if right mouse button is down
3  if middle mouse button is down

The tens digit is:

10 if the Shift key is pressed
20 if the Ctrl key is pressed
30 if the Alt key is pressed
40 if the mouse button was double clicked
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For example: Var will be 21 if the left mouse button was pressed while the Ctrl button
was held down.

SetMousePos ExprN1,ExprN2 Positions the mouse cursor within the Terminal
Screen to any position specified by ExprN1,ExprN2.

AddButton ExprS,ExprN1,ExprN2{,ExprN3{,ExprN4}} Creates a push button
in the Terminal Screen at position ExprN1,ExprN2 (X,Y). The button will have the cap-
tion ExprS and will be of height ExprN4 and width ExprN3. ExprN3 and 4 are optional
and if not given the button will be sized to fit the caption. The button will remain active
until removed with the RemoveButton command below. The caption is important and
should be unique for each button you create. The caption is used to identify the button
using the commands RemoveButton and GetButton.

Once you create a group of buttons the interpreter will keep track of which button was
pressed last. You can find out what button was pushed last with the GetButton command.
If no button has been pushed since the last interrogation the value returned will be a blank
string. The value returned from the GetButton command will be the caption of the last
button that was pushed. See example below for details.

If you use the character ‘&’ in ExprS before any letter then that letter will be displayed
as an underlined letter in the caption of the button and pressing Alt+ the letter will be the
same as pushing the button. If you desire to have the ‘&’ letter display as is then use a
double &&. But remember the caption string ExprS will contain these letters and you must
take them as part of the string when defining the ExprS for RemoveButton and when
checking the returned string from GetButton.

RemoveButton ExprS Removes the button created with the AddButton command
above. ExprS must be the same as the one used to create the button.

GetButton Var Assigns the variable Var the caption of the last button pushed. The
caption returned is the string used to create the button. If no button has been pushed since
the last interrogation the returned string will be null (zero length). Example:

for i=0 to 4
AddButton “Test&”+i,300,20+i*40

next
while true

GetButton Btn
if Btn != “” then xystring 10,10,Btn
if Btn == “Test&3” then RemoveButton “Test&3”

wend

C.7.2 SCREEN AND GRAPHICS COMMANDS

ClearScr {ExprN} Clears the screen with color given by ExprN. If ExprN is not
given the default color is used (see list of colors in Sec. B.7.6). The specified color does
not set the default color.
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ScrLimits Var1,Var2 Sets Var1 to the maximum x coordinate of the screen, and
Var2 to the maximum y coordinate of the screen. This command allows you to find out
the extent of the screen x, y coordinates. Zero is always the lower limit.

SaveScr {ExprN1{,ExprN2{,ExprN3{,ExprN4}}}} Saves a copy of a portion of the
screen to memory. If you do not specify any parameters the entire screen will be saved.
The expressions specify the coordinates of the top-left corner and coordinates of the
bottom-right corner of the portion to be saved. ExprN1 and ExprN2 default to 0. ExprN3
defaults to 800 and ExprN4 defaults to 600.

This command is useful in animations and in drawing temporary objects on top of exist-
ing ones and then erasing them without having to redraw the original screen. See
RestoreScr below for an example.

RestoreScr {ExprN1{,ExprN2}} Restores an already saved copy of a portion of the
screen from memory. If you do not specify any parameter then the saved portion will be
restored to the top-left corner of the screen. ExprN1 and ExprN2 default to 0. If you spec-
ify parameters then the previously saved rectangle will be restored over the area starting at
ExprN1, ExprN2 coordinate. The width and height are determined by the saved data spec-
ified in the SaveScr command. If a SaveScr command has not been previously issued
then this command will have no effect (the buffer is not cleared between program runs).

This command and the SaveScr command are used to save and restore rectangular
portions of the screen. Example:

//—-create a screen some how then do the stuff below
SaveScr 100,100,200,200  //save the portion to be drawn over
rectangle 100,100,150,150,red,red  //draw over an area
RestoreScr 100,100      //restore the original stuff in the area
RestoreScr 10,10        //make it appear as if a portion of the

//screen moved over
SaveScr                 //save the entire screen
ClearScr                //clear it
RestoreScr              //restores the entire screen
RestoreScr 10,10  //makes it appear asf if the entire screen

//moved over and down

WriteScr {ExprS} Saves the screen to a bitmap file on disk. If you do not specify ExprS
the file name will default to”RobotBASICScreen.bmp”. If you do specify ExprS do not
include the extension, the system will automatically append “.bmp” to the string that
results from ExprS.

ReadScr {ExprS} Restores the screen from a bitmap file on disk. If you do not spec-
ify ExprS the file name will default to “RobotBASICScreen.bmp”. If you do specify ExprS
do not include the extension, the system will automatically append “.bmp” to the string
that results from ExprS. So if you have a file “Test.bmp” and you want to read it into the
screen then say:

ReadScr “Test”
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Notice the extension “.bmp” is not given. The interpreter will add this extension auto-
matically, do not include it, if you do you will get an error.

GetXY Var1,Var2 Reads the current pen position on the screen and sets Var1=x and
Var2=y.

GotoXY ExprN1,ExprN2 Sets the pen position to a point on the screen ExprN1=x,
ExprN2=y.

SetColor ExprN1{,ExprN2} Sets the pen color to ExprN1 and the background color
to ExprN2.

GetColor Var1,Var2 Sets Var1= pen color Var2 = background color.

ReadPixel ExprN1,ExprN2,Var Reads the pixel color at the position x=ExprN1,
y=ExprN2 and sets Var to that value (See color codes in Sec. B.7.6). (Also see FloodFill
command below).

SetPixel ExprN1,ExprN2,ExprN3 Sets the color of the pixel at x=ExprN1,
y=ExprN2 to the color ExprN3. (see color codes Sec. B.7.6) (Also see the FloodFill com-
mand below).

LineWidth ExprN Sets the pen width for drawing lines and other shapes.

GetLineWidth Var Sets Var to the current pen width for drawing lines and other
shapes.

LineTo ExprN1,ExprN2{,ExprN3{,ExprN4}} Draws a line from the current pen
position to ExprN1, ExprN2. If ExprN3 is given then the pen width will be tem-
porarily set to ExprN3. If ExprN4 is given then pen color will be temporarily set to
ExprN4.

ExprN3 and ExprN4 will only affect the line drawn, not any subsequent lines or other
drawings. If you desire to specify ExprN4 you must also specify ExprN3.

Line ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6}} Draws a line from
the point ExprN1,ExprN2 to the point ExprN3,ExprN4. If ExprN5 is given then the pen
width will be temporarily set to ExprN5. If ExprN6 is given then pen color will be tem-
porarily set to ExprN6.

ExprN5 and ExprN6 will only affect the line drawn, not any subsequent lines or other
drawings. If you desire to specify ExprN6 you must also specify ExprN5, but if ExprN5
is less than 1 it will be ignored. Also if ExprN6 is less than 0 it will be ignored. If you do
not specify a width and color the current default width and color will be used.

Rectangle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5,ExprN6} Draws a rec-
tangle defined by x1=ExprN1, y1=ExprN2 and x2=ExprN3, y2=ExprN4 filled with
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color given by ExprN6 and bordered with color given by ExprN5. If ExprN6 is not given
then the default background color is used. If ExprN5 is not given then the default pen color
is used but if you want to specify ExprN6 you must also give ExprN5. x1, y1 are coor-
dinates on the screen of the top-left corner, and x2, y2 are of the bottom right corner of
the rectangle.

ERectangle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6}} The
above command (Rectangle) will always draw the rectangle and fill it with the color spec-
ified or the default background color. This means the inside of the rectangle will be erased
if there happens to be any previous drawings there. This command only draws the perime-
ter of the rectangle and does not fill the inside. Thus, any previous drawings inside the
area of the rectangle will still be visible.

The rectangle is defined by X1=ExprN1,ExprN2=Y1  and X2=ExprN3,Y2=ExprN4.
If ExprN5 is given then the pen width will be temporarily set to ExprN5. If ExprN6 is
given then pen color will be temporarily set to ExprN6.

ExprN5 and ExprN6 will only affect the current drawing, not any subsequent draw-
ings. If you desire to specify ExprN6 you must also specify ExprN5, but if ExprN5 is less
than 1 it will be ignored. Also, if ExprN6 is less than 0 it will be ignored. For an exam-
ple see the example given in the Pie command.

Circle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5,ExprN6} Draws a circle/
ellipse inside a rectangle defined as above. If the rectangle is a square then it is a circle,
otherwise it is an ellipse.

Arc ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6{,ExprN7{,ExprN8}}}}
The above command (Circle) will always draw the circle/ellipse and fill it with the color
specified or the default background color. This means the inside of the circle/ellipse will be
erased if there happens to be any previous drawings there. This command only draws the
perimeter of the circle/ellipse and does not fill the inside. Thus, any previous drawings inside
the area of the circle/ellipse will still be visible. Additionally, this command allows you to
draw a fraction of the arc of the circle or ellipse.

The circle/ellipse is defined by the bounding rectangle defined by X1=ExprN1,
Y1=ExprN2 and X2=ExprN3, Y2=ExprN4. If ExprN7 is given then the pen width will
be temporarily set to ExprN7. If ExprN8 is given then pen color will be temporarily set
to ExprN8.

ExprN5 and ExprN6 are angles in radians that specify the start point of the arc and
the length of the arc. The angles are defined counter-clock-wise from the right hand hor-
izontal position (i.e. positive x-axis). If ExprN6 is zero or an even multiple of Pi() (i.e.
0,360,720... degrees) the entire circle/ellipse will be drawn. ExprN5 and 6 default to 0
if not given. ExprN5 defines the angle (in radians) from the positive x-axis (counter-
clockwise) at which to start drawing the arc. ExprN6 defines the length of the arc (angle
inside the arc in radians). To specify angles in degrees use the function DtoR().

ExprN7 and ExprN8 will only affect the current drawing, not any subsequent draw-
ings. If you desire to specify ExprN8 you must also specify ExprN5,6,7, but if ExprN7
is less than 1 it will be ignored. Also if ExprN8 is less than 0 it will be ignored. For an
example see the example given in the Pie command.
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Pie ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6{,ExprN7{,ExprN8}}}}
This command is very similar to the command Arc above. The difference is that radials
from the center of the bounding rectangle to the start and end points of the arc will also
be drawn. Also the inside will be filled with the default background color or the color
ExprN8 if given. This command allows for creating Pie graphs.

The circle/ellipse is defined by the bounding rectangle defined by X1=ExprN1,
Y1=ExprN2 and X2=ExprN3, Y2=ExprN4. If ExprN7 is given then the pen color will
be temporarily set to ExprN7. If ExprN8 is given the pie is filled with the color ExprN8.

ExprN5 and ExprN6 are angles in radians that specify the start point of the arc and
the length of the arc. The angles are defined counter-clock-wise from the right hand hor-
izontal position (i.e. positive x-axis). If ExprN6 is zero or an even multiple of Pi() (i.e.
0,360,720... degrees) the entire circle/ellipse will be drawn. ExprN5 and 6 default to 0
if not given. ExprN5 defines the angle (in radians) from the positive x-axis (counter-
clockwise) at which to start drawing the arc. ExprN6 defines the length of the arc (angle
inside the arc in radians). To specify angles in degrees use the function DtoR().

ExprN7 and ExprN8 will only affect the current drawing, not any subsequent draw-
ings. If you desire to specify ExprN8 you must also specify ExprN5,6,7, but if ExprN7
is less than 0 it will be ignored. Also if ExprN8 is less than 0 it will be ignored. 

Example:

n = 360/16
for i=0 to 15

Pie 100,100,500,500,DtoR(i*n),DtoR(n),i,i
next
Arc 100,100,500,500,0,0,3,blue
ERectangle 100,100,500,500,5,lightgreen

FloodFill ExprN1,ExprN2{,ExprN3{,ExprN4}} Given a coordinate ExprN1,
ExprN2 the interpreter will start filling the area surrounding this coordinate with old color
given by ExprN4 and replacing it with new color given by ExprN3. It will do so as long
as the pixels have the old color, but it will not convert any pixels with a different color from
old color. So if you have a box that has color white surrounded by color blue, doing
FloodFill X,Y,Red,White will fill the box with the new color red, but only the box since
it will not flow into the blue areas. (See ReadPixel and SetPixel commands above.)

ExprN3 and ExprN4 are optional. If ExprN4 is not given then the color of the pixel
at ExprN1, ExprN2 position will be used as the old color. If ExprN3 is not given then
the current pen color will be used as the new color.

DrawShape ExprS,ExprN2,ExprN3{,ExprN4,ExprN5} This command will draw
an image specified by the string in ExprS. ExprN2 and ExprN3 are screen position x, y.
Optional ExprN4 and ExprN5 are to specify a scale factor (pixels) and color corre-
spondingly. If scale is not given then 1 is assumed and if color is not given the default pen
color is used. If you are to specify the color you must specify the scale. If color is a nega-
tive number then the color will be the background color. This is handy in appearing to
erase the image. The data in ExprS indicates how to move (LineTo) from the x, y posi-
tion (see Sec. C.7.6 for more details on the DrawShape command).
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C.7.3 ARRAY COMMANDS

Dim VarA[ExprN{,ExprN...}] This will specify that VarA is an array of the dimen-
sions [ExprN{,ExprN...}] the brackets are required and so is the comma between each
dimension. You can use an array element anywhere as any variable (see Sec. B.7.4). The
Dim statement establishes the maximum value for each dimension and the over all dimen-
sion of the array. The index of the dimension starts at 0 and ends at ExprN-1. ExprN
must result in an integer value, otherwise an error will occur. Each element of the array
can be any of the data types (string, float, or integer).

If you try to access any unassigned element an error will occur. If you try to access out-
side the specified range in the Dim statement an error will occur.

If you have a two-dimensional array Dim N[4,5] then there are 4 rows and 5 columns,
that is, there are 4 rows with 5 elements in each row. If you have Dim N[6,7,8] then there
are 6 rows where each element in the row constitutes a matrix in itself, where those matri-
ces each have 7 rows and 8 columns.

This can go on for as long as you care, but remember that the row count is the first
dimension and the second dimension is a count of elements in each row. Each element
in the row can be a string, integer, float, or another matrix as described above.

Dim XY[2,4,5]
//means that XY is an array of 3D and that the
//first dimension goes from 0 to 1
//second dimension goes from 0 to 3
//third dimension goes from 0 to 4

//assigns element [1,3,2] as given
XY[1,3,2] = sin(pi(2.0/3))+4
print XY[1,3,2]  //prints element [1,3,2]
XY[2,4,5] = 9  //will cause an error outside the range 

Print XY[0,3,1] //will cause an error because [0,3,1]
// was not assigned

Data VarA;Expr{,Expr....} This command creates an array of one dimension named
VarA and puts all the resulting values from the Expr’s into the array. VarA is the array
name, the colon after the name is required to separate the name from the data. The data
is separated by a comma. Expr can result in any value type (string, integer, or float). If you
specify the same array name in two or more Data statements then the data is appended
to the end of the array. 

If you desire to erase the array, so as to start populating it at the first element, use Dim
VarA[0] where VarA is the array name used in the Data statement. If you have previously
dimensioned VarA before issuing the Data statements, then you must use the Dim VarA[0]
before you use the Data statements. If you do not the data will not be loaded into the array.

data test;1,2,”some text”,4.5,sin(3/4.6),length(“test”)
data test;66,44.5,log(3)
print test[7]          //print 44.5
print test[2]          //prints ‘some text’
print test[0]+test[3]  //prints 5.5
dim test[0]   //effectively erases the array data
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data test;”again”,3 //repopulate the array
print test[0]       //prints ‘again’
print test[7] //gives an error since there are not 7

//elements

MCopy VarA1,VarA2 VarA1 must be an existing previously dimensioned array, or
an array created by the Data command above. VarA2 does not have to exist. If it does
not exist then it will be created by the command and will be an exact copy of VarA1, includ-
ing the dimension, and dimensional constraints. If it does exist and has been dimensioned,
then the data in VarA1 will be copied into VarA2 row wise. That is each data element
from VarA1 will be copied into elements of VarA2 until all the elements in the first row
are filled, then it starts with the elements in the next row and so on until VarA2 is filled
or VarA1 runs out of elements.

This command is useful for looking at the data of one array in different row-column
dimensions. For example, the Data command can only create one-dimensional arrays with
all the data in one row. But if you want to load the data into a two-dimensional array then
dimension an array according to the desired dimensions and copy the array created by
the Data command into it.

Data a;1,2,3,4,5,6,7,8,9
Print a[5]  //will print 6
Dim b[3,3]
MCopy a,b
Print b[1,2]  //will print 6

MWrite VarA,ExprS Will write the contents of the array to the file specified in ExprS.
When specifying the file name you can use directory structures, for example,
“C:\RobotBASIC\Programs\MySimulation.sim”.

The directory must exist. The file does not have to exist, but if it does it will be over-
written. Any error in writing to the file will cause an error to issue. The VarA array must
be a valid previously dimensioned array or an array created with the Data command.

MRead VarA,ExprS This will create a new array VarA (if it already exists it will be erased
first) and will populate its elements with the data from the file ExprS. The file must exist
and it must be of the format written previously with the command MWrite (see above).
The array will be dimensioned the same as the matrix that was used to write the file in the
first place. You can find out the dimensions of VarA with the functions MDim(VarA) and
MaxDim(VarA,ExpN) (see Sec. C.8). You will get an error if the file does not exist or if it
is the wrong format. If the file is the correct format but there was an error in reading it
an error will be issued.

MPolygon VarA{,ExprN} This command is used to draw multiple polygons on the
screen with one command rather than use looping and the commands LineTo, GotoXY,
and/or Rectangle. These polygons can be filled with a specified color or the default pen
color. VarA must be a one-dimensional array created with Dim or Data commands. It must
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contain only numbers. If any element in the array contains non-numbers it will ignored
and will not affect the pairing of elements, it would be as if it did not exist.

ExprN is optional. ExprN must result in a number. If it is not an integer it will be made
into one by rounding. The data in VarA is a set of paired x, y coordinates. The command
will execute a LineTo x,y or GotoXY x,y or FloodFill x,y{,ExprN} depending on the
following logic:

• If the x and y value-pair are both positive then a LineTo x,y is executed.
• If the x is negative and y is positive then a GotoXY �x,y is executed.
• If the y is negative and x is positive then a FlooFill x,�y,ExprN is executed. If ExprN

is not given then FloodFill x,�y is executed.(See the FloodFill command above.)
• If both x and y are negative they are both made positive and LineTo is

executed.

If there are not enough pairs then drawing will occur only to the last pair. The array
can contain any number of point pairs. The plotting will occur up to the last pair of points
in the array. For example:

data p;-100,100,200,100,200,200,100,200,100,100,120,-120
data p;-500,100,600,100,600,200,500,200,500,100,520,-120
//---- you can also use MRead to read data from a file
MPolygon p //will draw the above and use default pen

//color to do any filling
MPolygon p,blue //will draw the above and use blue color

//to do any filling

C.7.4 ARRAY MATH COMMANDS

MScale VarA,ExprN This will multiply each element in the array VarA by the result
of the numeric expression ExprN. VarA must exist. Also, all the elements must be numeric.

MConstant VarA,Expr his will fill each element in the array VarA with the result of
the expression Expr. VarA must exist. Expr can be numeric or string.

MDiagonal VarA,Expr This will fill all the diagonal elements in the array VarA with
the result of the expression Expr. VarA must exist. Expr can be numeric or string. If Expr
is numeric then all the other elements will be zero. If Expr is a string then all the other
elements will be blank. VarA must be two-dimensional.

MAdd VarA1,VarA2 This will add elements of VarA1 to VarA2. This is equivalent to
saying VarA2 = VarA2+VarA1. VarA1 and VarA2 must exist and must be of the same
dimension with the same dimensional constraints. If any element is a string and the cor-
responding element to be added is a numeric then the result will be a string concatena-
tion of the string with the numeric converted to a string. If the elements to be added are
both strings then the result is a concatenation. Remember it is VarA2+VarA1. If one ele-
ment is an integer while the other is a float then the result is a float.
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MSub VarA1,VarA2 This will subtract the elements of VarA1 from VarA2. This is
equivalent to saying VarA2 = VarA2�VarA1. VarA1 and VarA2 must exist and must be
of the same dimension and of the same dimensional constraints. If any element is a string
then no operation will take place. If one element is an integer while the other is a float
then the result is a float.

MMultiply VarA1,VarA2,VarA3 This will multiply VarA1 by VarA2 and put the
result in VarA3. This is equivalent to saying VarA3 = VarA1 � VarA2. The order is
important VarA1 � VarA2 is not equal to VarA2 � VarA1. VarA3 does not have
to exist, but if it does it will be erased and recreated. Both VarA1 and VarA2 must be two-
dimensional. The number of Columns of VarA1 must be the same as the number of rows
of VarA2. That is if VarA1 has the dimension [R1,C1] and VarA2 has the dimension
[R2,C2] then multiplication is possible only if C1=R2. The resulting array VarA3 will have
the dimension [R1,C2]. Also, the elements of VarA1 and VarA2 must be numeric.

MInvert VarA1,VarA2,Var This will calculate the inverse of array VarA1 and assign
it to VarA2, and also the determinant of VarA1 will be assigned to Var. This is equivalent
to saying VarA2 = inverse(VarA1) and Var = det(VarA1). VarA2 does not have to exist,
but if it does it will be erased and recreated. VarA1 must be two-dimensional and a square
matrix. That is, the number of rows must equal the number of columns. All elements in
VarA1 must be numeric. If VarA1 is not invertible then Var = 0 and elements of VarA2
will be all zeros.

MDeterminant VarA1,Var This will calculate the determinant of array VarA1 and
put it in Var. This is equivalent to saying Var = det(VarA1). VarA1 must be two-dimensional
and a square matrix. That is, the number of rows must equal the number of columns. All
elements in VarA1 must be numeric.

MTranspose VarA1,VarA2 This will transpose VarA1 and put the result in VarA2.
VarA2 does not have to exist, but if it does it will be erased and recreated. VarA1 must
be two-dimensional. VarA2 is the transpose of VarA1, that is, VarA2[i,j] = VarA1[j,i].

MRegression VarA,Var1,Var2 This will perform a regression analysis (line fit) on
the data in VarA. VarA must be two-dimensional and all data must be numeric. The first
row contains the x values, and the second row contains the y values. There must be a
y value for each x value. The line formula is y=mx+b where m is the slope and b the y-axis
intercept. Var1 will be assigned the slope. That is, Var1 = m. Var2 will be assigned the
intercept. That is, Var2 = b.

MSort VarA1{,ExprN} This will sort the array VarA. VarA can be one- or two-
dimensional. If VarA is two-dimensional then sorting will be done on the data in the row
specified by ExprN. If ExprN is not specified then it will be done on the first row (row 0).
(Remember row and column numbering start with 0.) The data in the other rows will be
moved around to maintain the same association between the rows. That is, the columns
are moved to fit in the correct sort order depending on the value in the row specified in
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ExprN (or fisrt row if ExprN is not given). The elements in a row must be the same data
type, but the elements in a column can be of different data types.

This can be helpful in creating databases, where the elements in a column are the dif-
ferent fields of the database and each column is a record.

data a;”Sam”,”Ted”,”Pam”,”Tom”  //names
data a;45   ,55   ,20   ,10      //ages
data a;30045,30067,30045,20022   //zip codes
dim b[3,4]   //make a 2-d array to hold data
mcopy a,b //copy the data into it
msort b //sort data by name
//a subroutine to display the data in a good format
gosub print_data
msort b,2    //sort data by zipcode
gosub print_data 
msort b,1    //sort data by age
gosub print_data
msort b,0  //sort data by name again
gosub print_data 

C.7.5 OTHER COMMANDS

DebugOn

DebugOff

Debug {Expr1,Expr2;Expr3...} Outputs the values of Expr... to the Debugging Screen.
This only happens if the DebugOn command has been issued any prior time, or the Debug
On button has been pressed on the Terminal Screen. The DebugOff command will
turn debugging off again.

The Debug Screen will pause program execution and display the result of Expr... and
wait for you to press the Step button to execute the rest of the program.

If Debug{} is in a loop it will be executed every time the command line is encountered.
To stop any further execution use the Debug Off button on the Debug Screen. This is the
same as issuing a DebugOff command, or you can close the Debug window using the close
window icon on the top-right corner. This is the same as pressing the Debug Off button.

To remain in debug mode press the Step button. To eliminate any further program paus-
ing and debugging press the Debug Off button, close the debug window or issue a
DebugOff command within the program code. To turn on further debugging you must
issue a DebugOn command again within the program flow, or press the Debug On 
button on the bottom-right side of the Terminal Screen. This button turns debugging on
at any time during the program flow as if a DebugOn command was executed. Subsequently
any Debug command will be executed. This can be useful to turn the debugging on at a
certain stage in the program rather than having to step through until you get to a point
of interest.

If you keep the Debug{} lines in the program but do not wish them executed next time
you run the program, make sure that the command DebugOff is issued before any
Debug{} is issued or that any prior DebugOn commands are commented out.

{Expr1,Expr2;Expr3...} are printed as described in the Print command above.
This combination of commands can help you step the program and view the values of

variables while doing so. The Clear button on the Debug Screen clears any previous printed
debug data. Every time you run the program from the start the Debug Screen is cleared.
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You can swap windows back and forth between the Editor/Terminal/Debug windows.

Delay {ExprN} Causes a delay in milliseconds that is, 1000 = 1 second. If ExprN is
not given 1000 will be assumed that is, 1 second.

MicroDelay {ExprN} Causes a delay in steps of 15 microseconds. So, for example,
to get a delay of 1 second you would issue the statement MicroDelay (1.0e6)/15.
Notice that you can use a floating-point number. Since the ticks are in intervals of 15
microseconds a value of 2 will make a delay of 30 microseconds. ExprN is optional and
if it is not given or is less than 1 then it is assumed to be 1. This means that the minimum
delay is 15 microseconds. 

Swap Var1,Var2 Swaps the values of Var1 and Var2 the variables can be of different types.

GetError VarN1{,VarS{,VarN2{,VarN3}}} Will fill the variable VarN with the last
error number (-1 if no error), VarS will be filled with the description of the error (blank if
no error), VarN2 will be assigned the line number where the error occurred (�1 if no error)
and VarN3 will be assigned the character number in the line where the error occurred
(�1 if no error). Issuing this command will retrieve the details of the last error to have
occurred and then will clear the data. If an error occurs and you do not issue this com-
mand then another error occurs, issuing this command will get the details of the last error,
the previous details will not be retrievable. If an error occurs and you have not issued an
OnError Label (see Sec. C.6.10) statement then the error will halt the program and you
won’t be able to use this command.

C.7.6 DRAWSHAPE DETAILS

DrawShape ExprS,ExprN2,ExprN3{,ExprN4,ExprN5}

• This command will draw an image specified by the string in ExprS.
• ExprN2 and ExprN3 are screen position x, y. Optional ExprN4 and ExprN5 are to

specify a scale factor (pixels) and color, correspondingly.
• If scale is not given then 1 is assumed and if color is not given the default pen color is

used. If you are to specify the color you must specify the scale.
• If color is a negative number then the color will be the background color. This is handy

in appearing to erase the image.
• The data in ExprS indicates how to move (LineTo) from the x, y position. ExprS con-

tains a list of letters “UDLRQAWS” or “udlrqaws” and “�0123456789”. Where U=up,
D=down, L=left, R=right, Q=diagonal to left and up, W=diagonal to right and up,
A=diagonal to left and down, and S=diagonal to right and down. If lowercase letters
are used then drawing and moving will take place. If uppercase letters are used then
only moving will take place.

• Starting at the coordinate (ExprN2,ExprN3) the interpreter will draw a line to the next
pixel (or ExprN4 pixels) up/down, and so on if the letter used is lower case. If it is upper
case it will move to the position instead of drawing a line, and the next letter will cause
drawing or moving from that new position. 
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• The pen color will be according to ExprN5 or as specified in the next paragraph. If a
number, for example, 4 or 12 is given, it will be taken to indicate a change of color from
the specified color in ExprN5. The default pen color is used if no ExprN is specified.
The change will take effect until either another number is specified or -. If - is specified
then the color will revert back to ExprN5 or default color. This action will only take place
if ExprN5 is not negative (see above).

• When you specify numbers refer to the color codes in Sec. B.7.6. If you specify a number
greater than the last color it will revert to the last color. Any other characters will be
ignored. This command can be emulated with a combination of GotoXY and LineTo
combined with SetColor.

C.8 Functions
See Sec. B.7.7 for details on how functions fit within the RoborBASIC language. Here
the functions are grouped by functionality. For an alphabetic list see the end of this
Sec. C.11.

Functions are not case sensitive. So sin(Theta), SIN(Theta), and sIn(Theta)
a re all the same function.

C.8.1 TRIGONOMETRIC FUNCTIONS

Pi({ExprN}) Returns the value of pie (p) (i.e., 3.141592654) multiplied by the result
of ExprN. If ExprN is not given then it is assumed to be 1.

Sin(ExprN) Returns the sine of an angle. ExprN is the value of the angle in radians.
If you want to specify degrees then use the conversion Sin(ExprN*Pi()/180).

Cos(ExprN) Returns the cosine of an angle. ExprN is the value of the angle in radi-
ans. If you want to specify degrees then use the conversion Cos(ExprN*Pi()/180).

Tan(ExprN) Returns the tangent of an angle. ExprN is the value of the angle in radi-
ans. If you want to specify degrees then use the conversion Tan(ExprN*Pi()/180). This
function can cause an error if the angle is +/�Pi()/2 (i.e., +/�90�) since the result is
infinity. If the angle is slightly more or less than 90� the result is valid but is an extremely
large number.

ASin(ExprN) Returns the angle in radians whose sine is ExprN. If you want to get
degrees then use the conversion 180*ASin(ExprN)/Pi(). This is the inverse of Sin().

ACos(ExprN) Returns the angle in radians whose cosine is ExprN. If you want to get
degrees then use the conversion 180*ACos(ExprN)/Pi(). This is the inverse of Cos().

ATan(ExprN) Returns the angle in radians whose tangent is ExprN. If you want to get
degrees then use the conversion 180*ATan(ExprN)/Pi(). This is the inverse of Tan().



362 APPENDICES

ATan2(ExprN1,ExprN2) Returns an angle in radians, given the x and y lengths.
ExprN1 = x, ExprN2 = y. This gives the angle 0 to p and 0 to –p . Negative angles are
clockwise from the x axis, and positive angles are counter clockwise from the x axis. So
ATan2(1,1) will give 0.785398 which is 45�, while ATan2(1, –1) gives –0.78539816
which is –45�. If x=0 and y=0 the result will be 0.0.

C.8.2 CARTESIAN TO POLAR FUNCTIONS

PolarR(ExprN1,ExprN2) Returns the polar radius from the x, y coordinates
(x=ExprN1, y=ExprN2) both must result in numbers (float or integer), otherwise an error
will occur.

PolarA(ExprN1,ExprN2) Returns the polar angle from the x, y coordinates. This is
effectively the same as Atan2() above. The angle returned is in radians. ExprN1 = x,
ExprN2 = y. Both ExprN1 and ExpN2 must be numeric (integer, or float) or an error will
occur.

C.8.3 POLAR TO CARTESIAN FUNCTIONS

CartX(ExprN1,ExprN2) This returns the Cartesian x coordinate given the polar R,
Theta. ExprN1=R, ExprN2=Theta (in radians). Both ExprN1 and ExpN2 must be
numeric (integer, or float) or an error will occur. This is effectively the inverse of the
PolarR() and PolarA() above.

CartY(ExprN1,ExprN2) This returns the Cartesian y coordinate given the polar R,
Theta. ExprN1=R, ExprN2=Theta (in radians). Both ExprN1 and ExpN2 must be
numeric (integer, or float) or an error will occur. This is effectively the inverse of the
PolarR() and PolarA() above.

C.8.4 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

NLog(ExprN) Returns the log to base e (e=2.178281828) of ExprN. If ExprN is 0 or
negative an error will occur. 

Log(ExprN) Returns the log to base 10 of ExprN. If ExprN is 0 or negative an error
will occur.

Exp(ExprN) Retruns e raised to the power ExprN (e=2.178281828).

Exp10(ExprN) Returns 10 raised to the power ExprN.

SqRt(ExprN) Returns the square root of ExprN. If ExprN is negative then an error
will occur. 

CbRt(ExprN) Returns the cube root of ExprN.
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C.8.5 SIGN CONVERSION FUNCTIONS

Abs(ExprN) Returns the absolute value of ExprN. Returns ExprN as a positive number.

Sign(ExprN) Returns a �1 if ExprN is negative, 1 if positive, and 0 if zero.

C.8.6 FLOAT TO INTEGER CONVERSION FUNCTIONS

Round(ExprN) Rounds the float ExprN to an integer Round(3.4) => 3; Round(3.5) => 4;
Round(3.6 )=> 4.

RoundUp(ExprN) Rounds the float ExprN to an integer RoundUp(3.4) => 4;
RoundUp(3.5) => 4; RoundUp(3.6) => 4.

RoundDn(ExprN) Rounds the float ExprN to an integer RoundDn(3.4) => 3;
RoundDn(3.5) => 3; RoundDn(3.6) => 3.

Frac(ExprN) Returns the decimal fraction of the float ExprN. Frac(12.3456) =>
0.3456.

Mod(ExprN1,ExprN2) Returns the remainder of dividing ExprN1 by ExprN2. If
ExprN1 or ExprN2 is not an integer it will be truncated [RoundDn()]. Mod(9,4) => 1.

C.8.7 NUMBER AND STRING CONVERSION FUNCTIONS

HexToInt(Expr) Returns the resulting integer number that is the equivalent to the hexa-
decimal value given as a string in ExprS. If ExprS is not a valid hexadecimal string or inte-
ger number then 0 will be returned. Examples:

print hextoint(10)      //prints 10
print hextoint(“10”)    //prints 10
print hextoint(“0x10”)  //prints 16
print hextoint(“tt”)    //prints 0

Hex(ExprN) Returns a string that contains the hexadecimal representation of the inte-
ger resulting from ExprN. If ExprN is not numeric an error is issued. If ExprN is not inte-
ger it will be converted to integer.

Bin(ExprN) Returns a string that contains the binary representation of the integer
resulting from ExprN. If ExprN is not numeric an error is issued. If ExprN is not integer
it will be converted to integer. The number of bits will depend on the value of ExprN. There
will be no leading zeros. So Bin(7) will return 111 while Bin(3) will return 11 and Bin(4)
gives 100. If the number must be a fixed number of bits with leading zeros then use the
sRepeat() and Length() functions below. For example, to return a 10-bit binary of
a number with leading zeros do sRepeat(“0”,10-length(bin(5))+bin(5) =>
0000000101.
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IsNumber(Expr) If Expr is a string that can be converted to a numeric or is a numeric
returns 1, otherwise returns 0.

IsString(Expr) If Expr is a string (regardless of whether it can be converted to a
number or not) returns 1, otherwise returns 0.

ToNumber(Expr) Returns the resulting string expression as a number if possible, oth-
erwise it will return the string unconverted. If Expr results in a number then that number
is returned.

ToString(Expr) If Expr results in a number it converts the number to a string and
returns the value as a string. If Expr results in a string then the string is returned.

Ascii(ExprS) Returns the ASCII code of the first character in ExprS.

Char(ExprN) Returns a string of one character which is the character whose ASCII code
is ExprN.

Format(ExprN,ExprS) Returns a string containing ExprN formatted according to
ExprS. (See Sec. C.8.14)

C.8.8 STRING MANIPULATION FUNCTIONS

Length(ExprS) Returns the length of the resulting string from ExprS.

Trim(ExprS) Returns ExprS without leading or trailing spaces.

LeftTrim(ExprS) Returns ExprS without leading space.

RightTrim(ExprS) Returns ExprS without trailing spaces.

NoSpaces(Exprs) Returns ExprS without any spaces, even within the string not just
leading and trailing spaces.

Substring(ExprS,ExprN1,ExprN2) Returns a string consisting of the characters
from ExprS starting at character ExprN1 up to and including the ExprN2 character. If
ExprN1<1 then first character is assumed. If ExprN> the length of the string then the
last character is assumed. If ExprN<1 or ExprN2> the length of the string then the last
character is assumed.

Left(ExprS,ExprN) Returns a string containing ExprN characters from ExprS start-
ing from first character. This is equivalent to Substring(ExprS,1,ExprN). If ExprN< 1
then 1 is assumed. If ExprN > the length of the string then the length of the string is
assumed.
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Right(ExprS,ExprN) Returns a string containing ExprN characters from ExprS
ending with the last character. This is equivalent to Substring(ExprS,
Length(ExprS) + 1 � ExprN, ExprN). If ExprN < 1 then 1 is assumed. If ExprN > the
length of the string then the length of the string is assumed.

Extract(ExprS1,ExprS2,ExprN) This will return a string that is the ExprNth part
of ExprS1 separated by the separator ExprS2. ExprS1 is a string with data separated
by characters specified in ExprS2. The Extract() function will return the data part
that is the ExprNth part. If ExprN is greater than the number of parts Extract() will
return the last part. If ExprS1 does not contain the separator characters specified in
ExprS2 then ExprS1 will be returned. If ExprN is not a number an error will be given.
If it is not an integer it will be made into an integer. If it is less than 1 then it is con-
verted to 1.

a = “test,5,2.4”
b = “,”
print Extract(a,b,2)    //will print 5
print Extract(a,b,3)    //will print 2.4
print Extract(a,b,6)    //will print 2.4
b = “;”
print Extract(a,b,1)    //will print test,5,2.4

InString(ExprS1,ExprS2) Returns the position of the first occurrence of ExprS2
within ExprS1 if ExprS2 does not occur inside ExprS1 then 0 is returned. InString(“test-
ing”,”ting”) => 4.

Upper(ExprS) Returns ExprS with all characters converted to upper case.

Lower(ExprS) Returns ExprS with all characters converted to lower case.

Spaces(ExprN) Returns a string of space characters ExprN long. If ExprN <0 then
0 is assumed.

SRepeat(ExprS,ExprN) Returns a string with ExprS repeated ExprN times. If ExprN
<0 then 0 is assumed.

C.8.9 TIME AND DATE FUNCTIONS

Time(ExprN) Returns a string that has the time in the format “hh:mm:ss” (24 hour
format) unless ExprN=0, then it returns “AM hh:mm:ss” or “PM hh:mm:ss” (12 hour
format).

Date(ExprN) Returns a string “yyyy/mm/dd” unless ExprN=0 then returns
“yyyy/mm/dd Day:Month” where Day is the day name and Month is the month name.

Timer() Returns a floating-point number that represents the time in milliseconds. You
can save this value and then after the elapse of some time subtract the stored value from
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the new value to get the amount of time elapsed in millisecond (i.e., 1000 = 1 second).
For Example:

StartTime = Timer()
while Timer() - StartTime < 5000
// do stuff here that can be accomplished within 5 seconds

wend
print “done”

C.8.10 PROBABILITY FUNCTIONS

Random(ExprN) Returns a value between 0 and ExprN � 1 randomly. If ExprN is not
an integer it will be rounded down.

Factorial(ExprN) Returns the factorial of ExprN. ExprN must be a number. If it is
a float it will be converted to an integer. ExprN cannot be negative. Mathematically
Factorial(n) = n!.

nPr(ExprN1,ExprN2) Returns the permutation of ExprN1 and ExprN2. Both must
be numeric and if not integer will be converted to integer. Neither can be negative. Also
ExprN2 must be less than or equal to ExprN1. The formula is nPr(n,r) = n!/(n � r)!.

nCr(ExprN1,ExprN2) Returns the combination of ExprN1 and ExprN2. Both must be
numeric and if not integer, will be converted to integer. Neither can be negative. Also ExprN2
must be less than or equal to ExprN1. The formula is nCr(n,r) = n! /(r! *(n � r)! ).

C.8.11 STATISTICAL FUNCTIONS

Sum(VarA) Returns the sum of all the elements of the array VarA. VarA must be one-
or two-dimensional and contain only numerical data. If VarA is two-dimensional then the
second row must contain the frequencies for the data in the first row. If there is no cor-
responding frequency for any data value in the first row then it will be considered 1.

Average(VarA) Returns the average of the elements of the array VarA. VarA must be
one-or two-dimensional and contain only numeric data. If VarA is two-dimensional then
the second row must contain the frequencies for the data in the first row. If there is no
corresponding frequency for any data value in the first row then it will be considered 1.

Median(VarA) Returns the median value of the elements of the array VarA. VarA
must be one-dimensional and contain only numeric data.

Max(VarA) Returns the largest element of the array VarA. VarA must be one- or two-
dimensional and contain only numeric data. If VarA is two-dimensional then the second
row will be ignored, as it has no bearing on the determination of the maximum value.

Min(VarA) Returns the smallest element of the array VarA. VarA must be one- or
two-dimensional and contain only numeric data. If VarA is two-dimensional then the
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second row will be ignored, as it has no bearing on the determination of the minimum
value.

Range(VarA) Returns the difference between the maximum and minimum elements of
the array VarA. VarA must be one- or two-dimensional and contain only numeric data. If
VarA is two-dimensional then the second row will be ignored, as it has no bearing on the
determination of the range value.

Count(VarA) Returns the number of elements in the array VarA. VarA must be one-
or two-dimensional and contain only numeric data. If VarA is two-dimensional then the
first row will be ignored, as it has no bearing on the determination of the count. The
count will be the sum of all the frequencies in the second row. If there are elements in
the first row without a corresponding frequency then the frequency will be considered
to be 1.

Variance(VarA) Returns the variance of the elements of the array VarA. VarA must
be one- or two-dimensional and contain only numeric data. If VarA is two-dimensional then
the second row must contain the frequencies for the data in the first row. If there is no
corresponding frequency for any element in the first row then it is considered 1.

StdDev(VarA) Returns the standard deviation of the elements of the array VarA. VarA
must be one- or two-dimensional and contain only numeric data. If VarA is two-dimensional
then the second row must contain the frequencies of the elements in the first row. If there
is no corresponding frequency for any element in the first row then it is considered 1.

CorrCoef(VarA) Returns the value of the correlation coefficient for the data in array
VarA. VarA must be two-dimensional. The first row contains the X values, and the second
row contains the Y values. There must be a corresponding Y value for each X value and
all data must be numerical.

C.8.12 ARRAY FUNCTIONS

MDim(VarA) Returns the dimension of the array VarA. If VarA does not exist an error
will occur. The dimension of the array starts at 1. For example if an array MyData has
been created with the statement Dim MyData[4,5,6] then MDim(MyData) = 3.

This command can be useful if you read an array from a file with the MRead command
(see above). The array read from a file will have the dimensions of the array that was used
to write the file. It may be unknown to you as a programmer that this function and the
MaxDim function can be used to determine the details of the matrix.

MaxDim(VarA,ExprN) Returns the limit of the ExprNth dimension. ExprN must be
an integer.

This command can be useful if you read an array from a file with the MRead command
(see the commands section). The array read from a file will have the dimensions of the
array that was used to write the file. It may be unknown to you as a programmer and thus
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this function can be used with the MDim function to find out the details of the matrix. The
dimension constraint has a minimum value of 1.

dim MyData[4,5,9]
gosub populate_mydata
mwrite MyData,”Test.Txt”
//later on in any program you read the data from a file
Mread NewData,”test.Txt”
print MDim(NewData)       //=== prints 3
for i = 1 to MDim(NewData)

print MaxDim(NewData,i)  // will print 4 then 5 then 9
next
//===print out all the data elements
for i = 0 to MaxDim(NewData,1)-1

For j = 0 to MaxDim(NewData,2)-1
for k=0 to MaxDim(NewData,3)-1

print NewData[i,j,k]
next

next
next

MType(VarA[ExprN{,ExprN2,...}]) This function is used to find the type of an array
element. You specify the array element in the normal way as described in the description
for Dim or Data in the commands section. The returned values are:

102 = Ascii(“f”) → floating-point number
105 = Ascii(“i”) → integer number
115 = Ascii(“s”) → string
0 → no value, that is, has not been assigned a value

The values above are also defined in the constants section (Sec. B.7.6).

Float   = floating-point number
Integer = integer number
String  = string
Novalue = not a defined element

This function can be useful in iterating through arrays where you may need to deter-
mine if an element is a valid element before using it. If you try to use an invalid array ele-
ment an error will occur. This function can be used to prevent this.

MsgBox(VarA) Shows a dialog box with text as specified in the one-dimensional array
VarA. The dialog box has two buttons (OK and Cancel). The user can terminate the box
by pressing either button. The value returned by the function is 1 (true) if the OK button
(or ENTER) was used to close the box, or 0 (false) if the Cancel button (or ESC) was used.
The dialog box can also be closed using the Windows methods and the returned value will
be 0 (false).

The array VarA has to be a one-dimensional array. Each element will be displayed
in the text on a line by itself. If the element is numeric it will be converted to string. If
you need to have blank lines use a null string (“”). The first element to not have an
assigned value will be the end of the text. Use the Data command to create the array



COMMANDS, FUNCTIONS, AND OTHER DETAILS 369

(or Dim). The first element in the array will be used as a title (on the border
frame of the box) to the diaalog; it will not show inside the box with the res t
of the text.

The box will be centered on the screen and will be as wide as needed to display the
longest line of text, but will not be wider than the screen. If the box is narrower than any
line the line will wrap around. Also there is a scroll bar to scroll the text in the vertical direc-
tion. See the Commands help page for more user interaction commands Also see the
TextBox() and ErrMsg() functions in the Functions Part II help page.

Example:

Data msg;”this is a test message box.”,””
Data msg;”the next lines are numerical data displayed as text”
Data msg;-1,3,5.2,6.1e12
Data msg;””,”this is the end.”
n = MsgBox(msg)
if n 

print “OK”
else

print “Cancel”
endif

C.8.13 OTHER FUNCTIONS

Within(ExprN1,ExptN2,ExprN3) Checks to see if ExprN1 is within the range
ExprN2 to ExprN3 inclusive. All the numbers can be floats or integers. If ExprN2 is greater
than ExprN3 they are swapped to do the checking. The function returns 1 (true) if ExprN1
>= ExprN2 AND ExprN1 <= ExprN3 otherwise it returns 0 (false). The swapping is inter-
nal and does not affect the parameters.

Evaluate(ExprS) ExprS is a string that contains a valid expression (see Sec. B.7 for
definition of expressions). Depending on the context you can use variables. But these must
be existing variables for the evaluator to be able to evaluate the expression correctly. This
can be useful when expressions are defined at runtime instead of design time. For exam-
ple say you are writing a function plotter. Further, you want the user to define the func-
tion to be plotted at runtime. The user would enter a string in response to an Input
command, for example, sin(x). The programmer can then loop through all values in the
desired range of x and evaluate the expression given by the user as y = Evaluate(ExprS)
where ExprS was given by the user as f(x).

Input “Enter f(x)”,fx
for x = 0 to 10

y = Evaluate(fx)
print y

next
End

If an error is encountered while evaluating the function given by the user an error mes-
sage is displayed indicating the error, and Evaluate will return the ExprS as it was,
that is, if ExprS is not a valid expression the Evaluate(ExprS) function will display an error
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message and return the original input without evaluation. This allows the user to check
if the return result is still the same as the input then execute any error handling within
the program. The error message given by the interpreter is meaningful in that it indi-
cates the type of error, but the line number will always be 0 because ExprS is just one
line any way.

KeyDown(ExprN) The commands WaitKey, GetKey and GetKeyE allow you to
obtain the code for the last key pressed. However, it may become necessary to test if a
certain combinations of keys are pressed. Say you want to fire retrorockets horizontally
and vertically and allow both at the same time. If you use the above commands the pro-
gram will only be able to detect the last key pressed and thus if the user presses both the
Up and Left Arrow keys together the commands will only report the code of the last key
pressed. Also see the Constants help page in the IDE for handy constants that represent
various key codes.

Using this function you can interrogate each key separately to see if it is pressed down
or not. There are 255 keys on the keyboard and you can find out the state of each sep-
arately using this function. For instance, if you want to find out if the up arrow key is pressed
and also at the same time the left arrow key then you would have a statement like

if KeyDown(kc_LArrow) && KeyDown(kc_RArrow) then GoSub DoSomething

Or you can use the numbers directly

if KeyDown(37) && KeyDown(38) then GoSub DoSomething

The function returns a non-zero number if the key is pressed and zero if it is not. ExprN
is an integer value representing the code of the key you wish to query. The codes of the
keys can be determined as described in the User Interface Commands help page under
the command GetKeyE. There is a program segment given there that enables you to deter-
mine the code for any key on the keyboard. Most of the alphanumeric keys have a code
that is the ASCII code of the UpperCase letter of the key. The shift, Control and Alt keys
have the values 16, 17, and 18 respectively. So for example if you wish to find out if
Ctrl+F2 are pressed simultaneously you would have:

if KeyDown(kc_Ctrl) && KeyDown(kc_F2) then GoSub DoSomething

The Function keys have the numbers 112 to 123 (F1 to F12).  Remember the key
code is specific for each key even if the key has multiple characters printed on it, it will
have one code. So the 9key will have the code 57 which is actually the ASCII code for
the numeral 9. The Left-Up-Right-Down arrow keys have the codes 37 to 40 in order (see
the Constants help page in the IDE). You can also use this function to read the condition
of the mouse buttons as if they were keyboard keys. See the Constants help page for their
codes.

The function can be useful in gaming where a response to more than one key pressed
together may be necessary. Also refer to the commands GetKey, and GetKeyE for a dis-
cussion on how to handle the speed of response when you do not wish to detect one press
as multiple presses.
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VType(Var) This function is used to find the type of a variable. You specify the variable
name. The returned values are:

102 = Ascii(“f”) → floating-point number
105 = Ascii(“i”) → integer number
115 = Ascii(“s”) → string
0 → no value, that is, has not been assigned a value

The values above are also defined in the constants section (Sec. B.7.6)

Float = floating point number
Integer = integer number
String  = string
Novalue = not a defined variable

This function can be useful to determine the type of a variable or if it is an unassigned
variable. You can check if a variable is valid before it is used. If you try to use an unas-
signed variable an error will occur. This function can be used to prevent this. Also see
IsString(), IsNumber(), ToString(), ToNumber(), and so on.

C.8.14 FORMATTING CODES AND LOGIC

Specifier Represents

0 Digit place holder. If the value being formatted has a digit in the position where
the “0” appears in the format string, then that digit is copied to the output
string. Otherwise, a “0” is displayed in that position in the output string.

# Digit placeholder. If the value being formatted has a digit in the position where
the “#” appears in the format string, then that digit is copied to the output
string. Otherwise, nothing is stored in that position in the output string.

. Decimal point. The first “.” character in the format string determines the location
of the decimal separator in the formatted value; any additional “.” characters
are ignored. The actual character used as the decimal separator in the output
string is determined by the DecimalSeparator global variable. The default value
of decimal separator is specified in the Number Format of the International
section in the Windows Control Panel.

, Thousand separator. If the format string contains one or more “,” characters, the
output will have thousand separators inserted between each group of three
digits to the left of the decimal point. The placement and number of “,”
characters in the format string does not affect the output, except to indicate that
thousand separators are wanted. The actual character used as the thousand
separator in the output is determined by the ThousandSeparator global
variable. The default value of ThousandSeparator is specified in the Number
Format of the International section in the Windows Control Panel.
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C.9 The Robot Simulator Commands 
and Functions
The robot simulator is a set of commands and functions that allow for easy programming
of a robot to move around a simulated environment. The environment is drawn on the screen
using the drawing commands and functions (see Sec. C.7). The robot is then located in the
environment and is made to programmatically move, turn, and sense around the screen.

C.9.1 GENERAL INFORMATION

The Robot comes with sensors to feel around, look for objects, and sense for lines on the
ground. The view on the screen is as if you are looking at the robot and the environment

Specifier Represents

E+ Scientific notation. If any of the strings “E+,” “E–,” “e+,” or “e–” are contained
in the format string, the number is formatted using scientific notation. A group of
up to four “0” characters can immediately follow the “E+,” “E–,” “e+,” or “e–”
to determine the minimum number of digits in the exponent. The “E+” and “e+”
formats cause a plus sign to be output for positive exponents and a minus sign
to be output for negative exponents. The “E–” and “e–” formats output a sign
character only for negative exponents.

‘xx’/”xx” Characters enclosed in single or double quotes are output asis, and do not
affect formatting.

; Separates sections for positive, negative, and zero numbers in the format string.

Notes: The locations of the leftmost “0” before the decimal point in the format string
and the rightmost “0” after the decimal point in the format string determine the
range of digits that are always present in the output string.
The number being formatted is always rounded to as many decimal places as
there are digit placeholders (“0” or “#”) to the right of the decimal point. If the
format string contains no decimal point, the value being formatted is rounded to
the nearest whole number.
If the number being formatted has more digits to the left of the decimal
separator than there are digit placeholders to the left of the “.” character in the
format string, the extra digits are displayed before the first digit placeholder.
To allow different formats for positive, negative, and zero values, the format
string can contain between one and three sections separated by semicolons.

One section: The format string applies to all values.
Two sections: The first section applies to positive values and zeros, and

the second section applies to negative values.
Three sections: The first section applies to positive values, the second

applies to negative values, and the third applies to zeros.
If the section for negative values or the section for zero values is empty, that is if
there is nothing between the semicolons that delimit the section, the section for
positive values is used instead.
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from above. Objects drawn with LineTo, Rectangle, Circle and other commands
will have colors and can be considered as furniture or other objects and obstacles.
Additionally, you can draw lines on the floor and have the robot sense for them and follow
them with the correct combination of commands.

To use the robot you must first rLocate it on the screen. Make sure the environment-
drawing commands are done first. Once the robot is located you can issue commands to
rForward and rTurn it. Also, the robot can rSense, rLook, and/or rFeel around
the environment to avoid objects.

Since the environment is two-dimensional, you must specify any colors to be consid-
ered invisible to the robot and therefore nonobstacles. Any color on the screen that is not
in the list of invisible colors will be considered an obstacle when encountered by the robot
while moving around (except for the floor color). If you change the color of the floor, you
must do so before locating the robot and then locate the robot on the new floor (see
rFloorColor). You specify invisible colors with the rInvisible command.

The robot cannot be located or moved off the screen. The screen boundaries are the
walls of a room. The robot will not move forward into an object. Any attempt to do so
will cause an error. No sensor commands can sense beyond the walls.

The robot has a battery that discharges upon using the commands to move and sense.
Moving depletes more charge than sensing. The battery level can be checked and can be
recharged. The robot will refuse to move and will return nonsense values from the sen-
sors if the battery is depleted. The default is to ignore the battery charge level but you can
use a command to make the robot heed the charge level.

Throughout the next two sections there will be reference to the following items:

• ExprN implies that a numeric resulting expression is required.
• {Expr} or {Var} implies that it is optional and {Expr...} means many can be given.
• Var implies that a variable name must be given.
• If a Var is expected in any of the commands, then if Var exists it will be replaced

with the result otherwise it will be created and assigned the result.

The robot simulator commands and functions are not case sensitive, so
rLocate, RLOCATE, and rlocate a re all the same.

C.9.2 SIMULATOR COMMANDS

In the following list the commands are arranged in order of functionality rather than alpha-
betically. See later for an alphabetic order.

*rLocate ExprN1,ExprN2,{ExprN3,{ExprN4, {ExprN5}}} Creates robot of
specified radius (ExprN4) and color (ExprN5) at specified position (ExprN1,ExprN2) and
heading (ExprN3).

NOTE: Commands with a * have additional functionality are explained in App. D.
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If you need to specify ExprN4, you must also specify ExprN3 and so on. ExprN3/4/5
are optional. The heading defaults to 0 (north), size defaults to 20 pixels and color defaults
to blue. The size is limited to between 5 and 50 pixels. The size value is the radius of the
robot so a radius of 20 means a diameter of 40.

This command must be executed before any other robot functions or commands. It
is the command that creates the robot, places it on the ground and switches it on. If
you issue any commands/functions before this command an error will be issued and
the program will halt.

The size of the robot should be considered in relation to the screen size. The screen is
800 � 600 pixels. So if you consider a room of 20 ft then each pixel is 1/3 in. So a robot
of 20 pixels radius is 12 in in diameter. Which is a reasonable robot size, but you can spec-
ify a smaller or larger size.

If you locate the robot over a color other than the floor color, or if you change the floor
color from the default screen color you must issue an rFloorColor command (see
below) before you attempt any movement of the robot.

rInvisible ExprN {,ExprN...} This command sets the list of colors that will not be
considered as objects when encountered by the robot while moving and also by many of
the sensors as specified. You must pass at least one color and a maximum of 15 colors is
allowed. The colors are according to the colors specified in the Constants help page
within the IDE. 

The first color in the list you specify is special in that it will be used as a default color
for the rPen command and rSense() function if you do not specify a color when you
issue the command or call the function (see below). The second color in the list is also spe-
cial in that it will be the default color if you do not specify a color for the rDFeel() and
rDBumper() functions.

Commands or functions that look or sense for colors will not detect the colors on the
invisible colors list unless otherwise stated.

rFloorColor ExprN Sets the color that will be considered as the floor and will not
affect sensors or the rForward command.

*rForward ExprN The robot moves in the direction it is heading ExprN pixels for-
ward if ExprN is positive, or backwards if ExprN is negative. This command will cause
an error if the robot tries to move into objects of any color not listed in the list of invisi-
ble colors (see the rInvisible command).

This command will cause an error if the battery is depleted and an IgnoreCharge
False has been issued.

*rTurn ExprN This will cause the robot to turn ExprN degrees right (clockwise) if
ExprN is positive and left (counterclockwise) if ExprN is negative.

This command will cause an error if the battery is depleted and an IgnoreCharge False
has been issued.

rHeading ExprN Sets the robot heading to ExprN (0–359). Zero is facing up on the
screen (north), 90 is facing right (east), and so on.
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rSpeed ExprN Sets the robot speed. The larger the number the slower the robot.
ExprN must be >= 0.

*rGps Var1,Var2 Sets Var1 to the Robot’s current x position and Var2 to the y position,
giving the robot’s position on the screen. This command will not cause an error if the battery
is depleted and an IgnoreCharge False has been issued, but the returned values will be 0.

*rPen ExprN1 {,ExprN2} The robot has a pen positioned at its center that can be
put up or down using this command. When the pen is down the robot will draw a line
using the color specified in ExprN2. If you do not specify ExprN2 then the first color spec-
ified in the list of invisible colors (see rInvisible above) is used. If you have not spec-
ified a list of invisible colors then the pen will draw using the floor color, which means that
you will not see the trace when it is over the floor color. 

The width of the drawn line is determined by the current line width set by the drawing
commands (see LineWidth ExprN, Sec. C.7). 

If ExprN1 is zero then the pen will be raised. If ExprN1 is not zero then the pen will
be lowered and drawing will take place. You can use the constants Down and Up so you
can say:

rPen Down,Cyan  //---will set the pen down and 
//   use cyan for drawing

rPen Up         //---will set the pen up

rCharge ExprN Sets the batteries to percentage charge. ExprN is a percentage value
1 to 100 percent

rIgnoreCharge ExprN If ExprN is true (not zero) then the battery charge level will
be ignored and the robot will continue to operate regardless of the battery charge level.
This is the default state. If ExprN is false (zero) then the battery charge level will be taken
into account. The robot will not operate when the battery is depleted and in some cases
an error will occur as specified in the commands.

rSensor ExprN1,ExprN2,Var1,Var2,Var3 The robot has a default set of sensors
located at 90� and 45� to the left and right of the front and at the front. These sensors
can look and return the color of the first object encountered and the distance to that object.
ExprN1 specifies the sensor number to use:

1 = 90� to the right
2 = 45� to the right

NOTE:
• The line width is whatever was set by the last LineWidth command issued. 
• The line color will be what is specified by ExprN2, or the first color in the invisi-

ble colors list. 
• The color drawn by the pen will be considered an obstacle unless it is in the list of invisible

colors.
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3 = Front
4 = 45� to the left
5 = 90� to the left

• ExprN2 specifies the limit of the sensor range (pixels).
• Var1 is set to the first color found directly in front of the sensor that is not on the list of

invisible colors. If the range of the sensor or the walls of the room are reached (screen
extent) without sensing an object then this color value will be �1, otherwise it will be the
color of the object. 

• Var2 is set to the distance to the object found. If no object is found then the distance
will be the maximum range of the sensor, or the distance to the wall if that was within
the sensor range. 

• Var3 will be set to 1 (true) if an object is found or a wall is sensed within the sensor
range. If the sensor range is reached without sensing a wall or an object then it is
set to 0 (false). Colors on the invisible colors list will be ignored in the process.

This command will not cause an error if the battery is depleted and an IgnoreCharge
False has been issued, but the values will be nonsense.

rSensorA ExprN1,ExprN2,Var1,Var2,Var3 This is the same as the rSensor
command, except ExprN1 is not a sensor number but rather an angle (0–359) clockwise
relative to the robot heading. A value of 90 is 90� to the right, 270 is 90� to the left. So
this command can be used to do the same as above but instead of a limit of 5 sensors you
have 360 of them. This command will not cause an error if the battery is depleted and
an IgnoreCharge False has been issued, but the values will be nonsense.

rSlip {ExprN} This command defines a percentage for the slipping feature of the
robot. Real robot motors tend to slip in a random way where going forward/backward
can go less than expected. If the motors do not turn exactly the same amount while going
forward a slight turning tendency may occur. Also, during turning if the motors do not turn
as expected, less or more turning than commanded may occur. 

Issuing this command will cause the robot to behave in this manner. If you do not pass
ExprN the slip will occur 2 percent of the time. If you want to simulate a different percentage
then issue the command with ExprN. ExprN resulting in 0 will turn the slipping off which
is the default state. If ExprN is less than 0 then it will be made 0. If ExprN is greater than
100 it will be made 100. If ExprN does not result in a number an error will occur.

C.9.3 SIMULATOR FUNCTIONS

In the following if empty parenthesis “()” is specified then the function does not require a param-
eter but the () must still be typed. All functions will not cause an error if the battery is depleted
and an IgnoreCharge False has been issued, but the values returned will be nonsense.

The functions are listed according to functionality rather than in an alphabetic order.
See below for an alphabetical order.

Functions that look or sense for colors will not detect the colors on the invisible colors
list (see rInvisible above) unless otherwise stated.
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rChargeLevel() Returns the batteries charge percentage value.

rPoints() The robot keeps a count of the number of times its sensors and motors
(rTurn, rForward) are used. This point value can be used as a measure of the efficiency
of an algorithm to complete a task in the minimum possible points. This function returns
the current count value.

rGpsX() Returns the robot’s current x position.

rGpsY() Returns the robot’s current y position.

*rCompass() Returns the robot’s current heading. 0–359 0= north.

*rLook()

*rLook(ExprN) Returns the first color seen directly in front of the robot. If the walls
are seen before any object then �1 is returned. Colors on the invisible colors list are
ignored.

If ExprN is given then it is an angle relative to the robot’s heading. ExprN must be
between �180 and +180. Positive is to the right of the robot, negative is to the left of
the robot. The pivoting center is the center of the robot.

Specifying an angle places the camera at any angle relative to the robot’s heading piv-
oted on the robot’s center. With this sensor you can look at objects relative to the robot’s
heading 180� to the right (+180) up to 180� to the left (�180) at intervals of 1�.

*rRange()

*rRange(ExprN) Returns the distance to the first color seen directly in front of the
robot. If the walls are seen before any object then the distance to the wall is returned. Colors
on the invisible colors list are ignored.

If ExprN is given then it is an angle relative to the robot’s heading. ExprN must be
between �90 and +90. Positive is to the right of the robot, negative is to the left of the
robot. Pivoting is about the front of the robot not the center of the robot. The ranger is
fitted on the front point of the robot and pivots 90� left and right centered on this point.

Specifying an angle places the range finder at any angle relative to the robot’s head-
ing. With this sensor you can measure distances relative to the front of the robot from 90�

to the right (+90) up to 90� to the left (�90) at intervals of 1�.

*rBeacon(ExprN) Returns the distance to the specified color (ExprN) if it is in front
of the robot, even if that color is blocked by other objects between the robot and the color.
It returns 0 otherwise. 

This is useful for detecting of a “flashing” beacon mounted above obstacles in the room.
The command looks for any color specified. It does not ignore colors on the invisible

NOTE: Functions with a * have additional functionality as explained in App. D.
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colors list. The result can be treated as true/false (false = 0, true = otherwise) or you can
use the number returned if it is not zero as the distance to the color specified.

*rFeel()

*rDFeel({ExprN}) Returns a number 0 to 31 according to the following logic:
There are five infrared sensors around the robot. At 90� and 45� to the left and right

of the robot and directly in the front. The sensors are able to feel any object within a robot’s
radius ahead of the sensor (ignoring invisible colors).

The number returned is a bitmap of the condition of the sensors. If any of the sensors
feels something then its bit position is set to 1, otherwise 0. So there are 5 bits MSB...LSB
00000. The most significant bit (MSB) is the sensor 90� to the left, then 45� then 0� then
45� to the right, and the least significant (LSB) bit is 90� to the right. So if the number is
01110 (14) then the sensors in front and 45� right and left are feeling objects and the rest
do not. Use bitwise operators (bAND, bOR, etc) to manipulate the result. Colors on the
invisible colors list are not considered objects.

The difference between rFeel() and rDFeel({ExprN}) is that rDFeel({ExprN}) will
draw radials out from the sensors to show the range of feel of the sensors using the color
specified in ExprN. If you do not specify ExprN then the second color on the invisible
colors list will be used. This is a useful feature for debugging the rFeel() results. 

Do not use rDFeel({ExprN}) unless you need to debug since it is significantly slower
than rFeel(). You must specify ExprN or have a valid color (not a floor color) in the
second position in the invisible colors list. The radial lines will be drawn using this ExprN
color or the second color on the invisible colors list other wise the beams will not be
visible.

*rBumper()

*rDBumper({ExprN}) Returns a number 0 to 15 according to the following logic:
There are four bumpers around the robot. At the front covering an arc of 130� that is,

from 65� to the left to 65� to the right. There is also a bumper at the back just like the
one in front, that is, from 115� to 245�. To the left and to the right there are bumpers
that cover an arc of 50�, that is, from 65� to 115� on the right and from �65� to �115�

on the left. The bumpers will close (turn on) if there is any object within 2 pixels of the
robot’s perimeter (ignores invisible colors).

The number returned is a bit map of the condition of the bumpers. If any of the bumpers
is closed then its bit position is set to 1, otherwise 0. So there 4 bits MSB...LSB 0000.
The least significant bit is the back bumper, then the right, front and then the left one.

If the number is 1110 (14) then the right, front and left bumpers are closed while the
rear one is not. Use bitwise operators (bAND, bOR, etc) to manipulate the result.
floor/line/beacon colors are ignored.

The difference between rBumper() and rDBumper({ExprN}) is that
rDBumper({ExprN}) will light up an LED where the bumper is touching objects using the
ExprN color or the second color on the invisible colors list. If no color is specified with
ExprN then the second color on the invisible colors list will be used. If that is not speci-
fied then the color will be the floor color and the beacon may not be visible. This is a useful
feature for debugging the rBumper() result. Do not use rDBumper({ExprN}) unless you
are debugging since it is significantly slower than rBumper().
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*rSense({ExprN}) Returns a number 0 to 7 according to the following logic:
There are three sensors around the robot, at 10� to the left and right of the robot and

directly in the front. The sensors see only the color specified by ExprN or, if you don’t
specify ExprN, then the first color on the invisible colors list. If neither is specified then
the floor color will be sensed. The sensors only look at the ground directly under the sensor
situated directly at the perimeter of the robot. The number returned is a bitmap of the con-
dition of the sensors. If any of the sensors sees the ExprN color then its bit position is set
to 1, otherwise it is 0. There are 3 bits MSB.LSB 000. The most significant bit is the sensor
10� to the left, then ahead (0�) and then 10� to the right. If the number is 010 (2) then
only the sensor in the front is on the line and the other two are outside of the line. Use
bitwise operators (bAND, bOR, etc) to manipulate the result.

rGround(ExprN) The robot has a default of three sensors to look at the ground directly
at the perimeter of the robot. ExprN1 specifies the sensor number.

1 = 10� to the right
2 = In front
3 = 10� to the left.

It will return the color seen by the sensor. It will not ignore any color (i.e., the colors
on the invisible colors list are not ignored). It is up to you what to make of the value. If
you want to ignore any colors use programming logic to do so.

rGroundA(ExprN) This is the same as the rGround function, except ExprN1 is not
a sensor number but rather an angle (0–359) clockwise relative to the robot heading. A
value of 90 is 90� to the right, 270 is 90� to the left. So this command can be used to do
the same as above but instead of a limit of 3 sensors you have 360 of them.

C.9.4 SIMULATOR COMMANDS LISTED ALPHABETICALLY

rCharge ExprN
rFloorColor ExprN
*rForward ExprN
*rGps Var1,Var2
rHeading ExprN
rIgnoreCharge ExprN
rInvisible ExprN {,ExprN...}
*rLocate ExprN1,ExprN2,{ExprN3,{ExprN4, {ExprN5}}}
*rPen ExprN1 {,ExprN2}
rSensor ExprN1,ExprN2,Var1,Var2,Var3
rSensorA ExprN1,ExprN2,Var1,Var2,Var3
rSpeed ExprN
*rTurn ExprN

C.9.5 SIMULATOR FUNCTIONS LISTED ALPHABETICALLY 

*rBeacon(ExprN)
*rBumper()
rChargeLevel()
*rCompass()
*rDBumper({ExprN})
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*rDFeel({ExprN})
*rFeel()
rGpsX()
rGpsY()
rGround(ExprN)
rGroundA(ExprN)
*rLook({ExprN})
rPoints()
rRange({ExprN})
rSense({ExprN})

C.10 Commands and Functions 
Listed Alphabetically
C.10.1 COMMANDS 

AddButton ExprS,ExprN1,ExprN2{,ExprN3{,ExprN4}}
Arc ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6{,ExprN7{,ExprN8}}}}
Beep {ExprN}
Circle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5,ExprN6}
ClearScr {ExprN}
Data VarA;Expr{,Expr....}
Debug {Expr1,Expr2;Expr3...}
DebugOff
DebugOn
Delay {ExprN}
Dim VarA[ExprN{,ExprN...}]
DrawShape ExprS,ExprN2,ExprN3{,ExprN4,ExprN5}
ERectangle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6}}
FloodFill ExprN1,ExprN2{,ExprN3{,ExprN4}}
GetButton Var
GetColor Var1,Var2
GetError VarN1{,VarS{,VarN2{,VarN3}}}
GetLineWidth Var
GetXY Var1,Var2
GotoXy ExprN1,ExprN2
Input Expr,Var
Input Expr,VarA[ExprN{,ExprN...}]
Line ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6}}
LineTo ExprN1,ExprN2{,ExprN3{,ExprN4}}
LineWidth ExprN
MAdd VarA1,VarA2
MConstant VarA,Expr
MCopy VarA1,VarA2
MDeterminant VarA1,Var
MDiagonal VarA,Expr
MicroDelay {ExprN}
MInvert VarA1,VarA2,Var
MMultiply VarA1,VarA2,VarA3
MPolygon VarA{,ExprN}
MRead VarA,ExprS
MRegression VarA,Var1,Var2
MScale VarA,ExprN
MSort VarA1{,ExprN}
MSub VarA1,VarA2
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MTranspose VarA1,VarA2
MWrite VarA,ExprS
Pie ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5{,ExprN6{,ExprN7{,ExprN8}}}}
Print {Expr,Expr;Expr...}
ReadMouse Var1,Var2{,Var3}
ReadPixel ExprN1,ExprN2,Var
ReadScr {ExprS}
Rectangle ExprN1,ExprN2,ExprN3,ExprN4{,ExprN5,ExprN6}
RemoveButton ExprS
RestoreScr {ExprN1{,ExprN2}}
SaveScr {ExprN1{,ExprN2{,ExprN3{,ExprN4}}}}
ScrLimits Var1,Var2
SetColor ExprN1{,ExprN2}
SetPixel ExprN1,ExprN2,ExprN3
Sound ExprN1,ExprN2 {,ExprN3}
Speaker ExprN
Swap Var1,Var2
GetKey Var
GetKeyE Var
OnError Label
OnError Expr
OnError
WaitKey {ExprS,}
WriteScr {ExprS}
XYstring ExprN1,ExprN2,Expr3{;expr,expr;...}
XYtext ExprN1,ExprN2,Expr{,ExprS{,ExprN3{,ExprN4}}}

C.10.2 FUNCTIONS 

Abs(ExprN)
ACos(ExprN)
Ascii(ExprS)
ASin(ExprN)
ATan(ExprN)
ATan2(ExprN1,ExprN2)
Average(VarA)
Bin(ExprN)
CartX(ExprN1,ExprN2)
CartX(ExprN1,ExprN2)
CbRt(ExprN)
Char(ExprN)
CorrCoef(VarA)
Cos(ExprN)
Count(VarA)
Date(ExprN)
Evaluate(ExprS)
Exp(ExprN)
Exp10(ExprN)
Extract(ExprS1,ExprS,ExprN)
Factorial(ExprN)
Format(ExprN,ExprS)
Frac(ExprN)
Hex(ExprN)
InString(ExprS1,ExprS2)
IsNumber(Expr)
IsString(Expr)
KeyDown(ExprN)
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Left(ExprS,ExprN)
LeftTrim(ExprS)
Length(ExprS)
Log(ExprN)
Lower(ExprS)
Max(VarA)
MaxDim(VarA,ExprN)
MDim(VarA)
Median(VarA)
Min(VarA)
Mod(ExprN1,ExprN2)
MsgBox(VarA)
MType(VarA[ExprN{,ExprN,...}])
nCr(ExprN1,ExprN2)
NLog(ExprN)
NoSpaces(Exprs)
nPr(ExprN1,ExprN2)
Pi(ExprN)
PolarA(ExprN1,ExprN2)
PolarR(ExprN1,ExprN2)
Random(ExprN)
Range(VarA)
Right(ExprS,ExprN)
RightTrim(ExprS)
Round(ExprN)
RoundDn(ExprN)
RoundUP(ExprN)
Sign(ExprN)
Sin(ExprN)
Spaces(ExprN)
Sqrt(ExprN)
SRepeat(ExprS,ExprN)
StdDev(VarA)
Substring(ExprS,ExprN1,ExprN2)
Sum(VarA)
Tan(ExprN)
Time(ExprN)
ToNumber(Expr)
ToString(Expr)
Trim(ExprS)
Upper(ExprS)
Variance(VarA)
VType(Var)
Within(ExprN1,ExprN2,ExprN3



383

A P P E N D I X D
PORTS AND SERIAL

INPUT/OUTPUT

D.1 General Information
The following commands allow for using direct port input/output (I/O) where you can
read/write a byte from/to a particular port on the PC. There is a set of special commands
for I/O to the parallel port as a special case for ease of use. There is also a set of com-
mands that allow for serial I/O using either actual comm ports on the PC or virtual comm
ports created by protocols such as Bluetooth devices or USB devices. These devices will
create a virtual port number that can be used for all intents and purposes as if it were a
physical serial comm port. 

The robot simulator has an extension that allows for the use of serial I/O to communicate
to and from a real robot, effectively enabling programming of a real robot using the
RobotBASIC language. The protocol extension will be explained in its own section below.

To facilitate serial comm port setup there are a set of constants that are listed in
the Constants help page within the IDE. The I/O commands are not case sensitive.

Throughout this section there will be reference to the following items:

• ExprN implies that a numeric resulting expression is required.
• ExprS implies that a string resulting expression is required.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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• Expr implies that any type expression is required.
• {Expr} or {Var} implies that it is optional and {Expr...} means many can be given.
• Var implies that a variable name must be provided. If VarS is specified then it will be

filled with a string if VarN is specified then it will be filled with a number.
• If a Var is expected in any of the commands, then if Var exists it will be replaced

with the result otherwise it will be created and assigned the result.

D.2 Serial I/O Commands

SetCommPort ExprN1 {,ExprN2 {,ExprN2 {,ExprN3 {,ExprN4 {,ExprN5}}}}}
This command sets the comm port number and parameters and activates the port for
communications.

• ExprN1 is the port number 1 to 5000. 
• ExprN2 is the baud rate 0 to 14 (see the Constants help page  for details of codes).

Defaults to 6, that is, 9600 baud.
• ExprN3 is the number of data bits in the transmitted byte can be 4, 5, 6, 7, or 8.

Defaults to 8.
• ExprN4 is the parity check 0 to 4 (see Sec. B.7.6). Defaults to 0 (no parity).
• ExprN5 is the number of stop bits in the transmission (see the Constants help page).

Ranges from 0 to 2. Defaults to 1, that is, 1 stop bit.
• ExprN6 is the flow-control protocol (see the Constants help page). Ranges from 0

to 2. Defaults to 0, that is, none.

To deactivate the communication port issue the command SetCommPort 0

SerOut Expr {,Expr {; Expr ...}} This command is similar to the Print command.
The output of the command is sent to the serial port in place of the Terminal Screen. 

Outputs the values of Expr.... to the serial port. A comma (,) between the expressions
makes them print with no space between them. A semicolon (;) prints them with a tab
space between them. You must specify at least one expression. The result of all the
expressions is put together as specified by the commas and semicolons into one string and
the string is outputted to the serial port as specified by the SetCommPort command. The
total length of the resulting string will be truncated to 4095 bytes if it exceeds
this size.

SerIn VarS This command reads the data that is currently in the serial communica-
tions buffer all in one go and puts it as a string in the variable VarS. You can use string
manipulation commands and functions as well as conversion functions to make use of the
data. The command will not cause a time out. If there are no bytes in the input buffer the

NOTE: Always refer to the help pages within the RobotBASIC IDE for the most up-
to-date information regarding material mentioned in this appendix.



PORTS AND SERIAL INPUT/OUTPUT 385

string returned will be null. Use the CheckSerBuffer command to determine how
many bytes (if any) of data are waiting on the buffer.

SerBytesIn ExprN,VarS,VarN This command reads ExprN bytes from the serial
input buffer and puts them in to the string variable VarS. VarN is set to the number of
bytes actually read before a time out occurred. The command will wait until ExprN bytes
are read. If a time-out occurs before all the characters are retrieved then what ever char-
acters have been read are returned inside VarS and VarN is set to the number actually
read. See SetTimeOut and GetTimeOut commands. The maximum amount for ExprN
is 4095 bytes and the minimum is 1. ExprN will be set to the closest limit if it is outside
the range 1 to 4095.

SetTimeOut {ExprN} This command sets the time-out for the serial port reading
commands. ExprN is the number of milliseconds to wait before a time out occurs. ExprN
is optional and if not given or is less than one then 5000 is assumed (i.e., 5 seconds). 5000
is also the default on program startup.

GetTimeOut VarN This command reads the current setting for the time-out for the
serial port and puts the value in VarN. The number returned is in milliseconds.

CheckSerBuffer VarN This command assigns the number of characters in the serial
input buffer to the variable VarN. The buffer can be read with the commands above. 

ClearSerBuffer {ExprN} This command clears the input and output serial buffers.
If ExprN is not given or is 0 then both buffers are cleared. A value of 1 will clear the input
buffer. A value of 2 will clear the output buffer. Any other values are ignored. 

D.3 Parallel Ports I/O Commands
These commands read and write byte values to the parallel port specified. These commands
assume that your system has a bidirectional parallel port (ECP standard). If your system
does not have this then only output is possible and no input can occur. You can check if
your system has this capability and set it using the BIOS setup while starting your PC. If
you have more than one parallel port you can specify which one to use by specifying its
base address using the SetPPortNumber command.

PPortOut ExprN1 Outputs the byte value ExprN1 to the parallel port If ExprN1 is
greater than 255 only the lower byte will be outputted. 

PPortIn VarN Reads the data byte at the parallel port.

SetPPortNumber {ExprN} This command sets the base address of the parallel port
to be used by all the parallel port commands including the virtual ones below. The system
defaults to address 888 (hex 0x378), which is usually the first and only parallel port on



386 APPENDICES

many systems. If your system has more than one port and you wish to use other than the
default first port use this command to specify the port number (in decimal). You can find
the addresses of available ports from the BIOS setup upon starting your computer, or you
can use the Windows system to do the same. Beware the reported addresses are usually
given in hexadecimal format. You need to convert them to integer to use it for ExprN in
this command [see function HextToInt()]. ExprN is optional and if it is not given or it
is less than one then the system will use port number 888 (hex 0x378). 

D.4 Virtual Parallel Port I/O Protocol
This protocol is included as a convenience for extending the single byte parallel port to 4
input bytes and 4 output bytes. The protocol assumes there is multiplexing hardware con-
nected to the parallel port. You can write your own protocol using the InPort and
OutPort commands, but this protocol is provided for convenience and speed. 

This protocol makes use of the control port on the parallel port to put the port number
on the multiplexer hardware (3 bits) and uses the fourth bit to clock the multiplexer and
read the data or output the data depending on what port number is in use.

The result is that one parallel port with only 8 I/O pins can be expanded to 4 � 8 Input
and 4 � 8 Output pins. The hardware will not be discussed here (see Chap. 17 for a sug-
gested design).

On the parallel port connector, pins 2 to 9 are the data pins. Pins 1, 14, and 16 are
used to set the address on the multiplexer. Where LSB (least significant bit) is pin 1. Pin
17 will be used to clock the multiplexer (low is HiZ, high is Clocked) assuming a rising edge
trigger.

Addresses 0 to 3 will be input ports (to the PC) and 4 to 7 will be output ports (from
the PC).

VPPortOut ExprN1,ExprN2 Outputs the byte value ExprN2 to the virtual parallel
port number ExprN1. If ExprN2 is greater than 255 only the lower byte will be outputted.
ExprN1 is limited to 1 to 4. If it is outside these limits the nearest limit will be set.

VPPortIn ExprN1,VarN Reads the byte value at the virtual parallel port number
ExprN1 and then puts it in the variable VarN. ExprN1 is limited to 1 to 4. If it is outside
these limits the nearest limit will be set.

WARNING! Use these commands with care. Badly designed hardware connected
to the parallel port can damage the port. If you are going to experiment with elec-
tronics and these commands do so at your own risk and know what you are doing.

Failure to use the correct design will damage your port if not your whole computer. 

WARNING! If you specify the wrong address the commands will not function and
you may even damage your system.
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D.5 General Ports I/O Commands

OutPort ExprN1,ExprN2 Outputs the byte value ExprN2 to the PC port number
ExprN1. If ExprN2 is greater than 255 only the lower byte will be outputted. ExprN1
can be any valid port number.

InPort ExprN1,VarN Reads the byte value at the PC port number ExprN1 and then
put it in the variable VarN as a number. ExprN1 can be any valid port number.

D.6 Robot Simulator Serial I/O Protocol
This protocol uses serial communication (can be Bluetooth virtual serial port) to commu-
nicate between RobotBASIC and a real robot with the ability to send and receive serial
data. You can create your own protocol using the above serial communications com-
mands. This protocol is provided for convenience.

You can write programs normally using the simulator commands and functions.
However if you signal RobotBASIC to use the serial port protocol the same program will
run, but instead of simulating the robot on the screen it will send and receive data back
and forth between a real robot and RobotBASIC. This allows you to test your simulated
algorithms on a real physical robot. 

The microcontroller on the real robot receives data representing the commands (like
rForward, etc.), responds to the commands and returns data to RobotBASIC to tell it
that it received the command and acted upon it and that the current state of sensors is as
per the data sent. 

You can write programs using the commands and function in the robot simulator, but
the commands will not cause the simulated screen robot to move. Rather, a set of 2 bytes
is sent via the serial port and then RobotBASIC will wait for a set of 5 bytes to be sent
back. These 5 bytes are then stored and interpreted to provide data to be returned by the
command or function.

WARNING! Use these commands with care. Badly designed hardware connected
to the parallel port can damage the port. If you are going to experiment with elec-
tronics and these commands do so at your own risk and know what you are doing.

Failure to do the correct design will damage your port if not your whole computer.

WARNING! Using this command incorrectly can damage your system if you write
or read from an incorrect port number.

WARNING! Using this command incorrectly can damage your system if you write
or read from an incorrect port number.
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To tell RobotBASIC to use the serial communications protocol rather than the simula-
tor, use the command rCommPort (see below) to make all subsequent commands and func-
tions use the protocol in place of the simulator.

The commands and functions will cause RobotBASIC to send 2 bytes where the first
byte is a code for the command and the next byte is the parameter for the command. The
receiving microcontroller on the physical robot can make use of these bytes and must
respond within the time-out limit (see SetTimeOut above) by sending 5 bytes to be
received by RobotBASIC. The first 3 bytes are the status of the bumpers, infrared sen-
sors, and line sensors (in this order). The last 2 bytes are the returned values relating to
the function/command. The order is MSB first. The first byte is the most significant byte
(MSB) of the number. (rGPS is the exception to the 5-byte rule, see below). 

The values received in the first 3 bytes of the 5 bytes are used to update the status of
the bumper, infrared, and line sensors. These values will be used by the functions
rBumper(), rFeel(), and rSense(). This means that these functions will still work
in the same way as in the simulated situation but instead of returning the values read by
the simulated robot off the screen they will return the real physical values received by the
protocol from real sensors on the physical robot. The values can be used in exactly the
same manner as before (as described in the robot simulator help page).

rCommPort ExprN1 {,ExprN2 {,ExprN2 {,ExprN3 {,ExprN4 {,ExprN5}}}}}
This command is exactly the same as the SetCommPort command (Sec. D.2). It sets the
comm port number and parameters and opens the comm port for communications.
However, it also signals a flag that makes the simulator use the comm port specified in
place of the screen. To return to using the screen, issue the command again with 0 as the
comm port number. 

rLocate ExprN1,ExprN2 (code 3) You still need to issue this command before using
the protocol just as in the simulator. This command initializes the real robot and starts the
command process. No use is made of the second (and the others if you happen to be using
them) parameters but they need to still be there because the command is the same as in
the simulated one but does not use the numbers when the protocol is active. This means
that you do not need to change your simulator program to make it work with the proto-
col. The protocol sends 2 bytes 03 and ExprN1. It will expect to receive 5 bytes where
the first three are as described above. The last two are not used.

rForward ExprN (code 6 or 7) This command will send 2 bytes 6 (or 7) and
Abs(ExprN). The code 6 is for going forward and 7 is for going backward. ExprN is the
distance required if it is positive then code 6 is sent and if it is negative then it is made
positive and code 7 is sent. The received data contains 5 bytes but only the first 3 are used.
They are in the order described above for the status of the sensors.

rTurn ExprN (code 12 or 13) This command will send 2 bytes 12 (or 13) and
Abs(ExprN). The code 12 is for turning right and 13 is for turning left. ExprN is the
required degrees, if positive then code 12 is sent and if negative then the number is made
positive and code 13 is sent. If you specify a number greater than 180 then the turn is
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made into ExprN � 360 and if it is less than �180 (i.e., more negative than �180, e.g.,
–190) then it is made into 360 	 ExprN. So if your simulator command says rTurn
190 then the value sent to the real robot will be 170 with code 13 (i.e., left turn of 170).
The received data contains 5 bytes but only the first 3 are used. They are in the order
described above for the status of the sensors.

rCompass () (code 24) This function will send 2 bytes 24 and 0. The code 24 is for
the compass. The received data contains 5 bytes. The first 3 used are in the order described
above for the status of the sensors. The last 2 bytes are the value returned by the com-
pass on the real robot representing the heading (MSB first). This means that this function
will return a number formed as a 16-bit number from the fourth byte of the received
5 bytes as the MSB of the number and the fifth byte as the LSB. 

rLook ({ExprN}) (code 48 or 49) Will send 2 bytes 48 (or 49) and Abs(ExprN). The
code 48 is for the camera sensors reading ExprN degrees to the right and code 49 is to
the left. If ExprN is negative it will be made positive and code 49 will be sent. The received
data contains 5 bytes. The first 3 used are in the order described above for the status of
the sensors. The last 2 bytes are the value returned representing the color seen by the
sensor. (MSB first). This means that this function will return a number formed as a 16-bit
number from the fourth byte of the received 5 bytes as the MSB of the number and the
fifth byte as the LSB.

rBeacon (ExprN) (code 96) Will send 2 bytes 96 and ExprN. The code 96 is for
beacon sensors reading and ExprN is the required color. The received data contains
5 bytes. The first 3 used are in the order described above for the status of the sensors.
The last 2 bytes are the value returned by the beacon representing the distance meas-
ured to the found beacon or 0 if the beacon is not found. (MSB first). This means that
this function will return a number formed as a 16-bit number from the fourth byte of the
received 5 bytes as the MSB of the number and the fifth byte as the LSByte.

rRange ({ExprN}) (code 192 or 193) Will send 2 bytes 192 (or 193) and
Abs(ExprN). The code 192 is for range sensor reading at ExprN degrees to the right and
193 is to the left. If ExprN is negative it is made positive and code 193 is sent. The received
data contains 5 bytes. The first 3 used are in the order described above for the status of
the sensors. The last 2 bytes are the value returned by the rangers representing the dis-
tance measured. (MSB first). This means that this function will return a number formed
as a 16-bit number from the fourth byte of the received 5 bytes as the MSB of the number
and the fifth byte as the LSB.

rPen ExprN (code 129) This command will send 2 bytes 129 and ExprN. The
code 129 is for pen control. ExprN is either up (0) or down (not zero, can be any
number other than 0 usually it is 1). The received data contains 5 bytes. The first 3 are
in the order described above for the status of the sensors. The last 2 bytes are not used
and are set to 0.
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rSpeed ExprN (code 36) This command will send 2 bytes 36 and ExprN. The code
36 is for setting a speed on the physical robot and ExprN is the required speed (0–255).
The received data contains 5 bytes. The first 3 used are in the order described above for
the status of the sensors. The last 2 bytes are not use and are set to 0.

rGPS VarNX,VarNY (code 66) This command will send 2 bytes 66 and 0. The code
66 is for global positioning system (GPS) sensors reading and VarNX will be set to the x
position and VarNY to the y position. The received data contains 5 bytes. The first 2 are
the x position and the second two are the y position. The fifth is not used and is set to 0.
(MSB first).

This command is an exception to the 5 bytes received in all the other commands. The
5 bytes received after issuing this command are not used to update the bumpers, infrared,
and line sensors status. Instead the first 2 bytes are used to calculate the x position and
the second two bytes the y position. The last byte is not used.
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accelerometer, 232
adaptive behavior, 243–244, 247
algorithm development, 6, 75–88, 106, 

158, 210
arrays, 5, 86
artificial intelligence (AI), 243
ASCII codes, 35
autonomous behavior, 6, 51
avoid obstacles, 16, 24, 61, 92, 160

BASIC, 9
battery

charging, 154, 169, 172, 227
error, 171
meter, 174

battery problems, 154, 169
beacon, 158, 172, 235
behaviors (see robot, behaviors)
binary math, 21–22
bitwise operators, 54, 60

(see also logical operators)
blind spots, 58
Boe-Bot, 268–269
Boolean algebra, 37–38
bumper switches (real), 268, 271

case sensitivity, 14, 20, 34, 54
charging the battery (see battery, charging)
collision error, 16
collisions, 16, 22–24
commands, 38, 54

(see also flow-control statements; functions)
(refer also to Appendices)
Circle, 16
ClearScr, 54
Data, 85–86
Debug, 69
Delay, 40
DrawShape, 140
GetKey, 35, 40

commands (Cont.):
GotoXY, 54
LineTo, 54
LineWidth, 54, 122
MaxDim, 87
mPolygon, 85, 99
Print, 36
ReadMouse, 35
Rectangle, 16
rCommPort, 292
rForward, 14, 292
rGPS, 292
rIgnoreCharge, 170
rInvisible, 44, 76, 109, 122, 186
rLocate, 13, 292
rPen, 44, 122, 292
rSlip, 229
rSpeed, 292
rTurn, 15, 292
SetColor, 54
WaitKey, 35
xyString, 36

comparison operators, 21
conditional statements, 20–21

(see also flow-control statements)
constructs (programming), 19–20

(see also flow-control statements)
contests, 299–303

scoring, 301–302
types, 301–302

debugging programs, 65, 96
(refer also to Appendices)
debug command, 69, 198
philosophy, 67
stepping, 70
viewing bumper status, 71
viewing infrared beams, 71
viewing variables, 70 
with RobotBASIC, 68
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editing programs, 10
education 306–309

learning to program, 7, 66
with RobotBASIC, 306–309

errors, 65

face a beacon, 160
feedback loops, 244, 247
flight simulators, 4
flow-control statements, 20–21

(refer also to Appendices)
comparison operators, 21
end, 54
gosub, 45, 53–54
if-else-endif, 21
if-elseif-else-endif,

109
if-endif, 20
if-then, 20
loops, 21
break, 37
for-next, 21, 36
repeat-until, 37
while-wend, 21, 36

return, 45, 53–54
foam-board, 269
functions, 38 

(refer also to Appendices)
(see also commands;

flow-control statements)
Ascii, 37, 129
Char, 39
InString, 47
Length, 47
PolarA, 42–43
PolarR, 42–43
Random, 52, 107, 148, 161
rBeacon, 28, 160, 163–164, 292
rBumper, 23–25
rCharge, 171
rChargeLevel, 30, 170
rCompass, 29, 39, 292
rdBumper, 71, 93
rdFeel, 71, 91
rFeel, 26–27, 91, 104
rGPSx, 29, 39, 41–43, 292

(see also commands, rGPS)
rGPSy, 29, 39, 41–43, 292 

(see also commands, rGPS)
rLook, 27, 164, 292
Round, 43
rRange, 27, 96–97, 101, 292
rSense, 79
sRepeat, 47
Within, 162

GPS, 172
graph (data structure), 

199–200
gyroscope, 232

hard drive setup, 10
hardware (see robot, hardware)
help files, 10, 11
hierarchy chart, 174, 212, 259

IDE, 9–10
ignoring objects, 44
intelligence

artificial, 243
human, 246
through association, 247–248

I/O port operations, 278–279, 
286–288

keyboard input, 35 
(refer also to Appendices)

labels, 54
learning to program 7, 66
line following, 76
loading a program, 10
logical errors, 65
logical operators, 37, 59–60

(refer also to Appendices)
(see also bitwise operators)
And, 37, 59–60
Not, 37, 59–60
Or, 37, 59–60

loops, 21, 36–37
(see also flow-control statements)

mapping, 198, 219
Mars Rover, 6, 169
maze, 181

corridor, 181, 191
creating, 182–182, 191
line, 181
mapped solution, 

198–205
remembering, 198 
solving, 182, 187–205

motor (wheel) slip, 229, 235
mouse, 35

drawing with, 55–58
mouse buttons, 35

new program, 12

opening a program, 10
operators, 54, 59–60
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output to screen, 36
Print, 36
xyString, 36

paradigm shift, 265
Parallax, 267
PBASIC, 268, 280–286, 292–296
pen (used to draw), 44–45, 122
prototyping, 263

random roaming, 51
random (to solve problems), 161–163
recharging batteries, 154, 169, 172, 227
remote control, 33
resources, 296–297
robot

behaviors, 5, 73
avoiding drop offs, 103
delivering mail, food, etc., 209
developing personality, 257
following a line, 75, 245
following a wall, 89, 151, 245
locating a goal, 157, 172
mowing, 139
negotiating a home or office, 209
negotiating a maze, 181
perimeter containment, 104
power sources, 169
random roaming, 51
satisfying needs, 249
sweeping, 139
testing behaviors, 5

building, 267
color of, 1
hardware, 5–6, 267–288

beacon, 276–277
bumpers, 269–271
camera, 275, 277
compass, 274–275
GPS, 275, 276
infrared perimeter sensors, 

271–272
I/O ports, 278–279, 286–288
line sensors, 278
multiprocessor, 279
ranging, 274
ultrasonic, 274
wireless communication, 280

history, 264–265
initializing, 13
kit (robot), 263–265, 267–268
programming, 6
remote control, 33, 38–48
simulator, 13–17
testing, 96
vision, 27

RobotBASIC, 3, 9
as a teaching tool, 306–307

college level, 309
grade school, 308
high school, 308–309
middle school, 308

battery (simulated), 170–171
case sensitivity, 14, 20, 34, 54
comments, 20
compared to other simulators, 4
data statements, 85
debugging, 65
download your free copy, 10
editor, 10–12
first-time use, 10–12
functions, 38
graphics, 55–57
help screen, 11–12
in the classroom, 305–310
is free, 4
keyboard input, 35
labels, 54
motivates students, 307
mouse, 35, 55–57
operators, 54–55, 59–60
output to screen, 36
prototyping tool, 263–264
robot simulation (introduction), 13–17

color of, 13
initializing, 13

sensors (introduction) 19–29
teaching tool, 7
terminal (I/O) screen, 11–12
variables, 34–35

running a program, 10, 12

saving a program, 10, 12
semantic errors, 65
sensory systems, 6

battery monitoring, 30
beacon, 28–29
bumpers, 22–25, 71, 93
camera, 27–28
compass, 29
custom, 28
GPS, 29, 112–113
improving efficiency, 25, 59
infrared, 6, 26–27, 71, 91, 97, 104
introduction, 19
line, 77–79
ranging, 27, 96–97, 101
testing sensors, 47
vision, 27–28

servomotors, 268, 282–283
syntax errors, 65
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simulators, 3–6, 13
advantages, 5–6, 266
prototyping hardware, 6
using to test, 5

subroutines, 44, 53, 76

teaching (see RobotBASIC, as a teaching tool)

user interface, 212 

variables, 34–35
vector graphics, 121
virtual ports, 286–288
vision, 27

wheel encoders, 268
wheel (motor) slip, 229, 235
wireless communication, 279, 288, 

290, 292
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