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Preface

The Colloquium on Structural Information and Communication Complexity
(SIROCCO) is an annual meeting focused on the relationship between algo-
rithmic aspects of computing and communication. Over its 14 years of
existence, SIROCCO has become an acknowledged forum bringing together spe-
cialists interested in the fundamental principles underlying the interplay between
information, communication, and computing. SIROCCO covers topics such as
distributed computing, high-speed networks, interconnection networks, mobile
computing, optical computing, parallel computing, sensor networks, wireless net-
works, and autonomous robots. Its topics of interest include communication com-
plexity, distributed algorithms and data structures, information dissemination,
mobile agent computing, models of communication, network topologies, routing
protocols, sense of direction, structural properties, and selfish computing.

SIROCCO 2007 was held in Castiglioncello (LI), Italy, June 5–8, 2007. The
previous 13 SIROCCO colloquia took place in Ottawa (1994), Olympia (1995),
Siena (1996), Ascona (1997), Amalfi (1998), Lacanau-Océan (1999), L’Aquila
(2000), Val de Nuria (2001), Andros (2002), Ume̊a (2003), Smolenice Castle
(2004), Mont Saint-Michel (2005), and Chester (2006).

The 66 contributions submitted to SIROCCO 2007 were subject to a thorough
refereeing process, and 23 high-quality submissions were selected for publication.
We would like to thank the authors of all the submitted papers. The excellent
quality of the final program is also due to the dedicated and careful work of the
Program Committee members. Our gratitude extends to them. We also thank
the numerous sub-referees for their valuable help.

We had four invited speakers: Hans Bodlaender (Utrecht), Luisa Gargano
(Salerno), S. Muthukrishnan (Google), and Alessandro Panconesi (Rome). We
thank them for accepting our invitation to share their insights on new develop-
ments in their areas of interest.

We would like to express our gratitude to the conference Chair Pierre Fraig-
niaud (CNRS and Paris) for his enthusiasm and invaluable consultations.

Special thanks go to the local Organizing Team of the Dipartimento di In-
formatica, Università di Pisa, and in particular to Vincenzo Gervasi.

We acknowledge the use of the EasyChair system (for handling the submission
of papers, managing the refereeing process, and generating these proceedings).

We thank the Università di Pisa, and its Dipartimento di Informatica, for
their generous support. SIROCCO 2007 was co-located with FUN 2007 and
with a meeting of the EU COST 293 action (GRAAL - Graphs and Algorithms
in Communication Networks). The two sessions of the invited talks were held
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jointly with the GRAAL meeting. We thank the Management Committee of
GRAAL, and especially their past and present Chairs Xavier Munoz and Arie
Koster, for supporting the idea of this joint event and for their generous support.

June 2007 Giuseppe Prencipe
Shmuel Zaks
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Davide Bilò
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Fast Distributed Algorithms Via Primal-Dual
(Extended Abstract)

Alessandro Panconesi

Informatica, Sapienza University
via Salaria 113, 00198 Roma, Italy

ale@di.uniroma1.it

When a trick works once, it is a trick.
If it works twice, it is a technique.

If it works three times, it is a method.

Juris Hartmanis

1 Introduction

We would like to discuss what seems to be a general methodology to develop fast
distributed algorithms for optimization problems on graphs, based on the primal-dual
schema. The kind of problems we have in mind are of the following type. We have a
synchronous, message-passing network that is to compute a global function of its own
topology. Examples of such functions are maximal independent sets, vertex and edge
colorings, small dominating sets, vertex covers and so on. Crucially, nodes only know
their neighbours and have very little or no global information. In what follows, the only
global information allowed will be n, the number of nodes in the network (or an up-
per bound on it). In this setting the running time of a protocol is given by the number
of communication rounds needed to compute the output. By the end of the algorithm
each node or edge will have decided its final status: its own color, whether or not to be
part of the dominating set etc. In many situations of interest the cost of communica-
tion is orders of magnitude larger than local computation cost, and the model provides
a rough, but quite useful, quantitative framework to develop and analyze interesting
algorithms.

The combinatorial objects that we are interested in computing are useful both on
theoretical and practical grounds. Small dominating sets for instance are the method of
choice to set up the routing infrastructure of ad-hoc networks (the so-called backbone).
Edge colorings have been repeatedly used to parallelize data transfers in distributed
architectures, and so on. Maximal independent sets on the other hand appear to be a
basic building block of many distributed algorithms.

Note the basic challenge here: If a protocol runs for t many rounds, each node will
be able to collect information only from nodes at distance t. If t is much smaller than
the diameter of the network, what we are trying to do is to compute a global function of
the entire network, based on local information alone.

Distributed algorithms for graph problems is a very wide and active area. In what
follows we do not try to be complete or encyclopaedic. Rather, we focus on the issues

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 1–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Panconesi

that are immediately relevant to our topic. This means that we will not do a proper
job of acknowledging the large and relevant body of brilliant literature that exists, and
we offer our apologies in advance for this lack of completeness. The papers we cite
and the references therein provide a good entry point for the research areas we will be
discussing.

2 Distributed Algorithms Via the Primal-Dual Schema

The primal-dual schema is a very powerful methodology to develop efficient algorithms
for combinatorial optimization problems. In recent years it has been applied with good
success to NP-hard problems for which it yields many sophisticated approximation al-
gorithms with performance guarantee. The main thesis of this talk is that in general a
primal-dual algorithm exhibits certain locality properties that make it amenable to a fast,
distributed implementation. This point of view is cogently developed in the PhD disser-
tation [8] which is the basis of the discussion to follow. We shall outline the method by
discussing the example of vertex cover. The algorithm we describe is the first example
of this general methodology [6]. The algorithm was developed in the dark days when
people were interested in PRAM algorithms, but the solution is in fact fully distributed.

As it is well-known, in the vertex cover problem we are given an undirected network
and we are to compute a so-called cover, i.e. a set of vertices such that, for every edge
at least one of the two endpoints lies in the cover. Among all covers, we are interested
in computing one of the smallest possible size. When vertices have positive integer
costs we seek a cover of the smallest possible aggregate cost. This problem is NP-
hard even with unit costs. What we will do is the following: (a) develop a sequential
2-approximated algorithm for it, and then (b) show how to parallelize it efficiently by
means of a distributed implementation. Note that there are two separate issues here: to
make the process distributed and fast. To do so, one must be able to exploit the inherent
parallelism.

We begin by formulating the problem as an integer program (IP):

min
∑

v∈V

c(v) · xv (IP)

s.t xv + xu ≥ 1 ∀e = (u, v) ∈ E (1)

xv ∈ {0, 1} ∀v ∈ V (2)

The cover is defined to be the set of all vertices v such that the corresponding binary
indicator variable xv = 1. The set of constraints (1) ensure that it is indeed a cover, for
at least one endpoint for every edge must be included in it.

We now let (LP) be the standard LP relaxation obtained from (IP) by replacing the
constraints (2) by

xv ≥ 0 ∀v ∈ V (3)
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In the linear-programming dual of (LP) we associate a variable αe with constraint (1)
for every e ∈ E. The linear programming dual (D) of (LP) is then

max
∑

e∈E

αe (D)

s.t
∑

e=(u,v)∈E

αe ≤ c(v) ∀v ∈ V (4)

αe ≥ 0 ∀e ∈ E (5)

We will build a cover working with the dual variables. Note that we have a constraint of
type (4) for every node v, denoted as (4)v . Consider the following continuous process.
We let all the variables αe grow at uniform speed. Sooner or later a constraint of type
(4) will be satisfied with equality. If (4)v is the constraint we say that it becomes tight.
When (4)v becomes tight we add v to the cover that we are computing. We do this by
setting xv = 1 (initially all primal variables are set to 0). Then we freeze the values
αe of the edges incident to v. The α-values of frozen edges stop growing, so that the
constraint considered remains tight. The process continues with the remaining edges,
until all edges are frozen.

At this point we have a set of vertices C containing all vertices v such that xv = 1.
We want to show that (a) it is a cover and that (b) its size is at most twice the optimum
cost. To see why it is a cover, suppose not. But then there is an edge e = uv which is not
covered, i.e. xu = xv = 0. This means that the constraints (4)u and (4)v corresponding
to u and v are not tight and αe can continue to grow, a contradiction.

The cost of C is upper-bounded by twice the cost of the dual solution:

∑

v∈V

c(v)xv =
∑

v∈C

c(v) ≤
∑

v∈C

∑

e=(u,v)∈E

αe ≤ 2
∑

e∈E

αe.

You can think of this chain of inequalities in the following way. At the end of the
algorithm we have a value αe for every edge in the network. By doubling each αe we
have enough “money” to pay for the cost of vertices we put in C. This is true locally:
for every v ∈ C, since v is tight, the sum of the αe’s, where e is incident to v, is equal
to its cost. Since we doubled every αe, each edge e has enough cash to pay the cost
of both vertices it is incident to. Thus, twice the sum of the αe’s covers the cost of the
solution we computed.

That the solution computed is 2-approximate follows by weak duality. Weak dual-
ity states that any dual feasible solution is no more than any primal solution. That is,
denoting with z∗ the optimal value of the primal solution we have

∑

e∈E

αe ≤ z∗.

The primal is a relaxation of the original integer program and thus z∗ ≤ opt. The claim
follows.

The continuous process above can be easily turned into a discrete one that runs in
polynomial-time. The problem is how to make it both distributed and fast. It is apparent



4 A. Panconesi

that the algorithm can be simulated by a message-passing mechanism in which the
nodes exchange information in order to set the values of the α’s. The technical details
are slightly tricky, but the main idea is the following. The α’s are initialized to a small
quantum value q and then they are increased by means of synchronous jumps assuming
values of the form (1 + ε)kq. At round k vertices can verify locally if they are tight
and exchange information on which variables to freeze. The only complication is that
it is unlikley that dual values of the form (1 + ε)kq will add up exactly to c(v). The
problem is solved by relaxing the notion of tightness. A vertex v is weakly tight if
(1 − ε)c(v) ≤

∑
e=(u,v)∈E αe ≤ c(v). The solution consisting of weakly tight vertices

will be 2 + ε approximated, where ε can be as small as we want. Clearly, the smaller
the ε the higher the running time.

This algorithm and analysis are some 15 years old. Recently, the method has been
brought back to life and applied to problems that are much more complex. The first
application concerns vertex cover with capacities. Here, every node v has a budget bv

and can cover at most bv many edges. As before we are looking for the cover of smallest
cost, where covers must comply with the budget requirements. Note that here we have
not only to compute a cover, but also an edge assignment, i.e. we must specify which
node covers which edge.

The problem comes in two different flavours. In the so-called soft version, we are
allowed to put in the cover multiple copies of the same vertex, provided that we pay for
each copy. The primal-dual methodology discussed here can be applied with success to
this case. [2] gives an efficient distributed implementation of the sequential algorithm
of [5], together with another application of the method to facility location. A much
harder problem is the so-called hard version, where only one copy of each vertex is
allowed to be considered in the solution. Indeed, this problem cannot be solved quickly
in a distributed setting. Consider for instance the case of the ring, where each vertex
has a budget of 1. Then the nodes must essentially synchronize either in clockwise or
in counterclockwise order, a task that is easily seen to require linearly many rounds.
Thus one considers the so-called semi-hard case where the budget constraints can be
violated by a certain amount. An (α, β)-approximation algorithm for vertex cover with
semi-hard capacities is an algorithm that computes a set of vertices S and an edge
assignment such that (a) the cost of S is at most α · opt and (b) budgets constraints are
violated by at most a β factor (notice that opt refers to the original problem with hard
capacities). These kind of algorithms are often referred to as bi-criteria approximation
algorithms. In [3] a (2+ε, 4+ε)-approximation algorithm is given, whose running time
is polylogarithmic in the size of the input. It might happen that the algorithm is not able
to compute any solution. When this happens we have a certificate that the input instance
does not have a feasible solution to the problem with hard capacities. The analysis of
this algorithm is considerably more complex and nuanced than the original application
to vertex cover, but one might object that the method is still being applied to a problem
whose combinatorial structure is quite related. Consider then the following scheduling
problem.

We have a bipartite graph with processors and resources on the two sides of the bi-
partition, respectively. Each processor has a list of jobs to be executed. Each job comes
with its own length (processing time) and profit, and one or more time windows within
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which it is to be executed. In fact, both profit and length may vary according to the
time the job is scheduled. A processor can schedule its jobs only on the resources that
are adjacent to it in the graph. All resources are identical in the sense that a job can be
scheduled on any of the neighbouring resources. The basic constraint is that a resource
can process at most one job at any given time.

Processors that share a resource can communicate in one time step. The network is
synchronous and message-passing: a process can communicate in one time step with
all other processors with which it shares a resource.

The goal is to schedule a set of jobs in order to maximize the aggregate profit.
This very general problem is ageless and, apart from its combinatorial relevance,

finds new applications as technology changes. For instance the resources could be
internet hot spots for whose access several wireless devices are competing, they could
be shared resources in a peer-to-peer network, or they could be the result of self-
organization of a sensor network, with backbone nodes on one side of the bipartition.

It should not be hard to believe that this problem exhibits a combinatorial structure
entirely different from the covering problems seen above. Indeed, its algorithmic solu-
tion requires an entire set of new ideas already in the sequential case. It is well-known
that our scheduling problem is NP-hard. Therefore the best we can realistically hope
for is to give approximated solutions. To put things in perspective recall that the best
sequential approximation for this problem is within a factor of 2 [1]. In [7] a distributed

algorithm is given such that, for any ε > 0, it computes a
(

1
20+ε

)
-approximation in

a number of rounds that is polylogarithmic in the size of the input (when the weights
are polynomial in the size of the network). Again the solution is derived starting from a
sequential primal-dual algorithm. The basic idea is to parallelize the sequential primal-
dual algorithm presented in [1]. It might be instructive to review briefly that algorithm.
The algorithm is based on the interplay between the classical primal-dual mechanism to
manipulate the dual variables, and a stack. Jobs are sorted by increasing end times and
are pushed in this order onto the stack. For every job there is a dual constraint, which
is saturated when the job is pushed onto the stack. The dual variables of the saturated
constraint are frozen. Overlapping jobs have dual variables in common. Thus when a
job enters the stack and its dual variables are raised this affects the constraints of over-
lapping jobs. If this causes a constraint to become saturated, the corresponding job is
eliminated. The process continues with the remaining jobs (corresponding to unsatis-
fied constraints), until every constraint is satisfied. At that point every job is either in the
stack or was eliminated. Since all constraints are satisfied the solution is dual feasible.
The algorithm then computes a scheduling with the jobs in the stack as follows. It starts
a reverse process by popping jobs out of the stack. When a job is popped it is scheduled
unless it has a conflict with previosly scheduled jobs, in which case it is eliminated.
This ensures feasibility. The analysis shows that the scheduling so constructed is also
2-approximated. If this brief outline makes little sense then we have conveyed our main
point! This primal-dual algorithm is much more complex than the simple application
we discussed for vertex cover. In fact, it is also much more complex than the primal-
dual sequential algorithm that is used as the starting point of the solution for vertex
cover with semi-hard capacities. This is an illustration of the variety of applications the
primal-dual schema is capable of.
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The distributed solution mimics all this by introducing a “parallel” stack into which
jobs belonging to different processors are pushed in parallel. Jobs pushed at the same
time on the stack belong to the same “layer”. One of the main problems to solve with
this approach is to ensure that the depth of the stack, which in general can be linear in
the input size, be bounded by a polylogarithmic function in the size of the input, for the
number of steps is at least the number of push and pop operations we perform.

Already from this very rough outline the versatility of the methodology should be
apparent. The scheduling problem has a complex combinatorial structure that is very
different from the vertex covering problems we discussed. Note also that it is a maxi-
mization (as opposed to minimization) problem, a fact that carries with it several com-
plications even in the sequential case.

To summarize, the method applies with success to problems that are very different.
This provides solid evidence of the validity of the general methodology, that of deriv-
ing efficient distributed algorithms starting from a sequential primal-dual solution. The
primal-dual schema is a very powerful and versatile methodology for deriving algorith-
mic solutions, and thus the method might very well become the source for an entire
class of new, sophisticated distributed algorithms for combinatorially hard problems.
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Abstract. Efficient data gathering is an important issue in sensor net-
works. We will discuss the problem of time efficient data gathering, in
which data sensed throughout the network must be collected at a sink
node; the aim is to minimize the time needed to complete the process.
The emphasis is on some algorithmic and graph theoretical problems
arising in the area.

1 Sensor networks

Recent technological improvements have made a reality the deployment of small,
inexpensive, low-power, wireless sensors. Sensor networks are dense wireless net-
works of sensor nodes that are used to collect and disseminate environmental
data. By using wireless multihop communication, collected data are sent toward
some selected data sinks in the network. In this way individual measurements
converge to a global picture of an entire physical phenomenon.

Sensor networks constitute an important class of emerging networked sys-
tems providing diverse services to numerous important applications in industries,
transportation, manufacturing, environmental oversight, safety and security.

The deployment of a large quantity of nodes in such systems has become fea-
sible due to the availability of cheap wireless technology, and the emergence of
microsensors based on MEMS technology [9]. These nodes are generally station-
ary after deployment and the connections between them are realized by wireless
media as infrared devices or radios. The range of each radio will be much less
than the size of the entire network, so that a multihop topology will result. Be-
cause of the non–mobile nature of the sensor nodes, as well as the finite energy
resources (and therefore lifetime) of the nodes, there will be a distinct bootup
phase in which the nodes self-organize to form the network. Information pro-
cessing is allowed in a sensor network by merging sensing, signal processing, and
communication functions.

One of the most important communication primitives that has to be provided
by a sensor network is that of data gathering: In data gathering, the information
collected at sensor nodes is sent to a selected data sink node, which is responsible
of further processing for end-user queries, by a repeated use of wireless multihop
communication.

Data gathering in sensor networks received much attention in the last few
years, cfr. the surveys [1,5]. Most of the research has focused on the problem
of reducing the energy consumption during the gathering process. However, an
other important factor to consider in data gathering applications is the delay of
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the gathering process. Indeed, the data collected by a sensor node can frequently
change, hence it is essential that data are received by the sink as soon as possible,
without being delayed by collisions [12].

2 Time Efficient Data Gathering

Here we are concerned with efficiency limits of data gathering with respect to the
time. Time performances of gathering algorithms are evaluated by considering
the simple discrete mathematical model first adopted in [6].

2.1 The Model

The sensor network is a finite collection of identical nodes. Each sensor node u
carries, after an observation period, a finite number ru of unit data packets to
be delivered to the base station (BS) s.

Nodes (including the BS) have common transmission range dT and interfer-
ence range dI . The information transmitted by a sensor becomes available to
nodes that are within its transmission range dT if these nodes are in listening
mode and they are not in the interference range dI of a third (transmitting)
sensor [2].

We assume that time is slotted and a one hop transmission consumes one time
slot (TS). The network is further assumed to be synchronous. A node can only
transmit/receive one data packet per TS.

Multiple transmissions may occur within the network in one TS under this
interference model by virtue of spatial separation. A collision happens at a node
u if two or more nodes having u in their interference range try to transmit at
the same time. However, simultaneous transmissions among pair of nodes may
occur whenever the interference model is respected.

Summarizing, the network can be represented by means of a graph where
nodes represent the sensors and an edge exists between two nodes if the two
sensors are in the range of each other; the collision–free data gathering problem
can be then stated as follows [12].

Data Gathering. Given a graph G = (V, E) and a base station s, for
each v ∈ V − {s}, schedule the multi-hop transmission of the data items
sensed at v to s so that the whole process is collision–free, and the time
when the last data is received by s is minimized.

Time–efficient gathering strategies have been studied under various assump-
tions. In the following, we briefly survey the main results on the subject.

2.2 Directional Antennas Systems

Each node is equipped with directional antennas allowing the transmission over
a distance dT . The use of directional antennas allows to select the neighbor to
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which the transmission is actually directed. In this model, a collision happens
at a node u if two or more of its neighbors try to transmit to u during the same
time slot.

In the hypothesis that each node has one packet of sensed data to deliver to
the base station, optimal algorithms for any type of networks are known [8].

Under the general assumption that any node u has an arbitrary number ru ≥ 0
of packets to be delivered to the base station, provably optimal strategies for tree
networks and an approximation algorithm with performance ratio 2 for general
networks have been proposed in [6].

The possibility of having multiple channels between adjacent nodes has been
considered in [12], where an approximation algorithm with performance ratio 2
is given for collision-free data gathering under the hypothesis that each node has
one data packet to send to the base station.

Relationships between data gathering time and transmission range, packets
size, and channel noise have also been analyzed [7].

2.3 Omni–Directional Antennas Systems

Nodes are equipped with omni–directional antennas: When a node transmits one
data packet, all its neighbours (the nodes within distance dT ) can receive while
nodes within its interference range (within distance dI , dI ≥ dT ) cannot listen
to other transmissions due to interference.

Under the assumption that no buffering is allowed during the data gathering
process (this is a reasonable assumption due to the limited data storage of each
sensor) optimal strategies are known for line and tree networks in case dI = dT

[6], [3].
In case buffering is allowed at intermediate nodes, the problem is known to be

NP-hard and an approximation algorithm with approximation factor 4 is known
[2]. Using the same model, an on-line algorithm which gives a 4-approximation
is presented in [4].

Papers [10,11] consider the time needed to gather information in conjunc-
tion with the energy spent to complete the process. They present schemes that
attempt to optimize the energy ×delay cost function.

It should be noticed that the above studies are mostly concerned with cen-
tralized algorithms requiring cooperation between nodes, which is not necessarily
compatible with the requirements of sensor networks. Therefore, when require-
ments are more stringent, these algorithms may no longer be practical. However,
they still continue to provide a lower bound on the data collection time of any
given collection schedule.

3 Open Problems

The study of time–efficient gathering poses various algorithmic and graph the-
oretical problems. Optimal or approximation algorithms have been proposed in
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the paper quoted above. However, several problems remain open in the area. In
particular the time complexity of gathering is unknown under various hypothesis.

In case of unidirectional antennas, the complexity of the problem in the general
setting, in which some nodes can also have no packets to deliver, is an open issue.
We believe gathering in this general setting is an NP-complete problem.

In case of omni–directional antennas, when intermediate buffering is possible,
the gathering problem is known to be NP-Hard. However, if no buffering is
allowed at intermediate nodes, the complexity of the problem remains unknown.
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Abstract. This paper surveys some aspects of the graph theoretic no-
tion of treewidth. In particular, we look at the interaction between dif-
ferent characterizations of the notion, and algorithms and algorithmic
applications.

1 Introduction

This paper aims at giving an overview of some aspects of the notion of treewidth.
Treewidth is a graph parameter with several applications, many algorithmic, and
some more graph theoretic.

Best known is the characterization of treewidth in terms of tree decomposi-
tions, introduced by Robertson and Seymour [71] in their fundamental graph
theoretic work on graph minors. There are a number of other, equivalent charac-
terizations of treewidth. In this short overview paper, we will look at several of
such characterizations. Many different algorithms that use or compute treewidth
use different characterizations. With each of the different characterizations, we
sketch some algorithms that exploit the characterization.

First, in Section 2, we sketch some roots of the notion of treewidth. In Sec-
tion 3, we give the definition of treewidth by means of tree decompositions,
and discuss nice tree decompositions, recursive construction of graphs, and al-
gorithms using tree decompositions, and algorithms for problems in Monadic
Second Order Logic. In Section 4, we discuss the representation as subgraph of a
chordal graph with small clique size and by elimination orderings. In Section 5,
we look at the representation with help of search games, and in Section 6 to the
notion of bramble. Graph minors are briefly discussed in Section 7.

2 Roots of Treewidth

2.1 Kirchhoff Laws and Series-Parallel Graphs

Before introducing treewidth, I would like to discuss some well known notions,
where we can find roots of the ideas that now play an important role in the
(algorithmic) theory of treewidth.

The first are the Kirchhoff laws. In a landmark paper in 1847, Kirchhoff gave
rules for computing the resistance of electrical networks. Many learn two of
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these rules in high-school. The series rule tells that if we have two resistors with
resistance R1 and R2 in series, then the resistance of the two together is R1+R2.
The parallel rule gives the formula 1

R = 1
R1

+ 1
R2

for the resulting resistance R
when the resistors are placed in parallel. See Figure 1.

R1 R2

R2

R1

Fig. 1. Resistors in series and in parallel

A network where we can compute the resistance with only the series and
parallel rule is a series-parallel graph. The following rules build all series-parallel
graphs.

– A graph with two vertices, both terminals, s and t, and a single edge {s, t}
is a series-parallel graph.

– If G1 with terminals s1, t1, and G2 with terminals s2, t2 are series-parallel
graphs, then the series composition of G1 and G2 is a series-parallel graph:
take the disjoint union, and then identify t1 and s2. s1 and t2 are the termi-
nals of the new graph.

– If G1 with terminals s1, t1, and G2 with terminals s2, t2 are series-parallel
graphs, then the parallel composition of G1 and G2 is a series-parallel graph:
take the disjoint union, and then identify s1 and s2, and identify t1 and t2;
these two vertices are the terminals of the new graph.

G1 G2

+

G1

G2

G1 G2

Fig. 2. Series and parallel composition

A commonly repeated mistake is that a graph is a series-parallel graph, if and
only if it has treewidth at most two. However, the K1,3 has treewidth one, but
cannot be build with the series and parallel composition rules. Series-parallel
graphs have treewidth at most two, and a graph is series-parallel, if and only if
each of its biconnected components is series-parallel (see [20]).

Thus, the Kirchhoff laws for resistors in parallel and resistors in series allow
to compute the resistance of a network, when it is series parallel.

Later, it was realized that many graph problems, that are NP-hard on arbi-
trary graphs, become polynomial, and often linear size solvable on series-parallel
graphs, see e.g., [30,37,49,50,56,67,70,78,79,82].
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2.2 Trees

For trees, it also has been observed long ago that many problems that are NP-
hard on arbitrary graphs have efficient (e.g., linear) time algorithms when they
are restricted to trees, see e.g. [29,33].

Graphs of bounded treewidth form a natural generalization to trees and series-
parallel graphs. Trees can be formed by gluing trees together at one vertex, and
series-parallel graphs are formed by gluing series-parallel graphs together at two
terminal vertices.

We can generalize this, by gluing graphs with some bounded number k of
terminals together. This gives e.g., k-terminal recursive graphs [84,83].

2.3 Gauss Elimination and Chordal Graphs

Consider Gauss elimination on a sparse symmetric matrix M . To a symmetric n
by n matrix M , we associate the undirected graph GM in the following natural
way. We take n vertices, v1, . . . , vn. Vertex vi represents row and column i of M .
We take an edge {vi, vj}, if and only if Mij �= 0. Now consider what happens
in one step of Gauss elimination. We eliminate one row and its corresponding
column, say i, and each pair of values Mjk and Mkj can become non-zero only
if Mij �= 0 and Mik �= 0. Translated to GM , this operation takes some vertex
vi, turns the neighborhood of vi into a clique (Mij �= 0 and Mik �= 0 implies
{vi, vj} ∈ E and {vi, vk} ∈ E), and then removes vi.

The sequence of pairs of rows and columns that are eliminated during the
Gauss elimination process can be expressed as a permutation of the vertices,
usually called elimination ordering in this context. Applying an elimination or-
dering π on a graph G = (V, E) is the process where we, in the order where
vertices v appear in π, turn the neighborhood of v into a clique, and remove v.

An important special case is when each vertex v is simplicial when it is elim-
inated: a vertex is simplicial, when its neighbors for a clique. I.e., we do not
create new non-zero entries during Gauss elimination. An elimination ordering
with each vertex simplicial at its elimination time is called a perfect elimination
ordering.

Graphs that have a perfect elimination ordering are well studied for over thirty
years, and are known as chordal graphs, or triangulated graphs. Chordal graphs
are a special form of perfect graphs. See e.g., [45] for an algorithmic and graph
theoretic survey of chordal graphs.

Chordal graphs have different equivalent characterizations, see [43,73].

– A graph is chordal, if it does not contain a chordless cycle of length at least
four.

– A graph is chordal, if it is the intersection graph of subtrees of a tree.
– A graph is chordal, if it has a perfect elimination scheme.

The representation as intersection graph of subtrees of a tree can be viewed as
a special tree decomposition. From the perfect elimination scheme representation,
we can see that we can define the class of chordal graphs as follows: a clique is
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chordal, and if we have a chordal graph G = (V, E) with W a clique in G, then
we obtain a chordal graph y adding one new vertex v to G that is incident exactly
to the vertices in W . Arnborg and Proskurowski [6], see also [1,2], define k-trees
as follows: a clique with k vertices is a k-tree, and if we have a k-tree G with W
a clique with k vertices in G, then the graph obtained by adding a new vertex
incident to W is again a k-tree. We directly see that the k-trees form a subclass
of the chordal graphs.

A graph is a partial k-tree, if it is a subgraph of a k-tree. It is well known that
a graph is a partial k-tree, if and only if it has treewidth at most k. We discuss
chordal graphs and their connection to treewidth further in Section 4

3 Tree Decompositions

Around 1980, several groups of researchers found independently notions that are
equivalent, or strongly related to treewidth. The currently most used of these is
the notion of treewidth, defined in terms of tree decompositions, introduced by
Robertson and Seymour [71].

A tree decomposition of a graph G = (V, E) is pair ({Xi | i ∈ I}, T = (I, F )),
with T = (I, F ) a tree, and with a set of vertices Xi ⊆ V associated to each
i ∈ I, called a bag, such that

–
⋃

i∈I Xi = V ,
– for all {v, w} ∈ E, there exists an i ∈ I with {v, w} ⊆ Xi, and
– for all v ∈ V , the set {i ∈ I | v ∈ Xi} induces a subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) equals
maxi∈I |Xi| − 1, and the treewidth of a graph equals the minimum width of
a tree decomposition of the graph.

The third condition of the definition can be replaced by the following, equiv-
alent condition.

– for all i1, i2, i3 ∈ I, if i2 is on the path from i1 to i3 in T , then Xi1∩Xi3 ⊆ Xi2 .

Tree decompositions of bounded width have many applications. Perhaps the
most striking one is that they allow linear or polynomial time algorithms for
problems that are NP-hard on arbitrary graphs. Such algorithms use in general
dynamic programming as main technique. They exploit the fact that ‘most’ bags
Xi in the tree decomposition are separators. In particular, some bag ir ∈ I
is taken as root of T . Now, for each bag, a table is computed. The bags in
T are processed in postorder, and to compute a table for a node i, only local
information (e.g., edges between vertices in Xi) and the tables for the bags of
the children of i are used. If v ∈ Xj for some descendant j of i, but v �∈ Xi,
then all neighbors of v are in bags that are descendants of i. This allows us to
abstract away much of ’what happens below’ i, and thus keep the amount of
information needed for and stored in a table relatively small.



Treewidth: Structure and Algorithms 15

a b

c d

e

f

g

h

a

a

a

b

b

f b b

g

d

dd

d

h
c

c

c

c

e

Fig. 3. A graph and a tree decomposition

For more details, see e.g., [6,61,80], or see [59, Chapter 10.4].
A notion related to treewidth is pathwidth, defined in terms of path decompo-

sitions, A tree decomposition ({Xi | i ∈ I}, T = (I, F )) is a path decomposition,
if T is a path. The pathwidth of a graph G is the minimum width over all its
path decompositions.

3.1 Nice Tree Decompositions

The notion of nice tree decomposition is a useful tool for the design of dynamic
programming algorithms on graphs of bounded treewidth. A tree decomposition
({Xi | i ∈ I}, T = (I, F )) is nice, if we have some node ir ∈ I as root, and then
each bag i ∈ I is of one of the following four types:

– Leaf : i is a leaf of T and |Xi| = 1.
– Join: i has two children j1 and j2 with Xi = Xj1 = Xj2 .
– Introduce: i has one child j such that there is a v with Xi = Xj ∪ {v}.
– Forget: i has one child j such that there is a v with Xj = Xi ∪ {v}.

Theorem 1. A graph G = (V, E) has treewidth at most k, if and only if it has
a nice tree decomposition of width at most k.

The use of nice tree decompositions is mainly algorithmic. When we design
(dynamic programming) algorithm to solve a certain problem on graphs with
bounded treewidth, it suffices to give methods to compute the tables for each
of the four types of nodes, and a method to obtain the desired result from the
table for the root nodes. Typically, the design of such algorithms is trivial for
Leaf nodes, almost trivial for Forget nodes, but can be quite complex for Join
and Introduce nodes. See for example [18].

3.2 Recursive Families of Graphs

Nice tree decompositions can also be seen as algebraic expressions that generate
a graph. A terminal graph is a triple (V, E, X) with (V, E) an undirected graph
and X ⊆ V an ordered set of terminals, i.e., vertices with a special role. Each
of the four types of nodes of a nice tree decomposition can be translated to an
operation on terminal graphs, as follows. Let k be given. Leaf gives as a constant
a terminal graph with one vertex that is also terminal and no edges. Join is
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the binary operation, that when applied to two terminal graphs with the same
number of terminals, yields the graph obtained by first taking the disjoint union,
and then identifying for each i, the ith terminal of both graphs. For a subset of
indices S ⊆ {1, . . . , k}, IntroduceS is the unary operation, that when given a
terminal graph (V, E, X) with at most k terminals, adds one new terminal vertex
and makes it adjacent to the ith terminal in X , for each i ∈ S. The new terminal
is assumed to be the last in the ordering. For an i ∈ {1, . . . , k + 1}, Forgeti is
the operation, that given a terminal graph (V, E, X), yields the terminal graph
(V, E, X − {vi}), with vi the ith terminal in X , i.e., the ith terminal is now no
longer considered to be a terminal.

To each bag i ∈ I, in a nice tree decomposition, we can associate the terminal
graph (Vi, Ei, Xi), with Vi the union of all bags Xj with j = i or j a descendant
of i, and Ei the set of edges in G between vertices in Vi. One can note that
the operations exactly form the graphs Gi. By ending with a number of Forget
operations, we thus can obtain:

Theorem 2. A graph G = (V, E) has treewidth at most k, if and only if (V, E, ∅)
can be formed by Leaf, Join, IntroduceS, and Forgeti operations, with
S ⊆ {1, . . . , k}, and i ∈ {1, . . . , k + 1}.

The construction shown above is a special case of a more general framework
where graphs are formed by algebraic expressions on terminal graphs. The re-
cursive families of graphs were introduced by by Borie [22], see [24,25,23]. Similar
frameworks were made by Wimer [83,84], and by Courcelle (see e.g., [31]).

3.3 Monadic Second Order Logic

A very powerful tool to establish that problems are linear time solvable on graphs
of bounded treewidth is Monadic Second Order Logic, or MSOL. MSOL is a lan-
guage in which we can express properties of graphs. We can use logic operations
(∨, ∧, ¬, ⇔, etc.), quantification over vertices, edges, sets of vertices, and sets
of edges, (∃W ⊆ V , ∀w ∈ V , ∃e ∈ E, ∀F ⊆ E, etc.), membership tests (v ∈ W ,
e ∈ F ), and incidence tests (v endpoint of e, {v, w} ∈ E).

Courcelle [31] has shown that for each problem that can be expressed in
MSOL, and each fixed k, there is a linear time algorithm that, given a graph
G of treewidth at most k, decides the problem on G. Moreover, for each MSOL
property P and fixed k, it is decidable if P holds on all (or some, or no) graphs
with treewidth at most k.

The result of Courcelle has been extended a number of times. One extension
is Counting Monadic Second Order Logic, where we add statements of the form
|W | mod k = r and |F | mod k = r, to the language, and obtain the same results
as for MSOL. In fact, Counting MSOL captures exactly the properties that can
be solved on graphs of bounded treewidth by a table-based dynamic program-
ming algorithm with O(1) bits per table. (Such algorithms can be seen as finite
state tree automata.) This was shown by Lapoire [62].

One can also extend MSOL to optimization or counting problems. For in-
stance, consider the problem of determining the minimum (or maximum) size of
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a set W ⊆ V , such that P (W ) holds, with P in MSOL with one free vertex set
variable. Many well known graph problems can be written in this format. It has
been shown by Borie et al. [25], and by Arnborg et al. [4] that such problems
can be solved in linear time on graphs of bounded treewidth. See for a further
generalization [32].

4 Chordal Graphs and Elimination Schemes

4.1 Minimal Triangulations

Consider a tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G. Suppose we
turn each bag Xi into a clique, i.e., we add an edge between each pair of non-
adjacent vertices that has a common bag. Let H be the resulting graph. H is
chordal, as H is the intersection graph of subtrees of a tree (see [43]), as for each
v, w ∈ V , v �= w: {v, w} ∈ E, if and only if the subtrees of T with vertex sets
{i ∈ I | v ∈ Xi} and {i ∈ I | w ∈ Xi} intersect. The properties of chordal graphs
and tree decompositions imply that for each clique W , there is a bag i ∈ I with
W ⊆ Xi. These are the main ingredients of the following characterization of
treewidth.

Theorem 3 (Folklore). G has treewidth at most k, if and only if G is the
subgraph of a chordal graph with maximum clique size at most k + 1.

Thus, many algorithms to compute the treewidth of a graph do not work with
tree decompositions, but instead use the somewhat easier to handle concept of
chordal graphs. A chordal supergraph H of G is called a triangulation of G. A
minimal triangulation is a triangulation that does not contain a triangulation
with fewer edges as subgraph. We also have:

Theorem 4 (Folklore). G has treewidth at most k, if and only if G has a
minimal triangulation with maximum clique size at most k + 1.

Important is the result of Bouchitté and Todinca [26,27] that shows that the
treewidth of a graph can be computed in time, polynomial in the number of
minimal separators of the graph. Several well known classes of graphs have a
polynomial number of minimal separators (e.g., permutation graphs, circular
arc graphs, weakly chordal graphs), and thus the algorithm of Bouchitté and
Todinca [26,27] gives a polynomial time solution for treewidth for these classes.
Central in this work is the notion of potential maximal clique, abbreviated pmc.
A set W ⊆ V is a pmc, if there is a minimal triangulation H with W is a
maximal clique in H . Bouchitté and Todinca show that we can list all pmc’s in
time, polynomial in the number of minimal separators, and that given these, we
can see if they can be ’composed’ together to a chordal graph with the desired
maximum clique size. See also [10,60,66].

Fomin et al. [41] and Villanger [81] have build upon the Bouchitté and Todinca
algorithm to obtain efficient exact algorithms for treewidth, using O(1.8899n)
time for graphs with n vertices.
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4.2 Elimination Orderings

The representation of chordal graphs by perfect elimination schemes also leads to
a different characterization of treewidth, in terms of permutations of the vertices.
Recall the elimination process discussed in Section 2.3: eliminating a vertex v
means that we turn the neighborhood of v into a clique and then remove v.

Suppose we have an elimination ordering π of the vertices of G = (V, E),
and suppose we eliminate the vertices in order of π. Let the width of π be the
maximum over all vertices v of the number of (not yet eliminated) neighbors of
v when v is eliminated.

Theorem 5. The treewidth of G is at most k, if and only if there is a vertex
ordering π of G with width at most k.

The representation of treewidth by vertex orderings has been exploited in several
cases. Gogate and Dechter [44] and Bachoore and Bodlaender [7] made branch
and bound algorithms to compute treewidth, that build vertex orderings from left
to right. A tabu search algorithm for treewidth, with the set of vertex orderings
as search space, was made by Clautiaux et al. [28].

A useful property is the following. Suppose we eliminate a subset of the ver-
tices W ⊆ V . Then the graph that results does not depend on the order in which
we have eliminated the vertices W ⊆ V . This property was exploited by Clauti-
aux et al. [28] to improve upon the neighborhood structure of their tabu search;
we want to avoid moving to different vertex orderings that represent the same
triangulation of G. It was also exploited by Bodlaender et al. [16] for obtaining
a practical exact algorithm for treewidth that uses dynamic programming in
the same fashion as the classic Held-Karp algorithm for TSP [51], and an exact
algorithm for treewidth using polynomial memory.

Pathwidth also has a representation with help of vertex orderings, see [57].
Many algorithms to compute the pathwidth use instead the notion of vertex sepa-
ration number, see e.g., the algorithms to compute the pathwidth of trees [38,77].

5 Search Games

Treewidth and several related notions can also be characterized in terms of search
games. In search games, there are a robber and cops that are on some vertices
(or edges) of the graph. The robber tries to escape capture by the cops, and the
cops try to catch the robber, using certain rules of capture and movement. The
parameter of interest is the minimum number of cops, such that they have a
strategy in which they always capture the robber.

The search game that models treewidth has the following rules. We only give
here an informal description, see Seymour and Thomas [75] for a formal descrip-
tion. The robber stands on a vertex, and can at each point run to another vertex
of the graph, with infinite speed. He runs along any path in the graph that does
not contain a vertex with a cop on it. Each of the cops is either on a vertex, or
in a helicopter. A cop in a helicopter can land on a vertex. The robber can
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see when the cop lands, and before its landing run to a new vertex. The cops
capture the robber when a cop lands on the vertex with the robber.

Theorem 6 (Seymour and Thomas [75]). A graph has treewidth at most k,
if and only if k + 1 cops can capture the robber.

A special form a search strategies are the monotone strategies. The idea of a
monotone search strategy is that the robber is not given positions where he
cannot move to back at later points. Seymour and Thomas also have shown that
there is always a monotone search strategy with the minimum number of cops.

A related search game with an inert robber, (i.e., the robber can only move just
before the searcher visits the vertex that he occupies), was studied by Dendris
et al. [35]. This gives again a notion that is equivalent to treewidth, also when
we require the search strategy to be monotone.

Pathwidth has a similar type of representation as a search game. In this game,
the robber is on edges, not seen by the cops. The robber is caught when there
are cops at both endpoints of its edge. It can be also explained as follows. In
a search strategy, a move can be either placing a cop on a vertex, or deleting
a cop from a vertex. Initially, each edge is contaminated. When there are cops
on both endpoints of an edge, the edge becomes cleared. However, cleared edges
become recontaminated when they have a path without vertices with cops to a
contaminated edge. The goal is to clear all edges. It can be shown that there is
always a search strategy that is progressive, or monotone, i.e., in which no edge
ever becomes recontaminated. The successive sets that contain a cop form in
fact a path decomposition. In fact, the minimum number of cops for this search
game equals the pathwidth plus one. See Kirousis and Papadimitriou [58]. See
also [38], [13, Chapter 10]. An extensive overview can be found in [11].

Several results for treewidth and pathwidth can often be as well, and some-
times easier be explained and understood when we look to the search game
characterizations. One other notable example for a notion related to treewidth
where a game characterization is of great importance is the ratcatcher algorithm
by Seymour and Thomas [76]. This algorithm computes the branchwidth of pla-
nar graphs in polynomial time. Branchwidth is strongly related to treewidth: the
treewidth and branchwidth of a graph differ by a factor of at most 1.5.

In [76], Seymour and Thomas show, with a complicated proof, that the prob-
lem of computing branchwidth on planar graphs can be transformed to the
problem of determining the sound level the ratcatcher needs to catch a rat in
the a game, where, following certain rules, the ratcatcher and rat move, and
the ratcatcher can blow a whistle which prevents the rat visiting the parts of
the graph where the whistle can be heard. This game allows an algorithm (e.g.,
using a form of dynamic programming), to determine the sound level for which
there is a winning strategy. See also [52,53,46].

An interesting application of search games for distributed systems was given
by Franklin et al. [42].
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6 Brambles

Seymour and Thomas [75] have given a characterization of treewidth with help
of a combinatorial structure called brambles. Consider a graph G = (V, E). Two
sets of vertices W1, W2 ⊆ V are said to touch, if they intersect or a vertex in W1
is adjacent to a vertex in W2. A bramble of G is a collection of mutually touching
connected subsets of G. The order of a bramble is the minimum size of a set W
that intersects each set in the bramble.

Theorem 7 (Seymour and Thomas [75]). A graph G has treewidth at least
k, if and only if it has a bramble of order at least k + 1.

See also Reed [68], and see Bellenbaum and Diestel [9] for a shorter proof of
Theorem 7.

Most of the characterizations exploit structures that give an upper bound on
the treewidth: the treewidth is the minimum width of a tree decomposition, the
minimum number of searchers, or the minimum width of an elimination ordering.
A bramble however gives a lower bound on the treewidth: the treewidth is one
smaller than the maximum order of a bramble. It should be noted however
that computing the order of a given bramble is already NP-hard, and there is
no polynomial bound on the size of a bramble that is needed to obtain the
treewidth.

Still, brambles may be a useful tool to obtain lower bounds for treewidth.
In [17], two heuristics for obtaining brambles were proposed and evaluated. It
appears that for planar graphs, and graphs that are close to being planar, good
treewidth lower bounds can be obtained in this way.

7 Graph Minors

A graph G is a minor of a graph H , if G can be obtained from H by a series
of zero or more vertex deletions, edge deletions, or edge contractions. Robertson
and Seymour have shown that each class of graphs G that is closed under taking
of minors has a finite set of graphs MG , such that a graph G belongs to G, if and
only if no graph in MG is a minor of G.

This gives an O(n3) time algorithm to test membership in a minor closed
class of graphs (see e.g., [71,72,36,39,40]). If in addition G does not contain all
planar graphs, then the graphs in G have bounded treewidth, and the minorship
test can be done in linear time. As treewidth does not increase when we take
a minor, this gives, a non-constructive algorithm to test if a given graph has
treewidth at most k, for fixed k.

An example where these results were used is the following. In [21], k-label
Interval Routing Schemes are studied. In this application, we want to route
messages through a graph. The vertices in the graph must be labeled in such a
way, that each outgoing edge is labeled with a collection of at most k intervals;
with messages forwarded on an edge when the label of the destination is in one of
these intervals. (See [21] for precise details.) For fixed k, the class of graphs with
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such a labeling scheme is closed under taking of minors, and does not contain all
planar graphs. Thus, we know a linear time algorithm to test for a given graph
whether it has a k-label interval routing scheme exists.

8 Conclusions

In addition to the characterizations of treewidth, there are also some that we
only briefly discuss here.

Habel and Kreowski [48,47] have introduced hyperedge replacement gram-
mars. See also [8]. These graph grammars rewrite a hypergraph, following cer-
tain rules. If we generalize the notion of tree decomposition to hypergraphs, by
requiring that for each hyperedge e, there must be a bag containing all vertices
in e, we have that each hyperedge replacement grammar generates hypergraphs
with bounded treewidth, and there is a hyperedge replacement grammar, gener-
ating exactly the graphs of treewidth at most k, for each k. This was shown by
Lautemann [63,64].

For each fixed k, there is a finite set of reduction rules, that, when given a
graph, reduce it to an empty graph, if and only if G has treewidth at most k, see
[3]. This leads, for each fixed k, to a linear time algorithm for recognizing the
graphs of treewidth at most k; however, it may use more than linear memory.
For k ≤ 4, this gives practical algorithms to test if the graph has treewidth at
most k, see [5,19,65,74].

From the overview above, we see that treewidth has a large number of
different, equivalent, characterizations. Different characterizations are useful
for different algorithmic applications. The interaction between graph theory
and algorithm design is an interesting, and attractive feature of the research
on treewidth. For other overviews on treewidth or related notions, see e.g.,
[1,12,13,14,15,34,54,55,68,69].
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Bost, B., Sýkora, O. (eds.) SOFSEM 2005: Theory and Practice of Computer Sci-
ence. 31st Conference on Current Trends in Theory and Practice of Computer
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Abstract. We consider the problem of periodic exploration of all nodes
in undirected graphs by using a finite state automaton called later a robot.
The robot, using a constant number of states (memory bits), must be able
to explore any unknown anonymous graph. The nodes in the graph are
neither labelled nor colored. However, while visiting a node v the robot
can distinguish between edges incident to it. The edges are ordered and
labelled by consecutive integers 1, . . . , d(v) called port numbers, where
d(v) is the degree of v. Periodic graph exploration requires that the
automaton has to visit every node infinitely many times in a periodic
manner. Note that the problem is unsolvable if the local port numbers
are set arbitrarily, see [8]. In this context, we are looking for the minimum
function π(n), such that, there exists an efficient deterministic algorithm
for setting the local port numbers allowing the robot to explore all graphs
of size n along a traversal route with the period π(n). Dobrev et al.
proved in [13] that for oblivious robots π(n) ≤ 10n. Recently Ilcinkas
proposed another port labelling algorithm for robots equipped with two
extra memory bits, see [20], where the exploration period π(n) ≤ 4n−2.
In the same paper, it is conjectured that the bound 4n − O(1) is tight
even if the use of larger memory is allowed. In this paper, we disprove
this conjecture presenting an efficient deterministic algorithm arranging
the port numbers, such that, the robot equipped with a constant number
of bits is able to complete the traversal period in π(n) ≤ 3.75n − 2 steps
hence decreasing the existing upper bound. This reduces the gap with
the lower bound of π(n) ≥ 2n − 2 holding for any robot.
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1 Introduction

We consider the task of graph exploration by a mobile entity equipped with
small (constant number of bits) memory. The mobile entity may be, e.g., an
autonomous piece of software navigating through an underlying graph of con-
nections of a computer network. The mobile entity is expected to visit all nodes
in the graph in a periodic manner. For the sake of simplicity, we call the mobile
entity a robot and model it as a finite state automaton. The task of periodically
visiting all nodes of a network is particularly useful in network maintenance,
where the status of every node has to be checked regularly.

We consider here undirected graphs that are anonymous, i.e., the nodes in
the graph are neither labelled nor colored. However, while visiting a node the
robot can distinguish between edges incident to it. At each node v the incident
edges are ordered and labelled by consecutive integers 1, . . . , d(v) called port
numbers, where d(v) is the degree of v. We will refer to port ordering as a local
orientation.

Following formalism from [20], we model robots as Mealy automata. A Mealy
automaton uses only input actions, i.e., output depends on input and the cur-
rent state. In our case, the Mealy automaton has a transition function f and
a finite number of states governing the actions of the robot. More precisely,
if the automaton enters a node v of degree d(v) through port i in state s, it
switches to state s′ and exits the node through port i′. This corresponds to
f(s, i, d(v)) = (s′, i′).

Periodic graph exploration requires that the automaton has to visit every
node infinitely many times in a periodic manner. In this paper, we are interested
in minimising the length of the exploration period. In other words, we want
to minimise the maximum number of edge traversals performed by the robot
between two consecutive visits of a generic node, in the same state and entering
the node by the same port. Budach [8] proved that no finite automaton can
explore all graphs if the local orientation is given by an adversary. In this context,
we want to determine the minimum function π(n), such that, there exists an
efficient deterministic algorithm for setting the local port numbers allowing the
robot to explore all graphs of size n along a traversal route with the period
π(n). Dobrev et al. proved in [13] that for oblivious robots π(n) ≤ 10n. Very
recently Ilcinkas proposed another port labelling algorithm for robots equipped
with two extra memory bits, see [20], with exploration period π(n) ≤ 4n − 2.
The traversal route constructed by Ilcinkas’ algorithms is based on edges of an
arbitrary spanning tree encoded neatly by the port numbers. The automaton
proposed by Ilcinkas is not oblivious but it has only three states. Moreover,
it performs periodic exploration independently of its starting position and the
initial state. In addition, if required, the robot is able to stop at the root of the
spanning tree after finishing each period of the traversal route, and wait there,
e.g., for the next wake-up message. In the same paper, Ilcinkas conjectured that
the bound 4n − O(1) is tight even if the use of larger memory is allowed.
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1.1 Our Results

We present an efficient deterministic algorithm arranging port numbers in the
graph, such that, the robot equipped with a constant number of bits is able to
accomplish each period of the traversal route in π(n) ≤ 3.75n − 2 steps. This
invalidates Ilcinkas’ conjecture and shows that the problem of determining the
minimum function π(n) remains wide open. In addition, our result reduces the
gap with the lower bound of π(n) ≥ 2n − 2 holding for any robot.1

The improvement is a consequence of the construction of the traversal route
on the basis of a very specific (rooted) spanning tree, rather than an arbitrary
tree used by Ilcinkas. The main idea resides in powering the robot in such a way
that it can recognise, or more precisely it can expect to meet, specific subtrees
in the chosen spanning tree, hence saving in the number of so-called penalties.
We say the robot pays a penalty at the node v if, starting from v, it traverses an
edge not belonging to the spanning tree.

We introduce the concept of Extended Leaves, paired Extended Leaves and
paired Leaves. An extended leaf of the spanning tree is a path of length 1 in
which one endpoint is a leaf of the tree and the other is an internal node of
the tree which has no other children than the leaf. A paired extended leaf is
an extended leaf connected at a node whose children contain at least two nodes
that are the endpoints of two extended leaves. A paired leaf is a leaf rooted at a
node whose children contain at least two leaves.

Intuitively, our arrangement of the port numbers at each vertex means once
the robot has met an extended leaf it expects to visit a paired one, and once it
meets a leaf it expects to visit a paired one. In doing so, it saves penalties at
each second, third, etc., paired extended leaf as well as at each second, third,
etc., paired leaf since it knows what the topology should be, and hence does not
have to explore further edges beyond such a leaf or extended leaf.

Our robot requires few (constant number) states allowing it to take advantage
of the specific topology of the spanning tree.

1.2 Related Work

Graph exploration by robots has recently attracted growing attention. The un-
known environment in which the robots operate is often modelled as a graph,
assuming that the robots may only move along its edges. The graph setting is
available in two different forms.

In [1,4,5,11,15], the robot explores strongly connected directed graphs
and it can move only in one pre-specified direction along each edge.
In [2,6,9,14,17,18,21], the explored graph is undirected and the agent can traverse
edges in both directions. Also, two alternative efficiency measures are adopted
in most papers devoted to graph exploration, namely, the time of completing the

1 Note that this lower bound is obtained, e.g., when the graph to be explored is a tree.
And indeed, in a full periodic exploration of a tree every edge of the tree must be
traversed at least twice.
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task [1,2,4,5,6,11,14], or the number of memory bits (states in the automaton)
available to the agent [9,12,16,17,18,19].

Graph exploration scenarios considered in the literature differ in an important
way: it is either assumed that nodes of the graph have unique labels which the
agent can recognise, or it is assumed that nodes are anonymous. Exploration of
directed graphs assuming the existence of labels was investigated in [1,11,15].
In this case, no restrictions on the agent moves were imposed, other than by
directions of edges, and fast exploration algorithms were sought. Exploration
of undirected labelled graphs was considered in [2,3,6,14,21]. Since in this case
a simple exploration based on depth-first search can be completed in time 2e,
where e is the number of edges, investigations concentrated either on further
reducing the time for an unrestricted agent, or on studying efficient exploration
when moves of the agent are restricted in some way. The first approach was
adopted in [21], where an exploration algorithm working in time e + O(n), with
n being the number of nodes, was proposed. Restricted agents were investigated
in [2,3,6,14]. It was assumed that the agent is a robot with either a restricted
fuel tank [2,6], forcing it to periodically return to the base for refuelling, or that
it is a tethered robot, i.e., attached to the base by a rope or cable of restricted
length [14]. It was proved in [14] that exploration can be done in time O(e) under
both scenarios.

Exploration of anonymous graphs by robots with limited memory presents
different types of challenges. In this case, it is impossible to explore arbitrary
graphs if no marking of nodes is allowed [8]. Hence, the scenario adopted in [4,5]
was to allow pebbles which the agent can drop on nodes to recognise already
visited ones, and then remove them and drop in other places. The authors con-
centrated attention on the minimum number of pebbles allowing efficient explo-
ration of arbitrary directed n-node graphs. (In the case of undirected graphs,
one pebble suffices for efficient exploration.) In [5], the authors compared the
exploration power of one agent with pebbles to that of two cooperating agents
without pebbles. In [4], it was shown that one pebble is enough, if the agent
knows an upper bound on the size of the graph, and Θ(log log n) pebbles are
necessary and sufficient otherwise.

In [9,12,16,17,18], the adopted measure of efficiency was the memory size of
the agent exploring anonymous graphs. In [16,18], the agent was allowed to mark
nodes by pebbles, or even by writing messages on whiteboards with which nodes
are equipped. In [9], the authors studied special schemes of labelling nodes, which
facilitate exploration with small memory. Another aspect of distributed graph
exploration by robots with bounded memory was studied in [12,19], where the
topology of graphs is restricted to trees. In [12] Diks et al. proposed a robot
requiring O(log2 n) memory bits to explore any tree with at most n nodes. They
also provided the lower bound Ω(log n) if the robot is expected to return to its
original position in the tree. Very recently the gap between the upper bound
and the lower bound was closed in [19] by Gąsieniec et al. who showed that
O(log n) bits of memory suffice in tree exploration. However it is known, see
[17], that in arbitrary graphs the number of memory bits required by any robot
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is Ω(D log d), where D is the diameter and d is the maximum degree in the
graph. In comparison, in the fully centralised model where the graph topology
is represented by a random access matrix, Reingold [22] proved recently that
SL = L, i.e., any decision problem which can be solved by a deterministic
Turing machine using logarithmic memory (space) is log-space reducible to the
USTCON (st-connectivity in undirected graphs) problem. This, e.g., proves the
existence of a robot equipped with O(log n) bits being able to explore any n-node
graph in the centralised model.

In this paper, we are interested in robots characterised by very low memory
utilisation. In fact, the robots are allowed to use only a constant number of
memory bits. This restriction permits modelling robots as finite state automata.
Budach [8] proved that no finite automaton can explore all graphs. Rollik [23]
showed later that even a finite team of finite automata cannot explore all planar
cubic graphs. This result is improved in [10], where Cook and Rackoff introduce
a powerful tool, called the JAG, for Jumping Automaton for Graphs. A JAG is
a finite team of finite automata that permanently cooperate and that can use
teleportation to move from their current location to the location of any other
automaton. However, even JAGs cannot explore all graphs [10].

1.3 Outline of the Paper

Section 2 presents the spanning tree construction that will constitute the main
route of the robot during its exploration. The same section also shows how to
assign port numbers at each vertex. Section 3 includes specification of the robot
by means of a finite state machine. Section 4 states the main result of the paper,
that is, the analytical proof of the new upper bound of 3.75n − 2 for the length
of traversal period π(n) required by robots equipped with constant memory.
Further comments on the main themes of this paper can be found in Section 5.

2 The Spanning Tree Construction and the Port
Numbering

In this section, we describe the spanning tree construction and how the port la-
belling is performed. This will define the route allowing the robot to periodically
visit all the nodes of G. During the tree construction we make use of coloring
strategies. These will be useful to analyze the length, π, of the closed walk P
adopted by our robot to visit G. However, the robot is not aware of such a
coloring.

We construct the spanning tree starting from a special subtree, from now
on called the backbone and denoted by B = (VB , EB). Procedures Color() and
Backbone_Construction() realize this structure (see Figure 1). Procedure Back-
bone_Construction() takes graph G as an input and generates a tree, the back-
bone. Later, using procedure Color(), it colors all the nodes of G. The backbone
is formed of Red and Y ellow nodes, with the property that if a path connecting
two Red nodes contains only yellow nodes, it contains exactly two of them. The
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Fig. 1. The construction of ST (G) and its labelling. The path characterised by double
lines and joining the red nodes constitutes the backbone structure. The black node is
the chosen root of ST (G).

remaining nodes are colored Green or Blue if their distance from a Red node is
1 or 2, respectively. This implies another important property of the backbone,
namely, every node outside the backbone is at distance at most two from it.

On the basis of the backbone, procedure Tree_Construction() builds the span-
ning tree of G, from now on called ST (G) = (VT , ET ) (see Figure 1). The pro-
cedure also recolors some Y ellow nodes (not having Blues as neighbors) into
Orange. Again, such a recoloring will be used only for the purpose of analysing
the length of P . Having constructed the spanning tree ST (G), we then need to
set the port numbers.

Let v be a node of a rooted tree T . We assume that the children c1, . . ., ck of
v are listed in a nonincreasing order according to the sizes of T (c1), . . ., T (ck),
where T (ci) is the subtree of T rooted in ci. The main idea is that we set the
port numbers so that the robot will explore the large subtrees at v first, followed
by Extended Leaves (at v), and then (regular) Leaves (at v), allowing it to avoid
paying penalties for most of the extended leaves and (regular) leaves. In what
follows we use dG(v) (respectively, dT (v)) to denote the degree of a node v in the
graph G (respectively, the tree T ). Procedures Set_Port() and Labelling() first
label ports on edges of the input tree and then provide a consistent labelling to
the remaining edges in G (see Figure 1).

3 The Automaton

In this section we provide a formal definition of the automaton that governs the
robot’s behavior. The automaton has eleven states, namely, I (Initial), RS (Root
Search), RB (Root Backtrack), FF (Forward), N (Normal), T (Test), B (Back-
track), L (Leaf), LB (Leaf Backtrack), E (Extended Leaf), EB (Extended Leaf
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procedure Color(node: v)
1: Node v becomes Red;
2: All nodes at distance 1 from v become Green;
3: All not yet colored nodes at distance 2 from v become Blue;

procedure Backbone_Construction(graph: G) → Tree
1: Pick an arbitrary node v ∈ V ;
2: Color(v);
3: VB = {v};
4: EB = ∅;
5: while the set of not yet colored nodes in G is not empty do
6: Pick a not yet colored node v ∈ V at distance 1 from some Blue node w1 which

is itself connected via node w2 to some Red node v′;
7: Color(v);
8: VB = VB

⋃
{w1, w2, v};

9: EB = EB

⋃
{(v′, w2), (w2, w1), (w1, v)};

10: Nodes w1 and w2 become Y ellow;
11: end while

procedure Tree_Construction(graph: G, backbone of G: B) → Tree
1: VT = VB ;
2: ET = EB;
3: for each node v ∈ V \ VT at distance 1 from a red node v′ ∈ VB do
4: VT = VT

⋃
{v};

5: ET = ET

⋃
{(v, v′)};

6: end for
7: for each node v ∈ V \ VT at distance 1 from some node v′ ∈ VT do
8: VT = VT

⋃
{v};

9: ET = ET

⋃
{(v, v′)};

10: end for
11: Each Y ellow node v not connected to any Blue node v′ by an edge (v, v′) ∈ ET

becomes Orange;

procedure Set_Port(node: v) // under assumption |T (c1)| ≥ |T (c2)| ≥ .. ≥
|T (cdT (v)−1)|
1: for each edge {v, ci} ∈ ET with i = 1, . . ., dT (v) − 1 do
2: Set the port incident to v as i + 1;
3: Set the port incident to ci as 1;
4: end for

procedure Labelling(graph: G, spanning tree of G: T )
1: Pick an arbitrary leaf in T and set it as root r;
2: Set the port on the edge {r, v} incident to the root r to 1 on both ends;
3: for each v ∈ VT \ {r} do
4: Set_Ports(v);
5: end for
6: Set the remaining ports arbitrarily but consistently with degrees of the nodes;
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Backtrack). Moreover, the automaton is powered by an extra two-bits counter
c. We also denote by d the degree of the currently visited node and by i the
entering port number.

Regardless of its starting vertex, the robot begins in state I, exiting port
number 1 to visit the nodes of the input graph G. Its first goal is to find the
right direction of the visit, i.e., from the root down to the leaves. In the worst case
this process requires a constant number of steps. For example, it can happen,
that the robot starts exploration going through a special edge e1,1, the only
edge in G with ports labeled 1 at both its endpoints. In this case the robot
has to figure out which endpoint is the root. This task is realised by checking
which endpoint is a leaf.2 Once the robot finds out which endpoint leads to the
rest of the tree, this initialisation phase is complete and the proper exploration
starts. Let v be the node to which the root is connected. The robot visits the
tree following the order of the ports from 2 to dST (v). It first goes further in a
depth-first-search manner (state T ) as long as the entering port is 1. If different,
it switches its state to L since a leaf has been discovered (recall that order of
ports leading to subtrees of an internal node reflects the sizes of the subtrees).
At this stage, the robot does not know whether such a leaf is a regular leaf or
an extended leaf. It retreats through the same edge remembering (by setting the
counter c to 1) that a leaf has been discovered, and it looks for another paired
leaf while being in state L.

If now the robot encounters another entering port 1, it updates its leaves
counter c to 2 and continues the search for more leaves. Note that, in this way
the robot does not pay a penalty (it does not go beyond the leaf) at the second
leaf. Moreover, the counter of leaves is not updated anymore, i.e., it is used to
count at most two paired leaves. As soon as the robot arrives at some node via a
port different from 1 or the whole degree of the node to which the paired leaves
are connected has been explored, it retreats further in the tree, it sets c to 0 and
switches its state to N .

Alternatively, if after visiting the first leaf the encountered port number was
not 1, the robot goes backwards in the tree, sets the leaves counter to 0, and
switches its state to E, since an extended leaf has been discovered. Now the robot
searches for extended leaves, i.e., for two consecutive entering ports set to 1.

If after the first port 1 (that is counted by c), it finds a second one, a new
extended leaf has been discovered and no penalties are paid at the two visited
nodes. However if after the first port 1, the second one is different, the robot
goes backwards switching its state to L since a regular leaf was found. Note that,
in this case, c is already set to 1. And finally, if the first entering port is not 1,
the robot retreats further in the tree while being in the state N .

The way the robot goes backwards depends on its current state, i.e., it must
take into account whether it is currently looking for the root, leaves, extended
leaves, whether it has just to leave the current subtree, or finally whether it has
to go back since the traversed edge does not belong to the spanning tree (i.e.,

2 In the case of the simple graph composed by just one edge, the first met node is
considered as the root.



34 L. Gąsieniec et al.

the robot paid a penalty). This is the reason why the robot must be equipped
with five different backward states (RB, LB, EB, N , and B respectively).

Formally, the transition function f is defined as follows. If the robot enters a
node v of degree d(v) through port i in state s with current value of the two-
bit counter c, it switches to state s′ and exits the node through port i′ with the
counter set to c′. This corresponds to f(s, i, d(v), c) = (s′, i′, c′). Please note that
function f has now four arguments in contrary to the more standard definition of
Mealy automata presented in Section 1. This change is necessary to incorporate
the introduction of the counter c.

Table 1 shows the transition function f . The first four transitions are used in
the initialisation step of the search, while the remaining ones are devoted to the
proper (periodic) graph exploration.

Table 1. The transition function f

f(I, i, d, c) =

⎧
⎨

⎩

(FF, 1, 0) if i = d = 1
(RS, 2, 0) if i = 1 & d �= 1
(T, i, 0) if i �= 1

(1)
(2)
(3)

f(FF, i, d, c) =
{

(RB, 1, 0) if d = 1
(T, 2, 0) if d �= 1

(4)
(5)

f(RS, i, d, c) =

⎧
⎨

⎩

(LB, 1, 1) if i = d = 1
(T, 2, 0) if i = 1 & d �= 1
(RB, i, 0) if i �= 1

(6)
(7)
(8)

f(RB, i, d, c) = (FF, 1, 0) (9)

f(T, i, d, c) =

⎧
⎨

⎩

(LB, 1, 1) if i = d = 1
(T, 2, 0) if i = 1 & d �= 1
(B, i, 1) if i �= 1

(10)
(11)
(12)

f(B, i, d, c) =
{

(N, 1, 0) if c = 0 ‖ i �= 2
(LB, 1, 1) if c �= 0 & i = 2

(13)
(14)

f(N, i, d, c) =

⎧
⎨

⎩

(FF, 1, 0) if i = 1
(N, 1, 0) if i = d �= 1
(T, i + 1, 0) if i �= 1 & i �= d

(15)
(16)
(17)

f(L, i, d, c) =

⎧
⎨

⎩

(LB, 1, 2) if i = 1
(EB, i, 1) if i �= 1 & c = 1
(B, i, 0) if i �= 1 & c �= 1

(18)
(19)
(20)

f(LB, i, d, c) =

⎧
⎨

⎩

(EB, 1, 0) if i = d = 2
(N, 1, 0) if i = d �= 2
(L, i + 1, c) if i �= d

(21)
(22)
(23)

f(E, i, d, c) =

⎧
⎪⎨

⎪⎩

(LB, 1, 1) if i = d = 1 & c = 0
(E, 2, 1) if i = 1 & d �= 1 & c = 0
(EB, 1, 2) if i = 1 & c �= 0
(B, i, c) if i �= 1

(24)
(25)
(26)
(27)

f(EB, i, d, c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(FF, 1, 0) if i = 1
(EB, 1, 0) if i �= 1 & c = 2
(N, 1, 0) if i = d �= 1 & c = 0
(E, i + 1, 0) if i �= 1 & i �= d & c = 0
(EB, 1, 0) if i = 3 & c = 1
(N, 1, 0) if i �= 1 & i �= 3 & c = 1

(28)
(29)
(30)
(31)
(32)
(33)

Theorem 1 (Correctness). Let G be a graph of size n, and let ST (G) be a
spanning tree of G constructed and labelled as previously described in Section 2.
Starting at any node of G, the robot begins in the initial state I and follows exit
port number 1. Then

(a) After at most 8 steps, the robot enters a closed walk P and then periodically
explores G forever.
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(b) Moreover, suppose that a node v is connected to k extended leaves in ST (G).
Then the robot avoids paying possible penalties at the second, third, etc. ex-
tended leaf (so it avoids 2(k − 1) penalties from these extended leaves). Sim-
ilarly, if v is connected to j paired leaves, it only pays a single penalty for
the whole set of these paired leaves.

Proof. First we show how the robot recognises the direction of the exploration
from the root towards the leaves. At the beginning the robot is in the initial state
I and follows port number 1. As shown in the first equation of the transition
function f , three different cases can occur:

– If the entering port is 1 and the entering node has degree 1 then such a node
is considered as the root since it is a leaf connected to the edge e1,1. The only
case in which it is unclear whether the considered node is the root is when
G is composed of a single special edge e1,1. In this case indeed, both nodes
can be considered indifferently as the root since the resulting exploration is
symmetric. The task is performed by switching the robot state first from I
to FF (rule 1) and then repetitively from FF to RB and vice versa (rules
4 and 9).

– If the entering port is 1 and the entering node has degree larger than 1, then
the robot has to verify whether such a node is a leaf or not (rule 2), and
this requires two steps. If a leaf is found the robot retreats and starts proper
exploration. If not, then it continues in the current direction assuming that
the proper exploration was done from the beginning.

– If the entering port is different from 1 then the direction is determined since,
by construction of ST (G), the node connected via the exiting port on the
edge is clearly a child of the node connected via the entering port. Hence,
the robot has to reverse its direction (rule 3). In fact, in the worst case we
may have to perform six steps more before the proper exploration starts. It
can happen, e.g., that the robot starts from a leaf or an extended leaf of
ST (G) for which in P no penalties are paid. However, since the robot has
just started and does not know whether the current leaf or extended leaf
is a paired one or not, it pays some extra penalties that at the successive
traversals will not be paid. Namely, it needs at most six (respectively, two)
steps to find out whether it is exploring an extended leaf (respectively, a
leaf).

Once this initialisation phase has been completed, the proper (periodic) graph
exploration starts. Apart from cases where G coincides with e1,1 and when the
“tricks” of skipping penalties at paired leaves and paired extended leaves are used,
the exploration follows the idea presented in [20]. Thus, in order to conclude the
proof we have to show that while handling the above mentioned special cases the
robot does not skip any nodes in the spanning tree and that it switches between
standard and special cases safely.

While descending in the tree, the robot is in state T until a leaf is met. At
the leaf, unless its degree is 1, a penalty is paid and the robot retreats in state
B setting the leaf counter c to 1 (rule 12). Further it goes back in state LB
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(rule 14) and, if the degree of the parent of the just visited leaf is larger than
2, it goes to the next child expecting the entering port number to be 1 (rule
23). If such a port is encountered the next leaf is found. The robot does not go
beyond the leaf; it retreats, looking for more leaves (again by applying rules 14
and 23). This saves us one penalty on each leaf like this. Since in ST (G) the
order of ports reflects the sizes of subtrees, the case when after visiting a leaf the
robot is expected to visit a larger subtree is not feasible. Hence the exploration
is correctly performed.

For the extended leaves a similar argument can be used. Once a leaf of an
extended leaf is met, the robot goes back (rule 14), it realises that it is an
extended leaf if either the parent has degree 2 or if there are no paired leaves
connected (rule 21 and 19 respectively). Further, it goes back again in the EB
state and c = 0 since it is on a path of length 2 (rule 29 or 32). Now, while being
in state E (by means of rule 31) it looks for paired extended leaves represented
by two consecutive entering ports labelled by 1 (i.e., another path of length 2).
If this happens (rules 31 and 25), the robot does not pay for the penalties on
the two nodes of the found paired extended leaf. Again, by the construction of
ST (G) there cannot be the situation in which the second subtree is larger than an
extended leaf, hence the exploration continues in the correct way. Alternatively,
instead of another extended leaf the robot could find a smaller subtree, i.e., a
leaf (a subtree of size 1), or a penalty edge (an empty subtree). In the first case,
the robot switches its state to LB (rule 24) to retreat one edge and then starts
searching for regular leaves. In the second case the robot retreats in state N
going back to standard exploration (rules 30 or 33).

Finally, note that each time the edge e1,1 is traversed, the robot recognises
that situation and returns to the state FF (rules 15 and 28). This can be useful
if a finite number of explorations is required. In fact, another counter can be
added in order to stop the exploration of the graph after the required number
of traversals. �

Concerning the length π of P , in the next section we show, in general, how many
penalties at most can be paid by our robot.

4 Analysis

In this section, we show our upper bound on the length of the periodic explo-
ration of the graph G. Our analysis uses the coloring of the nodes of G introduced
in Section 2. Let RED be the set of Red nodes. We remind the reader that the
robot is said to pay a penalty at node v if it traverses an edge, starting from v,
that does not belong to ST (G). The main goal is to give a bound on the number
of penalties in order to prove our result.

Theorem 2. The period π(n) needed by the robot described in Section 3 to visit
a graph G of n nodes, according to the spanning tree ST (G) with the assigned
port numbering, is less than 3.75n − 2.
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Proof. Consider v ∈ RED. By construction, by removing the edges of the back-
bone connected to v, the remaining subtree T ′ rooted at v has depth at most 2.
We decompose the children of v into 3 different types (see Figure 2):

L

... ...

...

...

...

...

r

g g g g g g g g

b b b b b b b b b

p

p p

p p

p

p
...

A E

Fig. 2. The subdivision of the children of a red node. The other possible nodes con-
nected to it can only be part of the backbone structure. The p associated to a node
indicates where a penalty might be paid.

– Type L: Leaves
– Type E: Endpoints of extended leaves
– Type A: Neither leaves nor endpoints of extended leaves

Let sL(v) (resp. sE(v)) be 0 if the number of children of v of Type L (resp.
E) is 0, 1 otherwise. Let sA(v) be the number of children of v of Type A. For
all the children of type L, the robot might incur at most 1 penalty, since all
those children (if any) are paired leaves and the robot pays only at the first
one (see Section 3). For all the children of type E, the robot might incur at
most 2 penalties, since all those children (if any) are the endpoints of paired
extended leaves and the robot pays only at the first one. For children of type A,
by construction, each subtree rooted at a node of type A consists of two or more
leaves. This implies that for each subtree rooted at a node of type A the robot
might incur at most 2 penalties, i.e., one for the node of type A and the other
for the first paired leaf.

Concerning the backbone structure, let SY (respectively, SO, SR) be the num-
ber of Y ellow (resp., Orange, Red) nodes in the tree. Consider a Y ellow node w,
and its Blue children. Note that there can be at most 2 penalties in this subtree.
In fact, the Blue children of w are paired leaves in this subtree, hence the robot
does not pay penalties from the second paired leaf. Consider an Orange node
z. Note that z has no Blue children in the tree, hence there can be at most 1
penalty in this subtree (made up of z itself). Concerning Red nodes, no penalties
are paid on them, since by construction they are used with their full degree in
ST (G).

Let

SL =
∑

v∈RED

sL(v), SE =
∑

v∈RED

sE(v), SA =
∑

v∈RED

sA(v),
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and p be the number of nodes with penalties in the tree. As a consequence of
the observations above, we have

p ≤ 2SA + 2SE + SL + 2SY + SO,

n ≥ 3SA + 2SE + SL + 2SY + SO + SR.

As the backbone tree has the property that between two Red nodes there are
exactly two nodes (each of them Y ellow or Orange), we have

SY + SO = 2SR − 2.

Moreover, from the previous discussion, it also follows that

SL ≤ SR, SE ≤ SR,

because for each Red node, at most one child of type L (resp. E) is counted in
SE (resp. SL). Hence, we can bound the number of penalties with respect to the
total number of nodes as follows:

p

n
≤ 2SA + 2SE + SL + 2SY + SO

3SA + 2SE + SL + 2SY + SO + SR

≤ 2SA + 2SE + SL + 2(SY + SO)
3SA + 2SE + SL + 2(SY + SO) + SR

<
2SA + 2SE + SL + 4SR

3SA + 2SE + SL + 4SR + SR
[SY + SO = 2SR − 2]

≤ 2 · 0 + 2SR + SR + 4SR

3 · 0 + 2SR + SR + 4SR + SR
[SA ≥ 0, SE , SL ≤ SR]

≤ 7
8

.

By construction of the automaton, whenever a penalty is paid, i.e., whenever
a non-tree edge is traversed, the robot incurs another penalty because it has to
traverse again the same edge backward. As the automaton traverses every tree
edge twice (once in each direction) it follows that

π(n) = 2(n − 1) + 2p < 2n − 2 + 2 · 7
8
n = 3.75n − 2 . �

5 Conclusion

In this paper, we studied the problem of periodic graph exploration by means
of a simple robot that uses constant memory. We disproved the conjecture given
in [20] claiming that it was not possible to obtain a period less than 4n − O(1).
The new proved upper bound is in fact 3.75n − 2, hence the gap with the lower
bound of 2n − 2 is reduced. The improvement is obtained by means of a careful
construction of the route (i.e., the spanning tree) that the robot has to follow
during the graph exploration, and by designing a smart automaton (still using
constant memory) able to recognise some specific subtrees.
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The main open problem left is whether it is possible to further close the gap of
the bounds. For the tree-based approach, a more powerful robot able to recognise
more structured topologies (of a constant number of nodes) than just our paired
leaves and extended leaves seems not to be helpful in decreasing the number
of penalties. However, a modified tree construction and/or port numbering may
still lead to further improvements. Another interesting question is if there is a
better strategy than tree-based exploration.
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Abstract. A large group of autonomous, mobile entities e.g. robots ini-
tially placed at some arbitrary node of the graph has to jointly visit all
nodes (not necessarily all edges) and finally return to the initial position.
The graph is not known in advance (an online setting) and robots have to
traverse an edge in order to discover new parts (edges) of the graph. The
team can locally exchange information, using wireless communication
devices.

We compare a cost of the online and optimal offline algorithm which
knows the graph beforehand (competitive ratio). If the cost is the total
time of an exploration, we prove the lower bound of Ω(log k/ log log k)
for competitive ratio of any deterministic algorithm (using global com-
munication). This significantly improves the best known constant lower
bound. For the cost being the maximal number of edges traversed by a
robot (the energy) we present an improved (4 − 2/k)-competitive online
algorithm for trees.

1 Introduction and Our Results

We are interested in the issue of coordination of a team of k autonomous robots.
We would like the team to be driven by a distributed algorithm stored in the
local memory and executed using the local computational power of a robot.
The team’s goal is to jointly visit all nodes of an unknown, but labeled graph
G. To let the team cooperate we must allow it to exchange information about
new findings and agree upon the strategy of the exploration. We can allow full
communication scheme (global communication), yet it is more realistic to allow
only local communication. Robots are equipped with wireless radio devices with
a bounded communication radius which allows only the neighboring robots to
communicate.
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42 M. Dynia, J. �Lopuszański, and C. Schindelhauer

The team is initially placed in a node of the unknown graph G modeling the
network or e.g. an unknown terrain, where nodes correspond to the interesting
locations, and edges model the accessibility between locations. Additionally, we
assume that all edges and nodes of G are labeled and thus can be locally dis-
tinguished by a robot. A goal for the robots is to jointly visit all nodes of the
graph and finally return to the initial node. We consider two cost models. In the
first model we assume the cost measure to be the total time of the exploration
where in the second model it is the maximal energy (number of edges) used by
a robot.

It is clear that knowing the graph beforehand (offline setting), the team would
agree on the best strategy before the exploration and then fully explore the graph
without using communication at all. Intuitively, the cost of such an exploration
should be smaller than the cost needed in the online setting, where the graph is
not known in advance.

The competitive ratio is the ratio between the cost of the online and the op-
timal offline algorithm. Competitive ratio of 1 would mean that robots can effi-
ciently explore even though the “map of the graph” is not known. In fact, for the
time model we show that this ratio is significantly larger even assuming the global
communication (see Sect. 3). We show the lower bound of Ω (log k/ log log k) for
the competitive ratio of any deterministic graph exploration algorithm using
k robots. This is a significant improvement comparing to the constant factor
bounds known so far. For the energy model (Sect. 4) we show the (4 − 2/k)-
competitive algorithm which explores trees and uses strictly local communication
(in fact robots communicate only in the root of a tree).

2 Prior and Related Work

There are many results (e.g. [1,2,3,4,5,6]) concerning exploration of a graph using
small number of robots. Authors of [5] present strategies for a robot which has
to traverse all edges minimizing the number of edge traversals. They bound
competitive ratio (an overhead related to the lack of topology’s knowledge) of
their algorithms for several classes of graphs. Authors of [2] show a strategy for
two robots to explore (in polynomial time) all nodes of an unlabeled, strongly
connected, directed graph.

The real impact of robot’s cooperation can be observed by studying the al-
gorithms which use larger number of robots (k > 2). Robots can collectively
perform many tasks (e.g. black-hole search [7,8] or rendezvous [9]) but here we
focus on the problem of an exploration. Dealing with a group of robots, there
are many coordination problems e.g. gathering or pattern formation [10] which a
team might exercise during the exploration of an unknown terrain (or unlabeled
graph like in [2,11]). Those problems might arise from the sensor inaccuracy,
odometry error related to the movement or from some computational problems.
However, in many publications this is overcome assuming that either the explo-
ration concerns the network or the terrain is represented by the labeled graph
in which these problems do not occur.
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The problem of collective tree exploration is addressed in [12]. Authors present
the lower bound of 2 − 1/k for competitive ratio of an arbitrary exploration
algorithm using k robots. Additionally, they prove that if no communication is
allowed, it is not possible to explore efficiently (competitive ratio Ω(k)). Their
online algorithm for tree exploration uses global communication and achieves a
competitiveness of O(k/ log k). Additionally, in [13] we present online algorithms
for exploration of so called sparse trees and e.g. for trees D in height, which can
be embedded in 2-dimensional grids, the algorithm achieves competitive ratio of
O(

√
D). A problem with the cost model related to the maximal energy used by a

robot is addressed in [14]. Authors present the lower bound of 3/2 and distributed
8-competitive algorithm for trees which uses only local communication.

In [15] the group of simple robots (could be represented by the primitive final
automata) fills the integer grid subject to minimize the makespan. Initially, the
robots are standing outside the grid (by so called doors) and can consecutively
enter the grid, with the additional assumption that only one robot can occupy
one node. They develop optimal solution for the single-door case and O(log(k +
1))-competitive algorithm for multi-door case.

3 The Time Model

Consider an arbitrary graph G = (E, V ) with a distinguished node s ∈ V .
The team of k autonomous mobile robots starts in s, visits all nodes of G and
finally returns to s. It takes one time step for the robot to traverse an edge and
since there are many synchronized robots, there might be many edges which are
traversed in parallel by the team during one time step.

In this chapter we focus on the total time of such an exploration and further-
more we compare it to the time needed by the optimal offline algorithm. We
show that for each deterministic algorithm there exists a tree-like graph which
cannot be efficiently explored. Although there is a local communication granted
for robots we show that having even global communication does not help if we
do not know the map of the graph in advance. This means that in the worst case
no online algorithm can explore efficiently, if compared to the time needed by
the optimal offline algorithm.

First, in the Sect. 3.1 we introduce the Jellyfish tree which is used in Sect. 3.2
to prove the lower bound of Ω (log k/ log log k) for competitive ratio of an arbi-
trary deterministic exploration algorithm.

3.1 The Jellyfish Tree

Assume t > k and take some permutation σ of set 1 through k. Jellyfish tree
J(k, t, σ) consists of k subtrees (tentacles) numbered from 1 trough k, connected
by the root (see Fig. 1).

The tentacle consists of a poison of a certain size which is attached to the
single path of the length t. Each level of poison (but the first one) consists of t
nodes, all connected to the main node of the previous level. The main node is
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the one which was visited by any robot as the last one on this level. Therefore,
all nodes on the level l have to be visited before any other node on the level l+1
is visited.

Consider a team of k′ ≤ k robots positioned in the main node v on some level
of a poison. It can traverse in parallel at most k′ · t edges in t time steps. Since
there are t edges to be explored on each level, there are at most k′ additional
main nodes discovered by the team during t time steps.

Lemma 1. Assume that a team of k′ ≤ k robots explores some tentacle for t
time steps. Denote respectively by d and d′ the maximal distance to the main
node in this tentacle before and after this exploration, then d′ ≤ d + k′.

The poison contained in a tentacle has some certain total number of levels, i.e.
a size. The size of the poison contained in the i-th tentacle is defined by

sσ(i) :=
⌈

k

log k
· 1

i

⌉
,

where σ is the permutation which allows to rearrange the order of poisons. In
Sect. 3.2 the adversary defines the permutation σA for the algorithm A in such
a way, that the sizes of poisons are in the inconvenient configuration for the
algorithm.

si σ−1(k)

σ−1(1)

Poison with ID=σ−1(i)

s1
s2

JELLYFISH TREE J(t, k, σ)

poisons

t

s3

t

σ−1(2)

tentacle

main
nodes

Fig. 1. Definition of a poison and the Jellyfish tree J(t, k, σ)

3.2 The Lower Bound

Suppose that we are given an arbitrary algorithm A for k robots to explore an
arbitrary graph from the node s. Consider a large team of robots (it must be
at least log k ≥ 5) and take an arbitrarily t > k. We analyze the performance of A
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on the Jellyfish tree J(t, k, σA) rooted at s and where σA dictates an adversarial
order of poisons. Recall here, that the main nodes are visited by A as the last
nodes on certain level of a poison.

Algorithm A starts the exploration in the node s of the Jellyfish J(t, k, σA).
During the first t steps it can traverse the simple paths connecting poisons to
the root but it will not enter any poison. After t steps there are klazy ≤ k

robots positioned in s and f
(1)
j robots in the j-th tentacle. Now consider the

time interval I1 = [(t + 1), . . . , 2t] which consists of t time steps. There are at
most f

(1)
j robots which can explore the poison contained in the j-th tentacle in

I1. All other robots initially are just too far from this poison to be able to get
there within t time steps. Therefore, the value f

(1)
j upper-bounds the potential

exploration power the algorithm has within the interval.
Order the sequence f

(1)
j in the increasing order of element values. Adversary

reorders the poison’s sizes in the reverse order, such that the tentacles with the
large number of robots contain the smallest poisons. Despite A having the large
exploration power in some tentacle, it turns out that the actual poisons size is
small, and there is not much to explore. In this way the adversary makes the
algorithm waste its resources, which results in an interesting lower bound for the
algorithm efficiency.

For y(r) := t+�(2 log k)r�, there is no node at distance greater than y(1) which
is visited by a robot before the end of I1. Assume that v′ is a node at distance
t + 11 > y(1) and that it is visited during the first time interval I1. The node
v′ lies within the poison of the j-th tentacle and during the time interval there
are f

(1)
j ≥ 11 robots exploring it (from Lemma 1 we know that 10 robots does

not suffice). There are at least k/2 tentacles which contain a poison smaller than
11 and each of them is also explored by at least 11 robots (adversarial order of
poison’s size). This gives 11 · k/2 > k robots exploring the smallest tentacles
during this interval.

Now assume that at the end of the Ir−1, all nodes in the tree at distance y(r−1)

or smaller are visited by a robot. At the beginning of Ir the f
(r)
j is a number of

robots positioned in the j-th tentacle. The adversary sorts the still unexplored
poisons in the reversed order of their sizes to the order of f

(r)
j . Each such a

poison is of size greater than y(r−1) since for all smaller poisons the permutation
σA is already fixed by the reorderings made in the previous intervals.

Suppose that there is a node v′ which is visited during the interval Ir and
which lies at the distance of y(r) + 1 from the root. The node v′ is contained
in the tentacle for which A has had many robots exploring it. Certainly, by
Lemma 1, A needs much “exploration power” to rapidly explore many levels in t
time steps. To explore additional y(r) − y(r−1) levels of the j-th tentacle it needs
f

(r−1)
j ≥ y(r) − y(r−1) robots, and therefore we have

f
(r−1)
j ≥ (log k)r−1 · (2 log k − 2) .
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For i = �k/ log k · 1/(2 log k)r+1� we have si ≤ y(r) and for i′ = �k/ log k ·
1/(2 log k)r	 we have si′ ≥ y(r−1) and so there are at least

i′ − i ≥ k

log k · (2 log k)r−1 · (1 − 1/ log k)

tentacles which end between levels y(r−1) and y(r). All those tentacles have at
least f

(r−1)
j robots exploring it (because the adversary has sorted the tentacles

in a reversed order). This means that there are at least

f
(r)
j · (i′ − i) ≥ k · (2 − 4/5) > k

robots exploring the tree in the r-th round. This contradicts the fact that A uses
only k robots to explore the Jellyfish tree.

Lemma 2. At the end of the Ir time interval of the A algorithm exploring
J(t, k, σA) no node at distance greater than y(r) := t + �(2 log k)r� from s is
visited.

If the largest tentacle (containing a poison of size k/ log k) is completely explored
during IR interval, then y(R) ≥ t + k/ log k, and so R = Ω(log k/ log log k). By
the definition, each interval (but probably the last one) takes t time steps, and
therefore we can find the lower bound on the total exploration time.

Lemma 3. Algorithm A explores J(t, k, σA) (with σA being an adversarial per-
mutation of poisons) in

Ω

(
t · log k

log log k

)

time steps.

On the other hand, if the topology is known beforehand, the Jellyfish tree can
be efficiently explored.

Lemma 4. Assuming that the tree is known beforehand (i.e. t > k and σ are
known), there exists the algorithm with k robots which explores J(t, k, σ, M) in
O(t) steps.

Proof. The graph J(t, k, σA) is h := t + k/ log k in height and has at most

2tk + (tk/ log k) ·
k∑

i=1

1/i = O(t · k)

nodes. Therefore we have h = O(t) and n/k = O(t) and using e.g. the approx-
imation algorithm from [14] we can recompute the offline routes for each of k
robots so that the total exploration time is O(t). 
�

Combining the results of Lemma 3 and Lemma 4 we can state the following lower
bound on the competitive ratio of an arbitrary online exploration algorithm.
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Theorem 1. For every online collective graph exploration algorithm A using k
robots, there exists a tree for which the total time of the exploration is at least

Ω

(
log k

log log k

)

times greater than the time needed by the optimal offline algorithm.

4 Algorithm for the Energy Model

In this section we consider a tree T = (E, V ) rooted at v0 ∈ V consisting of n
uniform labeled edges and D in height, measured by the number of edges on the
longest path from v0 to a leaf. All k robots with an unique ID drawn from the
set 1, 2, . . . , k are initially placed in v0. Robots can communicate when they are
in the same node and a goal of such a team is to jointly explore the unknown
tree.

Assume that whenever a robot traverses an edge, it incurs a cost of one energy
unit. We are interested in costs of the exploration defined as the maximal energy
used by a robot. Once again we compare the cost of the online algorithm to the
cost of the optimal offline algorithm to obtain a competitive ratio. In [14] the
lower bound of 3/2 as well as the 8-competitive online algorithm exploring tree
using a team of k robots were shown. Here we improve this result by introducing
the 4−2/k-competitive algorithm. This confirms that the energy model is strictly
weaker than the time model for which the first non-constant lower bound is
presented in the previous section.

In the energy model robots do not care about an overall time of the explo-
ration. In some situations halting and waiting for a new information may be
more desirable for a robot than further exploration. This is exactly what hap-
pens in our algorithm. We have a group of k robots (R1, R2, . . . Rk) and during
a round, there is only one robot which is active. All other robots are waiting in
the root v0 of the tree. The active robot first goes to the node where the robot
active in the previous round has given up its exploration. Then it continues this
exploration for a certain number of steps, and finally returns to the root v0. The
algorithm is described in details on the Fig. 1. The “while” loop corresponds to
one round r, and there is only one robot Rid which moves during this round.
Variable hr denotes the height of the subtree visited by a robot in all rounds
from 1 through r and the variable ei holds the energy used so far by the i-th
robot.

In the r-th round, the active robot first travels to the node vr−1 at which the
previous robot stopped exploring (it takes at most hr−1 energy units). Then it
continues to traverse consecutive DFS edges (“repeat” loop) until it collects 2h
of it, where h is the height of the subtree visited by any robot (also the actual
active one) so far. During this loop the robot traverses 2hr edges and then finally
returns to v0 (which certainly takes at most hr energy units). This gives us an
upper bound of hr−1 + 3hr on the energy used by a robot during the round r.
In the first round (r = 1) the active robot is the first working robot ever, so
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Algorithm 1. PushDfs
h ← 1
r ← 1
ei ← 0 for all 1 ≤ i ≤ k

while (T is not yet explored) do
id ← argmin{ei : 1 ≤ i ≤ k}
Rid travels to vr−1

e ← 0
repeat

Rid follows a DFS step
e ← e + 1
h ← height of the visited subtree

until (e ≥ 2h)
hr ← h
vr ← actual position of Rid

Rid returns to v0 //this takes at most hr edges
eid ← eid + |path(v0, vr−1)| + 2hr + |path(vr, v0)|
r ← r + 1

end while

it uses only 0 + 3h1 energy units (we lay h0 = 0). The last round q is perhaps
shorter and it takes hq−1 + w because a robot gets to the root already during
the “repeat” loop and thus does not have to pay any extra costs for the return.

Let ei be the energy of the robot Ri after completely exploring the tree and
E =

∑k
i=1 ei be the total energy used by all robots. We have

E ≤ 3h1 +
q−1∑

r=2

(hr−1 + 3hr) + hq−1 + w = 4 ·
q−1∑

r=1

hr + w

as the upper bound for this energy. On the other hand we know that the robot
active in the round r ≤ q − 1 has done exactly 2hr steps of the DFS tour (the
last one exactly w steps), which for the whole tree takes exactly 2n energy units.
It must be that (

∑q−1
i=r 2hr) + w = 2n and thus we have

E ≤ 4n ≤ 2k · OPT

where OPT is the energy cost of the optimal offline exploration. Indeed, OPT ≥
2n/k since there aren edges and eachhas to be traversed twice by at least one robot.

Let emin = min{ei : 1 ≤ i ≤ k} and emax = max{ei : 1 ≤ i ≤ k} be
respectively the minimal and the maximal energy used by the robots Rmin and
Rmax. One tour during a round takes at most hq−1 + 3hq ≤ D + 3D = 4D
energy units of an active robot. The active robot is chosen to be the one with
the smallest energy used so far and therefore we have emax−emin ≤ 4D. Certainly
OPT ≥ 2D, because there is at least one robot which has to reach the furtherest
leaf at distance of D and return to v0. This results in the upper bound

emax − emin ≤ 2OPT .



Why Robots Need Maps 49

Knowing the span of values of the elements of the sequence ei we can use the
following upper bound on the maximal value

emax ≤
∑k

i=1 ei − (emax − emin)
k

+ (emax − emin)

and therefore we obtain

emax ≤ 2k · OPT

k
+ (1 − 1/k) · 2OPT ≤ (4 − 2/k) · OPT .

This analysis can be slightly improved (at the cost of readability) but it also
can be proved that the competitive ratio of this algorithm asymptotically con-
verges to 4.

Theorem 2. The PushDfs algorithm explores an arbitrary tree and obtains the
competitive ratio of at most 4 − 2/k for the online energy model.

5 Conclusions

We have presented the lower bound of Ω (log k/ log log k) for a competitive ratio
in the time model of the exploration. This is a significant improvement over
the recent 2 − 1/k lower bound presented in [12]. The best algorithms for trees
achieve a competitiveness of O(k/ log k) and O(

√
D) (for sparse trees) which

leaves a wide area for further research. Moreover, our result proves that the
lack of a map is essentially harmful in the time related online graph exploration
problem (and this remains even when we restrict ourself only to trees).

For the energy cost model there is an online algorithm with a constant com-
petitive ratio for trees. Using a simple algorithm a team of k robots can explore
a tree using only 4 − 2/k times the energy of the offline solution. This does not
match yet the lower bound of 3/2 presented in [14].
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Abstract. Fraigniaud et al. (2006) introduced a new measure of diffi-
culty for a distributed task in a network. The smallest number of bits of
advice of a distributed problem is the smallest number of bits of infor-
mation that has to be available to nodes in order to accomplish the task
efficiently. Our paper deals with the number of bits of advice required
to perform efficiently the graph searching problem in a distributed set-
ting. In this variant of the problem, all searchers are initially placed at
a particular node of the network. The aim of the team of searchers is to
capture an invisible and arbitrarily fast fugitive in a monotone connected
way, i.e., the cleared part of the graph is permanently connected, and
never decreases while the search strategy is executed. We show that the
minimum number of bits of advice permitting the monotone connected
clearing of a network in a distributed setting is O(n log n), where n is the
number of nodes of the network, and this bound is tight. More precisely,
we first provide a labelling of the vertices of any graph G, using a total of
O(n log n) bits, and a protocol using this labelling that enables clearing
G in a monotone connected distributed way. Then, we show that this
number of bits of advice is almost optimal: no protocol using an ora-
cle providing o(n log n) bits of advice permits the monotone connected
clearing of a network using the smallest number of searchers.

Keywords: Graph searching, Monotonicity, Bits of advice.

1 Introduction

The search problem has been widely used in the design of distributed protocols
for clearing graphs in a decentralized manner [1,6,10,11]. In the search problem,
the graph is regarded as a “contaminated” network that a team of searchers
is aiming at clearing. Initially, the whole graph is contaminated. The searchers
stand at some vertices of the graph and they are allowed to move along edges.
An edge is cleared when it is traversed by a searcher. A clear edge e is preserved
from recontamination if, for any path between e and a contaminated edge, a
searcher is occupying a vertex of this path. The search problem deals with a
sequence of moves of searchers, that satisfies: (1) initially all searchers stand at
a particular vertex of the graph, the homebase, and (2) a searcher is allowed to
move along an edge if it does not imply any recontamination. Such a sequence
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of moves, or steps, is called a search strategy. Given a connected graph G and a
vertex v0 ∈ V (G) , the search problem consists in computing, in a distributed
setting, a search strategy of G, with v0 as the homebase, and using the fewest
searchers as possible that results in all edges being simultaneously clear. The
strategy is computed online by the searchers themselves. Note that, during the
execution of a search strategy, the contaminated part of the graph never grows.
The strategy is said monotone [5,15]. Moreover, the cleared part of the graph
remains connected at any step. The strategy is said connected [1,2].

The main difference between the existing distributed protocols for clearing a
graph is the amount of knowledge about the topology of the graph that searchers
have a priori. In [1,10,11], the searchers know in advance the topology of the
network in which they are launched, and clear the network in a polynomial time.
Conversely, the protocol provided in [6] enables to clear any network without
having any a priori information about its topology. However, the clearing of the
network is connected but not monotone and it is performed in an exponential
time. Thus, not surprisingly, it appears that there is a tradeoff between the
amount of knowledge provided to the searchers and the performance of the search
strategy.

In [12], Fraigniaud et al. propose a new framework for measuring the difficulty
of a distributed task: the number of bits of advice. Given a distributed task, the
minimum number of bits of advice for this problem represents the minimum total
number of bits of information that has to be given to nodes or mobile agents
to efficiently perform the task. This approach is quantitative, i.e. it considers
the amount of knowledge without regarding what kind of knowledge is supplied.
This paper addresses the problem of the minimum number of bits of advice
permitting to solve the search problem.

1.1 Our Model

The searchers are modeled by synchronous autonomous mobile computing enti-
ties with distinct IDs. Otherwise searchers are all identical, run the same program
and use at most O(log n) bits of memory, where n is the number of nodes of the
network. A network is modeled by a synchronous undirected connected graph.
A priori, the network is anonymous, that is, the nodes are not labelled. The
deg(u) edges incident to any node u are labelled from 1 to deg(u), so that the
searchers can distinguish the different edges incident to a node. These labels are
called port numbers. Every node of the network has a zone of local memory,
whiteboard, of size O(log n) bits in which searchers can read, erase, and write
symbols. It is moreover assumed that searchers can access these whiteboards in
fair mutual exclusion. An instance of the problem consists of a couple (G, v0),
where G = (V, E) is a graph and v0 ∈ V is the homebase. An oracle [12,13] is a
function O that maps any instance (G, v0) to a function f : V → {0, 1}∗ assign-
ing a binary string, called advice, to any node of the network. The size of the
advice, i.e. the number of bits of advice, on a given instance, is the sum of the
lengths of all the strings assigned to the nodes. Intuitively, the oracle provides
additional knowledge to the nodes of the network.
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The search problem consists in designing an oracle O and a protocol P using
O, with the following characteristics. For any instance (G = (V, E), v0), any
vertex v ∈ V is provided with the string f(v), f = O(G, v0). Protocol P must
enable the optimal number of searchers to clear G starting from v0. Moreover, the
search strategy performed by searchers is computed locally. That is, the decision
of the searcher at a vertex v (moving via some specific port number, switching
its state, writing on the whiteboard) only depends on (1) the current state of the
searcher, (2) the label f(v) of the current vertex (3) the content of the current
node’s whiteboard (plus possibly the incoming port number if the searcher just
entered the node). In particular, the searchers do not know in advance in which
graph they are launched. The only information about the graph is the bit strings
available locally at each node.

1.2 Our Results

We show that the minimum number of bits of advice permitting the clearing
of any n-node graph, in a distributed setting, is O(n log n), and this bound is
tight. More precisely, on one hand, we define an oracle O and a distributed
protocol Cleaner that allow to solve the search problem for any connected n-
node graph G starting from any vertex v0 ∈ V (G). Moreover, the clearing of
G is performed in time O(n3). The searchers are modeled by automata with
O(log n) bits of memory. The nodes’ whiteboards have size O(log n). Actually,
our protocol ensures that the whiteboard will only be used in order to allow two
searchers present at the same node to exchange their states and IDs. Finally, the
number of bits of advice provided by O is O(n log n) for any n-node graph. On
the other hand, we show that this number of bits of advice is almost optimal:
no protocol using an oracle providing o(n log n) bits of advice permits to solve
the search problem.

1.3 Related Work

In many areas of distributed computing, the quality of algorithmic solutions for
a given network problem often depends on the amount of knowledge given to the
nodes of the network (see [9] for a survey). The comparison of two algorithms
with knowledge appears however to be not obvious when they are provided with
qualitatively different informations: upper bound on the size of the network [3],
the entire topology of the network [8], etc. In [12], Fraigniaud et al. introduce
the notion of bits of advice as a way to quantitatively measure the difficulty
of a distributed task. As an example, Fraigniaud et al. [12] study the amount
of knowledge that must be distributed on the vertices of the graph in order
to perform broadcast and wake-up efficiently (i.e., using a minimum number
of messages). They prove that the minimum number of bits of advice permit-
ting to perform wake-up (resp., broadcast) with a linear number of messages
is Θ(n log n) (resp., O(n)) bits. This quantitatively differentiate the difficulty of
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broadcast and wake-up. Fraigniaud et al. [13] also study the minimum number
of bits of advice that allows to efficiently explore a tree, i.e., with a better
competitive ratio than a Depth First Search.

Introduced by Parson [18], graph searching looks for the smallest number of
searchers required to clear a graph. However, in graph searching, the strategies
are not constrained to be connected nor monotone (see [4] for a survey). The
search number of the graph G, denoted s(G), is the minimum k such that there is
a search strategy for G (not necessarily monotone nor connected) using at most k
searchers that results in all edges being simultaneously clear. The graph searching
problem has been extensively studied for its practical applications and for the
close relationship between its several variants (edge-search, node-search, mixed-
search [4]) and standard graph parameters like treewidth [19] and pathwidth [4].
The problem of finding the search number of a graph has been proved to be NP-
hard [16]. According to the important Lapaugh’s result [5,15], “recontamination
does not help”. That is, for any graph G, there is a monotone search strategy
for G using at most s(G) searchers. Monotonicity plays a crucial role in graph
searching, since a monotone search strategy ensures a clearing of the graph in a
polynomial number of steps. It implies that the graph searching problem is in
NP. This result is not valid anymore, as soon as the search strategy is constrained
to be connected [20]. Several practical applications (decontamination of polluted
pipes [18], speleological rescue [7], network security...) require the search strategy
to be connected to ensure safe communications between searchers. Barrière et
al. [2] prove that, clearing a tree T in a connected way requires at most 2 s(T )−2
searchers and that this bound is tight. The better bound known in the case of
an arbitrary n-node graph G is s(G)(log n + 1) [14].

Several protocols for clearing a network in distributed setting have been pro-
posed in the literature. It has been proved that any distributed protocol clearing
an asynchronous network in a monotone connected way requires at most one
searcher more than in the synchronous case [11]. Moreover, this result remains
valid even if the topology of the network is known in advance. In [6], Blin et al.
proposed a distributed protocol that enables the optimal number of searchers
to clear any network G in a fully decentralized manner. The strategy is com-
puted online by the searchers themselves. The distributed computation must
not require knowing the topology of the network in advance. Roughly speak-
ing, their protocol ensures that searchers try every possible connected monotone
partial search strategy. Thus, whilst the search strategy eventually computed by
the searchers is monotone, failing search strategies investigated before lead to
withdrawals, and therefore to recontamination. Flocchini et al. proposed proto-
cols that address the graph searching problem in specific topologies (trees [1],
hypercubes [11], tori and chordal rings [10], etc.). For each of these classes of
graphs, the authors propose a protocol using the optimal number of searchers
for clearing G in a monotone connected way with O(log n) bits of memory and
whiteboards of O(log n) bits, that clears the graph in a polynomial time. Note
that, encoding the entire topology requires Ω(n2) bits.



Graph Searching with Advice 55

2 Distributed Search Strategy Using Little Information

This section is devoted to prove the following theorem.

Theorem 1. The search problem can be solved using O(n log n) bits of advice.

To prove it, we describe an oracle O which provides an advice of size O(n log n),
and a distributed protocol Cleaner that solve the search problem in a syn-
chronous decentralized manner. Protocol Cleaner is divided in n phases, each
one being divided in two stages of O(n2) rounds. Thus, the clearing of G is
performed in a time O(n3).

2.1 The Oracle

In this section, we describe the oracle O. For any instance (G = (V, E), v0) of the
search problem, we consider a strategy S that is solution of the problem. The
function f = O(G, v0) is defined from S. Roughly speaking, the bits of advice
supplied by O enable searchers using protocol Cleaner, to clear the vertex-set
in the same order as S. Moreover, they allow the searchers to circulate in the
cleared part of the graph avoiding recontamination. Let us define some notations.

Let n = |V | and m = |E|. The strategy S can be defined by the order in which
S clears the edges. Let (e1, · · · , em) be this order. An edge ei is smaller than an
edge ej , denoted by ei � ej , if i ≤ j. S also induces an order on the vertices of
G. For any v, w ∈ V , we say that v is smaller than w, denoted v � w, if the first
cleared edge incident to v is smaller than the first cleared edge incident to w.
Let (v0, · · · , vn−1) be this order, i.e., vi � vj if and only if i ≤ j.

For any 0 ≤ i ≤ n − 1, let fi ∈ E be the first cleared edge incident to vi. By
definition, f0 = f1 ≺ f2 · · · ≺ fn−1. For any 1 ≤ i ≤ n − 1, the parent of vi,
denoted by parent(vi), is defined as the neighbour v of vi such that, {v, vi} = fi.
Note that parent(vi) ≺ vi, and for any neighbour w of vi, fi = {parent(vi), vi} �
{w, vi}. Intuitively, for any 1 ≤ i ≤ n − 1, fi = {parent(vi), vi} is the edge by
which a searcher has arrived to clear vi. Conversely, the children of v ∈ V are
the vertices w such that v = parent(w). For any 0 ≤ i ≤ n − 1, let Ti be the
subgraph of G whose vertex-set is {v0, · · · , vi}, and the edge-set is {f1, · · · , fi}.
For any 0 ≤ i ≤ n − 1, Ti is a spanning tree of G[v0, · · · , vi], which denotes the
subgraph of G induced by {v0, · · · , vi}. Intuitively, at the phase i of the execution
of Protocol Cleaner, Ti−1 is a spanning tree of the clear part of the graph. It is
used to allow the searchers to move in the clear part, performing a DFS of Ti−1.

We now define a local labelling L(S) of the vertices of G. Again, this labelling
depends on the strategy S that is considered. Let v ∈ V (G). The label of a
vertex v consists of the following local variables: a boolean TYPEv, four integers
TCUv, TTLv, LASTPORTv, PARENTv and a list CHILDv of ordered pairs of integers.
The index will be omitted whenever this omission does not cause any confusion.
Intuitively, PARENTv and CHILDv enable the searchers to perform a DFS of a
subtree spanning the cleared part. To avoid recontamination, the searchers must
know which ports they can take or not, and the moment when such a move is
possible, i.e. the phase of the protocol when a searcher can take some port. The
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informations about the ports are carried by PARENTv, CHILDv, and LASTPORTv.
CHILDv, TCUv and TTLv carry information about phases. Moreover, if a searcher
preserves a node from recontamination, we say that this searcher guards the
node, otherwise the searcher is said free. A searcher which guards a node v will
leave v by its largest edge. Such a move will not induce any recontamination
because any other edges incident to v will have been previously cleared by free
searchers. For this task, we need to distinguish two types of node with TYPEv.

In the following we will say that a port number p of a vertex v (resp., the edge
incident to v, corresponding to p) is labelled if either there exists � ≤ n − 1 such
that (p, �) ∈ CHILDv, or p = LASTPORTv, or p = PARENTv. Note that an edge may
have two different labels, or may be unlabelled at one of its ends, and labelled
at the other, or unlabelled at both ends. Let 0 ≤ i ≤ n − 1 be the integer such
that v = vi. Let e be the largest edge incident to v that is not in E(Tn−1), and
let f be the largest edge incident to v that is not in (Tn−1) ∪ {e}.

– PARENTv is the port number of v leading to parent(v) through an edge of
E(Tn−1) (we set PARENTv0 = −1).

– CHILDv is a list of ordered pairs of integers. Let 1 ≤ p ≤ deg(v) and 0 < j ≤
n− 1. (p, j) ∈ CHILDv if and only if v = parent(vj) and p is the port number
of v leading to vj . In the following, CHILDv(j) denotes the port number p of
v such that (p, j) ∈ CHILDv.

– TYPEv is a boolean variable. It equals 0 if the largest edge incident to v
belongs to Tn−1. Otherwise, the variable TYPEv equals 1. In the following
we will say that a vertex is of type 0 (resp., type 1) if TYPEv = 0 (resp.,
TYPEv = 1). Roughly, a vertex is of type 0 if, in S, the searcher cleared the
last uncleared incident edge to v, in order to reach a new vertex which was
still uncleared.
the last incident edge to reach a new vertex that was not occupied yet.

– LASTPORTv = −1 if TYPEv = 0, else LASTPORTv is the port number corre-
sponding to e.

– TCUv (Time to Clean Unlabelled port), represents the phase when the free
searchers must clear all the unlabelled ports of v. Case TYPEv = 0: if e does
not exist, then TCUv = −1, else TCUv is the largest k such that fk−1 � e.
Case TYPEv = 1: if f does not exist, then TCUv = −1, else TCUv is the largest
k such that fk−1 � f .

– TTLv (Time To Leave), represents the phase when, a searcher that guards v
will leave v. Case TYPEv = 0: TTLv = j such that vj is the largest child of v.
Case TYPEv = 1: TTLv is the largest k such that fk−1 ≤ e.

We now define the bits of advice O(G, v0) provided by oracle O to G, using
the labelling L(S). For any 0 ≤ i ≤ n − 1,
O(G, v0)(vi) = (i, n, TYPEvi , PARENTvi , LASTPORTvi , TCUvi , TTLvi , CHILDvi).

The following lemma follows obviously from the definition of the oracle.

Lemma 1. For any n-node graph, O provides O(n log n) bits of advice.
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2.2 The Protocol Cleaner

In this section, we define a distributed protocol Cleaner using the oracle O, that
enables to clear any n-node synchronous network G starting from the homebase
v0. Protocol Cleaner is formally described in Figures 1 and 2.

Let us roughly describe our protocol. Our searchers can be in seven different
states: dfs test, dfs back, clear unlabelled, clear unlabelled back,
clear, wait, guard. Initially, all searchers stand at v0. Each of them reads n on
the label O(G, v0)(v0) of v0 to initialize their counters. Then the searcher with the
largest Id is elected to guard v0 and switches to state guard, the other searchers
become free and switch to state dfs test. After the phase 1 ≤ i ≤ n − 1, our
protocol ensures the following. (1) A subgraph G′ of G[v0, · · · , vi] containing Ti

as a subgraph is cleared. (2) For any vertex v of the border of G′, i.e. v is incident
to an edge in E(G′) and an edge of E(G) \E(G′), one searcher is guarding v (in
state guard). (3) Any other searcher is free and stand at a vertex of G′.

During the first stage of the phase i + 1, the free searchers are aiming
at clearing the unlabelled edges of those vertices v of V (G[v0, · · · , vi]) such that
the largest unlabelled edge e incident to v satisfies fi ≺ e ≺ fi+1. Note that
such an edge e belongs to E(G[v0, · · · , vi]). For this purpose, any free searcher
performs a DFS of Ti thanks to the labels PARENT and CHILD. The searcher is in
state dfs test if it goes down in the tree, in state dfs back otherwise.

During this DFS, if the searcher meets a vertex vj (j ≤ i) labelled in such a
way that TCUvj = i + 1 (recall that TCU means Time to Clear Unlabelled edges),
then the searcher clears all unlabelled edges of vj and then it carries on the
DFS. To clear the unlabelled edges of vj , the searcher take successively, in the
order of the port numbers, all the unlabelled ports. It takes each unlabelled
port back and forth, in state clear unlabelled for the first direction, and
clear unlabelled back for the second direction.

Moreover, during this stage, any searcher that is guarding a vertex labelled in
such a way that (TYPE = 1 and TCU < TTL = i+1) is aiming at clearing, in state
clear, the edge corresponding to the port number LASTPORT of the considered
vertex (recall that TTL means Time To Leave). Protocol Cleaner ensures that
the corresponding port number corresponds to the single contaminated edge
incident to the considered vertex at this stage.

Before the first round of the second stage of phase i + 1, the two following
properties are satisfied: (1) if there exists a vertex v such that v is labelled with
(TYPEv = 0 and TTLv = i + 1), fi+1 is the only contaminated edge incident to
v = parent(vi+1), and (2) for any vertex v labelled in such a way that (TYPEv = 1
and TCUv = TTLv = i + 1), the edge corresponding to LASTPORTv is the only
contaminated edge incident to v.

During the second stage of the phase i + 1, Protocol Cleaner performs
the clearing of fi+1 (incident to parent(vi+1) ∈ V (G′)) and the clearing of any
edge corresponding to port number LASTPORTvj of a vertex vj (j ≤ i) labelled in
such a way that (TYPEvj = 1 and TCUvj = TTLvj = i + 1). For this purpose, any
free searcher performs a DFS of Ti.
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Program of searcher A.

Initialisation: /* all searchers start at v0 */
Read n on O(G, v0) to initialize the counter;
if A is the searcher with the largest ID at v0 then

Switch to the state guard;
else

At the first round on the second stage of phase 1,
Switch to the state dfs test;

endif

Program of searcher A at any round of stage s ∈ {0, 1} of phase 1 ≤ i ≤ n.

/* Searcher A arrives at node vj , coming by port number p� of vj */
(corresponding to the edge {v�, vj}).

Let pfirst be the smallest unlabelled port number of vj .
pfirst = −1 if there are no such edges.
Let pnext be the smallest unlabelled port number p of vj , such that p > p�.
pnext = −1 if there are no such edges.

Let pfirstChild be the port number p of vj such that it exists 1 ≤ k ≤ n − 1 with p
being labelled CHILD(k), and for any 1 ≤ k′ < k, no port numbers of vj are labelled
CHILD(k′). pfirstChild = −1 if there are no such edges.
If pfirstChild �= −1, let firstChild denote the corresponding neighbour of vj .

Let pnextChild be the port number p of vj such that it exists � < k ≤ n − 1 with p
being labelled CHILD(k), and for any � ≤ k′ < k, no port numbers of vj are labelled
CHILD(k′). If pnextChild �= −1 , nextChild denotes the corresponding neighbour of vj .

Case:

state = dfs test

if s = 1 and there is a port p labelled CHILD(i) then
Take port p in state clear;

else if s = 0 and TCU = i then
Take port pfirst in state clear unlabelled;

else if pfirstChild �= −1 and firstChild � vi−1 then
Take port pfirstChild in state dfs test;

else Take port labelled PARENT in state dfs back;
endif

state = clear unlabelled back

if pnext �= −1 then
Take port pnext in state clear unlabelled;

else if pfirstChild �= −1 and firstChild � vi−1 then
Take port pfirstChild in state dfs test;

else Take port labelled PARENT in state dfs back;
endif

Fig. 1. Protocol Cleaner (1/2)
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state = clear unlabelled

Take port p� in state clear unlabelled back;

state = dfs back

if s = 1 and there is a port p labelled CHILD(i) then
Take port p in state clear;

else if pnextChild �= −1 and nextChild � vi−1 then
Take port pnextChild in state dfs test;

else if PARENT �= −1 then
Take port labelled PARENT in state dfs back;

else Take port CHILD(1) in state dfs test;
endif

state = clear

if vj ≺ vi or deg(vj) = 1 then
if j > 0 then

Take port labelled PARENT in state dfs back;
else Take port labelled CHILD(1) in state dfs test;
endif

else Switch to the state wait;
endif

/* Searcher that stands at node vj */

state = guard

if TYPE = 1 then
if TCU = TTL then

At the first round of the second stage of phase TTL,
Take port labelled LASTPORT in state clear;

else At the first round of the first stage of phase TTL,
take port labelled LASTPORT in state clear;

endif
else At the first round of the second stage of phase TTL

take port CHILD(TTL) in state clear;
endif

state = wait

At the last round of this phase:
if A is the searcher with the greatest ID at vj then

Switch to the state guard;
else Take port labelled PARENT in state dfs back;
endif

end

Fig. 2. Protocol Cleaner (2/2)

When the searcher meets the vertex parent(vi+1) whose a port number is
labelled CHILD(i + 1), it takes the corresponding edge in state clear. More-
over, any searcher that is guarding the vertex parent(vi+1) also takes the edge
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corresponding to CHILD(i + 1) in state clear if (TTL = i + 1 and TYPE = 0).
Finally, any searcher that is guarding a vertex labelled in such a way that (TYPE =
1 and TCU = TTC = i+1), takes the edge corresponding to port number LASTPORT
in state clear. During this stage, any searcher arriving at vi+1 waits (in state
wait) the last round of the stage if deg(vi+1) > 1, else it becomes free. During
this last round, if deg(vi+1) > 1, the searcher with largest Id that stands at vi+1
is elected to guard vi+1 while other searchers are free and take the port labelled
PARENT in state dfs back.

2.3 Sketch of Proof of Cleaner

In order to prove the correctness of our protocol we need the following notations.
A searcher is called free if it is not in state guard nor wait. For any 0 ≤ i ≤ n−1,
let Mi = {v ∈ V (G) | for any edge e incident to v, e � fi}. Mi ⊆ V (Ti) is the
set of the vertices whose all incident edge, but fi, have been cleared by S before
the step corresponding to the clearing of fi. Moreover, we set Mn = V . Thus,
after the step corresponding to the clearing of fi, no vertices in Mi need to be
guarded in the strategy S. Note that, for any 0 ≤ j ≤ n − 1, the set Mj \ Mj−1
is exactly the set of vertices v such that TTL = j. The proof of theorem 1 easily
follows from the following lemma.

Lemma 2. Let G be a connected graph and v0 ∈ V (G). Let S be a strategy that
clears the graph G, starting from v0, and using the smallest number of searchers.
Let O(G, v0) be the labelling of the vertices of G, using L(S). After the last round
of the phase i ≥ 1 of the execution of Protocol Cleaner, the cleared part of the
graph G satisfies the following:

1. any edge in {f0, · · · , fi} is clear,
2. any edge incident to vertex in Mi is clear,
3. there is exactly one searcher in state guard at any vertex of V (Ti) \ Mi,
4. any other searcher is free and stands at a vertex of Ti,
5. for any vertex v with TCU ≤ i, any unlabelled edge of v is clear.

Roughly speaking, this lemma implies that, after the phase i, those vertices
that have been all their incident edges cleared by S (the strategy from which the
oracle is defined) before the clearing of fi+1 are cleared by Protocol Cleaner as
well. Moreover, there is a searcher in state guard at any vertex of the border
of the clear part of the graph, which avoids any recontamination. The proof of
the lemma is by induction on 1 ≤ i ≤ n. One can easily check that the case
i = 1 holds. Let us assume that the result holds for 1 ≤ i ≤ n − 1. We prove
that it still holds after the last round of the phase i + 1. We consider two cases
according whether there is a free searcher or not. Due to lack of space, the proof
of this lemma is omitted, and can be found in [17].

3 Lower Bound

In this section, we show that the upper bound proved in the previous section is
almost optimal. More precisely, we prove that:
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Theorem 2. The search problem cannot be solved using only o(n log n) bits of
advice.

To prove the theorem, we build a 4n + 4-node graph Gn. Then, we prove that
any distributed protocol requires Ω(n log n) bits of advice to clear Gn in a mono-
tone connected way starting from v0 ∈ V (Gn), and using the fewest number of
searchers.

Let n ≥ 4. Let t = 2n+ 7. Let P = {v1, · · · , vt} be a path and let Kn−2, resp.
Kn, be a (n − 2)-clique, resp. a n-clique. We obtain the graph Gn by adding all
edges between vi and the vertices of Kn−2, for any 1 ≤ i ≤ t. Then, let the node
vt coincide with a vertex of Kn. Finally, let us choose one vertex of Kn−2 and
denote it by v0.

We now enumerate some technical lemmas that describe how any search strat-
egy clears Gn using the fewest number of searchers.

Lemma 3. The smallest number of searchers sufficient to clear Gn is n.

Proof. Since Gn admits Kn as a minor, we get that the smallest number of
searcher required to clear Gn is at least n. We now describe a strategy that
clears Gn using n searchers. Starting from v0, move one searcher to guard any
vertex of Kn−2. Use the two remaining searchers to clear any edge of E(Kn−2).
Then, move one remaining searcher to v1. The second remaining searcher clears
any edge between v1 and Kn−2. Then, the searcher at v1 move to v2 and the
second remaining searcher clears any edge between v2 and Kn−2. And so on,
until any vertex of P has been cleared. At this step, there are one searcher at
any vertex of Kn−2 and one searcher at vt. Finally, let us use all the searchers
to clear Kn. 
�

Lemma 4. For any optimal search strategy that clears Gn, the last vertex of Gn

to have all its incident edges clear belongs to V (Kn).

Proof. During the clearing of Kn, the n searchers must stand at vertices of Kn.
Thus, v0 is not occupied by a searcher anymore. To avoid recontamination, any
vertex of P and Kn−2 must have all its incident edges clear. 
�

Due to lack of space, the proof of the following lemma is omitted, and can be
found in [17].

Lemma 5. For any optimal search strategy that clears Gn, the first vertex of
Gn to have all its incident edges clear is v1 or v2. Moreover, at this step, any
vertex of Kn−2 is occupied by a searcher, and no vertices of {v4, · · · , vt} have
been occupied.

The following lemma aims at proving that any strategy clearing Gn using n
searchers and starting from v0 is strongly constrained.

Lemma 6. Let S be an optimal connected search strategy that clears Gn starting
from v0. For any 5 ≤ i ≤ t − 2, at the first step of S when a searcher reaches vi,
the following is satisfied:
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– any vertex in V (Kn)∪{vi+1, · · · , vt} has all its incident edges contaminated;
– there is one searcher at any vertex of Kn−2;
– any vertex in {v1, · · · , vi−2} has all its incident edges clear;
– either vi−1 has all its incident edges clear, or there is a searcher at vi−1 and

vi−1 has only one incident edge that is still contaminated. In the latter case,
the next move consists in moving a searcher along the last contaminated edge
incident to vi−1.

Proof. Let s be the first step of the strategy such that, after this step, a searcher
is occupying vi. Let us consider the situation just before this step. Since i ≥ 5, by
Lemma 5, just before step s, v1 or v2 has all its incident edges clear, and there are
one searcher at any vertex from Kn−2 to preserve them from recontamination.
Moreover, there is a vertex on the path between v1 and vi in P , that is occupied
by a searcher for preserving v1 or v2 from recontamination. Let j, 1 < j < i, be
the minimum index such that a searcher is standing at vj . Note that, for any k,
1 ≤ k < j, vk has all its incident edge clear.

First, let us show that for any � > i, v� is not occupied before step s. For
purpose of contradiction, let us assume v� is occupied. Since vi has all its in-
cident edges contaminated, for any k, j < k < �, vk has all its incident edges
contaminated. By Lemma 4 a vertex of Kn has at least one contaminated inci-
dent edge. Thus, for any k, � < k ≤ t, vk has all its incident edges contaminated,
since there are no searchers on the path between vk and Kn. Thus, there exits
k �= i such that vk has all its incident edges contaminated. Thus, the searchers at
Kn−2 cannot move, because they preserve recontamination from vi and vk. The
searcher at v� cannot move because it preserves recontamination from vi and
Kn. The searcher at vj may move at vj+1, but then could not move anymore.
Then the strategy fails, a contradiction. This proves the first item of the lemma.

Thus, before step s, there are one searcher at any vertex of Kn−2. These
searchers preserve recontamination from vi and vt. Therefore, they cannot move.
This proves the second item of the lemma.

According to the first item of the lemma, vi−1 has been reached before vi.
Since the strategy is monotone, just before the step s, a searcher is occupying
vi−1. Two cases must be considered:

– If s consists in moving a searcher occupying vi−1 along the edge {vi−1, vi},
the monotonicity of the strategy implies that either all edges incident to
vi−1 are clear, or just before step s two searchers were occupying vi−1. In
the first case, the lemma is valid. Thus, let us assume that at least one edge
incident to vi−1 is still contaminated after step s. Since i ≤ t− 2, any vertex
in V (Kn−2) ∪ {vi} is occupied by a searcher, and incident to at least two
contaminated edges: all edges incident to vi+1 and vi+2 are contaminated.
If more than one edge incident to vi−1 is contaminated, the strategy fails.
Therefore, at most one edge incident to vi−1 is contaminated, and the single
possible move consists in moving the searcher at vi−1 along this edge.

– Else, the step s consists in moving a searcher along an edge between a vertex
u of Kn−2 and vi. Since i ≤ t − 2, there must be two searchers at u just
before step s. Again, just after step s, any vertex in V (Kn−2) ∪ {vi} is
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occupied by a searcher, and incident to at least two contaminated edges: all
edges incident to vi+1 and vi+2 are contaminated. Moreover, a searcher is
occupying vi−1 and {vi−1, vi} is contaminated. If another edge incident to
vi−1 is contaminated, the strategy fails. Hence, at most one edge incident to
vi−1 is contaminated, and the single possible move consists in moving the
searcher at vi−1 along this edge.

This concludes the proof of the lemma. 
�

A local orientation of a graph is a mapping from the incidence of the graph
(between a vertex and an edge) into the port number of the graph. An instance
of the problem consists of a graph, a vertex of this graph (the homebase) and
a local orientation for this graph. Let C be the set of the following instances
{(G, v0, �o) | �o is a local orientation of G}. Let I = |C|. The following lemma
proves that any distributed protocol, using an arbitrary string of bits of advice,
can clear only some amount of the instances of C.

Lemma 7. Let P be a distributed protocol for solving the search problem. Let f
be a binary string of bits of advice provided by an oracle. Using f , P can clear
at most I ∗ ( 1

n−2 )n instances of C.

Proof. Let Ik,j be the number of instances such that (P , f) allows to a searcher
to clear j edges between vk and Kn−2. We prove that, for 5 ≤ k ≤ n + 5 and
any 1 ≤ j ≤ n − 3 , Ik,j ≤ Ik,j−1

n−j−1
n−j .

Let us consider the last step such that exactly 0 ≤ j ≤ n − 3 edges between
vk and Kn−2 are clear. By the lemma above, at this step, there is a searcher
at vk and a searcher at any vertex of Kn−2. Moreover, the remaining searcher
cannot move to a vertex of {vk+1, · · · , vt}. Let v be the vertex where this searcher
stands. Using f , protocol P chooses a port number p that the remaining searcher
must take. There are two cases according whether the remaining searcher stands
at vk or at a vertex of Kn−2.

– If the remaining searcher stands at vk, it remains n−j−1 contaminated edges
incident to this vertex and the strategy fails if p leads to vk+1. Thus, the
strategy fails in at least Ik,j

1
n−j−1 instances. Therefore, Ik,j+1 ≤ Ik,j

n−j−2
n−j−1 .

– If the remaining searcher stands at a vertex of Kn−2, it remains at most n−
3+ t−k+1 contaminated edges incident to this vertex and the strategy fails
if p leads to one vertex in {vk+1, · · · , vt}. Thus, the strategy fails in at least
Ik,j−1( t−k

n−3+t−k+1 ) instances. Hence, Ik,j ≤ Ik,j−1
n−2

t+n−2−k . To conclude,
it is sufficient to remark that, since n ≥ 4, t = 2n + 7, 1 ≤ j ≤ n − 3
and 5 ≤ k ≤ n − 5, we have n−2

t+n−2−k ≤ n−2
2n and n−j−2

n−j−1 ≥ n−3
2 . Thus,

n−2
t+n−2−k ≤ n−j−2

n−j−1 .

Hence, Ik,n−2 ≤ Ik−1,n−2
∏

j=1..n−3(
n−j−2
n−j−1 ) = Ik−1,n−2( 1

n−2 ). Using f , P can
clear at most In−5,n−2 ≤ I5,n−2( 1

n−2 )n. Since, I5,n−2 ≤ I, the lemma holds. 
�

Proof. of the Theorem 2. Let N = |V (G)| = 4n + 4. To prove the theorem, it is
sufficient to prove that for any α < 1/4, and for any oracle that provides less
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than q = αN log N bits of advice, no distributed protocol using O permit to
clear all instances of C. Let O be such an oracle. The number of functions f that
the oracle O can output for Gn is at most (q +1)2q

(
N+q

N

)
[12]. Thus, there exists

a set S ⊆ C of at least B = I
(q+1)2q(N+q

N ) instances of C for which O returns the

same string of bits of advice.
Let P be a distributed protocol that uses the oracle O for solving the search

problem. By Lemma 7, P cannot clear more than I ∗( 1
n−2 )n instances of C using

the same string of bits of advice.
To conclude, it remains to prove that B > I ∗ ( 1

n−2 )n. Indeed,

B ∗ (
(n − 2)n

I ) =
(n − 2)n

(q + 1)2q
(
N+q

N

)

Using the Stirling formula we get that for n large enough,

B ∗ (
(n − 2)n

I ) ∼ (n − 2)n

2αN log N (1 + α log N)N
∗ (

α log N

1 + α log N
)αN log N

Since N = 4n + 4, we obtain:

log[B ∗ (
(n − 2)n

I )] ∼ (1 − 4α)n log n

Since α < 1/4, we get that B > I ∗ ( 1
n−2 )n. Thus, the result holds. 
�
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Abstract. The M -renaming problem consists in providing the processes
with a new name taken from a new name space of size M . A renaming
algorithm is adaptive if the size M depends on the number of processes
that want to acquire a new name (and not on the total number n of
processes). Assuming each process proposes a value, the k-set agreement
problem allows each process to decide a proposed value in such a way
that at most k different values are decided. In an asynchronous system
prone to up to t process crash failures, and where processes can cooperate
by accessing atomic read/write registers only, the best that can be done
is a renaming space of size M = p+ t where p is the number of processes
that participate in the renaming. In the same setting, the k-set agreement
problem cannot be solved for t ≥ k.

This paper focuses on the way a solution to the renaming problem
can help solving the k-set agreement problem when k ≤ t. It has several
contributions. The first is a t-resilient algorithm (1 ≤ t < n) that solves
the k-set agreement problem from any adaptive (n + k − 1)-renaming
algorithm, when k = t. The second contribution is a lower bound that
shows that there is no wait-free k-set algorithm based on an (n + k − 1)-
renaming algorithm that works for any value of n, when k < t. This
bound shows that, while a solution to the (n + k − 1)-renaming prob-
lem allows solving the k-set agreement problem despite t = k failures,
such an additional power is useless when k < t. In that sense, in an
asynchronous system made up of atomic registers, (n + k − 1)-renaming
allows progressing from k > t to k = t, but does not allow bypassing that
frontier. The last contribution of the paper is a wait-free algorithm that
constructs an adaptive (n + k − 1)-renaming algorithm, for any value of
the pair (t, k), from a failure detector of the class Ωk

∗ (this last algorithm
is a simple adaptation of an existing renaming algorithm).

1 Introduction

Asynchronous Computability. Renaming and set agreement are among the basic
problems that lie at the core of computability in asynchronous systems prone to
process crashes. The renaming problem (introduced in [3]) consists in designing
an algorithm that allows processes (that do not crash) to obtain new names from
a new name space that is as small as possible. In the following M denotes the size
of the new name space, and a corresponding algorithm is called an M -renaming
algorithm.
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A wait-free algorithm is an algorithm that allows each process that does not
crash to terminate in a finite number of computation steps, whatever the behav-
ior of the other processes (i.e., despite the fact that all the other processes are
extremely slow, or even have crashed) [12]. It has been shown that, in a system
of n processes that can communicate through atomic read/write registers only,
the smallest new name space that a wait-free renaming algorithm can produce is
lower bounded by M = 2n − 1 [15]. More generally, in an asynchronous system
where up to t processes may crash, the smallest value of M is n+ t (the wait-free
case corresponds to t = n − 1).

A renaming algorithm is adaptive if the size of the new name space depends
only on the number of processes that ask for a new name (and not on the total
number of processes). Let p be the number of processes that participate in the
renaming. Several adaptive algorithms have been designed such that the size of
the new name space is M = 2p − 1 (e.g., [2,5]). These adaptive algorithms are
consequently optimal with respect to the size of the new name space.

Recently, with the aim of circumventing the M = 2p − 1 lower bound, re-
searchers have investigated the use of base objects stronger than atomic registers
in order to solve the renaming problem. Following this line of research, it has
been shown in [19] that, as soon as k-test&set objects can be used, the renam-
ing problem can be wait-free solved with a new name space the size of which is
M = 2p−� p

k � 1. Among the processes that access it, a k-test&set object ensures
that at least one and at most k processes obtain the value 1 (they win), while all
the other processes obtain the value 0 (they lose)2. It has also been shown in [10]
that the renaming problem can be wait-free solved with a new name space of
size M = p+k −1 as soon as k-set agreement objects can be used. According to
the base objects they use, respectively, both algorithms are optimal with respect
to the size of their new name space.

The k-set agreement problem (sometimes abbreviated k-set), has been intro-
duced in [8]. It is a paradigm of coordination problems encountered in distributed
computing and is defined as follows. Each process is assumed to propose a value.
The problem consists in designing an algorithm such that (1) each process that
does not crash decides a value (termination), (2) a decided value is a proposed
value (validity), and (3) no more than k different values are decided (agreement).
(The well-known consensus problem is nothing else than the 1-set agreement
problem.) The parameter k can be seen as the coordination degree (or the dif-
ficulty) associated with the corresponding instance of the problem. The smaller
k is, the more coordination among the processes is imposed: k = 1 means the
strongest possible coordination, while k = n means no coordination.

It has been shown in [6,15,22] that, in an asynchronous system made up of
processes that communicate through atomic registers only, and where up to t
processes may crash, there is no wait-free k-set agreement algorithm for k ≤ t.

1 The renaming algorithm presented in [19] is actually based on k-set agreement ob-
jects. But, as observed by E. Gafni, these objects can be trivially replaced by k-
test&set objects without affecting the behavior of the renaming algorithm.

2 The usual test&set object is a 1-test&set object.
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Differently, when k > t the problem can be trivially solved (a predefined set of k
processes write their proposal, and a process decides the first proposal it reads).

Randomized or failure detector-based algorithms have been proposed to cir-
cumvent the previous impossibility result [13,17,18]. An algorithm that wait-free
solves the (n − 1)-set agreement in a system of n crash-prone asynchronous pro-
cesses from (2n − 2)-renaming objects is described in [9].

Content of the Paper. The paper has three contributions. The first is motivated
by the computability power of the renaming problem with respect to the set
agreement problem. More specifically, the paper considers systems made up of n
processes. In such a system, an algorithm is t-resilient if it always preserves its
safety and liveness properties when no more than t processes commit failures.
(The notion of t-resilience boils down to the wait-free notion when t = n−1.) The
first contribution investigates the t-resilience notion to solve the k-set agreement
problem from renaming objects. It presents a t-resilient algorithm that solves
the k-set problem from an adaptive (n + k − 1)-renaming object when k =
t. Interestingly, this result generalizes a previous result presented in [9] that
also considers k = t, but only for the wait-free case (i.e., t = n − 1). So, the
algorithm presented in the paper works for any value of t. When we consider the
constructions relating renaming and set agreement that are known, we obtain the
transformations described in Figure 1. Interestingly, it follows from the proposed
algorithm (that considers k = t) that, in asynchronous shared memory systems
prone to a single process crash (t = 1), a solution to the renaming problem
allows solving the consensus problem (and vice-versa).

(n + k − 1)-renaming k-set agreement
∀t, k = t [this paper]

k = t = n − 1 [9]

∀k, t = n − 1 [10]

Fig. 1. Piecing together the transformations

The second contribution of the paper is a lower bound. While, in an asyn-
chronous shared memory system made up of atomic registers only, the k-set
agreement problem can be (trivially) solved when k > t, and is impossible to
solve when k ≤ t, the previous algorithm shows that enriching the system with
an adaptive (n + k − 1)-renaming algorithm allows progressing from k > t to
k = t. So, an important question is the following: does an (n + k − 1)-renaming
algorithm allows bypassing the k = t frontier? The second contribution of the
paper shows that such a renaming algorithm is not powerful enough to do it.
More precisely, it shows that, in an asynchronous shared memory system made
up of atomic registers and (n + k − 1)-renaming, there are values of n for which
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it is not possible to solve the k-set agreement problem when k < t. (Showing
that this is true for any value of n remains an open problem.)

The last contribution is a wait-free algorithm that builds a (p+k−1)-renaming
object from an oracle of the class Ωk

∗ . Such an oracle class has been introduced
in [21]. It generalizes the “leader” oracles (failure detectors) classes introduced
in [7,11,19,20]. Basically, such an oracle provides the processes with a primitive
leader() that always returns a set of at most k processes, and after some unknown
but finite time, returns always the same set that contains at least one correct
participating process. Interestingly, that algorithm is a simple generalization of
an (n + t)-renaming algorithm described in [4] (that is in turn an adaptation
to the shared memory setting of an (n + t)-renaming algorithm designed for
message-passing systems [3]).

Roadmap. The paper is made up of 5 sections. Section 2 describes the com-
putation model. Section 3 presents a t-resilient algorithm that solves the k-set
problem from a single (n+k−1)-renaming object. Section 4 shows that (n+k−1)-
renaming does not allow solving the k-set agreement problem when k < t, for
any value of n. Then, Section 5 presents a wait-free construction from Ωk

∗ to an
adaptive (p + k − 1)-renaming object.

2 Basic Computation Model

Process Model. The system is made up of n asynchronous processes p1, . . . , pn.
The integer i is the index of pi while its identity is kept in idi. Π denotes the
set of indexes, i.e., Π = {1, . . . , n}. Asynchronous means that there is no bound
on the time it takes for a process to execute a computation step. A process may
crash (halt prematurely). After it has crashed a process executes no step. A
process executes correctly its algorithm until it possibly crashes. The integer t,
0 ≤ t < n, denotes an upper bound on the number of processes that may crash;
t is known by the processes. A process that does not crash in a run is correct in
that run; otherwise, it is faulty in that run.

Communication Model. The processes cooperate by accessing atomic read/write
registers. Atomic means that each read or write operation appears as if it has
been executed instantaneously at some time between its begin and end events
[16]. Each atomic register is a one-writer/multi-readers (1WnR) register. This
means that a single process (statically determined) can write it. Moreover such
a register is a write-once register (the writing process writes it at most once).
Atomic registers are denoted with uppercase letters. The atomic registers are
structured into arrays. X [1..n] being such an array, X [i] denotes the register of
that array that pi only is allowed to write. A process can have local registers. Such
registers are denoted with lowercase letters with the process index appearing as
a subscript (e.g., winneri is a local register of pi).

The processes are provided with an atomic snapshot operation [1] denoted
snapshot(X), where X [1..n] is an array of atomic registers. It allows a process pi

to atomically read the whole array. This means that the execution of a snapshot()
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operation appears as it has been executed instantaneously at some point in time
between its begin and end events. Such an operation can be built from 1WnR
atomic registers [1].

The value ⊥ denotes a default value that can appear only in the algorithms
described in the paper. It always remains everywhere else unknown to the pro-
cesses.

Notions of t-resilience and Wait-freeness. An algorithm is t-resilient if it copes
with up to t process failures. In our context, this means that it satisfies its safety
and liveness (termination) properties despite up to t process crashes. A wait-free
algorithm is an (n − 1)-resilient algorithm.

Notion of Adaptive Renaming. In the renaming problem, each process pi has an
initial name denoted idi (that it is the only to know). These names are from a
very large name space, i.e., max(id1, . . . , idn) >> n. A renaming algorithm is
adaptive with respect to the size of its new name space, if that size depends on
the number of processes that actually participate in the renaming algorithm. A
process participates in an algorithm as soon as it has written an atomic register
used by that algorithm. Let us remark that an adaptive renaming algorithm
cannot systematically assign the new name i to pi. This is because, if only pn

wants to acquire a new name, the new name space is [1..n], which depends on
the number of processes instead of depending on the number of participating
processes (here a single process). To rule out this type of ineffective solution, the
following symmetry requirement is usually considered for the renaming problem
[4]: the code executed by pi with name id is the same as the code executed by
process pj with name id. This means that the process indexes can be used only
for addressing purposes.

As indicated in the introduction, if p processes participate in a renaming
algorithm based on atomic registers only, the best that can be done is an adaptive
name space of size M = 2p − 1. This means that if “today” p′ processes acquire
new names, their new names belong to the interval [1..2p′ − 1]. If “tomorrow”
p′′ additional processes acquire new names, these processes will have their new
names in the interval [1..2p − 1] where p = p′ + p′′.

3 From Adaptive (p + k − 1)-Renaming to k-Set
Agreement

Considering an asynchronous system made up of n processes, where up to t
(1 ≤ t < n) may crash and where the processes can cooperate through 1WnR
write-once atomic registers, plus an adaptive (p+ t− 1)-renaming object (where
p ≤ n is the number of participating processes), this section presents and proves
correct an algorithm that builds a t-set agreement object.

3.1 Principles and Description of the t-Resilient Algorithm

The principle of the transformation algorithm rests on two simple ideas.
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1. First, use the underlying adaptive renaming object to partition the partici-
pating processes into two groups: the processes the name of which is smaller
or equal to t (the winners); and the processes the name of which is greater
than t (the losers). So, there are at most t winners.

2. Then, direct a process pi to decide a value proposed by a winner. If pi does
not see winner processes, direct it to decide the value proposed by a process
that has proposed a value but not yet obtained a new name.

To make operational these ideas, the shared memory is composed of two arrays
of 1WnR write-once atomic registers.

– The array PROP [1..n], initialized to [⊥, . . . , ⊥], is such that PROP [i] will
contain the value (denoted vi) proposed by pi to the set agreement problem.
A process pi becomes participating as soon as PROP [i] �= ⊥.

– The aim of the array RENAMED [1..n], also initialized to [⊥, . . . , ⊥], is to
allow the processes to benefit from the renaming object. When a process pi

has obtained a new name, RENAMED [i] is set to 1 if its new name is smaller
or equal to t (pi is then a winner), while RENAMED [i] is set to 0 if pi is a
loser. It trivially follows that RENAMED [i] �= ⊥ means that pi has acquired
a new name.

The behavior of a process pi is described in Figure 2. A process pi invokes
kset proposet(vi) where vi is the value it proposes to the k-set agreement problem.
It decides a value when it executes the return(v) statement (line 09) where v is
the value it decides. The way it implements the previous design ideas can be
decomposed in two stages.

1. The first stage is composed of the lines 01-04. After it has deposited its pro-
posal (line 01), obtained a new name (line 02), and updated RENAMED [i]
accordingly (line 03), a process pi atomically reads the array RENAMED
(using the snapshot() operation) until it sees that at least n − t processes
have acquired new names (line 04).

2. The second stage, composed of the lines 05-09, is the decision stage. It pi

sees a winner, it decides the value proposed by that winner process (lines 05,
06 and 09). If pi sees no winner, it decides the value proposed by a process
that (from its point of view) has not yet obtained a new name. The proof
will show that this is a consistent rule for deciding a value.

3.2 Proof of the Algorithm

The proof considers that (1) k = t, i.e., the size of the new name space of the
underlying adaptive renaming is M = p+ t−1 when p processes participate, and
(2) at least (n− t) correct processes participate in the k-set agreement problem.

Lemma 1. The number of values that are decided is at most t, and a decided
value is a proposed value.
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operation kset propose(vi):
(1) PROP [i] ← vi;
(2) new namei ← rename(idi);
(3) RENAMED [i] ← 1 if new namei ≤ t, 0 otherwise;
(4) repeat renamedi ← snapshot(RENAMED)

until |{j : renamedi[j] �= ⊥}| ≥ (n − t);
(5) let winnersi = {j : renamedi[j] = 1};
(6) if winnersi �= ∅ then �i ← any value ∈ winnersi
(7) else let seti = {j : PROP [j] �= ⊥ ∧ renamedi[j] = ⊥};
(8) �i ← any value ∈ seti

(9) end if;
(10) return(PROP [�i])

Fig. 2. From (n + k − 1)-renaming to k-set, for k = t, ∀t (code for pi)

Proof. Let renamedi be the last value of renamedi when pi exits the repeat
loop at line 04. As a process px writes RENAMED [x] at most once, we have
renamedi[x] �= ⊥ ∧ renamedj [x] �= ⊥ ⇒ renamedi[x]=renamedj [x]. Let us
define renamedi ≤ renamedj as ∀x : renamedi[x] �= ⊥ ⇒ renamedi[x] =
renamedj [x]. Due to the atomicity property of the snapshot() operation (line 04)
we have ∀i, j: renamedi ≤ renamedj ∨ renamedj ≤ renamedi (this is some-
times called the containment property provided by the snapshot() operation).

If no process ever executes line 05, the agreement and validity property are
trivially satisfied. So, let us assume that at least one process executes line 05.
Moreover, let renamed be the smallest array value obtained by a process when
it exits the repeat loop at line 04. We consider two cases.

– ∃x: renamed[x] = 1.
In that case there is at least one winner, namely, px. Due to the containment
property, renamedi[x] = 1 for any process pi that decides. It follows from
that observation and the lines 05-06 that any process that decides, does
decide the value proposed by a winner process. As at most t processes can
obtain a new name comprised between 1 and t (lines 02-03), it follows that
there are at most t winners. Consequently, no more than t different values
can be decided.

– ∀x: renamed[x] �= 1.
In that case, let R = {x : renamed[x] = 0} (hence, all other entries of
renamed are equal to ⊥). Due to the exit condition of the repeat loop (line
04), we have |R| ≥ n − t, from which it follows that |Π \ R| ≤ t. We claim
(claim C1) that any process pi that decides, decides a value proposed by a
process py such that y ∈ Π \ R. Combining this claim with |Π \ R| ≤ t, we
conclude that at most t different values can be decided.
Proof of the claim C1. Let pi be a process that decides. It decides the value
in PROP [y] where y has been determined at line 06 or line 08.

• pi selects y at line 06. In that case, pi decides the value proposed by
a process py such that renamedi[y] = 1. As renamed ≤ renamedi
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(snapshot containment property), and renamed does not contain the
value 1, we conclude that y /∈ R, and the claim C1 follows.

• pi selects y at line 08. In that case, pi decides a value proposed by
a process py such that renamedi[y] = ⊥. We claim (claim C2) that
seti �= ∅, i.e., py does exist. As renamedi[y] = ⊥ and renamed ≤
renamedi, we conclude from the definition of R that y /∈ R, which
proves the claim C1.

Proof of the claim C2 (seti �= ∅). Let pi be a process that executes line 07.
That process is such that ∀x ∈ Π : renamedi[x] = ⊥ or 0. Let Ri = {x :
renamedi[x] = 0}, and α = |Ri|. Moreover, let r = |{x : PROP [x] �= ⊥}|

where the value of PROP [x] is the value read by pi at line 07. (See Figure 3,
where the time instants are such that τ0 < τ2 < τ3 < τ4). We show that
α < r, from which the claim follows (namely, there is a process py such that
PROP [y] �= ⊥ ∧ renamedi[y] = ⊥ when pi executes line 07).

τ0 τ1 τ2

acquired their new names

τ3

that PROP [x] �= ⊥for each x ∈ Ri

pi sees r processes px suchpi reads RENAMED [x] = 0The α processes of Ri have

τ4

Fig. 3. Timing scenario

1. Let us first consider the processes px of the set Ri (i.e., the processes px

such that renamedi[x] = 0). These processes have obtained new names
in a name space [1..M ] before time τ0. We can conclude from the text
of the algorithm that the new name obtained by each of these processes
px (a loser) is such that new namex > t (lines 02 and 03). As there are
α such processes we have t + α ≤ M .

2. Let ρ be the number of processes that started participating in the re-
naming before τ0. We have seen (item 1) that M is the greatest name
obtained by a process of Ri and that name has been obtained before τ0.
As the algorithm is adaptive, we have M ≤ ρ + t − 1.

3. As the ρ processes started participating in the renaming before τ0, they
updated their entry in PROP to a non-⊥ value before τ0, and conse-
quently we have ρ ≤ r.

4. It follows from the previous items that t+α ≤ M ≤ ρ+ t−1 ≤ r+ t−1,
from which we conclude α < r, that terminates the proof of the claim
C2. �Lemma 1

Lemma 2. Each correct process decides a value.

Proof. As there are at least n − t correct process that participate in the set
agreement problem, no process can block forever at line 04. Moreover, as the set
seti of a process pi that executes line 07 is not empty (see the claim C2 in the
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proof of Lemma 1), the entry �i from which pi decides is well-defined (it does
exist). It follows that each correct process decides. �Lemma 2

Theorem 1. The algorithm described in Figure 2 is a t-resilient t-set agreement
algorithm.

Proof. The proof follows directly from Lemma 1 and Lemma 2. �Theorem 1

3.3 From k-Test&Set to k-Set

In the k-test&set problem, the processes invoke an operation k test&set() and
obtains the value 1 (winner), or the value 0 (loser). The values returned to the
processes satisfy the following property: there are at least one and at most k
winners.

In a very interesting way, the algorithm described in Figure 2 allows solving
the k-set problem from any solution to the k-test&set problem, when k = t, ∀t.
The only “modification” consists in replacing the lines 02-03 by the following
statement: RENAMED [i] ← k test&set().

Both 1-test&set and n-renaming have consensus number 2 [10,19]. The trans-
formation described in Figure 2 exhibits another strong connection linking k-
test&set and k-set.

4 An Impossibility Result

Theorem 2. The k-set agreement problem cannot be solved in asynchronous
systems made up of atomic registers and a solution to the adaptive (n + k − 1)-
renaming problem, for any value of n, k < t and t = n − 1.

Proof. The proof uses the following notations:

– fk: the function p → 2p − � p
k �.

– gk: the function p → p + k − 1.
– (n, k)-TS: the k-tes&set problem with up to n processes. (At least one and

most k processes are winners.)
– (n, k)-SA: the k-set agreement problem with up to n processes.
– (n, fk)-AR: the adaptive M -renaming problem with M = fk(p) (where p ≤ n

is the number of processes that participate in the renaming).
– (n, gk)-AR: the adaptive M -renaming problem with M = gk(p) (where p ≤ n

is the number of processes that participate in the renaming).
– Any solution to the (n, �)-XX problem (where XX is TS, SA, or AR, and �

is k, fk or gk) defines a corresponding (n, �)-XX object.

Let us first observe that ∀p, ∀k, we have f1(p) = g1(p) ≤ gk(p). This means that
any solution to (n, f1)-AR is a solution to (n, gk)-AR.

The proof consists in showing the following: ∀k, ∀n ≥ 2k + 1: there is no
algorithm that solves (n, k)-SA from (n, gk)-AR. The proof is by contradiction.
Let us assume that there is an algorithm A that, for t = n − 1, solves (n, k)-SA
from (n, gk)-AR with n ≥ 2k + 1. The (2, 1)-SA problem plays a key role in
proving the contradiction.
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1. On one side.
– The (2, 1)-TS problem and the (2, 1)-SA problem are equivalent [9].
– There is a wait-free construction of (n, k)-TS from (2, 1)-TS objects [9].
– The (n, f1)-AR problem can be wait-free solved from (n, 1)-TS objects

[19].
– For any k ≥ 1, the (n, gk)-AR problem can be wait-free solved from

(n, f1)-AR objects (previous observation).
– Due to the assumption, the algorithm A solves the (n, k)-SA problem

from (n, gk)-AR objects with n ≥ 2k + 1, when t = n − 1.
– It follows that, when t = n − 1, it is possible to solve the (n, k)-SA

problem from (2, 1)-SA objects for n ≥ 2k + 1.
2. On the other side.

– It is shown in [14] that k ≥ j� t+1
m � + min

(
j, (t + 1) mod m

)
is a neces-

sary requirement for having a t-resilient k-set agreement algorithm for
n processes, when these processes share atomic registers and (m, j)-SA
objects (objects that allow solving j-set agreement among m processes).

– Let us consider the case where the (m, j)-SA objects are (2, 1)-SA ob-
jects. Let us recall t = n − 1. We have then: k ≥ � t+1

2 � + min
(
1, (t +

1) mod 2
)
, from which we obtain the necessary requirement k ≥ �n

2 �.
– It follows that, for t = n − 1, k ≥ �n

2 � (i.e., 2k ≥ n) is a necessary
requirement for solving the (n, k)-SA problem from (2, 1)-SA objects
and atomic registers.

3. The previous items 1 and 2 contradict each other. It follows that the initial
assumption A cannot hold, which proves the theorem. �Theorem 2

5 From Ωk
∗ to (p + k − 1)-Renaming

This section enriches the picture by proposing a wait-free algorithm that solves
the adaptive M -renaming problem with M = min(2p − 1, p + k − 1), p being
the number of processes that participate in the algorithm. In addition to 1WnR
atomic registers, this algorithm uses an oracle of the class Ωk

∗ . Interestingly, when
all the correct processes participate and the oracle has no additional power (i.e.,
k ≥ t + 1), this algorithm boils down to a t-resilient algorithm described in [4]
that solves the (n + t)-renaming problem.

5.1 The Class of Oracles Ωk
∗

This class has been defined in [21]. An oracle of the class Ωk
∗ provides the pro-

cesses with an operation denoted leader(). (As indicated in the introduction, this
definition is based on the leader oracle classes introduced in [11,19,20].) When a
process pi invokes that operation, it provides it with an input parameter, namely
a set X of processes, and obtains a set of process identities as a result3.
3 The definition of Ωk

∗ is not expressed in the framework introduced by Chandra
and Toueg to define failure detector classes. More precisely, in their framework, the
failure detector operation that a process can issue has no input parameter. It would
be possible to express Ωk

∗ in their framework. We don’t do it in order to keep the
presentation simpler.
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The semantics of Ωk
∗ is based on a notion of time, whose domain is the set

of integers. It is important to notice that this notion of time is not accessible to
the processes. An invocation of leader(X) by a process pi is meaningful if i ∈ X .
If i /∈ X , it is meaningless. The primitive leader() is defined by the following
properties where LX denotes the set of processes returned by an invocation
leader(X).

– Termination (wait-free). Any invocation of leader() by a correct process al-
ways terminates (whatever the behavior of the other processes).

– Bounded size leadership. Whatever X , the set LX returned by a leader(X)
invocation is such that |LX | ≤ k.

– Triviality. A meaningless invocation can return any set (of size k) of pro-
cesses.

– Eventual multi-leadership for each input set X : For any X ⊆ Π , such that
X ∩ Correct �= ∅, there is a time τX such that, ∀τ ≥ τX , all the meaningful
leader(X) invocations (that terminate) return the same set LX and this set
is such that LX ∩ X ∩ Correct �= ∅.

The intuition that underlies this definition is the following. The set X passed
as input parameter by the invoking process pi is the set of all the processes
that pi considers as being currently participating in the computation. (This also
motivates the notion of meaningful and meaningless invocations: an invoking
process is trivially participating).

Given a set X of participating processes that invoke leader(X), the eventual
multi-leadership property states that there is a time after which these processes
obtain the same set LX of at most k leaders, and at least one of them is a correct
process of X . Let us observe that the (at most k − 1) other processes of LX can
be any subset of processes (correct or not, participating or not).

It is important to notice that the time τX from which this property occurs
is not known by the processes. Moreover, before that time, there is an anarchy
period during which each process, as far as its leader(X) invocations are con-
cerned, can obtain different sets of any number of leaders. Let us also observe
that if a process pi issues two meaningful invocations leader(X1) and leader(X2)
with X1 �= X2, there is no relation linking LX1 and LX2, whatever the values
of X1 and X2 (e.g., the fact that X1 ⊂ X2 imposes no particular constraint on
LX1 and LX2).

Let us consider an execution in which all the invocations leader(X) are such
that X = Π (the whole set of processes are always considered as participating).
In that case, Ωk

∗ boils down to the failure detector class denoted Ωk introduced
in [20]. If additionally, k = 1, we obtain the classical leader failure detector Ω
introduced in [7].

When X ⊆ Π and k = 1, Ωk∗ boils down to the failure detector class intro-
duced in [11]. It is shown in [11] that Ω is weaker than Ω1

∗ that in turn is weaker
than �P (the class of eventually perfect failure detectors: after some finite but
unknown time, an eventually perfect failure detector suspects all the crashed
processes and only them).
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5.2 An Adaptive min(2p − 1, p + k − 1)-Renaming Algorithm

As previously mentioned, the adaptive renaming algorithm that is now presented
is inspired from a t-resilient renaming algorithm designed for read/write registers
only, described in [4].

Atomic Registers. The algorithm uses an array of 1WnR atomic registers, de-
noted STATE [1..n]. Each register STATE [i] contains three fields. The first field,
denoted STATE [i].old, is for the initial name of pi. The second field, denoted
STATE [i].prop, is for the new name that pi is currently trying to acquire. Fi-
nally, the third field, denoted STATE [i].done, is set to true once pi has obtained
a new name (STATE [i].prop contains then the new name of pi). Initially, each
atomic register STATE [i] is initialized to < ⊥, ⊥, false >.

Process Behavior. A process starts the renaming algorithm by setting a local
flag denoted donei to false , and its current proposal for a new name to ⊥ (line
01). Then, it enters a repeat loop and leaves it only when it has acquired a new
name (line 15).

In the loop body, a process pi first writes its current state in STATE [i] to
inform the other processes about its current progress, and then atomically reads
STATE (using the snapshot() operation) to obtain a consistent view of the global
state. If it has not yet determined a name proposal or there is another process
that has chosen the same name proposal (line 05), pi enters the lines 06-11 to
determine another name proposal. Differently, if its current name proposal is not
proposed by another process (the test of line 05 is then negative), pi commits its
last proposal that becomes its new name (line 12), informs the other processes
(line 13), and decides that new name (line 15).

To determine a name proposal, a process pi proceeds as follows. It first de-
termines the processes that are competing to have a new name. Those are the
processes pj that, from pi’s point of view, are participating in the renaming
(namely, the processes pj such that statei[j].old �= ⊥) and have not yet obtained
a new name (i.e., such that ¬(statei[j].done)). Before starting the next execu-
tion of the loop body, some processes have to change their new name proposal
(otherwise, it could be possible that they loop forever). So, a process pi does the
following.

– According to the set of processes perceived as competing with it, pi computes
a current set of leaders (line 07).

– If it does not appear in the set of leaders, pi starts directly another execution
of the loop body. Let us notice that, in that case, pi’s new name proposal is
not modified.

– Differently, if it appears in the set of leaders (line 08), pi determines a new
name proposal before starting another execution of the loop body. This de-
termination (done exactly as in [4]) consists for pi in first computing its
rank within the leader set, and then taking as its new name proposal the
first integer not yet used by the other processes (lines 09-10).
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5.3 Proof of the Algorithm

Lemma 3. Let p be the number of processes that participate in the renaming.
The size of the new name space is M = min(2p − 1, p + k − 1).

Proof. Let us consider a run in which p processes participate. Let pi be a process
that returns a new name (line 15). The new name obtained by pi is the last name
it has proposed (at line 10 during the previous iteration). When pi defined its
last name proposal, at most p−1 other processes have previously defined a name
proposal, i.e., |{j : (j �= i) ∧ (statei[j].prop �= ⊥)}| ≤ p − 1 (O1). Moreover,
due to the definition of Ωk

∗ , when it defines its last name proposal, the rank of
pi in leadersi is at most min(p, k) (O2). It follows from (O1) and (O2) that the
last name proposal computed by pi is upper bounded by (p−1)+min(p, k), i.e.,
M = min(2p − 1, p − 1 + k). �Lemma 3

Lemma 4. No two processes decide the same new name.

Proof. [Preliminary Remark. This proof is verbatim the same as the corre-
sponding proof in [4]. We give it only for completeness purpose. As noticed in
[4], this follows from the fact that this proof does not depend on the way the
new names are chosen. It is based only on the structure of the algorithm and
the containment property of the the snapshot() operation.]

The proof is by contradiction. Let us assume that pi and pj obtain the same
new name a. Let statei (resp., statej) be the last snapshot value obtained by
pi (resp., pj) before returning its new name a. Due to the sequence of the lines
10, 02 and 04 executed by pi (resp., pj) before deciding its new name, we have
statei[i].prop = a (resp., statej [j] = a). Moreover, after having written its last
new name proposal, a process does not change its entry of STATE .prop.

Due to the containment property of the snapshot(STATE) operation, we
have statei ≤statej or statej ≤statei. Let us assume without loss of gen-
erality that statei ≤statej . It follows from the containment property that
statej [i].prop=statei[i].prop = a. According to the test of line 05, pj proceeds
to lines 06-11 to select a new name proposal distinct from statej [i].prop = a,
which proves the lemma. �Lemma 4

Lemma 5. Each correct process that participates obtains a new name.

Proof. As in [4], the proof is by contradiction. Let us assume that a process
takes infinitely many steps without obtaining a new name. Let CORRECT be
the set of correct processes, and NT the subset of correct processes that do not
terminate. Let τ be a time such that:

1. Each (correct or not) participating process pj has written its initial name
idj in STATE [j].old before τ1 < τ .

2. Each (correct or not) process pj that decides, has set STATE [j].done to true
before τ2 < τ .
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3. Each process pi ∈ NT has taken at least one snapshot of STATE between
max(τ1, τ2) and τ .
Due to the containment property provided by the snapshot() primitive, it
follows that, after τ , each process pi ∈ NT sees the same set of participating
processes and the same set of processes that have decided.

4. Let τ3 < τ be the time from which the multi-leadership property of Ωk
∗

remains forever satisfied.

Let contendingx[τ ′] be the value, at time τ ′, of the set {j : (statex[j].old �= ⊥)
∧ ¬(statex[j].done)}. Let pi be a process of NT , and CTD = contendingi[τ ].
Let us observe that, at any time τ ′ ≥ τ , and for each process pj ∈ NT , we have
contendingj[τ ′] = CTD. Moreover, NT ⊆ CTD . It follows from the properties
of Ωk∗ , that there is a set leaders such that, after τ , each time a process pj ∈ NT
invokes leader(CTD), it obtains leaders . Since CTD \ NT contains only faulty
processes, and (due to the definition of τ) leaders ∩CTD ∩CORRECT �= ∅, the
set leaders ∩ CTD is not empty and contains at least one correct process.

As |leaders | ≤ k, all the correct processes in leaders ∩CTD select a new name
proposal when they execute the lines 09-11, and these new name proposals are
all different (this follows from the fact that they select their rank from the same
set leaders). It follows that they decide their new name. A contradiction with
the assumption that the processes of NT do not terminate. �Lemma 5

operation rename(idi):
(1) prop namei ← ⊥; donei ← false;
(2) repeat
(3) STATE [i] ←< idi, prop namei, donei >;
(4) statei ← snapshot(STATE);
(5) if (prop namei = ⊥) ∨ (∃j : (j �= i) ∧ (statei[j].prop = prop namei))
(6) then contendingi ← {j : (statei[j].old �= ⊥) ∧ ¬(statei[j].done)};
(7) leadersi ← leader(contendingi);
(8) if idi ∈ leadersi then
(9) let ri = rank of idi in leadersi ;
(10) prop namei ← ri-th integer /∈ X where
(11) X = {statei[j].prop : (j �= i) ∧ (statei[j].prop �= ⊥)} end if
(12) else new namei ← prop namei; donei ← true ;
(13) STATE [i] ←< idi, prop namei, donei > end if
(14) until donei;
(15) return(prop namei)

Fig. 4. From Ωk
∗ to adaptive M -renaming with M = min(2p − 1, p + k − 1) (pi’s code)

Theorem 3. The algorithm described in Figure 4 is an adaptive wait-free M -
renaming algorithm with M = min(2p − 1, p + k − 1).

Proof. The theorem follows from Lemma 3, Lemma 4 and Lemma 5. �Theorem 3
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18. Mostéfaoui, A., Raynal, M.: Randomized Set Agreement. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’01), pp. 291–297 (2001)
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Abstract. Given a graph G = (V, E), a vertex v of G is a median
vertex if it minimizes the sum of the distances to all other vertices of
G. The median problem consists in finding the set of all median vertices
of G. In this note, we present a self-stabilizing algorithm for the median
problem in partial rectangular grids. Our algorithm is based on the fact
that partial rectangular grids can be isometrically embedded into the
Cartesian product of two trees, to which we apply the algorithm proposed
by Antonoiu, Srimani (1999) and Bruell, Ghosh, Karaata, Pemmaraju
(1999) for computing the medians in trees. Then we extend our approach
from partial rectangular grids to plane quadrangulations.

1 Introduction

Given a connected graph G one is sometimes interested in finding the vertices
minimizing the total distance

∑
u d(u, x) to the vertices u of G, where d(u, x) is

the distance between u and x. A vertex x minimizing this expression is called
a median (vertex) of G. The median problem consists in finding the set of all
median vertices. The median problem arises with one of the basic models in
discrete facility location [29] and with majority consensus in classification and
data analysis [6,8]. This is also a classical topic in graph theory [9,29]. Linear
time algorithms for computing medians are known for several classes of graphs:
among them are trees, planar quadrangulations and triangulations with degree-
constraints, partial rectangular grids [16], and a few other classes of graphs. A
distributed algorithm for computing medians in graphs is given in [27].

In distributed systems, the median is a suitable location for information ex-
change and communication. Indeed, to place a common resource at a median
site minimizes the cost of sharing the resource with other sites. Note also that
[23] shows that, given a tree-network, choosing a median and then routing all the
information through it minimizes the number of messages sent during any exe-
cution of any distributed sorting algorithm. Moreover, partial rectangular grids
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and trees are among the most used topologies in the design of microprocessors
and distributed architectures. It is therefore of important practical interest to
solve the median problem in a distributed setting on such a topology.

A distributed system can be defined as a set of processors exchanging infor-
mation between neighbors. The system state, called global state or configuration,
is the union of all the local states. A processor has only a local knowledge of the
system, this knowledge varying according to the system connectivity. It is often
desirable to maintain the system in a certain set of states, the legitimate states.
An algorithm running in a system is said to be self-stabilizing if any execution
has a suffix in the set of the legitimate states [19]. Self-stabilization is very desir-
able and useful in distributed systems because it provides immunity to transient
failures and can even make possible in some cases a dynamical and transparent
modification of the system topology. Besides self-stabilizing algorithms are often
elegant and simple. The self-stabilizing paradigm was introduced by Dijkstra in
1973 [18]. He gave three self-stabilizing mutual exclusion algorithms on rings,
opening a field of research still extremely dynamic today in distributed calculus.
Self-stabilizing algorithms have been conceived to answer problems of routing
[17], synchronization [5,26], leader election [20], spanning tree construction [2,4],
maximum flow [24], mutual exclusion [28], and some other problems.

Antonoiu, Srimani [3] and Bruell et al. [11] proposed a strikingly simple and
nice self-stabilizing algorithm for computing the median set of a tree T . The
state of each node is an integer s. At each step, the algorithm updates the s-
value of the currently active vertex v: it sets s(v) = 1 if v is a leaf, otherwise
it computes the sum of the s-values of all neighbors of v minus the largest s-
value of a neighbor and then adds 1 (denoted by 1 +

∑
(N−

s (v))). If the current
s-value of v is different from 1 +

∑
(N−

s (v)), then this value becomes the new s-
value of v. The algorithm terminates when there are no more s-values to modify.
Interestingly, this happens to be a “valid” global state as the medians of T are
the vertices with maximum s-values. The authors of [3,11] establish that the
algorithm stabilizes in a polynomial number of steps. See also [3,11,10] for self-
stabilizing algorithms solving other facility location problems on tree-networks.

In this note, we propose self-stabilizing median computation algorithms for
two classes of plane graphs: partial rectangular grid and even squaregraphs. Our
algorithms are based on the fact that such graphs isometrically embed into the
Cartesian product of two trees and that the median in the initial graph G can
be derived from the medians in two spanning trees of G closely related to the
two tree-factors. Using the sense of direction in the grid, the algorithm com-
putes the tree-factors and apply the algorithm of [3,11] to compute the medians
of both spanning trees. This computation is performed anonymously. For an
even squaregraph G, the algorithm first computes a spanning tree of G using
the self-stabilizing spanning tree algorithm of Afek, Kutten, and Yung [1]. This
algorithm needs unique identities to be available for every node of the network.
Then the algorithm “repairs” this spanning tree in order to produce the two
tree-factors and their spanning trees relatives, to which the median computa-
tion algorithm of [3,11] is applied. The algorithms have a round complexity of
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O(n) and O(n2) respectively. By self-stabilization, our algorithms are resilient
to transient failures. Concerning non-transient failures like the permanent crash
of a link or a processor, if the resulting topology is still a partial grid or an even
squaregraph, then the algorithm will dynamically adjust to the changes. If not,
and the crash creates a hole in the partial grid, then it is of course likely that our
algorithm will not find the correct medians or even will not converge, because
the computed factors could then contain cycles.

The article is organized as follows. In the first part, we investigate the prop-
erties of partial grids, squaregraphs and their medians which are used in the
algorithm. In the second part, we describe the algorithms for computing their
medians and give a proof of the correctness as well as an upper bound on the
time and round complexities. This is, to our knowledge, the first self-stabilizing
algorithm for location problems on non-tree networks.

2 Partial Grids, Squaregraphs and Their Medians

2.1 Preliminaries

In a graph G = (V, E), the length of a path from a vertex x to a vertex y
is the number of edges in the path. The distance dG(x, y) (or d(x, y) if G is
obvious from the context) between x and y is the length of a shortest path
connecting x and y. The interval I(u, v) between two vertices u, v of G is the set
I(u, v) = {x ∈ V : d(u, v) = d(u, x) + d(x, v)}. A subset S ⊆ V is called gated
[25] if for each v �∈ S there exists a unique vertex v′ ∈ S (the gate of v in S)
such that v′ ∈ I(v, u) for every u ∈ S. For every edge uv of G, define W (u, v) =
{x ∈ V : d(u, x) < d(v, x)}. Given two connected graphs G = (V (G), E(G))
and H = (V (H), E(H)), we say that G admits an isometric embedding into
H if there exists a mapping α : V (G) → V (H) such that dH(α(x), α(y)) =
dG(x, y) for all vertices x, y ∈ V (G). The Cartesian product H = H1 ×H2 of two
connected graphs H1, H2 is defined upon the Cartesian product of the vertex sets
of the corresponding graphs (called factors), i.e., V (H) = {u = (u1, u2) : u1 ∈
V (H1), u2 ∈ V (H2)}. Two vertices u = (u1, u2) and v = (v1, v2) are adjacent in
H if and only if the vectors u and v coincide except at one position i, in which
we have two vertices ui and vi adjacent in Hi. The distance dH(x, y) between
two vertices x = (x1, x2) and y = (y1, y2) of H is dH1(x1, y1) + dH2(x2, y2).

2.2 Medians

In the following, we consider graphs with weighted vertices. A weight function
is any mapping π from the vertex set to the positive real numbers. The total
weighted distance of a vertex x in G is given by Mπ(x) =

∑
u π(u)d(u, x). A

vertex x minimizing this expression is a median (vertex) of G with respect to π,
and the set of all medians is the median set Medπ(G). For a subset of vertices
S ⊆ V , denote by π(S) =

∑
s∈S π(s) the weight of S. We continue with the

following property of median functions:
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Lemma 1. For each edge uv in a graph G, Mπ(u) − Mπ(v) = π(W (v, u)) −
π(W (u, v)).

Goldman and Witzgall [25] established that if the weight of a gated set S of G is
larger than one half of the total weight, then Medπ(G) ⊆ S. In trees, in partial
rectangular grids, in squaregraphs, and, more generally, in all median graphs, for
each edge uv, the sets W (u, v) and W (v, u) are gated, and constitute a partition
of G. Recall that G is a median graph if for each triplet u, v, w the intersection
I(u, v)∩I(v, w)∩I(w, u) consists of a single vertex. We can then infer that these
graphs satisfy the following majority rule (which is a folklore for trees):

Lemma 2. [6] If G is a median graph, then u ∈ Medπ(G) iff π(W (u, v)) ≥
π(W (v, u)) for each neighbor v of u. If T is a tree, then π(W (u, v)) = π(W (v, u))
if and only if Medπ(T ) = {u, v}.

2.3 Partial Grids and Squaregraphs

A rectangular system or a partial rectangular grid is the subgraph of the regular
rectangular grid which is formed by the vertices and the edges of the grid lying
either on a simple circuit of the grid (with possibly some vertices visited more
than once) or inside the region bounded by this circuit. Every partial rectangular
grid is a connected plane graph with inner faces of length four and inner vertices
of degree four (the converse in general is not true). More generally, a squaregraph
[15] is a plane graph with inner faces of length four and inner vertices of degree
at least four. An even squaregraph is a squaregraph in which all inner vertices
have even degrees (see Fig. 1). Squaregraphs constitute a particular subclass of
median graphs. Median graphs arise in several areas of discrete mathematics,
geometry, and theoretical computer science.

2.4 Isometric Embedding into Products of Two Trees

Now, we will describe the isometric embedding of partial rectangular grids and
even squaregraphs G = (V, E) into the Cartesian product of two trees. For this
we will use the notations in [7,15]. For a squaregraph or a partial grid G denote
by ∂G the bounding cycle of G.

First, let G = (V, E) be a partial rectangular grid bounded by the cycle ∂G.
Denote by E1 the set of vertical edges of G and consider the graph G1 = (V, E1).
It is clear that the connected components of G1 are paths of G with end-vertices
on ∂G. Define the graph T1 = (V (T1), E(T1)) whose vertices are the connected
components of G1 and two components P ′ and P ′′ are adjacent if and only if
there exists an edge of G with one end in P ′ and another one in P ′′. In the
same way we can define the set E2 of horizontal edges, the graph G2, and the
tree T2 = (V (T2), E(T2)). We obtain the following canonical embedding α of G
into the Cartesian product T1 × T2. For any vertex v of G, we set α1(v) (resp.
α2(v)) to be the connected component of v in G1 (resp. G2). The embedding is
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(a) (b)

Fig. 1. A rectangular grid (a) and an even squaregraph (b)

defined by α(v) = (α1(v), α2(v)). It can be verified that α provides an isometric
embedding of G into T1 × T2. For all vertices x, y of G, we have dG(x, y) =
dT1(α1(x), α1(y)) + dT2(α2(x), α2(y)). From now on, we will identify a vertex of
G with the couple of vertical and horizontal paths to which it belongs. We call
such a path P a fiber, as P is equal to the subgraph induced by α−1

1 (P ).
This canonical embedding of partial grids can be generalized to all graphs

isometrically embeddable into Cartesian products of two trees. It was established
in [7] that a graph G can be embedded into the Cartesian product of two trees
if and only if G is a cube-free median graph without odd bipartite wheels. In
particular, from this characterization follows that even squaregraphs admit such
embeddings. To derive the embedding, the edges of an even squaregraph G =
(V, E) are divided into two sets E1 and E2 subject to the constraint that two
incident edges e1 and e2 of a common inner face of G belong to different edge-
sets. Equivalently, if we define the side-graph of G as the graph having the edges
of G as the vertex-set and two edges e1, e2 of G are adjacent in the side-graph
if and only if e1 and e2 are incident sides of some inner face of G, then the
side-graph is bipartite. Note that the bipartition {E1, E2} of E satisfies the
following two conditions: (i) all “parallel” edges of G, i.e., edges which belong to
the same equivalence class of the transitive closure of the binary relation “to be
opposite edges of a common inner face of G” all belong to the same color-class,
and (ii) if we consider all edges incident to an inner vertex v of G, and number
them counterclockwise, starting with an arbitrary edge, then the edges having
numbers of the same parity all belong to the same color-class E1 or E2. Note
also that the set of all edges parallel to a given edge e (i.e. all edges that belong
to the equivalence class of e) constitutes a cut-set of the graph G.

Analogously to the case of partial grids, the connected components of the
graphs G1 = (V, E1) (resp. G2 = (V, E2)) are called the fibers of G1 (resp.
G2). They are (gated) trees. Define the graphs Ti = (V (Ti), E(Ti)), i = 1, 2,
whose vertices are the fibers of Gi and two fibers F ′ and F ′′ are adjacent if
and only if there exists an edge of G with one end in F ′ and another one in
F ′′. Then T1 and T2 are trees. We obtain an isometric embedding α of G into
the Cartesian product T1 × T2 of the two trees, so that for any vertex v of G,
α(v) = (α1(v), α2(v)) = (P, Q), where α1(v) = P and α2(v) = Q are the fibers
of the graphs G1 and G2 sharing the vertex v [7].
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T2 G2 = (V,E2) ST2

T1 G1 = (V,E1) ST1

Fig. 2. An even squaregraph and its trees Ti and STi

This isometric embedding into the Cartesian product of two trees is used to
establish one of the two properties on which our algorithms are based. Each
vertex Fi of Ti is given the weight πi(Fi) equal to the total weight of vertices of
G located in Fi.

Proposition 1. Let G be an even squaregraph or a partial grid. A vertex u =
(α1(u), α2(u)) is a median vertex of G if and only if F1 = α1(u) and F2 = α2(u)
are median vertices of the trees T1 and T2 endowed with the weight functions π1
and π2 respectively.

Proof. Denote by Fi a fiber of the graph Gi which is a median vertex of the
tree Ti, i = 1, 2. We assert that F1 ∩ F2 �= ∅. Suppose not and let F1 ∩ F2 = ∅.
From the definition of F1 and F2 we immediately conclude that F2 is completely
contained in the same connected component of the graph G \ F1 obtained from
G by removing all vertices of F1. Thus all vertices x of F2 have their image α1(x)
in the same connected component of T1\F1. Denote by F ′

1 the neighbor of F1
in the subtree of T1\F1 which contains F2. From Lemma 2 and the fact that
F1 is median in T1, we deduce that π1(WT1 (F1, F

′
1)) ≥ 1

2π1(V (T1)) = 1
2π(V ). In

the same way, defining F ′
2 to be the neighbor of F2 in the connected component

of T2 \ F2 which contains F1, we obtain π2(WT2(F2, F
′
2)) ≥ 1

2π(V ). The sets of
vertices of G whose images are respectively in WT1(F1, F

′
1) and WT2 (F2, F

′
2) are

disjoint and do not entirely cover the graph G. Since π(x) > 0 for any vertex x
of G, we obtain a contradiction with Lemma 2. Thus F1 ∩ F2 �= ∅, whence there
exists a vertex m of G such that α1(m) = F1 and α2(m) = F2 are medians in
T1 and T2 respectively. Thanks to the isometric embedding, we obtain
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Mπ(m) =
∑

x∈V

π(x)dG(m, x) =
∑

x∈V

π(x)dT1 (F1, α1(x)) +
∑

x∈V

π(x)dT2 (F2, α2(x))

=
∑

R∈V (T1)

π1(R)dT1(F1, R) +
∑

Q∈V (T2)

π2(Q)dT2(F2, Q).

Writing up a similar expression for any other vertex v of G and using the fact that
F1 and F2 are medians of T1 and T2, respectively, we conclude that Mπ(m) ≤
Mπ(v), thus m is a median vertex of G. Conversely, the previous equality also
shows that any median vertex of Medπ(G) can be expressed as the intersection
of two median paths, one of T1 and another of T2. �

Before proving the second property of medians of partial grids and even square-
graphs, we define two particular spanning trees ST1 and ST2 of an even square-
graph G. ST1 contains all edges of E1 plus exactly one edge running between
each pair of incident fibers of the graph G1 = (V, E1). The choice of this edge is
arbitrary (we can also select an edge belonging to the bounding cycle of G). We
call such extra-edges the switch edges of ST1 and denote them by E′

1. Clearly,
since all fibers of G1 are trees, the graph ST1 = (V, E1∪E′

1) is indeed a spanning
tree of G. Analogously, we define the spanning tree ST2 = (V, E2 ∪ E′

2).

Proposition 2. A vertex Fi of Ti (i = 1, 2) is a median vertex with respect to
the weight function πi if and only if Fi contains a median vertex m of the tree
STi with respect to the weight function π.

Proof. First suppose that m is a median vertex of STi (i.e., m ∈ Medπ(STi)) and
let Fi be the vertex of Ti such that αi(m) = Fi. In other words, Fi is the fiber of
Gi containing m. Suppose that Fi is not a median of Ti (i.e., Fi /∈ Medπi(Ti)).
Lemma 2 yields that Mπi(F ′) < Mπi(Fi) for some vertex F ′ of Ti adjacent to
Fi. By Lemma 1 and the definition of Ti we conclude that Mπi(Fi)−Mπi(F ′) =
π(W (x′, x))−π(W (x, x′)) > 0, where x′x is any edge running between F ′ and Fi.
If m has a neighbor m′ in F ′ and mm′ is a switch edge, then it can easily be seen
from the definition of STi that all vertices of W (x′, x) (this set is defined in G)
are closer to x′ than to x in STi. This implies Mπ(m)−Mπ(m′) ≥ π(W (x′, x))−
π(W (x, x′)) > 0, contrary to the assumption that m is a median of STi. On the
other hand, if the switch between Fi and F ′ is the edge p′p with p′ ∈ F ′ and
p ∈ Fi, and we denote by m′ the neighbor of m on the unique path connecting
m with p in the tree-fiber Fi, then again, in the tree STi all vertices of W (p′, p)
are closer to m′ than to m. Since π(W (p′, p)) > 1

2π(V ), Lemma 2 yields that m
is not a median vertex of STi, a contradiction.

Conversely, suppose that Fi is a median vertex of the tree Ti. We assert that
Fi ∩ Medπ(STi) �= ∅. Remove from Ti all edges incident to Fi and denote by
S1, . . . , Sk the resulting subtrees of Ti not containing Fi. Then Lemmas 1 and
2 imply that πi(Sj) ≤ 1

2π(V ) for any subtree Sj . Now, if we pick the switch
edge xjmj running between Sj and Fi with xj ∈ Sj and mj ∈ Fi, then from the
definition of the spanning tree STi we infer that Sj coincides with the set of all
vertices which are closer to xj than to mj in STi. The majority rule for trees
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implies that Mπ(mj) ≤ Mπ(xj) holds in STi. Now, the median function Mπ on
trees is convex [29]. Since Mπ(mj) ≤ Mπ(xj), this implies that Mπ(xj) ≤ Mπ(yj)
for any vertex yj ∈ Sj \ {xj}. Since any vertex z outside Fi is located in some
subtree Sj, we conclude that Mπ(mj) ≤ Mπ(xj) ≤ Mπ(z) holds in STi. This
shows that indeed Fi must contain at least one median vertex of the tree STi. �

We obtain the following corollary as a direct consequence of the two previous
properties:

Corollary 1. m ∈ Medπ(G) if and only if αi(m) ∈ Medπ(STi), for i = 1, 2.

3 Algorithms for the Median Problem

In the introduction, we outlined the self-stabilizing algorithm for the median
problem in a tree proposed in [3,11]. We continue with a more detailed account
of the model used by this and our algorithms. Then we present the algorithm of
[3,11] and our algorithms for partial grids and even squaregraphs.

3.1 Computational Model

The nodes of the graph G = (V, E) are seen as processors executing the same
algorithm. Each processor v ∈ V has a memory whose value (its state) can be
read by its neighbors, but can only be changed by v itself. A distributed algo-
rithm is a set of rules (a pair of precondition and command) that describe how a
processor has to change its current state (the command) according to the state
of all its neighbors (the precondition or guard). We say that a rule R is activable
at a processor v if the neighborhood of v satisfies the precondition of R. In this
case, the node v is also said to be activable. If a rule R is activable in v, an atomic
move for v consists in reading the states of all its neighbors, computing a new
value of its state according to the command of R, and writing this value to the
local memory. An execution is a sequence of moves. This is indeed an interleaved
(central deamon) asynchronous model of computation. (Implicit) termination or
stabilization is reached when there are no more activable rules. The described
model is a standard model for distributed computing originally introduced by
Dijkstra [18] and used in many following papers. In particular, it was extensively
studied in [12]. It was used in [11], where the algorithms are expressed in the
language of “guarded commands”. In his thorough study of computational mod-
els, it is coined by Chalopin as the “interleaved cellular model”[13, chapter 5].
In [1], it appears as the “local detection paradigm”.

A distributed algorithm is said to be self-stabilizing if an execution starting
from any arbitrary global state has a suffix belonging to the set of legitimate
states. For our purposes, we additionally suppose that the state variable of each
node has a specific bit named the median flag. Then a global state is legitimate if
the median flag of a node v is set up if and only if v is a median vertex of G. The
time complexity of a self-stabilizing algorithm is the maximum number of moves
that are performed until stabilization. A round [19] is a sequence of moves such
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that each node activable at the beginning of the round is activated at least once.
The round complexity of a self-stabilizing algorithm is the maximum number
of rounds required by an execution to reach a legitimate state. Whenever we
compose two or more self-stabilizing algorithms, then this will be done as a fair
composition as defined in Subsection 2.7 of [19]. Additionally, the input-output
binary dependency between our algorithms will be acyclic. Then Theorem 2.2 of
[19] guarantees the self-stabilization of the resulting composite algorithm. In all
three algorithms described below, only O(log n) bits are used to store the state
of each node.

We specify now the structural information that is used by each of the three
median computation algorithms. In the algorithm for trees, neither nodes nor
edges have identifiers. In this case, the system is said to be anonymous. Whereas
in the algorithm for partial rectangular grids, nodes are anonymous but edges
are not: for each node, there exists a labeling of the outgoing edges that has
the property of (weak) “sense of direction”, allowing to compute the second
neighborhood of each node in a self-stabilizing manner. Informally, a system
represented by a directed graph is said to have sense of direction if it is possible
to know, from the labels associated to the edges, whether different walks from
any given node v end up in the same node or not. The use of sense of direction in a
distributed system often leads to significant improvements on computability and
complexity [21]. Finally, in the algorithm for even squaregraphs, each processor
has a unique identifier (as a matter of fact, it is unclear for us whether this is a
necessary structural information).

3.2 Trees

Let T = (V, E) be a tree with n vertices and let π be a weight function on V.
We need the following notations:

– v.s-value is the local value of the vertex v. It is also called the s-value of v;
– γ1(v) = {u ∈ V : uv ∈ E} is the set of neighbors of the vertex v in T ;
– Ns(v) = {u.s-value : u ∈ γ1(v)} is a multiset:
– N−

s (v) = Ns(v)\{max(Ns(v))}.

The main result of [3,11] is the proof of self-stabilization in polynomial time for
the following algorithm (which we slightly modify to capture weighted medians as
well). Algorithms are described by a list of rules, and to simplify the formulation
of preconditions, we assume in all the following that a rule is not activable if its
execution would not change the state of the node.

Median Tree

(v is a leaf) −→ v.s-value= π(v)
(v is not a leaf) −→ v.s-value= π(v) +

∑
(N−

s (v)).

In a stabilized state, the median vertices are those vertices whose s-value is
greater than the s-values of all their neighbors. It is shown in [11] that Medi-

anTree stabilizes in O(e) rounds, where e is the maximum distance of a median
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to a leaf. Moreover, the algorithm makes O(n3 ·cs) moves in the worst case, where
cs is the maximum initial s-value of any processor [11].

3.3 Partial Rectangular Grids

Let G = (V, E) be a partial grid with n vertices bounded by the cycle ∂C. The
first neighborhood γ1(v) of a vertex v of G is the set V ∩ {vn, vs, ve, vw}, where
vn, vs, ve and vw are the vertices of the square grid located at the North, the
South, the East, and the West of v, respectively. The second neighborhood γ2(v)
of v in G is the set V ∩ {vne, vnw, vse, vsw}, where vne, vnw, vse and vsw are the
vertices of the square grid which are located at the North East, the North West,
the South East, and the South West of v, respectively (see Figure 3). In the
following, with d ∈ {n, s, e,w}, we use the notation Neighb(v,d) if vd ∈ γ1(v).

vvvw

vnw

vse

ve

vne

vsw

vn

vs

n

e

s

w

Fig. 3. The first and second neighborhood of a vertex

The model used by the algorithm MedianPartialGrid is similar to the one
of MedianTree except that the system has the “polar” sense of direction (that
is, the knowledge of the North, East, South and West outgoing edges). The
algorithm MedianPartialGrid consists of three phases.

Phase 1. In this phase, in order to compute the sets γST1(v) and γST2(v) of
its neighbors in the spanning trees ST1 and ST2 respectively, a processor v has
to know about the existence of edges between its first neighborhood γ1(v) and
its second neighborhood γ2(v). For example, for the tree ST1, this can be done
by communicating with the first neighborhood γ1(v) and applying the following
rule. For d ∈ {n, s, e,w}, vd ∈ γST1(v) if Neighb(v,d) and

– either d ∈ {n, s},
– or d ∈ {e,w}, and ¬(Neighb(v,n) ∧ Neighb(vn,d) ∧ Neighb(vnd, s)).

Phase 2. In this phase, each processor v runs the algorithm MedianTree in
parallel on each of the spanning trees ST1 and ST2. The variable v.si-value is the
s-value of v for the tree STi. Then a median of STi can be identified by the fact
that the si-value of the respective processor is maximum in its neighborhood on
STi, i = 1, 2.

Phase 3. In this phase, a classical broadcasting self-stabilizing algorithm [19,
chap.4, p 97] is replicated in both directions on every vertical (respectively,
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horizontal) path to compute two additional boolean variables v.b1 and v.b2. The
variable v.bi will be set if the path αi(v) is a median vertex of Ti.

Once the “vertical” and “horizontal” broadcasting algorithms stabilize, the
median set of G is formed by all vertices v of the partial grid G for which
v.b1 ∧ v.b2 is true.

Theorem 1. The algorithm MedianPartialGrid computes the median set of
a partial grid G with n vertices in O(n) rounds and O(csn

3) moves.

Proof. First we show that the algorithm stabilizes. Indeed, by simulating the
execution of MedianTree on the two spanning trees ST1 and ST2, we obviously
maintain the self-stabilization because the read and written variables are distinct
(we use s1 for the tree ST1 and s2 for ST2). By composing these algorithms with
the broadcasting algorithm, the self-stabilization is still maintained according to
Theorem 2.2 of [19].

As to the time complexity, notice that the algorithm makes O(n3 · cs) moves
in the worst case, where cs is the maximum initial s-value of any processor.
Since the time complexity of MedianTree is greater than the time complexity
of classical self-stabilizing broadcasting algorithms, the time complexity of Me-

dianPartialGrid is of the same order as the time complexity of MedianTree

which is given in [11], concluding the proof. In the same way the round com-
plexity of MedianTree is O(e), where e ≤ n is the maximum distance from
a median to a leaf in the spanning tree, yielding O(n) round complexity for
MedianPartialGrid.

Finally, we show the correctness of our algorithm, i.e. that in a global stabilized
state the processors v that have their two boolean variables v.b1 and v.b2 set to
true are medians of the partial grid G. Indeed, by Corollary 1 a vertex (processor)
v is median in G if and only if it is on the vertical path of a median of ST1
(thus variable v.b1 set to true) and on the horizontal path of a median of ST2
(variable v.b2 set to true). Since the algorithm MedianTree correctly computes
the median set of each tree ST1 and ST2, we are done. �

3.4 Even Squaregraphs

Let G = (V, E) be an even squaregraph. The “irregular” structure of G does not
allow an easy use of the sense of direction as in the case of partial squaregrids.
To obtain a bipartition of edges used in the construction of the trees T1, T2 and
ST1, ST2, we will use the self-stabilizing algorithm for constructing a spanning
BFS-tree of a graph designed by Afek, Kutten, and Yung [1] (for a survey on
other related algorithms for this problem, see [22]). This algorithm requires that
each vertex v has a unique identifier v.Id. This extra-information allows to break
the symmetry in order to select as the root of the spanning tree the vertex having
the highest identifier.

Our median self-stabilizing algorithm MedianEvenSquaregraph consists
of four phases. In each phase, we present the specific conditions which allow to
test if the state of a vertex is legal or not for the current phase. If the respective
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condition is not satisfied, then we describe the modifications which must be
undertaken in order to return the system to a legal state. We establish that after
a finite number of activations, the corresponding conditions of the current phase
are satisfied by all vertices, and thus the next phase can start.

Phase 1. In this phase, we construct a spanning tree using the algorithm of Afek
and al [1]. When this phase terminates, each vertex v has computed the identifier
v.Root of the root node of the resulting spanning BFS-tree, the identifier v.Parent
of its father in this tree and an integer v.Distancewhich is the tree-distance between
v and the root. This phase ends if the following condition holds in each node v:
Condition st(v):

{[(v.Root = v.Id) ∧ (v.Parent = v.Id) ∧ (v.Distance = 0)] ∨ [(v.Root > v.Id)∧
(v.Parent ∈ v.Edge-list) ∧ (v.Root = v.Parent.Root)∧
(v.Distance = v.Parent.Distance + 1)]} ∧ (v.Root ≥ max

x∈v.Edge-list x.Root)

The algorithm, which is executed by each processor so that the system sta-
bilizes in a state in which all these conditions are satisfied for each node, is
described in details and analyzed in [1].

Phase 2. In this second phase of the algorithm, we aim to partition the edges of
G into two subsets E1 and E2 so that two incident edges belonging to a common
square-face are included in different sets E1 and E2. For a vertex v, we assume
that the edges containing v as an end-vertex are numbered 0, . . . , deg(v) − 1 in
the order in which they appear in the counterclockwise traversal, so that two
edges incident to v and belonging to a common square have numbers of different
parity. For each v ∈ V, the variable v.Color equals i if all edges incident to v
which appear at even positions in the adjacency list of v belong to Ei and the
remaining edges belong to E3−i. Each vertex v runs the following algorithm:

st(v) ∧ (v.Id = v.Root) −→ v.Color := 1

st(v) ∧ (v.Id �= v.Root) ∧ (the edge connecting
the vertex v with v.Parent occurs with the same
parity in the adjacency list of v as in the adja-
cency list of v.Parent) −→ v.Color := v.Parent.Color

st(v)∧(v.Id �= v.Root) ∧ (the edge connecting the
vertex v to v.Parent occurs with different parities
in the adjacency lists of v and v.Parent) −→ v.Color := 3 − v.Parent.Color

We say that the condition col(v) is satisfied by a vertex v ∈ V if none of the
preconditions of the three previous actions is satisfied. Then Phase 2 terminates
if the condition col(v) is satisfied by all vertices v ∈ V of G. At this time each
vertex v knows the list v.Edge − listi of its neighbors in Gi.

Phase 3. In this phase, the algorithm constructs the spanning trees STi, i = 1, 2.
For sake of simplicity, these trees will be rooted at the same vertex as the root
of the spanning BFS-tree computed in Phase 1. To encode the tree STi, we
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introduce for each v ∈ V a new variable v.Parenti which will denote the father of
the vertex v in the tree STi. The algorithm consists in “correcting” the spanning
tree of Phase 1 by replacing v.Parent with a vertex belonging to v.Edge-listi if
this list contains a vertex located at the same distance to the root as the vertex
v.Parent. Since all fibers of the graphs Gi are gated sets (in G), the tree obtained
in this way has all the edges of Ei and exactly one switch edge of E3−i running
between each pair of neighboring fibers of Gi. Actually, if v′v is a switch edge
with dG(r, v′) < dG(r, v) and v belongs to the fiber F, then necessarily v is the
gate of r in the fiber F and v′ is the father of v in the BFS-tree. Indeed, the
root r can be connected with any vertex u of F of Gi by a shortest path passing
via the gate v of r in F , and thus the edge vv′ will be included in the BFS-tree
before the edge running from u to its father. Each processor v ∈ V runs at this
phase the following algorithm:

col(v) ∧ (v.Id = v.Root) −→ v.Parenti := v.Id

col(v) ∧ (v.Id �= v.Root) ∧ (the edge connecting
v to v.Parent belongs to Ei) −→ v.Parenti := v.Parent

col(v) ∧ (v.Id �= v.Root) ∧ (the edge connect-
ing the vertex v to v.Parent belongs to E3−i) ∧
(v.Parent.Distance < minx∈v.Edge-listi x.Distance) −→ v.Parenti := v.Parent

col(v) ∧ (v.Id �= v.Root) ∧ (the edge connecting
the vertex v with v.Parent belongs to E3−i) ∧
(v.Parent.Distance ≥ minx∈v.Edge-listi x.Distance)

−→ v.Parenti :=
argminx∈v.Edge-listix.Distance

We say that the condition sti(v) is satisfied by the vertex v if none of the
preconditions of the previous actions is satisfied. Since the spanning trees ST1
and ST2 are constructed at the same time, Phase 3 terminates if the condition
sti(v) is satisfied at each vertex v ∈ V and for each index i ∈ {1, 2}. At the end
of this phase, each node v ∈ V knows its father v.Parenti in the tree STi.

Phase 4. With trees ST1 and ST2 at hand, the algorithm is similar to that
for partial grids. First, the algorithm MedianTree is used to compute the
medians of the trees ST1 and ST2. Then, using a self-stabilizing broadcasting
algorithm, we set to “true” the variable v.bi of each vertex v belonging to the
same connected component of the graph Gi as a median vertex of the tree STi.
Once this broadcasting algorithm stabilizes, the median set Medπ(G) of G is
formed by all vertices v of G for which v.b1 ∧ v.b2 is true.

Theorem 2. The algorithm MedianEvenSquaregraph computes the median
set of an even squaregraph G with n vertices in O(n2) rounds.

Proof. The algorithm given by Afek et al. [1] for constructing a spanning tree
stabilizes in O(n2) rounds. This shows that Phase 1 stabilizes in O(n2) rounds.
The Phase 2 needs O(n) rounds in the worst case. By induction we can show
that when a vertex v located at distance i from the root is activated during
the round i + 1, the variable w.Color of its father w, which is at distance i − 1
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from the root, has already been correctly computed (by induction hypothesis).
Thus the rules of Phase 2 correctly compute the value of v.Color using that of
w.Color. Since two edges incident to the same vertex v and belonging to the
same square have numbers of different parity in the degree list of v, they will be
included in different sets E1 and E2 by the algorithm. It remains to show that
any edge uv is inserted in the same edge-list by both vertices u and v. For this
we proceed by induction on k := dG(v, r) < dG(u, r). Our previous argument
shows that the assertion holds when v is the father of u in the BFS-tree. So,
suppose that v′ is the father of v and u′ is the father of u in the BFS-tree and
that u′ �= v. It was shown in [14] for graphs more general than squaregraphs
that, if u and v are adjacent in G, then their fathers u′ and v′ are also adjacent.
Since dG(v′, r) = k − 1, by induction hypothesis we conclude that u′ and v′

inserted the edge u′v′ in the same set, say E1. Now, since each vertex inserts
two incident edges of a square in different edge-lists and the edge connecting a
vertex with its father is set in the same list by the two ends, we conclude that
the edges u′u and v′v are in the lists E2 of their extremities. This implies that
the edge uv will be put in the list E1 by both vertices u and v, thus establishing
our assertion.

The rules of Phase 3 depend only of the information computed at Phases 1 and
2, thus in order to correctly compute in Phase 3 the trees ST1 and ST2, it suffices
that each vertex is activated at this phase once. As to the Phase 4, the algorithm
MedianTree stabilizes in O(e) rounds, where e is the largest eccentricity of a
median vertex of G [11], thus its complexity is the same as that of broadcasting.
Summarizing, we conclude that the construction in O(n2) rounds of a spanning
tree of G dominates the overall complexity of our algorithm. Most importantly,
Proposition 2 establishes that MedianEvenSquaregraph correctly computes
Med(G). �

Remark 1. Note that, given a spanning tree of an even squaregraph and unique
identifiers, it would be possible to reconstruct locally a map representing the
topology of the graph and then compute internally the median set. But it would
require much more than O(log n) bits per node and therefore it is not a satis-
factory solution.
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Abstract. The maximal matching problem has received considerable
attention in the self-stabilizing community. Previous work has given dif-
ferent self-stabilizing algorithms that solves the problem for both the
adversarial and fair distributed daemon, the sequential adversarial dae-
mon, as well as the synchronous daemon. In the following we present a
single self-stabilizing algorithm for this problem that unites all of these
algorithms in that it stabilizes in the same number of moves as the pre-
vious best algorithms for the sequential adversarial, the distributed fair,
and the synchronous daemon. In addition, the algorithm improves the
previous best moves complexities for the distributed adversarial daemon
from O(n2) and O(δm) to O(m) where n is the number of processes, m
is the number of edges, and δ is the maximum degree in the graph.

1 Introduction

A matching in an undirected graph is a subset of edges in which no pair of
edges is adjacent. A matching M is maximal if no proper superset of M is also
a matching. Matchings are typically used in distributed applications when pairs
of neighboring nodes have to be set up (e.g. between a server and a client). As
current distributed applications usually run continuously, it is expected that the
system is dynamic (nodes may leave or join the network), so an algorithm for the
distributed construction of a maximal matching should be able to reconfigure
on the fly. Self-stabilization [3,4] is an elegant approach to forward recovery
from transient faults as well as initializing a large-scale system. Informally, a
self-stabilizing systems is able to recover from any transient fault in finite time,
without restricting the nature or the span of those faults.

The environment of a self-stabilizing algorithm is modeled by the notion of
a daemon. There are two main characteristics for the daemon: it can be either
sequential (or central, meaning that exactly one eligible process is scheduled for
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execution at a given time) or distributed (meaning that any subset of eligible
processes can be scheduled for execution at a given time), and in an orthogonal
way, it can be fair (meaning that in any execution, every eligible processor
is eventually scheduled for execution) or adversarial (meaning that the daemon
only guarantees global progress, i.e. some eligible process is eventually scheduled
for execution). An extreme case of a fair daemon is the synchronous daemon,
where all eligible processes are scheduled for execution at every step. Of course,
any algorithm that can cope with the distributed daemon can cope with the
sequential daemon or the synchronous daemon, and any algorithm that can
handle the adversarial daemon can be used with a fair or a synchronous daemon,
but the converse is not true in either case.

There exists several self-stabilizing algorithms for computing a maximal
matching in an unweighted general graph. Hsu and Huang [10] gave the first
such algorithm and proved a bound of O(n3) on the number of steps assuming
an adversarial daemon. This analysis was later improved to O(n2) by Tel [12]
and finally to O(m) by Hedetniemi et al. [9]. The original algorithm assumes
an anonymous network and operates therefore under the sequential daemon in
order to achieve symmetry breaking. Indeed, one can show that in some symmet-
ric networks there exists no deterministic self-stabilizing solution to the maximal
matching problem.

By using randomization, Gradinariu and Johnen [7] proposed a scheme to give
processes a local name that is unique within distance 2, and used this scheme
to run Hsu and Huang’s algorithm under an adversarial distributed daemon.
However, only a finite stabilization time was proved. Using the same technique
of randomized local symmetry breaking, Chattopadhyay et al. [2] later gave a
maximal matching algorithm with O(n) round complexity (in their model, this is
tantamount to O(n2) steps), but assuming the weaker fair distributed daemon.

In [5] Goddard et al. describe a synchronous version of Hsu and Huang’s
algorithm and show that it stabilizes in O(n) rounds. Although not explicitly
proved in the paper, it can be shown that their algorithm also copes with the
adversarial distributed daemon using θ(n2) steps. Here, symmetry is broken
using unique identifiers at every process. In [8], Gradinariu and Tixeuil provide
a general scheme to transform an algorithm using the sequential adversarial
daemon into an algorithm that copes with the distributed adversarial daemon.
Using this scheme with Hsu and Huang’s algorithm yields a step complexity of
O(δm), where δ denotes the maximum degree of the network.

Our contribution is a new self-stabilizing algorithm that stabilizes after O(m)
steps both under the sequential and under the distributed adversarial daemon.
Under a distributed fair daemon the algorithm stabilizes after O(n) rounds.
Thus, this algorithm unifies the moves complexities of the previous best al-
gorithms both for the sequential and for the distributed fair daemon and also
improves the previous best moves complexity for the distributed adversarial dae-
mon. As a side effect, we improve the best known algorithm for the adversarial
daemon by lowering the environment requirements (distributed vs. sequential).
To break symmetry, we assume that node identifiers are unique within distance
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2 (this can be done using the scheme of [2,7]). The following table compares fea-
tures of the aforementioned algorithms and ours (best feature for each category
is presented in boldface).

Reference Daemon Step Round Asymmetry
complexity complexity

[9,10,12] sequential adversarial O(m) anonymous
[7] distributed adversarial finite distance 2
[2] distributed fair O(n2) O(n) distance 2
[5] synchronous O(n2) O(n) unique ID
[8] distributed adversarial O(δm) unique ID
This paper distributed adversarial O(m) O(n) distance 2

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to self-stabilizing algorithms and the computational environment
we use. In Section 3 we describe our algorithm and prove its correctness and
speed of convergence in Section 4. Finally, in Section 5 we conclude.

2 Model

A system consists of a set of processes where two adjacent processes can com-
municate with each other. The communication relation is typically represented
by a graph G = (V, E) where each process is represented by a node in V and
two processes i and j are adjacent if and only if (i, j) ∈ E. The set of neighbors
of a node i ∈ V is denoted by N(i). The neighbors of a set of processes A ⊆ V
is defined as follows N(A) = {j ∈ V − A, ∃i ∈ A s.t. (i, j) ∈ E}. A process
maintains a set of variables. Each variable ranges over a fixed domain of values.
An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean
predicate over the variables of both the process and those of its neighbors. A
command is a sequence of statements assigning new values to the variables of
the process.

A configuration of the system is the assignment of a value to every variable
of each process from its corresponding domain. Each process contains a set of
actions. An action is enabled in some configuration if its guard is true at this
configuration. A process is eligible if it has at least one enabled action. A compu-
tation is a maximal sequence of configurations such that for each configuration
si, the next configuration si+1 is obtained by executing the command of at least
one action that is enabled in si (a process that executes such an action makes
a move or a step). Maximality of a computation means that the computation is
infinite or it terminates in a configuration where none of the actions are enabled.

A daemon is a predicate on executions. We distinguish several kinds of dae-
mons: the sequential daemon make the system move from one configuration
to the next by executing exactly one enabled action, the synchronous daemon
makes the system move from one configuration to the next one by executing all
enabled actions, the distributed daemon makes the system move from one config-
uration to the next one by executing any non empty subset of enabled actions.
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Note that the sequential and synchronous daemons are instances of the more
general (i.e. less constrained) distributed daemon. Also, a daemon is fair if any
action that is continuously enabled is eventually executed, and adversarial if it
may execute any enabled action at every step. Again, the adversarial daemon is
more general than the fair daemon.

A system is self-stabilizing for a given specification, if it automatically con-
verges to a configuration that conforms to this specification, independently of
its initial configuration and without external intervention.

We consider two measures for evaluating complexity of self-stabilizing pro-
grams. The step complexity investigates the maximum number of process moves
that are needed to reach a configuration that conforms to the specification (i.e.
a legitimate configuration), for all possible starting configurations. The round
complexity considers that executions are observed in rounds: a round is the
smallest sequence of an execution in which every process that was eligible at the
beginning of the round either makes a move or has its guard(s) disabled since
the beginning of the round.

3 The Algorithm

In the following we present and motivate our algorithm for computing a maximal
matching. The algorithm is self-stabilizing and does not make any assumptions
on the network topology. A set of edges M ⊆ E is a matching if and only if
x, y ∈ M implies that x and y do not share a common end point. A matching
M is maximal if no proper superset of M is also a matching.

Each process i has a variable pi pointing to one of its neighbors or to null. We
say that processes i and j are married to each other if and only if i and j are
neighbors and their p-values point to each other. In this case we will also refer
to i as being married without specifying j. However, we note that in this case j
is unique. A process which is not married is unmarried.

We also use a variable mi to let neighboring processes of i know if process i is
married or not. To determine the value of mi we use a predicate PRmarried(i)
which evaluates to true if and only if i is married. Thus predicate PRmarried(i)
allows process i to know if it is currently married and the variable mi allows
neighbors of i to know if i is married. Note that the value of mi is not necessarily
equal to PRmarried(i).

Our self-stabilizing scheme is given in Algorithm 1. It is composed of four
mutual exclusive guarded rules as described below.

The Update rule updates the value of mi if it is necessary, while the three
other rules can only be executed if the value of mi is correct. In the Marriage
rule, an unmarried process that is currently being pointed to by a neighbor j
tries to marry j by setting pi = j. In the Seduction rule, an unmarried process
that is not being pointed to by any neighbor, point to an unmarried neighbor
with the objective of marriage. Note that the identifier of the chosen neighbor
has to be larger than that of the current process. This is enforced to avoid the
creation of cycles of pointer values. In the Abandonment rule, a process i resets
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Algorithm 1. A self-stabilizing maximal matching algorithm

Variables of process i:
mi ∈ {true, false}
pi ∈ {null} ∪ N(i)

Predicate:
PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)

Rules:
Update:

if mi �= PRmarried(i)
then mi := PRmarried(i)

Marriage:
if mi = PRmarried(i) and pi = null and ∃j ∈ N(i) : pj = i
then pi := j

Seduction:
if mi = PRmarried(i) and pi = null and ∀k ∈ N(i) : pk �= i

and ∃j ∈ N(i) : (pj = null and j > i and ¬mj)
then pi := Max{j ∈ N(i) : (pj = null and j > i and ¬mj)}

Abandonment:
if mi = PRmarried(i) and pi = j and pj �= i and (mj or j ≤ i)
then pi := null

its pi value to null. This is done if the process j which it is pointing to does
not point back at i and if either (i) j is married, or (ii) j has a lower identifier
than i. Condition (i) allows a process to stop waiting for an already married
process while the purpose of Condition (ii) is to break a possible initial cycle of
p-values.

We note that if PRmarried(i) holds at some point of time then from then
on it will remain true throughout the execution of the algorithm. Moreover, the
algorithm will never actively create a cycle of pointing values since the Seduction
rule enforces that j > i before process i will point to process j. Also, all initial
cycles are eventually broken since the guard of the Abandonment rule requires
that j ≤ i.

Figure 1 gives a short example of the execution of the algorithm. The ini-
tial configuration is as shown in Figure 1a, where idi > idj > idk. Here both
processes j and k attempt to become married to i. In Figure 1b process i has
executed a Marriage move, and i and j are now married. In Figure 1c both i
and j execute an Update move, setting their m-values to true. And finally, in
Figure 1d process k executes an Abandonment move.
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Fig. 1. Example

4 Proof of Correctness

In the following we will first show that when Algorithm 1 has reached a sta-
ble configuration it also defines a maximal matching. We will then bound the
number of steps the algorithm needs to stabilize both for the adversarial and
fair distributed daemon. Note that the sequential daemon is a subset of the
distributed one, thus any result for the latter also applies to the former.

4.1 Correct Stabilization

We say that a configuration is stable if and only if no process can execute a move
in this configuration. We now proceed to show that if Algorithm 1 reaches a
stable configuration then the p and m-values will define a maximal matching M
where (i, j) ∈ M if and only if (i, j) ∈ E, pi = j, and pj = i while both mi and
mj are true. In order to perform the proof, we define the following five mutual
exclusive predicates:

PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)
PRwaiting(i) ≡ ∃j ∈ N(i) : (pi = j and pj 
= i and ¬PRmarried(j))
PRcondemned(i) ≡ ∃j ∈ N(i) : (pi = j and pj 
= i and PRmarried(j))
PRdead(i) ≡ (pi = null) and (∀j ∈ N(i) : PRmarried(j))
PRfree(i) ≡ (pi = null) and (∃j ∈ N(i) : ¬PRmarried(j))

Note first that each process will evaluate exactly one of these predicates to true.
Moreover, also note that PRmarried(i) is the same as in Algorithm 1.

We now show that in a stable configuration each process i evaluates either
PRmarried(i) or PRdead(i) to true, and when this is the case, the p-values define
a maximal matching. To do so, we first note that in any stable configuration the
m-values reflects the current status of the process.

Lemma 1. In a stable configuration we have mi = PRmarried(i) for each
i ∈ V .

Proof. This follows directly since if mi 
= PRmarried(i) then i is eligible to
execute the Update(i) rule. �

We next show in the following three lemmas that no process will evaluate either
PRwaiting(i), PRcondemned(i), or PRfree(i) to true in a stable configuration.
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Lemma 2. In a stable configuration PRcondemned(i) is false for each i ∈ V .

Proof. If there exists at least one process i in the current configuration such
that PRcondemned(i) is true then pi is pointing to a process j ∈ N(i) that is
married to a process k where k 
= i. From Lemma 1 it follows that in a stable
configuration we have mi = PRmarried(i) and mj = PRmarried(j). Thus
in a stable configuration the predicate (mi = PRmarried(i) and pi = j and
pj 
= i and mj) evaluates to true. But then process i is eligible to execute the
Abandonment rule contradicting that the current configuration is stable. �

Lemma 3. In a stable configuration PRwaiting(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at
least one process i such that PRwaiting(i) is true. Then it follows that pi is
pointing to a process j ∈ N(i) such that pj 
= i and j is unmarried. Note first
that if pj = null then process j is eligible to execute a Marriage move. Also, if
j < i then process i can execute an Abandonment move.

Assume therefore that pj 
= null and that j > i. It then follows from Lemma 2
that
¬PRcondemned(j) is true and since j is not married we also have
¬PRmarried(j). Thus PRwaiting(j) must be true. Repeating the same ar-
gument for j as we just did for i it follows that if both i and j are ineligible
for a move then there must exist a process k such that pj = k, k > j, and
PRwaiting(k) also evaluates to true. This sequence of processes cannot be ex-
tended indefinitely since each process must have a higher id than the preceding
one. Thus there must exist some process in V that is eligible for a move and the
assumption that the current configuration is stable is incorrect. �

Lemma 4. In a stable configuration PRfree(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at
least one process i such that PRfree(i) is true. Then it follows that pi = null
and that there exists at least one process j ∈ N(i) such that j is not married.

Next, we look at the value of the different predicates for the process j. Since
j is not married it follows that PRmarried(j) evaluates to false. Also, from
lemmas 2 and 3 we have that both PRwaiting(j) and PRcondemned(j) must
evaluate to false. Finally, since i is not married we cannot have PRdead(j).
Thus we must have PRfree(j). But then the process with the smaller id of i
and j is eligible to propose to the other, contradicting the fact that the current
configuration is stable. �

From lemmas 2 through 4 we immediately get the following corollary.

Corollary 1. In a stable configuration either PRmarried(i) or PRdead(i) holds
for every i ∈ V .

We can now show that a stable configuration also defines a maximal matching.

Theorem 1. In any stable configuration the m and p-values define a maximal
matching.
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Proof. From Corollary 1 we know that either PRmarried(i) or PRdead(i) holds
for every i ∈ V in a stable configuration. Also, from Lemma 1 it follows that
mi is true if and only if i is married. It is then straightforward to see that the
p-values define a matching.

To see that this matching is maximal assume to the contrary that it is possible
to add one more edge (i, j) to the matching so that it still remains a legal
matching. To be able to do so we must have pi = null and pj = null. Thus
we have ¬PRmarried(i) and ¬PRmarried(j) which again implies that both
PRdead(i) and PRdead(j) evaluates to true. But according to the PRdead
predicate two adjacent processes cannot be dead at the same time. It follows
that the current matching is maximal. �

4.2 Convergence for the Distributed Adversarial Daemon

In the following we will show that Algorithm 1 will reach a stable configuration
after at most 3 · n + 2 · m steps under the distributed adversarial daemon.

First we note that as soon as two processes are married they will remain so
for the rest of the execution of the algorithm.

Lemma 5. If processes i and j are married in a configuration C (pi = j and
pj = i) then they will remain married in any ensuing configuration C′.

Proof. Assume that pi = j and pj = i in some configuration C. Then process i
cannot execute neither the Marriage nor the Seduction rule since these require
that pi = null. Similarly, i cannot execute the Abandonment rule since this
requires that pj 
= i. The exact same argument for process j shows that j also
cannot execute any of the three rules Marriage, Seduction, and Abandonment.
Thus the only rule that processes i and j can execute is Update but this will not
change the values of pi or pj . �

A process discovers that it is married through executing the Update rule. Thus
this is the last rule a married process will execute in the algorithm. This is
reflected in the following.

Corollary 2. If a process i executes an Update move and sets mi = true then
i will not move again.

Proof. From the predicate of the Update rule it follows that when process i sets
mi = true there must exist a process j ∈ N(i) such that pi = j and pj = i. Thus
from Lemma 5 the only move i can make is an Update move. But since the mi

value is correct and pi and pj will not change again this will not happen. �

Since a married process cannot become “unmarried” we also have the following
restriction on the number of times the Update rule can be executed by any
process.

Corollary 3. Any process executes at most two Update moves.
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We will now bound the number of moves from the set {Marriage, Seduction,
Abandonment}. Each such move is performed by a process i in relation to one
of its neighbors j. We will call any such move made by either i or j with respect
to the other as an i, j-move.

Lemma 6. For any edge (i, j) ∈ E, there can at most be three steps in which
an i, j-move is performed.

Proof. Let (i, j) ∈ E be an edge such that i < j. We then consider four different
cases depending on the initial values of pi and pj at the start of the algorithm.
Note from Algorithm 1 that the only values that pi and pj can take on are
pi ∈ {null}∪N(i) and pj ∈ {null}∪N(j). For each case we will show that there
can at most be three steps in which i, j-moves occur.

Case (i): pi 
= j and pj 
= i. Since i < j the first i, j-move cannot be process j
executing a Seduction move. Also, as long as pi 
= j, process j cannot execute a
Marriage move. Thus process j cannot execute an i, j-move until after process
i has first made an i, j-move. It follows that the first possible i, j-move is that
i executes a Seduction move simultaneously as j makes no move. Note that at
the starting configuration of this move we must have ¬mj . If the next i, j-move
is performed by j simultaneously as i performs no move then this must be a
Marriage move which results in pi = j and pj = i. Then by Lemma 5 there will
be no more i, j-moves. If process i makes the next i, j-move (independently of
what process j does) then this must be an Abandonment move. But this requires
that the value of mj has changed from false to true. Then by Corollary 2 process
j will not make any more i, j-moves and since pj 
= null and pj 
= i for the rest
of the algorithm it follows that process i cannot execute any future i, j-move.
Thus there can at most be two steps in which i, j-moves are performed.

Case (ii): pi = j and pj 
= i. If the first i, j-move only involves process j then
this must be a Marriage move resulting in pi = j and pj = i and from Lemma 5
neither i nor j will make any future i, j-moves. If the first i, j-move involves pro-
cess i then it must make an Abandonment move. Thus in the configuration prior
to this move we must have mj = true. It follows that either mj 
= PRmarried(j)
or pj 
= null. In both cases process j cannot make an i, j-move simultaneously
as i makes its move. Thus following the Abandonment move by process i we are
at Case (i) and there can at most be two more i, j-moves. Hence, there can at
most be a total of three steps with i, j-moves.

Case (iii): pi 
= j and pj = i. If the first i, j-move only involves process i then
this must be a Marriage move resulting in pi = j and pj = i and from Lemma
5 neither i nor j will make any future i, j-moves. If the first i, j-move involves
process j then this must be an Abandonment move. If process i does not make
a simultaneous i, j-move then this will result in configuration i) and there can
at most be two more steps with i, j-moves for a total of three steps containing
i, j-moves.

If process i does make a simultaneous i, j-move then this must be a Marriage
move. We are now at a similar configuration as Case (ii) but with ¬mj . If the
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second i, j-move involves process i then this must be an Abandonment move
implying that mj has changed to true. It then follows from Corollary 2 that
process j (and therefore also process i) will not make any future i, j-move leaving
a total of two steps containing i, j-moves. If the second i, j-move does not involve
i then this must be a Marriage move performed by process j and resulting in
pi = j and pj = i and from Lemma 5 neither i nor j will make any future
i, j-moves.

Case (iv): pi = j and pj = i. In this case it follows from Lemma 5 that neither
process i nor process j will make any future i, j-moves. �

It should be noted in the proof of Lemma 6 that only an edge (i, j) where we
initially have either pi = j or pj = i (but not both) can result in three i, j-moves,
otherwise the limit is two i, j-moves per edge. When we have three (i, j)-moves
across an edge (i, j) we can charge these moves to the processor that was initially
pointing to the other. In this way each process will at most be incident on one
edge which it is charged three moves for. From this observation we can now
give the following bound on the total number of steps needed to obtain a stable
solution.

Theorem 2. Algorithm 1 will stabilize after at most 3 · n + 2 · m steps under
the distributed adversarial daemon.

Proof. From Corollary 2 we know that there can be at most 2n Update moves,
each which can occur in a separate step. From Lemma 6 it follows that there can
at most be three i, j-moves per edge. But as observed, there is at most one such
edge incident on each process i for which process i is charged for, otherwise the
limit is two i, j-moves. Thus the total number of i, j-moves is at most n + 2 · m
and the result follows. �

From Theorem 2 it follows that Algorithm 1 will use O(m) moves on any con-
nected system when assuming a distributed daemon. Since the distributed dae-
mon encompasses the sequential daemon this result also holds for the sequential
daemon.

4.3 Convergence for the Distributed Fair Daemon

Next we consider the number of rounds used by Algorithm 1 when operated
under the distributed fair daemon. Note that one round may encompass several
steps, and we only require that every process eligible at the start of a round
either executes at least one rule during the round or becomes ineligible to do
so. This also implies that moves made in the same round may or may not be
simultaneous. Since the fair distributed daemon is a subset of the adversarial
distributed daemon any results that were shown in Section 4.2 also applies here.
We will now show that Algorithm 1 converges after at most 2 · n + 1 rounds for
this daemon.

We define that a process i ∈ V is active if either PRmarried(i) or PRdead(i)
is false. A process that is not active is inactive. From Corollary 2 it follows that
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any process i ∈ V where PRmarried(i) is true will not become active again for
the rest of the algorithm. This also implies that if PRdead(i) is true in some
configuration then it will remain so for the rest of the algorithm.

Lemma 7. Let A ⊆ V be a maximal connected set of active processes in some
configuration of the algorithm. If |A| > 2 then after at most four more rounds
the size of A has decreased by at least 2.

Proof. We first note that the size of A cannot increase during the execution of
the algorithm. Assume now that no processes in A gets married during the next
four rounds. We will show that this leads to a contradiction.

After the first round every process j ∈ N(A) must have mi = true. This
follows since any process j ∈ N(A) must have PRdead(j) = false (by definition)
and will therefore have PRmarried(j) = true. Thus if mj is initially false for a
process j ∈ N(A) then after the first round mj will be set to true. Similarly, if
a node i ∈ A has mi = true then mi will be set to false after the first round.
According to the assumption that no processes in A gets married, the m-values
will not change during the next three rounds.

Next, consider any i ∈ A that either initially or after the first round satisfies
pi = j such that either j ∈ N(A) or j < i (or both). It follows that if j ∈ N(A)
then mj = true after the first round, and if j < i then i will be eligible for
an Abandonment move before j can execute a Marriage move (otherwise they
get married). Thus in either case, process i is eligible for an Abandonment move
no later than after the first round. Also note that the situation where pi = j
and j < i cannot occur again after the first round. This is because prior to this
configuration we must have pj = i and mi = true, which is not possible if i ∈ A.

Thus after the second round a process i ∈ A cannot execute an Abandonment
move since this requires that either mpi = true or that i > pi. Since no process
can execute an Abandonment move it also follows that no process can execute
a Marriage move since this would lead to two processes getting married. Thus
at this stage a process can only execute a Seduction move and a process that
is not eligible for a Seduction move at this point will not become eligible for a
Seduction move after the third round since no m-value is changed and no p-value
is set to null during the third round.

Hence, at the start of the third round we have that for every i ∈ A either
(i) pi = null or (ii) pi = j where j ∈ N(j) ∩ A. If Case (i) is true for every
process in A, then since |A| ≥ 2 then at least the process with the lowest id in
A is eligible for a Seduction move. Therefore no later than after the third round
there exists at least one process i1 ∈ A where pi1 = i2 such that i2 ∈ N(j) ∩ A.
Further, let {i1, i2, ..., ik} be a path of maximal length such that ix+1 ∈ N(ix)∩A
and pix = ix+1, 1 ≤ x < k. Note that while the Seduction moves made by the
processes during the third round may be performed in different steps, no process
will become eligible for an Update or Abandonment move, since they must be
preceded by a Marriage and Update move, respectively. It follows that each
ix ∈ A and also that ix < ix+1. Since the length of the path is finite we have
pik

= null.
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The process ik is now eligible for a Marriage move and therefore cannot be
eligible for any other move. As noted, process pik−1 cannot be eligible for an
Abandonment move at this point since ik−1 < ik and mk = false. Thus following
the fourth round processes ik−1 and ik will become married, contradicting our
assumption and the result follows. �

Note that if A in Lemma 7 only contains one node i then either PRwaiting(i) or
PRcondemned(i) must be true initially. In either case, after at most two moves i
will have updated mi and executed an Abandonment move such that PRdead(i)
is true.

Obviously |A| ≤ |V |, and from Lemma 5 we know that once married, a process
will remain married for the rest of the algorithm. From this we get that at most
2·n rounds are needed to find the matching. However, after the matching has been
found every married process may execute an Update move, and every unmarried
process may execute an Abandonment move. Both of these can be done in the
same round. Note that it is not necessary for a process i that is unmarried when
the algorithm terminates to execute a final Update move as mi = false after the
first round and remains false throughout the algorithm. From this we get the
following theorem.

Theorem 3. Algorithm 1 will stabilize after at most 2 ·n+1 rounds when using
a fair distributed daemon.

5 Conclusion

We have presented a new self-stabilizing algorithm for the maximal matching
problem that improves the time step complexity of the previous best algorithm
for the distributed adversarial daemon, while at the same time as meeting the
bounds of the previous best algorithms for the sequential and the distributed
fair daemon.

It is well known that a maximal matching is a 1
2 -approximation to the maxi-

mum matching, where the maximum matching is a matching such that no other
matching with strictly greater size exists in the network. In [6], Goddard et al.
provide a 2

3 -approximation for a particular class of networks (trees and rings of
size not divisible by 3). Also, in particular networks such as Trees in [11,1] or
bipartite graphs in [2], self-stabilizing algorithms have been proposed for maxi-
mum matching. However, no self-stabilizing solution with a better approximation
ratio than 1

2 currently exists for general graphs. Thus it would be of interest to
know if it is possible to create a self-stabilizing algorithm for general graphs that
achieves a better approximation ratio than 1

2 , or even an optimal solution.
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Abstract. Recently, quite a few papers studied methods for represent-
ing network properties by assigning informative labels to the vertices of a
network. Consulting the labels given to any two vertices u and v for some
function f (e.g. “distance(u, v)”) one can compute the function (e.g. the
graph distance between u and v). Some very involved lower bounds for
the sizes of the labels were proven.

In this paper, we demonstrate that such lower bounds are very sensi-
tive to the number of vertices consulted. That is, we show several almost
trivial constructions of such labeling schemes that beat the lower bounds
by large margins. The catch is that one needs to consult the labels of
three vertices instead of two. We term our generalized model labeling
schemes with queries.

Additional contributions are several extensions. In particular, we show
that it is easy to extend our schemes for tree to work also in the dynamic
scenario. We also demonstrate that the study of the queries model can
help in designing a scheme for the traditional model too. Finally, we
demonstrate extensions to the non-distributed environment. In partic-
ular, we show that one can preprocess a general weighted graph using
almost linear space so that flow queries can be answered in almost con-
stant time.

Keywords: Labeling schemes, routing schemes, distance queries.

1 Introduction

Background: Network representations play a major role in many domains of
computer science, ranging from data structures, graph algorithms, and combi-
natorial optimization to databases, distributed computing, and communication
networks. In most traditional network representations, the names or identifiers
given to the vertices betray no useful information, and they serve only as point-
ers to entries in the data structure, which forms a global representation of the
network. Recently, quite a few papers studied methods for representing network
properties by assigning informative labels to the vertices of the network (see e.g.,
[40,9,29,36,45]).

Let f be a function on pairs of vertices (e.g., distance). Informally, the goal of
an f -labeling scheme is to label the vertices of a graph G in such a way that for
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every two vertices u, v ∈ G, the value f(u, v) (e.g., the distance between u and
v) can be inferred by merely inspecting the labels of u and v. Of course, this can
be done trivially using labels that are large enough (e.g., every label includes
the description of the whole graph). Therefore, the main focus of the research
concerning labeling schemes is to minimize the amount of information (the sizes
of the labels) required. Informally, an f -labeling scheme can be viewed as a way
of distributing the graph structure information concerning f to the vertices of
the graph, using small chunks of information per vertex.

Rather involved proofs were introduced to lower bound the sizes of such la-
beling schemes. The main contribution of this paper is the demonstration that
these lower bounds are very sensitive to the model used. Intuitively, if the labels
of three vertices can be consulted (rather than two, such as u and v above),
it is very easy to reduce the sizes significantly, much below the previous lower
bounds. Moreover, our query labeling schemes can be obtained using very simple
methods, sometimes trivial.

Elaborating somewhat more (formal definitions appear in Section 2), this
paper introduces the notion of f -labeling schemes with queries which generalizes
the notion of f -labeling schemes. The idea is to distribute the global information
(relevant to f) to the vertices, in such a way that f(u, v) can be inferred by
inspecting not only the labels of u and v but possibly the labels of additional
vertices. We note that all the constructions given in this paper calculate f(u, v)
by inspecting the labels of three vertices (u and v above, and some w). That is,
given the labels of u and v, we first find a vertex w and then consult its label to
derive f(u, v). However, in the concluding section we discuss generalizations to
inspecting additional labels.

We also show several additional extensions. One extension is meant to demon-
strate an advantage of the simplicity of the design of labeling schemes with
queries. It helped us to simplify the design of a labeling scheme for the tradi-
tional model (with no queries). We did that in two steps: first we designed the
simple scheme with queries, and then “simulated” this scheme in the old model
(with no queries). (The “simulation” had some associated cost, which made the
resulting scheme work for an approximation function f , rather than for the exact
function we would have liked).

A second extension of the result is to dynamic scenarios. We note that most
previous research concerning distributed network representations considered the
static scenario, in which the topology of the underlying network is fixed. This
is probably due to the fact that designing for the dynamic scenario is more
complex. Some recent papers did tackle task of labeling dynamic networks in a
distributed fashion. Such labeling methods should, of course, be dynamic too.
Indeed, the designs in these recent paper tend to be harder and more complex.
We show that the effect of introducing a query to the dynamic case is similar to
the effect on the static case. That is- the sizes can be reduced considerably, and
the construction of the schemes is rather easy (though somewhat more complex
than in the static case). To do that, we modify the model translation methods
of [35] and [38], and then use them to extend our static labeling schemes with
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queries on trees to the dynamic scenario. We then show that the sizes of the
resulted schemes are smaller than those of the schemes for the older model. The
reduction in the label size is similar to the reduction in the static case.

In a final extension, we show that our methods are also useful in the non-
distributed environment.

Related work: In this subsection we mostly survey results concerning labeling
schemes (with no queries). However, let us first mention an area of research
(namely, overlay and Peer to Peer networks) that may serve as a practical mo-
tivation for our work, and for some other studies concerning labeling schemes.
We stress, though, that the main motivation for this paper is theoretical.

When the third vertex w (mentioned above) is near by to u, it may be quite
cheap for u to access the main memory at w, sometimes even cheaper than
consulting the disk at u itself. See, for example [41,34]. Indeed, some of our
schemes below are based on such a “near by” w. Even when w is remote, accessing
it may be cheap in some overlay networks. The main overhead there is finding w
(which can be done in our constructions by u using v’s label) and creating the
connection to it. Such models are presented explicitly, e.g. in [31,15,2,48], where
such remote accesses are used to construct and to use overlay data structures.
Famous overlay data structures that can fit such models appear for example in
[49,55,42,23,43]. In some of these overlay networks, a vertex w is addressed by
its contents. This may motivate common labeling schemes that assume content
addressability.

Implicit labeling schemes were first introduced in [12,40]. Labeling schemes
supporting the adjacency and ancestry functions on trees were investigated in
[40,9,8].

Distance labeling schemes were studied in [44,29,52,17,4,39]. In particular, [44]
showed that the family of n vertex weighted trees with integer edge capacity of
at most W enjoys a scheme using O(log2 n + log n log W )-bit labels. This bound
was proven in [29] to be asymptotically optimal.

Labeling schemes for routing on trees were investigated in a number of papers
until finally optimized in [21,22,54]. For the designer port model, in which the
designer of the scheme can freely enumerate the port numbers of the nodes,
[21] shows how to construct a routing scheme using labels of O(log n) bits on
n-node trees. In the adversary port model, in which the port numbers are fixed
by an adversary, they show how to construct a routing scheme using labels
of O(log2 n/ log log n) bits on n-node trees. In [22] they show that both label
sizes are asymptotically optimal. Independently, a routing scheme for trees using
(1 + o(1)) log n-bit labels was introduced in [54] for the designer port model.

Two variants of labeling schemes supporting the nearest common ancestor
(NCA) function in trees appear in the literature. In an id-NCA labeling schemes,
the vertices of the input graph are assumed to have disjoint identifiers (using
O(log n) bits) given by an adversary. The goal of an id-NCA labeling scheme
is to label the vertices such that given the labels of any two vertices u and v,
one can find the identifier of the NCA of u and v. Static labeling schemes on trees
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supporting the separation level and id-NCA functions were given in [45] using
Θ(log2 n)-bit labels. The second variant considered is the label-NCA labeling
scheme, whose goal is to label the vertices such that given the labels of any
two vertices u and v, one can find the label (and not the pre-given identifier) of
the NCA of u and v. In [5] they present a label-NCA labeling scheme on trees
enjoying Θ(log n)-bit labels.

In [36] they give a labeling scheme supporting the flow function on n-node
general graphs using Θ(log2 n+logn logW )-bit labels, where W is the maximum
capacity of an edge. They also show a labeling scheme supporting the k-vertex-
connectivity function on general graphs using O(2k log n)-bit labels. See [27] for
a survey on (static) labeling schemes.

Most of the research concerning labeling schemes in the dynamic settings
considered the following two dynamic models on tree topologies. In the leaf-
dynamic tree model, the topological event that may occur is that a leaf is either
added to or removed from the tree. In the leaf-increasing tree model, the only
topological event that may occur is that a leaf joins the tree.

The study of dynamic distributed labeling schemes was initiated in [38,37]. In
[38], a dynamic labeling scheme is presented for distances in the leaf-dynamic tree
model with O(log2 n) label size and O(log2 n) amortized message complexity,
where n is the current tree size. β-approximate distance labeling schemes (in
which, given two labels, one can infer a β-approximation to the distance between
the corresponding nodes) are presented [37]. Their schemes apply for dynamic
models in which the tree topology is fixed but the edge weights may change.

Two general translation methods for extending static labeling schemes on
trees to the dynamic setting are considered in the literature. Both approaches
fit a number of natural functions on trees, such as ancestry, routing, label-NCA,
id-NCA etc. Given a static labeling scheme on trees, in the leaf-increasing tree
model, the resulting dynamic scheme in [38] incurs overheads (over the static
scheme) of O(log n) in both the label size and the communication complex-
ity. Moreover, if an upper bound nf on the final number of vertices in the
tree is known in advance, the resulting dynamic scheme in [38] incurs over-
heads (over the static scheme) of O(log2 nf/ log log nf ) in the label size and only
O(log n/ log log n) in the communication complexity. In the leaf-dynamic tree
model there is an extra additive factor of O(log2 n) to the amortized message
complexity of the resulted schemes.

In [35], it is shown how to construct for many functions k(x), a dynamic la-
beling scheme in the leaf-increasing tree model extending a given static scheme,
such that the resulting scheme incurs overheads (over the static scheme) of
O(logk(n) n) in the label size and O(k(n) logk(n) n) in the communication com-
plexity. As in [38], in the leaf-dynamic tree model there is an extra additive factor
of O(log2 n) to the amortized message complexity of the resulted schemes. In par-
ticular, by setting k(n) = nε, dynamic labeling schemes are obtained with the
same asymptotic label size as the corresponding static schemes and sublinear
amortized message, namely, O(nε).
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1.1 Our Contribution

We introduce the notion of f -labeling schemes with queries that is a natural gen-
eralization of the notion of f -labeling schemes. Using this notion we demonstrate
that by increasing slightly the number of vertices whose labels are inspected, the
size of the labels decreases considerably. Specifically, we inspect the labels of
3 vertices instead of 2, that is, we use a single query. In particular, we show
that there exist simple labeling schemes with one query supporting the distance
function on n-node trees as well as the flow function on n-node general graphs
with label size O(log n + log W ), where W is the maximum (integral) capacity
of an edge. (We note that the lower bound for labeling schemes without queries
for each of these problems is Ω(log2 n + log n log W ) [29,36].) We also show that
there exists a labeling scheme with one query supporting the id-NCA function
on n-node trees with label size O(log n). (The lower bound for schemes with-
out queries is Ω(log2 n) [45].) In addition, we show a routing labeling scheme
with one query in the fixed-port model using O(log n)-bit labels. (The lower
bound (see [22]) for the case of no queries is Ω( log2 n

log log n ).) We note that all the
schemes we introduce have asymptotically optimal label size for schemes with
one query. (The matching lower bound proofs are straightforward in most of
the cases.) Moreover, most of the results are obtained by simple constructions,
which strengthens the motivation for this model.

We then show several extensions that are somewhat more involved. In partic-
ular, we show that our labeling schemes with queries on trees can be extended to
the dynamic scenario using model translation methods based on those of [38,35].
In order to save in the message complexity, we needed to make some adaptations
to those methods, as well as to one of the static routing schemes of [21]. Second,
we show that the study of the queries model can help with the traditional model
too. That is, using ideas from our routing labeling scheme with one query, we
show how to construct a 3-approximation routing scheme without queries for
unweighted trees in the fixed-port model with Θ(log n)-bit labels.

Finally, we turn to a non-distributed environment and demonstrate similar
constructions. That is, first, we show a simple method to transform previous
results on NCA queries on static and dynamic trees in order to support also
distance queries. Then, we show that one can preprocess a general weighted
graph using almost linear space so that flow queries can be answered in almost
constant time.

2 Preliminaries

Let T be a tree and let v be a vertex in T . Let deg(v) denote the degree of v. For
a non-root vertex v ∈ T , let p(v) denote the parent of v in T . In the case where
the tree T is weighted (respectively, unweighted), the depth of a vertex is defined
as its weighted (resp., unweighted) distance to the root. The nearest common
ancestor of u and w, NCA(u, w), is the common ancestor of both u and w of
maximum depth. Let T (n) denote the family of all n-node unweighted trees. Let
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T (n, W ) (respectively, G(n, W )) denote the family of all n-node weighted trees
(resp., connected graphs) with (integral) edge weights bounded above by W .

Incoming and outgoing links from every node are identified by so called port-
numbers. When considering routing schemes, we distinguish between the follow-
ing two variants of port models. In the designer port model the designer of the
scheme can freely assign the port numbers of each vertex (as long as these port
numbers are unique), and in the fixed-port model the port numbers at each ver-
tex are assigned by an adversary. We assume that each port number is encoded
using O(log n) bits.

We consider the following functions which are applied on pairs of vertices u
and v in a graph G = 〈V, E〉. (1) flow (maximum legal flow between u and v),
(2) distance (either weighted, or unweighted), (3) routing (the port in u to
the next vertex towards v). If the graph is a tree T then we consider also the
following functions: (4) separation level (depth of NCA(u, v)), (5) id-NCA,
(6) label-NCA. In (5) above, it is assumed that identities containing O(log n)
bits are assigned to the vertices by an adversary, and id − NCA(u, v) is the
identity of NCA(u, v). In (6) above, it is assumed that each vertex can freely
select its own identity (as long as all identities remain unique). In this case, the
identities may also be referred to as labels.
Labeling schemes and c-query labeling schemes: Let f be a function defined on
pairs of vertices. An f -labeling scheme π = 〈M, D〉 for a family of graphs F is
composed of the following components:

1. A marker algorithm M that given a graph G ∈ F , assigns a label M(v) to
each vertex v ∈ G.

2. A (polynomial time) decoder algorithm D that given the labels M(u) and
M(v) of two vertices u and v in some graph G ∈ F , outputs f(u, v).

The most common measure used to evaluate a labeling scheme π = 〈M, D〉,
is the label size, i.e., the maximum number of bits used in a label M(v) over all
vertices v in all graphs G ∈ F .

Let c be some constant integer. Informally, in contrast to an f -labeling scheme,
in a c-query f -labeling scheme, given the labels of two vertices u and v, the
decoder may also consult the labels of c other vertices. More formally, a c-query
f -labeling scheme ϕ = 〈M, Q, D〉 is composed of the following components:

1. A marker algorithm M that given a graph G ∈ F , assigns a label M(v)
to each vertex v ∈ G. This label is composed of two sublabels, namely,
Mindex(v) and Mdata(v), where it is required that the index sublabels are
unique, i.e., for every two vertices v and u, Mindex(v) �= Mindex(u). (In
other words, the index sublabels can serve as identities.)

2. A (polynomial time) query algorithm Q that given the labels M(u) and M(v)
of two vertices u and v in some graph G ∈ F , outputs Q(M(u), M(v)) which
is a set containing the indices (i.e., the first sublabels) of c vertices in G.

3. A (polynomial time) decoder algorithm D that given the labels M(u) and
M(v) of two vertices u and v and the labels of the vertices in Q(M(u), M(v)),
outputs f(u, v).
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As in the case of f -labeling schemes, we evaluate a c-query f -labeling scheme
ϕ = 〈M, Q, D〉 by its label size, i.e, the maximum number of bits used in a label
M(v) over all vertices v in all graphs G ∈ F . We note that all the schemes in
this paper use c = 1. Let us comment also that clearly, since the index sublabels
must be disjoint, any c-query f -labeling scheme on any family of n-node graphs
must have label size Ω(log n). See Section 7 for alternative definition for query
labeling schemes.

2.1 Routing Schemes and β-Approximation Routing Schemes

A routing scheme is composed of a marker algorithm M for assigning each vertex
v of a graph G with a label M(v), coupled with a router algorithm R whose
inputs are the header of a message, M(v) and the label M(y) of a destination
vertex y. If a vertex x wishes to send a message to vertex y, it first prepares and
attaches a header to the message. Then the router algorithm x outputs a port of
x on which the message is delivered to the next vertex. This is repeated in every
vertex until the message reaches the destination vertex y. Each intermediate
vertex u on the route may replace the header of the message with a new header
and may perform a local computation. The requirement is that the weighted
length of resulting path connecting x and y is the same as the distance between
x and y in G. For a constant β, a β-approximation routing scheme is the same
as a routing scheme except that the requirement is that the length of resulting
route connecting x and y is a β-approximation for the distance between x and
y in G.

In addition to the label size, we also measure a routing scheme (and a β-
approximation routing scheme) by the header size, i.e., the maximum number of
bits used in a header of a message.

3 Labeling Schemes with One Query

In this section we demonstrate that the query model allows for significantly
shorter labels. In particular, we describe simple 1-query labeling schemes with
labels that beat the lower bounds in the following well studied cases: for the
family of n-node trees, schemes supporting the routing (in the fixed-port model),
distance, separation level, and the id-NCA functions; for the family of n-node
general graphs, a scheme supporting the flow function. We note that all the
schemes we present use asymptotically optimal labels.

Most of the 1-query labeling schemes obtained in this section use the label-NCA
labeling scheme πNCA = 〈MNCA, DNCA〉 described in [5]. Given an n-node, the
marker algorithm MNCA assigns each vertex v a distinct label MNCA(v) using
O(log n) bits. Given the labels MNCA(v) and MNCA(u) of two vertices v and u
in the tree, the decoder DNCA outputs the label MNCA(w).
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3.1 Id-NCA Function in Trees

We first describe a 1-query scheme ϕid−NCA = 〈Mid−NCA, Qid−NCA, Did−NCA〉
that demonstrates how easy it is to support the id-NCA function on T (n) using
one query and O(log n)-bit labels. (Recall that the lower bound on schemes
without queries is Ω(log2 n) [45].)

Informally, the idea behind ϕid−NCA is to have the labels of u and v (their
first sublabels) be the labels given by the label-NCA labeling scheme πNCA(v).
Hence, they are enough for the query algorithm to find the πNCA label of their
nearest common ancestor w. Then, the decoder algorithm finds w’s identity
simply in the second sublabel of w.

Let us now describe the 1-query labeling scheme ϕid−NCA more formally.
Given a tree T , recall that it is assumed that each vertex v is assigned a
unique identity id(v) by an adversary and that each such identity is composed
of O(log n) bits. The marker algorithm Mid−NCA labels each vertex v with the
label Mid−NCA(v) = 〈Mindex

id−NCA(v), Mdata
id−NCA(v)〉 = 〈MNCA(v), id(v)〉. Given

the labels Mid−NCA(v) and Mid−NCA(u) of two vertices v and u in the tree, the
query algorithm Qid−NCA uses the decoder DNCA applied on the corresponding
first sublabels to output the sublabel Mindex

id−NCA(w) = MNCA(w), where w is the
NCA of v and u. Given the labels Mid−NCA(v), Mid−NCA(u) and Mid−NCA(w)
where w is the NCA of v and u, the decoder Did−NCA simply outputs the second
sublabel of w, i.e., Mdata

id−NCA(w) = id(w). The fact that ϕid−NCA is a correct
1-query labeling scheme for the id-NCA function on T (n) follows from the cor-
rectness of the label-NCA labeling scheme πNCA. Since the label size of πNCA(v)
is O(log n) and since the identity of each vertex v is encoded using O(log n) bits,
we obtain that the label size of ϕid−NCA is O(log n). As mentioned before, since
the index sublabels must be disjoint, any query labeling scheme on T (n) must
have label size Ω(log n). The following lemma follows.

Lemma 1. The label size of a 1-query id-NCA labeling scheme on T (n) is
Θ(log n).

3.2 Distance and Separation Level in Trees

The above method can be applied for other functions. For example, let us now de-
scribe 1-query labeling schemes ϕsep−level and ϕdist supporting the distance and
separation level functions respectively on T (n, W ). Both our scheme have label
size Θ(log n + log W ). Recall that any labeling scheme (without queries) sup-
porting either the distance function or the separation level function on T (n, W )
must have size Ω(log2 n + log n log W ), [29,45]. The proof of the following lower
bound claim is deferred to the full paper.

Claim. Let c be a constant. Any c-query labeling scheme supporting either the
separation level function or the distance function on T (n, W ) must have label
size Ω(log W + log n).

The construction of our 1-query labeling schemes supporting the separation level
and distance functions uses a similar method to the one described in Subsection
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3.1. Both schemes are based on keeping the depth of a vertex in its data sub-
label (instead of its identity). The correctness of the 1-query labeling scheme
supporting the distance function is based on the following equation.

d(v, u) = depth(v) + depth(u) − 2 · depth(NCA(v, u)). (1)

The description of these schemes as well as the proof of the following lemma is
deferred to the full paper.

Lemma 2. The label size of a 1-query labeling scheme supporting either the
separation-level or the distance function on T (n, W ) is Θ(log n + log W ).

3.3 Routing in Trees Using One Query

As mentioned before, any 1-query routing labeling scheme on T (n) must have
label size Ω(log n). In this subsection, we establish a 1-query routing labeling
scheme ϕfix in the fixed-port model using O(log n)-bit labels.

In [21], they give a routing scheme πdes = 〈Mdes, Ddes〉 for the designer port
model in T (n). Given a tree T ∈ T (n), for every vertex v ∈ T , and every neighbor
u of v, let portdes(v, u) denote the port number (assigned by the designer of the
routing scheme πdes) leading from v to u. In particular, the port number leading
from each non-root vertex v to its parent p(v) is assigned the number 1, i.e.,
portdes(v, p(v)) = 1. Given the labels Mdes(v) and Mdes(w) of two vertices v
and w in T , the decoder Ddes outputs the port number portdes(v, u) at v leading
from v to the next vertex u on the shortest path connecting v and w.

Let T be an n-node tree. We refer to a port number assigned by the designer
of the routing scheme πdes as a designer port number and to a port number
assigned by the adversary as an fixed-port number. Let port be some port of a
vertex in the fixed-port model. Besides having a fixed-port number assigned by
the adversary, we may also consider port as having a designer port number, the
number that would have been assigned to it had we been in the designer port
model. For a port leading from vertex v to vertex u, let portfix(v, u) denote its
fixed-port number and let portdes(v, u) denote its designer port number.

We now describe our 1-query routing scheme ϕfix = 〈Mfix, Qfix, Dfix〉
which operates in the fixed-port model. Given a a tree T ∈ T (n) and a vertex
v ∈ T , the index sublabel of v is composed of two fields, namely, Mindex(v) =
〈Mindex

1 (v), Mindex
2 (v)〉 and the data sublabel of v is composed of three fields,

namely, Mdata(v) = 〈Mdata
1 (v), Mdata

2 (v), Mdata
3 (v)〉. If v is not the root then

the index and data sublabels of v are Mindex(v)=〈Mdes(p(v)) , portdes(p(v), v)〉
and Mdata(v)=〈Mdes(v) , portfix(p(v), v) , portfix(v, p(v))〉. Note that we use
the designer port number as a part of the label in the fixed-port model. More-
over, the designer port number at the parent is used to label the child in the
fixed-port model. Also note that the index sublabel is unique, since Mdes(x)
must be unique for πdes to be a correct routing scheme.

The index sublabel of the root r of T is 〈0, 0〉 and the data sublabel of r
is Mdata(r) = 〈Mdes(r), 0, 0〉. Note that since the labels given by the marker
algorithm Mdes are unique, the index sublabels of the vertices are unique.
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Given the labels M(v) and M(w) of two vertices v and w, the decoder D first
checks whether Ddes(Mdata

1 (v), Mdata
1 (w)) = 1, i.e., whether the next vertex

on the shortest path leading from v to w is v’s parent. In this case, the query
algorithm is ignored and the decoder Dfix simply outputs Mdata

3 (v) which is
the (fixed) port number at v leading to its parent. Otherwise, the query algo-
rithm Qfix outputs 〈Mdata

1 (v), Ddes(Mdata
1 (v), Mdata

1 (w))〉 = 〈Mdata
1 (v), Ddes

(Mdes(v), Mdes(w))〉 which is precisely the index sublabel of u, the next ver-
tex on the shortest path leading from v to w (and a child of v), i.e., 〈Mdata

1 (v),
portdes(v, u)〉. Therefore, given labels Mfix(v), Mfix(w) and label Mfix(u), the
decoder Dfix outputs Mdata

2 (u) which is the desired port number portfix(v, u).
Since the label size of πdes is O(log n) and since each port number is encoded
using O(log n) bits, we obtain the following lemma.

Lemma 3. In the fixed-port model, the label size of a 1-query routing scheme
on T (n) is Θ(log n).

3.4 Flow in General Graphs

We now consider the family G(n, W ) of connected n-node weighted graphs with
maximum edge capacities W , and present a 1-query flow labeling scheme ϕflow

for this family using O(log n+logW )-bit labels. Recall that any labeling scheme
(without queries) supporting the flow function on G(n, W ) must have size Ω(log2

n + log n log W ) [36]. The proof of the following lemma is deferred to the full
paper.

Lemma 4. The label size of a 1-query flow labeling scheme onG(n, W ) isΘ(log n+
log W ).

4 A 3-Approximation Routing Scheme in the Fixed-Port
Model

We construct a 3-approximation routing scheme (without queries) on T (n) by
applying the method described in Subsection 3.3 to the traditional model. Our 3-
approximation routing labeling scheme πapprox operates in the fixed-port model
and has label size and header size O(log n). Recall that any (precise) routing
scheme on T (n) must have label size Ω(log2 n/ log log n) [22]. We note that our
ideas for translating routing schemes from the designer port model to the fixed-
port model implicitly appear in [1], however, a 3-approximation routing scheme
(without queries) on T (n) is not explicitly constructed there. The description of
the 3-approximation routing labeling scheme πapprox as well as the proof of the
following lemma is deferred to the full parer.

Lemma 5. πapprox is a correct 3-approximation routing scheme on T (n) operat-
ing in the fixed port model. Moreover, its label size and header size are Θ(log n).
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5 Adapting the 1-Query Schemes on Trees to the
Dynamic Setting

In this section we show how to translate our 1-query labeling schemes on trees
to the dynamic settings, i.e, to the leaf-increasing and leaf-dynamic tree models,
[35,38] (see also “Related work” in Section 1). In a dynamic scheme, the marker
protocol updates the labels after every topological change. We show that the
reduction in the label sizes obtained by introducing a single query in the dynamic
scenario is similar to the reduction in the static case.

To describe the adaptation fully, we need to give many details about the meth-
ods of [38,35,21]. Unfortunately, this is not possible in this extended abstract.

The initial idea is to apply the methods introduced in [38,35] to convert label-
ing schemes for static networks to work on dynamic networks too. Unfortunately,
we cannot do this directly, since these methods were designed for traditional la-
beling schemes and not for 1-query labeling schemes.

The next idea is to perform the conversion indirectly. That is, recall (Section
3) that our 1-query labeling schemes utilize components that are schemes in the
traditional model (with no queries). That is, some utilize πNCA, the label-NCA
labeling scheme of [5] and some utilize πdes, the routing scheme of [21]. Hence,
one can first convert these components to the dynamic setting. Second, one can
attempt to use the resulted dynamic components in a similar way that we used
the static components in Section 3. This turns out to be simple in the cases of
the distance, separation level and id-NCA functions, but more involved in the
case of the routing function. The necessary modifications of the schemes, as well
as the proof of the following theorem, appear in the full paper.

Theorem 1. Consider the fixed-port model and let k(x) be any function sat-
isfying that k(x), logk(x) x and k(x)

log k(x) are nondecreasing functions and that
k(Θ(x)) = Θ(k(x)).1 There exist dynamic 1-query labeling schemes supporting
the distance, separation level, id-NCA and routing functions on trees with the
following complexities.

1. In the leaf-increasing tree model, with label size O(logk(n) n ·log n) and amor-
tized message complexity O(k(n) · logk(n) n).

2. In the leaf-increasing tree model, if an upper bound nf on the number ver-
tices in the dynamically growing tree is known in advance, with label size
O( log3 nf

log log nf
) and amortized message complexity O( log nf

log log nf
).

3. In the leaf-dynamic tree model, with label size O(logk(n) n·logn) and amortized

message complexity O
(∑

i k(ni) · logk(ni) n · MC(π,ni)
ni

)
+ O(

∑
i log2 ni).

6 Applications in a Non-distributed Environments

Distance queries in trees: Harel and Tarjan [33] describe a linear time algorithm
to preprocess a tree and build a data structure allowing NCA queries to be
1 The above requirements are satisfied by most natural sublinear functions such as

αxε logβ x, α logβ log x etc.
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answered in constant time on a RAM. Subsequently, simpler algorithms with
better constant factors have been proposed in [47,13,25,51,14]. On a pointer ma-
chine, [33] show a lower bound of Ω(log log n) on the query time, which matches
the upper bound of [53]. In the leaf-increasing tree model, [20,10] show how to
make updates in amortized constant time while keeping the constant worst-case
query time on a RAM, or the O(log log n) worst-case query time on a pointer
machine. In [16] they show how to maintain the above mentioned results on a
RAM in the leaf-dynamic tree model with worst case constant update. See [5]
for a survey.

Simply by adding a pointer from each vertex to its depth and using Equation
1, we obtain the following lemma.

Lemma 6. The results of [33,47,13,25,51,14,33,53,20,10,16] can be translated
to support either distance queries or separation level queries (instead of NCA
queries).

We note that other types of dynamic models were studied in the non-distributed
environment regarding NCA queries (e.g. [16,10]). However, in these types of
topological changes, our transformation to distance queries is not efficient since
any such changes may effect the depth of too many vertices.
Flow queries in general graphs: Let G ∈ G(n, W ) and let u1, u2, · · · , un be the
set of vertices of G. Recall that in in [36], they show how to construct a weighted
tree T̃G ∈ T (O(n), W · n) with n leaves v1, v2, · · · , vn such that flowG(ui, uj) =
sep − levelTG(vi, vj). Using Lemma 6 applied on the results of [33], we can
preprocess T̃G with O(n ·max{1, log W

log n }) space such that separation level queries
can be answered in O(max{1, log W

log n }) time. The exact model needed to prove
the following lemma formally is deferred to the full paper.

Lemma 7. AnygraphG ∈ G(n, W ) can be preprocessedusingO(n·max{1, log W
log n })

space such that flow queries can be answered in O(max{1, log W
log n }) time.

7 Conclusion and Open Problems

In this paper we demonstrate that considering the labels of three vertices, instead
of two, can lead to a significant reduction in the sizes of the labels. Inspecting two
labels, and inspecting three, are approaches that lie on one end of a spectrum. On
the other end of the spectrum would be a representation for which the decoder
inspects the labels of all the nodes before answering (n-query labeling schemes).
It is not hard to show that for any graph family F on n node graphs, and for
many functions (for example, distance or adjacency), one can construct an n-
query labeling scheme on F using asymptotically optimal labels, i.e, log |F|/n+
Θ(log n)-bit labels (though the decoder may not be polynomial). The idea behind
such a scheme is to enumerate the graphs in F arbitrarily. Then, given some G ∈
F whose number in this enumeration is i, distribute the binary representation
of i among the vertices of G. In this way, given the labels of all nodes, the
decoder can reconstruct the graph and answer the desired query. Therefore, a
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natural question is to examine other points in this spectrum, i.e, examine c-query
labeling schemes for 1 < c < n.

There are other dimensions to the above question. For example, by our defini-
tion, given the labels of two vertices, the c vertices that are chosen by the query
algorithm Q are chosen simultaneously. Alternatively, one may define a possibly
stronger model in which these c vertices are chosen one by one, i.e., the next
vertex is determined using the knowledge obtained from the labels of previous
vertices.
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Abstract. Because of their highly distributed nature and the lack of
global rebalancing, skiplists are becoming an increasingly important loga-
rithmic search structure for concurrent applications. Unfortunately, none
of the concurrent skiplist implementations in the literature, whether
lock-based or lock-free, have been proven correct. Moreover, the com-
plex structure of these algorithms, most likely the reason for a lack of a
proof, is a barrier to software designers that wish to extend and modify
the algorithms or base new structures on them.

This paper proposes a simple new lock-based concurrent skiplist algo-
rithm. Unlike other concurrent skiplist algorithms, this algorithm pre-
serves the skiplist properties at all times, which facilitates reasoning
about its correctness. Though it is lock-based, the algorithm is highly
scalable due to a novel use of optimistic synchronization: it searches
without acquiring locks, requiring only a short lock-based validation be-
fore adding or removing nodes. Experimental evidence shows that this
simpler algorithm performs as well as the best previously known lock-free
algorithm under the most common search patterns.

1 Introduction

Skiplists [11] are an increasingly important data structure for storing and re-
trieving ordered in-memory data. In this paper, we propose a new lock-based
concurrent skiplist algorithm that appears to perform as well as the best exist-
ing concurrent skiplist implementation under most common usage conditions.
The principal advantage of our implementation is that it is much simpler, and
thus much easier to reason about.

The original lock-based concurrent skiplist implementation by Pugh [10] is
rather complex due to its use of pointer-reversal; to the best of our knowledge, it
has never been proven correct. The ConcurrentSkipListMap, written by Doug
Lea [8] based on work by Fraser and Harris [2] and released as part of the
JavaTM SE 6 platform, is the most effective concurrent skiplist implementation
that we are aware of. This algorithm is lock-free, and performs well in practice.
Its principal limitation is that it too is complicated: certain interleavings can
cause the usual skiplist invariants to be violated, sometimes transiently, and
sometimes indefinitely. These violations do not seem to affect performance or
correctness, but they make it difficult to reason about the algorithm. By contrast,
the algorithm presented here is lock-based and preserves the skiplist invariants

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 124–138, 2007.
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at all times. The algorithm is simple enough that we are able to provide a
straightforward proof of correctness.

The key to our novel lock-based algorithm is the combination of two comple-
mentary techniques. First, it is optimistic: the methods traverse the list without
acquiring locks. Moreover, they are able to ignore locks acquired by other threads
while the list is being traversed. Only when a method finds the items it is seek-
ing, does it lock the item and its predecessors, and then validates that these
nodes are unchanged. Second, our algorithm is lazy: removing an item involves
logically deleting it by marking it before it is physically removed (unlinked) from
the list.

Lea [7] observes that in the most common search structure usage patterns
search operations significantly dominate inserts, and inserts dominate deletes. A
typical pattern is 90% search operations, 9% inserts, and only 1% deletes (see also
[3]). Preliminary experimental tests conducted on a Sun FireTM T2000 multi-core
and a Sun EnterpriseTM 6500 show that despite its simplicity, our new optimistic
lock-based algorithm performs as well as the Lea’s ConcurrentSkipListMap al-
gorithm under this common usage pattern. In fact, its performance is slightly in-
ferior to the ConcurrentSkipListMap algorithm only under extreme contention
in multiprogrammed environments. This is because our raw experimental imple-
mentation did not have any added contention control.

We therefore believe the algorithm proposed here provides a viable alternative
to the ConcurrentSkipListMap algorithm, especially in applications where pro-
grammers need to understand and possibly modify the basic skiplist structure.

2 Background

A skiplist [11] is a collection of sorted linked lists, each at a given “level”, that
mimics the behavior of a search tree. The list at each level, other than the bot-
tom level, is a sublist of the list at the level beneath it. Each node is assigned
a random level, up to some maximum, and participates in the lists up to that
level. Figure 1 shows a skiplist with integer keys. The number of nodes in each list

� � � �
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� �

���

−∞ 5 7 8 13 15 22 25 +∞

Fig. 1. A skiplist with a maximum level of 4. The number below each node (i.e., array
of next pointers) is the key of that node, with −∞ and +∞ as the keys for the left
and right sentinel nodes respectively.
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decreases exponentially with the level, implying that we can find a key quickly
by searching first at higher levels, skipping over large numbers of shorter nodes,
and progressively working downward until a node with the desired key is found,
or the bottom level is reached. Thus, the expected time complexity of skiplist
operations is logarithmic in the length of the list.

It is convenient to have left sentinel and right sentinel nodes, at the beginning
and end of the lists respectively. These nodes have the maximum allowed level,
and initially, when the skiplist is empty, the right sentinel is the successor of
the left sentinel at every level. The left sentinel’s key is smaller, and the right
sentinel’s key is greater, than any key that may be added to the set. Searching
the skiplist thus always begins at the left sentinel.

3 The New Algorithm

We present our concurrent skiplist algorithm in the context of an implementation
of a set object supporting three methods, add, remove and contains: add(v)
adds v to the set and returns true iff v was not already in the set; remove(v)
removes v from the set and returns true iff v was in the set; and contains(v)
returns true iff v is in the set. We show that our implementation is linearizable
[5]; that is, every operation appears to take place atomically at some point (the
linearization point) between its invocation and response. We also show that the
implementation is deadlock-free, and that the contains operation is wait-free;
that is, a thread is guaranteed to complete a contains operation within a finite
number of steps regardless of the activity of other threads.

Our algorithm builds on the lazy-list algorithm of Heller et al. [4], a simple
concurrent linked-list algorithm with an optimistic fine-grained locking scheme
for the add and remove operations, and a wait-free contains operation: we use
lazy-lists at each level of the skiplist. As in the lazy-list algorithm, the key of
each node is strictly greater than the key of its predecessor, and each node has a
marked flag, which is used to make remove operations appear atomic. However,
here we may have to link the node in at several levels, and thus might not be
able to insert a node using a single atomic instruction, which could serve as
the linearization point of a successful add operation. Thus, for the lazy skiplist,
we augment each node with an additional flag, fullyLinked, which is set to

4 class Node {
5 int key ;
6 int topLevel ;
7 Node∗ nexts [ ] ;
8 bool marked ;
9 bool fullyLinked ;

10 Lock lock ;
11 } ;

Fig. 2. A node
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true after a node has been linked in at all its levels; setting this flag is the
linearization point of a successful add operation in our skiplist implementation.
Figure 2 shows the fields of a node.

A key is in the abstract set if and only if there is an unmarked, fully linked
node with that key in the list (i.e., reachable from the left sentinel).

To maintain the skiplist invariant—that is, that each list is a sublist of the list
at lower levels—changes are made to the list structure (i.e., the nexts pointers)
only when locks are acquired for all nodes that need to be modified. (There is
one exception to this rule involving the add operation, discussed below.)

In the following detailed description of the algorithm, we assume the existence
of a garbage collector to reclaim nodes that are removed from the skiplist, so
nodes that are removed from the list are not recycled while any thread might
still access them. In the proof (Section 4), we reason as though nodes are never
recycled. In a programming environment without garbage collection, we can use
solutions to the repeat offenders problem [6] or hazard pointers [9] to achieve the
same effect. We also assume that keys are integers from MinInt+1 to MaxInt-1.
We use MinInt and MaxInt as the keys for LSentinel and RSentinel, which
are the left and right sentinel nodes respectively.

Searching in the skiplist is accomplished by the findNode helper function (see
Figure 3), which takes a key v and two maximal-level arrays preds and succs
of node pointers, and searches exactly as in a sequential skiplist, starting at the
highest level and proceeding to the next lower level each time it encounters a
node whose key is greater than or equal to v. The thread records in the preds
array the last node with a key less than v that it encountered at each level,

33 int findNode ( int v ,
34 Node∗ preds [ ] ,
35 Node∗ succs [ ] ) {
36 int lFound = −1;
37 Node∗ pred = &LSentinel ;
38 for ( int level = MaxHeight −1;
39 level ≥ 0 ;
40 level−−) {
41 Node∗ curr = pred−>nexts [ level ] ;
42 while (v > curr−>key ) {
43 pred = curr ; curr = pred−>nexts [ level ] ;
44 }
45 i f ( lFound == −1 && v == curr−>key ) {
46 lFound = level ;
47 }
48 preds [ level ] = pred ;
49 succs [ level ] = curr ;
50 }
51 return lFound ;
52 }

Fig. 3. The findNode helper function
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and that node’s successor (which must have a key greater than or equal to v) in
thesuccs array. If it finds a node with the sought-after key, findNode returns
the index of the first level at which such a node was found; otherwise, it returns
−1. For simplicity of presentation, we have findNode continue to the bottom
level even if it finds a node with the sought-after key at a higher level, so all the
entries in both preds and succs arrays are filled in after findNode terminates
(see Section 3 for optimizations used in the real implementation). Note that
findNode does not acquire any locks, nor does it retry in case of conflicting
access with some other thread. We now consider each of the operations in turn.

The add operation (Figure 4), calls findNode to determine whether a node
with the key is already in the list. If so (lines 59–66), and the node is not marked,
then the add operation returns false, indicating that the key is already in the
set. However, if that node is not yet fully linked, then the thread waits until it is
(because the key is not in the abstract set until the node is fully linked). If the
node is marked, then some other thread is in the process of deleting that node,
so the thread doing the add operation simply retries.

If no node was found with the appropriate key, then the thread locks and
validates all the predecessors returned by findNode up to the level of the new
node (lines 69–84). This level, denoted by topLevel, is determined at the very
beginning of the add operation using the randomLevel function.1 Validation
(lines 81–82) checks that for each level i ≤ topLevel, preds[i] and succs[i]
are still adjacent at level i, and that neither is marked. If validation fails, the
thread encountered a conflicting operation, so it releases the locks it acquired
(in the finally block at line 97) and retries.

If the thread successfully locks and validates the results of findNode up to the
level of the new node, then the add operation is guaranteed to succeed because
the thread holds all the locks until it fully links its new node. In this case, the
thread allocates a new node with the appropriate key and level, links it in, sets
the fullyLinked flag of the new node (this is the linearization point of the add
operation), and then returns true after releasing all its locks (lines 86–97). The
thread writing newNode->nexts[i] is the one case in which a thread modifies
the nexts field for a node it has not locked. It is safe because newNode will not
be linked into the list at level i until the thread sets preds[i]->nexts[i] to
newNode, after it writes newNode->nexts[i].

The remove operation (Figure 5), likewise calls findNode to determine whether
a node with the appropriate key is in the list. If so, the thread checks whether the
node is “okay to delete” (Figure 6), which means it is fully linked, not marked,
and it was found at its top level.2 If the node meets these requirements, the

1 This function is taken from Lea’s algorithm to ensure a fair comparison in the ex-
periments presented in Section 5. It returns 0 with probability 3

4 , i with probability
2−(i+2) for i ∈ [1, 30], and 31 with probability 2−32.

2 A node found not in its top level was either not yet fully linked, or marked and
partially unlinked, at some point when the thread traversed the list at that level.
We could have continued with the remove operation, but the subsequent validation
would fail.
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54 bool add ( int v ) {
55 int topLevel = randomLevel ( MaxHeight ) ;
56 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
57 while ( true ) {
58 int lFound = findNode (v , preds , succs ) ;
59 i f ( lFound �= −1) {
60 Node∗ nodeFound = succs [ lFound ] ;
61 i f ( ! nodeFound−>marked ) {
62 while ( ! nodeFound−>fullyLinked ) {}
63 return fa lse ;
64 }
65 continue ;
66 }
67 int highestLocked = −1;
68 try {
69 Node ∗pred , ∗succ , ∗prevPred = null ;
70 bool valid = true ;
71 for ( int level = 0 ;
72 valid && ( level ≤ topLevel ) ;
73 level++) {
74 pred = preds [ level ] ;
75 succ = succs [ level ] ;
76 i f ( pred �= prevPred ) {
77 pred−>lock . lock ( ) ;
78 highestLocked = level ;
79 prevPred = pred ;
80 }
81 valid = ! pred−>marked && ! succ−>marked &&
82 pred−>nexts [ level]==succ ;
83 }
84 i f ( ! valid ) continue ;

86 Node∗ newNode = new Node (v , topLevel ) ;
87 for ( int level = 0 ;
88 level ≤ topLevel ;
89 level++) {
90 newNode−>nexts [ level ] = succs [ level ] ;
91 preds [ level]−>nexts [ level ] = newNode ;
92 }

94 newNode−>fullyLinked = true ;
95 return true ;
96 }
97 f ina l ly { unlock ( preds , highestLocked ) ; }
98 }

Fig. 4. The add function
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101 bool remove ( int v ) {
102 Node∗ nodeToDelete = null ;
103 bool isMarked = fa l se ;
104 int topLevel = −1;
105 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
106 while ( true ) {
107 int lFound = findNode (v , preds , succs ) ;
108 i f ( isMarked | |
109 ( lFound �= −1 && okToDelete ( succs [ lFound ] , lFound ) ) ){

111 i f ( ! isMarked ) {
112 nodeToDelete = succs [ lFound ] ;
113 topLevel = nodeToDelete−>topLevel ;
114 nodeToDelete−>lock . lock ( ) ;
115 i f ( nodeToDelete−>marked ) {
116 nodeToDelete−>lock . unlock ( ) ;
117 return fa l se ;
118 }
119 nodeToDelete−>marked = true ;
120 isMarked = true ;
121 }
122 int highestLocked = −1;
123 try {
124 Node ∗pred , ∗succ , ∗prevPred = null ;
125 bool valid = true ;
126 for ( int level = 0 ;
127 valid && ( level ≤ topLevel ) ;
128 level++) {
129 pred = preds [ level ] ;
130 succ = succs [ level ] ;
131 i f ( pred �= prevPred ) {
132 pred−>lock . lock ( ) ;
133 highestLocked = level ;
134 prevPred = pred ;
135 }
136 valid = ! pred−>marked && pred−>nexts [ level]==succ ;
137 }
138 i f ( ! valid ) continue ;

140 for ( int level = topLevel ; level ≥ 0 ; level−−) {
141 preds [ level]−>nexts [ level ] = nodeToDelete−>nexts [ level ] ;
142 }
143 nodeToDelete−>lock . unlock ( ) ;
144 return true ;
145 }
146 f ina l ly { unlock ( preds , highestLocked ) ; }
147 }
148 else return fa l se ;
149 }
150 }

Fig. 5. The remove function
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152 bool okToDelete ( Node∗ candidate , int lFound ) {
153 return ( candidate−>fullyLinked
154 && candidate−>topLevel==lFound
155 && ! candidate−>marked ) ;
156 }

Fig. 6. The okToDelete method

thread locks the node and verifies that it is still not marked. If so, the thread
marks the node, which logically deletes it (lines 111–121); that is, the marking
of the node is the linearization point of the remove operation.

The rest of the procedure accomplishes the “physical” deletion, removing the
node from the list by first locking its predecessors at all levels up to the level of
the deleted node (lines 124–137), and splicing the node out one level at a time
(lines 140–142). To maintain the skiplist structure, the node is spliced out of
higher levels before being spliced out of lower ones (though, to ensure freedom
from deadlock, as discussed in Section 4, the locks are acquired in the opposite
order, from lower levels up). As in the add operation, before changing any of the
deleted node’s predecessors, the thread validates that those nodes are indeed still
the deleted node’s predecessors. If the validation fails, then the thread releases
the locks on the old predecessors (but not the deleted node) and tries to find
the new predecessors of the deleted node by calling findNode again. However,
at this point it has already set the local isMarked flag so that it will not try to
mark another node. After successfully removing the deleted node from the list,
the thread releases all its locks and returns true.

If no node was found, or the node found was not “okay to delete” (i.e., was
marked, not fully linked, or not found at its top level), then the operation simply
returns false (line 148). It is easy to see that this is correct if the node is not
marked because for any key, there is at most one node with that key in the
skiplist (i.e., reachable from the left sentinel) at any time, and once a node is
put in the list (which it must have been to be found by findNode), it is not
removed until it is marked. However, the argument is trickier if the node is
marked, because at the time the node is found, it might not be in the list, and
some unmarked node with the same key may be in the list. However, as we argue
in Section 4, in that case, there must have been some time during the execution
of the remove operation at which the key was not in the abstract set.

Finally, we consider the contains operation (Figure 7), which just calls
findNode and returns true if and only if it finds a unmarked, fully linked node
with the appropriate key. If it finds such a node, then it is immediate from the
definition that the key is in the abstract set. However, as mentioned above, if
the node is marked, it is not so easy to see that it is safe to return false. We
argue this in Section 4.

We implemented the algorithm in the JavaTM programming language, in
order to compare it with Doug Lea’s nonblocking skiplist implementation in
the java.util.concurrent package. The array stack variables in the pseu-
docode are replaced by thread-local variables, and we used a straightforward
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158 bool contains ( int v ) {
159 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
160 int lFound = findNode (v , preds , succs ) ;
161 return ( lFound �= −1
162 && succs [ lFound]−>fullyLinked
163 && ! succs [ lFound]−>marked ) ;
164 }

Fig. 7. The contains method

lock implementation (we could not use the built-in object locks because our
acquire and release pattern could not always be expressed using synchronized
blocks).

The pseudocode presented was optimized for simplicity, not efficiency, and
there are numerous obvious ways in which it can be improved, many of which
we applied to our implementation. For example, if a node with an appropriate
key is found, the add and contains operations need not look further; they only
need to ascertain whether that node is fully linked and unmarked. If so, the
contains operation can return true and the add operation can return false.
If not, then the contains operation can return false, and the add operation
either waits before returning false (if the node is not fully linked) or else must
retry. The remove operation does need to search to the bottom level to find all
the predecessors of the node to be deleted, however, once it finds and marks the
node at some level, it can search for that exact node at lower levels rather than
comparing keys.3 This is correct because once a thread marks a node, no other
thread can unlink it.

Also, in the pseudocode, findNode always starts searching from the highest
possible level, though we expect most of the time that the highest levels will
be empty (i.e., have only the two sentinel nodes). It is easy to maintain a vari-
able that tracks the highest nonempty level because whenever that changes, the
thread that causes the change must have the left sentinel locked. This ease is in
contrast to the nonblocking version, in which a race between concurrent remove
and add operations may result in the recorded level of the skiplist being less
than the actual level of its highest node.

4 Correctness

In this section, we sketch a proof for our skiplist algorithm. There are four
properties we want to show: that the algorithm implements a linearizable set,
that it is deadlock-free, that the contains operation is wait-free, and that the
underlying data structure maintains a correct skiplist structure, which we define
more precisely below.

3 Comparing keys is expensive because, to maintain compatibility with Lea’s imple-
mentation, comparison invokes the compareTo method of the Comparable interface.
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4.1 Linearizability

For the proof, we make the following simplifying assumption about initialization:
Nodes are initialized with their key and height, their nexts arrays are initialized
to all null, and their fullyLinked and marked fields are initialized to false.
Furthermore, we assume for the purposes of reasoning that nodes are never
reclaimed, and there is an inexhaustible supply of new nodes (otherwise, we
would need to augment the algorithm to handle running out of nodes).

We first make the following observations: The key of a node never changes
(i.e., key = k is stable), and the marked and fullyLinked fields of a node are
never set to false (i.e., marked and fullyLinked are stable). Though initially
null, nexts[i] is never written to null (i.e., nexts[i] �= null is stable). Also,
a thread writes a node’s marked or nexts fields only if it holds the node’s lock
(with the one exception of an add operation writing nexts[i] of a node before
linking it in at layer i).

From these observations, and by inspection of the code, it is easy to see
that in any operation, after calling findNode, we have preds[i]->key < v and
succs[i]->key ≥ v for all i, and succs[i]->key > v for i > lFound (the value
returned by findNode). Also, for a thread in remove, nodeToDelete is only set
once, and that unless that node was marked by some other thread, this thread
will mark the node, and thereafter, until it completes the operation, the thread’s
isMarked variable will be true. We also know by okToDelete that the node is
fully linked (and indeed that only fully linked nodes can be marked).

Furthermore, the requirement to lock nodes before writing them ensures that
after successful validation, the properties checked by the validation (which are
slightly different for add and remove) remain true until the locks are released.

We can use these properties to derive the following fundamental lemma:

Lemma 1. For a node n and 0 ≤ i ≤ n->topLayer:

n->nexts[i] �= null =⇒ n->key < n->nexts[i]->key

We define the relation →i so that m →i n (read “m leads to n at layer i”) if
m->nexts[i] = n or there exists m′ such that m →i m′ and m′->nexts[i] = n;
that is, →i is the transitive closure of the relation that relates nodes to their
immediate successors at layer i. Because a node has (at most) one immediate
successor at any layer, the →i relation “follows” a linked list at layer i, and in
particular, the layer-i list of the skip list consists of those nodes n such that
LSentinel →i n (plus LSentinel itself). Also, with Lemma 1, if m →i n and
m →i n′ and n->key < n′->key then n →i n′.

Using these observations, we can show that if m →i n in any reachable state
of the algorithm, then m →i n in any subsequent state unless there is an action
that splices n out of the layer-i list, that is, an execution of line 141. This claim
is proved formally for the lazy-list algorithm [1], and that proof can be adapted
to this algorithm. Thus, the only action that adds a key to the abstract set is
the setting of the fullyLinked flag of a node with that key. remove Because
n must already be marked before being spliced out of the list, and because the
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fullyLinked flag is never set to false (after its initialization), this claim implies
that a key can be removed from the abstract set only by marking its node, which
we argued earlier is the linearization point of a successful remove operation.

Similarly, we can see that if LSentinel →i n does not hold in some reachable
state of the algorithm, then it does not hold in any subsequent state unless there
is some execution of line 91 with n = newNode (as discussed earlier, the previous
line doesn’t change the list at layer-i because newNode is not yet linked in then).
However, the execution of that line occurs while newNode is being inserted and
before newNode is fully linked. Thus, the only action that adds a node to a list
at any level is the setting of the node’s fullyLinked flag.

Finally, we argue that if a thread finds a marked node then the key of that
node must have been absent from the list at some point during the execution
of the thread’s operation. There are two cases: If the node was marked when
the thread invoked the operation, the node must have been in the skip list at
that time because marked nodes cannot be added to the skip list (only a newly
allocated node can be added to the skip list), and because no two nodes in the
skip list can have the same key, no unmarked node in the skip list has that key.
Thus, at the invocation of the operation, the key is not in the skip list. On the
other hand, if the node was not marked when the thread invoked the operation,
then it must have been marked by some other thread before the first thread
found it. In this case, the key is not in the abstract set immediately after the
other thread marked the node. This claim is also proved formally for the simple
lazy-list [1], and that proof can be adapted to this algorithm.

4.2 Maintaining the Skiplist Invariant

Our algorithm guarantees that the skiplist invariant are preserved at all times.
By “skiplist invariant”, we mean that the list at each layer is a sublist of the
lists at lower layers.

To see that the algorithm preserves the skiplist structure, note that linking
new nodes into the skip list always proceeds from bottom to top, and while
holding the locks on all the soon-to-be predecessors of the node being inserted.
On the other hand, when a node is being removed from the list, the higher layers
are unlinked before the lower layers, and again, while holding locks on all the
immediate predecessors of the node being removed.

This property is not guaranteed by the lock-free algorithm. In that algorithm,
after linking a node in the bottom layer, an add operation links the node in
the rest of the layers from top to bottom. This may result in a state of a node
that is linked only in its top and bottom layers, so that the list at the top layer
is not a sublist of the list at the layer immediately beneath it, for example.
Moreover, attempts to link in a node at any layer other than the bottom are
not retried, and hence this state of nonconformity to the skiplist structure may
persist indefinitely.
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4.3 Deadlock Freedom and Wait-Freedom

The algorithm is deadlock-free because a thread always acquires locks on nodes
with larger keys first. More precisely, if a thread holds a lock on a node with key
v then it will not attempt to acquire a lock on a node with key greater than or
equal to v. The contains operation is wait-free because it does not acquire any
locks and never retries; it searches the list only once.

5 Performance

We evaluated our skiplist algorithm by implementing it in the Java programming
language, as described earlier. We compared our implementation against Doug
Lea’s nonblocking skiplist implementation in the ConcurrentSkipListMap class
[8] of the java.util.concurrent package, which is part of the JavaTM SE 6
platform; to our knowledge, this is the best widely available concurrent skiplist
implementation. We also implemented a straightforward sequential skip -list, in
which methods were synchronized to ensure thread safety, for use as a baseline
in these experiments. We describe some of the results we obtained from these
experiments in this section.

We present results from experiments on two multiprocessor systems with quite
different architectures. The first system is a Sun FireTM T2000 server, which is
based on a single UltraSPARC R© T1 processor containing eight computing cores,
each with four hardware strands, clocked at 1200 MHz. Each four-strand core
has a single 8-KByte level-1 data cache and a single 16-KByte instruction cache.
All eight cores share a single 3-MByte level-2 unified (instruction and data)
cache, and a four-way interleaved 32-GByte main memory. Data access latency
ratios are approximately 1:8:50 for L1:L2:Memory accesses. The other system
is an older Sun EnterpriseTM 6500 server, which contains 15 system boards,
each with two UltraSPARC R© II processors clocked at 400 MHz and 2 Gbytes
of RAM for a total of 30 processors and 60 Gbytes of RAM. Each processor has
a 16-KByte data level-1 cache and a 16-Kbyte instruction cache on chip, and a
8-MByte external cache. The system clock frequency is 80 MHz.

We present results from experiments in which, starting from an empty skiplist,
each thread executes one million (1,000,000) randomly chosen operations. We
varied the number of threads, the relative proportion of add, remove and contains
operations, and the range from which the keys were selected. The key for each
operation was selected uniformly at random from the specified range.

In the graphs that follow, we compare the throughput in operations per mil-
lisecond, and the results shown are the average over six runs for each set of
parameters. Figure 8 presents the results of experiments in which 9% of the
operations were add operations, 1% were remove operations, and the remain-
ing 90% were contains operations, where the range of the keys was either two
hundred thousand or two million. The different ranges give different levels of
contention, with significantly higher contention with the 200,000 range, com-
pared with the 2,000,000 range. As we can see from these experiments, both our
algorithms and Lea’s scale well (the sequential algorithm, as expected, does not).
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Fig. 8. Throughput in operations per millisecond of 1,000,000 operations, with 9% add,
1% remove, and 90% contains operations, and a range of either 200,000 or 2,000,000

In all but one case (with 200,000 range on the older system), our implementation
has a slight advantage.

In the next set of experiments, we ran with higher percentages of add and
remove operations, 20% and 10% respectively (leaving 70% contains opera-
tions). The results are shown in Figure 9. As can be seen, on the T2000 system,
the two implementations have similar performance, with a slight advantage to
Lea in a multiprogrammed environment when the range is smaller (higher con-
tention). The situation is reversed with the larger range. This phenomenon is
more noticeable on the older system: there we see a 13% advantage to Lea’s
implementation on the smaller range with 64 threads, and 20% advantage to
our algorithm with the same number of threads when the range is larger.

To explore this phenomenon, we conducted an experiment with a significantly
higher level of contention: half add operations and half remove operations with
a range of 200,000. The results are presented in Figure 10. As can be clearly
seen, under this level of contention, our implementation’s throughput degrades
rapidly when approaching the multiprogramming zone, especially on the T2000
system. This degradation is not surprising: In our current implementation, when
an add or remove operation fails validation, or fails to acquire a lock immediately,
it simply calls yield; there is no proper mechanism for managing contention.
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Fig. 9. Throughput in operations per millisecond of 1,000,000 operations with 20% add,
10% remove, and 70% contains operations, and range of either 200,000 or 2,000,000
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Fig. 10. Throughput in operations per millisecond of 1,000,000 operations, with 50%
add and 50% remove operations, and a range of 200,000

Since the add and remove operations require that the predecessors seen during
the search phase be unchanged until they are locked, we expect that under high
contention, they will repeatedly fail. Thus, we expect that a back-off mechanism,
or some other means of contention control, would greatly improve performance
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in this case. To verify that a high level of conflict is indeed the problem, we
added counters to count the number of retries executed by each thread during
the experiment. The counters indeed show that many retries are executed in a
64-thread run, especially on the T2000. Most of the retries are executed by the
add method, which makes sense because the remove method marks the node
to be removed before searching its predecessors in lower layers, which prevents
change of these predecessor’s next pointers by a concurrent add operation.
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Abstract. In a sensor network the sensors, or nodes, obtain data and
have to communicate these data to a central node. Because sensors are
battery powered they are highly energy constrained. Data aggregation
can be used to combine data of several sensors into a single message,
thus reducing sensor communication costs at the expense of message
delays. Thus, the main problem of data aggregation is to balance the
communication and delay costs.

In this paper we study the data aggregation problem as a bicriteria
optimization problem; the objectives we consider are to minimize max-
imum energy consumption of a sensor and a function of the maximum
latency costs of a message. We consider distributed algorithms under an
asynchronous time model, and under an almost synchronous time model,
where sensor clocks are synchronized up to a small drift. We use com-
petitive analysis to assess the quality of the algorithms.

Keywords: distributed algorithms, sensor networks, data aggregation,
bicriteria optimization.

1 Introduction

A wireless sensor network (WSN) consists of sensor nodes and one or more
central nodes or sinks. Sensor nodes are able to monitor events, to process the
sensed information and to communicate the sensed data. Sinks are powerful base
stations which gather data sensed in the network; sinks either process this data
or act as gateways to other networks. Sensors send data to the sink through
multi-hop communication.

A particular feature of sensor nodes is that they are battery powered, making
sensor networks highly energy constrained. Replacing batteries on hundreds of
nodes, often deployed in inaccessible environments, is infeasible or too costly
and, therefore, the key challenge in a sensor network is the reduction of energy
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consumption. Energy consumption can be divided into three domains: sensing,
communication and data processing [1]. Communication is most expensive be-
cause a sensor node spends most of its energy in data transmission and reception
[7]. This motivates the study of techniques to reduce overall data communication,
possibly exploiting processing capabilities available at each node. Data aggre-
gation is one such technique. It consists of aggregating redundant or correlated
data in order to reduce the overall size of sent data, thus decreasing the network
traffic and energy consumption. In this paper we comply with most of the litera-
ture on sensor networks concentrating on total aggregation, i.e. data packets are
assumed to have the same size and aggregation of two or more incoming packets
at a node results in a single outgoing packet. Total aggregation is possible if data
are completely correlated, or can be described by a single value, e.g. when the
required data is maximum temperature. Observe that even if total aggregation
might be considered a simplistic assumption in other cases, it allows us to pro-
vide an upper bound on the expected benefits of data aggregation in terms of
power consumption.

WSN deal with real world environments. In many cases, sensor data must be
delivered within time constraints so that appropriate observations can be made
or actions taken [11]. We assume that the routing network is a tree; this is a
common assumption in data aggregation network problems [1,4].

In [3] we studied the Data Aggregation Sensor Problem as a unicriterion
problem where we minimized the maximum communication costs subject to a
budget on the latency costs. Here the budget constraint was a hard constraint.

The dynamics governing the monitored phenomena are often not well under-
stood and/or defined at the beginning of the monitoring process. For this reason
a strict constraint on latency could be unappropriate.

A common assumption in literature on data aggregation is that value of infor-
mation degrades over time. E.g. Broder and Mitzenmacher [5] describe a data ag-
gregation model where there is a reward function on the data collected by a server;
the function increases with the quantity of data collected and decreases over time.
A similar tradeoff holds for data aggregation in sensor networks: delaying data de-
creases the information value of the data, but increases network lifetime.

Both the above discussed tradeoffs and the partial knowledge of the monitored
process at the beginning, suggest to use a bicriteria objective function to asses
the quality of the algorithms instead of hard constraints.

The bicriteria data aggregation sensor problem
The Data Aggregation Sensor Problem (DASP) is to send all messages to the
sink such as to minimize the communication costs, and to minimize the latency
costs. For the first objective we have chosen to minimize the maximum commu-
nication costs per node. This is a natural objective in sensor networks because
of limited and unreplenishable energy at nodes. The objective maximizes the
network lifetime, i.e. the time that all sensors can communicate. For the second
objective we have chosen to minimize the maximum latency cost.

The two objectives conflict with each other. We can easily find algorithms
with low communication costs by delaying messages and aggregating them into
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packets. As communication costs are independent of the size of packets sent, but
linear in the number of packets sent, aggregation reduces the communication
costs, at the expense of increased latency costs. Similarly we can find algorithms
with low latency costs at the expense of high communication costs. The objective
is to find algorithms where both costs are relatively good.

We formulate the problem as a bicriteria optimization problem: minimizing
one of the objectives under a budget restriction on the other objective. We call a
bicriteria optimization problem an (B, A)-bicriteria problem if we minimize ob-
jective A under a budget on objective B. In this paper we study the (B, A)-sensor
problem where objective A is maximum communication costs and objective B is
maximum latency costs. Quality of algorithms is assessed through the concept of
(β, α)-approximation: allowing an excess of multiplicative factor β on the bud-
get of objective B, the value produced is worst-case within ratio α from optimal
with respect to objective A. For network design problems this was formalized in
[9,10]. The concept is general in the sense that results hold regardless which of
the two objectives is minimized, and which is budgeted.

Sensor nodes are equipped with a clock that can be used to measure the
latency of messages. We distinguish three distributed on-line models, which are
common in literature on distributed algorithms, see [12]. In the synchronous
model all nodes are equipped with a common clock, i.e. the times indicated at all
clocks are identical. A common clock may facilitate synchronization of actions in
various nodes. In the asynchronous model there is no such common clock. In the
almost synchronous model, all nodes are equipped with a clock and the clocks
are almost synchronous, i.e. there is a relatively small drift between any two
clocks. In practice, these clocks can easily drift seconds per day, accumulating
significant errors over time [12].

Results
In this paper we present distributed on-line algorithms for sensor networks with
a routing intree. The first main contribution is that we study for the first time
sensor network problems in a bicriteria optimization framework. In Section 2 we
formalize the model.

In Section 3, for the asynchronous model we present an algorithm which
balances communication and latency costs. If δ is tree depth, and U is the
ratio between maximum and minimum allowed delay, then the algorithm is
(2δλ, 2δ1−λ log U)-competitive, for any λ, 0 < λ ≤ 1. The algorithm is member
of a class of memoryless algorithms for which we show that no better competi-
tiveness than (δλ, δ1−λ) exists.

In Section 4 we present the second main contribution, which is the analysis
of algorithms for sensor networks in which clocks in various nodes show small
drifts. For this so-called almost synchronous model we present an algorithm
which for sensors with a clock drift of at most Δ between any two nodes and
latency budget L is (1 + Δδ/L, log2 δ)-competitive. For small drift, i.e. Δδ/L
small, the competitiveness comes close to the best possible competitiveness in
the synchronous model. We notice that no previous results are known for this
model, which is in fact the more realistic one.
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Related work
In [3] we studied the Data Aggregation Sensor Problem as a unicriterion problem
where we minimized the maximum communication costs subject to a budget on
the latency costs. Here the budget constraint was a hard constraint. Interpreted
in the bicriteria setting the results imply (1, O(log U)) for synchronous, and
(1, δ log U) for the asynchronous models. No results were given for the almost
synchronous model.

In the past, many bicriteria optimization problems were formulated as a uni-
criterion optimization problem with as single objective a weighted sum of the
two objectives. For aggregation problems with objectives to minimize communi-
cation costs and latency costs such a formulation as a unicriterion optimization
problem can be found in [2,4,6,8].

Both Khanna et al. [8] and Brito et al. [4] consider the Multicast Aggregation
Problem (MAP), or TCP Acknowledgment problem, on a tree. The Multicast
Aggregation Problem is equivalent to the Data Aggregation Sensor Problem in
the sense that messages, which arrive over time, have to be sent to a sink in
the graph. The main difference with our problem is in the objectives. First,
the objective of MAP is to minimize the sum of communication costs; this is a
natural objective if nodes have permanent access to energy. This is not true for
sensor networks, for which minimizing energy cost per node is more suitable. The
other objective of MAP is to minimize the sum of latency costs, and latency costs
do not depend on communication time to the sink. Second, the authors analyze
the problem using a single objective which is a weighted sum of communication
costs and latency costs.

A main drawback of formulating the problem using a single objective is that
the choice of the weights influences the outcome. Especially if the objectives are
measured in different units, e.g. energy and time, then the choice of weights is
highly arbitrary. Thus, we believe that a bicriteria setting is more appropriate
in this case.

2 Preliminaries

We study sensor networks G = (V, A), which are intrees rooted at a sink node s ∈
V . Nodes represent sensors and arcs represent the possibility of communication
between two sensors. Over time, n messages, N := {1, . . . , n}, arrive at nodes
and have to be sent to the sink. Message j arrives at its release node vj at its
release date rj ; message j arrives at the sink via the unique vj − s-path. Thus,
each message is completely defined by the pair (vj , rj).

A packet is a set of messages which are sent simultaneously along an arc. Each
initial message is a packet and two packets j and j′ can be aggregated at a node
v into a single packet. The resulting packet can be recursively aggregated with
other packets.

Communication of a message along an arc takes time and energy cost. In this
paper we assume that the communication time τ : A → R�0 and communica-
tion cost c : A → R�0 are independent of packet size. We often refer to the
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communication cost of a node as the communication cost of its unique outgoing
arc. This models the situation in which all messages have more or less the same
size and where total aggregation is possible, as discussed in the introduction.
For the sake of simplicity we also assume that all communication times τ(a) are
equal, namely we set τ(a) = 1 ∀a ∈ A.

For v ∈ V , τv is the total communication time of the path from v to s. We
define r′j := rj + τvj as earliest possible arrival time of j at s. We assume that
each node v knows its total communication time τv to the sink. Finally, we define
δ := maxv τv as the depth of the network in terms of the communication time.
We assume δ ≥ 2, avoiding the trivial case of δ = 1.

The value of information degrades over time. To model this we define the
quality degradation cost of a message. Let dj be the arrival time of message j.
We assume that the quality degradation of a message j depends on the latency
of a message lj := dj − rj . In this paper we choose the latency as our quality
degradation function, i.e. our function increases linearly over time. We also refer
to these costs as latency costs and we say that a solution is L-bounded if lj ≤ L
for all i. Since δ = maxv τv a L-bounded feasible solution must satisfy L ≥ δ,
as otherwise it is impossible to send all messages j to the sink such that their
latency costs are within budget L.

The budget on the latency imposes an arrival time interval Ij := [rj +τvj , rj +
L] of any L-bounded solution. It also imposes a transit interval for each node
u on the vj − s path: Ij(u) := [rj + τvj − τu, rj + L − τu]. I.e. in each L-
bounded solution message j should transit at u in interval Ij(u). Finally, we
define U = maxj |Ij |

max{1,minj |Ij |} . Since L ≥ δ we have U ≤ δ.
Given a solution S the communication cost of node vi is the total energy

cost spent by vi and it is given by the total number of messages sent by vi

times the communication cost of vi. We are interested minimizing maximum
communication cost over all nodes.

Given a bound L on the latency and β, β ≥ 1, we study the communication
cost of algorithms that provide βL-bounded feasible solution: a βL-bounded
feasible solution is (β, α)-approximate if its communication cost is at most α
times the communication cost of the optimal L-bounded solution. An interesting
special case is to find a minimum γ such that there exists a (γ, γ)-approximate
algorithm [9].

In this paper we consider distributed on-line algorithms, in which nodes com-
municate independently of each other and messages are released over time.
Therefore, at any time t the input of each node’s algorithm is given by packets
that have been released at or forwarded from that node in the period [0, t]. An
algorithm is (β, α)-competitive if it is an (β, α)-approximation and the algorithm
is an online algorithm.

2.1 The Synchronous Model

For the synchronous model we presented an algorithm for the latency constrained
sensor aggregation problem in [3]. In the following we restate the algorithm
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in a bicriteria setting, because we use the algorithm as a subroutine in our
algorithm for the almost synchronous model. The algorithm is based on the
following lemma.

Lemma 1. [3] Given any interval [a, b], such that b − a ≥ 1. Let i∗ = max{i ∈
N | ∃k ∈ N : k2i ∈ [a, b]}, then k∗ for which k∗2i∗ ∈ [a, b] is odd and unique.

We use notation t(I) to represent the unique point in the interval I = [a, b]
which equals k∗2i∗

with i∗ and k∗ as defined in Lemma 1. The algorithm sends
messages j to the sink at time t(I) where interval I depends on message j and
budget L on the latency costs. We choose as interval the interval of an L-bounded
solution, i.e. Ij .

Algorithm:CommonClock (CC): Message j is sent from vj at time t(Ij)−τvj

to arrive at s at time t(Ij) unless some other packet passes vj in the interval
[rj , t(Ij)−τvj ], in which case j is aggregated and the packet is forwarded directly.

The analysis of the competitive ratio of CC is based on the following lemma
that will be used in the sequel. The lemma bounds the competitive ratio for
instances in which the arrival intervals Ij differ by a factor at most 2 in length.

Lemma 2. [3] CC is (1, 3)-competitive if there exists an i ∈ N such that 2i−1 <
|Ij | ≤ 2i ∀j.

This result immediately implies the following theorem.

Theorem 1. [3] CC is (1, O(log U))-competitive1.

In the the CC algorithm no message incurs a delay cost which exceeds its bud-
get. A simple modification of the CC algorithm which balances the communi-
cation and delay costs can be obtained by replacing t(Ij) by t(I∗j ) as follows.
Let μ := max{1, minj(Lj − τvj )}, and let Nm = {j ∈ N |( log U

log log U )m−1μ ≤ |Ij | <

( log U
log log U )mμ} for m ∈ N. The algorithm sends messages j ∈ Nm to the sink at

time t(I∗j ) where I∗j = [rj + τvj , rj + τvj + ( log U
log log U )mμ].

The proof of the following theorem is omitted.

Theorem 2. There exists an algorithm that is ( log U
log log U , log U

log log U )-competitive.

3 The Asynchronous Model

For the asynchronous model we present a modification of the algorithm Spread
Latency (SL), as proposed in [3]. The algorithm assigns to message j a total
waiting time of 2(τvj )λ times the allowed latency minus communication time,
for some λ, 0 < λ ≤ 1. SL equally divides this waiting time over the nodes:
1 All logarithms in this paper are base 2.
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at each node of the vj − s path message j is assigned a waiting time of 2(L −
τvj )/(τvj )1−λ time units. When messages are simultaneously at the same node
they get aggregated into a packet, which is sent over the outgoing arc as soon
as the waiting time of at least one of these messages has passed.

Theorem 3. Algorithm SL is (2δλ, 2δ1−λ log U)-competitive for λ, 0 < λ ≤ 1.

Proof. Consider algorithm SL for fixed λ, 0 < λ ≤ 1. First note that because no
message is delayed due to aggregation the latency of each message j is at most

τvj 2(L − τvj )/τ1−λ
vj

+ τvj ≤ 2δλL.

We prove that for all a ∈ A the number of packets SL sends through a is
at most 2δ1−λ log U times that number in an optimal L-bounded solution. This
proves the theorem.

Let μ := max{1, minj(L − τvj )}. Consider a packet P of messages sent by
an optimal L-bounded solution through (u, v) at t. To bound the number of
packets sent by SL that contain at least one message from P , define Pi := {j ∈
P | 2i−1μ ≤ L − τvj < 2iμ}, for i = 1, . . . , �log U	. We charge any sent packet to
the message that caused the packet to be sent due to its waiting time being over.
It suffices to prove that the number of packets charged to messages in Pi is 2δ1−λ.
Since the waiting time of messages j ∈ Pi at node u is at least 2 · 2i−1μ/δ1−λ,
the delay between any two packets that are charged to messages in Pi is at least
2iμ/δ1−λ. Since the optimal solution sends packet P at t through (u, v), we get
t ∈ Ij(u) ∀j ∈ P and thus Ij(u) ⊆ [t − 2iμ, t + 2iμ] ∀j ∈ Pi. Thus, the number
of packets charged to messages in Pi is at most 2 · 2iμ/(2iμ/δ1−λ) = 2δ1−λ. ��

SL determines the waiting time of each message at the nodes it traverses indepen-
dently of all other messages. We call such an algorithm a memoryless algorithm.
To be precise, in a memoryless algorithm node v determines the waiting time of
message j based only on the message characteristics (vj , rj), budget L, commu-
nication time to the sink τvj and clock time. The following lower bound shows
that the competitive ratio of SL cannot be beaten by more than a factor log U
by any other memoryless algorithm. In the derivation of the lower bound we
restrict to memoryless algorithms that employ the same algorithm in all nodes
with the same communication time to s. This is not a severe restriction, given
that communication time to s is the only information about the network that a
node has.

Theorem 4. No deterministic asynchronous memoryless algorithm is better
than(δλ, δ1−λ)-competitive, for fixed λ, 0 ≤ λ ≤ 1.

Proof. Consider any deterministic asynchronous memoryless algorithm with la-
tency costs at most δλ times the budget on the latency costs for fixed λ, 0 ≤
λ ≤ 1. An adversary chooses a binary tree with root s and all leaves at distance
δ from s. The adversary releases message 1 with latency L at time r1 in a leaf
v1. There must be a node u where message 1 waits at most δλ(L − τv1)/δ. The
adversary releases message j, j = 2, . . . , δ1−λ at time r1 + j(L − τv1)/δ1−λ such
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that all messages j are sent over node u, and no two messages can be aggregated
before reaching v. Because τvj = τv1 ∀j and we assumed that any memoryless
algorithm applies the same algorithm in nodes at equal distance, all messages
are sent non-aggregated to and from u, whereas they are aggregated as early as
possible in an optimal solution, in particular at u. ��
Theorems 3 and 4 immediately imply the following corollary.

Corollary 1. There exists a deterministic asynchronous algorithm that is (
√

δ,√
δ log U)-competitive and no deterministic asynchronous memoryless algorithm

is better than (
√

δ,
√

δ)-competitive.

If we assume that L ≥ 2δ, which in practice is not a severe restriction at all,
essentially the same analysis as in the proof of Theorem 3 gives (2δλ, 2δ1−λ)-
competitiveness. Thus, in this case SL is a best possible on-line algorithm up to
a constant multiplicative factor.

4 The Almost Synchronous Model

Typically in sensor networks clocks have a small drift. The CC-algorithm is not
robust in the sense that its competitive ratio may be much worse if we assume
existence of such clock drifts. However, the idea underlying the CC-algorithm
gives rise to algorithms which have good competitive ratio even in the almost
synchronous model. In this section we present such an algorithm. We assume that
the difference between the time indicated at any two clocks is at most Δ. We
assume all communication times to be equal and of unit length, i.e. τ(a) = 1 ∀a.
We also divide nodes into classes; a node v is of class p if p is the maximal integer
such that τv = h2p +1 for some integer h, and v is of class 0 if τv = 1. Note that
p ∈ {0, . . . , �log δ	}. The algorithm is the following:

Algorithm:AlmostSynchronousClock (ASC) Message j incurs 3 kinds
of delay:
1. a delay of t(Ij) − τvj − rj at its release node vj ;
2. a delay of Δ at each node it traverses;
3. a delay which sums to 2p+1Δ at the first node of class p, p > 0, it

traverses.

The waiting time of message j at a node v is the sum of the delays. A message
is sent from a node v once its waiting time is over, unless some other message
(packet) is sent from v earlier in which case j is aggregated with this packet.

Note that if Δ = 0 the algorithm is identical to the CC-algorithm. To illustrate
delay of the third kind we give an example: if a message traverses nodes of classes
1-4 in order 1,2,3,4 then its delay of the third kind of these nodes is respectively
4Δ, 4Δ, 8Δ, 16Δ. If the order is 4,1,2,3 then its delay of the third kind is 32Δ at
the node of class 4 and 0 elsewhere.

Now we analyze the competitive ratio of ASC. Let Vk := {v|2k−1 < τv ≤ 2k}
for some k ∈ N, for k = 1, . . . , �log δ	. First, we analyze the behavior of the
algorithm for instances in which the release nodes of all messages is in Vk for
some k ∈ N.
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Lemma 3. If the CC-solution sends a packet from v, the ASC-solution sends
at most (k + 1) packets from v which contain a message of the CC-packet, if ∀j
vj ∈ Vk for some k ∈ N.

Proof. Each packet, either CC or ASC, contains at least one message whose
waiting time is completely over when the packet is forwarded. Hence without
loss of generality we only consider messages whose waiting time is completely
over when counting packets.

Consider a packet PCC sent by the CC-solution from some node v at time
t. In the remainder of the proof we only consider the messages in this packet.
We analyze the number of ASC-packets which contain a message of PCC. The
delays of messages in PCC are chosen such that all messages in this packet which
traverse v, i.e. v is not the release node, arrive at this node at time t. As the
delay of the first kind in the ASC-algorithm is identical to the delay incurred
by the CC-algorithm we focus on the deviation from this time to analyze the
number of packets ASC sends. This deviation may be caused either by delay of
kind 2 and 3, or by the clock drift.

If k = 0 the lemma trivially holds, because all messages which are sent over
some node v ∈ V0 have this node v as release node. Hence, if they are sent in
a single packet by the CC-solution they are also sent in a single packet in the
ASC-solution.

For k ≥ 1 we introduce the following notation: Vp,k = {v ∈ Vk|v is of class p,
∀v′ ∈ Vk of class p, τv ≤ τv′} for p ∈ {0, . . . , k − 1}. Vp,k is the set of nodes in
Vk of class p with minimal communication time to the sink. Define τ(Vp,k) := τv

for some v ∈ Vp,k. The nodes of Vk are partitioned into layers Up,k for p ∈
{0, . . . , k − 1} as follows:

Up,k := {v ∈ Vk|τ(Vp,k) ≤ τv < τ(Vp+1,k)} for p ∈ {1, . . . , k − 3},

Uk−2,k := {v ∈ Vk|τ(Vk−2,k) ≤ τv},

Uk−1,k := Vk−1,k.

Note that Vp,k ⊆ Up,k for all p. Further, each message j with vj ∈ Up,k traverses
some node in Vp,k. See Figure 1 for a sketch of the layer structure.

We characterize a set of nodes S by its depth, which is maxv∈S τv −minv∈S τv

and the class string. The class string is an ordered string representing the class
of nodes in S by increasing communication time to the sink. I.e. V3 has depth 4
and class string {2010}. In general, set Vk has depth 2k−1. Node sets S and S′

are equivalent if they have the same depth and class string.
We observe that all messages j with vj ∈ Vk are sent to a node in Vk−1 from

some node in Vk−1,k, i.e. a node of class k−1. Also, there are no nodes of higher
class in Vk and this is the only node of class k − 1 a node traverses in Vk. From
these observations we may derive that all messages j with vj ∈ Vk which are sent
over the same node v ∈ Vk−1,k are sent from this node in a single packet. This
can be seen as follows. The total accumulated delay of kind 2 and 3 that any
message has incurred when sent from v is at least 2kΔ + Δ because v is of class
k−1. The total accumulated delay of kind 2 and 3 that any message has incurred



148 P. Korteweg et al.

00102010301020104010201030102010
1234589161732

s

V0V1V2V3V4V5

τv

p

U0,1U0,2

U1,2U1,3

U0,3

U2,3U2,4 U1,4

U0,4

U3,4U3,5 U2,5 U1,5

U0,5

U4,5

Fig. 1. Node set Vk and layers U0,k, . . . , Uk−1,k for k = 1, . . . , 5

when it arrives at v is at most 2k−1Δ + 2k−1Δ, because the maximum class of
any other node in Vk is k−2 and each message has traversed at most 2k−1 nodes.
As the clock drift is bounded by Δ and the difference between the minimum and
maximum delay of any two messages is at most (2kΔ+Δ)−(2k−1Δ+2k−1Δ) = Δ
all messages j with vj ∈ Vk which are sent over v in PCC must be sent from this
node in a single ASC-packet.

Now we are in position to prove our lemma using induction on k. Suppose
the lemma holds for V0, . . . , Vk. Consider set Vk+1; this set is partitioned into
layers U0,k+1, . . . , Uk,k+1. For 	 = 0, . . . , k − 1 layer U�,k+1 is equivalent to set
V�+1, hence all messages j with vj ∈ U�,k+1 which are sent from the same node
in U�,k+1 are sent in a single packet. Thus there are at most k packets which
arrive at any node v ∈ Uk,k+1. As Uk,k+1 has depth 1, all messages which have
v as their release node, are sent from this node in a single packet. Hence, the
total number of packets sent from any node in Vk+1 is bounded by k + 1. This
proves the lemma. ��

Theorem 5. ASC is (1 + 4Δδ/L, log2 δ)-competitive.

Proof. Consider a packet P sent by the optimal solution. Let PASC be the set
of packets sent by the ASC-algorithm which contain at least one message from
P . Let Ni,k = {j ∈ Ni|τvj ∈ Vk}, for i, k ∈ N, 1 ≤ i ≤ �log U	, 1 ≤ k ≤ �log δ	.
Observe that for any choice of budget on the latency L, there are at most 2 log δ
nonempty sets Ni,k. Using this, it follows from Lemma 2 and Lemma 3 that
|PASC| = O(log2 δ). Hence, the communication costs of the ASC-solution are at
most O(log2 δ) times the cost of an optimal L-bounded solution.

The latency of any message j is at most L + Δτvj + 2Δτvj + Δ, where the
sum consists of the delay of kind 1,2,3 and the clock drift. Thus, the latency of
message j is at most (1 + 4Δδ/L) times the budget on the latency. ��

If the drift is very small, competitiveness of ASC approaches the lower bound
of (1, log δ) of the synchronous case, which we proved in [3]. If the drift is of the
same order as the latency, i.e. Δ = O(L), then the SL algorithm, with λ = 1,
has strictly better (β, α)-competitive ratio, than the ASC algorithm. In case of
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such drifts, it is not plausible anymore to consider the clocks to be synchronized
in any sense.

5 Conclusions and Open Problems

We presented on-line distributed algorithms for data aggregation in sensor net-
works. We considered algorithms under two different models for sensor clocks.
For the almost synchronous time model we presented an algorithm which min-
imizes communication costs under a small excess of the latency budget. These
are the first analyses of algorithms for this model, which models actual sensor
networks closer than the known ones. We emphasize that the results depend
linearly on the drift, and that if the drift is very small our algorithms approach
best possible competitive ratios.

For the asynchronous time model we presented an algorithm which balances
the communication and latency costs up to a factor log U , where U is the ratio
between maximum and minimum allowed delay. We showed that no memoryless
algorithm can have a competitive ratio which is more than a factor log U better
than ours, and in case the latency budget is not too small our algorithm is best
possible within the class of memoryless algorithms.

The competitive ratio of our asynchronous algorithm is almost balanced; it
would be interesting to find an algorithm with balanced ratios, equal to the
lower bounds we presented in this paper. Another path for future research is to
make a more careful analysis of the almost synchronous time model, in order
to determine the maximum clock drift for which almost synchronous algorithms
have better competitive ratio than asynchronous algorithms.
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Abstract. Mobile-agent-based distributed systems are attracting
widespread attention as the adaptive and flexible systems: mobile agents
traverse the distributed system and carry out a task at each node. In
such mobile-agent-based systems, gossip is the most fundamental scheme
supporting cooperation among mobile agents. It requires to accomplish
all-to-all information exchange over all agents so that each agent can ob-
tain the all information each agent initially has. Rendezvous algorithms,
which require that all the agents rendezvous on a node at a time, can
achieve this requirement, however it takes excessive cost for our objec-
tive. In this paper, we newly introduce the mobile agent gossip problem.
In this problem, an agent can obtain the information of another agent
by meeting the agent itself or the agent that has already got the in-
formation. The gossip scheme is expected to accomplish the all-to-all
information exchange with a smaller number of agents’ moves than the
rendezvous algorithms. We propose mobile agent gossip algorithms on
several network topologies, and prove that all proposed algorithms are
asymptotically optimal in term of the number of moves.

1 Introduction

1.1 Background

A mobile agent system is one of the most promising frameworks to implement
distributed applications. Mobile agents are autonomous programs that can mi-
grate from one node to another on the network, and traverse the distributed
system to carry out a task at each node. Since the adaptability and flexibility
of mobile agents simplify the design of distributed systems, several mobile agent
systems have been proposed and developed. In typical mobile agent systems,
multiple mobile agents are used to improve system performance: for example,
each agent traverses the network to collect load information of nodes and links
in network management systems. In such mobile-agent-based systems, gossip is
one of the most fundamental schemes for cooperation among mobile agents. It
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requires to accomplish all-to-all information exchange over all mobile agents such
that each agent can obtain the all information each agent initially has. By using
the gossip scheme, a negotiation with other agents and information collection of
the whole network are easily realized in distributed systems.

One naive approach to implement the gossip is to use rendezvous algorithms
[2,11,12,14], which require that all the agents on a network rendezvous on a
node at a time: all agents exchange their own information at the rendezvous
point. However, in some cases, the use of rendezvous algorithms takes excessive
cost to implement the gossip. For example, suppose the gossip over k agents on
a line network of N nodes. Then, to achieve the gossip, the following scenario
is allowable: Let agent p be the leftmost agent. The agent p migrates to the
right end of the line to collect information of all agents, and then, returns to
the left end to deliver the information to all agents. As the result, each agent
can obtain the information of all agents. While the rendezvous problem has
the trivial Ω(kN) lower bound on the total number of agent moves, the above
scenario takes only 2N moves. That is, in this case, rendezvous algorithms are
quite costly for our objective.

1.2 Related Works

Rendezvous algorithm is one of approaches to implement the gossip and have
been studied by many researchers [2,11,12,14]. Kranakis et.al. have summarized
the recent study results about rendezvous in [11]. Barriere et.al. have indicated
in [2] that the computabilities of the rendezvous problem and the election prob-
lem among agents (i.e., a single agent is elected among agents) are equivalent.
It is obvious that the gossip can be solved by a rendezvous algorithm and that
the election problem can be solved by a gossip algorithm. Thus, the computabil-
ities of the gossip, the rendezvous problem and the election problem are also
equivalent. The election problem have also been studied in [1,5,4]. In [4,12], it
is indicated that rendezvous and election problem can not be solved if agents
are anonymous and know neither the network size N nor the number of agents
k. Therefore, most of these studies assume that each agent knows the network
size N . However, it is unrealistic to assume that each node initially knows the
global information N in distributed systems. Thus, in this paper, we assume
that agents are identifiable. While most of studies about rendezvous focus on
time complexity and memory complexity, we focus on move complexity. Some
studies also focus on move complexity, but they assume that each agent initially
knows the network size N [4,14]. The gossip problem among nodes has been
extensively investigated [3,6]. However, the gossip among agents has not been
considered before, we propose the mobile agent gossip problem in this paper.

1.3 Our Contribution

Motivated by the above observation, we newly formulate the mobile agent gossip
problem (MAGP), and investigate its solutions. The goal of this problem is that
each agent collects all information other agents initially have with the smallest
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Table 1. Our Contribution

Graph System model Sense of direction
Total number of agents’ moves
Upper Bound Lower Bound

Ring
asynchronous

without
O(N log k + N) Ω(N log k + N)

synchronous O(N) Ω(N)
Tree asynchronous without O(N) Ω(N)

Complete asynchronous
without O(N log k + N) Ω(N log k + N)

with O(N) Ω(N)
Arbitrary asynchronous without O(N log k + |E|) Ω(N log k + |E|)
N , |E| and k are the numbers of nodes, links and agents respectively.

number of moves. Different from the rendezvous, the gossip problem allows relay
of information: an agent pi can obtain the information of other agent pj directly
from pj or via other agents. Therefore, we can expect that the gossip algorithm
inherently takes a smaller number of total moves than rendezvous.

We propose algorithms for MAGP on several network topologies; rings, trees,
complete networks and arbitrary networks. Table 1 summarizes our contribution
about MAGP in this paper. The property of sense of direction implies that
every link is locally labeled at its connecting nodes in a globally consistent way.
For all system models, we also prove the lower bounds on the total number of
moves. These results indicate that all the proposed algorithms are asymptotically
optimal in term of the total number of moves. Interestingly, all the algorithms
have the move complexities sublinear in k. Especially, the complexity of the
algorithms for synchronous rings, asynchronous trees and complete networks
with sense of direction is independent of k. Since the trivial lower bound for
the rendezvous problem on trees and rings is Ω(kN), our results imply that
MAGP inherently has lower complexity for the total number of moves than the
rendezvous problem.

Some of the above results are based on the investigation of the relation be-
tween MAGP and the process leader election. More precisely, in several models,
we show that some of the upper/lower bounds for MAGP can be obtained from
those for the process leader election. Actually, all our proposed algorithms con-
sist of two phases. At the first phase, exactly one agent is elected as a leader
from k agents. On this phase, in some of our algorithms, agents elect their leader
by simulating the algorithm for the process leader election. On the other hand,
the lower bounds for MAGP are proved by the reduction of the process leader
election to MAGP.

The rest of this paper is organized as follows. In Section 2, we present
the model of mobile agent systems, and define the mobile agent gossip prob-
lem(MAGP). In Section 3, we investigate the relation between MAGP and the
process leader election. Section 4 presents the algorithms and the lower bounds
on the total number of moves for MAGP on several networks. Section 5 concludes
the paper.
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2 Preliminaries

2.1 System Models

The network is modeled as an undirected graph G = (V, E), where V and E are
respectively the node set and the link set in the network G. A link in E connects
two distinct nodes in V . The link between nodes u and v is denoted by euv or
evu. The number of nodes is denoted by N (i.e., N = |V |), and the number
of mobile agents in the network is denoted by k. An agent is an autonomous
program that can migrate from one node to another on the network. We assume
that each agent and each node has distinct identifier1. Each agent does not
initially know identifiers of other agents or nodes. We also assume that each
agent has prior knowledge of neither the number of nodes N nor the number of
agents k. There is no assumption about the initial location of each agent: more
than one agent may be initially located on a same node. The node on which an
agent is initially located is called the home node of the agent. Agents on node
u ∈ V can migrate to node v ∈ V only when link euv is contained in E. For each
node, links connecting to it are locally labeled, so that an agent on the node can
distinguish the links. Let λu(euv) be the label of link euv on node u. Each node
v is provided with a whiteboard, i.e., a local storage where agents on v can write,
read and erase information. Each agent can perform the following operations on
the whiteboard at each node.

– write(v, infos) : an agent writes information infos on node v’s whiteboard.
– read(v) : an agent reads information written on node v’s whiteboard
– delete(v) : an agent deletes information written on node v’s whiteboard.

Access to a whiteboard is done exclusively: when multiple agents on a node
execute their operations, the operations are sequentially executed in an arbitrary
order. Agents are said to be asynchronous if migration time and local processing
time of agents are unpredictable but finite. In contrast, agents are synchronous
if its execution is partitioned into rounds; in each round, every agent arrives at
a node, executes local computation on the node, and stays on the node or starts
migration to one of the neighboring nodes.

A state of an agent is represented by the set of variables the agent has and
the set of information the agent collects, and a state of a node is represented
by the state of its own whiteboard. A system configuration C is represented by
the states of all nodes, the states of all agents, and the locations of all agents.
A system configuration is changed by events of agents (e.g., migration to a
neighboring node or access to a whiteboard on a node). Let C0 be the initial
configuration of a system and Evi be the set of events that occurs simultaneously
at the configuration Ci. An execution of a distributed system is an alternative
sequence of configurations and sets of events EX = C0, Ev0, C1, Ev1, C2, · · ·,
such that occurrence of events Evi−1 changes the configuration from Ci−1 to Ci.
1 In our algorithm for MAGP, node IDs are not required if agents have unique IDs.

Notice that it is not essential whether nodes have unique IDs or not because the
naming is possible by agents’ traverse.
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2.2 Mobile Agent Gossip Problem

In this paper, we consider the mobile agent gossip problem(MAGP). At an initial
configuration, each agent pj has only its own information Ij . The goal of this
problem is that every agent collects the information of all agents. The MAGP is
defined as follows.

Let Sj(Ci) be the set of information an agent pj has at a configuration Ci.
At an initial configuration C0, the set of information Sj(C0) each agent pj has
includes only its own information Ij :

Sj(C0) = {Ij}. (1)

The mobile agent gossip problem is solved when all k agents terminate after the
following condition is satisfied at a configuration Ci:

∀j(0 ≤ j < k) Sj(Ci) =
⋃

0≤l<k

{Il} (2)

We make no assumption on the size of information each agent initially has. To
avoid introducing huge space for whiteboard, we disallow each agent pj to leave
the set of information Sj(Ci) on a whiteboard. Agents can write only the control
information on a whiteboard, e.g., some number of identifiers and counter values.
Instead, we allow agents on a same node to exchange the set of information with
each other. When h agents p0, p1, · · · .ph−1 are located on a same node at a
configuration Ci, then the following holds for the configurations Ci+1:

∀j(0 ≤ j < h) Sj(Ci+1) =
⋃

0≤l<h

Sl(Ci) (3)

We define one move as a migration of an agent from one node to its neighbor.
The complexity of the MAGP is measured by the total number of moves until
all agents terminate in the worst case.

3 Reduction of the Leader Election Problem to MAGP

By reduction from the leader election problem of nodes, we obtain the lower
bounds on the number of total moves for MAGP. In this section, we prove
that the leader election problem of nodes (LEP) can be reduced to MAGP.
Notice that we consider the leader election among “nodes” in message passing
systems, instead of agents. Informally, the objective of LEP is that each node
eventually decides a single common leader node. This paper considers LEP under
the assumption that only k nodes spontaneously initiate an algorithm for LEP
and each other nodes initiates an algorithm for LEP when it receives a message.
More precisely, the leader election problem is specified as follows:

Definition 1 (Leader Election Problem of k Initiator Nodes (LEP))
Let v0, . . . , vk−1(1 ≤ k < N) be the initiator nodes on the network G. An
algorithm is said to solve the leader election problem if it satisfies the following
conditions:
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– Exactly one of the nodes is elected as the leader and all the other nodes
existing in the network G know the identifier of the leader node.

– Once a node decides whether to be as the leader, the node never changes the
decision.

We can obtain the following relation between LEP and MAGP.

Theorem 1. When the total moves for MAGP is mg and the total moves re-
quired for an agent to travel the whole of the network is mt, LEP can be solved
with mg + mt messages in an message passing system.

Proof . We prove this theorem by showing that LEP can be solved by using an
MAGP algorithm in agent systems. In message passing systems, the behavior of
agents can be simulated in the same number of messages as the agents’ moves.
Each initiator node vi creates an agent pi that has information including vi’s
identifier. By applying an algorithm for MAGP, the k agents created by k initia-
tor nodes can collect all identifiers of the initiator nodes. Each agent can elect
exactly one leader agent from the k agents based on the initiator nodes’ iden-
tifiers. The leader agent, say pj, travels the whole network so that the node vj

becomes the leader and the other nodes know the identifier of vj . �

4 Algorithms for MAGP

In this section, we present the upper and the lower bounds for MAGP. All
proposed algorithms for MAGP consist of two phases. At the first phase (called
election phase), a leader agent is elected from k agents, and at the second phase
(called traverse phase), the leader agent travels the whole network to collect
and deliver information each agent has while all the other agents. When more
than one agent is initially located on a same node, one agent is elected among
the agents based on their identifiers and the elected agent executes the election
phase. Therefore, in what follows, we consider the initial configuration where at
most one agent is located on a node.

4.1 Non-rooted Tree Networks

In this subsection, we present an algorithm for MAGP on a non-rooted tree.
At the election phase, each agent joins a tournament to become the leader.

For easy understanding, suppose an initial configuration where each leaf node
(i.e., a node with a single incident link) has a single agent. We ignore all the
agents on internal nodes, that is, they make no action. Then, the leader agent
is elected as follows: the agent on a leaf node migrates to the neighboring node
u. On the node u, the agent waits until agents come from all neighboring nodes
except only one node, and then, one of the agents on u wins this stage of the
tournament and migrates to the connecting node no agent has come from.
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home nodehome node

(a) Initial network (b) After the 1st step (c) After the 2nd step

Fig. 1. Example of agents’ behavior on a non-rooted tree

By repeating the above actions, only one agent wins the tournament2. The tour-
nament needs O(N) moves since each link is used exactly once3.

In MAGP, however, there is no assumption of initial locations of agents: we
cannot assume that each leaf node has an agent at the initial configuration.
Therefore, at the start of the election phase, agents create a configuration where
one agent stays on each leaf node.

In what follows, we explain the agent’s behavior at the election phase. On the
first step at the election phase, each agent on a leaf node or an internal node
travels on the tree by the depth-first-search (DFS) to construct its territory so
that territories of different agents have no common node and those of all agents
cover the whole network: the first agent that arrives at a node v becomes the
owner of v (Fig. 1 (b)). When the agent can construct its territory including all
nodes in the tree, that is, there is only one agent in the tree, the agent becomes
the leader. Otherwise, each agent proceeds the second step. On the second step,
each agent travels again in its territory (a subtree) by the DFS. Each agent
considers its home node as a root node of the subtree. Then, on each link euv

(node v is one of children nodes of node u), the agent cuts the link euv when the
node v has no descendant node connecting with the territory of another agent.
At the configuration after the cutting links on all nodes, each leaf node has a
single agent (Fig.1 (c)). And then, each agent on leaf nodes competes at the
tournament including only the non-cutted links as mentioned above. Agents on
internal nodes after the second step do not join the tournament and wait until
the leader agent collects and delivers the information.

At the traverse phase, the leader agent travels the whole network by DFS
with O(N) moves.

On the first and the second step, the total number of agents’ moves is O(N)
since each agent travels in only its territory by the DFS. The leader election
with the tournament needs O(N) moves. Thus, the following theorem holds.

2 At the final stage, both of two remaining agents may be elected if they stay two
endpoints of the last unused link l and concurrently move along l. However, We can
easily break such symmetry case by writing the winner agent IDs on the whiteboards.

3 Exceptionally, the last unused link may be used twice.



158 T. Suzuki et al.

Theorem 1 (Upper bound on tree networks). MAGP can be solved with
the total number of moves O(N) in any asynchronous non-rooted tree of size N .

The following theorem is trivial.

Theorem 2 (Lower bound on tree networks). Any algorithm for MAGP
requires the total number of moves Ω(N) in any asynchronous non-rooted tree
of size N .

4.2 Complete Networks Without Sense of Direction

In this subsection, we propose an algorithm of MAGP on complete networks
without sense of direction. That is, links connecting to a node have arbitrary
local labels.

At the election phase, a leader agent is elected by simulating the algorithm
for LEP on complete networks without sense of direction proposed in [10]. In
the algorithm, each node repeatedly captures other nodes, and finally, the node
that has captured more than half nodes on the network becomes the leader.

In what follows, we briefly describe the election phase in our algorithm simu-
lating the algorithm proposed in [10]. We define three states of a node:

– a candidate node is a home node of an agent that tries to capture other nodes
and that has a chance of becoming the leader agent.

– A captured node is the node captured by an agent.
– A passive node is one that is neither a candidate node nor a captured node.

Let i be the identifier of agent pi. Each agent pi writes its identifier i and the
number of captured nodes on the whiteboard at its home node v (the number of
captured nodes is initially set to zero). Let ni be the number of captured nodes
by an agent pi. Each agent pi repeats the following actions until pi captures more
than half nodes of the network or its home node v becomes passive or captured
: pi on its home node v migrates one of its neighbors u to try to capture it. Let
nu and idu be the number of nodes and the identifier written on u’s whiteboard
respectively. The next action of the agent pi depends on the state of u:

– (Case1) The node u is passive node: the agent pi captures u.
– (Case2) The node u is candidate node: if ni is larger than nu, or if ni is the

same number as nu and i is larger than idu, pi captures u. Otherwise, the
agent pi returns to its home node v and makes v passive.

– (Case3) The node u is captured node: the agent pi attacks the node w that
is the home node of the agent capturing u. The agent pi migrates to the
node w, and then, pi captures u and makes w passive if one of the following
conditions is satisfied: (1) the node w is a passive or captured node, (2) ni is
larger than nw, or (3) ni is the same number as nw and i is larger than idw.
Otherwise, the agent pi returns to its home node v and makes v passive.

When the agent pi captures a node u, pi marks the link connecting to its
home node so that other agents visiting u can move to the home node of pi.
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The agent pi increments the number of nv on the whiteboard at its home node
v every time pi captures a new node.

At the traverse phase, the leader agent travels the whole network with O(N)
moves.

The message complexity of the algorithm in [10] has been proved to be
O(N log N). In our algorithm, agents simulate one-message transmission by
one migration among nodes. The number of agents that can capture N/2 + 1
nodes is one, and the number of agents that can capture N/2 nodes is at most
two. Similarly, the number of agents that can capture N/h nodes is at most h.
Therefore, the captures of nodes are done at most (N/2 + 1) +

∑k
h=2 1/h · N ≤

N log k + N/2 + 1 times in total. The capture of one node by an agent needs at
most 4 moves. Thus, the following theorem holds.

Theorem 3 (Upper bound on complete networks without sense of di-
rection). MAGP can be solved with the total number of moves O(N log k+N) in
any asynchronous complete network without sense of direction of size N , where
k is the number of agents.

It is proved in [10] that the message complexity of any LEP algorithm on com-
plete networks without sense of direction is Ω(N log N). In the case of k initiator
nodes, we can prove the Ω(N log k+N) lower bound on the message complexity
for LEP by similar proof as one in [10]. From Theorem 1 and the above fact, we
can show the following lower bound on the number of agents’ moves for MAGP
on complete networks without sense of direction.

Theorem 4 (Lower bound on complete networks without sense of
direction). Any algorithm for MAGP requires the total number of moves
Ω(N log k+N) in any asynchronous complete network without sense of direction
of size N , where k is the number of agents.

4.3 Complete Networks with Sense of Direction

In this subsection, we propose an algorithm for MAGP on complete networks
with sense of direction. The sense of direction is given at each node as follows:
nodes are denoted by v0, v1, · · · , vN−1, numbered clockwise in the ring, and for
every i, j(0 ≤ i, j ≤ N − 1, i �= j), the link evivj is labeled by (j − i) mod N at vi

and (i − j) mod N at vj . Figure 2(a) shows an complete network with the sense
of direction of six nodes.

At the election phase, the behavior of each agent is similar to the algorithm for
LEP proposed in [13]. In this algorithm, each node sends messages including its
identifier along the ring in both directions. On the first stage, the ring consists of
the links labeled 1 or N −1. When a node receives the messages, the node decides
whether it survives or not, based on their identifiers. To reduce the message cost,
the winner node uses the chordal links between the winner and the looser , and
the looser and the looser nodes on the next stage. That is, the ring is shrunk
into a smaller one. On the next stage, the winner nodes repeat the above actions
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(a)complete network with
sense of direction

(b)An agent’s migration on
the 1st step

(c)The smaller ring on the
2nd step

Fig. 2. An example of agents’ behavior on a complete network with sense of direction

on the smaller ring. These actions are continued until only one node wins over.
The final winner becomes the leader.

In our algorithm for MAGP, each agent simulates the algorithm proposed in
[13] to elect a leader agent. Each agent first writes its identifiers on the white-
board at its home node. Figure 2(b) shows an example of an agent’s migrations
on the first stage. On the first stage, each agent migrates along the links labeled
1 with counting the number of passed nodes. When the agent finds the identifier
of another agent on the whiteboard at visited node v, it checks the identifier
and directly returns to its home node through the chordal link between v and
its home node, which can be found using the number of passed nodes. Similarly,
the agent repeats the above actions in the reverse direction. The agent that wins
both of its neighboring agents based on their identifiers can survive into the
next stage. The looser agents stop their migration and wait on their home node.
On the next stage, the winner repeats the above actions on the smaller ring,
which consists of the chordal links connecting the home nodes of the winner and
the looser, or the looser and the looser agents on the previous stage (Fig. 2(c)).
When only one winner exists on the ring, the election phase terminates and the
agent that wins all other agents becomes the leader.

At the traverse phase, by migrating along the links labeled 1, the leader agent
travels the whole network with O(N) moves.

On each stage, each link included in a ring is used at most four times for
agents’ migrations. The ring size on the first stage is N , and on the second stage
is k since the ring on the second stage is constructed by only agents’ home nodes.
On the h-th stage, the ring size is at most k/2h−2, and the number of winner
agents is at most k/2h−1. Therefore, by the log k-th stage, the leader agent is
elected. Thus, the following theorem holds.

Theorem 5 (Upper bound on complete networks with sense of direc-
tion). MAGP can be solved with the total number of moves O(N) in any asyn-
chronous complete network with sense of direction of size N .

The lower bound on complete networks is trivial.
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Theorem 6 (Lower bound on complete networks with sense of direc-
tion). Any algorithm for MAGP requires the total number of moves Ω(N) in
any asynchronous complete network with sense of direction of size N .

4.4 Arbitrary Networks

In this subsection, we propose an algorithm for MAGP on arbitrary networks,
where no sense of direction is assumed.

The outline of the election phase is as follows: each agent first constructs its
territory that has no common node with territories of other agents by the DFS:
each agent captures nodes in its territory on a first-come-first-capture basis. Let
Ti be the territory of agent pi. And then, each agent merges its territory with
other agents’ territories. When the territories of agents pi and pj are merged,
either pi or pj becomes the owner of the merged territory. Finally, the agent that
captures all nodes in its territory becomes the leader.

To merge territories, each agent behaves similar actions with Gallager’s
algorithm for constructing minimum spanning tree (MST) proposed in [8].
In Gallager’s algorithm, the MST is constructed by merging subtrees based
on weights of links. To simulate Gallager’s algorithm, in our algorithm,
each link is assigned a value as its weight. More precisely, the label
(min{id(u), id(v)}, max{id(u), id(v)}) is assigned to each link euv as its weight,
where id(u) is the identifier of node u. Two weight labels (u1, v1) and (u2, v2) are
compared with lexicographic order, that is, (u1, v1) < (u2, v2) ↔ u1 < u2∨(u1 =
u2 ∧v1 < v2). Each territory can be considered as a sub-tree constructed by Gal-
lager’s algorithm. Therefore, by simulating Gallager’s algorithm for constructing
MST, only one agent can construct territory including all nodes.

In what follows, we explain the outline of Gallager’s algorithm. A minimum
outgoing link of a territory Ti is the link with the lowest weight connecting a node
in Ti and a node in another territory. Let MOLi be the minimum outgoing link
for territory Ti. Gallager’s algorithm repeats two procedures in each territory:
one is to search MOLi in the territory Ti, and another is to merge the territory Ti

with the other territory connecting via MOLi. We define the level Li of territory
Ti as the number of times to search MOLi in Ti (the initial level of each territory
is set to zero). Note that the level Li is not the number of times that territory Ti

merges other territories, and is the number of times to find MOLi by searching
all of outgoing links in Ti. To reduce the message cost, Gallager’s algorithm
executes the search of MOLi and the merger of territories according to levels of
each territory.

1. The territory Ti merges the other territory Tj(i > j) only if one of the
following conditions is satisfied.
(a) Li > Lj and MOLj connects a node in the territory Ti: the territory

Ti merges the territory Tj. The level of Ti is not changed. That is, the
search of MOLi is not restarted in Ti.

(b) Li = Lj and MOLi = MOLj : the territories Ti merges the territory Tj .
The level of Ti is set to Li + 1. That is, the search of MOLi is executed
in the merged territory.
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2. If the territory Ti has an outgoing link connecting with the territory Tj that
has the level Lj smaller than the level Li (Lj < Li), Ti might merge Tj on
the link. Hence, if the territory Ti finds such outgoing link while searching
MOLi, Ti suspends searching MOLi until Ti knows whether or not Ti merges
Tj .

Gallager had proved in [8] the level of each territory is at most log N by applying
the above rules, where N is the number of nodes that executes the algorithm.

At the election phase in our algorithm, each agent simulates Gallager’s al-
gorithm. Each agent pi writes its identifier and the level of its territory on the
whiteboards at nodes in its territory. The search of MOLi is done by the DFS
traversing whole of the territory Ti, and needs O(|Ti|) moves. The state of each
connecting link whether the link is outgoing link or not and the weight of out-
going link are written on whiteboard at each node. Let link evu be the MOLi,
where nodes v and u are included in the territories Ti and Tj(i �= j) respec-
tively. When the agent pi finds the link evu is MOLi, pi migrates to the node
u and reads the level lu written on u’s whiteboard. Then, the agent pi behaves
in accordance with the above rules of merger for the levels Li and lu. When
the territory Ti is merged by the territory Tj (i.e.,Li < lu), the agent pi travels
whole of the territory Ti by the DFS writing the identifier j and the level lu on
each whiteboard. When the territories Ti and Tj are merged (i.e., Li = lu and
MOLi = MOLj), either agent pi or pj is elected (depending on their identifiers)
as the owner of the merged territory, and the another is not the owner and waits
on the staying node. Let pi be the owner of the new territory. The agent pi

travels whole of the territories Ti and Tj by DFS writing the identifier i and the
new level Li + 1. The agent that captures all nodes in its territory becomes the
leader.

At the traverse phase, by the DFS on the MST, the leader agent travels
the whole network with O(N) moves. The checks of all links to construct first
territory of each agent are required O(|E|) moves, where E is the set of links.
Every link is checked at most once whether the link is outgoing link or not, so
the check of all link is required O(|E|) moves in total. The searches of minimum
outgoing link on each level is required O(N) moves in total on each level. Since
the number of territories at the start of constructing MST is k, the level of any
territory is at most log k. Therefore, the following theorem holds.

Theorem 7 (Upper bound on arbitrary networks). MAGP can be solved
with the total number of moves O(N log k + |E|) in any asynchronous network
of size N , where k is the number of agents and |E| is the number of links.

The lower bound on message complexity for LEP has proved to be Ω(N log k +
|E|) in [8]. We can get the following lower bound on moves for MAGP from the
trivial lower bound Ω(|E|), and the traverse cost O(|E|) and Theorem 1.

Theorem 8 (Lower bound on arbitrary networks). Any algorithm for
MAGP requires the total number of moves Ω(N log k+ |E|) in any asynchronous
network of size N , where k is the number of agents and |E| is the number of
links.
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4.5 Asynchronous Ring Networks

In this subsection, we propose an algorithm for MAGP on asynchronous ring
networks. On ring networks, the network has no sense of direction. That is, links
connecting to a node have arbitrary local labels.

From Theorem 7, the following theorem holds.

Theorem 9 (Upper bound on asynchronous ring networks). MAGP can
be solved with the total number of moves O(N log k + N) in any asynchronous
ring network of size N , where k is the number of agents.

As in the case of complete networks without sense of direction, we can get the
following lower bound on moves for MAGP from Theorem 1 and the lower bound
Ω(N log k) on message complexity for LEP proved in [9].

Theorem 10 (Lower bound on asynchronous ring networks). Any al-
gorithm for MAGP requires the total number of moves Ω(N log k + N) in any
asynchronous ring network of size N , where k is the number of agents.

By using the ring structure, we can simplify the election phase of the algorithm
for MAGP on arbitrary networks as stated in the following. At the election
phase, the agent simulates the algorithm for LEP proposed in [9]. Each agent
writes its identifier on the whiteboard at its home node and acts the following
actions repeatedly: the agent migrates in a direction along the ring and checks
the identifier of its neighboring agent, and then, does the same actions in the
reverse direction. If the agent has the larger identifier than its two neighboring
agents, the agent merges its territory with the two neighboring territories and
becomes the owner of the merger territory. Otherwise, the agent is not the owner
and waits on the staying node. If the agent can return to its home node without
meeting other owners, the agent becomes the leader. As the results, the maximum
level of territory is at most log k.

4.6 Synchronous Ring Networks

In this subsection, we present an algorithm for MAGP on synchronous rings.
On synchronous ring, the number of required moves can be reduced by using
synchronous clock each agent has.

At the election phase, agents simulate the algorithms for LEP proposed in [7].
On synchronous rings, each agent waits on a node for a time depending on its
identifier to reduce the number of moves: each agent pi waits for 2i − 1 rounds
every time pi arrives at each node. That is, the agent pi migrates to one of
neighbors at most once every 2i rounds.

The outline of the election phase is as follows: each agent first writes its
identifier on the whiteboard at its home node, and migrates in a direction along
the ring. When the agent finds an identifier of other agent, the agent decides,
according to the identifier, whether it should continue its migration or not. If
the agent has the larger identifier than the written identifier, the agent stops its
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migration and waits on the node. The only one agent can return to its home
node and then it becomes the leader.

At the traverse phase, the leader agent travel the whole network by migrating
in a direction with O(N) moves.

The message complexity of the algorithm for LEP proposed in [7] has been
proved to be O(N). At the election phase in our algorithm, the agents simulate
one-message transmission by one migration among nodes: a migration event of
an agent from a node v to u corresponds to a send event of a message from the
node v to u in an execution of the algorithm proposed in [7]. Thus, the following
theorem can holds.

Theorem 11 (Upper bound on synchronous ring networks). MAGP can
be solved with the total number of moves O(N) in any synchronous ring network
size N .

The lower bound on synchronous rings is trivial.

Theorem 12 (Lower bound on synchronous ring networks). Any algo-
rithm for MAGP requires the total number of moves Ω(N) in any synchronous
ring network of size N .

5 Conclusions

In this paper, we have considered the mobile agent gossip problem (MAGP),
which has been newly proposed. The gossip is the most fundamental scheme
supporting cooperation among mobile agents. The goal of MAGP is that all
agents obtain all information each agent initially has with the smallest number
of moves. MAGP inherently has lower complexity for the total number of moves
than the rendezvous problem.

We have proposed algorithms for MAGP on several network topologies: rings,
trees, complete networks and arbitrary networks. For all network topologies, we
can prove that all proposed algorithms are asymptotically optimal in term of the
total number of moves. All the proposed algorithms have the move complexities
sublinear in k. Especially, the complexity of the algorithms for synchronous rings,
trees and complete networks with sense of direction is independent of k. Some
of our results are based on the investigation of the relation between MAGP and
the process leader election problem (LEP): some of the upper/lower bounds for
MAGP have been obtained from those for LEP.
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Swing Words to Make Circle Formation
Quiescent
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Abstract. In this paper, we first introduce the swing words. Based on
intrinsic properties of these words, we present a new approach to solve
the Circle Formation Problem in the semi-synchronous model (SSM)—
no two robots are supposed to be at the same position in the initial
configuration. The proposed protocol is quiescent— all the robots are
eventually motionless in the desired configuration, which remains true
thereafter. In SSM, the improvement of the latest recent work for this
problem is twofold: (1) the protocol works for any number n of weak
robots, except if n = 4, and (2) no robot is required to reach its computed
destination in one step.

Finally, starting from a biangular configuration, our protocol also
solves CFP in the fully asynchronous model (CORDA). To our best
knowledge, it is the first CFP protocol for SSM which is compatible with
CORDA.

Keywords: Distributed Coordination, (Uniform) Circle Formation, Mo-
bile Robot Networks, Self-Deployment.

1 Introduction

Consider a distributed system where the computing units are mobile weak robots
(sensors or agents), i.e., devices equipped with sensors and designed to move
in a two-dimensional plane. By weak, we mean that the robots are anonymous,
autonomous, disoriented, and oblivious, i.e., devoid of (1) any local parameter
(such that an identity) allowing to differentiate any of them, (2) any central
coordination mechanism or scheduler, (3) any common coordinate mechanism
or common sense of direction, and (4) any way to remember any previous ob-
servation nor computation performed in any previous step. Furthermore, all the
robots follow the same program (uniform or homogeneous), and there is no kind
of explicit communication medium. The robots implicitly “communicate” by ob-
serving the position of the others robots in the plane, and by executing a part
of their program accordingly.

In such a weak and unrealistic model, there has been considerable interest in the
design of deterministic coordination protocols (or algorithms). One of the com-
mon features of these works is the study of the minimal level of ability the robots
are required to have to achieve the desired task. So far, the studied tasks are geo-
metric problems, so that pattern formation, line formation, gathering, and circle
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formation—refer to [18,11,14,15] for this problems. Basically, every protocol for
these problems aim to be quiescent, i.e., in every execution, all the robots are even-
tually motionless in the desired configuration, which remains true thereafter.

The Circle Formation Problem (CFP) belongs to the class of pattern forma-
tions. It consists in the design of a protocol insuring that starting from an initial
arbitrary configuration, all the robots eventually form a circle with equal spac-
ing between any two adjacent robots. (This problem is sometime referred as the
uniform circle formation Problem [15].) In other words, the system is expected
to converge to a configuration where the robots stop by forming a regular n-gon.

Related Works. An informal CFP algorithm was first given in [4]. Several CFP
protocols were subsequently proposed. An heuristics based algorithm was pro-
posed in [16]. A protocol for non-oblivious robots is given in [18]. Deterministic
CFP algorithms were first presented in [5,1]. All the above solutions guaranteed
only asymptotical convergence toward a configuration in which the robots are
uniformly distributed on the boundary of a circle. In other words, these solu-
tions are not quiescent, i.e., the robots move infinitely often and never reach the
desired final configuration.

The above solutions work in the semi-synchronous model (SSM) [17] in which
the cycles of all the robots are synchronized and their actions are atomic. In each
cycle, every robot is either active or inactive (at least one of them is active), and
only active robots perform their cycle. Every execution in SSM is assumed to be
fair, i.e., every robot becomes active infinitely often.

The solution in [12] works in a fully asynchronous model, called CORDA [13].
In CORDA, each robot infinitely and independently from the other robots, asyn-
chronously cycles through a WAIT state, an OBSERVE state (the robot observes its
environment), a COMPUTE state (the robot computes its destination point based
on the current locations of the other robots), and a MOVE state (the robot moves
toward the computed destination of an unpredictable amount of space assumed
to be neither infinite, nor infinitesimally small. Each state and the distance trav-
eled while in the MOVE state are assumed to be finite. Since CORDA is a weaker
model than SSM, solutions designed in CORDA also work in SSM [14]—the
reverse is not true.

On top of working in CORDA, the solution in [12] is quiescent, i.e., the robots
eventually stop in a final configuration where they are regularly spread out along
the border of a circle. However, if n is even, the robots may only achieve a
biangular circle—the distance between two adjacent robots is alternatively either
α or β. In [7], a deterministic quiescent CFP protocol is proposed—the exact
n-gon is eventually built—using the useful properties of Lyndon words. However,
the solution in [7] works in SSM and only for a prime number of robots.

A common strategy in order to solve a non trivial problem as CFP is to
combine subproblems which are easier to solve. In general, CFP is separated
into two distinct parts. The first subproblem consists in placing the robots along
the boundary of a circle C, without considering their relative positions. The
second subproblem, called uniform transformation problem (UTP), consists in
starting from there, and arranging robots, without them leaving the circle C,



168 Y. Dieudonné and F. Petit

evenly along the boundary of C. In [5], the authors conjecture that there is
no deterministic solution solving UTP in finite time in the semi-synchronous
model in SSM—the robots being uniform, anonymous, oblivious, and none of
them sharing any kind of coordinate system or common sense of direction. In
a recent paper [10], the validity of the conjecture is proven. The solution in
[6] tackles this latter problem by providing a deterministic algorithm for any
number of robots except 4, 6 and 8. The solution in [6] combines the solution
in [12] and a non-trivial method based on a concentric circles to eventually
achieve a regular n-gon. However, the solution in [6] works assume that no robot
can stop before reaching its destination. Note that all the solutions so far assume
that in the initial configuration, no two robots are located at the same position.
This partially contradicts the specification of CFP since the initial configuration
is assumed to be arbitrary. As already noticed in [5], this implies that none
of them is self-stabilizing [9]. In a recent paper [8], we provide a randomized
self-stabilizing protocol to scatter the robots at distinct positions.

Contribution. We first present a new approach to solve CFP, based on Swing
Words. Informally, a finite non-empty word w over an ordered alphabet A (|A| ≥
2) is a swing word if and only if the five following conditions are true:

1. The length of w is even,
2. the word w contains at least two different letters,
3. each odd letter of w is greater than or equal to (respectively, lower than or
equal to) its following letter,
4. each even letter of w but the last one is lower than or equal to (respectively,
greater than or equal to) its following letter,
5. the last letter of w is lower than or equal to (respectively, greater than or
equal to) the first letter of w.

For instance, over A = {a, b, c}, a < b < c, the words abacbc, bcbc, and
aaaaaaab are swing words, whereas abacba, aaaab, and baab are not—more ex-
amples and a formal definition of swing words are given in Section 3.

Using intrinsic properties of Swing Words, we provide an original deterministic
quiescent protocol for CFP in SSM (assuming that no two robots are initially
at the same position). As in [6], the proposed protocol is not based on UTP. It
is based on an original technique using the convex hull formed by the robots.
It works for any number n of weak robots except if n = 4. So, it improves our
previous result which was not working for n = 6 and n = 8. Moreover, in contrast
with the solution proposed in [6], our protocol assume that no robot is required
to reach its computed destination in one step. Finally, starting from a biangular
configuration, our protocol solves CFP in CORDA. To our best knowledge, it is
the first CFP protocol for SSM which is compatible with CORDA.

Outline of the Paper. In the next section (Section 2), we describe the distributed
system and the problem we consider in this paper. In the same section, we present
the Swing words and some properties. The deterministic algorithm is proposed
in Section 3. Finally, we conclude this paper in Section 4.
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2 Preliminaries

In this section, we define the distributed system, basic definitions and the con-
sidered problem.

Distributed Model. We adopt the model introduced in [17], below referred to
as SSM . The distributed system considered in this paper consists of n robots
r1, r2, · · · , rn—the subscripts 1, . . . , n are used for notational purpose only. Each
robot ri, viewed as a point in the Euclidean plane, move on this two-dimensional
space unbounded and devoid of any landmark. When no ambiguity arises, ri also
denotes the point in the plane occupied by that robot. It is assumed that the
robots never collide and that two or more robots may simultaneously occupy
the same physical location. Any robot can observe, compute and move with
infinite decimal precision. The robots are equipped with sensors enabling to
detect the instantaneous position of the other robots in the plane. Each robot
has its own local coordinate system and unit measure. The robots do not agree
on the orientation of the axes of their local coordinate system, nor on the unit
measure. They are uniform and anonymous, i.e, they all have the same program
using no local parameter (such that an identity) allowing to differentiate any
of them. They communicate only by observing the position of the others and
they are oblivious, i.e., none of them can remember any previous observation nor
computation performed in any previous step.

Time is represented as an infinite sequence of time instants t0, t1, . . . , tj , . . .
Let P (tj) be the multiset of the positions in the plane occupied by the n robots at
time tj (j ≥ 0). For every tj , P (tj) is called the configuration of the distributed
system in tj . P (tj) expressed in the local coordinate system of any robot ri is
called a view, denoted vi(tj). At each time instant tj (j ≥ 0), each robot ri is
either active or inactive. The former means that, during the computation step
(tj , tj+1), using a given algorithm, ri computes in its local coordinate system a
position pi(tj+1) depending only on the system configuration at tj , and moves
towards pi(tj+1)—pi(tj+1) can be equal to pi(tj), making the location of ri

unchanged. In the latter case, ri does not perform any local computation and
remains at the same position. In every single activation, the distance traveled
by any robot r is bounded by σr. So, if the destination point computed by r is
farther than σr, then r moves toward a point of at most σr. This distance may
be different between two robots.

The concurrent activation of robots is modeled by the interleaving model in
which the robot activations are driven by a fair scheduler. At each instant tj
(j ≥ 0), the scheduler arbitrarily activates a (non empty) set of robots. Fairness
means that every robot is infinitely often activated by the scheduler.

The Circle Formation Problem. In this paper, the term “circle” refers to a circle
having a radius strictly greater than zero. Consider a configuration at time tk
(k ≥ 0) in which the positions of the n robots are located at distinct positions
on the circumference of a circle C. At time tk, the successor rj , j ∈ 1 . . . n, of
any robot ri, i ∈ 1 . . . n and i �= j, is the single robot such that no robot exists
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between ri and rj on C in the clockwise direction. Given a robot ri and its
successor rj on C centered in O:
1. ri is said to be the predecessor of rj ,
2. ri and rj are said to be adjacent,
3 ̂riOrj denotes the angle centered in O and with sides the half-lines [O, ri) and
[O, rj) such that no robots (other than ri and rj) is on C inside ̂riOrj .

Definition 1 (regular n-gon). A cohort of n robots (n ≥ 2) forms (or is
arranged in) a regular n-gon if the robots take place on the circumference of
a circle C centered in O such that for every pair ri, rj of robots, if rj is the
successor of ri on C, then ̂riOrj = δ, where δ = 2π

n . The angle δ is called the
characteristic angle of the n-gon.

The problem considered in this paper, called CFP (Circle Formation Problem)
consists in the design of a distributed protocol which arranges a group of n
(n > 2) mobile robots with initial distinct positions into a regular n-gon in finite
time. In this paper, we ignore the trivial cases n ≤ 2 because in that cases, they
always form a regular n-gon.

Swing-Word. Let an ordered non-empty alphabet A be a finite set of letters.
Denote ≺ an order on A. A non empty word w over A is a finite sequence of letters
a0, . . . , ai, . . . , al−1, l > 0. The concatenation of two words u and v, denoted u◦v
or simply uv, is equal to the word a0, . . . , ai, . . . , ak−1, b0, . . . , bj , . . . , bl−1 such
that u = a0, . . . , ai, . . . , ak−1 and v = b1, . . . , bj , . . . , bl−1. Let ε be the empty
word such that for every word w, wε = εw = w. The length of a word w, denoted
by |w|, is equal to the number of letters of w—|ε| = 0. The mirror word of a
word w = a0, . . . , al−1, denoted by w, is equal to the word al−1, . . . , a0—ε = ε.

A word u is lexicographically smaller than or equal to a word v, denoted u � v,
iff there exists either a word w such that v = uw or three words r, s, t and two
letters a, b such that u = ras, v = rbt, and a ≺ b.

Let k and j be two positive integers. The kth power of a word w is the word
denoted sk such that s0 = ε, and sk = sk−1s. The jth rotation of a word
w = a0, . . . , a|w|−1, notation Rj(w), is defined by:

Rj(w) def=
{

ε if w = ε
aj , . . . , a|w|−1, a0, . . . , aj−1 otherwise (0 ≤ j < |w|)

Let u = a0a1 . . . al−1 (l ≥ 2) be a finite word over A. Denote Λu the subset
of words v = b0b1 . . . bl′−1 over {0, 1} such that (1) l′ = l, and (2) for every
i ∈ 0 . . . l′ − 1:

bi =
{

0 if ai mod l ≤ a(i+1) mod l

1 if ai mod l ≥ a(i+1) mod l

Remark that the words in Λu are built on the cyclic representation of u. Let
us consider the two following examples:

Example 1. Assume that A={1, 2} (1 < 2). Then, Λ11 =Λ22 ={00, 01, 10, 11},
Λ12 ={01}, Λ112 ={001, 101}, Λ1112 ={0001, 1001, 0101, 1101}, and Λ1221 =



Swing Words to Make Circle Formation Quiescent 171

{0110, 0111, 0010, 0011}. For instance, since both 1 ≥ 1 and 1 ≤ 1 are true,
Λ112 = {001, 101} because both a0 ≤ a1 ≤ a2 ≥ a0 and a0 ≥ a1 ≤ a2 ≥ a0
are true.

Example 2. Assume that A = {1, 2, 3} (1 < 2 < 3).
Then, Λ11231 = {00010, 00011, 10010, 10011}, and
Λ311122 = {101000, 100000, 110000, 111000, 101010, 100010, 110010, 111010}.

Definition 2 (Swing-Word). A finite non-empty word w = a0a1 . . . al−1 (l ≥
1) made over A is a Swing-Word iff the following two conditions are true: (1)
w �= al

0, and (2) there exists u ∈ Λw such that u ∈ {(01)
l
2 , (10)

l
2 }—u is called

an associate Swing-word of w.

For instance, in Example 1 (resp., Example 2) above, 1112 (resp. 311122) is a
Swing-word—0101 ∈ Λ1112 (resp. 101010 ∈ Λ311122). (Note that even if Λ11 and
Λ22 contain 01, both 11 and 22 are not swing words because they are equal to 1
and 2, respectively.)

The following lemma directly follows from Definition 2:

Lemma 1. If a word w = a0a1 . . . al−1 (l ≥ 1) is a Swing-word, then:
1. l = 2p (p ≥ 1);
2. w is a Swing-word;
3. For every j ∈ 0 . . . l − 1, Rj(w) is a Swing-word.

Lemma 2. If a word w = a0a1 . . . al−1 (l ≥ 1) is a Swing-word, then w have a
unique associate Swing-word.

Proof. Let ΛS
w be the subset of Λw such that u ∈ {(01)

l
2 , (10)

l
2 }. Since the length

of w is finite, ΛS
w contains at most 2 words. From Definition 2 , ΛS

w contains at
least one word. Assume by contradiction that ΛS

w = {u1, u2}. Without lost of
generality, u1 = (01)

l
2 , and u2 = (10)

l
2 . So, from Definition 2, we have both:

1. a0 ≤ a1 ≥ . . . ≤ al−1 ≥ a0, and
2. a0 ≥ a1 ≤ . . . ≥ al−1 ≤ a0.

So, a0 = a1 = . . . = al−1 = a0. This contradicts the first condition of Defini-
tion 2.

3 Circle Formation Protocol

In this section, we present the main result of this paper. We first provide some
basic definitions, followed by particular configurations of the system which we
use for simplifying the design and proofs of the protocol. Next, the protocol is
presented with the correctness proof.

3.1 Definitions and Basics Properties

Definition 3 (Biangular circle). A cohort of n robots (n ≥ 2) forms (or is
arranged in) a biangular circle if the robots take place on the circumference of
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a circle C centered in O and there exist two non zero angles α, β such that for
every pair ri, rj of robots, if rj is the successor of ri on C, then ̂riOrj ∈ {α, β}
and α and β alternate in the clockwise direction.

Obviously, if α = β then, for any n value, the n robots form a regular n-gon. If
α �= β, then n must be even (n = 2p, p > 1). In that case, the biangular circle
is called a strict biangular circle—refer to Figure 1.

α

α

β

β

β

α

β

α

Fig. 1. An example showing a strict biangular circle (α �= β)

Definition 4 (Convex Hull). : Given n ≥ 2 points p1, p2, · · · , pn on the plane,
their Convex Hull CH(p1, p2, · · · , pn) (CH for short, if no ambiguity arises) is
the smallest polygon such that all the points are on its edges or inside it.

Now, we introduce a definition of adjacent, predecessor and successor more gen-
eral than the one presented in Section 2. Given a team R of n robots located at
distinct positions on CH(R), we said that two robots are CH-adjacent if and
only if they are connected by an edge belonging to CH(R). We say also that
any robot r′ is the CH-successor (resp. CH-predecessor) of r if and only if r′ is
the CH-adjacent robot in clockwise direction (resp. counterclockwise direction)
on CH .

Observation 1. We can associate an unique regular 2k-gon to a regular k-gon
(k ≥ 3) centered in O, by applying the following construction (refer to Figure 2):

1. Consider one CH’s edge [p1, p2] of the regular k-gon, and place two points
x1, x2 on this edge such that ̂x1Ox2 = π

k and the distance between x1 and p1
is equal to the distance between x2 and p2.

2. Reiterate with the other CH’s edges.

These adding points form a regular 2k-gon.

String of Edges. We use the subscript i in the notation of a robot ri, i ∈ 1 . . . n,
to denote the order of the robots in an arbitrary clockwise direction on the
Convex Hull CH . We proceed as follows: A robot is arbitrarily chosen as r1 on
CH . Next, for any i ∈ 1 . . . n − 1, ri+1 denotes the CH-successor of ri on CH
(in the clockwise direction). Finally, the successor of rn is r1.
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Fig. 2. An example showing a regular 2k-gon associated to a regular k-gon—k = 3

Let the alphabet A be the set of k (k ≤ n) strictly positive reals x1, x2, . . . , xk

such that ∀i ∈ 1 . . . n, there exists j ∈ 1 . . . k such that xj = length of one of the
CH’s edges.

The order on A is the natural order (<) on the reals. So, the lexicographic
order � on the words made over A is defined as follows:

u � v
def≡ (∃w| v = uw) ∨ (∃r, s, t, ∃a, b ∈ A| (u = ras) ∧ (v = rbt) ∧ (a < b))

For instance, if A = {1, 2}, then 1 � 11 � 12 � 122 � 2.
For each robots ri, let us define the word SE(ri) (respectively, SE(ri)) over

A (SE stands for “string of edges”) as follows:

SE(ri) = aiai+1 . . . an−1a0 . . . ai−1

(resp. SE(ri) = ai−1 . . . a0an−1an−2 . . . ai)

x

x

x

x

x

x

x

1

1

2

2

3

4

5r 1

Fig. 3. SE(r1) = x1(x2)2x3x1x4x5

An example showing a string of edges is drawn in Figure 3. Note that, if k
robots are on CH , then for every robot ri, |SE(ri)| = |SE(ri)| = k. Moreover, if
the configuration is a regular n-gon, then for every robot ri, SE(ri) = SE(ri) =
un, where u is the common length of all the edges of CH .
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Swing and Perfect Convex Hulls.

Definition 5 (Swing Convex Hull). A Convex Hull CH is said to be a Swing
convex hull (notation, Swing-CH) iff there exists any robot ri on CH such that
SE(ri) is a Swing-word.

The following lemma directly follows from Lemmas 1 and 2:

Lemma 3. If SE(ri) is a Swing-word, then for every ri′ on CH, SE(ri′) and
SE(ri′) are swing words.

Corollary 1. If a Convex Hull CH is a Swing convex hull, then each robot ri

on CH can determine that CH is a Swing convex hull by locally computing its
String of Edge, regardless the local clockwise direction of ri.

Let SE(r0) = s0s1 · · · sl−1 be a Swing-word on a Swing-CH and u = u0u1 · · ·
ul−1 its associate Swing-word. We said that the edge [ri, ri+1] is an up-edge
(resp., a down-edge) iff ui = 1 (resp. ui = 0). From Lemmas 1 and 2 again, we
can easily deduce that the up-edges and down-edges are the same for all the
robots on a Swing-CH .

Given two robots robots ri and ri′ such that ri and ri′ are CH-adjacent on a
Swing-CH , we say that they form a couple if and only if the CH ’s edge, linking
ri and ri′ is a down-edge. In a Swing-CH , denote SetLines the set of lines
(ri, ri+1) passing through both robots of the same couple. IntersectionLines
(called shortly IL) is the set of intersection points between all lines l1 = (ri, ri+1)
and l2 = (ri+2, ri+3) such that l1 ∈ SetCoupleLine, l2 ∈ SetCoupleLine and
ri+1 CH-adjacent to ri+2.

Definition 6 (Perfect Convex Hull). Let a team of n = 2k robots on the
convex hull CH. This latter is perfect if the four conditions holds:

1. n = 2k and k ≥ 3.
2. CH is a Swing-CH.
3. IL is a regular k-gon.
4. All the robots are on the edges of the regular 2k-gon associated to IL.

Note that Condition (1) in the above definition, excludes the case k < 3 because
in this case IL does not exist.

We say that the cohort R is in Perfect Convex Hull if CH(R) is perfect and
all the robots are located at distinct position on it—refer to Figure 4 where
non-perfect and perfect convex hull are shown.

Observation 2. If all the robots are in strict biangular circle then they are in
perfect convex hull.

Definition 7 (Equivalence). Two perfect convex hull are said to be equivalent
if they share the same regular k-gon IL in a system configuration.

The only possible difference between two equivalent perfect convex hulls is dif-
ferent positions of the robots on the regular n-gon associated to IL.
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(a) A Swing convex hull which is not
perfect:

IL is not a regular 3-gon.

(b) A Swing convex hull which is not
perfect: There exists robots

which are not on the edges of the
regular 6-gon associated to IL.

(c) A Perfect convex hull:
All the robots belong to the edges of the

6-gon.

α α

β

α

β

β

(d) A strict biangular circle is
also a Perfect convex hull,
llustrating Observation 2.

Fig. 4. Examples showing Swing convex hulls

3.2 The Protocol

Let us consider the overall scheme of our protocol presented in Algorithm 1. It is
mainly based on the perfect convex hull configuration presented in the previous
subsection. The proposed scheme is combined with the protocol presented in [12]
which leads a cohort of n robots from an arbitrary into a biangular configuration,
whether n ≥ 2. In the remainder, we refer to the protocol in [12] as Procedure <
A�B>—from an Arbitrary configuration to a Biangular configuration.

Theorem 3 ([14]). Any algorithm that correctly solves a problem P in Corda,
correctly solves P in SSM .

The above result means that Procedure < A � B > can be used in SSM .
Obviously, Procedure < A � B > trivially solves the CFP if the number of
robots n is odd. So, to solve CFP for any number of robots, it remains to deal
with a system in a strict biangular configuration when n is even.
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In the remainder, we consider that the system is in an arbitrary configuration
if the robots do not form either (1) a regular n-gon, (2) a perfect convex hull,
or (3) a strict biangular circle. Let us describe the general scheme provided by
Algorithm 1.

Procedure <A�B> excluded, the protocol mainly consists of one procedure
called Procedure <PCH�Ngon> which is used when the system form a perfect
convex hull. It leads the system into a regular n-gon. Let us explain how the
procedures are used by giving the overall scheme of Algorithm 1. Starting from
an arbitrary configuration, using Procedure <A�B>, the system is eventually
in a biangular circle. If n is odd, then the robots form a regular n-gon and the
system is done. Otherwise (n is even), the robots form either a regular n-gon
or a strict biangular circle. Starting from the latter case, each robot executes
Procedure <PCH�Ngon> (from Observation 2, we know that when the robots
form a strict biangular circle, they form a perfect convex hull too). The resulting
configuration of the execution of Procedure <PCH�Ngon> is a regular n-gon.

Algorithm 1. Procedure <A�Ngon> for any ri in a cohort of n �= 4 robots
n:= the number of robots;
if n is even
then if the robots do not form a regular n-gon

then if the robots form a perfect convex hull
then Execute <PCH�Ngon>;
else Execute <A�B>;

else Execute <A�B>;

Theorem 4. Assuming that initially no two robots are located at the same posi-
tion, Procedure <A�Ngon> is a deterministic Circle Formation Protocol for
any number n �= 4 of robots in SSM.

The above theorem follows from Procedure < A � Ngon>, Algorithm 1, [12],
and Lemmas 5. This last Lemma shows that, starting from a perfect convex hull,
Procedure <PCH�Ngon> described below deterministically solves CFP.
Procedure <PCH�Ngon>. Let us assume that in the initial configuration, the
robots form a perfect convex hull. In such a configuration, every active robots
ri applies the following sheme—refer to Figure 5:

1. Robot ri computes IL and the associated n-gon.
2. Robot ri considers its neighbor r′i such that {ri, r

′
i} is a couple of the perfect

convex hull. Then, ri moves away from r′i toward the vertex of the associated
n-gon, on the line (ri, r

′
i).

Lemma 4. In SSM, using Procedure <PCH�Ngon>, if all the robots are in a
perfect convex hull at time tj, then at time tj+1, either the configuration is an
equivalent perfect convex hull, or the n-gon is not formed.
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Fig. 5. An example describing the Procedure <PCH�Ngon>

Proof. From Lemma 3 and Corollary 1, all the perfect convex hulls computed
by the robots are all equivalent. Let Unit be the distance between two adjacent
vertices on the associated n-gon. Using Procedure < PCH � Ngon >, at time
tj+1, the distance between two CH-adjacent robots forming a couple is lower
or equal to Unit, whereas the distance between two CH-adjacent robots, not
forming a couple, is greater or equal Unit. So, at time tj+1 the up-edge and the
down-edge are the same ones than tj , because |down edge| ≤ Unit ≤ |up edge|.
Furthermore, each robot moves only on the edge of the associated regular n-
gon without collision. So, each robot can recompute the same IL and the same
associated regular n-gon.

The following lemma follows from Lemma 4 and fairness:

Lemma 5. In SSM, Procedure < PCH � Ngon > is a deterministic algorithm
transforming a perfect convex hull into a regular n-gon whether n > 4.

Procedure < A � Ngon > in CORDA. Assume the fully asynchronous model
CORDA, i.e., one or more robots can move while some others are either observing
or computing—the case of waiting robots gets off the scope of this discussion.
Let assume that the robots form a perfect convex hull. Lemma 4 shows that,
while the regular n-gon is not formed, Procedure < PCH� Ngon> guarantees
that the associated regular n

2 -gon is preserved for every robot. So, even assuming
CORDA, the perfect convex hull computed by the robots remains equivalent for
every pair of robots while the regular n-gon is not formed. Thus, Lemma 4 also
holds in CORDA. As a result, the following theorem holds:

Theorem 5. If the initial configuration where the robots form a biangular circle,
Procedure < A � Ngon> is a deterministic Circle Formation Protocol for any
number n �= 4 of robots in CORDA.

4 Conclusion and Discussion

In this paper, we first introduced the Swing Words. We then provided a quiescent
deterministic protocol for the Circle Formation Problem in SSM assuming that
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no two robots are initially at the same position. The proposed protocol works for
any number n �= 4 of weak robots, which are not assume to reach their computed
destination in one step.

In CORDA, our protocol solves CFP starting from a biangular configuration—
if n �= 4. Starting from a different configuration, the protocol in [12] solves the
CFP if n is odd, and brings the system in a biangular configuration otherwise.
Hence, we have two algorithms which together cover all possible initial configu-
rations. However, these two algorithms cannot be simply combined to solve CFP
in CORDA. A similar problem is related in [3] for the Gathering Problem, and
solved in [2]. This question remains open for the Circle Formation Problem.
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Abstract. A number of recent studies address systems of mobile au-
tonomous robots from a distributed computing point of view. Although
such systems employ robots that are relatively weak and simple (i.e., di-
mensionless, oblivious and anonymous), they are nevertheless expected
to have strong fault tolerance capabilities as a group. This paper studies
the partitioning problem, where n robots must divide themselves into
k size-balanced groups, and examines the impact of common orienta-
tion on the solvability of this problem. First, deterministic crash-fault
tolerant algorithms are given for the problem in the asynchronous full-
compass and semi-synchronous half-compass models, and a randomized
algorithm is given for the semi-synchronous no-compass model. Next, the
role of common orientation shared by the robots is examined. Necessary
and sufficient conditions for the partitioning problem to be solvable are
given in the different timing models. Finally, the problem is proved to
be unsolvable in the no-compass asynchronous model.

1 Introduction

Background: Systems of multiple autonomous mobile robots (also known as robot
swarms) are of interest for a variety of reasons, including decreased costs and a
wide range of applications, such as military operations, search and rescue, fire
fighting and space missions.

Most experimental and empirical studies of multiple robot systems rely on a
central controller for managing the robots, and their coordination algorithms are
based on heuristics. Recently, multiple robot systems have been studied from a
distributed computing point of view [16, 10]. A number of distributed computa-
tion models were proposed in the literature, and a number of studies focused
on characterizing the influence of the model on the ability of a robot swarm to
perform its task. The common distributed models assume relatively weak and
simple robots. In particular, these robots are assumed to be dimensionless, obliv-
ious, anonymous and with no common coordinate system, orientation or scale,
and no explicit communication. Each robot operates in simple “look-compute-
move” cycles, basing its movements on viewing its surroundings and analyzing
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the configuration of robot locations. A robot is capable of locating all robots
within its visibility range on its private coordinate system, thereby calculating
their position with respect to itself.

As the common models of multiple robot systems assume cheap, simple and
relatively weak robots, the problem of possible failures becomes prominent, since
in such systems one cannot possibly rely on assuming reliable hardware or soft-
ware, especially when such robot systems are expected to operate in hazardous
or harsh environments. At the same time, one of the main attractive features of
multiple robot systems is their potential for enhanced fault tolerance; it seems
plausible that the inherent redundancy of such systems may be exploited in order
to enable them to perform their tasks even in the presence of faults.

Among the tasks studied so far are formation of geometric patterns (i.e.,
organizing the robots in a geometric form), gathering and convergence (i.e.,
collecting the robots to the same point), flocking (i.e., following a pre-designated
leader), even distribution of robots within simple geometric patterns, searching
a target within a bounded area, and more.

Another important task that has been studied to a lesser extent is that of
partitioning. In this task, the robots must divide themselves into (size-balanced)
groups. This task is closely related to that of converging. In this paper we ex-
amine the partitioning problem within various computation models.

Computation Models: The basic model studied in previous papers, e.g., [18,
19, 12, 6], can be summarized as follows. Each of the robots executes the same
algorithm in cycles, with each cycle consisting of three steps:

1. “Look”: Determine the current configuration by identifying the location of
all visible robots and marking them on the robot’s private coordinate system.

2. “Compute”: Execute the algorithm, resulting in a goal point p̃.
3. “Move”: Travel towards the point p̃. The robot might stop before reaching

p̃, but is guaranteed to traverse at least a minimal distance unit s (unless
reaching the goal first). The value of s is not known to the robots and they
cannot use it in their computations.

In the common distributed model [16,18,17,10,4], the robots are assumed to
be dimensionless, namely, treated as points that do not obstruct each other’s
visibility or movement, and oblivious or memoryless, namely, do not remember
their previous actions or the previous positions of the other robots, and therefore
cannot rely on information from previous cycles, or have alternating states. Also,
the robots are indistinguishable and cannot identify each and every one of their
peers. Moreover, the robots have no means of explicit communication. On the
other hand, the robots are assumed to possess unlimited visibility, and sensors,
computations and movements are assumed to be accurate.

The models considered here vary in two attributes. The first is timing models.

1. Fully-synchronous (FSYNC) model : the robots are driven by an identical
clock, operate according to the same cycles and are active in every cycle.

2. Semi-synchronous (SSYNC) model : the robots operate according to the same
cycles, but need not be active in every cycle. A fairness constraint guaran-
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tees that each robot will eventually be active (infinitely many times) in any
infinite execution.

3. Asynchronous (ASYNC) model : the robots operate on independent cycles of
variable length. Formally, this can be modeled by each cycle starting with
an additional “Wait” step.

The second attribute is orientation, referring to the local views of the robots in
terms of their x-y coordinates. Elaborating on [12], the following sub-models of
common orientation levels are considered.

1. Full-compass: Directions and orientations of both axes are common to all
robots.

2. Half-compass : Directions of both axes are common to all robots, but the
positive orientation of only one axis is common. (i.e., in the other axis,
different robots may have different views of the positive orientation).

3. Direction-only: Directions of both axes are common to all robots, but the
positive orientations of the axes are not common.

4. Axes-only: Directions of both axes are common to all robots, but the positive
orientations of the axes are not common. In addition the robots do not agree
on which of the two axes is the x axis and which is the y axis.

5. No-compass : There are no common axes.

In the no-compass and half-compass sub-models, the robots do not share the
notion of “clockwise” or “right hand side”. Note that the robots do not share a
common unit distance or a common origin point even in the full-compass model.

Fault Tolerance: A major algorithmic aspect considered in this paper is fault
tolerance. The algorithm may be required to operate in a model in which robots
may fail. In such a setting, we may ask how well the algorithm can cope with
one or more faulty robots.

The model discussed in this paper is the crash-fault model, in which a faulty
robot simply stops moving. Since nonfaulty robots may also stay in place from
time to time, there is no way for the active robots to identify a faulty robot. An
f -fault-tolerant algorithm is one that operates correctly so long as there are no
more than f faulty robots in the swarm. (The pattern and timing of failures can
be thought of as controlled by an adversary, which may crash robots at any time
in an adaptive manner, i.e., the faulty robots need not be picked in advance.) The
exact requirements of the algorithm (i.e., the meaning of “operating correctly”
in a faulty environment) is specific to the problem at hand.

For randomized algorithms we consider two possible adversary types. An
adaptive adversary is allowed to make its decisions after learning the (possi-
bly randomized) choices made by the algorithm. This means that in each cycle,
first the robot computes its goal position, and then the adversary chooses the
maximal distance the robot will reach in the direction of its goal point. In con-
trast, a non-adaptive adversary must make its decisions independently of the
random choices of the algorithm. Namely, in each cycle, the adversary chooses
the maximal distance the robot will reach before the robot computes its goal
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point (i.e., before knowing the direction in which the robot will move, which
may be chosen randomly by the algorithm). Note that despite its name, there is
some adaptiveness even in the non-adaptive adversary, since it still has control
over the timing of the robots. We will normally assume the adaptive adversary,
except when explicitly noted otherwise.

The Partitioning Problem: We consider the problem Partition(n, k), in which n
robots, at initially distinct positions, must divide themselves into k size-balanced
subsets. The robots in each subset must converge, so that some minimal distance
is kept between robots of different subsets.

We use the following basic definitions. Let dist(a, b) denote the Euclidean
distance between points a and b. For sets of points X and Y , denote dist(X, Y ) =
min{dist(x, y) | x ∈ X, y ∈ Y }. Denote the position of robot ri at time t as
pi[t] = (xi[t], yi[t]). (We sometimes omit the parameter t when no confusion
arises.) Denote the set of all robot positions at time t as P [t].

Formally, the partitioning problem Partition(n, k) is defined as follows.

Input: A set of n robots R = {r1, . . . , rn}, positioned in a 2-dimensional space,
with initial positions PI = P [t0] = {p1[t0], . . . , pn[t0]}, and an integer k. We
assume that n is divisible by k and define m = n/k.
Goal: For some fixed η > 0, for every η ≥ ε > 0, there is a time tε, such that
for every time t > tε, R can be partitioned into k disjoint subsets S1, . . . , Sk

satisfying the following:

– Partition: R =
⋃k

i=1 Si and Si ∩ Sj = ∅ for every i �= j.
– Size-balance: The subsets are balanced, i.e., |Si| = m for every i.
– Proximity: Robots in the same subset are within ε of each other, i.e.,

dist(rw, rl) < ε for every i and for every rw, rl ∈ Si.
– Separation: Robots in different subsets are farther than 2η apart, i.e.,

dist(Si, Sj) > 2η for every i �= j.

Although robots are dimensionless, we make the following assumption.
Non-overlap: No two robots have the same initial position, i.e.,
pi[t0] �= pj [t0] for every i �= j.

In the general case, where n is not divisible by k, define m = �n/k� and
require that the subsets are nearly-balanced, i.e., m ≤ |Si| ≤ m + 1 for every i.

Note that the choice of the separation distance as 2η is arbitrary, and any
clear separation between the subsets will do. In practice, we may set η = 1

2dmin,
where dmin is the minimal distance between any two robots at time t0. Note
also that requiring the conditions to hold on every time t > tε implies that the
subsets Si do not change after time tη. (To see this, suppose they do change, so
that two robots ri, rj that were in the same subset at time tη are later separated.
Then there must be a time t > tη whence η < dist(ri, rj) < 2η, in contradiction
to both the proximity and separation requirements).

An algorithm for solving the Partition(n, k) problem is considered to be
f-fault-tolerant if the following holds. In a non-faulty setting, the algorithm
achieves a partitioning as defined above. In a faulty setting in which f̂ ≤ f
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robots crash, all the non-faulty robots are required to converge into k subsets.
Each subset must be of size greater than max{m− f̂ , 0} and smaller than m+1.
Note that in case f ≥ m, fewer than k actual subsets may be formed since some
subsets may be empty.

Related Work: Most of the literature on distributed control algorithms for au-
tonomous mobile robots has concentrated on the two basic tasks of gathering
and convergence. Gathering requires the robots to occupy a single point within
finite time, regardless of their initial configuration. Convergence is the closely
related task in which the robots are required to converge to a single point, rather
than reach it. More precisely, for every ε > 0 there must be a time tε by which
all robots are within a distance of at most ε of each other. Hence the convergence
problem may be considered as the special case Partition(n, 1).

The problem of gathering autonomous mobile robots was studied extensively
in two computational models. The first was the SSYNC model, introduced by
Suzuki et al. [16, 19], and the second is the closely related CORDA model de-
scribed by Prencipe et al. [12, 13], which is equivalent to our ASYNC model.
In the SSYNC model, it was proven that it is impossible to gather two oblivi-
ous autonomous mobile robots that have no common sense of orientation under
the SSYNC model [18, 19]. The algorithms presented therein for n ≥ 3 robots
rely on the assumption that a robot can identify a point p∗ occupied by two
or more robots (a.k.a. multiplicity point). This assumption was later proven to
be essential for achieving gathering in all asynchronous and semi-synchronous
models [14, 15]. Under this assumption, an algorithm is developed in [19] for
gathering n ≥ 3 robots in the SSYNC model. In the ASYNC model, an algo-
rithm for gathering n = 3, 4 robots is presented in [14], and an algorithm for
gathering n ≥ 5 robots has been described in [3]. We use a similar assumption,
stating that a robot can tell the number of robots in a multiplicity point. In [2]
a gathering algorithm was given in a model in which the above assumption has
been replaced by equipping the robots with an unlimited amount of memory.

Fault tolerance properties of the gathering problem are discussed in [1]. In the
crash-fault model and the SSYNC model, an algorithm is given for gathering n
robots with one crashed robot.

Some studies try to characterize the class of geometric patterns that the robots
can form in various models. These results relate to the partitioning problem
only in part. On the one hand, in partitioning the outcome is not restricted
to one specific geometric shape. Instead, it is a collection of constraints that
must be satisfied by the configuration. On the other hand, in a model where
every geometric pattern is achievable, partitioning must be achievable as well
(by forming a well-partitioned geometric pattern).

The effect of common orientation on the class of achievable geometric patterns
(in the ASYNC model) is summarized in [12]. In the full-compass model, the
robots can form an arbitrary given pattern. In the half-compass model the robots
can form an arbitrary pattern only when n is odd (this is shown in [14] to hold
also in a model in which the robots share axis directions only). In the no-compass
model, with no common orientation, the robots cannot form an arbitrary given
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pattern. The class of patterns achievable by an even number of robots in the
half-compass model is characterized in [11].

Non-oblivious robots in the SSYNC model are examined in [17,19]. The prob-
lem of agreement on a common x-y coordinate system is shown to be reducible
to that of forming certain geometric patterns. The robots are always capable of
agreeing on both the origin and a unit distance in this model, thus the difficulty
lies in agreement on direction.

The convergence properties of Algorithm Go to COG are explored in [6,5]. In
this simple algorithm a robot sets its goal point to be the center of gravity of
all observed robot positions. Algorithm Go to COG is used extensively in the
current paper. In [6] it is proven that the algorithm converges in the FSYNC
and SSYNC models. In [5] it is proven to converge in the ASYNC model as
well. In addition, the convergence rate is established in the FSYNC model. The
number of cycles it takes to achieve gathering in the FSYNC model (in two
dimensions) is O(h/s), where h is the maximal width of the convex hull at time
t0, and s is the minimal movement distance unit. In the crash-fault model, it is
shown that Algorithm Go to COG works for any number of faulty robots, and
that in particular, the non-faulty robots will converge to the center of gravity
of the crashed robots. Convergence and gathering with inaccurate sensors and
movements are examined in [7]. Gathering is shown to be impossible for robots
with inexact measurements, while a variant of Algorithm Go to COG is shown
to converge for sufficiently small errors in measurements.

An algorithm for partitioning is shown in [16]. That algorithm uses a previous
algorithm presented for flocking. It does not comply with the models presented
above, mainly because it requires outside intervention (i.e., it requires an outside
supervisor to move a few robots which the others will follow). Moreover, the
robots are not indistinguishable, and the algorithm operates in two stages, thus
requiring some memory.

Our Results: This paper discusses the partitioning problem on robot swarms,
focusing on understanding the effects of common orientation on the solvability
of the partitioning problem.

In Section 2 we present crash-fault tolerant partitioning algorithms for various
levels of common orientation and different timing models. We start by present-
ing the basic Algorithm Part, which works for all timing models assuming a
full compass. Variants of this algorithm are subsequently used throughout the
paper. Next, an algorithm is given for the half-compass model in the FSYNC
and SSYNC timing models. In the no-compass model we present a randomized
algorithm that works in the SSYNC timing model against an adaptive adversary.

The role of common orientation levels shared by the robots, and its effect
on their ability to achieve partitioning, is explored in Section 3. We examine
a refined scale of common orientation levels (with respect to the directions and
orientations of the axes). It is established that in the FSYNC and SSYNC timing
models, having common axis directions is a necessary and sufficient condition for
the feasibility of partitioning. In the ASYNC timing model, this is a necessary
condition, and having also one common axis orientation is a sufficient condition.
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In a companion paper [9], we examine the no-compass ASYNC model. As
the partitioning problem is unsolvable in this model, we consider the effects
of some simple modifications to the model on the solvability of the problem.
We prove that if the initial configuration is not symmetric then partitioning is
achievable. We then show that if the robots are identifiable, then the problem
has an easy solution. In fact, the problem has a deterministic solution even in
a setting where only one robot is identifiable. Finally, we prove that adding one
bit of memory and communication makes the problem solvable by a randomized
algorithm against a non-adaptive adversary.

2 Fault Tolerant Partitioning Algorithms

In this section we present deterministic algorithms that solve the Partition(n, k)
problem in the full-compass ASYNC model and in the half-compass SSYNC
model, and randomized algorithms for the no-compass FSYNC and SSYNC mod-
els. All of the algorithms presented are crash-fault tolerant.

2.1 The Full-Compass ASYNC Model

In this model the robots share a full compass, i.e., common x and y axes (di-
rections and orientations). The algorithm described works in the asynchronous
model.

The availability of a full compass permits a solution based on an ordering
of the robots. Define the order relation <o by increasing coordinates on the
x-axis and then on the y-axis, i.e., for positions pi, pj , we have that pi <o pj

⇐⇒ (xi < xj) ∨ (xi = xj ∧ yi < yj). Although the actual coordinates privately
stored by each of the robots may differ, the common directions and orientations
of the axes ensure that the order relations defined by the robots are the same.
By the non-overlap assumption all initial positions are distinct, therefore at time
t0 we have a full ordering of the robots.

Lemma 1. In the full-compass model, the robots can reach agreement on a total
order relation <o of the robot locations at time t0.

Without loss of generality, denote the robots by r1, . . . , rn according to their or-
der <o at t0. Define the order-based partition of the robots, POB , by breaking the
robots into k blocks of equal size in this order, i.e., S1 = {r1, . . . , rm}, . . . , Sk =
{rn−m+1, . . . , rn}. We have the following.

Lemma 2. In the full-compass model, the robots can reach agreement on the
order based partition POB without moving.

This initial agreement on a partitioning suggests an algorithm in which robots
of each subset Si perform an arbitrary convergence algorithm (e.g., Algorithm
Go to COG) within their subset, as formalized in Algorithm Part. For a set of
n points P = {(xi, yi) | 1 ≤ i ≤ n}, define the center of gravity of P as
Cog(P ) = (

∑
i xi/n,

∑
i yi/n).
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Algorithm Part (code for robot ri)

1. Determine the order-based partition POB of R.
2. Identify the robots in your subset S.
3. Calculate Cog(S) and set it as your goal point p̃.
4. Move towards p̃.

For the analysis, first define CHi[t] to be the convex hull of Si and the goal
points of the robots of Si at time t, namely, the convex hull of the points {pl[t] |
rl ∈ Si}

⋃
{p̃l[t] | rl ∈ Si}. Consider the initial state of these convex hulls (at

t0). Note that initially, only the robot positions in Si affect CHi[t0], since the
goal points are either not calculated yet or precisely Cog(Si) (in any case we
will treat them as the latter).

We now make the following two observations. The first states that the different
convex hulls do not intersect, based on the unique initial position of each robot
(the non-overlap assumption).

Observation 1. For every i �= j, CHi[t0]
⋂

CHj [t0] = ∅.

The second observation states the relation between points in different convex
hulls.

Observation 2. For i < j and points p ∈ CHi[t0], p′ ∈ CHj [t0], it holds that
p <o p′.

The following lemma, proven in [6,5], states that the convex hull shrinks during
Algorithm Go to COG within a set of robots.

Lemma 3. [6, 5] For robots performing Go to COG with CH [t] defined as
above, for times t2 > t1, CH [t2] ⊆ CH [t1].

Our next lemma states that the partition into subsets as determined initially,
stays valid during the execution of the algorithm. (Throughout, proofs are omit-
ted but can be found in [8].)

Lemma 4. During the execution of Algorithm Part, the partition POB does not
change.

Note that the internal order of robots within a subset may change during the
algorithm.

We conclude with the validity of Algorithm Part.

Proposition 1. Algorithm Part solves the Partition(n, k) problem in the full-
compass ASYNC model and is n-fault-tolerant in the crash-fault model.

2.2 The Half-Compass SSYNC Model

We now turn to a model where the robots share a half compass, i.e., common
direction and orientation of one axis only (w.l.o.g the y-axis). This implies that
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the x-axis direction is also known, but not its orientation (“positive direction”).
We assume the semi-synchronous timing model.

In this model, a solution based on ordering will not work, as implied by the
following lemma.

Lemma 5. In the half-compass model, the robots cannot always agree on a full
ordering of their positions at time t0.

Nevertheless, the following observation shows that an initial partitioning can
always be obtained statically.

Observation 3. In the half-compass model, the robots can always reach agree-
ment on a partition without moving.

Unfortunately, the following observation indicates that devising an algorithm
based on an initial partition as in the previous observation is problematic.

Observation 4. In the half-compass model, there is an initial setting PI s.t. in
any partition that the robots can agree on without moving (as in Observation 3),
the convex hulls of at least two different subsets intersect.

A consequence of the last observation is that use of the simple Algorithm
Go to COG (such as in Part) will not work here. Besides the possibility of robots
from different subsets crossing one another and maybe switching subsets, there
can be situations in which the centers of gravity of different subsets coincide at
the same point, preventing a minimal distance between the subsets.

Subsequently, for the half-compass model we use Algorithm Part enhanced
with a tie-break procedure, described next. The procedure is activated on a set
L of robots sharing the same x coordinate x0, with at least one robot on each side.

Procedure Tie-Break (code for a robot r in a set L of l robots with
the same x position x0)

– Let δ+ = min{x − x0} over all robots with x > x0.
– Let δ− = min{x0 − x} over all robots with x < x0.
– Let δ = min{δ+, δ−}.
– Robot r ∈ L moves a distance of δ/2 in the direction determined as

follows:
(a) If r is among the �l/2� robots with the largest y coordinates in L

then set dir ← positive, else set dir ← negative.
(b) If δ+ > δ− then move towards x direction dir.
(c) If δ+ < δ− then move towards the x direction opposite dir.
(d) If δ+ = δ− then move towards the positive x direction.

Note that although the robots do not agree on the positive x orientation,
in case δ+ �= δ− their choice of direction will be consistent. Also note that in
the SSYNC model it may happen that only some of the robots in L perform
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Procedure Tie-Break on a certain cycle, since some may not be active on that
cycle. Clearly, δ is updated every cycle.

We now describe Algorithm Part2, which uses Procedure Tie-Break in order
to partition the robots. For Algorithm Part2, consider the ordering of the robots
by their x positions and the order-based partition POB induced by it as in
Subsection 2.1. Conflicts of robots with the same x position are resolved in the
following manner. For a group L of robots with the same x coordinate x0, define
“out” to be the x orientation with fewer robots (relative to x0), and “in” as the
other x orientation. The robots of L can now be partitioned into subsets by their
y positions, so that those with larger y coordinates belong to outer subsets and
those with smaller y coordinates belong to inner subsets.

By this partitioning method P̂ , a robot can determine the index of its subset
Si (although not necessarily all of its members) in most cases. The only case in
which it cannot do so is if its x position is not unique, and there is an equal
number of robots on both x directions.

It follows that there could be at most one group of robots that cannot deter-
mine their set in the partition, and these robots are in the same x coordinate as
the median robot.

Denote by Y the group of median robots, when the robots are ordered by their
x positions (i.e., all robots in Y have the same x coordinate x0 and there are
fewer than n/2 robots on either side of Y ). Note that if n is even then |Y | ≥ 0
and if n is odd then |Y | ≥ 1. Also Y does not necessarily have the same number
of robots on both sides. Denote by Same(Y ) the event that all robots in the
median group Y belong to the same subset in the partition P̂ .

Algorithm Part2

– If all robots share the same x coordinate, then partition into groups by
constructing the y-order-based partition POB on the y coordinates.

– Determine a partition P̂ .
– Determine the index i of your subset.
– Identify the subset of robots that are guaranteed to be in your subset

Si.
Denote this new subset as S′

i.
– State [Same]: Event Same(Y ) holds.

• If Y ⊆ Si, then set your goal point p̃ ← Cog(Y ).
• Else, set your goal point p̃ ← Cog(S′

i).
– State [Diff]: Event Same(Y ) does not hold.

• If you belong to Y , then invoke Procedure Tie-Break.
• Else, set S′

i ← S′
i \ Y and set your goal point p̃ ← Cog(S′

i).

Let us sketch the correctness proof of Algorithm Part2. We first examine event
Same(Y ).

Lemma 6. If all robots in Y belong to some subset Si then the only robots that
can join Y are robots from Si.
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Corollary 1. Once state [Same] is reached, the system will remain in state
[Same].

In state [Diff], the number of robots in Y decreases with time as shown in the
next lemma.

Lemma 7. In state [Diff], if |Y | = p > 0 then eventually the system will reach
either a configuration with |Y | < p or state [Same].

Since having zero or one robots in Y implies state [Same], the system will even-
tually reach it.

Corollary 2. State [Same] will eventually be reached.

Combining Corollaries 2 and 1, the system will eventually reach state [Same] and
remain in this state. For the convergence of the different subsets in state [Same],
a proof similar to that of Algorithm Part yields the following proposition.

Proposition 2. Algorithm Part2 solves the Partition(n, k) problem in the
half-compass SSYNC model and is n-fault-tolerant in the crash-fault model.

The fault-tolerance of the algorithm stems from the fact that all non-faulty
robots will converge to the center of gravity of the faulty robots in their subset.
Crashed robots in Y cannot prevent other robots from converging, since the non-
faulty robots in Y will eventually move, and achieve separation of the median
robots. All other robots will converge as in Algorithm Part.

2.3 The No-Compass Model

Finally, we turn to the extreme model where the robots do not share any common
direction, orientation or unit distance. As will be shown in Section 3, in this
model the partitioning problem is not deterministically solvable. Thus we allow
the robots to use randomness, and present a randomized ( Las Vegas) algorithm
for solving the partitioning problem in the no-compass SSYNC model against
an adaptive adversary.

Let DMax = maxi,j{dist(pi, pj)} denote the maximal distance between a pair
of robots. Define Q to be the set of robots that belong to a robot pair of maximal
distance, i.e., Q = {ri : ∃rj s.t. dist(pi, pj) = DMax}. Denote by Q̂ the set of
positions occupied by the robots in Q. If a robot r /∈ Q is allowed to move only
within the convex hull of the robot positions then Q may change, but Q̂ will not
change, as shown in the following lemma.

Lemma 8. Let CHP [t] be the convex hull of all robot positions, Q[t] the set of
maximal distance robots and Q̂[t] the set of positions of these robots (all at time
t). If robots in Q do not move, and all other robots move within CHP [t], then
robots can join Q only in positions of Q̂[t], i.e., Q̂[t + 1] = Q̂[t]
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A configuration is unique if there is only one pair of robot positions, (p1, p
′
1),

such that dist(p1, p
′
1) = DMax, i.e., Q̂ = {p1, p

′
1}. Note that each of these two

positions may be occupied by more than one robot, i.e., |Q| ≥ 2.
In a unique configuration, define the x axis direction to be on the line connect-

ing p1 and p′1. Now determine an order-based partitioning of the robots based
on this axis and the ordering induced by it. For undecided groups of robots
(having the same x coordinate and possibly also the same y coordinate), we can
either use the deterministic Tie-Break procedure, or define a new randomized
Procedure Rand-Tie-Break presented next, in which the robots choose randomly
between one of the two x directions. In both cases an additional restriction must
be imposed, to ensure that no pair of robots moves more than DMax apart, thus
changing the x axis agreed upon.

Procedure Rand-Tie-Break
(for robot ri in a subset L of robots with the same x coordinate x0)

1. Calculate the convex hull of robot positions, CHP .
2. Set δ ← min{|xj −x0|} over all robot x coordinates xj such that xj �= x0.
3. If pi is on CHP then do:

(a) Let e be the edge of CHP containing pi.
(b) Choose one of the two directions of the edge e randomly.
(c) Move a distance of δ/4 in that direction.

4. Else do:
(a) Choose one of the two x directions randomly.
(b) Let d be the distance to CHP in that direction.
(c) Move a distance of min{δ/4, d} in the direction chosen.

Notice that a robot ri cannot have the same x coordinate as p1, unless it
is located at p1. The same applies to p′1. Moreover, moving in both directions
defined in Procedure Rand-Tie-Break is always possible (from positions different
than p1 and p′1), and does not affect DMax.

In a non unique configuration, the following Procedure Expand transforms the
system into a unique configuration by moving a random robot from Q outwards.
All other robots move onto positions in Q̂, to handle the case where all robots
in Q crash.

Procedure Expand (code for robot ri)
If ri ∈ Q then do:

1. Pick rj such that dist(pi, pj) = DMax.
2. With probability 1

|Q| move a distance of DMax/100 in the direction op-
posite of pj .
With probability 1 − 1

|Q| do not move.

Else pick pj ∈ Q̂ such that dist(pi, pj) is minimal and set pj to be your goal
point.



192 A. Efrima and D. Peleg

Lemma 9. If Procedure Expand is activated at time t in a non unique con-
figuration, and at least one robot in Q is active, then the probability that the
configuration at time t + 1 be unique is at least 1

n .

The following algorithm uses Procedures Expand and Rand-Tie-Break to solve
Partition(n, k).

Algorithm Part Expand (code for robot ri in position pi)

1. State [Non-unique]: The configuration is not unique. Invoke Procedure
Expand.

2. State [Unique]: The configuration is unique.
– Define the x axis and determine an order-based partition POB, with

p1 and p′1 as the two robot positions of maximal distance.
– Case [Point]: pi ∈ {p1, p

′
1}.

• Substate [Point-few]: At most m robots reside at pi: do not
move at this cycle.

• Substate [Point-many]: More than m robots reside at pi: invoke
Procedure Expand.

– Case [Middle]: pi /∈ {p1, p
′
1}.

• Substate [Middle-tied]: You cannot determine your subset (due
to other robots with the same x coordinate): invoke Procedure
Rand-Tie-Break.

• Substate [Middle-untied]: You can determine your subset:
(a) Identify the subset S′

i of robots guaranteed to be in your
subset Si.

(b) If there exists rj ∈ S′
i such that pj ∈ {p1, p

′
1}, then set goal

point p̃ ← pj .
(c) Else, set goal point p̃ ← Cog(S′

i).

The following proposition states the correctness of the algorithm.

Proposition 3. The randomized Algorithm Part Expand solves Partition(n, k)
in the SSYNC model with probability 1 and is n-fault-tolerant in the crash-fault
model.

Finally, we remark that the randomized method used in order to break symmetry
exploits the ability of the robots to decide randomly whether to make a move or
not. This ability is effective in the FSYNC and SSYNC models. In the ASYNC
model, however, an adversary can delay a robot’s move until other robots decide
to move as well, so this method is not applicable.

3 Basic Conditions for Partitioning

This section examines the effect of common orientation levels on the ability of
the robots to achieve partitioning. The robots are assumed to be failure-free.
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We consider a scale of possible levels of common orientation (ranging from full-
compass to no-compass) and establish the following.

Proposition 4. 1. In the FSYNC and SSYNC model, having common axes
direction is necessary and sufficient for Partition(n, k) to be deterministi-
cally solvable for all values of n and k.

2. In the ASYNC model, having common axes direction is necessary, and having
common axes direction and one common axis orientation is sufficient, for
Partition(n, k) to be deterministically solvable for all values of n and k.

Half-compass: In the half-compass model, Proposition 2 states that the parti-
tioning problem is solvable in the SSYNC model. We now claim that it is solvable
in the ASYNC model as well.

Proposition 5. Partitioning is solvable in the half-compass ASYNC model.

The solution is not fault-tolerant in the crash-fault model, since one crashed
robot can delay the algorithm forever. Whether there exists a non-sequential
(and fault-tolerant) such algorithm is still an open question.

No-compass: We now examine the no-compass model in which the robots do not
have any common direction or orientation. Unfortunately, as shown next, in this
model no algorithm can solve the partitioning problem.

Proposition 6. In the no-compass model, for any timingmodel, Partition(n, k)
is unsolvable for k > 1.

The proof above holds also for a model in which the robots have some sense
of direction. For the sake of refining the scale of different models, define the
axes-only model in which the robots have common axes directions, but they do
not share the positive axes orientations, and moreover, they cannot distinguish
between the x and y axes. For some values of n and k Partition(n, k) can be
shown to be unsolvable with a similar proof (for example n = 4, k = 2 and
the robots start out in a symmetric square). This is stated in the following
proposition.

Proposition 7. In the axes-only model, for any timing model, Partition(n, k)
is unsolvable for some values of n and k.

Direction-Only: For the direction-only model in which the robots share the x
and y axes directions but not their positive orientations, the following holds.

Proposition 8. In the direction-only model and for the SSYNC timing model,
Partition(n, k) is solvable for all values of n and k.

For the direction-only model in the ASYNC timing model, we do not yet know
if such an algorithm exists. The algorithm above cannot be considered, since
Procedure Tie-Break does not work asynchronously when two or more robots are
allowed to move at the same time. Nevertheless, we can argue that partitioning
is achievable when n is odd (for any k) by the same argument as for the SSYNC
model, based on [10].
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Abstract. The focus of the present paper is on providing a local deter-
ministic algorithm for colouring the edges of Yao-like subgraphs of Unit
Disc Graphs. These are geometric graphs such that for some positive in-
tegers l, k the following property holds at each node v: if we partition the
unit circle centered at v into 2k equally sized wedges then each wedge can
contain at most l points different from v. We assume that the nodes are
location aware, i.e. they know their Cartesian coordinates in the plane.
The algorithm presented is local in the sense that each node can receive
information emanating only from nodes which are at most a constant (de-
pending on k and l, but not on the size of the graph) number of hops away
from it, and hence the algorithm terminates in a constant number of steps.
The number of colours used is 2kl + 1 and this is optimal for local algo-
rithms (since the maximal degree is 2kl and a colouring with 2kl colours
can only be constructed by a global algorithm), thus showing that in this
class of graphs the price for locality is only one additional colour.

Keywords and Phrases: Edge Colouring, Geometric Graphs, Unit
Disk Graphs, Local Algorithm, Location Awareness, Wedge, Wireless
Network.

1 Introduction

The problem of graph edge coloring consists of associating colors to the edges of
the graph, so that no two adjacent edges are of the same color. The minimal such
number of colors required is called edge chromatic number of the graph. The well-
known theorem ofVizing [1964] implies that the edge chromatic number of a simple
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graph is either Δ or Δ + 1, where Δ is the maximum vertex degree of the graph.
For arbitrary graphs the problem was shown to be NP-complete by Holyer [1981].

Interest in the wireless networks research community on the edge coloring prob-
lem (see Ramanathan [1999]) comes from its applications, e.g. in packet scheduling
(Kumar et al. [2004]), channel assignment (Kodialam and Nandagopal [2005]) or
link scheduling (Gandham et al. [2005]). Many wireless and ad hoc networks are
modeled by Unit Disk Graphs (UDGs), where nodes are embedded in the plane
and two nodes are adjacent if and only if their Euclidean distance is at most
one. In this model it is assumed that wireless nodes possess the same trans-
mission range and two nodes can communicate when they are in each other’s
transmission range.

To reduce network complexity and enable important network functions, re-
searchers often construct network spanners, whereby certain edges of the network
are being omitted from consideration while at the same retaining network con-
nectivity. Although many different types of spanners have been considered in the
literature, good spanners must possess some useful properties like small node de-
gree, low edge set complexity and stretch factor. Another important property of
spanners for wireless and ad hoc networks is that they may enable local compu-
tations, i.e. distributed algorithms that never need to transmit messages more
than a constant number of hops from source to destination. Introduced in the
seminal work of Linial [1992] the concept of locality has been explored in dif-
ferent contexts (cf. Peleg [2000]). It follows that in this model, a local algorithm
is completed in a constant number of steps and thus its complexity is indepen-
dent of the size of the network. In dynamically changing, in mobile wireless as
well as in ad hoc networks locality has proven to be particularly important, be-
cause eventual changes are localized and need only be performed within the areas
affected, without disturbing the entire system.

The most popular spanners of UDGs, which may be computed locally in-
clude relative neighborhood graphs, Gabriel graphs and Yao graphs. However
among them only Yao graphs achieve bounded stretch factor (or dilation), i.e.
the distance of two nodes in the spanner is at most a constant factor larger
than their distance in the original graph. In this paper we propose local algo-
rithms for edge coloring of (l, k)-edge/wedge graphs. These graphs, besides be-
ing generalizations of Yao graphs, include other classes of subgraphs of UDGs,
which appear in the literature, like local approximations of minimum spanning
trees, Delauney triangulations or half-space proximals (most typically with l = 1
and k = 3). Notwithstanding proposed heuristics and algorithms for coloring
UDGs (e.g. Marathe et al. [1995], Matsui [1998], Barrett et al. [2006]), none of
these approaches address edge coloring under the locality conditions defined
above. We assume a geometric network with location aware nodes, i.e. nodes
that know their Cartesian coordinates in the plane.

1.1 Preliminaries and Results of the Paper

Consider a class of graphs for which the following property holds in each node u.
For some integer parameters k and l, if we divide all possible edge directions into
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Fig. 1. 8 wedges of width π/4 around the vertex u. Further, we assume that the
horizontal slope is not internal to any wedge. Depicted are the eight wedges numbered
0, 1, . . . , 7, an upstream edge (u, v) and a downstream edge (u, v′).

2k equally sized wedges (or cones) of width π/k then at most l edges incident
to v lie in any fixed wedge. Figure 1 depicts such a partition into eight wedges
(k = 4) with at most three points per wedge (l = 3). We will call such graphs
(l, k)-edge/wedge graphs. This gives rise to a natural partition of the edges: we
partition the edges into k classes Ci for i = 0, 1, . . . , k − 1 (edges of two opposite
wedges–called double-wedge–are put into the same class). Notice that we want
an edge to belong to the same class when looking from both its endpoints, which
also explains why we do not consider the case of odd number of wedges. More
formally, for i ≤ k − 1, Ci is the set of all directed edges (u, v) such that the
edge’s slope lies either within the wedge 〈iπ/k, (i+1)π/k) and the edge’s length
|u, v| < 1, or within the wedge 〈π + iπ/k, π + (i + 1)π/k) and |u, v| ≤ 1; we call
the former upstream edges and the latter downstream edges. A path p is said to
belong to the class Ci, and abusing notation we abbreviate this with p ∈ Ci, if
each of the edges of p is from the class Ci.

Many subgraphs of UDGs that appear in the literature are in fact (l, k)-edge/
wedge graphs, for some l, k. These include Yao graphs as defined in Yao [1982], for
k chosen arbitrarily as desired. Similarly, Local Delaunay in Li et al. [2003], Local
Minimum Spanning Tree (LMST) Spanners in Chavez et al. [2006b], Wang and Li
[2003], and Half-space proximal in Chavez et al. [2006a]) with typical values l = 1
and k = 3. Interestingly, for many subgraphs of unit disc graphs either there is
also a lower bound on the sharpest angle between incident edges (e.g., in LMST
as given in Chavez et al. [2006b], Wang and Li [2003] and Half-space proximal
Chavez et al. [2006a]) or by construction there is an explicit limit on the number
of edges per wedge (e.g. Yao graphs in Yao [1982] and their variants Chavez et al.
[2006b]). This means that many spanners of geometric graphs are, in fact,
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(l, k)-edge/wedge graphs. Finally, some variants of Yao graphs in Yao [1982] are
(l, k)-edge/wedge graphs for l > 1 (e.g. take in each wedge both the shortest and
the longest edge).

1.2 Results and Structure of the Paper

The focus of the present paper is on providing deterministic, local algorithms
for edge-colouring (l, k)-edge/wedge subgraphs of unit disk graphs. The wireless
networks considered consist of nodes that have the same circular transmission
range of size 1. We assume location awareness, i.e., each node of the graph
knows its geometric position in the plane. The main result of the paper is a new
local, deterministic algorithm for edge-colouring (l, k)-edge/wedge subgraphs of
UDGs, for all integers l, k. An important parameter in our algorithms is the
horizon distance d: a given node u never needs to be aware of the location of
nodes beyond its horizon, as measured by the euclidean distance from u. More
specifically, in Section 2 we give the basic 2k + 1 edge colouring algorithm for
(l, k)-edge/wedge subgraphs of UDGs using a local horizon distance 7.81 · lk.
Section 3 contains two lower bounds. First, we show that no colouring can be
locally constructed in UDGs if there is no geometric information available to the
nodes, and second give a lower bound of d = 2kl for the horizon distance used
in our algorithm. In Section 4 we give improved constructions for the practically
important cases of k = 3 and k = 4.

2 Basic Construction

In this section we provide the basic construction in detail. To clarify the ideas
we first consider the case of at most one point per wedge and later show how to
generalize it to multiple points per wedge.

2.1 Virtual Cutting Lines and Grids

Consider first the case l = 1 whereby for each node there is at most one point
per wedge. The edges of class Ci form a set of vertex-disjoint paths. If we colour
each path of class Ci by alternating the colours 2i and 2i + 1, we get a globally
consistent edge colouring of the whole graph. However, such an algorithm is
inherently global, in fact, even a single path cannot be 2-coloured using a local
algorithm since the edges at the endpoints would have to decide on their colour
locally, in which case an adversary could adjust the number of edges in the
middle segment (which are beyond the horizon of the endpoints) in order to
force the use of the third colour.

Therefore the first idea in our algorithm is to use the geometric information
to design a tiling of the plane containing the network. This way we can cut the
potentially long paths of edges of the same class into path segments of bounded
size, each one within a single tile, locally colour the segment edges and use a
third colour (per class) to resolve conflicts on the segment boundaries. Let us look
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more closely at one of the classes Ci, for i = 0, 1, . . . , k − 1. The cutting of paths
of class Ci can be achieved by selecting a set of virtual cutting lines (abbreviated
VCL) which are normal to the axis of the double-wedge corresponding to Ci and
spaced at a distance more than 2. We ensure that each edge e ∈ Ci intersecting
such cutting line will take the third colour, say 2k + i. The placement of VCLs
inside each tile will be identical with respect to the tile boundaries. Hence, the
nodes at the endpoints of edges which are cut by the VCLs will use the geometric
information to identify the edges which will receive the additional third colour.
The fact that the cutting lines are normal to the wedge as well as sufficiently
separated ensures that there are no two adjacent edges coloured by the same
third colour (if two edges share a node located exactly on a cutting line, only one
of them gets assigned the third colour). In this approach the VCLs of different
classes do not interfere and can be considered separately, thus resulting in a
colouring using overall 3k colours.

The main technical contribution of this paper comes from the realization that
the VCLs can be designed in such a way that a single conflict-resolution colour
can be shared by all classes without interference. The crucial concept is that of
d-cutting the class Ci, which refers to a set S of line segments that intersects
every path p ∈ Ci with Euclidean diameter at least d. More formally we define

Definition 1 (d-cutting the class Ci). We say that a set S of line segments
in a plane is d-cutting the class Ci if, for each path p ∈ Ci it is true that

– if the Euclidean diameter of p is at least d then p intersects S, and
– two consecutive edges of p may intersect S only if their shared endpoint is

in S

Note that S is an infinite set; typically it is a pattern of line segments that is
repeated infinitely. Also observe that we can deal with the case l > 1 by locally
ordering (arbitrarily) the edges of class Ci incident to a vertex v. In this case the
edges of the same class and the same rank within this class form a set of vertex
disjoint paths. This means that we need as many as lk VCLs (l for each class)
which we denote by VCLj

i for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , l − 1, with each
VCLj

i d-cutting the class Ci.
The following definition captures the area reachable by edges of Ci which also

intersect VCLj
i . Namely we have

Definition 2 (Reachability by edges of Ci). Let us denote by MSj
i the

Minkowski sum of VCLj
i and Ci, that is MSj

i = {v|u ∈ VCLj
i and (u, v) ∈ Ci}

As we require that the VCLs do not interfere with each other, a Virtual Cutting
Grid is a union of VCLs for each class and each rank such that their Minkowski
sums are pairwise disjoint:

Definition 3 (d-Virtual Cutting Grid (VCG)). S is a d-Virtual Cutting
Grid (abbreviated VCG) for (l, k)-edge/wedge graphs if

– S =
⋃k−1

i=0
⋃l−1

j=0 VCLj
i ,

– each VCLj
i is d-cutting Ci, and

– MSj
i ∩ MSj′

i′ = ∅, for all i, j, i′, j′ such that i �= i′ or j �= j′.
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2.2 Local Edge Coloring Algorithm

Before proceeding with the construction of the VCG, let us formally present the
colouring Algorithm 1.

Algorithm 1. Local Edge Colouring Algorithm
Input: k and an implicitly known d − VCG

// The algorithm at vertex u: Independently process each downstream edge (u, v).
1: Determine your class Ci; locally sort all edges of class Ci incident to u in clockwise

direction and determine your rank r (from 0 to l − 1) – this determines VCLr
i

relevant to you.
// Learn your path upstream up to Euclidean distance d.

2: Broadcast your location to all reachable points downstream along the path of class
Ci and rank r; forward downstream any message received from upstream if its
origin is closer than d.

3: if intersecting VCLr
i in a node different then v then

4: select colour 2kl
5: else if e is the first edge of the path, or immediately follows (in its path) an edge

coloured 2kl then
6: select colour 2(il + r)
7: else

// This is local computation using the information obtained in line 2.
8: select colour 2(il + r) or 2(il + r)+ 1, depending on the parity of the path from

an edge coloured by the previous rule, ensuring the colours alternate.
9: end if

The following lemma asserts the locality of the algorithm by specifying the
length of the required horizon at each node.

Lemma 1. Each edge decides on its colour using only information from vertices
which are at most 2d cos(π/k) hops away.

Proof. According to line 2 of the algorithm, no information is forwarded further
than Euclidean distance d from its origin. This may take 2d−1 hops if forwarded
in a straight line (alternating hops of length 1 and ε, where ε depends on k
and can be chosen arbitrarily small). However the edges of class Ci can zig-
zag only within a wedge of angular width π/k, thus possibly increasing the
required distance by a factor of at most cos(π/k). This completes the proof of
the lemma.

Assuming that each edge is “wakenup” by any activitywithin its 1-neighbourhood,
Lemma 1 also implies that each edge decides on its colour after at most 4d cos(π/k)
steps since it may need to wake up the upstream path. The correctness of the al-
gorithm follows by construction and from the definition of the VCG.
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Theorem 1. Algorithm 1 computes a 2kl+1 edge colouring of a (l, k)-edge/wedge
subgraph of a UDG.

Proof. We first prove that each edge can compute its colour. Let us call start
edges the edges that have determined their colour in lines 4 or 6 of Algorithm 1.
From the fact that VCLj

i is a d-cutting class Ci it follows that each edge is at
distance d from a start edge and will therefore compute its colour in line 8 (if it
did not do so in lines 4 or 6).

The definition of VCG (second property of each VCLj
i and the fact that all MSj

i

s are pairwise disjoint) implies that no two edges of colour 2kl are incident to
each other. From the construction (line 8) and the structure of (l, k)-edge/wedge
graphs it follows that no two edges of the same colour are incident.

2.3 Construction of Virtual Cutting Grids

It remains to be shown that given k and l, there indeed exists a d − VCG for
(l, k)-edge/wedge graphs with d depending only on k and l. Without loss of
generality, let us rotate all classes π/4 clockwise. This allows us to partition the
classes into three categories as follows:

– mostly horizontal: Ci mod π ⊆ (−π/4, π/4〉,
– mostly vertical: Ci mod π ⊆ (π/4, 3π/4〉, or
– straddling the diagonal: Ci mod π ⊆ (π/6, π/3)

The basic idea is to use vertical VCLs to cut the mostly horizontal classes
and horizontal VCLs to cut the mostly vertical lines. However, as VCLs must be
separated, there must be gaps in the vertical cutting lines to allow placement of
the horizontal cutting lines, and vice versa. The gaps are offset by an angle of
π/4 from each other, but because of their width this still allows paths to leak
from one gap to another. The square areas between the Minkowski sums of the
mesh lines are used for placement of additional cutting lines to stop these leaks.
The resulting VCG for k = 2 and l = 1 is depicted in Figure 2.

Each leak-stopping square (we call them leak-stoppers) contains two vertical
and two horizontal line segments, each of them blocking half of the gap width.
The leak-stoppers are of two types (called black and white), placed in chessboard
manner, with black leak-stoppers being mirror image of white ones.

This design can be straightforwardly generalized to l > 1 by enlarging the
basic mesh by a factor of l and having VCLj

i shifted 2j horizontally (for i = 0)
or vertically (for i = 1). This idea is illustrated in Figure 3, refer also to the first
line of Table 1).

Note that if k is even, the classes C0, C1, . . . , Ck/2−1 are mostly horizontal
and the remaining k/2 classes are mostly vertical. This means that we can reuse
solution for k′ = 2, l′ = lk/2, i.e. the pattern from Figure 3 works for k = 6, l = 1
as well (refer to the second line of Table 1).

If k is odd, there will be exactly one class C�k/2� straddling the diagonal, with

k/2� classes being mostly horizontal and mostly vertical, respectively. For such
class, neither vertical, nor horizontal VCL works. Consequently, in this case, we
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Longest not-cut path of class C0

VCL1

VCL0

C0

C1

Fig. 2. The design of VCG for k = 2, showing also the diameter of the longest not-cut
path of class C0. The side of a basic square is 2.

use the pattern for k + 1 classes and let VCLj
�k/2� be a union of a horizontal and

a vertical VCL– this also facilitates uniform construction with the same number
of horizontal and vertical VCLs. For example, for k = 5 and l = 1, this result in
the construction illustrated in the last row of Table 1.

Summing up, this means that we can design a VCG for every l and k.

Theorem 2. d ≥
(
2
√

61(lk/2�)2 + 34(lk/2�) + 5
)
, every (l, k)-edge/wedge

graph, for k ≥ 2 and l ≥ 1, has a d-VCG.

Proof. Firstly, we need to prove that the constructed set is indeed a VCG for l
and k. For this purpose we have to show that (1) Minkowski sums are disjoint
and that the VCLs satisfy the requirements of Definition 1, in particular that (2)
no two consecutive edges are incident to a VCL unless they share an endpoint

Table 1. Possible assignments of VCLs for lk = 6 or k = 5, l = 1

k l L0 L1 L2 L3 L4 L5
2 3 VCL0

0 VCL1
0 VCL2

0 VCL0
1 VCL1

1 VCL2
1

6 1 VCL0
0 VCL0

1 VCL0
2 VCL0

3 VCL0
4 VCL0

5

5 1 VCL0
0 VCL0

1 VCL0
2 VCL0

3 VCL0
4 VCL0

2
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L0 L1

L3

L4

L5

C4

C1

L2

C0

C2

C3C5

Fig. 3. The design of VCG for lk = 6, showing also the longest non-cut path. The side
of a basic square is 2.

and (3) there is a finite (depending only on l and k) diameter d such each VCLj
i

d-cuts all paths of class Ci and rank j.

Proving (1): The MSj
i ’s are pairwise disjoint because the closest distance between

two points of different VCLj
i and VCLj′

i′ is 2, i.e. two edges of length at most 1
connecting them must lie on the same line – and therefore must lie in the same
class. Hence, one is an upstream edge and the other one is a downstream edge.
However, by definition Ci does not contain upstream edges of length 1, i.e. the
Minkowski sums do not overlap even when the VCLs are at distance exactly 2.

Proving (2): Note that for each i, no line segment of VCLi has a slope inside
Ci. This is also true for the classes with bounding slopes being multiples of π/4
(the classes contain only the smaller of their boundary angles, by definition the
mostly horizontal/vertical classes contain only the larger one). Together with (1)
this means that the second property of Definition 1 is satisfied as well.

Proving (3): It is not difficult to observe that the diameter points shown in
Figures 2 and 3 are indeed the furthest possible points of a path of class C0 which
is not cut by its VCL. By symmetry, their distance is the diameter distance for
other classes as well (the diameter of the straddling the diagonal class, if any, is
even smaller). As the VCL line separation is 2, the diameter points are offset by
2(5lk/2� + 1) horizontally and 2(6lk/2� + 2) vertically. The statement of the
theorem is obtained using the Pythagorean theorem.
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3 Lower Bounds

In this section we look at lower bounds. First, at the impossibility of local con-
struction of edge colourings if the nodes are not location aware and second at
lower bounds for the horizon distance d.

3.1 Impossibility of Edge Coloring When No Geometric Information
Is Available

In this subsection we show that having the geometric information is indeed
crucial in achieving a local algorithm. If the nodes only have distinct IDs without
additional information, no non-trivial edge colouring can be locally constructed.
Erdös [1962] addressed this question by using the probabilistic method to show
that for all k and ε > 0 there exist graphs with sufficiently large number n of
nodes that have chromatic number > k but such that every set of vertices of size
at most εn is 3 colourable.

In the present paper we adapt the proof technique of Naor and Stockmeyer
[1995]. The main difference is that since we are dealing with UDGs, our concept
of locality is somewhat different. Instead of requiring limited hop-count in the
actual graph, we limit the hop-count to the underlying UDG. The principal
result of Naor and Stockmeyer [1995] we use is based on Ramsey’s theorem and
states that we can limit ourselves to algorithms that do not depend on the actual
values of the IDs, but only on their relative ordering.

Theorem 3 (Naor and Stockmeyer [1995]). Fix a class of graphs G and a
locally checkable labeling problem L. If there is a local algorithm A with time
bound t that solves a problem L in G, then there is an order-invariant local
algorithm A′ that solves L in G in time t.

Informally, a problem has a locally checkable labeling if it can be locally veri-
fied whether a given vertex (or edge) labeling satisfies the requirements. Refer
to Naor and Stockmeyer [1995] for the formal statement. For our purposes it
is sufficient to state that vertex colouring and edge colouring are both locally
checkable labellings.

Theorem 4. For every l ≥ 1, k ≥ 2 there is a (l, k)-edge/wedge subgraph of a
UDG that is not locally colourable.

Proof. Consider a mesh of vertices with the distance w between neighboring
mesh vertices equal to w =

√
2l tan(π/k). Define the graph G in which each

vertex v of the mesh is connected to the closest l vertices in each wedge. The
choice of w ensures that all these edges are of length at most 1, i.e. G is a
subgraph of the UDG of these mesh vertices. Since neighboring vertices of the
mesh are neighbors in G, for each edge e of the UDG there exists a path in G
of length at most x =

√
2/w connecting the endpoints of e.

Assume now, by contradiction, there exists a local (in the UDG) algorithm
A, examining the neighbourhood up to distance t. Therefore, there must exist a
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constant x and a local (in G) algorithm A′ examining the neighbourhood up to
distance xt. By Theorem 3 there is also an order invariant algorithm A′′.

Consider now a mesh of size (2xt + 3)× (2xt + 3), with the vertex at location
[i, j] labeled j(2xt + 3) + i. As A′ examines the neighbourhood up to distance
at most xt, nodes v1 = [xt, xt], v2 = [xt + 1, xt] and v3 = [xt + 2, xt] all see
the same pattern (monotonically increasing from upper left to lower right) and
cannot deterministically decide on different colours for edges (v1, v2) and (v2, v3).
This contradicts the fact that A′ is a local edge-colouring algorithm.

3.2 Lower Bound on d

Theorem 2 gives a bound for d of about 7.81 · lk + O(1). As the construction
seems quite ad hoc and not optimized (it gives the same bound for fixed lk,
despite the fact that the case l = 1 and large k is much more restrictive than
k = 2 and large l), an obvious question is how for from the optimal it actually
is. A somewhat surprising answer is that it is not far at all, namely we have the
following result.

Theorem 5. There is no d − VCG for (l, k)-edge/wedge graphs with d < 2kl.

Proof. The idea is to show that each MSj
i covers a 1/2d fraction of the area.

Since all these Minkowski sums must be pairwise disjoint, this would prove the
theorem. Consider VCLj

i . Take a line l whose slope is the axis of the class Ci. Note
that l is cut by VCLj

i into line segments of length at most d. The parts of l at
distance less then 1 both downstream and upstream from the cutpoints belong
to MSj

i , i.e. a 2/d fraction of l is in MSj
i . As this is true for every position of l in

the plane, (and the behaviour is continuous, as VCLs are sets of line segments)
MSj

i indeed takes 1/2d fraction of the area and the statement of the theorem
follows.

4 Refined Constructions

As noted above, the construction used in Theorem 2 is based on the case k = 2,
with the angular width of the wedges being π/2. This means that the paths have
a lot of ‘wiggle room’ to avoid the VCL s, forcing a conservative construction
with relatively large horizon distance d. The horizon distance can be noticeably
reduced by more careful analysis for specific k. In particular, the case k = 3
warrants special attention, as this is the most relevant case in practical situations
(both LMST and Half-space proximal lead to (1, 3)-edge/wedge graphs and k = 3
is the lowest k for which the Yao graph is connected). An ad-hoc construction
of the VCG using hexagonal symmetry and careful analysis of Minkowski sums
yields:

Theorem 6. There exists 15.466-VCG for (1, 3)-edge/wedge graphs.

The case k = 4 is practically important as well, as it corresponds to the smallest k
for which the Yao graph is connected and has a convenient east/north/west/south
symmetry.
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Theorem 7. There exists 26.989-VCG for (1, 4)-edge/wedge graphs.

Finally, for the limit case of k → ∞ the wedges are very narrow, which allows
the use of several additional techniques to further reduce the horizon distance:

Theorem 8. There exists 3.3745lk + o(lk)-VCG for (l, k)-edge/wedge graphs.

Details of the proofs of these theorems will appear in a forthcoming complete
version of this paper.

5 Conclusions

In this paper we identified a new subclass of unit disk graphs, called (l, k)-
edge/wedge graphs, that encompass a variety of well-known and commonly used
graphs in the wireless networks literature (Yao graphs, Local Delaunay, Local
Minimum Spanning Tree spanners, and Half-Space Proximals). We gave local,
deterministic algorithms for edge coloring these graphs and provided several
ways for improving the algorithm depending on the density of the point set that
determines the graph. Several questions and tradeoffs concerning the optimality
of our algorithm remain open and would be interesting to consider in future
investigations.
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Abstract. The proliferation of cheap portable, wireless computing de-
vices (e.g., cell phones and PDAs) promises the availability of a large
number of computing devices in a relatively small geographic region. Re-
searchers have proposed using such an ensemble of wireless devices to
create a wireless ad-hoc lattice computer (WAdL) to harness the col-
lective computing capabilities of the devices for the common cause of
scientific computing via analogical simulations. Faulty devices or lack of
wireless coverage leads to “gaps” in a WAdL, rendering it ineffective for
analogical simulations.

In this paper we discuss our soultion to the problem of bridging gaps in
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for the defective devices in the gap. We establish lower bounds on the
communication dilation witnessed by such proxy assignments for single-
row gaps and general row-column convex gaps, and present dilation-
optimal, constant time algorithms for computing proxy assignments for
single-row gaps and gaps that are rectangular in shape.
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a relatively small geographic region [9]). Based on the foundations of cellular
automata and lattice computers [2,8,11], Gupta et al. [6,7] propose the use of
such an ensemble of wireless devices to create a wireless ad-hoc lattice computer
(WAdL). The goal of a WAdL is to harness the collective computing capabili-
ties of the devices for the common cause of scientific computing via analogical
simulations. The methodology, formalised by earlier work on lattice comput-
ers, is (1) to represent, by computing devices logically arranged as a part of
a lattice, the region of euclidean space in which a phenomenon unfolds, and
(2) to have the computing devices analogically simulate the unfolding of the
phenomenon in this representation of euclidean space. In analogical simulations
on a lattice computer (and hence on a WAdL), the motion of an object across
euclidean space is carried out as a sequence of steps, in time proportional to
real time, where in each step the representation of the object may move from
one processing element to a neighbour, as defined by the underlying lattice of
the lattice computer [13]. (See Section 2 for a brief discussion of analogical
simulations.)

Clearly, the accuracy of the results of these simulations is directly dependent
on the resolution of the underlying lattice of a WAdL. Moreover, since the de-
vices in a WAdL are logically, but not necessarily physically, at lattice points
(in the underlying lattice), the communication distance between devices is not
proportional to the physical distance between lattice points represented by those
devices. To ensure analogical simulations that unfold in time proportional to the
real time unfolding of the phenomenon being simulated, additional adjustments
have to be made (see [6,7]) to the lattice computer algorithms described in the
literature [2]. Faulty devices or lack of wireless coverage leads to “gaps” in the
collection of devices, further exacerbating this problem.

In this paper, we focus on the problem of bridging “gaps” in the underlying
lattice of a WAdL. We adopt the approach proposed by Moore et al. [12] – to
assign, for each faulty device, x, an active device, l(x), in the WAdL to serve as
a proxy for x. As a consequence, the communication between two neighbouring
faulty devices x and y will be carried out as a communication between the two
proxy devices l(x) and l(y). These proxy devices, though, may not be neighbours,
and thus analogical simulations being carried out on such a WAdL will run slower
than on a WAdL with no faulty devices. Moore et al. [12] present assignment
schemes for square gaps. We extend that work and study gaps of more general
shapes. As in Moore et al., our primary goal is to devise assignment schemes for
bridging gaps so that the communication time between proxies for any pair of
neighbouring faulty devices is minimised.

In Section 3 we introduce some useful concepts, and then formally define the
problem we are addressing in this paper. It is convenient to discuss our solution
for the problem separately for two different classes of gaps – we discuss our
treatment of the two classes in Sections 4 and 5. We conclude in Section 6 with
some open problems.
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2 Analogical Simulations

A physical phenomenon is a development in a region of Euclidean space over a
period of time. At each instant in time (in a given time period), the set of objects
participating in the phenomenon, together with their attribute values (such as
speed, spin, etc.) at that time, completely describes a snapshot in the unfolding
of the phenomenon. Most problems in scientific computing are about phenom-
ena whose unfolding involves the motion of participating objects in Euclidean
space. Solutions to these phenomena usually involve determining (predicting)
the attribute values of objects over time. Some phenomena can be solved an-
alytically using closed form functions of time. On the other hand, there are
phenomena where the only apparent method for predicting the attribute values
of participating objects at any instant in time, is to simulate the unfolding of
the phenomenon up through that instant of time [5].

When carried out on a digital computer, such simulations, necessarily, de-
velop in a discretized representation of a region of Euclidean space, and over
discrete time units. Moreover, such simulations must use, at any given instant
of simulation time, only information available locally, at a discrete point in the
represented Euclidean space, to compute the attribute values of participating ob-
jects at the next instant of simulation time. Cellular automaton machines [8] and
lattice computers [2] provide the necessary framework for a discretized represen-
tation of Euclidean space in which to carry out such simulations. Several physical
phenomena, including spherical wavefront propagation and fluid flow [4,14], have
been successfully simulated on such a framework where the simulation algorithms
do not use the traditional analytical models for the phenomena.

3 Preliminaries

Consider a collection of devices arranged on a subset of the cells of a square grid,
one device per cell.

Definition 1. A collection of devices is said to be row convex (respectively,
column convex) if every row (resp. column) of devices forms a contiguous
interval of devices within that row (resp. column). The collection is said to be
row-column convex if it is simultaneously row convex and column convex.
Moreover, if the collection is such that there are at least two devices in each row
and each column, then the collection is said to be thick row-column convex.

Figure 1 shows examples of such collections of devices to illustrate the notions
in Definition 1. The notion of row-column convex collections is similar to the
notion of hv-convex polyominoes discussed in the literature [3,10].

As discussed in earlier work on WAdLs [7], the expectation is to harness the
collective power of mobile devices in a given geographic region, say a few blocks
in the downtown area of a city. It is quite likely that some buildings in that
area do not have wireless coverage, or that the office occupying some building is
closed on a particular day, and thus there are no mobile devices in the physical
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(b)(a) (c) (d)

Fig. 1. Examples of collections of devices: (a) column convex but not row convex, (b)
row-column convex (not thick), (c) thick row-column convex, (d) row-column convex
(not thick)

space occupied by that office. Such situations will lead to gaps in a WAdL in that
area, and such gaps can be faithfully modeled by a row-column convex collection
of devices. Indeed, in this paper we assume that the collection of faulty devices
in a WAdL is row-column convex. We will refer to such a collection of faulty
devices in a WAdL as a gap or a hole in the WAdL.

Thus the overall picture is of a row-column convex device collection consisting
of a bunch of active devices surrounding a row-column convex gap of defective
devices. The set of active devices that are immediately adjacent to the defective
ones form a contiguous contour that we will call the active perimeter of the gap.

As mentioned in Section 1, to simulate lattice computations completely, we
now seek to assign to every defective device, a corresponding device on the active
perimeter that will serve as its proxy in the computation; for convenience, we will
think of active perimeter devices as being trivially their own proxies. Consider
a device x and its proxy l(x). If device x were active, it would have been able
to communicate directly with adjacent devices along its row and its column.
However, if device x is defective, communication for x is now handled instead
by the proxy l(x). Additionally, communication takes place along paths whose
individual hops (edges) only connect active devices.

Accordingly, in the presence of a hole, the distance, d(x, y), between any two
active devices at positions x and y in the square grid is the length of the shortest
path between x and y that is composed entirely of horizontal hops (along a row)
or vertical hops (along a column) between adjacent active devices. In general,
we expect that the communication between two proxies l(x) and l(y) takes place
along the shortest path on the active perimeter between l(x) and l(y). Indeed,
if the active perimeter encloses a row-column convex gap, then the following
folklore result can be easily shown by induction:

Lemma 1. Given a row-column convex gap in a WAdL, the shortest distance
between any two active devices x and y on the active perimeter equals the length
of the shortest path that only uses the perimeter edges.

Definition 2. For any proxy assignment that maps a device x to a proxy l(x)
on the active perimeter, we define the dilation, load and congestion of the
assignment as follows:
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Dilation: The maximum distance, d(l(x), l(y)), taken over all pairs of adjacent
devices x and y. (Note that, in the literature, the notion of dilation is not
restricted to neighbouring devices.)

Load: The maximum number of devices assigned to any active perimeter de-
vice.

Congestion: The maximum, over every active perimeter edge e, of the num-
ber of distinct proxy-communication paths that simulate one-hop communi-
cations between two devices, at least one of which is defective.

Henceforth, for convenience, we will use proxy assignment to mean “proxy as-
signment of defective devices to the active perimeter devices”. Our problem can
be stated as follows: for any row-column convex collection, C, of defective devices
in a WAdL, find a proxy assignment such that the dilation, load and congestion of
the assignment are minimised. If the dilation of a proxy assignment is the best
possible we will call that assignment a dilation-optimal assignment (similarly,
load-optimal assignment and congestion-optimal assignment).

Without loss of generality,

Definition 3. For any row-column convex collection C, R(C) is the unique,
smallest rectangle of cells such that R(C) contains C and each border row and
column of R(C) contains at least one element of C. The number of rows and
columns of R(C) are denoted by r(C) and c(C), respectively. The number of ac-
tive perimeter devices around C is denoted by p(C).

When the context is clear, we will refer to the above quantities as simply r, c and
p. Without loss of generality, we will assume that the top left corner cell of R(C)
has co-ordinates (1, 1), and the bottom right corner cell of R(C) has co-ordinates
(r, c). We will refer to the devices by the co-ordinates of the cell that the device
occupies.

r

c
0 1 c c+1

0
1

r
r+1

Fig. 2. A row-column convex gap. r = 6, c = 6, p = 28
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Figure 2 illustrates the above definition. Figure 2 also illustrates our reference
co-ordinate system for naming devices. The active perimeter devices are shown
shaded.

It is, then, easy to verify the following two lemmas.

Lemma 2. For any row-convex collection C,

p(C) = p(R(C)) = 2(r(C) + c(C)) + 4.

Lemma 3. For any gap, the load of any proxy assignment is at least the ratio
of the number of defective devices to the number of active perimeter devices.

4 Single Row Gaps

In this section we will deal with the special case of connected gaps where r = 1.
Clearly, such gaps are row-column convex. In Section 4.1 we will establish a
lower bound on the dilation of any proxy assignment for such a gap. Then, in
Section 4.2 we discuss a dilation-optimal and load-optimal assignment scheme
for single-row gaps.

4.1 Lower Bound on Dilation

If a gap contains a single row that has one defective device, i.e., r = c = 1,
then it is easy to verify that the dilation of any proxy assignment must be at
least 3. The following theorem establishes a lower bound on the dilation of proxy
assignments for single-row gaps with more than one defective device.

Theorem 1. In a WAdL containing a collection C of defective devices such that
r(C) = r = 1 and c(C) = c ≥ 2, every proxy assignment of active perimeter
devices to the defective ones has dilation at least D = �(2c + 5)/3�.

f
1

f
2

f c

0 1 2 3 c c+1

c+2

c+3c+42c+32c+4

2c+5

Fig. 3. Numbering of devices for a single-row gap

Proof. Given a collection C of defective devices such that r(C) = r = 1 and
c(C) = c ≥ 2, the active perimeter p(C) = p = 2c + 6. We denote the defective
devices as f1, f2, . . . , fc proceding from left to right and the active perimeter
devices as 0, 1, . . . , 2c + 5 starting from cell (0, 0) and proceding clockwise (see
Figure 3 for an example). For convenience, for every x ∈ [1, c], we denote the
devices 2c + 4 − x as b(x); with this notation, the defective device fx has device
x as its neighbor above and device b(x) as its neighbor below. Thus, in any
proxy assignment l that assigns active device l(x) to the defective device fx, the
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dilation will be lower bounded by the maximum taken over the following four
sets of distances:

1. {d(l(x), x) | x ∈ [1, c]},
2. {d(l(x), b(x)) | x ∈ [1, c]},
3. {d(l(x), l(x + 1)) | x ∈ [1, c − 1]},
4. {d(2c + 5, l(1)), d(l(c), c + 2)}.

Let D = �(2c + 5)/3� (about a third of the active perimeter), and assume,
by way of contradiction, that L has dilation at most D − 1. Let A(x) denote
the possible range of values that l(x) can take if d(l(x), x) and d(l(x), b(x)) both
respect the assumed dilation bound, i.e. if both these distances are no more than
D − 1. Consider the specific defective devices fx and fy where x and y are given
by:

y = D − 1
= �(2c + 5)/3� − 1 and

x = (c + 1) − y

= �(c + 1)/3�.

Note that x and y are equi-distant from the left and the right ends of the defec-
tive row. From the definition of y, it is easy to see that the distance to b(y) from
any device in the range [0, y − 1] is greater than D. Similarly, the distance to y
from any device in the range [b(y) + 1, 2c + 5] is at least D. Consequently, A(y),
the allowable range for l(y), is the interval [y, b(y)] that consists of the devices to
the right of (and including) y (respectively, b(y)) in the row above (respectively,
row below) the defective row. Similar reasoning yields the complementary fact
that A(x), the admissible range for l(x), is the interval [b(x), x] (in the circular
ordering in clockwise order around the perimeter). Note that A(x) contains ex-
actly those devices to the left of (and including) x (respectively, b(x)) in the row
above (respectively, row below) the defective row.

In fact, a more general characterization can be given for A(x + i) as i ranges
from 0 through (y − x): A(x + i) consists of two disjoint intervals (not both
empty) containing the left and the right ends of the perimeter. Specifically, the
proxy l(x+ i) either lies in the interval Al(x+ i) = {2c+4−(x− i), . . . , x− i} (in
circular clockwise order) or in the interval Ar(x + i) = {c + 3 − i, . . . , c + 1 + i};
we have

A(x + i) = Al(x + i)
⋃

Ar(x + i)

for all i ∈ [0, (y − x)]. For the extreme values of i in its range, we have A(x) =
Al(x) with Ar(x) empty, and have A(y) = Ar(y) with Al(y) empty. So as one
considers the proxies proceeding from fx towards fy, there must come a point
where l(x + i) is from the left admissible interval Al(x + i) but the next proxy,
l(x + i + 1), is from the right admissible interval Ar(x + i + 1), i.e. the proxies
are from opposite sides of the perimeter.

But we require d(l(x + i), l(x + i + 1)) to be at most the assumed dilation.
However, the shortest perimeter distance between any such pair of proxies is
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no less than the distance between the closest pair of devices from Al(x + i)
and Ar(x + i + 1) respectively, viz. the distance between x − i ∈ Al(x + i) and
c + 3 − i ∈ Ar(x + i + 1). In summary,

d(l(x + i), l(x + i + 1)) ≥ d(x − i, c + 3 − i)
= c + 3 − x

= D + 1

This contradicts the assumed dilation bound of D − 1, and yields the result. �	

Note that the same argument also works for a gap consisting of a single column,
and, with minor modifications, for any row-convex gap consisting of connected
single rows and columns such that each device in the gap has no more than two
neighbours in the gap. (See Figure 1(d) for an example of such a gap.)

4.2 Dilation-Optimal Assignment

The following theorem states that the lower bound for dilation for a gap of one
row and c ≥ 2 columns given in Section 4.1 is tight. The proof is constructive as
it provides a dilation-optimal and load-optimal proxy assignment.

Theorem 2. There exists a dilation-optimal and load-optimal proxy assignment
for a gap with one row and c ≥ 2 columns.

Proof. Let d = �(2c + 5)/3� and x = � c
2� + 1 + d.

Assign l(� c
2� + 1) = x, and l(� c

2�) = x + d.
Complete the proxy assignment l as follows:

– l(� c
2� + i + 1) = x − i for 1 ≤ i ≤ � c

2� − 1;
– l(� c

2� − j) = (x + d + j) (mod 2c + 6) for 1 ≤ j ≤ � c
2� − 1.

It is easy to see that l is feasible and load-optimal, and its dilation is equal to
�(2c + 5)/3�.

From this result and Theorem 1, the claim follows. �	

5 Row-Column Convex Gaps

In this section we first establish, in Section 5.1, a lower bound on the dilation of
proxy assignments for general row-column convex gaps with r, c > 1. Specifically,
we will show that every proxy assignment will have dilation greater than or equal
to about one-fourth of the active perimeter (rather than about one-third for the
case discussed in the case of single-row gaps (see Theorem 1 above)). Then, in Sec-
tion 5.2 we restrict our attention to rectangular gaps with r, c > 1 and present an
algorithm for a dilation-optimal and load-optimal proxy assignment for such gaps.
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5.1 Lower Bound on Dilation

Theorem 3 establishes a lower bound on the dilation of any proxy assignment
for row-column convex gaps. The idea of the proof for the theorem is inspired
by the proof of Sperner’s lemma in Aigner et al. (see [1], page 148).

Theorem 3. In a WAdL containing a row-column convex hole with r, c > 1
and active perimeter p, every proxy assignment of active perimeter devices to
the defective ones in the hole has dilation at least D = �p/4�.

Proof. Any row-column convex hole of defective devices can be easily shown to
have an even number of devices on its active perimeter. Consider a row-column
convex hole with active perimeter p. Starting at an arbitrary position on the
perimeter and proceeding clockwise, we color the active perimeter devices as
follows:

– The first �p/4� devices are colored A.
– The next �p/4� devices in order are colored B.
– The next �p/4� devices in order are colored C.
– The last �p/4� devices are colored D.

Consider any proxy assignment l that assigns an active perimeter device l(x) to a
defective device x within the gap. As usual, this proxy device is now responsible
for simulating the communication that would have ordinarily been initiated by
the device x, now defunct. The proxy assignment induces - in a natural way - a
coloring of the defective devices: the device x is given the same color (A, B, C
or D) as that given to its active proxy l(x).

Given assignment l, let Gl be the corresponding induced subgraph of the
mesh consisting of cells corresponding to the active perimeter devices and the
defective devices in the row-column convex gap enclosed by the active perimeter.
The edges of Gl replicate the mesh connectivity among adjacent devices and each
vertex of Gl is assigned the same color (A, B, C or D) as its corresponding device.

Clearly, Gl is a planar graph with square faces, except for the outer face that
traces the active perimeter contour. We now define a special kind of planar dual
of Gl as follows. Every face f of Gl (including the outer face) corresponds to
a unique vertex uf in the dual graph Gd

l . However, unlike the standard planar
dual, vertices uf and uf ′ are connected by an edge in Gd

l iff f and f ′ are adjacent
faces and the common edge between the adjacent faces f and f ′ has its endpoints
colored AB or BC or CD. (Note that Gl is not the standard planar dual.)

Figure 4(a) shows a row-column convex gap with r = 3 and c = 2, and the
coloring induced by a proxy assignment. Note that p = 14, and so there are 4
active perimeter devices colored A, 4 colored B, 3 colored C and 3 colored D.
Figure 4(b) shows the connectivity graph of the devices in dotted lines and the
dual graph as defined above in bold lines. The dual graph vertex corresponding
to the outer face is labelled u0.

Consider the dual vertex u0 that corresponds to the outer (perimeter) face
of Gl. Since the perimeter is colored in sequence with contiguous As, Bs, Cs
and Ds, it follows that u0 has degree 3 witnessed by the unique edges colored
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Fig. 4. (a) Coloring induced by a proxy assignment. (b) Dual graph.

AB, BC and CD at the color transitions. All other dual vertices correspond to
square faces of Gl and hence have degree at most 4. Moreover, by the handshake
lemma for graphs, it follows that among the remaining dual vertices (excluding
the odd-degree vertex u0), there must be an odd number of vertices of odd degree.
In particular, there must be at least one dual vertex uf that corresponds to a
mesh square (face) f and has degree 1 or 3.

It is easy to verify that up to rotational and mirror symmetries, a dual vertex
uf has degree 3 if and only if the four corners of face f in Gl are colored ABCD
in cyclic order. Also, a dual vertex uf has degree 1 if and only if face f in Gl has
corners colored ABBD, ABDA, ABDD, BCAD, CDAC or CDDA in cyclic
order (modulo rotations and mirror symmetries).

However, recall that the colors identify groups of active perimeter devices that
serve as proxies for defective devices in the gap. Hence, any edge of Gl whose
endpoints are colored AC or BD will correspond to a pair of proxies that must
be at least �p/4� apart along the perimeter. Since the shortest distance between
any two perimeter devices is indeed along the perimeter, we immediately see
from the preceding paragraph that all the faces f whose dual vertices uf have
degree 1 witness a dilation of at least �p/4� for the assignment l.

This leaves the only remaining possibility of a face f with corners colored
ABCD in cyclic order. Noting that the corners correspond to four proxies ā, b̄, c̄
and d̄ colored A, B, C and D, respectively, along the perimeter. Again, noting
that the shortest distance between proxies is along the perimeter, we have

d(ā, b̄) + d(b̄, c̄) + d(c̄, d̄) + d(d̄, ā) = p,

and hence, at least one of the distances must be greater than or equal to �p/4�.
�	
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5.2 Dilation and Load Optimal Assignment for Rectangular Gaps

In this section we provide a constant time algorithm for a dilation-optimal proxy
assignment when the gap is rectangular with at least 2 rows and 2 columns. Our
proxy assignment is load-optimal as well when the number of rows and the
number of columns are even.

Theorem 4. There exists a dilation-optimal proxy assignment for rectangular
gaps with r, c > 1. Moreover, this proxy assignment is load-optimal when r and
c are even.

Proof. The assignment scheme when r > 1 must take into account the parity of
both r and c. We give three different schemes for the following three cases:

1. r and c are even;
2. r + c is odd;
3. r and c are odd.

Recall that for each 0 ≤ a ≤ r+1 and 0 ≤ b ≤ c+1, (a, b) denotes the devices
in the a-th row and b-th column. Of these, the devices (a, b) where 1 ≤ a ≤ r
and 1 ≤ b ≤ c are the defective devices. We number the p = 2(r + c) + 4
active perimeter devices sequentially from 0 starting with the device (0, 0) and
proceeding clockwise (see Figure 5 for an example).

Case 1:
Compute d = c+r

2 + 1.
For 1 ≤ i ≤ c

2 assign:

– defective device
(

r
2 , i

)
to active perimeter device i for 1 ≤ i ≤ c

2 ;
– defective device

(
r
2 , c

2 + i
)

to active perimeter device c
2 + d + 1 − i;

– defective device
(

r
2 + 1, c

2 + i
)

to active perimeter device c
2 + 2d + 1 − i;

– defective device
(

r
2 + 1, i

)
to active perimeter device 3d + i.

For 1 ≤ j ≤ r
2 − 1 assign:

– defective device
(

r
2 − j, c

2

)
to active perimeter device 2c + 3

2r + 3 + j;
– defective device

(
r
2 − j, c

2 + 1
)

to active perimeter device c
2 + j;

– defective device
(

r
2 + 1 + j, c

2 + 1
)

to active perimeter device c + r
2 + 1 + j;

– defective device
(

r
2 + 1 + j, c

2

)
to active perimeter device 3

2c + r + 2 + j.

The assignemt can be completed by assigning defective devices from the north-
west quadrant to active perimeter devices whose number correspond to an A,
north-east with B etc. Note that as these assignment can be freely done, it is
possible to balance the number of defective devices assigned to active perimeter
devices in the contour of the gap, and thus the assignment witnesses an optimal
load.

It is easy to see that the assignment can be computed in constant time and
has dilation d = r+c

2 + 1.
An example of applying this scheme for a gap of 8 rows and 14 columns is

depicted in Figure 5.
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Fig. 5. Assignment scheme applied to a rectangular gap of 8 rows and 14 columns

For cases 2 and 3 we give a sketch of the assignment that deals only with the
most critical positions. The schemes are easy to complete but tedious to describe
in details.

Case 2:
Compute d = c+r+1

2 + 1.
Suppose w.l.o.g. that r is even and c is odd.
For 1 ≤ i ≤ r, assign the defective device (i, c) to active perimeter device

c + 1 + i.
Assign:

– the defective device
(

r
2 , � c

2�
)

to active perimeter device � c
2�;

– the defective device
(

r
2 , � c

2� + 1
)

to active perimeter device � c
2� + d;

– the defective device
(

r
2 + 1, � c

2� + 1
)

to active perimeter device � c
2�+2d−1;

– the defective device
(

r
2 + 1, � c

2�
)

to active perimeter device � c
2� + 3d − 1.

To complete the assignment, the scheme for case 1 can be applied with minor
changes.

Case 3:
Compute d = r+c

2 + 1.
For 1 ≤ i ≤ r, assign the defective device (i, c) to active perimeter device

c + 1 + i.
For j ≤ 1 < c assign the defective device (r, j) to active perimeter device

2c + r + 3 − j.
Assign:

– the defective device
(
� r

2�, � c
2�

)
to active perimeter device � c

2�;
– the defective device

(
� r

2�, � c
2� + 1

)
to active perimeter device � c

2� + d;
– the defective device

(
� r

2� + 1, � c
2� + 1

)
to active perimeter device � c

2� + 2d;
– the defective device

(
� r

2� + 1, � c
2�

)
to active perimeter device � c

2� + 3d.
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Also in this case, the assignment can be completed by applying the scheme
for case 1 with minor changes.

As the dilation obtained by the assignments given by these schemes equals
the lower bound given in Theorem 3, the thesis follows. �	

6 Conclusions and Open Problems

In this paper we study the problem of bridging gaps in wireless ad-hoc lattice
computers by assigning active devices on the perimeter of the gap as proxies
to the defective devices in the gap. We establish lower bounds on the commu-
nication dilation witnessed by such proxy assignments for single-row gaps and
general row-column convex gaps. We present dilation-optimal, constant time al-
gorithms for computing proxy assignments for single-row gaps and gaps that are
rectangular in shape. Moreover, we also show that our proxy assignments are
load-optimal.

In Section 3, we introduce the notion of thick row-column convex gaps. We
conjecture that, for any thick row-column convex gap C, the lower bound pro-
vided in Theorem 3 is tight, i.e., there exists a dilation-optimal proxy assignment
for C with dilation no more than �p/4�. We are currently working on settling
this conjecture. Establishing bounds and studying the optimality of proxy as-
signments with respect to congestion (defined in Section 3) is an interesting open
problem.
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Abstract. We present the first location oblivious distributed unit disk
graph coloring algorithm having a provable performance ratio of three
(i.e. the number of colors used by the algorithm is at most three times the
chromatic number of the graph). This is an improvement over the stan-
dard sequential coloring algorithm since we present a new lower bound
of 10/3 for the worst-case performance ratio of the sequential coloring
algorithm. The previous greatest lower bound on the performance ra-
tio of the sequential coloring algorithm was 5/2. Using simulation, we
also compare our algorithm with other existing unit disk graph coloring
algorithms.

Keywords: coloring, unit disk graph, approximation algorithms, dis-
tributed algorithms, location oblivious algorithms.

1 Introduction

A unit disk graph is a graph that admits a representation where nodes are
points in the plane and edges join two points whose distance is at most one
unit. In wireless ad hoc networks, communicating nodes are sometimes assumed
to have the same communication range. For this reason, unit disk graphs are
used to model wireless ad hoc networks. Breu and Kirkpatrick [1] showed that
determining if an abstract graph is a unit disk graph is an NP-hard problem,
which implies that finding a unit disk graph representation is also NP-hard.
This difficulty has led to the development of two varieties of algorithms on unit
disk graphs depending on how the graphs are represented. If the unit disk graph
representation is given (i.e. vertices are points in the plane and edges join pairs
of points whose distance is at most one unit) then this situation is referred to as
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location-aware since each node is aware of its geometric location. On the other
hand, if one is simply given an abstract graph (i.e. that a valid representation
exists), then this situation is referred to as location oblivious.

A coloring of a graph G is a function c mapping vertices of G to a set of colors
(which can be thought of as a set of integers) such that adjacent vertices are
assigned different colors. The graph coloring problem is to find a coloring which
uses the minimum number of colors. The minimum number of colors needed to
color a graph G is called its chromatic number and is denoted by χ(G). The
graph coloring problem is NP-complete [6], even for unit disk graphs [5]. The
performance ratio of a coloring algorithm is defined as the ratio of the number
of colors it uses over the chromatic number of the input graph. Approximation
algorithms have been proposed to address the unit disk graph coloring problem
(see Erlebach and Fiala [4] for a survey), but there exists no coloring algorithm
that is 1) distributed, 2) location oblivious, and 3) has a performance ratio of
three. In this paper, we introduce the first distributed unit disk graph coloring
algorithm that has all these three properties.

A standard approach used in the context of coloring graphs is the sequential
coloring algorithm. The sequential coloring algorithm is the algorithm that col-
ors the nodes of a graph in an arbitrary order, assigning to each node the lowest
color that has not been assigned to one of its neighbors. In the literature, the
greatest lower bound on the worst-case performance ratio of the sequential col-
oring algorithm over unit disk graphs is 5/2, by Caragiannis et al. [2]. Therefore,
it was unclear whether one slightly more complex algorithm with a performance
ratio of three is better than the trivial sequential algorithm. In this paper, we
show that algorithms having a performance ratio of three outperform the se-
quential coloring algorithm in the worst-case by providing an example where the
performance ratio of the sequential coloring algorithm is exactly 10/3.

The rest of this paper is organized as follows: In Section 2, we review related
work on coloring unit disk graphs. In Section 3, we give our coloring algorithm.
We prove its termination, correctness and performance properties in Section 4.
In Section 5, we give new lower bounds on the worst-case performance ratio
of sequential coloring of unit disk graphs. In Section 6, using simulation, we
compare the average performance ratio of our algorithm with other algorithms.
In Section 7, we discuss some optimization techniques we used to speed-up the
simulation. We conclude in Section 8.

2 Related Work

A sequential coloring algorithm takes a graph as input, computes some ordering
on the nodes, and greedily assigns colors to nodes according to that order. Each
node is assigned the lowest color that has not been assigned to any of its neigh-
bors. We denote the maximum degree of a graph G by Δ(G), and the size of
the largest clique in G (the clique number of G) by ω(G). Since the number of
colors used by a sequential coloring algorithm cannot exceed Δ(G) + 1, we have
that χ(G) ≤ Δ(G) + 1. On the other hand, since no two nodes in a clique can
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Table 1. Summary of Unit Disk Graph Coloring Algorithms Properties

distributed location worst-case
oblivious perf. ratio

sequential yes yes 5
lexicographic yes no 3
smallest-last no yes 3
our algorithm yes yes 3

have the same color, we have that χ(G) ≥ ω(G). For unit disk graphs, Marathe
et al. [7] pointed out the following relation: Δ(G) ≤ 6ω(G) − 6 (see Figure 1).
This implies that all sequential unit disk graph coloring algorithms have a per-
formance ratio of at most six. In fact, a minor adjustment of that proof shows
that the performance ratio is no greater than five [4].

What distinguishes sequential coloring algorithms from each other is the or-
der in which they color the nodes. When an arbitrary order is used, we will
simply refer to it as the sequential coloring algorithm. For graphs embedded in
the plane, the lexicographic ordering is the one induced by the (x, y) coordi-
nates of the nodes (nodes with smaller x-coordinate are colored first, with ties
broken according to the y-coordinate). For the case of unit disk graphs, Peeters
[10] showed that the lexicographical ordering achieves a performance ratio of
three. Note that this approach can be easily implemented in a distributed man-
ner provided the nodes are aware of their location. The smallest-last coloring
algorithm [9] computes the following ordering over the nodes of a graph G: a
node v of minimum degree is colored last (ties are broken arbitrarily). The rest
of the ordering is computed recursively on the graph G \ {v}. Gräf et al. [5]
showed that the smallest-last coloring algorithm achieves a performance ratio of
at most three over unit disk graphs. However, this algorithm is not distributed.
Table 1 summarizes unit disk graph coloring algorithms properties. As one can
see, there seems to be a trade-off between being distributed, location oblivious,
and having a worst-case performance ratio of three. We show that in fact, no
such trade-off exists.

3 Location Oblivious Distributed Algorithm

Lexicographic coloring achieves a performance ratio of three because for every
node u, no more than 3ω(G) − 3 neighbors of u will choose their color before u
(see Figure 1). The key of our algorithm is to show how to compute an ordering

The nodes located within each sector,
including u, form a clique.

Fig. 1. The neighborhood of a node does not contain more than 6ω(G) − 6 nodes
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that has this property in a distributed manner when the nodes do not know their
position in the plane (i.e. in a location oblivious manner). The main observation
is the following: in every unit disk graph G, there is at least one node that has
at most 3ω(G) − 3 neighbors.

We denote by ω(u) the size of a largest clique in which node u belongs. If the
neighborhood of a node u has size at most 3ω(u)−3, we say that it has the small
neighborhood property. Lexicographic coloring exploits the fact that the leftmost
node has this property. In fact, all nodes on the convex hull of the nodes also
have this property. Since the size of a maximum clique in a unit disk graph can
be computed in polynomial time, even without the unit disk representation [11],
each node can locally determine whether or not it has the small neighborhood
property. Notice that since ω(u) ≤ ω(G) for every node u, if a node has the small
neighborhood property, then it also has at most 3ω(G) − 3 neighbors.

The intuition behind our algorithm is the following: in order to reach a per-
formance ratio of three, nodes having the small neighborhood property can pick
their colors after their neighbors. We then remove all these nodes from the graph,
recursively color the remaining subgraph, put the removed nodes back in, and
then sequentially color them. Recursion is guaranteed to make progress because
there are always nodes having the small neighborhood property. What remains
to be shown is how this can be done in a distributed manner.

The distributed algorithm works in two phases. In the first phase, the nodes
establish a local order by each selecting a rank. The ranks, together with the
identifier, determine the local order in which they will decide their color. The
second phase is the actual coloring. Each phase is event-driven, i.e. the nodes do
not need synchronous clocks.

Algorithm 1. RankingPhase(id, Gid)
Input: id, a node identifier

N , a list containing the identifiers of the neighbors of node id
Gid, the subgraph of G induced by N

Output: ranks, a table containing the neighbors ranks
1: max clique ← ω(Gid)
2: while {u ∈ N : ranks[u] = 0} �= ∅ do
3: if ranks[id] = 0 and |{u ∈ N : ranks[u] = 0}| ≤ 3 ∗ max clique − 3 then
4: ranks[id] ← max{u ∈ N : ranks[u]} + 1
5: send rank(id, ranks[id])
6: else
7: receive rank(u, r)
8: ranks[u] ← r
9: end if

10: end while

The underlying idea of the ranking algorithm is the following: we want to make
sure that for every node u of a unit disk graph G, no more than 3ω(u) − 3 ≤
3ω(G) − 3 nodes pick their color before u. In order to ensure this, each node
u collects the connectivity information of its distance one neighborhood and
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Algorithm 2. ColoringPhase(id, N, ranks)
Input: id, a node identifier

N , a list containing the identifiers of the neighbors of node id
ranks, a table containing the neighbors’ ranks

Output: colors, a table containing the node’s colors (initial values are all 0)
1: while {u ∈ N : colors[u] = 0} �= ∅ do
2: if colors[id] = 0 and

�u ∈ N : colors[u] = 0 and 〈ranks[id], id〉 < 〈ranks[u], u〉 then
3: colors[id] ← min{i > 0 : {u ∈ N : colors[u] = i} = ∅}
4: send color(id, colors[id])
5: else
6: receive color(u, c)
7: colors[u] ← c
8: end if
9: end while

computes ω(u). A node u having a total number of neighbors less than or equal
to 3ω(u) − 3 (i.e. having the small neighborhood property) selects rank one and
informs its neighbors of its decision. A node u having more than 3ω(u) − 3
neighbors must wait. Ranking information from neighbors is recorded in a table.
When the number of neighbors of a node u with undetermined rank becomes
less than or equal to 3ω(u) − 3, node u takes a rank that is one more than the
maximum rank among its neighbors. Node u then informs its neighbors about
its decision. A node u terminates the ranking phase when all its neighbors have
chosen their rank. Algorithm 1. gives the details of the ranking phase.

When all neighbors have chosen their ranks, a node may start the coloring
phase. Note that two neighbors may have chosen the same rank. Locally, nodes
then choose their color according to the order induced by the pair 〈rank, id〉.
Nodes with higher rank pick their color first, and ties are broken according to
their identifier. Algorithm 2. gives the details of the coloring phase.

4 Theoretical Properties

Proposition 1. After Algorithm 1. terminates, all nodes have selected a rank.

Proof: Suppose after Algorithm 1. terminates, there is a set of nodes S of G which
have not yet chosen their rank. This means that every node u ∈ S has more than
3ω(u) − 3 neighbors which have not yet chosen their rank (i.e. which are in S).
In particular, this is true for a node v which is on the convex hull of S. Also,
since v is on the convex hull of S, all of its neighbors which are in S are located
on a half-plane whose boundary passes through v. As for lexicographic coloring,
v cannot have more than 3ω(v) − 3 neighbors in S, which is a contradiction.
Therefore, when no more messages are being sent, all nodes have chosen their
ranks. �

Proposition 2. Algorithm 2. produces a valid coloring.
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Proof: First of all, Algorithm 2. terminates. The reason for this is that, among
the nodes which have not yet chosen their color, there is always a node which is
a global maximum according to the ordered pair 〈rank, id〉. In particular, this
node is a local maximum which will pick its color. Also, no two neighbors can
pick their color at the same time. This is because the ordered pair 〈rank, id〉
induces a total order on the nodes. Therefore, of two neighbor nodes which have
not picked their color, at most one of them can satisfy the condition on line 2.
Finally, no two neighbors can pick the same color. This is because the second
one will only pick a color which is still available (line 4). �

Lemma 1. For a node u of a unit disk graph G, let h(u) denote the number of
neighbors of u with higher rank than the rank of u. Then |h(u)| ≤ 3ω(u) − 3.

Proof: In Algorithm 1., a node u will choose its rank only when fewer than
3ω(u)−3 of its neighbors have undetermined rank (line 3). Also, when u chooses
its rank, it chooses it such that it is greater than all ranks that have been chosen
in its neighborhood. Therefore, only less than 3ω(u)− 3 nodes could potentially
choose rank greater than the one chosen by u. �

Proposition 3. Using the order computed by Algorithm 1., the color chosen by
a node u in Algorithm 2. is less than or equal to 3ω(u) − 2.

Proof: In the neighborhood of u, only nodes with rank greater than u can choose
their color before u. By Lemma 1, there are no more than 3ω(u)− 3 such nodes.
Therefore, the color chosen by u is no greater than 3ω(u) − 2. �

Theorem 1. Using the order computed by Algorithm 1., the number of colors
used by Algorithm 2. to color a unit disk graph G is no greater than three times
the optimal. During the execution of these algorithms, each node sends exactly
two messages.

Proof: By Proposition 3, all nodes u are assigned color at most 3ω(u) − 2 ≤
3ω(G)−2. The performance ratio follows from the fact that at least ω(G) colors
are needed to color G. In Algorithm 1., each node sends exactly one rank

message. In Algorithm 2. each node sends exactly one color message. Therefore,
each node sends exactly two messages. �

5 Lower Bounds

We now give new lower bounds on the worst-case performance ratio of the se-
quential coloring algorithm for unit disk graphs. The currently greatest lower
bound is 5/2, given by Caragiannis et al. [2]. To prove a lower bound of b, we
have to show that there exists a unit disk graph G for which there exists an
ordering < of the nodes such that the number of colors used by the sequential
coloring algorithm is at least b ·χ(G). The construction of such a unit disk graph
proceeds as follows: first, decide what the chromatic number of the graph will be.
Then, at least one node must pick color b · χ(G). In order to ensure this, it must
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have at least b·χ(G)−1 neighbors, picking all colors ranging from 1 to b·χ(G)−1.
The construction of the graph then continues recursively in order to force these
nodes to pick these colors. To force the sequential algorithm to use many colors,
one needs to construct a graph with vertices of high degree. The difficulty lies
in increasing the degree of vertices without increasing the chromatic number of
the graph.

We first prove a lower bound of three. A case where a performance ratio of
three can be reached is shown in Figure 2.1 This graph is bipartite (no two dashed
nodes touch each other, and no two solid nodes touch each other). Hence, it can
be colored with two colors. However, it is also possible to order the nodes in such
a way that the sequential coloring algorithm uses six colors: simply order them
in non-decreasing order of labels. Using this ordering, the sequential coloring
algorithm will then use six colors whereas only two colors are necessary, which
means that in that case, it achieves a performance ratio of three. Thus, since the
graph shown in Figure 2 is triangle-free, we have proved the following:

Proposition 4. For triangle-free unit disk graphs, the worst-case performance
ratio of the sequential coloring algorithm is at least three.

The reason why it is interesting to restrict the preceding proposition to triangle-
free unit disk graphs is that the bound is tight for that class of graphs, as shown
below.

Proposition 5. For triangle-free unit disk graphs, the worst-case performance
ratio of the sequential coloring is at most three.

Proof: Suppose that there exists a node u of a unit disk graph G such that the
color attributed to u by the sequential coloring algorithm is 7. This means that
u has degree at least 6. Since no node of a unit disk graph can have more than
1 The exact positions of the points generating the unit disk graphs of Figure 2 and

Figure 3 can be found in the technical report version of this paper [3].
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five independent neighbors [7], at least two of these six neighbors, say v and w,
are neighbors of each other. Therefore, v, w and u form a triangle, which means
that G is not triangle-free. �

For graphs that are not necessarily triangle-free, we show a worst-case lower
bound of 10/3. The construction is depicted in Figure 3. As one can see, this
graph can be colored using only three colors (solid, dashed and dotted nodes
form a 3-partition of the graph). However, there exists an ordering of the nodes
such that sequentially coloring the graph in that order uses ten colors, leading to
a performance ratio of 10/3. In order to force the sequential coloring algorithm to
use ten colors, the solid bold node which has degree nine is colored last. Its nine
neighbors are forced to take all colors ranging from one to nine thereby forcing
color ten on the solid bold node. The coloring of its neighbors is forced in a
similar fashion. The existence of this graph allows us to conclude the following:
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Proposition 6. For unit disk graphs, the worst-case performance ratio of the
sequential coloring algorithm is at least 10/3.

The importance of this last result is that we now have a confirmation that there
exist cases where it is worth making the effort of computing an ordering which is
guaranteed to achieve a performance ratio of three. However, as we see from our
simulations, when nodes are randomly and uniformly placed in a unit square,
all strategies are equally good on average.

6 Simulation Results

In the preceding section, we saw that it is fairly complicated to build an example
where the sequential coloring algorithm achieves a performance ratio worse than
three. Here, using simulation, we compare the coloring algorithm introduced in
this paper with other existing coloring algorithms. We gave our nodes a fixed
radius of 0.05, meaning that two nodes share an edge if and only if they are at
distance 0.05 or less of each other. We first randomly generated 400 unit disk
graphs of 200 nodes each. Nodes have been placed on a unit square (a square
of side length equal to one) and their x and y-coordinates have been chosen
following a uniform distribution. We also generated unit disk graphs having up
to 2000 nodes, by incrementally adding 100 nodes to each of the 400 unit disk
graphs.

We then colored each of these unit disk graphs using five different coloring
algorithms. Using the heuristic described in the next section, we also computed a
lower bound on the size of the maximum clique for each of these unit disk graphs.
In order to optimize the running time of the simulation, the same heuristic has
also been used to simulate the three-cliques-last coloring algorithm.

The five coloring algorithms we have used are the following: sequential (nodes
are colored in the order induced by their identifier), three-cliques-last (the al-
gorithm introduced in this paper), lexicographic (nodes are colored from left
to right), smallest-last (nodes of small degree are colored last) and largest-first
(nodes of large degree are colored first).

The difference between smallest-last and largest-first is the following: in
smallest-last, a node u with minimum degree in a graph G is colored last, and
the order in which the other nodes are colored is computed recursively on the
graph G \ {u}. In largest-first, a node u with maximum degree is colored first,
and the order in which the other nodes are colored is computed recursively on
the same graph.

Figure 4 shows the simulation results we obtained. It displays the average
number of colors used by each algorithm as a function of the number of nodes
in the graph. It also plots the average estimated value of the size of a maximum
clique. As explained in the next section, this estimated value is a lower bound
on the actual size of a maximum clique. Therefore, it is also a lower bound on
the chromatic number. The exact values of our simulation results can be found
in the technical report version of this paper [3].
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The first observation that can be made by looking at the simulation results
is that the algorithm we proposed in this paper (three-cliques-last) provides
almost no significant improvement over sequential coloring. In fact, the difference
between values obtained for the two algorithms is less than the width of the
95% confidence interval. However, this does not really mean that our algorithm
performs badly. What it really means is that sequential coloring performs better
than expected.

Also, it is not surprising to see that the algorithm which performed the best
is the smallest-last coloring. The span of an ordering is defined as the maxi-
mum, over all nodes u, of the number of neighbors of u that have smaller index
than u. Matula [8] showed that smallest-last ordering attains minimum span.
Since the span of an ordering provides an upper bound on the number of col-
ors that will be used, smallest-last coloring can be expected to provide good
results.

What is really interesting is to see is that largest-first coloring provided better
results than both three-cliques-last and lexicographic. There is no known proof
that largest-first has a performance ratio better than five, and still it performs
better than algorithms which have an upper bound of three on the performance
ratio. Since largest-first is distributed, location oblivious and simpler to im-
plement than three-cliques-last, looking at the simulation results allows us to
conclude that it is preferable to use largest-first even though there is no proof
that it performs better.
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7 Simulation Optimization

Since computing the maximum clique in the neighborhood of a node can be quite
time consuming for simulation purposes, we used some heuristics to compute a
lower bound on the size of a largest clique. The main idea of our heuristic is
the following: the size of the largest clique is the maximum number of nodes
contained in a subset of the plane whose diameter is at most one. Since the geo-
metric shape maximizing an area of fixed diameter is the circle, it is reasonable
to expect that the maximum number of nodes contained in a disk of radius one
is a good approximation of the size of a maximum clique. Since it is sufficient
to look at disks having two nodes on their boundaries, the maximum number of
points contained in a disk of radius one can be computed in time O(n3).

For a node u, let C(u) be the maximum number of nodes contained in a
disk of radius one which also contains u, ω(u) be the size of a maximum clique
containing u, and N(u) be the set containing u and its neighbors. The heuristic
we used is the following: if |N(u)| ≤ 3C(u)− 3, then use C(u) as an estimate for
ω(u). Otherwise, compute the exact value of ω(u). Using this estimate instead of
computing the exact value of ω(u) does not affect the simulation results. If a node
u is such that |N(u)| ≤ 3C(u)−3, then it is also the case that |N(u)| ≤ 3ω(u)−3
and therefore it will be assigned rank one in Algorithm 1. anyway.

Table 2. Percentages of nodes u such that |N(u)| ≤ 3C(u) − 3

nodes % nodes % nodes % nodes %
100 0.9999 600 0.9977 1100 0.9968 1600 0.9957
200 0.9996 700 0.9976 1200 0.9966 1700 0.9953
300 0.9991 800 0.9975 1300 0.9964 1800 0.9950
400 0.9987 900 0.9971 1400 0.9962 1900 0.9946
500 0.9982 1000 0.9971 1500 0.9960 2000 0.9943

Table 2 shows the proportion of nodes u which were such that |N(u)| ≤
3C(u) − 3. The 95% confidence interval for these values is at most ±0.0002.
The first observation to be made is that the heuristic allowed us to accelerate
the simulation in more than 99% of the cases. This means that the heuristic
was worth using it. The second observation to be made is that the percentages
diminish as the graph becomes denser. This makes sense, because the area of a
disk of diameter one is only 1/4 the area of the unit disk around a node.

The most important observation to be made is that all nodes such that
|N(u)| ≤ 3C(u) − 3 are assigned rank one in Algorithm 1.. Therefore, Table 2
also gives a lower bound on the proportion of nodes which are assigned rank one.
Since this proportion is always higher than 99%, the order used by Algorithm 2.
in the second phase is almost the same as the one used by the sequential algo-
rithm, and this gives an intuition of why the simulation results are so similar for
these two algorithms.
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8 Conclusion

We presented the first distributed location oblivious coloring algorithm which
achieves a performance ratio of three on unit disk graphs. However, simulation
results showed that this algorithm does not provide a significant improvement
over the algorithm which sequentially colors the nodes in an arbitrary order.
Simulation results also showed that, in the average case, largest-first (which is
also distributed and location oblivious) performs better than the algorithm we
proposed. It also performs better than lexicographic coloring, which also has
a worst-case performance ratio of at most three. However, no one has shown
whether largest-first has a better worst-case performance ratio than five. In fact,
it is also an open question whether coloring the nodes of a unit disk graph in
an arbitrary order can, on the worst case, use less than five or more than 10/3
times the minimum number of colors that are necessary.
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Abstract. Let G be a kG-edge connected graph and Dc(G) denote the
diameter of G after deleting any of its c < kG edges. We prove that if
G1, G2, . . . , Gq are k1-edge connected, k2-edge connected,. . . , kq-edge
connected graphs and 0 ≤ a1 < k1, 0 ≤ a2 < k2,. . . , 0 ≤ aq < kq

and a = a1 + a2 + . . . + aq + (q − 1), then the edge fault-diameter of
G, the Cartesian product of G1, G2, . . . , Gq , with a faulty edges is
Da(G) ≤ Da1(G1) + Da2(G2) + . . . + Daq (Gq) + 1.

Keywords: Cartesian graph products, edge fault-diameter, interconnec-
tion network.

1 Introduction

In the design of large interconnection networks several factors have to be taken
into account. A usual constraint is that each processor can be connected to a
limited number of other processors and the delays in communication must not
be too long. Extensively studied network topologies in this context include graph
products and bundles. For example the meshes, tori, hypercubes and some of
their generalizations are Cartesian products. It is less known that some well-
known topologies are Cartesian graph bundles, i.e. some twisted hypercubes
[5,8] and multiplicative circulant graphs [16]. Other graph products, sometimes
under different names, have been studied as interesting communication network
topologies [16,15,4].

Furthermore, an interconnection network should be fault-tolerant. Since nodes
and edges of a network do not always work, if some nodes or edges are faulty,
some information may not be transmitted through these nodes and by these
edges. Usually, it is assumed that either only nodes or only edges are faulty
and hence either node fault-diameter (or, simply, fault diameter) or edge fault-
diameter is studied. The fault diameter has been determined for many important
networks recently [7,6,14,18]. The concept of fault diameter of Cartesian product
graphs was first described in [13], but the upper bound was wrong, as shown
by Xu, Xu and Hou who corrected the mistake [18]. An upper bound for the
fault diameter of Cartesian graph bundles was given in [1] and for arbitrary
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Cartesian products in [2]. When a preliminary version of [1,2] was presented at
the conference [3], a question was asked whether similar results can be proved
for the edge fault-diameter.

In this paper we study the diameter of a graph after deleting some of the
edges. As a k-edge connected graph remains connected if up to k − 1 edges are
missing, we study the diameter of a graph with any permitted number of edges
deleted. In this paper, we prove the three theorems listed below.

Theorem 1. Let G1, G2, . . . , Gq be k1-edge connected, k2-edge connected,. . . ,
kq-edge connected graphs. Let 0 ≤ a1 < k1, 0 ≤ a2 < k2,. . . , 0 ≤ aq < kq and
a = a1 + a2 + . . . + aq + (q − 1). Then the edge fault-diameter of a graph G, the
Cartesian product of G1, G2, . . . , Gq, with a faulty edges is

Da(G) ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1.

In fact, Theorem 1 implies a more precise result for an upper bound of the edge
fault-diameter of a Cartesian product of graphs:

Theorem 2. Let G1, G2, . . . , Gq be k1-edge connected, k2-edge connected,. . . ,
kq-edge connected graphs, and G the Cartesian product of G1, G2, . . . , Gq. Let
0 ≤ a < k1 + k2 + . . . + kq. Then

Da(G) ≤ min{Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1 |

a1 + a2 + . . . + aq = a − (q − 1), 0 ≤ a1 < k1, 0 ≤ a2 < k2, . . . , 0 ≤ aq < kq}.

Furthermore, for cases with a small number of faulty edges we prove the exact
formula for computing the edge fault-diameter:

Theorem 3. Let G1, G2, . . . , Gq be connected graphs, and G = �q
i=1Gi. Then

1. Da(G) =
∑q

i=1 D0(Gi) = D0(G) for 0 ≤ a < q − 1;
2. D0(G) ≤ Dq−1(G) ≤ D0(G) + 1.

Note that D0(G) is just the diameter of G. In fact we prove more than stated
in Theorem 3, namely: if all the factors are trees and there is a factor that is a
complete graph (i.e. K2), then Dq−1(G) = D0(G) + 1; and if none of the factors
is a complete graph, then Dq−1(G) = D0(G).

While the results proven here are very similar to the results for the node fault
version [2] and the methods used are similar, we were not able to find a faster
proof, for example a theorem which would ”translate” the results from node fault
version to the edge fault version of the theorems. It may be an interesting task to
look for such a tranformation or to find reasons why this seemingly is difficult.
On the positive side, we believe that the same method can be used to prove
the edge fault version of the result [1] for graph bundles. Another interesting
question is whether the approach can be extended to prove analogous bounds
for the mixed problem, in which both nodes and edges may be faulty.
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2 Preliminaries

A simple graph G = (V, E) is determined by a vertex set V = V (G) and a set
E = E(G) of (unordered) pairs of vertices, called the set of edges. As usual,
we will use the short notation uv for edge {u, v}. Two graphs G1 and G2 are
isomorphic, G1 � G2, if there is a bijection between the vertex sets that preserves
adjacency.

Let G1 and G2 be graphs. The Cartesian product of graphs G1 and G2, G =
G1�G2, is defined on the vertex set V (G1)×V (G2). Vertices (u1, v1) and (u2, v2)
are adjacent if either u1u2 ∈ E(G1) and v1 = v2 or v1v2 ∈ E(G2) and u1 = u2.
For u ∈ V (G1) we define the layers G2(u) = {(u, x) | x ∈ V (G2)} and for
v ∈ V (G2) the layers G1(v) = {(x, v) | x ∈ V (G1)}. The layers are clearly
isomorphic to factors, G1(u) � G1 and G2(v) � G2. For further reading on
graph products we recommend [9].

A walk between x and y is a sequence of vertices and edges v0, e1, v1, e2, v2,
. . . , vk−1, ek, vk where x = v0, y = vk, and ei = vi−1vi for each i. A walk with
all vertices distinct is called a path. The length of a path P , denoted by �(P ), is
the number of edges in P . The distance between vertices x and y is the length
of a shortest path between x and y in G. The diameter of a graph G, d(G), is
the maximum distance between any two vertices in G. A path P in G, defined
by a sequence x = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = y can alternatively be seen
as a subgraph of G with V (P ) = {v1, v2, . . . , vk} and E(P ) = {e1, e2, . . . , ek}.

Let G be a graph, x, y ∈ V (G) distinct vertices, P a path from x to y in G,
and z ∈ V (P ) \ {x, y}. We will use x

P→ z to denote the subpath P̃ ⊆ P from x
to z. If z is adjacent to x in P , we will simply use x → z.

Let G = G1�G2, P a path in G2, and v a vertex of G1. For simplicity of
notation, we will also use P to denote the path {v}�P in the layer G2(v).

Let G be a graph and X ⊆ V (G). A path P from a vertex x to a vertex y avoids
X in G, if V (P ) ∩ X = ∅, and it internally avoids X , if (V (P ) \ {x, y})∩X = ∅.

The edge connectivity of a graph G, λ(G), is the minimum cardinality over all
edge-separating sets in G. A graph G is said to be k-edge connected, if λ(G) ≥ k.
An x, y-edge cut is an edge-separating set that separates x and y, i.e. where the
nodes x and y are in different connected components.

To state that G is 1-edge connected we will sometimes simply say it is edge
connected, or, even shorter, connected.

One of the Menger’s theorems (see, for example, [17], page 167) reads:

Theorem 4. (Menger) If x and y are vertices of a graph G and (x, y) /∈ E(G),
then the minimum size of an x, y-edge cut equals the maximum number of pair-
wise edge disjoint x, y-paths.

The following well-known corollary easily follows

Corollary 1. Let G be a k-edge connected graph and δG be its minimum degree.
Then δG ≥ k.
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For Cartesian product graphs, there is a well-known bound for the edge connec-
tivity of the product (see for example [7]).

Corollary 2. Let G1 and G2 be k1 and k2-edge connected graphs, respectively.
Then G1�G2 is at least (k1 + k2)-edge connected.

Let G be a graph and x ∈ V (G) a vertex. The neighborhood of the vertex x in
the graph G, NG(x), is the set of all vertices in G that are adjacent to x.

Let G be a k-edge connected graph and 0 ≤ a < k. Then we define the a-edge
fault-diameter of G as

Da(G) = max {d(G \ X) | X ⊆ E(G), |X | = a}.

Note that Da(G) is the largest diameter among subgraphs of G with a edges
deleted, hence D0(G) is just the diameter of G. For a ≥ k, the edge fault-diameter
of k-edge connected graph does not exist. In this case we write Da(G) = ∞ as
some of the graphs are not edge connected.

3 Product of q Factors

Before proving Theorem 1, let us prove Lemma 1, which will be useful in the
proof of Theorem 1.

Lemma 1. Let G1, G2, . . . , Gq be 1-edge connected graphs, and G = �q
i=1Gi.

Then

1. Da(G) =
∑q

i=1 D0(Gi) = D0(G) for 0 ≤ a < q − 1;
2. D0(G) ≤ Dq−1(G) ≤ D0(G) + 1;
3. if none of the factors Gi is a complete graph, then Dq−1(G) = D0(G);
4. if all of the factors Gi are trees and at least one of Gi is a K2, then

Dq−1(G) = D0(G) + 1.

Proof. Let x and y be two distinct vertices of G. For each i = 1, 2, 3, . . . , q, let
pi : G → Gi be the projection on Gi.

Case 1. pi(x) �= pi(y) for all i. Then there are at least q edge-disjoint paths P
of length �(P ) ≤

∑q
i=1 D0(Gi) = D0(G). As a < q, at least one of them avoids

faulty edges. Therefore there is a path P in G such that P avoids faulty edges,
and �(P ) ≤ D0(G). Therefore Da(G) ≤ D0(G).

Case 2. pi(x) = pi(y) for at least two indices i. Without loss of generality,
assume that pi(x) �= pi(y) for i=1,2,. . . ,k and pi(x) = pi(y) for i=k+1,. . . , q.
There are at least k edge disjoint shortest paths between x and y within the
first k factors. The length of these paths is at most � =

∑k
i=1 D0(Gi). We can

construct additional q − k edge disjoint paths from x to y of length � + 2 as
follows. Take any of the shortest paths P , choose a neighbor in the i-th factor
(for i = q, q − 1, . . . , k + 1) and construct a new path.

x → u
P→ v→y
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More precisely, for i = q, take u = (x1, . . . , xk, xk+1, xk+2, . . . , xq−1, uq), a neigh-
bor of x. Then v = (y1, . . . , yk, xk+1, xk+2, . . . , xq−1, uq) is a neighbor of y and
there is a path of length 1+�+1 from x to y. Clearly �+2 ≤

∑k
i=1 D0(Gi)+q−k ≤∑q

i=1 D0(Gi).

Case 3. pi(x) = pi(y) for exactly one i. Say pq(x) = pq(y). Then there are at
least q − 1 edge disjoint paths P from x to y in the layer L(x) = p−1

q (pq(x))
with length �(P ) ≤

∑q−1
i=1 D0(Gi) <

∑q
i=1 D0(Gi). If a < q − 1, then there is

a path P in G that avoids faulty edges and �(P ) ≤
∑q

i=1 D0(Gi) = D0(G).
Therefore Da(G) ≤ D0(G). If a = q − 1, then either one of the paths has no
faulty edges or all the faulty edges appear in L(x). In the worst case (if all
the faulty edges appear in L(x)) there is a path P from x to y with length
�(P ) ≤ 1 +

∑q−1
i=1 D0(Gi) + 1 ≤ D0(G) + 1. Therefore Da(G) ≤ D0(G) + 1.

Summarizing, we have Da(G) ≤ D0(G) for a < q − 1. As Da(G) ≥ D0(G)
for each a, hence Da(G) = D0(G) =

∑q
i=1 D0(Gi) for all a, 0 < a < q − 1. If

a = q − 1, then we have Da(G) ≤ D0(G) + 1 and hence D0(G) ≤ Da(G) ≤
D0(G) + 1 =

∑q
i=1 D0(Gi) + 1. Furthermore, if there is an integer i such that

Gi is a complete graph, then d(Gi) < 2, and it is easy to construct examples
showing that Dq−1(G) = D0(G) + 1. If none of the factors is a complete graph,
i.e. d(Gi) ≥ 2 for all integers i, then Dq−1(G) = D0(G).

Now assume that all graphs Gi are trees and at least one factor is a K2.
Let Gq = K2 and let v = (v1, v2, . . . , vq−1, 1) and u = (u1, u2, . . . , uq−1, 1) be
two vertices at maximal distance in (�q−1

i=1 Gi)�{1}, i.e. such that vi and ui

are at maximal distance in Gi for each i = 1, 2, . . . q − 1. As (�q−1
i=1 Gi)�{1} is

(q − 1)−edge connected, it is clear that q − 1 faulty edges may cut all the paths
between u and v in (�q−1

i=1 Gi)�{1}. Hence Dq−1(G) = D0(G) + 1. �
Example 1. Let G = Qq = �q

n=1K2. Then G is q-edge connected. It follows from
Lemma 1 that Dq−1(G) = q + 1, and Da(G) = D0(G) = q for 0 ≤ a < q − 1.
(See Fig. 1.)

In the proof of Lemma 1 we only used the assumption that the factors are edge
connected, therefore essentially the same proof gives

Theorem 3. Let G1, G2, . . . , Gq be edge connected graphs, and G = �q
i=1Gi.

Then

1. Da(G) =
∑q

i=1 D0(Gi) = D0(G) for 0 ≤ a < q − 1;
2. D0(G) ≤ Dq−1(G) ≤ D0(G) + 1.

Now we recall and prove Theorem 1.

Theorem 1. Let G1, G2, . . . , Gq be k1-edge connected, k2-edge connected,. . . ,
kq-edge connected graphs. Let 0 ≤ a1 < k1, 0 ≤ a2 < k2,. . . , 0 ≤ aq < kq and
a = a1 +a2 + . . .+aq +(q −1). Then the edge fault-diameter of G, the Cartesian
product of G1, G2, . . . , Gq, with a faulty edges is

Da(G) ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1.
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x

y

Fig. 1. D2(Q3) = D0(Q3) + 1 = 3 + 1 = 4

Proof. We prove the result by induction on the number of factors. The assertion
holds for q = 1, trivially.

Let G = �q
i=1Gi, X ⊆ E(G), such that |X | = a, and let x = (x1, x2, . . . , xq)

and y = (y1, y2, . . . , yq) ∈ V (G). We shall construct a path P from x to y in
G \ X such that the length �(P ) ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1. We
assume that the theorem holds for less than q factors and show that it holds also
for q ≥ 2 factors.

In the rest of the proof below we also assume that there is at least one fac-
tor which is more than 1-edge connected. (Recall that we proved the claim of
Theorem 1 for a product of 1-edge connected graphs by proving Lemma 1.)

Let for each i = 1, 2, 3, . . . , q, pi : G → Gi be the i-th projection on Gi.

Case 1. pi(x) = pi(y) for some i. Without loss of generality, we can say i = q.
For each u ∈ V (Gq) let w(u) = |X ∩ p−1

q (u)| and for each e ∈ E(Gq) let
w(e) = |X∩p−1

q (e)|. If w(pq(x)) < a−aq then there is a path P in p−1
q (pq(x)) ⊆ G

from x to y with the required length, by induction. Assume w(pq(x)) ≥ a − aq.
The vertex pq(x) has at least aq +1 neighbors z1, z2, z3, . . . , zaq+1 in Gq because
Gq is at least (aq + 1)-edge connected. As w(pq(x)) ≥ a − aq, there is an index
i ∈ {1, 2, 3, . . . , aq + 1} such that w(ei) = 0 and w(zi) = 0, where ei = pq(x),
zi ∈ E(Gq). Therefore there is a path P̃ in p−1

q (zi) from (x1, x2, . . . , xq−1, zi) to
(y1, y2, . . . , yq−1, zi) with length �(P̃ ) ≤ D0(G1) + D0(G2) + . . . + D0(Gq−1) and

P : x → (x1, x2, . . . , xq−1, zi)
P̃→ (y1, y2, . . . , yq−1, zi) → y

is a path from x to y in G with length �(P ) ≤ 1 + D0(G1) + D0(G2) + . . . +
D0(Gq−1) + 1 ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1.

Case 2. pi(x) �= pi(y) for all i. Let Gq be one of the factors which is more than
1-edge connected. As before, let w(u) = |X ∩ p−1

q (u)| for each u ∈ V (Gq) and
w(e) = |X ∩ p−1

q (e)| for each e ∈ E(Gq). We distinguish two subcases.
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Subcase 2.1. w(pq(x)) ≥ a−aq or w(pq(y)) ≥ a−aq. We may assume w(pq(x)) ≥
a − aq. Then there is a neighbor u of pq(y) in Gq such that w(u) = 0 and
w(pq(x)u) = 0 (recall that p(y) has at least aq + 1 neighbors in Gq). Therefore
there is a path P̃ in p−1

q (u) from (y1, y2, . . . , yq−1, u) to (x1, x2, . . . , xq−1, u) with
length �(P̃ ) ≤ D0(G1) + D0(G2) + . . . + D0(Gq−1). There are at most aq faulty
edges in the layer of x, |Gq(x) ∩ X | ≤ aq < aq + 1, and hence there is a path Q
from (x1, x2, . . . , xq−1, u) to x in Gq(x) with length �(Q) ≤ Daq(Gq). Therefore
the path (see Fig. 2)

P : y → (y1, y2, . . . , yq−1, u) P̃→ (x1, x2, . . . , xq−1, u)
Q→ x

is a path from y to x in G with length �(P ) ≤ 1 + D0(G1) + D0(G2) + . . . +
D0(Gq−1) + Daq(Gq) ≤ Da1(G1) + Da2(G2) + Da3(G3) + . . . + Daq(Gq) + 1.

x

y

(x ,x ,u)1 2

(y ,y ,u)1 2

Fig. 2. The construction of a path in subcase 2.1. for q = 3

Subcase 2.2. w(pq(x)) < a − aq and w(pq(y)) < a − aq.
Assume first w(pq(x))+w(pq(y)) > a− aq. In E(Gq) there are at most aq − 1

edges e, such that w(e) > 0. As Gq is at least (aq + 1)-edge connected, there
is a neighbor v of pq(x) with w(v) = 0 and w(pq(x)v) = 0. We construct a
path P̃ in Gq from v to pq(y) with length �(P̃ ) ≤ Daq(Gq), such that w(e) = 0
for each edge e of P̃ . As w(v) = 0, there is a path Q from (x1, x2, . . . , xq−1, v)
to (y1, y2, . . . , yq−1, v) in p−1

q (v) with length �(Q) ≤ D0(G1) + D0(G2) + . . . +
D0(Gq−1). Therefore the path (see Figure 3)

P : x → (x1, x2, . . . , xq−1, v)
Q→ (y1, y2, . . . , yq−1, v) P̃→ y

is the path from x to y in G with length �(P ) ≤ 1 + D0(G1) + D0(G2) + . . . +
D0(Gq−1) + Daq(Gq) ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1.

Now assume w(pq(x)) + w(pq(y)) ≤ a − aq. If there are less than aq edges e
in Gq, such that w(e) > 0, then it is easy to construct a required path P from
x to y in G. Otherwise, we claim that there is a path P̃ from pq(x) to pq(y) in
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x

y

(x ,x ,v)1 2

(y ,y ,v)1 2

Fig. 3. The construction of the path P for q = 3 in subcase 2.2

Gq such that w(P̃ ) ≤ a − aq. This is easily seen as follows: In the subgraph Gq,
choose a set Y of aq edges with maximal w. Then w(Gq \ Y ) ≤ a − aq and from
the (aq +1)-edge connectivity of Gq it follows that there is a path P̃ of length at
most �(P̃ ) ≤ Daq (Gq) and with w(P̃ ) ≤ a − aq, which proves the claim. Let p :
G1�G2� . . . �Gq−1�P̃ → G1�G2� . . .�Gq−1 be the projection, defined with
p(x1, x2, . . . , xq−1, xq) = (x1, x2, . . . , xq−1). For each u ∈ V (G1�G2� . . .�Gq−1)
let W (u) = |p−1(u) ∩ X | and for each e ∈ E(G1�G2� . . .�Gq−1) let W (e) =
|p−1(e) ∩ X |. We consider next two possibilities.

– W (p(x)) = 0 or W (p(y)) = 0. Say W (p(x)) = 0. Therefore there is a path Q
from x to (x1, x2, . . . , xq−1, yq) in p−1(x), such that �(Q) ≤ �(P̃ ) ≤ Daq(Gq).
As w(pq(y)) < a−aq, there is a path Q̃ in p−1

q (p(y)) from(x1, x2, . . . , xq−1, yq)
to y with length �(Q̃) ≤ Da1(G1) + Da2(G2) + . . . + Daq−1(Gq−1) + 1. Hence

P : x
Q→ (x1, x2, . . . , xq−1, yq)

Q̃→ y

is a path from x to y in G, such that �(P ) ≤ D0(Gq)+Da1(G1)+Da2(G2)+
. . .+Daq−1 (Gq−1)+1 ≤ Da1(G1)+Da2(G2)+. . .+Daq(Gq)+1 (see Figure 4).

x

y
(x ,x ,y )1 2 3

Fig. 4. The construction of the path P for q = 3 when W (p(x)) = 0
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– W (p(x)) > 0 and W (p(y)) > 0. Recall that w(P̃ ) ≤ a − aq, i.e. |(G1�G2�
. . . �Gq−1�P̃ ) ∩ X | ≤ a − aq. We consider next two possibilities.

• If q > 2, there is a path Q from p(x) to p(y) in G1�G2� . . .�Gq−1
with length �(Q) ≤ Da1(G1) + Da2(G2)+. . .+Daq−1 (Gq−1) + 1, such
that for each u ∈ V (Q) \ {p(x), p(y)}, W (u) = 0, and for each e ∈ E(Q),
W (e) = 0. As q > 2, there is such a vertex u ∈ V (P ) (here we need the
fact that G1�G2� . . .�Gq−1 is not isomorphic to K2, which is trivially
true if q > 2 ). Let u be the vertex adjacent to p(x) in Q. As W (u) = 0,

x

y

(u,x )3

(u,y )3

Fig. 5. The construction of the path P for q = 3 when W (p(x)) > 0 and W (p(y)) > 0

there is a path Q̃ from (u, xq) to (u, yq) in p−1(u) with length �(Q̃) ≤
�(P̃ ) ≤ D0(Gq). Finally we may construct the required path

P : x → (u, xq)
Q̃→ (u, yq)

Q→ y

from x to y, such that �(P ) ≤ 1 + D0(Gq) + Da1(G1) + Da2(G2) + . . . +
Daq−1 (Gq−1) + 1 − 1 ≤ Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1 (see
Figure5).

• If q = 2, we consider the following possible cases. If p(x) is not adjacent
to p(y), the required path P from x to y can be found as in previous
case, when q > 2. Now assume p(x) is adjacent to p(y), and let e be
the edge connecting p(x) to p(y). Let w(P̃ ) = k ≤ a − a2 = a1 + 1. If
w(p2(x)) = k or w(p2(y)) = k (say w(p2(x)) = k), then there (x1, y2) is
adjacent to y in p−1

2 (p2(y)) and the edge is not faulty. Hence the path

P : x
P̃→ (x1, y2)→y

is a path from x to y in G with length �(P ) ≤ Da2(G2)+1 ≤ Da1(G1)+
Da2(G2) + 1. If w(p2(x)) < k, w(p2(y)) < k and k < a1 + 1, then
w(p2(x)) < a1 and w(p2(y)) < a1. In this case, let the edge e be one of
the faulty edges. In p−1

2 (p2(x)) there are at most a1 faulty edges, and
we may construct a path Q from p(x) to p(y) in p−1

2 (p2(x)) with length
�(Q) ≤ Da1(G1), which contains a vertex u �= p(x), p(y) with W (u) = 0,
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such that for each edge e on Q, W (e) = 0. Now we finish the proof in
the same way as in the case when q > 2. If w(p2(x)) = a1, then from
W (p(x)) > 0 we have W (p(y)) = 0, which is a contradiction with the
assumption that W (p(x)) > 0 and W (p(y)) > 0. �

In the proof of Theorem 1 we have assumed that each Gi is at least ai + 1
edge connected, and we only needed that ai + 1 ≤ ki. Given G and X we
may read the proof with arbitrary choice of ai which satisfies the conditions
a1 + a2 + . . .+ aq = a − (q − 1), 0 ≤ a1 < k1, 0 ≤ a2 < k2, . . . , 0 ≤ aq < kq}. This
argument proves

Theorem 2. Let G1, G2, . . . , Gq be k1-edge connected, k2-edge connected,. . . ,
kq-edge connected graphs, and G the Cartesian product of G1, G2, . . . , Gq. Let
0 ≤ a < k1 + k2 + . . . + kq. Then

Da(G) ≤ min{Da1(G1) + Da2(G2) + . . . + Daq(Gq) + 1 |

a1 + a2 + . . . + aq = a − (q − 1), 0 ≤ a1 < k1, 0 ≤ a2 < k2, . . . , 0 ≤ aq < kq}.

Example 2. Let G = C6�C100. From Theorem 2,

D2(G) ≤ min{D1(C6) + D0(C100), D0(C6) + D1(C100)} + 1 =

= min{55, 102} + 1 = 56.

Clearly, the bound from Theorem 2 improves the upper bound from Theorem
1. For example, for a = 0 and b = 1, Theorem 1 gives Da+b+1(G) ≤ Da(C6) +
Db(C100) + 1 = 103. On the other hand, one can easily check that D2(G) = 53,
therefore Corollary 2 does not give the exact formula for computing the fault
diameter. In fact, the bound can be far from the exact value. For example, by
Theorem 2, D3(G) ≤ 105, while the exact value is D3(G) = 53.

Example 3. We have computed the fault diameters of the hypercube using The-
orem 3 in Example 1. Hypercube Qq can be represented also as (�r

i=1C4)�K2
if q = 2r + 1 or �r

i=1C4 if q = 2r. Let us apply the Theorem 2.
First, let a = q−1. The only ’legal partitions’ of a are a = 1 + 1 + . . . + 1︸ ︷︷ ︸

r

+0+

r, if q = 2r + 1, and a = 1 + 1 + . . . + 1︸ ︷︷ ︸
r

+r − 1, if q = 2r. By Theorem 2,

Da(Qq) ≤ 3 + 3 + . . . + 3︸ ︷︷ ︸
r

+1 + 1 = 3r + 2 for q = 2r + 1. For q = 2r, Da(Qq) ≤

3 + 3 + . . . + 3︸ ︷︷ ︸
r

+1 = 3r + 1.

Second, let a < q−1. The same way as in the first case we get Da(Qq) ≤ q+1.
For example, if a = q − 2, we have a = 1 + 1 + . . . + 1︸ ︷︷ ︸

r−1

+0 + 0 + r = 2r − 1, if

q = 2r + 1, and a = 1 + 1 + . . . + 1︸ ︷︷ ︸
r−1

+0 + r − 1 = 2r − 2, if q = 2r. In the first
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case we have Da(Qq) ≤ 3 + 3 + . . . + 3︸ ︷︷ ︸
r−1

+2 + 1 + 1 = 3r + 1. In the second case

we have Da(Qq) ≤ 3 + 3 + . . . + 3︸ ︷︷ ︸
r−1

+2 + 1 = 3r.

Hence Theorem 2 gives only an upper bound for Da(Qq) which is around 50%
too large while Theorem 3 gives the exact result. The example shows that it is
profitable to use the Cartesian product structure of the network studied. It may
be worth mentioning that the recognition (i.e. factorization) with respect to the
Cartesian product can be done efficiently, in time O(mn) [9,10]. Furthermore, it
is also possible to efficiently reconstruct a Cartesian product graph with not too
many nodes missing under mild assuptions [11,12]. Loosely speaking, if we know
that the original structure was a Cartesian product of k factors with at least k
vertices each, and at most k − 1 nodes are missing, then we can reconstruct the
original graph, up to isomorphism.
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10. Imrich, W., Žerovnik, J.: J. graph theory, let. 18, t. 6, str, pp. 557–567 (1994)
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Abstract. Thispaper studies theproblemofbroadcasting in synchronous
point-to-point networks, where one initiator owns a piece of information
that has to be transmitted to all other vertices as fast as possible.Themodel
of fractional dynamic faults with threshold is considered: in every step ei-
ther a fixed number T , or a fraction α, of sent messages can be lost depend-
ing on which quantity is larger.

As the main result we show that in complete graphs and hypercubes it
is possible to inform all but a constant number of vertices, exhibiting only
a logarithmic slowdown, i.e. in time O(D log n) where D is the diameter
of the network and n is the number of vertices.

Moreover, for complete graphs under some additional conditions
(sense of direction, or α < 0.55) the remaining constant number of ver-
tices can be informed in the same time, i.e. O(log n).

1 Introduction

Fault tolerance has been a crucial issue in the distributed computing since its
beginnings [3,5,6,10,16,25]. Because a typical distributed system is designed to
contain a large number of individual components, attention must be paid to the
fact that, even if the failure probability of a single component is negligible, the
probability that some components fail may be high. There are numerous ways
how to cope with failures, using either probabilistic or deterministic approaches.
In the probabilistic setting, it is supposed that a failure probability of each com-
ponent follows some probability distribution [4,8,11,26,27]. Failures of individual
components are usually assumed to be independent random events. The goal is
to design algorithms and protocols that perform well with high probability if the
failures follow the conjectured distribution.

The deterministic approach, which is pursued also in this paper, copes with
failures in a different way. Instead of considering a failure probability distribution
for each individual component, algorithms and protocols are designed to perform
well in the worst case, under some a-priori constraints on the failure behavior. [1,
2,7,12,13,14,19,20,22,24,28]. These constraints may take the form of considering
only computations with a limited overall number of faults [1,19], limited number

� The research has been supported by grant APVV-0433-06.
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c© Springer-Verlag Berlin Heidelberg 2007
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of faults during any single computation step [7, 13, 14, 24, 28], or during any
window of first t steps [20], requiring that after some finite time there is a
long enough fault-free computation [10,15] etc. While the probabilistic model is
analyzed with respect to the expected behavior, the deterministic models have
been mostly analyzed for the worst case scenario.

We shall focus our attention on synchronous point-to-point distributed sys-
tems, i.e. systems in which the communication is performed by sending messages
along links connecting pairs of vertices. Moreover, the vertices are synchronized
by a common clock, and the delivery of every message takes exactly one time
unit. This model has been widely considered [7,8,12,13,14,20,22,24,26,27,28] not
only for its theoretical appeal, but for its practical relevance as well (e.g. many
wireless networking standards, like IEEE 802.11, or GSM, operate in discrete
time steps). We shall consider only one type of failures: message loss.

The oldest deterministic model of faults considered in this setting is the static
model [1, 3], in which it is assumed that at most a fixed constant number k of
messages may be lost in every step, and moreover, the failures are always located
on the same links. Later, other models have been considered, too, like the dy-
namic model [7,13,14,24,28] in which the k failures may be located on arbitrary
links in every step, linearly bounded faults [20], fractional faults [22], etc.

We continue in the analysis of the fractional model with threshold from [12].
Here, the number of messages lost in one time step is bounded by the maximum
of a fixed threshold T and a fixed fraction α of sent messages. This restriction
implies that if, in a given step, fewer than T messages are sent they may all
be lost. On the other hand, if there are many messages sent, at least a fixed
fraction 1−α of them is delivered. The threshold T is always assumed to be one
less than the edge connectivity, since this is the largest value under which the
network stays connected. This model has been developed in order to avoid some
unrealistic special cases of static and dynamic models (the number of faults is
independent on the actual network traffic), as well as those of fractional model
(if just one message is being sent, its delivery is always guaranteed).

The broadcasting problem is a crucial communication task in the study of
distributed systems (e.g. [21]). One vertex, called initiator, has a piece of infor-
mation that has to be distributed among all remaining vertices. The broadcasting
has not only been used as a test-bed application for the study of the complexity
of communication in various communication models, but has served as a building
stone of many applications (e.g. [29]) as well.

We analyze the broadcasting in complete graphs and hypercubes. The broad-
casting time in these graphs has been studied in the static [19], dynamic [13,
14, 24], and simple threshold [12]1 models, and the results are summarized in
Table 1.

We address a natural relaxation of the broadcasting problem in which we
allow a small constant number of vertices to stay uninformed in the end (a

1 If the number of messages sent in a given time step is less than the edge connectivity
c(G) in the simple threshold model, all of them may be lost. Otherwise at least one
of them is delivered.
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Table 1. Known time complexities of the complete broadcasting in various models

Model Kn, chordal Kn Qd, n = 2d

sense of direction unoriented
static Θ(1) Θ(1) d + 1 [19]
dynamic Θ(1) Θ(1) [24] d + 2 [13]
fractional Θ(log n) Θ(log n) [22] O(d3) [22]
simple threshold Ω(n), O(n2) [12] Ω(n2), O(n3) [12] O(n4d2) [12]

Table 2. Results for the complete and almost complete broadcasting in the fractional
model with threshold

Scenario Almost complete Complete
broadcasting broadcasting

Kn, unoriented O(log n) Ω(log n) [22], O(n3) [12]
Kn, chordal sense of direction O(log n) Ω(log n) [22], O(log n)
Kn, α < 0.55 O(log n) Ω(log n) [22], O(log n)
Qd O(d2) Ω(d), O(n4d2) [12]

problem called almost complete broadcasting), and analyze the worst case time
needed to solve the problem. Our main motivation to study almost complete
broadcasts is the fact that in large faulty networks it is often vital to finish a
communication task fast, even subject to some small error. In the probabilistic
setting, this is modelled by allowing a failure probability that tends to zero with
increasing network size: in the worst case the task is not successful but this
worst case scenario has a small probability. Since in our deterministic setting
we study the worst case, another model of allowed error must be chosen. If we
look at the broadcast as an optimization problem where the task is to inform as
many vertices as possible, it is natural to introduce a constant additive error by
allowing a constant number of vertices to stay uninformed2.

For complete graphs and hypercubes, we show that the problem can be solved
in time O(D log n), where D is the diameter of the graph and n is the number
of its nodes.

Moreover, we show that if the complete graph is equipped with the chordal
sense of direction, complete broadcasting can be performed in time O(log n). This
is asymptotically optimal since the broadcasting time in the fractional model is
a lower bound for the fractional model with threshold. Similarly we show that
the broadcasting can be completed in time O(log n) for values α < 0.55. The
overview of the results can be found in Table 2.

2 Definitions

We consider a synchronous, point-to-point distributed system with a coordinated
start-up. The system consists of a number of nodes and a number of commu-
2 So that the uninformed vertices comprise at most an O(1/n) fraction of all vertices.
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nication links connecting some pairs of nodes. The system is modelled by an
undirected graph, in which vertices correspond to nodes and edges correspond
to communication links. In this respect, we shall use the terms “node” and “ver-
tex” interchangeably. Sometimes we need to argue about outgoing and incoming
links; in this cases we consider a directed graph obtained from the undirected
one by replacing each edge by two opposite arcs.

At the beginning of the computation all nodes are active and start perform-
ing the given protocol. The computation consists of a number of steps: at the
beginning of each step, messages sent during the previous step are delivered to
their destinations, then each vertex performs some local computation, possibly
sending some messages3, and the next step begins.

The failure model we consider is the fractional dynamic faults with threshold
from [12], which can be described as a game between the algorithm and an
adversary: in a time step t the algorithm sends mt messages and the adversary
may destroy up to

F (mt) = max{c(G) − 1, �α mt�}

of them, where c(G) is the edge connectivity of the graph and α is a known,
fixed constant 0 < α < 1. There is no built-in mechanism of acknowledgements,
so the sender node is not informed whether a particular message was delivered
or destroyed.

We consider the problem of broadcasting, where an initiator has a piece of
information to be transmitted to all remaining vertices. We call a broadcast com-
plete if all vertices have the information after the termination of the algorithm. A
broadcast is called almost-complete if there is a fixed constant c (independent on
the network size) such that after the termination there are at most c uninformed
vertices. Hence, to prove the existence of an almost-complete broadcasting algo-
rithm for a family of graphs G, one has to prove that there exists a constant c
such that for each G ∈ G the broadcasting algorithm informs all but c vertices
of G.

In all presented algorithms only the informed vertices send messages. Arcs
(i.e. directed edges) leading from an informed vertex can be classified as being
either active, passive or hyperactive during the computation:

Definition 1. Let e be an arc leading from an informed vertex. We call e active
if it leads to an uninformed vertex. We call an arc e passive, if some message
has been delivered via the opposite arc of e. Finally, we call an arc e hyperactive
if it leads to an informed vertex, and is not passive.

If the arc e is passive, the source vertex of e is aware of the fact that the desti-
nation vertex of e has already been informed. The main idea of our algorithms
is to perform appropriate number of simple rounds defined as follows:

Definition 2. A simple round consists of two time steps. In the first step, ev-
ery informed vertex sends a message along each of its incident arcs, excluding

3 i.e. a vertex may send different message to each of its neighbors in one step.
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the passive ones.4 In the second step, all vertices that have received a message
send an acknowledgement (and mark the arc as passive). Vertices that receive
acknowledgement mark the corresponding arc as passive.

For the remainder of this paper, let 0 < α < 1 be a known fixed constant, and
let us denote

X :=
1

α(1 − α)

The rest of the paper is organized as follows. In the next two sections we
present algorithms for the almost-complete broadcasting on complete graphs
and hypercubes, respectively, that run in time O(D log n). Then we show how
to obtain broadcast in complete graphs equipped with chordal sense of direc-
tion, and for unoriented complete graphs for α < 0.55, having the same time
complexity.

Due to space restrictions some technical parts have been omitted from this
paper, and can be found in the technical report [23].

3 Complete Graphs

In a complete graph Kn, all n vertices have degree n − 1, and n − 1 is also
the edge connectivity. Hence, in each step t the adversary can destroy up to
max{n−2, �αmt�} messages, where mt is the number of messages sent in the step
t. In this section we present an algorithm that informs all but a constant number
of vertices in logarithmic time. The idea of the algorithm is very straightforward
– just repeat simple rounds sufficiently many times. However, the arguments
given in the analysis of a simple round below hold only if there are enough
informed vertices participating in the round. To satisfy this requirement two
steps of a simple greedy algorithm are performed, during which each informed
vertex just sends the message to all vertices. After two steps of this algorithm,
the number of informed vertices is as shown in Lemma 1.

Lemma 1. After two steps of the greedy algorithm, at least

1 + min
{n

2
, (n − 1)(1 − α)

}

vertices are informed.

After these two steps, the algorithm performs a logarithmic number of sim-
ple rounds. To show that logarithmic number of simple rounds is sufficient to
inform all but one vertex we first provide a lower bound on the number of ac-
knowledgements delivered in each round, and then we show that each delivered
acknowledgement decreases a certain measure function.

4 In this step, a message is sent via all active and hyperactive arcs. The former can
inform new vertices, the latter exhibit only useless activity. However, the algorithm
can not distinguish between active and hyperactive arcs.
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Theorem 1. Let ε > 1 be an arbitrary constant. For large enough n it is possible
to inform all but at most Xε vertices in logarithmic time. Moreover, the number
of remaining hyperactive arcs is at most X(n − 2).

Proof. At the beginning, two steps of the greedy algorithm are executed. Then,
a logarithmic number of simple rounds is performed. Now consider the situation
at the beginning of the i-th round. Let ki be the number of uninformed vertices,
and hi the number of hyperactive arcs. We claim that if ki > Xε or hi > X(n−2)
then at least [ki(n − ki) + hi] (1 − α)2 acknowledgements are delivered in this
round. Since there are ki(n−ki)+hi messages sent in this round, in order to prove
the claim it is sufficient to show that α(1−α) [ki(n − ki) + hi] ≥ n−2. Obviously,
if hi > X(n − 2) the inequality holds, so consider the case ki > Xε. We prove
that in this case ki(n−ki) ≥ X(n−2), i.e. k2

i −nki +X(n−2) ≤ 0. Let f(n) :=
1/2

(
n −

√
n2 − 4X(n − 2)

)
; the roots5 of the equation k2

i −nki +X(n−2) = 0
are f(n) and n − f(n), so we want to show that f(n) ≤ ki ≤ n − f(n). Since
limn�→∞ f(n) = X , we get that ki > Xε > f(n) holds for large enough n.
Hence, the only remaining step is to show the inequality ki ≤ n − f(n). From
Lemma 1 it follows that n−ki > min {n/2, (n − 1)(1 − α)}. Since f(n) < n/2, if
n−ki > n/2 it holds ki < n−f(n). So let us suppose that n−ki > (n−1)(1−α),
i.e. ki < 1 + α(n − 1). Let n ≥ ε+α(1−α)2

α(1−α)2 . Then it holds for large enough n that

ki < 1 + αn − α ≤ n − ε

α(1 − α)
= n − εX ≤ n − f(n).

We have proved that if ki > Xε or hi > X(n − 2) then at least

[ki(n − ki) + hi] (1 − α)2

acknowledgements are delivered in round i.
To conclude the proof we show that after logarithmic number of iterations we

get ki ≤ Xε and hi ≤ X(n − 2). Let Mi := 2(n − 1)ki + hi; then every delivered
acknowledgement decreases Mi by at least one: indeed, if the acknowledgement
was delivered over a hyperactive arc, hi decreases by 1. If, on the other hand, the
acknowledgement was delivered over an active arc, the number of uninformed
vertices is decreased by at least one, and the number of hyperactive arcs is
increased by at most 2n−3 (new hyperactive arcs are between the newly informed
vertex and any other vertex, with the exception of the arc that delivered the
acknowledgement which is passive).

From Lemma 1 it follows that either n − ki > n/2 or n − ki > (n − 1)(1 −
α). In the first case it follows that at least (1 − α)2 [ki(n − ki) + hi] > (1 −
α)2 [kin/2 + hi] ≥ (1−α)2

4 Mi acknowledgements are delivered. In the second case
we get that at least (1−α)2 [ki(n − ki) + hi] > (1−α)2 [ki(n − 1)(1 − α) + hi] ≥
(1−α)3

2 Mi acknowledgements are delivered. Let c := min{ (1−α)2

4 , (1−α)3

2 }, then
obviously every iteration decreases the value of Mi at least by factor c. Since

5 Assume that n is large enough such that f(n) is real number.
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the value of M at the beginning of the algorithm is M1 = O(n2), log1/c M1 =
O(log n) steps are sufficient to inform all but a constant number (at most Xε)
of vertices and to ensure that the number of remaining hyperactive arcs is linear
(at most X(n − 2)).

4 Hypercubes

In this section we consider d-dimensional hypercubes. The hypercube Qd has 2d

vertices, and both diameter and edge connectivity are d. We present an algorithm
that informs all but a constant number of vertices in time O(d2).

The general idea is the same as for complete graphs: first we perform two
initialization steps to make sure there are enough informed vertices for the sub-
sequent analysis to hold. Next, simple rounds are repeated for a sufficient number
of times. The analysis, however, is more complicated in this case.

The next lemma covers the initialization steps. In the first step, the initiator
sends a message to all its neighbors, and at least one of these messages is deliv-
ered. In the second step, the initiator sends a message to all its neighbors again;
moreover, each of the vertices informed in the first step sends a message to all
its neighbors except the initiator.

Lemma 2. After the first two steps of the algorithm, at least 1−α
2 (2d−1) vertices

are informed.

For the rest of this section we suppose that there are at least 1−α
2 (2d−1) informed

vertices. We show that after O(d2) simple rounds all but some constant number
of vertices are informed, and there are only linearly many hyperactive arcs. At
the end of this section, we shall be able to prove the following theorem.

Theorem 2. Let ε ∈ (0, 1) be an arbitrary constant. For large enough d it is
possible to inform all but at most X/(1 − ε) vertices of Qd within O(d2) time
steps. Moreover, the number of remaining hyperactive arcs is at most X(d − 1).

In our analysis we need to assert that enough acknowledgements are deliv-
ered, given the number of informed vertices. To bound the number of sent
messages, we rely heavily upon the following isoperimetric inequality due to
Chung et. al. [9]:

Claim. [9] Let S be a subset of vertices of Qd. The size of the edge boundary
of S, denoted as ∂(S) is defined as the number of edges connecting S to Qd \ S.
Let ∂(k) = min|S|=k ∂(S), and let lg denote the logarithm of base 2. It holds
that

∂(k) ≥ k(d − lg k)

The first step in the analysis is to prove that if there are enough uninformed
vertices, or enough hyperactive arcs at the beginning of a round i, then suffi-
ciently many acknowledgements are delivered in this round:
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Lemma 3. Consider a d-dimensional hypercube with k non-informed vertices
and h hyperactive arcs. Let ε ∈ (0, 1) be an arbitrary constant, and let k >
X/(1 − ε) or h > X(d − 1). Then in the second step of a simple round at least
β(h + ∂(k)) acknowledgements are delivered, where β = (1 − α)2.

Sketch of the proof. Let S be the set of informed vertices. In the first step of the
round, h + ∂(S) messages are sent. Since the edge boundary of informed and
uninformed vertices is the same, at least h + ∂(k) messages are sent in the first
step of the round. The idea of the proof is to show that α(h+∂(k)) ≥ d−1, so in
the first step at most α(h+∂(k)) messages are lost, and at least (1−α)(h+∂(k))
of them are delivered. Next we prove that α(1 − α)(h + ∂(k)) ≥ d − 1, so in the
second step at least (1 − α)2(h + ∂(k)) messages are delivered. Since 1 − α < 1,
it is sufficient to prove that α(1 − α)(h + ∂(k)) ≥ d − 1. If h > X(d − 1) then
clearly h + ∂(k) ≥ X(d − 1) and the statement holds. Hence, the main goal of
the proof is to show that for k > X/(1 − ε), it holds ∂(k) ≥ X(d − 1). To do so,
the inequality 2d − k ≥ 1−α

2 (2d − 1), which is granted by Lemma 2, is used.

In the rest of the proof of Theorem 2 we show that O(d2) simple rounds are
sufficient to inform almost all vertices. The analysis is divided into two parts.
In the first part we prove that within O(d2) rounds at least 2d/3 vertices are
informed. In the second part we show that another O(d2) rounds are sufficient
to finish the algorithm.

Lemma 4. After performing O(d2) simple rounds on Qd at least 2d/3 vertices
are informed.

Sketch of the proof. Let l := 2d − k be the number of informed vertices. From
Lemma 3 it follows that at least β∂(k) acknowledgements are delivered in one
simple round. Since the edge boundary of informed vertices is also the boundary
of uninformed vertices, the number of delivered acknowledgements is at least
β∂(l). Furthermore, every delivered acknowledgement adds one passive arc, so
the number of passive arcs grows at least by β∂(l) each round, which we show to

be at least a factor of
(

1 + 1
d

β lg 3

)
. Because the number of passive arcs cannot

grow over d2d/3 without informing at least 2d/3 vertices, we get the statement
of the lemma.

Lemma 5. Let ε ∈ (0, 1) be an arbitrary constant, and let ki ≤ (2/3)2d be
the number of uninformed vertices and hi the number of hyperactive arcs of an
d-dimensional hypercube at the beginning of round i. Then after O(d2) simple
rounds there are at most X/(1 − ε) uninformed vertices and at most X(d − 1)
hyperactive arcs.

Sketch of the proof. Similarly to the proof of Theorem 1, let us consider the
measure Mi := 2dki +hi which decreases with every acknowledgement delivered.
We show that as long as the requirements of Lemma 3 hold, Mi decreases in each
round by a factor

(
1 + β lg(2/3)

d

)
. Since Mi ≤ (5/3)d2d, we get the statement of

the lemma.
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Combining Lemma 2 with Lemma 4 and Lemma 5 completes the proof of
Theorem 2.

5 Complete Broadcast in Complete Graphs

In Section 3 we have shown how to inform all but some constant number of
vertices in a complete graph Kn in time O(log n). A natural question is to ask
if it is possible to inform also the remaining vertices in the same time complex-
ity. In this section we partially answer this question. In particular, we show in
the following subsection that if the graph is equipped with a chordal sense of
direction, then the complete broadcasting can be performed in time O(log n).
In the subsequent subsection, we show that if the constant α < 0.55, complete
broadcast can be performed in time O(log n) without the sense of direction, too.

5.1 Chordal Sense of Direction

Let us consider a complete graph with a fixed Hamiltonian cycle C (unknown to
the vertices). We say that the complete graph has a chordal sense of direction
if in every vertex the incident arcs are labeled by the clockwise distance on C
(see Figure 1). The notion of a sense of direction has been defined formally for
general graphs, and it has been known to significantly reduce the complexity of
many distributed tasks (e.g. [17, 18]).
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Fig. 1. K5 with the chordal sense of direction

We show how to perform a complete broadcast on a complete graph with the
sense of direction in time O(log n). The process consists of three steps. First,
using Theorem 1, all but a constant number of vertices are informed. In the
second phase the information is delivered to all but one vertex. In the last phase
the remaining single vertex is informed.

The sense of direction is essential to our algorithm. Since there is a unique ini-
tiator of the broadcasting, all vertices can derive unique identifiers defined as their
distance on C from the initiator. Furthermore, the sense of direction allows each
vertex to know the identifier of a destination vertex of any of its incident arcs.
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Lemma 6. It is possible to inform all vertices but one on complete graphs with
chordal sense of direction in time O(log n). Furthermore, after finishing the al-
gorithm vertex 0 or vertex 1 knows a constant number of candidates for the
uninformed vertex.

Proof. The outline of the algorithm is as follows: At first the algorithm from
Theorem 1 is performed, which ensures that all but a constant number of vertices
are informed. Afterwards a significant group of vertices negotiate a common set
U of candidates for uninformed vertices, such that all uninformed vertices are
in U and the size of U is constant. The vertices then cooperate to inform all
vertices in U but one. As a side effect, the set U will be known to vertex 0 or
vertex 1, hence satisfying the second claim of the lemma. Now we present this
algorithm in more detail:

Phase 1. Run the algorithm from Theorem 1. This phase takes O(log n) time
and ensures that there are at most Xε uninformed vertices and at most
X(n − 2) hyperactive arcs.

Phase 2. Each vertex v that has at most 3X(1 + ε) non-passive (i.e. active or
hyperactive) links leading to the set of vertices Uv sends a message containing
Uv to vertices with number 0 and 1.
Now we show that at least one of these messages is delivered. It is easy
to see that there are at least 2n/3 vertices satisfying the above-mentioned
condition, otherwise there would be more than n/3 vertices with at least
3X(1 + ε) non-passive links, so there would be more than nX(1 + ε) active
or hyperactive arcs. But since the number of uninformed vertices is at most
k ≤ Xε ≤ n/2 for large n, there are k(n−k) ≤ Xε(n−Xε) active arcs. So the
total number of active or hyperactive arcs is at most Xε(n−Xε)+X(n−2) ≤
Xn(1 + ε), which is a contradiction.
The rest of the algorithm will be time-multiplexed into two parts. In even
time steps, the case that the vertex 0 received a message in phase 2 is pro-
cessed. In odd time steps, the case that the vertex 1 received a message is
processed analogously. Hence, we can restrict to the first case in the rest
of the algorithm description. As there are only two cases the asymptotic
complexity of the algorithm is unaffected by the multiplexing.

Phase 3. The vertex 0 received at least one message containing a set of possibly
uninformed vertices. It is obvious that the set of uninformed vertices is a
subset of every received message. Hence the set U can be defined as the
intersection of the received messages: Indeed, every uninformed vertex is in
U and the size of U is at most 3X(1+ε) = O(1). The set U is then distributed
using the algorithm in Theorem 1 among at least n − Xε vertices in time
O(log n).

Phase 4. There are at least n − Xε vertices aware of the set U . In this phase
they cooperate to inform all but one vertex in U , using an idea similar to
Lemma 2 in [12]: every vertex aware of the set U iterates through all pairs
[i, j] (i, j ∈ U) in lexicographical order; in each time step it sends the original
message to both vertices i and j. Since in each time step at least 2n − Xε
messages are sent, at least one of them is delivered (for large enough n). As
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all vertices process the same pair [i, j] in every time step, this ensures that
a new vertex is informed whenever both i and j were uninformed. Hence, at
the end of this phase all vertices but one are informed. The time complexity
of this phase is O(|U |2) = O(1).

It is obvious that after finishing the Phase 4 the claim of the Lemma holds.

Finally, we show how to inform the last remaining vertex, thus proving the
following theorem:

Theorem 3. It is possible to perform broadcasting on complete graphs with
chordal sense of direction in time O(log n).

Sketch of the proof. Suppose that after performing the algorithm from Lemma
6 all vertices with the exception of some vertex v are informed and vertex 0
knows a set U of constant size containing candidates for v. The algorithm from
Lemma 6 is used again to broadcast U with two possible outcomes: either v
was informed during the broadcast, or all other vertices have the same set of
candidates, which they try to inform one by one.

5.2 Without Sense of Direction

As a last result in this paper we show that it is possible to perform broadcasting
on complete graphs in time O(log n) for small values of α (i.e. α � 0.55) even
without the sense of direction. The idea is to use the algorithm from Theorem
1 to inform all but constantly many vertices. Next, instead of repeating 2-step
simple rounds, some log n-step extended rounds are repeated, such that each
extended round informs a yet uninformed vertex. During an extended round
messages are sent for O(log n) steps in such a way that in every step the number
of hyperactive arcs is decreased by some factor6 unless a new vertex is informed.

Theorem 4. Let 1−α−2α2+α3 > 0. Then it is possible to perform broadcasting
on complete graphs without sense of direction in time O(log n).

Proof. The algorithm is described as Algorithm 1..
At first, the algorithm from Theorem 1 is performed, ensuring that there are

at most k ≤ Xε uninformed vertices and at most h ≤ X(n− 2) hyperactive arcs
(X and ε have the same meaning as in Theorem 1). The purpose of one iteration
of the loop on lines 3–14 is to inform at least one uninformed vertex. Taking
L1 := Xε = O(1) ensures that all vertices will be informed.

The loop on lines 4–10 reduces the number of hyperactive arcs to zero unless a
new vertex is informed. One iteration of this loop either informs a new vertex or
reduces the number of hyperactive arcs from h to (1−Y/2)h, where 0 < Y < 1 is
a constant (depending on α) defined later. Hence the number of hyperactive arcs
decreases exponentially with number of iterations of the loop and log1/(1−Y/2) h
iterations are sufficient to eliminate all hyperactive arcs. Since the condition
6 In this part we need the assumption that α is small enough.
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Algorithm 1. Complete graphs without sense of direction
1: perform almost-complete broadcast according to Theorem 1
2: let k denote the number of uninformed vertices, let h denote the number of hyper-

active arcs
3: loop L1 times // Perform L1 extended rounds
4: loop L2(n) times // In each iteration h decreases by a constant factor
5: E := set of all currently active or hyperactive arcs; P := ∅
6: loop L3 times
7: send the message via all arcs in E ∪ P

8: P := P ∪
{

e | a message has been delivered in this step
via the opposite arc of e

}

9: end loop
10: end loop
11: loop L4(n) times // Inform new vertex and decrease a
12: perform one simple round
13: end loop
14: end loop
The values of L1, L2(n), L3 and L4(n) are specified in the analysis of the algorithm,
such that L1, L3 = O(1) and L2(n), L4(n) = O(log n).

h ≤ X(n − 2) holds before every execution of the loop (this is provided either
directly by Theorem 1 or by the loop on lines 11–13), we can define L2 :=
log1/(1−Y/2)(X(n − 2)) = O(log n).

Now we describe one iteration of the loop on lines 4–10. We distinguish two
types of arcs that are hyperactive at the beginning of the considered iteration:
An arc e is a single hyperactive arc if and only it is hyperactive and the opposite
arc of e is passive at the beginning of the iteration. Otherwise (i.e. if both e and
the opposite arc of e are hyperactive at the beginning of the iteration), e is a
double hyperactive arc.

Let E be the set of all active or hyperactive arcs at the beginning of the
iteration, and P be the set of all arcs opposite to arcs through which some
message has been delivered in the current iteration. Furthermore, let k′ be the
number of uninformed vertices at the beginning of the current iteration, h′ be
the number of hyperactive arcs at the beginning of the current iteration and p =
|P \E| be number of arcs in P that were passive at the beginning of the current
iteration. It clearly holds that |E| = k′(n − k′) + h′ and that k′(n − k′) + h′ + p
messages are sent on every execution of line 7. Since at least n − 1 messages
are lost (because we may assume that no new vertex is informed), at most
α(k′(n − k′) + h′ + p) of them are lost, i.e. at least (1 − α)(k′(n − k′) + h′ + p)
are delivered.

Now assume by contradiction that the number of hyperactive arcs does not
decrease below (1−Y/2)h′, and no new vertices are informed during the current
iteration of the loop on lines 4–10. Consider any message delivered over an arc
e which is a double hyperactive arc or an arc in P \ E; it is easy to see that the
opposite arc of e is passive after the delivery and that it was hyperactive at the
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beginning of the iteration. This fact yields that at most (Y/2)h′ messages are
delivered over a double hyperactive arc or an arc in P \ E on any execution of
line 7.

Now we show a lower bound on the number of messages that pass over double
hyperactive arcs or arcs in P \ E or single hyperactive arcs whose opposite arcs
are not in P \ E. Intuitively, every such message ensures some progress of the
algorithm, since either an arc is made passive (in the first two cases) or a new arc
is added to P \ E (in the third case). As no messages passes over active arcs by
our assumption, and at most p messages pass over single hyperactive arcs whose
opposite arcs are in P \E, there are at least (1−α)(k′(n−k′)+h′+p)−p messages
satisfying one of these three cases. Using the inequalities k′(n − k′) ≥ n − 1 and
p ≤ h′ yields (1 − α)(k′(n − k′) + h′ + p) − p ≥ (1 − α)(n − 2) + (1 − 2α)h′.
Because h′ ≤ X(n − 2) which is equivalent to (n − 2) ≥ α(1 − α)h′, we have
(1−α)(k′(n−k′)+h′+p)−p ≥ (1−α−2α2+α3)h′. Defining Y := 1−α−2α2+α3,
which is positive and less than one by the assumption of the Lemma, we have
shown that there are at least Y h′ messages satisfying one of the three cases.

However, at most (Y/2)h′ of them satisfies the first two cases, hence there
are at least (Y/2)h′ arcs added to P in every execution of line 8. So taking
L3 := 2/Y + 1 ensures that P contains opposite arcs to all single hyperactive
arcs at the beginning of the last iteration of the loop on lines 6–9. However, this
is a contradiction with the fact that new arcs are added to P at line 8.

We conclude the proof with the analysis of the loop on lines 11–13. In the first
iteration of the loop a new vertex is informed, because there are no hyperactive
arcs left after the loop on lines 4–10 finished (unless the new vertex has already
been informed in that loop). Due to Theorem 1, next O(log n) iterations are
sufficient to ensure that h ≤ X(n − 2), which is an invariant required by the
loop on lines 4–10. Hence putting L4(n) := O(log n) (according to Theorem 1) is
sufficient to make the algorithm work correctly in time L1(L2(n)L3 + L4(n)) =
O(log n).

6 Conclusions, Open Problems, and Further Research

We have studied the problem of almost complete broadcast under the model
of fractional dynamic faults with threshold. We showed that both in complete
graphs and in hypercubes, it is possible to inform all but constantly many vertices
in time O(D log n) where D is the diameter of the graph and n is the number of
vertices.

Moreover, we have proved that if the complete graph is equipped with the
chordal sense of direction, or the parameter α < 0.55, a complete broadcast can
be performed in time O(log n).

This research leaves many open questions and directions for further research,
from which we mention at least a few. One obvious question is to ask if it
is possible to perform a complete broadcast in complete graphs also for large
values of α in polylogarithmic time. The difficulty of broadcast in the fractional
dynamic model with threshold stems from the fact that, in order to inform the
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last few vertices, all informed vertices must cooperate very tightly. In general,
the relationship between the almost complete and complete broadcast in various
models is worth studying. We have also not considered non-constant values of α.
It would be interesting to extend our results to more general classes of graphs.

We finish by noting that there is a lack of any non-trivial lower bounds in the
model of fractional faults with threshold.
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Abstract. The problem we consider originates from the design of effi-
cient on-board networks in satellites (also called Traveling Wave Tube
Amplifiers). Signals incoming in the network through ports have to be
routed through an on-board network to amplifiers. The network is made
of expensive switches with four links and subject to two types of con-
straints. First, the amplifiers may fail during satellite lifetime and cannot
be repaired. Secondly, as the satellite is rotating, all the ports are not
well oriented and hence not available. Let us assume that we have p + λ
ports (inputs) and p + k amplifiers (outputs), then a (p, λ, k)−network
is said to be valid if, for any choice of p inputs and p outputs, there
exist p edge-disjoint paths linking all the chosen inputs to all the chosen
outputs. Then, the objective is to design a valid network having the min-
imum number of switches denoted N(p, λ, k). In the special case where
λ = 0, these networks were already studied as selectors. Here we present
validity certificates from which derive lower bounds for N(p, λ, k); we
also provide constructions of optimal (or quasi optimal) networks for
practical values of λ and k (1 ≤ λ ≤ k ≤ 8) and a general way to build
networks for any k and any λ.

1 Introduction

Motivation. The problem we consider here was asked by Alcatel Space Indus-
tries and consists of designing efficient on-board networks in satellites (problem
called Traveling Wave Tube Amplifiers). The satellites under consideration are
used for TV and video transmission (like for example the Eutelsat or Astra se-
ries) as well as for private applications. Signals incoming in a telecommunication
satellite through ports have to be routed through an on-board network to am-
plifiers. A first constraint is that the network is built of switches with four links.
But other constraints appear. On the one hand the amplifiers may fail during
satellite lifetime and cannot be repaired. On the other hand, as the satellite is
rotating, all the ports and amplifiers are not well oriented and hence not avail-
able. So more amplifiers and ports are needed than the number of signals which
have to be routed. Note that in this context, contrary to classical networks, there
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are no failure of links nor switches. Indeed the switches are very reliable rotat-
ing mechanical systems and links are just big wave-tubes. However two different
signals cannot use the same tube.

To decrease launch costs, it is crucial to minimize the network physical weight,
i.e. for us, to minimize the number of switches. Each switch weighs about 200g
and saving a switch implies a gain of more than 20 000 Euros; therefore it is
worth saving even one. Space industries are interested in designing such networks
for specific values of the parameters. However the general theory is of interest
by itself.

Problem. We consider here networks, that is graphs connecting inputs to out-
puts and where vertices represent the switches. We define a (p, λ, k)−network as
a network with p+λ inputs and p+ k outputs. A (p, λ, k)−network is said to be
valid, if, for any choice of p inputs and of p outputs, there exist p edge-disjoint
paths linking all the chosen inputs to all the chosen outputs. For symmetry
reason, we may assume in the following that k ≥ λ and we note n := p + k.
Note that when chosen the paths become directed from the input to the output.
But the disjointness condition is undirected as there cannot be two signals in a
wave-tube (edge).

We study the case where the switches of the network have degree four (al-
though the theory can be generalized to any degree) which is of primary interest
for the applications. The problem is to find N(p, λ, k), the minimum number of
switches in a valid (p, λ, k)−network and to give constructions of such optimal
networks (see Figure 4).

Note that finding a minimal network is a challenging problem: the number of
possible networks grows exponentially and even testing the validity of a given
network is hard. Indeed if we fix the valid inputs and the valid outputs testing
the validity reduces to a flow problem but the number of possible choices for
inputs and outputs grows exponentially as they are binomial coefficients. Still,
the problem is in Co-NP, since one prove that a network is not valid by exhibiting
a bad cut. In fact, deciding if a given (p, λ, k)−network is valid is a Co-NP
complete problem, see [1].

In the specific case λ = k, it is interesting to design networks with a particular
property: every switch linked to a port is also linked to an amplifier; indeed if
there is no failure the incoming signal is routed directly to the amplifier con-
nected to its entering switch. This minimizes the length of signals and avoids
the interferences. These networks are called simplified networks. Observe that
in that case every switch is linked to either two or four switches.

Related Work. When λ = 0, a valid network is called a selector (For a survey
on selectors, see [2] or the seminal work of Pippenger [3]). A general theory of
selectors can be found in [4] where several results are obtained for small values
of k. For example it is proved that N(p, 0, 4) = � 5p

4 �.
In [5] the case of selectors with switches of degree 2k > 4 is considered. In [6]

the authors consider a variant of selectors where some signals have priority and
should be sent to amplifiers offering the best quality of service. In [7] the au-
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thors study the case were all the amplifiers are different and where a given input
has to be sent to a dedicated output the problem being related to permutation
networks.

Results. We first present a simple cut criterion which implies the validity of
networks. This criterion will be useful both to prove the validity of the designed
networks (giving upper bounds) and also to find lower bounds for the minimal
number N(p, λ, k) of switches of valid (p, λ, k)−networks.

In Section 3, we present ways to build valid networks close to minimal for
small values of λ and k (1 ≤ λ ≤ k ≤ 8). For instance, for k ∈ {3, 4} and
0 < λ ≤ 4

N(p, λ, k) = �5n

4
�

For k ∈ {5, 6} and 0 < λ ≤ 6

N(p, λ, k) ≤ �3n

2
�

Examples of (p, 4, 4) and (p, 6, 6)−networks are given in Figure 3. In Section 4,
we present a general way to build networks for any k and any λ.

2 Preliminaries

In this section, we define more formally the problem and introduce notations
used throughout the paper.

We state a cut criterion (Proposition 1): this criterion is fundamental because
it characterizes the validity of (p, λ, k)-networks. It is extensively used to prove
that networks are valid. In Section 3 we use the cut criterion to detect forbidden
patterns leading to lower bounds for the number of switches of valid networks.

Proofs of lower and upper bounds are simplified by the construction the-
orems given here (Theorems 1 and 2). We also give one way to build any
(p, λ, k)−networks from (p, k)−selectors leading us to a linear bound for the
number of switches of (p, λ, k)−networks.

Notations. Let G = (V, E) be a graph and let W ⊆ V be a subset of vertices
of G. We denote by Δ(W ) the set of edges connecting W and W = V \W and
by Γ (W ) the set of vertices of W adjacent to vertices of W .

The cardinality of Δ(W ) is denoted by δ(W ). More generally, the conven-
tion used in this paper is that, if a set is denoted by an upper case letter, the
corresponding lower case letter denotes its cardinality.

For the sake of simplicity, when a subset has a single element, we note δ(v)
instead of δ({v}).

(p, λ, k)−networks and valid (p, λ, k)−networks. A (p, λ, k)-network is a
triple N = {(V, E), i, o}, where (V, E) is a graph. i, o are positive integral func-
tions defined on V, called input and output functions, such that for any v ∈ V ,
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i(v) + o(v) + δ(v) ≤ 4 (for parity reasons, some switches can be linked to a
dead-end. The total number of inputs is i(V ) = Σv∈V i(v) = p+λ, and the total
number of outputs is o(V ) = Σv∈V o(v) = p+k. We can see a network as a graph
where all vertices but the leaves have degree 4, and where the leaves correspond
to inputs or outputs or dead-ends. A non-faulty output function is a function o′

defined on V such that o′(v) ≤ o(v) for any v ∈ V and o′(V ) = p. A used input
function is a function i′ defined on V such that i′(v) ≤ i(v) for any v ∈ V and
i′(V ) = p. A (p, λ, k)-network is said valid if for any faulty output function o′

and any used input function i′, there are p edge-disjoint paths in G such that
each vertex v ∈ V is the initial vertex of i′(v) paths and the terminal vertex of
o′(v) paths.

Design Problem. Let N(p, λ, k) denotes the minimum number of switches of
a valid (p, λ, k)-network. The Design Problem consists in determining N(p, λ, k)
and in constructing a minimum (p, λ, k)-network, or at least a valid (p, λ, k)-
network with a number of vertices close to the optimal value.

We introduce a variation of the problem: consider networks with p+λ switches
with exactly one input and one output (we call such a switch a doublon), and
with k − λ switches with only one output. To find minimum valid network like
these is what we call the Simplified Design Problem. Networks of this kind are
especially good for practical applications, as they simplify the routing process,
minimize path lengths and lower interferences between signals. The minimal
number of switches of such networks is noted N ′(p, λ, k).

Excess, Validity and Cut-criterion. We show that, to verify if a network is
valid, instead of solving a flow/supply problem for each possible configuration of
output failures and of used inputs, it is sufficient to look at an invariant measure
of subsets of the network, the excess, as expressed in the following proposition.

Definition 1 (Excess ε(W )). Let {(V, E), i, o} be a (p, λ, k)-network and W ⊆
V a subset of vertices. The excess in inputs of W is defined as

εi(W ) := δ(W ) + o(W ) − min(k, o(W )) − min(i(W ), p).

The excess in outputs of W is defined as

εo(W ) := δ(W ) + i(W ) − min(λ, i(W )) − min(o(W ), p).

Lemma 1. Let {(V, E), i, o} be a (p, λ, k)−network. Consider a subset W ⊆ V .
We have εo(W ) = εi(W ).

Proof. As δ(W ) = δ(W ), o(W ) = p + k − o(W ), i(W ) = p + λ − i(W ),

εo(W ) = δ(W ) + p + λ − i(W ) − min(λ, p + λ − i(W ))
− min(p + k − o(W ), p)

= δ(W ) + p + λ − i(W ) − (λ − i(W )
+ min(i(W ), p)) − (p − o(W ) + min(k, o(w)))

= δ(W ) + o(W ) − min(k, o(w)) − min(i(W ), p)
= εi(W ).
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So we can mainly restrict our attention to ε(W ) := εi(W ).

Proposition 1 (Cut Criterion). A (p, λ, k)-network is valid if and only if,
for any subset of vertices W ⊂ V , the excess of W satisfies ε(W ) ≥ 0.

The intuition is that the signals arriving in W (in number at most min(i(W ), p))
should be routed either to the valid outputs of W (in number at least o(W ) −
min(k, o(W ))) or to the links going outside (in number δ(W )). The omitted
formal proof reduces to a supply/demand flow problem.

Proposition 2 (Cut Criterions and Symmetry). A (p,λ,k)-network is valid
if and only if one of the following proposition is true.

1. For all W , we have εi(W ) ≥ 0.
2. For all W , we have εo(W ) ≥ 0.
3. For all W , with o(W ) ≤ �p+k

2 � or i(W ) ≤ �p+λ
2 �, we have εi(W ) ≥ 0 and

εo(W ) ≥ 0.

Proof. Direct by Proposition 1 and Lemma 1.

Proposition 3 (Cut Criterions and Connectivity). For all cut criterions
of Proposition 2, it is sufficient to consider only connected subsets W with con-
nected complements W .

This comes from the submodularity of ε (the proof is omitted here). Intuitively,
if a W has a negative excess, one of its connected component also has a negative
excess. If W has a negative excess, W has negative excess in outputs, and so one
of its connected component.

Construction Theorems

Fig. 1. Valid symmetric (2,0,2)-network and (2,2,0)-network

Theorem 1. The problem is symmetric in inputs and outputs, that is N(p,λ,k)=
N(p, k, λ)

Proof. As soon as we have a valid (p, λ, k)-network, we can immediately build
a valid (p, k, l)-network which is the same after we have inverted the inputs and
the outputs (see example of Figure 1). The validity is given by Proposition 2.

Theorem 2. A valid (p, λ, k)−network R can be built from a valid (p, k, k)−
network R′ by removing k − λ inputs.
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Proof. R and R′ have the same set of switches, V . Let W be a subset of V .
iR(W ) (resp. iR′(W )) denotes the number of inputs attached to W in R (resp.
R′). As iR(W ) ≤ iR′(W ), εR(W ) ≥ εR′(W ), finishing the proof.

(p
,k

)−
se

le
ct

or

(p, λ)−selector

Fig. 2. A (p, λ, k)−network built with two selectors in series

Links with (p, k)−networks or (p, k)−selectors. (p, λ, k)-networks where
all the inputs are used (λ = 0) have been studied in [4] and [8] and are called
(p, k)−networks or (p, k)−selectors. We have

N(p, 0, k) = N(p, k, 0) = N(p, k). (1)

Definition 2 (2selectors (p, λ, k)−networks). A 2selectors (p, λ, k)−network
is formed by a (p, λ)−selector and a (p, k)−selector in serial, as indicated in the
following theorem.

Theorem 3
N(p, λ, k) ≤ N(p, λ) + N(p, k)

N(p, λ, k) ≤ O(p + k)

Proof. The proof is constructive. We can construct a valid (p, λ, k)−network
with two valid selectors, a (p, λ)−selector and a (p, k)−selector as shown in
Figure 2. The idea is to use the first selector in a symmetric way by replacing
its p + λ outputs by our inputs, then to link the inputs of the two selectors all
together. The outputs of the second selector will be our outputs. Any subset of
size p of the inputs can be routed to the p central links by the first selector.
The second one can route these links to any subset of our outputs. So the net-
work is valid. We call the networks built this way 2selectors (p, λ, k)−networks
(Definition 2).

As it is shown in [4] and [8], that the minimum number of switches of a
(p, k)−selector is linear, we have the same result for (p, λ, k)−networks.
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3 Constructions for Small Cases

Recall that we may assume here that 1 ≤ λ ≤ k (see Theorem 1 and Equation 1).
We first present results for p = 1, 2 and k = 1, 2, then for p ≥ 3 and k ≥ 3. We
construct valid networks for 1 ≤ k ≤ 8, called respectively 2networks, 4networks,
6 networks and 8networks. The number of switches of these networks are optimal
for λ = k. For λ < k we use Theorem 2 to obtain networks close to minimal.
The proofs are mostly omitted here.
Case p = 1, 2 and any λ,k.

Theorem 4. N(1, λ, k) = �λ+k
2 � and N(2, λ, k) = �λ+k

2 � + 2

Proof. When p = 1, we build a network consisting of a path where one end
vertex has 3 inputs and the other 3 outputs. The internal vertices have either
2 inputs or 2 outputs when λ and k are even as shown in Figure 4. One vertex
can have only one input or one output or one input and one output according λ
or k or both are odd. When p = 2, we build similarly a network consisting of a
cycle with a maximal number of switches with 2 inputs or outputs, as shown in
Figure 4. The numbers of switches of the above networks attain these bounds.

To prove the validity we will use the cut criterion. When p = 1, let W be a
connected subset of V (see Proposition 3 for this choice of W ). As δ(W ) ≥ 1, we
have ε(W ) ≥ 1+o(W )−min(o(W ), k)−1 ≥ 0. The cut criterion finishes the proof.
When p = 2, we have δ(W ) ≥ 2. So ε(W ) ≥ 2 + o(W ) − min(o(W ), k) − 2 ≥ 0.
The networks are valid.

When p = 1, the network is minimal because a valid minimal network has to
be connected. When p = 2, if we construct a network with one vertex less, we
have a node v with 2 inputs and 1 output (or 2 outputs and 1 input). ε({v}) =
1 + 1 − 1 − 2 = −1 (εo({v}) = −1) and the network would not be valid.

Case k = 1, 2 (2networks).
A 2network consists of a cycle of p+λ vertices with one input and one output,

plus one vertex with one output if λ = 1 and k = 2, connected in a cycle, as
shown in Figure 3 A.

Theorem 5. N(p, λ, 2) = p + 2. N(p, λ, 1) = p + 1.

Proof. If W ⊆ V , we have δ(W ) = 2. As k ≤ 2, δ(W ) − min(k, o(W )) ≥ 0.
Moreover, as, by construction, i(W ) ≤ o(W ), we have o(W )−min(p, i(W )) ≥ 0.
So ε(W ) ≥ 0 and 2networks are valid.

If we construct a network with one vertex less, we obligatary have a vertex
with i(v) = 1 and o(v) = 2. Consider the subset W made of this switch εo(W ) =
1 + 1 − 1 − 2 = −1. This network would not be valid. So 2networks are minimal.
For k= 1 we use a connection of the switches via a path.

Case p ≥ 3 and k ≥ 3
Let R be a (p, λ, k)−network. Recall that n := p + k. In what follows we

suppose p ≥ 3 and k ≥ 3.
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A: Valid and minimum (p, 1, 2)-network and (p, 2, 2)-network.

B: (16, 4, 4) − 4network

C: (24, 6, 6) − 6network D: valid (34, 6, 6)-network

Link with a doublon

Simple Link

(edge of kind E1)

E: (4, 8, 8) − 8network

Fig. 3. Constructions for small k
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Definition 3 (Doublons, R-Switches). A doublon of R is a vertex with
i(v) = o(v) = 1. An R-switch is a vertex that is not a doublon.

Definition 4 (Edges of kind E0, E1 and E2). We build a graph G associated
to R. Its vertices are the R-switches of R. Its edges are of three kinds, respectively
E0, E1 and E2: the edges of R between two R-switches, the edges corresponding
in R to a path of length 2 with a doublon in the middle and those corresponding
to a path of length 3 with 2 doublons in the middle.

Note that the R-switches and doublons partition R and that the cut criterion
gives immediately that edges of other kinds corresponding to paths of length
more than 3 with doublons in the middle are forbidden. Indeed, if we consider
the set W consisting of these doublons, we have δ(W ) = 2 and o(W ) = i(W ) ≥ 3.

Fig. 4. Valid and minimum (1, λ, k)-network and (2, λ, k)-network

Case k ≤ 3, 4, (4networks).
A 4network is built from blocks made of one node with no inputs nor outputs

and 4 doublons on 2 edges of kind E2. A block is connected to two identical
blocks in serial as shown in the (16, 4, 4) − 4network of Figure 3 B. Each block
has 5 nodes, 4 inputs and 4 outputs except one or two if (p + k) mod 4 	= 0
or (p + λ) mod 4 	= 0. Counting the number of switches and checking that the
4networks are valid gives the following theorem:

Theorem 6. For k = 3, 4, N(p, λ, k) ≤ n + n
4 + c′4 − c, c′4 = �n mod 4

4 � and
c = 
k−λ

2 �.

On the other hand we can prove the following lower bound:

Theorem 7. For k ≥ 3, N(p, λ, k) ≥ n + n
4 − c′′4 , where c′′4 = k−λ

2 + k−λ
8 .

Notice that the difference between the number of switches of a (p, λ, k)−4network
and the lower bound is at most 1 and that in the case λ = k = 4 we obtain:

Corollary 1. N(p, 4, 4) = n + n
4 .

Case k = 5, 6, (6networks).
A 6network is built from blocks made of 3 switches connected in circle, each

of them is connected to two doublons on an edge of kind E2. A block is con-
nected to two identical blocks in serial as shown in the (24, 6, 6) − 6network of
Figure 3 C. Each block has 9 nodes, 6 inputs and 6 outputs except one or two if
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(p + k) mod 4 	= 0 or (p + λ) mod 4 	= 0. Counting the number of switches of
a (p, λ, k) − 6network and checking the validity of the 6networks we obtain:

Theorem 8. For k = 5, 6, N(p, λ, k) ≤ n + n
2 + c′6 − c, where c′6 = 3�n mod 6

6 �
and c = 
k−λ

2 �.
Theorem 9. For k ≥ 5 and for the Simplified Design Problem

N ′(p, λ, k) ≥ n +
n

2
− c′′6 ,

with c′′6 = k−λ
2 + k−λ

4 .

Notice that the difference between the number of switches of a (p, λ, k)−6network
and the lower bound is at most 4. In the general case we have obtained the
following bound:

Theorem 10. For the General Design Problem and for k ≥ 5

N(p, λ, k) ≥ n +
3n

8
− c′′,

with c′′ = k−λ
2 + 3(k−λ)

16 .

We found also an other family of valid networks with the same number of
switches. Nodes with no inputs nor outputs are connected on a grid on a sphere
with edges of kind E1, as shown in Figure 3 D.

Case k = 7, 8, (8networks).
An 8network is built with n doublons, n

4 nodes in N4 and n
3 nodes in N3.

Nodes in N4 and N3 have no inputs nor outputs. A node in N4 is connected to
four nodes in N3 via an edge of kind E1 (see Definition 4). A nodes in N3 is
connected to three nodes in N4 via an edge of kind E1 and to one node in N3 via
an edge in E0. N3 is divided in four groups with the condition that two nodes
linked with an edge in E0 are in different groups. Each node in N4 is connected
to there four groups as shown in the (4, 8, 8)−8network with 19 nodes of Figure 3
E. Here again counting the number of switches and checking that the 8networks
are valid we obtain:

Theorem 11. For k = 7, 8,

N(p, λ, k) ≤ n +
7n

12
+ c′8 − c.

with c′8 = 7�n mod 12
12 � and c = 
k−λ

2 �.
Theorem 12. For k ≥ 7 and for Simplified Design Problem with no edges E2:

N ′(p, λ, k) ≥ n +
7n

12
− c′′8 ,

with c′′8 = k−λ
2 + 7(k−λ)

24 .

Notice that the difference between the number of switches of a (p, λ, k)−8network
and the lower bound is at most 8.
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4 Constructions for Any k and Any λ. General
(p, λ, k)−Networks

We present here General (p, λ, k)−Networks (see Definition 7). Their sizes are
close to minimal for small k (see Remark 1). They are built with ν−boxes in-
troduced in Definition 6.

4.1 Preliminaries: ν−Boxes and ν-Permutation Networks

The decisive property of ν−boxes is expressed in Lemma 2.

Definition 5 (ν−graph). A ν−graph (ν ≥ 2) is a pair (G, l), where G = (V, E)
is a simple non oriented graph and l a positive integer function defined on V such
that l(V ) = 2ν and that, for every vertex x, one has l(x) + δ(x) = 4.

Fig. 5. A minimal 4-box

Definition 6 (ν−box). A ν−box is a ν−graph such as for all integer function
i defined on V with 0 ≤ i ≤ l and i(V ) = ν, there exist ν edge-disjoint paths
such that every vertex x is the beginning of i(x) paths and the end of l(x) − i(x)
paths.

Examples: For ν = 1 a minimal ν−box is reduced to a vertex. For ν = 2 a mini-
mal ν−box consists of a triangle. A minimal 4−box can be seen in Figure 5. These
examples are obtained from permutation networks. A ν−permutation network
is a network that can route its ν inputs to any permutation of its ν outputs.

Proposition 4. A ν−permutation network is a ν−box.

Proofs of properties of ν−boxes are omitted here. There exist linear asymptotic
constructions for ν−boxes. Nevertheless, for small ν, no constructions of ν−box
smaller than the corresponding permutation network have been found. For ν ≤ 6,
it has been proved that minimal permutation networks are optimal ν−boxes.
For ν ≤ 6, these minimal networks are known as AS-Waksman Permutations
networks see [7]. For these reason we choose AS-Waksman permutation networks
for our ν−boxes for small k.
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An useful tool to prove validity is:

Lemma 2. In a ν−box, for every subset X ⊆ V we have

|Γ (X)| ≥ min(l(X), l(X̄)),

where Γ (W ) is the set of vertices of X adjacent to a vertex of W .

The proof reduces to a flow problem.

4.2 General (p, λ, k)−Networks

Definition 7 (General (p, λ, k)−Networks). A General (p, λ, k)−Networks
(see Figure 6) is built with

⌈
p+k

k

⌉ ⌈
k
2

⌉
−boxes connected in circle. These boxes

are connected with

- a maximal number,
⌊

p+λ
2

⌋
, edges of type E2,

- 1 edge of kind E1 if p + λ is odd and 0 otherwise,
-

⌊
k−λ

2

⌋
edges with one node with 2 outputs on it (edges of kind E′

2),
- 1 edge with one node with one output on it (edge of kind E′

1), if k − λ is odd
and 0 otherwise,

- the remaining of type E0

(⌈
k
2

⌉ ⌈
p+k

k

⌉
− e2 − e1 − e′2 − e′1

)
.

⌈
k
2

⌉
edges E2

⌈
k
2

⌉
−box

⌈
k
2

⌉
−box

⌈
k
2

⌉
−box

Fig. 6. Scheme of General (p, λ, k)−Networks

Lemma 3. The number of switches of a general-(p, λ, k)−network is

n +
Bmin(�k

2 �)
2�k

2�
n + c′g − c,

with Bmin(ν) the number of nodes of a minimal ν−box, with c′
g = Bmin�n mod 2� k

2 �
2� k

2 � �

and c = 
k−λ
2 �.
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k 3, 4 5, 6 7, 8 9, 10 13, 14
Size n + n

4 n + n
2 n + 5n

8 n + 8n
10 2n

Fig. 7. Size of General (p, λ, k)−networks for small k

Remark 1. The sizes of General (p, λ, k)−networks for small k using AS-
Waksman permutation networks as �k

2�−boxes can be seen in Figure 7. Gen-
eral (p, λ, k)−networks for small k are close to minimal networks (To compare
with the networks of Section 3).

Proposition 5. A General (p, λ, k)−Network is a valid (p, λ, k)−Network.

5 Conclusion

There remain a lot of open problems in this general issue. For example, the
demands of Alcatel include networks with few (six) to around thirty unused
inputs that have to tolerate few (ten) to around twenty output failures. We
present some networks close to minimal for k from one to a dozen. But it remains
to find tighter bounds for them and to explore larger values of k.
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Abstract. This paper studies a gathering problem for a system of asyn-
chronous autonomous mobile robots that can move freely in a two-
dimensional plane. We consider robots equipped with inaccurate (incor-
rect) compasses which may point a different direction from other robots’
compasses. A gathering problem is that the robots are required to even-
tually gather at a single point which is not given in advance from any
initial configuration.

In this paper, we propose several inaccurate compass models and give
two algorithms which solve the gathering problem on these models. One
algorithm is the first result dealing with the compasses whose indicated
direction may change in every beginning of execution cycles of robots. It
solves the problem when compasses point different at most π/8 from the
(absolute) north. The other one solves the problem when the compasses
never change its pointed direction and their difference is at most π/3
among robots.

1 Introduction

Background. The system constituted by autonomous mobile robots is one of
the autonomous distributed systems. Such a system is really effective under the
circumstances like in deep sea or space where it is hard to control the robots
because of difficulties of communications (i.e., long delay, bit deficiencies and
so on). There are two standpoints in this research area that are practical and
theoretical ones. We are focusing on the theoretical point in this paper.

In recent years, the research of the problem which achieves some kind of con-
sensus among autonomous mobile robots has attracted attentions of researchers.
One of the interesting problems is a gathering problem, where all robots meet
at a single point which is not predefined, with inconsistent coordinate systems.
There are some literatures dealing with this problem under various assumptions
(i.e., additional capabilities of robots such as a multiplicity, restrictions for com-
passes’ inaccuracies, and so on).

In this paper, we study on inaccuracies of compasses and the gathering prob-
lem in asynchronous autonomous mobile robot systems with inaccurate com-
passes. Prencipe proposed a model of the asynchronous autonomous robot called

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 274–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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CORDA[1,2]. In the asynchronous robot systems, it is known that a very sim-
ple problem, a gathering problem, cannot be solved under some assumptions.
Prencipe has shown that there exist no deterministic algorithms which solve the
gathering problem in a finite time [3]. If robots have a capability of multiplicity,
which means that a robot can count the number of robots that is at a same
point, it has been shown that the problem is solvable for three or more robots
[4]. In [5], it has been introduced that the problem can be solved for any number
of robots under the assumption that coordinate systems on the robots are con-
sistent, that is to say, all robots have perfectly accurate compasses. But it is an
unrealistic assumption, so Souissi et al.[6,7] and Imazu et al.[8] have proposed
some models of inaccurate compasses and algorithms that solve the gathering
problem on them.

Our main interests are that (1) what and how many kinds of the inaccuracies
of compasses exist? (2) with what kinds of the inaccurate compass the gathering
problem can be solved? (3) what is the bound of the angles between inaccurate
compasses to solve the problem? Therefore, in this paper, we classify inaccurate
compasses and propose their models, and give two algorithms that solve the
gathering problem for two robots. Our robot model is CORDA, that is, robots
act asynchronously and are oblivious, meaning that, they cannot memorize their
previous states, actions, and positions of other robots. This model seems to be
too weak (over-restrictive). But it is very interesting to develop algorithms from
a theoretical point, because any algorithm which solves a problem correctly in
this model, can solve it in other (stronger) models, that is to say, the applicable
situation is very wide. Moreover, the algorithm can get to have a fault tolerance,
which is called self-stabilizing property, that the system reaches some predefined
legal configuration (behavior) in despite of starting the algorithm from any initial
configuration.

Our contribution. There are three our main contributions in this paper. The
first is classifications and definitions of inaccurate compass models. The sec-
ond is proposing two algorithms solving the gathering problem for two types
of inaccurate compass models. One is for two robots with π/4-absolute error
semi-dynamic compasses. This compass model means that the compass of each
robot may change its pointed direction infinitely often during the execution of
the algorithm, and its difference from the direction of absolute north is at most
π/8. That is to say, the angle between two pointed directions of two robots’ com-
passes is at most π/4. This algorithm is the first algorithm with a model where
the compass may dynamically change its pointed direction during execution of
algorithms. Another one is for two robots with π/3-relative error fixed com-
passes. This algorithm solves the problem when a difference of any two robots’
compasses is at most π/3. On relative error fixed compass, there exist two algo-
rithms that solve the problem when a difference is at most π/4 [7,8]. Our result
improves these results with regard to inaccuracy of angle.

Related work. Suzuki and Yamashita [9,10] proposed the first algorithm to solve
the gathering problem deterministically under their semi-synchronous robot
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model. We call their model SYm. They have also proven that it is impossible to
solve the gathering problem if oblivious robots have no common orientation (co-
ordinate system) even when the number of robots is 2.

In [9,10], the robots have unlimited visibility. Ando et al. proposed an algo-
rithm with the same model except limited visibility of the robot [11].

Prencipe proposed an asynchronous robot model called CORDA [1,2], and
Cielibak et al. provided a deterministic algorithm which solves the gathering
problem using CORDA [4]. Their algorithm requires ability to detect the mul-
tiplicity of robots at a point. Flocchini et al. proposed an algorithm for the
gathering problem using CORDA with limited visibility [5]. But their algorithm
requires robots to have perfectly accurate compasses.

Recently, several fault tolerant algorithms are proposed. Agmon et al. studied
the gathering problem in the presence of faulty robots [12]. They proposed an
algorithm which tolerates one crash faulty robot where there are three or more
robots in the system. They also introduced impossibility of solving the gathering
problem where a Byzantine robot exists in asynchronous 3 robots system. Their
result is improved by Defago et al. in [13]. They showed that impossibility also
holds in a stronger model. Imazu et al. [8] and Souissi et al. [7] introduced algo-
rithms which solve the gathering problem using inaccurate compasses. Souissi et
al. [6] also proposed a gathering algorithm that solves the problem using SYm
with eventually stabilizing compasses. Cohen et al. studied about the effect of
errors in robot measurements, calculations and move [14]. One of their main posi-
tive results is an algorithm for convergence with bounded errors of measurement,
movement and calculation. But they did not consider errors of compasses.

Structure. The remaining parts of this paper are organized as follows. In Sec-
tion 2, we introduce a model of robots, inaccurate compasses, and some basic
terminologies. In Section 3 we describe our first proposed algorithm to solve
the gathering problem for two robots under the assumption of absolute π/8 in-
accurate and semi-dynamic compasses, and prove its correctness. In Section 4,
our second proposed algorithm solving the problem with relative π/3 inaccurate
and fixed compasses and its proof is described. Finally, we conclude our work in
Section 5.

2 System Models and Definitions

In this section, we describe models of systems which consist of autonomous
robots, and then, classify and define some types of inaccurate compass models.

2.1 Robot Model

We consider a system which consists of a set of autonomous mobile robots R =
{r1, r2, · · · , rn}. We use CORDA model as a model of robots and is defined as
follows:

– Each robot has no volume and so we can treat it as a point.
– It can move freely in the two-dimensional plane.
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– It is anonymous in the sense that it does not have any kinds of identifiers
and cannot be distinguished from other robots.

– It repeats its own cycle asynchronously that consists of the four states,
“Look”, “Compute”, “Move” and “Wait”.

– The range of its view (the observation range) is infinite.
– Each robot is oblivious, meaning that it cannot remember any kind of in-

formation of the previous cycles, which includes its actions and positions of
other robots (observations).

– It has sensorial capabilities to observe positions of all other robots and no
direct means of communication capabilities. It can form its local view of the
world by observation.

– All robots execute a same algorithm.
– Each robot has its own rectangular coordinate system which may be different

from other robots’, in other words, their direction of y axis and/or the unit
distance is different from other robots. The x and y axes of the coordinate
system are given by their own compass. We assume that the direction of y
positive axis on the robot is agreed with the north directed by its compass.

As described above, the cycle consists of four states described as follows:

– Look: In this state, a robot observes the world by using its sensor, which
will return a snapshot of positions of all other robots as a set of robots’
coordinate with respect to its local coordinate system. We consider that the
observating (looking) robot exists on the origin of its coordinate system. It
is assumed that robots are transparent. It means that any robot does not
obstruct the view of other robots.

– Compute: In this state, a robot performs local computation according to its
result of observation and the algorithm. The result of the computation is a
destination point (a coordinate on its own coordinate system).

– Move: The robot moves on the line from the current position to the desti-
nation. If the destination is equal to its current location, it performs a null
movement that means the robot does not move actually.

– Wait: In this state, a robot is idle. We assume that all robots are in this
state at the initial configuration.

A snapshot of the system is called “configuration”. So, in look state, a robot
can get configuration at the time when it observes the world by its sensor.

The time that passes between two successive states of the same robot is finite,
but unpredictable. And no time assumption within a state can be made. This
implies that a destination got in a last “Compute” state may be different from
a destination which is computed with the actual (real time) configuration.

The model makes two assumptions on the cycle of the robot.

Assumption 1. A robot travels at least the distance of some constant δ(> 0)
during a single move state. If a distance to the destination is less than or equal
to δ, the robot can reach there in one move. Moreover, a robot may stop at any
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point on its way of destination (of course, the distance between starting and
stopping points is greater than or equal to δ).

Assumption 2. A time needed to finish one cycle is at least some constant
ε(> 0) and finite.

An execution of the system is a sequence of configurations. And it is produced
by a schedule which consists of a sequence of time that a robot performs its
actions and the way of its movement. The way of a movement means all of
nondeterministic factors of movements, typically including the traveling distance.

We may take two different models with respect to the behavior of a robot
movement as the followings.

(i) Movement depending on a local coordinate system: A robot moves toward
its destination represented by its local coordinate system. The coordinate of
the destination is changed according to the variance of its local coordinate
system (i.e., the variance of its compass). If the coordinate system is changed
during movement, the robot’s trajectory will not be a straight line.

(ii) Movement not depending on a local coordinate system: A robot moves to-
ward its destination according to a movement vector for the destination. For
instance, the command like “turn right wheel 2, turn left wheel −3” is given
to an actuator on the robot. The destination point on the absolute (global)
coordinate system (if exists) is never changed even though a local coordinate
system is changed.

In this paper, we use a model of (i).

2.2 Compass Models

In this subsection, we introduce new models of compasses with which robots
are equipped. These models are classified with regard to inaccuracies of their
indicated directions. In general, compasses (magnetic, gyro, GPS and so on)
are error-prone because of magnetic interference, limitation of precision and/or
mechanical preciseness. Therefore, it is very natural to assume that compasses
have inaccuracies.

By standing two points of view, the variance of indicated direction and the
difference between compasses, we define inaccurate compass models.

Variance of Compasses. We define four types of inaccurate compasses on the
point of variance of indicated direction.

Definition 1. The full dynamic compass (FDC) is a compass whose indicated
direction may vary at any time during the execution.

Definition 2. The semi-dynamic compass (SDC) is a compass whose indicated
direction may vary at the time between any two cycles, but it is never changed
during one cycle.
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Definition 3. The fixed compass (FXC) is a compass whose indicated direction
never varies.

Definition 4. The eventually fixed compass (EFC)[6] is a compass whose in-
dicated direction is fixed after some point of a time but may vary before that
time.

FDC is the weakest model and SDC is stronger than FDC. SDC is weaker than
FXC. FXC is the strongest model in these four models. It means that if an
algorithm solves a problem with FDC, it can solve the problem with SDC. For
SDC and FXC, we can make the same discussion too.

EFC can be considered as a property of FDC, SDC and FXC. For instance,
FDC-EFC model can be considered that the indicated direction of the compass
may be varied at any time but it is eventually fixed. Note that, under the as-
sumption of an infinite visibility, EFC can be considered as the same with FXC
in the sense of solvability. That is, if a robot’s view is limited, the case may exist
such that some robot moves out from other robot’s view due to the variance
of the compass. On the other hand, if an infinite view is assumed, every robot
can always observe each other. And after the compass was fixed, we can look on
EFC as FXC.

In this paper, we assume infinite visibility, so EFC is not considered. And
FDC and SDC can be considered as the same model (in the sense of solvability)
if a movement is not depending on the local coordinate system. Our work is
the first work dealing with the compasses which change their indicated direction
dynamically.

Difference between Compasses. We define two types of inaccurate com-
passes on the point of difference of indicated directions between any two com-
passes equipped on robots.

Definition 5. (α-absolute error) Existence of an absolute north is assumed. The
absolute north is a vector that indicates the fixed (absolute) north direction. It
is agreed with the absolute y positive axis on the coordinate system of the world.
For compasses on robots, they have α-absolute error iff, for every robot, the each
angle which is formed by the indicated direction of its compass and the absolute
north direction is at most α/2.

Definition 6. (α-relative error) For compasses on robots they have α-relative
error iff the angle which is formed by indicated directions of any two robots’
compasses is at most α.

Now, we consider the variance of a compass is a part of schedule.
From the definitions of the models, we can get the first lemma about the

robots’ behavior.

Lemma 1. Consider a robot r with SDC or FXC. If there is a time t such that
the robot r computes the same goal (point) p in any compute state after t, it can
reach the point p in a finite time after t.
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Proof. If the robot exists on the point p, lemma holds.
According to the robots model, one cycle is done in a finite time and the

robot r moves at least δ during any move. And robots can move only straight,
therefore, r can reach the point p after at most �x/δ� cycles. ��

Combination of Variances and Differences. Our inaccurate compass mod-
els can be considered as combinations with three types of variances and two types
of differences. For instance, we can consider an inaccurate compass α-absolute
error SDC in which the compass’ indicated direction may vary at the time be-
tween any two cycles and the angle which is formed by the indicated direction
of each robot and the absolute north direction is at most α/2.

Note that, it is easy to understand, the compass model of α-relative error
FXC is the same one as that of α-absolute error FXC in the sense of problem
solvability. But we can not do the same discussion on SDC.

2.3 Gathering Problem

The gathering problem is a problem to require robots to gather at a non-
predefined single point. An algorithm solves the gathering problem iff, from
any initial configuration, under any schedules, all robots can gather at a point
in a finite time when the robots travel according to the algorithm.

The problem cannot be solved under the assumption of FDC for α-absolute
(α > 0) and α-relative (α ≥ 0) error. Consider the last move before two robots
gathering. Intuitively, a robot cannot arrive at a point where other robot exists
because the direction of movement can be changed by an adversarial scheduler.

2.4 Notations

In this paper, the following notations are used. Let p, q and r be vertices.

– Δ(p, q, r) indicates the triangle formed by vertices p, q, and r.
– [p, q] indicates the segment starting at p and terminating at q, including p

and q.
– [p, q) indicates the half line starting at p and getting through q.
– p̂qr indicates the acute angle formed by two segments [p, q] and [r, q].

3 π/4-Absolute Error SDC Algorithm

The algorithm introduced in this section has been published by Imazu et al. in
[8]. They provided it as a π/4-relative error FXC algorithm for two robots. We
show that the algorithm solves the gathering problem with π/4-absolute error
SDC. Souissi et al. also proposed a π/4-relative error FXC algorithm [7], but it
cannot solve the problem with π/4-absolute error SDC.
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1. If (no robot is observed) then
// gathering has been finished.

2. no move;
3. else if (other robot is observed in

(1), (2) or (3)) then
4. p := the coordinate where

the other robot exists;
5. Move(p); //the robot travels toward p.
6. else if (other robot is observed in

(4), (5) or (6)) then
7. no move;
8. else if (other robot is observed in

(0) or (7)) then
9. p := the coordinate which is right above

(same x-coordinate) and I can observe
the other robot in (6);

10. Move(p);

Fig. 1. Imazu’s algorithm(π/4-absolute er-
ror SDC algorithm)

(3)

(1)(2)

(4)

(5) (6)

(7)

(0)

x

y

Fig. 2. An 8 divided coordinate system

3.1 Outline of Imazu’s Algorithm

Fig.1 shows the algorithm. In this algorithm, the world (a view of a robot) is
divided into 8 sectors by the same angle π/4 from positive x axis (Fig.2). Each
border is included in the sector adjacent on the counter-clockwise side. Every
robot decides its action according to the sectors in which the other robot is
observed.

V1V2

V3

V4

V5 V6

V7

V0

Fig. 3. An observation re-
lation graph Gπ/4

We explain the idea of this algorithm. Two robots
r1 and r2 are considered. In the case that r1 observes
r2 in sector (1), if their compasses are correct, r2 ob-
serves r1 in (5). Actually, the compasses differ by at
most π/4, and so r2 may observe r1 in (4), (5), or (6).
That is, if r1 observes r2 in a sector, r2 observes r1 in
the origin-symmetric sector or its neighboring sectors.
In this fact, we get the following observation.

Observation 1. Let r1 and r2 be two robots. In the
case that r1 observes r2 in sector (i) (0 ≤ i ≤ 7) on
its own coordinate system, r2 observes r1 in sector (j),
where j = i + 3, i + 4 or i + 5 (mod 8).

From Observation 1, “observation-relation graph” can be defined such that
we consider sectors as nodes, and observation relations as edges. Fig.3 is the
observation-relation graph Gπ/4 which is defined as Gπ/4 = (V, E), where V =
{V 0, V 1, V 2, V 3, V 4, V 5, V 6, V 7} represents sectors (0)–(7) and E = {(V i, V j)|
i ∈ {0, · · · , 7}, j = i + 3, j = i + 4 or j = i + 5 (mod 8)} is a set of edges which
represent observation relations. That is, there is an edge (V i, V j) on Gπ/4, iff
there can be a system configuration that if r1 observes r2 in sector (i), r1 is
observed in sector (j) by r2 on its own coordinate system . In what follows, we
say “r1 corresponds to node V i” when r1 observed r2 in sector (i).
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On this observation-relation graph, if the graph
could be 2-colorable, it means that all of the nodes
can be colored by two colors such that adjacent nodes
must have different colors, a gathering problem can
be solved. Let’s conceive that 2-coloring with red and
blue colors is done for the graph. In such a case, in
any configuration, two robots correspond to nodes of
two different colors. For instance, if r1 corresponds to
node V i and its color is blue (we say a “blue robot”),
then r2 must correspond to the red color node (we say
a “red robot”). And we define the following two rules:

– A blue robot moves toward the other robot.
– A red robot does not move.

All robots can gather at a single point according to these rules, because of
the assumptions 1 and 2 and also the fact that this movement does not change
the sector where the other robot is observed.

Unfortunately, Gπ/4 cannot be colored with two colors. We need three colors
for coloring (Fig.3). Then, we add a following rule for an additional color white.

– A white robot moves toward a point where it becomes a red robot. (Conse-
quently, they will form a pair of red and blue robots.)

Therefore, we can say “the algorithm defines the robots’ color and act.”

3.2 Correctness of Imazu’s Algorithm

We show that Imazu’s algorithm can solve the gathering problem with π/4-
absolute error SDC.

For the proof of correctness, we use a local coordinate system divided into 16
sectors indexed from 0 to 15 (Fig.4). In the proof, we use two kinds of indices of
Fig.2 (with parentheses) which is also used in the algorithm, and those of Fig.4
(without parentheses). The relation between these two indices is shown in Fig.4.
For instance, sector (1) corresponds to the sectors 15 and 0, and so on. Because
we are considering π/4-absolute error SDC, Fig.5(a) and (b) show two extreme
cases where the compass (or the local coordinate system) on the robot rotates
counter-clockwise and clockwise, respectively. A local coordinate system on any
robot can lies between Fig.5(a) and (b). Note that, indicated direction of the
compass may vary only at the starting time of any cycle under SDC.

Next, we define an absolute coordinate system and its sectors. The absolute
coordinate system is defined on the world such that its positive y-axis points ab-
solute north. This coordinate system is also divided into 16 sectors and indexed
same as the local coordinate system. Fig.4 can be considered as the absolute
coordinate system when its positive y-axis direction matches with the direction
of the absolute north. We call each of those sectors “an absolute sector.” Fur-
thermore, we use the term “the absolute sector i of a robot r,” which means the
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Fig. 6. A supplemental figure for lemma 3

absolute sector i of a robot r when assuming that r exists at the origin of the
absolute coordinate system.

Table 1. The observation relation
for the configurations

Confs. Local sector Proof
r1 r2 case

C0 15,0,1 7,8,9 (a)
C1 0,1,2 8,9,10 (a)
C2 1,2,3 9,10,11 (b)
C3 2,3,4 10,11,12 (c)
C4 3,4,5 11,12,13 (d)
C5 4,5,6 12,13,14 (d)
C6 5,6,7 13,14,15 (e)
C7 7,8,9 14,15,0 (e)

If a robot r exists in the absolute sector i
on the other robot r’, r’ exists in the abso-
lute sector j = i + 8 (mod 16) on r. Let Ci

denote a set of such configurations. Note that
if we do not distinguish two robots, Ci and
Ci+8 (mod 16) represents the same configura-
tion. So, we get the next lemma.

Lemma 2. Each configuration which con-
sists of two robots can be represented by one
of C0, C1, C2, C3, C4, C5, C6 and C7 as long as
they do not gather at a single point.

Lemma 3. In Fig.6, for Δ(a, b, c), let c′ be
any point which is further from b than c on the
half line [b, c) and let a′ be any point on the segment [c, a]. In such a situation,
âcb > â′c′b is satisfied and â′c′b takes the minimum at a′ = c.

Lemma 3 represents a situation where one robot r1 moves from c to c’ and
r2 moves from a to a’. That is, r1 moves right above and r2 moves toward r1
following the algorithm. In such a case, the angle between the trajectory of r1’s
movement and the observed direction of r1 by r2 must decrease.

Corollary 1. Following Imazu’s algorithm, there is a time when r1 observes r2
in (its local) sector (6) if r1 observes r2 in sector (0) or (7) (r1 moves toward a
point p (Fig.1 line 9)).

Theorem 1. Two robots with π/4-absolute error SDC can gather at a single
point by executing Imazu’s algorithm.
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Proof. Because of the limitation of space and simplicity, we show a sketch of the
proof. We should discuss the asynchrony more for the complete proof. We show
that Imazu’s algorithm can gather two robots at a single point in spite of starting
from any configuration of lemma 2. Two robots r1 and r2 are considered and
without loss of generality, r2 exists at the absolute sector i on r1 at configuration
Ci.
(a) Case of C0 or C1: First, C0 is considered. In C0, r1 decides to move toward
r2 according to the algorithm because r1 observes r2 in the sectors 15, 0 or 1
((1) or (2)). On the other hand, r2 decides not to move because r2 observes r1
in the sectors 7, 8 or 9 ((5) or (6)). With SDC, the compass does not change its
direction during any cycle, so r1 must move directly toward r2 and the sector
does not change in which each robot observes the other one. From lemma 1, r1
and r2 can gather at a point (r2’s point) in a finite time.

The case C1 can be proved similarly.
(b) Case of C2: In this case, r1 always decides to move toward r2, and r2 decides
not to move or to move right above. If r2 decides not to move continually, the
robots can gather at a single point by the same argument with (a). Now, we
need to prove the case that r2 decides to move right above.

If r2 decides to move right above, it reaches its goal (from lemma 1) or stops
on the way to its goal. In both cases, the direction of r1 observed by r2 changes
(from lemma 3) because the robot moves at least the distance δ.

When r2 decides to move right above, r2 must observe r1 in the sector 11. So,
the positive direction of r2’s y-axis must be rotated clockwise not less than 0
and at most π/8 from the absolute north. Hence, the direction of r2’s movement
is from 0 (includes 0) to π/8 (includes π/8) rotated from the absolute north
(its positive y-axis direction). If r2 moves along the absolute north (the positive
direction of r2’s y-axis), the absolute sector on r2 in which r1 exists is shifted to
the absolute sector 9 on r2 from lemma 3 (because r1 moves towards r2’s (past)
position). On the other hand, if r2 moves along the direction which is rotated
clockwise π/8 from the absolute north, the direction of r1 from r2 is shifted to
the absolute sector 8 on r2 by the same argument. Hence, the direction of r1 from
r2 is shifted from the absolute sector 11 to the absolute sector 9 or 8 by passing
through 10. That is, during finite cycles, r2 moves right above and reaches the
point where r1 exists in the absolute sector 9 (or 8) on r2. This is a configuration
where r2 exists in the absolute sector 1 (or 0) on r1.

So, by executing Imazu’s algorithm, starting from C2, two robots can gather
or the configuration is changed from C2 to C0 or C1.
(c) Case of C3: The robot r1 always decides to move toward r2 at any cycle,
while r2 decides to move right above or not to move according to its own compass.
As same as the case (b), we need to prove the case where r2 has cycles deciding
to move right above.

We assume that r2’s compass differs from the absolute north by clockwise
where the difference is not less than 0 and at most π/8. In this case, by the same
argument with the case (b), the configuration will become C0 or C1 in a finite
time.
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Next, we assume that r2’s compass differs from the absolute north by counter-
clockwise where the difference is not less than 0 and at most π/8. From lemma
3, if r2 moved to right above, r1 comes to exist in the absolute sector 10 on r2.
Then r2 comes to exist in the absolute sector 2 on r1.

Hence, starting from the configuration C3, Imazu’s algorithm makes the con-
figuration C0, C1, C2, or our objective (gathering) configuration.
(d) Case of C4 or C5: At both configurations, r2 always decides to move right
above, while r1 decides to move toward r2 or not to move according to its own
compass.

If r1 arrived at r2’s position before r2 finished its own observation (Look state),
they gathered. If r1 did not arrived at r2’s position or decided not to move, r2
must decide to move right above. Hence, the configurations will become C3 or
C2 in a finite time from lemma 3.
(e) Case of C6 or C7: At both configurations, r1 always decides not to move
while r2 decides to move right above or toward r1.

If r2 continually decides to move toward r1, in other words, r2 always observes
r1 in sector 15 or 0, they gathered at a single point (from lemma 1).

On the other hand, if r2 decides to move right above, by the same arguments
as the case (c), the configurations will become C2, C3, C4 or C5 in a finite time
(from lemma 3).

From these (a)–(e) arguments, Imazu’s algorithm can solve the gathering
problem with π/4-absolute error SDC. ��

4 π/3-Relative Error FXC Algorithm

In this section, we introduce a π/3-relative error FXC algorithm for the gathering
problem. The algorithms that solve π/4-relative error FXC are known [7,8]. Our
algorithm improves the difference of the angle on relative error FXC.

This algorithm is shown in Fig.7 and uses 6 sectors depicted in Fig.8. Each
sector has the same central angle π/3 and each border is included in the sector

1. If (no robot is observed) then
// gathering has been finished.

2. no move;
3. else if (other robot is observed in

(4) or (5)) then
4. p := the coordinate where

the other robot exists at;
5. Move(p); // travels toward p.
6. else if (other robot is observed in

(0) or (1)) then
7. no move;
8. else if (other robot is shown in

(2) or (3)) then
9. p := the coordinate at which is

on $l_1$ and I can observe
the other robot in (1);

10. Move(p);

Fig. 7. π/3-relative error FXC algorithm

x

(0)

(1)

(2)

(3)

(4)

(5)

y
l1l2

Fig. 8. A 6 divided coordinate system
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adjacent on the counter-clockwise side. We define a line l1 which is a border
dividing sets of sectors {(1), (2), (3)} and {(4), (5), (0)}. A line l2 is defined
such that a border dividing sets of sectors {(2), (3), (4)} and {(5), (0), (1)}.

We call the robot’s move of line 9 and 10 in Fig.7 “alignment move.” In section
3, we knew Imazu’s algorithm has the similar move. In Imazu’s algorithm, a robot
moves to right above, while a robot moves along the line l1 in this algorithm.

This π/3-relative error FXC algorithm is designed by the same idea as Imazu’s
algorithm. The observation-relation graph Gπ/3 is used (Fig.9) which can be
defined as same as Gπ/4. This graph can be colored by three colors.

4.1 Correctness of the π/3-Relative Error FXC Algorithm

V0

V1

V2

V3

V4

V5

Fig. 9. The observation-relation
graph Gπ/3

We prove the correctness of the algorithm that
can solve the gathering problem with π/3-
relative error FXC. Lemma 3 also holds for
alignment moves of the algorithm. So, we can
get lemma 4.

Lemma 4. When the robots r1 and r2 exe-
cute the algorithm (Fig.7), if r1 observes r2
in sector (2) or (3), there exists a time when
r1 observes r2 in sector (1).

Theorem 2. Two robots equipped with π/3-
relative error FXC can gather at a single
point by executing the π/3-relative error FXC
algorithm(Fig.7).

Proof. Because of the limitation of space and simplicity, we show a proof sketch.
We should discuss the asynchrony more for the complete proof.

Starting from any configuration, we show that the robots can gather at a
single point by using the observation-relation graph Gπ/3 (Fig.9).

The notation (i)-(j) means that the configuration that r1(r2) observes r2(r1)
in sector (i) and r2(r1) observes r1(r2) in sector (j). Now, it is easy to be verified
that the following 9 configurations are enough to be considered: (0)-(2), (0)-(3),
(0)-(4), (1)-(3), (1)-(4), (1)-(5), (2)-(4), (2)-(5), (3)-(5).
(a) Case of (0)-(4), (1)-(4) or (1)-(5): If a robot r1 observes the other robot
r2 in sector (0) or (1), it does not move. On the other hand, since r2 observes
r1 in sector (4) or (5), r2 moves toward r1. Hence, the robots can gather at a
single point in a finite time starting from these three configurations.
(b) Case of (0)-(2), (0)-(3), (1)-(3), (2)-(4), (2)-(5) or (3)-(5): At these
configurations, one of two robots does the alignment move. We assume that r1
is the robot which does the alignment move and r2 is another one.

The robot r2 decides not to move or to move toward r1 according to the
algorithm. If r2 arrived at r1 before r1 finish its observation (Look state), the
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problem was solved. If not, that is, in the case of which r2 decides not to move
or r1 observes r2 before r2 arrives at r1’s position, r1 does the alignment move.
From lemma 4, r1 moves to the point at which r1 can observe r2 in sector (1) in
a finite time. Then, r2 observes r1 in sectors (3), (4), or (5) from the observation-
relation graph Gπ/3 (Fig.9). It means that this configuration is (1)-(3), (1)-(4)
or (1)-(5).
(b-1) Case of (1)-(4) or (1)-(5): These cases can be proved by same way as
(a).
(b-2) Case of (1)-(3): In this case, r2’s compass should rotate counter-clockwise
by more than 0, at most π/3. In other words, r1’s compass should rotate clockwise
by more than 0, at most π/3.

After such a case, from lemma 4, the configuration is changed to the new one
where r2 observes r1 in sector (1). In this configuration, it is easy to say that
r1 never observes r2 in sector (0), (1), (2) nor (3). Thus, r1 should observe r2
in sector (4) or (5), that is, the configuration is (1)-(4) or (1)-(5). This is the
case of (b-1). These arguments are true under the assumption where r1 does not
observe r2 before r2 arrives at its goal. If this assumption does not hold, we can
prove the correctness by the same argument as the case (b). ��

5 Conclusion and Remark

In this paper, we have considered the gathering problem when robots are equipped
with inaccurate compasses. We classified the models of inaccurate compasses and
introduced three results. First, there is no algorithm which can solve the gathering
problem with FDC. And we propose two algorithms which can solve the problem
with π/4-absolute error SDC and π/3-relative error FXC, respectively. Especially,
the π/4-absolute error SDC algorithm is the first algorithm considering a time-
varying compass.

We have focused on dynamic (inaccurate) compasses, it is very interesting to
declare the difference among our compass models (relative v.s. absolute, EFC-
SDC v.s. FXC, and so on). Also, we did not discuss about upper and lower
bound of differential of compasses. But now we have got some results about it.
The results will be published at another opportunity.

By our personal communications with Ms. Souissi, Prof. Défago and Prof.
Yamashita, we have known that there is a π-relative error FXC algorithm for
the gathering problem. Their and our results was developed independently, but
an approach to the problem has some similarities.
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Abstract. The recently established computational equivalence between
the traditional message-passing model and the mobile-agents model is
based on the existence of a mobile-agents algorithm that simulates the
execution of message-passing algorithms. Like most existing protocols for
mobile agents, this simulation protocol works correctly only if the agents
are fault-free.

We consider the problem of performing the simulation of message-
passing algorithms when the simulating agents may crash unexpectedly.
We show how to simulate any distributed algorithm for the message-
passing model in a mobile-agents system with k agents, tolerating up to
f ≤ k − 1 crashes during the simulation. Two fault-tolerant simulation
algorithms are presented, one for non-anonymous settings (i.e., where
either the networks nodes or the agents or both have distinct identities),
and one for anonymous systems (where both the network nodes and
the agents are anonymous). In both cases, the simulation overhead is
polynomial.

Unlike the existing fault-free simulation algorithm, both our protocols
are able to detect termination even if the simulated algorithm has no
explicit termination detection.

1 Introduction

1.1 The Framework

A distributed computing environment typically consists of a collection of au-
tonomous computational entities that can communicate among each-other to
perform a common task. The most common model of distributed computation
is the message-passing model, in which the entities are connected through point-
to-point links, according to some fixed topology (often represented as a graph);
the entities are stationary and communicate by sending and receiving bounded
sequences of bits (called messages), through the incident links (called ports).

Another model of distributed computation that has been studied recently is
the mobile agents model. In this model the entities are mobile (rather than sta-
tionary) and their movement is constrained by the topology of the environment

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 289–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(which is again represented by a graph). The entities, called agents or robots,
have computing and storage capabilities, and can move along the edges of the
graph going from one node to an adjacent node. Each node of the network (called
a host), provides a storage area (called whiteboard) for incoming agents, whose
access is held in fair mutual exclusion. The communication between the agents
occurs by writing notes on and reading notes from the whiteboards.

Mobile agents have been extensively studied for several years by researchers
in Artificial Intelligence and in Software Engineering. They offer a simple and
natural way to describe distributed settings where mobility is inherent, and an
explicit and direct way to describe the entities of those settings, such as mobile
code, software agents, viruses, robots, web crawlers, etc. Further, they allow to
express immediately notions such as selfish behavior, negotiation, cooperation,
etc. arising in the new computing environments. As a programming paradigm,
the model allows a new philosophy of protocol and communication software de-
sign. As a computational universe, the model opens a variety of new challenging
problems (e.g., rendezvous, intruder detection, network decontamination, etc.),
most of them with immediate practical relevance and applicability.

In addition to the study of the new problems opened by the mobile agents
model, intriguing research questions have naturally arisen on the differences (or
similarities) between computing with mobile agents and computing with station-
ary agents. The two environments were initially compared from a systems engi-
neering point of view by Fukuda et al.[13]. An insight on the computational rela-
tionship between the two models was provided by Barrière et al. [4], who noticed
that any mobile agent algorithm can be simulated in the message-passing model;
this immediately implies that all the impossibility results under the message-
passing model hold also for the mobile-agents model. The reverse direction has
been an open problem for quite a while. The question has been answered recently
by Chalopin et al. [8], who proved that indeed the two models are computation-
ally equivalent; in fact, they showed how to construct a mobile-agents algorithm
Y from a message-passing algorithm X in such a way that every possible out-
come of Y is a valid outcome for algorithm X. While the consequences of this
theoretical result are not yet fully realized, already several results have been
transferred between the two models [8]. Like most previous results on mobile
agent computing, also these equivalence results and the simulation algorithm
assume a fault-free environment.

In this paper, we consider instead systems where agents may fail by crashing
at any time, and we investigate the problem of developing a fault-tolerant simu-
lation. Thus the model considered in this paper is more realistic with respect to
the typical networked environments where transmission errors or inconsistencies
may cause some agents to be dropped or deleted from the system. We show that
even in such an environment, we can simulate any message-passing algorithm,
while tolerating an arbitrary number of agent crashes.

Moreover, we show that the simulation can be done with explicit termination
detection; that is, if the simulated algorithm terminates (explicitly or not), the
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simulation will be able to detect this within a finite time and all (surviving)
agents would reach terminal states.

1.2 Main Results

In this paper, we will focus on the most common type of fault that can occur in
mobile agent systems—agent crashes. This kind of fault occurs when an agent is
destroyed while moving from one node to another, for example due to network
congestion, or unavailability of a host. Let us denote by k the number of agents
and by f the number of crashes in the system.

We first consider the non-anonymous setting; that is when the network nodes
have distinct identifiers. Notice that, in this case, each agent can choose a distinct
identity for itself (if it does not already have one); thus, also agents are non-
anonymous. Further note that the case when the network is anonymous but the
agents have distinct identities is equivalent to the above one (since agents can
assign a distinct names to each node using the whiteboards).

For this setting, we design a simulation algorithm that is robust against any
number of crashes, short of the collapse of the entire system. We show that,
if the simulated algorithm terminates, the simulation will explicitly terminate
within finite time; this will happen regardless of the number f ≤ k−1 of crashes
that occur during the simulation, and even if the simulated computation does
not have termination detection. Our simulation algorithm, DisSimulate, has an
overhead of at most O(n) moves per agent, for each message transmitted in
the original algorithm, where n is the number of nodes. The local memory re-
quired by each agent is O(n log Δ), where Δ is the maximum degree in the
network.

We then consider the anonymous setting; that is when neither the network
nodes nor the agents have distinct identifiers. Assuming some knowledge about
the size of the system, the algorithm DisSimulate can be executed on anony-
mous networks too. However, as expected, the cost is much higher in this case
and depends on how efficiently the network can be traversed. In the worst case,
an exponential overhead can be incurred for simulating each message trans-
mission. To overcome this difficulty, we propose another algorithm, AnSimu-
late, that simulates any message-passing computation on an anonymous net-
work even when f ≤ k − 1 of agents crash during the simulation. The over-
head of AnSimulate is O(m + n · k) agent moves in total for each message ex-
changed in the simulated computation (where m is the number of edges in the
graph/network). The local memory requirement is same as before. The algorithm
AnSimulate requires knowledge of the knowledge of the number of agents in the
system1 and as before the simulation explicitly terminates within finite time,
even if the simulated computation does not have an explicit termination detec-
tion mechanism.

Due to the space constraint, most of the proofs have been omitted from this
paper and can be found in the full version.

1 The knowledge of the network size instead, would also suffice.
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1.3 Related Work

Although most of the classical results on distributed computing are based on the
message-passing stationary-agent model, some of these algorithms (e.g. [1,16])
use the concept of mobile objects called tokens moving among the stationary
processes in the network. Algorithms for network exploration (e.g. [1,18]) are
often described in terms of a travelling process or entity (sometimes modelled
as a finite automata, e.g. [12]). These algorithms can be thought of as “mobile-
agent” algorithms, where the mobile agent (or travelling token or automaton) is
created by a stationary process to perform a particular task (e.g. exploration)
after which it returns to process that created it and is destroyed there.

The model considered in this paper, consists of fully autonomous entities that
are not associated with any stationary process and these entities are continu-
ously performing computational tasks while moving among a network of data-
repository nodes called whiteboards. Certain problems which are specific to this
model, and have been studied recently are agent-rendezvous, (e.g., [17,23]), in-
truder capture (e.g., [3,6]), network decontamination (e.g., [11,19]), and black hole
search (e.g., [10,15]). The problem of leader election or spanning tree construc-
tion have been studied under both the mobile-agents model (e.g., [4,9]) and the
message-passing model (e.g., [14,16]). However, there has not been many studies
on the differences (or similarities) between computing with mobile agents and
computing with stationary agents, except for [4,8,13] as mentioned before.

There have been numerous studies [2,7,20,22] on computability in anonymous
networks under the message-passing model, in terms of which tasks can be com-
puted on a given network and under what conditions. Most of these results would
hold under the mobile-agents model too, however the complexity of doing tasks
in the mobile-agents model would be different.

The study of mobile-agents systems has mostly been limited to fault-free
environments. One exception is the investigation of systems with a black hole,
i.e. a highly harmful node that destroys any agent arriving at the node. In this
case, the research has mostly focussed on the problem of locating the black hole
(e.g., see [10,15]). The issue of computing with agents that can disappear (i.e.
crash) anywhere in the network has not been considered before, to the best of
our knowledge.

2 Terminology and Definitions

The S.A. model: In the message-passing model, the computational entities are
stationary and are connected by point-to-point communication links. We call
this the stationary-agents (SA) model, which can be described as follows. The
computing environment is modelled by a connected undirected graph G(V, E).
Each vertex2 of the graph G is associated with a fixed computational entity,
called a stationary agent. Each node also contains a local memory which is
accessible only to the agent associated with this vertex. Each agent can perform
2 We use the terms ‘vertex’ and ‘node’ interchangeably.
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any number of computational steps, it can read from and write to the local
memory of the node and it can send messages and receive messages on each edge
connected to the node. The agents are reactive entities, i.e. they react in response
to external stimuli, e.g. the receipt of a message. The state of an agent is defined
by the contents of the local memory. Initially some of the agents would be in
the special state “Initiator”; such agents would start the computation process
spontaneously. The initial value stored in the local memory at a node defines its
identity. Thus, the nodes have distinct identities only if the initial contents of
memory at each node is different.

The edges incident to a node are labelled by local orientation λ = {λv : v ∈
V }, where for each vertex u, λu : {(u, v) ∈ E : v ∈ V } → {1, 2, . . . , degree(u)}
defines the labelling on its incident edges. We shall use λ(e) to denote the la-
bels on the edge e = (u, v) i.e. the pair (λu(u, v), λv(u, v)). The agent at node
u can send a message m on any incident edge e = (u, v) using the primitive
SEND(m, λu(e)). In this case, the agent at node v receives the information
(m, λv(e)), within a finite amount of time.

The M.A. model: The mobile-agents (MA) model is similar to the above model,
with the following differences. As before the environment is modelled by the
labelled graph (G, λ); however the nodes of the graph are not associated with any
fixed computational entities. Instead, there are k computational entities (called
mobile agents) each of which may be located at any of the nodes of the graph
at any time during the computation. The agents can perform computations and
they can move along the edges of the graph. Each agent also has its individual
memory that is accessible only by that agent and is called its notebook ; This local
memory moves with the agent when it travels from one node to another. The
contents of the notebook defines the state of the agent (in particular, it contains
a special variable called Next-Node). Each agent starts in the same initial state
with the notebook containing only the algorithm to be executed. The node where
an agent starts from is called its homebase.

In this model, the nodes of the graph are just repositories of data, with no
“intelligence” (i.e. computational ability) associated with them. The local mem-
ory at each node, called the whiteboard of that node, is accessible to any agent
that is physically present at this node. The contents of the whiteboard defines
the state of the node. Access to a whiteboard occurs in fair mutual-exclusion.

An agent at any node v can read and modify the contents of the whiteboard of
node v as well as its own notebook memory, and it can leave node v through any
incident edge e(v, w). When an agent leaves a node v through an edge e(v, w),
the agent either reaches node w within a finite amount of time or permanently
disappears (i.e. crashes). Initially the agents are all identical and indistinguish-
able from each other (no unique identities), and they execute the same protocol.
In general, a mobile agent at any node v would repeatedly execute the following
cycle of steps:

1. [READ] Read the contents of the whiteboard to the agent’s notebook.
2. [COMPUTE] Perform a sequence of computations modifying the contents

of the agent’s notebook.



294 S. Das et al.

3. [WRITE] Write to the whiteboard part of the results of the computation.
4. [MOVE] If Next-Node= x > 0 , then leave the node v through the edge

labelled x. Otherwise if Next-Node=0, remain at node v.
During the time an agent A executes steps 1 to 3 at node v, the whiteboard of
node v would be exclusively accessible to agent A. (Prior to executing step-1,
the agent obtains a lock on the whiteboard and it releases the lock at end of
step-3.)

Assumptions: We make the following assumptions.

[A1] Each communication link—represented by an edge of the graph G—satisfies
the first-in-first-out property (i.e. agents traversing the same edge may not
overtake one-another).

[A2] An agent may crash while traversing an edge (i.e. during the MOVE step)
but it cannot die while performing some computation at a node (i.e. during
the READ-COMPUTE-WRITE steps) .

[A3] At most k − 1 agents may crash (i.e. f ≤ k − 1). Agent crashes are perma-
nent; Once an agent crashes, it may not become alive again.

3 Simulation in Non-anonymous Systems

In this section we consider the case when the network nodes are non-anonymous;
that is each node of the graph G is provided with a distinct identity that is
initially stored in the local memory(whiteboard) of the node.

Consider an arbitrary (message-passing) algorithm—we shall call it algorithm
Z—being executed on a network (G, λ), in the conventional stationary-agent
(S.A.) model. Such an algorithm can be described as follows:

Algorithm Z
- An initiator, upon starting the algorithm, executes the following steps:
Step-1 Initiate the algorithm and perform local computation, possibly gener-

ating messages to be sent.
Step-2 Send zero or more messages through some of the ports.
Step-3 Wait for messages to arrive from one or more ports.

- Any entity, on receiving a message m, executes the following steps:
Step-1 Read message m and perform local computation, possibly generating

some messages to be sent.
Step-2 Send zero or more messages through some of the ports.
Step-3 Wait for messages to arrive from one or more ports.

The algorithm is said to have terminated when every node is in Step-3 (passive
mode) and there are no messages in transit.

To simulate such an algorithm in a mobile agent system, we need to execute
the active steps (Step-1 and Step-2) at each node. This involves performing local
computation at the nodes and delivering messages between nodes. The idea of the
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simulation is simple— the mobile agents can move from node to node delivering
the messages; An agent that delivers a message m to a node x, can also perform
the local computation at node x that results from the receipt of the message m.
For effectively simulating the message-passing computation using mobile agents
that can fail at any time, we need to address the following issues:

[FR] Fairness: Every message that is generated at a node should be delivered
within a finite time to its destination.

[TD] Termination Detection: Once all messages have been delivered and the
execution of the original algorithm Z terminates, then each agent should be
able to detect this and stop the simulation.

Since an agent may crash while trying to deliver a message, we need to keep
track of which messages have been delivered successfully. For this purpose, we
maintain two message queues at each node– the To-Be-Delivered(TBD) message
queue and the Messages-Received(MR) queue. If message m generated at a node
v is to be sent through port p, the pair (m,p) is added to the TBD queue at
node v. Once the message is received at the destination node, say w through
port q, the pair (m,q) is added to the MR queue at node w and the entry in the
TBD queue of node v is removed. An entry in the MR queue can be removed
when the message is read and the actions corresponding to the receipt of this
message are executed. We keep such messages in a third queue called Messages-
Executed(ME) queue.

The simulation of the message-passing algorithm Z would be started at those
nodes which are in the special state “Initiator”. In order to ensure that the
agents can detect when the computation has terminated, we would maintain a
dynamic forest-like structure among the nodes of the graph, using an idea of
Shavit and Francez (see [21]). The initiator nodes would be the root nodes and
every other (active) node x would contain a link to its parent node i.e. the node y
which send the first message to node x to activate it. We would maintain at each
node x a child-list containing the links to all its (active) children, i.e. all those
nodes which were activated by messages from node x and are still active. Once
a leaf node completes its local computation and it does not have any messages
to send, then it is removed from the child-list of its parent node and becomes
inactive. When a root node has no children and no further messages to send, it
becomes inactive too. If all the root nodes become inactive then the simulation
is terminated.
The simulation algorithm executed by each agent A is given below:

Algorithm DisSimulate

I Explore the network G and construct a traversal path PA that starts and ends
at the homebase of A, and visits every other node at least once.

II Walk through path PA and at each node v which is in the state Initiator do
the following -
1. Initiate the algorithm Z at node v and perform all local computation

steps until the first time a message needs to be sent or received.
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2. Update the state of node v by writing to the whiteboard the current state
of execution. In particular, set node-state to “Processing” if a message
needs to be sent, and to “Waiting” if a message needs to be received.

3. If a message m has to be sent through port p, then add (MID(m),p) to
the TBD queue.

III Walk through path PA and at each node x do the following -
1. If the TBD queue is not empty, then execute procedure Deliver-Message.
2. If node-state = “Processing”, then continue with the local computation

at current node until a message needs to be sent or received. Update the
state of node x by writing to the whiteboard.

3. While the MR queue is not empty, execute procedure Receive-Message.
4. If there are no messages neither in the TBD queue nor in the MR queue,

the Child-List is empty, and the node-state is “waiting”, then write
‘TERM’ (for “terminated”) on the whiteboard of x. Then go to the
parent node y(if any) and delete x from the Child-List at node y. Now
return back to node x.

IV If all the nodes visited in the previous step had a ‘TERM’ symbol written on
their whiteboard then terminate the algorithm. Else repeat previous step.

where the procedures Deliver-Message and Receive-Message are as follows:

Procedure Deliver-Message

1. Let (mi, p) be the first entry in the TBD queue. Leave the current node x through
port p to reach node y (say, through port q),

2. If the message (mi, q) is not present in the MR queue (or, the ME queue) at node y
Add the message (mi, q) to the MR queue,
Delete any ‘TERM’ symbol (if present) from the whiteboard of node y,
If the parent-link of node y is not set, set it to q.
Set result to Success.

Else set result to Fail.
3. Return back to node x and delete message (mi, p) from the TBD queue (if present).

If the parent-link of node y was set to q, then add the link p = λx(e) to the Child-
list of node x.

4. If the result is Fail and the TBD queue is not empty, then go back to the first step.
Otherwise, return the result.

Procedure Receive-Message

1. Let (mi, q) be the first entry in the MR queue. Remove the message (mi, q) from
the MR queue and perform the local computation at the current node that results
from receiving this message from port q.

2. If a message m has to be sent through port p, then add < MID(m), p > to the
TBD queue. Update the state of the current node by writing to the whiteboard.

3. Add (mi, q) to the ME queue

We denote by LA the length of the traversal path constructed by an agent A
and we define L to be the maximum length of such a path. Notice that we can
always ensure that L is O(n). The following lemmas show that the algorithm
satisfies the Fairness and Termination-Detection properties.
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Lemma 1. During the algorithm DisSimulate the following holds: (i) each mes-
sage generated at some node x and added to the TBD queue at position r is
delivered to its destination after at most 3 · L · r moves by any single agent and
(ii) every message is delivered and executed exactly once (i.e. no message is
repeated).

Lemma 2. During any execution of the algorithm DisSimulate, the size of the
TBD queue at any node v would be at most 1 and the size of the MR queue
would be at most (k · L). The size of ME queue at any node v would be at most
the degree of that node.

Lemma 3. When any agent A terminates the simulation, then the following
conditions hold: (i) No node has any more messages to send and (ii) there are
no messages in transit.

Also notice that once the execution of the original algorithm Z terminates (i.e.
when all messages have been delivered and executed), then every agent that is
alive would terminate after at most L · n moves.

Theorem 1. The result obtained (i.e. the final state of the nodes) in any possible
execution of algorithm DisSimulate, would be exactly identical to the result of
some possible execution of the original algorithm Z in the S.A. model.

Notice that the above theorem holds, irrespective of the number of agents failing
or crashing, if at least one agent is alive. In other words, we can say the following:

Remark 1. A mobile agent system with at least one agent in a network of n
nodes, is computationally as powerful as a stationary agent system with n agents.

Let us now measure the cost of the simulation.

Theorem 2. During the simulation, the total number of moves made by the
agents is at most O(k ·L) per message exchanged in an execution of the original
algorithm Z.

The amount of local memory required by each agent (for storing a copy of the
traversal path PA) is O(L log Δ), where Δ is the maximum degree of the graph.
The amount of additional memory required at the nodes needs to be enough for
storing the message queues.

4 Simulation in Anonymous Systems

In the previous section, we investigated systems having distinct identifiers for
either the nodes of the network or the agents, or both. In this section, we con-
sider the simulation of message-passing algorithms in anonymous networks by
anonymous agents.
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4.1 Employing the Existing Solution

The same simulation algorithm of the previous section can possibly be executed
on anonymous networks too. Notice that even if the graph is anonymous, it is
still possible for an agent to find a traversal path in the graph that visits every
node, provided that the agent knows the size n of the graph or at least an upper
bound on n.

Lemma 4. An agent A starting at a node v of an anonymous graph G, can
construct a path P (represented by a sequence of edge labels) of finite length that
starts and ends at v and is guaranteed to visit each node at least once.

However, the path constructed by an agent may be very large when the graph
is anonymous and the agent has no knowledge other than size of the graph.
In the worst case, this path may of length exponential in n. In fact, given any
arbitrary anonymous graph G with k agents placed among the nodes of G, there
is no known (deterministic) algorithm that will enable the agents to construct a
path of length polynomial in n, visiting all the vertices of G. Thus, we have the
following corollary of Theorem 2.

Corollary 1. The algorithm DisSimulate when executed on anonymous net-
works, has an exponential overhead, in terms of agent moves, for delivering each
message.

4.2 In Absence of Good Traversal Paths

When it is not possible to construct efficient traversal paths, we can use a differ-
ent approach for simulating a message-passing computation on a graph G. We
partition the graph G among the k agents and each agent is responsible for the
subgraph of G that it owns (we call this the territory of the agent). Each agent
simulates the computation within its territory, while periodically checking if any
of its neighboring agents have crashed; in that case it annexes the territory of the
dead agent. The initial territories are obtained using the procedure EXPLORE
(as in [9]). The algorithm given below, simulates a given message-passing algo-
rithm Z, on the graph G, using k mobile agents. We use the notation idv(e) to
denote an identifier3 for an edge e at node v.

ALGORITHM AnSimulate:

Phase 0: Each agent A executes procedure EXPLORE to obtain its territory
TA. The territory TA is a tree rooted at the homebase, and all the other nodes
contain a link marked as home-link which connects this node to its parent in
the tree TA. Let nA be the size of TA. Agent A then traverses its territory TA

and at each node v that it visits — if v in the state “initiator”, then agent A
initiates the algorithm Z at node v performing all local computation steps until
3 Notice that such an identifier can be obtained by simply using the sequence of edge-

labels for the path from v to e.
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the first time a message needs to be sent or received; Agent A then updates the
state of node v and if any message m is to be sent through the port p, then the
pair (m, p) is added to the To-Be-Delivered(TBD) queue at node v.

Phase i ≥ 1: Agent A, (if alive) executes the following steps:

STEP 1: Agent A does a depth-first traversal of its territory TA. During the
traversal, for each node u that it visits, agent A does the following:

– If the TBD queue of node u is not empty, then execute procedure Deliver-
Message;

– If node-state = “Processing”, then continue with the local computation at
current node until a message needs to be sent or received. Update the state
of node x by writing to the whiteboard.

– While the MR queue is not empty, execute procedure Receive-Message.
– If there are no messages in both the TBD queue and MR queue, the Child-

List is empty, and the node-state is “waiting”, then write ‘TERM’ on the
whiteboard of u. Then go to the parent node v(if any) and delete u from the
Child-List at node v. Now return back to node u.

– Write DONE(i, nA) on the whiteboard of u.

If during Step-1, agent A finds an ANNEXED(j, nB ,idh(e′)) mark in its home-
base h, then agent A goes to the edge e′ and marks this edge as Tree-edge (For
the next phase, nA ← nA + nB and TA ← TA + {e′} + TB.) In this case, agent
A skips STEP-2 and jumps to STEP-3 to update its territory.

STEP 2: Agent A starts a depth-first traversal of its territory. During the
traversal, for each external edge e = (u, v) incident to some node u in its terri-
tory, it traverses the edge e to reach the other end v, reads DONE(j, nB) from
whiteboard4 at v and takes the following actions:

– If (j < i) or, (j = i AND nB < nA), then go to the root-node x of the
tree TB containing v and write ANNEXED(i, nA,idx(e)) (only if there is no
other ANNEXED mark at node x).

– If successful in writing the ANNEXED mark, then return to e and mark
this edge as a Tree-edge.(For the next phase nA ← nA + nB and TA ←
TA + {e} + TB.)

STEP 3: Agent A updates its territory TA to include all territories that it
annexed and those annexed by the agents that it defeated. If agent A itself
was defeated, then it adds the territory of the agent C that defeated it and
all territories annexed by C. The home-links of the nodes in the territory are
updated and the value of nA is modified accordingly. If all nodes in its terri-
tory had ‘TERM’ written on the whiteboards then agent A executes procedure
Termination-Detection to check if the termination condition has been reached
and if so, stops. Otherwise agent A goes to phase i + 1.

4 If no such mark is found, it reads DONE(j = 0, nB = 0).
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Procedure Termination-Detection
For r = 1 to k, do

If there is some node in TA which does not have a ‘TERM’ mark on its whiteboard,
Return false;

Else write ‘TERM(r)’ on the whiteboard of every node in TA.
For each non-tree edge e = (u, v) incident to a node u ∈ TA,

Traverse edge e to reach node v ∈ TB (say),
If node v has no ‘TERM’ mark, then return false;
Else if found a ‘TERM(j)’ mark and j < r then,

Go to the root of tree TB and check if it is marked ‘TERM(r)’
If not, mark ‘TERM(r)’ and merge TA with TB using the edge e;

If r = k, then return true;

Procedure EXPLORE
1. Set Path to empty; Mark the homebase as explored and include it in territory T ;
2. While there are unexplored edges at the current node u,

select an unexplored edge e,
mark link lu(e) as explored and then traverse e to reach node v;
If v is already marked (or v contains another agent),

mark e as a non-tree edge;
return back to u;

Otherwise
mark node v as explored and mark link lv(e) as home-link;
Add link lv(e) to Path;
Add the edge e and node v to the territory T ;

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return the territory T ;

The procedures Deliver-Message and Receive-Message are same as before.

In the above algorithm, an agent A annexes the territory of another agent B,
if either (i) B has died (or B is slower than A) or, (ii) if during some phase i,
B has a smaller territory than A. After agent A annexes the territory of agent
B, these two territories are merged and both the agents(if alive) continue the
simulation in the bigger territory. The algorithm ensures that the territory of an
agent is always a tree, so that a single traversal by any agent can be completed
in O(n) moves.

Lemma 5. During algorithm AnSimulate, the following always holds:

1. The edges marked as tree-edges form a spanning forest of G, containing at
most k trees (each rooted at some homebase).

2. Every node is visited by an alive agent at least once in every k phases.
3. An alive agent completes each phase within a finite amount of time.
4. Whenever an alive agent visits a node v, the top-most message in the TBD

queue of v is delivered to its destination (unless the queue is empty).
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5. Every message generated at a node v is delivered within a finite amount of
time.

Lemma 6. When an agent A completes procedure Termination-Detection with
a return value of true, then every message corresponding to the execution of
algorithm Z, has been delivered and there are no messages in transit.

Lemma 7. When every message corresponding to the execution of algorithm Z,
has been delivered, every alive agent terminates within at most k phases.

Based on the above lemmas, we can say that the algorithm satisfies the both
fairness and termination detection conditions. Finally we have the following the-
orem:

Theorem 3. Algorithm AnSimulate correctly simulates any given message-
passing algorithm Z, even if up to f ≤ k − 1 agents crash.

Let us now analyze the cost of the simulation. Notice that during every phase in
which no agents crash, at least one message is delivered unless there are no more
pending messages. The total number of moves per phase is O(m · k). Using a
slight modification (to ensure that in every phase, any non-tree edge is traversed
by at most one agent from each side) we can reduce the moves per phase to
O(m + n · k′) for k′ alive agents.

Theorem 4. For the (modified) algorithm AnSimulate, the overhead for deliv-
ering each message is O(m + n · k′), where k′ is the number of surviving agents.

We would like to remark that the large overhead for message delivery is due
to the fact that we have to deal with failures of any number of agents at any
time during the simulation. In environments without agent failures, it is always
possible to simulate a message-passing computation much more efficiently. For
example, the algorithm given by Chalopin et al.[8] for the fault-free environment
requires O(n) agent moves per message delivery in the worst case.

5 Conclusions and Open Problems

We proposed and studied methods for simulating any message-passing compu-
tation in a mobile agent system with faulty agents. In particular, we have shown
how to simulate a given message-passing algorithm, in a mobile agent system,
while tolerating the crash-fault of any number of agents, provided that at least
one agent is alive. Thus, agent crashes do not restrict the computational power
of a mobile agent system. Another interesting observation is that a mobile agent
system of n nodes with at least one agent is computationally as powerful as a
stationary agent system with n agents.

We presented an algorithm DisSimulate, for simulating a message-passing
computation in a labelled network (or, a network which can be explored effi-
ciently). In this algorithm, the agents work independently of one another, with
no communication among the agents and this makes this algorithm very robust.
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For anonymous networks where distinct node identities are not available, we
gave another algorithm AnSimulate, which partitions the network into disjoint
parts that are serviced by different groups of agents. Even though the agents may
crash at any time, the algorithm ensures that the simulation proceeds flawlessly
irrespective of the agent crashes and the system always stabilizes to a state where
the workload is equally distributed among the remaining agents.

In the present paper, we have only considered agent crash faults, but not
node crashes. In the mobile agent model, a node crash (i.e. a whiteboard crash)
implies that all data stored in the corresponding whiteboard would be deleted.
Such faults can be dealt with using the known fault tolerance techniques for the
message-passing (S.A.) model. In particular, given any algorithm for the S.A.
model that is t-crash tolerant, the same algorithm can be simulated in a mobile
agent system (using our proposed method), to tolerate up to t crash faults of
the nodes, irrespective of the number of agents failing.

One of the limitations of our results is the assumption that agents can only
fail while traversing an edge. We have not considered the possibility of an agent
failing while performing computation at a node, because in such a case, the
whiteboard of the node may remain locked and thus inaccessible to all other
agents, which can create a deadlock. Future studies on this problem should be
directed towards finding a way to deal with crashes of agents inside a node, while
avoiding the deadlock situation.
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Abstract. A set of input vectors S is conclusive if correct functionality for all
input vectors is implied by correct functionality over vectors in S. We consider
four functionalities of comparator networks: sorting, merging of two equal length
sorted vectors, sorting of bitonic vectors, and halving (i.e., separating values
above and below the median). For each of these functionalities, we present tight
lower and upper bounds on the size of conclusive sets. Bounds are given both for
conclusive sets composed of binary vectors and of general vectors. The bounds
for general vectors are smaller than the bounds for binary vectors implied by
the 0-1 principle. Our results hold also for comparator networks with unbounded
fanout.

Assume the network at hand has n inputs and outputs, where n is even. We
present a conclusive set for sorting that contains

(
n

n/2

)
nonbinary vectors. For

merging, we present a conclusive set with n
2 + 1 nonbinary vectors. For bitonic

sorting, we present a conclusive set with n nonbinary vectors. For halving, we
present

(
n

n/2

)
binary vectors that constitute a conclusive set. We prove that all

these conclusive sets are optimal.

Keywords: Zero-One Principle, Comparator Networks, Sorting Networks, Bitonic
Sorting, Merging Networks.

1 Introduction

Comparator networks are combinational circuits with fanout one built only from com-
parators, where a comparator is a gate that sorts a pair of numbers. When the fanout
is not restricted, we call such a network a min-max network. The 0-1 principle intro-
duced by Knuth [5] states that a comparator network is a sorting network if and only if
it sorts all binary inputs. Sorting is not the only functionality that comparator networks
and min-max networks are useful for. Additional functionalities include merging two
sorted vectors, halving vectors (i.e., separating values above and below the median), and
sorting restricted sets of vectors (e.g., bitonic sorting). Since its introduction in 1973,
the 0-1 principle was extensively used for proving the correctness of various types of
networks.

In this paper we address the following questions: How many vectors are needed to
verify the functionality of a given a min-max network? The 0-1 principle states that a
comparator network with n inputs is a sorting network if it correctly sorts every binary
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vector. Can sorting be verified using fewer vectors? Assume n is even. A similar ques-
tion can be asked for merging networks where the input consists of two sorted vectors
of length n/2. The number of binary inputs for a merging network is (n/2 + 1)2. Can
merging be verified using fewer vectors? We also ask: does the verification of compara-
tor networks require fewer vectors than min-max networks?

We refer to a set of vectors that verifies a specific functionality as a conclusive set.
Our goal is to find small conclusive sets for various functionalities. The main motivation
for smaller conclusive sets is for testing the functionality of a given min-max network;
the smaller the conclusive set, the faster the test runs.

So far, only binary vectors were considered for conclusive sets. We introduce the
usage of nonbinary vectors (i.e., vectors in {0, . . . , n − 1}n) for conclusive sets. Inter-
estingly, our main result is that smaller conclusive sets are possible if nonbinary vectors
are allowed. In addition, we prove lower bounds on the size of conclusive sets that im-
ply the optimality of our constructions. We also prove lower bounds on the sizes of
conclusive sets consisting solely of binary vectors.

Previous work. Previous work falls into two main categories: extensions of the 0-
1 principle to functionalities other than sorting (mainly merging) and an attempt to
prove lower bounds on the size of binary conclusive sets for sorting.

The main application of the 0-1 principle is to facilitate the design and verification of
sorting and merging networks. We review some of the applications of the 0-1 principle
from the literature. Miltarsen et. al. [10] used a variant of the 0-1 principle to prove the
correctness of a merging network. Liszka and Batcher [8] used it to prove the the cor-
rectness a merging network called the modulo merger. Bender and Williamson [3] used
it to prove structure theorems for recursively constructed merging networks. Batcher
and Lee [6] used it to prove the correctness of a k-merger network whose input consists
of k sorted vectors of equal length. Nakatani et. al. [11] used it to prove the correctness
of a bitonic sorter. Rajasekaran and Sen [12] generalized the 0-1 principle to networks
that sort almost all 0-1 inputs. They proved bounds on the fraction of correctly sorted
general vectors based on the fraction of correctly sorted binary vectors.

Rice [13] investigated a computational model called continuous in-place functions
(CIP-functions). The set of functions computable by comparator networks (with fanout
one) is strictly contained in the set of CIP-functions. Rice [13] proved that a CIP-function
sorts all vectors if and only if it sorts all the binary vectors. In addition, Rice proved the
following lower bound. If S ⊆ {0, 1}n is a conclusive set for sorting with respect to
CIP-functions, then {0, 1}n \ {0n, 1n} ⊆ S. Rice proves this by presenting, for every
binary vector v /∈ {0n, 1n}, a witness CIP-function fv that sorts all binary vectors
except for v. Rice’s result does not imply lower bounds on the size of binary conclusive
sets with respect to comparator networks (with fanout one). We strengthen Rice’s result
by presenting, for every 0-1 vector v, a witness comparator network Nv whose fanout
equals one that sorts all 0-1 vectors except for v. Hence, we obtain lower bounds on
the size of binary conclusive sets even when the fanout is one. Our construction is also
quite simple and relies only on sorting networks. A proof that the set of CIP-function
equals the set of functions computable by min-max networks appears in [2].

Our results. Table 1 summarizes our results. The first column in the table lists the
four functionalities that we deal with (see Sec. 3 for formal definitions). We consider
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both conclusive sets that consist only of binary vectors and general conclusive sets (i.e.,
conclusive sets that contain vectors in {0, . . . , n − 1}n). The second column lists the
sizes of binary conclusive sets that follow from the 0-1 principle. The third columns
lists optimal sizes of binary conclusive sets that are proved in Sec. 6 and 5.3. The fourth
column lists optimal sizes of general conclusive sets and the fifth column lists the type
of conclusive set that achieves each bound. These general conclusive sets are presented
in Sec. 5. Their optimality is proved in Sec. 6.

Table 1. Summary of results: sizes of conclusive sets for various functionalities

size of
conclusive set
implied by the
0-1 principle

optimal size of
binary
conclusive set

optimal size of
general
conclusive set

description

Sorting 2n − 2 [5] 2n − 2
(

n
�n/2�

)
covering permu-
tations

Merging (n
2 + 1)2 [10] (n

2 + 1)2 n
2 + 1 sandwiches

Bitonic Sorting (n − 1) · n [11] (n − 1) · n n unitonic

Halving 2n − 2
(

n
n/2

) (
n

n/2

)
balanced binary
vectors

Techniques. The 0-1 principle is originally stated for sorting networks, and it has been
common to informally extend it to other functionalities such as merging [10] and bitonic
sorting [11]. With each vector v, we attach a set of binary vectors that are called the 0-
1 images of v. A binary vector b is a 0-1 image of v if there exists a monotonic function
f such that b = 〈f(v0), . . . , f(vn−1)〉. In Lemma 1, we present a variant of the 0-
1 principle that deals with a single input vector and all its 0-1 images. This variant
forms the basis in Theorem 3 for proving a formal extension of the 0-1 principle for
each of the functionalities considered in Table 1.

Upper bounds on the size of conclusive sets are obtained by presenting sets of vectors
whose 0-1 images constitute a binary conclusive set. Since a nonbinary vector of length
n may have up to n + 1 different 0-1 images, a reduction in the size of conclusive sets
is achieved for certain functionalities.

Lower bounds are based on Lemma 6 that proves, for every binary vector v, the exis-
tence of a comparator network (with fanout one) Nv that sorts all binary vectors except
for v. This lemma obviously proves lower bounds on the size of binary conclusive sets.
In the case of nonbinary conclusive sets, lower bounds are obtained by focusing on
balanced binary vectors (i.e., vectors that contain the same number of zeros and ones).
Since every vector has at most one balanced 0-1 image, the number of nonbinary vec-
tors in a conclusive set cannot be smaller than the number of balanced binary vectors in
a binary conclusive set.
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Organization. This paper is organized as follows. In Section 2, comparator networks
and min-max networks are formally defined. Various functionalities of min-max net-
works are presented in Section 3. In Section 4 the well known 0-1 principle for sorting
networks is presented along with some variants. These variants enable extending the 0-
1 principle to the functionalities presented in Section 3. In Section 5 we present smaller
conclusive sets for each of these functionalities. In Section 6 we prove lower bounds
on the sizes of binary and general conclusive sets. These general lower bounds match
the upper bounds presented in Section 5. We conclude with a discussion and two open
problems.

2 Comparator Networks and Min-Max Networks

A comparator is a combinational gate with 2 input ports a1, a2 and 2 output ports
bmin, bmax. Each port may carry a single number (e.g., a k-bit string that is the binary
representation of a number in the range [0, 2k−1]). We denote by v(x) the value carried
by port x. A comparator sorts the pairs of numbers in the following sense. Suppose
the input values are v(a1) and v(a2), where the number v(ai) is input to port ai, for
i = 1, 2. The output values satisfy

v(bmin) = min{v(a1), v(a2)}
v(bmax) = max{v(a1), v(a2)}.

Note that when restricted to Boolean inputs, a comparator simply consists of one AND-
gate and one OR-gate.

A min-max network is a combinational circuit, all the gates of which are compara-
tors. This means that the topology of a min-max network is a directed acyclic graph
with 3 types of vertices: (i) A set of input vertices X that serve as external input ports.
(ii) A set of output vertices Y that serve as external output ports. (iii) A set of compara-
tors C. The in-degree of input vertices and the out-degree of output vertices are zero.
Comparators have two incoming edges, one edge per input port. Every edge emanates
from an input vertex or an output port of a comparator. Every edge enters an input
port of comparator or an output vertex. Exactly one edge incomes every input port of a
comparator and every output vertex. Note that when restricted to binary vectors, every
output of a min-max network N is computable by a monotonic boolean circuit (i.e., a
circuit that contains only AND-gates and OR-gates, and lacks inverters).

A comparator network is a min-max network in which the fanout of every input
vertex and every output port of a comparator is one. All our results (i.e., upper and
lower bounds) hold both for min-max networks and comparator networks.

We focus on min-max networks in which the number of input vertices equals the
number of output vertices, namely |X | = |Y |. We denote by n the number of input
vertices and assume that n is even. We also assume that the range of valid input/output
values contains the set {0, . . . , n − 1}.

Often, min-max networks are used for sorting. To be able to define such functionality,
one must label the output vertices (e.g., which output vertex outputs the maximum
value?). The output vertices are labeled y0, . . . , yn−1. Similarly, the input vertices are
labeled x0, . . . , xn−1.
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3 Functionality

Since every min-max network is a combinational circuit, the functionality is well de-
fined. Let N denote a min-max network with input vertices X = {x0, . . . , xn−1} and
output vertices Y = {y0, . . . , yn−1}. We now introduce notation for the relation be-
tween the input and output values of min-max networks.

An input vector is a function v : X → N, where v(xi) denotes the value fed by
the input vertex xi. An output vector is a function w : Y → N, where w(yi) denotes
the value that is received by the output vertex yi. Given an input vector v, we denote by
N(v) the output vector obtained when the min-max network N is input the vector v. We
often refer to input and output vectors as sequences of length n rather than functions,
namely, v = 〈v(x0), . . . , v(xn−1)〉.

We say that a vector w = 〈w0 . . . , wn−1〉 is sorted if wi ≤ wj whenever i ≤ j. We
now define four functionalities of a min-max networks.

sorting: A min-max network is a sorting network if N(v) is sorted for every input
vector v.

bitonic sorting: We first define ascending-descending vectors and bitonic vectors. A
vector v is ascending-descending if it is a concatenation of a non-decreasing vector
and a non-increasing vector (the two vectors need not be of equal length, in fact,
one of these vectors may even be empty). A vector v is bitonic if it is a cyclic
rotation of an ascending-descending vector.
A min-max network is a bitonic sorter if N(v) is sorted for every input vector v
that is bitonic [5, p. 232].

merging: We first define bi-sorted vectors. A vector v is bi-sorted if v is the con-
catenation of two sorted vectors of equal length, namely, vi+1 ≥ vi for every
i ∈ {0, . . . , n − 2} \ {n

2 − 1}.
A min-max network is a merging network if N(v) is sorted for every input vector
v that is bi-sorted.

halving: We first define halved vectors. A vector v is halved if vj ≥ vi for every
0 ≤ i < n

2 ≤ j < n.
A min-max network is a halver if N(v) is halved for every input vector v.

4 The 0-1 Principle

Let f : N → N denote a (non-decreasing) monotonic function (i.e., a ≤ b implies
f(a) ≤ f(b)). Given a vector v and a function f , f(v) denotes the vector 〈f(v0), . . . ,
f(vn−1)〉.

We now cite two important theorems on comparator networks.

Theorem 1 ([5],p. 224). For every comparator network N , every monotonic function
f , and every input vector v,

f(N(v)) = N(f(v)).

Theorem 1 can be proved for the value transmitted along every edge in N by induction
on its “depth” (i.e., maximum distance from an input node). Theorem 1 has several



Optimal Conclusive Sets for Comparator Networks 309

applications. One application shows that a comparator network is a sorting network if
and only if it sorts every input vector that is one-to-one (i.e, vector with distinct values).
The most useful application of Theorem 1 is the 0-1 principle.

Theorem 2 (The 0-1 principle). Let N denote a comparator network with n inputs
and n outputs. The network N is a sorting network if and only if it sorts every input
vector in {0, 1}n.

We present a variant of Theorem 2 that deals with a single vector instead of the set of
all vectors. A vector in {0, 1}n is called a 0-1 vector. A threshold function is a function
τk : N → {0, 1} defined by

τk(i) �=

{
0 i < k

1 i ≥ k.

When f is a threshold function, we refer to the vector f(v) as a 0-1 image of v. Clearly,
every v with k distinct values has exactly k + 1 different 0-1 images. Two trivial 0-
1 images are the vectors 0n and 1n.

The following lemma implies the 0-1 principle.

Lemma 1. Let N denote a min-max network with n inputs and n outputs. Let v de-
note an input vector. The output vector N(v) is sorted (halved) if and only, for every
threshold function f , the output vector N(f(v)) is sorted (halved).

Proof. We prove only the sorting version; the halving version is proved analogously.
The easy direction is to show that if N(v) is sorted, then N(f(v)) is sorted for ev-
ery threshold function f . Indeed, by Theorem 1, N(f(v)) = f(N(v)). Since N(v) is
sorted, so is f(N(v)), and therefore N(f(v)) is sorted.

The other direction is proved by contradiction. Assume N(v) is not sorted and
N(f(v)) is sorted for every threshold function. Let i denote an index such N(v)i >
N(v)i+1. Consider the threshold function τk for k = N(v)i. Let w = τk(N(v)). By
Theorem 1, w = N(τk(v)). Note that wi = 1 while wi+1 = 0. Hence w is not sorted,
contradicting the assumption.

We now state a 0-1 principle for merging networks, bitonic sorters, and halvers (this
principle appears in [10, pp 152] for merging networks).

Theorem 3. Let N denote a min-max network with n inputs and n outputs.

– The network N is a merging network iff N(v) is sorted for every 0-1 bisorted vector
v.

– The network N is a bitonic sorter iff N(v) is sorted for every 0-1 bitonic vector v.
– The network N is a halver iff N(v) is halved for every 0-1 vector v.

Theorem 3 follows directly from Lemma 1 and from the following lemma.

Lemma 2. A vector v is bisorted/bitonic/halved iff all its 0-1 images are bisorted/
bitonic/halved.
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Proof. We prove the lemma only for bitonic case; the other cases are proved similarly.
Every threshold function is monotonic, and therefore, if v is bitonic, then all its 0-
1 images are also bitonic.

The converse direction is proved by contradiction. Assume that v is not bitonic. That
means that the cyclic rotations of v are also not bitonic. By applying rotations, we may
assume that the value of the first component v0 of v is minimum, namely v0 = mini vi.
Since v is not bitonic, it is also not ascending-descending.

We claim that there exist 0 < i < j < n − 1 such that v0 < vi, vj < vi, and
vj < vj+1 (see Fig. 1). Indeed, the index i is chosen to be the maximal index such
that the subsequence 〈v0, . . . , vi〉 is ascending. Since v is not ascending, it follows that
i < n − 1. By the choice of i, it follows that vi+1 < vi. By the minimality of v0,
it follows that vi > v0, since otherwise vi+1 < v0. The index j is chosen to be the
maximal index such that the subsequence 〈vi, . . . , vj〉 is descending. Since vj ≤ vi+1,
it follows that vj < vi. Since v is not ascending-descending, j < n − 1. Finally, by the
choice of j, vj+1 > vj .

Let τk be the threshold function with k = min{vi, vj+1}. Note that τk(v) contains
〈0, 1, 0, 1〉 as a subsequence, which implies that τk(v) is not bitonic, contradicting the
assumption that all the 0-1 images of v are bitonic.

0

1

0

1

v0

vj

vi

vj+1
τk

Fig. 1. A vector which is not ascending-descending on the left and the corresponding 0-1 vector
on the right

5 Smaller Conclusive Sets

Definition 1. A set of vectors C is conclusive for sorting if every min-max network that
sorts all vectors in C is a sorting network.

One can also define conclusive sets for other functionalities, such as merging networks,
bitonic sorters, or halvers. For each functionality, a conclusive set serves as a proof
of the correct functionality of the min-max network. Obviously, the set of all valid
inputs is a conclusive set (e.g., the set of all bisorted vectors is conclusive for merging).
The 0-1 principle implies that the set of all valid 0-1 vectors is a conclusive sets for
the sorting, merging, bitonic sorting, and halving. Our goal is to present even smaller
conclusive sets for these functionalities.

5.1 Sandwiches for Merging

We refer to a vector over {0, . . . , n − 1} of length n with distinct values as a permu-
tation. We now define a special type of bisorted vectors called sandwiches (Figure 2
depicts a sandwich).
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Definition 2. A sandwich v is obtained from the sorted vector 〈0, . . . , n− 1〉 by choos-
ing a block of length n/2 that serves as the second half of v. The components of the
vector outside the block constitute the first half of v.

. . . , n − 2, n − 1

abrbl

brabl
54 6

43 5

32 4

21 3

65 743210

07654

17650

27

0, 1, . . .

610

3720 1

Fig. 2. On the left, a construction of a sandwich by choosing an interval a of length n/2 and then
swapping the interval a and the interval br . On the right are all 5 sandwiches of length 8.

Note that a vector v = 〈v0, . . . , vn−1〉 is a sandwich if and only if v satisfies 3
conditions: (i) v is a permutation, (ii) v is bisorted, and (iii) the second half of v is an
interval (i.e., there exists an 0 ≤ i ≤ n

2 such that 〈vn/2 . . . , vn−1〉 = [i, i + n
2 − 1]).

Since there are n/2 + 1 blocks of length n/2 in the sorted vector, we conclude with
the following observation.

Observation 4. There are exactly n/2 + 1 different sandwiches of length n.

Lemma 3. Every bisorted 0-1 vector is a 0-1 image of a sandwich.

Proof. Let v be a bisorted 0-1 vector. Let p and q denote the number of zeros in the
first and second halves of v, respectively. (See Figure 3). Let s denote the sandwich
obtained when the block that defines the second half of s starts in position p. It follows
that τp+q(s) = v.

Lemma 4. A min-max network is a merging network iff it sorts all sandwiches.

Proof. Since sandwiches are bisorted, they are sorted by a merging network. We now
prove that the set of sandwiches is conclusive for merging. Let N denote a min-max
network with n inputs and outputs that sorts all sandwiches of length n.

Since N sorts all sandwiches, by Lemma 1, N sorts all 0-1 images of sandwiches.
By Lemma 3, this means that N sorts all bisorted 0-1 vectors. By Theorem 3, N is a
merging network, and the lemma follows.

Lemma 4 implies the following corollary.

Corollary 1. The set of n/2 + 1 sandwiches is a conclusive set for merging networks
of width n.

5.2 Unitonic Vectors for Bitonic Sorting

A vector is unitonic if it is a cyclic rotation of the vector 〈0, 1, . . . , n − 1〉. In the full
version we prove the following theorem.

Theorem 5. The set of n unitonic vectors is a conclusive set for bitonic sorters of width
n.
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0 1 1 1 0 0 0 1

0 5 6 7 1 2 3 4

v =

s =

Fig. 3. A 0-1 bisorted vector v and the sandwich s that is the pre-image of v with respect to the
threshold 4. Here n = 8, p = 1 and q = 3.

5.3 Balanced Vectors for Halving

A binary vector is balanced if it contains the same number of zeros and ones. In the full
version we prove the following theorem.

Theorem 6. The set of
(

n
n/2

)
balanced vectors is a conclusive set for halvers.

5.4 Conclusive Sets for Sorting

Let P denote the partially ordered set consisting of all the subsets of {0, . . . , n − 1}
ordered by inclusion. A sequence A1, A2, . . . , Ak of subsets in P is a chain if it satisfies

∅ ⊆ A1 � A2 � · · · � Ak ⊆ {0, . . . , n − 1}.

An antichain is a family of subsets {Bi}i∈I no two of which are related (i.e., Bi 
⊆
Bj for every i 
= j ∈ I). The indicator vector χ(A) of a subset A is the vector
〈χ(A)0, . . . , χ(A)n−1〉 ∈ {0, 1}n defined by χ(A)i = 1 iff i ∈ A.

Lemma 5. For every chain {Ac}c∈C , there exists a permutation vector π such that, for
every c ∈ C, the indicator vector χ(Ac) is a 0-1 image of π.

Proof. Without loss of generality, C is an interval {0, . . . , |C|−1}. Let A0 = {i0,1, . . .
, i0,k0}. Similarly, for 0 ≤ j < |C|−1, let Aj+1 \Aj = {ij+1,1, . . . , ij+1,kj+1}. Define
π(i0,�) = n − � for 1 ≤ � ≤ k0. For j ≥ 1, define π(ij,�) = n −

∑
m<j km − �. If the

maximal set in the chain does not contain all the elements, then we augment π to be a
permutation by adding the missing values to the unassigned components.

Every indicator vector χ(Ac) is a 0-1 image of π since χ(Ac) = τt(π), where t =
n −

∑
i≤c ki.

Theorem 7. There exists a conclusive set of size
(

n
n/2

)
for sorting networks of width n.

Proof. By Sperner’s theorem [9], the size of every antichain is at most
(

n
n/2

)
. The col-

lection of subsets of size n/2 is an antichain of size
(

n
n/2

)
, and hence, it is an antichain

of maximum cardinality. By Dilworth’s theorem [4], there exist
(

n
n/2

)
chains that cover

all the subsets in P. By Lemma 5, associate a permutation to each chain in the cover.
Let Ψ be the set of

(
n

n/2

)
permutations associated with the chains in the cover. Lemma 5
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implies that every indicator vector of every subset in P is a 0-1 image of a permutation
in Ψ . Note that the set of indicator vectors of subsets in P is simply {0, 1}n. By Lemma
1, if a network N sorts all members of Ψ , then N sorts all the 0-1 images of Ψ , and
hence all 0-1 vectors. By Lemma 2, if N sorts all members of Ψ , then N is a sorting
network; hence, Ψ is a conclusive set for sorting networks.

6 Lower Bounds for Conclusive Sets

In this section we prove lower bounds on the size of conclusive sets for the tasks con-
sidered in Section 5. These lower bounds prove the optimality of all conclusive sets
presented in Section 5 even if the fanout is one. A similar result in a stronger model,
called continuous in-place mappings, is proven in [13]. (Note that a “counter-example”
in a weak model implies the existence of a counter-example in a stronger model.) The
lower bounds rely on the following lemma.

Lemma 6 (The witness network). For every 0-1 vector v /∈ {0n, 1n}, there exists a
comparator network Nv in which all fanouts equal 1 such that Nv sorts all 0-1 vectors
except v.

Proof. The network Nv is depicted in Figure 4. Given v, let L � {xi | vi = 0} and
H � {xi | vi = 1}. Let �′ denote the maximal value in L, and let h′ denote the minimal
value in H . The inputs in L are fed into a sorting network S|L| of width |L|. The outputs
of the sorting network S|L| are separated into the output that carries the maximal value
�′ and the remaining |L|−1 outputs denoted by L′. Similarly, the inputs in H are fed to
a sorting network S|H| of width |H |. The outputs of S|H| are separated into the output
that carries the minimal value h′ and the remaining |H | − 1 outputs denoted by H ′.
The n − 2 outputs in L′ ∪ H ′ are input to a sorting network Sn−2. The outputs of
Sn−2 are split into the lower |L| − 1 outputs denoted by L′′ and the upper |H | − 1
outputs denoted by H ′′. Finally, L′′ together with h′ is input to a sorting network S|L|
to output the outputs y0, . . . , y|L|−1 of Nv. Similarly, H ′′ together with �′ is input to
a sorting network S|H| to output the outputs y|L|, . . . , yn−1 of Nv. Since there exists
sorting networks with fanout one (e.g., Batcher’s sorting [1]), the fanout of all ports in
Nv equals one.

It remains to show that the network Nv fails in sorting a 0-1 vector u if only if
u = v. Note that u 
= v if and only if �′ = 1 or h′ = 0. For two 0-1 vectors a and b
(not necessarily of the same length), we say that b dominates a if maxi ai ≤ mini bi.
We denote the relation “b dominates a” by a � b. Note that L′′ � H ′′ since L′′ is the
lower part and H ′′ is the upper part of the outputs of Sn−2.

If u 
= v, there are two cases. We prove the case �′ = 1 (the case in which h′ = 0 is
similar). We claim that

L′′ · h′ � H ′′ · �′. (1)

Equation 1 obviously holds if h′ = 0. If h′ = 1, then H is all ones, and therefore, so
are H ′ and H ′′. It follows that mini(H ′′ · �′)i = 1, and Eq. 1 holds. Since Eq. 1 holds,
it follows that N(u) is sorted, as required.
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The comparator network N fails in sorting v since �′ = 0 while H ′ is all ones,
therefore y|L| = 0. On the other hand, h′ = 1 while L′′ is all zeros, hence y|L|−1 = 1,
and the lemma follows.

We note that an attempt to design a witness network simply by flipping two (adjacent)
output vertices of a sorting network fails. The reason is that a sorting network in which
the outputs yi and yi+1 are flipped fails in sorting all binary vectors whose weight is
i +1. If non-adjacent outputs yi and yj are flipped, where i < j, then all binary vectors
whose weight is greater than i and at most j are not sorted.

Furthermore, there do not exist witness networks for permutations as stated in the
following claim.

Claim. For every permutation vector v, there does not exist a min-max network Nv

such that Nv sorts all permutation vectors except v.

Proof. By Lemma 1, if Nv does not sort v, then there exists a 0-1 image b of v such
that Nv does not sort b. The number of permutations w such that b is a 0-1 image of w
is k!(n − k)!, where k is the weight of b. Hence, Nv fails in sorting many permutations
if it fails in sorting one.

S|L|

H ′

L′′L′ |L|

|H||H| − 1

|L| − 1|L| − 1

1

1

|H| − 1|H|

|L|

S|H|

S|L|

S|H|H

L

Sn−2

H ′′

y0

y|L|−1

yn−1

y|L|

...

...

l′

h′

Fig. 4. A comparators network Nv that sorts all 0-1 vectors except for v. The building blocks of
Nv are sorting networks S|L|, S|H| and Sn−2.

If v is a balanced 0-1 vector, we obtain the following corollary of Lemma 6.

Corollary 2. For every balanced 0-1 vector v, there is a network Nv that halves every
0-1 vector except v.

The following lemma states necessary and sufficient conditions for a set to be conclu-
sive with respect to min-max networks (and therefore, also with respect to comparator
networks).

Lemma 7. Let C be a set of vectors.

– C is conclusive for sorting iff every 0-1 vector is a 0-1 image of a vector of C.
– C is conclusive for merging iff every bisorted 0-1 vector is a 0-1 image of a vector

of C.
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– C is conclusive for bitonic sorting iff every bitonic 0-1 vector is a 0-1 image of a
vector of C.

– C is conclusive for halving iff every balanced 0-1 vector is a 0-1 image of a vector
of C.

Proof. We consider the task of sorting.
(⇒) Assume that there exists a 0-1 vector z that is not a 0-1 image of any vector

in C. Consider the network Nz (guaranteed by Lemma 6) that sorts all 0-1 vectors
except for z. We claim that Nz sorts all vectors in C. Indeed, Nz sorts all 0-1 images
of vectors in C, and hence, by Lemma 1 sorts all vectors in C. However, Nz is not a
sorting network, implying that C is not a conclusive set for sorting.

(⇐) Suppose every 0-1 vector is a 0-1 image of a vector of C. Let N denote a min-
max network. If N sorts every v ∈ C, then N sorts every 0-1 image of v ∈ C, and
hence, N sorts every 0-1 vector. By Theorem 2, N is a sorting network. Hence, sorting
all vectors in C implies that N is a sorting network, and thus, C is a conclusive set for
sorting.

The proof for merging, bitonic sorting, and halving is similar.

The following lemma states exact sizes of 0-1 balanced vectors of three different kinds.

Lemma 8. The following statements hold for every n > 0:

– There are exactly
(

n
n/2

)
balanced 0-1 vectors of length n.

– There are exactly n/2 + 1 balanced bisorted 0-1 vectors of length n.
– There are exactly n balanced bitonic 0-1 vectors of length n.

Proof. The number of balanced 0-1 vectors follows from the fact that there are
(

n
n/2

)

possible choices for the indexes of the ones. Every 0-1 balanced bisorted vector is of
the form 0i · 1n/2−i · 0n/2−i · 1i There are n/2 + 1 possible values for i. Finally, every
0-1 balanced bitonic vector is a rotation of 0n/2 · 1n/2. There are n possible rotations,
and the lemma follows.

The following lemma states lower bounds on the size of conclusive sets for sorting,
merging, bitonic sorting, and halving.

Lemma 9. Let C be a set of vectors of length n.

– If C is conclusive for sorting then |C| ≥
(

n
n/2

)
.

– If C is conclusive for merging then |C| ≥ n/2 + 1.
– If C is conclusive for bitonic sorting then |C| ≥ n.
– If C is conclusive for halving then |C| ≥

(
n

n/2

)
.

Proof sketch: The proof relies on the observation that every vector has at most one
0-1 image that is balanced. If C is conclusive for sorting, then by Lemma 7 every 0-
1 vector is a 0-1 image of a vector in C. In particular, every balanced 0-1 vector is a
0-1 image of a vector in C. By the above observation, the number of vectors in C is
not less than the number of 0-1 balanced vectors. Hence, by Lemma 8 |C| ≥

(
n

n/2

)
, as

required. The proof of the other three lower bounds is similar. ��
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7 Discussion and Open Problems

We presented upper bounds and lower bounds on the size of conclusive sets for sorting,
merging, halving, and bitonic sorting (see Table 1). Separate bounds are presented for
binary vectors and vectors over {0, . . . , n − 1}. We show that the use of nonbinary
vectors reduces the size of conclusive sets in all cases, except for halving.

Knuth [5, ex. 2, p. 218] proved the following property about selection. If the output
yt of a comparator network outputs the tth smallest input, then it has t − 1 outputs that
output the t−1 smallest inputs and n− t outputs that output the n− t largest inputs. Let
0 < i1, i2 and i1 + i2 < n. A vector v is (i1, i2)-separated if vj ≤ vk ≤ v� for every
j < i1 ≤ k < i1+ i2 ≤ �. A min-max network N is called an (i1, i2)-separator if N(v)
is (i1, i2)-separated for every vector v. Knuth’s statement about selection implies that
if the output yt of a comparator network N outputs the tth smallest input, then N is a
(t − 1, 1)-separator. Note that every halver is an (n/2, n/2)-separator. Our techniques
for conclusive sets for halvers can be extended to (i1, i2)-separators. The set of all
binary vectors of weights i1 or i1 + i2 is an optimal conclusive set. This result can be
extended to networks that separate the input into any number of “blocks”.

It seems reasonable that a min-max network with n inputs and outputs should ac-
cept values in the set {0, . . . , n − 1}. The question of finding upper bounds and lower
bounds for the case in which only 2 < k < n values are accepted remains open. Ob-
viously, as k decreases from n to 2, the size of conclusive sets increases in all cases
except for halving.

Another open problem is to formalize a neater characterization of
(

n
n/2

)
permuta-

tions that constitute a conclusive set for sorting. The characterization in the proof of
Theorem 7 is based on chains that cover all the subsets in the poset P.
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Abstract. We consider the problem of characterizing user equilibria
and optimal solutions for selfish routing in a given network. We extend
the known models by considering users oblivious to congestion. While
in the typical selfish routing setting the users follow a strategy that
minimizes their individual cost by taking into account the (dynamic)
congestion due to the current routing pattern, an oblivious user ignores
congestion altogether. Instead, he decides his routing on the basis of
cheapest routes on a network without any flow whatsoever. These
cheapest routes can be, for example, the shortest paths in the network
without any flow. This model tries to capture the fact that routing
tables for at least a fraction of the flow in large scale networks such as
the Internet may be based on the physical distances or hops between
routers alone. The phenomenon is similar to the case of traffic networks
where a certain percentage of travelers base their route simply on the
distances they observe on a map, without thinking (or knowing, or
caring) about the delays experienced on this route due to their fellow
travelers. In this work we study the price of anarchy of such networks,
i.e., the ratio of the total latency experienced by the users in this set-
ting over the optimal total latency if all users were centrally coordinated.

Keywords: Selfish routing, price of anarchy, oblivious users.

1 Introduction

The general framework of a system of non-cooperative users can be used to
model many different optimization problems such as network routing, traffic or
transportation problems, load balancing and distributed computing, auctions
and many more. Game-theoretical techniques can be used to model and analyze
such systems in a natural way. The performance of a system of non-cooperative
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users is measured by an appropriate cost function which depends on the be-
haviour, or strategies of the users. For example in the case of network routing,
the total, system-wide cost can be defined as the total routing cost, or the total
latency experienced by all the users in the network. On the other hand, there
is also a cost associated with each individual user (for example the latency ex-
perienced by the user). It is a well known fact that if each user optimizes her
own cost, then they might choose a strategy that does not give the optimal total
cost for the entire system, also known as social cost. In other words, the selfish
behaviour of the users leads to a sub-optimal performance.

Koutsoupias and Papadimitriou [3] initiated the study of the coordination ra-
tio (also referred to as the price of anarchy): How much worse is the performance
of a system of selfish users where each user optimizes her own cost, compared
to the best possible performance that can be achieved on the same system? In
particular, this question was first studied in the setting of selfish network rout-
ing by Roughgarden and Tardos [5]. In this model, the network users experience
edge latencies that depend on the congestion on each edge according to some
latency function. Given a particular flow pattern, the users decide to route their
flow through paths of minimum latency. A traffic equilibrium is an assignment
of traffic to paths so that no user can unilaterally switch her flow to a path of
smaller cost. Wardrop’s principle [6] for selfish routing postulates that

at equilibrium, for each origin-destination pair the travel costs on all the
routes actually used are equal, or less than the travel costs on all unused
routes.

In the past, several variations of this basic model have been considered. For
example, Roughgarden [4] studied the case of combining selfish and centrally
coordinated users on the same network, proposing Stackelberg strategies for the
latter that would improve the price of anarchy. Karakostas and Viglas [2] studied
the combination of selfish and malicious users: A malicious user will choose a
strategy that will cause the worst possible performance for the entire network.
These models try to capture a richer set of paradigms in networks such as the
Internet, where traffic does not consist by users of the same profile or behavior.
In this work we introduce a new paradigm that is based on the following ob-
servation: A fundamental assumption in the basic selfish routing model is that
each user is able to measure the latencies of all paths available to him at any
moment, in order to pick the best possible path currently available for his flow.
It is clear that in very large networks this assumption is probably quite unreal-
istic, since it may not be possible to measure these latencies or measure them
as often as needed. Hence it may be easier for a fraction α of the network users
to consult predefined routing tables based on non-dynamic parameters of the
network, such as the physical distances between nodes. The price these users
pay for the convenience is a degree of naivety in their decisions, since they are
completely oblivious to congestion phenomena. We call such users oblivious.

More specifically, we consider oblivious users that route their flow through
the shortest path connecting its origin to its destination, as measured in the
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network without flow. We study the price of anarchy in case of linear edge
latency functions, first for a (single commodity) single pair of nodes connected
by a set of parallel edges, and then for general topologies with an arbitrary
number of origin-destination pairs. Unlike the case of selfish routing without
oblivious users where the price of anarchy is bounded by 4/3 [5], our bounds
are not independent of the network parameters. For both the cases of parallel
links and general topologies, the bounds depend on the coefficients ae of the
linear latency functions le(fe) = aefe + be for edges e, where fe is the total
flow through edge e. In addition, the general topology bound depends on the
minimum fraction of total demand that the optimal routing sends through any
edge. Although these bounds can be very large, if, for example, there are network
edges with vastly different behavior under congestion (as is the case in a traffic
network with both highways and side-streets), this seems to be unavoidable in
view of the fact that the myopic behavior of oblivious users may lead to great
congestion of ‘wide’ edges by them, and in that way directing the selfish users
to non-congested but ‘narrow’ paths. Indeed, we provide an example exhibiting
such behavior for the simple case of parallel links in Section 3.1. In addition, the
dependence of the general topology bound on the ‘spread’ of the optimal flow
seems to be necessary, given that the oblivious flow concentrates the oblivious
users on specific (initially fastest, but possibly very slow after the selfish users
have been added) paths, which may be orthogonal to what the optimal flow
does.

Organization: In Section 2 we define the model, in Section 3 we study linear
latency functions in simple networks of two nodes connected by parallel links,
and in Section 4 we study linear functions in general, multicommodity networks.
We conclude with a discussion in Section 5.

2 Preliminaries

We are given a directed network G = (V, E) with a latency function lP (·) as-
sociated to each path P . For a flow f on G, lP (f) is the latency (cost) of path
P for this particular flow. Notice that in general this latency depends on the
whole flow f , and not only on the flow fe through each edge e ∈ P . In this paper
we adopt the additive model for the path latencies, i.e., lP (f) =

∑
e∈P le(fe),

where le is the latency function for edge e and fe is the amount of flow that
goes through e. We also let P be the set of all available paths in the network
and assume that for every source-sink pair there is at least one path joining the
source to the sink. In this work we assume that the latency functions are linear
functions of the edge flow fe, i.e., le(fe) = aefe + be, ∀e ∈ E. The total cost of
a flow f is defined as C(f) =

∑
e∈E fele(fe).

We consider the case where for every origin-destination commodity of demand
d, a fraction α of it consists of an infinite number of oblivious users, each carrying
an infinitesimal amount of flow through the shortest path connecting the source
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to the destination when there is no flow routed on G. If there are more than
one shortest paths, we will assume that all these users pick the smallest in a
lexicographic ordering. The rest (1 − α)d of the demand consists of an infinite
number of selfish users, each carrying an infinitesimal amount of flow.

3 Parallel Links

Let G be a network consisting of parallel links connecting two nodes s, t. We
will assume that the edge latency functions are strictly increasing, i.e., for every
edge e with le(fe) = aefe + be we have ae > 0. Note that in this setting, both
the traffic equilibrium flow and the optimal flow are unique. In what follows,
we use 0 ≤ α ≤ 1 to denote the fraction of total flow from s to t that is
oblivious. We will use the term ‘traffic equilibrium’ for flows with α = 0 that are
at traffic equilibrium, while we reserve the term ‘oblivious equilibrium’ for flows
with α > 0 and with their selfish users at traffic equilibrium in the network that
results after routing the oblivious users. The following observation is true due
to Wardrop’s principle and since the latency functions are increasing:

Proposition 1. Let fd and fd+δ be flows at traffic equilibrium, of demand d
and d + δ respectively, with δ ≥ 0. Then we have fd

e ≤ fd+δ
e , ∀e ∈ E.

In what follows, we denote the total demand from s to t with d, and the optimal
flow of demand d with fopt. We denote the flow of demand d at traffic equilibrium
with f∗, and the flow of demand d at oblivious equilibrium with f̃ , where the
flow of oblivious users with total demand αd is denoted with f̃o and the flow of
selfish users (with total demand (1 − α)d) with f̃∗, i.e., f̃ = f̃∗ + f̃o. Obviously,
the oblivious flow will be routed through the edge e with the smallest le(0) = be

(or the first such edge in a lexicographic ordering, if there are more than one).
Let es be this edge.

Proposition 2. f∗
e ≥ f̃∗

e , ∀e ∈ E.

Proof: If f∗
es

≥ αd then f∗ = f̃ . Otherwise we have αd > f∗
es

. In this case, no
selfish users will flow through es because of Wardrop’s principle, i.e., f̃∗

es
= 0. By

removing es from G together with the portion of flow on it, we get two new Nash
flows f∗′

and f̃∗′
, of demand d−f∗

es
and d−αd. As αd > f∗

es
, from Proposition 1,

we have f∗′ ≥ f̃∗′
. Then since f̃∗

es
= 0, we get f∗ ≥ f̃∗. �

Lemma 1. C(f̃∗) ≤ 4
3 (1 − α)C(fopt).

Proof: Since latency functions are increasing and f∗ ≥ f̃∗ from Proposition 2,
we know that ∀e, le(f∗

e ) ≥ le(f̃e
∗
). Also Wardrop’s principle for f∗ implies that

le(f∗
e ) = L(f∗), ∀e : f∗

e > 0 and le(f∗
e ) ≥ L(f∗), ∀e, where L(f∗) is the common

latency of the paths used by the traffic equilibrium flow f∗. Then
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C(f∗) − C(f̃∗) =
∑

e

(
le(f∗

e )f∗
e − le(f̃∗

e )f̃∗
e

)

≥
∑

e

(f∗
e − f̃∗

e )le(f∗
e )

≥
∑

e

(f∗
e − f̃∗

e )L(f∗) = αdL(f∗) = αC(f∗).

Then Theorem 4.5 of [5] implies the lemma. �

The Karush-Kuhn-Tucker conditions imply that fopt is a traffic equilibrium for
latency functions l∗e(x) = ∂le

∂fe
(x), i.e., for l∗e(fe) = 2aefe + be. Then Wardrop’s

principle implies that

l∗e1
(fopt

e1
) = l∗e2

(fopt
e2

), ∀e1, e2 : fopt
e1

, fopt
e2

> 0

and
l∗e(fopt

e ) ≥ l∗e1
(fopt

e1
), ∀e1 : fopt

e1
> 0.

We will use this fact in what follows.

Proposition 3. fopt
es

> 0.

Proof: Let e be an edge with fopt
e > 0. Then we have

l∗es
(fopt

es
) ≥ l∗e(fopt

e ) = 2aef
opt
e + be

> be

≥ bes = l∗es
(0).

Therefore fopt
es

> 0, since functions l∗e(x) are increasing. �

In what follows, let Eopt = {e : fopt
e > 0}.

Proposition 4. For any edge e, we have les(fopt
es

) ≤ le(fopt
e ). For any edge

e ∈ Eopt, we have aesf
opt
es

≥ aef
opt
e .

Proof: For any edge e, we have

le(fopt
e ) =

1
2

(
l∗e(f

opt
e ) + be

)

≥ 1
2

(
l∗es

(fopt
es

) + be

)

≥ 1
2

(
l∗es

(fopt
es

) + bes

)

= les(f
opt
es

).

where the first inequality is due to Proposition 3, and the second is due to the
definition of es.

Similarly, we get the second part of the proposition for any edge e ∈ Eopt. �
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Lemma 2. C(f̃o) ≤ max{α, α2r}C(fopt), where r =
∑

e∈Eopt(aes/ae).

Proof: We have

C(fopt) =
∑

e

le(fopt
e )fopt

e

≥ les(f
opt
es

)
∑

e

fopt
e (Proposition 4)

=
(
aesf

opt
es

+ bes

)
d.

From the second part of Proposition 4 we have that (aes/ae)fopt
es

≥ fopt
e , ∀e ∈

Eopt. By summing over all e ∈ Eopt, we get aesf
opt
es

≥ aesd/r. Thus

C(fopt) ≥
(aes

r
d + bes

)
d.

Therefore
C(f̃o)

C(fopt)
≤ (aesα

2d + αbes)d(aes

r d + bes

)
d

≤ max{α, α2r}.

�

Theorem 1. If f̃o
es

= αd ≥ f∗
es

, then C(f̃)
C(fopt) ≤ 4

3 (1 − α) + max{α, α2r}, other-

wise C(f̃)
C(fopt) ≤ 4

3 .

Proof: If f̃o
es

= αd < f∗
es

then f̃ = f∗ and the second part of the theorem
follows. In the case αd ≥ f∗

es
, edge es which is used by the oblivious users is

no longer attractive to selfish users, i.e., f̃∗
es

= 0. Thus f̃∗ and f̃o are actually
orthogonal, i.e., f̃∗T

f̃o = 0. Then, if A > 0 is the |E| × |E| diagonal matrix
whose diagonal elements are the ae’s, we have

C(f̃) = (A(f̃∗ + f̃o) + b)T (f̃∗ + f̃o)

= f̃∗T

Af̃∗ + f̃oT

Af̃o + 2f̃∗T

Af̃o + bT (f̃∗ + f̃o)

= (Af̃∗ + b)T f̃∗ + (Af̃o + b)T f̃o

and the first part of the theorem now comes from Lemmata 1 and 2. �

3.1 A Bad Example for Parallel Links

We provide an example to show that in networks with parallel links, the price of
anarchy can be as bad as our bound in Theorem 1 in case α = 1, i.e., all users
are oblivious. The network has only two links, namely e1 and e2, with latency
functions l1(x) = 10x and l2(x) = x + ε, where 0 < ε < 1. The total demand is
d = 1.

The optimal cost in this setting is Copt = 10/11 + (40ε − ε2)/44. When α ≥
(1+ε)/11, the cost of the oblivious equilibrium is Ceq = 11α2 −(2+ε)α+(1+ε).
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One can see that when α is one (all users are oblivious), and ε tends to zero, the
price of anarchy is

lim
ε→0

Ceq

Copt
= 11,

which is exactly the bound we get in Theorem 1.
However, this example is not tight when α < 1. The loss of tightness comes

from the 4/3 which is the upper bound for the selfish routing price of anarchy [5].
We used this result directly in the last step of Lemma 1 and in the first case of
Theorem 1. While this example is a tight example for Lemma 2, it is not tight for
the 4/3. The price of anarchy here is very close to 1. Thus a real tight example for
our bound would be one that is tight for both 4/3 and Lemma 2. Unfortunately
such an ideal example does not exist since the tightness of Lemma 2 requires
very small be/ae for all links, but in order to make 4/3 tight we need a relatively
large be/ae to make a distinction between the selfish flow and the optimal flow.
This implies that the bound in Theorem 1 is not tight, and a tighter bound
remains as an open problem.

4 General Topologies

In this section we study the price of anarchy of oblivious equilibria for general
topologies, arbitrary number of origin-destination pairs (commodities) and linear
latency functions. We will use the concept of β-function defined in [1]. Let L be
a family of continuous and non-decreasing latency functions. For every function
l ∈ L and every value v ≥ 0, let us define:

β(v, l) :=
1

vl(v)
max
x≥0

{x(l(v) − l(x))}.

In addition, let us define
β(l) := sup

v≥0
β(v, l),

and
β(L) := sup

l∈L
β(l).

We will denote the inner product of two vectors x, y by 〈x, y〉.
We will also use an alternative characterization of a traffic equilibrium f∗ of

demand d, as a solution to the following variational inequality:

〈l(f∗), f − f∗〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand d}.

By applying this formulation to the selfish part of an oblivious equilibrium f̃ =
f̃∗ + f̃o in the network obtained after the oblivious users have been routed1, we
get

〈l(f̃), f − f̃∗〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand (1 − α)d}.

1 Note that the new latency functions in this network are l′e(fe) = ae(f̃o
e + fe) + be =

le(fe + f̃o
e ).
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By setting f := (1 − α)fopt we have

〈l(f̃), f̃∗〉 ≤ (1 − α)〈l(f̃ ), fopt〉. (1)

Lemma 3. 〈l(f̃), f̃∗〉 ≤ (1 − α)β(L)C(f̃ ) + (1 − α)C(fopt).

Proof:

〈l(f̃), f̃∗〉
(1)
≤ (1 − α)〈l(f̃), fopt〉

≤ (1 − α)

(
∑

e

β(f̃e, le)le(f̃e)f̃e +
∑

e

le(fopt
e )fopt

e

)

≤ (1 − α)
(
β(L)C(f̃ ) + C(fopt)

)
.

�

Lemma 4. 〈l(f̃), f̃o〉 ≤ nαdγa

fopt
min

C(fopt), where n = |V |, γa = maxe ae

mine ae
, and fopt

min =

mine fopt
e .

Proof: Let Psi be the path used by the oblivious users corresponding to the i-th
origin-destination pair (commodity). Note that this is the shortest path amongst
all possible paths Pi connecting this pair when we define the edge distances as
le(0) = be. Also let di be the demand for this pair, therefore αdi is the amount
of oblivious flow routed through Psi . Let also amin = mine ae, amax = maxe ae.

The key observation is that the oblivious flow f̃o is a traffic equilibrium for
the original network, if we define its latency functions as loe(f) = be. From the
discussion above, this implies that

〈l(0), f − f̃o〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand αd},

or, if we set f := αfopt, we get

∑

e∈E

bef̃
o
e ≤ α

∑

e∈E

bef
opt
e . (2)

Then

〈l(f̃), f̃o〉 =
∑

e∈E

(
ae(f̃∗

e + f̃o
e )f̃o

e + bef̃
o
e

)

(2)
≤ α

∑

i

di

∑

e∈Psi

ae(f̃∗
e + f̃o

e ) + α
∑

e∈E

bef
opt
e . (3)
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To get a upper bound of the first term:

α
∑

i

di

∑

e∈Psi

ae(f̃∗
e + f̃o

e ) = α
∑

i

di

∑

e∈Psi

ae(f̃∗
e + αdi)

≤ nα2amax

∑

i

d2
i + α

∑

i

di

∑

e∈Psi

aef̃
∗
e

≤ nα2amax

∑

i

d2
i + nαamax(1 − α)

∑

i

d2
i

≤ nαdγa(amind)

≤ nαdγa

∑

e∈E

aef
opt
e

≤ nαdγa

fopt
min

∑

e∈E

aef
opt
e

2
. (4)

Since nαdγa

fopt
min

≥ α the combination of (3),(4) proves the lemma.
�

Theorem 2.
C(f̃ )

C(fopt)
≤

4
(
1 − α + nαdγa/fopt

min

)

3 + α

Proof: By combining Lemma 3 with Lemma 4, we have

C(f̃) = 〈l(f̃), f̃o〉 + 〈l(f̃), f̃∗〉

≤ (1 − α)C(fopt) + (1 − α)β(L)C(f̃ ) +
nαdγa

fopt
min

C(fopt),

hence

C(f̃)
C(fopt)

≤ 1 − α + nαdγa/fopt
min

1 − (1 − α)β(L)
.

For L being the set of non-decreasing linear functions β(L) = 1
4 [1], and the

theorem follows. �

5 Discussion and Open Problems

The obvious open problem is the tightening of the bounds of Theorems 1,2. One
method of doing so seems to be the avoidance of relating the cost of oblivious
equilibria to the optimal cost via traffic equilibria. It is precisely this intermediate
step that doesn’t allow us yet to have a tight analysis for Theorem 1.

Especially Theorem 2 for general topologies may be possible to be improved
by removing its dependence on the minimum optimum path flow fopt

min. Although
the optimum flow is a parameter of the network, it may be very difficult to be
determined by the network designer, while the other parameters of the network
(G, n, d, ae, be) can be set directly. Finally, it would be interesting to get non-
trivial bounds (if they exist) for general latency functions.
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Abstract. We study parallel knock-out schemes for graphs. These
schemes proceed in rounds in each of which each surviving vertex simul-
taneously eliminates one of its surviving neighbours; a graph is reducible
if such a scheme can eliminate every vertex in the graph. We show that,
for a reducible graph G, the minimum number of required rounds is
O(

√
α), where α is the independence number of G. This upper bound is

tight and the result implies the square-root conjecture which was first
posed in MFCS 2004. We also show that for reducible K1,p-free graphs at
most p − 1 rounds are required. It is already known that the problem of
whether a given graph is reducible is NP-complete. For claw-free graphs,
however, we show that this problem can be solved in polynomial time.

Keywords: parallel knock-out schemes, claw-free graphs, computational
complexity.

1 Introduction

In this paper, we continue the study on parallel knock-out schemes for finite
undirected simple graphs introduced in [7] and studied further in [2,3,4]. Such
a scheme proceeds in rounds: in the first round each vertex in the graph selects
exactly one of its neighbours, and then all the selected vertices are eliminated
simultaneously. In subsequent rounds this procedure is repeated in the subgraph
induced by those vertices not yet eliminated. The scheme continues until there
are no vertices left, or until an isolated vertex is obtained (since an isolated
vertex will never be eliminated).

A graph is KO-reducible if there exists a parallel knock-out scheme that elim-
inates the whole graph. The parallel knock-out number of a graph G, denoted by
pko(G), is the minimum number of rounds in a parallel knock-out scheme that
eliminates every vertex of G. If G is not reducible, then pko(G) = ∞.

Knock-out schemes have an obvious relationship with games on graphs, a
topic which has received considerable attention in the last decades ([6]). But
unlike many games on graphs, knock-out schemes can be motivated by practical
settings, e.g., in which objects exchange entities that inactivate the receiving ob-
jects, like viruses that paralyse or block computers, or computational tasks that
disable processors or sensors from other tasks. Especially in the relatively new

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 328–340, 2007.
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area of sensor networks, knock-out schemes for the underlying graph structures
can model practical situations in which sensors exchange data with neighbouring
sensors that temporarily disables the receiving sensors from their main monitor-
ing tasks. This happens, e.g., in situations where sensors have a low battery and
limited computational power. They share measured and processed data with
other sensors in their close vicinity as well as with more powerful PCs, laptops
or mainframes at larger distances. Consider a setting with a number of sen-
sors that perform simple measurements, for instance on temperature, humidity,
smoke levels, movements, or the like. Data sharing is important for two reasons:
in order to rule out erroneous data (by comparisons with data gathered at a
neighbouring sensor) and in order to preprocess the data before sending it to a
more powerful computer. During the preprocessing stage in a sensor no new data
can be collected by that sensor, so the chosen neighbouring sensors are out of
order for the time being, while the other sensors continue collecting data, sharing
it with other active neighbouring sensors, and so on, until all sensors are out of
order or run out of available neighbouring sensors. Then a new round of data
collection and sharing starts. In the ideal case all sensors have shared their data
with at least one neighbouring sensor and have performed some preprocessing of
their data. In order to keep the time intervals between successive rounds of data
collection as short as possible, the number of stages within one round should be
kept to a minimum. This problem setting can be modelled by parallel knock-out
schemes and the parallel knock-out number comes up naturally.

Our main motivation for studying knock-out schemes, though, is the intimate
relationship between this concept and well-studied structural graph theoretical
concepts like perfect matchings, hamiltonian cycles and 2-factors (they all yield
knock-out schemes of one round). Apart from these structural aspects, we are
interested in complexity aspects. Whereas the classical complexity problems re-
lated to matchings and hamiltonian cycles have been settled many years ago, the
analogous problems related to knock-out schemes have been resolved recently,
and only for general graphs and graphs of bounded tree-width. For many inter-
esting classes, however, these problems on knock-out schemes are still open [3].

1.1 Our Results

In [3], a number of results, conjectures and questions on upper bounds for knock-
out numbers were presented. For trees, the problem was resolved by showing that
the knock-out number of a tree on n vertices was O(log n) and by exhibiting a
family of trees that met this bound. They also presented a family of bipartite
graphs whose knock-out numbers grow proportionally to the square root of the
number of vertices, and conjectured that for any KO-reducible graph on n ver-
tices the knock-out number is at most 2

√
n. In this paper, in Section 3, we prove

this conjecture.
In [3], a polynomial algorithm was also given that would determine the parallel

knock-out number of any tree. In [4] it was shown that the problem of finding
parallel knock-out numbers is, for general graphs, NP-complete. In this paper, in
Section 4, we present a polynomial algorithm that finds the knock-out number of
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claw-free graphs, that is, graphs that do not contain an induced K1,3; these form
a well-studied class of graphs, see [5] for a survey. We also give a tight bound on
the knock-out number of reducible K1,p-free graphs, generalizing a result of [3]
on claw-free graphs.

2 Preliminaries

Graphs in this paper are denoted by G = (V, E). An edge joining vertices u and v
is denoted by uv. If not stated otherwise a graph is assumed to be undirected
and simple. If a graph G is directed then an arc from a vertex u to a vertex v
is denoted by (u, v). In the null graph, V = E = ∅. For graph terminology not
defined below, we refer to [1].

For a vertex u ∈ V we denote its neighbourhood, that is, the set of adjacent
vertices, by N(u) = {v | uv ∈ E}. The degree of a vertex is the number of edges
incident with it, or, equivalently, the cardinality of its neighbourhood. A subset
U ⊆ V is called an independent set of G if no two vertices in U are adjacent to
each other. The independence number α of a graph G is the number of vertices
in a maximum independent set of G.

A complete bipartite graph K|X|,|Y | is a bipartite graph with the maximum
number of edges between its bipartite classes X and Y . If |X | = 1, then it is a
star and the vertex in X is the centre vertex and the vertices in Y are leaves. If
|X | = 1 and |Y | = 1 we arbitrarily choose one of the star’s two vertices to be the
centre vertex. A graph G that does not contain a K1,p as an induced subgraph
for some p ≥ 1 is said to be K1,p-free. A K1,3-free graph is also called claw-free.

For a graph G, a KO-selection is a function f : V → V with f(v) ∈ N(v) for
all v ∈ V . If f(v) = u, we say that vertex v fires at vertex u, or that vertex u is
knocked out by vertex v. We also say that u is a victim of v. For each u ∈ f(V ),
we denote the set of vertices that fire at u by K(u), i.e., v ∈ K(u) if and only if
f(v) = u. If K(u) = {v}, that is, vertex v is the only vertex that fires at u, then
we call u the unique victim of v. For a subset U ⊆ f(V ) we use the shorthand
notation K(U) =

⋃
u∈U K(u), and we say that such a subset U is knocked out

by a subset W ⊆ V if K(U) ⊆ W , that is, if every vertex in U is knocked out
by a vertex in W .

For a KO-selection f , we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V \ f(V ); if H is the KO-
successor of G we write G � H . Note that every graph without isolated vertices
has at least one KO-successor. A graph G is called KO-reducible, if there exists
a finite sequence

G � G1 � G2 � · · · � Gr,

where Gr is the null graph. If no such sequence exists, then pko(G) = ∞. Other-
wise, the parallel knock-out number of G, pko(G), is the smallest number r for
which such a sequence exists. A sequence S of KO-selections that transform G
into the null graph is called a KO-reduction scheme. A single step in this se-
quence is called a round of the KO-reduction scheme. We denote the number of
rounds in S by r(S) = r.
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For a KO-reduction scheme S we denote the set of vertices that are victims
of a vertex v by L(v). For a subset W ⊆ V , we use the shorthand notation
L(W ) =

⋃
v∈W L(v).

An in-tree is a directed tree that contains a root u that can be reached from
any other vertex by a directed path. Note that a graph containing only one
vertex is an in-tree. For i = 1, . . . , r, we denote the subset of vertices knocked
out in round i by Ri. Let Gi be the directed graph with vertex set Ri and an arc
from a vertex u to a vertex v if and only if u fires at v in round i. We may also
use Gi to denote the underlying undirected graph; it will always be clear which
from the context). Also, observe that Gi and Gi denote two different graphs. As
each vertex in a round has exactly one edge oriented away from it, we can make
the following observation (which is illustrated in Fig. 1).

Fig. 1. A component of a graph Gi

Observation 1. Let S be a KO-reduction scheme for a graph G. For i =
1, . . . , r, each component of Gi is formed by a directed cycle D on at least two
vertices, such that each vertex on D is the root of some pendant in-tree.

Another observation we will use is the following.

Observation 2. If a graph G contains two distinct vertices of degree 1 that
share the same neighbour, then G is not KO-reducible.

Note that when referring to, for example, Gi, it is implicit that we know with
respect to which KO-reduction scheme this graph is defined (we wish to avoid
the cumbersome notation necessary to make it explicit). Sometimes we will be
considering pairs of schemes and will write, for instance, that G2 has fewer
vertices under S′ than under S. The meaning of this should be clear.

3 Resolving the Square-Root Conjecture

Let S be a KO-reduction scheme for a KO-reducible graph G. It turns out that
the square-root conjecture can be solved by considering schemes that knock out
vertices “as early as possible”. Hence, we define

w(S) =
r(S)∑

i=1

i|Ri|,
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and we say that S is a minimal KO-reduction scheme for G if

w(S) = min{w(S) | S is a KO-reduction scheme for G}.

For a minimal KO-reduction scheme S of a graph G, we can make a number of
further assumptions. We use the following terminology. If Gi has a component
C that consists of two vertices u and v we call C a two-component of Gi. Note
the existence of arcs (u, v) and (v, u) between the vertices u and v of a two-
component C. If Gi has a component C that consists of vertices u, v1, . . . , vp

for some p ≥ 2 with arcs (u, v1), (v1, u), (v2, u), . . . , (vp, u) then we call C a star-
component of Gi with centre vertex u. The vertices v1, . . . , vp are called the leaves
of C, and v1 is called the centre-victim, and the other leaves are called centre-
free. Finally, if Gi has a component that is a directed cycle with an odd number
of vertices then we call such a component an odd cycle-component of Gi.

Lemma 1. If G is KO-reducible, then G admits a minimal KO-reduction scheme
S with the following properties:

(i) Each component C of G1 is either a two-component, a star-component or
an odd cycle-component.

(ii) For 2 ≤ i ≤ r − 1, every component of Gi is either a two-component or a
star-component.

(iii) Every component of Gr is a two-component.
(iv) If C is an odd cycle-component (in G1) then no vertices of R2, . . . , Rr fire

at vertices of C in round 1.
(v) For 1 ≤ i ≤ r−1, there is no edge in G between any two leaves of the same

star-component or of two different star-components in Gi.

Proof. Let G be a KO-reducible graph. Then G admits a KO-reduction scheme
S. Let C be a component in Gi for some 1 ≤ i ≤ r. We start the proof by showing
that if S is minimal, then we can assume that C is either a two-component, a
star-component or an odd cycle-component. By Observation 1, C is formed by
a directed cycle D on vertices u1, . . . , up for some p ≥ 2, such that each ui is the
root of some pendant in-tree Ti.

Suppose p is even and p ≥ 4. We adjust the firing by letting the vertices of VD

fire at each other according to a perfect matching of D. Hence, we may assume
that this case does not occur.

Suppose p ≥ 3 is odd. If D contained a vertex that is knocked out by some
vertex v in its corresponding pendant in-tree, then we can adjust the firing by
letting the vertices of VD ∪{v} fire at each other according to a perfect matching
of this subgraph. Hence, we may assume that C = D is an odd cycle-component.

Suppose that p = 2. Then the underlying undirected graph of C is a tree, and it
is obvious that it can be decomposed into two-components and star-components
(and that we can let these components define the firing).

By Observation 2, we have that Gr cannot contain any star-components.
To complete the proof of (i)–(iii), we must show that odd cycle-components

only occur in G1. To do this we shall first prove a claim which also immediately
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implies (iv): for any odd cycle-component D we may assume that K(D) = D;
that is, vertices in D are only knocked out by each other. Suppose D is an odd
cycle-component on vertices u1, . . . , up in some Gi for i ≥ 1, such that there
exists a vertex v ∈ K(D)\D and v fires at u1. We adjust the firing by replacing
the arc (up, u1) by (up, up−1) and return to a previous case. Hence, we may
assume that this case does not occur.

Now suppose that a graph Gi, i ≥ 2, contains an odd cycle-component D.
First suppose that in round i − 1 all vertices in D fire at vertices in Ri−1 that
either are centre vertices of star-components, or else belong to two-components
or odd cycle-components. Since we just saw that no vertices in Ri+1 ∪ . . . ∪ Rr

fire at D, we can move D to Gi−1 (since all victims of D in Ri−1 are not unique,
it does not matter if the vertices of D fire at each other instead). This way
we obtain a KO-reduction scheme S′ with w(S′) < w(S). This contradicts the
minimality of S. In the remaining case, there exists a vertex u in D that fires
at a leaf w in a star-component in Ri−1. We let u and w fire at each other in
round i − 1, so we are able to move u to Ri−1 as K(D) = D. We let the other
vertices in D fire at each other in round i according to a perfect matching of
D −u. This way we again obtain a KO-reduction scheme S′ with w(S′) < w(S),
contradicting the minimality of S.

To finish the claim we prove (v). Suppose u and v are leaves in Gi for some
1 ≤ i ≤ r − 1, such that u and v are adjacent in G. In case u and v are leaves
of different star-components, we adjust the firing by letting u and v fire at each
other, and, if necessary, changing the centre-victims to be vertices other than u
and v. Suppose u and v are leaves of the same star-component C. Let z be the
centre vertex of C. If C has a third leaf, then we again let u and v fire at each
other and let another leaf be the centre-victim. Otherwise we can form an odd
cycle-component and return to a previous case. ��

We call a minimal KO-reduction scheme S of a graph G that satisfies the prop-
erties (i)-(v) of Lemma 1 a simple KO-reduction scheme of G. We will continue
to find further properties of simple KO-reduction schemes.

Observation 3. Let S be a simple KO-reduction scheme for a graph G. Let u, v
be, respectively, vertices of Ri and Rj, i < j, such that u is the unique victim of
v. Then u is a centre-free leaf of a star-component in Gi.

Proof. By Lemma 1, u cannot be a vertex of an odd cycle-component. If u is in
a two-component, or u is the centre vertex or centre-victim of a star-component,
then there are at least two vertices firing at u. Hence u must be a centre-free
leaf of a star-component. ��

Lemma 2. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2.
Let C be a two-component in Gr. Then in rounds 1, . . . r − 1 all victims of one
of the two vertices of Gr are not unique, and all victims of the other one are
unique.

Proof. For i = 1, . . . , r − 1, let xi be the victim of u in round i, and let yi be the
victim of v in round i.
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Suppose both xr−1 and yr−1 are not unique victims. We show that this means
that it is possible to move u and v to Rr−1. If xr−1 = yr−1 or xr−1 = yr−1 is the
victim of vertices other than u and v, then let u and v fire at each other in round
r − 1. If xr−1 = yr−1 is fired at by only u and v, then it is a centre-free vertex of
a star-component and we can adjust the firing to let u, v and xr−1 form an odd
cycle-component in Gi−1. Either way we obtain a new KO-reduction scheme S′

with w(S′) < w(S), contradicting the minimality of S. Hence we can assume
that yr−1 is a unique victim.

We show that all victims of u are not unique by contradiction. Let h be the
largest index such that xh is unique. By Observation 3, vertices xh and yr−1 are
centre-free leaf vertices of star-components. Since centre vertices are not unique
victims, we can let u and xh fire at each other in round h, and we can let v and
yr−1 fire at each other in round r − 1. This way we obtain a new KO-reduction
scheme S′ with w(S′) < w(S). This contradicts the minimality of S.

Now we again find a contradiction to show that all victims of v are unique.
Let h be the largest index such that yh is not a unique victim. Then we let v fire
at yj in round j−1 for j = h+1, . . . , r−1 (so we move those vertices from Rj to
Rj−1), and v does not fire at yh anymore. Since xr−1 is not a unique victim, we
can then let u and v fire at each other in round r − 1. This way we obtain a new
KO-reduction scheme S′ with w(S′) < w(S). This contradicts the minimality of
S and completes the proof of the lemma. ��

Lemma 3. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2.
For each i ≥ 2, Ri contains a vertex vi whose victims in round 1, . . . , i − 1 are
all unique. Let ur be the (unique) neighbor of vr in Gr. Then

⋃r
i=2 L(vi) ∪ {ur}

is an independent set of cardinality r2−r+2
2 in G.

Proof. Since Rr is non-empty, there exists a two-component C in Gr. Let ur

and vr be the two vertices of C. By Lemma 2, we may assume that all victims
of ur in rounds i = 1, . . . , r − 1 are not unique, and all victims of vr are unique.
Denote the victims of vr in rounds i = 1, . . . , r − 1 by yr

1 , . . . , y
r
r−1, respectively.

By Observation 3, every yr
i is a centre-free leaf vertex of a star-component Cr

i .
For i = 2, . . . , r − 1, let vi be the centre vertex of Cr

i and for h = 1, . . . i − 1,
let yi

h be the victim of vi in round h. We claim that these victims yi
h are all

unique. For i = r, this is already shown. We prove the rest of the statement by
contradiction. Let 2 ≤ i ≤ r − 1. Let h be the largest index such that yi

h is not
a unique victim of vi. We adjust the firing as follows. Since yi

h is not a unique
victim of vi, we do not have to let vi fire at it. Then we let vi fire at yi

j in round
j − 1 for j = h + 1, . . . , i − 1, so we move yi

j to Rj−1 for j = h + 1, . . . , i − 1. In
round i−1 we let vi fire at yr

i , so we move yr
i to Ri−1. Then we do not have to let

vr fire at yr
i . Hence, we can let vr fire at yr

j in round j −1 for j = i+1, . . . , r−1,
so we move yr

j to round j − 1 for j = i + 1, . . . , r − 1. Finally, we let ur and vr

fire at each other in round r − 1. This is possible, because the victim of ur in
round r − 1 is not unique, due to Lemma 2. This way we have obtained a new
KO-reduction scheme S′ with w(S′) < w(S), contradicting the minimality of S.
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We will now prove that

L =
r⋃

i=2

L(vi) =
r⋃

i=2

i−1⋃

h=1

yi
h

is an independent set. We first note that

|L| =

∣∣∣∣∣

r⋃

i=2

i−1⋃

h=1

yi
h

∣∣∣∣∣ =
r∑

i=2

i−1∑

h=1

1 =
r2 − r

2
,

since all vertices in L are unique victims.
Because S is simple, by Lemma 1, there is no edge between any two vertices

yi
h and yj

h. Suppose there were an edge yi
hyr

j , where h = j. If h < j, then we
move yr

j to Rh, each yr
k for k = j +1, . . . , r − 1 to Rk−1, and finally ur and vr to

Rr−1. We can adjust the firing and obtain a new KO-reduction scheme S′ with
w(S′) < w(S). This contradicts the minimality of S. If h > j, then we move
yi

h to Rj , each yr
k for k = i, . . . , r − 1 to Rk−1, and finally ur and vr to Rr−1.

We adjust the firing and obtain the same contradiction as before. Suppose there
exists an edge between two vertices yi

h and yk
j with h < j and r /∈ {i, j}. We

move yk
j to Rh, each yr

l for � = j, . . . , r − 1 to R�−1, and finally ur and vr to
Rr−1. We adjust the firing and obtain the same contradiction as before.

Now suppose ur is adjacent to a vertex yi
h of L. By Lemma 2, all victims of

ur are not unique. Then we can let ur fire at yi
h in round i. Then yi

h is no longer
a unique victim and we find a KO-reduction scheme S′ with w(S′) < w(S) as
before. This final contradiction completes the proof. ��

We are now ready to state our main theorem, which proves (and strengthens)
the square-root conjecture posed in [3].

Theorem 1. Let G be a KO-reducible graph. Then

pko(G) ≤ min

{
−1

2
+

√
2n − 7

4
,

1
2

+

√
2α − 7

4

}
.

Proof. It is straightforward to check that the statement holds for a graph G
with pko(G) = 1. Let S be a simple KO-reduction scheme for a graph G with
r ≥ pko(G) ≥ 2. By Lemma 3, we find an independent set L′ of G that has
cardinality |L′| = 1

2 (r2 − r + 2) ≤ α. Note that R1 contains a centre vertex
of a star-component. This, together with Lemmas 2 and 3, implies that n ≥
|L′|+r−1+1 = 1

2 (r2 −r+2)+r. Solving both inequalities gives us the required
upper bound. ��

We note that the bound mentioned in Theorem 1 is asymptotically tight. In [3],
it has been proven that for all p ≥ 1, pko(Kp,q) = p = Θ(

√
n) = Θ(

√
α) for all

complete bipartite graphs on n = p + q vertices with q = 1
2p(p + 1).
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4 Claw-Free Graphs

It is known that claw-free graphs can be knocked out in at most two rounds [3] if
they are KO-reducible (not all claw-free graphs are, take for example an isolated
vertex or a path on three vertices). We generalize this result for K1,p-free graphs
for any p ≥ 2. This solves a question in [3].

Theorem 2. Let p ≥ 1. If a K1,p-free graph G is KO-reducible then pko(G) ≤
p − 1.

Proof. The case p = 1 is trivial. For p ≥ 2, the statement follows directly from
Lemma 3. ��

This result is the best possible. In [3, Section 4], a tree Y� is defined for each
integer � ≥ 1, and it is shown that pko(Y�) = �. It is also easy to check that Y�

is K1,�+1-free. We omitted the details.
In the rest of this section, we suppose that G = (V, E) is a claw-free graph and

show that pko(G) can be determined in polynomial time. We need the following
lemma.

Lemma 4. Let G be a connected claw-free graph with pko(G) = 2. Then there
is a simple KO-reduction scheme in which only two vertices u and v survive to
the second round.

Proof. By Lemma 1 and claw-freeness, we know there is a simple two-round
KO-reduction scheme for G such that

(i) each component of G1 is a two-component, star-component or odd cycle,
(ii) each component of G2 is a two-component,
(iii) in the first round the vertices of G2 do not fire at vertices that belong to

odd cycles in G1, and
(iv) the leaves of the star-components in G1 are not adjacent.

As the leaves of the star-components are not adjacent, we can, by claw-freeness
and Lemma 1, further suppose that each star-component is a path on three
vertices which we shall call a three-component.

Note that among all schemes that satisfy these properties, S is the one with
the fewest number of components in G2 (as it is minimal). To prove the lemma,
we show that if, for S, G2 contains more than one component, then we can find
a scheme S′ that admits fewer components to G2.

For S, let the vertex sets of the two-components of G2 be {{ui, vi} | i =
1, . . . , q}. By Lemma 2, we can assume that the victim of ui in G1 is not unique,
but that of vi is unique. By Observation 3, vi fires at the centre-free leaf of a
three-component, say yi. Let xi be the victim of ui. Suppose that xi is the centre
vertex of a three-component. Then there is also an edge from ui to one of the
leaves, say w, of the three-component (else, by (iv), xi, ui and the leaves of the
three-component induce a claw). Let z be the other leaf of the three-component.

Suppose that yi = w. Then let S′ be a scheme identical to S except that in
the first round
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• vi fires at yi,
• yi fires at ui,
• ui fires at vi,
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S.
Suppose that yi = z. Then let S′ be a scheme identical to S except that in

the first round

• vi and yi fire at each other,
• ui fires at xi,
• xi fires at w,
• w fires at ui.

Thus S′ has one fewer two-component in G2 than S.
Suppose yi /∈ {w, z}. Then let S′ be a scheme identical to S except that in

the first round

• vi and yi fire at each other,
• ui and w fire at each other, and
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S. Hence, we have proven that
xi is not the centre-vertex of a three-component.

Suppose that xi is the leaf of a three-component. If yi also belongs to this three-
component, then, since xi = yi, we have that ui, vi and the three-component of
their victims lie on a 5-cycle in G. Then let S′ be a scheme identical to S except
that in the first round these five vertices fire according to an orientation of this
5-cycle. Thus S′ has one fewer two-component in G2 than S.

If xi is the leaf of a three-component that does not contain yi, then ui, vi

and the components containing their first round victims lie on a path of length
8 in G so can be matched. So let S′ be a scheme identical to S except that in
the first round these eight vertices fire according to this matching. Thus S′ has
one fewer two-component in G2 than S.

Thus xi is not the leaf of a three-component, and, by (iii), xi belongs to a
two-component.

Thus ui and vi combined with the components of G1 containing their victims
lie on a path of length 7 in G. We call such a path a seven-component. Let us
motivate this choice of name by showing that the seven-components are vertex-
disjoint.

The vertices vi, 1 ≤ i ≤ r, fire at distinct three-components in the first round
(as their victims are unique and one of the leaves of each three-component is
the centre-victim). We must also show that the victims xi of the vertices ui,
1 ≤ i ≤ r, belong to distinct two-components. Suppose that xi and xj , i = j, are
distinct but belong to the same two-component in G1. Then let S′ be a scheme
identical to S except that in the first round
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• vi and yi fire at each other,
• vj and yj fire at each other,
• ui and xi fire at each other, and
• uj and xj fire at each other.

Again S′ has fewer two-components in G2 than S. Now suppose that xi = xj .
If either ui or uj is adjacent to the other vertex in xi’s two-component, then we
have the previous case. Otherwise, there is an edge uiuj (else there is a claw).
So let S′ be a scheme identical to S except that in the first round

• vi and yi fire at each other,
• vj and yj fire at each other, and
• ui and uj fire at each other.

Again S′ has fewer two-components in G2 than S.
We have shown that the seven-components are vertex-disjoint. Note that all

the three-components in G1 contain a victim of a vertex in G2 and so must be
a subgraph of a seven-component. Thus we can represent S as a collection of
vertex-disjoint seven-components, two-components and odd cycles that span G.
We denote such a representation G∗. Note that the number of two-components
in G2 is equal to the number of seven-components in G∗. Thus to prove the
lemma we show that if for S there is more than one seven-component in G∗,
then we can find another scheme with fewer seven-components.

Let A = a1 · · ·a7 and B = b1 · · · b7 be a pair of seven-components in G∗. First
we consider the case where, in G, A and B are joined by an edge aibj for some i, j.
We shall show that this implies that the vertices of A and B admit a perfect
matching; thus we can replace two seven-components by seven two-components.

If i and j are both odd, then we match ai with bj and the remaining vertices
and edges of A and B form paths of even length, so can clearly be matched.
If i is even and j is odd, then, if either ai−1 or ai+1 is adjacent to bj, we have
the previous case. Otherwise, by claw-freeness, there is an edge ai−1ai+1 and we
include both this and aibj in the matching, and, again, what remains of A and B
are paths of even length. Finally suppose that i and j are both even. If there are
any other edges from a vertex in {ai−1, ai, ai+1} to a vertex in {bj−1, bj , bj+1},
then we have an earlier case. Otherwise, claw-freeness implies edges ai−1ai+1
and bj−1bj+1, and we include these and aibj in the matching to again leave only
even length paths.

So we can assume that no pair of seven-components in S are joined by an edge
in G. Now let us assume that S is such that we can find seven-components A
and B such that the length of the shortest path in G between them is mini-
mum (that is, there is no pair of seven-components in any other simple scheme
separated by a shorter path).

Suppose a shortest path from A to B meets A at ai and the next vertex along
is w. In G∗, w must belong to either a two-component or an odd cycle.

First suppose w is in a two-component C whose other vertex is z. We describe
how to use the vertices of A and C to find a seven-component A′ and two-
component C′ such that w is in A′; thus A′ is closer to B than A contradicting
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our choice of A and B. By symmetry, there are four cases according to which
vertex of A neighbours w. Suppose a1 is adjacent to w. Then replace A and C
with A′ = zwa1 · · ·a5 and C′ = a6a7. If a2 is adjacent to w, then claw-freeness
implies one of the edges a1a3, a1w or a3w is present. Let C′ be, respectively,
a6a7, a6a7 or a1a2, and in each case we find a path of length 7 on the remaining
vertices to be A′. If a3 is adjacent to w, then let A′ = zwa3 · · · a7 and C′ = a1a2.
If a4 is adjacent to w, then one of a3a5, a3w or a5w is present. Let C′ be,
respectively, a1a2, a1a2 or a6a7, and in each case we find a path of length 7 on
the remaining vertices to be A′.

Finally suppose that w belongs to an odd cycle. If ai, i odd, is joined to w,
then there is a perfect matching on the vertices of A and the cycle and we have
a scheme with fewer seven-components. Suppose ai, i even, is adjacent to w. If
either ai−1 or ai+1 is joined to w, then we have the previous case. Otherwise,
there must be an edge ai−1ai−1, and if we match both this pair of vertices and ai

and w, then the remaining vertices of A and the cycle induce even-length paths
and a perfect matching can again be found. ��
Theorem 3. Computing the parallel knock-out number of a claw-free graph can
be done in polynomial time.

Proof. By Theorem 2, it is sufficient to present methods for checking whether or
not pko(G) is equal to 1 or 2, since if it is neither it must be ∞. Deciding whether
a graph can be knocked-out in a single round can be solved in polynomial time
([3]). So we need only show how to check whether G can be knocked out in two
rounds.

Suppose that pko(G) = 2. By Lemma 4, we can assume that there is a two-
round simple KO-reduction scheme for G in which only two vertices, say u and v,
survive to the second round, and, by the proof of the lemma, there is exactly
one three-component in G1.

Let w be the first round victim of v. Then G − {u, v, w} has a spanning sub-
graph comprising two-components and odd cycles (that is, G1 −w) and can thus
be knocked out in one round. Therefore the following is a necessary condition
for pko(G) = 2: there are three vertices u, v and w in V such that

• there are edges uv and vw,
• u and w have neighbours other than v and each other, and
• pko(G − {u, v, w}) = 1

It is easy to see that this condition is also sufficient. Therefore to decide whether
or not pko(G) = 2, we look for a set of three vertices that satisfies this condition.
This can be done in polynomial time. ��

As noted before any graph with pko(G) = 1 has a spanning subgraph con-
sisting of a number of mutually disjoint matchings edges and disjoint cycles. For
claw-free graphs we have found the following characterization, which directly
follows from the proof of Lemma 4.

Corollary 1. Let G be a connected claw-free graph with pko(G) = 2. Then G
has a spanning subgraph consisting of a number of vertex-disjoint matching edges,
odd cycles and one path on seven vertices.
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5 Conclusions

We solved the square-root conjecture of [3] by giving a tight upper bound on
the parallel knock-out number of a KO-reducible graph G. We also showed that
the parallel knock-out number of a KO-reducible K1,p-free graph is at most
p − 1, and that this bound is tight. For claw-free graphs we showed that their
parallel knock-out number can be computed in polynomial time. The question
of whether the parallel knock-out number for K1,p-free graphs with p ≥ 4 can
also be computed in polynomial time remains open.
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3. Broersma, H., Fomin, F.V., Královič, R., Woeginger, G.J.: Eliminating graphs by
means of parallel knock-out schemes. Discrete Applied Mathematics 155, 92–102
(2007)

4. Broersma, H., Johnson, M., Paulusma, D., Stewart, I.A.: The computational com-
plexity of the parallel knock-out problem. In: Proceedings of the 7th Latin American
Theoretical Informatics Symposium (LATIN 2006), LNCS 3887, 250–261 (2006)
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�Lopuszański, Jakub 41
Luchangco, Victor 124

Manne, Fredrik 96
Marchetti-Spaccamela, Alberto 139
Martin, Russell 26
Masuzawa, Toshimitsu 151
Mjelde, Morten 96
Mostefaoui, Achour 66

Navarra, Alfredo 26
Nisse, Nicolas 51

Ooshita, Fukuhito 151
Opatrny, Jaroslav 195

Panconesi, Alessandro 1
Paulusma, Daniël 328
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Pérennes, Stéphane 261
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